CN107272978A - 触屏传感器 - Google Patents

触屏传感器 Download PDF

Info

Publication number
CN107272978A
CN107272978A CN201710515322.3A CN201710515322A CN107272978A CN 107272978 A CN107272978 A CN 107272978A CN 201710515322 A CN201710515322 A CN 201710515322A CN 107272978 A CN107272978 A CN 107272978A
Authority
CN
China
Prior art keywords
pattern
micro
area
touch screen
conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710515322.3A
Other languages
English (en)
Other versions
CN107272978B (zh
Inventor
马修·H·弗雷
祖丽君
爱德华·S·哈格莫泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41012807&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN107272978(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN107272978A publication Critical patent/CN107272978A/zh
Application granted granted Critical
Publication of CN107272978B publication Critical patent/CN107272978B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0073Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces
    • H05K3/0079Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces characterised by the method of application or removal of the mask
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Position Input By Displaying (AREA)
  • Laminated Bodies (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本发明公开了一种触屏传感器,所述触屏传感器具有可见光透明基底和导电微图案,所述导电微图案设置在所述可见光透明基底之上或之内。所述微图案包括触摸感测区域内的第一区域微图案,以及第二区域微图案。所述第一区域微图案在第一方向具有第一薄层电阻值,所述第一区域微图案对可见光透明,并且具有至少90%的开放区域。所述第二区域微图案在所述第一方向具有第二薄层电阻值。所述第一薄层电阻值不同于所述第二薄层电阻值。

Description

触屏传感器
本申请是申请日为2009年2月26日、申请号为200980114050.X(国际申请号为PCT/US2009/035250)、发明名称为“触屏传感器”的发明专利申请的分案申请。
相关专利申请的交叉引用
本专利申请要求下列美国临时专利申请的优先权:No.61/032,269,2008年2月28日提交,该专利的公开内容全文以引用方式并入本文;No.61/032,273,2008年2月28日提交,该专利的公开内容全文以引用方式并入本文;No.61/085,496,2008年8月1日提交,该专利的公开内容全文以引用方式并入本文;和No.61/085,764,2008年8月1日提交,该专利的公开内容全文以引用方式并入本文。
背景技术
触屏传感器检测施加到触屏显示器表面的物体(如手指或触笔)的位置或设置在触屏显示器表面附近的物体的位置。这种传感器沿着显示器表面(即在平坦的矩形显示器的平面内)检测物体的位置。触屏传感器的实例包括电容式传感器、电阻式传感器和投射电容式传感器。这种传感器包括覆盖显示器的透明导电元件。导电元件与电子元件结合使用,电子元件使用电信号探测导电元件,以便确定靠近或接触显示器的物体的位置。
在触屏传感器领域,需要在不降低显示器光学质量或性质的情况下改善对透明触屏传感器的电气性质的控制。典型触屏传感器的透明导电区域包括透明导电氧化物(TCO)(例如铟锡氧化物(ITO))的连续涂层,该涂层显示具有基于电压源的接触位置和区域总体形状的电势梯度。该事实导致可能的触摸传感器设计和传感器性能受到约束,并且需要通过昂贵的信号处理电子器件或设置额外的电极来改变电势梯度。因此,需要对与上述因素无关的电势梯度进行控制的透明导电元件。
此外,在触屏传感器领域还存在与导电元件的设计灵活性有关的需求。使用图案化透明导电氧化物(TCO)(例如铟锡氧化物(ITO))制造触屏传感器往往会限制导体的设计。该限制与由具有各向同性的单一薄层电阻值的透明薄层导体形成的所有导电元件图案化过程中产生的约束有关。
发明内容
在一个方面,本发明涉及具有透明基底和微图案化导体(通常为金属)的触屏传感器,其中微图案化导体具有指定图案的几何形状,以实现较高的光学质量。通常,光学质量可以用可见光透射率、雾度和导体可见度来表示,这些指标在将导体组装在触屏传感器中之后通过用肉眼观察来确定。微图案化导体的几何形状可由参数限定,例如(但不限于)用于微图案的导线(有时称为“线条”)的宽度、线条密度和线条密度的均匀度。
在第一实施例中,就光学质量良好的触屏传感器而言,触屏传感器具有可见光透明基底,以及设置在可见光透明基底之上或之内的导电微图案。该微图案的导线宽度为约[X+0.5]微米;以及开放区域比率介于约[95-X]%和99.5%之间,其中0≤X≤4.5。在另一个实施例中,触屏传感器的开放区域比率介于约[98.5-(2.5X÷3.5)]%和[99.5-(X÷3.5)]%之间,其中0≤X≤3.5。在另一个实施例中,触屏传感器的雾度值为小于10%(优选小于5%),并且可见光透射率为大于75%(优选大于85%)。在另一个实施例中,触屏传感器的导线宽度为小于约6微米,并且间距为小于约300微米。在另一个实施例中,触屏传感器的导线的厚度为小于约500纳米。在另一个实施例中,导线间距为约1mm至4mm,宽度为小于3微米至10微米。
在另一方面,本发明涉及具有可变薄层电阻的触屏传感器。
在第一实施例中,就具有可变薄层电阻的触屏传感器而言,传感器具有可见光透明基底,以及设置在可见光透明基底之上或之内的导电微图案。微图案包括触摸感测区域内的第一区域微图案,以及第二区域微图案。第一区域微图案在第一方向具有第一薄层电阻值,该微图案对可见光透明,并且具有至少90%的开放区域。第二区域微图案在第一方向具有第二薄层电阻值。第一薄层电阻值不同于第二薄层电阻值。
在另一个实施例中,就具有可变薄层电阻的触屏传感器而言,传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案,第一区域微图案具有各向异性的第一薄层电阻,该微图案对可见光透明,并且具有至少90%的开放区域。
在另一个实施例中,就具有可变薄层电阻的触屏传感器而言,传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。微图案包括触摸感测区域内的第一区域微图案,以及第二区域微图案。导电微图案具有金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案在第一方向的第一薄层电阻值每平方在5Ω和500Ω之间,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域;在另一个实施例中,该微图案具有甚至99.9%的开放区域,或甚至99.95%的开放区域。第二区域微图案在第一方向具有第二薄层电阻值。第一薄层电阻值不同于第二薄层电阻值。
在另一个实施例中,就具有可变薄层电阻的触屏传感器而言,传感器具有可见光透明基底,以及设置在可见光透明基底之上或之内的导电微图案。微图案包括触摸感测区域内的第一区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案具有各向异性的第一薄层电阻,并且相互正交方向的薄层电阻值差的比率为至少1.5,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。
在其它实施例中,描述了触屏传感器,该触屏传感器具有可见光透明基底,以及设置在可见光透明基底之上或之内的触敏导电微图案;其中微图案包括宽度介于约1微米和10微米之间的导线。
附图说明
结合以下附图对本发明的多个实施例的详细说明,可以更全面地理解本发明,其中:
图1示出了触屏传感器100的示意图;
图2示出了触屏感测区域内对可见光透明的导电区域的透视图;
图3示出了使用UV激光器固化导电性油墨以用于生成微导体的方法;
图4示出了用于生成微导体的凹版印刷法;
图5示出了填充有导电材料的微复制凹槽的剖视图;
图6示出了与填充有导电材料的微复制凹槽电容耦合的手指;
图7示出了在柔性基底上制备的微导体的图案,可用于制备触摸传感器;
图8示出了以顺维方向印刷在柔性网材料上的平行微导体;
图9示出了图8中的柔性材料的一部分,上面增加了额外的互连导体;
图10示出了由图9中的两层材料构造的矩阵触摸传感器的实例的剖视图;
图11示出了触屏传感器的一个实施例的导电微图案;
图12示出了图3所示导电微图案的一部分,该部分包括具有用来调节局部薄层电阻的选择性断点的导电网格,以及具有触摸垫形式的较大结构;
图13示出了沿图3给定水平网格条的电阻调节,该调节通过邻接的网格中的选择性断点生成;
图14为模拟图3所示导电微图案性质的电路图,其中电容极板被电阻元件隔开;
图15示出了触屏传感器一个实施例的导电微图案,该微图案包括具有不同薄层电阻标记为15a-15e的区域,该区域部分地由导电微图案网格内的选择性断点生成;
图15a-15e各示出了图15所示的变化的导电微图案的一部分;
图16示出了与只含有均匀透明导电氧化物ITO的类似形状区域的单位长度电阻相比时,沿着其内具有区域15a和15b的楔形透明导电区域的长轴的单位长度电阻分布;
图17示出了层合在一起形成触屏传感器的一个实施例(X-Y网格型投射电容式触屏传感器)的各层的布置方式;
图18示出了根据图17的触屏传感器的实施例的X层或Y层的导电微图案;
图19示出了图10所示导电微图案的一部分,该部分包括接触具有触摸垫形式的较大结构的对可见光透明的导电网格,以及网格区域之间的空间内的电隔离导体沉积物;
图20示出了根据图9的触屏传感器的另一个实施例的X层或Y层的导电微图案;
图21示出了图12给定导电微图案的一部分,该部分包括接触具有触摸垫形式的较大结构的对可见光透明的导电网格,以及网格区域之间的空间内的电隔离导体沉积物;
图22示出了根据图17的触屏传感器的另一个实施例的X层或Y层的导电微图案;以及
图23示出了图22给定导电微图案的一部分,该部分包括接触具有触摸垫形式的较大结构的对可见光透明的导电网格,以及网格区域之间的空间内的电隔离导体沉积物。
图24示出了反映触屏传感器光学质量的曲线图,该图为“开放区域百分比”与“导线宽度(微米)”的关系图,其中区域3具有可用于触屏传感器的良好光学质量,区域2具有比区域3更佳的光学质量,区域1具有三个区域中最佳的光学质量。本文的开放区域百分比与开放区域比率可互换使用。
图25和图26示出了实例6至40特征性的六边形网格(有时称为“六边网格”)和方形网格的几何形状的扫描电子显微图。每一个图像内的光影线表示金属导体的图案,黑色区域表示实例中使用的基底。
图27、图27a和图27b示出了第一图案化基底的各种部分;
图28、图28a和图28b示出了第二图案化基底的各种部分;
图29示出了由图27和图28的第一图案化基底和第二图案化基底构造的透明的投射电容式触屏传感器元件。
附图未必按比例绘制。在附图中使用的相同的标号表示相同的部件。然而,应当理解,在给定附图中使用标号指示部件并非意图限制另一个附图中用相同标号标记的部件。
具体实施方式
在下面的描述中,参考形成本说明之一部分的附图,并且其中通过图示说明若干具体实施例。应当理解,在不偏离本发明的范围或精神的前提下可以设想其它的实施例并进行实施。因此,以下的详细描述不应被理解成具有限定意义。
除非另外指明,否则本文所用的所有科技术语具有在本领域中通常使用的含义。本文给定的定义旨在有利于理解本文频繁使用的某些术语,并无限制本发明范围之意。
除非另外指明,否则说明书和权利要求书中用来表述结构尺寸、数量和物理性质的所有数字在所有情况下均应理解为附有修饰词“约”。因此,除有相反的指示,否则在上述说明书和所附权利要求书中列出的数值参数均为可根据本领域技术人员利用本文所公开的教导内容而寻求获得的所需性质而改变的近似值。
由端值表述的数值范围包括该范围内的所有数字(如1至5包括1、1.5、2、2.75、3、3.80、4和5)以及该范围内的任何范围。
除非上下文另外明确指出,否则本说明书以及所附权利要求书中所用的单数形式“一个”和“所述”涵盖了具有复数指代的实施例。除非上下文另外明确指出,否则本说明书和所附权利要求书中使用的术语“或”的含义通常包括“和/或”。
如本文所用,“可见光透明”是指对可见光的至少一种偏振态的透射水平为透射率至少60%,其中透射百分比归一化为入射光强度(任选地为偏振光)。在“可见光透明”含义范围之内的是,透射至少60%入射光的制品包括局部阻止光线至透射率低于80%(如0%)的微观结构,如点、正方形或线条,该微观结构的最小维度(如宽度)在0.5微米和10微米之间,或在1微米和5微米之间;然而,在这种情况下,对于包括微观结构并且宽度为微观结构最小维度1000倍的大致各向等大的区域,平均透射率为大于60%。
本发明涉及触屏传感器,通过对其中所包括的导电微图案进行设计而改变该传感器的电气性质和光学性质。通过结合本文所述导电微图案,为触屏传感器生成若干优点。在一些实施例中,通过设计透明导电区域内的透明导电性能来控制使用过程中触摸感测区域内的电势梯度。这就简化了信号处理电子器件,并且就某些类型的触屏传感器而言,简化(或消除)了电势梯度(电场)线性化另外需要的额外的导电图设计。在一些实施例中,将本文所述触屏传感器的电气性质设计成沿着透明传感器元件产生受控的电势梯度。如,将电气性质设计成在透明导电区域内沿着特定方向产生线性电势梯度,如果使用标准透明导体材料(如连续ITO涂层),导电区域的整体形状通常会导致非线性梯度。在一些实施例中,将电气性质设计成生成一定水平的非线性度以用于透明导电区域的电势梯度,该非线性度水平高于形状相同但由标准透明导体材料(如连续ITO涂层)构成的透明导电区域应当具有的非线性度。更具体地讲,对于包括邻接的具有微图案化导体形式的透明薄层导体的矩形电容式触屏(其感测区域拐角处具有电连接),通过设计薄层电阻值的区域分布和各向异性,使得电场分布更加均匀,可在水平方向和垂直方向改善整个感测区域的电势梯度的线性度(和电场的均匀度)。在其它实施例中,传感器包括由具有相同厚度(即高度)的相同导体材料构成的导体元件,但由于微图案化而具有不同的有效薄层电阻。如在一些实施例中,采用相同厚度(即高度)的相同导体材料生成限定第一微图案几何形状的导线,从而在透明导电区域内导致第一水平的薄层电阻;并且生成限定第二微图案几何形状的导线,从而在第二透明导电区域内导致第二水平的薄层电阻。如,通过在一些实施例(如基于微图案化金属导体的实施例)中避免使用稀有元素(例如铟),本发明也允许在制造透明显示传感器过程中提高效率和资源利用率。
本发明还涉及用于将信息或指令触摸输入电子装置(如计算机、移动电话等)中的接触传感器或近程传感器。这些传感器对可见光透明,并且可以与显示器直接组合使用,覆盖在显示元件上,并且与显示器驱动装置接口(作为“触屏”传感器)。传感器元件具有片状形式,并且包括至少一个电绝缘的可见光透明基底层,用来支承下列中的一者或多者:i)网格图案化到基底表面两个不同区域上的导电材料(如金属),该基底表面具有两种不同的网格设计,以生成具有不同的有效薄层电阻值的两个区域,其中区域中的至少一个是位于传感器的触摸感测区域内的透明导电区域;ii)以网格几何形状图案化到基底表面上的导电材料(如金属),以便生成位于传感器的触摸感测区域内、并显示具有各向异性的有效薄层电阻的透明导电区域;和/或iii)在有效电连续的透明导电区域内以网格几何形状图案化到基底表面上的导电材料(如金属),该几何形状在该透明导电区域内变化,以便在至少一个方向生成不同的局部有效薄层电阻值(如用于透明导电区域的连续可变的薄层电阻),其中该透明导电区域位于触摸传感器的感测区域内。
触摸传感器的感测区域是旨在覆盖的传感器区域或覆盖信息显示器可见部分的区域,该区域对可见光透明,以便允许看到信息显示器。信息显示器的可见部分是指具有可变信息内容的信息显示器部分,如被像素(如液晶显示器的像素)占据的显示器“屏幕”的部分。
本发明还涉及具有电阻的、电容的和投射电容的性质的触屏传感器。对可见光透明的导电微图案尤其可用于与电子显示器一体化的投射电容式触屏传感器。作为投射电容式触屏传感器的元件,对可见光透明的导电微图案可用于实现高触摸灵敏度、多触点检测和触笔输入。
如下文所述,通过控制构成透明微图案化导体的二维网格的几何形状,可以控制透明导电区域内两个或更多个不同水平的薄层电阻、薄层电阻的各向异性或可变水平的薄层电阻。
虽然本发明并不如此受到限制,但通过讨论下文提供的实例将获得对本发明的各方面的理解。
图1示出了触屏传感器100的示意图。触屏传感器100包括具有触摸感测区域105的触屏面板110。触摸感测区域105电连接到触摸传感器驱动装置120。触屏面板110结合到显示装置中。
图2示出了对可见光透明的导电区域101的透视图,该区域位于触屏面板的触摸感测区域(如图1的触摸感测区域105)内。对可见光透明的导电区域101包括可见光透明基底130和设置在可见光透明基底130之上或之内的导电微图案140。可见光透明基底130包括主表面132,并且是电绝缘的。可见光透明基底130可由任何可用的电绝缘材料(例如为玻璃或聚合物)形成。可用于可见光透明基底130的聚合物的实例包括聚对苯二甲酸乙二醇酯(PET)和聚萘二甲酸乙二醇酯(PEN)。导电微图案140可由多个线性金属结构形成。
图2也示出了坐标系,用来描述位于触屏面板的触摸感测区域内的对可见光透明的导电区域101。一般来讲,就显示装置而言,x轴和y轴对应于显示器的宽度和长度,z轴通常沿着显示器的厚度(即高度)方向。除非另外指出,本文将始终使用此规则。在图2的坐标系中,x轴和y轴被定义为平行于可见光透明基底130的主表面132,并且可以对应于方形或矩形表面的宽度方向和长度方向。z轴垂直于该主表面,并且通常沿着可见光透明基底130的厚度方向。形成导电微图案140的多个线性金属结构的宽度对应于沿y轴线性延伸的平行线性金属结构的x方向距离,正交线性金属结构的y方向距离对应于正交线性金属结构的宽度。线性金属结构的厚度或高度对应于z方向距离。
在一些实施例中,位于触屏面板的触摸感测区域内的对可见光透明的导电区域101包括两层或更多层各具有导电微图案140的可见光透明基底130。
导电微图案140沉积在主表面132上。由于传感器将与显示器连接以形成触屏显示器或触摸面板显示器,基底130对可见光透明,并且基本上平坦。基底和传感器可以基本上为平坦和柔性的。对可见光透明意味着可通过触摸传感器查看显示器提供的信息(如文本、图像或数字)。可以实现包括具有沉积金属形式的导体的触摸传感器的可见性和透明性,如果将金属沉积成适当的微图案,甚至可以包括沉积成厚度足以阻挡光线的金属。
导电微图案140包括至少一个对可见光透明的导电区域,该区域覆盖提供信息的显示器的可见部分。所谓“对可见光透明的导电”是指可透过导电微图案区域看到该部分显示器,并且该微图案区域在图案的平面内导电,或换句话说,沿着导电微图案沉积在其上或与之相邻的基底的主表面导电。优选的导电微图案包括具有二维网格(如方形网格、矩形(非方形)网格或正六边形网络)的区域,其中导线限定了网格内封闭的开放区域,该区域未沉积与网格导线电接触的导体。本文将开放空间及其边缘处的相关导线称为单元。网格单元的其它可用几何形状包括随机单元形状和不规则多边形。
在一些实施例中,限定导电微图案的导线被设计成在大于五个相邻单元(优选地四个相邻单元,更优选地三个相邻单元,甚至更优选地两个相邻单元)的边缘组合长度的距离内不包括大致直的区段。最优选地,限定微图案的导线被设计成在大于单个单元的边缘长度的距离内不包括直的区段。因此,在一些实施例中,限定微图案的导线在长距离(如10厘米、1厘米、或甚至1毫米)内不是直的。具有上述最短长度直线区段的图案尤其可用于触屏传感器,其优点是最大限度减少对显示器可见度的影响。
在考虑到导体材料光学性质和电气性质的情况下,可设计导电微图案的二维几何形状(即在平面内的几何形状或沿着基底主表面的几何形状),以实现触屏传感器中可用的特殊透明导电性质。例如,尽管导体材料的连续(未图案化)沉积层或涂层具有按其体电阻率除以厚度计算的薄层电阻,但在本发明中,也通过使导体微图案化来设计不同的薄层电阻水平。
在一些实施例中,二维导电微图案被设计成在传感器的导电区域(如对可见光透明的导电区域)内实现各向异性薄层电阻。所谓“各向异性薄层电阻”是指,当沿两个正交方向测量或建模时,导电微图案的薄层电阻的数量级不同。
相比之下,在一些实施例中,二维导电微图案被设计成在传感器的导电区域(如对可见光透明的导电区域)内实现各向同性薄层电阻。所谓“各向同性薄层电阻”是指,如由两个方向的宽度均为恒定的导线形成的方形网格的情况,当沿着平面内任意两个正交方向测量或建模时,导电微图案的薄层电阻的数量级相同。
区域内各向异性的薄层电阻可包括的在一个方向的薄层电阻比正交方向的薄层电阻至少大10%(或者至少大25%、至少大50%、至少大100%、至少大200%、至少大500%、甚至至少大10倍)。在一些实施例中,区域内各向异性的薄层电阻包括的在一个方向的薄层电阻比正交方向的薄层电阻大至少1.5的因子。在一些实施例中,区域内各向异性的薄层电阻包括的在一个方向的薄层电阻比正交方向的薄层电阻大的因子在1.1和10之间,在其它实施例中在1.25和5之间,在又一些实施例中在1.5和2之间。
可产生各向异性薄层电阻的导电微图案几何形状的实例为具有固定导线宽度的大致矩形的微型网格(非正方形)。就这种矩形微型网格(非正方形)而言,各向异性的薄层电阻可由重复网格单元的几何形状所引起,该网格单元的一个边缘比另一个边缘长10%、长25%、长至少50%、长100%、甚至长10倍。通过改变不同方向的导线宽度(如在其它高度对称的网格单元图案中),可产生各向异性的薄层电阻。生成各向异性的薄层电阻的后一种方法的实例是方形网格的导线(如间距200微米),其中第一方向的导线宽度为10微米,正交方向的导线宽度为9微米、7.5微米、5微米、或甚至1微米。区域内各向异性的薄层电阻可包括这样的情形:即一个方向具有有限的可量测的薄层电阻,另一个方向具有基本无限大的薄层电阻,就像平行导线图所产生的那样。在一些实施例中,如上所述,区域内各向异性的薄层电阻包括这样的情形:即第一方向具有有限的可量测的薄层电阻,在正交于第一方向的方向具有有限的可量测的薄层电阻。
为了确定某个导电微图案区域是否为各向同性或各向异性的,本领域的技术人员将会知道,必须相对于微图案的尺度合理选择所关注的区域的尺度,以进行相应的性质量度或计算。如,一旦将导体完全图案化,在导体上选择在不同量度方向会产生薄层电阻差值的量度位置和尺度就不重要了。以下详细说明的实例可更加清楚地说明这一点。如果考虑的是具有正方形网格的各向同性几何形状的导体图案,该网格具有宽100微米的导电导线和1毫米的间距(在网格内形成900微米×900微米的正方形开口),并且使用具有固定间距25微米(在外侧两个电流探针之间产生75微米的间距)的四个线性布置的探针沿正方形开口边缘对其中一条导线内的薄层电阻进行四点探针测量,则根据探针是否与导线平行对齐或正交对齐,可以利用测得的电流值和电压值算出不同的薄层电阻水平。因此,即使正方形网格几何形状会在比正方形网格单元尺寸更大的范围内产生各向同性的薄层电阻,仍然可以通过测量发现薄层电阻具有各向异性。因此,为了限定本发明的导电微图案(如构成网格的微图案的对可见光透明的导电区域)的薄层电阻的各向异性,在其中对薄层电阻应当进行测量或建模的相应尺度大于网格单元的长度尺度,优选地大于两个单元的长度尺度。在一些情况下,在网格内五个或更多个单元的长度尺度内对薄层电阻进行测量或建模,以显示该网格的薄层电阻具有各向异性。
与导电微图案在某个区域内的薄层电阻显示具有各向异性的实施例相比之下,具有透明导电氧化物(如铟锡氧化物或ITO)薄膜的传感器在相邻导体区域内的薄层电阻显示具有各向同性。在后一种情况下,可以像使用四点探针测量法在不同方向以不断减小的探针间距对相邻区域的薄层电阻进行测量那样进行测量和建模,不同方向的相同电流和电压读数清楚地表明具有各向同性。
在一些实施例中,二维导电微图案被设计成当在给定方向进行测量时,在传感器的两个不同的图案化导体区域实现不同水平或量级的薄层电阻。如,相对于不同水平的薄层电阻,两者中的较大者与较小者的比率可以大于1.25、大于1.5、大于2、大于5、大于10、甚至大于100。在一些实施例中,两个薄层电阻值中的较大者与较小者的比率在1.25和1000之间,在其它实施例中在1.25和100之间,在其它实施例中在1.25和10之间,在其它实施例中在2和5之间。对于被视为与另一区域具有不同薄层电阻的区域,该区域的薄层电阻与其它区域的薄层电阻的比率可能大于或小于至少1.1。
在一些实施例中,微图案被设计成使电气相邻的两个图案化的导体区域实现上述不同水平的薄层电阻,这就是说,这两个图案化的导体区域为沿着二者之间的边界彼此电接触的图案化的导体区域。共享导电边界的两个图案化的导体区域中的每一个都可以具有各自一致但再次不同的图案几何形状。在一些实施例中,微图案被设计成使电气不相邻的两个不同的图案化的导体区域实现不同水平的薄层电阻,这就是说,这两个图案化的导体区域之间不共享二者沿着该边界电接触的边界。不共享导电边界的两个图案化的导体区域中的每一个都可以具有各自一致但再次不同的几何形状。对于电气不相邻区域,二者具有与相同的实心导体元件(如母线或垫)电接触的图案也在本发明范围内。在一些实施例中,微图案被设计成使彼此电隔离因而可被电信号独立寻址的两个区域实现不同水平的薄层电阻。电隔离的两个网格区域中的每一个都可以具有一致但再次不同的图案几何形状。最后,在一些实施例中,微图案被设计成通过从(例如)电气相邻的两个区域中的第一区域到第二区域产生连续变化的薄层电阻而使两个不同的区域实现不同水平的薄层电阻。
包括两个在量度方向具有不同薄层电阻的区域的二维导电微图案可用于在感测区域内设计具有适合该区域的优选薄层电阻水平(如每平方在5Ω和100Ω之间的较低薄层电阻,任选地包括可变或各向异性的薄层电阻)的对可见光透明的导电区域,并且可用于设计电气元件,如,作为可以在感测区域以内或以外的触屏传感器一部分的电阻元件,该电阻元件包括具有经选择最适合电阻器功能的薄层电阻(如在每平方在150Ω和1000Ω之间的较高薄层电阻)的薄层导体,该薄层电阻也可能最适合其它设计约束条件,如使电阻器所占面积最小化的约束条件。
如上所述,在具有可测量或建模的有限薄层电阻的区域和方向内的导电微图案的薄层电阻可以在每平方0.01Ω至1MΩ的范围内,或在每平方0.1Ω至1000Ω的范围内,或在每平方1Ω至500Ω的范围内。在一些实施例中,导电微图案的薄层电阻在每平方1Ω至50Ω的范围内。在其它实施例中,导电微图案的薄层电阻在每平方5Ω至500Ω的范围内。在其它实施例中,导电微图案的薄层电阻在每平方5Ω至100Ω的范围内。在其它实施例中,导电微图案的薄层电阻在每平方5Ω至40Ω的范围内。在其它实施例中,导电微图案的薄层电阻在每平方10Ω至30Ω的范围内。在指定可表征导电微图案或导电微图案区域的薄层电阻的过程中,如果微图案或微图案区域在任何方向都具有实现导电的给定数值的薄层电阻,则认为该微图案或微图案区域具有该数值的薄层电阻。
用于实现传感器的透明度以及通过传感器的显示器的可见度的合适的导电微图案具有某些属性。首先,在透过其中观察显示器的导电微图案区域中,被导体遮挡的传感器面积比率应小于50%、或小于25%、或小于20%、或小于10%、或小于5%、或小于4%、或小于3%、或小于2%、或小于1%、或在0.25至0.75%的范围内、或小于0.5%。
导电微图案或导电微图案区域的开放区域比率(或开放区域或“开放区域百分比”)是指未被导体遮挡的微图案面积或微图案区域面积的比例。开放区域等于1减去被导体遮挡的面积比率,并且可以便利且互换地表达为小数或百分比。被导体遮挡的面积比率与微图案化导体的线条密度互换使用。微图案化导体与导电微图案互换使用。因此,对于上一段给定的被导体遮挡的比率值,开放区域值大于50%、大于75%、大于80%、大于90%、大于95%、大于96%、大于97%、大于98%、大于99%、99.25%至99.75%、99.8%、99.85%、99.9%、甚至99.95%。在一些实施例中,导电微图案区域的开放区域(如对可见光透明的导电区域)在80%和99.5%之间,在其它实施例中在90%和99.5%之间,在其它实施例中在95%和99%之间,在其它实施例中在96%和99.5%之间,在其它实施例中在97%和98%之间,在其它实施例中高达99.95%。相对于使用实用的制造方法可重复地实现可用的光学性质(如高透射率和导电图元素的不可见性)和电气性质,开放区域的优选值在90%和99.5%之间,更优选地在95%和99.5%之间,最优选地在95%和99.95%之间。
为了使显示器像素图的干涉作用最小化并避免使用者或观察者用肉眼观察到图元素(如导线),导电图元素的最小维度(如导线的宽度)应小于或等于大约50微米、或小于或等于大约25微米、或小于或等于大约10微米、或小于或等于大约5微米、或小于或等于大约4微米、或小于或等于大约3微米、或小于或等于大约2微米、或小于或等于大约1微米、或小于或等于大约0.5微米。
在一些实施例中,导电图元素的最小维度在0.5微米和50微米之间,在其它实施例中在0.5微米和25微米之间,在其它实施例中在1微米和10微米之间,在其它实施例中在1微米和5微米之间,在其它实施例中在1微米和4微米之间,在其它实施例中在1微米和3微米之间,在其它实施例中在0.5微米和3微米之间,在其它实施例中在0.5微米和2微米之间。相对于可重复地实现可用的光学性质(如高透射率和肉眼对导电图元素的不可见性)和电气性质,并且考虑到使用实用制造方法的约束条件,导电图元素的最小维度的优选值在0.5微米和5微米之间,更优选地在1微米和4微米之间,最优选地在1微米和3微米之间。
通常,沉积的导电材料会不可取地降低触摸传感器的透光率。基本上,只要有导电材料沉积的地方,都会遮挡显示器,影响使用者观察显示内容。因导电材料造成的衰减度降低程度与导电微图案内被导体覆盖的传感器或传感器区域的面积比率成比例。
通常,期望透明的触屏传感器具有较低的雾度值。雾度是指与光通过介质时的散射有关的性质,如用Haze-Gard仪器(Haze-Gard plus,BYK Gardner(Columbia,Maryland))测量的雾度。在一些实施例中,触屏传感器显示具有的雾度小于10%、在一些实施例中小于5%、在一些实施例中小于4%、在一些实施例中小于3%、在一些实施例中小于2%。已经公开的实施例实现了在包括导电微图案的区域内透射率(也称为可见光透射率)高、雾度低和导线可见度低的理想组合。因此,当用作触屏传感器感测区域或显示区域的一部分时,如当微图案覆盖显示器的可见区域时,导电微图案尤其可用。
在一些实施例中,为了在即使薄层电阻不均匀分布的情况下(如衍生自导电材料的不均匀网格),也可以产生在整个可见显示区上具有均匀透光率的对可见光透明的显示传感器,传感器包括添加到导电微图案上的绝缘的导体沉积物,该沉积物起到在整个图案上保持透光率的均匀度的作用。这种绝缘的导体沉积物没有连接到传感器的驱动装置(如电路或计算机),因而不起电气作用。例如,对于包括第一区域和第二区域的金属导电微图案,其中第一区域具有由线宽为3微米、间距为200微米的正方形网格组成的网格(3%的区域被金属遮挡,即开放区域为97%),第二区域具有由线宽为3微米、间距为300微米的正方形网格组成的网格(2%的区域被金属遮挡,即开放区域为98%),通过在图案中间距为300微米网格区域的每一个开放单元内增加100个等间距的3微米×3微米金属导体正方形,可以使第一区域和第二区域都具有均匀的平均透光率。这100个3微米×3微米的正方形(900平方微米)遮挡每一个300微米×300微米单元(90000平方微米)的额外的1%的面积,因而使第二区域的平均透光率等于第一区域的平均透光率。可在相邻透明导电区域之间的空间区域(如包括二维网格或网络形式的微图案化导体的相邻透明导电区域)内增加类似的绝缘的金属结构,以便在整个传感器(包括透明导电区域和它们之间的空间)上保持均匀的透光率。除了绝缘的导体正方形之外,用于实现光学均匀度的其它可用绝缘导体沉积物还包括圆形和线条。电隔离的沉积物的最小维度(如正方形结构的长度、圆形结构的直径或线性结构的宽度)可以小于10微米、小于5微米、小于2微米、或甚至小于1微米。
相对于使用实用制造方法可重复地实现可用的光学性质(如高透射率和导电图元素的不可见性),电隔离沉积物的最小维度优选地在0.5微米和10微米之间,更优选地在0.5微米和5微米之间,甚至更优选地在0.5微米和4微米之间,甚至更优选地在1微米和4微米之间,最优选地在1微米和3微米之间。在一些实施例中,电隔离的导体沉积物的布置方式被设计成缺乏周期性。就限制与下面的显示器的周期性像素图的不利的可见相互作用而言,缺乏周期性是优选的。对于具有沉积物并且缺乏连接到解码或信号发生和/或处理电子器件的微图案元素的整个区域而言,要使电隔离的导体沉积物整体缺乏周期性,只需要让其它周期性布置的沉积物的至少一部分设置在单个中断处。这种电隔离的导体沉积物据说具有非周期性布置方式,或据说是非周期性布置的电隔离的导体沉积物。在一些实施例中,电隔离的导体沉积物被设计成缺乏间距小于10微米的直的平行边缘,如边缘长度为5微米的正方形沉积物的相对表面所出现的情况。更优选地,绝缘的导体沉积物被设计成缺乏间距小于5微米的直的平行边缘,更优选地小于4微米,甚至更优选地小于3微米,甚至更优选地小于2微米。缺乏直的平行边缘的电隔离的导体沉积物的实例有椭圆形、圆形、五边形、七边形和三角形。将电隔离的导体沉积物设计成缺乏直的平行边缘起到使光衍射伪像最小化的作用,这种伪像会干扰集成传感器的显示器的可见性。
导电微图案对光学均匀度的影响可以量化。如果将传感器以及导电微图案与显示器可见区域重叠的总面积分段成1毫米×1毫米的区域的阵列,则在优选传感器包括的导电微图案中,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于75%。更优选地,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于50%。更优选地,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于25%。甚至更优选地,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于10%。如果将传感器以及导电微图案与显示器可见区域重叠的总面积分段成5毫米×5毫米的区域的阵列,则在优选传感器包括的导电微图案中,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于50%。优选地,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于50%。更优选地,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于25%。甚至更优选地,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于10%。
与透明导电氧化物(TCO)(例如ITO)相反,本发明有利地允许使用金属作为透明导电传感器中的导电材料。ITO具有某些缺陷,例如,在某些构造中会产生与腐蚀相关的劣化,弯曲时往往会开裂,当作为薄层电阻为每平方100Ω至1000Ω以下的涂层沉积时透射光的高度衰减(由于反射和吸收),以及由于铟的稀缺性而增加的成本。ITO也难以沉积成具有均匀而可复制的电气性质,导致需要更复杂、更昂贵的电子器件连接到导电图以构造触屏传感器。
可用于形成导电微图案的金属的实例包括金、银、钯、铂、铝、铜、镍、锡、合金、以及它们的组合。在一些实施例中,导体是透明的导电氧化物。在一些实施例中,导体是ITO。导体的厚度可以在5纳米和5微米之间、或在10纳米和500纳米之间、或在15纳米和250纳米之间。在许多实施例中,导体厚度小于1微米。如本领域已知的那样,导体的理想厚度可以从所需薄层电阻开始计算,并考虑微图案的几何形状(进而考虑其对平面内的载流横截面的影响)以及导体的体电阻率。对于几何形状复杂的微图案,本领域存在可用于计算薄层电阻的计算方法,如有限差分法或有限元法,本文称为微图案属性的建模。可使用多种技术测量薄层电阻,其中包括本领域已知的四点探针技术和非接触涡电流法。
可以集成本发明的传感器的可用显示器的实例包括液晶显示器、阴极射线管显示器、等离子体显示面板和有机发光二极管显示器。
根据本发明的导电图可通过任何合适的图案化方法生成,如包括照相平版蚀刻法或照相平版与电镀结合的方法(参见如美国专利No.5,126,007、美国专利No.5,492,611、美国专利No.6,775,907)。另外,导电图可利用若干其它示例性方法中的一种形成(下文将对每一种方法进行详细讨论):
1.掩模激光固化(将金属薄膜上的掩模层固化,然后蚀刻);
2.喷墨印刷(掩模材料或种子材料的喷墨印刷,以用于后续的金属电镀);
3.凹版印刷(种子材料的凹版印刷,以用于后续的金属电镀);
4.微复制(在基底内形成微凹槽,然后填充导电材料或种子材料,以用于后续的金属电镀);或,
5.微接触印刷(在基底表面压印或旋转印刷自组装单分子层(SAM)图案)。
利用大量的、高分辨率印刷方法通常可以精确设置导电元件,以及允许按适合市售显示器像素的比例伪(随机地)改变微导体,以限制其它可能出现的光学异常(例如莫阿条纹图案)。
本文所述某些实施例可以采用比利用透明导体的现有传感器透光率更高的平侧“线状”导体。在一些实施例中,这些平侧“线状”导体提供了比现有圆形导线解决方案更大的可量测性,并且更容易控制导体的布置方式。本文所述微导体包括最大横截面尺寸为10微米或更小的导体。对于许多传感器应用,优选小于3微米。采用掩模和蚀刻的方法通常会产生低纵横比(0.05μm至0.5μm厚×1μm至10μm宽)的微导体。微复制凹槽可产生高达大于1:1的较高纵横比的微导体。
掩模激光固化法可用于通过使用紫外线激光器选择性地固化图案来形成微导体。该方法通常适用于基于薄膜(例如PET)或玻璃的基底。示例性的掩模激光固化法可以包括下列步骤:
1.用金属电镀基底(例如,将银或铜溅镀到玻璃或PET薄膜上);
2.将UV固化性掩模油墨均匀涂布(例如,旋涂和浸涂)到电镀的基底上;
3.用激光器固化印刷油墨的一部分,以在触摸传感器的活动区域内形成微导体电极,并且也可以固化连接电极与连接垫的(较宽)线条(可以通过光掩模减小激光器的光束宽度);
4.移除(洗掉)未固化油墨;以及
5.通过蚀刻移除基底上电镀的金属,只留下掩模油墨下面的图案。
可使用喷墨印刷法和种子油墨电镀法,通过使用相对较宽的种子油墨(催化油墨)线条印刷所需的图案,然后使用UV激光器(类似于上述掩模激光固化法)选择性地固化,以生成微导体。该方法的基底可以为薄膜(例如PET)或玻璃。
图3a和图3b示出了这种方法,借此:
1.将种子油墨66喷墨印刷到基底67上;
2.用激光器65固化印刷油墨的一部分,以在触摸传感器的活动区域内形成微导体电极68,并且也可以固化连接电极与连接垫的(较宽)线条(可以通过光掩模减小激光器的光束宽度);
3.移除(洗掉)未固化油墨;以及,
4.对种子油墨的固化图案进行化学镀(用导电金属)。
喷墨印刷法使所用的油墨量最小化,因此凡是油墨(例如种子油墨)昂贵的场合,应当考虑这种方法。如果油墨成本相对较低,则可用均匀涂布整个基底的另一种方法(例如,旋涂或浸涂)代替喷墨印刷法。用于上述种子油墨方法的喷墨印刷和电镀的油墨材料和方法可得自Conductive Inkjet Technology division of Carclo Technical Plastics(Cambridge,UK)。
凹版印刷法需要将有待印刷的图像“蚀刻”到在滚筒上旋转的金属板内。当滚筒旋转时,蚀刻表面被油墨所填充,然后当填充油墨的蚀刻板和被印刷的薄膜彼此接触时,油墨就会在薄膜表面上沉积。图4示出了这种方法。该图示出薄膜基底76上印刷有来自油墨池73的油墨线条74。压印滚筒70紧贴印刷滚筒75滚动,印刷滚筒上具有被来自油墨池73的油墨填充的蚀刻槽72。这种方法可用来制备需进一步加工的坯料,或可用来制备大容量传感器的具体X部件或Y部件。
种子油墨(或催化油墨)可以通过上述方法中的任何者印刷。印刷和固化后,可将油墨与金属(例如铜)化学镀到一起,从而导致高导电率。种子油墨制造商包括ConductiveInkjet Technology division of Carclo Technical Plastics(Cambridge,UK)和QinetiQ公司(Farnborough,England)。Cabot Printable Electronics and Displays(Albuquerque,NM)制造可喷墨印刷的银导电油墨。
微复制是可用来形成微导体的又一种方法。图5示出了填充或部分填充的微复制凹槽的剖视图。凹槽可以先填充种子油墨81,然后再电镀(参见金属化层80),以使其导电。或者,可用本身导电的油墨填充凹槽,从而无需电镀工艺。第三种选择是用金属涂布基底,然后用掩模遮挡凹槽(底部)中的金属部分,然后再通过蚀刻移除未遮挡的金属(参见例如专利申请No.61/076731(“Method of Forming a Microstructure”(形成微结构的方法))和专利申请No.61/076736(“Method of Forming a Patterned Substrate”(形成图案化基底的方法))。凹槽的实际形状可被改变,以优化横截面形状和尺寸,从而在确保高导电率和高产出率的同时,将光学干涉水平降至最低。
填充后的微复制凹槽会形成相对于掩模金属薄膜具有高纵横比横截面的导体。这样可以在光学可见度最低的情况下实现最高的导电率(观察方向狭窄的横截面)。填充微复制凹槽的方法和具有高纵横比的凹槽的理想形状在在共同授予的美国专利申请US2007016081(Gaides等人)中有所描述。
图6示出了具有深度大于宽度的微复制电极的高纵横比触摸表面的剖视图。在一个实施例中,深宽比大于1:1的微复制结构会产生更好的性能。一般来讲,微复制结构的宽度越小,透过触摸传感器从显示器射出的光就越多。此外,较深(而不是较宽)的凹槽会减小限制从第一表面进入传感器的光反射的表面区域。这些优点是在不损失电容信号的情况下获得的。图6示出了与触摸传感器86的印刷铜电极87电容耦合的手指85,这种耦合不仅发生在传感器的顶面,也发生在传感器的侧面。
微接触印刷是可用于形成微导体的又一种方法。微接触印刷法是将自组装单分子层(SAM)图案压印或旋转印刷到基底表面上。该方法具有若干技术上重要的特征,包括形成非常微小比例的图案(如十分之一微米大小的结构尺寸)以及图案化单层向金属、陶瓷和聚合物的图案化扩展的能力。
示例性微接触印刷法的步骤如下:
1.用金属涂布基底(例如,将银或铜溅镀或电镀到玻璃或PET薄膜上);
2.将自组装单分子层掩模压印到电镀基底上;以及,
3.通过蚀刻移除基底上涂布的金属,只留下掩模下面的图案。
微接触印刷法在(例如)美国专利No.5,512,131(Kumar)和共同待审的3M专利申请No.61/032273(“Methods of Patterning a Conductor on a Substrate”(在基底上图案化导体的方法))中有所描述。微接触印刷通常不受基底的约束。例如,基底可以为PET、玻璃、PEN、TAC或不透明塑料。如本领域已知的,微接触印刷法可与金属沉积法结合使用,以产生添加的图案化方法(例如,包括化学镀)。
图7a示出了用于小电容触屏的矩阵传感器。两个电极图案(91和92)、互连线以及连接垫都印刷在柔性基底(例如PET)上。然后将两个图案组装在一起,以在平行平面内形成两层电极,其中上层平面内的电极正交于下层平面内的导体,如图所示(参见图7b)。有时,需要在下层电极平面下方设置屏蔽层(未示出)。
图7所示图案可以使用本文所述方法中的一种进行印刷,并且使用单个印刷步骤同时印刷形成电极的<10μm的微导体和从电极向连接垫传输信号的互连线(通常>10μm),而且连接垫本身也可以在同一印刷步骤中形成。例如,使用微接触印刷法同时印刷相对于图27所述3μm微导体和500μm导线706。该具体实施例生成若干优点:
1.电极与互连线的对齐自动进行,并且非常准确;
2.相比其它互连线印刷方法(例如导电油墨的丝网印刷),互连线可印刷得更窄并且更密集的间距;以及
3.相比现有互连线印刷方法(例如导电油墨的丝网印刷),互连线厚度(垂直于基底平面)要小得多。较厚的互连线会在层合层之间引起可见的间隙,并且会降低层合层之间的密封性。
图8示出了具有位于基底96表面的平行微导体95的微复制和填充后的“毛坯”构造材料。料片取向为垂直(97)。基底可以为PET、PEN或聚碳酸酯,微导体可以按本文和/或下列专利所公开的方法沉积在微复制凹槽中:3M专利申请No.61/076731(“Method of Forminga Microstructure”(形成微结构的方法))和3M专利申请No.61/076736(“Method ofForming a Patterned Substrate”(形成图案化基底的方法))。在一个实施例中,微导体的间距优选地在50μm和500μm之间。
通过将所选微导体与印刷(如喷墨印刷或丝网印刷)电介质连接在一起,可以将该坯料加工成触摸传感器元件(例如电极或屏蔽),其中印刷电介质具有绝缘跨接作用,使后印刷(例如喷墨印刷或丝网印刷)的导电性油墨(使用本文所述方法印刷)可以跨接一些微导体,并且只与所选微导体接触。因此,可以制备图9所示传感器的互连线和连接垫,图中示出了带有穿过电介质的通孔1000的喷墨印刷的电介质表面1002,以及也通过喷墨印刷的导线1001。虽然图8和图9示出了在基底料片方向印刷的微导体,但有时在垂直于基底料片方向印刷微导体是有利的。
图10示出了矩阵触摸传感器的实例的剖视图,该传感器由两层微复制的微导体坯料和后印刷的隔离的两层喷墨导线构成。最上层1010包括微复制的微导体;下一层1011为印刷的电介质;下一层1012包括后处理的导体;下一层1013为粘合剂;下一层1014为后处理的导体;下一层1015为印刷的电介质,并且最终层1016包括微复制的微导体。
在一些实施例中,通过在其它连续而均匀的网格内的导线中包括选择性断点,可以生成在至少一个方向具有不同薄层电阻的透明导电区域。此选择性设置断点的方法尤其可用于制备这样的制品,该制品包括在整个制品上的透光率为均匀的对可见光透明的导电区域的图案。初始网格可为各向同性或各向异性的。例如,可制作具有正方形微型网格的细长矩形透明导电条,以通过生成周期性系列断点沿其长轴呈现出周期性的薄层电阻,断点处于在长轴方向具有矢量分量的导线中,并且周期性地在长轴方向。此薄层电阻的周期性可用于解码矩形条附近物体(如手指)的位置。通过选择宽度、厚度和导线的面密度以及断点总数,可设计沿透明导电元件的单位长度电阻的周期性变化,其特征在于单位长度电阻的峰值为单位长度电阻最小值的至少2倍,优选地为其最小值的至少5倍,更优选地为其最小值的至少10倍。
在其它连续而均匀的网格内包括选择性断点的其它实施例中,可设置断点,以便在给定方向生成大致连续变化的薄层电阻。除了仅由元件总体形状所生成的非线性度之外,连续变化的薄层电阻可用于扩大沿透明导电元件的电场的非线性度。例如,如本领域已知的那样,对于以细长等腰三角形(该等腰三角形的底边上施加有相对于其顶点的电势)形式存在的具有均匀薄层电阻的透明导电元件,由于沿从底边到顶点的电场方向的单位长度电阻存在梯度(由三角形变窄的宽度生成),该导电元件呈现出从底边到顶点的非线性电场。对于基于此类三角形透明导电元件的指状交叉阵列的触摸传感器,有利的是电场的非线性度甚至更大,从而导致用来解码阵列附近物体(如手指)位置的电路的信噪比也更大。通过选择宽度、厚度和导线的面密度以及断点总数,可设计沿透明导电元件的单位长度薄层电阻,该电阻在1厘米以上的距离内增加的比率为至少1.1、或至少1.2、或至少1.5、或至少2。
在一些实施例中,通过在两个区域中的每一个内包括具有各自设计的相邻网格,并且每一个网格不必包括选择性设置的断点,可在至少一个方向生成具有不同薄层电阻的两个透明导电区域。设计方式导致在单个方向(如图2的x方向)流过的电流具有不同薄层电阻值的两个网格的实例包括两个网格,这两个网格具有相同厚度(图2的z方向维度)的相同导电材料的沉积物,但在y方向具有不同的单位宽度载流横截面积(图2的y-z平面)。这样一对网格区域的一个实例是两个正方形网格区域,这两个区域各包括宽度2微米但间距不同(如100微米和200微米)的导线。这样一对网格区域的另一个实例是两个矩形网格区域(非正方形,一个方向间距为100微米,与之正交方向间距为200微米),这两个区域各包括宽度2微米但取向不同(如第一区域内的矩形单元的长轴相对于第二区域内的矩形单元的取向呈90度)的导线。
在一些实施例中,传感器包括用来承载导电图的对可见光透明的绝缘基底层,该图案包括对可见光透明的微图案区域和具有不透明的较大结构的区域,其中对可见光透明的微图案区域和较大结构区域包括相同导体(如金属)在大约相同的厚度内的图案化沉积物。较大结构可以是(如)与对可见光透明的导电微图案区域接触的宽导线,或用于接触电子解码、信号发生或信号处理装置的垫。可用较大结构与在相同绝缘层上对可见光透明的导电微图案区域的组合宽度在(例)25微米和3毫米之间、25微米和1毫米之间、25微米和500微米之间、25微米和250微米之间、或50微米和100微米之间。
一种示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案,以及第二区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案在第一方向的第一薄层电阻值每平方在5Ω和500Ω之间,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。第二区域微图案在第一方向具有不同于第一薄层电阻值的第二薄层电阻值。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案具有各向异性的第一薄层电阻,并且相互正交方向的薄层电阻值差的比率为至少1.5,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案,以及第二区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在1微米与4微米之间。第一区域微图案的第一薄层电阻值在第一方向每平方在5Ω和100Ω之间,该微图案对可见光透明,并且具有在96%和99.5%之间的开放区域。第二区域微图案在第一方向具有不同于第一薄层电阻值的第二薄层电阻值。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案,以及第二区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案在第一方向的第一薄层电阻值每平方在5Ω和500Ω之间,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。第二区域微图案在第一方向具有不同于第一薄层电阻值的第二薄层电阻值。该微图案也包括电隔离的导体沉积物。对于位于对可见光透明的感测区域内的所有1毫米×1毫米传感器正方形区域,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于75%。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案,以及第二区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案在第一方向的第一薄层电阻值每平方在5Ω和500Ω之间,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。第二区域微图案在第一方向具有不同于第一薄层电阻值的第二薄层电阻值。该微图案也包括电隔离的导体沉积物。对于位于对可见光透明的感测区域内的所有5毫米×5毫米传感器正方形区域,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于50%。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在1微米与4微米之间。第一区域微图案具有各向异性的第一薄层电阻,并且相互正交方向的薄层电阻值差的比率为至少1.5,该微图案对可见光透明,并具有在96%和99.5%之间的开放区域。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案具有各向异性的第一薄层电阻,并且相互正交方向的薄层电阻值差的比率为至少1.5,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。该微图案也包括电隔离的导体沉积物。对于位于对可见光透明的感测区域内的所有1毫米×1毫米传感器正方形区域,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于75%。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案具有各向异性的第一薄层电阻,并且相互正交方向的薄层电阻值差的比率为至少1.5,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。该微图案也包括电隔离的导体沉积物。对于位于对可见光透明的感测区域内的所有5毫米×5毫米传感器正方形区域,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于50%。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。第一区域微图案包括宽度在0.5微米和5微米之间的金属线性导电结构。第一区域微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。对于第一区域微图案的所有1毫米×1毫米正方形区域,该区域当中没有一个被遮挡的面积比率与所有正方形区域的平均值之差为大于75%。在一个实施例中,第一区域微图案也包括电隔离的导体沉积物。在一个实施例中,金属线性导电结构的厚度为小于500纳米。在一个实施例中,第一区域微图案在第一方向的第一薄层电阻值每平方在5Ω和100Ω之间。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。第一区域微图案包括宽度在0.5微米和5微米之间的金属线性导电结构。第一区域微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。对于第一区域微图案的所有5毫米×5毫米正方形区域,该区域当中没有一个被遮挡的面积比率与所有正方形区域的平均值之差为大于50%。在一个实施例中,金属线性导电结构的厚度为小于500纳米。在一个实施例中,第一区域微图案也包括电隔离的导体沉积物。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案的第一薄层电阻值在第一方向每平方在5Ω和100Ω之间,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。该微图案也包括电隔离的导体沉积物。对于位于对可见光透明的感测区域内的所有1毫米×1毫米传感器正方形区域,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于75%。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案的第一薄层电阻值在第一方向每平方在5Ω和100Ω之间,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。该微图案也包括电隔离的导体沉积物。对于位于对可见光透明的感测区域内的所有5毫米×5毫米传感器正方形区域,该区域当中没有一个被遮挡的面积比率与所有区域的平均值之差为大于50%。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案,以及第二区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案在第一方向的第一薄层电阻值每平方在5Ω和500Ω之间,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。第二区域微图案在第一方向具有不同于第一薄层电阻值的第二薄层电阻值。该传感器也包括设置在可见光透明基底之上或之内的较大导电结构,该较大结构包括和微图案中所包括的相同材料和厚度的连续导体沉积物,并且测得的最小维度为至少25微米。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案具有各向异性的第一薄层电阻,并且相互正交方向的薄层电阻值差的比率为至少1.5,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。该传感器也包括设置在可见光透明基底之上或之内的较大导电结构,该较大结构包括和微图案中所包括的相同材料和厚度的连续导体沉积物,并且测得的最小维度为至少25微米。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案,以及第二区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案在第一方向的第一薄层电阻值每平方在5Ω和500Ω之间,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。第二区域微图案在第一方向具有不同于第一薄层电阻值的第二薄层电阻值。该传感器也包括设置在可见光透明基底之上或之内的较大导电结构,该较大结构包括和微图案中所包括的相同材料和厚度的连续导体沉积物,并且测得的最小维度为至少500微米。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。导电微图案包括金属线性导电结构,该结构的厚度为小于500纳米,并且宽度在0.5微米与5微米之间。第一区域微图案具有各向异性的第一薄层电阻,并且相互正交方向的薄层电阻值差的比率为至少1.5,该微图案对可见光透明,并且具有在95%和99.5%之间的开放区域。该传感器也包括设置在可见光透明基底之上或之内的较大导电结构,该较大结构包括和微图案中所包括的相同材料和厚度的连续导体沉积物,并且测得的最小维度为至少500微米。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。第一区域微图案包括宽度在5微米和10微米之间的导线。第一区域微图案对可见光透明,并且具有在90%和99.95%之间的开放区域,优选地在95%和99.95%之间的开放区域,更优选地在97%和98%之间的开放区域。对于第一区域微图案的所有5毫米×5毫米正方形区域,该区域当中没有一个被遮挡的面积比率与所有正方形区域的平均值之差为大于75%、优选地为大于50%、更优选地为大于25%、最优选地为大于10%。在一个实施例中,第一区域微图案包括宽度在0.5微米和5微米之间、优选地在1微米和3微米之间的导线。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。第一区域微图案包括宽度在1微米和10微米之间的导线。第一区域微图案对可见光透明,并且具有在90%和99.5%之间的开放区域。第一区域微图案包括位于另外的连续均匀网格内的导线中的选择性断点。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。第一区域微图案包括宽度为约[X+0.5]微米的导线,以及开放区域比率介于约[95-X]%和99.5%之间,其中0≤X≤4.5。在一个实施例中,第一区域微图案内的触屏传感器的雾度值为小于10%并且透射率大于75%。在另一个实施例中,第一区域微图案内的触屏传感器的雾度值为小于5%并且透射率为大于85%。在一个实施例中,第一区域微图案包括宽度介于约[98.5-(2.5X÷3.5)]%和[99.5-(X÷3.5)]%之间的导线,其中0≤X≤3.5。
另一个示例性的触屏传感器包括可见光透明基底和设置在可见光透明基底之上或之内的导电微图案。该微图案包括触摸感测区域内的第一区域微图案。第一区域微图案包括间距为4mm、宽度为约9.6μm的平行导线,并形成99.75%的开放区域比率。微复制电极的该实施例包括宽度为约4μm至10μm、中心距为0.5mm至约5mm的平行导体。导体可以沿长度方向成形到PET基底网上,这样导体长度可以大于1m。使用(例如)结合图8和图9所述的方法可以将成组的相邻导体电气互连,以形成总宽度1mm至12mm的电极。相邻电极的导体可以如(例如)共同待审的美国专利申请公开No.20070074914中所公开的那样彼此互连,以使得电极交叉在一起。
实例
下文描述了示例性的触屏传感器设计。这些传感器可使用已知的照相平版印刷法制造,如美国专利No.5,126,007或美国专利No.5,492,611中所述。导体可采用物理气相沉积法(如溅射或蒸镀)沉积,如本领域所已知的。除非另外指明,否则以下实例包括采用微接触印刷技术图案化的导体(参见上文以及另外共同待审的美国专利申请No.61/032,273中的技术说明)。如本领域所已知的(如美国专利No.4,087,625、美国专利No.5,386,219、美国专利No.6,297,811、WO 2005/121940 A2),当连接到解码电路时,本文举例说明的每一种导电图都可作为透明触屏传感器使用。
实例1
将根据下文所述的金薄膜微图案沉积到无色玻璃薄片(厚度大约1毫米)上。微图案240如图11和图12所示。金层的厚度或高度为约100纳米。微图案240涉及一系列具有水平窄导线242的水平(x轴)网格条241,测得导线242宽度为大约2微米。这些水平网格导线242中有四个与较大结构的触摸垫260电气连通。网格条宽度为大约6毫米。因此,在13个等间距的导线244横跨6毫米的宽度(y轴)、13个等间距的导线242横跨6毫米的长度(x轴)的情况下,导线的正方形网格的间距为500微米。如图12所示,某些导线具有测量值为大约25微米的断点250(为便于定位,图中有所夸大)。对于间距为500微米、宽度为2微米的不透明导线的正方形网格,不透明导线的填充因子为0.80%,因此导致99.20%的开放区域。对于除了每隔500微米具有25微米断点之外的相同的正方形网格,填充因子为0.78%,因此导致99.22%的开放区域。因此,该设计包括开放区域为99.22%的1mm×6mm区域和开放区域为99.20%的6mm×6mm区域。具有网格的玻璃制品的平均可见光透射率为约0.92×0.992=91%(与图案的无导体沉积区域内的透光率界面反射损耗有关的系数为0.92)。沿水平条方向,存在用四条金导线连在一起的一系列完整的网格区域。假设溅射的金薄膜的有效体电阻率为5E-06Ω-cm,则每一个2微米宽500微米长金薄膜段的电阻都为大约125Ω。具有完整网格且用于在条方向通过电流的区域的有效薄层电阻每平方为大约115Ω。连接具有完整网格的各区域的四条导线在区域之间形成的电阻为大约62.5Ω。导线元件的上述布置导致沿图13所示条方向空间上变化的单位长度电阻。图14示出了水平网格条阵列的等效电路。该电路具有一系列由电阻器连接的板。
实例2
将根据下文所述的金薄膜微图案沉积到无色玻璃薄片(厚度大约1毫米)上。微图案340如图15所示。金层的厚度为约100纳米。微图案340具有一系列指状交叉楔形或三角形的透明导电区域。每一个楔都由网格构成,该网格由狭窄的金属导线342、344组成,测得导线342和344(参见图15a-图15c)的宽度为大约2微米。测得网格楔在底部处的宽度为大约1厘米,长度为大约6厘米。导线342和344的正方形网格间距为500微米。在楔内的所选网格区域内(参见图15a-图15b),有意设置长度测量值为大约25微米的断点350,以改变楔内的局部薄层电阻,从而让电流沿其长轴流过。如图15a的区域15a和图15b的区域15b(图15中这些区域的间距为大约1厘米)所示,网格中包括断点350,用来以大于1.2的系数增加长轴方向的薄层电阻。总体设计也包括区域15c(如图15c所示),该区域与区域15a和15b电隔离并间隔开来,并且具有薄层电阻值小于区域15a和15b的网格。网格区域15c的开放区域比率为99.20%,而网格区域15a和15b的开放区域比率则分别为99.20%和99.21%。总体设计也包括区域15d和15e(如图15d和图15e所示),这些区域的网格间距大于区域15a、15b和15c的网格间距,但导线宽度相同,从而增加了薄层电阻和可见光透射率。
图16示出了如上所述改变网格特性对沿楔的电阻梯度的影响相对于在相同形状的区域上使用标准ITO涂层的情况。总体设计也包括以沿图案左右侧的导电引线形式存在的较大导电结构,该引线宽大约1毫米,并且用厚大约100纳米的金薄膜进行图案化。
实例3
图17示出了触屏传感器的透明传感器元件400。传感器元件400包括两个图案化的导体层410和414(如X轴层和Y轴层)、两个光学透明的粘合剂层412和416以及底板418,这些元件层合在一起,但为了清楚起见在图17中彼此绝缘。层410和414包括透明导电网格条,其中一层在x轴方向取向,另一层在y轴方向取向,如图2所示。底板418为面积6厘米×6厘米、厚度1毫米的玻璃片。合适的光学透明粘合剂为得自3M公司(St.Paul,Minnesota)的Optically Clear Laminating Adhesive 8141(光学透明层合粘合剂8141)。X层和Y层中的每一个都可以使用具有金属微图案的透明聚合物薄膜。将根据下文所述的金薄膜微图案沉积到PET薄片上。合适的PET基底包括得自DuPont(Wilmington,Delaware)的厚度测量值为大约125微米的ST504 PET。
微图案440如图18和图19所示。金的厚度为约100纳米。微图案具有以一系列平行网格条442形式存在的透明导电区域。除了末端为用来连接电子器件(用于电容性检测触摸基底的手指)的正方形垫460(面积为大约2毫米×2毫米,具有厚度为大约100纳米的金薄膜形式的连续导体)的网格条之外,还存在与该电子器件电隔离的网格条441。绝缘的网格条441起到保持整个传感器的光学均匀度的作用。每一个网格条都由网格构成,该网格由狭窄的金属导线443制成,测得导线443的宽度为大约5微米。测得每一个网格条的宽度为大约2毫米、长度为66毫米。每一个网格条内都有宽度测量值为大约0.667毫米、长度测量值为12毫米的矩形单元。该网格设计起到在每一个网格条内的长轴导线之间提供连接线的作用,以在长轴导线存在任何断路缺陷的情况下保持沿网格条的电气连通性。然而,与采用具有此类连接线的间距为0.667毫米的正方形网格相反,图18和图19的矩形网格以沿网格条的薄层电阻为代价提供了更为理想的透光率。更具体地讲,图18和图19所示网格条和具有间距0.667毫米的正方形网格的2毫米宽网格条均具有沿网格条长轴方向基本相同的薄层电阻(每平方大约50Ω)。然而,正方形网格会遮挡1.5%的透明导电区域,而图18和图19所示网格只遮挡0.8%的透明导电区域。
实例4
描述了用于触屏传感器的透明传感器元件。如图17所示,该传感器元件包括两个图案化的导体层、两个光学透明的粘合剂层和底板。测得底板为面积6厘米×6厘米、厚度1毫米的玻璃片,这些元件如图17所示层合在一起。合适的光学透明粘合剂为得自3M公司的Optically Clear Laminating Adhesive 8141(光学透明层合粘合剂8141)。X层和Y层中的每一个都可以使用具有金属微图案的透明聚合物薄膜。将根据下文所述的金薄膜微图案沉积到PET薄片上。合适的PET基底包括得自DuPont的厚度测量值为大约125微米的ST504PET。
微图案540如图20和图21所示。金的厚度为100纳米。微图案540具有以一系列平行网格条542形式存在的透明导电区域。除了末端为用来连接电子器件(该电子器件用于电容性检测触摸基底的手指)的正方形垫560的网格条542之外,还存在与该电子器件电隔离的直线段541。直线段541位于网格条542之间的区域内,并具有与网格条基本相同的几何形状,不同的是其具有如图13所示的大约25微米的断点550。绝缘的线段541起到保持整个传感器的光学均匀度的作用。每一个网格条542都由网格构成,该网格由狭窄的金属导线制成,导线的宽度为大约5微米。测得每一个网格条542的宽度为大约2毫米、长度为66毫米。每一个网格条542内都有宽度测量值为大约0.667毫米、长度测量值为12毫米的矩形单元。图12和图13所示网格542遮挡0.8%的透明导电区域。图12和图13所示绝缘的线段541也遮挡网格条542之间其所占区域的0.8%的面积。
实例5
描述了用于触屏传感器的透明传感器元件。如图17所示,该传感器元件包括两个图案化的导体层、两个光学透明的粘合剂层和底板。测得底板为面积6厘米×6厘米、厚度1毫米的玻璃片,这些元件如图17所示层合在一起。合适的光学透明粘合剂为得自3M公司的Optically Clear Laminating Adhesive 8141(光学透明层合粘合剂8141)。X层和Y层中的每一个都可以使用具有金属微图案的透明聚合物薄膜。将根据下文所述的金薄膜微图案沉积到PET薄片上。合适的PET基底包括得自DuPont的厚度测量值为大约125微米的ST504PET。
微图案640如图22和图23所示。金的厚度为约100纳米。微图案640具有以一系列平行网格条642形式存在的透明导电区域。除了末端为用来连接电子器件(该电子器件用于电容性检测触摸基底的手指)的正方形垫660的网格条642之外,还存在与该电子器件电隔离的直线段641。直线段641位于网格条之间的区域内,并具有与网格条的线段类似的几何形状。电隔离线段641起到保持整个传感器的光学均匀度的作用。每一个网格条641、642都由网格构成,该网格由狭窄的金属导线制成,导线的宽度为大约3微米。测得每一个网格条642的宽度为大约2毫米、长度为66毫米。每一个网格条642内都具有随机成形的单元。图22和图23所示的网格642遮挡小于5%的透明导电区域。图22和图23所示的绝缘线段641也遮挡网格条之间小于其所占区域的5%的面积。
制备金属化聚合物薄膜基底(如实例6至40)
提供聚对苯二甲酸乙二醇酯(PET)(ST504,E.I.杜邦公司(Wilmington,Delaware))的聚合物薄膜基底。用Haze-Gard测定ST504 PET薄膜的光学性质。测得雾度和透光率分别为大约0.67%和92.9%。
一些基底薄膜带有金涂层,一些带有银涂层。涂金基底通过热蒸镀法制备(DV-502A,Denton Vacuum(Moorestown,New Jersey))。对于涂金基底,基底表面首先涂布20埃的铬,然后再涂布100纳米的金。就涂银基底而言,采用了两种不同的方法。一些涂银基底通过热蒸镀法制备(DV-502A,Denton Vacuum(Moorestown,New Jersey)),一些则通过溅射法制备(3M)。在所有情况下基底表面都涂布100纳米的银。
制造压模
采用照相平版印刷法在直径10厘米的硅晶片上制备光致抗蚀剂(Shipley1818,Rohm and Haas公司(Philadelphia,Pennsylvania))的图案,由此产生用于模制弹性体压模的两种不同的母模。不同的母模基于本文称之为“六边形”和“正方形”的两种不同的网格形状。六边形是指由限定具有正六边形形状的封闭区域的线条网络组成的图案。正方形是指由限定具有正方形形状的封闭区域的线条网络组成的图案。通过将未固化的聚二甲基硅氧烷(PDMS,SylgardTM 184,Dow Corning(Midland Michigan))倾注在母模上形成大约3.0毫米的厚度,对照母模模铸了弹性体压模。通过将接触母模的未固化有机硅暴露于真空中,除去气体,然后将其在70℃下固化2小时。从母模上剥离后,得到具有浮雕图案的PDMS压模,其浮雕图案具有高度大约1.8微米的凸起结构。对于六边形网格和正方形网格压模,其凸起结构为限定各自网格几何形状的线条,如上所述。
着墨
将压模背面(无浮雕图案的平坦表面)与十八硫醇的乙醇溶液(“ODT”O0005,TCIAMERICA(Wellesley Hills,Massachusetts))接触20小时。正方形网格图案的压模使用10mM的ODT溶液,六边形网格图案的压模使用5mM的ODT溶液。
压印
用按上述方法着墨的压模压印金属化聚合物薄膜基底。压印时,首先将金属化薄膜样本的一个边缘与压模表面接触,然后使用直径大约3.0厘米的泡沫辊轧制薄膜,使之与整个压模接触,通过这种方式使薄膜与压模面朝上的浮雕图案表面接触。轧制步骤需要的时间少于1秒。轧制步骤之后,让基底与压模接触10秒。然后将基底从压模剥离,该步骤需要的时间少于1秒。
蚀刻
压印之后,将具有印刷图案的金属化薄膜基底浸渍到蚀刻剂溶液中,以用于选择性地进行蚀刻和金属图案化。对于承载金薄膜的印刷金属化薄膜基底,蚀刻剂含有1克硫脲(T8656,Sigma-Aldrich(St.Louis,Missouri))、0.54毫升浓盐酸(HX0603-75,EMDChemicals(Gibbstown,New Jersey))、0.5毫升过氧化氢(30%,5240-05,MallinckrodtBaker(Phillipsburg,New Jersey))和21克去离子水。为了使金薄膜图案化,将印刷金属化薄膜基底在蚀刻溶液中浸渍50秒。对于承载银薄膜的印刷金属化薄膜基底,蚀刻剂含有0.45克硫脲(T8656,Sigma-Aldrich(St.Louis,Missouri))、1.64克硝酸铁(216828,Sigma-Aldrich(St.Louis,Missouri))和200毫升去离子水。为了使银薄膜图案化,将印刷金属化薄膜基底在蚀刻溶液中浸渍3分钟。在对金进行图案化蚀刻之后,使用由2.5克高锰酸钾(PX1551-1,EMD Chemicals(Gibbstown,New Jersey))、4克氢氧化钾(484016,Sigma-Aldrich(St.Louis,Missouri))和100毫升去离子水配成的溶液对残余的铬进行蚀刻。
表征
选择性蚀刻和金属图案化之后,使用光学显微镜(型号ECLIPSE LV100D,配有DS-Fi1数字照相机和NIS-Elements D软件,Nikon(Melville,New York))、扫描电镜(SEM,型号JSM-6400,JEOL Ltd(Tokyo,Japan))和Haze-Gard(Haze-Gard plus,BYK Gardner(Columbia,Maryland))对金属图案进行表征。采用微观技术确定金属图案中的线条结构的宽度。使用Haze-Gard确定网格涂布薄膜的透光率和雾度。HazeGard测定过程应在使用光学透明粘合剂(3M产品)将玻璃上的图案化薄膜层合之后进行。指定高、中、低可见度因子,以描述金属图案中的线条结构的可见度(人用肉眼观察)。
实例6
按照上述方法制备并表征金薄膜的六边形网格图案。油墨溶液含有溶解在乙醇中的浓度为5mM的十八硫醇。用油墨溶液接触压模背面20小时。压印时间为10秒。图1给定完成的金薄膜微图案拍摄的SEM显微图。测得实际线条宽度为大约1.63微米。根据测得的线条宽度和400微米的边缘到边缘设计宽度重新计算开放区域百分比,结果为99.2%。利用Haze-Gard测定六边形网格涂金薄膜的光学性质。测得雾度和透光率分别为大约1.14%和91.6%。该实例被指定为高可见度,因为可易于看到线条宽度1.63微米、边缘到边缘宽度400微米的金六边形网格图案。
实例7至15
按照实例1所述方法制备并表征金薄膜的六边形网格图案。使用SEM测量每一个实例的实际线条宽度,结果列在表1中。然后根据实际线条宽度和边缘到边缘设计宽度重新计算开放区域百分比,结果列在表1中。表1也给定了使用Haze-Gard测得的每一个实例的雾度值和透光率值,以及分配到每一个实例的可见度因子。
实例16
按照上述方法制备并表征金薄膜的正方形网格图案。油墨溶液含有溶解在乙醇中的浓度为10mM的十八硫醇。用油墨溶液接触压模背面20小时。压印时间为10秒。使用光学显微镜测得实际线条宽度为大约4.73微米。根据测得的线条宽度和320微米的设计间距重新计算开放区域百分比,结果为97.0%。利用Haze-Gard测定正方形网格涂金薄膜的光学性质。测得雾度和透光率分别为大约1.58%和88.6%。该实例被指定为高可见度,因为可易于看到线条宽度4.73微米、间距320微米的金正方形网格图案。
实例17-23
按照实例11所述方法制备并表征金薄膜的正方形网格图案。使用光学显微镜测量每一个实例的实际线条宽度,结果列在表1中。然后根据实际线条宽度和设计间距重新计算开放区域百分比,结果列在表1中。表1也给定了使用Haze-Gard测得的每一个实例的雾度值和透光率值,以及分配到每一个实例的可见度因子。
实例24
按照上述方法制备并表征银薄膜的六边形网格图案。涂银基底通过溅射法制备。油墨溶液含有溶解在乙醇中的浓度5mM的十八硫醇。用油墨溶液接触压模背面20小时。压印时间为10秒。图2给定完成的银薄膜微图案拍摄的SEM显微图。测得实际线条宽度为大约2.43微米。根据测得的线条宽度和600微米的边缘到边缘设计宽度重新计算开放区域百分比,结果为99.2%。利用Haze-Gard测定六边形网格涂银薄膜的光学性质。测得雾度和透光率分别为大约1.19%和91.8%。该实例被指定为高可见度,因为可易于看到线条宽度2.43微米、边缘到边缘宽度600微米的银六边形网格图案。
实例25至32
按照实例19所述方法制备并表征银薄膜的六边形网格图案。使用SEM测量每一个实例的实际线条宽度,结果列在表1中。然后根据实际线条宽度和边缘到边缘设计宽度重新计算开放区域百分比,结果列在表1中。表1也给定了使用Haze-Gard测得的每一个实例的雾度值和透光率值,以及分配到每一个实例的可见度因子。
实例33
按照上述方法制备并表征银薄膜的正方形网格图案。涂银基底通过热蒸镀法制备。油墨溶液含有溶解在乙醇中的浓度为10mM的十八硫醇。用油墨溶液接触压模背面20小时。压印时间为10秒。使用光学显微镜测得实际线条宽度为大约5.9微米。根据测得的线条宽度和320微米的设计间距重新计算开放区域百分比,结果为96.3%。利用Haze-Gard测定六边形网格涂银薄膜的光学性质。测得雾度和透光率分别为大约1.77%和88.9%。该实例被指定为高可见度,因为可易于看到线条宽度5.9微米、间距320微米的银正方形网格图案。
实例34-40
按照实例28所述方法制备并表征银薄膜的正方形网格图案。使用光学显微镜测量每一个实例的实际线条宽度,结果列在表1中。然后根据实际线条宽度和设计间距重新计算开放区域百分比,结果列在表1中。表1也给定了使用Haze-Gard测得的每一个实例的雾度值和透光率值,以及分配到每一个实例的可见度因子。
表1
1区域是指如图24所示出和标记的不同区域。
实例41
使用如共同授予的美国临时申请61/032,273所述的微接触印刷和蚀刻法制备透明传感器元件并与大致如图27、图28和图29所示的触摸传感器驱动装置组合在一起。然后将该装置与连接到显示器的计算机处理单元集成,以测试该装置。该装置能够检测多个单一和/或同时发生的手指触摸的位置,并以图形方式显示在显示器上。该实例使用微接触印刷和蚀刻技术(另外参见共同待审的美国专利申请No.61/032,273)形成触摸传感器上所用的微导电图。
形成透明传感器元件
第一图案化基底
使用热蒸镀机在由聚对苯二甲酸乙二醇酯(PET)制成的厚度125微米(μm)的第一可见光透明基底上涂覆100nm银薄膜,以生成第一银金属化薄膜。PET可以产品号ST504从E.I.du Pont de Nemours(Wilmington,DE)商购获得。银可以99.99%的3mm纯银丸形式从Cerac Inc.(Milwaukee,WI)商购获得。
紧贴此前经标准照相平版印刷技术图案化的直径10cm的硅片(业内有时称之为“母模”)模制厚度3mm的第一聚二甲基硅氧烷压模,该材料称为PDMS,可以产品号Sylgard184从Dow Chemical Co.(Midland,MI)商购获得。在65℃下,将PDMS在硅片上固化2小时。然后从硅片上剥离PDMS,以生成具有两种不同低密度区域的第一压模,这两种不同的低密度区域具有凸起结构图案:第一连续六边形网格图案和第二不连续六边形网格图案。也就是说,凸起结构限定了共享边缘的六边形的边缘。不连续六边形是在线段中包含选择性断点的六边形。选择性断点的长度为小于10μm。断点的设计和估算长度为大约5μm。据发现,为了降低断点的可见度,断点应优选小于10μm,更优选地为5μm或更小,如在1μm和5μm之间。每一个凸起的六边形轮廓图案的高度均为2μm并且面积覆盖率均为1%至3%(对应于97%至99%的开放区域),并且线段的测量宽度为2μm至3μm。第一压模也包括限定500μm宽导线的凸起结构。第一压模具有第一结构化的侧面和相对的第二基本平坦的侧面,第一侧面具有六边形网格图案区域和导线。
将压模结构化侧面向上放入含有直径2mm玻璃珠的玻璃培养皿。这样,第二基本平坦侧面就直接接触玻璃珠。玻璃珠起到托起压模远离培养皿底部的作用,从而允许随后添加的油墨溶液基本上与压模的整个平坦侧面接触。将溶于乙醇的10mM的1-十八硫醇(产品号C18H3CS,97%,可从TCI America(Portland OR)商购获得)油墨溶液用吸管移入压模下面的培养皿中。油墨溶液与压模的第二基本平坦的侧面直接接触。经过充分的着墨时间(如3小时)使油墨扩散到压模中之后,从培养皿中取出第一压模。将着墨的压模设置到工作面上,使其结构化侧向上。使用手持辊将第一银金属化薄膜涂敷到压模此时已着墨的结构化表面上,使得银薄膜直接接触结构化表面。让金属化薄膜在着墨的压模上停留15秒。然后从着墨的压模上移除第一金属化薄膜。将移除的薄膜放入银蚀刻剂溶液中3分钟,该溶液包含(i)0.030摩尔硫脲(产品号T8656,Sigma-Aldrich(St.Louis,MO))和(ii)0.020摩尔硝酸铁(产品号216828,Sigma-Aldrich)的去离子水溶液。蚀刻步骤后,将所得第一基底用去离子水漂洗并用氮气干燥,以生成第一图案化表面。在着墨的压模与第一金属化基底的银接触的地方,蚀刻后仍然保留有银。因此,着墨的压模和银薄膜未接触的地方的银被移除。
图27、图27a和图27b示出了第一图案化基底700,其具有多个第一连续区域702,第一连续区域位于此时已蚀刻和图案化了银金属化薄膜的基底的第一侧面上,并在多个第一不连续区域704之间交替。基底具有基本上为PET薄膜的相对的第二侧面。第一连续区域702中的每一个都具有在一端处设置的对应的500μm宽导线706。图27a示出了第一连续区域702的分解图,其具有形成六边形网格结构的多条连续线条。图27b示出了第一不连续区域704的分解图,其具有形成不连续的六边形网格结构的多条不连续线条(每一个六边形中示为选择性断点)。区域702和704的每一个网格结构都具有97%至99%的开放区域。每一个线段的测量值均为2μm至3μm。
第二图案化基底
与第一图案化基底一样,使用第二可见光透明基底制备第二图案化基底,以制备第二银金属化薄膜。制备第二压模,该压模具有插入第二不连续六边形网格图案的第二连续六边形网格图案。
图28、图28a和图28b示出了第二图案化基底720,其具有多个第二连续区域722,第二连续区域位于第二基底的第一侧面上,并在多个第二不连续区域724之间交替。第二连续区域722中的每一个都具有在一端处设置的对应的500μm宽第二导线726。图28a示出了一个第二连续区域722的分解图,其具有形成六边形网格结构的多条连续线条。图28b示出了一个第二不连续区域724的分解图,其具有形成不连续的六边形网格结构的多条不连续线条(每一个六边形中示为选择性断点)。选择性断点的长度为小于10μm。断点的设计和估算长度为大约5μm。据发现,为了降低断点的可见度,断点应优选小于10μm,更优选地为5μm或更小,如在1μm和5μm之间。区域722和724的每一个网格结构都具有97%至99%的开放区域。每一个线段的测量值均为2μm至3μm。
形成投射电容式触屏传感器元件
利用以上制备的第一图案化基底和第二图案化基底按下列步骤制备双层投射电容式触屏透明传感器元件。
使用得自3M公司(St.Paul,MN)的Optically Clear Laminating Adhesive 8141(光学透明层合粘合剂8141)将第一图案化基底和第二图案化基底粘在一起,以产生多层构造。用手持辊层合两个图案化基底,并使第一导线区域706和第二导线区域726没有粘合剂。使用Optically Clear Laminating Adhesive 8141(光学透明层合粘合剂8141)将该多层构造层合到0.7mm厚浮法玻璃上,使得第一基底的第一侧面靠近浮法玻璃。无粘合剂的第一导线区域706和第二导线区域726允许与第一图案化基底700和第二图案化基底720进行电气连接。
图29示出了多层触屏传感器元件740的俯视平面图,其中第一图案化基底和第二图案化基底已经层合。区域730表示第一连续区域和第二连续区域的重叠部分。区域732表示第一连续区域和第二不连续区域的重叠部分。区域734表示第二连续区域和第一不连续区域的重叠部分。区域736表示第一不连续区域和第二不连续区域的重叠部分。虽然存在多个这样的重叠区域,但为了便于说明,图中每一种只示出一个区域。
用于对透明传感器元件进行互电容测量的集成电路是PIC18F87J10(MicrochipTechnology(Chandler,Arizona))、AD7142(Analog Devices(Norwood,Massachusetts))和MM74HC154WM(Fairchild Semiconductor(South Portland,Maine))。PIC18F87J10是该系统的微控制器。它控制对MM74HC154WM驱动的感应条所进行的选择。它也配置AD7142以进行适当的测量。如本领域所已知的,该系统的用途包括设置多个校正值。这些校正值可因触屏而变。该系统可驱动16个不同的感应条,AD7142可测量12个不同的感应条。AD7142的配置包括选择要转换的信道的数量、测量的精度或速度、是否应施加电容偏差、以及模数转换器的连接。AD7142的测量值为16位值,它表示透明传感器元件矩阵内的导电条之间的交叉点的电容。
AD7142完成测量后会通过中断向微控制器发送信号以告知其收集数据。微控制器然后会通过SPI端口收集数据。收到数据后,微控制器将MM74HC154WM递增到下一驱动行,并清除AD7142中的中断,从而向其发送信号以收集下一组数据。在上述采样过程不断进行的同时,微控制器也会通过串行接口一直向具有监视器的计算机发送数据。如本领域的技术人员所已知的,该串行接口允许进行简单的计算机编程,以提供来自AD7142的原始数据并查看触摸和无触摸之间的数值如何变化。计算机程序在整个显示器上提供不同的颜色,具体取决于16位值的数值。根据校正,当16位值低于某个值时,显示区域会呈现白色。根据校正,当高于该阈值时,显示区域会呈现绿色。该数据以4字节标头(0xAAAAAAAA)、1字节信道(0x00-0x0F)、24字节数据(代表电容测量值)和回车(0x0D)的格式异步发送。
系统测试结果
将透明传感器元件连接到触摸传感器驱动装置。当手指触摸玻璃表面时,计算机监视器通过监视器对应位置中的颜色变化(白到绿)显示触摸感测区域内发生的触摸的位置。当两根手指同时触摸玻璃表面时,计算机监视器通过监视器对应位置中的颜色变化(白到绿)显示触摸感测区域内发生的触摸的位置。当三根手指同时触摸玻璃表面时,计算机监视器通过监视器对应位置中的颜色变化(白到绿)显示触摸感测区域内发生的触摸的位置。
实例42
微复制电极的一个实施例包括宽约0.5微米至约5微米(图5中的Y尺寸)、中心距为约2mm至约5mm的平行导体。使用(例如)相对于图8和图9所述的方法可以将成组的相邻导体电气互连,以形成总宽度1mm至10mm的电极。
使用本文所述及引述的方法,通过在PET透明基底上形成宽10μm(图5中的X维度)、深20μm(图5中的Z维度)、间距4mm的矩形微复制凹槽来制备导线。凹槽的平行阵列宽100mm。凹槽在PET网方向印刷,因此其长度即为PET网长度(>20米)。
凹槽内填充有Conductive Inkjet Technologies(CIT)制造的种子油墨。用薄层油墨将凹槽填平,然后通过类似于丝网印刷的方法使用刮墨刀移除多余的油墨。然后使用UV光固化种子油墨。之后使用铜对具有填充了油墨的凹槽的基底进行化学镀。所得微导体各宽大约9.6μm。注墨、UV固化和化学镀过程都由CIT执行。基底上凹槽宽<10μm、深20μm、间距2mm的微导体也采用所述方法制备。
本领域的技术人员将会知道,可使用除已公开的实施例之外的实施例实施本发明。提交公开的实施例的目的是为了举例说明而不是限制,并且本发明仅受以下权利要求书的限制。

Claims (18)

1.一种触屏传感器,包括:
可见光透明基底;
导电微图案,所述导电微图案设置在所述可见光透明基底之上或之内,所述导电微图案具有:
X+0.5微米的导线宽度;和
介于[95–X]%和99.5%之间的开放区域比率,
其中0≤X≤4.5,
其中所述导电微图案包括位于另外的连续均匀网格内的导线中的选择性断点,所述选择性断点形成规则图案,并影响所述微图案的局部薄层电阻,所述微图案在所述选择性断点上保持电连续。
2.根据权利要求1所述的触屏传感器,所述导电微图案的开放区域比率介于[98.5-(2.5X÷3.5)]%和[99.5-(X÷3.5)]%之间,其中0≤X≤3.5。
3.根据权利要求1所述的触屏传感器,所述触屏传感器的雾度值为小于10%,透光率为大于75%。
4.根据权利要求1所述的触屏传感器,所述触屏传感器的雾度值为小于5%,透光率为大于85%。
5.根据权利要求1所述的触屏传感器,其中所述导线宽度为小于6微米,并且间距为小于300微米。
6.根据权利要求1所述的触屏传感器,其中所述导线选自下列物质:金、银、钯、铂、铝、铜、镍、锡、其合金、铟锡氧化物、以及它们的组合。
7.根据权利要求1所述的触屏传感器,其中所述导线的厚度为小于500纳米。
8.一种触屏传感器,包括:
可见光透明基底;和
导电微图案,所述导电微图案设置在所述可见光透明基底之上或之内,所述导电微图案包括触摸感测区域内的第一区域微图案;
其中所述第一区域微图案包括金属线性导电结构,所述金属线性导电结构的宽度介于0.5微米和5微米之间;
其中所述第一区域微图案对可见光透明,并且具有介于95%和99.5%之间的开放区域;以及
其中就所述传感器的具有1毫米×1毫米正方形区域的所述第一区域微图案而言,所述正方形区域当中没有一个被遮挡的面积比率与所有所述正方形区域的平均值之差为大于75%,
其中所述第一区域微图案包括位于另外的连续均匀网格内的导线中的选择性断点,所述选择性断点形成规则图案,并影响所述微图案的局部薄层电阻,所述微图案在所述选择性断点上保持电连续。
9.根据权利要求8所述的触屏传感器,其中所述导电微图案包括电隔离的导体沉积物。
10.根据权利要求8所述的触屏传感器,其中所述第一区域微图案在第一方向的第一薄层电阻值在每平方在5Ω和100Ω之间。
11.一种触屏传感器,包括:
可见光透明基底;和
导电微图案,所述导电微图案设置在所述可见光透明基底之上或之内,所述导电微图案包括触摸感测区域内的第一区域微图案;
其中所述第一区域微图案包括金属线性导电结构,所述金属线性导电结构的宽度介于0.5微米和5微米之间;
其中所述第一区域微图案对可见光透明,并且具有介于95%和99.5%之间的开放区域;以及
其中就所述传感器的具有5毫米×5毫米正方形区域的所述第一区域微图案而言,所述正方形区域当中没有一个被遮挡的面积比率与所有所述正方形区域的平均值之差为大于50%,
其中所述第一区域微图案包括位于另外的连续均匀网格内的导线中的选择性断点,所述选择性断点形成规则图案,并影响所述微图案的局部薄层电阻,所述微图案在所述选择性断点上保持电连续。
12.根据权利要求11所述的触屏传感器,其中所述导电微图案包括电隔离的导体沉积物。
13.一种触屏传感器,包括:
可见光透明基底;和
导电微图案,所述导电微图案设置在所述可见光透明基底之上或之内,所述导电微图案包括触摸感测区域内的第一区域微图案;
其中所述第一区域微图案包括宽度介于0.5微米和10微米之间的导线;
其中所述第一区域微图案对可见光透明,并且具有在90%和99.9%之间的开放区域;以及
其中就具有5毫米×5毫米正方形区域的所述第一区域微图案而言,所述正方形区域当中没有一个被遮挡的面积比率与所有所述正方形区域的平均值之差为大于75%,
其中所述第一区域微图案包括位于另外的连续均匀网格内的导线中的选择性断点,所述选择性断点形成规则图案,并影响所述微图案的局部薄层电阻,所述微图案在所述选择性断点上保持电连续。
14.根据权利要求13所述的触屏传感器,其中所述正方形区域当中没有一个被遮挡的面积比率与所有所述正方形区域的平均值之差为大于50%。
15.根据权利要求13所述的触屏传感器,其中所述导电微图案包括的导线的宽度介于1微米和5微米之间。
16.一种触屏传感器,包括:
可见光透明基底;和
导电微图案,所述导电微图案设置在所述可见光透明基底之上或之内,所述导电微图案包括触摸感测区域内的第一区域微图案;
其中所述第一区域微图案包括金属线性导电结构,所述金属线性导电结构的宽度介于1微米和10微米之间;
其中所述第一区域微图案对可见光透明,并且具有介于90%和99.5%之间的开放区域;以及
其中所述第一区域微图案包括位于另外的连续均匀网格内的导线中的选择性断点,所述选择性断点形成规则图案,并影响所述微图案的局部薄层电阻,所述微图案在所述选择性断点上保持电连续。
17.根据权利要求16所述的触屏传感器,其中所述第一区域微图案能够划分为5毫米×5毫米的正方形区域,并且其中所述正方形区域当中没有一个被遮挡的面积比率与所有所述正方形区域的平均值之差为大于75%。
18.根据权利要求16所述的触屏传感器,其中所述正方形区域当中没有一个被遮挡的面积比率与所有所述正方形区域的平均值之差为大于50%。
CN201710515322.3A 2008-02-28 2009-02-26 触屏传感器 Active CN107272978B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US3227308P 2008-02-28 2008-02-28
US3226908P 2008-02-28 2008-02-28
US61/032,269 2008-02-28
US61/032,273 2008-02-28
US8549608P 2008-08-01 2008-08-01
US8576408P 2008-08-01 2008-08-01
US61/085,764 2008-08-01
US61/085,496 2008-08-01
CN200980114050XA CN102016767A (zh) 2008-02-28 2009-02-26 触屏传感器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200980114050XA Division CN102016767A (zh) 2008-02-28 2009-02-26 触屏传感器

Publications (2)

Publication Number Publication Date
CN107272978A true CN107272978A (zh) 2017-10-20
CN107272978B CN107272978B (zh) 2020-09-15

Family

ID=41012807

Family Applications (3)

Application Number Title Priority Date Filing Date
CN200980114050XA Pending CN102016767A (zh) 2008-02-28 2009-02-26 触屏传感器
CN201510072134.9A Active CN104636016B (zh) 2008-02-28 2009-02-26 触屏传感器
CN201710515322.3A Active CN107272978B (zh) 2008-02-28 2009-02-26 触屏传感器

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN200980114050XA Pending CN102016767A (zh) 2008-02-28 2009-02-26 触屏传感器
CN201510072134.9A Active CN104636016B (zh) 2008-02-28 2009-02-26 触屏传感器

Country Status (7)

Country Link
US (2) US8179381B2 (zh)
EP (5) EP4071785A1 (zh)
JP (12) JP2011513846A (zh)
KR (13) KR101822350B1 (zh)
CN (3) CN102016767A (zh)
TW (1) TWI446229B (zh)
WO (1) WO2009154812A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379576A (zh) * 2019-07-25 2019-10-25 东莞福哥电子有限公司 一种多阻值的电阻体印刷方法

Families Citing this family (513)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7821425B2 (en) 2002-07-12 2010-10-26 Atmel Corporation Capacitive keyboard with non-locking reduced keying ambiguity
GB0319714D0 (en) 2003-08-21 2003-09-24 Philipp Harald Anisotropic touch screen element
DE212004000044U1 (de) 2003-08-21 2006-06-01 Philipp, Harald, Hamble Kapazitiver Positionssensor
GB2428306B (en) 2005-07-08 2007-09-26 Harald Philipp Two-dimensional capacitive position sensor
US7932898B2 (en) 2005-09-20 2011-04-26 Atmel Corporation Touch sensitive screen
TW200805128A (en) * 2006-05-05 2008-01-16 Harald Philipp Touch screen element
US7903092B2 (en) * 2006-05-25 2011-03-08 Atmel Corporation Capacitive keyboard with position dependent reduced keying ambiguity
US8619054B2 (en) * 2006-05-31 2013-12-31 Atmel Corporation Two dimensional position sensor
US8786554B2 (en) * 2006-07-10 2014-07-22 Atmel Corporation Priority and combination suppression techniques (PST/CST) for a capacitive keyboard
US20080094077A1 (en) * 2006-10-20 2008-04-24 Harald Philipp Capacitive Position Sensor
US7830160B2 (en) * 2006-10-20 2010-11-09 Atmel, Corporation Capacitive position sensor
GB2446702A (en) * 2007-02-13 2008-08-20 Qrg Ltd Touch Control Panel with Pressure Sensor
CN101681213B (zh) * 2007-03-29 2013-08-21 瑟克公司 用于电容式触控板的驱动屏蔽
TWI444876B (zh) * 2007-04-05 2014-07-11 Qrg Ltd 二維位置感應器
DE112008001800B4 (de) * 2007-07-12 2020-07-30 Atmel Corporation Zweidimensionales Touchpanel
GB2451267A (en) * 2007-07-26 2009-01-28 Harald Philipp Capacitive position sensor
US7952366B2 (en) 2007-07-26 2011-05-31 Atmel Corporation Proximity sensor
US9600124B2 (en) * 2007-07-31 2017-03-21 Atmel Corporation Sensor and method of sensing
WO2009027629A1 (en) 2007-08-26 2009-03-05 Qrg Limited Capacitive sensor with reduced noise
FR2925717B1 (fr) * 2007-12-19 2010-06-18 Stantum Capteur tactile transparent multicontatcs a base de depot surfacique metallise
JP2011514597A (ja) 2008-02-28 2011-05-06 スリーエム イノベイティブ プロパティズ カンパニー 変化するシート抵抗を有するタッチスクリーンセンサ
US9823784B2 (en) * 2008-04-10 2017-11-21 Atmel Corporation Capacitive touch screen with noise suppression
US8526767B2 (en) 2008-05-01 2013-09-03 Atmel Corporation Gesture recognition
US8378981B2 (en) * 2008-05-19 2013-02-19 Atmel Corporation Capacitive sensing with high-frequency noise reduction
US9569037B2 (en) * 2008-05-19 2017-02-14 Atmel Corporation Capacitive sensing with low-frequency noise reduction
TW201003498A (en) * 2008-07-04 2010-01-16 Wintek Corp Resistive touch panel with multi-touch recognition ability
JP5253288B2 (ja) * 2009-05-08 2013-07-31 グンゼ株式会社 面状体及びタッチスイッチ
US8717332B2 (en) * 2008-07-31 2014-05-06 Gunze Limited Planar element, and touch switch
CN102160019B (zh) * 2008-08-01 2014-01-29 3M创新有限公司 制备复合电极的方法
US8159467B2 (en) * 2008-08-21 2012-04-17 Wacom Co. Ltd. Meshed touchscreen pattern
US8823675B2 (en) * 2008-10-04 2014-09-02 Atmel Corporation Capacitive matrix touch sensor
US8638314B2 (en) * 2008-10-17 2014-01-28 Atmel Corporation Capacitive touch buttons combined with electroluminescent lighting
US8659557B2 (en) * 2008-10-21 2014-02-25 Atmel Corporation Touch finding method and apparatus
US20100097329A1 (en) * 2008-10-21 2010-04-22 Martin Simmons Touch Position Finding Method and Apparatus
US8056044B2 (en) 2008-10-21 2011-11-08 Atmel Corporation Signal processing
US8605037B2 (en) * 2008-10-21 2013-12-10 Atmel Corporation Noise reduction in capacitive touch sensors
US8866790B2 (en) * 2008-10-21 2014-10-21 Atmel Corporation Multi-touch tracking
US8552995B2 (en) * 2008-10-22 2013-10-08 Atmel Corporation Sensor and method of sensing
US8054090B2 (en) 2008-10-22 2011-11-08 Atmel Corporation Noise handling in capacitive touch sensors
US8610009B2 (en) 2008-10-22 2013-12-17 Atmel Corporation Capacitive touch sensors
US9244568B2 (en) 2008-11-15 2016-01-26 Atmel Corporation Touch screen sensor
WO2010075308A2 (en) 2008-12-26 2010-07-01 Atmel Corporation Multiple electrode touch sensitive device
JP2010165032A (ja) * 2009-01-13 2010-07-29 Hitachi Displays Ltd タッチパネルディスプレイ装置
US8970515B2 (en) 2009-02-26 2015-03-03 3M Innovative Properties Company Touch screen sensor and patterned substrate having overlaid micropatterns with low visibility
US8237456B2 (en) 2009-03-02 2012-08-07 Atmel Corporation Capacitive sensing
US9317140B2 (en) * 2009-03-30 2016-04-19 Microsoft Technology Licensing, Llc Method of making a multi-touch input device for detecting touch on a curved surface
US8982051B2 (en) * 2009-03-30 2015-03-17 Microsoft Technology Licensing, Llc Detecting touch on a surface
US9495042B2 (en) * 2009-04-14 2016-11-15 Atmel Corporation Two-dimensional position sensor
JP5366051B2 (ja) * 2009-04-20 2013-12-11 株式会社ジャパンディスプレイ 情報入力装置、表示装置
US8154529B2 (en) 2009-05-14 2012-04-10 Atmel Corporation Two-dimensional touch sensors
EP2446067B1 (en) 2009-06-25 2019-11-20 3M Innovative Properties Company Methods of wet etching a self-assembled monolayer patterned substrate and metal patterned articles
US8253706B2 (en) 2009-06-26 2012-08-28 Atmel Corporation Apparatus using a differential analog-to-digital converter
JP5345007B2 (ja) * 2009-06-29 2013-11-20 株式会社ワコム 位置検出装置、位置検出回路及び位置検出方法
EP2449547B1 (en) 2009-06-30 2016-09-21 3M Innovative Properties Company Electronic displays and metal micropatterned substrates having a graphic
US8451237B2 (en) * 2009-07-06 2013-05-28 Atmel Corporation Sensitivity control as a function of touch shape
JP5361579B2 (ja) * 2009-07-09 2013-12-04 信越ポリマー株式会社 大型ディスプレイ用のセンサパネル及びその製造方法
US20110007011A1 (en) * 2009-07-13 2011-01-13 Ocular Lcd Inc. Capacitive touch screen with a mesh electrode
US8490013B2 (en) 2009-07-30 2013-07-16 Atmel Corporation Method and apparatus for single touch zoom using spiral rotation
US8621942B2 (en) * 2009-08-03 2014-01-07 Atmel Corporation Force sensor with compressible electrode
US9836167B2 (en) * 2009-08-03 2017-12-05 Atmel Corporation Electrode layout for touch screens
US8279189B2 (en) 2009-08-11 2012-10-02 Atmel Corporation Touch-sensitive user interface
US8576182B2 (en) * 2009-09-01 2013-11-05 Atmel Corporation Methods and apparatuses to test the functionality of capacitive sensors
US8552315B2 (en) * 2009-09-03 2013-10-08 Atmel Corporation Two-dimensional position sensor
US8730199B2 (en) * 2009-09-04 2014-05-20 Atmel Corporation Capacitive control panel
CN102033669B (zh) * 2009-09-24 2013-08-14 群康科技(深圳)有限公司 电容式触控面板
US8552994B2 (en) * 2009-09-25 2013-10-08 Atmel Corporation Method and apparatus to measure self-capacitance using a single pin
US8797290B2 (en) * 2009-10-22 2014-08-05 Atmel Corporation Sense electrode spine interpolation
US9041682B2 (en) * 2009-10-23 2015-05-26 Atmel Corporation Driving electrodes with different phase signals
US9632628B2 (en) * 2009-10-23 2017-04-25 Atmel Corporation Interdigitated touchscreen electrodes
US8564552B2 (en) * 2009-10-26 2013-10-22 Atmel Corporation Touchscreen electrode arrangement with varied proportionate density
US9916045B2 (en) 2009-10-26 2018-03-13 Amtel Corporation Sense electrode design
US9372579B2 (en) * 2009-10-27 2016-06-21 Atmel Corporation Touchscreen electrode arrangement
US20110102331A1 (en) * 2009-10-29 2011-05-05 Qrg Limited Redundant touchscreen electrodes
US8599150B2 (en) 2009-10-29 2013-12-03 Atmel Corporation Touchscreen electrode configuration
TWI407340B (zh) * 2009-12-22 2013-09-01 Au Optronics Corp 觸控顯示面板
JP5613448B2 (ja) * 2010-04-30 2014-10-22 富士フイルム株式会社 タッチパネル及び導電シート
JP5476237B2 (ja) * 2010-07-05 2014-04-23 富士フイルム株式会社 タッチパネル及び導電シート
KR20130102121A (ko) 2010-01-28 2013-09-16 후지필름 가부시키가이샤 도전 시트, 도전 시트의 사용 방법 및 터치 패널
KR101040851B1 (ko) * 2010-03-23 2011-06-14 삼성모바일디스플레이주식회사 터치 스크린 패널
US9489072B2 (en) 2010-04-15 2016-11-08 Atmel Corporation Noise reduction in capacitive touch sensors
US8941395B2 (en) 2010-04-27 2015-01-27 3M Innovative Properties Company Integrated passive circuit elements for sensing devices
US8860686B2 (en) 2010-04-30 2014-10-14 Atmel Corporation Multi-chip touch screens
US8766929B2 (en) 2010-05-14 2014-07-01 Atmel Corporation Panel for position sensors
KR101093651B1 (ko) * 2010-05-25 2011-12-15 전자부품연구원 금속박막을 이용한 터치패널 및 그 제조방법
US8797280B2 (en) 2010-05-26 2014-08-05 Atmel Corporation Systems and methods for improved touch screen response
KR20130109090A (ko) 2010-06-11 2013-10-07 쓰리엠 이노베이티브 프로퍼티즈 컴파니 힘 측정을 갖는 포지셔널 터치 센서
US8797281B2 (en) 2010-06-16 2014-08-05 Atmel Corporation Touch-screen panel with multiple sense units and related methods
US9081427B2 (en) 2010-07-16 2015-07-14 Atmel Corporation Position-sensing panel and method
US10306758B2 (en) 2010-07-16 2019-05-28 Atmel Corporation Enhanced conductors
US8723834B2 (en) 2010-07-28 2014-05-13 Atmel Corporation Touch sensitive screen configurations
CN103097478B (zh) 2010-08-18 2015-09-30 3M创新有限公司 包含消除应力的光学粘合剂的光学组件及其制备方法
US10831317B2 (en) 2010-08-20 2020-11-10 Neodrón Limited Electronic ink touch sensitive display
US8823656B2 (en) 2010-08-30 2014-09-02 Atmel Corporation Touch tracking across multiple touch screens
US8723818B2 (en) 2010-09-10 2014-05-13 Atmel Corporation Touch screen poly layer electrode distribution
US9252768B2 (en) 2010-09-13 2016-02-02 Atmel Corporation Position-sensing panel
TWI427521B (zh) 2010-09-15 2014-02-21 Au Optronics Corp 電容式觸控感測器及電容式觸控裝置
US9626045B1 (en) 2010-09-27 2017-04-18 Atmel Corporation Position-sensing panel and related methods
US8754854B1 (en) 2010-09-28 2014-06-17 Google Inc. Keyboard integrated with trackpad
US9019207B1 (en) 2010-09-28 2015-04-28 Google Inc. Spacebar integrated with trackpad
US8400209B2 (en) 2010-10-22 2013-03-19 Atmel Corporation Proximity detection
US8564314B2 (en) 2010-11-02 2013-10-22 Atmel Corporation Capacitive touch sensor for identifying a fingerprint
US8786572B2 (en) 2010-11-04 2014-07-22 Atmel Corporation Touch position-sensing panel and method
US8486284B2 (en) * 2010-11-17 2013-07-16 Kai-Ti Yang Method for forming a touch sensing pattern and signal wires
TWI567802B (zh) * 2010-11-19 2017-01-21 富士軟片股份有限公司 觸控面板、觸控面板的製造方法以及導電膜
FR2968103B1 (fr) * 2010-11-26 2013-04-26 Stantum Capteur tactile transparent et procédé de fabrication associe
US9223445B2 (en) 2010-12-02 2015-12-29 Atmel Corporation Position-sensing and force detection panel
US9077344B2 (en) 2010-12-07 2015-07-07 Atmel Corporation Substrate for electrical component and method
WO2012082300A1 (en) 2010-12-16 2012-06-21 3M Innovative Properties Company Transparent micropatterned rfid antenna and articles incorporating same
CN107844224B (zh) * 2011-01-18 2021-10-22 富士胶片株式会社 显示装置及显示装置的制造方法
US9904088B2 (en) 2011-01-19 2018-02-27 Lg Innotek Co., Ltd. Touch panel and method for manufacturing the same
US8933906B2 (en) * 2011-02-02 2015-01-13 3M Innovative Properties Company Patterned substrates with non-linear conductor traces
US9736928B2 (en) 2011-02-02 2017-08-15 3M Innovative Properties Company Patterned substrates with darkened conductor traces
WO2012111819A1 (ja) * 2011-02-18 2012-08-23 富士フイルム株式会社 導電シート及びタッチパネル
CN108314979B (zh) 2011-02-18 2020-02-28 3M创新有限公司 光学透明的粘合剂、使用方法和由其制得的制品
US8947404B2 (en) 2011-03-09 2015-02-03 Atmel Corporation Stylus
US9007332B2 (en) 2011-03-22 2015-04-14 Atmel Corporation Position sensing panel
US20120242606A1 (en) * 2011-03-23 2012-09-27 Synaptics Incorporated Trace design for reduced visibility in touch screen devices
US8797285B2 (en) 2011-04-18 2014-08-05 Atmel Corporation Panel
US9218561B2 (en) 2011-05-25 2015-12-22 Atmel Corporation Touch sensor with RFID
KR101875020B1 (ko) * 2011-05-31 2018-07-06 엘지디스플레이 주식회사 정전용량 방식 터치 스크린 패널
KR101978666B1 (ko) * 2011-06-10 2019-05-15 미래나노텍(주) 터치 스크린 센서 기판, 터치 스크린 센서 및 이를 포함하는 패널
JP5806559B2 (ja) * 2011-09-06 2015-11-10 富士フイルム株式会社 導電シート、タッチパネル及び表示装置
WO2013008826A1 (ja) 2011-07-11 2013-01-17 富士フイルム株式会社 導電シート、タッチパネル及び表示装置、並びにこの導電シートの製造方法及び記憶媒体
JP5681674B2 (ja) * 2011-07-11 2015-03-11 富士フイルム株式会社 導電シート、タッチパネル及び表示装置
US8624607B2 (en) 2011-07-29 2014-01-07 Atmel Corporation Measuring voltage
US9501179B2 (en) * 2011-08-04 2016-11-22 Atmel Corporation Touch sensor for curved or flexible surfaces
US10044353B2 (en) 2011-08-10 2018-08-07 Atmel Corporation Substantially edgeless touch sensor
US9287865B2 (en) 2011-08-10 2016-03-15 Atmel Corporation Capacitive touch sensor control unit with sampling capacitors for differential integration
US8421666B2 (en) 2011-08-11 2013-04-16 Atmel Corporation Analog to digital converter with adjustable conversion window
US8416117B2 (en) 2011-08-11 2013-04-09 Atmel Corporation Analog to digital converter with dual integrating capacitor systems
US10222912B2 (en) 2011-09-06 2019-03-05 Atmel Corporation Touch sensor with touch object discrimination
US8847898B2 (en) 2011-09-07 2014-09-30 Atmel Corporation Signal-to-noise ratio in touch sensors
US8847612B2 (en) 2011-09-08 2014-09-30 Atmel Corporation Integrated test system for a touch sensor
US8804347B2 (en) 2011-09-09 2014-08-12 Apple Inc. Reducing the border area of a device
US9310941B2 (en) 2011-10-04 2016-04-12 Atmel Corporation Touch sensor input tool with offset between touch icon and input icon
JP5809117B2 (ja) * 2011-10-05 2015-11-10 富士フイルム株式会社 導電シート、タッチパネル、表示装置
KR20130037943A (ko) * 2011-10-07 2013-04-17 삼성전기주식회사 터치패널 및 그 제조방법
CN104024995B (zh) * 2011-10-25 2017-05-17 尤尼皮克塞尔显示器有限公司 改变高分辨率导电图案的光学性质的方法
US9164598B2 (en) 2011-10-28 2015-10-20 Atmel Corporation Active stylus with surface-modification materials
US9354728B2 (en) 2011-10-28 2016-05-31 Atmel Corporation Active stylus with capacitive buttons and sliders
US9690431B2 (en) 2011-10-28 2017-06-27 Atmel Corporation Locking active stylus and touch-sensor device
US10725564B2 (en) 2011-10-28 2020-07-28 Wacom Co., Ltd. Differential sensing in an active stylus
US8797287B2 (en) 2011-10-28 2014-08-05 Atmel Corporation Selective scan of touch-sensitive area for passive or active touch or proximity input
US8872792B2 (en) 2011-10-28 2014-10-28 Atmel Corporation Active stylus with energy harvesting
US9459709B2 (en) 2011-10-28 2016-10-04 Atmel Corporation Scaling voltage for data communication between active stylus and touch-sensor device
US9557833B2 (en) 2011-10-28 2017-01-31 Atmel Corporation Dynamic adjustment of received signal threshold in an active stylus
US10725563B2 (en) 2011-10-28 2020-07-28 Wacom Co., Ltd. Data transfer from active stylus to configure a device or application
US9250719B2 (en) 2011-10-28 2016-02-02 Atmel Corporation Active stylus with filter
US9182856B2 (en) 2011-10-28 2015-11-10 Atmel Corporation Capacitive force sensor
US9389701B2 (en) 2011-10-28 2016-07-12 Atmel Corporation Data transfer from active stylus
US9389707B2 (en) 2011-10-28 2016-07-12 Atmel Corporation Active stylus with configurable touch sensor
US11347330B2 (en) 2011-10-28 2022-05-31 Wacom Co., Ltd. Adaptive transmit voltage in active stylus
US10423248B2 (en) 2011-10-28 2019-09-24 Wacom Co., Ltd. Touch-sensitive system with motion filtering
US10082889B2 (en) 2011-10-28 2018-09-25 Atmel Corporation Multi-electrode active stylus tip
US9086745B2 (en) 2011-10-28 2015-07-21 Atmel Corporation Dynamic reconfiguration of electrodes in an active stylus
US9280218B2 (en) 2011-10-28 2016-03-08 Atmel Corporation Modulating drive signal for communication between active stylus and touch-sensor device
US9965107B2 (en) 2011-10-28 2018-05-08 Atmel Corporation Authenticating with active stylus
US9116558B2 (en) 2011-10-28 2015-08-25 Atmel Corporation Executing gestures with active stylus
US8947379B2 (en) 2011-10-28 2015-02-03 Atmel Corporation Inductive charging for active stylus
US9160331B2 (en) 2011-10-28 2015-10-13 Atmel Corporation Capacitive and inductive sensing
US9874920B2 (en) 2011-10-28 2018-01-23 Atmel Corporation Power management system for active stylus
US8866767B2 (en) 2011-10-28 2014-10-21 Atmel Corporation Active stylus with high voltage
US9256311B2 (en) 2011-10-28 2016-02-09 Atmel Corporation Flexible touch sensor
US9946408B2 (en) 2011-10-28 2018-04-17 Atmel Corporation Communication between a master active stylus and a slave touch-sensor device
US9164603B2 (en) 2011-10-28 2015-10-20 Atmel Corporation Executing gestures with active stylus
US8933899B2 (en) 2011-10-28 2015-01-13 Atmel Corporation Pulse- or frame-based communication using active stylus
US9189121B2 (en) 2011-10-28 2015-11-17 Atmel Corporation Active stylus with filter having a threshold
US9606641B2 (en) 2015-03-09 2017-03-28 Atmel Corporation Adaptive transmit voltage in active stylus
US10162400B2 (en) 2011-10-28 2018-12-25 Wacom Co., Ltd. Power management system for active stylus
US8581886B2 (en) 2011-10-28 2013-11-12 Atmel Corporation Tuning algorithm for noise reduction in an active stylus
US8963561B2 (en) 2011-11-03 2015-02-24 Atmel Corporation Randomizing one or more micro-features of a touch sensor
KR20130051803A (ko) * 2011-11-10 2013-05-21 삼성전기주식회사 터치패널
US9337833B2 (en) 2011-11-14 2016-05-10 Atmel Corporation Driven shield for shaping an electric field of a touch sensor
US8711292B2 (en) 2011-11-22 2014-04-29 Atmel Corporation Integrated touch screen
US9825104B2 (en) 2011-11-22 2017-11-21 Atmel Corporation Low-birefringence substrate for touch sensor
US9965106B2 (en) 2011-11-22 2018-05-08 Atmel Corporation Touch screen with electrodes positioned between pixels
US9262019B2 (en) 2011-11-22 2016-02-16 Atmel Corporation Touch sensor with conductive lines having different widths
US8947105B2 (en) 2011-12-01 2015-02-03 Atmel Corporation Capacitive coupling of bond pads
US9024645B2 (en) 2011-12-06 2015-05-05 Atmel Corporation Substantially edgeless touch sensor
US20140342177A1 (en) * 2011-12-07 2014-11-20 Duke University Synthesis of cupronickel nanowires and their application in transparent conducting films
US9507447B2 (en) 2011-12-08 2016-11-29 Atmel Corporation Touch sensor with inductive charging
US9411472B2 (en) 2011-12-08 2016-08-09 Atmel Corporation Touch sensor with adaptive touch detection thresholding
US9207814B2 (en) 2011-12-14 2015-12-08 Atmel Corporation Single-layer touch sensor
US8860690B2 (en) 2011-12-15 2014-10-14 Atmel Corporation Touch sensor with capacitive nodes having a capacitance that is approximately the same
KR101451075B1 (ko) 2011-12-16 2014-10-15 후지필름 가부시키가이샤 도전 시트 및 터치 패널
US20130155001A1 (en) * 2011-12-19 2013-06-20 Esat Yilmaz Low-Resistance Electrodes
US9634660B2 (en) 2011-12-20 2017-04-25 Atmel Corporation Touch sensor with reduced anti-touch effects
US9372580B2 (en) 2011-12-21 2016-06-21 Atmel Corporation Enhanced touch detection methods
JP5875484B2 (ja) * 2011-12-22 2016-03-02 富士フイルム株式会社 導電シート及びタッチパネル
US10299377B2 (en) 2011-12-22 2019-05-21 Fujifilm Corporation Conductive sheet and touch panel
JP2013149232A (ja) 2011-12-22 2013-08-01 Fujifilm Corp 導電シート及びタッチパネル
TWI479386B (zh) * 2011-12-23 2015-04-01 Lg Chemical Ltd 導電基板及包含其之電子裝置
US9312855B2 (en) 2012-01-10 2016-04-12 Atmel Corporation Touch sensor tracks
US9071249B2 (en) 2012-01-11 2015-06-30 Atmel Corporation Corrosion resistant touch sensor
US20130181911A1 (en) 2012-01-17 2013-07-18 Esat Yilmaz On-Display-Sensor Stack
US9244570B2 (en) 2012-01-17 2016-01-26 Atmel Corporation System and method for reducing the effects of parasitic capacitances
US20130181910A1 (en) * 2012-01-17 2013-07-18 Esat Yilmaz Dual-Substrate-Sensor Stack
US8890824B2 (en) 2012-02-07 2014-11-18 Atmel Corporation Connecting conductive layers using in-mould lamination and decoration
US9160332B2 (en) 2012-02-07 2015-10-13 Atmel Corporation Method and system for mechanical coupling of flexible printed circuit to a sensor
CN104106024B (zh) * 2012-02-10 2017-06-09 3M创新有限公司 用于触摸传感器电极的网格图案
TWI451374B (zh) * 2012-02-17 2014-09-01 Innocom Tech Shenzhen Co Ltd 顯示器螢幕裝置與其製作方法、觸控顯示裝置
US9471185B2 (en) 2012-02-21 2016-10-18 Atmel Corporation Flexible touch sensor input device
US8865292B2 (en) 2013-01-22 2014-10-21 Eastman Kodak Company Micro-channel structure for micro-wires
US9282647B2 (en) 2012-02-28 2016-03-08 Eastman Kodak Company Method of making micro-channel structure for micro-wires
US8773392B2 (en) * 2012-02-28 2014-07-08 Eastman Kodak Company Transparent touch-responsive capacitor with variable-pattern micro-wires
US8836668B2 (en) 2012-02-28 2014-09-16 Eastman Kodak Company Transparent touch-responsive capacitor with variable-height micro-wires
US8884918B2 (en) 2012-02-28 2014-11-11 Eastman Kodak Company Electronic device having metallic micro-wires
US8819927B2 (en) 2012-02-28 2014-09-02 Eastman Kodak Company Method of making a transparent conductor structure
US8773393B2 (en) * 2012-02-28 2014-07-08 Eastman Kodak Company Touch screen with dummy micro-wires
US8943682B2 (en) 2012-02-28 2015-02-03 Eastman Kodak Company Making micro-wires with different heights
US9154127B2 (en) 2012-03-06 2015-10-06 Atmel Corporation Touch sensor with conductive lines having portions with different widths
CN104160368B (zh) * 2012-03-06 2017-03-08 三菱电机株式会社 触摸屏、触摸面板、显示装置以及电子仪器
CN202720612U (zh) * 2012-03-07 2013-02-06 深圳市汇顶科技有限公司 单层式二维触摸传感器及触控终端
US9069423B2 (en) 2012-03-07 2015-06-30 Atmel Corporation Buffer-reference self-capacitance measurement
US8896327B2 (en) 2012-04-12 2014-11-25 Atmel Corporation Current mirror self-capacitance measurement
US9372582B2 (en) 2012-04-19 2016-06-21 Atmel Corporation Self-capacitance measurement
EP2662758A3 (en) * 2012-05-09 2015-03-04 LG Innotek Co., Ltd. Electrode member and touch window including the same
CN102722279A (zh) * 2012-05-09 2012-10-10 崔铮 金属网格导电层及其具备该导电层的触摸面板
US9306560B2 (en) 2012-05-14 2016-04-05 Atmel Corporation Self-capacitance detection using trans-conductance reference
US9013444B2 (en) 2012-05-18 2015-04-21 Atmel Corporation Self-capacitance measurement with isolated capacitance
US9921691B2 (en) 2012-05-18 2018-03-20 Atmel Corporation Burst-mode self-capacitance measurement with compensated capacitance
US8952927B2 (en) 2012-05-18 2015-02-10 Atmel Corporation Self-capacitance measurement with compensated capacitance
US9459737B2 (en) 2012-05-23 2016-10-04 Atmel Corporation Proximity detection using multiple inputs
US20130320994A1 (en) 2012-05-30 2013-12-05 3M Innovative Properties Company Electrode testing apparatus
US9046942B2 (en) 2012-06-01 2015-06-02 Atmel Corporation Combined accumulator and maximum/minimum comparator
TWI467456B (zh) * 2012-06-07 2015-01-01 Mstar Semiconductor Inc 觸控面板
KR101343241B1 (ko) * 2012-06-25 2013-12-18 삼성전기주식회사 터치패널
US8917261B2 (en) 2012-06-26 2014-12-23 Atmel Corporation Pixel occlusion mitigation
US8941014B2 (en) 2012-06-28 2015-01-27 Atmel Corporation Complex adhesive boundaries for touch sensors
US8803004B2 (en) 2012-06-28 2014-08-12 Atmel Corporation Complex adhesive boundaries for touch sensors
US9262023B2 (en) 2012-07-09 2016-02-16 Atmel Corporation Drive signals for a touch sensor
JP5224203B1 (ja) 2012-07-11 2013-07-03 大日本印刷株式会社 タッチパネルセンサ、タッチパネル装置および表示装置
US8736551B2 (en) 2012-07-12 2014-05-27 Atmel Corporation Touch-sensor-controller sensor hub
WO2014011731A1 (en) 2012-07-13 2014-01-16 3M Innovative Properties Company Hardcoats comprising alkoxylated multi (meth)acrylate monomers
US9116584B2 (en) 2012-07-24 2015-08-25 Atmel Corporation Dielectric layer for touch sensor stack
US9098152B2 (en) 2012-07-24 2015-08-04 Atmel Corporation Dielectric layer for touch sensor stack
US9069414B2 (en) 2012-08-02 2015-06-30 Nano-Optic Devices, Llc Touchscreen sensor for touchscreen display unit
TWI464644B (zh) * 2012-08-03 2014-12-11 Touchplus Information Corp 觸控面板
US9091895B2 (en) * 2012-08-08 2015-07-28 Kinestral Technologies, Inc. Electrochromic multi-layer devices with composite electrically conductive layers
WO2014025921A1 (en) 2012-08-08 2014-02-13 Kinestral Technologies, Inc. Electrochromic multi-layer devices with current modulating structure
US9091868B2 (en) 2012-08-08 2015-07-28 Kinestral Technologies, Inc. Electrochromic multi-layer devices with composite current modulating structure
TWI489335B (zh) * 2012-08-09 2015-06-21 Wistron Corp 導電基板及觸控面板
US9354737B2 (en) 2012-08-09 2016-05-31 Atmel Corporation Active stylus self-capacitance measurement
US9131606B2 (en) 2012-08-10 2015-09-08 Eastman Kodak Company Micro-channel pattern for effective ink distribution
US9005744B2 (en) 2012-08-10 2015-04-14 Eastman Kodak Company Conductive micro-wire structure
US9167688B2 (en) 2012-08-10 2015-10-20 Eastman Kodak Company Micro-wire pattern for electrode connection
US9563304B2 (en) 2012-08-15 2017-02-07 Atmel Corporation Active stylus with passive mutual measurements
US8502796B1 (en) 2012-08-27 2013-08-06 Atmel Corporation Interpolated single-layer touch sensor
US9035663B2 (en) 2012-09-11 2015-05-19 Atmel Corporation Capacitive position encoder
US8928624B2 (en) 2012-09-13 2015-01-06 Atmel Corporation Differential sensing for capacitive touch sensors
US9916047B2 (en) 2012-09-14 2018-03-13 Atmel Corporation Pattern of electrodes for a touch sensor
US9310924B2 (en) 2012-09-26 2016-04-12 Atmel Corporation Increasing the dynamic range of an integrator based mutual-capacitance measurement circuit
US9250754B2 (en) * 2012-09-27 2016-02-02 Google Inc. Pressure-sensitive trackpad
US9921626B2 (en) 2012-09-28 2018-03-20 Atmel Corporation Stylus communication with near-field coupling
US9395836B2 (en) 2012-10-01 2016-07-19 Atmel Corporation System and method for reducing borders of a touch sensor
US9256301B2 (en) 2012-10-10 2016-02-09 Atmel Corporation Active stylus with noise immunity
US9098155B2 (en) 2012-10-12 2015-08-04 Atmel Corporation Self-capacitance measurement using compensation capacitor
US9841862B2 (en) 2012-10-16 2017-12-12 Atmel Corporation Stylus position system
US10031590B2 (en) 2012-10-16 2018-07-24 Atmel Corporation Active stylus with a parallel communication channel
US9958966B2 (en) 2012-10-16 2018-05-01 Atmel Corporation Active stylus communication and position system
US9213455B2 (en) 2012-10-17 2015-12-15 Atmel Corporation Stylus with resonant circuit
US10013096B2 (en) 2012-10-18 2018-07-03 Atmel Corporation Touch sensor with simultaneously driven drive electrodes
US20140112499A1 (en) * 2012-10-23 2014-04-24 Yellow Matter Entertainment, LLC Audio production console and related process
KR102009880B1 (ko) * 2012-10-23 2019-08-12 엘지디스플레이 주식회사 메탈 메쉬형 터치 스크린 패널
CN102903423B (zh) * 2012-10-25 2015-05-13 南昌欧菲光科技有限公司 透明导电膜中的导电结构、透明导电膜及制作方法
US8988376B2 (en) 2012-10-31 2015-03-24 Atmel Corporation Charge compensation for capacitive touch sensor nodes
US9647658B2 (en) 2012-11-07 2017-05-09 Atmel Corporation Resistive interpolation for a touch sensor with opaque conductive material
US9164607B2 (en) 2012-11-30 2015-10-20 3M Innovative Properties Company Complementary touch panel electrodes
US9229553B2 (en) 2012-11-30 2016-01-05 3M Innovative Properties Company Mesh patterns for touch sensor electrodes
CN104838449B (zh) 2012-12-07 2018-06-15 3M创新有限公司 导电制品
US9939965B2 (en) 2012-12-11 2018-04-10 Atmel Corporation Sending drive signals with an increased number of pulses to particular drive lines
US9116586B2 (en) 2012-12-13 2015-08-25 Atmel Corporation Uniform-density coplanar touch sensor
US9244559B2 (en) 2012-12-14 2016-01-26 Atmel Corporation Integrated pixel display and touch sensor
JP6001089B2 (ja) * 2012-12-18 2016-10-05 富士フイルム株式会社 表示装置及び導電性フイルムのパターンの決定方法
TWM459451U (zh) * 2012-12-18 2013-08-11 Inv Element Inc 窄邊框之觸控面板結構
US9442535B2 (en) 2012-12-21 2016-09-13 Atmel Corporation Touch sensor with integrated antenna
US10040018B2 (en) 2013-01-09 2018-08-07 Imagine Tf, Llc Fluid filters and methods of use
EP2946275B1 (en) * 2013-01-15 2019-10-30 Nokia Technologies Oy Input device
CN103093245B (zh) * 2013-01-21 2016-01-20 信帧电子技术(北京)有限公司 视频图像中识别信号灯的方法
US9099227B2 (en) 2013-01-22 2015-08-04 Eastman Kodak Company Method of forming conductive films with micro-wires
US20150060113A1 (en) 2013-01-22 2015-03-05 Yongcai Wang Photocurable composition, article, and method of use
EP2950187A4 (en) * 2013-01-25 2016-10-19 Toppan Printing Co Ltd TOUCH PANEL, AND DISPLAY DEVICE
US9274152B2 (en) 2013-01-30 2016-03-01 Atmel Corporation Current-based charge compensation in a touch sensor
KR20140100089A (ko) * 2013-02-05 2014-08-14 삼성디스플레이 주식회사 터치 스크린 패널 및 그 제조 방법
US20140218637A1 (en) * 2013-02-06 2014-08-07 Nanchang O-Film Tech. Co., Ltd. Conductive film, manufacturing method thereof, and touch screen including the conducting film
US9052766B2 (en) * 2013-02-14 2015-06-09 Synaptics Incorporated Mesh sensor design for reduced visibility in touch screen devices
US8717325B1 (en) 2013-02-18 2014-05-06 Atmel Corporation Detecting presence of an object in the vicinity of a touch interface of a device
US9296013B2 (en) 2013-02-28 2016-03-29 Eastman Kodak Company Making multi-layer micro-wire structure
US9345144B2 (en) 2013-02-28 2016-05-17 Eastman Kodak Company Making multi-layer micro-wire structure
US8828503B1 (en) 2013-02-28 2014-09-09 Eastman Kodak Company Making multi-layer micro-wire structure
US9426885B2 (en) 2013-02-28 2016-08-23 Eastman Kodak Company Multi-layer micro-wire structure
US9061463B2 (en) 2013-02-28 2015-06-23 Eastman Kodak Company Embossed micro-structure with cured transfer material method
US9304636B2 (en) 2013-09-20 2016-04-05 Eastman Kodak Company Micro-wire touch screen with unpatterned conductive layer
US9056450B2 (en) 2013-03-04 2015-06-16 Uni-Pixel Displays, Inc. Method of mounting a flexographic printing plate with structured patterned backing tape
US9132622B2 (en) 2013-03-04 2015-09-15 Uni-Pixel Displays, Inc. Method of printing uniform line widths with angle effect
US20140246226A1 (en) * 2013-03-04 2014-09-04 Uni-Pixel Displays, Inc. Method of fabricating copper-nickel micro mesh conductors
US9229260B2 (en) 2013-04-15 2016-01-05 Eastman Kodak Company Imprinted bi-layer micro-structure
US9277642B2 (en) 2013-03-05 2016-03-01 Eastman Kodak Company Imprinted bi-layer micro-structure method
US20150085456A1 (en) 2013-03-05 2015-03-26 Ronald Steven Cok Imprinted multi-level micro-wire circuit structure
US9867289B2 (en) 2013-03-05 2018-01-09 Eastman Kodak Company Filled large-format imprinting method
US9085194B2 (en) 2013-03-05 2015-07-21 Eastman Kodak Company Embossing stamp for optically diffuse micro-channel
US9864463B2 (en) 2013-03-05 2018-01-09 Atmel Corporation Touch panel deformation compensation
US8895429B2 (en) 2013-03-05 2014-11-25 Eastman Kodak Company Micro-channel structure with variable depths
US9167700B2 (en) * 2013-03-05 2015-10-20 Eastman Kodak Company Micro-channel connection method
US20140308435A1 (en) 2013-04-15 2014-10-16 Mitchell Stewart Burberry Hybrid single-side touch screen method
JP5844002B2 (ja) * 2013-03-07 2016-01-13 三菱電機株式会社 表示装置
JP5890063B2 (ja) 2013-03-08 2016-03-22 富士フイルム株式会社 導電フィルム
US9448659B2 (en) 2013-03-14 2016-09-20 Atmel Corporation Simultaneous touch sensor scanning and display refreshing for minimizing display degradation for display-embedded touch sensors
US10241623B2 (en) 2013-03-14 2019-03-26 Neodrón Limited Reduction of touch sensor pattern visibility using beamsplitters
US9298222B2 (en) 2013-03-15 2016-03-29 Atmel Corporation Touch sensor with plastic cover lens
US9198285B2 (en) 2013-03-20 2015-11-24 Nanchang O-Film Tech. Co., Ltd. Touch screen and conductive layer thereof
US20150226547A1 (en) * 2014-02-10 2015-08-13 Uni-Pixel Displays, Inc. Method of aligning transparent substrates using moiré interference
US9132623B2 (en) 2013-03-27 2015-09-15 Unipixel Displays, Inc. Method of marking a transparent substrate for visual alignment
US9021952B2 (en) 2013-03-27 2015-05-05 Uni-Pixel Displays, Inc. Laser-assisted alignment of multi-station flexographic printing system
US9791980B2 (en) 2013-03-27 2017-10-17 Atmel Corporation Touch sensor with edge-balanced macro-feature design
CN103176660B (zh) * 2013-03-28 2015-09-30 南昌欧菲光科技有限公司 位置传感器
US9081454B2 (en) 2013-03-28 2015-07-14 Atmel Corporation Touch sensor with capacitive voltage divider
US9066426B2 (en) * 2013-03-28 2015-06-23 Nanchang O-Film Tech. Co., Ltd. Transparent conductive film
US9201551B2 (en) * 2013-03-28 2015-12-01 Nanchang O-Film Tech. Co., Ltd. Capacitive touch screen
US9392700B2 (en) 2013-03-28 2016-07-12 Nanchang O-Film Tech. Co., Ltd. Transparent conductive film and preparation method thereof
CN103165226B (zh) * 2013-03-28 2015-04-08 南昌欧菲光科技有限公司 透明导电膜及其制备方法
CN103207702B (zh) * 2013-03-30 2016-08-24 深圳欧菲光科技股份有限公司 触摸屏及其制造方法
CN103208326B (zh) * 2013-03-30 2014-12-17 深圳欧菲光科技股份有限公司 导电膜及其制备方法以及包含该导电膜的触摸屏
US9089061B2 (en) 2013-03-30 2015-07-21 Shenzhen O-Film Tech Co., Ltd. Conductive film, method for making the same, and touch screen including the same
US9086770B2 (en) 2013-04-15 2015-07-21 Atmel Corporation Touch sensor with high-density macro-feature design
US10955973B2 (en) 2013-04-16 2021-03-23 Atmel Corporation Differential sensing for touch sensors
CN104123028B (zh) * 2013-04-29 2017-08-15 祥达光学(厦门)有限公司 触控面板结构
US9231588B2 (en) 2013-04-30 2016-01-05 Atmel Corporation Touchscreen routing flow for single layer pattern
JP6180174B2 (ja) * 2013-05-08 2017-08-16 グンゼ株式会社 タッチパネル、表示装置及び電子機器
US9110550B2 (en) 2013-05-08 2015-08-18 Atmel Corporation Method for restructuring distorted capacitive touch data
US20140338191A1 (en) * 2013-05-15 2014-11-20 Uni-Pixel Displays, Inc. Method of manufacturing an integrated touch sensor with decorative color graphics
US9557361B2 (en) 2013-05-29 2017-01-31 Atmel Corporation Edgeless single-layer touch sensor
US9568524B2 (en) 2013-05-29 2017-02-14 Atmel Corporation Multi-state capacitive button
CN103295670B (zh) * 2013-05-30 2015-11-25 南昌欧菲光科技有限公司 透明导电膜
CN103294272B (zh) * 2013-05-30 2016-04-13 南昌欧菲光科技有限公司 透明导电膜
CN103279240B (zh) * 2013-05-30 2016-03-09 南昌欧菲光科技有限公司 触控面板
US8736571B1 (en) 2013-06-04 2014-05-27 Atmel Corporation Mesh design for touch sensors
US9448666B2 (en) 2013-06-08 2016-09-20 Microsoft Technology Licensing, Llc Dark film lamination for a touch sensor
US20150289421A1 (en) * 2013-06-20 2015-10-08 Joel Ho Apparatus for an emp shield for computing devices
US9335873B2 (en) 2013-06-20 2016-05-10 Atmel Corporation Method of compensating for retransmission effects in a touch sensor
US9542046B2 (en) 2013-06-26 2017-01-10 Atmel Corporation Changing the detection range of a touch sensor
US9389727B2 (en) 2013-06-26 2016-07-12 Atmel Corporation Method and system to determine when a device is being held
US9081443B2 (en) 2013-06-27 2015-07-14 Atmel Corporation Shieldless touch sensor noise cancellation
US9223201B2 (en) 2013-06-27 2015-12-29 Uni-Pixel Displays, Inc. Method of manufacturing a photomask with flexography
US9274656B2 (en) 2013-06-27 2016-03-01 Atmel Corporation Fast scanning for mutual capacitance screens
US9880674B2 (en) 2013-06-28 2018-01-30 Atmel Corporation Pattern of electrodes for a touch sensor
US9612677B2 (en) 2013-06-28 2017-04-04 Atmel Corporation Pseudo driven shield
US9535545B2 (en) 2013-06-28 2017-01-03 Atmel Corporation Common mode noise suppression during hovering and proximity detection
US9213407B2 (en) 2013-07-01 2015-12-15 Atmel Corporation Ring accessory
US9167076B2 (en) 2013-07-01 2015-10-20 Atmel Corporation Ring accessory
US9207802B2 (en) 2013-07-01 2015-12-08 Atmel Korea Llc Suppression of unintended touch objects
KR102053258B1 (ko) 2013-07-16 2019-12-06 엘지이노텍 주식회사 터치 윈도우
US9639214B2 (en) * 2013-07-22 2017-05-02 Synaptics Incorporated Utilizing chip-on-glass technology to jumper routing traces
US9442599B2 (en) * 2013-07-25 2016-09-13 Atmel Corporation System and method for using signals resulting from signal transmission in a touch sensor
US9310944B2 (en) * 2013-07-25 2016-04-12 Atmel Corporation Oncell single-layer touch sensor
US10001884B2 (en) 2013-07-29 2018-06-19 Atmel Corporation Voltage driven self-capacitance measurement
US9152285B2 (en) 2013-07-30 2015-10-06 Atmel Corporation Position detection of an object within proximity of a touch sensor
US9870104B2 (en) 2013-07-31 2018-01-16 Atmel Corporation Dynamic clustering of touch sensor electrodes
US9874980B2 (en) 2013-07-31 2018-01-23 Atmel Corporation Dynamic configuration of touch sensor electrode clusters
US9274644B2 (en) 2013-08-26 2016-03-01 Atmel Corporation Synchronization of active stylus and touch sensor
JP6416263B2 (ja) 2013-08-28 2018-10-31 スリーエム イノベイティブ プロパティズ カンパニー 硬化性イソブチレン接着性コポリマー
KR102132780B1 (ko) 2013-08-28 2020-07-13 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN104423737A (zh) * 2013-08-30 2015-03-18 天津富纳源创科技有限公司 电容式触控装置及控制方法
CN104423738A (zh) * 2013-08-30 2015-03-18 天津富纳源创科技有限公司 电容式触控装置的控制方法
US9128554B2 (en) 2013-08-30 2015-09-08 Atmel Corporation Chained differential sensing for touch sensors
US9954526B2 (en) 2013-09-09 2018-04-24 Atmel Corporation Generic randomized mesh design
US9465489B2 (en) 2013-09-10 2016-10-11 Atmel Corporation Randomized mesh design
US9513759B2 (en) 2013-09-11 2016-12-06 Eastman Kodak Company Multi-layer micro-wire structure
US9107316B2 (en) 2013-09-11 2015-08-11 Eastman Kodak Company Multi-layer micro-wire substrate structure
US9465501B2 (en) 2013-09-11 2016-10-11 Eastman Kodak Company Multi-layer micro-wire substrate method
US20150268756A1 (en) * 2013-09-11 2015-09-24 Ronald Steven Cok Multi-area micro-wire structure
US9213423B2 (en) 2013-09-13 2015-12-15 Atmel Corporation Method and system for determining stylus tilt in relation to a touch-sensing device
US9465490B2 (en) 2013-09-19 2016-10-11 Atmel Corporation Curved surface sensor pattern
US9304617B2 (en) 2013-09-19 2016-04-05 Atmel Corporation Mesh design for touch sensors
US9782955B2 (en) 2013-09-24 2017-10-10 3M Innovative Properties Company Transferable transparent conductive patterns and display stack materials
US9063426B2 (en) 2013-09-25 2015-06-23 Uni-Pixel Displays, Inc. Method of manufacturing a flexographic printing plate with support structures
WO2015045603A1 (ja) * 2013-09-25 2015-04-02 シャープ株式会社 導電シート、タッチパネル装置、表示装置、および、導電シート製造方法
US9619044B2 (en) 2013-09-25 2017-04-11 Google Inc. Capacitive and resistive-pressure touch-sensitive touchpad
SG11201602419WA (en) 2013-09-30 2016-04-28 3M Innovative Properties Co Protective coating for printed conductive pattern on patterned nanowire transparent conductors
KR102222194B1 (ko) 2013-10-17 2021-03-04 엘지이노텍 주식회사 터치 윈도우 및 이를 포함하는 디스플레이 장치
EP2863291A1 (en) * 2013-10-18 2015-04-22 Applied Materials, Inc. Transparent body for a touch panel manufacturing method and system for manufacturing a transparent body for a touch screen panel
US20150107878A1 (en) * 2013-10-21 2015-04-23 Carestream Health, Inc. Invisible patterns for transparent electrically conductive films
US9354740B2 (en) 2013-10-23 2016-05-31 Atmel Corporation Object orientation determination
US9436304B1 (en) 2013-11-01 2016-09-06 Google Inc. Computer with unified touch surface for input
US9329705B2 (en) 2013-11-06 2016-05-03 Atmel Corporation Stylus with asymmetric electronic characteristics
US9152254B2 (en) 2013-11-21 2015-10-06 Atmel Corporation Electrical connection for active-stylus electrode
US20160253020A1 (en) 2013-11-21 2016-09-01 3M Innovative Properties Company Electronic device with force detection
KR102211968B1 (ko) 2013-12-02 2021-02-05 삼성디스플레이 주식회사 터치 패널, 표시 장치 및 터치 패널의 제조 방법
US9164136B2 (en) 2013-12-02 2015-10-20 Atmel Corporation Capacitive measurement circuit for a touch sensor device
US9155201B2 (en) 2013-12-03 2015-10-06 Eastman Kodak Company Preparation of articles with conductive micro-wire pattern
US9298327B2 (en) 2013-12-09 2016-03-29 Atmel Corporation Integrated shielding in touch sensors
US9367086B2 (en) 2013-12-10 2016-06-14 Atmel Corporation Smart watch with adaptive touch screen
US9128577B2 (en) 2013-12-10 2015-09-08 Atmel Corporation Hybrid capacitive touch system design and method
TWI512804B (zh) * 2013-12-12 2015-12-11 Ind Tech Res Inst 電極結構及其製作方法、使用此電極結構的觸控元件及觸控顯示器
CN105814528A (zh) * 2013-12-13 2016-07-27 3M创新有限公司 包括具有改善的弯曲强度的多层叠堆的触摸传感器
CN107918235A (zh) * 2013-12-31 2018-04-17 上海天马微电子有限公司 一种阵列基板及显示装置
EP3094689B1 (en) 2014-01-15 2019-06-05 3M Innovative Properties Company Hardcoats comprising alkoxylated multi(meth)acrylate monomers and surface treated nanoparticles
KR101849149B1 (ko) * 2014-01-16 2018-04-16 미쓰비시 세이시 가부시키가이샤 광투과성 도전재료
US8896573B1 (en) 2014-01-21 2014-11-25 Atmel Corporation Line spacing in mesh designs for touch sensors
US9454252B2 (en) 2014-02-14 2016-09-27 Atmel Corporation Touch-sensor mesh design for display with complex-shaped sub-pixels
US8947390B1 (en) 2014-02-14 2015-02-03 Atmel Corporation Line spacing in mesh designs for touch sensors
US9354734B2 (en) 2014-03-04 2016-05-31 Atmel Corporation Common-mode hover detection
US9785292B2 (en) 2014-03-07 2017-10-10 Atmel Corporation Variable-pitch tracking for touch sensors
JP6009488B2 (ja) * 2014-03-28 2016-10-19 富士フイルム株式会社 シート状導電体、およびこれを用いるタッチパネル
TWI557622B (zh) * 2014-03-31 2016-11-11 Sensing circuit structure and manufacturing method thereof
US10416801B2 (en) 2014-04-08 2019-09-17 Atmel Corporation Apparatus, controller, and device for touch sensor hand-configuration analysis based at least on a distribution of capacitance values
US9280246B2 (en) 2014-04-08 2016-03-08 Atmel Corporation Line spacing in mesh designs for touch sensors
KR20150117859A (ko) 2014-04-11 2015-10-21 삼성전기주식회사 터치 패널
US9516744B2 (en) 2014-04-16 2016-12-06 Eastman Kodak Company Wrap-around micro-wire circuit method
US9195358B1 (en) 2014-04-16 2015-11-24 Eastman Kodak Company Z-fold multi-element substrate structure
KR20160145108A (ko) 2014-04-17 2016-12-19 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Z 형상 전극 패턴을 갖는 용량성 터치 센서
US10042483B2 (en) 2014-04-18 2018-08-07 Atmel Corporation Touch system with code hopping algorithms and code division multiplexing
CN105094469A (zh) * 2014-04-25 2015-11-25 天津富纳源创科技有限公司 电容式触摸屏
US9754704B2 (en) 2014-04-29 2017-09-05 Eastman Kodak Company Making thin-film multi-layer micro-wire structure
US9288901B2 (en) * 2014-04-25 2016-03-15 Eastman Kodak Company Thin-film multi-layer micro-wire structure
US9861920B1 (en) 2015-05-01 2018-01-09 Imagine Tf, Llc Three dimensional nanometer filters and methods of use
US9927927B2 (en) 2014-05-05 2018-03-27 Atmel Corporation Implementing a virtual controller outside an area of a touch sensor
US9389708B2 (en) 2014-05-08 2016-07-12 Atmel Corporation Active stylus with force sensor
US9733731B2 (en) 2014-05-12 2017-08-15 Atmel Corporation Timing synchronization of active stylus and touch sensor
KR101943176B1 (ko) 2014-05-16 2019-01-28 후지필름 가부시키가이샤 터치 패널 및 그 제조 방법
US9417729B2 (en) 2014-06-09 2016-08-16 Atmel Corporation Charge compensation during touch sensing
JP2015232819A (ja) * 2014-06-10 2015-12-24 株式会社ジャパンディスプレイ センサ付き表示装置
US9436328B2 (en) 2014-06-20 2016-09-06 Atmel Corporation Single-layer touch sensor
US10730047B2 (en) 2014-06-24 2020-08-04 Imagine Tf, Llc Micro-channel fluid filters and methods of use
JP6144422B2 (ja) 2014-06-30 2017-06-07 富士フイルム株式会社 タッチパネル及びその製造方法
US9183968B1 (en) 2014-07-31 2015-11-10 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks
US10394350B2 (en) 2014-08-11 2019-08-27 Atmel Corporation Fabricated electrical circuit on touch sensor substrate
KR102255163B1 (ko) 2014-08-18 2021-05-25 삼성디스플레이 주식회사 접촉 감지 장치
US11079862B2 (en) 2014-08-18 2021-08-03 Wacom Co., Ltd. Low-power and low-frequency data transmission for stylus and associated signal processing
US9569016B2 (en) 2014-08-18 2017-02-14 Atmel Corporation Low-power and low-frequency data transmission for stylus
US9798396B2 (en) 2014-08-18 2017-10-24 Atmel Corporation Low-power and low-frequency data transmission for stylus and associated signal processing
US9161456B1 (en) 2014-09-03 2015-10-13 Eastman Kodak Company Making imprinted micro-wire rib structure
US10124275B2 (en) 2014-09-05 2018-11-13 Imagine Tf, Llc Microstructure separation filters
JP6564665B2 (ja) * 2014-10-02 2019-08-21 株式会社半導体エネルギー研究所 入力装置、及び入出力装置
CN104407729B (zh) * 2014-10-14 2018-01-09 业成光电(深圳)有限公司 电子装置、触控屏、透明导电膜及透明导电膜的制备方法
CN104376899B (zh) * 2014-10-14 2017-01-11 业成光电(深圳)有限公司 电子装置、触控屏、透明导电膜及透明导电膜的制备方法
US9285942B1 (en) 2014-10-27 2016-03-15 Atmel Corporation Optical-band visibility for touch-sensor mesh designs
US9405419B2 (en) 2014-11-11 2016-08-02 Eastman Kodak Company Electrically-conductive articles with electrically-conductive metallic connectors
US10394392B2 (en) 2015-01-14 2019-08-27 Atmel Corporation Object detection and scan
US10758849B2 (en) 2015-02-18 2020-09-01 Imagine Tf, Llc Three dimensional filter devices and apparatuses
WO2016136971A1 (ja) * 2015-02-27 2016-09-01 株式会社フジクラ タッチセンサ用配線体、タッチセンサ用配線基板及びタッチセンサ
CN106033278A (zh) * 2015-03-18 2016-10-19 南京瀚宇彩欣科技有限责任公司 触控显示模块与显示器
KR101681745B1 (ko) 2015-03-26 2016-12-01 가천대학교 산학협력단 투명전극 소재
JP6504445B2 (ja) * 2015-03-31 2019-04-24 大日本印刷株式会社 タッチパネルセンサ用中間部材、及び、タッチパネルセンサの製造方法
US9483129B1 (en) 2015-05-12 2016-11-01 Atmel Corporation Active stylus with fractional clock-cycle timing
US10317594B2 (en) 2015-05-29 2019-06-11 3M Innovative Properties Company Optical constructions
CN106283056A (zh) * 2015-06-08 2017-01-04 蓝思科技股份有限公司 一种适用于工件表面金属镀层的褪镀液及褪镀方法
US10654251B2 (en) 2015-06-29 2020-05-19 3M Innovative Properties Company Ultrathin barrier laminates and devices
US9696826B2 (en) 2015-06-30 2017-07-04 Atmel Corporation Stylus with low-power detector
US10118842B2 (en) 2015-07-09 2018-11-06 Imagine Tf, Llc Deionizing fluid filter devices and methods of use
US10479046B2 (en) 2015-08-19 2019-11-19 Imagine Tf, Llc Absorbent microstructure arrays and methods of use
KR102456050B1 (ko) 2015-09-16 2022-10-20 삼성디스플레이 주식회사 터치 패널
US9904377B2 (en) 2015-10-28 2018-02-27 Atmel Corporation Communication between active stylus and touch sensor
US9927910B2 (en) 2015-10-30 2018-03-27 Atmel Corporation Suspension of touch sensor scan based on an expected interference
US10732758B2 (en) 2015-11-02 2020-08-04 Neodrón Limited Touchscreen communication interface
KR101991213B1 (ko) * 2015-11-17 2019-08-08 미쓰비시 세이시 가부시키가이샤 광투과성 도전 재료
KR20170058742A (ko) * 2015-11-19 2017-05-29 현대자동차주식회사 터치 입력장치, 이를 포함하는 차량, 및 그 제조방법
KR102415044B1 (ko) * 2015-12-11 2022-07-01 삼성디스플레이 주식회사 터치 스크린 패널, 이의 제조 방법 및 터치 스크린 패널을 포함하는 터치 표시 장치
US9857930B2 (en) 2015-12-16 2018-01-02 3M Innovative Properties Company Transparent conductive component with interconnect circuit tab comprising cured organic polymeric material
US9864456B2 (en) 2015-12-21 2018-01-09 Amtel Corporation Touch sensor electrode driving
EP3393790A1 (en) 2015-12-22 2018-10-31 3M Innovative Properties Company Bonding layer having discrete adhesive patches
US10013101B2 (en) 2016-01-08 2018-07-03 Atmel Corporation Touch sensor and associated control method for decreased capacitive loads
KR102082485B1 (ko) * 2016-01-26 2020-02-27 동우 화인켐 주식회사 투명 전극 및 이를 포함하는 전자 소자
US9983748B2 (en) 2016-02-17 2018-05-29 Atmel Corporation Connecting electrodes to voltages
US9898153B2 (en) 2016-03-02 2018-02-20 Google Llc Force sensing using capacitive touch surfaces
US10175741B2 (en) 2016-03-03 2019-01-08 Atmel Corporation Touch sensor mode transitioning
CN108885515A (zh) * 2016-04-05 2018-11-23 3M创新有限公司 对金属互连结构具有增强粘附性的纳米线接触垫
US20170308194A1 (en) * 2016-04-20 2017-10-26 Atmel Corporation Touch Sensor Mesh Designs
US10120489B2 (en) 2016-04-28 2018-11-06 Atmel Corporation Touch sensor mesh designs
CN106020527B (zh) * 2016-05-05 2019-01-29 京东方科技集团股份有限公司 电极结构及其制作方法、触摸面板和触摸显示装置
US9983749B2 (en) 2016-05-19 2018-05-29 Atmel Corporation Touch detection
US10862062B2 (en) * 2016-05-23 2020-12-08 Konica Minolta Laboratory U.S.A., Inc. Method of forming transparent correlated metal electrode
KR102368257B1 (ko) 2016-05-25 2022-02-28 쓰리엠 이노베이티브 프로퍼티즈 컴파니 터치 센서용 기판
US10120513B2 (en) 2016-05-26 2018-11-06 Atmel Corporation Touch sensor compensation circuit
US9939930B2 (en) 2016-06-09 2018-04-10 Atmel Corporation Active stylus with multiple sensors for receiving signals from a touch sensor
US9927901B2 (en) 2016-06-09 2018-03-27 Atmel Corporation Force sensor array
US10234974B2 (en) 2016-06-15 2019-03-19 Atmel Corporation Touch device
US10719177B2 (en) 2016-06-21 2020-07-21 Atmel Corporation Excitation voltages for touch sensors
CN106293208B (zh) * 2016-07-29 2023-07-28 厦门天马微电子有限公司 集成触控显示面板和显示装置
US10061375B2 (en) 2016-08-02 2018-08-28 Atmel Corporation Power mode configuration for touch sensors
TWI746603B (zh) * 2016-08-09 2021-11-21 南韓商東友精細化工有限公司 透明電極、包括其的觸控感測器及影像顯示裝置
JP6641017B2 (ja) * 2016-09-12 2020-02-05 富士フイルム株式会社 導電性フィルム、タッチパネルセンサー、および、タッチパネル
EP3516454A1 (en) * 2016-09-23 2019-07-31 3M Innovative Properties Company Articles with resistance gradients for uniform switching
KR101866736B1 (ko) * 2016-09-23 2018-06-15 현대자동차주식회사 터치 입력장치 및 그 제조방법
US10809843B2 (en) 2016-11-18 2020-10-20 Atmel Corporation Touch sensor signal integration
US10318050B2 (en) 2016-11-18 2019-06-11 Atmel Corporation Touch sensor signal integration
JP7103718B2 (ja) 2016-12-20 2022-07-20 スリーエム イノベイティブ プロパティズ カンパニー メッシュ電極
WO2018116136A1 (en) * 2016-12-20 2018-06-28 3M Innovative Properties Company Electrode pattern for capacitive touch sensor
CN108304088A (zh) * 2017-01-13 2018-07-20 宏碁股份有限公司 显示装置及其制作方法
US10423276B2 (en) 2017-01-30 2019-09-24 Atmel Corporation Applying a signal to a touch sensor
US10983647B2 (en) * 2017-08-10 2021-04-20 Sharp Kabushiki Kaisha Method for manufacturing circuit board
CN107491222A (zh) * 2017-09-01 2017-12-19 业成科技(成都)有限公司 触控面板
TW201937358A (zh) * 2017-12-22 2019-09-16 加拿大商1004335安大略有限公司 具有機電諧振器之電容式觸控感測器及其方法與控制器
CN108288638A (zh) * 2018-01-25 2018-07-17 京东方科技集团股份有限公司 一种触控基板及其制备方法、触控显示装置
KR101952769B1 (ko) * 2018-02-28 2019-02-27 동우 화인켐 주식회사 터치 센서
KR102532982B1 (ko) 2018-03-07 2023-05-16 동우 화인켐 주식회사 입력 센서 및 이를 포함하는 표시장치
KR102053704B1 (ko) 2018-03-16 2019-12-09 동우 화인켐 주식회사 고해상도 터치 센서
US11386288B2 (en) 2018-04-26 2022-07-12 Nippon Telegraph And Telephone Corporation Movement state recognition model training device, movement state recognition device, methods and programs therefor
CN110831418A (zh) * 2018-08-09 2020-02-21 鸿富锦精密工业(武汉)有限公司 机箱面板及采用该机箱面板的机箱
KR102639185B1 (ko) 2018-11-07 2024-02-23 삼성디스플레이 주식회사 입력 감지 유닛을 포함하는 표시 장치
EP3653121A1 (en) * 2018-11-14 2020-05-20 Koninklijke Philips N.V. Sensor unit, body fluid monitoring device and method for detecting an analyte
CN111197153B (zh) * 2018-11-16 2023-01-10 安徽精卓光显技术有限责任公司 金属网格的制备方法及金属网格片
WO2020206644A1 (zh) * 2019-04-10 2020-10-15 深圳市汇顶科技股份有限公司 一种触控屏中引线的制作方法、触控屏及电子设备
CN113767716B (zh) * 2019-05-06 2024-07-30 3M创新有限公司 图案化导电制品
KR20200135634A (ko) * 2019-05-23 2020-12-03 삼성디스플레이 주식회사 터치 센서 및 이를 구비한 표시 장치
EP4075452A4 (en) * 2019-12-10 2022-11-23 Asahi Kasei Kabushiki Kaisha CONDUCTIVE FILM AND WRAPPED BODY THEREOF
JP2021163393A (ja) * 2020-04-03 2021-10-11 シャープ株式会社 表示装置
US11567311B1 (en) 2020-05-14 2023-01-31 Apple Inc. Devices with displays having transparent openings
US11860022B2 (en) 2020-06-02 2024-01-02 Microchip Technology, Inc. Capacitive sensing utilizing a differential value indication
CN115989473A (zh) 2020-08-24 2023-04-18 东友精细化工有限公司 触摸传感器和包含其的层叠体
CN116194285A (zh) 2020-09-28 2023-05-30 三菱化学株式会社 图像显示用导光板
US11864452B1 (en) 2021-08-24 2024-01-02 Apple Inc. Black masking layer in displays having transparent openings
CN113759580B (zh) * 2021-11-10 2022-02-18 惠科股份有限公司 显示面板及其制作方法和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113041A (en) * 1990-12-28 1992-05-12 At&T Bell Laboratories Information processing
EP0789319A1 (en) * 1996-02-09 1997-08-13 Symbios Logic Inc. Method and apparatus for reducing noise in an electrostatic digitizing tablet
JP2004272651A (ja) * 2003-03-10 2004-09-30 Kawaguchiko Seimitsu Co Ltd タッチパネル及びそれを備えた画面入力型表示装置
US20060097991A1 (en) * 2004-05-06 2006-05-11 Apple Computer, Inc. Multipoint touchscreen
JP2006344163A (ja) * 2005-06-10 2006-12-21 Nissha Printing Co Ltd 静電容量型タッチパネル
EP1746488A2 (en) * 2005-07-21 2007-01-24 TPO Displays Corp. Electromagnetic digitizer sensor array structure

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3227308A (en) 1962-11-06 1966-01-04 Continental Can Co Food container for use in space ships
US4087625A (en) 1976-12-29 1978-05-02 International Business Machines Corporation Capacitive two dimensional tablet with single conductive layer
JPH0615312Y2 (ja) * 1987-06-10 1994-04-20 松下電器産業株式会社 透明タッチ入力装置
JPH02126315A (ja) * 1988-11-07 1990-05-15 Daicel Chem Ind Ltd デジタル式タッチパネル
US5126007A (en) 1990-11-16 1992-06-30 At&T Bell Laboratories Method for etching a pattern in layer of gold
US5492611A (en) 1991-03-20 1996-02-20 Fujitsu Limited Miniaturized oxygen electrode
JPH0769767B2 (ja) 1991-10-16 1995-07-31 インターナショナル・ビジネス・マシーンズ・コーポレイション フィンガ・タッチまたはスタイラスの位置を検出するためのタッチ・オーバーレイ、および検出システム
FR2708170B1 (fr) 1993-07-19 1995-09-08 Innovation Dev Cie Gle Circuits électroniques à très haute conductibilité et de grande finesse, leurs procédés de fabrication, et dispositifs les comprenant.
US5512131A (en) 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
GB9406702D0 (en) 1994-04-05 1994-05-25 Binstead Ronald P Multiple input proximity detector and touchpad system
US5594222A (en) * 1994-10-25 1997-01-14 Integrated Controls Touch sensor and control circuit therefor
GB9422911D0 (en) 1994-11-14 1995-01-04 Moonstone Technology Ltd Capacitive touch detectors
JPH10301716A (ja) * 1997-04-28 1998-11-13 Sharp Corp 透明タブレット構造及び透明タブレット入力装置
JP3464590B2 (ja) 1997-06-06 2003-11-10 住友大阪セメント株式会社 透明導電膜付き基板およびその製造方法
JP3490304B2 (ja) 1997-10-17 2004-01-26 シャープ株式会社 無線通信装置
JP2000081510A (ja) * 1998-09-04 2000-03-21 Toyobo Co Ltd 赤外線吸収フィルタ
EP0969517B1 (en) 1998-07-04 2005-10-12 International Business Machines Corporation Electrode for use in electro-optical devices
US6549193B1 (en) 1998-10-09 2003-04-15 3M Innovative Properties Company Touch panel with improved linear response and minimal border width electrode pattern
JP4211099B2 (ja) 1998-11-09 2009-01-21 三菱化学株式会社 透明導電性積層シートの製造方法
JP2000174486A (ja) * 1998-12-04 2000-06-23 Sumitomo Rubber Ind Ltd 透光性電磁波シールドフィルムおよび透光性電磁波シールドパネルの製造方法
EP2161735A3 (en) 1999-03-05 2010-12-08 Canon Kabushiki Kaisha Image formation apparatus
US6297811B1 (en) 1999-06-02 2001-10-02 Elo Touchsystems, Inc. Projective capacitive touchscreen
US6212769B1 (en) 1999-06-29 2001-04-10 International Business Machines Corporation Process for manufacturing a printed wiring board
US6652981B2 (en) 2000-05-12 2003-11-25 3M Innovative Properties Company Etching process for making electrodes
JP2002014772A (ja) * 2000-06-30 2002-01-18 Minolta Co Ltd タッチパネル、表示パネル及び表示装置
US6498590B1 (en) * 2001-05-24 2002-12-24 Mitsubishi Electric Research Laboratories, Inc. Multi-user touch surface
US7338613B2 (en) 2001-09-10 2008-03-04 Surface Logix, Inc. System and process for automated microcontact printing
US6995752B2 (en) * 2001-11-08 2006-02-07 Koninklijke Philips Electronics N.V. Multi-point touch pad
KR20040068572A (ko) 2001-12-06 2004-07-31 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 박막 트랜지스터의 소스 및 드레인 형성 방법
AU2003216481A1 (en) 2002-03-01 2003-09-16 Planar Systems, Inc. Reflection resistant touch screens
US6871268B2 (en) 2002-03-07 2005-03-22 International Business Machines Corporation Methods and systems for distributed caching in presence of updates and in accordance with holding times
US7463246B2 (en) 2002-06-25 2008-12-09 Synaptics Incorporated Capacitive sensing device
US7019734B2 (en) 2002-07-17 2006-03-28 3M Innovative Properties Company Resistive touch sensor having microstructured conductive layer
US7202859B1 (en) 2002-08-09 2007-04-10 Synaptics, Inc. Capacitive sensing pattern
WO2004052559A2 (en) 2002-12-06 2004-06-24 Eikos, Inc. Optically transparent nanostructured electrical conductors
JP2004192093A (ja) 2002-12-09 2004-07-08 Micro Gijutsu Kenkyusho:Kk 透明タッチパネル及びその製造方法
US7129935B2 (en) 2003-06-02 2006-10-31 Synaptics Incorporated Sensor patterns for a capacitive sensing apparatus
WO2004112151A2 (en) * 2003-06-12 2004-12-23 Patterning Technologies Limited Transparent conducting structures and methods of production thereof
US7265686B2 (en) 2003-07-15 2007-09-04 Tyco Electronics Corporation Touch sensor with non-uniform resistive band
GB0319714D0 (en) * 2003-08-21 2003-09-24 Philipp Harald Anisotropic touch screen element
JP2005084475A (ja) * 2003-09-10 2005-03-31 Dainippon Printing Co Ltd 光学フィルタおよびこれを用いたディスプレイ
GB0323902D0 (en) 2003-10-11 2003-11-12 Koninkl Philips Electronics Nv Method for patterning a substrate surface
US8435603B2 (en) 2003-12-05 2013-05-07 Conductive Inkjet Technology Limited Formation of solid layers on substrates
US7339579B2 (en) 2003-12-15 2008-03-04 3M Innovative Properties Company Wiring harness and touch sensor incorporating same
US7307624B2 (en) * 2003-12-30 2007-12-11 3M Innovative Properties Company Touch sensor with linearized response
KR100590727B1 (ko) 2004-02-24 2006-06-19 한국기계연구원 임프린트된 나노구조물을 이용한 미세접촉 인쇄기법과이의 나노 구조물
KR100586659B1 (ko) 2004-04-01 2006-06-07 주식회사 디피아이 솔루션스 유기 전극 코팅용 조성물 및 이를 이용한 고투명성 유기전극의 제조방법
WO2005104141A1 (ja) 2004-04-20 2005-11-03 Takiron Co., Ltd. タッチパネル用透明導電成形体およびタッチパネル
US20050257957A1 (en) * 2004-05-15 2005-11-24 Kaluk Vasoya Printed wiring board with conductive constraining core including resin filled channels
US7382139B2 (en) 2004-06-03 2008-06-03 Synaptics Incorporated One layer capacitive sensing apparatus having varying width sensing elements
JP4463013B2 (ja) * 2004-06-09 2010-05-12 日本写真印刷株式会社 狭額縁タッチパネル用の回路形成装置及びこれを用いた回路形成方法
JP2006011522A (ja) * 2004-06-22 2006-01-12 Seiko Epson Corp 入力装置の製造方法、電気光学装置の製造方法、入力装置、電気光学装置、電子機器
US7196281B2 (en) 2004-11-12 2007-03-27 Eastman Kodak Company Resistive touch screen having conductive mesh
US7160583B2 (en) * 2004-12-03 2007-01-09 3M Innovative Properties Company Microfabrication using patterned topography and self-assembled monolayers
TWI403761B (zh) * 2005-02-15 2013-08-01 Fujifilm Corp 透光性導電性膜之製法
JP2006261322A (ja) * 2005-03-16 2006-09-28 Jsr Corp 電磁波シールドフィルムおよびその製造方法
US7278388B2 (en) 2005-05-12 2007-10-09 Ford Global Technologies, Llc Engine starting for engine having adjustable valve operation
US20070016081A1 (en) 2005-07-12 2007-01-18 Globalmedia Group, Llc Chroma-photon staining
CN1940843B (zh) * 2005-07-21 2011-07-27 奇美电子股份有限公司 感应阵列及电磁式数位器
US7410825B2 (en) 2005-09-15 2008-08-12 Eastman Kodak Company Metal and electronically conductive polymer transfer
US7932898B2 (en) * 2005-09-20 2011-04-26 Atmel Corporation Touch sensitive screen
GB0519170D0 (en) * 2005-09-20 2005-10-26 Philipp Harald Capacitive touch sensor
US7864160B2 (en) 2005-10-05 2011-01-04 3M Innovative Properties Company Interleaved electrodes for touch sensing
WO2007084297A2 (en) 2006-01-12 2007-07-26 3M Innovative Properties Company Light-collimating film
KR101163789B1 (ko) 2006-02-07 2012-07-09 삼성전자주식회사 투명전극 및 그의 제조방법
US8264466B2 (en) 2006-03-31 2012-09-11 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
US20090165296A1 (en) 2006-04-04 2009-07-02 Yoash Carmi Patterns of conductive objects on a substrate and method of producing thereof
TWI322374B (en) 2006-04-14 2010-03-21 Ritdisplay Corp Light transmission touch panel and manufacturing method thereof
TW200805128A (en) 2006-05-05 2008-01-16 Harald Philipp Touch screen element
US8552989B2 (en) 2006-06-09 2013-10-08 Apple Inc. Integrated display and touch screen
US7796123B1 (en) 2006-06-20 2010-09-14 Eastman Kodak Company Touchscreen with carbon nanotube conductive layers
KR100797092B1 (ko) 2006-07-31 2008-01-22 한국기계연구원 미세 접촉 인쇄를 이용한 유기박막 구동소자의 제조방법
JP2008041445A (ja) * 2006-08-07 2008-02-21 Asahi Glass Co Ltd 透明導電膜の製造方法および透明導電膜
US8764996B2 (en) 2006-10-18 2014-07-01 3M Innovative Properties Company Methods of patterning a material on polymeric substrates
US20080095988A1 (en) 2006-10-18 2008-04-24 3M Innovative Properties Company Methods of patterning a deposit metal on a polymeric substrate
US7968804B2 (en) 2006-12-20 2011-06-28 3M Innovative Properties Company Methods of patterning a deposit metal on a substrate
US7920129B2 (en) * 2007-01-03 2011-04-05 Apple Inc. Double-sided touch-sensitive panel with shield and drive combined layer
TW200901014A (en) 2007-06-28 2009-01-01 Sense Pad Tech Co Ltd Touch panel device
CN101883811B (zh) 2007-12-07 2013-04-24 爱克发-格法特公司 对日光暴露的稳定性得到改进的层配置
US20090174675A1 (en) 2008-01-09 2009-07-09 Dave Gillespie Locating multiple objects on a capacitive touch pad
US8599150B2 (en) 2009-10-29 2013-12-03 Atmel Corporation Touchscreen electrode configuration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113041A (en) * 1990-12-28 1992-05-12 At&T Bell Laboratories Information processing
EP0789319A1 (en) * 1996-02-09 1997-08-13 Symbios Logic Inc. Method and apparatus for reducing noise in an electrostatic digitizing tablet
JP2004272651A (ja) * 2003-03-10 2004-09-30 Kawaguchiko Seimitsu Co Ltd タッチパネル及びそれを備えた画面入力型表示装置
US20060097991A1 (en) * 2004-05-06 2006-05-11 Apple Computer, Inc. Multipoint touchscreen
JP2006344163A (ja) * 2005-06-10 2006-12-21 Nissha Printing Co Ltd 静電容量型タッチパネル
EP1746488A2 (en) * 2005-07-21 2007-01-24 TPO Displays Corp. Electromagnetic digitizer sensor array structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379576A (zh) * 2019-07-25 2019-10-25 东莞福哥电子有限公司 一种多阻值的电阻体印刷方法
CN110379576B (zh) * 2019-07-25 2021-12-07 东莞福哥电子有限公司 一种多阻值的电阻体印刷方法

Also Published As

Publication number Publication date
JP2011513846A (ja) 2011-04-28
JP6735003B1 (ja) 2020-08-05
EP4300190A2 (en) 2024-01-03
CN104636016A (zh) 2015-05-20
KR101822351B1 (ko) 2018-03-08
KR101832652B1 (ko) 2018-02-26
KR20160106214A (ko) 2016-09-09
EP3040822B1 (en) 2019-10-16
JP2021028831A (ja) 2021-02-25
EP4071785A1 (en) 2022-10-12
WO2009154812A3 (en) 2010-03-11
JP6595015B6 (ja) 2020-05-20
KR20160105947A (ko) 2016-09-07
JP6595016B2 (ja) 2019-10-23
JP6595015B2 (ja) 2019-10-23
KR101717032B1 (ko) 2017-03-15
KR20160106212A (ko) 2016-09-09
JP6850821B2 (ja) 2021-03-31
KR20160106215A (ko) 2016-09-09
JP6640044B2 (ja) 2020-02-05
JP6850821B6 (ja) 2021-04-28
KR101822350B1 (ko) 2018-01-25
JP7350948B2 (ja) 2023-09-26
KR20170082644A (ko) 2017-07-14
KR20160105946A (ko) 2016-09-07
KR20160105945A (ko) 2016-09-07
JP2016201121A (ja) 2016-12-01
KR20100137483A (ko) 2010-12-30
JP7121092B2 (ja) 2022-08-17
JP2020074072A (ja) 2020-05-14
US8384691B2 (en) 2013-02-26
JP2015005307A (ja) 2015-01-08
CN104636016B (zh) 2018-12-18
EP3614418A1 (en) 2020-02-26
EP3614418B1 (en) 2023-11-01
CN102016767A (zh) 2011-04-13
JP6735001B1 (ja) 2020-08-05
JP2020129414A (ja) 2020-08-27
JP2019087290A (ja) 2019-06-06
TW200943149A (en) 2009-10-16
JP2018085126A (ja) 2018-05-31
KR20120091408A (ko) 2012-08-17
WO2009154812A2 (en) 2009-12-23
JP6707703B2 (ja) 2020-06-10
US20120194481A1 (en) 2012-08-02
KR20160106216A (ko) 2016-09-09
KR101717033B1 (ko) 2017-03-15
EP2263141A2 (en) 2010-12-22
KR101730206B1 (ko) 2017-04-25
TWI446229B (zh) 2014-07-21
JP2020123392A (ja) 2020-08-13
US20090219257A1 (en) 2009-09-03
CN107272978B (zh) 2020-09-15
EP2263141B1 (en) 2018-11-21
EP3040822A1 (en) 2016-07-06
KR20160106775A (ko) 2016-09-12
KR101720916B1 (ko) 2017-03-28
KR101727444B1 (ko) 2017-04-14
JP5997227B2 (ja) 2016-09-28
KR20160106213A (ko) 2016-09-09
EP2263141A4 (en) 2013-12-25
KR101720919B1 (ko) 2017-03-28
US8179381B2 (en) 2012-05-15
KR20170082643A (ko) 2017-07-14
JP2018049668A (ja) 2018-03-29
JP2022140738A (ja) 2022-09-27
EP4300190A3 (en) 2024-03-20
KR101720917B1 (ko) 2017-03-28
KR101717031B1 (ko) 2017-03-15
JP2023165013A (ja) 2023-11-14
KR101720918B1 (ko) 2017-03-28

Similar Documents

Publication Publication Date Title
CN104636016B (zh) 触屏传感器
CN104090673B (zh) 具有低可见度导体的触屏传感器
CN104106024B (zh) 用于触摸传感器电极的网格图案
CN104823142A (zh) 互补触摸面板电极

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant