USRE40043E1 - Positioning device having two object holders - Google Patents
Positioning device having two object holders Download PDFInfo
- Publication number
- USRE40043E1 USRE40043E1 US10/347,491 US34749198A USRE40043E US RE40043 E1 USRE40043 E1 US RE40043E1 US 34749198 A US34749198 A US 34749198A US RE40043 E USRE40043 E US RE40043E
- Authority
- US
- United States
- Prior art keywords
- parallel
- displacement
- holder
- object holder
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70733—Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q1/00—Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
- B23Q1/25—Movable or adjustable work or tool supports
- B23Q1/44—Movable or adjustable work or tool supports using particular mechanisms
- B23Q1/56—Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
- B23Q1/60—Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
- B23Q1/62—Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
- B23Q1/621—Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q1/00—Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
- B23Q1/25—Movable or adjustable work or tool supports
- B23Q1/44—Movable or adjustable work or tool supports using particular mechanisms
- B23Q1/56—Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
- B23Q1/60—Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
- B23Q1/62—Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
- B23Q1/621—Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair
- B23Q1/623—Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair followed perpendicularly by a single rotating pair
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/0032—Arrangements for preventing or isolating vibrations in parts of the machine
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70716—Stages
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70733—Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
- G03F7/70741—Handling masks outside exposure position, e.g. reticle libraries
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70733—Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
- G03F7/7075—Handling workpieces outside exposure position, e.g. SMIF box
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/709—Vibration, e.g. vibration detection, compensation, suppression or isolation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
- H01L21/682—Mask-wafer alignment
Definitions
- the invention relates to a positioning device having a guiding surface extending parallel to an X-direction and parallel to a Y-direction, a first object holder and a second object holder which are each guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position, and a displacement system for displacing the first object holder and the second object holder over the guiding surface.
- the invention further relates to a lithographic device provided with a radiation source, a mask holder, a focusing unit having a main axis, a characterization unit, and a positioning device, said positioning device comprising a guiding surface extending parallel to an X-direction, which is perpendicular to the main axis, and parallel to a Y-direction, which is perpendicular to the X-direction and the main axis, a first substrate holder and a second substrate holder which are each guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position which is present near the focusing unit, and a displacement system for displacing the first substrate holder and the second substrate holder over the guiding surface.
- the first and the second object holder are displaceable from the first position to the second position and vice versa by the displacement system of the positioning device which is not described in detail in EP-A-0 687 957.
- the second object holder is in the first position and a next semiconductor substrate is loaded thereon at first.
- the second object holder is displaced from the first position to a characterization position in which the semiconductor substrate present on the second object holder is characterized by the characterization unit.
- the first object holder and the second object holder are displaced lockstep-wise. In this manner the exposure of the semiconductor substrate present on the first object holder and the characterization of the semiconductor substrate present on the second object holder are carried out simultaneously, so that a high throughput of the step-and-repeat apparatus is obtained.
- a disadvantage of the known positioning device and the known lithographic device is that the characterization of the semiconductor substrate present on the second object holder and the exposure of the semiconductor substrate present on the first object holder cannot be carried out independently from each other as a result of said lockstep-wise displacements of the first and the second object holder. As a result, the exposure of the semiconductor substrate present on the first object holder cannot be started until the second object holder has reached the characterization position.
- the positioning device is for this purpose characterized in that the displacement system comprises a first displacement unit and a second displacement unit to which the first object holder and the second object holder can be coupled alternately, the first displacement unit being suitable for displacing the object holders from the first position into an intermediate position between the first position and the second position, and the second displacement unit being suitable for displacing the object holders from the intermediate position into the second position.
- a first process involving a first series of positioning steps of the first object holder can be carried out in the first position by means of the first displacement unit, and a second process involving a second series of positioning steps of the second object holder can be carried out in the second position by means of the second displacement unit simultaneously with and independently from the first process.
- the first object holder is displaced by the first displacement unit from the first position into the intermediate position and the second object holder is displaced by the second displacement unit from the second position into the intermediate position.
- the first object holder In the intermediate position, the first object holder is uncoupled from the first displacement unit and is coupled to the second displacement unit, while the second object holder is uncoupled from the second displacement unit and is coupled to the first displacement unit. Subsequently, the first object holder is displaced by the second displacement unit from the intermediate position to the second position and the second object holder is displaced by the first displacement unit from the intermediate position to the first position. Then the first process can be carried out with the second object holder in the first position and, simultaneously and independently, the second process can be carried out with the first object holder in the second position. Furthermore, as a result of the use of said two displacement units, a distance over which each individual displacement unit has to displace the object holders is reduced, so that the required dimensions of the displacement units are reduced. It is in addition prevented that the displaceable parts of the first displacement unit and the displaceable parts of the second displacement unit must be constructed so as to be capable of passing one another, which allows a comparatively simple construction of the displacement units.
- the lithographic device according to the invention is for this purpose characterized in that the positioning device of the lithographic device is a positioning device according to the invention, wherein each of the object holders of the positioning device is a substrate holder of the lithographic device, and wherein the first position of the object holders is a characterization position which is present near the characterization unit.
- a characterization process involving a first series of positioning steps of the first substrate holder can be carried out in the first position by means of the first displacement unit of the positioning device, and an exposure process involving a second series of positioning steps of the second substrate holder can be carried out in the second position by means of the second displacement unit of the positioning device simultaneously with and independently from the first process.
- the first process can also be carried out with the second substrate holder in the first position and, simultaneously and independently, the second process can be carried out with the first object holder in the second position.
- a particular embodiment of a positioning device is characterized in that the displacement units each comprise an X-motor having a first part extending parallel to the X-direction and a second part which is displaceable along the first part of the X-motor and can be coupled alternately to the first object holder and to the second object holder, and two Y-motors each having a first part extending parallel to the Y-direction and a second part which is displaceable along the first part of the relevant Y-motor, the first part of the X-motor of each displacement unit being connected to the second parts of the two Y-motors of the relevant displacement unit.
- the first part of the X-motor of each displacement unit is connected to the second parts of the two Y-motors of the relevant displacement unit, a comparatively stiff and stable support of the X-motor by the two Y-motors is obtained, which benefits the positioning accuracy of the displacement unit. Since the first displacement unit has a limited displacing range from the first position to the intermediate position and the second displacement unit has a limited displacing range from the intermediate position to the second position, the four Y-motors of the two displacement units can be arranged in two lines, which leads to a compact and simple construction of the positioning device.
- a further embodiment of a positioning device is characterized in that the first parts of the Y-motors of the two displacement units are connected to a common balancing unit which is guided relative to a base of the positioning device so as to be displaceable parallel to the X-direction and parallel to the Y-direction and to be rotatable about an axis of rotation extending perpendicularly to the X-direction and the Y-direction.
- reaction forces of the X-motors and the Y-motors of the displacement units are transmitted via the first parts of the Y-motors to the balancing unit and are converted into displacements of the balancing unit parallel to the X-direction and parallel to the Y-direction and rotations of the balancing unit about said axis of rotation relative to the base.
- a transmission of the reaction forces to the base, the guiding surface, and the object holders is prevented as much as possible, so that the positioning accuracy of the positioning device is further improved.
- a yet further embodiment of a positioning device is characterized in that the object holders each comprise a basic part which is guided over the guiding surface and can be coupled to the displacement units, and an object table which is displaceable relative to the basic part by means of an actuator unit of the relevant object holder.
- the object tables of the object holders are displaceable by the displacement units over comparatively large distances and with comparatively low accuracies, while the object tables are displaceable by said actuator units over comparatively small distances and with comparatively high accuracies.
- the displacement units can be of a relatively simple, conventional type, while the dimensions of the accurate actuator units can be limited as much as possible.
- a particular embodiment of a positioning device is characterized in that the object table of each of the object holders is displaceable relative to the basic part parallel to the X-direction, parallel to the Y-direction, and parallel to a Z-direction extending perpendicularly to the X-direction and the Y-direction, and is pivotable relative to the basic part about a first pivot axis extending parallel to the X-direction, a second pivot axis extending parallel to the Y-direction, and a third pivot axis extending parallel to the Z-direction.
- a high degree of adjustability of the object tables relative to the basic parts is obtained.
- FIG. 1 diagrammatically shows a lithographic device according to the invention
- FIG. 2 is a diagrammatic plan view of a first embodiment of a positioning device according to the invention suitable for use in the lithographic device of FIG. 1 ,
- FIG. 3 shows the positioning device of FIG. 2 , two substrate holders of the positioning device being in an intermediate position
- FIG. 4 is a diagrammatic plan view of a second embodiment of a positioning device according to the invention suitable for use in the lithographic device of FIG. 1 .
- the lithographic device according to the invention shown diagrammatically in FIG. 1 is used for the exposure of semiconductor substrates in the manufacturing process of integrated semiconductor circuits and comprises a frame 1 which supports in that order, as seen parallel to a vertical Z-direction, a positioning device 3 according to the invention, a focusing unit 5 , a mask holder 7 , and a radiation source 9 .
- the lithographic device is an optical lithographic device whose radiation source 9 comprises a light source 11 .
- the mask holder 7 comprises a support surface 13 which extends perpendicularly to the Z-direction and on which a mask 15 can be placed comprising a pattern or a sub-pattern of an integrated semiconductor circuit.
- the focusing unit 5 is an imaging or projection system and comprises an optical lens system 17 having a main optical axis 19 extending parallel to the Z-direction and an optical reduction factor of, for example, 4 or 5 .
- the positioning device 3 comprises a first substrate holder 21 and a second substrate holder 23 which is identical to the first substrate holder 21 .
- the substrate holders 21 , 23 each comprise a support surface 25 , 27 which extends perpendicularly to the Z-direction. In the situation shown in FIG. 1 , a first semiconductor substrate 29 is present on the support surface 25 of the first substrate holder 21 and a second semiconductor substrate 31 is present on the support surface 27 of the second substrate holder 23 .
- the positioning device 3 further comprises a guiding surface 33 extending parallel to a horizontal X-direction which is perpendicular to the Z-direction and parallel to a horizontal Y-direction which is perpendicular to the X-direction and the Z-direction.
- the substrate holders 21 , 23 are each guided over the guiding surface 33 and are each displaceable over the guiding surface 33 parallel to the X-direction and parallel to the Y-direction by means of a displacement system 35 of the positioning device 3 .
- the first substrate holder 21 with the first semiconductor substrate 29 is in a second position of the positioning device 3 which corresponds to an exposure position of the lithographic device which is present near the focusing unit 5 .
- a light beam originating from the light source 11 is guided through the mask 15 and is focused on the first semiconductor substrate 29 by means of the focusing unit 5 , so that the pattern present on the mask 15 is imaged on a reduced scale on the first semiconductor substrate 29 .
- the first semiconductor substrate 29 comprises a large number of individual fields on which identical semiconductor circuits are to be imaged. The fields of the first semiconductor substrate 29 are consecutively exposed through the mask 15 for this purpose.
- step-and-repeat exposure process according to which the first semiconductor substrate 29 and the mask 15 are in fixed positions relative to the focusing unit 5 during the exposure of an individual field of the first semiconductor substrate 29 , and according to which a next field of the first semiconductor substrate 29 is brought into position relative to the focusing unit 5 after the exposure of a previously exposed field in that the first substrate holder 21 is displaced parallel to the X-direction and/or parallel to the Y-direction by the displacement system 35 of the positioning device 3 .
- This process is repeated a number of times, with a different mask each time, so that complicated integrated semiconductor circuits with a layered structure can be manufactured.
- the second substrate holder 23 with the second semiconductor substrate 31 is in a first position of the positioning device 3 which corresponds to a characterization position of the lithographic device.
- a previous semiconductor substrate which was fully exposed in the exposure position via the mask 15 , was unloaded from the second substrate holder 23 and was transported to a stack of semiconductor substrates under manufacture not shown in the figure.
- the second semiconductor substrate 31 shown in FIG. 1 is a next semiconductor substrate which has just been taken from said stack of semiconductor substrates and loaded on the second substrate holder 23 and which has to be exposed via the mask 15 after the first semiconductor substrate 29 .
- the second semiconductor substrate 31 is characterized by a characterization unit 37 of the lithographic device which is also supported by the frame 1 .
- a characterization unit 37 of the lithographic device which is also supported by the frame 1 .
- the second substrate holder 23 with the second semiconductor substrate 31 is displaced by the displacement system 35 from the characterization position into the exposure position and the first substrate holder 21 with the first semiconductor substrate 29 is displaced by the displacement system 35 from the exposure position into the characterization position.
- the characterization unit 37 comprises, for example, a measuring system which is used for measuring the positions of the individual fields of the second semiconductor substrate 31 relative to the second substrate holder 23 .
- the individual fields of the second semiconductor substrate 31 can subsequently be positioned relative to the focusing unit 5 in the exposure position by measuring the position of the second substrate holder 23 relative to the focusing unit 5 . In this manner, the time required to position the individual fields of the successive semiconductor substrates relative to the focusing unit 5 in the exposure position is limited considerably, so that the throughput of the lithographic device is considerably improved. Since the position of each individual field of the second semiconductor substrate 31 has to be measured in the characterization position, a step wise displacement of the second substrate holder 23 with the second semiconductor substrate 31 is carried out by the displacement system 35 of the positioning device 3 in the characterization position.
- the exposure process of a semiconductor substrate in the exposure position can be carried out simultaneously with the unload process of a previous semiconductor substrate and the load and characterization processes of a next semiconductor substrate in the characterization position, so that the throughput of the lithographic device is further improved.
- the displacement system 35 of the positioning device 3 comprises a first displacement unit 39 and a second displacement unit 41 .
- the substrate holders 21 , 23 each comprise an aerostatically supported foot 43 , 45 provided with a static gas bearing by means of which the relevant substrate holder 21 , 23 is guided over the guiding surface 33 .
- the guiding surface 33 constitutes an upper surface of a granite block 47 which is fastened to the frame 1 of the lithographic device.
- the substrate holders 21 , 23 each comprise a first coupling member 49 , 51 and a second coupling member 53 , 55 by means of which the substrate holders 21 , 23 can be coupled alternately to a coupling member 57 of the first displacement unit 39 and to a coupling member 59 of the second displacement unit 41 , respectively.
- the first substrate holder 21 is coupled to the coupling member 59 of the second displacement unit 41 and the second substrate holder 23 is coupled to the coupling member 57 of the first displacement unit 39 .
- the first substrate holder 21 can be coupled to the coupling member 57 of the first displacement unit 39 and the second substrate holder 23 can be coupled to the coupling member 59 of the second displacement unit 41 .
- the coupling members 49 , 51 , 53 , 55 , 57 , 59 may be of a type which is known and usual per se, such as, for example, a mechanical or an electromechanical coupling member.
- the first displacement unit 39 and the second displacement unit 41 each comprise a linear X-motor 61 , 63 and two linear Y-motors 65 , 67 , 69 , 71 of a conventional type which is known and usual per se.
- the X-motors 61 , 63 each comprise a first part 73 , 75 extending parallel to the X-direction and a second part 77 , 79 which is displaceable along the first part 73 , 75 of the relevant X-motor 61 , 63 and comprises the coupling member 57 , 59 of the relevant X-motor 61 , 63 .
- the Y-motors 65 , 67 , 69 , 71 each comprise a first part 81 , 83 , 85 , 87 extending parallel to the Y-direction and a second part 89 , 91 , 93 , 95 which is displaceable along the first part 81 , 83 , 85 , 87 of the relevant Y-motor 65 , 67 , 69 , 71 .
- the X-motor 61 and the two Y-motors 65 , 67 of the first displacement unit 39 are mutually arranged in a H-configuration, a first end 97 and a second end 99 of the first part 73 of the X-motor 61 being coupled to the second part 89 of the Y-motor 65 and to the second part 91 of the Y-motor 67 , respectively.
- the X-motor 63 and the two Y-motors 69 , 71 of the second displacement unit 41 are mutually arranged in a H-configuration, a first end 101 and a second end 103 of the first part 75 of the X-motor 63 being coupled to the second part 93 of the Y-motor 69 and to the second part 95 of the Y-motor 71 , respectively.
- the second substrate holder 23 is in the first position or characterization position and a characterization process involving a first series of positioning steps of the second substrate holder 23 is carried out by means of the first displacement unit 39 .
- the first substrate holder 21 is in the second position or exposure position and an exposure process involving a second series of positioning steps of the first substrate holder 21 is carried out by means of the second displacement unit 41 .
- the characterization process can be carried out not only simultaneously with but also independently from the exposure process.
- the first substrate holder 21 is displaced by means of the second displacement unit 41 from the exposure position into an intermediate position M′ between the exposure position and the characterization position as shown in FIG. 3
- the second substrate holder 23 is displaced by means of the first displacement unit 39 from the characterization position into an intermediate position M′′ between the exposure position and the characterization position.
- the second coupling member 53 of the first substrate holder 21 is uncoupled from the coupling member 59 of the second displacement unit 41 and the first coupling member 51 of the second substrate holder 23 is uncoupled from the coupling member 57 of the first displacement unit 39 .
- the coupling member 57 of the first displacement unit 39 is coupled to the first coupling member 49 of the first substrate holder 21 and the coupling member 59 of the second displacement unit 41 is coupled to the second coupling member 55 of the second substrate holder 23 , as shown in FIG. 3 .
- the first substrate holder 21 is displaced by the first displacement unit 39 from the intermediate position M′ into the characterization position where the substrate present on the first substrate holder 21 is unloaded and a next substrate is loaded and characterized.
- the second substrate holder 23 is displaced by the second displacement unit 41 from the intermediate position M′′ into the exposure position where the substrate present on the second substrate holder 23 is exposed.
- the first displacement unit 39 is suitable for displacing both substrate holders 21 and 23 from the first position or characterization position into the intermediate positions M′ and M′′ and the second displacement unit 41 is suitable for displacing both substrate holders 21 and 23 from the intermediate positions M′ and M′′ into the exposure position, a distance over which each displacement unit 39 , 41 must be able to displace the substrate holders 21 and 23 is reduced, so that the required dimensions of the displacement units 39 , 41 are reduced.
- FIG. 2 shows, particularly the dimensions of the Y-motors 65 , 67 , 69 , 71 of the displacement units 39 , 41 are considerably reduced as seen parallel to the Y-direction.
- the use of the two displacement units 39 , 41 prevents that the displaceable parts of the displacement system 35 , in particular the X-motors 61 and 63 , must be constructed so as to be capable of passing one another, as a result of which a comparatively simple construction of the displacement system 35 is achieved.
- the arrangement of the two X-motors 61 , 63 and the four Y-motors 65 , 67 , 69 , 71 in two H-configurations leads to a comparatively stiff and stable support of X-motors 61 , 63 by the relevant Y-motors 65 , 67 , 69 , 71 , which benefits the positioning accuracy of the displacement units 39 , 41 .
- the limited displacing range of the displacement units 39 , 41 as seen parallel to the Y-direction enables the mutual arrangement of the four Y-motors 65 , 67 , 69 , 71 in two lines of two Y-motors 65 , 69 and 67 , 71 each, which leads to a compact and simple construction of the positioning device 3 .
- FIG. 4 shows a second embodiment of a positioning device 105 according to the invention suitable for use in the lithographic device according to the invention.
- Corresponding parts of the first embodiment of the positioning device 3 and the second embodiment of the positioning device 105 are indicated by means of corresponding reference numerals in FIGS. 2 , 3 , and 4 .
- FIGS. 2 , 3 , and 4 respectively, only the main differences between the positioning devices 3 and 105 will be discussed.
- the substrate holders 21 and 23 of the positioning device 105 each comprise a basic part 107 , 109 which comprises the aerostatically supported foot 43 , 45 , the first coupling member 49 , 51 , and the second coupling member 53 , 55 of the relevant substrate holder 21 , 23 . Furthermore, the substrate holders 21 , 23 of the positioning device 105 each comprise a substrate table 111 , 113 which comprises the support surface 25 , 27 of the relevant substrate holder 21 , 23 .
- the substrate holders 21 , 23 each comprise ah actuator unit 115 , 117 which is indicated diagrammatically only in FIG.
- the actuator units 115 , 117 each comprise a system of contactless Lorentz-force motors which are known and usual per se and by means of which the substrate table 111 , 113 of the relevant substrate holder 21 , 23 is displaceable relative to the basic part 107 , 109 of the relevant substrate holder 21 , 23 with comparatively high accuracies and over comparatively small distances in directions parallel to the X-direction, parallel to the Y-direction, and parallel to the Z-direction, and by means of which the substrate table 111 , 113 of the relevant substrate holder 21 , 23 is pivotable relative to the basic part 107 , 109 of the relevant substrate holder 21 , 23 with comparatively high accuracies and over comparatively small angles
- the displacement units 39 , 41 each constitute a so called coarse-fine displacement unit wherein the substrate holders 21 , 23 with the substrate tables 111 , 113 are displaceable over comparatively large distances and with comparatively low accuracies by means of the X-motors 61 , 63 and the Y-motors 65 , 67 , 69 , 71 of the displacement units 39 , 41 , and wherein the substrate tables 111 , 113 are displaceable and pivotable with comparatively high accuracies and over comparatively low distances and small angles relative to the basic parts 107 , 109 of the substrate holders 21 , 23 by means of the actuator units 115 , 117 of the displacement units 39 , 41 .
- the X-motors 61 , 63 and the Y-motors 65 , 67 , 69 , 71 can be of a relatively simple, conventional, and low-cost type, while the required dimensions and therefore the costs of the accurate and advanced actuator units 115 , 117 can be limited as much as possible.
- the use of the actuator units 115 , 117 as described further provides a high degree of adjustability of the substrate tables 111 , 113 relative to the focusing unit 5 and relative to the characterization unit 37 of the lithographic device.
- FIG. 4 further shows, the first parts 81 , 83 , 85 , 87 of the Y-motors 65 , 67 , 69 , 71 of the displacement units 39 , 41 of the positioning device 105 are fastened to a balancing unit 119 which is common for the two displacement units 39 , 41 .
- the balancing unit 119 comprises a first beam 121 which extends substantially parallel to the Y-direction and to which the first part 81 of the Y-motor 65 of the first displacement unit 39 and the first part 85 of the Y-motor 69 of the second displacement unit 41 are fastened, and a second beam 123 which also extends substantially parallel to the Y-direction and to which the first part 83 of the Y-motor 67 of the first displacement unit 39 and the first part 87 of the Y-motor 71 of the second displacement unit 41 are fastened.
- the first beam 121 and the second beam 123 are interconnected by means of a first cross-beam 125 and a second cross-beam 127 , the beams 121 and 123 and the cross-beams 125 and 127 being arranged in a rectangular configuration which surrounds the granite block 47 carrying the guiding surface 33 .
- FIG. 1 A first cross-beam 125 and a second cross-beam 127 , the beams 121 and 123 and the cross-beams 125 and 127 being arranged in a rectangular configuration which surrounds the granite block 47 carrying the guiding surface 33 .
- the first beam 121 of the balancing unit 119 is guided by means of static gas bearings 129 over a further guiding surface 131 which is provided on a base 133 of the positioning device 105 and extends parallel to the X-direction and parallel to the Y-direction, and the second beam 123 of the balancing unit 119 is guided by means of static gas bearings 135 over said further guiding surface 131 .
- the balancing unit 119 is displaceable in direction parallel to the X-direction and parallel to the Y-direction and is rotatable about an axis of rotation extending parallel to the Z-direction.
- reaction forces of the actuator units 115 , 117 of the displacement units 39 , 41 directed parallel to the X-direction and/or parallel to the Y-direction are transmitted via the X-motors 61 , 63 and the Y-motors 65 , 67 , 69 , 71 to the balancing unit 119
- reaction forces of the X-motors 61 , 63 of the displacement units 39 , 41 directed parallel to the X-direction and/or parallel to the Y-direction are transmitted via the Y-motors 65 , 67 , 69 , 71 to the balancing unit 119
- reaction forces of the Y-motors 65 , 67 , 69 , 71 of the displacement units 39 , 41 directed parallel to the X-direction and/or parallel to the Y-direction are directly transmitted to the balancing unit 119 .
- the displacement units of the positioning device may each alternatively comprise a single linear X-motor and a single linear Y-motor for large-distance displacements of the relevant object holder and an actuator unit solely comprising an X-Lorentz-force motor and a Y-Lorentz-force motor for small-distance displacements of the relevant object table.
- the invention also relates to lithographic devices in which an exposure process following the step-and-scan principle is applied.
- a lithographic device is provided with a further positioning device by means of which the mask holder is displaceable in a scan direction which is parallel to, for example, the X-direction.
- the mask and the semiconductor substrate are not in fixed positions relative to the focusing unit during the exposure process but are displaced simultaneously in the scan direction, so that the pattern present on the mask is scanned.
- a positioning device may be used not only in a lithographic device but also in other devices where two object tables have to perform a series of positioning steps simultaneously and independently from each other. Examples are finishing machines, machine tools, and other machines or devices in which an object to be machined or processed is first characterized relative to an object holder in a characterization position and is subsequently machined or processed in an operational position.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Atmospheric Sciences (AREA)
- Power Engineering (AREA)
- Library & Information Science (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Toxicology (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Details Of Measuring And Other Instruments (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
A positioning device has first and second object holders that are guided over a guiding surface extending parallel to an X-direction and parallel to a Y-direction perpendicular to the X-direction and which are displaceable over the guiding surface from a first position into a second position by means of a displacement system. The displacement system includes a first displacement unit and a second displacement unit to which the object holders can be alternately coupled. The first displacement unit is suitable for carrying out a first series of positioning steps of the first object holder in the first position and for displacing the first object holder from the first position into an intermediate position between the first and second positions. The second displacement unit is suitable for carrying out a second series of positioning steps of the second object holder in the second position, simultaneously with and independently of the first displacement unit, and for displacing the second object holder from the second position into the intermediate position. In the intermediate position, the object holders are exchanged, after which the first series of positioning steps can be carried out by the first displacement unit with the second object holder in the first position and the second series of positioning steps can be carried out by the second displacement unit with the first object holder in the second position. The positioning device is suitable for use in a lithographic device to carry out an exposure process with a first semiconductor substrate in an exposure position and, simultaneously therewith and independently thereof, a characterization process with a second semiconductor substrate in a characterization position.
Description
The invention relates to a positioning device having a guiding surface extending parallel to an X-direction and parallel to a Y-direction, a first object holder and a second object holder which are each guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position, and a displacement system for displacing the first object holder and the second object holder over the guiding surface.
The invention further relates to a lithographic device provided with a radiation source, a mask holder, a focusing unit having a main axis, a characterization unit, and a positioning device, said positioning device comprising a guiding surface extending parallel to an X-direction, which is perpendicular to the main axis, and parallel to a Y-direction, which is perpendicular to the X-direction and the main axis, a first substrate holder and a second substrate holder which are each guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position which is present near the focusing unit, and a displacement system for displacing the first substrate holder and the second substrate holder over the guiding surface.
A positioning device and a lithographic device of the kinds mentioned in the opening paragraphs are known from EP-A-0 687 957. The known lithographic device is used for the exposure of semiconductor substrates in the manufacturing process of integrated semiconductor circuits and operates according to the so-called step-and-repeat process. The known positioning device is used in the known lithographic device for displacing semiconductor substrates relative to the focusing unit and relative to the characterization unit. The first position of the known positioning device is a load and unload position in which a semiconductor substrate can be loaded on or unloaded from the first or the second object holder. The second position of the positioning device is an exposure position in which a semiconductor substrate present on the first or the second object holder can be exposed via the focusing unit. The first and the second object holder are displaceable from the first position to the second position and vice versa by the displacement system of the positioning device which is not described in detail in EP-A-0 687 957. When the first object holder is in the second position and the semiconductor substrate present thereon is being exposed, the second object holder is in the first position and a next semiconductor substrate is loaded thereon at first. Then the second object holder is displaced from the first position to a characterization position in which the semiconductor substrate present on the second object holder is characterized by the characterization unit. When the second object holder is in the characterization position, the first object holder and the second object holder are displaced lockstep-wise. In this manner the exposure of the semiconductor substrate present on the first object holder and the characterization of the semiconductor substrate present on the second object holder are carried out simultaneously, so that a high throughput of the step-and-repeat apparatus is obtained.
A disadvantage of the known positioning device and the known lithographic device is that the characterization of the semiconductor substrate present on the second object holder and the exposure of the semiconductor substrate present on the first object holder cannot be carried out independently from each other as a result of said lockstep-wise displacements of the first and the second object holder. As a result, the exposure of the semiconductor substrate present on the first object holder cannot be started until the second object holder has reached the characterization position.
It is an object of the present invention to provide a positioning device of the kind mentioned in the opening paragraph in which a first process involving a first series of positioning steps of the first object holder can be carried out simultaneously with and independently from a second process involving a second series of positioning steps of the second object holder, and in which also the first process can be carried out with the second object holder and, simultaneously and independently, the second process can be carried out with the first object holder.
It is a further object of the present invention to provide a lithographic device of the kind mentioned in the second paragraph in which a characterization process involving a first series of positioning steps of the first substrate holder can be carried out simultaneously with and independently from an exposure process involving a second series of positioning steps of the second substrate holder, and in which also the characterization process can be carried out with the second substrate holder and, simultaneously and independently, the exposure process can be carried out with the first substrate holder.
The positioning device according to the invention is for this purpose characterized in that the displacement system comprises a first displacement unit and a second displacement unit to which the first object holder and the second object holder can be coupled alternately, the first displacement unit being suitable for displacing the object holders from the first position into an intermediate position between the first position and the second position, and the second displacement unit being suitable for displacing the object holders from the intermediate position into the second position. As a result of the use of said first and second displacement units, a first process involving a first series of positioning steps of the first object holder can be carried out in the first position by means of the first displacement unit, and a second process involving a second series of positioning steps of the second object holder can be carried out in the second position by means of the second displacement unit simultaneously with and independently from the first process. When the first process and the second process have been completed, the first object holder is displaced by the first displacement unit from the first position into the intermediate position and the second object holder is displaced by the second displacement unit from the second position into the intermediate position. In the intermediate position, the first object holder is uncoupled from the first displacement unit and is coupled to the second displacement unit, while the second object holder is uncoupled from the second displacement unit and is coupled to the first displacement unit. Subsequently, the first object holder is displaced by the second displacement unit from the intermediate position to the second position and the second object holder is displaced by the first displacement unit from the intermediate position to the first position. Then the first process can be carried out with the second object holder in the first position and, simultaneously and independently, the second process can be carried out with the first object holder in the second position. Furthermore, as a result of the use of said two displacement units, a distance over which each individual displacement unit has to displace the object holders is reduced, so that the required dimensions of the displacement units are reduced. It is in addition prevented that the displaceable parts of the first displacement unit and the displaceable parts of the second displacement unit must be constructed so as to be capable of passing one another, which allows a comparatively simple construction of the displacement units.
The lithographic device according to the invention is for this purpose characterized in that the positioning device of the lithographic device is a positioning device according to the invention, wherein each of the object holders of the positioning device is a substrate holder of the lithographic device, and wherein the first position of the object holders is a characterization position which is present near the characterization unit. As a result of the use of the positioning device according to the invention in the lithographic device according to the invention, a characterization process involving a first series of positioning steps of the first substrate holder can be carried out in the first position by means of the first displacement unit of the positioning device, and an exposure process involving a second series of positioning steps of the second substrate holder can be carried out in the second position by means of the second displacement unit of the positioning device simultaneously with and independently from the first process. The first process can also be carried out with the second substrate holder in the first position and, simultaneously and independently, the second process can be carried out with the first object holder in the second position.
A particular embodiment of a positioning device according to the invention is characterized in that the displacement units each comprise an X-motor having a first part extending parallel to the X-direction and a second part which is displaceable along the first part of the X-motor and can be coupled alternately to the first object holder and to the second object holder, and two Y-motors each having a first part extending parallel to the Y-direction and a second part which is displaceable along the first part of the relevant Y-motor, the first part of the X-motor of each displacement unit being connected to the second parts of the two Y-motors of the relevant displacement unit. Since the first part of the X-motor of each displacement unit is connected to the second parts of the two Y-motors of the relevant displacement unit, a comparatively stiff and stable support of the X-motor by the two Y-motors is obtained, which benefits the positioning accuracy of the displacement unit. Since the first displacement unit has a limited displacing range from the first position to the intermediate position and the second displacement unit has a limited displacing range from the intermediate position to the second position, the four Y-motors of the two displacement units can be arranged in two lines, which leads to a compact and simple construction of the positioning device.
A further embodiment of a positioning device according to the invention is characterized in that the first parts of the Y-motors of the two displacement units are connected to a common balancing unit which is guided relative to a base of the positioning device so as to be displaceable parallel to the X-direction and parallel to the Y-direction and to be rotatable about an axis of rotation extending perpendicularly to the X-direction and the Y-direction. Since the first parts of the Y-motors of the displacement units are connected to said common balancing unit, reaction forces of the X-motors and the Y-motors of the displacement units are transmitted via the first parts of the Y-motors to the balancing unit and are converted into displacements of the balancing unit parallel to the X-direction and parallel to the Y-direction and rotations of the balancing unit about said axis of rotation relative to the base. In this manner, a transmission of the reaction forces to the base, the guiding surface, and the object holders is prevented as much as possible, so that the positioning accuracy of the positioning device is further improved.
A yet further embodiment of a positioning device according to the invention is characterized in that the object holders each comprise a basic part which is guided over the guiding surface and can be coupled to the displacement units, and an object table which is displaceable relative to the basic part by means of an actuator unit of the relevant object holder. In this yet further embodiment of the positioning device, the object tables of the object holders are displaceable by the displacement units over comparatively large distances and with comparatively low accuracies, while the object tables are displaceable by said actuator units over comparatively small distances and with comparatively high accuracies. In this manner, the displacement units can be of a relatively simple, conventional type, while the dimensions of the accurate actuator units can be limited as much as possible.
A particular embodiment of a positioning device according to the invention is characterized in that the object table of each of the object holders is displaceable relative to the basic part parallel to the X-direction, parallel to the Y-direction, and parallel to a Z-direction extending perpendicularly to the X-direction and the Y-direction, and is pivotable relative to the basic part about a first pivot axis extending parallel to the X-direction, a second pivot axis extending parallel to the Y-direction, and a third pivot axis extending parallel to the Z-direction. In this manner, a high degree of adjustability of the object tables relative to the basic parts is obtained.
The invention will be explained in more detail below with reference to the drawing, in which
The lithographic device according to the invention shown diagrammatically in FIG. 1 is used for the exposure of semiconductor substrates in the manufacturing process of integrated semiconductor circuits and comprises a frame 1 which supports in that order, as seen parallel to a vertical Z-direction, a positioning device 3 according to the invention, a focusing unit 5, a mask holder 7, and a radiation source 9. The lithographic device is an optical lithographic device whose radiation source 9 comprises a light source 11. The mask holder 7 comprises a support surface 13 which extends perpendicularly to the Z-direction and on which a mask 15 can be placed comprising a pattern or a sub-pattern of an integrated semiconductor circuit. The focusing unit 5 is an imaging or projection system and comprises an optical lens system 17 having a main optical axis 19 extending parallel to the Z-direction and an optical reduction factor of, for example, 4 or 5. The positioning device 3 comprises a first substrate holder 21 and a second substrate holder 23 which is identical to the first substrate holder 21. The substrate holders 21, 23 each comprise a support surface 25, 27 which extends perpendicularly to the Z-direction. In the situation shown in FIG. 1 , a first semiconductor substrate 29 is present on the support surface 25 of the first substrate holder 21 and a second semiconductor substrate 31 is present on the support surface 27 of the second substrate holder 23. The positioning device 3 further comprises a guiding surface 33 extending parallel to a horizontal X-direction which is perpendicular to the Z-direction and parallel to a horizontal Y-direction which is perpendicular to the X-direction and the Z-direction. The substrate holders 21, 23 are each guided over the guiding surface 33 and are each displaceable over the guiding surface 33 parallel to the X-direction and parallel to the Y-direction by means of a displacement system 35 of the positioning device 3.
In the situation shown in FIG. 1 , the first substrate holder 21 with the first semiconductor substrate 29 is in a second position of the positioning device 3 which corresponds to an exposure position of the lithographic device which is present near the focusing unit 5. In this position, a light beam originating from the light source 11 is guided through the mask 15 and is focused on the first semiconductor substrate 29 by means of the focusing unit 5, so that the pattern present on the mask 15 is imaged on a reduced scale on the first semiconductor substrate 29. The first semiconductor substrate 29 comprises a large number of individual fields on which identical semiconductor circuits are to be imaged. The fields of the first semiconductor substrate 29 are consecutively exposed through the mask 15 for this purpose. The exposure process used in the lithographic device of FIG. 1 is a so called step-and-repeat exposure process according to which the first semiconductor substrate 29 and the mask 15 are in fixed positions relative to the focusing unit 5 during the exposure of an individual field of the first semiconductor substrate 29, and according to which a next field of the first semiconductor substrate 29 is brought into position relative to the focusing unit 5 after the exposure of a previously exposed field in that the first substrate holder 21 is displaced parallel to the X-direction and/or parallel to the Y-direction by the displacement system 35 of the positioning device 3. This process is repeated a number of times, with a different mask each time, so that complicated integrated semiconductor circuits with a layered structure can be manufactured.
In the situation shown in FIG. 1 , the second substrate holder 23 with the second semiconductor substrate 31 is in a first position of the positioning device 3 which corresponds to a characterization position of the lithographic device. In the situation shown, a previous semiconductor substrate, which was fully exposed in the exposure position via the mask 15, was unloaded from the second substrate holder 23 and was transported to a stack of semiconductor substrates under manufacture not shown in the figure. The second semiconductor substrate 31 shown in FIG. 1 is a next semiconductor substrate which has just been taken from said stack of semiconductor substrates and loaded on the second substrate holder 23 and which has to be exposed via the mask 15 after the first semiconductor substrate 29. In the characterization position, the second semiconductor substrate 31 is characterized by a characterization unit 37 of the lithographic device which is also supported by the frame 1. When the second semiconductor substrate 31 has been fully characterized and the first semiconductor substrate 29 has been fully exposed, the second substrate holder 23 with the second semiconductor substrate 31 is displaced by the displacement system 35 from the characterization position into the exposure position and the first substrate holder 21 with the first semiconductor substrate 29 is displaced by the displacement system 35 from the exposure position into the characterization position. The characterization unit 37 comprises, for example, a measuring system which is used for measuring the positions of the individual fields of the second semiconductor substrate 31 relative to the second substrate holder 23. Since these positions are already measured in the characterization position, the individual fields of the second semiconductor substrate 31 can subsequently be positioned relative to the focusing unit 5 in the exposure position by measuring the position of the second substrate holder 23 relative to the focusing unit 5. In this manner, the time required to position the individual fields of the successive semiconductor substrates relative to the focusing unit 5 in the exposure position is limited considerably, so that the throughput of the lithographic device is considerably improved. Since the position of each individual field of the second semiconductor substrate 31 has to be measured in the characterization position, a step wise displacement of the second substrate holder 23 with the second semiconductor substrate 31 is carried out by the displacement system 35 of the positioning device 3 in the characterization position. As a result of the use of the two separate identical substrate holders 21 and 23, the exposure process of a semiconductor substrate in the exposure position can be carried out simultaneously with the unload process of a previous semiconductor substrate and the load and characterization processes of a next semiconductor substrate in the characterization position, so that the throughput of the lithographic device is further improved.
As shown in FIG. 2 , the displacement system 35 of the positioning device 3 comprises a first displacement unit 39 and a second displacement unit 41. The substrate holders 21, 23 each comprise an aerostatically supported foot 43, 45 provided with a static gas bearing by means of which the relevant substrate holder 21, 23 is guided over the guiding surface 33. The guiding surface 33 constitutes an upper surface of a granite block 47 which is fastened to the frame 1 of the lithographic device. Furthermore, the substrate holders 21, 23 each comprise a first coupling member 49, 51 and a second coupling member 53, 55 by means of which the substrate holders 21, 23 can be coupled alternately to a coupling member 57 of the first displacement unit 39 and to a coupling member 59 of the second displacement unit 41, respectively. In the situation shown in FIG. 2 , the first substrate holder 21 is coupled to the coupling member 59 of the second displacement unit 41 and the second substrate holder 23 is coupled to the coupling member 57 of the first displacement unit 39. Alternatively, the first substrate holder 21 can be coupled to the coupling member 57 of the first displacement unit 39 and the second substrate holder 23 can be coupled to the coupling member 59 of the second displacement unit 41. The coupling members 49, 51, 53, 55, 57, 59 may be of a type which is known and usual per se, such as, for example, a mechanical or an electromechanical coupling member.
As FIG. 2 shows, the first displacement unit 39 and the second displacement unit 41 each comprise a linear X-motor 61, 63 and two linear Y- motors 65, 67, 69, 71 of a conventional type which is known and usual per se. The X-motors 61, 63 each comprise a first part 73, 75 extending parallel to the X-direction and a second part 77, 79 which is displaceable along the first part 73, 75 of the relevant X-motor 61, 63 and comprises the coupling member 57, 59 of the relevant X-motor 61, 63. The Y- motors 65, 67, 69, 71 each comprise a first part 81, 83, 85, 87 extending parallel to the Y-direction and a second part 89, 91, 93, 95 which is displaceable along the first part 81, 83, 85, 87 of the relevant Y- motor 65, 67, 69, 71. The X-motor 61 and the two Y- motors 65, 67 of the first displacement unit 39 are mutually arranged in a H-configuration, a first end 97 and a second end 99 of the first part 73 of the X-motor 61 being coupled to the second part 89 of the Y-motor 65 and to the second part 91 of the Y-motor 67, respectively. Likewise, the X-motor 63 and the two Y-motors 69, 71 of the second displacement unit 41 are mutually arranged in a H-configuration, a first end 101 and a second end 103 of the first part 75 of the X-motor 63 being coupled to the second part 93 of the Y-motor 69 and to the second part 95 of the Y-motor 71, respectively.
In the situation shown in FIG. 2 , the second substrate holder 23 is in the first position or characterization position and a characterization process involving a first series of positioning steps of the second substrate holder 23 is carried out by means of the first displacement unit 39. Simultaneously, the first substrate holder 21 is in the second position or exposure position and an exposure process involving a second series of positioning steps of the first substrate holder 21 is carried out by means of the second displacement unit 41. Thus, as a result of the use of the first displacement unit 39 and the second displacement unit 41, the characterization process can be carried out not only simultaneously with but also independently from the exposure process. When the exposure process with the first substrate holder 21 and the characterization process with the second substrate holder 23 have been completed, the first substrate holder 21 is displaced by means of the second displacement unit 41 from the exposure position into an intermediate position M′ between the exposure position and the characterization position as shown in FIG. 3 , and the second substrate holder 23 is displaced by means of the first displacement unit 39 from the characterization position into an intermediate position M″ between the exposure position and the characterization position. In said intermediate positions M′ and M″, the second coupling member 53 of the first substrate holder 21 is uncoupled from the coupling member 59 of the second displacement unit 41 and the first coupling member 51 of the second substrate holder 23 is uncoupled from the coupling member 57 of the first displacement unit 39. Subsequently, the coupling member 57 of the first displacement unit 39 is coupled to the first coupling member 49 of the first substrate holder 21 and the coupling member 59 of the second displacement unit 41 is coupled to the second coupling member 55 of the second substrate holder 23, as shown in FIG. 3. Then, the first substrate holder 21 is displaced by the first displacement unit 39 from the intermediate position M′ into the characterization position where the substrate present on the first substrate holder 21 is unloaded and a next substrate is loaded and characterized. Simultaneously therewith and independently therefrom, the second substrate holder 23 is displaced by the second displacement unit 41 from the intermediate position M″ into the exposure position where the substrate present on the second substrate holder 23 is exposed. Since the first displacement unit 39 is suitable for displacing both substrate holders 21 and 23 from the first position or characterization position into the intermediate positions M′ and M″ and the second displacement unit 41 is suitable for displacing both substrate holders 21 and 23 from the intermediate positions M′ and M″ into the exposure position, a distance over which each displacement unit 39, 41 must be able to displace the substrate holders 21 and 23 is reduced, so that the required dimensions of the displacement units 39, 41 are reduced. As FIG. 2 shows, particularly the dimensions of the Y- motors 65, 67, 69, 71 of the displacement units 39, 41 are considerably reduced as seen parallel to the Y-direction. Furthermore, the use of the two displacement units 39, 41 prevents that the displaceable parts of the displacement system 35, in particular the X-motors 61 and 63, must be constructed so as to be capable of passing one another, as a result of which a comparatively simple construction of the displacement system 35 is achieved. The arrangement of the two X-motors 61, 63 and the four Y- motors 65, 67, 69, 71 in two H-configurations leads to a comparatively stiff and stable support of X-motors 61, 63 by the relevant Y- motors 65, 67, 69, 71, which benefits the positioning accuracy of the displacement units 39, 41. The limited displacing range of the displacement units 39, 41 as seen parallel to the Y-direction enables the mutual arrangement of the four Y- motors 65, 67, 69, 71 in two lines of two Y- motors 65, 69 and 67, 71 each, which leads to a compact and simple construction of the positioning device 3.
The substrate holders 21 and 23 of the positioning device 105 each comprise a basic part 107, 109 which comprises the aerostatically supported foot 43, 45, the first coupling member 49, 51, and the second coupling member 53, 55 of the relevant substrate holder 21, 23. Furthermore, the substrate holders 21, 23 of the positioning device 105 each comprise a substrate table 111, 113 which comprises the support surface 25, 27 of the relevant substrate holder 21, 23. The substrate holders 21, 23 each comprise ah actuator unit 115, 117 which is indicated diagrammatically only in FIG. 4 and by means of which the substrate table 111, 113 of the relevant substrate holder 21, 23 is displaceable relative to the basic part 107, 109 of the relevant substrate holder 21, 23. In the second embodiment of the positioning device 105 according to the invention, the actuator units 115, 117 each comprise a system of contactless Lorentz-force motors which are known and usual per se and by means of which the substrate table 111, 113 of the relevant substrate holder 21, 23 is displaceable relative to the basic part 107, 109 of the relevant substrate holder 21, 23 with comparatively high accuracies and over comparatively small distances in directions parallel to the X-direction, parallel to the Y-direction, and parallel to the Z-direction, and by means of which the substrate table 111, 113 of the relevant substrate holder 21, 23 is pivotable relative to the basic part 107, 109 of the relevant substrate holder 21, 23 with comparatively high accuracies and over comparatively small angles about a first pivot axis extending parallel to the X-direction, a second pivot axis extending parallel to the Y-direction, and a third pivot axis extending parallel to the Z-direction. In this manner, the displacement units 39, 41 each constitute a so called coarse-fine displacement unit wherein the substrate holders 21, 23 with the substrate tables 111, 113 are displaceable over comparatively large distances and with comparatively low accuracies by means of the X-motors 61, 63 and the Y- motors 65, 67, 69, 71 of the displacement units 39, 41, and wherein the substrate tables 111, 113 are displaceable and pivotable with comparatively high accuracies and over comparatively low distances and small angles relative to the basic parts 107, 109 of the substrate holders 21, 23 by means of the actuator units 115, 117 of the displacement units 39, 41. In this manner, the X-motors 61, 63 and the Y- motors 65, 67, 69, 71 can be of a relatively simple, conventional, and low-cost type, while the required dimensions and therefore the costs of the accurate and advanced actuator units 115, 117 can be limited as much as possible. The use of the actuator units 115, 117 as described further provides a high degree of adjustability of the substrate tables 111, 113 relative to the focusing unit 5 and relative to the characterization unit 37 of the lithographic device.
As FIG. 4 further shows, the first parts 81, 83, 85, 87 of the Y- motors 65, 67, 69, 71 of the displacement units 39, 41 of the positioning device 105 are fastened to a balancing unit 119 which is common for the two displacement units 39, 41. The balancing unit 119 comprises a first beam 121 which extends substantially parallel to the Y-direction and to which the first part 81 of the Y-motor 65 of the first displacement unit 39 and the first part 85 of the Y-motor 69 of the second displacement unit 41 are fastened, and a second beam 123 which also extends substantially parallel to the Y-direction and to which the first part 83 of the Y-motor 67 of the first displacement unit 39 and the first part 87 of the Y-motor 71 of the second displacement unit 41 are fastened. The first beam 121 and the second beam 123 are interconnected by means of a first cross-beam 125 and a second cross-beam 127, the beams 121 and 123 and the cross-beams 125 and 127 being arranged in a rectangular configuration which surrounds the granite block 47 carrying the guiding surface 33. As FIG. 4 diagrammatically shows, the first beam 121 of the balancing unit 119 is guided by means of static gas bearings 129 over a further guiding surface 131 which is provided on a base 133 of the positioning device 105 and extends parallel to the X-direction and parallel to the Y-direction, and the second beam 123 of the balancing unit 119 is guided by means of static gas bearings 135 over said further guiding surface 131. Thus, the balancing unit 119 is displaceable in direction parallel to the X-direction and parallel to the Y-direction and is rotatable about an axis of rotation extending parallel to the Z-direction. In operation, reaction forces of the actuator units 115, 117 of the displacement units 39, 41 directed parallel to the X-direction and/or parallel to the Y-direction are transmitted via the X-motors 61, 63 and the Y- motors 65, 67, 69, 71 to the balancing unit 119, reaction forces of the X-motors 61, 63 of the displacement units 39, 41 directed parallel to the X-direction and/or parallel to the Y-direction are transmitted via the Y- motors 65, 67, 69, 71 to the balancing unit 119, and reaction forces of the Y- motors 65, 67, 69, 71 of the displacement units 39, 41 directed parallel to the X-direction and/or parallel to the Y-direction are directly transmitted to the balancing unit 119. Since the balancing unit 119 is guided over the further guiding surface 131 by means of the static gas bearings 129, 135, said reaction forces are substantially completely converted into relatively small displacements of the balancing unit 119 in directions parallel to the X-direction and/or parallel to the Y-direction and into relatively small rotations of the balancing unit 119 about said axis of rotation extending parallel to the Z-direction. In this manner, mechanical vibrations, which may be caused by said reaction forces in the base 133 and which may be transmitted to the granite block 47 and the substrate holders 21, 23 of the lithographic device 105 and to the frame 1 of the lithographic device, are prevented as much as possible, so that the positioning accuracy of the displacement system 35 of the positioning device 105 is further improved.
It is noted that another type of displacement unit may be used in the positioning device according to the invention instead of the displacement units 39, 41 used in the positioning devices 3, 105 described before. For example, the displacement units of the positioning device may each alternatively comprise a single linear X-motor and a single linear Y-motor for large-distance displacements of the relevant object holder and an actuator unit solely comprising an X-Lorentz-force motor and a Y-Lorentz-force motor for small-distance displacements of the relevant object table.
It is further noted that the invention also relates to lithographic devices in which an exposure process following the step-and-scan principle is applied. Such a lithographic device is provided with a further positioning device by means of which the mask holder is displaceable in a scan direction which is parallel to, for example, the X-direction. According to the stepand-scan process, the mask and the semiconductor substrate are not in fixed positions relative to the focusing unit during the exposure process but are displaced simultaneously in the scan direction, so that the pattern present on the mask is scanned.
It is finally noted, that a positioning device according to the invention may be used not only in a lithographic device but also in other devices where two object tables have to perform a series of positioning steps simultaneously and independently from each other. Examples are finishing machines, machine tools, and other machines or devices in which an object to be machined or processed is first characterized relative to an object holder in a characterization position and is subsequently machined or processed in an operational position.
Claims (15)
1. A positioning device for a lithographic apparatus, comprising:
a guiding surface extending parallel to an X-direction and parallel to a Y-direction;
a first object holder and a second object holder which are each adapted to be guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position; and
a displacement system constructed and arranged to displace the first object holder and the second object holder over the guiding surface,
wherein the displacement system comprises a first displacement unit and a second displacement unit to which the first object holder, and the second object holder can be coupled alternately, the first displacement unit being suitable for displacing the object holders from the first position into an intermediate position between the first position and the second position, and the second displacement unit being suitable for displacing the object holders from the intermediate position into the second position.
2. A positioning device as claimed in claim 1 , wherein the first and second displacement units each comprise an X-motor having a first part extending parallel to the X-direction and a second part which is displaceable along the first part of the X-motor and can be coupled alternately to the first object holder and to the second object holder, and two Y-motors each having a first part extending parallel to the Y-direction and a second part which is displaceable along the first part of the relevant Y-motor, the first part of the X-motor of each displacement unit being connected to the second parts of the two Y-motors of the relevant displacement unit.
3. A positioning device as claimed in claim 2 , wherein the first parts of the Y-motors of the two displacement units are connected to a common balancing unit which is guided relative to a base of the positioning device so as to be displaceable parallel to the X-direction and parallel to the Y-direction and to be rotatable about an axis of rotation extending perpendicularly to the X-direction and the Y-direction.
4. A positioning device as claimed in claim 1 , wherein the object holder each comprise a basic part which is guided over the guiding surface and adapted to be coupled to the displacement units, and an object table which is displaceable relative to the basic part by an actuator unit of the relevant object holder.
5. A positioning device as claimed in claim 4 , wherein the object table of each of the object holders is displaceable relative to the basic part parallel to the X-direction, parallel to the Y-direction, and parallel to a Z-direction extending perpendicularly to the X-direction and the Y-direction, and is pivotable relative to the basic part about a first pivot axis extending parallel to the X-direction, a second pivot axis extending parallel to the Y-direction, and a third pivot axis extending parallel to the Z-direction.
6. A positioned device as claimed in claim 1 , wherein said first and second object holders are first and second substrate holders, respectively.
7. A lithographic device comprising:
a radiation source;
a mask bolder holder;
a focusing unit having a main axis;
a characterization unit; and
a positioning device comprising:
a guiding surface extending parallel to an X-direction, which is perpendicular to the main axis, and parallel to a Y-direction, which is perpendicular to the X-direction and this main axis,
a first substrate holder and a second substrate holder which are each guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position which is near the focusing unit, and
a displacement system constructed and arranged to displace the first substrate bolder holder and the second substrate holder over the guiding surface,
wherein the displacement system comprises a first displacement unit and a second displacement unit to which the first substrate holder and second substrate holder can be coupled alternately, the first displacement unit being suitable for displacing the substrate holders from the first position into an intermediate position between the first position and the second position, and the second displacement unit being suitable for displacing the substrate holders from the intermediate position into the second position, and
wherein the first position of the substrate holders is a characterization position which is present near the characterization unit.
8. A lithographic device as claimed in claim 7 , wherein the first and second displacement units each comprise an X-motor having a first part extending parallel to the X-direction and a second part which is displaceable along the first part of the X-motor and can be coupled alternately to the first substrate holder and to the second substrate holder, and two Y-motors each having a first part extending parallel to the Y-direction and a second part which is displaceable along the first part of the relevant Y-motor, the first part of the X-motor of each displacement unit being connected to the second parts of the two Y-motors of the relevant displacement unit.
9. A lithographic device as claimed in claim 8 , wherein the first parts of the Y-motors of the two displacement units are connected to a common balancing unit which is guided relative to a base of the positioning device so as to be displaceable parallel to the X-direction and parallel to the Y-direction and to be rotatable about an axis of rotation extending perpendicularly to the X-direction and the Y-direction.
10. A lithographic device as claimed in claim 7 , wherein the substrate holders each comprise a basic part which is guided over the guiding surface and can be coupled to the displacement units, and a substrate table which is displaceable relative to the basic part by means of an actuator unit of the relevant substrate holder.
11. A lithographic device as claimed in claim 10 , wherein the substrate table of each of the substrate holders is displaceable relative to the basic part parallel to the X-direction, parallel to the Y-direction, and parallel to the Z-direction extending perpendicularly to the X-direction and the Y-direction, and is pivotable relative to the basic part about a first pivot axis extending parallel to the X-direction, a second pivot axis extending parallel to the Y-direction, and a third pivot axis extending parallel to the Z-direction.
12. A positioning device for a lithographic apparatus, comprising:
a guiding surface extending parallel to an X-direction and parallel to a Y-direction;
a first object holder and a second object holder which are each adapted to be guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position;
a displacement system constructed and arranged to displace the first object holder and the second object holder over the guiding surface;
wherein the displacement system comprises a first displacement unit and a second displacement unit to which the first object holder and the second object holder can be coupled alternately so that the first object holder and the second object holder switch positions;
wherein the first and second displacement units each comprise an X-motor having a first part extending parallel to the X-direction and a second part which is displaceable along the first part of the X-motor and can be coupled alternately to the first object holder and to the second object holder, and two Y-motors each having a first part extending parallel to the Y-direction and a second part which is displaceable along the first part of the relevant Y-motor, the first part of the X-motor of each displacement unit being connected to the second parts of the two Y-motors of the relevant displacement unit; and
wherein the first parts of the Y-motors of the two displacement units are connected to a common balancing unit which is guided relative to a base of the positioning device so as to be displaceable parallel to the X-direction and parallel to the Y-direction and to be rotatable about an axis of rotation extending perpendicularly to the X-direction and the Y-direction.
13. A positioning device for a lithographic apparatus, comprising:
a guiding surface extending parallel to an X-direction and parallel to a Y-direction;
a first object holder and a second object holder which are each adapted to be guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position;
a displacement system constructed and arranged to displace the first object holder and the second object holder over the guiding surface;
wherein the displacement system comprises a first displacement unit and a second displacement unit to which the first object holder and the second object holder can be coupled alternately so that the first object holder and the second object holder switch positions;
wherein the object holders each comprise a basic part which is guided over the guiding surface and adapted to be coupled to the displacement units, and an object table which is displaceable relative to the basic part by an actuator unit of the relevant object holder; and
wherein the object table of each of the object holders is displaceable relative to the basic part parallel to the X-direction, parallel to the Y-direction, and parallel to a Z-direction extending perpendicularly to the X-direction and the Y-direction, and is pivotable relative to the basic part about a first pivot axis extending parallel to the X-direction, a second pivot axis extending parallel to the Y-direction, and a third pivot axis extending parallel to the Z-direction.
14. A positioning device for a lithographic apparatus, comprising:
a guiding surface extending parallel to an X-direction and parallel to a Y-direction;
a first object holder and a second object holder which are each adapted to be guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position;
a displacement system constructed and arranged to displace the first object holder and the second object holder over the guiding surface;
wherein the displacement system comprises a first displacement unit and a second displacement unit to which the first object holder and the second object holder can be coupled alternately so that the first object holder and the second object holder switch positions; and
wherein said first and second object holders are first and second substrate holders, respectively.
15. A positioning method for performing operations on substrates in a lithographic device, comprising:
moving first and second substrate holders over a two-dimensional plane between a first position into a second position with first and second displacement units;
loading and characterizing a substrate in the first position;
exposing and unloading the substrate in the second position;
the first and second displacement units moving the first substrate holder and the second substrate holder over the guiding surface between the first and second positions using connections that can be coupled and uncoupled so that the substrate holders switch positions.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97200706 | 1997-03-10 | ||
PCT/IB1998/000254 WO1998040791A1 (en) | 1997-03-10 | 1998-02-27 | Positioning device having two object holders |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/180,011 Reissue US6262796B1 (en) | 1997-03-10 | 1998-02-27 | Positioning device having two object holders |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE40043E1 true USRE40043E1 (en) | 2008-02-05 |
Family
ID=8228087
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/347,491 Expired - Lifetime USRE40043E1 (en) | 1997-03-10 | 1998-02-27 | Positioning device having two object holders |
US09/180,011 Ceased US6262796B1 (en) | 1997-03-10 | 1998-02-27 | Positioning device having two object holders |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/180,011 Ceased US6262796B1 (en) | 1997-03-10 | 1998-02-27 | Positioning device having two object holders |
Country Status (6)
Country | Link |
---|---|
US (2) | USRE40043E1 (en) |
EP (1) | EP0900412B1 (en) |
JP (1) | JP3626504B2 (en) |
DE (1) | DE69829614T2 (en) |
TW (1) | TW452546B (en) |
WO (1) | WO1998040791A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060132740A1 (en) * | 2003-06-19 | 2006-06-22 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US20070132975A1 (en) * | 2003-04-11 | 2007-06-14 | Nikon Corporation | Cleanup method for optics in immersion lithography |
US20070242247A1 (en) * | 2004-06-09 | 2007-10-18 | Kenichi Shiraishi | Exposure apparatus and device manufacturing method |
US20070247607A1 (en) * | 2004-02-02 | 2007-10-25 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US20070247602A1 (en) * | 2003-04-11 | 2007-10-25 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US20070247600A1 (en) * | 2003-05-23 | 2007-10-25 | Nikon Corporation | Exposure apparatus and method for producing device |
US20100053588A1 (en) * | 2008-08-29 | 2010-03-04 | Nikon Corporation | Substrate Stage movement patterns for high throughput While Imaging a Reticle to a pair of Imaging Locations |
Families Citing this family (347)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1244018C (en) * | 1996-11-28 | 2006-03-01 | 株式会社尼康 | Expoure method and equipment producing method |
JPH10209039A (en) | 1997-01-27 | 1998-08-07 | Nikon Corp | Method and apparatus for projection exposure |
USRE40043E1 (en) * | 1997-03-10 | 2008-02-05 | Asml Netherlands B.V. | Positioning device having two object holders |
JPH10270535A (en) * | 1997-03-25 | 1998-10-09 | Nikon Corp | Moving stage device and circuit-device manufacture using the same |
AU9095798A (en) | 1997-09-19 | 1999-04-12 | Nikon Corporation | Stage device, a scanning aligner and a scanning exposure method, and a device manufactured thereby |
TW448487B (en) | 1997-11-22 | 2001-08-01 | Nippon Kogaku Kk | Exposure apparatus, exposure method and manufacturing method of device |
DE69933903T2 (en) * | 1998-04-14 | 2007-05-24 | Asml Netherlands B.V. | Lithographic projection apparatus and method of manufacturing a device |
EP0957275A3 (en) | 1998-05-14 | 2000-12-06 | Asm Lithography B.V. | Gas bearing and lithographic apparatus including such a bearing |
US6296990B1 (en) * | 1998-05-14 | 2001-10-02 | Asm Lithography, B.V. | Gas bearing and lithographic apparatus including such a bearing |
TWI242111B (en) | 1999-04-19 | 2005-10-21 | Asml Netherlands Bv | Gas bearings for use in vacuum chambers and their application in lithographic projection apparatus |
EP1052546B1 (en) * | 1999-04-21 | 2004-09-15 | ASML Netherlands B.V. | Substrate handler for use in lithographic projection apparatus |
TW513617B (en) | 1999-04-21 | 2002-12-11 | Asml Corp | Lithographic projection apparatus and method of manufacturing a device using a lithographic projection apparatus |
TW587199B (en) | 1999-09-29 | 2004-05-11 | Asml Netherlands Bv | Lithographic method and apparatus |
JP2001118773A (en) | 1999-10-18 | 2001-04-27 | Nikon Corp | Stage device and exposure system |
DE60032568T2 (en) * | 1999-12-01 | 2007-10-04 | Asml Netherlands B.V. | Positioning apparatus and lithographic apparatus provided therewith |
JP2001160530A (en) | 1999-12-01 | 2001-06-12 | Nikon Corp | Stage system and exposure device |
WO2001045145A1 (en) * | 1999-12-16 | 2001-06-21 | Nikon Corporation | Exposure method and exposure apparatus |
TW546551B (en) | 1999-12-21 | 2003-08-11 | Asml Netherlands Bv | Balanced positioning system for use in lithographic apparatus |
US6836093B1 (en) * | 1999-12-21 | 2004-12-28 | Nikon Corporation | Exposure method and apparatus |
TWI264617B (en) * | 1999-12-21 | 2006-10-21 | Asml Netherlands Bv | Balanced positioning system for use in lithographic apparatus |
TW588222B (en) | 2000-02-10 | 2004-05-21 | Asml Netherlands Bv | Cooling of voice coil motors in lithographic projection apparatus |
JP2001308003A (en) | 2000-02-15 | 2001-11-02 | Nikon Corp | Exposure method and system, and method of device manufacturing |
US7301605B2 (en) * | 2000-03-03 | 2007-11-27 | Nikon Corporation | Projection exposure apparatus and method, catadioptric optical system and manufacturing method of devices |
JP2001267226A (en) | 2000-03-21 | 2001-09-28 | Nikon Corp | Drive device, exposure system, device, and method of manufacturing the same |
US7508487B2 (en) * | 2000-06-01 | 2009-03-24 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
US6630984B2 (en) | 2000-08-03 | 2003-10-07 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
TW527526B (en) | 2000-08-24 | 2003-04-11 | Asml Netherlands Bv | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
US7561270B2 (en) | 2000-08-24 | 2009-07-14 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and device manufactured thereby |
TWI232356B (en) | 2000-09-04 | 2005-05-11 | Asml Netherlands Bv | Lithographic projection apparatus, device manufacturing method and device manufactured thereby |
EP1197803B1 (en) | 2000-10-10 | 2012-02-01 | ASML Netherlands B.V. | Lithographic apparatus |
EP1679551A1 (en) | 2000-11-07 | 2006-07-12 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US6958808B2 (en) | 2000-11-16 | 2005-10-25 | Nikon Corporation | System and method for resetting a reaction mass assembly of a stage assembly |
US6885430B2 (en) | 2000-11-16 | 2005-04-26 | Nikon Corporation | System and method for resetting a reaction mass assembly of a stage assembly |
US6757053B1 (en) | 2000-11-16 | 2004-06-29 | Nikon Corporation | Stage assembly including a reaction mass assembly |
US6593997B1 (en) | 2000-11-16 | 2003-07-15 | Nikon Corporation | Stage assembly including a reaction assembly |
US6603531B1 (en) | 2000-11-16 | 2003-08-05 | Nikon Corporation | Stage assembly including a reaction assembly that is connected by actuators |
TW591342B (en) | 2000-11-30 | 2004-06-11 | Asml Netherlands Bv | Lithographic projection apparatus and integrated circuit manufacturing method using a lithographic projection apparatus |
JP2002289515A (en) * | 2000-12-28 | 2002-10-04 | Nikon Corp | Method for manufacturing product, method for manufacturing aligner, aligner, and method for manufacturing device |
US7113258B2 (en) | 2001-01-15 | 2006-09-26 | Asml Netherlands B.V. | Lithographic apparatus |
US6927838B2 (en) | 2001-02-27 | 2005-08-09 | Nikon Corporation | Multiple stage, stage assembly having independent stage bases |
US20020117109A1 (en) * | 2001-02-27 | 2002-08-29 | Hazelton Andrew J. | Multiple stage, stage assembly having independent reaction force transfer |
US6792591B2 (en) | 2001-02-28 | 2004-09-14 | Asml Masktools B.V. | Method of identifying an extreme interaction pitch region, methods of designing mask patterns and manufacturing masks, device manufacturing methods and computer programs |
EP1241525B1 (en) | 2001-03-14 | 2004-12-15 | ASML MaskTools B.V. | An optical proximity correction method utilizing ruled ladder bars as sub-resolution assist features |
US7735052B2 (en) | 2001-04-24 | 2010-06-08 | Asml Masktools Netherlands B.V. | Method of identifying an extreme interaction pitch region, methods of designing mask patterns and manufacturing masks, device manufacturing methods and computer programs |
KR100583693B1 (en) | 2001-05-23 | 2006-05-25 | 에이에스엠엘 네델란즈 비.브이. | Substrate provided with an Alignment Mark in a Substantially Transmissive Process Layer, Mask for Exposing said Mark, Device Manufacturing Method, and Device Manufactured Thereby |
US6879374B2 (en) | 2001-06-20 | 2005-04-12 | Asml Netherlands B.V. | Device manufacturing method, device manufactured thereby and a mask for use in the method |
US6788385B2 (en) * | 2001-06-21 | 2004-09-07 | Nikon Corporation | Stage device, exposure apparatus and method |
TW529172B (en) | 2001-07-24 | 2003-04-21 | Asml Netherlands Bv | Imaging apparatus |
US6674512B2 (en) | 2001-08-07 | 2004-01-06 | Nikon Corporation | Interferometer system for a semiconductor exposure system |
US6785005B2 (en) | 2001-09-21 | 2004-08-31 | Nikon Corporation | Switching type dual wafer stage |
US7026081B2 (en) | 2001-09-28 | 2006-04-11 | Asml Masktools B.V. | Optical proximity correction method utilizing phase-edges as sub-resolution assist features |
JP3980469B2 (en) | 2001-10-19 | 2007-09-26 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus and device manufacturing method |
US6665054B2 (en) | 2001-10-22 | 2003-12-16 | Nikon Corporation | Two stage method |
US6927505B2 (en) | 2001-12-19 | 2005-08-09 | Nikon Corporation | Following stage planar motor |
US20030159956A1 (en) * | 2002-02-26 | 2003-08-28 | Woos Michael T. | Display backing card |
US7333178B2 (en) * | 2002-03-18 | 2008-02-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7170587B2 (en) * | 2002-03-18 | 2007-01-30 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US6724466B2 (en) | 2002-03-26 | 2004-04-20 | Nikon Corporation | Stage assembly including a damping assembly |
US7061577B2 (en) * | 2002-03-26 | 2006-06-13 | Nikon Corporation | Image adjustor including damping assembly |
US6757110B2 (en) | 2002-05-29 | 2004-06-29 | Asml Holding N.V. | Catadioptric lithography system and method with reticle stage orthogonal to wafer stage |
EP1367446A1 (en) | 2002-05-31 | 2003-12-03 | ASML Netherlands B.V. | Lithographic apparatus |
EP1369745B1 (en) | 2002-06-07 | 2013-02-27 | ASML Netherlands B.V. | Lihographic apparatus and device manufaturing method |
US6906786B2 (en) * | 2002-06-07 | 2005-06-14 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
CN100401193C (en) * | 2002-07-11 | 2008-07-09 | Asml荷兰有限公司 | Method for producing photoetching apparatus and parts |
EP1383007A1 (en) * | 2002-07-16 | 2004-01-21 | ASML Netherlands B.V. | Lithographic apparatus, and device manufacturing method |
KR100589236B1 (en) * | 2002-08-15 | 2006-06-14 | 에이에스엠엘 네델란즈 비.브이. | Lithographic projection apparatus and reflector assembly for use in said apparatus |
SG108933A1 (en) * | 2002-08-23 | 2005-02-28 | Asml Netherlands Bv | Lithographic projection apparatus and particle barrier for use in said apparatus |
US7627354B2 (en) * | 2002-08-30 | 2009-12-01 | Qualcomm Incorporated | Display format for handheld wireless communication devices |
KR100543536B1 (en) * | 2002-09-20 | 2006-01-20 | 에이에스엠엘 네델란즈 비.브이. | Lithographic marker structure, lithographic projection apparatus comprising such a lithographic marker structure and method for substrate alignment using such a lithographic marker structure |
EP2204697A3 (en) | 2002-09-20 | 2012-04-18 | ASML Netherlands B.V. | Marker structure, lithographic projection apparatus, method for substrate alignment using such a structure, and substrate comprising such marker structure |
JP3977316B2 (en) * | 2002-09-30 | 2007-09-19 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus and device manufacturing method |
TWI250387B (en) | 2002-09-30 | 2006-03-01 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
SG116510A1 (en) | 2002-11-12 | 2005-11-28 | ||
US9482966B2 (en) | 2002-11-12 | 2016-11-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10503084B2 (en) | 2002-11-12 | 2019-12-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
SG121822A1 (en) | 2002-11-12 | 2006-05-26 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
JP3953460B2 (en) | 2002-11-12 | 2007-08-08 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic projection apparatus |
EP1420298B1 (en) | 2002-11-12 | 2013-02-20 | ASML Netherlands B.V. | Lithographic apparatus |
EP1429188B1 (en) | 2002-11-12 | 2013-06-19 | ASML Netherlands B.V. | Lithographic projection apparatus |
SG137657A1 (en) | 2002-11-12 | 2007-12-28 | Asml Masktools Bv | Method and apparatus for performing model-based layout conversion for use with dipole illumination |
US7110081B2 (en) | 2002-11-12 | 2006-09-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1420302A1 (en) | 2002-11-18 | 2004-05-19 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
SG111171A1 (en) | 2002-11-27 | 2005-05-30 | Asml Netherlands Bv | Lithographic projection apparatus and device manufacturing method |
WO2004050266A1 (en) | 2002-12-03 | 2004-06-17 | Nikon Corporation | Contaminant removing method and device, and exposure method and apparatus |
DE60323927D1 (en) | 2002-12-13 | 2008-11-20 | Asml Netherlands Bv | Lithographic apparatus and method of making a device |
DE60322331D1 (en) | 2002-12-19 | 2008-09-04 | Asml Netherlands Bv | Method of making an article using a lithographic projection mask |
EP1434092A1 (en) | 2002-12-23 | 2004-06-30 | ASML Netherlands B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
CN100476585C (en) | 2002-12-23 | 2009-04-08 | Asml荷兰有限公司 | Impurity shielding with extendable slice |
TWI286674B (en) | 2002-12-27 | 2007-09-11 | Asml Netherlands Bv | Container for a mask, method of transferring lithographic masks therein and method of scanning a mask in a container |
US7594199B2 (en) | 2003-01-14 | 2009-09-22 | Asml Masktools B.V. | Method of optical proximity correction design for contact hole mask |
JP3910180B2 (en) | 2003-01-14 | 2007-04-25 | エーエスエムエル ネザーランズ ビー.ブイ. | Level sensor for lithographic apparatus |
TWI304158B (en) | 2003-01-15 | 2008-12-11 | Asml Netherlands Bv | Detection assembly and lithographic projection apparatus provided with such a detection assembly |
US6963821B2 (en) * | 2003-02-11 | 2005-11-08 | Nikon Corporation | Stage counter mass system |
WO2004075268A1 (en) | 2003-02-19 | 2004-09-02 | Nikon Corporation | Transfer method, exposure method and exposure device, and device manufacturing method |
KR101562447B1 (en) * | 2003-02-26 | 2015-10-21 | 가부시키가이샤 니콘 | Exposure apparatus and method, and method of producing apparatus |
US7206059B2 (en) * | 2003-02-27 | 2007-04-17 | Asml Netherlands B.V. | Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems |
US6943941B2 (en) * | 2003-02-27 | 2005-09-13 | Asml Netherlands B.V. | Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems |
SG115641A1 (en) | 2003-03-06 | 2005-10-28 | Asml Netherlands Bv | Device and method for manipulation and routing of a metrology beam |
TWI264620B (en) | 2003-03-07 | 2006-10-21 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
SG115631A1 (en) | 2003-03-11 | 2005-10-28 | Asml Netherlands Bv | Lithographic projection assembly, load lock and method for transferring objects |
EP1457826A1 (en) | 2003-03-11 | 2004-09-15 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1457833B1 (en) | 2003-03-11 | 2012-05-30 | ASML Netherlands B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
SG115630A1 (en) | 2003-03-11 | 2005-10-28 | Asml Netherlands Bv | Temperature conditioned load lock, lithographic apparatus comprising such a load lock and method of manufacturing a substrate with such a load lock |
EP1457825A1 (en) | 2003-03-11 | 2004-09-15 | ASML Netherlands B.V. | Lithographic apparatus, device manufacturing method and device manufactured thereby |
SG115632A1 (en) | 2003-03-11 | 2005-10-28 | Asml Netherlands Bv | Lithographic projection assembly, handling apparatus for handling substrates and method of handling a substrate |
SG125108A1 (en) | 2003-03-11 | 2006-09-29 | Asml Netherlands Bv | Assembly comprising a sensor for determining at least one of tilt and height of a substrate, a method therefor and a lithographic projection apparatus |
EP1457827A1 (en) | 2003-03-11 | 2004-09-15 | ASML Netherlands B.V. | Lithographic apparatus, device manufacturing method and device manufactured thereby |
SG146424A1 (en) | 2003-03-31 | 2008-10-30 | Asml Masktools Bv | Source and mask optimization |
US7397539B2 (en) | 2003-03-31 | 2008-07-08 | Asml Netherlands, B.V. | Transfer apparatus for transferring an object, lithographic apparatus employing such a transfer apparatus, and method of use thereof |
SG125948A1 (en) | 2003-03-31 | 2006-10-30 | Asml Netherlands Bv | Supporting structure for use in a lithographic apparatus |
US7126671B2 (en) | 2003-04-04 | 2006-10-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4394500B2 (en) | 2003-04-09 | 2010-01-06 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus, device manufacturing method, and computer program |
JP4488004B2 (en) * | 2003-04-09 | 2010-06-23 | 株式会社ニコン | Immersion lithography fluid control system |
CN104597717B (en) | 2003-04-10 | 2017-09-05 | 株式会社尼康 | Include the environmental system of the vacuum removing for immersion lithography device |
KR20170064003A (en) * | 2003-04-10 | 2017-06-08 | 가부시키가이샤 니콘 | Environmental system including a transport region for an immersion lithography apparatus |
JP4071733B2 (en) | 2003-04-17 | 2008-04-02 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus, device manufacturing method, and computer program |
DE602004019835D1 (en) | 2003-04-22 | 2009-04-23 | Asml Netherlands Bv | Carrier and method for producing a carrier |
EP1475666A1 (en) | 2003-05-06 | 2004-11-10 | ASML Netherlands B.V. | Substrate holder for lithographic apparatus |
EP1475667A1 (en) | 2003-05-09 | 2004-11-10 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
CN100437358C (en) * | 2003-05-15 | 2008-11-26 | 株式会社尼康 | Exposure apparatus and device manufacturing method |
EP1477861A1 (en) | 2003-05-16 | 2004-11-17 | ASML Netherlands B.V. | A method of calibrating a lithographic apparatus, an alignment method, a computer program, a lithographic apparatus and a device manufacturing method |
US7213963B2 (en) | 2003-06-09 | 2007-05-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1486828B1 (en) | 2003-06-09 | 2013-10-09 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP2261742A3 (en) | 2003-06-11 | 2011-05-25 | ASML Netherlands BV | Lithographic apparatus and device manufacturing method. |
EP1486824A1 (en) | 2003-06-11 | 2004-12-15 | ASML Netherlands B.V. | A movable stage system for in a lithographic projection apparatus, lithographic projection apparatus and device manufacturing method |
US20070104899A1 (en) * | 2003-06-16 | 2007-05-10 | Kornit Digital Ltd. | Process for printing images on dark surfaces |
US20070103528A1 (en) * | 2003-06-16 | 2007-05-10 | Kornit Digital Ltd. | Ink composition |
IL162231A (en) * | 2004-05-30 | 2007-05-15 | Kornit Digital Ltd | Process for direct digital inkjet printing onto a wet textile piece |
US20070103529A1 (en) * | 2003-06-16 | 2007-05-10 | Kornit Digital Ltd. | Process and system for printing images on absorptive surfaces |
TWI251129B (en) | 2003-06-27 | 2006-03-11 | Asml Netherlands Bv | Lithographic apparatus and integrated circuit manufacturing method |
EP1491967A1 (en) | 2003-06-27 | 2004-12-29 | ASML Netherlands B.V. | Method and apparatus for positioning a substrate on a substrate table |
US7355673B2 (en) | 2003-06-30 | 2008-04-08 | Asml Masktools B.V. | Method, program product and apparatus of simultaneous optimization for NA-Sigma exposure settings and scattering bars OPC using a device layout |
EP1975721A1 (en) | 2003-06-30 | 2008-10-01 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7354681B2 (en) | 2003-06-30 | 2008-04-08 | Asml Masktools B.V. | Scattering bar OPC application method for sub-half wavelength lithography patterning |
TWI284253B (en) | 2003-07-01 | 2007-07-21 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
TWI260154B (en) * | 2003-07-03 | 2006-08-11 | Fuji Photo Film Co Ltd | Image forming device |
KR101296501B1 (en) | 2003-07-09 | 2013-08-13 | 가부시키가이샤 니콘 | Exposure apparatus and method for manufacturing device |
EP1500979A1 (en) | 2003-07-21 | 2005-01-26 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7384149B2 (en) | 2003-07-21 | 2008-06-10 | Asml Netherlands B.V. | Lithographic projection apparatus, gas purging method and device manufacturing method and purge gas supply system |
EP1500987A1 (en) | 2003-07-21 | 2005-01-26 | ASML Netherlands B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
TWI245170B (en) | 2003-07-22 | 2005-12-11 | Asml Netherlands Bv | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
EP1500980A1 (en) | 2003-07-22 | 2005-01-26 | ASML Netherlands B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
KR100697299B1 (en) | 2003-07-23 | 2007-03-20 | 에이에스엠엘 네델란즈 비.브이. | Lithographic Apparatus, Device Manufacturing Method, and Device Manufactured Thereby |
EP2264535B1 (en) * | 2003-07-28 | 2013-02-13 | Nikon Corporation | Exposure apparatus, method for producing device, and method for controlling exposure apparatus |
EP1655765B1 (en) * | 2003-08-07 | 2009-04-15 | Nikon Corporation | Exposure method |
JP2005057294A (en) | 2003-08-07 | 2005-03-03 | Asml Netherlands Bv | Interface unit, lithographic projector equipped with interface, and method of manufacturing device |
JP4146825B2 (en) | 2003-08-27 | 2008-09-10 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus, device manufacturing method, and slide assembly |
TWI245163B (en) | 2003-08-29 | 2005-12-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
EP3223074A1 (en) | 2003-09-03 | 2017-09-27 | Nikon Corporation | Apparatus and method for immersion lithography for recovering fluid |
US8064730B2 (en) | 2003-09-22 | 2011-11-22 | Asml Netherlands B.V. | Device manufacturing method, orientation determination method and lithographic apparatus |
US7414759B2 (en) * | 2003-11-26 | 2008-08-19 | Samsung Electronics Co., Ltd. | Scanner linearity tester |
US7253077B2 (en) | 2003-12-01 | 2007-08-07 | Asml Netherlands B.V. | Substrate, method of preparing a substrate, method of measurement, lithographic apparatus, device manufacturing method and device manufactured thereby, and machine-readable storage medium |
US7565219B2 (en) | 2003-12-09 | 2009-07-21 | Asml Netherlands B.V. | Lithographic apparatus, method of determining a model parameter, device manufacturing method, and device manufactured thereby |
US20050134865A1 (en) | 2003-12-17 | 2005-06-23 | Asml Netherlands B.V. | Method for determining a map, device manufacturing method, and lithographic apparatus |
US7288779B2 (en) | 2003-12-17 | 2007-10-30 | Asml Netherlands B.V. | Method for position determination, method for overlay optimization, and lithographic projection apparatus |
US7113255B2 (en) | 2003-12-19 | 2006-09-26 | Asml Holding N.V. | Grating patch arrangement, lithographic apparatus, method of testing, device manufacturing method, and device manufactured thereby |
US7193722B2 (en) * | 2003-12-30 | 2007-03-20 | Asml Netherlands B.V. | Lithographic apparatus with disturbance correction system and device manufacturing method |
US7349101B2 (en) | 2003-12-30 | 2008-03-25 | Asml Netherlands B.V. | Lithographic apparatus, overlay detector, device manufacturing method, and device manufactured thereby |
US7145641B2 (en) | 2003-12-31 | 2006-12-05 | Asml Netherlands, B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
US7256873B2 (en) | 2004-01-28 | 2007-08-14 | Asml Netherlands B.V. | Enhanced lithographic resolution through double exposure |
US7221433B2 (en) | 2004-01-28 | 2007-05-22 | Nikon Corporation | Stage assembly including a reaction assembly having a connector assembly |
US7607745B2 (en) * | 2004-02-12 | 2009-10-27 | Kornit Digital Ltd. | Digital printing machine |
US7352472B2 (en) | 2004-02-18 | 2008-04-01 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method, and method for determining z-displacement |
US7113256B2 (en) | 2004-02-18 | 2006-09-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method with feed-forward focus control |
WO2005081291A1 (en) * | 2004-02-19 | 2005-09-01 | Nikon Corporation | Exposure apparatus and method of producing device |
US20070030467A1 (en) * | 2004-02-19 | 2007-02-08 | Nikon Corporation | Exposure apparatus, exposure method, and device fabricating method |
JP4974049B2 (en) * | 2004-02-20 | 2012-07-11 | 株式会社ニコン | Exposure method, exposure apparatus, and device manufacturing method |
US7625675B2 (en) | 2004-02-25 | 2009-12-01 | Oerlikon Trading Ag, Trubbach | Method for producing masks for photolithography and the use of such masks |
US7184123B2 (en) | 2004-03-24 | 2007-02-27 | Asml Netherlands B.V. | Lithographic optical system |
KR101504445B1 (en) | 2004-03-25 | 2015-03-19 | 가부시키가이샤 니콘 | Exposure apparatus and method for manufacturing device |
US7856606B2 (en) | 2004-03-31 | 2010-12-21 | Asml Masktools B.V. | Apparatus, method and program product for suppressing waviness of features to be printed using photolithographic systems |
US7034917B2 (en) * | 2004-04-01 | 2006-04-25 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and device manufactured thereby |
EP1747499A2 (en) * | 2004-05-04 | 2007-01-31 | Nikon Corporation | Apparatus and method for providing fluid for immersion lithography |
JP2005327993A (en) * | 2004-05-17 | 2005-11-24 | Canon Inc | Positioning device, exposure device, and device-manufacturing method |
US7486381B2 (en) * | 2004-05-21 | 2009-02-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US11447648B2 (en) | 2004-05-30 | 2022-09-20 | Kornit Digital Ltd. | Process and system for printing images on absorptive surfaces |
JPWO2006001282A1 (en) * | 2004-06-25 | 2008-04-17 | 株式会社ニコン | Positioning apparatus, positioning method, exposure apparatus, exposure method, and device manufacturing method |
US7403264B2 (en) | 2004-07-08 | 2008-07-22 | Asml Netherlands B.V. | Lithographic projection apparatus and a device manufacturing method using such lithographic projection apparatus |
KR101202230B1 (en) | 2004-07-12 | 2012-11-16 | 가부시키가이샤 니콘 | Exposure equipment and device manufacturing method |
EP1788694A4 (en) * | 2004-07-15 | 2014-07-02 | Nikon Corp | Planar motor equipment, stage equipment, exposure equipment and device manufacturing method |
US20080013060A1 (en) * | 2004-07-23 | 2008-01-17 | Nikon Corporation | Support Apparatus, Stage Apparatus, Exposure Apparatus, And Device Manufacturing Method |
JP4983257B2 (en) * | 2004-08-18 | 2012-07-25 | 株式会社ニコン | Exposure apparatus, device manufacturing method, measuring member, and measuring method |
US7701550B2 (en) | 2004-08-19 | 2010-04-20 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4488006B2 (en) * | 2004-10-15 | 2010-06-23 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
US7262831B2 (en) | 2004-12-01 | 2007-08-28 | Asml Netherlands B.V. | Lithographic projection apparatus and device manufacturing method using such lithographic projection apparatus |
US20060119811A1 (en) | 2004-12-07 | 2006-06-08 | Asml Netherlands B.V. | Radiation exposure apparatus comprising a gas flushing system |
US7397533B2 (en) * | 2004-12-07 | 2008-07-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7453063B2 (en) * | 2004-12-08 | 2008-11-18 | Asml Netherlands B.V. | Calibration substrate and method for calibrating a lithographic apparatus |
US7355675B2 (en) * | 2004-12-29 | 2008-04-08 | Asml Netherlands B.V. | Method for measuring information about a substrate, and a substrate for use in a lithographic apparatus |
US7193683B2 (en) | 2005-01-06 | 2007-03-20 | Nikon Corporation | Stage design for reflective optics |
JP2006202825A (en) * | 2005-01-18 | 2006-08-03 | Jsr Corp | Immersion type exposure device |
JP2006202920A (en) * | 2005-01-19 | 2006-08-03 | National Institute Of Information & Communication Technology | Processing machine |
US20090262316A1 (en) | 2005-01-31 | 2009-10-22 | Nikon Corporation | Exposure apparatus and method for producing device |
JP4565271B2 (en) * | 2005-01-31 | 2010-10-20 | 株式会社ニコン | Exposure method, exposure apparatus, and device manufacturing method |
US8692973B2 (en) * | 2005-01-31 | 2014-04-08 | Nikon Corporation | Exposure apparatus and method for producing device |
US20070258068A1 (en) * | 2005-02-17 | 2007-11-08 | Hiroto Horikawa | Exposure Apparatus, Exposure Method, and Device Fabricating Method |
US7317506B2 (en) | 2005-03-29 | 2008-01-08 | Asml Netherlands B.V. | Variable illumination source |
JP4922638B2 (en) | 2005-03-29 | 2012-04-25 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus, seal, device manufacturing method, computer program, and data recording medium |
US20070085984A1 (en) * | 2005-10-18 | 2007-04-19 | Asml Netherlands B.V. | Lithographic projection apparatus, device manufacturing method and device manufactured thereby |
US7548302B2 (en) | 2005-03-29 | 2009-06-16 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4677267B2 (en) * | 2005-04-04 | 2011-04-27 | キヤノン株式会社 | Planar stage apparatus and exposure apparatus |
USRE43576E1 (en) | 2005-04-08 | 2012-08-14 | Asml Netherlands B.V. | Dual stage lithographic apparatus and device manufacturing method |
US7738075B2 (en) | 2005-05-23 | 2010-06-15 | Asml Netherlands B.V. | Lithographic attribute enhancement |
US7838858B2 (en) | 2005-05-31 | 2010-11-23 | Nikon Corporation | Evaluation system and method of a search operation that detects a detection subject on an object |
US20070074635A1 (en) * | 2005-08-25 | 2007-04-05 | Molecular Imprints, Inc. | System to couple a body and a docking plate |
US20070064384A1 (en) * | 2005-08-25 | 2007-03-22 | Molecular Imprints, Inc. | Method to transfer a template transfer body between a motion stage and a docking plate |
US7665981B2 (en) * | 2005-08-25 | 2010-02-23 | Molecular Imprints, Inc. | System to transfer a template transfer body between a motion stage and a docking plate |
US20070046917A1 (en) | 2005-08-31 | 2007-03-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method that compensates for reticle induced CDU |
KR101388345B1 (en) | 2005-09-09 | 2014-04-22 | 가부시키가이샤 니콘 | Exposure apparatus, exposure method, and device production method |
US7948675B2 (en) * | 2005-10-11 | 2011-05-24 | Nikon Corporation | Surface-corrected multilayer-film mirrors with protected reflective surfaces, exposure systems comprising same, and associated methods |
US8011915B2 (en) | 2005-11-04 | 2011-09-06 | Asml Netherlands B.V. | Imprint lithography |
WO2007055237A1 (en) | 2005-11-09 | 2007-05-18 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
KR100768849B1 (en) * | 2005-12-06 | 2007-10-22 | 엘지전자 주식회사 | Power supply apparatus and method for line conection type fuel cell system |
TW200725195A (en) | 2005-12-06 | 2007-07-01 | Nikon Corp | Exposure method, exposure apparatus, and unit manufacturing method |
EP3327759A1 (en) | 2005-12-08 | 2018-05-30 | Nikon Corporation | Substrate holding apparatus, exposure apparatus, exposing method, and device fabricating method |
US7626181B2 (en) | 2005-12-09 | 2009-12-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8953148B2 (en) | 2005-12-28 | 2015-02-10 | Nikon Corporation | Exposure apparatus and making method thereof |
JP5182558B2 (en) | 2005-12-28 | 2013-04-17 | 株式会社ニコン | Pattern forming method and pattern forming apparatus, exposure method and exposure apparatus, and device manufacturing method |
US7649611B2 (en) | 2005-12-30 | 2010-01-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
TWI550688B (en) * | 2006-01-19 | 2016-09-21 | 尼康股份有限公司 | Liquid immersion exposure device, liquid immersion exposure method, and component manufacturing method |
WO2007102484A1 (en) | 2006-03-07 | 2007-09-13 | Nikon Corporation | Device manufacturing method, device manufacturing system, and measuring/examining instrument |
US7598024B2 (en) | 2006-03-08 | 2009-10-06 | Asml Netherlands B.V. | Method and system for enhanced lithographic alignment |
EP1843202B1 (en) | 2006-04-06 | 2015-02-18 | ASML Netherlands B.V. | Method for performing dark field double dipole lithography |
CN100504614C (en) * | 2006-04-14 | 2009-06-24 | 上海微电子装备有限公司 | Stepping scan photo-etching machine double-platform exchanging and positioning system |
TW200746259A (en) | 2006-04-27 | 2007-12-16 | Nikon Corp | Measuring and/or inspecting method, measuring and/or inspecting apparatus, exposure method, device manufacturing method, and device manufacturing apparatus |
US7583359B2 (en) | 2006-05-05 | 2009-09-01 | Asml Netherlands B.V. | Reduction of fit error due to non-uniform sample distribution |
TWI425318B (en) | 2006-06-09 | 2014-02-01 | 尼康股份有限公司 | Mobile device, exposure device and exposure method, and component manufacturing method |
US7697115B2 (en) | 2006-06-23 | 2010-04-13 | Asml Holding N.V. | Resonant scanning mirror |
CN2938172Y (en) | 2006-07-18 | 2007-08-22 | 上海微电子装备有限公司 | Exposure precision positioning system of changed by two-device |
US7675201B2 (en) * | 2006-07-25 | 2010-03-09 | Asml Netherlands B.V. | Lithographic apparatus with planar motor driven support |
US20080094592A1 (en) | 2006-08-31 | 2008-04-24 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
CN103645608B (en) | 2006-08-31 | 2016-04-20 | 株式会社尼康 | Exposure device and method, assembly manufacture method and determining method |
KR101634893B1 (en) | 2006-08-31 | 2016-06-29 | 가부시키가이샤 니콘 | Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
EP2993523B1 (en) | 2006-09-01 | 2017-08-30 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
TWI574304B (en) | 2006-09-01 | 2017-03-11 | 尼康股份有限公司 | Mobile body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, component manufacturing method, and correcting method |
US7592760B2 (en) * | 2006-09-11 | 2009-09-22 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7872730B2 (en) | 2006-09-15 | 2011-01-18 | Nikon Corporation | Immersion exposure apparatus and immersion exposure method, and device manufacturing method |
KR101413891B1 (en) * | 2006-09-29 | 2014-06-30 | 가부시키가이샤 니콘 | Exposure apparatus, exposure method, and device manufacturing method |
US20080158531A1 (en) | 2006-11-15 | 2008-07-03 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US20080212047A1 (en) * | 2006-12-28 | 2008-09-04 | Nikon Corporation | Exposure apparatus, exposing method, and device fabricating method |
US8004651B2 (en) * | 2007-01-23 | 2011-08-23 | Nikon Corporation | Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method |
CN101012549B (en) * | 2007-01-29 | 2010-05-19 | 尤耀明 | Chip carrier in silicon chip production |
US20080204687A1 (en) * | 2007-02-23 | 2008-08-28 | Nikon Corporation | Exposing method, exposure apparatus, device fabricating method, and substrate for immersion exposure |
US8237911B2 (en) | 2007-03-15 | 2012-08-07 | Nikon Corporation | Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine |
US20080225248A1 (en) * | 2007-03-15 | 2008-09-18 | Nikon Corporation | Apparatus, systems and methods for removing liquid from workpiece during workpiece processing |
US8497980B2 (en) * | 2007-03-19 | 2013-07-30 | Nikon Corporation | Holding apparatus, exposure apparatus, exposure method, and device manufacturing method |
US8134685B2 (en) * | 2007-03-23 | 2012-03-13 | Nikon Corporation | Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method |
US20080246941A1 (en) * | 2007-04-06 | 2008-10-09 | Katsura Otaki | Wavefront aberration measuring device, projection exposure apparatus, method for manufacturing projection optical system, and method for manufacturing device |
US8194322B2 (en) * | 2007-04-23 | 2012-06-05 | Nikon Corporation | Multilayer-film reflective mirror, exposure apparatus, device manufacturing method, and manufacturing method of multilayer-film reflective mirror |
US20080266651A1 (en) * | 2007-04-24 | 2008-10-30 | Katsuhiko Murakami | Optical apparatus, multilayer-film reflective mirror, exposure apparatus, and device |
US8300207B2 (en) * | 2007-05-17 | 2012-10-30 | Nikon Corporation | Exposure apparatus, immersion system, exposing method, and device fabricating method |
US20090122282A1 (en) * | 2007-05-21 | 2009-05-14 | Nikon Corporation | Exposure apparatus, liquid immersion system, exposing method, and device fabricating method |
WO2008146819A1 (en) * | 2007-05-28 | 2008-12-04 | Nikon Corporation | Exposure apparatus, device manufacturing method, cleaning device, cleaning method and exposure method |
WO2008149853A1 (en) * | 2007-06-04 | 2008-12-11 | Nikon Corporation | Environment control apparatus, stage apparatus, exposure apparatus, and device production method |
JP4968335B2 (en) * | 2007-06-11 | 2012-07-04 | 株式会社ニコン | Measuring member, sensor, measuring method, exposure apparatus, exposure method, and device manufacturing method |
US9550374B1 (en) | 2007-06-27 | 2017-01-24 | Cafepress Inc. | System and method for improved digital printing on textiles |
CN100470379C (en) * | 2007-07-19 | 2009-03-18 | 清华大学 | Photo-etching machine silicon chip platform double-platform switching system |
US9025126B2 (en) * | 2007-07-31 | 2015-05-05 | Nikon Corporation | Exposure apparatus adjusting method, exposure apparatus, and device fabricating method |
WO2009028494A1 (en) * | 2007-08-28 | 2009-03-05 | Nikon Corporation | Position detecting apparatus, position detecting method, exposure apparatus and device manufacturing method |
TW200915019A (en) * | 2007-09-07 | 2009-04-01 | Nat University Corp Yokohama Nat University | Drive control method, drive control apparatus, stage control method, stage control apparatus, exposure method, exposure apparatus and measuring apparatus |
US8711327B2 (en) * | 2007-12-14 | 2014-04-29 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US8964166B2 (en) * | 2007-12-17 | 2015-02-24 | Nikon Corporation | Stage device, exposure apparatus and method of producing device |
US20090174873A1 (en) * | 2007-12-17 | 2009-07-09 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
SG183058A1 (en) * | 2007-12-17 | 2012-08-30 | Nikon Corp | Exposure apparatus, exposure method and device manufacturing method |
US8237916B2 (en) * | 2007-12-28 | 2012-08-07 | Nikon Corporation | Movable body drive system, pattern formation apparatus, exposure apparatus and exposure method, and device manufacturing method |
US8451425B2 (en) * | 2007-12-28 | 2013-05-28 | Nikon Corporation | Exposure apparatus, exposure method, cleaning apparatus, and device manufacturing method |
TWI643035B (en) | 2007-12-28 | 2018-12-01 | 日商尼康股份有限公司 | Exposure apparatus, exposure method, and component manufacturing method |
JP5369443B2 (en) | 2008-02-05 | 2013-12-18 | 株式会社ニコン | Stage apparatus, exposure apparatus, exposure method, and device manufacturing method |
US20090218743A1 (en) * | 2008-02-29 | 2009-09-03 | Nikon Corporation | Substrate holding apparatus, exposure apparatus, exposing method, device fabricating method, plate member, and wall |
NL1036557A1 (en) | 2008-03-11 | 2009-09-14 | Asml Netherlands Bv | Method and lithographic apparatus for measuring and acquiring height data in relation to a substrate surface. |
US20100039628A1 (en) * | 2008-03-19 | 2010-02-18 | Nikon Corporation | Cleaning tool, cleaning method, and device fabricating method |
US8233139B2 (en) * | 2008-03-27 | 2012-07-31 | Nikon Corporation | Immersion system, exposure apparatus, exposing method, and device fabricating method |
JPWO2009125867A1 (en) * | 2008-04-11 | 2011-08-04 | 株式会社ニコン | Stage apparatus, exposure apparatus, and device manufacturing method |
US8654306B2 (en) * | 2008-04-14 | 2014-02-18 | Nikon Corporation | Exposure apparatus, cleaning method, and device fabricating method |
NL1036647A1 (en) | 2008-04-16 | 2009-10-19 | Asml Netherlands Bv | A method of measuring a lithographic projection apparatus. |
NL1036891A1 (en) | 2008-05-02 | 2009-11-03 | Asml Netherlands Bv | Dichroic mirror, method for manufacturing a dichroic mirror, lithographic apparatus, semiconductor device and method of manufacturing therefor. |
US9176393B2 (en) | 2008-05-28 | 2015-11-03 | Asml Netherlands B.V. | Lithographic apparatus and a method of operating the apparatus |
NL2002935A1 (en) | 2008-06-27 | 2009-12-29 | Asml Netherlands Bv | Object support positioning device and lithographic apparatus. |
US20100165309A1 (en) * | 2008-07-10 | 2010-07-01 | Nikon Corporation | Deformation measuring apparatus, exposure apparatus, jig for the deformation measuring apparatus, position measuring method and device fabricating method |
US20100045949A1 (en) * | 2008-08-11 | 2010-02-25 | Nikon Corporation | Exposure apparatus, maintaining method and device fabricating method |
DE102009045008A1 (en) | 2008-10-15 | 2010-04-29 | Carl Zeiss Smt Ag | EUV lithography apparatus and method for processing a mask |
US8896806B2 (en) | 2008-12-29 | 2014-11-25 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US20100196832A1 (en) * | 2009-01-30 | 2010-08-05 | Nikon Corporation | Exposure apparatus, exposing method, liquid immersion member and device fabricating method |
JP5482784B2 (en) | 2009-03-10 | 2014-05-07 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
CN101551598B (en) | 2009-04-03 | 2010-12-01 | 清华大学 | Double-stage switching system of photoetching machine wafer stage |
CN101571676B (en) * | 2009-04-03 | 2010-12-01 | 清华大学 | Photoetching machine wafer stage dual-stage switching system |
NL2004322A (en) | 2009-04-13 | 2010-10-14 | Asml Netherlands Bv | Cooling device, cooling arrangement and lithographic apparatus comprising a cooling arrangement. |
NL2004242A (en) | 2009-04-13 | 2010-10-14 | Asml Netherlands Bv | Detector module, cooling arrangement and lithographic apparatus comprising a detector module. |
US8953143B2 (en) * | 2009-04-24 | 2015-02-10 | Nikon Corporation | Liquid immersion member |
US8202671B2 (en) | 2009-04-28 | 2012-06-19 | Nikon Corporation | Protective apparatus, mask, mask forming apparatus, mask forming method, exposure apparatus, device fabricating method, and foreign matter detecting apparatus |
US20110085152A1 (en) * | 2009-05-07 | 2011-04-14 | Hideaki Nishino | Vibration control apparatus, vibration control method, exposure apparatus, and device manufacturing method |
US20100323303A1 (en) * | 2009-05-15 | 2010-12-23 | Nikon Corporation | Liquid immersion member, exposure apparatus, exposing method, and device fabricating method |
IT1399285B1 (en) * | 2009-07-03 | 2013-04-11 | Applied Materials Inc | SUBSTRATE PROCESSING SYSTEM |
DE102009033319B4 (en) | 2009-07-15 | 2019-02-21 | Carl Zeiss Microscopy Gmbh | Particle beam microscopy system and method of operating the same |
US8540358B2 (en) * | 2009-08-10 | 2013-09-24 | Kornit Digital Ltd. | Inkjet compositions and processes for stretchable substrates |
US20110199591A1 (en) * | 2009-10-14 | 2011-08-18 | Nikon Corporation | Exposure apparatus, exposing method, maintenance method and device fabricating method |
US10061214B2 (en) | 2009-11-09 | 2018-08-28 | Nikon Corporation | Exposure apparatus, exposure method, exposure apparatus maintenance method, exposure apparatus adjustment method and device manufacturing method |
CN101727019B (en) * | 2009-12-15 | 2011-05-11 | 清华大学 | Double-platform exchange system for silicon chip platform of lithography machine and exchange method thereof |
CN102652349A (en) | 2009-12-28 | 2012-08-29 | 株式会社尼康 | Liquid immersion member, method for manufacturing liquid immersion member, exposure apparatus, and device manufacturing method |
JP5741859B2 (en) | 2010-01-08 | 2015-07-01 | 株式会社ニコン | Immersion member, exposure apparatus, exposure method, and device manufacturing method |
US20110222031A1 (en) * | 2010-03-12 | 2011-09-15 | Nikon Corporation | Liquid immersion member, exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium |
NL2006285A (en) * | 2010-03-31 | 2011-10-03 | Asml Netherlands Bv | Lithographic apparatus, device manufacturing method, and substrate exchanging method. |
EP2381310B1 (en) | 2010-04-22 | 2015-05-06 | ASML Netherlands BV | Fluid handling structure and lithographic apparatus |
US20120013864A1 (en) | 2010-07-14 | 2012-01-19 | Nikon Corporation | Liquid immersion member, immersion exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium |
US20120013863A1 (en) | 2010-07-14 | 2012-01-19 | Nikon Corporation | Liquid immersion member, immersion exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium |
US8937703B2 (en) | 2010-07-14 | 2015-01-20 | Nikon Corporation | Liquid immersion member, immersion exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium |
US20120012191A1 (en) | 2010-07-16 | 2012-01-19 | Nikon Corporation | Liquid recovery apparatus, exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium |
US20120019802A1 (en) | 2010-07-23 | 2012-01-26 | Nikon Corporation | Cleaning method, immersion exposure apparatus, device fabricating method, program, and storage medium |
US20120019803A1 (en) | 2010-07-23 | 2012-01-26 | Nikon Corporation | Cleaning method, liquid immersion member, immersion exposure apparatus, device fabricating method, program, and storage medium |
US20120019804A1 (en) | 2010-07-23 | 2012-01-26 | Nikon Corporation | Cleaning method, cleaning apparatus, device fabricating method, program, and storage medium |
US8926080B2 (en) | 2010-08-10 | 2015-01-06 | Kornit Digital Ltd. | Formaldehyde-free inkjet compositions and processes |
EP2469339B1 (en) * | 2010-12-21 | 2017-08-30 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US20120162619A1 (en) | 2010-12-27 | 2012-06-28 | Nikon Corporation | Liquid immersion member, immersion exposure apparatus, exposing method, device fabricating method, program, and storage medium |
US20120188521A1 (en) | 2010-12-27 | 2012-07-26 | Nikon Corporation | Cleaning method, liquid immersion member, immersion exposure apparatus, device fabricating method, program and storage medium |
US9746787B2 (en) | 2011-02-22 | 2017-08-29 | Nikon Corporation | Holding apparatus, exposure apparatus and manufacturing method of device |
US20130016329A1 (en) | 2011-07-12 | 2013-01-17 | Nikon Corporation | Exposure apparatus, exposure method, measurement method, and device manufacturing method |
US9329496B2 (en) | 2011-07-21 | 2016-05-03 | Nikon Corporation | Exposure apparatus, exposure method, method of manufacturing device, program, and storage medium |
US9256137B2 (en) | 2011-08-25 | 2016-02-09 | Nikon Corporation | Exposure apparatus, liquid holding method, and device manufacturing method |
US20130050666A1 (en) | 2011-08-26 | 2013-02-28 | Nikon Corporation | Exposure apparatus, liquid holding method, and device manufacturing method |
WO2013073538A1 (en) | 2011-11-17 | 2013-05-23 | 株式会社ニコン | Encoder device, movement amount measurement method, optical device, and exposure method and device |
US20130135594A1 (en) | 2011-11-25 | 2013-05-30 | Nikon Corporation | Liquid immersion member, immersion exposure apparatus, exposure method, device manufacturing method, program, and recording medium |
US20130169944A1 (en) | 2011-12-28 | 2013-07-04 | Nikon Corporation | Exposure apparatus, exposure method, device manufacturing method, program, and recording medium |
US9207549B2 (en) | 2011-12-29 | 2015-12-08 | Nikon Corporation | Exposure apparatus and exposure method, and device manufacturing method with encoder of higher reliability for position measurement |
US9360772B2 (en) | 2011-12-29 | 2016-06-07 | Nikon Corporation | Carrier method, exposure method, carrier system and exposure apparatus, and device manufacturing method |
US9753381B2 (en) | 2012-03-27 | 2017-09-05 | Asml Netherlands B.V. | Substrate table system, lithographic apparatus and substrate table swapping method |
US9323160B2 (en) | 2012-04-10 | 2016-04-26 | Nikon Corporation | Liquid immersion member, exposure apparatus, exposure method, device fabricating method, program, and recording medium |
US9268231B2 (en) | 2012-04-10 | 2016-02-23 | Nikon Corporation | Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium |
US9606447B2 (en) | 2012-05-21 | 2017-03-28 | Nikon Corporation | Reflective mirror, projection optical system, exposure apparatus, and device manufacturing method |
US9823580B2 (en) | 2012-07-20 | 2017-11-21 | Nikon Corporation | Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium |
US9494870B2 (en) | 2012-10-12 | 2016-11-15 | Nikon Corporation | Exposure apparatus, exposing method, device manufacturing method, program, and recording medium |
US9568828B2 (en) | 2012-10-12 | 2017-02-14 | Nikon Corporation | Exposure apparatus, exposing method, device manufacturing method, program, and recording medium |
US9720331B2 (en) | 2012-12-27 | 2017-08-01 | Nikon Corporation | Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium |
US9651873B2 (en) | 2012-12-27 | 2017-05-16 | Nikon Corporation | Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium |
JP6119242B2 (en) | 2012-12-27 | 2017-04-26 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
US9352073B2 (en) | 2013-01-22 | 2016-05-31 | Niko Corporation | Functional film |
US9057955B2 (en) | 2013-01-22 | 2015-06-16 | Nikon Corporation | Functional film, liquid immersion member, method of manufacturing liquid immersion member, exposure apparatus, and device manufacturing method |
WO2014132923A1 (en) | 2013-02-28 | 2014-09-04 | 株式会社ニコン | Sliding film, member on which sliding film is formed, and manufacturing method therefor |
JP5344105B1 (en) | 2013-03-08 | 2013-11-20 | ウシオ電機株式会社 | Polarizing light irradiation apparatus for photo-alignment and polarized light irradiation method for photo-alignment |
WO2014181858A1 (en) | 2013-05-09 | 2014-11-13 | 株式会社ニコン | Optical element, projection optical system, exposure apparatus, and device manufacturing method |
WO2015001805A1 (en) | 2013-07-05 | 2015-01-08 | 株式会社ニコン | Multilayer film reflector, multilayer film reflector manufacturing method, projection optical system, exposure apparatus, device manufacturing method |
EP3057122B1 (en) | 2013-10-08 | 2018-11-21 | Nikon Corporation | Immersion member, exposure apparatus, exposure method, and device manufacturing method |
CN106483778B (en) * | 2015-08-31 | 2018-03-30 | 上海微电子装备(集团)股份有限公司 | Based on relative position measurement to Barebone, double-workpiece-table system and measuring system |
EP3387481B1 (en) | 2015-12-07 | 2024-09-25 | ASML Holding N.V. | Objective lens system |
EP3532548B1 (en) | 2016-10-31 | 2024-04-24 | Kornit Digital Ltd. | Dye-sublimation inkjet printing for textile |
US11537051B2 (en) | 2017-03-16 | 2022-12-27 | Nikon Corporation | Control apparatus and control method, exposure apparatus and exposure method, device manufacturing method, data generating method and program |
JP2021500437A (en) | 2017-10-22 | 2021-01-07 | コーニット・デジタル・リミテッド | Low friction image by inkjet printing |
CN111965945A (en) * | 2020-08-12 | 2020-11-20 | Tcl华星光电技术有限公司 | Exposure platform device and exposure machine |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3679874A (en) | 1970-07-06 | 1972-07-25 | Bendix Corp | Automatic baggage handling system |
GB2155201A (en) | 1984-02-24 | 1985-09-18 | Canon Kk | X-ray exposure apparatus |
US4768064A (en) | 1983-07-13 | 1988-08-30 | Canon Kabushiki Kaisha | Conveyor device for alignment |
JPH03273607A (en) | 1990-03-23 | 1991-12-04 | Canon Inc | Moving table system |
US5073912A (en) | 1988-11-16 | 1991-12-17 | Hitachi, Ltd. | Sample moving apparatus, sample moving system and semiconductor manufacturing apparatus |
EP0498496A1 (en) | 1991-02-05 | 1992-08-12 | Koninklijke Philips Electronics N.V. | Lithographic device with a suspended object table |
EP0525872A1 (en) | 1991-07-30 | 1993-02-03 | Koninklijke Philips Electronics N.V. | Positioning device having two manipulators operating in parallel, and optical lithographic device provided with such a positioning device |
US5208497A (en) | 1989-04-17 | 1993-05-04 | Sharp Kabushiki Kaisha | Linear driving apparatus |
EP0687957A1 (en) | 1994-06-17 | 1995-12-20 | International Business Machines Corporation | A multi-task semiconductor wafer stepper |
GB2290658A (en) | 1994-06-27 | 1996-01-03 | Nikon Corp | Electromagnetic alignment and scanning apparatus |
US5763966A (en) | 1995-03-15 | 1998-06-09 | Hinds; Walter E. | Single plane motor system generating orthogonal movement |
US5826129A (en) * | 1994-06-30 | 1998-10-20 | Tokyo Electron Limited | Substrate processing system |
US5969441A (en) * | 1996-12-24 | 1999-10-19 | Asm Lithography Bv | Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device |
US6027262A (en) * | 1996-09-03 | 2000-02-22 | Tokyo Electron Limited | Resist process method and system |
US6262796B1 (en) * | 1997-03-10 | 2001-07-17 | Asm Lithography B.V. | Positioning device having two object holders |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4236851A (en) * | 1978-01-05 | 1980-12-02 | Kasper Instruments, Inc. | Disc handling system and method |
-
1998
- 1998-02-27 US US10/347,491 patent/USRE40043E1/en not_active Expired - Lifetime
- 1998-02-27 US US09/180,011 patent/US6262796B1/en not_active Ceased
- 1998-02-27 DE DE69829614T patent/DE69829614T2/en not_active Expired - Fee Related
- 1998-02-27 EP EP98903239A patent/EP0900412B1/en not_active Expired - Lifetime
- 1998-02-27 JP JP52928498A patent/JP3626504B2/en not_active Expired - Fee Related
- 1998-02-27 WO PCT/IB1998/000254 patent/WO1998040791A1/en active IP Right Grant
- 1998-04-22 TW TW087106163A patent/TW452546B/en not_active IP Right Cessation
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3679874A (en) | 1970-07-06 | 1972-07-25 | Bendix Corp | Automatic baggage handling system |
US4768064A (en) | 1983-07-13 | 1988-08-30 | Canon Kabushiki Kaisha | Conveyor device for alignment |
GB2155201A (en) | 1984-02-24 | 1985-09-18 | Canon Kk | X-ray exposure apparatus |
US5073912A (en) | 1988-11-16 | 1991-12-17 | Hitachi, Ltd. | Sample moving apparatus, sample moving system and semiconductor manufacturing apparatus |
US5208497A (en) | 1989-04-17 | 1993-05-04 | Sharp Kabushiki Kaisha | Linear driving apparatus |
JPH03273607A (en) | 1990-03-23 | 1991-12-04 | Canon Inc | Moving table system |
EP0498496A1 (en) | 1991-02-05 | 1992-08-12 | Koninklijke Philips Electronics N.V. | Lithographic device with a suspended object table |
EP0525872A1 (en) | 1991-07-30 | 1993-02-03 | Koninklijke Philips Electronics N.V. | Positioning device having two manipulators operating in parallel, and optical lithographic device provided with such a positioning device |
EP0687957A1 (en) | 1994-06-17 | 1995-12-20 | International Business Machines Corporation | A multi-task semiconductor wafer stepper |
US5715064A (en) * | 1994-06-17 | 1998-02-03 | International Business Machines Corporation | Step and repeat apparatus having enhanced accuracy and increased throughput |
GB2290658A (en) | 1994-06-27 | 1996-01-03 | Nikon Corp | Electromagnetic alignment and scanning apparatus |
US5826129A (en) * | 1994-06-30 | 1998-10-20 | Tokyo Electron Limited | Substrate processing system |
US5763966A (en) | 1995-03-15 | 1998-06-09 | Hinds; Walter E. | Single plane motor system generating orthogonal movement |
US6027262A (en) * | 1996-09-03 | 2000-02-22 | Tokyo Electron Limited | Resist process method and system |
US5969441A (en) * | 1996-12-24 | 1999-10-19 | Asm Lithography Bv | Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device |
US6262796B1 (en) * | 1997-03-10 | 2001-07-17 | Asm Lithography B.V. | Positioning device having two object holders |
Cited By (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8848166B2 (en) | 2003-04-11 | 2014-09-30 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US8269946B2 (en) | 2003-04-11 | 2012-09-18 | Nikon Corporation | Cleanup method for optics in immersion lithography supplying cleaning liquid at different times than immersion liquid |
US9958786B2 (en) | 2003-04-11 | 2018-05-01 | Nikon Corporation | Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer |
US9946163B2 (en) | 2003-04-11 | 2018-04-17 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US20110026000A1 (en) * | 2003-04-11 | 2011-02-03 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US20070247602A1 (en) * | 2003-04-11 | 2007-10-25 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US8351019B2 (en) | 2003-04-11 | 2013-01-08 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US20070252965A1 (en) * | 2003-04-11 | 2007-11-01 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US20070273857A1 (en) * | 2003-04-11 | 2007-11-29 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US9500960B2 (en) | 2003-04-11 | 2016-11-22 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US9329493B2 (en) | 2003-04-11 | 2016-05-03 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US8493545B2 (en) | 2003-04-11 | 2013-07-23 | Nikon Corporation | Cleanup method for optics in immersion lithography supplying cleaning liquid onto a surface of object below optical element, liquid supply port and liquid recovery port |
US20080074634A1 (en) * | 2003-04-11 | 2008-03-27 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US20080100813A1 (en) * | 2003-04-11 | 2008-05-01 | Nikon Corporation | Cleanup method for optics in immersion lithography |
US8269944B2 (en) | 2003-04-11 | 2012-09-18 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US8488100B2 (en) | 2003-04-11 | 2013-07-16 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US20090161084A1 (en) * | 2003-04-11 | 2009-06-25 | Nikon Corporation | Cleanup method for optics in immersion lithography |
US8085381B2 (en) | 2003-04-11 | 2011-12-27 | Nikon Corporation | Cleanup method for optics in immersion lithography using sonic device |
US9081298B2 (en) | 2003-04-11 | 2015-07-14 | Nikon Corporation | Apparatus for maintaining immersion fluid in the gap under the projection lens during wafer exchange using a co-planar member in an immersion lithography machine |
US20090195762A1 (en) * | 2003-04-11 | 2009-08-06 | Nikon Corporation | Cleanup method for optics in immersion lithography |
US8879047B2 (en) | 2003-04-11 | 2014-11-04 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens using a pad member or second stage during wafer exchange in an immersion lithography machine |
US8848168B2 (en) | 2003-04-11 | 2014-09-30 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US8514367B2 (en) | 2003-04-11 | 2013-08-20 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US20090174872A1 (en) * | 2003-04-11 | 2009-07-09 | Nikon Corporation | Cleanup method for optics in immersion lithography |
US20100203455A1 (en) * | 2003-04-11 | 2010-08-12 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US20070132975A1 (en) * | 2003-04-11 | 2007-06-14 | Nikon Corporation | Cleanup method for optics in immersion lithography |
US8670103B2 (en) | 2003-04-11 | 2014-03-11 | Nikon Corporation | Cleanup method for optics in immersion lithography using bubbles |
US8670104B2 (en) | 2003-04-11 | 2014-03-11 | Nikon Corporation | Cleanup method for optics in immersion lithography with cleaning liquid opposed by a surface of object |
US8634057B2 (en) | 2003-04-11 | 2014-01-21 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US8035795B2 (en) | 2003-04-11 | 2011-10-11 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the protection lens during wafer exchange in an immersion lithography machine |
US8610875B2 (en) | 2003-04-11 | 2013-12-17 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US8760617B2 (en) | 2003-05-23 | 2014-06-24 | Nikon Corporation | Exposure apparatus and method for producing device |
US20110199594A1 (en) * | 2003-05-23 | 2011-08-18 | Nikon Corporation | Exposure apparatus and method for producing device |
US8780327B2 (en) | 2003-05-23 | 2014-07-15 | Nikon Corporation | Exposure apparatus and method for producing device |
US8072576B2 (en) | 2003-05-23 | 2011-12-06 | Nikon Corporation | Exposure apparatus and method for producing device |
US9304392B2 (en) | 2003-05-23 | 2016-04-05 | Nikon Corporation | Exposure apparatus and method for producing device |
US8125612B2 (en) | 2003-05-23 | 2012-02-28 | Nikon Corporation | Exposure apparatus and method for producing device |
US8130363B2 (en) | 2003-05-23 | 2012-03-06 | Nikon Corporation | Exposure apparatus and method for producing device |
US8134682B2 (en) | 2003-05-23 | 2012-03-13 | Nikon Corporation | Exposure apparatus and method for producing device |
US8169592B2 (en) | 2003-05-23 | 2012-05-01 | Nikon Corporation | Exposure apparatus and method for producing device |
US8174668B2 (en) | 2003-05-23 | 2012-05-08 | Nikon Corporation | Exposure apparatus and method for producing device |
US20080225250A1 (en) * | 2003-05-23 | 2008-09-18 | Nikon Corporation | Exposure apparatus and method for producing device |
US20080225249A1 (en) * | 2003-05-23 | 2008-09-18 | Nikon Corporation | Exposure apparatus and method for producing device |
US20080030696A1 (en) * | 2003-05-23 | 2008-02-07 | Nikon Corporation | Exposure apparatus and method for producing device |
US20070247600A1 (en) * | 2003-05-23 | 2007-10-25 | Nikon Corporation | Exposure apparatus and method for producing device |
US8384877B2 (en) | 2003-05-23 | 2013-02-26 | Nikon Corporation | Exposure apparatus and method for producing device |
US9939739B2 (en) | 2003-05-23 | 2018-04-10 | Nikon Corporation | Exposure apparatus and method for producing device |
US7812925B2 (en) | 2003-06-19 | 2010-10-12 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8705001B2 (en) | 2003-06-19 | 2014-04-22 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8319941B2 (en) | 2003-06-19 | 2012-11-27 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US10191388B2 (en) | 2003-06-19 | 2019-01-29 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US10007188B2 (en) | 2003-06-19 | 2018-06-26 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US20070211234A1 (en) * | 2003-06-19 | 2007-09-13 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US9810995B2 (en) | 2003-06-19 | 2017-11-07 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US9551943B2 (en) | 2003-06-19 | 2017-01-24 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8018575B2 (en) | 2003-06-19 | 2011-09-13 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US20080002166A1 (en) * | 2003-06-19 | 2008-01-03 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8436979B2 (en) | 2003-06-19 | 2013-05-07 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US20110025996A1 (en) * | 2003-06-19 | 2011-02-03 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8692976B2 (en) | 2003-06-19 | 2014-04-08 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8027027B2 (en) | 2003-06-19 | 2011-09-27 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8436978B2 (en) | 2003-06-19 | 2013-05-07 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US9274437B2 (en) | 2003-06-19 | 2016-03-01 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US20090190112A1 (en) * | 2003-06-19 | 2009-07-30 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8717537B2 (en) | 2003-06-19 | 2014-05-06 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8724085B2 (en) | 2003-06-19 | 2014-05-13 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US9025129B2 (en) | 2003-06-19 | 2015-05-05 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US9019473B2 (en) | 2003-06-19 | 2015-04-28 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US9001307B2 (en) | 2003-06-19 | 2015-04-07 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8767177B2 (en) | 2003-06-19 | 2014-07-01 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US20060132740A1 (en) * | 2003-06-19 | 2006-06-22 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8830445B2 (en) | 2003-06-19 | 2014-09-09 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US20090296067A1 (en) * | 2004-02-02 | 2009-12-03 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US8553203B2 (en) | 2004-02-02 | 2013-10-08 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US20090231564A1 (en) * | 2004-02-02 | 2009-09-17 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US8045136B2 (en) | 2004-02-02 | 2011-10-25 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US8736808B2 (en) | 2004-02-02 | 2014-05-27 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US8724079B2 (en) | 2004-02-02 | 2014-05-13 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US8711328B2 (en) | 2004-02-02 | 2014-04-29 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US8705002B2 (en) | 2004-02-02 | 2014-04-22 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US10139737B2 (en) | 2004-02-02 | 2018-11-27 | Nikon Corporation | Lithographic apparatus and method having substrate and sensor tables |
US20110051104A1 (en) * | 2004-02-02 | 2011-03-03 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US10007196B2 (en) | 2004-02-02 | 2018-06-26 | Nikon Corporation | Lithographic apparatus and method having substrate and sensor tables |
US20090296069A1 (en) * | 2004-02-02 | 2009-12-03 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US9632431B2 (en) | 2004-02-02 | 2017-04-25 | Nikon Corporation | Lithographic apparatus and method having substrate and sensor tables |
US20070247607A1 (en) * | 2004-02-02 | 2007-10-25 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US9665016B2 (en) | 2004-02-02 | 2017-05-30 | Nikon Corporation | Lithographic apparatus and method having substrate table and sensor table to hold immersion liquid |
US9684248B2 (en) | 2004-02-02 | 2017-06-20 | Nikon Corporation | Lithographic apparatus having substrate table and sensor table to measure a patterned beam |
US8547528B2 (en) | 2004-02-02 | 2013-10-01 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US9645505B2 (en) | 2004-06-09 | 2017-05-09 | Nikon Corporation | Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid |
US20070242247A1 (en) * | 2004-06-09 | 2007-10-18 | Kenichi Shiraishi | Exposure apparatus and device manufacturing method |
US8525971B2 (en) | 2004-06-09 | 2013-09-03 | Nikon Corporation | Lithographic apparatus with cleaning of substrate table |
US8520184B2 (en) | 2004-06-09 | 2013-08-27 | Nikon Corporation | Immersion exposure apparatus and device manufacturing method with measuring device |
US20070291239A1 (en) * | 2004-06-09 | 2007-12-20 | Kenichi Shiraishi | Exposure Apparatus and Device Manufacturing Method |
US8704997B2 (en) | 2004-06-09 | 2014-04-22 | Nikon Corporation | Immersion lithographic apparatus and method for rinsing immersion space before exposure |
US20100053588A1 (en) * | 2008-08-29 | 2010-03-04 | Nikon Corporation | Substrate Stage movement patterns for high throughput While Imaging a Reticle to a pair of Imaging Locations |
Also Published As
Publication number | Publication date |
---|---|
WO1998040791A1 (en) | 1998-09-17 |
DE69829614D1 (en) | 2005-05-12 |
EP0900412B1 (en) | 2005-04-06 |
TW452546B (en) | 2001-09-01 |
DE69829614T2 (en) | 2006-03-09 |
JP2000511704A (en) | 2000-09-05 |
US6262796B1 (en) | 2001-07-17 |
EP0900412A1 (en) | 1999-03-10 |
JP3626504B2 (en) | 2005-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE40043E1 (en) | Positioning device having two object holders | |
EP0890136B9 (en) | Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device | |
US7289194B2 (en) | Positioning apparatus, exposure apparatus, and device manufacturing method | |
US7009683B2 (en) | Exposure apparatus | |
EP0894287B1 (en) | Two-dimensionally balanced positioning device, and lithographic device provided with such a positioning device | |
US6665054B2 (en) | Two stage method | |
EP1014199B1 (en) | Stage control apparatus, exposure apparatus and method of manufacturing a semiconductor device | |
KR20060086495A (en) | Aligner and method for exposure | |
US6054784A (en) | Positioning device having three coil systems mutually enclosing angles of 120° and lithographic device comprising such a positioning device | |
KR101384440B1 (en) | Article loading/unloading method and article loading/unloading device, exposure method and exposure apparatus, and method of manufacturing device | |
US5150152A (en) | Exposure apparatus including device for determining movement of an object | |
EP1450208A1 (en) | Lithographic apparatus having two object holders | |
KR100536209B1 (en) | Positioning device equipped with two object holders | |
US6122059A (en) | Scanning exposure apparatus and device fabrication method in which multiple laser interferometers use a respective laser head | |
JP3531899B2 (en) | Projection exposure apparatus and device manufacturing method | |
JP3483403B2 (en) | Exposure equipment | |
JP2002141267A (en) | Adjustment method aligner, and exposing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |