KR101830565B1 - 노광 장치 및 디바이스 제조방법 - Google Patents

노광 장치 및 디바이스 제조방법 Download PDF

Info

Publication number
KR101830565B1
KR101830565B1 KR1020167032936A KR20167032936A KR101830565B1 KR 101830565 B1 KR101830565 B1 KR 101830565B1 KR 1020167032936 A KR1020167032936 A KR 1020167032936A KR 20167032936 A KR20167032936 A KR 20167032936A KR 101830565 B1 KR101830565 B1 KR 101830565B1
Authority
KR
South Korea
Prior art keywords
optical system
projection optical
liquid immersion
substrate
holding members
Prior art date
Application number
KR1020167032936A
Other languages
English (en)
Other versions
KR20160137693A (ko
Inventor
아키미츠 에비하라
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Publication of KR20160137693A publication Critical patent/KR20160137693A/ko
Application granted granted Critical
Publication of KR101830565B1 publication Critical patent/KR101830565B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70325Resolution enhancement techniques not otherwise provided for, e.g. darkfield imaging, interfering beams, spatial frequency multiplication, nearfield lenses or solid immersion lenses
    • G03F7/70333Focus drilling, i.e. increase in depth of focus for exposure by modulating focus during exposure [FLEX]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
    • G03F7/2016Contact mask being integral part of the photosensitive element and subject to destructive removal during post-exposure processing
    • G03F7/202Masking pattern being obtained by thermal means, e.g. laser ablation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70325Resolution enhancement techniques not otherwise provided for, e.g. darkfield imaging, interfering beams, spatial frequency multiplication, nearfield lenses or solid immersion lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70816Bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Glass Compositions (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Microscoopes, Condenser (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Magnetic Heads (AREA)

Abstract

수압 패드 (32) 와 수압 패드 (34) 에 의해, 웨이퍼 (W) 및 그 웨이퍼가 재치된 테이블 (TB) 이 협지되어 있다. 수압 패드 (32) 에 의해, 그 베어링면과 웨이퍼 (W) 의 투영광학계 (PL) 의 광축 방향에 관한 간격이 소정 치수로 유지된다. 또, 수압 패드는 기체 정압 베어링과는 달리 베어링면과 지지대상물 (기판) 사이의 비압축성 유체 (액체) 의 정압을 이용하기 때문에, 베어링의 강성이 높고 베어링면과 기판의 간격이 안정되어 더욱 일정하게 유지된다. 또 액체 (예를 들어 순수) 는 기체 (예를 들어 공기) 에 비하여 점성이 높고, 액체는 진동감쇠성이 기체에 비하여 양호하다. 따라서, 초점위치 검출계 등을 반드시 형성하지 않고도 디포커스가 거의 없는 웨이퍼 (기판) 상에 대한 패턴의 전사가 실현된다.

Description

노광 장치 및 디바이스 제조방법{EXPOSURE DEVICE AND DEVICE PRODUCING METHOD}
본 발명은 노광 장치 및 디바이스 제조방법에 관한 것으로, 더욱 자세하게는 반도체소자, 액정표시소자 등의 전자 디바이스의 제조에서의 리소그래피 공정에서 사용되는 노광 장치 및 그 노광 장치를 사용한 디바이스 제조방법에 관한 것이다.
반도체소자 (집적회로), 액정표시소자 등의 전자 디바이스를 제조하는 리소그래피 공정에서는, 마스크 또는 레티클 (이하, 「레티클」이라 총칭함) 의 패턴의 이미지를 투영광학계를 통하여 레지스트 (감광제) 가 도포된 웨이퍼 또는 유리 플레이트 등 감광성 기판 (이하, 「기판」 또는 「웨이퍼」라 함) 상의 각 쇼트영역에 전사하는 투영 노광 장치가 사용되고 있다. 이 종류의 투영 노광 장치로는 종래 스텝·앤드·리피트 방식의 축소 투영 노광 장치 (이른바 스테퍼) 가 많이 사용되고 있지만, 최근에는 레티클과 웨이퍼를 동기주사하여 노광하는 스텝·앤드·스캔 방식의 투영 노광 장치 (이른바 스캐닝·스테퍼) 도 주목받고 있다.
투영 노광 장치가 구비하는 투영광학계의 해상도는, 사용하는 노광광의 파장 (이하, 「노광 파장」이라고도 함) 이 짧아질수록, 또한 투영광학계의 개구수 (NA) 가 커질수록 높아진다. 그 때문에, 집적회로의 미세화에 따라 투영 노광 장치에서 사용되는 노광 파장은 해마다 단파장화되고 있으며, 투영광학계의 개구수도 증대하고 있다. 그리고, 현재 주류인 노광 파장은 KrF 엑시머 레이저의 248㎚ 이지만, 더 단파장인 ArF 엑시머 레이저의 193㎚ 도 실용화되어 있다.
또, 노광할 때에는 해상도와 마찬가지로 초점심도 (DOF) 도 중요해진다. 해상도 R 및 초점심도 δ 는 각각 이하의 식으로 표시된다.
R=k1·λ/NA ······(1)
δ=k2·λ/NA2 ······(2)
여기에서, λ 는 노광 파장, NA 는 투영광학계의 개구수, k1, k2 는 프로세스 계수이다. (1) 식, (2) 식에서, 해상도 R 을 높이기 위해 노광 파장 λ 를 짧게 하고 개구수 NA 를 크게 (대 NA 화) 하면, 초점심도 δ 가 좁아지는 것을 알 수 있다. 투영 노광 장치에서는, 오토포커스 방식으로 웨이퍼의 표면을 투영광학계의 이미지면에 맞추어 노광하고 있지만, 그러기 위해서는 초점심도 δ 는 어느 정도 넓은 것이 바람직하다. 그래서, 종래에서도 위상 시프트 레티클법, 변형 조명법, 다층 레지스트법 등 실질적으로 초점심도를 넓히는 제안이 되고 있다.
상기와 같이 종래의 투영 노광 장치에서는, 노광광의 단파장화 및 투영광학계의 대 NA 화에 의하여 초점심도가 좁아지고 있다. 그리고, 집적회로의 보다 나은 고집적화에 대응하기 위하여, 노광 파장은 장래에 더욱 단파장화될 것이 확실시되고 있고, 이대로는 초점심도가 과도하게 좁아져 노광동작시의 마진이 부족할 우려가 있다.
그래서, 실질적으로 노광 파장을 짧게 하고, 또한 공기 중에 비하여 초점심도를 크게 (넓게) 하는 방법으로서, 액침노광법 (이하, 간단히 「액침법」이라고도 함) 이 제안되어 있다. 이 액침법은, 투영광학계의 하면과 웨이퍼 표면 사이를 물 또는 유기용매 등의 액체로 채워서, 액체 중에서의 노광광의 파장이 공기 중의 1/n 배 (n 은 액체의 굴절률로 통상 1.2~1.6 정도) 가 되는 것을 이용하여 해상도를 향상시킴과 함께, 그 해상도와 동일한 해상도가 액침법에 의하지 않고 얻어지는 투영광학계 (이러한 투영광학계의 제조가 가능하다고 가정하여) 에 비하여 초점심도를 n 배로 확대하는, 즉 공기 중에 비하여 초점심도를 실질적으로 n 배로 확대하는 것이다.
상기 액침법을 스텝·앤드·리피트 방식의 투영 노광 장치에 단순히 적용하는 것으로 하면, 하나의 쇼트영역의 노광을 종료한 후 다음 쇼트영역을 노광위치로 이동시키기 위한 웨이퍼의 쇼트간 스텝 이동시에 투영광학계와 웨이퍼 사이에서 액체가 빠져나간다. 이 때문에 다시 액체를 공급할 필요가 있음과 동시에 액체의 회수도 곤란해질 우려가 있었다. 또, 액침법을 가령 스텝·앤드·스캔 방식의 투영 노광 장치에 적용하는 경우 웨이퍼를 이동시키면서 노광하기 때문에, 웨이퍼를 이동시키고 있는 동안에도 투영광학계와 웨이퍼 사이에는 액체가 채워져 있을 필요가 있다.
이러한 점을 감안하여, 최근 들어 「기판을 소정 방향을 따라 이동시킬 때 투영광학계의 기판측 광학소자의 선단부 (先端部) 와 그 기판의 표면 사이를 채우도록, 그 기판의 이동방향을 따라 소정의 액체를 흘려보내게 한 투영 노광방법 및 장치에 관한 발명」이 제안되어 있다 (예를 들어, 하기 특허문헌 1 참조).
이 외에, 액침노광법과 마찬가지로 해상도의 향상을 목적으로 하는 것으로서 투영 리소그래피·렌즈계 (투영광학계) 와 샘플 사이에 솔리드 이머전 렌즈 (Solid Immersion Lens) 를 배치한 리소그래피 시스템이 알려져 있다 (예를 들어 하기 특허문헌 2 참조).
하기 특허문헌 1 에 기재된 발명에 의하면, 액침법에 의한 고해상도, 그리고 공기 중 (中) 과 비교하여 초점심도가 커진 노광이 실시 가능함과 함께 투영광학계와 웨이퍼가 상대 이동하더라도 투영광학계와 기판 사이에 액체를 안정적으로 채워 둘 수 있는, 즉 유지할 수 있다.
그러나, 하기 특허문헌 1 에 기재된 발명에서는 투영광학계의 외부에 공급용 배관, 회수용 배관 등이 배치되어 있기 때문에, 투영광학계 주위에 배치할 필요가 있는 포커스 센서나 얼라인먼트 센서 등 각종 센서 등의 주변기기 배치의 자유도가 제한된다.
또한 하기 특허문헌 1 에 기재된 발명에서는, 투영광학계와 기판 사이의 액체에 흐름이 있으면, 그 액체에 노광광이 조사됨으로써 패턴의 투영영역 내에서 투영광학계와 기판 사이에 그 흐름 방향에 관한 온도 경사나 압력 경사가 발생할 가능성이 있으며, 특히 투영광학계와 기판의 간격, 즉 액체의 층이 두꺼운 경우 상기 온도 경사나 압력 경사가 이미지면 경사 등의 수차의 요인이 되어, 패턴의 전사정밀도의 부분적인 저하, 나아가서는 패턴의 전사 이미지의 선폭 균일성의 악화요인이 될 우려도 있었다. 이 때문에, 액체의 층은 얇은 쪽이 바람직하지만, 이 경우 투영광학계와 기판의 간격이 좁아져 포커스 센서의 배치가 곤란해진다.
또한 하기 특허문헌 1 에 기재된 발명에서는 완전히 액체를 회수하는 것이 곤란하며, 노광 후 웨이퍼 상에 액침에 사용한 액체가 남을 개연성이 높았다. 이러한 경우, 남은 액체가 증발할 때의 기화열에 의해 분위기 중에 온도분포가 생기거나 또는 분위기의 굴절률 변화가 생기고, 이들 현상이 그 웨이퍼가 재치 (載置) 된 스테이지의 위치를 계측하는 레이저 간섭계의 계측오차의 요인이 될 우려가 있었다. 또한 웨이퍼 상에 잔류한 액체가 웨이퍼의 뒤쪽으로 흘러 들어가, 웨이퍼가 반송 아암에 밀착하여 잘 떨어지지 않을 우려도 있었다.
한편, 하기 특허문헌 2 에 기재된 리소그래피 시스템에서는, 솔리드 이머전 렌즈 (이하, 간단히 「SIL」이라고도 함) 와 샘플의 간격을 50㎚ 정도 이하로 유지하게 되어 있으나, 가까운 장래의 목표로 되어 있는 선폭 70㎚ 정도 이하의 미세 패턴을 샘플 (웨이퍼 등) 상에 전사, 형성하는 리소그래피 시스템에서는, SIL 과 샘플 사이에 두께 50㎚ 의 공기층이 존재한 경우에는 상기 미세 패턴의 이미지의 충분한 해상도를 얻는 것이 곤란하다. 즉, 상기 미세 패턴 이미지의 충분한 해상도를 얻기 위해서는, SIL 과 샘플의 간격을 최대 30㎚ 이하로 유지할 필요가 있다.
그러나, 하기 특허문헌 2 에 기재된 리소그래피 시스템에서는, 에어베어링 (공기베어링) 을 사용하여 SIL 과 샘플의 간격을 유지하는 구성이 채용되어 있기 때문에, 에어베어링의 성질상 충분한 진동 감쇠성을 얻는 것이 곤란하고, 그 결과 SIL 과 샘플의 간격을 30㎚ 이하로 유지할 수 없었다.
이와 같이, 하기 특허문헌 1, 2 등에 개시되는 종래예에는 수많은 개선점이 있다.
특허문헌 1:국제공개 제99/49504호 팜플렛
특허문헌 2:미국특허 제5,121,256호 명세서
본 발명은 상기 서술한 바와 같은 사정 하에서 이루어진 것으로, 그 제 1 목적은, 초점위치 검출계 등을 반드시 형성하지 않고도 디포커스가 거의 없는 기판 상으로의 패턴 전사를 실현하는 것이 가능한 노광 장치를 제공하는 것에 있다.
또 본 발명의 제 2 목적은, 액침법에 바람직한 복수의 테이블을 구비한 노광 장치를 제공하는 것에 있다.
또한 본 발명의 제 3 목적은, 고집적도의 마이크로디바이스의 생산성 향상을 꾀하는 것이 가능한 디바이스 제조방법을 제공하는 것에 있다.
본 발명은, 제 1 관점으로 보아, 에너지빔에 의해 패턴을 조명하고, 상기 패턴을 투영광학계를 통해 기판 상에 전사하는 노광 장치로서, 상기 기판이 재치되며, 그 기판을 유지하여 2차원적으로 이동 가능한 테이블과, 상기 투영광학계의 이미지면측에 배치되며, 상기 테이블 상의 기판에 대향하는 베어링면과 상기 기판과의 사이에 액체를 공급하여 그 액체의 정압에 의해 상기 베어링면과 상기 기판 표면과의 간격을 유지하는 적어도 하나의 액체 정압 베어링을 포함하는 액체 정압 베어링 장치를 구비하는 제 1 노광 장치이다.
이것에 의하면, 액체 정압 베어링 장치에 의해 액체 정압 베어링의 베어링면과 기판의 표면의 투영광학계의 광축 방향에 관한 간격이 소정 치수로 유지된다. 액체 정압 베어링은 기체 정압 베어링과는 달리 베어링면과 지지대상물 (기판) 사이의 비압축성 유체인 액체의 정압을 이용하기 때문에, 베어링의 강성 (剛性) 이 높고, 베어링면과 기판의 간격을 안정적으로, 또한 일정하게 유지할 수 있다. 그리고 액체 (예를 들어 순수) 는 기체 (예를 들어 공기) 에 비하여 점성이 높아, 액체는 진동 감쇠성이 기체에 비하여 양호하다. 따라서, 본 발명의 노광 장치에 의하면, 초점위치 검출계 등을 반드시 형성하지 않고도 디포커스가 거의 없는 기판 상으로의 패턴 전사를 실현할 수 있다.
이 경우에 있어서, 상기 투영광학계와 상기 기판 표면 사이에 공기에 비하여 굴절률이 높은 고굴절률 유체가 항상 존재하는 상태에서, 상기 패턴, 상기 투영광학계 및 상기 고굴절률 유체를 통하여 상기 에너지빔에 의해 상기 기판이 노광되게 할 수 있다. 이러한 경우에는, 투영광학계와 기판 표면 사이에 공기에 비하여 굴절률이 높은 고굴절률 유체가 항상 존재하는 상태에서, 상기 패턴, 투영광학계 및 고굴절률 유체를 통하여 에너지빔에 의해 기판이 노광되기 때문에, 기판 표면에서의 에너지빔의 파장을 공기 중에서의 파장의 1/n 배 (n 은 고굴절률 유체의 굴절률) 로 단파장화할 수 있어, 초점심도는 공기 중에 비하여 약 n 배로 더 넓어진다.
이 경우에 있어서, 상기 고굴절률 유체는 액체인 것으로 할 수 있다.
이 경우에 있어서, 상기 액체 정압 베어링용 액체가 상기 투영광학계와 상기 테이블 상의 상기 기판과의 사이를 채우기 위한 상기 고굴절률 유체로서 사용되는 것으로 할 수 있다.
본 발명의 제 1 노광 장치에서는, 상기 적어도 하나의 액체 정압 베어링은, 상기 투영광학계의 광축 방향에 관하여 상기 투영광학계와의 위치관계를 일정하게 유지한 상태로 배치되어 있는 것으로 할 수 있다.
본 발명의 제 1 노광 장치에서는, 상기 투영광학계를 구성하는 가장 기판측에 가까운 광학부재 (22) 는 그 동공면측이 곡면이고 또한 이미지면측이 평면인 것으로 할 수 있다.
이 경우에 있어서, 상기 투영광학계를 구성하는 가장 기판측에 가까운 광학부재는, 그 이미지면측의 평면이 상기 액체 정압 베어링의 베어링면과 거의 동일 면 상에 위치하는 것으로 할 수 있다. 이러한 경우에는, 그 광학부재와 기판 사이의 간격을 예를 들어 10㎛ 정도로 유지하는 것이 가능해진다. 특히, 투영광학계와 기판 표면 사이에 고굴절률 유체를 채우는 경우에는 그 고굴절률 유체의 소비량이 매우 적어져, 패턴 이미지의 결상 성능이 유체의 굴절률 변화 (예를 들어 온도 등에 기인함) 의 영향을 잘 받지 않게 된다. 또한, 특히 고굴절률 유체가 액체인 경우에 기판의 건조에 유리해진다.
본 발명의 제 1 노광 장치에서는, 상기 액체 정압 베어링 장치는 상기 적어도 하나의 액체 정압 베어링의 베어링면과 상기 기판 사이에 상기 액체를 공급함과 함께, 상기 베어링면과 상기 기판 사이의 액체를 부압 (負壓) 을 이용하여 외부로 배출하는 것으로 할 수 있다. 이러한 경우에는, 액체 정압 베어링이 한층 더 강성이 높아져, 한층 더 안정적으로 베어링면과 기판의 간격을 일정하게 유지하는 것이 가능해진다.
이 경우에 있어서, 상기 적어도 하나의 액체 정압 베어링은 상기 기판 상의 상기 패턴의 투영영역 주위를 둘러싸는 상태로 배치되어 있는 것으로 할 수 있다.
이 경우에 있어서, 상기 적어도 하나의 액체 정압 베어링으로서 복수의 액체 정압 베어링을 사용하고, 그들 복수의 액체 정압 베어링을 기판 상의 패턴의 투영영역 주위를 둘러싸는 상태로 배치할 수도 있고, 또는 상기 적어도 하나의 액체 정압 베어링은 그 베어링면이 상기 기판 상의 상기 투영영역을 둘러싸는 단일 베어링으로 할 수도 있다.
본 발명의 제 1 노광 장치에서는, 적어도 하나의 액체 정압 베어링은 상기 기판 상의 상기 패턴의 투영영역 주위를 둘러싸는 상태로 배치되어 있는 경우, 상기 액체 정압 베어링의 상기 베어링면에는 복수의 환 (環) 형상의 홈이 다중으로 형성되고, 상기 복수의 홈은 액체 공급홈과 액체 배출홈을 적어도 각 1개 포함하는 것으로 할 수 있다.
이 경우에 있어서, 상기 복수의 홈은 액체 공급홈과 그 액체 공급홈 내외에 각각 형성된 적어도 각 1개의 액체 배출홈을 포함하는 것으로 할 수 있다.
본 발명의 제 1 노광 장치에서는, 적어도 하나의 액체 정압 베어링은 상기 기판 상의 상기 패턴의 투영영역 주위를 둘러싸는 상태로 배치되어 있는 경우, 상기 액체 정압 베어링에 형성되며, 적어도 하나의 계측점에서 상기 기판 표면과의 사이의 간격을 계측하는 갭 센서를 추가로 구비하고, 상기 액체 정압 베어링 장치는 상기 갭 센서의 계측치에 따라 상기 액체를 배출하기 위한 부압과 상기 액체를 공급하기 위한 양압 (陽壓) 중 적어도 일방을 조정하는 것으로 할 수 있다.
본 발명의 제 1 노광 장치에서는, 상기 테이블을 사이에 두고 상기 액체 정압 베어링에 대향하여 배치되고, 상기 테이블에 대향하는 베어링면과 상기 테이블 사이에 유체를 공급하여 그 유체의 정압에 의해 상기 베어링면과 상기 테이블 면과의 간극을 유지하는 적어도 하나의 유체 정압 베어링을 더 구비하는 것으로 할 수 있다. 이러한 경우에는, 결과적으로 테이블과 그 테이블 상의 기판이 상기 서술한 액체 정압 베어링과 상기 유체 정압 베어링에 의해 상하에서 협지된다. 이 경우, 각각의 베어링면과 기판 또는 테이블의 간격을 예를 들어 10㎛ 정도 이하로 안정적으로 일정하게 유지할 수 있다. 따라서, 테이블 자체의 강성은 그다지 높지 않아도 되므로 테이블을 얇게 할 수 있고, 그 만큼 경량화가 가능하다.
이 경우에 있어서, 상기 유체 정압 베어링은, 그 베어링면이 상기 테이블의 상기 기판이 재치되는 면과는 반대측 면 상의 상기 투영영역에 대응하는 영역을 둘러싸는 단일 베어링인 것으로 할 수 있다.
이 경우에 있어서, 상기 유체 정압 베어링의 상기 베어링면에는 복수의 환 형상의 홈이 다중으로 형성되고, 상기 복수의 홈은 유체 공급홈과 유체 배출홈을 적어도 각 1개 포함하는 것으로 할 수 있다.
이 경우에 있어서, 상기 복수의 홈은 유체 공급홈과 그 유체 공급홈 내외에 각각 형성된 적어도 각 1개의 유체 배출홈을 포함하는 것으로 할 수 있다.
본 발명의 제 1 노광 장치에서는, 상기 유체 정압 베어링을 구비하는 경우, 상기 유체는 액체인 것으로 할 수 있다. 즉, 유체 정압 베어링으로서 액체 정압 베어링을 사용할 수 있다. 이러한 경우에는, 테이블과 그 테이블 상의 기판이 비압축유체인 액체에 의해 상하에서 협지되는 것이 되기 때문에, 테이블과 그 테이블 상의 기판을 더욱 안정적으로 협지하는 것이 가능해진다. 이 경우, 상하의 베어링이 모두 고강성이기 때문에, 각각의 베어링면과 기판 또는 테이블과의 간격이 한층 더 안정적이고 일정하게 유지된다.
본 발명의 제 1 노광 장치에는, 상기 베어링면과 상기 기판 표면과의 간극은 0 보다 크고 10㎛ 정도 이하로 유지되는 것으로 할 수 있다.
본 발명의 제 1 노광 장치에서는, 상기 테이블의 상기 2차원 면 내의 위치정보를 검출하는 위치 검출계를 추가로 구비하는 것으로 할 수 있다.
본 발명은, 제 2 관점에서 보아, 투영광학계와 기판 사이에 액체를 공급하며, 에너지빔에 의해 패턴을 조명하며, 상기 패턴을 상기 투영광학계 및 상기 액체를 통해 상기 기판 상에 전사하는 노광 장치로서, 기판의 재치영역이 형성되며, 그 재치영역 주위 영역의 표면이 상기 재치영역에 재치된 기판의 표면과 거의 면일 (面一) 하도록 설정되고, 상기 액체가 공급되는 상기 투영광학계 바로 아래의 위치를 포함하는 제 1 영역과 그 제 1 영역의 1축 방향의 일측에 위치하는 제 2 영역을 포함하는 소정 범위의 영역 내에서 이동가능한 제 1 테이블, 표면이 거의 면일하도록 설정되며, 상기 제 1 영역과 상기 제 2 영역을 포함하는 영역 내에서 상기 제 1 테이블과는 독립하여 이동가능한 제 2 테이블, 및 상기 제 1, 제 2 테이블을 구동함과 함께, 한 쪽 테이블이 상기 제 1 영역에 위치하는 제 1 상태로부터 다른 쪽 테이블이 상기 제 1 영역에 위치하는 제 2 상태로 천이시킬 때, 양 테이블이 상기 1축 방향에 관해 근접 또는 접촉한 상태를 유지하여 양 테이블을 동시에 상기 1축 방향의 상기 제 2 영역측에서 제 1 영역을 향하는 방향으로 구동하는 스테이지 구동계를 구비하는 제 2 노광 장치이다.
이것에 의하면, 스테이지 구동계에 의해 액체가 공급되는 투영광학계 바로 아래의 위치를 포함하는 제 1 영역에 한 쪽 테이블이 위치하는 제 1 상태로부터 다른 쪽 테이블을 상기 제 1 영역에 위치하는 제 2 상태로 천이시킬 때, 양 테이블이 1축 방향에 관해 근접 또는 접촉한 상태를 유지하여 양 테이블이 동시에 1축 방향의 제 2 영역측에서 제 1 영역측을 향하는 방향으로 구동된다. 이 때문에, 투영광학계 바로 아래에는 항상 어느 하나의 테이블이 존재하며, 그 테이블 (기판 또는 그 기판이 재치된 영역 주위의 영역) 과 투영광학계 사이에 액침영역이 형성된 상태가 유지되어 투영광학계와 상기 테이블 사이에 액체를 유지할 수 있어, 그 액체의 유출을 방지하는 것이 가능해진다.
또한, 리소그래피 공정에 있어서, 본 발명의 제 1, 제 2 노광 장치 중 어느 하나를 사용하여 노광함으로써 기판 상에 패턴을 높은 정밀도로 형성할 수 있으며, 이로 인해 더욱 고집적도의 마이크로 디바이스를 높은 수율로 제조할 수 있다. 따라서, 본 발명은 또 다른 관점에서 보아, 본 발명의 제 1, 제 2 노광 장치 중 어느 하나를 사용하는 디바이스 제조방법이라고도 할 수 있다.
본 발명에 의하면, 초점위치 검출계 등을 반드시 형성하지 않고도 디포커스가 거의 없는 기판 상으로의 패턴 전사를 실현하는 것이 가능한 노광 장치를 제공할 수 있다.
또한, 액침법에 바람직한 복수의 테이블을 구비한 노광 장치를 제공할 수 있다.
아울러, 본 발명은, 고집적도의 마이크로디바이스의 생산성 향상을 꾀하는 것이 가능한 디바이스 제조방법을 제공할 수 있다.
도 1 은 본 발명의 제 1 실시형태의 노광 장치의 구성을 개략적으로 나타내는 도면이다.
도 2 는 구동장치의 구성을 웨이퍼 테이블 (TB) 과 함께 나타내는 사시도이다.
도 3 은 도 2 의 구동장치의 XZ 단면을 수압 패드에 대한 급배수를 위한 배관계와 함께 개략적으로 나타내는 도면이다.
도 4 는 수압 패드 (32) 의 저면도이다.
도 5 는 수압 패드 (32, 34) 에 의해 웨이퍼 테이블이 지지될 때 웨이퍼 테이블의 수압 패드 근방의 물의 흐름을 나타내는 도면이다.
도 6 은 제 1 실시형태의 노광 장치 제어계의 구성을 일부 생략하여 나타내는 블록도이다.
도 7 은 위치 검출계로서 간섭계를 사용하는 경우의 웨이퍼 테이블의 구성을 나타내는 도면이다.
도 8 은 변형예를 설명하기 위한 도면이다.
도 9 는 제 2 실시형태의 노광 장치를 구성하는 웨이퍼 스테이지 장치의 구성을 나타내는 평면도이다.
도 10 은 제 2 실시형태에서의 웨이퍼 테이블 교환시의 동작을 설명하기 위한 도면이다.
도 11(a) 는 수압 패드의 변형예를 설명하기 위한 도면이다.
도 11(b) 는 도 11(a) 의 수압 패드에 사용하면 바람직한 급수관 (또는 배기관) 을 나타내는 도면이다.
도 12 는 본 발명에 관련된 디바이스 제조방법을 설명하기 위한 플로우차트이다.
도 13 은 도 12 의 단계 204 의 구체예를 나타내는 플로우차트이다.
≪제 1 실시형태≫
이하, 본 발명의 제 1 실시형태에 대하여 도 1∼6 에 기초하여 설명한다.
도 1 에는 제 1 실시형태에 관련된 노광 장치 (100) 의 개략구성이 나타나 있다. 이 노광 장치 (100) 는 스텝·앤드·스캔 방식의 투영 노광 장치 (이른바 스캐닝·스테퍼) 이다. 이 노광 장치 (100) 는, 조명계 (10), 마스크로서의 레티클 (R) 을 유지하는 레티클 스테이지 (RST), 광학유닛 (PU), 기판으로서의 웨이퍼 (W) 가 재치되는 테이블로서의 웨이퍼 테이블 (TB) 및 장치 전체를 통괄 제어하는 주제어장치 (20) 등을 구비하고 있다.
상기 조명계 (10) 는, 예를 들어 일본 공개특허공보 2001-313250호 및 이것에 대응하는 미국 특허출원공개 제2003/0025890호 등에 개시된 바와 같이, 광원, 옵티컬 인터그레이터 등을 포함하는 조도균일화 광학계, 빔 스플리터, 릴레이 렌즈, 가변 ND 필터, 레티클 블라인드 등 (모두 도시 생략) 을 포함하여 구성되어 있다. 이 밖에, 예를 들어 일본 공개특허공보 평6-349701호 및 이것에 대응하는 미국특허 제5,534,970호 등에 개시된 바와 같은 조명계와 동일하게 조명계 (10) 를 구성해도 된다.
이 조명계 (10) 에서는, 회로패턴 등이 그려진 레티클 (R) 상의 레티클 블라인드로 규정된 슬릿 형상의 조명영역부분을 에너지빔으로서의 조명광 (노광광 ; IL) 에 의해 거의 균일한 조도로 조명한다. 여기에서, 조명광 (IL) 으로는, 일례로서 ArF 엑시머 레이저광 (파장 193㎚) 이 사용되고 있다. 또, 조명광 (IL) 으로서 KrF 엑시머 레이저광 (파장 248㎚) 등의 원자외광, 또는 초고압 수은램프로부터의 자외역 휘선 (g 선, i 선 등) 을 사용하는 것도 가능하다. 또한, 옵티컬 인터그레이터로는 플라이 아이 렌즈, 로드 인터그레이터 (내면반사형 인터그레이터) 또는 회절광학소자 등을 사용할 수 있다. 본 국제출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내법령이 허용하는 한도에서 상기 각 공개공보 및 이들에 대응하는 미국특허 또는 미국 특허출원 공개공보에서의 개시를 원용하여 본 명세서 기재의 일부로 한다.
상기 레티클 스테이지 (RST) 상에는 레티클 (R) 이 예를 들어 진공흡착에 의해 고정되어 있다. 레티클 스테이지 (RST) 는, 예를 들어 리니어모터 등을 포함하는 레티클 스테이지 구동부 (11 ; 도 1 에서는 도시하지 않고 도 6 참조) 에 의해 조명계 (10) 의 광축 (후술하는 광학계의 광축 (AX) 에 일치) 에 수직인 XY 평면 내에서 미소 구동 가능함과 함께 소정의 주사방향 (여기에서는 도 1 에서의 지면 내 좌우방향인 Y축 방향으로 함) 에 지정된 주사속도로 구동가능하게 되어 있다.
레티클 스테이지 (RST) 의 XY 면 내의 위치는, 레티클 레이저 간섭계 (이하 「레티클 간섭계」라 함 ; 16) 에 의해 이동거울 (15) 을 통하여 예를 들어 0.5~1㎚ 정도의 분해능으로 항상 검출된다. 여기에서, 실제로는 레티클 스테이지 (RST) 상에는 Y축 방향에 직교하는 반사면을 갖는 이동거울과 X축 방향에 직교하는 반사면을 갖는 이동거울이 형성되고, 이들 이동거울에 대응하여 레티클 Y 간섭계와 레티클 X 간섭계가 형성되어 있는데, 도 1 에서는 이들이 대표적으로 이동거울 (15), 레티클 간섭계 (16) 로서 나타나 있다. 또, 예를 들어 레티클 스테이지 (RST) 의 단면을 경면 (鏡面) 가공하여 반사면 (이동거울 (15) 의 반사면에 상당) 을 형성해도 된다. 또, 레티클 스테이지 (RST) 의 주사방향 (본 실시형태에서는 Y축 방향) 의 위치 검출에 사용되는 X축 방향으로 신장된 반사면 대신에 적어도 하나의 코너 큐브형 미러 (예를 들어 레트로 리플렉터) 를 사용해도 된다. 여기에서, 레티클 Y 간섭계와 레티클 X 간섭계 중 한 쪽, 예를 들어 레티클 Y 간섭계는 측장축을 2축 가진 2축 간섭계이고, 이 레티클 Y 간섭계의 계측치에 기초하여 레티클 스테이지 (RST) 의 Y 위치에 더하여 θz (Z축 둘레 회전) 도 계측할 수 있게 되어 있다.
레티클 간섭계 (16) 로부터의 레티클 스테이지 (RST) 의 위치정보는 주제어장치 (20) 에 공급된다. 주제어장치 (20) 에서는, 레티클 스테이지 (RST) 의 위치정보에 기초하여 레티클 스테이지 구동부 (11 ; 도 6 참조) 를 통하여 레티클 스테이지 (RST) 를 구동 제어한다.
상기 광학유닛 (PU) 은, 레티클 스테이지 (RST) 의 도 1 에서의 아래쪽에 배치되어 있다. 광학유닛 (PU) 은, 경통 (40) 과, 그 경통 내에 소정 위치관계로 유지된 복수의 광학소자, 구체적으로는 Z축 방향의 공통의 광축 (AX) 을 갖는 복수의 렌즈 (렌즈 엘리먼트) 로 이루어지는 광학계 (42) 를 구비하고 있다. 또한 본 실시형태에서는, 경통 (40) 의 하단 (광학계 (42) 를 구성하는 가장 이미지면측 (웨이퍼 (W) 측) 에 가까운 광학소자 (광학부재) 를 유지하는 경통 (40) 부분의 선단) 에 액체 정압 베어링으로서의 수압 패드 (32) 가 일체적으로 부착되고, 그 수압 패드 (32) 의 중앙부 개구의 내부에 솔리드 이머전 렌즈 (이하 「SIL」이라 함 ; 22) 가 배치되어 있다 (도 3 참조). 이 SIL (22) 은 평볼록 렌즈로 이루어지고, 그 평면 (이하, 편의상 「하면」이라 함) 이 아래쪽을 향하게 하여 그 하면이 수압 패드 (32) 의 베어링면과 거의 동일 면으로 되어 있다. SIL (22) 은 굴절률 nSIL 이 2~2.5 정도인 소재에 의해 형성되어 있다.
본 실시형태에서는, 경통 (40) 내부의 광학계 (42) 와 SIL (22) 에 의하여 예를 들어 양측 텔레센트릭으로 소정 투영배율 (예를 들어 1/4배 또는 1/5배) 의 굴절광학계로 이루어지는 투영광학계가 실질적으로 구성되어 있다. 이하, 이 투영광학계를 투영광학계 (PL) 라 기술한다.
이 경우, 조명계 (10) 로부터의 조명광 (IL) 에 의해 레티클 (R) 의 조명영역이 조명되면, 이 레티클 (R) 을 통과한 조명광 (IL) 에 의해 투영광학계 (PL) 를 통하여 그 조명영역 내의 레티클 (R) 의 회로패턴의 축소 이미지 (회로패턴 일부의 축소 이미지) 가, 표면에 레지스트 (감광제) 가 도포된 웨이퍼 (W) 상의 상기 조명영역에 공액인 조명광의 조사영역 (이하, 「노광영역」이라고도 함) 에 형성된다.
또한 도시는 생략되어 있지만, 광학계 (42) 를 구성하는 복수의 렌즈 중 특정한 복수의 렌즈는, 주제어장치 (20) 로부터의 지령에 기초하여 결상 특성 보정 제어기 (81) 에 의해 제어되며, 투영광학계 (PL) 의 광학특성 (결상 특성을 포함함), 예를 들어 배율, 디스토션, 코마수차 및 이미지면 만곡 (이미지면 경사를 포함함) 등을 조정할 수 있게 되어 있다.
또, 상기의 수압 패드 (32) 및 여기에 접속된 배관계의 구성 등에 대해서는 뒤에 상세하게 서술한다.
상기 웨이퍼 테이블 (TB) 은 직사각형 판상부재로 이루어지고, 그 표면에는 중앙에 원형 개구 (도 2 참조) 가 형성된 보조 플레이트 (24) 가 고착되어 있다. 여기에서, 도 2 에 나타내는 바와 같이 보조 플레이트 (24) 와 웨이퍼 (W) 사이에는 간극 (D) 이 존재하지만, 간극 (D) 의 치수는 3㎜ 이하가 되도록 설정되어 있다. 또한 웨이퍼 (W) 에는 그 일부에 노치 (V 자 형상의 절결) 가 존재하지만, 이 노치의 치수는 간극 (D) 보다 더 작아 1㎜ 정도이므로 도시는 생략하고 있다.
또한, 보조 플레이트 (24) 에는 그 일부에 원형 개구가 형성되고, 그 개구 내에 기준마크판 (FM) 이 간극이 없도록 끼워 넣어져 있다. 기준마크판 (FM) 은 그 표면이 보조 플레이트 (24) 와 동일 면으로 되어 있다. 기준마크판 (FM) 의 표면에는 후술하는 레티클 얼라인먼트나 후술하는 얼라인먼트 검출계 (ALG) 의 베이스라인 계측 등에 사용되는 각종 기준마크 (모두 도시 생략) 가 형성되어 있다.
여기에서, 실제로는 보조 플레이트 (24) 와 웨이퍼 테이블 (TB) 사이에는 도 3 에 나타내는 바와 같이 탄성체 (25) 가 위치하고 있다. 이 경우, 보조 플레이트 (24) 의 상방에 수압 패드 (32) 가 위치하지 않는 상태에서는 보조 플레이트 (24) 의 상면이 웨이퍼 상면보다 항상 낮아지도록 설정되어 있다. 그리고, 보조 플레이트 (24) 의 상방에 수압 패드 (32) 가 위치하는 상태에서는, 수압 패드 (32) 의 양압과 부압의 밸런스에 의해 보조 플레이트 (24) 의 상면이 웨이퍼 (W) 상면과 일치하는 높이까지 상승하게 되어 있다. 이로써, 수압 패드 (32) 와 이것에 대향하는 보조 플레이트 (24) 의 상면과의 갭이 일정하게 유지되기 때문에, 압력이 일정하게 유지됨과 함께 물의 누출량을 거의 0 으로 할 수 있다.
*웨이퍼 테이블 (TB) 은 주사방향 (Y축 방향) 의 이동뿐만 아니라 웨이퍼 (W) 상의 복수의 쇼트영역을 상기 조명영역과 공액인 노광영역에 위치시킬 수 있도록, 주사방향에 직교하는 비주사방향 (X축 방향) 에도 후술하는 구동장치에 의해 이동 가능하게 구성되어 있다. 이것에 의해, 웨이퍼 (W) 상의 각 쇼트영역을 주사 (스캔) 노광하는 동작과, 다음 쇼트의 노광을 위한 가속개시위치 (주사개시위치) 까지 이동시키는 동작 (구획영역간 이동동작) 을 반복하는 스텝 앤드 스캔 동작을 할 수 있게 되어 있다.
또한 웨이퍼 테이블 (TB) 의 하면 (이면) 측에는, 도 1 에 나타내는 바와 같이 상기 서술한 수압 패드 (32) 에 대향하여 유체 정압 베어링으로서의 수압 패드 (34) 가 배치되어 있고, 이 수압 패드 (34) 는 고정부재 (36) 의 상면에 고정되어 있다. 이 경우, 웨이퍼 테이블 (TB) 과 그 웨이퍼 테이블 (TB) 상의 웨이퍼 (W) 가 수압 패드 (32) 와 수압 패드 (34) 에 의해 상하로부터 비접촉으로 협지되어 있다. 또, 이 수압 패드 (34) 및 이것에 접속된 배관계의 구성 등에 대해서는 후술한다.
또 웨이퍼 테이블 (TB) 의 XY 평면 내에서의 위치 (Z축 둘레의 회전 (θz 회전) 을 포함함) 는 인코더 (96) 에 의해 계측되고 있지만, 이 점에 관해서도 후술한다.
다음으로, 웨이퍼 테이블 (TB) 을 구동하는 구동장치에 대하여, 도 2 및 도 3 에 기초하여 설명한다. 도 2 에는 구동장치 (50) 의 구성이 웨이퍼 테이블 (TB) 등과 함께 사시도로 도시되고, 도 3 에는 이 구동장치 (50) 의 XZ 단면이 상기 서술한 수압 패드 (32, 34) 에 대한 급배수를 위한 배관계와 함께 개략적으로 나타나 있다.
구동장치 (50) 는 웨이퍼 테이블 (TB) 을 이동 가능하게 하방에서 지지하는 스테이지 (52 ; 도 2 참조) 와, 웨이퍼 테이블 (TB) 을 스테이지 (52) 에 대하여 주사방향인 Y축 방향으로 구동함과 함께 비주사방향 (X축 방향) 으로 미소 구동하는 제 1 구동기구와, 스테이지 (52) 와 일체적으로 웨이퍼 테이블 (TB) 를 X축 방향으로 구동하는 제 2 구동기구를 구비하고 있다.
상기 스테이지 (52) 는, 직사각형 프레임형상의 부재로 이루어지고 (도 3 참조), 그 저면의 Y축 방향의 일측과 타측에는 도 2 에 나타내는 바와 같이 예를 들어 X축 방향에 소정 간격으로 배치된 복수의 영구자석을 갖는 자극유닛으로 이루어지는 한 쌍의 X 가동자 (54A, 54B) 가 형성되어 있다. 이들 X 가동자 (54A, 54B) 와 함께 각각 X축 리니어모터 (58A, 58B) 를 구성하는 전기자 유닛으로 이루어지는 X 고정자 (56A, 56B) 가 X축 방향에 각각 연장 설치되어 있다. X 고정자 (56A, 56B) 는 동일한 XY 면 내에서 Y축 방향에 소정 간격을 두고 배치되고, 각각 도시하지 않는 지지부재에 의해 지지되어 있다. X 고정자 (56A, 56B) 는 X 가동자 (54A, 54B) 가 그 내부에 삽입 가능한 단면 U 자형의 형상을 갖고, X 가동자 (54A, 54B) 가 대향하는 적어도 일면에는 X축 방향에 소정 간격으로 배치된 복수의 전기자 코일을 갖고 있다.
이렇게 하여 구성되는 X축 리니어모터 (58A, 58B) 에 의해 스테이지 (52) 와 일체적으로 웨이퍼 테이블 (TB) 이 X축 방향으로 구동된다. 즉, X축 리니어모터 (58A, 58B) 에 의해 제 2 구동기구의 적어도 일부가 구성되어 있다.
상기 웨이퍼 테이블 (TB) 은, 도 3 에 나타내는 바와 같이 그 저면의 X축 방향의 일측과 타측의 단부 근방에 각각 형성된 복수의 에어베어링 (48) 을 통하여 스테이지 (52) 의 상면의 상방에 수 ㎛ 정도의 클리어런스를 통하여 부상 지지되어 있다.
웨이퍼 테이블 (TB) 의 X축 방향의 일측과 타측의 단면의 Y축 방향의 거의 중앙의 위치에는, 도 2 에 나타내는 바와 같이 예를 들어 Y축 방향에 소정 간격으로 배치된 복수의 영구자석을 갖는 자극유닛으로 이루어지는 한 쌍의 Y 가동자 (60A, 60B) 가 각각 형성되어 있다. 이들 Y 가동자 (60A, 60B) 와 함께 Y축 리니어모터 (64A, 64B) 를 각각 구성하는 Y 고정자 (62A, 62B) 가, 스테이지 (52) 상면의 X축 방향의 일측과 타측의 단부에 Y축 방향으로 각각 연장 설치되어 있다. Y 고정자 (62A, 62B) 각각은 예를 들어 Y축 방향으로 소정 간격으로 배치된 복수의 전기자 코일을 갖는 전기자 유닛에 의해 구성된다. 웨이퍼 테이블 (TB) 은 Y축 리니어모터 (64A, 64B) 에 의해 Y축 방향으로 구동된다. 또한, Y축 리니어모터 (64A, 64B) 가 발생하는 구동력을 약간 다르게 함으로써 웨이퍼 테이블 (TB) 를 Z축 둘레로 회전시키는 것도 가능하다.
그리고, 웨이퍼 테이블 (TB) 의 X축 방향 일측 (-X 측) 의 단면에는, Y 가동자 (60B) 의 +Y 측, -Y 측에 상기 Y 고정자 (62B) 와 함께 각각 보이스코일 모터를 구성하는 U 자형의 영구자석 (66A, 66B) 이 형성되어 있다. 이들 보이스코일 모터는 웨이퍼 테이블 (TB) 을 X축 방향으로 미소 구동한다. 이하에서는 이들 보이스코일 모터를, 그 가동자인 영구자석과 동일한 부호를 사용하여 보이스코일 모터 (66A, 66B) 라고도 한다.
지금까지의 설명에서 알 수 있는 바와 같이, Y축 리니어모터 (64A, 64B) 및 보이스코일 모터 (66A, 66B) 에 의해 제 1 구동기구의 적어도 일부가 구성되어 있다.
도 1 로 되돌아가, 광학유닛 (PU) 의 경통 (40) 의 측면에는 오프 액시스 (off-axis) 방식의 얼라인먼트 검출계 (ALG) 가 형성되어 있다. 이 얼라인먼트 검출계 (ALG) 로는, 예를 들어 웨이퍼 상의 레지스트를 감광시키지 않는 광대역인 검출광속을 대상마크에 조사하여, 그 대상마크로부터의 반사광에 의해 수광면에 결상된 대상마크의 이미지와 도시하지 않는 지표의 이미지를 촬상소자 (CCD) 등으로 촬상하고, 그들의 촬상신호를 출력하는 화상처리 방식의 FIA (Field Image Alignment) 계의 얼라인먼트 센서가 사용되고 있다. 이 얼라인먼트 검출계 (ALG) 의 출력에 기초하여 기준마크판 (FM) 상의 기준마크 및 웨이퍼 상의 얼라인먼트 마크의 X, Y 2차원 방향의 위치계측을 실시하는 것이 가능하다.
다음으로, 수압 패드 (32, 34) 및 이들에 접속된 배관계에 대하여 도 3 및 도 4 에 기초하여 설명한다.
광학 유닛 (PU) 의 경통 (40) 의 이미지면측의 단부 (하단부) 에는, 도 3 에 나타내는 바와 같이 하방으로 감에 따라 그 직경이 작아지는 테이퍼부 (40a) 가 형성되어 있다. 이 경우, 테이퍼부 (40a) 의 내부에 광학계 (42) 를 구성하는 가장 이미지면측에 가까운 렌즈 (도시 생략), 즉 투영광학계 (PL) 를 구성하는 이미지면에 두 번째로 가까운 렌즈가 배치되어 있다.
경통 (40) 의 하방에 부착된 수압 패드 (32) 는, 일례로서 외경이 60㎜, 내경이 35㎜ 정도이고, 높이가 20㎜~50㎜ 정도인 두께의 원통형 (도넛형) 의 형상을 가진 것이 사용되고 있다. 이 수압 패드 (32) 는, 그 베어링면 (저면) 이 XY 평면에 평행하게 되는 상태에서 경통 (40) 의 하단면에 베어링면과 반대측의 면 (상면) 이 고착되어 있다. 그 결과, 본 실시형태에서는 투영광학계 (PL) 의 광축 (AX) 방향에 관하여 수압 패드 (32) 와 투영광학계 (PL) 의 위치관계가 일정하게 유지되게 되어 있다.
수압 패드 (32) 의 베어링면 (저면) 에는, 도 3 및 수압 패드 (32) 의 저면도인 도 4 를 종합하면 알 수 있듯이, 액체 배출홈 (및 홈) 으로서의 원환 (圓環) 형상 배수홈 (68), 액체 공급홈 (및 홈) 으로서의 원환 형상의 급수홈 (70) 및 액체 배출홈 (및 홈) 으로서의 원환 형상의 배수홈 (72) 이 안쪽에서 바깥쪽으로 차례로, 또한 동심원상으로 형성되어 있다. 또, 도 3 에서는 이들 3개의 홈 (68, 70, 72) 중 중앙의 급수홈 (70) 의 홈폭이 나머지 두 개의 홈의 홈폭의 약 2배 정도로 되어 있지만, 홈 (70) 과 홈 (72) 의 면적비는 각 양압, 부압에 의한 힘이 잘 어울리게 결정된다.
배수홈 (72) 의 내부 저면 (도 3 의 내부 상면) 에는, 상하방향으로 관통하는 관통구멍 (74) 이 거의 등간격으로 복수 형성되고, 각 관통구멍 (74) 에 배수관 (76) 의 일단이 각각 접속되어 있다.
마찬가지로, 급수홈 (70) 의 내부 저면 (도 3 의 내부 상면) 에는, 상하방향으로 관통하는 관통구멍 (78) 이 거의 등간격으로 복수 형성되고, 각 관통구멍 (78) 에 급수관 (80) 의 일단이 각각 접속되어 있다.
마찬가지로, 배수홈 (68) 의 내부 저면 (도 3 의 내부 상면) 에는, 상하방향으로 관통하는 관통구멍 (82) 이 거의 등간격으로 복수 형성되고, 각 관통구멍 (82) 에 배수관 (84) 의 일단이 각각 접속되어 있다.
상기 각 급수관 (80) 의 타단은, 밸브 (86a) 를 각각 통하여 액체공급장치 (88) 에 그 일단이 접속된 공급관로 (90) 의 타단에 각각 접속되어 있다. 액체공급장치 (88) 는 액체의 탱크, 가압펌프, 온도제어장치 등을 포함하여 구성되며, 주제어장치 (20) 에 의해 제어된다. 이 경우, 대응하는 밸브 (86a) 가 열린 상태일 때 액체공급장치 (88) 가 작동되면, 예를 들어 노광 장치 (100) (의 본체) 가 수납되어 있는 챔버 (도시 생략) 내의 온도와 동일한 정도의 온도로 온도제어장치에 의해 조절된 액침용의 소정 액체가 공급관로 (90), 급수관 (80) 및 관통구멍 (78) 을 차례로 통하여 수압 패드 (32) 의 급수홈 (70) 내부로 공급된다. 또, 이하에서는 각 급수관 (80) 에 형성된 밸브 (86a) 모두를 밸브군 (86a) 이라고도 기술한다 (도 6 참조).
상기 액체로는, 여기에서는 ArF 엑시머 레이저광 (193.3㎚ 의 광) 이 투과하는 초순수 (超純水; 이하, 특별히 필요한 경우를 제외하고 간단히 「물」이라 기술함) 를 사용하는 것으로 한다. 초순수는 반도체 제조공장 등에서 쉽게 대량으로 입수할 수 있음과 함께, 웨이퍼 상의 포토레지스트나 광학렌즈 등에 대한 악영향이 없다는 이점이 있다. 또한 초순수는 환경에 대한 악영향이 없음과 함께 불순물의 함유량이 매우 낮기 때문에, 웨이퍼의 표면 및 SIL (22) 의 표면을 세정하는 작용도 기대할 수 있다.
상기 각 배수관 (76) 의 타단은, 밸브 (86b) 를 각각 통하여 액체회수장치 (92) 에 그 일단이 접속된 배수로 (94) 의 타단에 각각 접속되어 있다. 액체회수장치 (92) 는 액체의 탱크 및 진공펌프 (또는 흡인펌프) 등을 포함하여 구성되고, 주제어장치 (20) 에 의해 제어된다. 이 경우, 대응하는 밸브 (86b) 가 열린 상태일 때, 수압 패드 (32) 의 베어링면과 웨이퍼 (W) 표면 사이의, 배수홈 (72) 근방에 존재하는 물이 배수관 (76) 을 통하여 액체회수장치 (92) 에 의해 회수된다. 또, 이하에서는 각 배수관 (76) 에 형성된 밸브 (86b) 모두를 밸브군 (86b) 이라고도 한다 (도 6 참조).
또한 상기 각 배수관 (84) 의 타단은, 도시하지 않는 수조의 내부공간으로 들어가고, 그 수조의 내부공간은 대기 중에 개방되어 있다.
상기 수압 패드 (34) 는, 상기 수압 패드 (32) 와 마찬가지로 외경이 60㎜, 내경이 35㎜ 정도이고, 높이가 20㎜~50㎜ 정도 두께의 원통형 (도넛 형상) 의 형상을 갖는 것이 사용되고 있다. 이 수압 패드 (34) 는 그 베어링면 (상면) 이 XY 평면에 평행하게 되는 상태에서 고정부재 (36) 의 상면에 고정되어 있다.
상기 웨이퍼 테이블 (TB) 의 이면에는, XY 2차원 스케일 (도시 생략) 이 형성되고, 이 XY 2차원 스케일을 판독 가능한 광학식 (또는 자기식) 의 인코더 (96) 가 수압 패드 (34) 의 중앙 개구의 내부에 형성되어 있다. 따라서, 웨이퍼 테이블 (TB) 의 일부가 인코더 (96) 에 대향하는 상태에서는, 인코더 (96) 에 의해 웨이퍼 테이블 (TB) 의 XY 면 내의 위치정보를 소정의 분해능, 예를 들어 0.2㎚ 에서 계측할 수 있다. 이 인코더 (96) 의 계측치가 주제어장치 (20) 에 공급되고 있다 (도 6 참조). 웨이퍼 테이블 (TB) 은 상하의 수압 패드 (32, 34) 에 강하게 눌려 있기 때문에, 수압 패드 (32, 34) 사이에 끼인 웨이퍼 테이블 (TB) 의 부분이 휘지 않아, 인코더 (96) 의 계측치에 포함되는 웨이퍼 테이블 (TB) 의 휨에 기인하는 사인 오차는 매우 작아진다.
수압 패드 (34) 의 베어링면에는, 상기 서술한 수압 패드 (32) 와 완전히 동일한 배치형상으로 하나의 유체 공급홈 (및 홈) 으로서의 급수홈 (102) 과, 그 외측 및 내측의 유체 배출홈 (및 홈) 으로서의 배수홈 (104, 106) 이 형성되어 있다. 이들 홈 (102, 104, 106) 에는, 상기 서술한 바와 같이 수압 패드 (34) 의 저면에 연통하는 복수의 관통구멍이 각각 형성되어 있다. 급수홈 (102) 은 복수의 관통구멍 각각을 통하여 복수의 급수관 (108) 각각의 일단이 접속되고, 각 급수관 (108) 의 타단은 밸브 (86c) 및 도시하지 않는 급수로를 통하여 액체공급장치(114 ; 도 3 에서는 도시 생략, 도 6 참조) 에 접속되어 있다. 이 액체공급장치 (114) 는 상기 서술한 액체공급장치 (88) 와 동일하게 구성되어 있다.
외측의 배수홈 (104) 은, 복수의 관통구멍 각각을 통하여 복수의 배수관 (110) 각각의 일단이 접속되고, 각 배수관 (110) 의 타단은 밸브 (86d) 및 도시하지 않는 회수로를 통하여 액체회수장치 (116 ; 도 3 에서는 도시 생략, 도 6 참조) 에 접속되어 있다. 액체회수장치 (116) 는 상기 서술한 액체회수장치 (92) 와 동일하게 구성되어 있다.
내측의 배수홈 (106) 은, 상기와 같이 복수의 관통구멍 각각을 통하여 복수의 배수관 (112) 각각의 일단이 접속되고, 각 배수관 (112) 의 타단은 밸브 (86e) 및 도시하지 않는 회수로를 통하여 액체회수장치 (116) 에 접속되어 있다. 즉, 수압 패드 (34) 에서는, 내측의 배수홈 (106) 은 대기해방 (大氣解放) 상태는 아니다.
이하의 설명에서는, 복수의 급수관 (108) 의 타단에 각각 형성된 밸브 (86c) 모두를 밸브군 (86c) 이라고도 기술한다 (도 6 참조). 마찬가지로 복수의 배수관 (110, 112) 의 타단에 각각 형성된 밸브 (86d, 86e) 를 각각 합해 밸브군 (86d, 86e) 이라고도 기술한다 (도 6 참조).
또 상기 각 밸브로는, 개폐 외에 그 개도 (開度) 의 조정이 가능한 조정 밸브 (예를 들어 유량제어밸브) 등이 사용되고 있다. 이들 밸브는 주제어장치 (20) 에 의해 제어된다 (도 6 참조).
도 6 에는, 노광 장치 (100) 제어계의 구성이 일부 생략되어 블록도로 나타나 있다. 이 제어계는 워크스테이션 (또는 마이크로컴퓨터) 등으로 이루어지는 주제어장치 (20) 를 중심으로 하여 구성되어 있다.
여기에서, 본 실시형태의 노광 장치 (100) 에서의, 수압 패드 (32, 34) 에 의한 웨이퍼 테이블 (TB) 의 지지에 대하여, 주제어장치 (20) 의 동작을 포함해 도 3, 도 5 및 도 6 등을 참조하여 설명한다.
먼저 웨이퍼 테이블 (TB) 이 정지상태에 있는, 예를 들어 수압 패드 (32, 34) 에 의해 웨이퍼 테이블 (TB) 의 지지가 개시될 때의 모습을 설명한다.
주제어장치 (20) 는, 먼저 밸브군 (86a) 을 소정의 개도로 연 상태에서 액체공급장치 (88) 로부터 상측의 수압 패드 (32) 에 대하여 급수를 개시함과 함께, 밸브군 (86b) 을 소정 개도로 연 상태에서 액체회수장치 (92) 의 작동을 개시시킨다. 이로써, 액체공급장치 (88) 로부터 급수로 (90) 및 각 급수관 (80) 을 통하여 수압 패드 (32) 의 급수홈 (70) 내부로 소정 압력 (양압) 의 물이 이송되고, 이 이송된 물의 일부가 수압 패드 (32) 의 급수홈 (70) 내부 및 수압 패드 (32) 의 베어링면과 웨이퍼 (W) 사이를 통하여 배수홈 (72), 각 관통구멍 (74), 배수관 (76) 및 배수로 (94) 를 통하여 액체회수장치 (92) 로 회수된다 (도 5 참조).
또한 주제어장치 (20) 는, 상기 서술한 수압 패드 (32) 에 대한 급수의 개시와 거의 동시에, 밸브군 (86c) 을 소정의 개도로 연 상태에서 액체공급장치 (114) 로부터 하측의 수압 패드 (34) 에 대하여 급수를 개시함과 함께, 밸브군 (86d, 86e) 을 각각 소정 개도로 연 상태에서 액체회수장치 (116) 의 작동을 개시시킨다. 이로써, 액체공급장치 (114) 로부터 급수로 및 각 급수관 (108) 을 통하여 수압 패드 (34) 의 급수홈 (102) 내부로 소정 압력 (양압) 의 물이 이송되고, 이 이송된 물이 수압 패드 (34) 의 급수홈 (102) 내부 및 수압 패드 (34) 의 베어링면과 웨이퍼 테이블 (TB) 사이의 공간으로 퍼진 뒤, 배수홈 (104, 106) 및 각 관통구멍, 그리고 배수관 (110, 112) 을 통하여 액체회수장치 (116) 로 회수된다 (도 5 참조). 이 때, 주제어장치 (20) 는 수압 패드 (34) 에 공급되는 물의 양과, 수압 패드 (34) 의 배수홈 (104, 106) 을 통하여 배출되는 물의 양이 거의 일치하도록 밸브군 (86d, 86e) 의 각 밸브의 개도, 액체공급장치 (114) 에서 공급되는 물의 압력, 액체회수장치 (116) 가 각 배수관 (110, 112) 의 내부에 발생시키는 부압 등을 설정하고 있다. 그 결과, 항상 일정량의 물이 수압 패드 (34) 와 웨이퍼 테이블 (TB) 사이에 채워지게 되어 있다. 따라서, 수압 패드 (34) 의 베어링면과 웨이퍼 테이블 (TB) 의 이면 사이의 물의 층 두께가 항상 일정해져, 고강성으로 웨이퍼 테이블 (TB) 이 수압 패드 (34) 에 의해 지지된다. 이 때, 수압 패드 (34) 와 웨이퍼 테이블 (TB) 사이의 물의 압력은, 상측 수압 패드 (32) 에 대한 예압력 (여압력) 으로서 작용한다. 즉, 웨이퍼 테이블 (TB) 은 항상 일정한 힘으로 하방으로부터 가압되고 있다.
이 때, 주제어장치 (20) 는 수압 패드 (32) 에 대한 급수량이 배수홈 (72) 에서 배수되는 양보다 약간 많아지도록 밸브군 (86a, 86b) 의 각 밸브의 개도, 액체공급장치 (88) 에서 공급되는 물의 압력, 액체회수장치 (92) 가 각 배수관 (76) 의 내부에 발생시키는 부압 등을 설정하고 있다. 이 때문에, 수압 패드 (32) 에 공급되고 배수홈 (72) 에서 배수되지 않은 나머지 물은 수압 패드 (32) 의 베어링면과 웨이퍼 (W) 사이의 공간 (SIL (22) 아래의 공간을 포함함) 을 채운 후 배수홈 (68) 에 형성된 각 관통홈 (82), 배수관 (84) 을 통하여 외부로 배수된다.
여기에서, 배수홈 (68) 은 대기 개방된 수동적인 배수홈으로 되어 있기 때문에, SIL (22) 과 웨이퍼 (W) 사이에 존재하는 물은 대기 개방된 상태로 되어 있다. 따라서, SIL (22) 에는 거의 수압이 가해지지 않고 스트레스 (응력) 가 발생하지 않는다.
한편으로, 급수홈 (70) 내부 근방의 물은 높은 압력 (양압) 이 가해져 있어, 높은 부하용량과 강성을 수압 패드 (32) 에 부여하고 있다. 또한 수압 패드 (32) 와 웨이퍼 (W) 표면 사이에는 항상 일정량의 물이 이송되며, 이 이송된 물의 일부인 일정량의 물이 액체회수장치 (92) 에 의해 항상 회수되고 있다. 그 결과, 수압 패드 (32) 의 베어링면과 웨이퍼 (W) 표면 사이의 간극 (이른바 베어링 간극) 이 일정하게 유지되어 있다.
따라서, 본 실시형태에서는 웨이퍼 테이블 (TB) 및 그 웨이퍼 테이블 (TB) 상에 재치된 웨이퍼 (W) 의 SIL (22) 의 주변영역부분은 수압 패드 (32, 34) 에 의해 상하에서 협지된 상태로, 그리고 높은 강성으로 지지되어 있다.
그리고, 웨이퍼 테이블 (TB) 이 소정 방향, 예를 들어 도 5 중에 화살표 C 로 나타내는 방향으로 이동할 때에는 SIL (22) 의 아래쪽으로 도 5 에 화살표 F 로 나타내는 물의 흐름이 생긴다. 이 화살표 F 로 나타내는 흐름은 비압축성 점성 유체이고, 또한 뉴튼의 점성법칙이 성립하는 뉴튼유체인 물이, 웨이퍼 (W) 표면과 SIL (22) 하면의 상대변위에 의해 전단력을 받는 것에 기인하여 생기는 층류 퀘트 (Couette) 흐름이다.
본 실시형태의 노광 장치 (100) 에서는, 웨이퍼 테이블 (TB) 및 웨이퍼 (W) 가 수압 패드 (32, 34) 에 의해 상기 서술한 바와 같이 협지되고 또 구동될 때, 예를 들어 후술하는 웨이퍼 테이블 (TB) 의 쇼트간 스테핑시 및 스캔 노광시 등에는 그 구동방향에 따른 방향의 층류 퀘트 흐름이 생기기 때문에 SIL (22) 하방의 물이 교체되게 되어 있다.
상기 서술한 바와 같이 하여 구성된 본 실시형태의 노광 장치 (100) 에서는, 통상의 스캐닝·스테퍼와 마찬가지로 도시하지 않는 레티클 얼라인먼트계, 얼라인먼트 검출계 (ALG) 및 상기 서술한 기준마크판 (FM) 등을 사용한, 레티클 얼라인먼트, 얼라인먼트 검출계 (ALG) 의 베이스라인 계측, 그리고 EGA (Enhanced Global Alignment) 등의 웨이퍼 얼라인먼트 등의 소정 준비작업이 실행된다. 또, 상기 레티클 얼라인먼트, 베이스라인 계측 등의 준비작업에 대해서는, 예를 들어 일본 공개특허공보 평7-176468호 및 이것에 대응하는 미국특허 제5,646,413호에 상세하게 개시되어 있고, 여기에 이어지는 EGA 에 대해서는 일본 공개특허공보 소61-44429호 및 이것에 대응하는 미국특허 제4,780,617호 등에 상세하게 개시되어 있다. 본 국제출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내법령이 허용하는 한도에서 상기 각 공보 및 이들에 대응하는 상기 미국특허에서의 개시를 원용하여 본 명세서 기재의 일부로 한다.
그리고, 웨이퍼 얼라인먼트가 종료되면, 주제어장치 (20) 에 의해 상기 서술한 수압 패드 (32, 34) 에 대한 급수동작이 개시되고, 상기 서술한 바와 같이 하여 웨이퍼 테이블 (TB) 및 그 웨이퍼 테이블 (TB) 상에 재치된 웨이퍼 (W) 가 수압 패드 (32, 34) 에 의해 고강성으로 협지된다.
이어서, 주제어장치 (20) 에 의해 웨이퍼 얼라인먼트의 결과에 기초하여 웨이퍼 (W) 상의 첫 번째 구획영역으로서의 제 1 쇼트영역 (퍼스트 쇼트) 의 노광을 위한 가속개시위치에 구동장치 (50) 를 통하여 웨이퍼 테이블 (TB) 이 이동된다.
상기 가속개시위치에 대한 웨이퍼 (W) 의 이동이 종료되면, 주제어장치 (20) 가 레티클 스테이지 구동부 (11) 및 구동장치 (50) 의 제 1 구동기구 (Y축 리니어모터 (64A, 64B) 및 보이스코일모터 (66A, 66B)) 를 통하여 레티클 스테이지 (RST) 와 웨이퍼 테이블 (TB) 의 Y축 방향의 상대주사를 시작한다. 그리고, 레티클 스테이지 (RST) 와 웨이퍼 테이블 (TB) 이 각각의 목표주사속도에 도달하여 등속동기상태에 이르면, 조명계 (10) 로부터의 조명광 (자외펄스광 ; IL) 에 의해 레티클 (R) 의 패턴영역이 조명되기 시작하여 주사노광이 개시된다. 상기 상대주사는 주제어장치 (20) 가 상기 서술한 인코더 (96) 및 레티클 간섭계 (16) 의 계측치를 모니터하면서 레티클 스테이지 구동부 (11) 및 상기 제 1 구동기구를 제어함으로써 이루어진다.
주제어장치 (20) 는, 특히 상기 주사노광시에는 레티클 스테이지 (RST) 의 Y축 방향의 이동속도 (Vr) 와 웨이퍼 테이블 (TB) 의 Y축 방향의 이동속도 (Vw) 가 투영광학계 (PL) 의 투영배율에 따른 속도비로 유지되도록 동기제어한다.
그리고, 레티클 (R) 의 패턴영역의 다른 영역이 자외펄스광으로 차차 조명되어 패턴영역 전체면에 대한 조명이 완료됨으로써, 웨이퍼 (W) 상의 퍼스트 쇼트의 주사노광이 종료된다. 이로써 레티클 (R) 의 패턴이 투영광학계 (PL) 를 통하여 퍼스트 쇼트에 축소 전사된다.
이렇게 하여 웨이퍼 (W) 상의 퍼스트 쇼트에 대한 주사노광이 종료되면, 주제어장치 (20) 에 의해 구동장치 (50) 의 제 2 구동기구 (X축 리니어모터 (58A, 58B)) 를 통하여 웨이퍼 테이블 (TB) 이 예를 들어 X축 방향으로 스텝 이동되어, 웨이퍼 (W) 상의 세컨드 쇼트 (두 번째 구획영역으로서의 쇼트영역) 의 노광을 위한 가속개시위치로 이동된다. 이어서, 주제어장치 (20) 의 관리 하에, 웨이퍼 (W) 상의 세컨드 쇼트에 대하여 상기 서술한 바와 같은 주사노광이 이루어진다.
이렇게 하여 웨이퍼 (W) 상의 쇼트영역의 주사노광과 쇼트영역 사이의 스테핑 동작이 반복 실시되어 웨이퍼 (W) 상의 복수의 구획영역으로서의 쇼트영역에 레티클 (R) 의 회로패턴이 차례로 전사된다.
여기에서, 상기 웨이퍼 테이블 (TB) 의 쇼트간 스테핑시 및 스캔노광시 등에는, 웨이퍼 테이블 (TB) 의 그 구동방향에 따른 방향의 상기 서술한 층류 퀘트 흐름이 생기기 때문에, SIL (22) 하방의 물이 항상 교체된다. 따라서, 노광 장치 (100) 에서는 신선하고 온도가 안정된 물을 항상 사용하여 액침 노광이 이루어지게 되어 있다.
또, 예를 들어 웨이퍼 (W) 상의 주변쇼트영역을 노광하는 경우 등에는, 수압 패드 (32) 의 베어링면의 적어도 일부가 웨이퍼 (W) 에서 벗어나는 경우가 있지만, 웨이퍼 테이블 (TB) 상에는 웨이퍼 (W) 주변에 상기 서술한 보조 플레이트 (24) 가 형성되어 있기 때문에, 수압 패드 (32) 의 베어링면 전역이 웨이퍼 (W) 또는 보조 플레이트 중 어느 하나에 대향한 상태가 유지된다. 이 경우, 상기 서술한 바와 같이 보조 플레이트 (24) 의 상방에 수압 패드 (32) 가 위치하는 상태에서는 수압 패드 (32) 의 양압과 부압의 밸런스에 의해 보조 플레이트 (24) 의 상면이 웨이퍼 (W) 상면과 일치하는 높이까지 상승하게 되어 있는 점에서, 수압 패드 (32) 에 공급된 물을 수압 패드 (32) 와 보조 플레이트 (24) 또는 웨이퍼 (W) 로 협지할 수 있기 때문에, 물의 누출을 막을 수 있다.
지금까지의 설명에서 알 수 있는 바와 같이, 본 실시형태에서는 수압 패드 (32), 액체공급장치 (88), 액체회수장치 (92) 및 이들에 접속된 급배수계 (구체적으로는 배수관 (76), 급수관 (80), 배수관 (84), 밸브군 (86a, 86b), 공급관로 (90) 및 배수로 (94)) 에 의해 액체 베어링 장치가 구성되어 있다.
이상 상세하게 설명한 바와 같이, 본 실시형태의 노광 장치 (100) 에 의하면, 상기 액체 정압 베어링 장치에 의해 수압 패드 (32) 의 베어링면과 웨이퍼 테이블 (TB) 상에 재치된 웨이퍼 (W) 표면과의 투영광학계 (PL) 의 광축 (AX) 방향 (Z축 방향) 에 관한 간격이 소정 치수 (예를 들어 10㎛ 정도) 로 유지된다. 또, 웨이퍼 테이블 (TB) 의 이면측에는 수압 패드 (32) 에 대향하여 유체 정압 베어링으로서의 수압 패드 (34) 가 배치되며, 그 수압 패드 (34) 에 의해 웨이퍼 테이블 (TB) 의 이면에 대향하는 베어링면과 웨이퍼 테이블 사이에 물을 공급하고 그 물의 정압에 의해 그 베어링면과 웨이퍼 테이블 (TB) 의 이면과의 간극이 유지되어 있다. 그 결과, 웨이퍼 테이블 (TB) 과 그 웨이퍼 테이블 (TB) 상의 웨이퍼 (W) 가 수압 패드 (32) 와 수압 패드 (34) 에 의해 상하에서 협지된다. 이 경우, 수압 패드 (32, 34) 각각의 베어링면과 웨이퍼 (W) 또는 웨이퍼 테이블 (TB) 의 간격을 예를 들어 10㎛ 정도 이하로 안정적으로 또한 일정하게 유지할 수 있다. 수압 패드 등의 액체 정압 베어링은 기체 정압 베어링과는 달리 베어링면과 지지대상물 (웨이퍼 (W) 또는 웨이퍼 테이블 (TB)) 사이의 비압축성 유체인 물 (액체) 의 정압을 이용하기 때문에 베어링의 강성이 높고, 베어링면과 지지대상물의 간격을 안정적으로 또한 일정하게 유지할 수 있다. 또한 물 (액체) 은 기체 (예를 들어 공기) 에 비하여 점성이 높고, 액체는 진동감쇠성이 기체에 비하여 양호하다. 그 결과, 웨이퍼 테이블 (TB) 및 웨이퍼 (W) 는 그 이동시에 적어도 노광영역 및 그 근방의 부분에서는 Z축 방향 (광축 (AX) 방향) 의 위치 어긋남이 생기지 않게 되어 있다.
따라서, 본 실시형태의 노광 장치 (100) 에 의하면, 포커스센서 등의 초점위치 검출계를 특별히 형성하지 않더라도 웨이퍼 테이블 (TB) 의 이동에 기인하는 디포커스의 발생을 거의 확실하게 방지한 상태에서 레티클 (R) 의 패턴을 웨이퍼 (W) 상의 복수의 쇼트영역에 전사하는 것이 가능해진다.
또한 본 실시형태의 노광 장치 (100) 에서는, 웨이퍼 테이블 (TB) 및 웨이퍼 (W) 가 웨이퍼 (W) 상에 대한 패턴의 투영영역 (노광영역) 이 포함되는 SIL (22) 주위의 띠 형상 영역 (수압 패드 (32, 34) 의 베어링면에 대응하는 영역) 부분에서 수압 패드 (32, 34) 에 의해 고강성으로 협지되기 때문에, 웨이퍼 테이블 (TB) 자체의 강성은 그다지 높지 않아도 된다. 그 결과, 웨이퍼 테이블 (TB) 을 얇게 할 수 있어, 그만큼 웨이퍼 테이블 (TB) 의 경량화, 나아가서는 그 위치제어성의 향상이 가능하다. 예를 들어, 웨이퍼 테이블 (TB) 의 두께를 종래의 1/4 정도 이하로 설정하는 것도 가능하다. 즉, 웨이퍼 테이블 (TB) 의 두께는 10㎜ 정도 이하로 설정할 수 있다.
또한, 본 실시형태의 노광 장치 (100) 에서는, 투영광학계 (PL) 의 가장 이미지면측에 가까운 광학부재인 SIL (22) 의 하면과 웨이퍼 (W) 표면 사이에, 공기에 비하여 굴절률이 높은 물 (고굴절률 유체) 이 항상 존재하는 상태에서, 레티클 (R) 의 패턴영역, 투영광학계 (PL) 및 물을 통하여 조명광 (IL) 에 의해 웨이퍼 (W) 가 노광된다. 즉, 액침노광이 이루어져 웨이퍼 (W) 표면에서의 조명광 (IL) 의 파장을 공기 중에서의 파장의 1/n 배 (n 은 액체의 굴절률, 물의 경우 n 은 1.4) 로 단파장화할 수 있어, 더욱 실효적인 초점심도는 공기 중에 비하여 약 n 배로 넓어진다. 따라서, 해상도가 높은 노광이 가능해진다. 또, 공기 중에서 사용하는 경우와 동일한 정도의 초점심도를 확보하면 되는 경우에는 투영광학계 (PL) 의 개구수 (NA) 를 더 증가시킬 수 있어, 이 점에서도 해상도가 향상된다.
또한, 실효적인 초점심도가 공기 중에 비하여 약 n 배로 넓어지는 것은 디포커스의 발생을 억제할 수 있다는 효과도 있다.
또한 본 실시형태의 노광 장치 (100) 에서는, 주사노광 중 등에는 상기 서술한 바와 같이 수압 패드 (32) 에 공급되는 물은 항상 교체되고 있기 때문에, 웨이퍼 (W) 상에 이물이 부착되어 있는 경우에는 그 이물이 물의 흐름에 의해 제거된다.
또한, 본 실시형태의 노광 장치 (100) 에 의하면, 웨이퍼 (W) 주변부의 쇼트영역을 노광할 때, 또는 노광종료 후에 웨이퍼 테이블 (TB) 상의 웨이퍼를 교환할 때 등에 투영광학계 (PL ; SIL (22)) 와 웨이퍼 (W) 사이에 물을 유지한 상태에서, 투영광학계 (PL) 가 웨이퍼 (W) 에서 벗어난 위치에 웨이퍼 테이블 (TB) 이 이동한 경우에도 투영광학계 (PL) 와 보조 플레이트 (24) 사이에 물을 유지할 수 있어, 그 물의 유출을 방지하는 것이 가능해진다. 이로써, 물의 유출에 기인하는 여러 가지 문제의 발생을 회피할 수 있다. 또한 보조 플레이트 (24) 와 웨이퍼 (W) 의 간극은 3㎜ 이하로 설정되어 있기 때문에, 웨이퍼 (W) 가 투영광학계 (PL) 의 하방에 있는 상태로부터 웨이퍼 (W) 가 투영광학계 (PL) 에서 벗어난 위치에 웨이퍼 테이블 (TB) 이 이동하는 경우 등에, 그 이동 도중에 웨이퍼 (W) 와 보조 플레이트 (24) 사이의 간극으로 물이 유출되는 것이 그 물의 표면장력에 의해 방지된다.
따라서, 본 실시형태의 노광 장치 (100) 에 의하면, 상기 서술한 바와 같은 여러 가지 효과에 의해 레티클 (R) 의 패턴을 웨이퍼 (W) 상의 복수의 쇼트영역 각각에 매우 높은 정밀도로 전사하는 것이 가능해진다. 또한, 공기 중에 비하여 넓은 초점심도에서의 노광을 하는 것도 가능해진다.
또한, 본 실시형태의 노광 장치 (100) 에서는, 투영광학계 (PL) 의 가장 이미지면측에 가까운 광학부재인 SIL (22) 의 하면이 수압 패드 (32) 의 베어링면과 거의 일치하고 있기 때문에, SIL (22) 과 웨이퍼 (W) 표면과의 간격은 수압 패드 (32) 의 베어링면과 웨이퍼 (W) 의 간격인 10㎛ 정도가 되어, 액침노광용으로 공급하는 액체 (물) 의 사용량이 적어짐과 함께 액침노광의 종료 후에 물을 빨리 회수할 수 있어, 이로써 그 회수 후의 웨이퍼 (W) 의 건조가 용이해진다.
또한 물의 층 두께가 매우 작기 때문에, 그 물에 의한 조명광 (IL) 의 흡수가 작고, 나아가서는 물의 온도분포의 불균일성에 기인한 광학수차를 억제할 수 있다.
또, 상기 실시형태에서는 웨이퍼 테이블 (TB) 및 웨이퍼 (W) 를 상하에서 수압 패드 (32, 34) 에 의해 고강성으로 협지하는 경우에 대하여 설명하였지만, 특히 웨이퍼 테이블 (TB) 하방의 수압 패드 (34) 는 주로 상측의 수압 패드 (32) 에 대하여 일정한 예압 (여압) 을 부여하는 것을 목적으로 하기 때문에, 웨이퍼 테이블 (TB) 의 이면에 대하여 일정한 상향의 힘을 부여할 수 있는 것이라면 반드시 형성하지 않아도 된다. 또는, 수압 패드 (34) 대신에 다른 종류의 유체 베어링, 예를 들어 가압기체의 정압을 이용하는 기체 정압 베어링 중 베어링 강성이 높은 종류, 예를 들어 진공예압형의 에어베어링 등을 사용하는 것도 가능하다.
또한 상기 실시형태에서는, 수압 패드 (32) 에 공급된 물의 일부를 액침노광용 물로 사용하는 경우에 대하여 설명하였지만, 본 발명은 이것에 한정되는 것은 아니며, 수압 패드 (32) 에 대한 물의 공급경로와는 완전히 독립된 공급경로를 통하여 액침노광용 액체를 투영광학계 (PL) 와 웨이퍼 (W) 사이의 공간에 공급하도록 해도 된다.
그리고, 상기 실시형태에서는 본 발명이 액침노광하는 노광 장치에 적용된 경우에 대하여 설명하였지만, 수압 패드 등의 액체 정압 베어링을 사용하여 웨이퍼 테이블 (TB) 등의 이동체를 지지하는 수법은, 액침노광을 하지 않는 노광 장치에도 바람직하게 적용할 수 있다. 이러한 경우에도 그 액체 정압 베어링에 의해 그 베어링면과 기판 (웨이퍼) 표면과의 투영광학계의 광축 방향에 관한 간격이 소정 치수 (예를 들어 10㎛ 정도) 로 유지된다. 액체 정압 베어링은 기체 정압 베어링과는 달리 베어링면과 지지대상물 (기판) 사이의 비압축성 유체인 액체의 정압을 이용하기 때문에, 베어링의 강성이 높고 베어링면과 기판의 간격을 안정적으로, 또한 일정하게 유지할 수 있다. 또한 액체 (예를 들어 순수) 는 기체 (예를 들어 공기) 에 비하여 점성이 높고, 액체는 진동감쇠성이 기체에 비하여 양호하다. 따라서, 본 발명의 노광 장치에 의하면 초점위치 검출계 등을 반드시 형성하지 않고 디포커스가 거의 없는 기판 상에 대한 패턴의 전사를 실현할 수 있다.
또, 상기 실시형태에서는 도넛 형상의 수압 패드 (32, 34) 를 웨이퍼 테이블 (TB) 상의 웨이퍼 (W) 의 상측 (투영광학계 (PL) 의 이미지면측), 웨이퍼 테이블 (TB) 의 하측에 각각 형성한 경우에 대하여 설명하였지만 이것에 한하지 않고, 노광영역 (레티클 패턴의 투영영역) 을 둘러싸는 사각형 (직사각형) 의 환 형상의 베어링면을 갖는 액체 정압 베어링을 상기 수압 패드 (32, 34) 의 적어도 일방을 대신하여 형성해도 된다.
또한 수압 패드 (32) 대신에 복수의 소형 수압 패드를, 노광영역 (레티클 패턴의 투영영역) 을 둘러싸는 상태에서 투영광학계 (PL) 의 하단부 근방에 부착해도 된다. 마찬가지로, 수압 패드 (34) 대신에 복수의 소형 유체 정압 베어링을, 웨이퍼 테이블 (TB) 의 이면측 노광영역 (레티클 패턴의 투영영역) 을 둘러싸는 영역에 대응하는 영역에 대향하여 배치해도 된다. 또는, 수압 패드 (32) 대신에 형성되는 1 또는 2 이상의 수압 패드를 투영광학계 (PL) 의 이미지면측에 투영광학계 (PL) 와의 위치관계를 유지한 상태로 배치해도 된다.
또, 상기 실시형태에서는, 초점위치 검출계 (포커스센서) 를 특별히 형성하지 않았지만, 포커스센서가 필요한 경우에는 적어도 하나의 계측점에서 웨이퍼 (W) 표면 사이의 간격을 계측하는 갭 센서를 수압 패드 (32) 에 부착하여, 그 갭 센서의 계측치에 따라 수압 패드 (32) 에 접속된 배기관 (76) 의 내부에 발생시키는 부압을 액체회수장치 (또는 주제어장치 (20)) 가 조정함으로써, 웨이퍼 (W) 표면의 Z축 방향의 위치 (포커스) 를 조정하는 것으로 해도 된다. 이 경우의 갭 센서로는, 수압 패드 (32) 의 일부에 다이어프램을 부착하고, 그 다이어프램에 작용하는 물의 압력과 대기압의 차를 계측하여 그 차를 거리로 환산하는 압력센서를 사용할 수 있다. 또는 정전용량센서 등을 사용할 수도 있다. 또한, 예를 들어 투영광학계 (PL) 의 적어도 일부의 광학소자를 통하여 웨이퍼 (W) 에 검출광을 조사함과 함께, 그 반사광을 수광하여 투영광학계 (PL) 와 웨이퍼 (W) 의 간격을 계측하고 그 계측치에 따라 수압 패드 (32) 와 웨이퍼 (W) 표면과의 간격을 조정하도록 해도 된다.
또 상기 실시형태에서는, 웨이퍼 테이블 (TB) 의 이면에 형성된 XY 2차원 스케일을, 광학식 (또는 자기식) 의 인코더 (96) 를 사용하여 읽어냄으로써 웨이퍼 테이블 (TB) 의 XY 면 내의 위치정보를 계측하는 것으로 하였지만 본 발명이 이것에 한정되는 것이 아니며, 레이저 간섭계를 사용하여 웨이퍼 테이블 (TB) 의 XY 면 내의 위치정보를 계측하는 것으로 해도 된다.
이 경우, 웨이퍼 테이블 (TB) 의 X축 방향 일측의 단면 (예를 들어 +X 측 단면) 과, Y축 방향 일측의 단면 (예를 들어 -Y 측 단면) 을 경면 가공할 필요가 있지만, 도 2 에서 알 수 있는 바와 같이 +X 측 단면에는 Y축 리니어모터 (64A) 의 Y 가동자 (60A) 가 형성되기 때문에, 도 2 의 상태에서는 +X 측 단면의 Y축 방향 전역에 걸쳐 경면 가공할 수 없을 우려가 있다. 이 경우, 도 7 에 나타내는 바와 같이, 일방의 Y 가동자 (60A) 와 타방의 Y 가동자 (60B) 의 Z축 방향위치를 서로 시프트시킴으로써 웨이퍼 테이블 (TB) 의 +X 측 단면을 Y축 방향 전역에 걸쳐 경면 가공할 수 있다. 여기에서, Y 가동자 (60A, 60B) 를 웨이퍼 테이블 (TB) 의 무게중심 G 에 대하여 점대칭인 위치에 형성함으로써 Y축 리니어모터 (64A, 64B) 의 추력(推力)을 웨이퍼 테이블 (TB) 의 무게중심 G 에 작용시키는 것이 가능해진다.
이렇게 하여 형성한 반사면에 대하여, 간섭계 (18 ; 도 7 에서는 X축 방향의 계측에 사용되는 간섭계만 도시) 로부터의 측장빔이 조사되고, 간섭계 (18) 에서는 그 반사광을 수광함으로써 웨이퍼 테이블 (TB) 의 X축 방향 및 Y축 방향의 위치를 예를 들어 0.5~1㎚ 정도의 분해능으로 계측한다. 이 경우, 간섭계로는 측장축을 복수 갖는 다축간섭계를 사용할 수 있고, 이 간섭계에 의해 웨이퍼 테이블 (TB) 의 X, Y 위치 외에 회전 (요잉 (Z축 둘레의 회전인 θz 회전), 롤링 (Y축 둘레의 회전인 θy 회전) 및 피칭 (X축 둘레의 회전인 θx 회전)) 도 계측 가능하게 할 수 있다.
≪변형예≫
지금까지의 설명에서는, 수압 패드 (32) 가 경통 (40) 에 고정되며, 투영광학계 (PL) 와 수압 패드 (32) 의 위치관계가 일정하게 유지되어 있는 경우에 대하여 설명하였지만 이것에 한하지 않고, 예를 들어 투영광학계 (PL) 를 구성하는 가장 이미지면측에 가까운 광학부재로서, 도 8 에 나타내는 바와 같은 상하로 2분할된 분할렌즈 (Divided Lens) 를 사용하는 것으로 해도 된다. 이 도 8 에 나타내는 분할렌즈 (150) 는 하측의 반구 형상의 제 1 부분 렌즈 (152a) 와, 그 제 1 부분 렌즈의 외표면 (구면의 일부) 과 동일한 점을 중심으로 하는 곡률반경이 약간 큰 곡률반경의 구면을 그 내면 (내표면) 으로 갖고, 상기 제 1 부분 렌즈 (152a) 의 중심과는 다른 점을 중심으로 하는 구면을 외면 (외표면) 으로 갖는 제 2 부분 렌즈 (152b) 에 의해 구성되어 있다. 이 경우, 제 1 부분 렌즈 (152a) 는 평볼록 렌즈이고, 제 2 부분 렌즈 (152b) 는 오목 메니스커스렌즈이다.
이렇게 하여 구성되는 분할렌즈 (150) 를 상기 실시형태 중의 SIL (22) 대신에 사용할 수 있다. 이 때, 제 2 부분 렌즈 (152b) 를 경통 (40) 에 일체적으로 부착하고, 제 1 부분 렌즈 (152a) 를 수압 패드 (32) 에 그 베어링면과 제 1 부분 렌즈 (152a) 의 하면이 거의 동일 면이 되도록 유지시킨다. 그리고, 제 1 부분 렌즈 (152a) 의 하방 (웨이퍼 (W) 와의 사이) 의 공간뿐만 아니라 제 1 부분 렌즈 (152a) 와 제 2 부분 렌즈 (152b) 사이의 간극에도 액침용 액체 (물 등) 를 채우도록 한다. 이러한 구성을 채용하면, 제 1 부분 렌즈 (152a) 에 작용하는 수압에 의해 그 제 1 부분 렌즈 (152a) 에 필요 이상의 부하가 가해지는 경우에, 제 1 부분 렌즈 (152a) 가 수압 패드 (32) 와 함께 상하로 움직임으로써 제 1 부분 렌즈 (152a) 에 쓸데없는 응력이 생기는 것을 억제할 수 있어, 그 응력에 기인하는 광학성능의 열화를 방지할 수 있다. 이 경우, 상기의 제 1 부분 렌즈 (152a) 및 수압 패드 (32) 의 상하동 (上下動) 에 의해 급수홈 내의 압력 (양압) 과 배수홈 내의 압력 (부압) 이 정확히 맞게 설정되어 제 1 부분 렌즈 (152a) 하방의 물의 층 (수막) 의 두께가 일정해짐과 함께 제 1 부분 렌즈 (152a) 가 상하로 움직임으로써 광로가 변화하여, 자동적으로 포커스위치가 조정되게 되어 있다.
또 본 실시형태에서는, 분할렌즈 (150) 는 평볼록 렌즈와 오목메니스커스 렌즈로 분할되어 있지만, 투영광학계 (PL) 의 동공면에 가까운 상측의 광학소자를 평볼록 렌즈로 하고, 투영광학계 (PL) 의 이미지면에 가까운 하측의 광학소자를 무굴절력의 평행평면판으로 해도 된다. 이 경우, 그 평행평면판의 변동에 의해 투영광학계 (PL) 의 이미지면 등의 결상 특성이 변화하는 경우에는, 투영광학계의 일부의 렌즈의 이동, 레티클의 이동, 노광광의 파장의 미(微)조정 중 적어도 하나를 실시하여 그 결상 특성의 변화를 보상하도록 해도 된다.
상기 제 1 실시형태에서는, 본 발명이 웨이퍼 테이블 (TB) 및 그 웨이퍼 테이블을 지지하는 스테이지 (52) 를 각 1개 구비한 노광 장치에 적용된 경우에 대하여 설명하였지만, 이것에 한하지 않고 다음 제 2 실시형태와 같이 웨이퍼 테이블 (TB) 및 스테이지를 복수, 예를 들어 2개 구비한 노광 장치에 본 발명을 적용해도 된다.
≪제 2 실시형태≫
다음으로, 도 9 및 도 10 에 기초하여 본 발명의 제 2 실시형태의 노광 장치에 대하여 설명한다. 도 9 에는, 제 2 실시형태의 노광 장치를 구성하는 웨이퍼 스테이지 장치 (300) 의 구성이 평면도에 나타나 있다. 여기에서, 중복설명을 피하는 관점에서 상기 서술한 제 1 실시형태와 동일한 구성부분에는 동일한 부호를 사용함과 함께 그 설명을 생략하기로 한다.
본 제 2 실시형태의 노광 장치에서는, 광학유닛 (PU) 과 얼라인먼트 검출계 (ALG) 와 동일한 얼라인먼트 검출계 (ALG') 가 Y축 방향으로 소정 거리 떨어져 배치되어 있다. 그리고, 광학유닛 (PU) 의 하방에 상기 서술한 구동장치 (50) 가 배치되고, 이 구동장치 (50) 를 구성하는 스테이지 (52) 상에 탑재된 웨이퍼 테이블 (TB1) 상에 웨이퍼 (W) 가 재치되어 있다. 또한 얼라인먼트 검출계 (ALG') 의 하방에는 XY 스테이지 장치 (180) 가 배치되어 있다. 이 XY 스테이지장치 (180) 를 구성하는 스테이지 (171) 상에 웨이퍼 테이블 (TB2) 이 탑재되고, 그 웨이퍼 테이블 (TB2) 상에 웨이퍼 (W) 가 재치되어 있다.
XY 스테이지 장치 (180) 는, 상기 서술한 스테이지 (52) 의 외형과 같은 형상인 직사각형 부재로 이루어지는 스테이지 (171) 와, 그 스테이지 (171) 를 X축 방향으로 구동하는 X축 리니어모터 (178) 와, 그 X축 리니어모터 (178) 와 일체적으로 스테이지 (171) 를 Y축 방향으로 구동하는 한 쌍의 Y축 리니어모터 (176A, 176B) 를 구비하고 있다.
상기 Y축 리니어모터 (176A, 176B) 는, 구동장치 (50) 를 구성하는 X 고정자 (56A) 의 X축 방향의 일단 및 타단에 근접하여 배치되어 각각 Y축 방향으로 연장되는 Y 고정자 (Y축 리니어가이드 ; 172A, 172B) 와, 이들 Y 고정자 (172A, 172B) 각각에 개별로 걸어맞추는 Y 가동자 (슬라이더 ; 174A, 174B) 로 구성되어 있다. 즉, 일방의 Y 고정자 (172A) 와 일방의 Y 가동자 (174A) 에 의해 상호간의 전자(電磁)상호작용에 의해 Y 가동자 (174A) 를 Y축 방향으로 구동하는 구동력을 발생시키는 Y 리니어모터 (176A) 가 구성되고, 타방의 Y 고정자 (172B) 와 타방의 Y 가동자 (174B) 에 의하여 상호간의 전자상호작용에 의해 Y 가동자 (174B) 를 Y축 방향으로 구동하는 구동력을 발생시키는 Y 리니어모터 (176B) 가 구성되어 있다.
Y 가동자 (174A, 174B) 는 상기 서술한 X 리니어모터 (178) 를 구성하는 X축 방향으로 연장되는 X 고정자 (X축 리니어가이드) 의 일단과 타단에 각각 고정되어 있다. 이 X 리니어모터 (178) 의 X 고정자에 대응하여 스테이지 (171) 에는 X 가동자가 형성되어 있고, 그 X 가동자와 X 고정자 (178) 에 의해 구성되는 X 리니어모터 (178) 에 의해 스테이지 (171) 가 X축 방향으로 구동된다.
이 경우, X 리니어모터 (178) 에 의해 스테이지 (171) 는 X축 방향으로 구동됨과 함께 한 쌍의 Y 리니어모터 (176A, 176B) 에 의해 X 리니어모터 (178) 와 일체적으로 스테이지 (171) 가 Y축 방향으로 구동되게 되어 있다.
상기 스테이지 (171) 상면의 X축 방향의 일측과 타측의 단부에는, Y 고정자 (162A, 162B) 가 Y축 방향으로 각각 연장 설치되어 있다.
웨이퍼 테이블 (TB1, TB2) 은 상기 서술한 웨이퍼 테이블 (TB) 과 완전히 동일하게 구성되어 있고, 마찬가지로 X축 방향의 일측, 타측의 단부에 Y 가동자 (60A) 및 영구자석 (66A, 66B), Y 가동자 (60B) 를 각각 구비하고 있다.
이 도 9 의 웨이퍼 스테이지 장치 (300) 에서는, 웨이퍼 테이블 (TB1) 에 형성된 Y 가동자 (60A) 는 스테이지 (52) 상의 Y 고정자 (62A) 에 걸어맞춰진 상태 (도 9 의 상태) 로 Y 고정자 (62A) 와의 사이에서 전자상호작용을 하여 Y축 방향의 구동력을 발생시킬 뿐만 아니라, 스테이지 (171) 상의 Y 고정자 (162A) 에 걸어맞춰진 상태에서는 그 Y 고정자 (162A) 와의 사이에서 전자상호작용을 하여 Y축 방향의 구동력을 발생시키게 되어 있다.
마찬가지로, 웨이퍼 테이블 (TB2) 에 형성된 Y 가동자 (60A) 는, 스테이지 (171) 상의 Y 고정자 (162A) 에 걸어맞춰진 상태 (도 9 의 상태) 에서 Y 고정자 (162A) 와의 사이에서 전자상호작용을 하여 Y축 방향의 구동력을 발생시킬 뿐만 아니라, 스테이지 (52) 상의 Y 고정자 (62A) 에 걸어맞춰진 상태에서는 그 Y 고정자 (62A) 와의 사이에서 전자상호작용을 하여 Y축 방향의 구동력을 발생시키게 되어 있다.
마찬가지로, 웨이퍼 테이블 (TB1) 에 형성된 Y 가동자 (60B) 는, 스테이지 (52) 상의 Y 고정자 (62B) 에 걸어맞춰진 상태 (도 9 의 상태) 에서 Y 고정자 (62B) 와의 사이에서 전자상호작용을 하여 Y축 방향의 구동력을 발생시킬 뿐만 아니라, 스테이지 (171) 상의 Y 고정자 (162B) 에 걸어맞춰진 상태에서는 그 Y 고정자 (162B) 와의 사이에서 전자상호작용을 하여 Y축 방향의 구동력을 발생시키게 되어 있다.
마찬가지로, 웨이퍼 테이블 (TB2) 에 형성된 Y 가동자 (60B) 는, 스테이지 (171) 상의 Y 고정자 (162B) 에 걸어맞춰진 상태 (도 9 의 상태) 에서 Y 고정자 (162B) 와의 사이에서 전자상호작용을 하여 Y축 방향의 구동력을 발생시킬 뿐만 아니라, 스테이지 (52) 상의 Y 고정자 (62B) 에 걸어맞춰진 상태에서는 그 Y 고정자 (62B) 와의 사이에서 전자상호작용을 하여 Y축 방향의 구동력을 발생시키게 되어 있다.
또한 웨이퍼 테이블 (TB1) 에 형성된 영구자석 (66A, 66B) 각각은 Y 고정자 (62B) 에 각각 걸어맞춰진 상태 (도 9 의 상태) 로 웨이퍼 테이블 (TB1) 을 스테이지 (52) 상에서 X축 방향으로 미소 구동하는 보이스코일 모터를 구성함과 함께, Y 고정자 (162B) 에 각각 걸어맞춰진 상태에서는 웨이퍼 테이블 (TB1) 을 스테이지 (171) 상에서 X축 방향으로 미소 구동하는 보이스코일 모터를 구성한다. 마찬가지로, 웨이퍼 테이블 (TB2) 에 형성된 영구자석 (66A, 66B) 각각은 Y 고정자 (162B) 에 각각 걸어맞춰진 상태 (도 9 의 상태) 로 웨이퍼 테이블 (TB2) 을 스테이지 (171) 상에서 X축 방향으로 미소 구동하는 보이스코일 모터를 구성함과 함께, Y 고정자 (62B) 에 각각 걸어맞춰진 상태에서는 웨이퍼 테이블 (TB2) 을 스테이지 (52) 상에서 X축 방향으로 미소 구동하는 보이스코일 모터를 구성한다.
웨이퍼 테이블 (TB1, TB2) 의 XY 면 내의 위치는 레이저 간섭계, 기타 위치 계측장치 (도시 생략) 에 의해 계측되며, 그 계측결과가 도시하지 않는 주제어장치로 이송되게 되어 있다. 또한 웨이퍼 스테이지 장치 (300) 를 구성하는 상기 서술한 각 모터는 주제어장치에 의해 제어되게 되어 있다.
그 밖의 부분의 구성은, 상기 서술한 제 1 실시형태의 노광 장치 (100) 와 동일하게 구성되어 있다.
이렇게 하여 구성된 본 제 2 실시형태의 노광 장치에서는, 주제어장치의 관리 하에, 다음과 같은 처리 시퀀스가 이루어지게 할 수 있다.
즉, 예를 들어 일방의 스테이지 (171) 상에 웨이퍼 (W) 를 유지한 웨이퍼 테이블 (TB2 ; 또는 TB1) 을 탑재하고, 그 웨이퍼 테이블 (TB2 ; 또는 TB1) 상의 웨이퍼 (W) 에 형성된 얼라인먼트 마크의 검출동작 (예를 들어 EGA 방식의 웨이퍼얼라인먼트 계측 동작) 을 얼라인먼트 검출계 (ALG') 의 하방에서 웨이퍼 테이블 (TB2 ; 또는 TB1) 을 2차원 구동하면서 실시하는 것과 병행하여 타방의 스테이지 (52) 상에 탑재된 웨이퍼 테이블 (TB1 ; 또는 TB2) 에 유지된 웨이퍼 (W) 에 대한 상기 서술한 스텝·앤드·스캔 방식의 노광동작을 구동장치 (50) 에 의해 웨이퍼 테이블 (TB1 ; 또는 TB2) 을 구동하면서 실시한다.
그리고, 그 병행동작 종료 후 스테이지 (171) 를 Y축 리니어모터 (176A, 176B) 를 사용하여 스테이지 (52) 에 가장 근접하는 위치까지 이동시킴과 함께, 양 스테이지 (171, 52) 의 X축 방향의 위치가 일치하도록 양 스테이지 (171, 52) 의 X축 방향의 위치관계를 조정한다.
다음으로, 노광 완료된 웨이퍼 (W) 를 유지하는 웨이퍼 테이블 (TB1 ; 또는 TB2) 을, 그 웨이퍼 테이블에 형성된 Y 가동자 (60A, 60B) 와 Y 고정자 (62A, 62B) 의 전자상호작용에 의해 -Y 방향으로 구동한다. 이와 동시에, 상기 마크검출동작이 종료한 웨이퍼 (W) 를 유지하는 웨이퍼 테이블 (TB2 ; 또는 TB1) 을, 그 웨이퍼 테이블에 형성된 Y 가동자 (60A, 60B) 와 Y 고정자 (162A, 162B) 의 전자상호작용에 의해 타방의 웨이퍼 테이블과 같은 속도로 -Y 방향으로 구동한다. 이로써 양 웨이퍼 테이블 (TB1, TB2) 이 서로 가장 근접한 위치관계를 유지하면서 -Y 방향으로 이동한다.
그리고, 상기 웨이퍼 테이블 (TB1, TB2) 의 -Y 방향에 대한 이동개시로부터 소정시간 경과하면, 마크검출동작이 종료된 웨이퍼 (W) 를 유지하는 웨이퍼 테이블 (TB2 ; 또는 TB1) 에 형성된 Y 가동자 (60A, 60B) 가, Y 고정자 (162A, 162B) 와 Y 고정자 (62A, 62B) 에 동시에 걸어맞춰지는 상태가 된다. 도 10 에는 이 때의 상태가 나타나 있다.
도 10 의 상태로부터, 추가로 웨이퍼 테이블 (TB1, TB2) 이 -Y 방향으로 소정거리 진행하면, 노광 완료된 웨이퍼 (W) 를 유지하는 웨이퍼 테이블 (TB1 ; 또는 TB2) 에 형성된 Y 가동자 (60A, 60B) 가, Y 고정자 (62A, 62B) 에서 완전히 이탈하는 위치 (이탈위치) 에 도달한다. 상기 이탈위치에 웨이퍼 테이블 (TB1 ; 또는 TB2) 이 도달하기 직전에, 도시하지 않는 로봇 아암이 그 웨이퍼 테이블 (TB1 ; 또는 TB2) 을 받아 얼라인먼트 검출계 (ALG') 근방의 웨이퍼 교환위치로 반송한다.
이 때, 마크검출동작이 종료된 웨이퍼 (W) 를 유지하는 웨이퍼 테이블(TB2 ; 또는 TB1) 은, 광학유닛 (PU) 의 하단에 형성된 수압 패드 (32) 의 하방에 이르고, 그 후 이 웨이퍼 테이블은 그 전체가 스테이지 (52) 상에 탑재되는 위치까지 진행한다. 이로써 스테이지 (52) 상에서는 웨이퍼 테이블의 교환이 종료된다.
이와 같이, 본 제 2 실시형태에서는, 노광 완료된 웨이퍼 (W) 를 유지한 웨이퍼 테이블의 스테이지 (52) 상에서의 -Y 방향에 대한 이동 및 로봇 아암에 대한 수수와 마크검출동작이 종료한 웨이퍼 (W) 를 유지하는 웨이퍼 테이블의 스테이지 (171) 로부터 스테이지 (52) 로의 이동이 병행하여 이루어진 결과, 수압 패드 (32) 의 하방 및 투영광학계 (PL) 바로 아래, 즉 투영광학계 (PL) 를 구성하는 가장 이미지면측에 가까운 광학부재 (SIL (22) 또는 상기 서술한 제 1 분할렌즈 (151a) 등) 의 하방에는 항상 어느 하나의 웨이퍼 테이블이 존재하고, 그 웨이퍼 테이블 상의 웨이퍼 또는 보조 플레이트 (24) 사이에 액침영역이 형성된 상태가 유지되며, 투영광학계 (PL), 즉 투영광학계 (PL) 를 구성하는 가장 이미지면측에 가까운 광학부재와 웨이퍼 또는 보조 플레이트 (24) 사이에 액체 (물) 를 유지할 수 있어 그 액체 (물) 의 유출을 방지하는 것이 가능해진다.
또한 본 제 2 실시형태에서는, 일방의 웨이퍼 테이블 상의 웨이퍼에 대한 노광동작과, 타방의 웨이퍼 테이블 상의 웨이퍼에 대한 마크검출동작 (및 웨이퍼교환동작) 이 병행하여 이루어지기 때문에, 웨이퍼교환, 마크검출동작 및 노광이 순차적으로(sequential) 이루어지는 경우에 비하여 스루풋의 향상이 가능하다. 여기에서, 웨이퍼 테이블을 2개 이상 구비하는 경우에는, 하나의 웨이퍼 테이블 상에서 노광하고 있는 동안에 다른 웨이퍼 테이블 상에서 웨이퍼를 완전히 건조시키는 시간을 형성해도 된다. 이러한 경우에는, 스루풋의 최적화를 도모하기 위해 3개의 웨이퍼 테이블을 준비하여, 첫 번째 웨이퍼 테이블에서는 노광동작을 하고, 두 번째 웨이퍼 테이블에서는 얼라인먼트 동작을 하고, 세 번째 웨이퍼 테이블에서는 노광 후의 웨이퍼 건조 및 웨이퍼교환동작을 하는 병행처리 시퀀스를 실행하는 것이 바람직하다.
또, 본 제 2 실시형태에서는, 마크검출동작 (예를 들어 EGA 방식의 웨이퍼 얼라인먼트 계측) 결과 얻어진 웨이퍼 (W) 상의 복수의 쇼트영역의 위치정보 (배열좌표) 는, 기준마크판 (FM) 상의 기준마크를 기준으로 하는 정보로 환산해 두는 것이 바람직하다. 이렇게 하면, 그 얼라인먼트 계측이 종료된 웨이퍼가 스테이지 (52) 상으로 이동하였을 때, 도시하지 않은 레티클 얼라인먼트계를 사용하여 레티클상의 마크와 기준마크판 (FM) 상의 기준마크의 상대위치를 계측함으로써, 가령 웨이퍼 테이블의 이동 중에 연속적인 위치정보의 검출이 곤란한 경우에도 레티클과 웨이퍼 (W) 상의 각 쇼트영역의 상대위치를 원하는 관계로 고정밀도로 조정할 수 있다.
또한, 복수의 테이블을 구비한 노광 장치로서, 예를 들어 일본 공개특허공보 평10-163099호 및 일본 공개특허공보 평10-214783호 (대응 미국특허 제6,341,007호, 제6,400,441호, 제6,549,269호 및 제6,590,634호), 일본 특허공표공보 2000-505958호 (대응 미국특허 제5,969,441호) 또는 미국특허 제6,208,407호에 개시되어 있는 노광 장치에도 본 발명을 적용할 수 있다.
또한 복수의 테이블을 구비한 노광 장치로서, 예를 들어 일본 공개특허공보 평11-135400호 (대응 국제공개 WO99/23692호) 에 개시되어 있는 노광 장치에도 본 발명을 적용할 수 있다.
또, 본 국제출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내법령이 허용하는 한도에서 상기 각 공보 및 각 미국특허에서의 개시를 원용하여 본 명세서 기재의 일부로 한다.
또, 수압 패드 (32) 의 구성에 대해서는, 상기 각 실시형태에서 설명한 구성에 한하지 않고 도 11(a) 에 나타내는 수압 패드 (32') 와 같은 구성을 채용할 수도 있다. 즉, 상기 배수홈 (68), 급수홈 (70), 배수홈 (72) 을 격벽에서 거의 등각도 간격으로 구획해도 된다 (이하, 격벽에 둘러싸인 부분을 「셀」이라 하고, 배수홈 (68, 72) 에 형성된 셀을 「배수용 셀」, 급수홈 (70) 에 형성된 셀을 「급수용 셀」이라 하기로 함).
상기 배수용 셀의 내부 저면에는 도 11(a) 의 지면 직교방향 (Z축 방향) 에 관통하는 관통구멍 (74) 이 각각 형성되고, 급수홈 (70) 에 형성된 급수용 셀의 내부 저면에는 관통구멍 (78) 이 각각 형성되고, 배수홈 (68) 에 형성된 배수용 셀의 내부 저면에는 관통구멍 (82) 이 각각 형성되어 있다.
이와 같이, 급수홈 및 배수홈을 격벽으로 구획하여 셀을 형성함으로써, 웨이퍼의 엣지 (edge) 부분에 수압 패드 (32) 가 걸렸을 때 엣지부분에 대응하는 셀의 압력변화가 생기는 경우에도 그 압력변화의 영향이 그 밖의 셀에 미치지 않게 할 수 있다.
또, 관통공 (78, 82, 74) 에 접속되는 급수관 (80), 배수관 (84, 76) 각각에, 도 11(b) 에 나타내는 바와 같이 드로잉 (79) 을 형성해도 된다. 이 경우에서도, 드로잉 (79) 에 의해, 일부의 셀이 웨이퍼의 엣지부분에 걸렸을 때 그 셀에서의 압력이 변화하더라도 그 압력변화가 그 밖의 셀에 미치는 영향을 최대한 억제할 수 있다.
또한 하측의 수압 패드 (34) 에 도 11(a) 와 같은 구성을 채용해도 되고, 도 11(b) 에 나타내는 바와 같은 드로잉을 수압 패드 (34) 에 접속된 급수관이나 배수관에 형성해도 된다.
또, 상기 각 실시형태에서는, 투영광학계 (PL) 의 가장 이미지면측 (웨이퍼 (W) 측) 에 가까운 광학소자로서 솔리드 이머전 렌즈 (SlL) 를 채용하고 있지만, 솔리드 이머전 렌즈 (SIL) 대신에 석영이나 형석으로 형성되어 있는 렌즈 소자를 사용해도 되고, 무굴절력의 평행평면판을 사용해도 된다.
또한 상기 서술한 실시형태에서는, 보조 플레이트 (24) 와 테이블 (TB ; TB1, TB2) 사이에 탄성체 (25) 가 배치되어 있지만, 수압 패드 (32) 와 그것에 대향하는 면 (웨이퍼 (W) 표면, 보조 플레이트 (24) 상면) 의 갭을 일정하게 유지할 수 있다면 탄성체 (25) 를 생략해도 된다.
또 상기 각 실시형태에서는, 액체로서 초순수 (물) 를 사용하는 것으로 하였지만, 본 발명은 물론 이것에 한정되지 않는다. 액체로는 화학적으로 안정적이고 조명광 (IL) 의 투과율이 높으며 안전한 액체, 예를 들어 불소계 불활성 액체를 사용해도 된다. 이 불소계 불활성 액체로는 예를 들어 플로리너트 (미국 3M 사의 상품명) 를 사용할 수 있다. 이 불소계 불활성 액체는 냉각 효과의 면에서도 우수하다. 또 액체로서 조명광 (IL) 에 대한 투과성이 있어 가능한 한 굴절률이 높고, 또한 투영광학계나 웨이퍼 표면에 도포되어 있는 포토레지스트에 대하여 안정적인 것 (예를 들어 시더유 등) 을 사용할 수도 있다.
또한 상기 각 실시형태에서는, 수압 패드 (또는 SIL (22) 하방) 에 액체를 공급하는 경로와, 수압 패드로부터 액체를 회수하는 경로가 따로따로인 경우에 대하여 설명하였지만, 수압 패드 (또는 SIL (22) 하방) 에서 회수된 액체를 다시 수압 패드 (또는 SIL (22) 하방) 에 공급하는 순환경로와 액체 급배 (給排) 장치의 조합을 채용해도 된다. 이 경우는 회수된 액체로부터 불순물을 제거하는 필터를 그 순환경로 중 회수측의 일부에 형성해 두는 것이 바람직하다.
또, 상기 각 실시형태에서는, 웨이퍼 테이블의 웨이퍼 (W) 가 재치되는 영역 주위에 보조 플레이트가 형성되는 것으로 하였지만, 본 발명 중에는, 노광 장치는 보조 플레이트 또는 그것과 동등한 기능을 갖는 평면판을 반드시 테이블 상에 형성하지 않아도 될 때도 있다. 단, 이 경우에는, 공급되는 액체가 웨이퍼 테이블 상에서 흘러넘치지 않도록 그 웨이퍼 테이블 상에 액체를 회수하는 배관을 추가로 형성해 두는 것이 바람직하다.
또, 상기 각 실시형태에서는, 웨이퍼 표면에 국소적인 요철이 있는 경우에는 웨이퍼 표면 (노광면) 과 이미지면에 어긋남이 생길 가능성도 있다. 따라서, 웨이퍼 표면에 국소적인 요철이 있는 것이 예상되는 경우에는, 노광에 앞서 웨이퍼 표면의 요철정보를 기억시켜 두고, 노광 중에는 그 요철정보에 기초하여 투영광학계의 일부 렌즈의 이동, 레티클의 이동, 노광광의 파장의 미조정 중 적어도 하나를 실시하여 이미지면의 위치나 형상을 조정하도록 하면 된다.
또 상기 각 실시형태에서는 조명광 (IL) 으로서 ArF 엑시머 레이저광 또는 KrF 엑시머 레이저광 등의 원자외광, 또는 초고압 수은램프로부터의 자외영역의 휘선 (g 선, i 선 등) 을 사용하는 것으로 하였지만 이것에 한하지 않고, 예를 들어 조명광 (IL) 으로서 DFB 반도체 레이저 또는 화이버 (fiber) 레이저에서 발진되는 적외영역 또는 가시영역의 단일파장 레이저광을, 예를 들어 에르븀 (Er ; 또는 에르븀과 이테르븀 (Yb) 의 양쪽) 이 도핑된 화이버 앰프로 증폭하고, 비선형 광학결정을 사용하여 자외광으로 파장변환한 고조파 (예를 들어, 파장 193㎚) 를 사용해도 된다.
또 투영광학계 (PL) 는 굴절계에 한하지 않으며, 카타디옵트릭계 (반사굴절계) 일 수도 있다. 또한 그 투영배율도 1/4배, 1/5배 등에 한하지 않고, 1/10배 등이어도 된다.
또한 상기 각 실시형태에서는 스텝·앤드·스캔 방식 등의 주사형 노광 장치에 본 발명이 적용된 경우에 대하여 설명하였지만, 본 발명의 적용범위가 이것에 한정되지 않는 것은 물론이다. 즉, 스텝·앤드·리피트 방식의 축소 투영 노광 장치에도 본 발명은 바람직하게 적용할 수 있다. 이 경우, 노광이 주사 노광 방식으로 이루어지는 점을 제외하고 기본적으로는 상기 서술한 제 1 실시형태와 동등한 구성을 사용할 수 있으며, 동등한 효과를 얻을 수 있다.
또 복수의 렌즈로 구성되는 조명광학계, 광학유닛 (PU), 수압 패드 (32, 34) 등을 노광 장치 본체에 장착하고 다시 수압 패드 (32, 34) 등에 대한 배관을 한다. 그 후 광학조정함과 함께 다수의 기계 부품으로 이루어지는 레티클 스테이지나 웨이퍼 스테이지를 노광 장치 본체에 부착하여 배선이나 배관을 접속하고, 다시 종합조정 (전기조정, 동작확인 등) 함으로써 상기 각 실시형태의 노광 장치를 제조할 수 있다. 또, 노광 장치의 제조는 온도 및 클린도 등이 관리된 클린 룸에서 실시하는 것이 바람직하다.
또 상기 각 실시형태에서는 본 발명이 반도체 제조용 노광 장치에 적용된 경우에 대하여 설명하였지만 이것에 한정되지 않으며, 예를 들어 사각형 유리 플레이트에 액정표시소자 패턴을 전사하는 액정용 노광 장치나, 박막 자기 헤드, 촬상 소자, 마이크로 머신, 유기 EL, DNA 칩 등을 제조하기 위한 노광 장치 등에도 본 발명은 널리 적용할 수 있다.
또한 반도체소자 등의 마이크로 디바이스뿐만 아니라 광 노광 장치, EUV 노광 장치, X 선 노광 장치, 및 전자선 노광 장치 등으로 사용되는 레티클 또는 마스크를 제조하기 위하여, 유리기판 또는 규소 웨이퍼 등에 회로 패턴을 전사하는 노광 장치에도 본 발명을 적용할 수 있다. 여기에서, DUV (원자외) 광이나 VUV (진공자외) 광 등을 사용하는 노광 장치에서는 일반적으로 투과형 레티클이 사용되고, 레티클 기판으로는 석영유리, 불소가 도핑된 석영유리, 형석, 불화마그네슘, 또는 수정 등이 사용된다.
≪디바이스 제조방법≫
다음으로 상기 서술한 노광 장치를 리소그래피 공정에서 사용한 디바이스 제조방법의 실시형태에 대하여 설명한다.
도 12 에는 디바이스 (IC 나 LSI 등의 반도체 칩, 액정패널, CCD, 박막 자기헤드, 마이크로 머신 등) 의 제조예의 플로우차트가 나타나 있다. 도 12 에 나타내는 바와 같이, 먼저, 스텝 201 (설계단계) 에 있어서, 디바이스의 기능·성능 설계 (예를 들어, 반도체 디바이스의 회로 설계 등) 을 하여 그 기능을 실현하기 위한 패턴을 설계한다. 계속해서 단계 202 (마스크 제작 단계) 에서, 설계한 회로 패턴을 형성한 마스크를 제작한다. 한편, 단계 203 (웨이퍼 제조 단계) 에서 규소 등의 재료를 사용하여 웨이퍼를 제조한다.
다음으로, 단계 204 (웨이퍼 처리 단계) 에 있어서, 단계 201∼단계 203 에서 준비한 마스크와 웨이퍼를 사용하여 후술하는 것처럼 리소그래피 기술 등에 의해 웨이퍼 상에 실제 회로 등을 형성한다. 이어서, 단계 205 (디바이스 조립 단계) 에 있어서, 단계 204 에서 처리된 웨이퍼를 사용하여 디바이스 조립한다. 이 단계 205 에는 다이싱 공정, 본딩 공정 및 패키징 공정 (칩 봉입) 등의 공정이 필요에 따라 포함된다.
마지막으로 단계 206 (검사 단계) 에 있어서, 단계 205 에서 작성된 디바이스의 동작 확인 테스트, 내구 테스트 등을 검사한다. 이러한 공정을 거친 후에 디바이스가 완성되고, 이것이 출하된다.
도 13 에는, 반도체 디바이스에서의 상기 단계 204 의 상세한 흐름도가 나타나 있다. 도 13 에 있어서, 단계 211 (산화 단계) 에서는 웨이퍼의 표면을 산화시킨다. 단계 212 (CVD 단계) 에서는 웨이퍼 표면에 절연막을 형성한다. 단계 213 (전극 형성 단계) 에서는 웨이퍼 상에 전극을 증착에 의해 형성한다. 단계 214 (이온 주입 단계) 에서는 웨이퍼에 이온을 주입한다. 이상의 단계 211 내지 단계 214 각각은 웨이퍼 처리 각 단계의 전처리공정을 구성하고 있으며, 각 단계에서 필요한 처리에 따라 선택되어 실행된다.
웨이퍼 프로세스의 각 단계에서 상기 서술한 전처리공정이 종료되면, 아래와 같이 하여 후처리공정이 실행된다. 이 후처리공정에서는 먼저 단계 215 (레지스트 형성 단계) 에서 웨이퍼에 감광제를 도포한다. 계속해서 단계 216 (노광 단계) 에서 위에서 설명한 리소그래피 시스템 (노광 장치) 및 노광방법에 의해 마스크의 회로패턴을 웨이퍼에 전사한다. 다음으로, 단계 217 (현상 단계) 에서는 노광된 웨이퍼를 현상하고, 단계 218 (에칭 단계) 에서 레지스트가 잔존하고 있는 부분 이외의 부분의 노출부재를 에칭에 의해 제거한다. 그리고, 단계 219 (레지스트 제거 단계) 에서 에칭이 끝나 불필요해진 레지스트를 제거한다.
이들 전처리공정과 후처리공정을 반복하여 실행함으로써 웨이퍼 상에 다중으로 회로패턴이 형성된다.
이상 설명한 본 실시형태의 디바이스 제조방법을 이용하면, 노광 공정 (단계 216) 에서 상기 각 실시형태의 노광 장치가 사용되기 때문에, 높은 정밀도로 레티클의 패턴을 웨이퍼 상에 전사할 수 있다. 그 결과, 고집적도의 마이크로 디바이스의 생산성 (수율을 포함함) 을 향상시킬 수 있게 된다.
산업상 이용가능성
이상 설명한 바와 같이 본 발명의 노광 장치는, 기판 상에 대한 패턴의 전사에 적합하다. 또한 본 발명의 디바이스 제조방법은, 마이크로디바이스의 제조에 적합하다.

Claims (42)

  1. 액체를 통하여 조명광으로 기판을 노광하는 노광 장치로서,
    상기 조명광의 출사면이 상기 액체와 접하는 렌즈를 포함하는 복수의 광학 소자와, 상기 복수의 광학 소자를 유지하는 경통을 갖고, 상기 복수의 광학 소자 중 상기 렌즈가 가장 상면측에 배치되는 투영 광학계와,
    상기 복수의 광학 소자의 일부를 제어하여 상기 투영 광학계의 광학 특성을 조정하는 보정계(81)와,
    상기 렌즈를 둘러싸도록 형성되고, 상기 액체에 의해 상기 투영 광학계의 아래에 액침 영역을 형성하는 액침 부재(32)와,
    상기 액침 부재의 하방에 배치되고, 각각 상기 액침 영역과 접촉 가능한 상면을 갖고, 상기 상면의 개구 내에서 기판을 유지하는 제 1, 제 2 유지 부재(TB1, TB2)와,
    상기 제 1, 제 2 유지 부재를 각각 이동하고, 또한 부상 지지하는 구동장치와,
    상기 제 1, 제 2 유지 부재의 위치 정보를 계측하는 인코더와,
    상기 인코더의 계측 정보에 기초하여 상기 구동장치를 제어함과 함께, 상기 광학 특성의 조정을 위해 상기 보정계를 제어하는 컨트롤러(20)를 구비하고,
    상기 투영 광학계는 반사굴절계이고,
    상기 컨트롤러는, 상기 구동장치를 제어하고, 상기 투영 광학계와 대향하여 배치되는 상기 제 1, 제 2 유지 부재의 일방에 대해 상기 제 1, 제 2 유지 부재의 타방이 접근하도록 상기 제 1, 제 2 유지 부재를 상대 이동함과 함께, 상기 투영 광학계의 아래에 상기 액침 영역이 유지되면서 상기 일방의 유지 부재 대신에 상기 타방의 유지 부재가 상기 투영 광학계와 대향하여 배치되도록 상기 액침 부재에 대해 상기 접근한 제 1, 제 2 유지 부재를 상대 이동하는 노광 장치.
  2. 제 1 항에 있어서,
    상기 액침 부재는 그 하면측에, 상기 조명광이 통과하는 개구부와, 상기 개구부를 둘러싸도록 배치되는 회수공을 갖고, 상기 회수공을 통하여 상기 액침 영역의 액체를 회수하는 노광 장치.
  3. 제 2 항에 있어서,
    상기 액침 부재는 그 하면측에, 상기 개구부와 상기 회수공 사이에서 상기 개구부를 둘러싸도록 배치되는 공급공을 갖고, 상기 공급공을 통하여 상기 액침 영역에 상기 액체를 공급하는 노광 장치.
  4. 제 3 항에 있어서,
    상기 액침 부재는 그 하면측에, 상기 개구부에 대해 상기 회수공보다 외측에 배치되는 다른 회수공을 갖는 노광 장치.
  5. 제 4 항에 있어서,
    상기 액침 부재는, 상기 투영 광학계에 대해 이동가능하게 형성되는 노광 장치.
  6. 제 1 항에 있어서,
    상기 액침 부재에 대한 상기 접근한 제 1, 제 2 유지 부재의 상대 이동에 있어서, 상기 액침 영역은, 상기 접근한 제 1, 제 2 유지 부재의 적어도 일방에 의해 상기 투영 광학계의 아래에 유지되는 노광 장치.
  7. 제 1 항에 있어서,
    상기 제 1, 제 2 유지 부재는, 상기 일방의 유지 부재에 의해 상기 투영 광학계의 아래에 상기 액침 영역을 유지하면서, 상기 투영 광학계의 광축과 직교하는 소정 방향에 관해서 서로 접근하고, 또한 상기 상면이 나란히 배치되도록 상대 이동되고,
    상기 접근한 제 1, 제 2 유지 부재는, 상기 소정 방향에 관해서 상기 액침 부재에 대해 상대 이동되는 노광 장치.
  8. 제 7 항에 있어서,
    상기 컨트롤러는, 상기 조명광에 대해 상기 기판을 상기 소정 방향에 관해서 상대 이동하는 상기 기판의 주사 노광이 실시되도록 상기 구동장치를 제어하는 노광 장치.
  9. 제 7 항에 있어서,
    상기 제 1, 제 2 유지 부재는, 상기 일방의 유지 부재에 의해 상기 투영 광학계의 아래에 상기 액침 영역을 유지하면서, 상기 소정 방향과 교차하는 방향에 관한 위치 관계가 조정되도록 상대 이동되는 노광 장치.
  10. 제 7 항에 있어서,
    상기 접근한 제 1, 제 2 유지 부재는 그 위치 관계가 유지되면서 상기 액침 부재에 대해 상대 이동되는 노광 장치.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서,
    상기 액침 영역은, 상기 조명광의 조사 영역을 포함하는, 상기 제 1 유지 부재 또는 상기 제 2 유지 부재에 의해 상기 투영 광학계와 대향하여 배치되는 기판의 일부에 형성되고,
    상기 제 1, 제 2 유지 부재는 각각, 상기 기판의 노광 동작에 있어서 상기 기판이 상기 액침 영역에 대해 상대 이동하도록 구동되는 노광 장치.
  12. 제 11 항에 있어서,
    상기 제 1, 제 2 유지 부재는 각각, 상기 상면과 상기 기판의 표면 사이에 간극이 형성되고, 또한 상기 상면과 상기 기판의 표면이 동일면이 되도록, 상기 개구 내에서 상기 기판을 유지함과 함께, 상기 상면에 의해 상기 개구 내에서 유지되는 기판의 표면으로부터 벗어나는 상기 액침 영역의 적어도 일부를 유지하는 노광 장치.
  13. 제 12 항에 있어서,
    상기 제 1, 제 2 유지 부재는 각각, 상기 개구와 상이한, 상기 상면의 개구 내에 배치됨과 함께, 상기 기판의 얼라인먼트에 사용되는 기준이 표면에 형성되는 기준 부재를 갖는 노광 장치.
  14. 제 13 항에 있어서,
    상기 제 1, 제 2 유지 부재는 각각, 상기 표면이 상기 상면과 동일면이 되도록 상기 기준 부재가 형성되는 노광 장치.
  15. 제 11 항에 있어서,
    상기 제 1, 제 2 유지 부재의 일방이 상기 투영 광학계와 대향하여 배치되는 동안, 상기 제 1, 제 2 유지 부재의 타방은 상기 투영 광학계의 아래로부터 떨어져 이동 가능하고,
    상기 액침 부재에 대한 상기 접근한 제 1, 제 2 유지 부재의 상대 이동의 전후에서 각각, 상기 제 1 유지 부재와 상기 제 2 유지 부재에서 서로 상이한 동작이 실시되는 노광 장치.
  16. 제 15 항에 있어서,
    상기 투영 광학계와 대향하여 배치되는 상기 일방의 유지 부재에서는 상기 기판의 노광 동작이 실시됨과 함께, 상기 투영 광학계의 아래로부터 떨어진 상기 타방의 유지 부재에서는 상기 기판의 계측 동작과 교환 동작의 적어도 일방이 실시되는 노광 장치.
  17. 제 16 항에 있어서,
    상기 제 1, 제 2 유지 부재는 각각, 상기 계측 동작, 상기 노광 동작, 및 상기 교환 동작이 실시되도록 이동되고,
    상기 액침 부재에 대한 상기 접근한 제 1, 제 2 유지 부재의 상대 이동은, 상기 노광 동작의 전후에서 각각 실시되는 노광 장치.
  18. 제 17 항에 있어서,
    상기 제 1 유지 부재와 상기 제 2 유지 부재에서 상기 동작의 적어도 일부가 병행하여 실시되는 노광 장치.
  19. 제 11 항에 있어서,
    상기 제 1 유지 부재에 유지되는 기판의 노광 동작과, 상기 제 2 유지 부재에 유지되는 기판의 노광 동작이 교대로 실시되고, 상기 액침 부재에 대한 상기 접근한 제 1, 제 2 유지 부재의 상대 이동은 그 노광 동작 동안에 실시되는 노광 장치.
  20. 제 11 항에 있어서,
    상기 제 1, 제 2 유지 부재를 교대로 사용하여 복수의 기판의 노광 동작이 실시되고, 상기 액침 영역은, 상기 복수의 기판의 노광 동작에 있어서 상기 투영 광학계의 아래에 유지되는 노광 장치.
  21. 제 11 항에 있어서,
    상기 투영 광학계로부터 떨어져 배치되고, 상기 기판의 마크를 검출하는 검출계를 추가로 구비하고,
    상기 기판은, 상기 투영 광학계와 상기 액침 영역의 액체를 통하여 상기 조명광으로 노광이 실시됨과 함께, 상기 액체를 통하지 않고 상기 검출계에 의해 상기 마크의 검출이 실시되는 노광 장치.
  22. 제 21 항에 있어서,
    상기 검출계는, 상기 액침 부재에 대해 상기 접근한 제 1, 제 2 유지 부재가 상대 이동되는 소정 방향에 관해서 상기 투영 광학계와 상이한 위치에 배치되는 노광 장치.
  23. 제 21 항에 있어서,
    상기 검출계는, 상기 투영 광학계가 배치되는 제 1 영역과 상이한 제 2 영역에 배치되고,
    상기 제 1, 제 2 유지 부재는 각각, 상기 제 2 영역으로부터 상기 제 1 영역으로의 이동과, 상기 제 1 영역으로부터 상기 제 2 영역으로의 이동에서 경로가 상이하도록, 상기 제 1, 제 2 영역의 일방으로부터 타방으로 이동되는 노광 장치.
  24. 제 21 항에 있어서,
    상기 검출계는, 상기 투영 광학계가 배치되는 제 1 영역과 상이한 제 2 영역에 배치되고,
    상기 제 1, 제 2 유지 부재는 각각, 상기 제 2 영역으로부터 상기 제 1 영역으로의 이동에 있어서 경로가 동일해지도록, 상기 제 1, 제 2 영역의 일방으로부터 타방으로 이동되는 노광 장치.
  25. 액체를 통하여 조명광으로 기판을 노광하는 노광 방법으로서,
    상기 조명광의 출사면이 상기 액체와 접하는 렌즈를 포함하는 복수의 광학 소자와, 상기 복수의 광학 소자를 유지하는 경통을 갖고, 상기 복수의 광학 소자 중 상기 렌즈가 가장 상면측에 배치되는 투영 광학계의 광학 특성을 조정하기 위해, 상기 복수의 광학 소자의 일부를 제어하는 것과,
    상기 렌즈를 둘러싸도록 형성되고, 상기 투영 광학계의 아래에 상기 액체로 액침 영역을 형성하는 액침 부재(32)의 하방에 배치됨과 함께, 각각 상기 액침 영역과 접촉 가능한 상면을 갖고, 상기 상면의 개구 내에서 기판을 유지하는 제 1, 제 2 유지 부재(TB1, TB2) 중, 상기 투영 광학계와 대향하여 배치되는 일방의 유지 부재의 위치 정보를 인코더에 의해 계측하는 것과,
    상기 일방의 유지 부재에 대해 상기 제 1, 제 2 유지 부재의 타방이 접근하도록, 상기 제 1, 제 2 유지 부재를 상대 이동하는 것과,
    상기 투영 광학계의 아래에 상기 액침 영역이 유지되면서 상기 일방의 유지 부재 대신에 상기 타방의 유지 부재가 상기 투영 광학계와 대향하여 배치되도록, 상기 액침 부재에 대해 상기 접근한 제 1, 제 2 유지 부재를 상대 이동하는 것을 포함하고,
    상기 투영 광학계는 반사굴절계인, 노광 방법.
  26. 제 25 항에 있어서,
    상기 액침 부재에 대한 상기 접근한 제 1, 제 2 유지 부재의 상대 이동에 있어서, 상기 액침 영역은, 상기 접근한 제 1, 제 2 유지 부재의 적어도 일방에 의해 상기 투영 광학계의 아래에 유지되는 노광 방법.
  27. 제 25 항에 있어서,
    상기 제 1, 제 2 유지 부재는, 상기 일방의 유지 부재에 의해 상기 투영 광학계의 아래에 상기 액침 영역을 유지하면서, 상기 투영 광학계의 광축과 직교하는 소정 방향에 관해서 서로 접근하고, 또한 상기 상면이 나란히 배치되도록 상대 이동되고,
    상기 접근한 제 1, 제 2 유지 부재는, 상기 소정 방향에 관해서 상기 액침 부재에 대해 상대 이동되는 노광 방법.
  28. 제 27 항에 있어서,
    상기 조명광에 대해 상기 기판을 상대 이동하는 상기 기판의 주사 노광이 실시되도록, 상기 소정 방향에 관해서 상기 일방의 가동 부재가 이동되는 노광 방법.
  29. 제 27 항에 있어서,
    상기 제 1, 제 2 유지 부재는, 상기 일방의 유지 부재에 의해 상기 투영 광학계의 아래에 상기 액침 영역을 유지하면서, 상기 소정 방향과 교차하는 방향에 관한 위치 관계가 조정되도록 상대 이동되는 노광 방법.
  30. 제 27 항에 있어서,
    상기 접근한 제 1, 제 2 유지 부재는 그 위치 관계가 유지되면서 상기 액침 부재에 대해 상대 이동되는 노광 방법.
  31. 제 25 항 내지 제 30 항 중 어느 한 항에 있어서,
    상기 액침 영역은, 상기 조명광의 조사 영역을 포함하는, 상기 제 1 유지 부재 또는 상기 제 2 유지 부재에 의해 상기 투영 광학계와 대향하여 배치되는 기판의 일부에 형성되고,
    상기 제 1, 제 2 유지 부재는 각각, 상기 기판의 노광 동작에 있어서 상기 기판이 상기 액침 영역에 대해 상대 이동하도록 구동되는 노광 방법.
  32. 제 31 항에 있어서,
    상기 제 1, 제 2 유지 부재는 각각, 상기 상면과 상기 기판의 표면 사이에 간극이 형성되고, 또한 상기 상면과 상기 기판의 표면이 동일면이 되도록, 상기 개구 내에서 상기 기판을 유지함과 함께, 상기 상면에 의해 상기 개구 내에서 유지되는 기판의 표면으로부터 벗어나는 상기 액침 영역의 적어도 일부를 유지하는 노광 방법.
  33. 제 31 항에 있어서,
    상기 제 1, 제 2 유지 부재의 일방이 상기 투영 광학계와 대향하여 배치되는 동안, 상기 제 1, 제 2 유지 부재의 타방은 상기 투영 광학계의 아래로부터 떨어져 이동되고,
    상기 액침 부재에 대한 상기 접근한 제 1, 제 2 유지 부재의 상대 이동의 전후에서 각각, 상기 제 1 유지 부재와 상기 제 2 유지 부재에서 서로 상이한 동작이 실시되는 노광 방법.
  34. 제 33 항에 있어서,
    상기 투영 광학계와 대향하여 배치되는 상기 일방의 유지 부재에서는 상기 기판의 노광 동작이 실시됨과 함께, 상기 투영 광학계의 아래로부터 떨어진 상기 타방의 유지 부재에서는 상기 기판의 계측 동작과 교환 동작의 적어도 일방이 실시되는 노광 방법.
  35. 제 34 항에 있어서,
    상기 제 1, 제 2 유지 부재는 각각, 상기 계측 동작, 상기 노광 동작, 및 상기 교환 동작이 실시되도록 이동되고,
    상기 액침 부재에 대한 상기 접근한 제 1, 제 2 유지 부재의 상대 이동은, 상기 노광 동작의 전후에서 각각 실시되는 노광 방법.
  36. 제 35 항에 있어서,
    상기 제 1 유지 부재와 상기 제 2 유지 부재에서 상기 동작의 적어도 일부가 병행하여 실시되는 노광 방법.
  37. 제 31 항에 있어서,
    상기 제 1 유지 부재에 유지되는 기판의 노광 동작과, 상기 제 2 유지 부재에 유지되는 기판의 노광 동작이 교대로 실시되고, 상기 액침 부재에 대한 상기 접근한 제 1, 제 2 유지 부재의 상대 이동은 그 노광 동작 동안에 실시되는 노광 방법.
  38. 제 31 항에 있어서,
    상기 제 1, 제 2 유지 부재를 교대로 사용하여 복수의 기판의 노광 동작이 실시되고, 상기 액침 영역은, 상기 복수의 기판의 노광 동작에 있어서 상기 투영 광학계의 아래에 유지되는 노광 방법.
  39. 제 31 항에 있어서,
    상기 투영 광학계로부터 떨어져 배치되는 검출계에 의해, 상기 액체를 통하지 않고 상기 기판의 마크가 검출되고,
    상기 기판은, 상기 투영 광학계와 상기 액침 영역의 액체를 통하여 상기 조명광으로 노광이 실시되는 노광 방법.
  40. 제 39 항에 있어서,
    상기 제 1, 제 2 유지 부재는 각각, 상기 투영 광학계가 배치되는 제 1 영역과, 상기 검출계가 배치되는 제 2 영역의 일방으로부터 타방으로 이동됨과 함께, 상기 제 2 영역으로부터 상기 제 1 영역으로의 이동과, 상기 제 1 영역으로부터 상기 제 2 영역으로의 이동에서 경로가 상이한 노광 방법.
  41. 제 39 항에 있어서,
    상기 제 1, 제 2 유지 부재는 각각, 상기 투영 광학계가 배치되는 제 1 영역과, 상기 검출계가 배치되는 제 2 영역의 일방으로부터 타방으로 이동되고,
    상기 제 2 영역으로부터 상기 제 1 영역으로의 이동 경로는, 상기 제 1 유지 부재와 상기 제 2 유지 부재에서 동일한 노광 방법.
  42. 디바이스 제조 방법으로서,
    제 25 항 내지 제 30 항 중 어느 한 항에 기재된 노광 방법을 사용하여 기판을 노광하는 것과,
    상기 노광된 기판을 현상하는 것을 포함하는 디바이스 제조 방법.
KR1020167032936A 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법 KR101830565B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2003-174259 2003-06-19
JP2003174259 2003-06-19
PCT/JP2004/008595 WO2004114380A1 (ja) 2003-06-19 2004-06-18 露光装置及びデバイス製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020157031632A Division KR101686762B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020187003214A Division KR101931923B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법

Publications (2)

Publication Number Publication Date
KR20160137693A KR20160137693A (ko) 2016-11-30
KR101830565B1 true KR101830565B1 (ko) 2018-02-20

Family

ID=33534785

Family Applications (19)

Application Number Title Priority Date Filing Date
KR1020107023716A KR101148810B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020157001442A KR101674329B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020187035459A KR20180132996A (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020097023978A KR101134957B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020147016500A KR101529844B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020137028434A KR101476087B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020137005135A KR101475634B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020117028752A KR101187617B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020107023718A KR101148811B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020137005136A KR101419663B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020167032936A KR101830565B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020117022062A KR101289979B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020127006006A KR101265450B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020107000875A KR101146962B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020147002172A KR101483916B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020157031632A KR101686762B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020127016894A KR101265454B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020187003214A KR101931923B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020057023089A KR101119812B1 (ko) 2003-06-19 2005-12-02 노광 장치 및 디바이스 제조방법

Family Applications Before (10)

Application Number Title Priority Date Filing Date
KR1020107023716A KR101148810B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020157001442A KR101674329B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020187035459A KR20180132996A (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020097023978A KR101134957B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020147016500A KR101529844B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020137028434A KR101476087B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020137005135A KR101475634B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020117028752A KR101187617B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020107023718A KR101148811B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020137005136A KR101419663B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법

Family Applications After (8)

Application Number Title Priority Date Filing Date
KR1020117022062A KR101289979B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020127006006A KR101265450B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020107000875A KR101146962B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020147002172A KR101483916B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020157031632A KR101686762B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020127016894A KR101265454B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020187003214A KR101931923B1 (ko) 2003-06-19 2004-06-18 노광 장치 및 디바이스 제조방법
KR1020057023089A KR101119812B1 (ko) 2003-06-19 2005-12-02 노광 장치 및 디바이스 제조방법

Country Status (10)

Country Link
US (22) US7321419B2 (ko)
EP (4) EP2216685B1 (ko)
JP (19) JP4437474B2 (ko)
KR (19) KR101148810B1 (ko)
CN (2) CN101436003B (ko)
AT (1) ATE453209T1 (ko)
DE (1) DE602004024782D1 (ko)
HK (3) HK1145043A1 (ko)
TW (15) TW200514132A (ko)
WO (1) WO2004114380A1 (ko)

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG2010050110A (en) 2002-11-12 2014-06-27 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7372541B2 (en) * 2002-11-12 2008-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110081B2 (en) * 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP3953460B2 (ja) * 2002-11-12 2007-08-08 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ投影装置
KR20110086130A (ko) * 2002-12-10 2011-07-27 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
JP4735258B2 (ja) 2003-04-09 2011-07-27 株式会社ニコン 露光方法及び装置、並びにデバイス製造方法
KR20170064003A (ko) 2003-04-10 2017-06-08 가부시키가이샤 니콘 액침 리소그래피 장치용 운반 영역을 포함하는 환경 시스템
CN104597717B (zh) * 2003-04-10 2017-09-05 株式会社尼康 包括用于沉浸光刻装置的真空清除的环境系统
KR101178756B1 (ko) 2003-04-11 2012-08-31 가부시키가이샤 니콘 액침 리소그래피 머신에서 웨이퍼 교환동안 투영 렌즈 아래의 갭에서 액침액체를 유지하는 장치 및 방법
TWI295414B (en) 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2216685B1 (en) 2003-06-19 2012-06-27 Nikon Corporation Exposure apparatus and device manufacturing method
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP3862678B2 (ja) 2003-06-27 2006-12-27 キヤノン株式会社 露光装置及びデバイス製造方法
DE60308161T2 (de) 2003-06-27 2007-08-09 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung eines Artikels
US6809794B1 (en) 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
EP1667211B1 (en) 2003-09-26 2015-09-09 Nikon Corporation Projection exposure apparatus, cleaning and maintenance methods for a projection exposure apparatus, and method of producing a device
US7352433B2 (en) 2003-10-28 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TW201834020A (zh) 2003-10-28 2018-09-16 日商尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造方法
US7528929B2 (en) 2003-11-14 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TW201809801A (zh) 2003-11-20 2018-03-16 日商尼康股份有限公司 光學照明裝置、曝光裝置、曝光方法、以及元件製造方法
US7466489B2 (en) * 2003-12-15 2008-12-16 Susanne Beder Projection objective having a high aperture and a planar end surface
JP5102492B2 (ja) 2003-12-19 2012-12-19 カール・ツァイス・エスエムティー・ゲーエムベーハー 結晶素子を有するマイクロリソグラフィー投影用対物レンズ
DE602004027162D1 (de) 2004-01-05 2010-06-24 Nippon Kogaku Kk Belichtungsvorrichtung, belichtungsverfahren und bauelementeherstellungsverfahren
US7589822B2 (en) * 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
TW201809727A (zh) 2004-02-06 2018-03-16 日商尼康股份有限公司 偏光變換元件
KR101504445B1 (ko) 2004-03-25 2015-03-19 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2006009573A1 (en) 2004-06-17 2006-01-26 Nikon Corporation Fluid pressure compensation for immersion lithography lens
JP4565272B2 (ja) 2004-07-01 2010-10-20 株式会社ニコン 液浸リソグラフィのための動的流体制御システム
KR101354801B1 (ko) 2004-08-03 2014-01-22 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
JP4488006B2 (ja) 2004-10-15 2010-06-23 株式会社ニコン 露光装置及びデバイス製造方法
US8330939B2 (en) * 2004-11-01 2012-12-11 Nikon Corporation Immersion exposure apparatus and device manufacturing method with a liquid recovery port provided on at least one of a first stage and second stage
US7528931B2 (en) * 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG124351A1 (en) 2005-01-14 2006-08-30 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2006222165A (ja) * 2005-02-08 2006-08-24 Canon Inc 露光装置
US8018573B2 (en) 2005-02-22 2011-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7324185B2 (en) 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20090047607A1 (en) * 2005-03-31 2009-02-19 Hiroyuki Nagasaka Exposure method, exposure apparatus and device fabricating methods
US7161659B2 (en) * 2005-04-08 2007-01-09 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
USRE43576E1 (en) * 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US7515281B2 (en) 2005-04-08 2009-04-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060232753A1 (en) 2005-04-19 2006-10-19 Asml Holding N.V. Liquid immersion lithography system with tilted liquid flow
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101504765B1 (ko) 2005-05-12 2015-03-30 가부시키가이샤 니콘 투영 광학계, 노광 장치 및 노광 방법
JP4708860B2 (ja) * 2005-05-23 2011-06-22 キヤノン株式会社 液浸露光装置
JP5309565B2 (ja) * 2005-08-05 2013-10-09 株式会社ニコン ステージ装置、露光装置、方法、露光方法、及びデバイス製造方法
US20070127135A1 (en) * 2005-11-01 2007-06-07 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007052659A1 (ja) * 2005-11-01 2007-05-10 Nikon Corporation 露光装置、露光方法、及びデバイス製造方法
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US20070126999A1 (en) * 2005-12-07 2007-06-07 Nikon Corporation Apparatus and method for containing immersion liquid in immersion lithography
US7420194B2 (en) 2005-12-27 2008-09-02 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US7649611B2 (en) * 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2003680B1 (en) * 2006-02-21 2013-05-29 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
CN102866591B (zh) * 2006-02-21 2015-08-19 株式会社尼康 曝光装置及方法、以及元件制造方法
JP4889331B2 (ja) * 2006-03-22 2012-03-07 大日本スクリーン製造株式会社 基板処理装置および基板処理方法
US7483120B2 (en) 2006-05-09 2009-01-27 Asml Netherlands B.V. Displacement measurement system, lithographic apparatus, displacement measurement method and device manufacturing method
US7804582B2 (en) * 2006-07-28 2010-09-28 Asml Netherlands B.V. Lithographic apparatus, method of calibrating a lithographic apparatus and device manufacturing method
KR101634893B1 (ko) * 2006-08-31 2016-06-29 가부시키가이샤 니콘 이동체 구동 방법 및 이동체 구동 시스템, 패턴 형성 방법 및 장치, 노광 방법 및 장치, 그리고 디바이스 제조 방법
US20080094592A1 (en) * 2006-08-31 2008-04-24 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US7872730B2 (en) * 2006-09-15 2011-01-18 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
KR101360507B1 (ko) * 2006-09-29 2014-02-07 가부시키가이샤 니콘 이동체 시스템, 패턴 형성 장치, 노광 장치 및 노광 방법, 그리고 디바이스 제조 방법
US20080158531A1 (en) 2006-11-15 2008-07-03 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8237911B2 (en) 2007-03-15 2012-08-07 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
US8267388B2 (en) * 2007-09-12 2012-09-18 Xradia, Inc. Alignment assembly
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP4533416B2 (ja) * 2007-09-25 2010-09-01 キヤノン株式会社 露光装置およびデバイス製造方法
JP5267029B2 (ja) 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
WO2009050976A1 (en) 2007-10-16 2009-04-23 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
SG185313A1 (en) 2007-10-16 2012-11-29 Nikon Corp Illumination optical system, exposure apparatus, and device manufacturing method
US8279399B2 (en) 2007-10-22 2012-10-02 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN101675500B (zh) * 2007-11-07 2011-05-18 株式会社尼康 曝光装置、曝光方法以及元件制造方法
TWI643035B (zh) 2007-12-28 2018-12-01 日商尼康股份有限公司 Exposure apparatus, exposure method, and component manufacturing method
FR2927708A1 (fr) * 2008-02-19 2009-08-21 Commissariat Energie Atomique Procede de photolithographie ultraviolette a immersion
NL1036614A1 (nl) * 2008-03-21 2009-09-22 Asml Netherlands Bv A target material, a source, an EUV lithographic apparatus and a device manufacturing method using the same.
JP5360057B2 (ja) 2008-05-28 2013-12-04 株式会社ニコン 空間光変調器の検査装置および検査方法、照明光学系、照明光学系の調整方法、露光装置、およびデバイス製造方法
US9176393B2 (en) 2008-05-28 2015-11-03 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
KR101634825B1 (ko) 2008-06-09 2016-06-29 케이엘에이-텐코어 코오포레이션 참조 검사 디바이스
US8260479B2 (en) * 2008-12-09 2012-09-04 Honeywell International Inc. Modular software architecture for an unmanned aerial vehicle
US8760629B2 (en) 2008-12-19 2014-06-24 Nikon Corporation Exposure apparatus including positional measurement system of movable body, exposure method of exposing object including measuring positional information of movable body, and device manufacturing method that includes exposure method of exposing object, including measuring positional information of movable body
US8773635B2 (en) * 2008-12-19 2014-07-08 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8902402B2 (en) 2008-12-19 2014-12-02 Nikon Corporation Movable body apparatus, exposure apparatus, exposure method, and device manufacturing method
US8599359B2 (en) 2008-12-19 2013-12-03 Nikon Corporation Exposure apparatus, exposure method, device manufacturing method, and carrier method
EP2221668B1 (en) * 2009-02-24 2021-04-14 ASML Netherlands B.V. Lithographic apparatus and positioning assembly
US8970820B2 (en) 2009-05-20 2015-03-03 Nikon Corporation Object exchange method, exposure method, carrier system, exposure apparatus, and device manufacturing method
US8792084B2 (en) * 2009-05-20 2014-07-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8553204B2 (en) * 2009-05-20 2013-10-08 Nikon Corporation Movable body apparatus, exposure apparatus, exposure method, and device manufacturing method
JP5365407B2 (ja) * 2009-08-17 2013-12-11 ソニー株式会社 画像取得装置及び画像取得方法
US20110096312A1 (en) * 2009-09-28 2011-04-28 Nikon Corporation Exposure apparatus and device fabricating method
US20110102761A1 (en) * 2009-09-28 2011-05-05 Nikon Corporation Stage apparatus, exposure apparatus, and device fabricating method
US20110096318A1 (en) * 2009-09-28 2011-04-28 Nikon Corporation Exposure apparatus and device fabricating method
US20110096306A1 (en) * 2009-09-28 2011-04-28 Nikon Corporation Stage apparatus, exposure apparatus, driving method, exposing method, and device fabricating method
US20110123913A1 (en) * 2009-11-19 2011-05-26 Nikon Corporation Exposure apparatus, exposing method, and device fabricating method
US20110128523A1 (en) * 2009-11-19 2011-06-02 Nikon Corporation Stage apparatus, exposure apparatus, driving method, exposing method, and device fabricating method
EP2381310B1 (en) 2010-04-22 2015-05-06 ASML Netherlands BV Fluid handling structure and lithographic apparatus
DE102010024263A1 (de) * 2010-06-18 2011-12-22 Festo Ag & Co. Kg Luftlagereinrichtung
EP2593841A2 (en) * 2010-07-15 2013-05-22 Centre de Recherche Public - Gabriel Lippmann Methods and systems for detecting, setting, monitoring, determining, storing and compensating the spatial situation of a mobile unit
NL2008183A (en) * 2011-02-25 2012-08-28 Asml Netherlands Bv A lithographic apparatus, a method of controlling the apparatus and a device manufacturing method.
NL2007604C2 (en) * 2011-10-14 2013-05-01 Mapper Lithography Ip Bv Charged particle system comprising a manipulator device for manipulation of one or more charged particle beams.
NL2008695A (en) * 2011-05-25 2012-11-27 Asml Netherlands Bv Lithographic apparatus comprising substrate table.
NL2007114C2 (en) * 2011-07-14 2013-01-15 Levitech B V Floating substrate monitoring and control device, and method for the same.
NL2009692A (en) 2011-12-07 2013-06-10 Asml Netherlands Bv A lithographic apparatus and a device manufacturing method.
US9207549B2 (en) 2011-12-29 2015-12-08 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method with encoder of higher reliability for position measurement
US9211481B2 (en) * 2012-07-27 2015-12-15 Nb Tech Inc. Visual display system and method of constructing a high-gain reflective beam-splitter
JP5975785B2 (ja) * 2012-08-14 2016-08-23 株式会社アドテックエンジニアリング 描画装置、露光描画装置、プログラム及び描画方法
US9362812B2 (en) * 2012-09-18 2016-06-07 Honeywell International Inc. Shaft coupling apparatus, rotary fluid damper, and deployable device with magnetic coupling mechanism
US9772564B2 (en) 2012-11-12 2017-09-26 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method
TWI564555B (zh) * 2014-12-27 2017-01-01 財團法人工業技術研究院 全周反射取像模組與全周反射取像方法
CN104597721B (zh) * 2015-01-20 2016-09-21 中国科学院上海光学精密机械研究所 紫外光刻二维平台
TW201643558A (zh) * 2015-03-31 2016-12-16 尼康股份有限公司 曝光裝置、平面顯示器之製造方法、元件製造方法、及曝光方法
WO2016159295A1 (ja) * 2015-03-31 2016-10-06 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
EA038788B1 (ru) 2015-07-06 2021-10-20 Митчелл Террасе Пти. Лтд. Устройство для нанесения продукта
CN111812949A (zh) * 2015-09-30 2020-10-23 株式会社尼康 曝光装置及曝光方法、以及平面显示器制造方法
NL2017682A (en) * 2015-11-30 2017-06-07 Asml Netherlands Bv Method and apparatus for processing a substrate in a lithographic apparatus
JP6757849B2 (ja) 2016-09-12 2020-09-23 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置のための流体ハンドリング構造
US10372113B2 (en) * 2016-09-23 2019-08-06 Kla-Tencor Corporation Method for defocus detection
US9990460B2 (en) * 2016-09-30 2018-06-05 Taiwan Semiconductor Manufacturing Co., Ltd. Source beam optimization method for improving lithography printability
CN109256884A (zh) * 2017-10-13 2019-01-22 朱卫 一种用钛金属生产的马达外壳
CA3095734A1 (en) * 2018-02-27 2019-09-06 Georgia Tech Research Corporation System, devices, and methods providing hydrodynamic barriers
JP6922849B2 (ja) * 2018-05-25 2021-08-18 信越化学工業株式会社 単量体、ポリマー、ネガ型レジスト組成物、フォトマスクブランク、及びレジストパターン形成方法
CN110658683A (zh) * 2018-06-28 2020-01-07 上海微电子装备(集团)股份有限公司 晶片承载系统和浸没光刻设备
JP7099250B2 (ja) 2018-10-25 2022-07-12 信越化学工業株式会社 オニウム塩、ネガ型レジスト組成物及びレジストパターン形成方法
JP2019183175A (ja) * 2019-08-01 2019-10-24 ダイキン工業株式会社 離型フィルム
CN110824591A (zh) * 2019-11-20 2020-02-21 曾雪骢 一种液体镜片
CN115818207B (zh) * 2023-02-10 2023-06-02 季华实验室 一种基板传送装置、控制方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法

Family Cites Families (331)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1242527A (en) 1967-10-20 1971-08-11 Kodak Ltd Optical instruments
US4026653A (en) * 1975-05-09 1977-05-31 Bell Telephone Laboratories, Incorporated Proximity printing method
US4341164A (en) 1980-06-13 1982-07-27 Charles H. Ruble Folding camp table
US4509852A (en) 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57117238A (en) 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS58202448A (ja) * 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
JPS5919912A (ja) * 1982-07-26 1984-02-01 Hitachi Ltd 液浸距離保持装置
DD221563A1 (de) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
US4650983A (en) 1983-11-07 1987-03-17 Nippon Kogaku K. K. Focusing apparatus for projection optical system
DD224448A1 (de) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Einrichtung zur fotolithografischen strukturuebertragung
JPS6144429A (ja) 1984-08-09 1986-03-04 Nippon Kogaku Kk <Nikon> 位置合わせ方法、及び位置合せ装置
US4780617A (en) 1984-08-09 1988-10-25 Nippon Kogaku K.K. Method for successive alignment of chip patterns on a substrate
JPS6265326A (ja) 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
JPS62121417A (ja) 1985-11-22 1987-06-02 Hitachi Ltd 液浸対物レンズ装置
JPS63157419A (ja) 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
JP2940553B2 (ja) 1988-12-21 1999-08-25 株式会社ニコン 露光方法
JP2897355B2 (ja) 1990-07-05 1999-05-31 株式会社ニコン アライメント方法,露光装置,並びに位置検出方法及び装置
US5121256A (en) 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JP3200874B2 (ja) 1991-07-10 2001-08-20 株式会社ニコン 投影露光装置
US5243195A (en) 1991-04-25 1993-09-07 Nikon Corporation Projection exposure apparatus having an off-axis alignment system and method of alignment therefor
JPH0562877A (ja) 1991-09-02 1993-03-12 Yasuko Shinohara 光によるlsi製造縮小投影露光装置の光学系
JP3203719B2 (ja) 1991-12-26 2001-08-27 株式会社ニコン 露光装置、その露光装置により製造されるデバイス、露光方法、およびその露光方法を用いたデバイス製造方法
JPH05304072A (ja) 1992-04-08 1993-11-16 Nec Corp 半導体装置の製造方法
US5469963A (en) 1992-04-08 1995-11-28 Asyst Technologies, Inc. Sealable transportable container having improved liner
JPH06124873A (ja) * 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JP2753930B2 (ja) 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JP3316833B2 (ja) 1993-03-26 2002-08-19 株式会社ニコン 走査露光方法、面位置設定装置、走査型露光装置、及び前記方法を使用するデバイス製造方法
KR100300618B1 (ko) 1992-12-25 2001-11-22 오노 시게오 노광방법,노광장치,및그장치를사용하는디바이스제조방법
JPH06208058A (ja) 1993-01-13 1994-07-26 Olympus Optical Co Ltd 顕微鏡対物レンズ
US5591958A (en) * 1993-06-14 1997-01-07 Nikon Corporation Scanning exposure method and apparatus
JP3412704B2 (ja) 1993-02-26 2003-06-03 株式会社ニコン 投影露光方法及び装置、並びに露光装置
JP3635684B2 (ja) 1994-08-23 2005-04-06 株式会社ニコン 反射屈折縮小投影光学系、反射屈折光学系、並びに投影露光方法及び装置
JP3747951B2 (ja) 1994-11-07 2006-02-22 株式会社ニコン 反射屈折光学系
US5636066A (en) 1993-03-12 1997-06-03 Nikon Corporation Optical apparatus
JP3747958B2 (ja) 1995-04-07 2006-02-22 株式会社ニコン 反射屈折光学系
JPH09311278A (ja) 1996-05-20 1997-12-02 Nikon Corp 反射屈折光学系
US5534970A (en) 1993-06-11 1996-07-09 Nikon Corporation Scanning exposure apparatus
JP3265503B2 (ja) 1993-06-11 2002-03-11 株式会社ニコン 露光方法及び装置
JP3212199B2 (ja) 1993-10-04 2001-09-25 旭硝子株式会社 平板型陰極線管
JPH07220990A (ja) 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
US7365513B1 (en) 1994-04-01 2008-04-29 Nikon Corporation Positioning device having dynamically isolated frame, and lithographic device provided with such a positioning device
US5528118A (en) 1994-04-01 1996-06-18 Nikon Precision, Inc. Guideless stage with isolated reaction stage
US5874820A (en) 1995-04-04 1999-02-23 Nikon Corporation Window frame-guided stage mechanism
US6989647B1 (en) 1994-04-01 2006-01-24 Nikon Corporation Positioning device having dynamically isolated frame, and lithographic device provided with such a positioning device
JP3395801B2 (ja) 1994-04-28 2003-04-14 株式会社ニコン 反射屈折投影光学系、走査型投影露光装置、及び走査投影露光方法
JP3555230B2 (ja) 1994-05-18 2004-08-18 株式会社ニコン 投影露光装置
JPH07335748A (ja) 1994-06-07 1995-12-22 Miyazaki Oki Electric Co Ltd 半導体素子の製造方法
US5715064A (en) * 1994-06-17 1998-02-03 International Business Machines Corporation Step and repeat apparatus having enhanced accuracy and increased throughput
USRE38438E1 (en) 1994-08-23 2004-02-24 Nikon Corporation Catadioptric reduction projection optical system and exposure apparatus having the same
JPH0883753A (ja) 1994-09-13 1996-03-26 Nikon Corp 焦点検出方法
US5623853A (en) 1994-10-19 1997-04-29 Nikon Precision Inc. Precision motion stage with single guide beam and follower stage
JPH08136475A (ja) 1994-11-14 1996-05-31 Kawasaki Steel Corp 板状材の表面観察装置
JP3387075B2 (ja) * 1994-12-12 2003-03-17 株式会社ニコン 走査露光方法、露光装置、及び走査型露光装置
JPH08171054A (ja) 1994-12-16 1996-07-02 Nikon Corp 反射屈折光学系
US5677758A (en) 1995-02-09 1997-10-14 Mrs Technology, Inc. Lithography System using dual substrate stages
US6008500A (en) 1995-04-04 1999-12-28 Nikon Corporation Exposure apparatus having dynamically isolated reaction frame
JPH08316125A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH08316124A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JP3526042B2 (ja) 1995-08-09 2004-05-10 株式会社ニコン 投影露光装置
JP3242564B2 (ja) * 1995-11-29 2001-12-25 富士通株式会社 昇圧回路を有する記憶装置及び昇圧回路制御方法
JPH09232213A (ja) 1996-02-26 1997-09-05 Nikon Corp 投影露光装置
JPH09267236A (ja) * 1996-03-29 1997-10-14 Kyocera Corp 位置決め装置
US5964441A (en) 1996-04-01 1999-10-12 Lear Corporation Linkage assembly with extruded hole member
JPH103039A (ja) 1996-06-14 1998-01-06 Nikon Corp 反射屈折光学系
JPH1020195A (ja) 1996-06-28 1998-01-23 Nikon Corp 反射屈折光学系
JP3480192B2 (ja) * 1996-10-01 2003-12-15 ウシオ電機株式会社 Xyステージの位置決め装置
JPH10188333A (ja) * 1996-11-08 1998-07-21 Hitachi Maxell Ltd 原盤露光装置
CN1244018C (zh) 1996-11-28 2006-03-01 株式会社尼康 曝光方法和曝光装置
JP4029183B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
JP4029182B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 露光方法
JP4029181B2 (ja) * 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置
US5815246A (en) 1996-12-24 1998-09-29 U.S. Philips Corporation Two-dimensionally balanced positioning device, and lithographic device provided with such a positioning device
DE69735016T2 (de) 1996-12-24 2006-08-17 Asml Netherlands B.V. Lithographisches Gerät mit zwei Objekthaltern
JPH10209039A (ja) 1997-01-27 1998-08-07 Nikon Corp 投影露光方法及び投影露光装置
USRE39027E1 (en) * 1997-02-07 2006-03-21 Emerson Power Transmission Manufacturing, L.P. Shaft locking device for bearing assemblies
JP3612920B2 (ja) 1997-02-14 2005-01-26 ソニー株式会社 光学記録媒体の原盤作製用露光装置
USRE40043E1 (en) 1997-03-10 2008-02-05 Asml Netherlands B.V. Positioning device having two object holders
JPH10255319A (ja) * 1997-03-12 1998-09-25 Hitachi Maxell Ltd 原盤露光装置及び方法
JP3747566B2 (ja) * 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
US5884841A (en) * 1997-04-25 1999-03-23 Ratnik Industries, Inc. Method and apparatus for making snow
JP3817836B2 (ja) 1997-06-10 2006-09-06 株式会社ニコン 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
JPH1116816A (ja) 1997-06-25 1999-01-22 Nikon Corp 投影露光装置、該装置を用いた露光方法、及び該装置を用いた回路デバイスの製造方法
US5900354A (en) 1997-07-03 1999-05-04 Batchelder; John Samuel Method for optical inspection and lithography
AU9095798A (en) 1997-09-19 1999-04-12 Nikon Corporation Stage device, a scanning aligner and a scanning exposure method, and a device manufactured thereby
JP2000106340A (ja) * 1997-09-26 2000-04-11 Nikon Corp 露光装置及び走査露光方法、並びにステージ装置
JP4210871B2 (ja) 1997-10-31 2009-01-21 株式会社ニコン 露光装置
WO1999027568A1 (fr) 1997-11-21 1999-06-03 Nikon Corporation Graveur de motifs a projection et procede de sensibilisation a projection
JPH11176727A (ja) * 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
KR20010033118A (ko) 1997-12-18 2001-04-25 오노 시게오 스테이지 장치 및 노광장치
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
JPH11219896A (ja) * 1998-02-02 1999-08-10 Canon Inc 露光装置およびデバイス製造方法
JPH11340846A (ja) 1998-05-26 1999-12-10 Alps Electric Co Ltd Dect通信装置
JP2000058436A (ja) * 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
EP1126510A4 (en) 1998-09-17 2003-03-26 Nikon Corp METHOD FOR ADJUSTING AN OPTICAL PROJECTION SYSTEM
IL143467A (en) * 1998-12-02 2005-05-17 Newport Corp Specimen holding robotic arm and effector
KR20020006670A (ko) 1999-03-12 2002-01-24 시마무라 테루오 노광장치 및 노광방법, 그리고 디바이스 제조방법
JP4365934B2 (ja) 1999-05-10 2009-11-18 キヤノン株式会社 露光装置、半導体製造装置およびデバイス製造方法
JP4504479B2 (ja) 1999-09-21 2010-07-14 オリンパス株式会社 顕微鏡用液浸対物レンズ
JP2001118773A (ja) * 1999-10-18 2001-04-27 Nikon Corp ステージ装置及び露光装置
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
JP2001160530A (ja) * 1999-12-01 2001-06-12 Nikon Corp ステージ装置及び露光装置
TW546551B (en) 1999-12-21 2003-08-11 Asml Netherlands Bv Balanced positioning system for use in lithographic apparatus
TWI223734B (en) 1999-12-21 2004-11-11 Asml Netherlands Bv Crash prevention in positioning apparatus for use in lithographic projection apparatus
EP1111471B1 (en) * 1999-12-21 2005-11-23 ASML Netherlands B.V. Lithographic projection apparatus with collision preventing device
US6995930B2 (en) * 1999-12-29 2006-02-07 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
US7187503B2 (en) * 1999-12-29 2007-03-06 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
JP2001267239A (ja) 2000-01-14 2001-09-28 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
KR20010085493A (ko) 2000-02-25 2001-09-07 시마무라 기로 노광장치, 그 조정방법, 및 상기 노광장치를 이용한디바이스 제조방법
JP2001241439A (ja) 2000-02-25 2001-09-07 Canon Inc 静圧軸受を備えた移動装置
JP2001313250A (ja) 2000-02-25 2001-11-09 Nikon Corp 露光装置、その調整方法、及び前記露光装置を用いるデバイス製造方法
JP2001244177A (ja) * 2000-02-28 2001-09-07 Nikon Corp ステージ装置とホルダ、および走査型露光装置並びに露光装置
US20020041377A1 (en) 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
JP2002014005A (ja) 2000-04-25 2002-01-18 Nikon Corp 空間像計測方法、結像特性計測方法、空間像計測装置及び露光装置
DE60130754T2 (de) 2000-05-03 2008-01-24 Asml Holding, N.V. Apparat zur Erzeugung eines gespülten optischen Weges in einer photolithographischen Projektionsanlage sowie ein entsprechendes Verfahren
SE517970C2 (sv) 2000-07-20 2002-08-13 Volvo Articulated Haulers Ab Förfarande för att uppskatta en livslängdsreducerande skada på ett i drift belastat objekt,jämte datorprogramprodukt
TW591653B (en) 2000-08-08 2004-06-11 Koninkl Philips Electronics Nv Method of manufacturing an optically scannable information carrier
JP2002134930A (ja) 2000-10-20 2002-05-10 Idec Izumi Corp 電気機器
JP4405071B2 (ja) 2000-10-23 2010-01-27 パナソニック株式会社 送り装置及びそれを具備する光ディスク原盤記録装置
KR100866818B1 (ko) * 2000-12-11 2008-11-04 가부시키가이샤 니콘 투영광학계 및 이 투영광학계를 구비한 노광장치
JP2002198299A (ja) 2000-12-27 2002-07-12 Nikon Corp 露光装置及びデバイス製造方法
JP2002305140A (ja) 2001-04-06 2002-10-18 Nikon Corp 露光装置及び基板処理システム
WO2002091078A1 (en) * 2001-05-07 2002-11-14 Massachusetts Institute Of Technology Methods and apparatus employing an index matching medium
US6788385B2 (en) * 2001-06-21 2004-09-07 Nikon Corporation Stage device, exposure apparatus and method
TW529172B (en) 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
US6680774B1 (en) * 2001-10-09 2004-01-20 Ultratech Stepper, Inc. Method and apparatus for mechanically masking a workpiece
US6665054B2 (en) * 2001-10-22 2003-12-16 Nikon Corporation Two stage method
US7134668B2 (en) * 2001-10-24 2006-11-14 Ebara Corporation Differential pumping seal apparatus
JP2003249443A (ja) 2001-12-21 2003-09-05 Nikon Corp ステージ装置、ステージ位置管理方法、露光方法及び露光装置、並びにデバイス製造方法
US7190527B2 (en) 2002-03-01 2007-03-13 Carl Zeiss Smt Ag Refractive projection objective
US7154676B2 (en) 2002-03-01 2006-12-26 Carl Zeiss Smt A.G. Very-high aperture projection objective
DE10229249A1 (de) 2002-03-01 2003-09-04 Zeiss Carl Semiconductor Mfg Refraktives Projektionsobjektiv mit einer Taille
US7092069B2 (en) * 2002-03-08 2006-08-15 Carl Zeiss Smt Ag Projection exposure method and projection exposure system
DE10210899A1 (de) * 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refraktives Projektionsobjektiv für Immersions-Lithographie
DE10229818A1 (de) 2002-06-28 2004-01-15 Carl Zeiss Smt Ag Verfahren zur Fokusdetektion und Abbildungssystem mit Fokusdetektionssystem
EP1353229A1 (en) * 2002-04-09 2003-10-15 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
JPWO2003085708A1 (ja) * 2002-04-09 2005-08-18 株式会社ニコン 露光方法及び露光装置、並びにデバイス製造方法
KR20040104691A (ko) 2002-05-03 2004-12-10 칼 짜이스 에스엠테 아게 높은 개구를 갖는 투영 대물렌즈
US20040035775A1 (en) * 2002-05-31 2004-02-26 Biolink Partners, Inc. MemCoatTM: functionalized surface coatings, products and uses thereof
US7362508B2 (en) 2002-08-23 2008-04-22 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US6954993B1 (en) * 2002-09-30 2005-10-18 Lam Research Corporation Concentric proximity processing head
US7367345B1 (en) 2002-09-30 2008-05-06 Lam Research Corporation Apparatus and method for providing a confined liquid for immersion lithography
US7383843B2 (en) 2002-09-30 2008-06-10 Lam Research Corporation Method and apparatus for processing wafer surfaces using thin, high velocity fluid layer
US7093375B2 (en) * 2002-09-30 2006-08-22 Lam Research Corporation Apparatus and method for utilizing a meniscus in substrate processing
US6988326B2 (en) * 2002-09-30 2006-01-24 Lam Research Corporation Phobic barrier meniscus separation and containment
US6788477B2 (en) * 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
SG121822A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG2010050110A (en) * 2002-11-12 2014-06-27 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE60335595D1 (de) * 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographischer Apparat mit Immersion und Verfahren zur Herstellung einer Vorrichtung
US7372541B2 (en) 2002-11-12 2008-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP3953460B2 (ja) 2002-11-12 2007-08-08 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ投影装置
EP1420300B1 (en) * 2002-11-12 2015-07-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1420299B1 (en) 2002-11-12 2011-01-05 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
CN101470360B (zh) 2002-11-12 2013-07-24 Asml荷兰有限公司 光刻装置和器件制造方法
SG131766A1 (en) * 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10253679A1 (de) * 2002-11-18 2004-06-03 Infineon Technologies Ag Optische Einrichtung zur Verwendung bei einem Lithographie-Verfahren, insbesondere zur Herstellung eines Halbleiter-Bauelements, sowie optisches Lithographieverfahren
DE10258718A1 (de) * 2002-12-09 2004-06-24 Carl Zeiss Smt Ag Projektionsobjektiv, insbesondere für die Mikrolithographie, sowie Verfahren zur Abstimmung eines Projektionsobjektives
EP1429190B1 (en) * 2002-12-10 2012-05-09 Canon Kabushiki Kaisha Exposure apparatus and method
KR20110086130A (ko) 2002-12-10 2011-07-27 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
JP4232449B2 (ja) 2002-12-10 2009-03-04 株式会社ニコン 露光方法、露光装置、及びデバイス製造方法
DE10257766A1 (de) 2002-12-10 2004-07-15 Carl Zeiss Smt Ag Verfahren zur Einstellung einer gewünschten optischen Eigenschaft eines Projektionsobjektivs sowie mikrolithografische Projektionsbelichtungsanlage
JP4352874B2 (ja) * 2002-12-10 2009-10-28 株式会社ニコン 露光装置及びデバイス製造方法
EP1573730B1 (en) 2002-12-13 2009-02-25 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
EP1732075A3 (en) 2002-12-19 2007-02-21 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
EP1579435B1 (en) 2002-12-19 2007-06-27 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US7010958B2 (en) * 2002-12-19 2006-03-14 Asml Holding N.V. High-resolution gas gauge proximity sensor
US6781670B2 (en) * 2002-12-30 2004-08-24 Intel Corporation Immersion lithography
US20040227932A1 (en) 2003-02-13 2004-11-18 Geunyoung Yoon Large dynamic range shack-hartmann wavefront sensor
US7090964B2 (en) 2003-02-21 2006-08-15 Asml Holding N.V. Lithographic printing with polarized light
US7206059B2 (en) * 2003-02-27 2007-04-17 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US6943941B2 (en) * 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US6851787B2 (en) * 2003-03-06 2005-02-08 Hewlett-Packard Development Company, L.P. Printer servicing system and method
US7029832B2 (en) * 2003-03-11 2006-04-18 Samsung Electronics Co., Ltd. Immersion lithography methods using carbon dioxide
US20050164522A1 (en) 2003-03-24 2005-07-28 Kunz Roderick R. Optical fluids, and systems and methods of making and using the same
DE602004020200D1 (de) 2003-04-07 2009-05-07 Nippon Kogaku Kk Belichtungsgerät und verfahren zur herstellung einer vorrichtung
JP4488004B2 (ja) 2003-04-09 2010-06-23 株式会社ニコン 液浸リソグラフィ流体制御システム
KR20170064003A (ko) 2003-04-10 2017-06-08 가부시키가이샤 니콘 액침 리소그래피 장치용 운반 영역을 포함하는 환경 시스템
JP4656057B2 (ja) 2003-04-10 2011-03-23 株式会社ニコン 液浸リソグラフィ装置用電気浸透素子
CN104597717B (zh) 2003-04-10 2017-09-05 株式会社尼康 包括用于沉浸光刻装置的真空清除的环境系统
KR101129213B1 (ko) 2003-04-10 2012-03-27 가부시키가이샤 니콘 액침 리소그래피 장치용 액체를 수집하는 런-오프 경로
KR101178756B1 (ko) 2003-04-11 2012-08-31 가부시키가이샤 니콘 액침 리소그래피 머신에서 웨이퍼 교환동안 투영 렌즈 아래의 갭에서 액침액체를 유지하는 장치 및 방법
JP4582089B2 (ja) * 2003-04-11 2010-11-17 株式会社ニコン 液浸リソグラフィ用の液体噴射回収システム
KR101508810B1 (ko) 2003-04-11 2015-04-14 가부시키가이샤 니콘 액침 리소그래피에 의한 광학기기의 세정방법
JP2006523958A (ja) 2003-04-17 2006-10-19 株式会社ニコン 液浸リソグラフィで使用するためのオートフォーカス素子の光学的構造
JP4146755B2 (ja) * 2003-05-09 2008-09-10 松下電器産業株式会社 パターン形成方法
JP4025683B2 (ja) * 2003-05-09 2007-12-26 松下電器産業株式会社 パターン形成方法及び露光装置
TWI295414B (en) * 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI503865B (zh) 2003-05-23 2015-10-11 尼康股份有限公司 A method of manufacturing an exposure apparatus and an element
EP1480065A3 (en) * 2003-05-23 2006-05-10 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and device manufacturing method
JP2004349645A (ja) 2003-05-26 2004-12-09 Sony Corp 液浸差動排液静圧浮上パッド、原盤露光装置および液侵差動排液による露光方法
TWI442694B (zh) * 2003-05-30 2014-06-21 Asml Netherlands Bv 微影裝置及元件製造方法
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2261742A3 (en) * 2003-06-11 2011-05-25 ASML Netherlands BV Lithographic apparatus and device manufacturing method.
JP4084710B2 (ja) * 2003-06-12 2008-04-30 松下電器産業株式会社 パターン形成方法
JP4054285B2 (ja) * 2003-06-12 2008-02-27 松下電器産業株式会社 パターン形成方法
EP2216685B1 (en) 2003-06-19 2012-06-27 Nikon Corporation Exposure apparatus and device manufacturing method
US6867844B2 (en) * 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP4029064B2 (ja) * 2003-06-23 2008-01-09 松下電器産業株式会社 パターン形成方法
JP4084712B2 (ja) * 2003-06-23 2008-04-30 松下電器産業株式会社 パターン形成方法
JP2005019616A (ja) 2003-06-25 2005-01-20 Canon Inc 液浸式露光装置
JP4343597B2 (ja) 2003-06-25 2009-10-14 キヤノン株式会社 露光装置及びデバイス製造方法
DE60308161T2 (de) 2003-06-27 2007-08-09 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung eines Artikels
JP3862678B2 (ja) 2003-06-27 2006-12-27 キヤノン株式会社 露光装置及びデバイス製造方法
EP1498778A1 (en) 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6809794B1 (en) * 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
EP1494074A1 (en) 2003-06-30 2005-01-05 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7236232B2 (en) 2003-07-01 2007-06-26 Nikon Corporation Using isotopically specified fluids as optical elements
JP2005022696A (ja) * 2003-07-02 2005-01-27 Kashiwara Seitai:Kk 空気通路の構造及びこれを用いた空気封入緩衝材
EP2853943B1 (en) 2003-07-08 2016-11-16 Nikon Corporation Wafer table for immersion lithography
SG109000A1 (en) 2003-07-16 2005-02-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7384149B2 (en) 2003-07-21 2008-06-10 Asml Netherlands B.V. Lithographic projection apparatus, gas purging method and device manufacturing method and purge gas supply system
EP1500982A1 (en) 2003-07-24 2005-01-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7006209B2 (en) 2003-07-25 2006-02-28 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
EP2264535B1 (en) 2003-07-28 2013-02-13 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US7175968B2 (en) * 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US7326522B2 (en) * 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
JP4492239B2 (ja) 2003-07-28 2010-06-30 株式会社ニコン 露光装置及びデバイス製造方法、並びに露光装置の制御方法
EP1503244A1 (en) * 2003-07-28 2005-02-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005057294A (ja) 2003-08-07 2005-03-03 Asml Netherlands Bv インタフェースユニット、該インタフェースユニットを含むリソグラフィ投影装置、及びデバイス製造方法
US7579135B2 (en) * 2003-08-11 2009-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography apparatus for manufacture of integrated circuits
US7061578B2 (en) * 2003-08-11 2006-06-13 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US7700267B2 (en) * 2003-08-11 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion fluid for immersion lithography, and method of performing immersion lithography
US7085075B2 (en) 2003-08-12 2006-08-01 Carl Zeiss Smt Ag Projection objectives including a plurality of mirrors with lenses ahead of mirror M3
US6844206B1 (en) 2003-08-21 2005-01-18 Advanced Micro Devices, Llp Refractive index system monitor and control for immersion lithography
US6954256B2 (en) * 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
US7070915B2 (en) 2003-08-29 2006-07-04 Tokyo Electron Limited Method and system for drying a substrate
TWI245163B (en) 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7014966B2 (en) 2003-09-02 2006-03-21 Advanced Micro Devices, Inc. Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
EP3223074A1 (en) 2003-09-03 2017-09-27 Nikon Corporation Apparatus and method for immersion lithography for recovering fluid
JP4378136B2 (ja) 2003-09-04 2009-12-02 キヤノン株式会社 露光装置及びデバイス製造方法
JP3870182B2 (ja) 2003-09-09 2007-01-17 キヤノン株式会社 露光装置及びデバイス製造方法
US6961186B2 (en) * 2003-09-26 2005-11-01 Takumi Technology Corp. Contact printing using a magnified mask image
US7158211B2 (en) 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1519230A1 (en) 2003-09-29 2005-03-30 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1519231B1 (en) 2003-09-29 2005-12-21 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7369217B2 (en) 2003-10-03 2008-05-06 Micronic Laser Systems Ab Method and device for immersion lithography
JP2005136374A (ja) 2003-10-06 2005-05-26 Matsushita Electric Ind Co Ltd 半導体製造装置及びそれを用いたパターン形成方法
EP1524558A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1524557A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7678527B2 (en) * 2003-10-16 2010-03-16 Intel Corporation Methods and compositions for providing photoresist with improved properties for contacting liquids
TWI295408B (en) 2003-10-22 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method, and measurement system
US7411653B2 (en) 2003-10-28 2008-08-12 Asml Netherlands B.V. Lithographic apparatus
US7352433B2 (en) 2003-10-28 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005159322A (ja) 2003-10-31 2005-06-16 Nikon Corp 定盤、ステージ装置及び露光装置並びに露光方法
JP2007525824A (ja) 2003-11-05 2007-09-06 ディーエスエム アイピー アセッツ ビー.ブイ. マイクロチップを製造するための方法および装置
US7924397B2 (en) * 2003-11-06 2011-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Anti-corrosion layer on objective lens for liquid immersion lithography applications
EP1531362A3 (en) 2003-11-13 2007-07-25 Matsushita Electric Industrial Co., Ltd. Semiconductor manufacturing apparatus and pattern formation method
JP2005150290A (ja) 2003-11-13 2005-06-09 Canon Inc 露光装置およびデバイスの製造方法
US7528929B2 (en) 2003-11-14 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005054953A2 (en) 2003-11-24 2005-06-16 Carl-Zeiss Smt Ag Holding device for an optical element in an objective
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE10355301B3 (de) 2003-11-27 2005-06-23 Infineon Technologies Ag Verfahren zur Abbildung einer Struktur auf einen Halbleiter-Wafer mittels Immersionslithographie
US7125652B2 (en) * 2003-12-03 2006-10-24 Advanced Micro Devices, Inc. Immersion lithographic process using a conforming immersion medium
JP2005175016A (ja) 2003-12-08 2005-06-30 Canon Inc 基板保持装置およびそれを用いた露光装置ならびにデバイス製造方法
JP2005175034A (ja) 2003-12-09 2005-06-30 Canon Inc 露光装置
WO2005059617A2 (en) 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
KR100965330B1 (ko) 2003-12-15 2010-06-22 칼 짜이스 에스엠티 아게 적어도 한 개의 액체 렌즈를 가진 마이크로리소그래피 투사대물렌즈로서의 대물렌즈
JP4308638B2 (ja) 2003-12-17 2009-08-05 パナソニック株式会社 パターン形成方法
JP4323946B2 (ja) 2003-12-19 2009-09-02 キヤノン株式会社 露光装置
US7460206B2 (en) * 2003-12-19 2008-12-02 Carl Zeiss Smt Ag Projection objective for immersion lithography
JP5102492B2 (ja) 2003-12-19 2012-12-19 カール・ツァイス・エスエムティー・ゲーエムベーハー 結晶素子を有するマイクロリソグラフィー投影用対物レンズ
US20050185269A1 (en) * 2003-12-19 2005-08-25 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
US7394521B2 (en) * 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) * 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7119884B2 (en) 2003-12-24 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050147920A1 (en) * 2003-12-30 2005-07-07 Chia-Hui Lin Method and system for immersion lithography
US7088422B2 (en) * 2003-12-31 2006-08-08 International Business Machines Corporation Moving lens for immersion optical lithography
JP4371822B2 (ja) * 2004-01-06 2009-11-25 キヤノン株式会社 露光装置
JP4429023B2 (ja) * 2004-01-07 2010-03-10 キヤノン株式会社 露光装置及びデバイス製造方法
US20050153424A1 (en) * 2004-01-08 2005-07-14 Derek Coon Fluid barrier with transparent areas for immersion lithography
JP4586367B2 (ja) 2004-01-14 2010-11-24 株式会社ニコン ステージ装置及び露光装置
CN102169226B (zh) 2004-01-14 2014-04-23 卡尔蔡司Smt有限责任公司 反射折射投影物镜
KR101099847B1 (ko) 2004-01-16 2011-12-27 칼 짜이스 에스엠티 게엠베하 편광변조 광학소자
WO2005069078A1 (en) 2004-01-19 2005-07-28 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus with immersion projection lens
DE602005019689D1 (de) 2004-01-20 2010-04-15 Zeiss Carl Smt Ag Belichtungsvorrichtung und messeinrichtung für eine projektionslinse
US7026259B2 (en) * 2004-01-21 2006-04-11 International Business Machines Corporation Liquid-filled balloons for immersion lithography
US7391501B2 (en) * 2004-01-22 2008-06-24 Intel Corporation Immersion liquids with siloxane polymer for immersion lithography
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US8852850B2 (en) * 2004-02-03 2014-10-07 Rochester Institute Of Technology Method of photolithography using a fluid and a system thereof
JP4506674B2 (ja) 2004-02-03 2010-07-21 株式会社ニコン 露光装置及びデバイス製造方法
EP1716454A1 (en) 2004-02-09 2006-11-02 Carl Zeiss SMT AG Projection objective for a microlithographic projection exposure apparatus
US7050146B2 (en) * 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1714192A1 (en) 2004-02-13 2006-10-25 Carl Zeiss SMT AG Projection objective for a microlithographic projection exposure apparatus
JP2007523383A (ja) 2004-02-18 2007-08-16 コーニング インコーポレイテッド 深紫外光による大開口数結像のための反射屈折結像光学系
JP2005236087A (ja) 2004-02-20 2005-09-02 Nikon Corp 露光装置
JP2005259789A (ja) 2004-03-09 2005-09-22 Nikon Corp 検知システム及び露光装置、デバイス製造方法
US20050205108A1 (en) * 2004-03-16 2005-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for immersion lithography lens cleaning
JP2005268700A (ja) 2004-03-22 2005-09-29 Nikon Corp ステージ装置及び露光装置
US7027125B2 (en) * 2004-03-25 2006-04-11 International Business Machines Corporation System and apparatus for photolithography
US7084960B2 (en) * 2004-03-29 2006-08-01 Intel Corporation Lithography using controlled polarization
US7227619B2 (en) * 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7034917B2 (en) * 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7295283B2 (en) * 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005098504A1 (en) 2004-04-08 2005-10-20 Carl Zeiss Smt Ag Imaging system with mirror group
US7898642B2 (en) * 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7271878B2 (en) * 2004-04-22 2007-09-18 International Business Machines Corporation Wafer cell for immersion lithography
US7244665B2 (en) * 2004-04-29 2007-07-17 Micron Technology, Inc. Wafer edge ring structures and methods of formation
US20050241694A1 (en) 2004-04-29 2005-11-03 Red Flame Hot Tap Services Ltd. Hot tapping method, system and apparatus
US7379159B2 (en) * 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1747499A2 (en) 2004-05-04 2007-01-31 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US20060244938A1 (en) 2004-05-04 2006-11-02 Karl-Heinz Schuster Microlitographic projection exposure apparatus and immersion liquid therefore
US7091502B2 (en) * 2004-05-12 2006-08-15 Taiwan Semiconductor Manufacturing, Co., Ltd. Apparatus and method for immersion lithography
KR20170129271A (ko) 2004-05-17 2017-11-24 칼 짜이스 에스엠티 게엠베하 중간이미지를 갖는 카타디옵트릭 투사 대물렌즈
US7616383B2 (en) * 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7486381B2 (en) * 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN100594430C (zh) 2004-06-04 2010-03-17 卡尔蔡司Smt股份公司 用于测量光学成像系统的图像质量的系统
US8605257B2 (en) 2004-06-04 2013-12-10 Carl Zeiss Smt Gmbh Projection system with compensation of intensity variations and compensation element therefor
JP4305915B2 (ja) 2004-06-17 2009-07-29 シャープ株式会社 基地局選択に用いる基準を求める方法
US7057702B2 (en) 2004-06-23 2006-06-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4305917B2 (ja) 2004-07-14 2009-07-29 シャープ株式会社 映像信号処理装置及びテレビジョン装置
US7256871B2 (en) 2004-07-27 2007-08-14 Asml Netherlands B.V. Lithographic apparatus and method for calibrating the same
JP4488006B2 (ja) 2004-10-15 2010-06-23 株式会社ニコン 露光装置及びデバイス製造方法
US7119876B2 (en) 2004-10-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7583357B2 (en) 2004-11-12 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7403261B2 (en) 2004-12-15 2008-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7528931B2 (en) 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG124351A1 (en) 2005-01-14 2006-08-30 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7161659B2 (en) 2005-04-08 2007-01-09 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
JP5019170B2 (ja) 2006-05-23 2012-09-05 株式会社ニコン メンテナンス方法、露光方法及び装置、並びにデバイス製造方法
US8436864B2 (en) * 2006-08-01 2013-05-07 Nvidia Corporation Method and user interface for enhanced graphical operation organization
US8446445B2 (en) * 2006-09-27 2013-05-21 Casio Computer Co., Ltd. Exposure device, image forming apparatus and method for operating exposure device
TWM314880U (en) * 2006-10-20 2007-07-01 Imagetech Co Ltd Multimedia video generation device
JP2007274881A (ja) 2006-12-01 2007-10-18 Nikon Corp 移動体装置、微動体及び露光装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法

Also Published As

Publication number Publication date
TW200514132A (en) 2005-04-16
US7486385B2 (en) 2009-02-03
EP1635382A1 (en) 2006-03-15
KR101289979B1 (ko) 2013-07-26
CN100459036C (zh) 2009-02-04
JP2011109138A (ja) 2011-06-02
KR20140029530A (ko) 2014-03-10
JP5494708B2 (ja) 2014-05-21
US8436979B2 (en) 2013-05-07
JP5287901B2 (ja) 2013-09-11
JP4505675B2 (ja) 2010-07-21
US20160202617A1 (en) 2016-07-14
TW201342431A (zh) 2013-10-16
JP2016106251A (ja) 2016-06-16
US9810995B2 (en) 2017-11-07
US8319941B2 (en) 2012-11-27
JP2013168666A (ja) 2013-08-29
KR20100124346A (ko) 2010-11-26
TW201630048A (zh) 2016-08-16
US9025129B2 (en) 2015-05-05
KR20180016621A (ko) 2018-02-14
US7812925B2 (en) 2010-10-12
US20070064214A1 (en) 2007-03-22
CN101436003B (zh) 2011-08-17
US20130229637A1 (en) 2013-09-05
KR101148810B1 (ko) 2012-05-24
KR20110122743A (ko) 2011-11-10
US20060132739A1 (en) 2006-06-22
KR101931923B1 (ko) 2018-12-21
US8436978B2 (en) 2013-05-07
TW201342428A (zh) 2013-10-16
JP5287900B2 (ja) 2013-09-11
US20140293252A1 (en) 2014-10-02
KR20130028981A (ko) 2013-03-20
EP2278401A3 (en) 2011-04-27
JP6103016B2 (ja) 2017-03-29
JP2017090932A (ja) 2017-05-25
EP2275869A3 (en) 2011-04-27
JP2010118687A (ja) 2010-05-27
KR101148811B1 (ko) 2012-05-24
US20110025996A1 (en) 2011-02-03
US20150198897A1 (en) 2015-07-16
TW201123267A (en) 2011-07-01
TWI564933B (zh) 2017-01-01
TWI515769B (zh) 2016-01-01
US9019473B2 (en) 2015-04-28
KR20140097389A (ko) 2014-08-06
WO2004114380A1 (ja) 2004-12-29
US9001307B2 (en) 2015-04-07
TW201508817A (zh) 2015-03-01
KR20180132996A (ko) 2018-12-12
KR20100024488A (ko) 2010-03-05
JP4894936B2 (ja) 2012-03-14
KR101265454B1 (ko) 2013-05-16
US8018575B2 (en) 2011-09-13
KR101146962B1 (ko) 2012-05-22
TW200947517A (en) 2009-11-16
KR20120003015A (ko) 2012-01-09
KR101475634B1 (ko) 2014-12-22
US20180299788A1 (en) 2018-10-18
CN101436003A (zh) 2009-05-20
KR20130125842A (ko) 2013-11-19
JP5287845B2 (ja) 2013-09-11
JP2019020745A (ja) 2019-02-07
TWI463532B (zh) 2014-12-01
KR101187617B1 (ko) 2012-10-08
KR20120030166A (ko) 2012-03-27
TW201342430A (zh) 2013-10-16
KR20060018869A (ko) 2006-03-02
JP5626443B2 (ja) 2014-11-19
JPWO2004114380A1 (ja) 2006-08-03
DE602004024782D1 (de) 2010-02-04
JP6512252B2 (ja) 2019-05-15
TWI540612B (zh) 2016-07-01
JP2011119746A (ja) 2011-06-16
TW201019373A (en) 2010-05-16
US20130250257A1 (en) 2013-09-26
JP5488635B2 (ja) 2014-05-14
US20140211176A1 (en) 2014-07-31
KR20100005133A (ko) 2010-01-13
JP5930102B2 (ja) 2016-06-08
TWI433212B (zh) 2014-04-01
EP2216685A2 (en) 2010-08-11
US20120200837A1 (en) 2012-08-09
US20170123326A1 (en) 2017-05-04
JP2017033018A (ja) 2017-02-09
KR101674329B1 (ko) 2016-11-08
JP2015172784A (ja) 2015-10-01
JP6237857B2 (ja) 2017-11-29
ATE453209T1 (de) 2010-01-15
US7321419B2 (en) 2008-01-22
US8705001B2 (en) 2014-04-22
KR101265450B1 (ko) 2013-05-16
KR20150023815A (ko) 2015-03-05
JP5761418B2 (ja) 2015-08-12
JP2015079996A (ja) 2015-04-23
JP2014078752A (ja) 2014-05-01
TW201117261A (en) 2011-05-16
KR101686762B1 (ko) 2016-12-28
TW201508818A (zh) 2015-03-01
EP2216685B1 (en) 2012-06-27
EP1635382B1 (en) 2009-12-23
KR101483916B1 (ko) 2015-01-16
TWI590306B (zh) 2017-07-01
TW201021093A (en) 2010-06-01
KR20160137693A (ko) 2016-11-30
EP2275869A2 (en) 2011-01-19
KR20100124345A (ko) 2010-11-26
KR101476087B1 (ko) 2014-12-23
US20120008111A1 (en) 2012-01-12
JP4437474B2 (ja) 2010-03-24
JP6614310B2 (ja) 2019-12-04
EP1635382A4 (en) 2008-01-30
TWI433211B (zh) 2014-04-01
KR101134957B1 (ko) 2012-04-10
TW201342429A (zh) 2013-10-16
KR101419663B1 (ko) 2014-07-15
US20140211177A1 (en) 2014-07-31
US10007188B2 (en) 2018-06-26
US10191388B2 (en) 2019-01-29
EP2216685A3 (en) 2010-11-10
EP2275869B1 (en) 2014-01-15
JP2017227915A (ja) 2017-12-28
TWI515770B (zh) 2016-01-01
JP6264479B2 (ja) 2018-01-24
TW201530615A (zh) 2015-08-01
US8027027B2 (en) 2011-09-27
US20180039185A1 (en) 2018-02-08
US20060114445A1 (en) 2006-06-01
JP2011109137A (ja) 2011-06-02
HK1152392A1 (en) 2012-02-24
US20080002166A1 (en) 2008-01-03
HK1152391A1 (en) 2012-02-24
US20090190112A1 (en) 2009-07-30
TWI344171B (ko) 2011-06-21
US20070211234A1 (en) 2007-09-13
US20130215403A1 (en) 2013-08-22
TWI543235B (zh) 2016-07-21
KR101119812B1 (ko) 2012-03-06
KR101529844B1 (ko) 2015-06-17
EP2278401A2 (en) 2011-01-26
KR20130028805A (ko) 2013-03-19
US20060132740A1 (en) 2006-06-22
JP2014158038A (ja) 2014-08-28
EP2278401B1 (en) 2014-01-15
JP5556925B2 (ja) 2014-07-23
US9551943B2 (en) 2017-01-24
US8692976B2 (en) 2014-04-08
US20110025997A1 (en) 2011-02-03
HK1145043A1 (en) 2011-03-25
US9274437B2 (en) 2016-03-01
TWI457981B (zh) 2014-10-21
TWI527086B (zh) 2016-03-21
JP5928618B2 (ja) 2016-06-01
JP2009117877A (ja) 2009-05-28
TWI482200B (zh) 2015-04-21
JP2016042187A (ja) 2016-03-31
KR20150130563A (ko) 2015-11-23
US8830445B2 (en) 2014-09-09
CN1802726A (zh) 2006-07-12
US8724085B2 (en) 2014-05-13
JP2012138617A (ja) 2012-07-19
US8717537B2 (en) 2014-05-06
JP2012138618A (ja) 2012-07-19
JP6123920B2 (ja) 2017-05-10
TWI536430B (zh) 2016-06-01
TW201721717A (zh) 2017-06-16
US8767177B2 (en) 2014-07-01
KR20120093403A (ko) 2012-08-22

Similar Documents

Publication Publication Date Title
KR101830565B1 (ko) 노광 장치 및 디바이스 제조방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant