CN101916740B - 用于前段工艺制造的原地干洗腔 - Google Patents
用于前段工艺制造的原地干洗腔 Download PDFInfo
- Publication number
- CN101916740B CN101916740B CN2010102461165A CN201010246116A CN101916740B CN 101916740 B CN101916740 B CN 101916740B CN 2010102461165 A CN2010102461165 A CN 2010102461165A CN 201010246116 A CN201010246116 A CN 201010246116A CN 101916740 B CN101916740 B CN 101916740B
- Authority
- CN
- China
- Prior art keywords
- supporting member
- substrate
- electrode
- gas
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011065 in-situ storage Methods 0.000 title description 6
- 238000004519 manufacturing process Methods 0.000 title description 6
- 239000000758 substrate Substances 0.000 claims abstract description 159
- 239000012530 fluid Substances 0.000 claims abstract description 58
- 230000008093 supporting effect Effects 0.000 claims description 78
- 239000013529 heat transfer fluid Substances 0.000 claims description 10
- 239000002826 coolant Substances 0.000 claims description 8
- 238000004140 cleaning Methods 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 3
- 125000004122 cyclic group Chemical group 0.000 claims 3
- 238000000034 method Methods 0.000 abstract description 97
- 238000001816 cooling Methods 0.000 abstract description 7
- 239000007789 gas Substances 0.000 description 150
- 230000008569 process Effects 0.000 description 73
- 238000009826 distribution Methods 0.000 description 61
- 238000012546 transfer Methods 0.000 description 31
- 238000012545 processing Methods 0.000 description 29
- 229910052751 metal Inorganic materials 0.000 description 28
- 239000002184 metal Substances 0.000 description 28
- 238000010438 heat treatment Methods 0.000 description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 22
- 238000005516 engineering process Methods 0.000 description 22
- 229910052710 silicon Inorganic materials 0.000 description 22
- 239000010703 silicon Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 20
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 18
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 230000032258 transport Effects 0.000 description 18
- 229910021332 silicide Inorganic materials 0.000 description 15
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 14
- 238000005229 chemical vapour deposition Methods 0.000 description 14
- 238000009413 insulation Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- 238000000151 deposition Methods 0.000 description 12
- 238000005240 physical vapour deposition Methods 0.000 description 12
- 238000005530 etching Methods 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 230000002708 enhancing effect Effects 0.000 description 10
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 10
- 229910021529 ammonia Inorganic materials 0.000 description 9
- 238000000137 annealing Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 239000004411 aluminium Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000000376 reactant Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 230000003321 amplification Effects 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 238000001039 wet etching Methods 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 230000004087 circulation Effects 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- -1 hexafluorosilicic acid amine Chemical class 0.000 description 3
- 239000005360 phosphosilicate glass Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- WYEMLYFITZORAB-UHFFFAOYSA-N boscalid Chemical compound C1=CC(Cl)=CC=C1C1=CC=CC=C1NC(=O)C1=CC=CN=C1Cl WYEMLYFITZORAB-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- NICDRCVJGXLKSF-UHFFFAOYSA-N nitric acid;trihydrochloride Chemical compound Cl.Cl.Cl.O[N+]([O-])=O NICDRCVJGXLKSF-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000011112 process operation Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000006557 surface reaction Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 206010010144 Completed suicide Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- GDFCWFBWQUEQIJ-UHFFFAOYSA-N [B].[P] Chemical compound [B].[P] GDFCWFBWQUEQIJ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- KVBCYCWRDBDGBG-UHFFFAOYSA-N azane;dihydrofluoride Chemical compound [NH4+].F.[F-] KVBCYCWRDBDGBG-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/50—Substrate holders
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/541—Heating or cooling of the substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32357—Generation remote from the workpiece, e.g. down-stream
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32458—Vessel
- H01J37/32522—Temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
- H01J37/32541—Shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
- H01J37/32568—Relative arrangement or disposition of electrodes; moving means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32853—Hygiene
- H01J37/32862—In situ cleaning of vessels and/or internal parts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
- H01L21/0206—Cleaning during device manufacture during, before or after processing of insulating layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
- H01L21/02068—Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/2001—Maintaining constant desired temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Plasma & Fusion (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Drying Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
本发明提供了一种用于从衬底表面上去除天然氧化物的方法和装置。一方面,该腔包括一个腔体和一个至少部分布置在腔体内并适合在其上支撑衬底的支撑装置。该支撑装置包括至少部分在其中形成并能冷却衬底的一个或多个流体通道。该腔进一步包括布置在腔体上表面的盖装置。该盖装置包括在其间限定了等离子空腔的第一电极和第二电极,其中第二电极适合连接地加热衬底。
Description
本申请是于2005年2月25日提交的名称为“用于前段工艺制造的原地干洗腔”的中国专利申请200810082565.3的分案申请,而中国专利申请200810082565.3是2005年2月25日提交的名称为“用于前段工艺制造的原地干洗腔”的中国专利ZL200510056532.8的分案申请。
技术领域
本发明的实施方式一般涉及半导体处理设备。更具体地,本发明的实施方式涉及用于半导体制造的化学气相沉积(CVD)系统和使用该系统的原地干洗方法。
背景技术
当衬底表面暴露在氧气中时,一般会形成天然氧化物。在大气条件下,将衬底在处理腔之间移动时或者当残留在真空腔中的少量氧接触衬底表面时会发生氧气暴露(oxygen exposure)。如果衬底表面在蚀刻过程中被污染,那么也可能产生天然氧化物。天然氧化物一般在衬底表面上形成一个不希望有的薄膜。尽管天然氧化物薄膜通常非常薄(例如在5至20埃之间),但是其厚度已经足以在后续的制造过程中形成困难。
这种困难通常会对在衬底上所形成的半导体器件的电性能造成影响。例如,当天然氧化硅薄膜形成在暴露的含硅层上时,会出现一个特定问题,尤其是在金属氧化物硅场效应晶体管(Metal Oxide SiliconField Effect Transistor,MOSFET)结构的加工过程中。氧化硅薄膜是电绝缘的,因此在与接触电极或互连电路径(electrical pathways)的界面处是不希望有的,因为它们导致高的电接触电阻。在MOSFET结构中,电极和互连电路径包括硅化物层,其是通过在裸硅上沉积难熔金属以及对该层进行退火以产生金属硅化物层而形成的。在衬底和金属之间的界面处的天然氧化硅薄膜,通过阻止形成金属硅化物的扩散化学反应来降低硅化物层的成分均匀性。这导致较低的衬底产量,并且由于电接触处过热而提高了故障率。天然氧化硅薄膜还阻止了随后沉积在衬底上的其它CVD或溅射层的粘合。
已尝试用溅射蚀刻工艺来减少纵横比小于约4∶1的大部件或小部件中的污染物。但是,溅射蚀刻工艺会由于物理轰击而破坏精密的硅层。对应地,还尝试了例如使用氢氟酸(HF)和去离子水的湿法蚀刻工艺。但是,诸如这类的湿法蚀刻工艺对于当前纵横比超过4∶1的较小器件上是不利的,尤其是在纵横比超过10∶1时。特别地,湿法溶液不能渗透入形成在衬底表面内的这些尺寸的微通路(vias)、触点或其它部件。因此,天然氧化物膜的去除是不完全的。同样,湿法蚀刻溶液即使能成功渗透这种尺寸的部件,但当蚀刻完成时,则更难于从该部件中去除湿法蚀刻溶液。
另一去除天然氧化物膜的方法是干法蚀刻工艺,如使用含氟气体的工艺。但是,使用含氟气体的一个缺点是氟一般残留在衬底表面上。残留在衬底表面上的氟原子或氟基可能是有害的。例如,遗留的氟原子可继续蚀刻衬底,从而导致其中有空隙。
最近的去除天然氧化物膜的方法是在衬底表面上形成一种含氟/硅盐,随后可通过热退火将其去除。在这种方法中,通过使含氟气体与氧化硅表面反应从而形成该盐的一个薄层。然后将该盐加热至足够高的高温,以将该盐分解成挥发性副产物,然后从处理腔中去除该副产物。反应性含氟气体的形成通常借助于热加成(thermal addition)或等离子能。该盐通常在降低的温度下形成,这需要对衬底表面进行冷却。这种先进行冷、然后进行加热的顺序,通常是通过将衬底从衬底一个冷却腔中转移到一个独立的退火腔或炉中来实现的,衬底在该冷却腔中被冷却,在该退火腔或炉中被加热。
出于各种原因,这种反应性氟处理顺序是不理想的。也就是说,由于转移晶片所耗费的时间,使晶片产量大大降低。另外,晶片在转移过程中非常易于遭受另外的氧化或其它污染。此外,由于需要两个独立的腔来完成氧化物去除处理,因此使用户的成本加倍。
因此,需要一种处理腔,其能够遥控等离子产生、加热和冷却,从而能够在单个腔内完成单个干法蚀刻过程(即原地(in-situ))。
发明内容
本发明提供了一种用于从衬底表面上去除天然氧化物的处理腔。一方面,该腔包括一个腔体和一个支撑装置,该支撑装置至少部分地被布置在该腔体内部,并且适于在该支撑装置上支撑一个衬底。该支撑装置包括一个或多个至少部分地形成在其中的流体通道,该流体通道能够提供流体来冷却该衬底。该腔进一步包括一个布置在该腔体上表面的盖装置(lid assembly)。该盖装置包括一个第一电极和一个第二电极,在该第一电极和该第二电极之间限定了一个等离子空腔,其中该第二电极被加热并适于连接地(connectively)加热衬底。
本发明还提供了一种用于从衬底表面蚀刻天然氧化物的方法。一方面,该方法包括将一个待处理的衬底装载入一个处理腔内,该处理腔包括一个腔体和一个支撑装置,该支撑装置至少部分地被布置在该腔体内部,并且适于在该支撑装置上支撑一个衬底。该支撑装置包括一个或多个至少部分地形成在其中的流体通道,该流体通道能够提供流体来冷却该衬底。该腔进一步包括一个布置在该腔体上表面的盖装置。该盖装置包括一个第一电极和一个第二电极,在该第一电极和该第二电极之间限定了一个等离子空腔,其中该第二电极被加热并适于连接地加热衬底。
该方法进一步包括在该等离子空腔内产生反应性气体的等离子,通过使传热介质流过该支撑装置的该一个或多个流体通道来冷却该衬底,使该反应性气体通过第二电极流到该衬底表面,利用该反应性气体来蚀刻该衬底表面,通过施加电力到一个与第二电极接触的加热元件来加热第二电极,以及通过将该支撑装置紧密靠近该被加热的第二电极来利用该被加热的第二电极对该衬底进行加热。
附图说明
为了能详细理解本发明上述特征的方式,因而结合实施方式对上面简要概括的本发明进行更具体的描述,其中部分实施方式示于附图中。但是应注意到,附图仅示出了本发明的典型实施方式,因此不能被认为是限制其范围的,本发明可允许其它等效的实施方式。
图1A示出了一个用于加热、冷却和蚀刻的示例性处理腔100的局部剖面图。
图1B示出了一个布置在图1A处理腔内部的示例性衬套的放大示意图。
图2A示出了一个可布置在图1A所示腔体上端的示例性盖装置的放大剖面图。
图2B和2C示出了图2A中气体分布板的放大示意图。
图3A示出了一个至少部分布置在图1A腔体112内部的示例性支撑装置的局部剖面图。
图3B示出了图3A中示例性支撑装置300的放大局部剖面图。
图4A示出了另一个示例性盖装置400的示意性剖面图。
图4B示出了图4A中上部电极的放大的示意性局部剖面图。
图4C示出了使用图4A的盖装置400的示例性处理腔100的局部剖面图。
图5A-图5H是用于形成示例性有源电子器件(例如MOSFET结构)的制造顺序的示意性剖面图。
图6是适合进行多种处理操作的示例性多腔处理系统的的示意图。
具体实施方式
本发明提供了一种用于任意数量衬底处理技术的处理腔。该处理腔特别地用于实现既需要加热衬底表面又需要冷却衬底表面而不破坏真空的等离子辅助干法蚀刻工艺。例如,可预料到本文描述的处理腔非常适合于从衬底表面去除氧化物和其它污染物的前段工艺(FrontEnd OfLine,FEOL)清洁腔。
本文使用的“衬底表面”是指,可在其上进行处理的任何衬底表面。例如,衬底表面可包括硅、氧化硅、掺杂硅、锗、砷化镓、玻璃、蓝宝石和任何其它材料,例如金属、金属氮化物、金属合金和其它导电材料,这取决于具体应用。衬底表面还可包括介电材料如二氧化硅、有机硅酸盐和碳掺杂的硅氧化物。衬底本身不限于任何特定的尺寸或形状。一方面,术语“衬底”是指具有200mm直径或300mm直径的圆形晶片。另一方面,术语“衬底”是指任何多边形、方形、矩形、曲线形或其它非圆形工件,例如在平板显示器制造中使用的玻璃衬底。
图1A是一个局部剖面图,其示出了一个示例性的处理腔100。在一个实施方式中,处理腔100包括腔体112、盖装置200和支撑装置300。盖装置200布置在腔体112的上端,支撑装置300至少部分布置在腔体112的内部。例如,处理腔100和相关部件优选由一种或多种工艺相容(process-compatible)的材料形成,例如铝、阳极氧化铝、镀镍铝、镀镍铝6061-T6、不锈钢,以及它们的组合和合金。
腔体112包括一个在其侧壁中形成的槽阀开口160,以提供进入处理腔100内部的通道。选择性地打开和关闭槽阀开口160以允许通过晶片操作机器人(未示出)访问(access)腔体112的内部。晶片操作机器人是本领域技术人员公知的,可以使用任何合适的机器人。例如,在1990年8月28日签发的题为“Multi-chamber Integrated ProcessSystem”的普通转让美国专利4951601中描述了一种典型的机器人转移装置,在此通过引入将其全部内容并入。在一个实施方式中,晶片可通过槽阀开口160被传送进和传送出处理腔100到一个邻近的转移腔和/或装载锁定腔,或在集群工具(cluster tool)内的另一个腔。在1993年2月16日签发的题为“Staged-Vacuum Wafer Processing Systemand Method”的普通转让美国专利5186718中描述了可连接到处理腔100的一类集群工具,在此通过引入将其并入。
在一个或多个实施方式中,腔体112包括一个通道113,其形成于腔体112中,用于流过传热流体。传热流体可以是某种加热流体或某种冷却剂,用于在处理和衬底转移过程中控制腔体112的温度。腔体112的温度对防止不需要的气体或副产物在腔壁上的凝结至关重要。典型的传热流体包括水、乙二醇或它们的混合物。典型的传热流体还可包括氮气。
腔体112可进一步包括环绕支撑装置300的衬套133。衬套133优选是可拆卸的以便于维护和清洁。衬套133可由诸如铝或陶瓷材料之类的金属制成。但是,衬套133可以是任何工艺相容的材料。可对衬套133进行珠光处理(bead blast)以增强任何沉积在其上的材料的粘合力,从而防止导致处理腔100污染的材料的剥落。在一个或多个实施方式中,衬套133包括一个或多个孔135和一个在其中形成的与真空系统流体连通的抽气通道129。孔135为气体提供到抽气通道129的流动途径,其为处理腔100内部的气体提供出口。
真空系统可包括真空泵125和调节通过处理腔100的气体流量的节流阀127。真空泵125连接到布置在腔体112上的真空端口131上,从而与衬套133内所形成的抽气通道129流体连通。术语“气体”和“多种气体”除非另有说明否则是互换使用的,并涉及一种或多种前体、反应物、催化剂、载体、净化气、清洁气、它们的组合,以及任何其它引入到腔体112内的流体。
更详细地观察衬套133,图1B示出了衬套133一个实施方式的放大示意图。在这个实施方式中,衬套133包括上部133A和下部133B。在衬套133内部形成一个与布置在腔体112侧壁上的槽阀开口160对准的孔133C,以使衬底能进入腔体112和从中取出。典型地,抽气通道129形成在上部133A内部。上部133A还包括一个或多个穿过其中形成的孔135,以为气体提供进入抽气通道129的出入口(passageways)或流动途径。
参考图1A和图1B,孔135使得抽气通道129与腔体112内部的处理区域140流体连通。处理区域140由盖装置200的底面和支撑装置300的顶面限定,并被衬套133环绕。孔135可以是大小均匀的,并可以在衬套133周围均匀地间隔开。但是,可使用任意数量、位置、大小或形状的孔,每一个设计参数可根据气体穿过衬底接受表面的所需流动模式而改变,这在下面更详细地讨论。另外,孔135的尺寸、数量和位置被配置成使离开处理腔100的气体的均匀流动。此外,孔尺寸和位置可被配置成提供快速或大容量抽气来帮助气体从腔100快速排出。例如,靠近真空端口131的孔135的数量和尺寸可小于远离真空端口131的孔135的尺寸。
仍然参考图1A和图1B,衬套133的下部133B包括一个布置在其中的流动途径或真空通道129A。真空通道129A与上述真空系统流体连通。真空通道129A还通过在衬套133外径中形成的凹口或端口129B与抽气通道129流体连通。通常,在上部133A和下部133B之间,两个气体端口129B(在此图中只示出一个)形成在衬套133外径中。气体端口129B在抽气通道129和真空通道129A之间提供流动途径。每个端口129B的尺寸和位置是要设计的问题,并由所需薄膜的化学计算法、正形成的器件的几何形状、处理腔100的容量以及连接其上的真空系统的能力来确定。典型地,端口129B彼此相对或在衬套133外径周围隔开180度排列。
操作时,离开处理腔100的一种或多种气体通过穿过衬套133上部133A形成的孔135流入到抽气通道129。然后气体在抽气通道129内流动并通过口129B进入真空通道129A。气体通过真空端口131离开真空通道129A进入到真空泵125。
更详细地观察盖装置200,图2A示出了一个可被布置在图1A所示腔体112上端处的示例性盖装置200的放大剖面图。参考图1A和图2A,盖装置200包括大量的在彼此顶部堆叠的部件,如图1A所示。在一个或多个实施方式中,盖装置200包括盖缘210、气体传送装置220和顶板250。气体传送装置220连接到盖缘210的顶面上,并被排列成与盖缘210的热接触最小。盖装置200的部件优选由具有高热导率和低热阻的材料构造成,例如具有高度精加工表面的铝合金。优选地,该部件的热阻小于约5×10-4m2K/W。盖缘210被设计成支撑构成盖装置200的部件的重量,并经由铰接装置(在此图中未示出)连接到腔体112的顶面以提供访问内部腔部件(例如支撑装置300)的途径。
参考图2B和图2C,气体传送装置220可包括分布板或喷淋头225。图2B示出了示例性气体分布板225的一个实施方式的放大示意图,图2C示出了局部剖面图。在一个或多个实施方式中,分布板225是基本圆盘状的,并包括多个孔225A或出入口以对通过其中的气流进行分配。分布板225的孔225A通过减速和重新定向流动气体的速度分布图来防止流过盖装置200的气体直接与下面的衬底表面碰撞。分布板225的孔225A还均匀分配离开盖装置200的气体流,从而提供气体沿衬底表面的均匀分布。
参考图2A、图2B和图2C,分布板225进一步包括在其周边处形成的环形固定法兰222,其大小被设计成可搁置在盖缘210上。因此,分布板225与盖装置200有最小的接触。优选地,O环型密封224(例如弹性体O形环)至少部分布置在环形固定法兰222内部,以确保与盖缘210流体密封接触。
气体传送装置220可进一步包括一个靠近分布板225布置的折流装置(blocker assembly)230。折流装置230提供气体到分布板225后部的均匀分布。优选地,折流装置230由铝合金制成,并可拆卸地连接到分布板225上以确保良好的热接触。例如,可使用螺栓221或类似的紧固件将折流装置230连接到分布板225上。优选地,折流装置230与盖缘210没有热接触,如图2A所示。
在一个或多个实施方式中,折流装置230包括一个固定到第二折流板(blocker plate)235的第一折流板233。第二折流板235包括通过其中形成的通路259。优选地,通路259位于并贯穿第二折流板235的中心,使得通路259与由顶板250的底面和第二折流板235的顶面限定的第一空腔或容积261流体连通。通路259还与由第二折流板235的底面和第一折流板233的顶面限定的第二空腔或容积262流体连通。通路259还与由第一折流板233的底面和分布板255的顶面限定的第三空腔或容积263流体连通。通路259连接到气体入口223。气体入口223在其第一端连接到顶板250上。尽管未示出,气体入口223在其第二端连接到一个或多个上游气源和/或其它气体传送部件(例如气体混合器)上。
第一折流板233包括在其中形成的多个出入口233A,出入口233A适合将从通路259流动的气体分散到气体分布板225的。尽管出入口233A被示为环形或圆形,但出入口233A可为方形、矩形或任何其它形状。可设计出入口233A的大小并在折流板233周围定位,以提供沿衬底表面的受控和均匀的流量分布。如上所述,第一折流板233可容易地从第二折流板235和分布板225上拆下,以有利于这些部件的清洗或更换。
使用时,将一种或多种处理气体通过气体入口223引入到气体传送装置220。该处理气体流入第一容积261,并通过第二折流板235的通路259进入第二容积262。然后,该处理气体通过第一折流板233的孔233A分配到第三容积263,并进一步通过分布板225的孔225A分配,直到气体遇到布置在腔体112内的衬底的暴露表面。
一般使用气体供应板(未示出)向处理腔100提供一种或多种气体。所使用的特定气体取决于在腔100内进行的处理。示例性气体可包括但不限于一种或多种前体、还原剂、催化剂、载体、净化气、清洁气、或它们的任意混合物或组合。典型地,引入到处理腔100的一种或多种气体通过入口223流入到盖装置200,然后通过气体传送装置220进入到腔体112。可使用电控阀(electronically operated valve)和/或流量控制装置(未示出)控制从气体供应源到处理腔100的气体流量。根据具体处理工艺,可传送任意数量的气体到处理腔100,并可在处理腔100中或在气体被传送到处理腔100前混合,例如在气体混合器(未示出)内。
仍然参考图1A和图2A,盖装置200可进一步包括电极240,以在盖装置200内产生反应性组分(reactive species)的等离子。在一个实施方式中,电极240被支撑在顶板250上并与其电绝缘。例如,可在电极240下部周围布置一个将电极240与顶板250分开的绝缘衬环241,如图2A所示。还可在绝缘衬环241的外表面周围布置环形绝缘体242。然后可在电极240的上部周围布置环形绝缘体243,以便电极240与顶板250和盖装置200的所有其它部件电绝缘。这些环241、242、243中的每一个可由氧化铝或任何其它绝缘的工艺相容的材料制成。
在一个或多个实施方式中,电极240连接到电源(未示出),而气体传送装置220接地(即气体传送装置220用作电极)。因此,可在电极240(“第一电极”)和气体传送装置220(“第二电极”)之间,在容积261、262和/或263中产生一种或多种处理气体的等离子。例如,等离子可被触发并包含在电极240和折流装置230之间。或者,在没有折流装置230时,等离子可被触发并包含在电极240和分布板225之间。在这两个实施方式中,等离子都很好地被限制或包含在盖装置200内。因此,等离子为“远程等离子”,因为没有反应性等离子与布置在腔体112内的衬底直接接触。因此,因为等离子与衬底表面充分分开,避免了等离子对衬底的破坏。
可使用任何能够将气体激发成反应性组分并保持反应性组分等离子的能源。例如,可使用射频(RF)、直流电(DC)或基于微波(MW)的放电技术。还可通过基于热的技术、气体击穿技术、高强度光源(如UV能)或暴露于X射线源产生激发。或者,可使用远程激发源(例如远程等离子发生器)产生反应性组分的等离子,其然后被传送到腔100内。典型的远程等离子发生器可从供应商(例如MKS Instruments,Inc.和Advanced Energy Industries,Inc)处得到。优选地,RF电源连接到电极240。
参考图2A,可根据处理气体和在处理腔100内进行的操作来加热气体传送装置220。在一个实施方式中,可将加热元件270(例如电阻加热器)连接到分布板225上。在一个实施方式中,加热元件270为管状元件,并被压进分布板225的上表面中,更详细地如图2B和图2C所示。
参考图2B和图2C,分布板225的上表面包括一个宽度比加热元件270的外径稍小的凹槽或凹通道,从而使加热元件270可利用干涉配合固定在凹槽中。加热元件270调节气体传送装置220的温度,因为传送装置220的部件(包括分布板225和折流装置230)各自传导地彼此连接。连接到分布板225的热电偶272可帮助温度调节。可在反馈回路中使用热电偶272控制从电源施加到加热元件270的电流,从而使气体传送装置220温度可被保持或控制在所需的温度或在所需的温度范围内。因为气体传送装置220与盖装置200的其它部件具有最小的热接触并因而限制了热传导,如上所述,因此可帮助控制气体传送装置220温度。
在一个或多个实施方式中,盖装置200可包括一个或多个在其中形成的流体通道202,其用于传热介质流动以为气体传送装置220提供温度控制。在一个实施方式中,流体通道202可在盖缘210内形成,如图2A所示。或者,流体通道202可在盖装置200的任何部件内形成,以为气体传送装置220提供均匀的传热。流体通道202可包含加热或冷却介质以控制气体传送装置220的温度,这取决于腔100内的具体处理要求。可使用任何传热介质,例如氮气、水、乙二醇或它们的混合物。
在一个或多个实施方式中,可使用一个或多个加热灯(未示出)加热气体传送装置220。典型地,加热灯被排列在分布板225上表面的周围以通过辐射加热分布板225。
图3A示出了一个示例性支撑装置300的局部剖面图。支撑装置300可至少部分地被布置在腔体112内。支撑装置300可包括一个支撑构件310,其支撑一个要在腔体112内进行处理的衬底(在此图中未示出)。支撑构件310可通过轴314连接到提升机构330上,轴314通过在腔体112底面中形成的位于中心的孔114延伸。可通过能防止轴314周围真空泄漏的波纹管333将提升机构330柔性地密封到腔体112上。提升机构330允许支撑构件310在腔体112内在处理位置和较低的转移位置之间垂直移动。转移位置稍微低于在腔体112侧壁中形成的槽阀开口160。
图3B示出了图3A所示支撑装置300的放大局部横截面。在一个或多个实施方式中,支撑构件310具有一个用于在其上支撑待处理衬底的平的圆形表面或基本平的圆形表面。支撑构件310优选由铝制成。支撑构件310可包括由一些其它材料(例如硅或陶瓷材料)制成的可拆卸顶板311,例如以减少衬底的背面污染。
在一个或多个实施方式中,支撑构件310或顶板311可包括多个排列在其上表面的扩展部分或凹窝311A。在图3B中,凹窝311A被示于顶板311的上表面上。可预想到如果不需要顶板311,则凹窝311A也可排列在支撑构件310的上表面上。凹窝311A提供衬底下表面和支撑装置300(即支撑构件310或顶板311)的支撑表面之间的最小接触。
在一个或多个实施方式中,可使用真空卡盘或吸盘(chuck)将衬底(未示出)固定到支撑装置300上。顶板311可包括多个孔312,其与形成在支撑构件310中的一个或多个槽316流体连通。槽316经由布置在轴314和支撑构件310内的真空管道313与真空泵(未示出)流体连通。在某些条件下,可使用真空管道313供应净化气到支撑构件310的表面,以在衬底未被放置在支撑构件310上的时候,防止沉积。真空管道313还可在处理过程中通过净化气以防止反应性气体或副产物接触衬底的背面。
在一个或多个实施方式中,可使用静电卡盘将衬底(未示出)固定到支撑构件310上。在一个或多个实施方式中,可利用机械夹具(未示出),例如常规夹圈,将衬底夹持在支撑构件310的适当位置上。
优选地,使用静电卡盘来固定衬底。典型的静电卡盘包括至少一种环绕电极(未示出)的介电材料,其可位于支撑构件310的上表面上或形成为支撑构件310的组成部分。该卡盘的电介质部分使卡盘电极与衬底和支撑装置300的其余部分电绝缘。
在一个或多个实施方式中,卡盘电介质的周边可稍微小于衬底的周边。换句话说,衬底稍微悬于卡盘电解质的周边上,从而使卡盘电解质保持被衬底完全覆盖,即使衬底在定位到卡盘上时偏离中心。确保衬底完全覆盖卡盘电介质,确保了衬底挡住卡盘不暴露于腔体112内的潜在腐蚀性或破坏性物质。
可通过独立的“卡盘”电源(未示出)提供操作静电卡盘的电压。卡盘电源的一个输出端子连接到卡盘电极上。另一输出端子一般接地,但或者可连接到支撑装置300的金属体部分。操作时,衬底被放置成与电介质部分接触,并在电极上施加直流电压产生静电吸力或偏压以将衬底附着到支撑构件310的上表面上。
仍然参考图3A和图3B,支撑构件310可包括一个或多个穿过其形成的孔323以容纳提升杆(lift pin)325。每个提升杆325一般由陶瓷或含陶瓷材料制成,并用于衬底装卸和运送。每个提升杆325可滑动地安装在孔323内。一方面,孔323衬有陶瓷套以帮助自由滑动提升杆325。提升杆325通过啮合布置在腔体112内的环形提升环320而在其各自的孔323内可移动。提升环320是可移动的,从而使提升杆325的上表面可在提升环320处于上部位置时位于支撑构件310的衬底支撑表面的上方。相反,提升杆325的下表面在提升环320处于下部位置时位于支撑构件310的衬底支撑表面的上方。因此,当提升环320从任意一个下部位置移动到上部位置时,每个提升杆325的部分在支撑构件310内穿过其各自的孔323。
当被活动时,提升杆325推压衬底的下表面,将衬底升起离开支撑构件310。相反,可使提升杆325不活动(de-activated)以降低衬底,从而将衬底搁置在支撑构件310上。提升杆325可包括扩大的上端或锥形头以防止提升杆325从支撑构件310上落下。其它杆设计也可被使用,而且是本领域技术人员所公知的。
在一个实施方式中,一个或多个提升杆325包括布置在其上的由防滑或高摩擦材料制成的涂层或附件以防止衬底在被支撑到其上时滑动。优选的材料为不会划伤或破坏衬底背面以至在处理腔100内产生污染的高温聚合材料。优选地,涂层或附件是可从DuPont处获得的KALREZTM涂层。
为了驱动提升环320,通常使用传动装置,例如常规气压缸或步进电动机(未示出)。步进电动机或气压缸驱动提升环320到上或下位置,其又驱动升高或降低衬底的提升杆325。在一种具体的实施方式中,衬底(未示出)通过三个提升杆325(在此图中未示出)被支撑到支撑构件310上,三个提升杆325以大约120度分散开并从提升环320突出。
再次参考图3A,支撑装置300可包括一个布置在支撑构件310周围的边缘环305。边缘环305可由各种材料(例如陶瓷、石英、铝和钢等等)制成。在一个或多个实施方式中,边缘环305是一个环形构件,其适合盖住支撑构件310的外周,保护支撑构件310免受沉积。边缘环305可位于或靠近支撑构件310,以在支撑构件310的外径和边缘环305的内径之间形成环形净化气通道334。环形净化气通道334可与穿过支撑构件310和轴314形成的净化气管道335流体连通。优选地,净化气管道335与净化气供应源(未示出)流体连通,以为净化气通道334提供净化气。可单独或组合使用任何合适的净化气,例如氮气、氩气或氦气。操作时,净化气流过管道335,进入净化气通道334,并流到布置在支撑构件310上的衬底边缘附近。因此,净化气在操作时与边缘环305共同防止衬底的边缘和/或背部的沉积。
再次参考图3A和图3B,利用通过嵌入在支撑构件310主体中的流体通道360循环的流体控制支撑装置300的温度。在一个或多个实施方式中,流体通道360与通过支撑装置300的轴314布置的传热管道361流体连通。优选地,流体通道360位于支撑构件310周围以为支撑构件310的衬底接受表面提供均匀传热。流体通道360和传热管道361可流动传热流体以加热或冷却支撑构件310。可使用任何合适的传热流体,例如水、氮气、乙二醇或它们的混合物。支撑装置300可进一步包括一个监测支撑构件310支撑表面的温度的嵌入式热电偶(未示出)。例如,可在反馈回路中使用来自热电偶的信号,对通过流体通道360而循环的流体的温度或流速进行控制。
回过来参考图3A,支撑构件310可在腔体112内垂直移动,从而可控制支撑构件310和盖装置200之间的距离。传感器(未示出)可提供有关腔100内支撑构件310的位置信息。1999年9月14日签发给Selyutin等人的题为“Self-Aligning Lift Mechanism”的美国专利号5951776中详细描述了用于支撑构件310的提升机构的例子,本文通过引用将其全部并入。
操作时,支撑构件310可被升高到紧靠盖装置200,以控制正被处理的衬底的温度。这样,可通过由加热元件270所控制的分布板225发出的辐射来加热衬底。或者,可使用通过提升环320活动的提升杆325,将衬底升高离开支撑构件310到靠近加热的盖装置200。
在超过使用周期后或在指定的定期检修时间时,可有规律地检测、更换或清洁处理腔100的某些部件(包括上文所述的那些部件)。这些部件一般为被共同称为“处理配件(process kit)”的部件。处理配件的示例性部件可包括但不限于,例如喷淋头225、顶板311、边缘环305、衬套133和提升杆325。一般在有规律间隔时或根据按需原则从腔100中拆下并清洗或更换这些部件中的任意一个或多个。
图4A示出了另一个示例性盖装置400的局部剖面图。盖装置400包括至少两个堆叠部件,这些堆叠部件被配置成在它们之间形成等离子容积或空腔。在一个或多个实施方式中,盖装置400包括一个垂直布置在第二电极450(“下部电极”)上方的第一电极410(“上部电极”),在电极之间限定出等离子容积或腔425。第一电极410连接到电源415例如RF电源,第二电极450接地,从而在两个电极410、450之间形成电容。
在一个或多个实施方式中,盖装置400包括一个或多个气体入口412(只示出一个),其至少部分在第一电极410的上段413内形成。一种或多种处理气体通过一个或多个气体入口412进入盖装置400。一个或多个气体入口412在其第一端与等离子空腔425流体连通,并在其第二端连接到一个或多个上游气源和/或其它气体传送部件如气体混合器上。一个或多个气体入口412的第一端可在扩展段420的内径430的最高点处通到等离子空腔425,如图4A所示。类似地,一个或多个气体入口412的第一端可在沿扩展段420的内径430的任意高度间隔处通到等离子空腔425。尽管未示出,可在扩展段420的相对侧布置两个气体入口412,以形成进入扩展段420的旋涡流模式或涡流,以帮助在等离子空腔425内混合气体。2001年12月21日提交的美国专利申请号20030079686提供了这种流型和气体入口排列的更详细描述,在此通过引入并入本文。
在一个或多个实施方式中,第一电极410具有容纳等离子空腔425的扩展段420。如图4A所示,扩展段420按如上所述与气体入口412流体连通。在一个或多个实施方式中,扩展段420为内表面或内径430从其上部420A到其下部420B渐增的环形构件。这样,第一电极410和第二电极450之间的距离是变化的。变化的距离有助于控制等离子空腔425内产生的等离子的形成和稳定性。
在一个或多个实施方式中,扩展段420像一个圆锥体或“漏斗”,如图4A和4B所示。图4B示出了图4A上部电极的放大的示意性局部剖面图。在一个或多个实施方式中,扩展段420的内表面430从扩展段420的上部420A到下部420B逐渐倾斜。内径430的斜率或角度可根据工艺要求和/或工艺限制而变化。扩展段420的长度或高度也可具体的工艺要求和/或限制而变化。在一个或多个实施方式中,内径430的斜率或扩展段420的高度或两者可根据需要处理的等离子的容积变化。例如,内径430的斜率可为至少1∶1,或至少1.5∶1,或至少2∶1,或至少3∶1,或至少4∶1,或至少5∶1,或至少10∶1。在一个或多个实施方式中,内径430斜率的范围可从下限2∶1到上限20∶1。
在一个或多个实施方式中,扩展段420可以是弯曲的或者是弧形的,尽管在图中未示出。例如,扩展段420的内表面430可是弯曲的或者是弧形的,以至是凸出的或凹入的。在一个或多个实施方式中,扩展段420的内表面430可具有多个各自倾斜、逐渐变细、凸出或凹入的段。
如上所述,第一电极410的扩展段420由于第一电极410的内表面430渐增而改变了第一电极410和第二电极450之间的垂直距离。这种可变距离与等离子空腔425内的功率级直接相关。不希望受理论约束,两个电极410、450之间的距离的变化应能使等离子得到必要的功率级以在等离子空腔425的某些部分维持自身,如果不能在整个等离子空腔425的话。因此等离子空腔425内的等离子较小地依赖于压力,从而能在较宽的操作窗口内产生并维持等离子。这样,可在盖装置400内形成重复性更高和更可靠的等离子。
第一电极410可由任何工艺相容的材料制成,例如铝、阳极氧化铝、镀镍铝、镀镍铝6061-T6、不锈钢以及它们的组合和合金。在一个或多个实施方式中,整个第一电极410或其部分镀有镍以减少不需要的粒子形成。优选地,至少扩展段420的内表面430镀镍。
第二电极450可包括一个或多个堆叠板。当需要两个或多个板时,板应彼此电连通。每个板应包括多个孔或气体通路以使来自等离子空腔425的一种或多种气体流过。
参考图4B,盖装置400可进一步包括绝缘环440,以将第一电极410与第二电极450电绝缘。绝缘环440可由氧化铝或任何其它绝缘的工艺相容材料制成。优选地,绝缘环440环绕或基本上环绕至少扩展段420,如图4B所示。
再次参考图4A所示的具体实施方式,第二电极450包括顶板460、分布板470和折流板480。顶板460、分布板470和折流板480被堆叠并被布置在与腔体112连接的盖缘490上,如图4B所示。本领域中公知的是,可使用铰接装置(未示出)将盖缘490连接到腔体112上。盖缘490可包括一个用于容纳传热介质的嵌入通道或通路492。传热介质可用于加热、冷却或两者,这取决于工艺要求,上面列出了示例性的传热介质。
在一个或多个实施方式中,顶板460包括多个形成于等离子空腔425下方的气体通路或孔465,以使气体从等离子空腔425通过其流动。在一个或多个实施方式中,顶板460可包括一个凹进部分462,其适合容纳第一电极410的至少一部分。在一个或多个实施方式中,孔465在凹进部分462下方通过顶板460的截面。顶板460的凹进部分462可为阶梯状,如图4A所示,以在其中提供更好的密封配合。此外,顶板460的外径可被设计成安装或搁置在分布板470的外径上,如图4A所示。O环型密封例如弹性体O环463,可至少部分布置在顶板460的凹进部分462内,以确保与第一电极410的密封接触。同样地,可使用O环型密封466提供顶板460和分布板470的外径之间的密封接触。
在一个或多个实施方式中,分布板470与上面结合图2A-图2C所示和所述的分布板225相同。特别地,分布板470基本上为圆盘状,并包括多个孔475或出入口以对通过其中的气流进行分配。孔475可被设计大小并被定位成在分布板470周围,以提供受控和均匀的流体分布到待处理衬底所在的腔体112。此外,孔475通过减速和重新定向流动气体的速度分布来防止气体直接在衬底表面上碰撞,以及均匀地分布气流提供气体沿衬底表面的均匀分布。
分布板470还包括一个在其外周边处形成的环形固定法兰472。固定法兰472的大小可被设计成能搁置在盖缘490的上表面上。O环型密封(例如弹性体O形环)可至少部分布置在环形固定法兰472内部,以确保与盖缘490密封接触。
在一个或多个实施方式中,分布板470包括一个或多个用于容纳加热器或加热流体的嵌入通道或通路474,以提供盖装置400的温度控制。类似于上面所述的盖装置200,可在通路474内插入电阻加热元件来加热分布板470。热电偶可连接到分布板470上调节其温度。如上所述,可在反馈回路中使用热电偶来控制施加到加热元件的电流。
或者,可使传热介质传过通路474。如果需要的话,一个或多个通路474可包含冷却介质,以更好地根据腔体112内的工艺要求控制分布板470的温度。如上所述,可使用任何传热介质,例如氮气、水、乙二醇或它们的混合物。
在一个或多个实施方式中,可使用一个或多个加热灯(未示出)来加热盖装置400。典型地,加热灯被排列在分布板470上表面的周围以通过辐射加热盖装置400的部件包括分布板470。
折流板480是任选的,并被布置在顶板460和分布板470之间。优选地,折流板480可拆卸地安装到顶板460的下表面上。折流板480应与顶板460有良好的热接触和电接触。在一个或多个实施方式中,折流板480可使用螺栓或类似的紧固件连接到顶板460上。折流板480还可拧到或旋到顶板460的外径上。
折流板480包括多个孔485以提供从顶板460到分布板470的多个气体通路。孔485可被设计大小并被定位在折流板480周围以提供分布板470的受控和均匀的流体分布。
图4C示出了上面布置有盖装置400的腔体112的局部剖面图。优选地,扩展段420位于支撑装置300正上方,如图4C所示。等离子空腔425内等离子的约束和约束等离子的中心位置,使分离气体均匀可重复地分布到腔体112中。特别地,离开等离子容积425的气体通过顶板460的孔465流到折流板480的上表面。折流板480的孔485分布气体到分布板470的背部,气体在接触腔体112内的衬底(未示出)前,在这里通过分布板470的孔475进一步被分布。
可以认为,等离子约束在等离子空腔425中心位置处和第一电极410和第二电极450之间的变化距离在盖装置400内产生了稳定可靠的等离子。
为简洁和易于描述,现描述在处理腔100内进行的使用氨气(NH3)和三氟化氮(NF3)气体混合物去除氧化硅的典型干法蚀刻工艺。可认为,对于从除了在单一处理环境中加热和冷却衬底之外,从等离子处理中受益的任何干法蚀刻工艺(包括退火处理),处理腔100是有利的。
参考图1,干法蚀刻工艺开始于将衬底(未示出)例如半导体衬底放置到处理腔100。一般通过槽阀开口160将衬底放到腔体112内,并布置在支撑构件310的上表面上。将衬底卡到或吸到(chuck)支撑构件310的上表面上,边缘净化气通过通道334。优选地,通过与经由管道313与真空泵流体连通的孔312和槽316吸真空将衬底吸到支撑构件310的上表面上。如果还未在处理位置,则升高支撑构件310到处理腔112内的处理位置。腔体112优选保持为50℃和80℃之间的温度,更优选在约65℃。通过经由流体通道113通入传热介质将腔体112保持在这种温度。
通过经由在支撑装置300内形成的流体通道360通入传热介质或冷却剂将衬底冷却至65℃以下,例如在15℃和50℃之间。在一个实施方式中,衬底被维持在室温以下。在另一实施方式中,衬底保持在22℃和40℃之间的温度。典型地,支撑构件310保持在约22℃以下,以达到上面指定的所需衬底温度。为冷却支撑构件310,使冷却剂通过流体通道360。为更好地控制支撑构件310的温度,优选连续的冷却剂流。冷却剂优选为50%体积的乙二醇和50%体积的水。当然,可使用任意比例的水和乙二醇,只要能保持所需的衬底温度。
然后,将氨和三氟化氮气体引入到腔100内形成清洁气体混合物。引入到腔内的每种气体的量是可变的,并可调整以适应例如要被去除的氧化物层的厚度、正被清洁的衬底的几何形状、等离子的容量、腔体112的容量以及连接到腔体112的真空系统的能力。一方面,加入气体提供氨和三氟化氮摩尔比为至少1∶1的气体混合物。另一方面,气体混合物的摩尔比为至少约3∶1(氨∶三氟化氮)。优选地,以从5∶1(氨∶三氟化氮)到30∶1的摩尔比将气体引入腔100中。更优选地,气体混合物的摩尔比为从约5∶1(氨∶三氟化氮)到10∶1。气体混合物的摩尔比还可在约10∶1(氨∶三氟化氮)和约20∶1之间。
还可将净化气或载气加入到气体混合物中。可使用任何合适的净化气/载气,如氩气、氦气、氢气、氮气或它们的混合物。典型地,全部气体混合物为约0.05%-20%体积的氨和三氟化氮。其余的为载气。在一个实施方式中,在反应性气体之前将净化气或载气首先引入到腔体112以稳定腔体112内的压力。
腔体112内的工作压力是可变的。典型地,压力保持在约500mTorr和约30Torr之间。优选地,压力保持在约1Torr和约10Torr之间。更优选地,腔体112内的工作压力保持在约3Torr和约6Torr之间。
从约5到约600瓦的RF功率被施加到电极240以在气体传送装置220内包含的容积261、262和263内引发气体混合物的等离子。优选地,RF功率小于100瓦。更优选的是施加功率的频率非常低,例如小于100kHz。优选地,频率在约50kHz到约90kHz的范围内。
等离子能量离解氨和三氟化氮气体成为反应性组分,它们在气相中化合形成高反应性的氟化氨(NH4F)化合物和/或氟化氢铵(NH4F·HF)。这些分子然后经由分布板225的孔225A流过气体传送装置220与要被清洁的衬底表面反应。在一个实施方式中,首先将载气引入到腔100中,产生载气的等离子,然后向等离子中加入反应性气体氨和三氟化氮。
不希望受理论束缚,认为蚀刻剂气体NH4F和/或NH4F·HF与氧化硅表面反应形成六氟硅酸胺(NH4)2SiF6、NH3和H2O产物。NH3和H2O在处理条件下为蒸汽,通过真空泵125从腔100去除。特别地,在气体通过真空端口131离开腔100到真空泵125前,挥发性气体通过衬套133中形成的孔135流入到抽气通道129。(NH4)2SiF6薄膜留在衬底表面上。这种反应机理可归结如下:
NF3+NH3→NH4F+NH4F·HF+N2
6NH4F+SiO2→(NH4)2SiF6+H2O
(NH4)2SiF6+热→NH3+HF+SiF4
当薄膜在衬底表面上形成后,将其上支撑有衬底的支撑构件310升高到紧靠着已加热的分布板225的退火位置。从分布板225辐射的热应该足以将(NH4)2SiF6薄膜离解或升华成挥发性的SiF4、NH3和HF产物。如上所述,这些挥发性产物然后通过真空泵125从腔100中去除。典型地,使用75℃或更高的温度有效地从衬底升华和去除薄膜。优选地,使用100℃或更高的温度,例如在约115℃和约200℃之间。
通过分布板225对流或辐射将(NH4)2SiF6薄膜离解成挥发性组分的热能。如上所述,加热元件270直接连接到分布板225上,并被启动以加热分布板225和与其热接触的部件到约75℃和250℃之间的温度。一个方面,分布板225被加热到100℃和150℃之间的温度,例如约120℃。
可利用各种方法实现高度变化。例如,提升机构330可向着分布板225的下表面升高支撑构件310。在这个升起步骤中,衬底被固定到支撑构件310上,例如通过上述的真空卡盘或静电卡盘。或者,可通过用提升环320升高提升杆325将衬底升起离开支撑构件310并放到紧靠已加热的分布板225的地方。
上面具有薄膜的衬底的上表面和分布板225之间的距离并不重要,仅是常规的试验问题。本领域的普通技术人员可容易地确定有效蒸发薄膜而不破坏下面的衬底所需的间隔。但是,可认为在约0.254mm(10密耳)和5.08mm(200密耳)之间的间隔是有效的。
一旦薄膜从衬底上去除,就净化并抽空该腔。然后通过降低衬底到转移位置、去掉衬底的卡盘和将衬底通过槽阀开口160转移来从腔体112取出清洁的衬底。
可使用一个系统控制器(未示出)来调节处理腔100的操作。系统控制器可在储存在计算机硬盘驱动器上的计算机程序的控制下运行。例如,计算机程序可规定处理的先后顺序和时间选择、气体混合物、腔压力、RF功率级、基座定位、槽阀开口打开和关闭、晶片冷却和其它特定的工艺参数。可通过CRT监视器和光笔(未示出)进行使用者和系统控制器之间的交互。在优选实施方式中,使用两个监视器,一个监视器装在操作人员的干净房间壁上,另一个监视器在服务技师的墙后面。还优选两个监视器同时显示相同的信息,但只有一个光笔可用。光笔利用笔顶端的光传感器检测CRT显示器发出的光。为了选择特定的屏幕或功能,操作人员可接触显示器屏幕的指定区域并按下笔上的按纽。显示器屏幕通常通过改变其外观即加亮或颜色或显示新的菜单或屏幕来确认光笔和被触区域的联系。
可使用在例如系统控制器上运行的计算机程序产品实施各种工艺。可用任何常规的计算机可读编程语言例如68000汇编语言、C、C++或Pascal来编写计算机程序代码。可使用常规的文本编辑器使适当的程序代码成为单一文件或多个文件,并储存或包含到计算机可用介质上,例如计算机的存储系统。如果输入的代码文本是高级程序语言,则编译代码,然后将得到的编译代码与预编译库程序的目标代码连接。为执行连接的编译目标代码,系统用户调用目标代码,使计算机系统将代码装入存储器,CPU从其读取并执行代码以实现程序中确定的任务。
图5A-图5H为使用干法蚀刻工艺和本文描述的处理腔100形成典型的有源电子器件例如MOSFET结构500的典型制造顺序的示意性剖面图。参考图5A-图5H,可在半导体材料(例如硅或砷化镓)衬底525上形成典型的MOSFET结构。优选地,衬底525为具有<100>结晶取向(crystallographic orientation)和150mm(6英寸)、200mm(8英寸)或300mm(12英寸)直径的硅晶片。典型地,MOSFET结构包括以下的组合:(i)介电层,例如二氧化硅、有机硅酸盐、碳掺杂的硅氧化物、磷硅酸盐玻璃(PSG)、硼磷硅酸盐玻璃(BPSG)、氮化硅或它们的组合;(ii)半导体层,例如掺杂多晶硅和n-型或p-型掺杂单晶硅;和(iii)由金属或金属硅化物层形成的电接触和互连线,例如钨、硅化钨、钛、硅化钛、硅化钴、硅化镍或它们的组合。
参考图5A,有源电子器件的制造开始于形成电绝缘结构,其将有源电子器件与其它器件电绝缘。有几种类型的电绝缘结构,通常如由McGraw-Hill Publishing Company出版(1988)的S.M.Sze的《VLSITechnology》第二版第11章中所述,此处通过引用将其并入本文。在一种形式中,首先在整个衬底525上生长出厚度为约2000埃的场效氧化层(未示出),去除部分氧化物层形成环绕暴露区域的场效氧化物阻挡层545A、545B,其中在暴露区域中形成器件的电有源元件。暴露区域被热氧化以形成厚度为约50至300埃的薄的栅极氧化物层550。然后沉积多晶硅层,制作布线图案,并蚀刻形成栅电极555。可再氧化多晶硅栅电极555的表面形成绝缘介电层560,从而提供图5A中所示的结构。
参考图5B,通过用适当的掺杂原子来掺杂适宜的区域以邻近地形成源极570A和漏极570B。例如,在p型衬底525上,使用n型掺杂剂种类包括砷或磷。典型地,通过离子注入器进行掺杂,并可包括例如在约30-80Kev能级下浓度为约1013原子/cm2的磷(31P),或在10Kev-100Kev能级下剂量为约1015-1017原子/cm2的砷(75As)。在注入过程后,通过加热衬底将掺杂剂驱赶到衬底525中,例如,在快速热处理(RTP)装置中。此后,通过常规的剥离工艺剥离覆盖源极区域570A和漏极区域570B的氧化物层550,以去除任何由注入过程引起并被捕获到氧化物层的杂质,从而提供图8B所示的结构。
参考图5C和图5D,使用SiH2、Cl2和NH3的混合气体通过低压化学气相沉积(LPCVD)在栅电极555和衬底525的表面上沉积氮化硅层575。然后使用反应离子蚀刻(RIE)技术蚀刻氮化硅层575以在栅电极555的侧壁上形成氮化物间隔区580,如图5D所示。间隔区580将形成在栅电极555表面上的硅化物层与沉积在源极570A和漏极570B上的其余硅化物层电绝缘。应注意电绝缘侧壁间隔区580和覆盖层可由其它材料(例如氧化硅)制成。用于形成侧壁间隔区580的氧化硅层一般在约600℃-约1000℃范围内的温度下由四乙氧基硅烷(TEOS)原料气通过CVD或PECVD沉积。
参考图5E,在处理前和处理后由于暴露在大气中而在暴露的硅表面上形成天然氧化硅层585。在栅极555、源极570A和漏极570B上形成导电金属硅化物触点前必须去除天然氧化硅层585以提高合金化反应和形成的金属硅化物的导电性。天然氧化硅层585会增加半导体材料的电阻,并对硅和随后沉积的金属层的硅化反应有不利影响。因此,必须在形成用于互连有源电子器件的金属硅化物触点或导体前,利用所述的干法蚀刻工艺去除这种天然氧化硅层。干法蚀刻工艺去除天然氧化硅层585以暴露出源极570A、漏极570B和栅电极555的顶面,如图5F所示。
此后,如图5G所示,使用PVD溅射工艺沉积金属层590。然后利用常规炉退火来对金属和硅层进行退火以在金属层590与硅接触的区域形成金属硅化物。退火一般是在单独的处理系统中进行。因此,可在金属590上沉积保护覆盖层(未示出)。覆盖层一般为氮化物材料,并可包括选自氮化钛、氮化钨、氮化钽、氮化nafnium和氮化硅的一种或多种材料。可通过任何沉积工艺沉积覆盖层,优选通过PVD。
退火一般包括在氮气中将衬底500加热至600℃和800℃之间的温度并保持约30分钟。或者,可利用将衬底500快速加热至约1000℃并保持约30秒的快速热退火处理形成金属氮化物595。合适的导电金属包括钴、钛、镍、钨、铂和任何其它具有低接触电阻并能在多晶硅和单晶硅上形成可靠金属氮化物触点的金属。
可通过使用王水(HCl和HNO3)的湿法蚀刻来去除金属层590的未反应部分,王水可以去除金属而不腐蚀金属氮化物595、间隔区580或场效氧化物545A、545B,从而在栅极555、源极570A和漏极570B上留下自动对准的金属硅化物触点595,如图5H所示。此后,可在电极结构上沉积绝缘覆盖层,包括例如氧化硅、BPSG或PSG。通过在CVD腔中化学气相沉积来沉积绝缘覆盖层,其中材料在低压或大气压力下由原料气凝结,如1996年3月19日签发的普通转让的美国专利5500249中所述,此处通过引用将其并入。此后,在玻璃转化温度下退火结构500形成光滑的平面。
在一个或多个实施方式中,处理腔100可集成到一个多处理平台中,例如可从位于Santa Clara,California的Applied Materials,Inc.得到的EnduraTM平台。这种处理平台能进行几种处理操作而不破坏真空。EnduraTM平台的细节描述在1999年11月30日提交的题为“IntegratedModular Processing Platform”的普通转让美国专利申请序列号09/451628中,此处通过引用将其并入。
图6是一个示例性多腔处理系统600的示意性顶视图。系统600可包括一个或多个用于转移衬底进出系统600的装载锁定腔602、604。典型地,由于系统600处于真空下,装载锁定腔602、604可“抽空(pumpdown)”引入到系统600的衬底。第一机器人610可在装载锁定腔602、604和第一组一个或多个衬底处理腔612、614、616、618(示出4个)之间转移衬底。每个处理腔612、614、616、618可被配备进行大量衬底处理操作,包括本文描述的干法蚀刻工艺,另外还有循环层沉积(CLD)、原子层沉积(ALD)、化学气相沉积(CVD)、物理气相沉积(PVD)、蚀刻、预清洁、除气、取向和其它衬底处理。
第一机器人610还可将衬底转进/转出到一个或多个转移腔622、624。转移腔622、624可被用来保持超高真空条件,同时使衬底在系统600内被转移。第二机器人630可在转移腔622、624和第二组一个或多个处理腔632、634、636、638之间转移衬底。类似于处理腔612、614、616、618,处理腔632、634、636、638可被配备进行各种衬底处理操作,包括本文描述的干法蚀刻工艺,另外还有例如循环层沉积(CLD)、原子层沉积(ALD)、化学气相沉积(CVD)、物理气相沉积(PVD)、蚀刻、预清洁、除气和取向。如果对于系统600要进行的具体工艺而言并不需要,那么可将衬底处理腔612、614、616、618、632、634、636、638中的任何一个从系统600去除。
用于形成图5A-图5H的MOSFET结构的示例性多处理系统600可包括如上所述的两个处理腔100、沉积金属500的两个物理气相沉积腔和沉积任选的覆盖层(未示出)的两个物理气相沉积腔。图6中所示的处理腔612、614、616、618、632、634、636、638中的任何一个代表PVD腔和/或处理腔100。
尽管描述了有关MOSFET器件形成的上述处理顺序,但也可使用本文描述的干法蚀刻工艺形成其它具有另外金属硅化物层如钨、钽、钼的硅化物的半导体结构和器件。在沉积不同的金属层包括例如铝、铜、钴、镍、硅、钛、钯、铪、硼、钨、钽或它们的混合物前还可应用清洁工艺。
为了更好地理解上文所讨论的内容,特提供下面的非限制性实施例。尽管该实施例是关于一个特定实施方式的,但不应认为该实施例在任何具体方面限制本发明。
实施例:
在蚀刻过程中,将2sccm(标准毫升/分)NF3、10sccm NH3和2500sccm氩气的气体混合物引入到腔。使用100W的功率激发气体混合物的等离子。底部净化气为1500sccm的氩气,边缘净化气为50sccm的氩气。腔压力保持在约6Torr,衬底温度为约22℃。衬底被蚀刻120秒。
在随后的退火过程中,间隔为750密耳,盖温度为120℃。衬底被退火约60秒。从衬底表面去除约50埃的材料。没有观察到退火效应。蚀刻速度为约0.46埃/秒(28)。对于50的蚀刻,观察到的蚀刻均匀性为约5%。
除非另外指明,在说明书和权利要求书中使用的表示成分、性质、反应条件等的量的数字都被认为是近似值。这些近似值基于本发明设法得到的所需性质和测量误差,并应至少按照报告的有效数字和通过应用普通舍入技术来分析。另外,可进一步优选本文表示的任何量包括温度、压力、间隔、摩尔、比例、流速等以获得所需的蚀刻选择性和粒子性能。
尽管前面涉及到本发明的实施方式,但只要不脱离本发明的基本范围和后面的权利要求所确定的范围,就可设计出本发明的其它或更多的实施方式。
Claims (13)
1.一种衬底支撑装置,包括:
一个轴,所述轴具有穿过所述轴设置的真空管道、传热流体管道和气体管道;
一个布置在所述轴的第一端上的支撑构件,所述支撑构件具有净化气管道、在所述支撑构件中形成的一个或多个流体通道和在所述支撑构件的上表面中形成的一个或多个槽,其中每个流体通道与所述轴的传热流体管道流体连通并且所述一个或多个槽通过设置在所述轴中的真空管道与真空泵流体连通;
围绕所述支撑构件的外圆周设置的环形环,所述环形环在所述支撑构件的外圆周和所述环形环的内直径之间形成环形净化气通道;和一个其中形成有多个孔的第一电极,所述第一电极被布置在所述支撑构件的上表面上,以使所述多个孔中的每一个与所述一个或多个槽流体连通。
2.根据权利要求1所述的衬底支撑装置,进一步包括一个冷却介质源,其与所述传热流体管道流体连通。
3.根据权利要求1所述的衬底支撑装置,其中所述真空管道与所述真空泵流体连通,以便将一个衬底卡到所述第一电极。
4.根据权利要求1所述的衬底支撑装置,其中所述第一电极是一个可拆卸构件,其搁置在所述支撑构件上表面上。
5.根据权利要求1所述的衬底支撑装置,其中所述第一电极包括多个布置在其上表面上的凸起凹坑,以减少与其上支撑的衬底的接触。
6.根据权利要求1所述的衬底支撑装置,其中所述净化气管道与设置在所述轴中的所述气体管道流体连通。
7.根据权利要求1所述的衬底支撑装置,其中所述环形环与穿过环形环径向地形成的所述净化气管道流体连通并且凸出所述支撑构件的外表面。
8.一种衬底支撑装置,其包括:
一个轴,所述轴具有通过其布置的真空管道、传热流体管道和气体管道;
一个布置在所述轴第一端上的支撑构件,所述支撑构件具有流体通道、多个槽和净化气管道,所述流体通道在所述支撑构件中形成,所述流体通道与所述轴的传热流体管道流体连通,所述多个槽在所述支撑构件的上表面形成,所述净化气管道通过所述支撑构件形成并且将所述轴的所述气体管道连接到所述支撑构件的圆柱形外表面,其中所述净化气管道具有垂直于所述支撑构件中心线的取向;和
一个其中形成有多个孔并且所述孔与所述多个槽对准的第一电极,所述第一电极被布置在所述支撑构件的上表面上,以使所述多个孔中的每一个与在所述支撑构件上表面形成的多个槽流体连通并且将所述多个槽中的至少一个槽连接到所述轴的所述真空管道。
9.根据权利要求8所述的衬底支撑装置,进一步包括一个环状环,其布置在所述支撑构件外圆周的周围。
10.根据权利要求8所述的衬底支撑装置,其中所述第一电极具有一个凹的上表面,所述凹的上表面具有多个凸起凹坑以减少与其上支撑的衬底的接触。
11.根据权利要求8所述的衬底支撑装置,进一步包括:
可移动支撑销,其中所述支撑构件具有用于引导所述可移动支撑销的对应的孔;和
陶瓷套,每个对应孔衬有所述陶瓷套,以减少与所述可移动支撑销的摩擦。
12.根据权利要求9所述的衬底支撑装置,其中所述环状环在所述支撑构件的外圆周和所述环状环的内直径之间形成环形净化气通道。
13.根据权利要求9所述的衬底支撑装置,进一步包括:从所述支撑构件的所述圆柱形外表面径向向外延伸的凸缘,所述凸缘与所述流体通道邻近。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US54783904P | 2004-02-26 | 2004-02-26 | |
US60/547,839 | 2004-02-26 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100565328A Division CN100487857C (zh) | 2004-02-26 | 2005-02-25 | 用于前段工艺制造的原地干洗腔 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101916740A CN101916740A (zh) | 2010-12-15 |
CN101916740B true CN101916740B (zh) | 2013-01-02 |
Family
ID=34749068
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100565328A Active CN100487857C (zh) | 2004-02-26 | 2005-02-25 | 用于前段工艺制造的原地干洗腔 |
CN2008100825653A Active CN101241844B (zh) | 2004-02-26 | 2005-02-25 | 用于前段工艺制造的原地干洗腔 |
CN2010102461146A Active CN101916715B (zh) | 2004-02-26 | 2005-02-25 | 用于前段工艺制造的原地干洗腔 |
CN2010102461165A Active CN101916740B (zh) | 2004-02-26 | 2005-02-25 | 用于前段工艺制造的原地干洗腔 |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100565328A Active CN100487857C (zh) | 2004-02-26 | 2005-02-25 | 用于前段工艺制造的原地干洗腔 |
CN2008100825653A Active CN101241844B (zh) | 2004-02-26 | 2005-02-25 | 用于前段工艺制造的原地干洗腔 |
CN2010102461146A Active CN101916715B (zh) | 2004-02-26 | 2005-02-25 | 用于前段工艺制造的原地干洗腔 |
Country Status (6)
Country | Link |
---|---|
US (14) | US20050230350A1 (zh) |
EP (2) | EP2787099A3 (zh) |
JP (3) | JP4960598B2 (zh) |
KR (6) | KR101148431B1 (zh) |
CN (4) | CN100487857C (zh) |
TW (5) | TWI330669B (zh) |
Families Citing this family (468)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6502530B1 (en) * | 2000-04-26 | 2003-01-07 | Unaxis Balzers Aktiengesellschaft | Design of gas injection for the electrode in a capacitively coupled RF plasma reactor |
US20090004850A1 (en) | 2001-07-25 | 2009-01-01 | Seshadri Ganguli | Process for forming cobalt and cobalt silicide materials in tungsten contact applications |
TWI224815B (en) * | 2001-08-01 | 2004-12-01 | Tokyo Electron Ltd | Gas processing apparatus and gas processing method |
CN1643179B (zh) * | 2002-01-17 | 2010-05-26 | 松德沃技术公司 | Ald装置和方法 |
US7013834B2 (en) * | 2002-04-19 | 2006-03-21 | Nordson Corporation | Plasma treatment system |
US20050150452A1 (en) * | 2004-01-14 | 2005-07-14 | Soovo Sen | Process kit design for deposition chamber |
US20050183824A1 (en) * | 2004-02-25 | 2005-08-25 | Advanced Display Process Engineering Co., Ltd. | Apparatus for manufacturing flat-panel display |
US20070123051A1 (en) * | 2004-02-26 | 2007-05-31 | Reza Arghavani | Oxide etch with nh4-nf3 chemistry |
US7780793B2 (en) | 2004-02-26 | 2010-08-24 | Applied Materials, Inc. | Passivation layer formation by plasma clean process to reduce native oxide growth |
US20050230350A1 (en) * | 2004-02-26 | 2005-10-20 | Applied Materials, Inc. | In-situ dry clean chamber for front end of line fabrication |
US7550381B2 (en) | 2005-07-18 | 2009-06-23 | Applied Materials, Inc. | Contact clean by remote plasma and repair of silicide surface |
US20070051388A1 (en) | 2005-09-06 | 2007-03-08 | Applied Materials, Inc. | Apparatus and methods for using high frequency chokes in a substrate deposition apparatus |
JP4806241B2 (ja) * | 2005-09-14 | 2011-11-02 | 東京エレクトロン株式会社 | 基板処理装置及び基板リフト装置 |
US7470919B2 (en) * | 2005-09-30 | 2008-12-30 | Applied Materials, Inc. | Substrate support assembly with thermal isolating plate |
KR100672731B1 (ko) * | 2005-10-04 | 2007-01-24 | 동부일렉트로닉스 주식회사 | 반도체 소자의 금속배선 형성방법 |
JP5046506B2 (ja) * | 2005-10-19 | 2012-10-10 | 東京エレクトロン株式会社 | 基板処理装置,基板処理方法,プログラム,プログラムを記録した記録媒体 |
US20070087573A1 (en) * | 2005-10-19 | 2007-04-19 | Yi-Yiing Chiang | Pre-treatment method for physical vapor deposition of metal layer and method of forming metal silicide layer |
US20070119371A1 (en) | 2005-11-04 | 2007-05-31 | Paul Ma | Apparatus and process for plasma-enhanced atomic layer deposition |
US7662723B2 (en) * | 2005-12-13 | 2010-02-16 | Lam Research Corporation | Methods and apparatus for in-situ substrate processing |
JP4601070B2 (ja) * | 2006-01-17 | 2010-12-22 | 東京エレクトロン株式会社 | 熱処理装置 |
US7494545B2 (en) * | 2006-02-03 | 2009-02-24 | Applied Materials, Inc. | Epitaxial deposition process and apparatus |
US20170046458A1 (en) | 2006-02-14 | 2017-02-16 | Power Analytics Corporation | Systems and methods for real-time dc microgrid power analytics for mission-critical power systems |
US8097120B2 (en) * | 2006-02-21 | 2012-01-17 | Lam Research Corporation | Process tuning gas injection from the substrate edge |
US7743731B2 (en) * | 2006-03-30 | 2010-06-29 | Tokyo Electron Limited | Reduced contaminant gas injection system and method of using |
JP5042517B2 (ja) * | 2006-04-10 | 2012-10-03 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
US20070248767A1 (en) * | 2006-04-19 | 2007-10-25 | Asm Japan K.K. | Method of self-cleaning of carbon-based film |
JP2007311540A (ja) * | 2006-05-18 | 2007-11-29 | Renesas Technology Corp | 半導体装置の製造方法 |
US20070281106A1 (en) * | 2006-05-30 | 2007-12-06 | Applied Materials, Inc. | Process chamber for dielectric gapfill |
US7879184B2 (en) | 2006-06-20 | 2011-02-01 | Lam Research Corporation | Apparatuses, systems and methods for rapid cleaning of plasma confinement rings with minimal erosion of other chamber parts |
US7718032B2 (en) * | 2006-06-22 | 2010-05-18 | Tokyo Electron Limited | Dry non-plasma treatment system and method of using |
US7416989B1 (en) | 2006-06-30 | 2008-08-26 | Novellus Systems, Inc. | Adsorption based material removal process |
US7651948B2 (en) * | 2006-06-30 | 2010-01-26 | Applied Materials, Inc. | Pre-cleaning of substrates in epitaxy chambers |
JP2008027796A (ja) * | 2006-07-24 | 2008-02-07 | Canon Inc | プラズマ処理装置 |
US8293066B2 (en) * | 2006-09-19 | 2012-10-23 | Brooks Automation, Inc. | Apparatus and methods for transporting and processing substrates |
US8419341B2 (en) * | 2006-09-19 | 2013-04-16 | Brooks Automation, Inc. | Linear vacuum robot with Z motion and articulated arm |
US7901539B2 (en) * | 2006-09-19 | 2011-03-08 | Intevac, Inc. | Apparatus and methods for transporting and processing substrates |
US9524896B2 (en) * | 2006-09-19 | 2016-12-20 | Brooks Automation Inc. | Apparatus and methods for transporting and processing substrates |
JP5260861B2 (ja) * | 2006-11-29 | 2013-08-14 | 東京エレクトロン株式会社 | キャパシタ電極の製造方法と製造システムおよび記録媒体 |
US20080179007A1 (en) * | 2007-01-30 | 2008-07-31 | Collins Kenneth S | Reactor for wafer backside polymer removal using plasma products in a lower process zone and purge gases in an upper process zone |
US7967996B2 (en) * | 2007-01-30 | 2011-06-28 | Applied Materials, Inc. | Process for wafer backside polymer removal and wafer front side photoresist removal |
US7977249B1 (en) | 2007-03-07 | 2011-07-12 | Novellus Systems, Inc. | Methods for removing silicon nitride and other materials during fabrication of contacts |
JP4949091B2 (ja) * | 2007-03-16 | 2012-06-06 | 東京エレクトロン株式会社 | 基板処理装置、基板処理方法および記録媒体 |
US7670952B2 (en) * | 2007-03-23 | 2010-03-02 | Texas Instruments Incorporated | Method of manufacturing metal silicide contacts |
US20080236614A1 (en) * | 2007-03-30 | 2008-10-02 | Hitachi High-Technologies Corporation | Plasma processing apparatus and plasma processing method |
US20100151677A1 (en) * | 2007-04-12 | 2010-06-17 | Freescale Semiconductor, Inc. | Etch method in the manufacture of a semiconductor device |
US7732353B2 (en) * | 2007-04-18 | 2010-06-08 | Ultratech, Inc. | Methods of forming a denuded zone in a semiconductor wafer using rapid laser annealing |
KR100898440B1 (ko) * | 2007-06-27 | 2009-05-21 | 주식회사 동부하이텍 | 플래시 메모리 소자의 제조 방법 |
KR101046520B1 (ko) * | 2007-09-07 | 2011-07-04 | 어플라이드 머티어리얼스, 인코포레이티드 | 내부 챔버 상의 부산물 막 증착을 제어하기 위한 pecvd 시스템에서의 소스 가스 흐름 경로 제어 |
US7867900B2 (en) | 2007-09-28 | 2011-01-11 | Applied Materials, Inc. | Aluminum contact integration on cobalt silicide junction |
CN101399197B (zh) * | 2007-09-30 | 2011-12-07 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 一种腔室的衬 |
US20090090382A1 (en) * | 2007-10-05 | 2009-04-09 | Asm Japan K.K. | Method of self-cleaning of carbon-based film |
US7659616B2 (en) | 2007-10-10 | 2010-02-09 | International Business Machines Corporation | On-chip cooling systems for integrated circuits |
US8673080B2 (en) * | 2007-10-16 | 2014-03-18 | Novellus Systems, Inc. | Temperature controlled showerhead |
US7967994B2 (en) * | 2007-10-25 | 2011-06-28 | Ovonyx, Inc. | Method and apparatus for chalcogenide device formation |
US8187486B1 (en) | 2007-12-13 | 2012-05-29 | Novellus Systems, Inc. | Modulating etch selectivity and etch rate of silicon nitride thin films |
US20090197015A1 (en) * | 2007-12-25 | 2009-08-06 | Applied Materials, Inc. | Method and apparatus for controlling plasma uniformity |
KR100952671B1 (ko) * | 2007-12-27 | 2010-04-13 | 세메스 주식회사 | 척킹부재, 이를 갖는 기판 처리 장치 및 이를 이용한 기판 처리 방법 |
US8883650B2 (en) * | 2008-01-24 | 2014-11-11 | United Microelectronics Corp. | Method of removing oxides |
KR101431197B1 (ko) * | 2008-01-24 | 2014-09-17 | 삼성전자주식회사 | 원자층 증착설비 및 그의 원자층 증착방법 |
US20090191703A1 (en) * | 2008-01-29 | 2009-07-30 | Applied Materials, Inc. | Process with saturation at low etch amount for high contact bottom cleaning efficiency for chemical dry clean process |
US20090236682A1 (en) * | 2008-03-20 | 2009-09-24 | Hocine Boubekeur | Layer stack including a tungsten layer |
US8357435B2 (en) | 2008-05-09 | 2013-01-22 | Applied Materials, Inc. | Flowable dielectric equipment and processes |
US8333842B2 (en) * | 2008-05-15 | 2012-12-18 | Applied Materials, Inc. | Apparatus for etching semiconductor wafers |
JP4914902B2 (ja) * | 2008-05-30 | 2012-04-11 | キヤノンアネルバ株式会社 | シリサイド形成方法とその装置 |
US8291857B2 (en) * | 2008-07-03 | 2012-10-23 | Applied Materials, Inc. | Apparatuses and methods for atomic layer deposition |
US7981763B1 (en) | 2008-08-15 | 2011-07-19 | Novellus Systems, Inc. | Atomic layer removal for high aspect ratio gapfill |
US7968441B2 (en) | 2008-10-08 | 2011-06-28 | Applied Materials, Inc. | Dopant activation anneal to achieve less dopant diffusion (better USJ profile) and higher activation percentage |
US20100099263A1 (en) * | 2008-10-20 | 2010-04-22 | Applied Materials, Inc. | Nf3/h2 remote plasma process with high etch selectivity of psg/bpsg over thermal oxide and low density surface defects |
US8209833B2 (en) * | 2008-11-07 | 2012-07-03 | Tokyo Electron Limited | Thermal processing system and method of using |
CN101740338B (zh) * | 2008-11-24 | 2012-07-18 | 中芯国际集成电路制造(北京)有限公司 | 薄膜去除方法 |
US7994002B2 (en) * | 2008-11-24 | 2011-08-09 | Applied Materials, Inc. | Method and apparatus for trench and via profile modification |
US20100140222A1 (en) * | 2008-12-10 | 2010-06-10 | Sun Jennifer Y | Filled polymer composition for etch chamber component |
US8058179B1 (en) | 2008-12-23 | 2011-11-15 | Novellus Systems, Inc. | Atomic layer removal process with higher etch amount |
KR101566922B1 (ko) * | 2009-02-16 | 2015-11-09 | 삼성전자주식회사 | 저스트 드라이 에칭과 케미컬 드라이 에칭을 조합한 반도체소자의 금속 실리사이드막 형성 방법 |
US9058988B2 (en) | 2009-03-05 | 2015-06-16 | Applied Materials, Inc. | Methods for depositing layers having reduced interfacial contamination |
US8511281B2 (en) * | 2009-07-10 | 2013-08-20 | Tula Technology, Inc. | Skip fire engine control |
US8980382B2 (en) | 2009-12-02 | 2015-03-17 | Applied Materials, Inc. | Oxygen-doping for non-carbon radical-component CVD films |
US8741788B2 (en) | 2009-08-06 | 2014-06-03 | Applied Materials, Inc. | Formation of silicon oxide using non-carbon flowable CVD processes |
US8211808B2 (en) * | 2009-08-31 | 2012-07-03 | Applied Materials, Inc. | Silicon-selective dry etch for carbon-containing films |
US20110061812A1 (en) * | 2009-09-11 | 2011-03-17 | Applied Materials, Inc. | Apparatus and Methods for Cyclical Oxidation and Etching |
US20110065276A1 (en) * | 2009-09-11 | 2011-03-17 | Applied Materials, Inc. | Apparatus and Methods for Cyclical Oxidation and Etching |
US20110061810A1 (en) * | 2009-09-11 | 2011-03-17 | Applied Materials, Inc. | Apparatus and Methods for Cyclical Oxidation and Etching |
US20110082597A1 (en) | 2009-10-01 | 2011-04-07 | Edsa Micro Corporation | Microgrid model based automated real time simulation for market based electric power system optimization |
US8525139B2 (en) * | 2009-10-27 | 2013-09-03 | Lam Research Corporation | Method and apparatus of halogen removal |
US8232538B2 (en) * | 2009-10-27 | 2012-07-31 | Lam Research Corporation | Method and apparatus of halogen removal using optimal ozone and UV exposure |
CN102054687B (zh) * | 2009-11-10 | 2012-05-23 | 中芯国际集成电路制造(上海)有限公司 | 表面氧化物的去除方法 |
US8449942B2 (en) | 2009-11-12 | 2013-05-28 | Applied Materials, Inc. | Methods of curing non-carbon flowable CVD films |
US9034142B2 (en) * | 2009-12-18 | 2015-05-19 | Novellus Systems, Inc. | Temperature controlled showerhead for high temperature operations |
TWI558841B (zh) * | 2009-12-22 | 2016-11-21 | 應用材料股份有限公司 | 狹縫閥通道支撐件 |
US8501629B2 (en) * | 2009-12-23 | 2013-08-06 | Applied Materials, Inc. | Smooth SiConi etch for silicon-containing films |
KR101126389B1 (ko) * | 2009-12-29 | 2012-03-28 | 주식회사 케이씨텍 | 원자층 증착장치의 서셉터 유닛 |
KR20120111738A (ko) | 2009-12-30 | 2012-10-10 | 어플라이드 머티어리얼스, 인코포레이티드 | 융통성을 가진 질소/수소 비율을 이용하여 제조된 라디칼에 의한 유전체 필름의 성장 |
US8329262B2 (en) | 2010-01-05 | 2012-12-11 | Applied Materials, Inc. | Dielectric film formation using inert gas excitation |
JP2013517616A (ja) | 2010-01-06 | 2013-05-16 | アプライド マテリアルズ インコーポレイテッド | 酸化物ライナを使用する流動可能な誘電体 |
CN102714156A (zh) | 2010-01-07 | 2012-10-03 | 应用材料公司 | 自由基成分cvd的原位臭氧固化 |
KR101155291B1 (ko) * | 2010-02-22 | 2012-06-12 | 주식회사 테스 | 건식식각장치 및 이를 구비한 기판처리시스템 |
CN102844848A (zh) | 2010-03-05 | 2012-12-26 | 应用材料公司 | 通过自由基成分化学气相沉积的共形层 |
US9175394B2 (en) * | 2010-03-12 | 2015-11-03 | Applied Materials, Inc. | Atomic layer deposition chamber with multi inject |
US8435902B2 (en) * | 2010-03-17 | 2013-05-07 | Applied Materials, Inc. | Invertable pattern loading with dry etch |
KR20110114030A (ko) | 2010-04-12 | 2011-10-19 | 삼성전자주식회사 | 플래시 메모리 장치의 제조 방법 |
CN102934203B (zh) * | 2010-04-28 | 2015-09-23 | 应用材料公司 | 用于短生命周期物种的具有内建等离子体源的处理腔室盖设计 |
US8475674B2 (en) | 2010-04-30 | 2013-07-02 | Applied Materials, Inc. | High-temperature selective dry etch having reduced post-etch solid residue |
US8562742B2 (en) * | 2010-04-30 | 2013-10-22 | Applied Materials, Inc. | Apparatus for radial delivery of gas to a chamber and methods of use thereof |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US20110303148A1 (en) * | 2010-06-09 | 2011-12-15 | Jun Xie | Full-enclosure, controlled-flow mini-environment for thin film chambers |
GB2495256B (en) | 2010-06-25 | 2014-07-23 | Anastasios J Tousimis | Integrated processing and critical point drying systems for semiconductor and mems devices |
US9184028B2 (en) | 2010-08-04 | 2015-11-10 | Lam Research Corporation | Dual plasma volume processing apparatus for neutral/ion flux control |
US8869742B2 (en) * | 2010-08-04 | 2014-10-28 | Lam Research Corporation | Plasma processing chamber with dual axial gas injection and exhaust |
JP5647845B2 (ja) * | 2010-09-29 | 2015-01-07 | 株式会社Screenホールディングス | 基板乾燥装置及び基板乾燥方法 |
US9285168B2 (en) | 2010-10-05 | 2016-03-15 | Applied Materials, Inc. | Module for ozone cure and post-cure moisture treatment |
US8664127B2 (en) | 2010-10-15 | 2014-03-04 | Applied Materials, Inc. | Two silicon-containing precursors for gapfill enhancing dielectric liner |
US10658161B2 (en) * | 2010-10-15 | 2020-05-19 | Applied Materials, Inc. | Method and apparatus for reducing particle defects in plasma etch chambers |
CN103109357B (zh) * | 2010-10-19 | 2016-08-24 | 应用材料公司 | 用于紫外线纳米固化腔室的石英喷洒器 |
US8741778B2 (en) | 2010-12-14 | 2014-06-03 | Applied Materials, Inc. | Uniform dry etch in two stages |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US8450191B2 (en) | 2011-01-24 | 2013-05-28 | Applied Materials, Inc. | Polysilicon films by HDP-CVD |
US8771539B2 (en) | 2011-02-22 | 2014-07-08 | Applied Materials, Inc. | Remotely-excited fluorine and water vapor etch |
US20120220116A1 (en) * | 2011-02-25 | 2012-08-30 | Applied Materials, Inc. | Dry Chemical Cleaning For Semiconductor Processing |
CN103403852B (zh) | 2011-03-01 | 2016-06-08 | 应用材料公司 | 双负载闸配置的消除及剥离处理腔室 |
US11171008B2 (en) | 2011-03-01 | 2021-11-09 | Applied Materials, Inc. | Abatement and strip process chamber in a dual load lock configuration |
JP6104823B2 (ja) * | 2011-03-01 | 2017-03-29 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 薄型加熱基板支持体 |
WO2012148568A1 (en) | 2011-03-01 | 2012-11-01 | Applied Materials, Inc. | Method and apparatus for substrate transfer and radical confinement |
US8716154B2 (en) | 2011-03-04 | 2014-05-06 | Applied Materials, Inc. | Reduced pattern loading using silicon oxide multi-layers |
US9441296B2 (en) | 2011-03-04 | 2016-09-13 | Novellus Systems, Inc. | Hybrid ceramic showerhead |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
KR20120108324A (ko) * | 2011-03-23 | 2012-10-05 | 한국기초과학지원연구원 | 중성 입자빔을 이용한 발광 소자 제조 방법 및 그 장치 |
US8445078B2 (en) | 2011-04-20 | 2013-05-21 | Applied Materials, Inc. | Low temperature silicon oxide conversion |
US8912096B2 (en) * | 2011-04-28 | 2014-12-16 | Applied Materials, Inc. | Methods for precleaning a substrate prior to metal silicide fabrication process |
KR101295794B1 (ko) * | 2011-05-31 | 2013-08-09 | 세메스 주식회사 | 기판 처리 장치 |
US9245717B2 (en) | 2011-05-31 | 2016-01-26 | Lam Research Corporation | Gas distribution system for ceramic showerhead of plasma etch reactor |
US8562785B2 (en) * | 2011-05-31 | 2013-10-22 | Lam Research Corporation | Gas distribution showerhead for inductively coupled plasma etch reactor |
US8466073B2 (en) | 2011-06-03 | 2013-06-18 | Applied Materials, Inc. | Capping layer for reduced outgassing |
US9404178B2 (en) | 2011-07-15 | 2016-08-02 | Applied Materials, Inc. | Surface treatment and deposition for reduced outgassing |
US8771536B2 (en) | 2011-08-01 | 2014-07-08 | Applied Materials, Inc. | Dry-etch for silicon-and-carbon-containing films |
KR101870667B1 (ko) * | 2011-08-17 | 2018-06-26 | 세메스 주식회사 | 기판 처리 장치 및 기판 처리 방법 |
US20130052809A1 (en) * | 2011-08-25 | 2013-02-28 | United Microelectronics Corporation | Pre-clean method for epitaxial deposition and applications thereof |
US8679982B2 (en) | 2011-08-26 | 2014-03-25 | Applied Materials, Inc. | Selective suppression of dry-etch rate of materials containing both silicon and oxygen |
US8679983B2 (en) | 2011-09-01 | 2014-03-25 | Applied Materials, Inc. | Selective suppression of dry-etch rate of materials containing both silicon and nitrogen |
US8927390B2 (en) | 2011-09-26 | 2015-01-06 | Applied Materials, Inc. | Intrench profile |
US8617989B2 (en) | 2011-09-26 | 2013-12-31 | Applied Materials, Inc. | Liner property improvement |
US8551891B2 (en) | 2011-10-04 | 2013-10-08 | Applied Materials, Inc. | Remote plasma burn-in |
TW202418889A (zh) * | 2011-10-05 | 2024-05-01 | 美商應用材料股份有限公司 | 包括對稱電漿處理腔室的電漿處理設備與用於此設備的蓋組件 |
US8808563B2 (en) | 2011-10-07 | 2014-08-19 | Applied Materials, Inc. | Selective etch of silicon by way of metastable hydrogen termination |
JP5338979B1 (ja) * | 2011-10-24 | 2013-11-13 | トヨタ自動車株式会社 | 半導体モジュール |
JP5977986B2 (ja) * | 2011-11-08 | 2016-08-24 | 株式会社日立ハイテクノロジーズ | 熱処理装置 |
WO2013070436A1 (en) | 2011-11-08 | 2013-05-16 | Applied Materials, Inc. | Methods of reducing substrate dislocation during gapfill processing |
US8808564B2 (en) * | 2011-11-15 | 2014-08-19 | Applied Materials, Inc. | Method and apparatus for selective nitridation process |
KR101356664B1 (ko) * | 2012-02-03 | 2014-02-05 | 주식회사 유진테크 | 측방배기 방식 기판처리장치 |
EP3267470A3 (en) | 2012-02-14 | 2018-04-18 | Entegris, Inc. | Carbon dopant gas and co-flow for implant beam and source life performance improvement |
US9034199B2 (en) | 2012-02-21 | 2015-05-19 | Applied Materials, Inc. | Ceramic article with reduced surface defect density and process for producing a ceramic article |
US9212099B2 (en) | 2012-02-22 | 2015-12-15 | Applied Materials, Inc. | Heat treated ceramic substrate having ceramic coating and heat treatment for coated ceramics |
WO2013130191A1 (en) | 2012-02-29 | 2013-09-06 | Applied Materials, Inc. | Abatement and strip process chamber in a load lock configuration |
US9679751B2 (en) | 2012-03-15 | 2017-06-13 | Lam Research Corporation | Chamber filler kit for plasma etch chamber useful for fast gas switching |
CN103377868A (zh) * | 2012-04-14 | 2013-10-30 | 靖江先锋半导体科技有限公司 | 一种刻蚀电极机中的下电极装置 |
US9090046B2 (en) | 2012-04-16 | 2015-07-28 | Applied Materials, Inc. | Ceramic coated article and process for applying ceramic coating |
US8647439B2 (en) * | 2012-04-26 | 2014-02-11 | Applied Materials, Inc. | Method of epitaxial germanium tin alloy surface preparation |
US9234276B2 (en) | 2013-05-31 | 2016-01-12 | Novellus Systems, Inc. | Method to obtain SiC class of films of desired composition and film properties |
US10325773B2 (en) | 2012-06-12 | 2019-06-18 | Novellus Systems, Inc. | Conformal deposition of silicon carbide films |
US9447499B2 (en) | 2012-06-22 | 2016-09-20 | Novellus Systems, Inc. | Dual plenum, axi-symmetric showerhead with edge-to-center gas delivery |
US10283615B2 (en) | 2012-07-02 | 2019-05-07 | Novellus Systems, Inc. | Ultrahigh selective polysilicon etch with high throughput |
US9034773B2 (en) * | 2012-07-02 | 2015-05-19 | Novellus Systems, Inc. | Removal of native oxide with high selectivity |
US8916477B2 (en) | 2012-07-02 | 2014-12-23 | Novellus Systems, Inc. | Polysilicon etch with high selectivity |
US9267739B2 (en) | 2012-07-18 | 2016-02-23 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US9604249B2 (en) | 2012-07-26 | 2017-03-28 | Applied Materials, Inc. | Innovative top-coat approach for advanced device on-wafer particle performance |
US9343289B2 (en) | 2012-07-27 | 2016-05-17 | Applied Materials, Inc. | Chemistry compatible coating material for advanced device on-wafer particle performance |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
CN102814305B (zh) * | 2012-08-03 | 2015-04-08 | 京东方科技集团股份有限公司 | 用于刻蚀工艺前清洁腔室的装置及方法 |
US20140053984A1 (en) * | 2012-08-27 | 2014-02-27 | Hyun Ho Doh | Symmetric return liner for modulating azimuthal non-uniformity in a plasma processing system |
TWI467625B (zh) * | 2012-08-30 | 2015-01-01 | Univ Chang Gung | 電漿處理裝置 |
US8889566B2 (en) | 2012-09-11 | 2014-11-18 | Applied Materials, Inc. | Low cost flowable dielectric films |
US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US20140083360A1 (en) * | 2012-09-26 | 2014-03-27 | Applied Materials, Inc. | Process chamber having more uniform gas flow |
US9177780B2 (en) * | 2012-10-02 | 2015-11-03 | Applied Materials, Inc. | Directional SiO2 etch using plasma pre-treatment and high-temperature etchant deposition |
US8980761B2 (en) * | 2012-10-03 | 2015-03-17 | Applied Materials, Inc. | Directional SIO2 etch using low-temperature etchant deposition and plasma post-treatment |
TWI591712B (zh) * | 2012-10-03 | 2017-07-11 | 應用材料股份有限公司 | 使用低溫蝕刻劑沉積與電漿後處理的方向性二氧化矽蝕刻 |
CN103785646A (zh) * | 2012-10-30 | 2014-05-14 | 中微半导体设备(上海)有限公司 | 反应腔室清洗方法 |
US9165783B2 (en) * | 2012-11-01 | 2015-10-20 | Applied Materials, Inc. | Method of patterning a low-k dielectric film |
US8765574B2 (en) | 2012-11-09 | 2014-07-01 | Applied Materials, Inc. | Dry etch process |
TW201430996A (zh) * | 2012-11-12 | 2014-08-01 | Greene Tweed & Co Inc | 用於在供基板處理之一真空腔室內之一環形組件的機械式夾具總成 |
US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
US9064816B2 (en) | 2012-11-30 | 2015-06-23 | Applied Materials, Inc. | Dry-etch for selective oxidation removal |
JP5507654B2 (ja) * | 2012-11-30 | 2014-05-28 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
US9916998B2 (en) | 2012-12-04 | 2018-03-13 | Applied Materials, Inc. | Substrate support assembly having a plasma resistant protective layer |
US9685356B2 (en) | 2012-12-11 | 2017-06-20 | Applied Materials, Inc. | Substrate support assembly having metal bonded protective layer |
US9982343B2 (en) * | 2012-12-14 | 2018-05-29 | Applied Materials, Inc. | Apparatus for providing plasma to a process chamber |
US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
US10316409B2 (en) * | 2012-12-21 | 2019-06-11 | Novellus Systems, Inc. | Radical source design for remote plasma atomic layer deposition |
US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
US8941969B2 (en) * | 2012-12-21 | 2015-01-27 | Applied Materials, Inc. | Single-body electrostatic chuck |
CN103915306B (zh) * | 2012-12-31 | 2016-04-20 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 微电子工艺处理设备和用于其的反应腔室 |
US9358702B2 (en) | 2013-01-18 | 2016-06-07 | Applied Materials, Inc. | Temperature management of aluminium nitride electrostatic chuck |
US9018108B2 (en) | 2013-01-25 | 2015-04-28 | Applied Materials, Inc. | Low shrinkage dielectric films |
KR102231596B1 (ko) * | 2013-02-06 | 2021-03-25 | 어플라이드 머티어리얼스, 인코포레이티드 | 가스 주입 장치 및 가스 주입 장치를 포함한 기판 프로세스 챔버 |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9685316B2 (en) * | 2013-02-25 | 2017-06-20 | United Microelectronics Corp. | Semiconductor process |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
US8801952B1 (en) | 2013-03-07 | 2014-08-12 | Applied Materials, Inc. | Conformal oxide dry etch |
US10170282B2 (en) | 2013-03-08 | 2019-01-01 | Applied Materials, Inc. | Insulated semiconductor faceplate designs |
US20140262031A1 (en) * | 2013-03-12 | 2014-09-18 | Sergey G. BELOSTOTSKIY | Multi-mode etch chamber source assembly |
US9669653B2 (en) | 2013-03-14 | 2017-06-06 | Applied Materials, Inc. | Electrostatic chuck refurbishment |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
WO2014149883A1 (en) * | 2013-03-15 | 2014-09-25 | Applied Materials, Inc. | Chamber design for semiconductor processing |
US9887121B2 (en) | 2013-04-26 | 2018-02-06 | Applied Materials, Inc. | Protective cover for electrostatic chuck |
CN111211074B (zh) * | 2013-04-30 | 2023-09-22 | 应用材料公司 | 具有空间分布的气体通道的气流控制衬垫 |
US9666466B2 (en) | 2013-05-07 | 2017-05-30 | Applied Materials, Inc. | Electrostatic chuck having thermally isolated zones with minimal crosstalk |
US8895449B1 (en) | 2013-05-16 | 2014-11-25 | Applied Materials, Inc. | Delicate dry clean |
US9114438B2 (en) | 2013-05-21 | 2015-08-25 | Applied Materials, Inc. | Copper residue chamber clean |
US9865434B2 (en) | 2013-06-05 | 2018-01-09 | Applied Materials, Inc. | Rare-earth oxide based erosion resistant coatings for semiconductor application |
US9850568B2 (en) | 2013-06-20 | 2017-12-26 | Applied Materials, Inc. | Plasma erosion resistant rare-earth oxide based thin film coatings |
US9677176B2 (en) | 2013-07-03 | 2017-06-13 | Novellus Systems, Inc. | Multi-plenum, dual-temperature showerhead |
US10808317B2 (en) | 2013-07-03 | 2020-10-20 | Lam Research Corporation | Deposition apparatus including an isothermal processing zone |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
WO2015011829A1 (ja) * | 2013-07-26 | 2015-01-29 | 株式会社日立国際電気 | 基板処理装置及び半導体装置の製造方法 |
CN107574476A (zh) | 2013-08-09 | 2018-01-12 | 应用材料公司 | 于外延生长之前预清洁基板表面的方法和设备 |
US9543163B2 (en) | 2013-08-20 | 2017-01-10 | Applied Materials, Inc. | Methods for forming features in a material layer utilizing a combination of a main etching and a cyclical etching process |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US9837250B2 (en) * | 2013-08-30 | 2017-12-05 | Applied Materials, Inc. | Hot wall reactor with cooled vacuum containment |
US8956980B1 (en) | 2013-09-16 | 2015-02-17 | Applied Materials, Inc. | Selective etch of silicon nitride |
US20150083042A1 (en) * | 2013-09-26 | 2015-03-26 | Applied Materials, Inc. | Rotatable substrate support having radio frequency applicator |
US9472416B2 (en) * | 2013-10-21 | 2016-10-18 | Applied Materials, Inc. | Methods of surface interface engineering |
US9371579B2 (en) * | 2013-10-24 | 2016-06-21 | Lam Research Corporation | Ground state hydrogen radical sources for chemical vapor deposition of silicon-carbon-containing films |
US8951429B1 (en) | 2013-10-29 | 2015-02-10 | Applied Materials, Inc. | Tungsten oxide processing |
TW201522696A (zh) | 2013-11-01 | 2015-06-16 | Applied Materials Inc | 使用遠端電漿cvd技術的低溫氮化矽膜 |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US9236265B2 (en) | 2013-11-04 | 2016-01-12 | Applied Materials, Inc. | Silicon germanium processing |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9117855B2 (en) | 2013-12-04 | 2015-08-25 | Applied Materials, Inc. | Polarity control for remote plasma |
DE102013020106A1 (de) * | 2013-12-06 | 2015-06-11 | Oliver Feddersen-Clausen | Reaktionskammer insbesondere für Atomic Laver Deposition |
CN103695839B (zh) * | 2013-12-07 | 2016-05-18 | 深圳市金凯新瑞光电有限公司 | 一种应用在镀膜设备中的离子源清洗装置 |
US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
US9263278B2 (en) | 2013-12-17 | 2016-02-16 | Applied Materials, Inc. | Dopant etch selectivity control |
US9190293B2 (en) | 2013-12-18 | 2015-11-17 | Applied Materials, Inc. | Even tungsten etch for high aspect ratio trenches |
US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
TWI641066B (zh) * | 2014-01-21 | 2018-11-11 | 美商應用材料股份有限公司 | 允許低壓汰換工具之薄膜封裝處理系統及製程套組 |
JP2015138931A (ja) * | 2014-01-24 | 2015-07-30 | 株式会社日立ハイテクノロジーズ | 真空処理装置および真空処理方法 |
US9484190B2 (en) * | 2014-01-25 | 2016-11-01 | Yuri Glukhoy | Showerhead-cooler system of a semiconductor-processing chamber for semiconductor wafers of large area |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
US9499898B2 (en) | 2014-03-03 | 2016-11-22 | Applied Materials, Inc. | Layered thin film heater and method of fabrication |
US9824865B2 (en) * | 2014-03-05 | 2017-11-21 | Lam Research Corporation | Waferless clean in dielectric etch process |
US9673092B2 (en) * | 2014-03-06 | 2017-06-06 | Asm Ip Holding B.V. | Film forming apparatus, and method of manufacturing semiconductor device |
US9508561B2 (en) | 2014-03-11 | 2016-11-29 | Applied Materials, Inc. | Methods for forming interconnection structures in an integrated cluster system for semicondcutor applications |
US9368370B2 (en) * | 2014-03-14 | 2016-06-14 | Applied Materials, Inc. | Temperature ramping using gas distribution plate heat |
US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
US9299557B2 (en) | 2014-03-19 | 2016-03-29 | Asm Ip Holding B.V. | Plasma pre-clean module and process |
US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9136273B1 (en) | 2014-03-21 | 2015-09-15 | Applied Materials, Inc. | Flash gate air gap |
JP5941491B2 (ja) * | 2014-03-26 | 2016-06-29 | 株式会社日立国際電気 | 基板処理装置及び半導体装置の製造方法並びにプログラム |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9269590B2 (en) | 2014-04-07 | 2016-02-23 | Applied Materials, Inc. | Spacer formation |
US9380694B2 (en) * | 2014-04-17 | 2016-06-28 | Millenium Synthfuels Corporation | Plasma torch having an externally adjustable anode and cathode |
US10741365B2 (en) * | 2014-05-05 | 2020-08-11 | Lam Research Corporation | Low volume showerhead with porous baffle |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
US9847289B2 (en) | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
JP6316991B2 (ja) * | 2014-06-20 | 2018-04-25 | ヴェロ・スリー・ディー・インコーポレイテッド | 3次元物体を生成するための方法 |
US11302520B2 (en) | 2014-06-28 | 2022-04-12 | Applied Materials, Inc. | Chamber apparatus for chemical etching of dielectric materials |
US9412581B2 (en) | 2014-07-16 | 2016-08-09 | Applied Materials, Inc. | Low-K dielectric gapfill by flowable deposition |
US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
US20160032451A1 (en) * | 2014-07-29 | 2016-02-04 | Applied Materials, Inc. | Remote plasma clean source feed between backing plate and diffuser |
US9159606B1 (en) | 2014-07-31 | 2015-10-13 | Applied Materials, Inc. | Metal air gap |
US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US20160033070A1 (en) * | 2014-08-01 | 2016-02-04 | Applied Materials, Inc. | Recursive pumping member |
US9165786B1 (en) | 2014-08-05 | 2015-10-20 | Applied Materials, Inc. | Integrated oxide and nitride recess for better channel contact in 3D architectures |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9558928B2 (en) | 2014-08-29 | 2017-01-31 | Lam Research Corporation | Contact clean in high-aspect ratio structures |
US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
US9653320B2 (en) | 2014-09-12 | 2017-05-16 | Applied Materials, Inc. | Methods for etching a hardmask layer for an interconnection structure for semiconductor applications |
US9355862B2 (en) | 2014-09-24 | 2016-05-31 | Applied Materials, Inc. | Fluorine-based hardmask removal |
US9368364B2 (en) | 2014-09-24 | 2016-06-14 | Applied Materials, Inc. | Silicon etch process with tunable selectivity to SiO2 and other materials |
US9613822B2 (en) | 2014-09-25 | 2017-04-04 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9359679B2 (en) | 2014-10-03 | 2016-06-07 | Applied Materials, Inc. | Methods for cyclically etching a metal layer for an interconnection structure for semiconductor applications |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US9818633B2 (en) | 2014-10-17 | 2017-11-14 | Lam Research Corporation | Equipment front end module for transferring wafers and method of transferring wafers |
US9673071B2 (en) | 2014-10-23 | 2017-06-06 | Lam Research Corporation | Buffer station for thermal control of semiconductor substrates transferred therethrough and method of transferring semiconductor substrates |
US9368369B2 (en) | 2014-11-06 | 2016-06-14 | Applied Materials, Inc. | Methods for forming a self-aligned contact via selective lateral etch |
US9520302B2 (en) | 2014-11-07 | 2016-12-13 | Applied Materials, Inc. | Methods for controlling Fin recess loading |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US9299583B1 (en) | 2014-12-05 | 2016-03-29 | Applied Materials, Inc. | Aluminum oxide selective etch |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
KR102438139B1 (ko) | 2014-12-22 | 2022-08-29 | 어플라이드 머티어리얼스, 인코포레이티드 | 높은 처리량의 프로세싱 챔버를 위한 프로세스 키트 |
US9502258B2 (en) | 2014-12-23 | 2016-11-22 | Applied Materials, Inc. | Anisotropic gap etch |
US9474163B2 (en) | 2014-12-30 | 2016-10-18 | Asm Ip Holding B.V. | Germanium oxide pre-clean module and process |
US9431268B2 (en) | 2015-01-05 | 2016-08-30 | Lam Research Corporation | Isotropic atomic layer etch for silicon and germanium oxides |
US9425041B2 (en) | 2015-01-06 | 2016-08-23 | Lam Research Corporation | Isotropic atomic layer etch for silicon oxides using no activation |
US9343272B1 (en) | 2015-01-08 | 2016-05-17 | Applied Materials, Inc. | Self-aligned process |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9373522B1 (en) | 2015-01-22 | 2016-06-21 | Applied Mateials, Inc. | Titanium nitride removal |
US9449846B2 (en) | 2015-01-28 | 2016-09-20 | Applied Materials, Inc. | Vertical gate separation |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US10373850B2 (en) | 2015-03-11 | 2019-08-06 | Asm Ip Holding B.V. | Pre-clean chamber and process with substrate tray for changing substrate temperature |
US11384432B2 (en) * | 2015-04-22 | 2022-07-12 | Applied Materials, Inc. | Atomic layer deposition chamber with funnel-shaped gas dispersion channel and gas distribution plate |
US10199230B2 (en) * | 2015-05-01 | 2019-02-05 | Applied Materials, Inc. | Methods for selective deposition of metal silicides via atomic layer deposition cycles |
US10378107B2 (en) | 2015-05-22 | 2019-08-13 | Lam Research Corporation | Low volume showerhead with faceplate holes for improved flow uniformity |
US10023959B2 (en) | 2015-05-26 | 2018-07-17 | Lam Research Corporation | Anti-transient showerhead |
US9595452B2 (en) | 2015-05-27 | 2017-03-14 | Lam Research Corporation | Residue free oxide etch |
US10053774B2 (en) | 2015-06-12 | 2018-08-21 | Asm Ip Holding B.V. | Reactor system for sublimation of pre-clean byproducts and method thereof |
US9564341B1 (en) | 2015-08-04 | 2017-02-07 | Applied Materials, Inc. | Gas-phase silicon oxide selective etch |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US9691645B2 (en) | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10008366B2 (en) | 2015-09-08 | 2018-06-26 | Applied Materials, Inc. | Seasoning process for establishing a stable process and extending chamber uptime for semiconductor chip processing |
US10322384B2 (en) * | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US10020218B2 (en) | 2015-11-17 | 2018-07-10 | Applied Materials, Inc. | Substrate support assembly with deposited surface features |
JP6333232B2 (ja) * | 2015-12-02 | 2018-05-30 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法およびプログラム |
US10204795B2 (en) * | 2016-02-04 | 2019-02-12 | Applied Materials, Inc. | Flow distribution plate for surface fluorine reduction |
WO2017136093A1 (en) * | 2016-02-05 | 2017-08-10 | Applied Materials, Inc. | Integrated layer etch system with multiple type chambers |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
KR102385717B1 (ko) * | 2016-06-15 | 2022-04-12 | 에바텍 아크티엔게젤샤프트 | 진공 처리 챔버 및 진공 처리된 플레이트형 기판의 제조방법 |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US9698042B1 (en) | 2016-07-22 | 2017-07-04 | Lam Research Corporation | Wafer centering in pocket to improve azimuthal thickness uniformity at wafer edge |
KR102202946B1 (ko) * | 2016-08-18 | 2021-01-15 | 베이징 이타운 세미컨덕터 테크놀로지 컴퍼니 리미티드 | 플라즈마 챔버용 분리 그리드 |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
JP6827287B2 (ja) | 2016-09-28 | 2021-02-10 | 株式会社日立ハイテク | プラズマ処理装置の運転方法 |
US10249525B2 (en) * | 2016-10-03 | 2019-04-02 | Applied Materials, Inc. | Dynamic leveling process heater lift |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10546729B2 (en) * | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
JP6820717B2 (ja) | 2016-10-28 | 2021-01-27 | 株式会社日立ハイテク | プラズマ処理装置 |
US20180122670A1 (en) * | 2016-11-01 | 2018-05-03 | Varian Semiconductor Equipment Associates, Inc. | Removable substrate plane structure ring |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10510851B2 (en) * | 2016-11-29 | 2019-12-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Low resistance contact method and structure |
US10504720B2 (en) * | 2016-11-29 | 2019-12-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Etching using chamber with top plate formed of non-oxygen containing material |
US10604841B2 (en) | 2016-12-14 | 2020-03-31 | Lam Research Corporation | Integrated showerhead with thermal control for delivering radical and precursor gas to a downstream chamber to enable remote plasma film deposition |
KR102587615B1 (ko) * | 2016-12-21 | 2023-10-11 | 삼성전자주식회사 | 플라즈마 처리 장치의 온도 조절기 및 이를 포함하는 플라즈마 처리 장치 |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
KR101850895B1 (ko) * | 2017-01-03 | 2018-04-20 | 한국표준과학연구원 | 플라즈마 발생 장치 |
US10629416B2 (en) * | 2017-01-23 | 2020-04-21 | Infineon Technologies Ag | Wafer chuck and processing arrangement |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10249532B2 (en) | 2017-02-27 | 2019-04-02 | International Business Machines Corporation | Modulating the microstructure of metallic interconnect structures |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
KR102431354B1 (ko) | 2017-07-11 | 2022-08-11 | 삼성디스플레이 주식회사 | 화학기상 증착장치 및 이를 이용한 표시 장치의 제조 방법 |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10190216B1 (en) * | 2017-07-25 | 2019-01-29 | Lam Research Corporation | Showerhead tilt mechanism |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
JP6772117B2 (ja) | 2017-08-23 | 2020-10-21 | 株式会社日立ハイテク | エッチング方法およびエッチング装置 |
CN109427647B (zh) * | 2017-09-04 | 2021-04-20 | 联华电子股份有限公司 | 隔离结构的制作方法 |
US10907252B2 (en) * | 2017-10-23 | 2021-02-02 | Applied Materials, Inc. | Horizontal heat choke faceplate design |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US20190119815A1 (en) * | 2017-10-24 | 2019-04-25 | Applied Materials, Inc. | Systems and processes for plasma filtering |
CN107937886A (zh) * | 2017-11-14 | 2018-04-20 | 武汉华星光电半导体显示技术有限公司 | 化学气相沉积设备及成膜方法 |
JP6890085B2 (ja) * | 2017-11-30 | 2021-06-18 | 東京エレクトロン株式会社 | 基板処理装置 |
WO2019113478A1 (en) | 2017-12-08 | 2019-06-13 | Lam Research Corporation | Integrated showerhead with improved hole pattern for delivering radical and precursor gas to a downstream chamber to enable remote plasma film deposition |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10766057B2 (en) * | 2017-12-28 | 2020-09-08 | Micron Technology, Inc. | Components and systems for cleaning a tool for forming a semiconductor device, and related methods |
US10410854B2 (en) * | 2017-12-28 | 2019-09-10 | Globalfoundries Singapore Pte. Ltd. | Method and device for reducing contamination for reliable bond pads |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
KR102560283B1 (ko) * | 2018-01-24 | 2023-07-26 | 삼성전자주식회사 | 샤워 헤드를 설계하고 제조하는 장치 및 방법 |
JP7066438B2 (ja) * | 2018-02-13 | 2022-05-13 | 東京エレクトロン株式会社 | 冷却システム |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US11047035B2 (en) | 2018-02-23 | 2021-06-29 | Applied Materials, Inc. | Protective yttria coating for semiconductor equipment parts |
TWI716818B (zh) | 2018-02-28 | 2021-01-21 | 美商應用材料股份有限公司 | 形成氣隙的系統及方法 |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US11515130B2 (en) * | 2018-03-05 | 2022-11-29 | Applied Materials, Inc. | Fast response pedestal assembly for selective preclean |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US11434568B2 (en) * | 2018-04-17 | 2022-09-06 | Applied Materials, Inc. | Heated ceramic faceplate |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US11328929B2 (en) * | 2018-05-01 | 2022-05-10 | Applied Materials, Inc. | Methods, apparatuses and systems for substrate processing for lowering contact resistance |
WO2019226341A1 (en) | 2018-05-25 | 2019-11-28 | Lam Research Corporation | Thermal atomic layer etch with rapid temperature cycling |
US20190385828A1 (en) * | 2018-06-19 | 2019-12-19 | Lam Research Corporation | Temperature control systems and methods for removing metal oxide films |
WO2019244790A1 (ja) * | 2018-06-20 | 2019-12-26 | 株式会社アルバック | 真空処理装置、支持シャフト |
EP3588533A1 (en) * | 2018-06-21 | 2020-01-01 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Plasma source and method of operating the same |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
KR20210019121A (ko) | 2018-07-09 | 2021-02-19 | 램 리써치 코포레이션 | 전자 여기 원자 층 에칭 |
JP7110020B2 (ja) * | 2018-07-24 | 2022-08-01 | キオクシア株式会社 | 基板支持装置およびプラズマ処理装置 |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US10889894B2 (en) * | 2018-08-06 | 2021-01-12 | Applied Materials, Inc. | Faceplate with embedded heater |
JP6966402B2 (ja) * | 2018-09-11 | 2021-11-17 | 株式会社Kokusai Electric | 基板処理装置、半導体装置の製造方法および基板処理装置の電極 |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
WO2020068299A1 (en) * | 2018-09-26 | 2020-04-02 | Applied Materials, Inc. | Gas distribution assemblies and operation thereof |
WO2020068343A1 (en) | 2018-09-28 | 2020-04-02 | Applied Materials, Inc. | Coaxial lift device with dynamic leveling |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
KR102386210B1 (ko) * | 2018-10-15 | 2022-04-12 | 세메스 주식회사 | 가열 플레이트 냉각 방법과 기판 처리 장치 및 방법 |
KR20220056249A (ko) | 2018-10-19 | 2022-05-04 | 램 리써치 코포레이션 | 갭 충진 (gapfill) 을 위한 도핑되거나 도핑되지 않은 실리콘 카바이드 증착 및 원격 수소 플라즈마 노출 |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
CN109600898B (zh) * | 2018-12-13 | 2020-04-17 | 大连理工大学 | 一种喷淋式电极及放电系统 |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
JP2020123672A (ja) | 2019-01-30 | 2020-08-13 | 東京エレクトロン株式会社 | 基板処理装置の制御方法、基板処理装置及びクラスタシステム |
CN111771262B (zh) | 2019-02-01 | 2023-12-08 | 株式会社日立高新技术 | 蚀刻方法以及等离子处理装置 |
US11217454B2 (en) | 2019-04-22 | 2022-01-04 | Hitachi High-Tech Corporation | Plasma processing method and etching apparatus |
TWI833954B (zh) * | 2019-05-28 | 2024-03-01 | 美商應用材料股份有限公司 | 用於改善處理腔室中的流動控制的設備 |
KR102628919B1 (ko) * | 2019-05-29 | 2024-01-24 | 주식회사 원익아이피에스 | 기판처리장치 및 이를 이용한 기판처리방법 |
KR20210005515A (ko) * | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법 |
CN114207771B (zh) * | 2019-07-29 | 2023-12-29 | 应用材料公司 | 半导体处理腔室和用于清洁所述半导体处理腔室的方法 |
US10692730B1 (en) | 2019-08-30 | 2020-06-23 | Mattson Technology, Inc. | Silicon oxide selective dry etch process |
US10957512B1 (en) * | 2019-09-25 | 2021-03-23 | Applied Materials, Inc. | Method and device for a carrier proximity mask |
US10991547B2 (en) | 2019-09-25 | 2021-04-27 | Applied Materials, Inc. | Method and device for a carrier proximity mask |
TWI721578B (zh) * | 2019-09-27 | 2021-03-11 | 聚昌科技股份有限公司 | 快速更換產線之模組化電漿反應腔室結構 |
US11236424B2 (en) * | 2019-11-01 | 2022-02-01 | Applied Materials, Inc. | Process kit for improving edge film thickness uniformity on a substrate |
TWI849257B (zh) * | 2019-11-16 | 2024-07-21 | 美商應用材料股份有限公司 | 具有嵌入式螺帽的噴淋頭 |
US20210175103A1 (en) * | 2019-12-06 | 2021-06-10 | Applied Materials, Inc. | In situ failure detection in semiconductor processing chambers |
KR102521816B1 (ko) | 2019-12-20 | 2023-04-14 | 주식회사 히타치하이테크 | 플라스마 처리 장치 및 웨이퍼 처리 방법 |
KR102274459B1 (ko) * | 2019-12-27 | 2021-07-07 | 한국기계연구원 | 플라즈마 세정장치 및 이를 구비한 반도체 공정설비 |
US11830725B2 (en) | 2020-01-23 | 2023-11-28 | Applied Materials, Inc. | Method of cleaning a structure and method of depositing a capping layer in a structure |
US12110585B2 (en) * | 2020-02-10 | 2024-10-08 | Applied Materials, Inc. | Process chamber and exhaust liner system therefor |
DE102020103947A1 (de) * | 2020-02-14 | 2021-08-19 | AIXTRON Ltd. | CVD-Reaktor und Verfahren zum Handhaben einer Prozesskammer-Deckenplatte |
CN111312583B (zh) * | 2020-04-01 | 2022-04-29 | 山东职业学院 | 一种制备半导体硅芯片的生产工艺 |
US11854839B2 (en) | 2020-04-15 | 2023-12-26 | Mks Instruments, Inc. | Valve apparatuses and related methods for reactive process gas isolation and facilitating purge during isolation |
US20210335586A1 (en) * | 2020-04-22 | 2021-10-28 | Applied Materials, Inc. | Methods and apparatus for cleaning a showerhead |
JP2023524023A (ja) * | 2020-04-28 | 2023-06-08 | ラム リサーチ コーポレーション | ウエハのベベル/縁部上の堆積を制御するためのシャワーヘッド設計 |
CN114080662A (zh) | 2020-06-16 | 2022-02-22 | 株式会社日立高新技术 | 等离子处理装置以及等离子处理方法 |
US11242600B2 (en) * | 2020-06-17 | 2022-02-08 | Applied Materials, Inc. | High temperature face plate for deposition application |
WO2022040165A1 (en) * | 2020-08-18 | 2022-02-24 | Mattson Technology, Inc. | Rapid thermal processing system with cooling system |
US20220084845A1 (en) * | 2020-09-17 | 2022-03-17 | Applied Materials, Inc. | High conductance process kit |
US11584993B2 (en) | 2020-10-19 | 2023-02-21 | Applied Materials, Inc. | Thermally uniform deposition station |
US20220195617A1 (en) * | 2020-12-22 | 2022-06-23 | Applied Materials, Inc. | Multi-layer epi chamber body |
JP7312160B2 (ja) * | 2020-12-28 | 2023-07-20 | 株式会社アルバック | エッチング装置及びエッチング方法 |
CN112813415A (zh) * | 2020-12-31 | 2021-05-18 | 拓荆科技股份有限公司 | 腔体内的清洁方法 |
CN115142046B (zh) * | 2021-03-31 | 2024-03-12 | 中微半导体设备(上海)股份有限公司 | 基片承载组件、化学气相沉积设备及吹扫方法 |
US11781212B2 (en) * | 2021-04-07 | 2023-10-10 | Applied Material, Inc. | Overlap susceptor and preheat ring |
US11851758B2 (en) | 2021-04-20 | 2023-12-26 | Applied Materials, Inc. | Fabrication of a high temperature showerhead |
US20230009692A1 (en) * | 2021-07-07 | 2023-01-12 | Applied Materials, Inc | Coated substrate support assembly for substrate processing |
TWI837617B (zh) * | 2022-03-16 | 2024-04-01 | 南韓商細美事有限公司 | 處理基板之設備及方法 |
TWI844352B (zh) * | 2023-05-03 | 2024-06-01 | 劉華煒 | 半導體製程真空腔之靜電吸盤快速排氣結構 |
CN118483235A (zh) * | 2024-05-20 | 2024-08-13 | 嘉佑佳(苏州)智能装备有限公司 | 一种基于视觉检测的新能源汽车门槛梁品质检测设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5382311A (en) * | 1992-12-17 | 1995-01-17 | Tokyo Electron Limited | Stage having electrostatic chuck and plasma processing apparatus using same |
US5531835A (en) * | 1994-05-18 | 1996-07-02 | Applied Materials, Inc. | Patterned susceptor to reduce electrostatic force in a CVD chamber |
US6035101A (en) * | 1997-02-12 | 2000-03-07 | Applied Materials, Inc. | High temperature multi-layered alloy heater assembly and related methods |
US6364957B1 (en) * | 1997-10-09 | 2002-04-02 | Applied Materials, Inc. | Support assembly with thermal expansion compensation |
Family Cites Families (374)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2369620A (en) * | 1941-03-07 | 1945-02-13 | Battelle Development Corp | Method of coating cupreous metal with tin |
US3756511A (en) * | 1971-02-02 | 1973-09-04 | Kogyo Kaihatsu Kenyusho | Nozzle and torch for plasma jet |
US4632857A (en) | 1974-05-24 | 1986-12-30 | Richardson Chemical Company | Electrolessly plated product having a polymetallic catalytic film underlayer |
US4397812A (en) * | 1974-05-24 | 1983-08-09 | Richardson Chemical Company | Electroless nickel polyalloys |
US4232060A (en) * | 1979-01-22 | 1980-11-04 | Richardson Chemical Company | Method of preparing substrate surface for electroless plating and products produced thereby |
US3937857A (en) * | 1974-07-22 | 1976-02-10 | Amp Incorporated | Catalyst for electroless deposition of metals |
US4006047A (en) * | 1974-07-22 | 1977-02-01 | Amp Incorporated | Catalysts for electroless deposition of metals on comparatively low-temperature polyolefin and polyester substrates |
US4230515A (en) * | 1978-07-27 | 1980-10-28 | Davis & Wilder, Inc. | Plasma etching apparatus |
US4265943A (en) * | 1978-11-27 | 1981-05-05 | Macdermid Incorporated | Method and composition for continuous electroless copper deposition using a hypophosphite reducing agent in the presence of cobalt or nickel ions |
US4234628A (en) * | 1978-11-28 | 1980-11-18 | The Harshaw Chemical Company | Two-step preplate system for polymeric surfaces |
US4361441A (en) * | 1979-04-17 | 1982-11-30 | Plasma Holdings N.V. | Treatment of matter in low temperature plasmas |
US4209357A (en) | 1979-05-18 | 1980-06-24 | Tegal Corporation | Plasma reactor apparatus |
IT1130955B (it) * | 1980-03-11 | 1986-06-18 | Oronzio De Nora Impianti | Procedimento per la formazione di elettroci sulle superficie di membrane semipermeabili e sistemi elettrodo-membrana cosi' prodotti |
US4405435A (en) * | 1980-08-27 | 1983-09-20 | Hitachi, Ltd. | Apparatus for performing continuous treatment in vacuum |
US4368223A (en) * | 1981-06-01 | 1983-01-11 | Asahi Glass Company, Ltd. | Process for preparing nickel layer |
US4585920A (en) | 1982-05-21 | 1986-04-29 | Tegal Corporation | Plasma reactor removable insert |
JPS591671A (ja) * | 1982-05-28 | 1984-01-07 | Fujitsu Ltd | プラズマcvd装置 |
JPS6060060A (ja) * | 1983-09-12 | 1985-04-06 | 株式会社日立製作所 | 鉄道車両の扉開閉装置 |
US4579618A (en) | 1984-01-06 | 1986-04-01 | Tegal Corporation | Plasma reactor apparatus |
US4807016A (en) * | 1985-07-15 | 1989-02-21 | Texas Instruments Incorporated | Dry etch of phosphosilicate glass with selectivity to undoped oxide |
US4872947A (en) * | 1986-12-19 | 1989-10-10 | Applied Materials, Inc. | CVD of silicon oxide using TEOS decomposition and in-situ planarization process |
US5000113A (en) * | 1986-12-19 | 1991-03-19 | Applied Materials, Inc. | Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process |
US4892753A (en) | 1986-12-19 | 1990-01-09 | Applied Materials, Inc. | Process for PECVD of silicon oxide using TEOS decomposition |
US4951601A (en) * | 1986-12-19 | 1990-08-28 | Applied Materials, Inc. | Multi-chamber integrated process system |
US5228501A (en) | 1986-12-19 | 1993-07-20 | Applied Materials, Inc. | Physical vapor deposition clamping mechanism and heater/cooler |
JPS63204726A (ja) * | 1987-02-20 | 1988-08-24 | Anelva Corp | 真空処理装置 |
US5322976A (en) | 1987-02-24 | 1994-06-21 | Polyonics Corporation | Process for forming polyimide-metal laminates |
US4868071A (en) | 1987-02-24 | 1989-09-19 | Polyonics Corporation | Thermally stable dual metal coated laminate products made from textured polyimide film |
US5198034A (en) | 1987-03-31 | 1993-03-30 | Epsilon Technology, Inc. | Rotatable substrate supporting mechanism with temperature sensing device for use in chemical vapor deposition equipment |
DE3884653T2 (de) * | 1987-04-03 | 1994-02-03 | Fujitsu Ltd | Verfahren und Vorrichtung zur Gasphasenabscheidung von Diamant. |
US4753898A (en) * | 1987-07-09 | 1988-06-28 | Motorola, Inc. | LDD CMOS process |
US4886570A (en) | 1987-07-16 | 1989-12-12 | Texas Instruments Incorporated | Processing apparatus and method |
US4810520A (en) * | 1987-09-23 | 1989-03-07 | Magnetic Peripherals Inc. | Method for controlling electroless magnetic plating |
WO1989003587A1 (en) * | 1987-10-14 | 1989-04-20 | The Furukawa Electric Co., Ltd. | Method and apparatus for thin film formation by plasma cvd |
US4792378A (en) * | 1987-12-15 | 1988-12-20 | Texas Instruments Incorporated | Gas dispersion disk for use in plasma enhanced chemical vapor deposition reactor |
US5015331A (en) * | 1988-08-30 | 1991-05-14 | Matrix Integrated Systems | Method of plasma etching with parallel plate reactor having a grid |
JPH02121330A (ja) | 1988-10-31 | 1990-05-09 | Hitachi Ltd | プラズマ処理方法及び装置 |
EP0376252B1 (en) | 1988-12-27 | 1997-10-22 | Kabushiki Kaisha Toshiba | Method of removing an oxide film on a substrate |
JP2981243B2 (ja) | 1988-12-27 | 1999-11-22 | 株式会社東芝 | 表面処理方法 |
US4985372A (en) | 1989-02-17 | 1991-01-15 | Tokyo Electron Limited | Method of forming conductive layer including removal of native oxide |
US5186718A (en) * | 1989-05-19 | 1993-02-16 | Applied Materials, Inc. | Staged-vacuum wafer processing system and method |
US4987856A (en) * | 1989-05-22 | 1991-01-29 | Advanced Semiconductor Materials America, Inc. | High throughput multi station processor for multiple single wafers |
US5000319A (en) * | 1989-06-02 | 1991-03-19 | Leon Mermelstein | Negative storage page with lock-in flaps |
US4994404A (en) * | 1989-08-28 | 1991-02-19 | Motorola, Inc. | Method for forming a lightly-doped drain (LDD) structure in a semiconductor device |
EP0447155B1 (en) | 1990-03-12 | 1995-07-26 | Ngk Insulators, Ltd. | Wafer heaters for use in semi-conductor-producing apparatus, heating units using such wafer heaters, and production of heaters |
US4971653A (en) * | 1990-03-14 | 1990-11-20 | Matrix Integrated Systems | Temperature controlled chuck for elevated temperature etch processing |
US5089441A (en) | 1990-04-16 | 1992-02-18 | Texas Instruments Incorporated | Low-temperature in-situ dry cleaning process for semiconductor wafers |
US5147692A (en) * | 1990-05-08 | 1992-09-15 | Macdermid, Incorporated | Electroless plating of nickel onto surfaces such as copper or fused tungston |
US5238499A (en) | 1990-07-16 | 1993-08-24 | Novellus Systems, Inc. | Gas-based substrate protection during processing |
US5235139A (en) * | 1990-09-12 | 1993-08-10 | Macdermid, Incorprated | Method for fabricating printed circuits |
US5074456A (en) * | 1990-09-18 | 1991-12-24 | Lam Research Corporation | Composite electrode for plasma processes |
US5549780A (en) | 1990-10-23 | 1996-08-27 | Semiconductor Energy Laboratory Co., Ltd. | Method for plasma processing and apparatus for plasma processing |
US5578130A (en) * | 1990-12-12 | 1996-11-26 | Semiconductor Energy Laboratory Co., Ltd. | Apparatus and method for depositing a film |
JP2787142B2 (ja) * | 1991-03-01 | 1998-08-13 | 上村工業 株式会社 | 無電解錫、鉛又はそれらの合金めっき方法 |
US5203911A (en) * | 1991-06-24 | 1993-04-20 | Shipley Company Inc. | Controlled electroless plating |
US5240497A (en) * | 1991-10-08 | 1993-08-31 | Cornell Research Foundation, Inc. | Alkaline free electroless deposition |
US5352636A (en) | 1992-01-16 | 1994-10-04 | Applied Materials, Inc. | In situ method for cleaning silicon surface and forming layer thereon in same chamber |
JP3084497B2 (ja) * | 1992-03-25 | 2000-09-04 | 東京エレクトロン株式会社 | SiO2膜のエッチング方法 |
US5356476A (en) * | 1992-06-15 | 1994-10-18 | Materials Research Corporation | Semiconductor wafer processing method and apparatus with heat and gas flow control |
US5380560A (en) * | 1992-07-28 | 1995-01-10 | International Business Machines Corporation | Palladium sulfate solution for the selective seeding of the metal interconnections on polyimide dielectrics for electroless metal deposition |
US5282925A (en) * | 1992-11-09 | 1994-02-01 | International Business Machines Corporation | Device and method for accurate etching and removal of thin film |
US5500249A (en) * | 1992-12-22 | 1996-03-19 | Applied Materials, Inc. | Uniform tungsten silicide films produced by chemical vapor deposition |
US5345999A (en) | 1993-03-17 | 1994-09-13 | Applied Materials, Inc. | Method and apparatus for cooling semiconductor wafers |
US5800686A (en) | 1993-04-05 | 1998-09-01 | Applied Materials, Inc. | Chemical vapor deposition chamber with substrate edge protection |
EP0628644B1 (en) * | 1993-05-27 | 2003-04-02 | Applied Materials, Inc. | Improvements in or relating to susceptors suitable for use in chemical vapour deposition devices |
US5591269A (en) * | 1993-06-24 | 1997-01-07 | Tokyo Electron Limited | Vacuum processing apparatus |
US5560779A (en) | 1993-07-12 | 1996-10-01 | Olin Corporation | Apparatus for synthesizing diamond films utilizing an arc plasma |
WO1995002900A1 (en) * | 1993-07-15 | 1995-01-26 | Astarix, Inc. | Aluminum-palladium alloy for initiation of electroless plating |
US5449410A (en) * | 1993-07-28 | 1995-09-12 | Applied Materials, Inc. | Plasma processing apparatus |
EP0637063B1 (en) | 1993-07-30 | 1999-11-03 | Applied Materials, Inc. | Method for depositing silicon nitride on silicium surfaces |
US5468597A (en) * | 1993-08-25 | 1995-11-21 | Shipley Company, L.L.C. | Selective metallization process |
US5384284A (en) * | 1993-10-01 | 1995-01-24 | Micron Semiconductor, Inc. | Method to form a low resistant bond pad interconnect |
SE501888C2 (sv) | 1993-10-18 | 1995-06-12 | Ladislav Bardos | En metod och en apparat för generering av en urladdning i egna ångor från en radiofrekvenselektrod för kontinuerlig självförstoftning av elektroden |
US5505816A (en) | 1993-12-16 | 1996-04-09 | International Business Machines Corporation | Etching of silicon dioxide selectively to silicon nitride and polysilicon |
JPH07193214A (ja) | 1993-12-27 | 1995-07-28 | Mitsubishi Electric Corp | バイアホール及びその形成方法 |
US5415890A (en) * | 1994-01-03 | 1995-05-16 | Eaton Corporation | Modular apparatus and method for surface treatment of parts with liquid baths |
US5403434A (en) | 1994-01-06 | 1995-04-04 | Texas Instruments Incorporated | Low-temperature in-situ dry cleaning process for semiconductor wafer |
US5451259A (en) | 1994-02-17 | 1995-09-19 | Krogh; Ole D. | ECR plasma source for remote processing |
US5934856A (en) * | 1994-05-23 | 1999-08-10 | Tokyo Electron Limited | Multi-chamber treatment system |
US5628829A (en) * | 1994-06-03 | 1997-05-13 | Materials Research Corporation | Method and apparatus for low temperature deposition of CVD and PECVD films |
US5767373A (en) * | 1994-06-16 | 1998-06-16 | Novartis Finance Corporation | Manipulation of protoporphyrinogen oxidase enzyme activity in eukaryotic organisms |
EP0697467A1 (en) | 1994-07-21 | 1996-02-21 | Applied Materials, Inc. | Method and apparatus for cleaning a deposition chamber |
US5558717A (en) * | 1994-11-30 | 1996-09-24 | Applied Materials | CVD Processing chamber |
US5716485A (en) * | 1995-06-07 | 1998-02-10 | Varian Associates, Inc. | Electrode designs for controlling uniformity profiles in plasma processing reactors |
TW434745B (en) * | 1995-06-07 | 2001-05-16 | Tokyo Electron Ltd | Plasma processing apparatus |
JP2814370B2 (ja) * | 1995-06-18 | 1998-10-22 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US6197364B1 (en) * | 1995-08-22 | 2001-03-06 | International Business Machines Corporation | Production of electroless Co(P) with designed coercivity |
US5755859A (en) * | 1995-08-24 | 1998-05-26 | International Business Machines Corporation | Cobalt-tin alloys and their applications for devices, chip interconnections and packaging |
US6053982A (en) * | 1995-09-01 | 2000-04-25 | Asm America, Inc. | Wafer support system |
US5716506A (en) | 1995-10-06 | 1998-02-10 | Board Of Trustees Of The University Of Illinois | Electrochemical sensors for gas detection |
US5910340A (en) * | 1995-10-23 | 1999-06-08 | C. Uyemura & Co., Ltd. | Electroless nickel plating solution and method |
US6015724A (en) * | 1995-11-02 | 2000-01-18 | Semiconductor Energy Laboratory Co. | Manufacturing method of a semiconductor device |
US5648125A (en) * | 1995-11-16 | 1997-07-15 | Cane; Frank N. | Electroless plating process for the manufacture of printed circuit boards |
US5846598A (en) | 1995-11-30 | 1998-12-08 | International Business Machines Corporation | Electroless plating of metallic features on nonmetallic or semiconductor layer without extraneous plating |
US5733816A (en) * | 1995-12-13 | 1998-03-31 | Micron Technology, Inc. | Method for depositing a tungsten layer on silicon |
US6261637B1 (en) * | 1995-12-15 | 2001-07-17 | Enthone-Omi, Inc. | Use of palladium immersion deposition to selectively initiate electroless plating on Ti and W alloys for wafer fabrication |
EP0811083B1 (en) * | 1995-12-19 | 2000-05-31 | FSI International | Electroless deposition of metal films with spray processor |
US5674787A (en) | 1996-01-16 | 1997-10-07 | Sematech, Inc. | Selective electroless copper deposited interconnect plugs for ULSI applications |
US5891513A (en) * | 1996-01-16 | 1999-04-06 | Cornell Research Foundation | Electroless CU deposition on a barrier layer by CU contact displacement for ULSI applications |
US5824599A (en) | 1996-01-16 | 1998-10-20 | Cornell Research Foundation, Inc. | Protected encapsulation of catalytic layer for electroless copper interconnect |
DE69739101D1 (de) | 1996-03-25 | 2008-12-24 | S George Lesinski | Microantriebsbefestigung für implantierbares hörhilfegerät |
US6048798A (en) * | 1996-06-05 | 2000-04-11 | Lam Research Corporation | Apparatus for reducing process drift in inductive coupled plasma etching such as oxide layer |
US5846373A (en) * | 1996-06-28 | 1998-12-08 | Lam Research Corporation | Method for monitoring process endpoints in a plasma chamber and a process monitoring arrangement in a plasma chamber |
US5846332A (en) | 1996-07-12 | 1998-12-08 | Applied Materials, Inc. | Thermally floating pedestal collar in a chemical vapor deposition chamber |
US5993916A (en) | 1996-07-12 | 1999-11-30 | Applied Materials, Inc. | Method for substrate processing with improved throughput and yield |
US5781693A (en) * | 1996-07-24 | 1998-07-14 | Applied Materials, Inc. | Gas introduction showerhead for an RTP chamber with upper and lower transparent plates and gas flow therebetween |
US5917285A (en) * | 1996-07-24 | 1999-06-29 | Georgia Tech Research Corporation | Apparatus and method for reducing operating voltage in gas discharge devices |
US5747373A (en) * | 1996-09-24 | 1998-05-05 | Taiwan Semiconductor Manufacturing Company Ltd. | Nitride-oxide sidewall spacer for salicide formation |
US5846375A (en) * | 1996-09-26 | 1998-12-08 | Micron Technology, Inc. | Area specific temperature control for electrode plates and chucks used in semiconductor processing equipment |
US5904827A (en) * | 1996-10-15 | 1999-05-18 | Reynolds Tech Fabricators, Inc. | Plating cell with rotary wiper and megasonic transducer |
US5928389A (en) * | 1996-10-21 | 1999-07-27 | Applied Materials, Inc. | Method and apparatus for priority based scheduling of wafer processing within a multiple chamber semiconductor wafer processing tool |
US5951776A (en) * | 1996-10-25 | 1999-09-14 | Applied Materials, Inc. | Self aligning lift mechanism |
KR100237825B1 (ko) | 1996-11-05 | 2000-01-15 | 윤종용 | 반도체장치 제조설비의 페디스탈 |
US5812403A (en) * | 1996-11-13 | 1998-09-22 | Applied Materials, Inc. | Methods and apparatus for cleaning surfaces in a substrate processing system |
US5939831A (en) * | 1996-11-13 | 1999-08-17 | Applied Materials, Inc. | Methods and apparatus for pre-stabilized plasma generation for microwave clean applications |
US6152070A (en) | 1996-11-18 | 2000-11-28 | Applied Materials, Inc. | Tandem process chamber |
US5855681A (en) * | 1996-11-18 | 1999-01-05 | Applied Materials, Inc. | Ultra high throughput wafer vacuum processing system |
US5830805A (en) | 1996-11-18 | 1998-11-03 | Cornell Research Foundation | Electroless deposition equipment or apparatus and method of performing electroless deposition |
US5844195A (en) | 1996-11-18 | 1998-12-01 | Applied Materials, Inc. | Remote plasma source |
US5695810A (en) | 1996-11-20 | 1997-12-09 | Cornell Research Foundation, Inc. | Use of cobalt tungsten phosphide as a barrier material for copper metallization |
JPH10154699A (ja) | 1996-11-25 | 1998-06-09 | Anelva Corp | リモートプラズマ型プラズマ処理装置 |
US5843538A (en) | 1996-12-09 | 1998-12-01 | John L. Raymond | Method for electroless nickel plating of metal substrates |
DE19700231C2 (de) * | 1997-01-07 | 2001-10-04 | Geesthacht Gkss Forschung | Vorrichtung zum Filtern und Trennen von Strömungsmedien |
US5913147A (en) * | 1997-01-21 | 1999-06-15 | Advanced Micro Devices, Inc. | Method for fabricating copper-aluminum metallization |
JPH10284360A (ja) * | 1997-04-02 | 1998-10-23 | Hitachi Ltd | 基板温度制御装置及び方法 |
US5969422A (en) | 1997-05-15 | 1999-10-19 | Advanced Micro Devices, Inc. | Plated copper interconnect structure |
US6083344A (en) | 1997-05-29 | 2000-07-04 | Applied Materials, Inc. | Multi-zone RF inductively coupled source configuration |
US6706334B1 (en) | 1997-06-04 | 2004-03-16 | Tokyo Electron Limited | Processing method and apparatus for removing oxide film |
US5885749A (en) * | 1997-06-20 | 1999-03-23 | Clear Logic, Inc. | Method of customizing integrated circuits by selective secondary deposition of layer interconnect material |
US5933757A (en) * | 1997-06-23 | 1999-08-03 | Lsi Logic Corporation | Etch process selective to cobalt silicide for formation of integrated circuit structures |
US6518155B1 (en) * | 1997-06-30 | 2003-02-11 | Intel Corporation | Device structure and method for reducing silicide encroachment |
JPH1136076A (ja) * | 1997-07-16 | 1999-02-09 | Tokyo Electron Ltd | Cvd成膜装置およびcvd成膜方法 |
US6086688A (en) * | 1997-07-28 | 2000-07-11 | Alcan International Ltd. | Cast metal-matrix composite material and its use |
JP3874911B2 (ja) | 1997-10-15 | 2007-01-31 | 株式会社Neomaxマテリアル | 微小プラスチック球へのめっき方法 |
GB9722028D0 (en) | 1997-10-17 | 1997-12-17 | Shipley Company Ll C | Plating of polymers |
US6136693A (en) | 1997-10-27 | 2000-10-24 | Chartered Semiconductor Manufacturing Ltd. | Method for planarized interconnect vias using electroless plating and CMP |
US6077780A (en) * | 1997-12-03 | 2000-06-20 | Advanced Micro Devices, Inc. | Method for filling high aspect ratio openings of an integrated circuit to minimize electromigration failure |
US6635185B2 (en) | 1997-12-31 | 2003-10-21 | Alliedsignal Inc. | Method of etching and cleaning using fluorinated carbonyl compounds |
US6406759B1 (en) | 1998-01-08 | 2002-06-18 | The University Of Tennessee Research Corporation | Remote exposure of workpieces using a recirculated plasma |
JPH11204442A (ja) | 1998-01-12 | 1999-07-30 | Tokyo Electron Ltd | 枚葉式の熱処理装置 |
US6140234A (en) | 1998-01-20 | 2000-10-31 | International Business Machines Corporation | Method to selectively fill recesses with conductive metal |
US5932077A (en) * | 1998-02-09 | 1999-08-03 | Reynolds Tech Fabricators, Inc. | Plating cell with horizontal product load mechanism |
US6340435B1 (en) | 1998-02-11 | 2002-01-22 | Applied Materials, Inc. | Integrated low K dielectrics and etch stops |
US6054379A (en) | 1998-02-11 | 2000-04-25 | Applied Materials, Inc. | Method of depositing a low k dielectric with organo silane |
US6627532B1 (en) | 1998-02-11 | 2003-09-30 | Applied Materials, Inc. | Method of decreasing the K value in SiOC layer deposited by chemical vapor deposition |
US6197688B1 (en) * | 1998-02-12 | 2001-03-06 | Motorola Inc. | Interconnect structure in a semiconductor device and method of formation |
US6171661B1 (en) * | 1998-02-25 | 2001-01-09 | Applied Materials, Inc. | Deposition of copper with increased adhesion |
US6189484B1 (en) * | 1999-03-05 | 2001-02-20 | Applied Materials Inc. | Plasma reactor having a helicon wave high density plasma source |
US6197181B1 (en) * | 1998-03-20 | 2001-03-06 | Semitool, Inc. | Apparatus and method for electrolytically depositing a metal on a microelectronic workpiece |
US6565729B2 (en) * | 1998-03-20 | 2003-05-20 | Semitool, Inc. | Method for electrochemically depositing metal on a semiconductor workpiece |
JP2002510878A (ja) * | 1998-04-02 | 2002-04-09 | アプライド マテリアルズ インコーポレイテッド | 低k誘電体をエッチングする方法 |
US6117245A (en) * | 1998-04-08 | 2000-09-12 | Applied Materials, Inc. | Method and apparatus for controlling cooling and heating fluids for a gas distribution plate |
US5997649A (en) * | 1998-04-09 | 1999-12-07 | Tokyo Electron Limited | Stacked showerhead assembly for delivering gases and RF power to a reaction chamber |
US6416647B1 (en) * | 1998-04-21 | 2002-07-09 | Applied Materials, Inc. | Electro-chemical deposition cell for face-up processing of single semiconductor substrates |
US6113771A (en) * | 1998-04-21 | 2000-09-05 | Applied Materials, Inc. | Electro deposition chemistry |
US6179924B1 (en) * | 1998-04-28 | 2001-01-30 | Applied Materials, Inc. | Heater for use in substrate processing apparatus to deposit tungsten |
US6093594A (en) | 1998-04-29 | 2000-07-25 | Advanced Micro Devices, Inc. | CMOS optimization method utilizing sacrificial sidewall spacer |
US6086677A (en) * | 1998-06-16 | 2000-07-11 | Applied Materials, Inc. | Dual gas faceplate for a showerhead in a semiconductor wafer processing system |
US6147009A (en) | 1998-06-29 | 2000-11-14 | International Business Machines Corporation | Hydrogenated oxidized silicon carbon material |
US6562128B1 (en) | 2001-11-28 | 2003-05-13 | Seh America, Inc. | In-situ post epitaxial treatment process |
US6073577A (en) * | 1998-06-30 | 2000-06-13 | Lam Research Corporation | Electrode for plasma processes and method for manufacture and use thereof |
JP2003517190A (ja) | 1998-06-30 | 2003-05-20 | セミトウール・インコーポレーテツド | ミクロ電子工学の適用のための金属被覆構造物及びその構造物の形成法 |
US6248429B1 (en) * | 1998-07-06 | 2001-06-19 | Micron Technology, Inc. | Metallized recess in a substrate |
JP2000026975A (ja) * | 1998-07-09 | 2000-01-25 | Komatsu Ltd | 表面処理装置 |
US6063683A (en) * | 1998-07-27 | 2000-05-16 | Acer Semiconductor Manufacturing, Inc. | Method of fabricating a self-aligned crown-shaped capacitor for high density DRAM cells |
US6436816B1 (en) * | 1998-07-31 | 2002-08-20 | Industrial Technology Research Institute | Method of electroless plating copper on nitride barrier |
KR100271770B1 (ko) * | 1998-09-03 | 2001-02-01 | 윤종용 | 반도체장치 제조를 위한 플라즈마 공정챔버 |
US6383951B1 (en) | 1998-09-03 | 2002-05-07 | Micron Technology, Inc. | Low dielectric constant material for integrated circuit fabrication |
US6165912A (en) | 1998-09-17 | 2000-12-26 | Cfmt, Inc. | Electroless metal deposition of electronic components in an enclosable vessel |
US6180523B1 (en) * | 1998-10-13 | 2001-01-30 | Industrial Technology Research Institute | Copper metallization of USLI by electroless process |
US6228758B1 (en) * | 1998-10-14 | 2001-05-08 | Advanced Micro Devices, Inc. | Method of making dual damascene conductive interconnections and integrated circuit device comprising same |
US6251802B1 (en) | 1998-10-19 | 2001-06-26 | Micron Technology, Inc. | Methods of forming carbon-containing layers |
US6107199A (en) * | 1998-10-24 | 2000-08-22 | International Business Machines Corporation | Method for improving the morphology of refractory metal thin films |
JP3064268B2 (ja) | 1998-10-29 | 2000-07-12 | アプライド マテリアルズ インコーポレイテッド | 成膜方法及び装置 |
US6176198B1 (en) | 1998-11-02 | 2001-01-23 | Applied Materials, Inc. | Apparatus and method for depositing low K dielectric materials |
JP4124543B2 (ja) | 1998-11-11 | 2008-07-23 | 東京エレクトロン株式会社 | 表面処理方法及びその装置 |
US6486081B1 (en) * | 1998-11-13 | 2002-11-26 | Applied Materials, Inc. | Gas distribution system for a CVD processing chamber |
US6462371B1 (en) | 1998-11-24 | 2002-10-08 | Micron Technology Inc. | Films doped with carbon for use in integrated circuit technology |
US6251236B1 (en) * | 1998-11-30 | 2001-06-26 | Applied Materials, Inc. | Cathode contact ring for electrochemical deposition |
US6258220B1 (en) * | 1998-11-30 | 2001-07-10 | Applied Materials, Inc. | Electro-chemical deposition system |
US6228233B1 (en) * | 1998-11-30 | 2001-05-08 | Applied Materials, Inc. | Inflatable compliant bladder assembly |
US6015747A (en) * | 1998-12-07 | 2000-01-18 | Advanced Micro Device | Method of metal/polysilicon gate formation in a field effect transistor |
US6242349B1 (en) * | 1998-12-09 | 2001-06-05 | Advanced Micro Devices, Inc. | Method of forming copper/copper alloy interconnection with reduced electromigration |
US6364954B2 (en) * | 1998-12-14 | 2002-04-02 | Applied Materials, Inc. | High temperature chemical vapor deposition chamber |
US6245669B1 (en) | 1999-02-05 | 2001-06-12 | Taiwan Semiconductor Manufacturing Company | High selectivity Si-rich SiON etch-stop layer |
US6010962A (en) * | 1999-02-12 | 2000-01-04 | Taiwan Semiconductor Manufacturing Company | Copper chemical-mechanical-polishing (CMP) dishing |
US6245670B1 (en) * | 1999-02-19 | 2001-06-12 | Advanced Micro Devices, Inc. | Method for filling a dual damascene opening having high aspect ratio to minimize electromigration failure |
US6136163A (en) | 1999-03-05 | 2000-10-24 | Applied Materials, Inc. | Apparatus for electro-chemical deposition with thermal anneal chamber |
US6312995B1 (en) | 1999-03-08 | 2001-11-06 | Advanced Micro Devices, Inc. | MOS transistor with assisted-gates and ultra-shallow “Psuedo” source and drain extensions for ultra-large-scale integration |
US6144099A (en) | 1999-03-30 | 2000-11-07 | Advanced Micro Devices, Inc. | Semiconductor metalization barrier |
JP4236329B2 (ja) * | 1999-04-15 | 2009-03-11 | 日本碍子株式会社 | プラズマ処理装置 |
US6110836A (en) * | 1999-04-22 | 2000-08-29 | Applied Materials, Inc. | Reactive plasma etch cleaning of high aspect ratio openings |
US6541671B1 (en) * | 2002-02-13 | 2003-04-01 | The Regents Of The University Of California | Synthesis of 2H- and 13C-substituted dithanes |
US6464795B1 (en) * | 1999-05-21 | 2002-10-15 | Applied Materials, Inc. | Substrate support member for a processing chamber |
US6323128B1 (en) | 1999-05-26 | 2001-11-27 | International Business Machines Corporation | Method for forming Co-W-P-Au films |
US6174812B1 (en) * | 1999-06-08 | 2001-01-16 | United Microelectronics Corp. | Copper damascene technology for ultra large scale integration circuits |
US20020033233A1 (en) * | 1999-06-08 | 2002-03-21 | Stephen E. Savas | Icp reactor having a conically-shaped plasma-generating section |
US6821571B2 (en) | 1999-06-18 | 2004-11-23 | Applied Materials Inc. | Plasma treatment to enhance adhesion and to minimize oxidation of carbon-containing layers |
US6110530A (en) * | 1999-06-25 | 2000-08-29 | Applied Materials, Inc. | CVD method of depositing copper films by using improved organocopper precursor blend |
US6258223B1 (en) * | 1999-07-09 | 2001-07-10 | Applied Materials, Inc. | In-situ electroless copper seed layer enhancement in an electroplating system |
US6516815B1 (en) * | 1999-07-09 | 2003-02-11 | Applied Materials, Inc. | Edge bead removal/spin rinse dry (EBR/SRD) module |
US6351013B1 (en) | 1999-07-13 | 2002-02-26 | Advanced Micro Devices, Inc. | Low-K sub spacer pocket formation for gate capacitance reduction |
US6342733B1 (en) * | 1999-07-27 | 2002-01-29 | International Business Machines Corporation | Reduced electromigration and stressed induced migration of Cu wires by surface coating |
JP4057198B2 (ja) | 1999-08-13 | 2008-03-05 | 東京エレクトロン株式会社 | 処理装置及び処理方法 |
US6375748B1 (en) * | 1999-09-01 | 2002-04-23 | Applied Materials, Inc. | Method and apparatus for preventing edge deposition |
US6441492B1 (en) * | 1999-09-10 | 2002-08-27 | James A. Cunningham | Diffusion barriers for copper interconnect systems |
US6432819B1 (en) * | 1999-09-27 | 2002-08-13 | Applied Materials, Inc. | Method and apparatus of forming a sputtered doped seed layer |
US6153935A (en) | 1999-09-30 | 2000-11-28 | International Business Machines Corporation | Dual etch stop/diffusion barrier for damascene interconnects |
US6287643B1 (en) | 1999-09-30 | 2001-09-11 | Novellus Systems, Inc. | Apparatus and method for injecting and modifying gas concentration of a meta-stable or atomic species in a downstream plasma reactor |
US6364949B1 (en) | 1999-10-19 | 2002-04-02 | Applied Materials, Inc. | 300 mm CVD chamber design for metal-organic thin film deposition |
DE29919142U1 (de) * | 1999-10-30 | 2001-03-08 | Agrodyn Hochspannungstechnik GmbH, 33803 Steinhagen | Plasmadüse |
US6551924B1 (en) | 1999-11-02 | 2003-04-22 | International Business Machines Corporation | Post metalization chem-mech polishing dielectric etch |
EP1099776A1 (en) | 1999-11-09 | 2001-05-16 | Applied Materials, Inc. | Plasma cleaning step in a salicide process |
TW484170B (en) * | 1999-11-30 | 2002-04-21 | Applied Materials Inc | Integrated modular processing platform |
US6342453B1 (en) | 1999-12-03 | 2002-01-29 | Applied Materials, Inc. | Method for CVD process control for enhancing device performance |
DE10060002B4 (de) * | 1999-12-07 | 2016-01-28 | Komatsu Ltd. | Vorrichtung zur Oberflächenbehandlung |
US6238513B1 (en) | 1999-12-28 | 2001-05-29 | International Business Machines Corporation | Wafer lift assembly |
KR100767762B1 (ko) | 2000-01-18 | 2007-10-17 | 에이에스엠 저펜 가부시기가이샤 | 자가 세정을 위한 원격 플라즈마 소스를 구비한 cvd 반도체 공정장치 |
US6477980B1 (en) * | 2000-01-20 | 2002-11-12 | Applied Materials, Inc. | Flexibly suspended gas distribution manifold for plasma chamber |
US6656831B1 (en) | 2000-01-26 | 2003-12-02 | Applied Materials, Inc. | Plasma-enhanced chemical vapor deposition of a metal nitride layer |
US6494959B1 (en) | 2000-01-28 | 2002-12-17 | Applied Materials, Inc. | Process and apparatus for cleaning a silicon surface |
US6596085B1 (en) * | 2000-02-01 | 2003-07-22 | Applied Materials, Inc. | Methods and apparatus for improved vaporization of deposition material in a substrate processing system |
JP3723712B2 (ja) | 2000-02-10 | 2005-12-07 | 株式会社日立国際電気 | 基板処理装置及び基板処理方法 |
US6743473B1 (en) * | 2000-02-16 | 2004-06-01 | Applied Materials, Inc. | Chemical vapor deposition of barriers from novel precursors |
US6573030B1 (en) | 2000-02-17 | 2003-06-03 | Applied Materials, Inc. | Method for depositing an amorphous carbon layer |
US6319766B1 (en) | 2000-02-22 | 2001-11-20 | Applied Materials, Inc. | Method of tantalum nitride deposition by tantalum oxide densification |
US6350320B1 (en) * | 2000-02-22 | 2002-02-26 | Applied Materials, Inc. | Heater for processing chamber |
US6958098B2 (en) * | 2000-02-28 | 2005-10-25 | Applied Materials, Inc. | Semiconductor wafer support lift-pin assembly |
JP3979791B2 (ja) | 2000-03-08 | 2007-09-19 | 株式会社ルネサステクノロジ | 半導体装置およびその製造方法 |
JP2001355074A (ja) * | 2000-04-10 | 2001-12-25 | Sony Corp | 無電解メッキ処理方法およびその装置 |
JP2001308023A (ja) * | 2000-04-21 | 2001-11-02 | Tokyo Electron Ltd | 熱処理装置及び方法 |
US6458718B1 (en) * | 2000-04-28 | 2002-10-01 | Asm Japan K.K. | Fluorine-containing materials and processes |
US6679981B1 (en) | 2000-05-11 | 2004-01-20 | Applied Materials, Inc. | Inductive plasma loop enhancing magnetron sputtering |
US6553932B2 (en) * | 2000-05-12 | 2003-04-29 | Applied Materials, Inc. | Reduction of plasma edge effect on plasma enhanced CVD processes |
US6418874B1 (en) * | 2000-05-25 | 2002-07-16 | Applied Materials, Inc. | Toroidal plasma source for plasma processing |
US6729081B2 (en) | 2000-06-09 | 2004-05-04 | United Solar Systems Corporation | Self-adhesive photovoltaic module |
US6603269B1 (en) | 2000-06-13 | 2003-08-05 | Applied Materials, Inc. | Resonant chamber applicator for remote plasma source |
US6645550B1 (en) | 2000-06-22 | 2003-11-11 | Applied Materials, Inc. | Method of treating a substrate |
US6461435B1 (en) * | 2000-06-22 | 2002-10-08 | Applied Materials, Inc. | Showerhead with reduced contact area |
US6491978B1 (en) * | 2000-07-10 | 2002-12-10 | Applied Materials, Inc. | Deposition of CVD layers for copper metallization using novel metal organic chemical vapor deposition (MOCVD) precursors |
US6794311B2 (en) | 2000-07-14 | 2004-09-21 | Applied Materials Inc. | Method and apparatus for treating low k dielectric layers to reduce diffusion |
KR100366623B1 (ko) * | 2000-07-18 | 2003-01-09 | 삼성전자 주식회사 | 반도체 기판 또는 lcd 기판의 세정방법 |
US6764958B1 (en) | 2000-07-28 | 2004-07-20 | Applied Materials Inc. | Method of depositing dielectric films |
US6446572B1 (en) | 2000-08-18 | 2002-09-10 | Tokyo Electron Limited | Embedded plasma source for plasma density improvement |
US6800830B2 (en) | 2000-08-18 | 2004-10-05 | Hitachi Kokusai Electric, Inc. | Chemistry for boron diffusion barrier layer and method of application in semiconductor device fabrication |
US6436267B1 (en) * | 2000-08-29 | 2002-08-20 | Applied Materials, Inc. | Method for achieving copper fill of high aspect ratio interconnect features |
US6372657B1 (en) * | 2000-08-31 | 2002-04-16 | Micron Technology, Inc. | Method for selective etching of oxides |
US6465366B1 (en) | 2000-09-12 | 2002-10-15 | Applied Materials, Inc. | Dual frequency plasma enhanced chemical vapor deposition of silicon carbide layers |
JP2002100578A (ja) | 2000-09-25 | 2002-04-05 | Crystage Co Ltd | 薄膜形成装置 |
KR100887014B1 (ko) * | 2000-11-01 | 2009-03-04 | 어플라이드 머티어리얼스, 인코포레이티드 | 확대된 프로세스 윈도우를 갖는 유전체 에칭 챔버 |
KR20030051765A (ko) * | 2000-11-01 | 2003-06-25 | 어플라이드 머티어리얼즈 인코포레이티드 | 기판내의 고 애스펙트 비 형성체의 에칭 |
US6610362B1 (en) | 2000-11-20 | 2003-08-26 | Intel Corporation | Method of forming a carbon doped oxide layer on a substrate |
KR100382725B1 (ko) * | 2000-11-24 | 2003-05-09 | 삼성전자주식회사 | 클러스터화된 플라즈마 장치에서의 반도체소자의 제조방법 |
AUPR179500A0 (en) * | 2000-11-30 | 2000-12-21 | Saintech Pty Limited | Ion source |
US6291348B1 (en) * | 2000-11-30 | 2001-09-18 | Advanced Micro Devices, Inc. | Method of forming Cu-Ca-O thin films on Cu surfaces in a chemical solution and semiconductor device thereby formed |
US6544340B2 (en) | 2000-12-08 | 2003-04-08 | Applied Materials, Inc. | Heater with detachable ceramic top plate |
US6448537B1 (en) * | 2000-12-11 | 2002-09-10 | Eric Anton Nering | Single-wafer process chamber thermal convection processes |
US20020124867A1 (en) | 2001-01-08 | 2002-09-12 | Apl Co., Ltd. | Apparatus and method for surface cleaning using plasma |
US6879981B2 (en) | 2001-01-16 | 2005-04-12 | Corigin Ltd. | Sharing live data with a non cooperative DBMS |
US6849854B2 (en) * | 2001-01-18 | 2005-02-01 | Saintech Pty Ltd. | Ion source |
US6743732B1 (en) | 2001-01-26 | 2004-06-01 | Taiwan Semiconductor Manufacturing Company | Organic low K dielectric etch with NH3 chemistry |
JP4260404B2 (ja) * | 2001-02-09 | 2009-04-30 | 東京エレクトロン株式会社 | 成膜装置 |
KR100676979B1 (ko) * | 2001-02-09 | 2007-02-01 | 동경 엘렉트론 주식회사 | 성막 장치 |
US6893969B2 (en) * | 2001-02-12 | 2005-05-17 | Lam Research Corporation | Use of ammonia for etching organic low-k dielectrics |
US6537733B2 (en) * | 2001-02-23 | 2003-03-25 | Applied Materials, Inc. | Method of depositing low dielectric constant silicon carbide layers |
US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US6886491B2 (en) * | 2001-03-19 | 2005-05-03 | Apex Co. Ltd. | Plasma chemical vapor deposition apparatus |
US6670278B2 (en) | 2001-03-30 | 2003-12-30 | Lam Research Corporation | Method of plasma etching of silicon carbide |
JP3707394B2 (ja) | 2001-04-06 | 2005-10-19 | ソニー株式会社 | 無電解メッキ方法 |
US20030019428A1 (en) | 2001-04-28 | 2003-01-30 | Applied Materials, Inc. | Chemical vapor deposition chamber |
KR100687531B1 (ko) * | 2001-05-09 | 2007-02-27 | 에이에스엠 저펜 가부시기가이샤 | 반도체 장치용 저유전상수 절연막의 형성방법 |
US6537928B1 (en) * | 2002-02-19 | 2003-03-25 | Asm Japan K.K. | Apparatus and method for forming low dielectric constant film |
JP4720019B2 (ja) * | 2001-05-18 | 2011-07-13 | 東京エレクトロン株式会社 | 冷却機構及び処理装置 |
US6717189B2 (en) * | 2001-06-01 | 2004-04-06 | Ebara Corporation | Electroless plating liquid and semiconductor device |
US6506291B2 (en) * | 2001-06-14 | 2003-01-14 | Applied Materials, Inc. | Substrate support with multilevel heat transfer mechanism |
JP2004533123A (ja) * | 2001-06-14 | 2004-10-28 | マトソン テクノロジー インコーポレーテッド | 銅接続用の障壁エンハンスメント工程 |
US6573606B2 (en) * | 2001-06-14 | 2003-06-03 | International Business Machines Corporation | Chip to wiring interface with single metal alloy layer applied to surface of copper interconnect |
JP2003019433A (ja) | 2001-07-06 | 2003-01-21 | Sekisui Chem Co Ltd | 放電プラズマ処理装置及びそれを用いた処理方法 |
US20030029715A1 (en) * | 2001-07-25 | 2003-02-13 | Applied Materials, Inc. | An Apparatus For Annealing Substrates In Physical Vapor Deposition Systems |
US6786175B2 (en) * | 2001-08-08 | 2004-09-07 | Lam Research Corporation | Showerhead electrode design for semiconductor processing reactor |
US7138649B2 (en) | 2001-08-09 | 2006-11-21 | Amberwave Systems Corporation | Dual-channel CMOS transistors with differentially strained channels |
TW554069B (en) | 2001-08-10 | 2003-09-21 | Ebara Corp | Plating device and method |
KR20040018558A (ko) * | 2001-08-13 | 2004-03-03 | 가부시키 가이샤 에바라 세이사꾸쇼 | 반도체장치와 그 제조방법 및 도금액 |
US20030038305A1 (en) * | 2001-08-21 | 2003-02-27 | Wasshuber Christoph A. | Method for manufacturing and structure of transistor with low-k spacer |
JP2003059914A (ja) | 2001-08-21 | 2003-02-28 | Hitachi Kokusai Electric Inc | プラズマ処理装置 |
US6753506B2 (en) | 2001-08-23 | 2004-06-22 | Axcelis Technologies | System and method of fast ambient switching for rapid thermal processing |
US6762127B2 (en) | 2001-08-23 | 2004-07-13 | Yves Pierre Boiteux | Etch process for dielectric materials comprising oxidized organo silane materials |
WO2003018867A1 (en) | 2001-08-29 | 2003-03-06 | Applied Materials, Inc. | Semiconductor processing using an efficiently coupled gas source |
US20030047282A1 (en) * | 2001-09-10 | 2003-03-13 | Yasumi Sago | Surface processing apparatus |
US6960537B2 (en) * | 2001-10-02 | 2005-11-01 | Asm America, Inc. | Incorporation of nitrogen into high k dielectric film |
US6656837B2 (en) | 2001-10-11 | 2003-12-02 | Applied Materials, Inc. | Method of eliminating photoresist poisoning in damascene applications |
EP1302988A3 (de) | 2001-10-12 | 2007-01-24 | Bayer MaterialScience AG | Photovoltaik-Module mit einer thermoplastischen Schmelzklebeschicht sowie ein Verfahren zu ihrer Herstellung |
US20030072639A1 (en) * | 2001-10-17 | 2003-04-17 | Applied Materials, Inc. | Substrate support |
JP3954833B2 (ja) | 2001-10-19 | 2007-08-08 | 株式会社アルバック | バッチ式真空処理装置 |
US7780785B2 (en) * | 2001-10-26 | 2010-08-24 | Applied Materials, Inc. | Gas delivery apparatus for atomic layer deposition |
US6916398B2 (en) * | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
JP4121269B2 (ja) * | 2001-11-27 | 2008-07-23 | 日本エー・エス・エム株式会社 | セルフクリーニングを実行するプラズマcvd装置及び方法 |
KR100443121B1 (ko) | 2001-11-29 | 2004-08-04 | 삼성전자주식회사 | 반도체 공정의 수행 방법 및 반도체 공정 장치 |
WO2003052808A2 (en) | 2001-12-13 | 2003-06-26 | Applied Materials, Inc. | Self-aligned contact etch with high sensitivity to nitride shoulder |
US6890850B2 (en) | 2001-12-14 | 2005-05-10 | Applied Materials, Inc. | Method of depositing dielectric materials in damascene applications |
US6605874B2 (en) * | 2001-12-19 | 2003-08-12 | Intel Corporation | Method of making semiconductor device using an interconnect |
US20030116087A1 (en) | 2001-12-21 | 2003-06-26 | Nguyen Anh N. | Chamber hardware design for titanium nitride atomic layer deposition |
US20030116439A1 (en) * | 2001-12-21 | 2003-06-26 | International Business Machines Corporation | Method for forming encapsulated metal interconnect structures in semiconductor integrated circuit devices |
US6821379B2 (en) * | 2001-12-21 | 2004-11-23 | The Procter & Gamble Company | Portable apparatus and method for treating a workpiece |
US20030124842A1 (en) * | 2001-12-27 | 2003-07-03 | Applied Materials, Inc. | Dual-gas delivery system for chemical vapor deposition processes |
US6827815B2 (en) * | 2002-01-15 | 2004-12-07 | Applied Materials, Inc. | Showerhead assembly for a processing chamber |
JP2003217898A (ja) | 2002-01-16 | 2003-07-31 | Sekisui Chem Co Ltd | 放電プラズマ処理装置 |
US6866746B2 (en) | 2002-01-26 | 2005-03-15 | Applied Materials, Inc. | Clamshell and small volume chamber with fixed substrate support |
US6998014B2 (en) * | 2002-01-26 | 2006-02-14 | Applied Materials, Inc. | Apparatus and method for plasma assisted deposition |
US7138014B2 (en) * | 2002-01-28 | 2006-11-21 | Applied Materials, Inc. | Electroless deposition apparatus |
US6806653B2 (en) * | 2002-01-31 | 2004-10-19 | Tokyo Electron Limited | Method and structure to segment RF coupling to silicon electrode |
US6632325B2 (en) | 2002-02-07 | 2003-10-14 | Applied Materials, Inc. | Article for use in a semiconductor processing chamber and method of fabricating same |
US7256370B2 (en) * | 2002-03-15 | 2007-08-14 | Steed Technology, Inc. | Vacuum thermal annealer |
US6913651B2 (en) * | 2002-03-22 | 2005-07-05 | Blue29, Llc | Apparatus and method for electroless deposition of materials on semiconductor substrates |
US6541397B1 (en) * | 2002-03-29 | 2003-04-01 | Applied Materials, Inc. | Removable amorphous carbon CMP stop |
US6843858B2 (en) | 2002-04-02 | 2005-01-18 | Applied Materials, Inc. | Method of cleaning a semiconductor processing chamber |
US20030190426A1 (en) | 2002-04-03 | 2003-10-09 | Deenesh Padhi | Electroless deposition method |
US6921556B2 (en) | 2002-04-12 | 2005-07-26 | Asm Japan K.K. | Method of film deposition using single-wafer-processing type CVD |
US6616967B1 (en) * | 2002-04-15 | 2003-09-09 | Texas Instruments Incorporated | Method to achieve continuous hydrogen saturation in sparingly used electroless nickel plating process |
US7013834B2 (en) * | 2002-04-19 | 2006-03-21 | Nordson Corporation | Plasma treatment system |
US6528409B1 (en) * | 2002-04-29 | 2003-03-04 | Advanced Micro Devices, Inc. | Interconnect structure formed in porous dielectric material with minimized degradation and electromigration |
JP2003347278A (ja) * | 2002-05-23 | 2003-12-05 | Hitachi Kokusai Electric Inc | 基板処理装置、及び半導体装置の製造方法 |
US6500728B1 (en) | 2002-05-24 | 2002-12-31 | Taiwan Semiconductor Manufacturing Company | Shallow trench isolation (STI) module to improve contact etch process window |
US20040072446A1 (en) | 2002-07-02 | 2004-04-15 | Applied Materials, Inc. | Method for fabricating an ultra shallow junction of a field effect transistor |
US6767844B2 (en) * | 2002-07-03 | 2004-07-27 | Taiwan Semiconductor Manufacturing Co., Ltd | Plasma chamber equipped with temperature-controlled focus ring and method of operating |
DE10392996T5 (de) * | 2002-08-08 | 2005-07-21 | Trikon Technologies Limited, Newport | Verbesserungen für Duschköpfe |
US20040033677A1 (en) * | 2002-08-14 | 2004-02-19 | Reza Arghavani | Method and apparatus to prevent lateral oxidation in a transistor utilizing an ultra thin oxygen-diffusion barrier |
US6946033B2 (en) * | 2002-09-16 | 2005-09-20 | Applied Materials Inc. | Heated gas distribution plate for a processing chamber |
KR100500852B1 (ko) | 2002-10-10 | 2005-07-12 | 최대규 | 원격 플라즈마 발생기 |
US6991959B2 (en) * | 2002-10-10 | 2006-01-31 | Asm Japan K.K. | Method of manufacturing silicon carbide film |
JP4606713B2 (ja) | 2002-10-17 | 2011-01-05 | ルネサスエレクトロニクス株式会社 | 半導体装置およびその製造方法 |
US6699380B1 (en) * | 2002-10-18 | 2004-03-02 | Applied Materials Inc. | Modular electrochemical processing system |
US6713873B1 (en) | 2002-11-27 | 2004-03-30 | Intel Corporation | Adhesion between dielectric materials |
JP3838969B2 (ja) | 2002-12-17 | 2006-10-25 | 沖電気工業株式会社 | ドライエッチング方法 |
US6720213B1 (en) * | 2003-01-15 | 2004-04-13 | International Business Machines Corporation | Low-K gate spacers by fluorine implantation |
US7604708B2 (en) | 2003-02-14 | 2009-10-20 | Applied Materials, Inc. | Cleaning of native oxide with hydrogen-containing radicals |
EP1602125B1 (en) | 2003-03-07 | 2019-06-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Shallow trench isolation process |
US6913992B2 (en) | 2003-03-07 | 2005-07-05 | Applied Materials, Inc. | Method of modifying interlayer adhesion |
US20040182315A1 (en) * | 2003-03-17 | 2004-09-23 | Tokyo Electron Limited | Reduced maintenance chemical oxide removal (COR) processing system |
US7126225B2 (en) | 2003-04-15 | 2006-10-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Apparatus and method for manufacturing a semiconductor wafer with reduced delamination and peeling |
JP4245996B2 (ja) | 2003-07-07 | 2009-04-02 | 株式会社荏原製作所 | 無電解めっきによるキャップ膜の形成方法およびこれに用いる装置 |
US20050022735A1 (en) * | 2003-07-31 | 2005-02-03 | General Electric Company | Delivery system for PECVD powered electrode |
US7256134B2 (en) | 2003-08-01 | 2007-08-14 | Applied Materials, Inc. | Selective etching of carbon-doped low-k dielectrics |
US20050035455A1 (en) * | 2003-08-14 | 2005-02-17 | Chenming Hu | Device with low-k dielectric in close proximity thereto and its method of fabrication |
US7282244B2 (en) * | 2003-09-05 | 2007-10-16 | General Electric Company | Replaceable plate expanded thermal plasma apparatus and method |
JP4644676B2 (ja) | 2003-10-06 | 2011-03-02 | アプライド マテリアルズ インコーポレイテッド | フェイスアップウェット処理用のウェーハ温度均一性を改善する装置 |
US20070111519A1 (en) * | 2003-10-15 | 2007-05-17 | Applied Materials, Inc. | Integrated electroless deposition system |
US7465358B2 (en) | 2003-10-15 | 2008-12-16 | Applied Materials, Inc. | Measurement techniques for controlling aspects of a electroless deposition process |
US20050109276A1 (en) | 2003-11-25 | 2005-05-26 | Applied Materials, Inc. | Thermal chemical vapor deposition of silicon nitride using BTBAS bis(tertiary-butylamino silane) in a single wafer chamber |
US6958286B2 (en) | 2004-01-02 | 2005-10-25 | International Business Machines Corporation | Method of preventing surface roughening during hydrogen prebake of SiGe substrates |
US6893967B1 (en) | 2004-01-13 | 2005-05-17 | Advanced Micro Devices, Inc. | L-shaped spacer incorporating or patterned using amorphous carbon or CVD organic materials |
US20060033678A1 (en) * | 2004-01-26 | 2006-02-16 | Applied Materials, Inc. | Integrated electroless deposition system |
US20070123051A1 (en) * | 2004-02-26 | 2007-05-31 | Reza Arghavani | Oxide etch with nh4-nf3 chemistry |
US7780793B2 (en) | 2004-02-26 | 2010-08-24 | Applied Materials, Inc. | Passivation layer formation by plasma clean process to reduce native oxide growth |
US20050230350A1 (en) | 2004-02-26 | 2005-10-20 | Applied Materials, Inc. | In-situ dry clean chamber for front end of line fabrication |
US20060051966A1 (en) * | 2004-02-26 | 2006-03-09 | Applied Materials, Inc. | In-situ chamber clean process to remove by-product deposits from chemical vapor etch chamber |
JP4879159B2 (ja) | 2004-03-05 | 2012-02-22 | アプライド マテリアルズ インコーポレイテッド | アモルファス炭素膜堆積のためのcvdプロセス |
US7115974B2 (en) | 2004-04-27 | 2006-10-03 | Taiwan Semiconductor Manfacturing Company, Ltd. | Silicon oxycarbide and silicon carbonitride based materials for MOS devices |
WO2005112092A2 (en) | 2004-05-11 | 2005-11-24 | Applied Materials, Inc. | CARBON-DOPED-Si OXIDE ETCH USING H2 ADDITIVE IN FLUOROCARBON ETCH CHEMISTRY |
US7049200B2 (en) | 2004-05-25 | 2006-05-23 | Applied Materials Inc. | Method for forming a low thermal budget spacer |
US7122949B2 (en) * | 2004-06-21 | 2006-10-17 | Neocera, Inc. | Cylindrical electron beam generating/triggering device and method for generation of electrons |
US7217626B2 (en) * | 2004-07-26 | 2007-05-15 | Texas Instruments Incorporated | Transistor fabrication methods using dual sidewall spacers |
KR100593740B1 (ko) | 2004-09-16 | 2006-06-28 | 삼성전자주식회사 | 반도체 자연산화막 제거방법 |
KR20070087196A (ko) * | 2004-12-21 | 2007-08-27 | 어플라이드 머티어리얼스, 인코포레이티드 | 화학 기상 에칭 챔버로부터 부산물 증착을 제거하기 위한인-시튜 챔버 세정 방법 |
US20060130971A1 (en) | 2004-12-21 | 2006-06-22 | Applied Materials, Inc. | Apparatus for generating plasma by RF power |
US7253123B2 (en) | 2005-01-10 | 2007-08-07 | Applied Materials, Inc. | Method for producing gate stack sidewall spacers |
JP4475136B2 (ja) * | 2005-02-18 | 2010-06-09 | 東京エレクトロン株式会社 | 処理システム、前処理装置及び記憶媒体 |
TW200734482A (en) | 2005-03-18 | 2007-09-16 | Applied Materials Inc | Electroless deposition process on a contact containing silicon or silicide |
US7514353B2 (en) | 2005-03-18 | 2009-04-07 | Applied Materials, Inc. | Contact metallization scheme using a barrier layer over a silicide layer |
WO2007035880A2 (en) * | 2005-09-21 | 2007-03-29 | Applied Materials, Inc. | Method and apparatus for forming device features in an integrated electroless deposition system |
US20070087573A1 (en) | 2005-10-19 | 2007-04-19 | Yi-Yiing Chiang | Pre-treatment method for physical vapor deposition of metal layer and method of forming metal silicide layer |
US7494545B2 (en) * | 2006-02-03 | 2009-02-24 | Applied Materials, Inc. | Epitaxial deposition process and apparatus |
AU2008333222A1 (en) | 2007-12-04 | 2009-06-11 | Parabel Ag | Multilayer solar element |
JP2009170890A (ja) | 2007-12-18 | 2009-07-30 | Takashima & Co Ltd | 可撓性膜状太陽電池複層体 |
-
2005
- 2005-02-22 US US11/063,645 patent/US20050230350A1/en not_active Abandoned
- 2005-02-24 TW TW094105688A patent/TWI330669B/zh active
- 2005-02-24 TW TW097141002A patent/TWI421370B/zh active
- 2005-02-24 TW TW097151284A patent/TWI386517B/zh active
- 2005-02-24 TW TW099116864A patent/TWI402371B/zh active
- 2005-02-24 TW TW097151283A patent/TWI393800B/zh active
- 2005-02-25 CN CNB2005100565328A patent/CN100487857C/zh active Active
- 2005-02-25 EP EP14172189.4A patent/EP2787099A3/en not_active Withdrawn
- 2005-02-25 EP EP05251143.3A patent/EP1568797B1/en active Active
- 2005-02-25 CN CN2008100825653A patent/CN101241844B/zh active Active
- 2005-02-25 CN CN2010102461146A patent/CN101916715B/zh active Active
- 2005-02-25 KR KR1020050015931A patent/KR101148431B1/ko active IP Right Grant
- 2005-02-25 CN CN2010102461165A patent/CN101916740B/zh active Active
- 2005-02-28 JP JP2005054443A patent/JP4960598B2/ja active Active
- 2005-05-24 US US11/137,090 patent/US20050221552A1/en not_active Abandoned
- 2005-05-24 US US11/137,609 patent/US7396480B2/en active Active
- 2005-05-24 US US11/137,199 patent/US7520957B2/en active Active
-
2008
- 2008-06-06 US US12/134,715 patent/US7767024B2/en active Active
- 2008-10-23 US US12/257,093 patent/US20090095621A1/en not_active Abandoned
- 2008-10-23 US US12/257,104 patent/US8343307B2/en active Active
- 2008-11-17 KR KR1020080113999A patent/KR101107919B1/ko active IP Right Grant
- 2008-11-17 KR KR1020080113993A patent/KR101324651B1/ko active IP Right Grant
- 2008-11-17 KR KR1020080113981A patent/KR101228996B1/ko active IP Right Grant
- 2008-12-04 US US12/328,466 patent/US20090111280A1/en not_active Abandoned
-
2011
- 2011-05-20 US US13/112,875 patent/US20110223755A1/en not_active Abandoned
- 2011-07-06 JP JP2011149872A patent/JP5250668B2/ja active Active
- 2011-07-21 JP JP2011159609A patent/JP5028536B2/ja active Active
- 2011-09-07 KR KR1020110090807A patent/KR101234740B1/ko active IP Right Grant
- 2011-09-07 KR KR1020110090787A patent/KR101192099B1/ko active IP Right Grant
-
2012
- 2012-04-26 US US13/457,421 patent/US10593539B2/en active Active
- 2012-06-05 US US13/489,137 patent/US8846163B2/en active Active
-
2013
- 2013-10-18 US US14/057,477 patent/US20140076234A1/en not_active Abandoned
-
2019
- 2019-09-11 US US16/567,818 patent/US20200006054A1/en not_active Abandoned
-
2021
- 2021-04-08 US US17/225,311 patent/US20210225640A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5382311A (en) * | 1992-12-17 | 1995-01-17 | Tokyo Electron Limited | Stage having electrostatic chuck and plasma processing apparatus using same |
US5531835A (en) * | 1994-05-18 | 1996-07-02 | Applied Materials, Inc. | Patterned susceptor to reduce electrostatic force in a CVD chamber |
US6035101A (en) * | 1997-02-12 | 2000-03-07 | Applied Materials, Inc. | High temperature multi-layered alloy heater assembly and related methods |
US6364957B1 (en) * | 1997-10-09 | 2002-04-02 | Applied Materials, Inc. | Support assembly with thermal expansion compensation |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101916740B (zh) | 用于前段工艺制造的原地干洗腔 | |
CN101437981B (zh) | 用于消除来自化学蒸汽刻蚀腔的副产品沉积的原位腔清洁工艺 | |
TWI387667B (zh) | 用於自化學氣相蝕刻處理室移除副產物沉積的原位處理室清潔製程 | |
KR20070087196A (ko) | 화학 기상 에칭 챔버로부터 부산물 증착을 제거하기 위한인-시튜 챔버 세정 방법 | |
KR101248182B1 (ko) | Feol 제조를 위한 인시튜 세정 챔버 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |