WO2012149268A1 - Tolerogenic synthetic nanocarriers for allergy therapy - Google Patents
Tolerogenic synthetic nanocarriers for allergy therapy Download PDFInfo
- Publication number
- WO2012149268A1 WO2012149268A1 PCT/US2012/035383 US2012035383W WO2012149268A1 WO 2012149268 A1 WO2012149268 A1 WO 2012149268A1 US 2012035383 W US2012035383 W US 2012035383W WO 2012149268 A1 WO2012149268 A1 WO 2012149268A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- allergen
- population
- composition
- synthetic nanocarriers
- allergy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/38—Albumins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/385—Haptens or antigens, bound to carriers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/192—Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
- A61K31/366—Lactones having six-membered rings, e.g. delta-lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/436—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/12—Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
- A61K38/13—Cyclosporins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/1816—Erythropoietin [EPO]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0008—Antigens related to auto-immune diseases; Preparations to induce self-tolerance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/001—Preparations to induce tolerance to non-self, e.g. prior to transplantation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/35—Allergens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/35—Allergens
- A61K39/36—Allergens from pollen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/52—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/543—Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
- A61K47/544—Phospholipids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/593—Polyesters, e.g. PLGA or polylactide-co-glycolide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/643—Albumins, e.g. HSA, BSA, ovalbumin or a Keyhole Limpet Hemocyanin [KHL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6923—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
- A61K47/6931—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
- A61K47/6935—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
- A61K47/6937—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol the polymer being PLGA, PLA or polyglycolic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5115—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
- A61K9/5153—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/02—Nasal agents, e.g. decongestants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P41/00—Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
- G01N33/5047—Cells of the immune system
- G01N33/505—Cells of the immune system involving T-cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56966—Animal cells
- G01N33/56972—White blood cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5154—Antigen presenting cells [APCs], e.g. dendritic cells or macrophages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/577—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 tolerising response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6093—Synthetic polymers, e.g. polyethyleneglycol [PEG], Polymers or copolymers of (D) glutamate and (D) lysine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70503—Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
- G01N2333/7051—T-cell receptor (TcR)-CD3 complex
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70503—Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
- G01N2333/70514—CD4
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70503—Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
- G01N2333/70517—CD8
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- This invention relates to synthetic nanocarrier compositions with antigens that comprise MHC Class II-restricted epitopes of an allergen and immunosuppressants, and related methods.
- the compositions and methods allow for efficient and preferential uptake by APCs to shift the immune response in favor of tolerogenic immune response development specific to the allergen.
- the compositions and methods provided therefore, can be used to generate a tolerogenic immune response in a subject that is suffering or is expected to suffer from an allergic response to an allergen.
- composition comprising (i) a first population of synthetic nanocarriers that are coupled to immunosuppressants, and (ii) a second population of synthetic
- nanocarriers that are coupled to MHC Class II-restricted epitopes of an allergen, wherein the composition comprises substantially no B cell epitopes of the allergen is provided.
- the first population of synthetic nanocarriers are also coupled to MHC Class I- restricted epitopes of the allergen.
- the first population and second population are the same population population. In another embodiment, the first population and second population are different populations.
- the immunosuppressants comprise a statin, an mTOR inhibitor, a TGF- ⁇ signaling agent, a corticosteroid, an inhibitor of mitochondrial function, a P38 inhibitor, an NF- ⁇ inhibitor, an adenosine receptor agonist, a prostaglandin E2 agonist, a phosphodiesterasse 4 inhibitor, an HDAC inhibitor or a proteasome inhibitor.
- the mTOR inhibitor is rapamycin or an analog thereof.
- the allergen induces, or is expected to induce, an undesired immune response in a subject.
- the undesired immune response is allergen- specific antibody production.
- the undesired immune response is allergen specific CD4+ T cell proliferation and/or activity.
- the undesired immune response is allergen- specific B cell proliferation and/or activity.
- the allergen comprises an asthma antigen, a hay fever antigen, a hives antigen, an eczema antigen, a plant allergen, an insect sting allergen, an insect allergen, an animal allergen, a fungal allergen, a drug allergen, haptens, small chemicals, a pet allergen, a latex allergen, a mold allergen, a cosmetic allergen or a food allergen.
- the food allergen comprises a milk allergen, an egg allergen, a nut allergen, a fish allergen, a shellfish allergen, a soy allergen, a legume allergen, a seed allergen or a wheat allergen.
- the nut allergen is a peanut allergen or a tree nut allergen.
- the plant allergen is a ragweed allergen.
- the allergen is associated with hay fever or allergic asthma.
- the composition is in an amount effective to reduce the undesired immune response to the allergen when administered to a subject.
- the subject has or is at risk of having an allergy.
- the allergy is allergic asthma, hay fever, hives, eczema, a plant allergy, a pet allergy, a latex allergy, a mold allergy, a cosmetic allergy, a food allergy, an insect sting allergy, an insect allergy, an animal allergy, a fungal allergy, a drug allergy or an allergy to a hapten or small chemical.
- the food allergy is a milk allergy, an egg allergy, a nut allergy, a fish allergy, a shellfish allergy, a soy allergy, a legume allergy, a seed allergy or a wheat allergy.
- the nut allergy is a peanut allergy or a tree nut allergy.
- the allergy is hay fever or a ragweed allergy.
- the load of the immunosuppressants and/or epitopes on average across the first and/or second population of synthetic nanocarriers is between 0.0001 and 50%. In another embodiment, the load of the immunosuppressant and/or epitopes on average across the first and/or second population of synthetic nanocarriers is between 0.1% and 10%.
- the synthetic nanocarriers of the first population and/or second population comprise lipid nanoparticles, polymeric nanoparticles, metallic nanoparticles, surfactant-based emulsions, dendrimers, buckyballs, nanowires, virus-like particles or peptide or protein particles.
- the synthetic nanocarriers of the first population and/or second population comprise lipid nanoparticles.
- the synthetic nanocarriers of the first population and/or second population comprise liposomes.
- the synthetic nanocarriers of the first population and/or second population comprise metallic nanoparticles.
- the metallic nanoparticles comprise gold nanoparticles.
- the synthetic nanocarriers of the first population and/or second population comprise polymeric nanoparticles.
- the polymeric nanoparticles comprise polymer that is a non-methoxy-terminated, pluronic polymer.
- the polymeric nanoparticles comprise a polyester, a polyester coupled to a polyether, polyamino acid, polycarbonate, polyacetal, polyketal, polysaccharide, polyethyloxazoline or polyethyleneimine.
- the polyester comprises a poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid) or polycaprolactone.
- the polymeric nanoparticles comprise a polyester and a polyester coupled to a polyether.
- the polyether comprises polyethylene glycol or polypropylene glycol.
- the mean of a particle size distribution obtained using dynamic light scattering of the synthetic nanocarriers of the first and/or second population is a diameter greater than lOOnm. In one embodiment, the diameter is greater than 150nm. In another embodiment, the diameter is greater than 200nm. In still another embodiment, the diameter is greater than 250nm. In yet another embodiment, the diameter is greater than 300nm. In yet a further embodiment, the aspect ratio of the synthetic nanocarriers of the first population and/or second population is greater than 1: 1, 1: 1.2, 1: 1.5, 1:2, 1:3, 1:5, 1:7 or 1: 10.
- composition further comprises a pharmaceutically acceptable excipient.
- a dosage form comprising any of the compositions provided herein is provided.
- any of the compositions or dosage forms provided can be administered to a subject.
- the subject has or is at risk of having an allergy.
- the subject has or is at risk of having an undesired immune response against an allergen.
- an undesired immune response to an allergen is reduced in the subject with the composition or dosage form.
- the undesired immune response is allergen-specific antibody production.
- the undesired immune response is allergen-specific CD4+ T cell proliferation and/or activity.
- the undesired immune response is allergen-specific B cell proliferation and/or activity.
- a method comprising administering to a subject a composition comprising (i) a first population of synthetic nanocarriers that are coupled to
- immunosuppressants and (ii) a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of an allergen, wherein the composition comprises substantially no B cell epitopes of the allergen, wherein the composition is in an amount effective to reduce an undesired immune response to the allergen in the subject, and wherein the subject is experiencing or is at risk of experiencing the undesired immune response to the allergen is provided.
- a method comprising reducing an undesired immune response to an allergen in a subject by administering a composition comprising (i) a first population of synthetic nanocarriers that are coupled to immunosuppressants, and (ii) a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of the allergen, wherein the composition comprises substantially no B cell epitopes of the allergen, wherein the composition is in an amount effective to reduce the undesired immune response to the allergen in the subject, and wherein the subject is experiencing or is at risk of experiencing the undesired immune response to the allergen is provided.
- a method comprising administering a composition to a subject according to a protocol that was previously shown to reduce an undesired immune response to an allergen in one or more test subjects; wherein the composition comprises (i) a first population of synthetic nanocarriers that are coupled to immunosuppressants, and (ii) a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of the allergen, wherein the composition comprises substantially no B cell epitopes of the allergen, wherein the composition is in an amount effective to reduce the undesired immune response to the allergen in the subject, and wherein the subject is experiencing or is at risk of experiencing the undesired immune response to the allergen is provided.
- the first population and second population are the same population. In another embodiment, the first population and second population are different populations.
- the method further comprises providing or identifying the subject.
- the immunosuppressants comprise a statin, an mTOR inhibitor, a TGF- ⁇ signaling agent, a corticosteroid, an inhibitor of mitochondrial function, a P38 inhibitor, an NF- ⁇ inhibitor, an adenosine receptor agonist, a prostaglandin E2 agonist, a phosphodiesterasse 4 inhibitor, an HDAC inhibitor or a proteasome inhibitor.
- the mTOR inhibitor is rapamycin or an analog thereof.
- the allergen induces or is expected to induce an undesired immune response in the subject.
- the undesired immune response is allergen-specific antibody production.
- the undesired immune response is allergen-specific CD4+ T cell proliferation and/or activity.
- the undesired immune response is allergen-specific B cell proliferation and/or activity.
- the allergen comprises an asthma antigen, a hay fever antigen, a hives antigen, an eczema antigen, a plant allergen, an insect sting allergen, an insect allergen, an animal allergen, a fungal allergen, a drug allergen, a pet allergen, a latex allergen, a mold allergen, a cosmetic allergen or a food allergen.
- the food allergen comprises a milk allergen, an egg allergen, a nut allergen, a fish allergen, a shellfish allergen, a soy allergen, a legume allergen, a seed allergen or a wheat allergen.
- the nut allergen is a peanut allergen or a tree nut allergen.
- the plant allergen is a ragweed allergen.
- the first population of synthetic nanocarriers are also coupled to MHC Class I-restricted epitopes of the allergen.
- the load of the immunosuppressants and/or epitopes on average across the first and/or second population of synthetic nanocarriers is between 0.0001 and 50%. In another embodiment, the load of the immunosuppressants and/or epitopes on average across the first and/or second population of synthetic nanocarriers is between 0.1% and 10%.
- the synthetic nanocarriers of the first population and/or second population comprise lipid nanoparticles, polymeric nanoparticles, metallic
- nanocarriers of the first population and/or second population comprise lipid nanoparticles.
- the synthetic nanocarriers of the first population and/or second population comprise liposomes.
- the synthetic nanocarriers of the first population and/or second population comprise metallic nanoparticles.
- the metallic nanoparticles comprise gold nanoparticles.
- the synthetic nanocarriers of the first population and/or second population comprise polymeric nanoparticles.
- the polymeric nanoparticles comprise non-methoxy-terminated, pluronic polymer.
- the polymeric nanoparticles comprise a polyester, a polyester coupled to a polyether, polyamino acid, polycarbonate, polyacetal, polyketal, polysaccharide, polyethyloxazoline or polyethyleneimine.
- the polyester comprises a poly(lactic acid), poly(glycolic acid), poly(lactic-co- glycolic acid) or polycaprolactone.
- the polymeric nanoparticles comprise a polyester and a polyester coupled to a polyether.
- the polyether comprises polyethylene glycol or polypropylene glycol.
- the mean of a particle size distribution obtained using dynamic light scattering of the synthetic nanocarriers of the first and/or second population is a diameter greater than lOOnm. In one embodiment, the diameter is greater than 150nm. In another embodiment, the diameter is greater than 200nm. In still another embodiment, the diameter is greater than 250nm. In yet another embodiment, the diameter is greater than 300nm.
- the aspect ratio of the synthetic nanocarriers of the first population and/or second population is greater than 1: 1, 1: 1.2, 1: 1.5, 1:2, 1:3, 1:5, 1:7 or 1: 10.
- one or more maintenance doses of the composition comprising the first population and second population of synthetic nanocarriers is administered to the subject.
- the method further comprises assessing the undesired immune response to the allergen in the subject prior to and/or after the administration of the composition comprising the first population and second population of synthetic nanocarriers.
- the undesired immune response is allergen- specific antibody production.
- the undesired immune response if allergen-specific CD4+ T cell proliferation and/or activity.
- the undesired immune response is allergen- specific B cell proliferation and/or activity.
- the subject has or is at risk of having an allergy.
- the allergy is allergic asthma, hay fever, hives, eczema, a plant allergy, an insect sting allergy, an insect allergy, an animal allergy, a fungal allergy, a drug allergy, a pet allergy, a latex allergy, a mold allergy, a cosmetic allergy or a food allergy.
- the food allergy is a milk allergy, an egg allergy, a nut allergy, a fish allergy, a shellfish allergy, a soy allergy, a legume allergy, a seed allergy or a wheat allergy.
- the nut allergy is a peanut allergy or a tree nut allergy.
- the plant allergy is a ragweed allergy.
- the administering is by intravenous, intraperitoneal, transmucosal, oral, subcutaneous, pulmonary, intranasal, intradermal or intramuscular administration. In yet a further embodiment, the administering is by inhalation or
- a method comprising (i) producing a first population of synthetic nanocarriers that are coupled to immunosuppressants, (ii) producing a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of an allergen, and (iii) ensuring the second population of synthetic nanocarriers comprise substantially no B cell epitopes of the allergen is provided.
- the first population and second population are the same population. In another embodiment, the first population and second population are different populations.
- the method further comprises making a dosage form comprising the first population and second population of synthetic nanocarriers.
- the method further comprises making a composition comprising the first population and second population of synthetic nanocarriers or a dosage form thereof available to a subject for administration.
- the first population and second population of synthetic nanocarriers that are produced are as defined in any of the methods provided herein.
- the method further comprises assessing an undesired immune response to the allergen with a composition comprising the first population and second population of synthetic nanocarriers. In one embodiment, the undesired immune response in a subject is assessed.
- a process for producing a composition or dosage form comprising the steps of coupling a first population of synthetic nanocarriers to
- the process comprises the steps of any of the methods provided herein.
- composition or dosage form obtainable by any of the methods or processes provided herein is provided.
- compositions or dosage forms provided herein may be for use in therapy or prophylaxis.
- any of the compositions or dosage forms provided herein may be for use in a method of reducing an undesired immune response to an allergen in a subject, the treatment or prophylaxis of allergy, or any of the methods provided herein.
- compositions or dosage forms provided herein for the manufacture of a medicament for use in a method of reducing an undesired immune response to an allergen in a subject, the treatment or prophylaxis of allergy, or any of the methods provided herein is provided.
- a dosage form comprising any of the compositions provided herein is provided.
- antigens that are proteins that comprise the aforementioned epitopes can be coupled to the synthetic nanocarriers.
- epitopes but additional amino acids that flank one or both ends of the epitope(s) can be coupled to the synthetic nanocarriers.
- the epitopes themselves are coupled to the synthetic nanocarriers.
- FIG. 1 shows results from a flow cytometric analysis of Treg.
- Fig. 2 shows an effect on the number of antigen-specific effector T cells with synthetic nanocarriers of the invention comprising immunosuppressant (rapamycin or simvastatin) (after a single injection).
- immunosuppressant rapamycin or simvastatin
- Fig. 3 shows a decrease in the number of popliteal lymph node cells with synthetic nanocarriers of the invention comprising immunosuppressant (rapamycin or simvastatin) (after multiple injections).
- immunosuppressant rapamycin or simvastatin
- Fig. 4 shows a reduction in antigen- specific IgG levels with the administration of synthetic nanocarriers comprising ova peptide and the immunosuppressant rapamycin.
- Fig. 5 demonstrates a reduction in the number of antigen- specific B cells with synthetic nanocarriers comprising ova peptide and the immunosuppressant rapamycin.
- Fig. 6 demonstrates an overall reduction in the number of various immune cells in lavage samples from asthma model animal subjects treated with synthetic nanocarriers comprising ova peptide and immunosuppressant.
- Fig. 7 demonstrates a reduction in the percentage of dividing CD4+ T cells as a result of treatment with synthetic nanocarriers comprising ova peptide and the immunosuppressant rapamycin in asthma model animal subjects.
- Fig. 8 demonstrates a reduction in the production of antigen- specific IgE antibodies.
- nanocarrier includes a mixture of two or more such synthetic nanocarriers or a plurality of such synthetic nanocarriers
- reference to "a DNA molecule” includes a mixture of two or more such DNA molecules or a plurality of such DNA molecules
- reference to "an immunosuppressant” includes a mixture of two or more such materials or a plurality of immunosuppressant molecules, and the like.
- the term “comprise” or variations thereof such as “comprises” or “comprising” are to be read to indicate the inclusion of any recited integer (e.g. a feature, element, characteristic, property, method/process step or limitation) or group of integers (e.g. features, element, characteristics, properties, method/process steps or limitations) but not the exclusion of any other integer or group of integers.
- any recited integer e.g. a feature, element, characteristic, property, method/process step or limitation
- group of integers e.g. features, element, characteristics, properties, method/process steps or limitations
- compositions and methods provided herein allow for more targeted immune effects by, for example, allowing for the targeted delivery to immune cells of interest.
- compositions and methods can achieve immune suppression in a more directed manner. It has been found that delivering immunosuppressants and MHC Class II-restricted epitopes of an allergen more directly to cells of interest, in particular APCs, can result in beneficial tolerogenic immune responses, such as the reduction in antibody production, CD4+ T cell proliferation and/ or activity etc., specific to the allergen. Such immune responses can be beneficial in subjects who suffer from allergies.
- This invention is useful, for example, to promote tolerogenic immune responses in subjects who are experiencing or are at risk of experiencing undesired immune responses to allergens. Such subjects include those who have or are at risk of having an allergy.
- the inventors have unexpectedly and surprisingly discovered that the problems and limitations noted above can be overcome by practicing the invention disclosed herein.
- compositions described herein include compositions that comprise (i) a first population of synthetic nanocarriers that are coupled to immunosuppressants, and (ii) a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of an allergen.
- MHC Class I-restricted epitopes may also be coupled to the synthetic nanocarriers.
- substantially no B cell epitopes of the allergen are coupled and such epitopes may be specifically excluded from the compositions and methods provided herein.
- dosage forms of any of the compositions herein are provided. Such dosage forms can be administered to a subject, such as one in need of allergen- specific tolerogenic immune responses.
- the subject is one who has had, is having or is expected to have an undesired immune response against an allergen.
- Such subjects include those that have or are at risk of having an allergy.
- any of the compositions provided herein is administered to a subject.
- the composition may be administered in an amount effective to reduce the generation of an undesired immune response to an allergen.
- a composition is administered to a subject according to a protocol that was previously shown to reduce the generation of an undesired immune response to an allergen in one or more subjects.
- compositions may be administered to a subject prior to, concomitantly with or after the exposure of a subject to an allergen.
- the compositions provided may also be administered as one or more maintenance doses to a subject that has or is at risk of having an allergy.
- the compositions provided are administered such that the generation of an undesired immune response is reduced for a certain length of time. Examples of such lengths of time are provided elsewhere herein.
- a method of (i) producing a first population of synthetic nanocarriers that are coupled to immunosuppressants, and (ii) producing a second population of synthetic nanocarriers that are coupled to MHC Class II-restricted epitopes of an allergen is provided.
- MHC Class I-restricted epitopes of the allergen may also be coupled to the synthetic nanocarriers.
- substantially no B cell epitopes of the allergen are coupled to the synthetic nanocarriers.
- administering means providing a material to a subject in a manner that is pharmacologically useful.
- allergen-specific refers to any immune response that results from the presence of the allergen, or portion thereof, or that generates molecules that specifically recognize or bind the allergen.
- the immune response is allergen-specific antibody production
- antibodies are produced that specifically bind the allergen.
- the immune response is allergen-specific B cell or CD4+ T cell proliferation and/or activity
- the proliferation and/or activity results from recognition of the allergen, or portion thereof, alone or in complex with MHC molecules, B cells, etc.
- Allergens are any substances that can cause an undesired (e.g., a Type 1 hypersensitive) immune response (i.e., an allergic response or reaction) in a subject.
- a Type 1 hypersensitive immune response i.e., an allergic response or reaction
- Allergens include, but are not limited to, plant allergens (e.g., pollen, ragweed allergen), insect allergens, insect sting allergens (e.g., bee sting allergens), animal allergens (e.g., pet allergens, such as animal dander or cat Fel d 1 antigen), latex allergens, mold allergens, fungal allergens, cosmetic allergens, drug allergens, food allergens, dust, insect venom, viruses, bacteria, etc.
- Food allergens include, but are not limited to milk allergens, egg allergens, nut allergens (e.g., peanut or tree nut allergens, etc.
- Insect sting allergens include allergens that are or are associated with bee stings, wasp stings, hornet stings, yellow jacket stings, etc. Insect allergens also include house dust mite allergens (e.g., Der PI antigen) and cockroach allergens.
- Drug allergens include allergens that are or are associated with antibiotics, NSAIDs, anaesthetics, etc.
- Pollen allergens include grass allergens, tree allergens, weed allergens, flower allergens, etc.
- Subjects that develop or are at risk of developing an undesired immune response to any of the allergens provided herein may be treated with any of the compositions and methods provided herein.
- Subjects that may be treated with any of the compositions and methods provided also include those who have or are at risk of having an allergy to any of the allergens provided.
- “Allergens associated with an allergy” are allergens that generate an undesired immune response that results in, or would be expected by a clinician to result in, alone or in combination with other allergens, an allergic response or reaction or a symptom of an allergic response or reaction in a subject.
- Type(s) of allergens means molecules that share the same, or substantially the same, antigenic characteristics in the context of an undesired immune response.
- the allergens may be proteins, polypeptides, peptides, lipoproteins or are contained or expressed in cells.
- MHC Class II-restricted epitopes are preferably coupled to the synthetic nanocarriers as provided herein.
- the epitopes themselves may be coupled or proteins, polypeptides, peptides, etc. that comprise these epitopes may be coupled to the synthetic nanocarriers.
- an allergen itself or a portion thereof that comprises MHC Class II-restricted epitopes may be coupled to the synthetic nanocarriers in the compositions provided herein.
- MHC Class I-restricted epitopes may also be coupled. Therefore, in some embodiments, the allergen itself or portion thereof comprises both MHC Class II-restricted and MHC Class I-restricted epitopes.
- the epitopes for use in the compositions and methods provided herein can be presented for recognition by cells of the immune system, such as presented by antigen presenting cells, which include but are not limited to dendritic cells, B cells or macrophages.
- the epitopes can be presented for recognition by, for example, T cells.
- T cells Such epitopes may normally be recognized by and trigger an immune response in a T cell via presentation major histocompatability complex molecule (MHC), but in the compositions provided herein the presence of such epitopes in combination with an immunosuppressant can result in tolerogenic immune responses instead.
- MHC presentation major histocompatability complex molecule
- substantially no B cell epitopes are coupled to the synthetic nanocarriers, such as when the inclusion of the B cell epitopes would exacerbate an undesired immune response and thus, the allergens or portions thereof do not comprise B cell epitopes or do comprise B cell epitopes but such epitopes do not significantly negatively impact the desired immune responses.
- An allergen can be coupled to the synthetic nanocarriers in the same form as what a subject is exposed to that causes an undesired immune response but may also be a fragment or derivative thereof.
- a fragment or derivative however, a desired immune response to the form encountered by such a subject is the preferable result with the compositions and methods provided.
- an “allergy” also referred to herein as an "allergic condition,” is any condition where there is an undesired (e.g., a Type 1 hypersensitive) immune response (i.e., allergic response or reaction) to a substance.
- allergens include, but are not limited to, allergic asthma, hay fever, hives, eczema, plant allergies, bee sting allergies, pet allergies, latex allergies, mold allergies, cosmetic allergies, food allergies, allergic rhinitis or coryza, topic allergic reactions, anaphylaxis, atopic dermatitis, hypersensitivity reactions and other allergic conditions.
- the allergic reaction may be the result of an immune reaction to any allergen.
- the allergy is a food allergy.
- Food allergies include, but are not limited to, milk allergies, egg allergies, nut allergies, fish allergies, shellfish allergies, soy allergies or wheat allergies.
- Amount effective in the context of a composition or dosage form for administration to a subject refers to an amount of the composition or dosage form that produces one or more desired immune responses in the subject, for example, the generation of a tolerogenic immune response (e.g, a reduction in the proliferation, activation, induction, recruitment of allergen- specific CD4+ T cells or allergen- specific B cells or a reduction in the production of allergen- specific antibodies). Therefore, in some embodiments, an amount effective is any amount of a composition provided herein that produces one or more of these desired immune responses. This amount can be for in vitro or in vivo purposes. For in vivo purposes, the amount can be one that a clinician would believe may have a clinical benefit for a subject in need of allergen- specific tolerization. Such subjects include those that have or are at risk of having an allergy or an allergic response against an allergen.
- Amounts effective can involve only reducing the level of an undesired immune response, although in some embodiments, it involves preventing an undesired immune response altogether. Amounts effective can also involve delaying the occurrence of an undesired immune response. An amount that is effective can also be an amount of a composition provided herein that produces a desired therapeutic endpoint or a desired therapeutic result. Amounts effective, preferably, result in a tolerogenic immune response in a subject to an allergen. The achievement of any of the foregoing can be monitored by routine methods.
- the amount effective is one in which the desired immune response persists in the subject for at least 1 week, at least 2 weeks, at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 9 months, at least 1 year, at least 2 years, at least 5 years, or longer.
- the amount effective is one which produces a measurable desired immune response, for example, a measurable decrease in an immune response (e.g., to a specific allergen), for at least 1 week, at least 2 weeks, at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 9 months, at least 1 year, at least 2 years, at least 5 years, or longer.
- a measurable desired immune response for at least 1 week, at least 2 weeks, at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 9 months, at least 1 year, at least 2 years, at least 5 years, or longer.
- Amounts effective will depend, of course, on the particular subject being treated; the severity of a condition, disease or disorder; the individual patient parameters including age, physical condition, size and weight; the duration of the treatment; the nature of concurrent therapy (if any); the specific route of administration and like factors within the knowledge and expertise of the health practitioner. These factors are well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. It is generally preferred that a maximum dose be used, that is, the highest safe dose according to sound medical judgment. It will be understood by those of ordinary skill in the art, however, that a patient may insist upon a lower dose or tolerable dose for medical reasons,
- doses of the immunosuppressants and/or antigens in the compositions of the invention can range from about 10 g/kg to about 100,000 ⁇ g/kg. In some embodiments, the doses can range from about 0.1 mg/kg to about 100 mg/kg. In still other embodiments, the doses can range from about 0.1 mg/kg to about 25 mg/kg, about 25 mg/kg to about 50 mg/kg, about 50 mg/kg to about 75 mg/kg or about 75 mg/kg to about 100 mg/kg.
- the dose can be administered based on the number of synthetic nanocarriers that provide the desired amount of immunosuppressants and/or antigens.
- useful doses include greater than 10 6 , 10 7 , 10 8 , 10 9 or 10 10 synthetic nanocarriers per dose.
- Other examples of useful doses include from about lxlO 6 to about lxlO 10 , about lxlO 7 to about lxlO 9 or about lxlO 8 to about lxlO 9 synthetic nanocarriers per dose.
- Antigen means a B cell antigen or T cell antigen. Antigens include allergens or fragments or derivatives of allergens that can generate an immune response alone or in conjunction with another agent, carrier, etc.
- “Assessing an immune response” refers to any measurement or determination of the level, presence or absence, reduction, increase in, etc. of an immune response in vitro or in vivo. Such measurements or determinations may be performed on one or more samples obtained from a subject. Such assessing can be performed with any of the methods provided herein or otherwise known in the art.
- An "at risk" subject is one in which a health practitioner believes has a chance of having a disease, disorder or condition as provided herein or is one a health practitioner believes has a chance of experiencing an undesired immune response as provided herein.
- B cell antigen means any antigen that triggers an immune response in a B cell (e.g., an antigen that is specifically recognized by a B cell or a receptor thereon).
- an antigen that is a T cell antigen is also a B cell antigen.
- the T cell antigen is not also a B cell antigen.
- B cell antigens include, but are not limited to proteins, peptides, small molecules, and carbohydrates.
- the B cell antigen comprises a non-protein antigen (i.e., not a protein or peptide antigen).
- the B cell antigen is obtained or derived from an allergen.
- Concomitantly means administering two or more substances to a subject in a manner that is correlated in time, preferably sufficiently correlated in time so as to provide a modulation in an immune response.
- concomitant administration may occur through administration of two or more substances in the same dosage form.
- concomitant administration may encompass administration of two or more substances in different dosage forms, but within a specified period of time, preferably within 1 month, more preferably within 1 week, still more preferably within 1 day, and even more preferably within 1 hour.
- Couple or “Coupled” or “Couples” (and the like) means to chemically associate one entity (for example a moiety) with another.
- the coupling is covalent, meaning that the coupling occurs in the context of the presence of a covalent bond between the two entities.
- the non-covalent coupling is mediated by non-covalent interactions including but not limited to charge interactions, affinity
- encapsulation is a form of coupling.
- “Derived” means prepared from a material or information related to a material but is not “obtained” from the material. Such materials may be substantially modified or processed forms of materials taken directly from a biological material. Such materials also include materials produced from information related to a biological material.
- “Dosage form” means a pharmacologically and/or immunologically active material in a medium, carrier, vehicle, or device suitable for administration to a subject.
- Encapsulate means to enclose at least a portion of a substance within a synthetic nanocarrier. In some embodiments, a substance is enclosed completely within a synthetic nanocarrier. In other embodiments, most or all of a substance that is encapsulated is not exposed to the local environment external to the synthetic nanocarrier. In other
- no more than 50%, 40%, 30%, 20%, 10% or 5% (weight/weight) is exposed to the local environment.
- Encapsulation is distinct from absorption, which places most or all of a substance on a surface of a synthetic nanocarrier, and leaves the substance exposed to the local environment external to the synthetic nanocarrier.
- Epitope also known as an antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by, for example, antibodies, B cells, or T cells.
- MHC Class I-restricted epitopes are epitopes that are presented to immune cells by MHC class I molecules found on nucleated cells.
- MHC Class II-restricted epitopes are epitopes that are presented to immune cells by MHC class II molecules found on antigen-presenting cells (APCs), for example, on professional antigen-presenting immune cells, such as on macrophages, B cells, and dendritic cells, or on non-hematopoietic cells, such as hepatocytes.
- B cell epitopes are molecular structures that are recognized by antibodies or B cells. In some embodiments, the epitope itself is an antigen.
- epitopes are known to those of skill in the art, and exemplary epitopes suitable according to some aspects of this invention include, but are not limited to those listed in the Immune Epitope Database (www.immuneepitope.org, Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, Damle R, Sette A, Peters B.
- Epitopes can also be identified with publicly available algorithms, for example, the algorithms described in Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B. 2010. peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 2010, 11:568; Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B. 2008. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. 4(4) :e 1000048; Nielsen M, Lund O. 2009. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics.
- epitopes as provided herein include any of the allergen-associated MHC Class II-restricted and B cell epitopes as provided as SEQ ID NOs: 1-516.
- MHC Class II-restricted epitopes include those set forth in SEQ ID NOs: 1-338 and B cell epitopes include those set forth in SEQ ID NOs: 339-516.
- Geneating means causing an action, such as an immune response (e.g., a tolerogenic immune response) to occur, either directly oneself or indirectly, such as, but not limited to, an unrelated third party that takes an action through reliance on one's words or deeds.
- an immune response e.g., a tolerogenic immune response
- Identifying is any action or set of actions that allows a clinician to recognize a subject as one who may benefit from the methods and compositions provided herein.
- the identified subject is one who is in need of a tolerogenic immune response as provided herein.
- the action or set of actions may be either directly oneself or indirectly, such as, but not limited to, an unrelated third party that takes an action through reliance on one's words or deeds.
- Immunosuppressant means a compound that causes an APC to have an
- immunosuppressive e.g., tolerogenic effect
- An immunosuppressive effect generally refers to the production or expression of cytokines or other factors by the APC that reduces, inhibits or prevents an undesired immune response or that promotes a desired immune response.
- the immunosuppressive effect is said to be specific to the presented antigen.
- Such effect is also referred to herein as a tolerogenic effect.
- the immunosuppressive or tolerogenic effect is a result of the immunosuppressant being delivered to the APC, preferably in the presence of an antigen (e.g., an administered antigen or one that is already present in vivo).
- an antigen e.g., an administered antigen or one that is already present in vivo.
- the immunosuppressant includes compounds that provide a tolerogenic immune response to an antigen that may or may not be provided in the same composition or a different composition.
- the immunosuppressant is one that causes an
- the regulatory phenotype may be characterized by the inhibition of the production, induction, stimulation or recruitment of allergen- specific CD4+ T cells or B cells, the inhibition of the production of allergen- specific antibodies, the production, induction, stimulation or recruitment of Treg cells (e.g., CD4+CD25highFoxP3+ Treg cells), etc.
- Treg cells e.g., CD4+CD25highFoxP3+ Treg cells
- This may be the result of the conversion of CD4+ T cells or B cells to a regulatory phenotype.
- This may also be the result of induction of FoxP3 in other immune cells, such as CD8+ T cells,
- the immunosuppressant is one that affects the response of the APC after it processes an antigen. In another embodiment, the immunosuppressant is not one that interferes with the processing of the antigen. In a further embodiment, the immunosuppressant is not an ap op to tic- signaling molecule. In another embodiment, the immunosuppressant is not a phospholipid.
- Immunosuppressants include, but are not limited to, statins; mTOR inhibitors, such as rapamycin or a rapamycin analog; TGF- ⁇ signaling agents; TGF- ⁇ receptor agonists; histone deacetylase inhibitors, such as Trichostatin A; corticosteroids; inhibitors of mitochondrial function, such as rotenone; P38 inhibitors; NF- ⁇ inhibitors, such as 6Bio, Dexamethasone, TCPA-1, IKK VII; adenosine receptor agonists; prostaglandin E2 agonists (PGE2), such as Misoprostol; phosphodiesterase inhibitors, such as phosphodiesterase 4 inhibitor (PDE4), such as Rolipram; proteasome inhibitors; kinase inhibitors; G-protein coupled receptor agonists; G-protein coupled receptor antagonists; glucocorticoids; retinoids; cytokine inhibitors; cytokine receptor inhibitors; cytokine receptor activators
- Immunosuppressants also include IDO, vitamin D3, cyclosporins, such as cyclosporine A, aryl hydrocarbon receptor inhibitors, resveratrol, azathiopurine (Aza), 6-mercaptopurine (6- MP), 6-thioguanine (6-TG), FK506, sanglifehrin A, salmeterol, mycophenolate mofetil (MMF), aspirin and other COX inhibitors, niflumic acid, estriol and triptolide.
- cyclosporins such as cyclosporine A, aryl hydrocarbon receptor inhibitors, resveratrol, azathiopurine (Aza), 6-mercaptopurine (6- MP), 6-thioguanine (6-TG), FK506, sanglifehrin A, salmeterol, mycophenolate mofetil (MMF), aspirin and other COX inhibitors, niflumic acid, estriol and triptolide.
- cyclosporins such as
- the immunosuppressant may comprise any of the agents provided herein.
- the immunosuppressant can be a compound that directly provides the
- Immunosuppressive e.g., tolerogenic
- APCs can be a compound that provides the immunosuppressive (e.g., tolerogenic) effect indirectly (i.e., after being processed in some way after administration).
- Immunosuppressants therefore, include prodrug forms of any of the compounds provided herein.
- Immunosuppressants also include nucleic acids that encode the peptides, polypeptides or proteins provided herein that result in an immunosuppressive (e.g., tolerogenic) immune response.
- the immunosuppressant is a nucleic acid that encodes a peptide, polypeptide or protein that results in an immunosuppressive (e.g., tolerogenic) immune response, and it is the nucleic acid that is coupled to the synthetic nanocarrier.
- an immunosuppressive e.g., tolerogenic
- the nucleic acid may be DNA or RNA, such as mRNA.
- the inventive compositions comprise a complement, such as a full-length complement, or a degenerate (due to degeneracy of the genetic code) of any of the nucleic acids provided herein.
- the nucleic acid is an expression vector that can be transcribed when transfected into a cell line.
- the expression vector may comprise a plasmid, retrovirus, or an adenovirus amongst others.
- Nucleic acids can be isolated or synthesized using standard molecular biology approaches, for example by using a polymerase chain reaction to produce a nucleic acid fragment, which is then purified and cloned into an expression vector. Additional techniques useful in the practice of this invention may be found in Current Protocols in Molecular Biology 2007 by John Wiley and Sons, Inc.;
- the immunosuppressants provided herein are coupled to synthetic nanocarriers.
- the immunosuppressant is an element that is in addition to the material that makes up the structure of the synthetic nanocarrier.
- the immunosuppressant is a compound that is in addition and coupled to the one or more polymers.
- the immunosuppressant is again in addition and coupled to the one or more lipids.
- the immunosuppressant is an element present in addition to the material of the synthetic nanocarrier that results in an immunosuppressive (e.g., tolerogenic) effect.
- immunosuppressants include, but are not limited, small molecule drugs, natural products, antibodies (e.g., antibodies against CD20, CD3, CD4), biologies- based drugs, carbohydrate-based drugs, nanoparticles, liposomes, RNAi, antisense nucleic acids, aptamers, methotrexate, NSAIDs; fingolimod; natalizumab; alemtuzumab; anti-CD3; tacrolimus (FK506), etc. Further immunosuppressants, are known to those of skill in the art, and the invention is not limited in this respect.
- “Load” of the immunosuppressant or antigen is the amount of the immunosuppressant or antigen
- the load of the immunosuppressant or antigen coupled to a synthetic nanocarrier is calculated as an average across a population of synthetic nanocarriers.
- the load of the immunosuppressant on average across the first population of synthetic nanocarriers is between 0.0001% and 50%.
- the load of the antigen on average across the first and/or second population of synthetic nanocarriers is between 0.0001% and 50%.
- the load of the immunosuppressant and/or antigen is between 0.01% and 20%.
- the load of the immunosuppressant and/or antigen is between 0.1% and 10%.
- the load of the immunosuppressant and/or antigen is between 1% and 10%.
- the load of the immunosuppressant and/or the antigen is at least 0.1%, at least 0.2%, at least 0.3%, at least 0.4%, at least 0.5%, at least 0.6%, at least 0.7%, at least 0.8%, at least 0.9%, at least 1%, at least 2%, at least 3%, at least 4%, at least 5%, at least 6%, at least 7%, at least 8%, at least 9%, at least 10%, at least 11%, at least 12%, at least 13%, at least 14%, at least 15%, at least 16%, at least 17%, at least 18%, at least 19% or at least 20% on average across a population of synthetic nanocarriers.
- the load of the immunosuppressant and/or the antigen is 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20% on average across a population of synthetic nanocarriers.
- the load of the immunosuppressant and/or the antigen is no more than 25% on average across a population of synthetic nanocarriers. In embodiments, the load is calculated as described in the Examples.
- the load may be calculated as follows: Approximately 3 mg of synthetic nanocarriers are collected and centrifuged to separate supernatant from synthetic nanocarrier pellet. Acetonitrile is added to the pellet, and the sample is sonicated and centrifuged to remove any insoluble material. The supernatant and pellet are injected on RP-HPLC and absorbance is read at 278nm. The ⁇ g found in the pellet is used to calculate % entrapped (load), ⁇ g in supernatant and pellet are used to calculate total ⁇ g recovered.
- Mainntenance dose refers to a dose that is administered to a subject, after an initial dose has resulted in an immunosuppressive (e.g., tolerogenic) response in a subject, to sustain a desired immunosuppressive (e.g., tolerogenic) response.
- a maintenance dose can be one that maintains the tolerogenic effect achieved after the initial dose, prevents an undesired immune response in the subject, or prevents the subject becoming a subject at risk of experiencing an undesired immune response, including an undesired level of an immune response.
- the maintenance dose is one that is sufficient to sustain an appropriate level of a desired immune response.
- “Maximum dimension of a synthetic nanocarrier” means the largest dimension of a nanocarrier measured along any axis of the synthetic nanocarrier.
- “Minimum dimension of a synthetic nanocarrier” means the smallest dimension of a synthetic nanocarrier measured along any axis of the synthetic nanocarrier. For example, for a spheroidal synthetic nanocarrier, the maximum and minimum dimension of a synthetic nanocarrier would be substantially identical, and would be the size of its diameter. Similarly, for a cuboidal synthetic nanocarrier, the minimum dimension of a synthetic nanocarrier would be the smallest of its height, width or length, while the maximum dimension of a synthetic nanocarrier would be the largest of its height, width or length.
- a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or greater than 100 nm.
- a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or less than 5 ⁇ .
- a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is greater than 110 nm, more preferably greater than 120 nm, more preferably greater than 130 nm, and more preferably still greater than 150 nm.
- aspects ratios of the maximum and minimum dimensions of inventive synthetic nanocarriers may vary depending on the embodiment. For instance, aspect ratios of the maximum to minimum dimensions of the synthetic nanocarriers may vary from 1: 1 to 1,000,000: 1, preferably from 1: 1 to 100,000: 1, more preferably from 1: 1 to
- a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or less than 3 ⁇ , more preferably equal to or less than 2 ⁇ , more preferably equal to or less than 1 ⁇ , more preferably equal to or less than 800 nm, more preferably equal to or less than 600 nm, and more preferably still equal to or less than 500 nm.
- a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or greater than 100 nm, more preferably equal to or greater than 120 nm, more preferably equal to or greater than 130 nm, more preferably equal to or greater than 140 nm, and more preferably still equal to or greater than 150 nm.
- Measurement of synthetic nanocarrier dimensions e.g., diameter
- DLS dynamic light scattering
- a suspension of synthetic nanocarriers can be diluted from an aqueous buffer into purified water to achieve a final synthetic nanocarrier suspension concentration of approximately 0.01 to 0.1 mg/mL.
- the diluted suspension may be prepared directly inside, or transferred to, a suitable cuvette for DLS analysis.
- the cuvette may then be placed in the DLS, allowed to equilibrate to the controlled temperature, and then scanned for sufficient time to acquire a stable and reproducible distribution based on appropriate inputs for viscosity of the medium and refractive indicies of the sample.
- the effective diameter, or mean of the distribution is then reported.
- "Dimension" or "size” or “diameter” of synthetic nanocarriers means the mean of a particle size distribution obtained using dynamic light scattering.
- MHC refers to major histocompatibility complex, a large genomic region or gene family found in most vertebrates that encodes MHC molecules that display fragments or epitopes of processed proteins on the cell surface.
- the presentation of MHC:peptide on cell surfaces allows for surveillance by immune cells, usually a T cell.
- immune cells usually a T cell.
- Class I MHC molecules are found on nucleated cells and present peptides to cytotoxic T cells.
- Class II MHC molecules are found on certain immune cells, chiefly macrophages, B cells and dendritic cells, collectively known as professional APCs.
- the best-known genes in the MHC region are the subset that encodes antigen-presenting proteins on the cell surface.
- Non-methoxy-terminated polymer means a polymer that has at least one terminus that ends with a moiety other than methoxy. In some embodiments, the polymer has at least two termini that ends with a moiety other than methoxy. In other embodiments, the polymer has no termini that ends with methoxy.
- Non-methoxy-terminated, pluronic polymer means a polymer other than a linear pluronic polymer with methoxy at both termini.
- Polymeric nanoparticles as provided herein can comprise non-methoxy-terminated polymers or non- methoxy-terminated, pluronic polymers.
- “Pharmaceutically acceptable excipient” means a pharmacologically inactive material used together with the recited synthetic nanocarriers to formulate the inventive compositions.
- Pharmaceutically acceptable excipients comprise a variety of materials known in the art, including but not limited to saccharides (such as glucose, lactose, and the like), preservatives such as antimicrobial agents, reconstitution aids, colorants, saline (such as phosphate buffered saline), and buffers.
- Protocol refers to any dosing regimen of one or more substances to a subject.
- a dosing regimen may include the amount, frequency and/or mode of administration.
- such a protocol may be used to administer one or more compositions of the invention to one or more test subjects. Immune responses in these test subject can then be assessed to determine whether or not the protocol was effective in reducing an undesired immune response or generating a desired immune response (e.g., the promotion of a tolerogenic effect). Any other therapeutic and/or prophylactic effect may also be assessed instead of or in addition to the aforementioned immune responses. Whether or not a protocol had a desired effect can be determined using any of the methods provided herein or otherwise known in the art.
- a population of cells may be obtained from a subject to which a composition provided herein has been administered according to a specific protocol in order to determine whether or not specific immune cells, cytokines, antibodies, etc. were reduced, generated, activated, etc.
- Useful methods for detecting the presence and/or number of immune cells include, but are not limited to, flow cytometric methods (e.g., FACS) and immunohistochemistry methods.
- FACS flow cytometric methods
- Antibodies and other binding agents for specific staining of immune cell markers are commercially available.
- kits typically include staining reagents for multiple antigens that allow for FACS-based detection, separation and/or quantitation of a desired cell population from a heterogeneous population of cells.
- Providing a subject is any action or set of actions that causes a clinician to come in contact with a subject and administer a composition provided herein thereto or to perform a method provided herein thereupon.
- the subject is one who is in need of a tolerogenic immune response as provided herein.
- the action or set of actions may be either directly oneself or indirectly, such as, but not limited to, an unrelated third party that takes an action through reliance on one's words or deeds.
- Subject means animals, including warm blooded mammals such as humans and primates; avians; domestic household or farm animals such as cats, dogs, sheep, goats, cattle, horses and pigs; laboratory animals such as mice, rats and guinea pigs; fish; reptiles; zoo and wild animals; and the like.
- substantially no B cell epitopes refers to the absence of B cell epitopes in an amount (by itself, within the context of the allergen, in conjunction with a carrier or in conjunction with an inventive composition) that stimulates substantial activation of a B cell response.
- a composition with substantially no B cell epitopes does not contain a measurable amount of B cell epitopes of an allergen.
- such a composition may comprise a measurable amount of B cell epitopes of an allergen but said amount is not effective to generate a measurable B cell immune response (by itself, within the context of the antigen, in conjunction with a carrier, or in conjunction with an inventive composition), such as allergen- specific antibody production or allergen- specific B cell proliferation and/or activity, or is not effective to generate a significant measurable B cell immune response (by itself, within the context of the antigen, in conjunction with a carrier or in conjunction with an inventive composition).
- a significant measurable B cell immune response is one that produces or would be expected to produce an adverse clinical result in a subject.
- a significant measurable B cell immune response is one that is greater than the level of the same type of immune response (e.g., allergen- specific antibody production or allergen- specific B cell proliferation and/or activity) produced by a control antigen (e.g., one known not to comprise B cell epitopes of the allergen or to stimulate B cell immune responses).
- a significant measurable B cell immune response such as a measurement of antibody titers (e.g., by ELISA) is 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 15-fold, 20- fold or more greater than the same type of response produced by a control (e.g., a control antigen).
- a composition with substantially no B cell epitopes is one that produces little to no allergen- specific antibody titers (by itself, within the context of the antigen, in conjunction with a carrier or in conjunction with an inventive composition).
- Such compositions include those that produce an antibody titer (as an EC50 value) of less than 500, 400, 300, 200, 100, 50, 40, 30, 20 or 10.
- a significant measurable B cell immune response is a measurement of the number or proliferation of B cells that is 10%, 25%, 50%, 100%, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 15- fold, 20-fold or more greater that the same type of response produced by a control.
- Other methods for measuring B cell responses are known to those of ordinary skill in the art.
- antigens are selected such that they do not comprise B cell epitopes for coupling to the synthetic nanocarriers as provided herein.
- the synthetic nanocarriers coupled to the epitopes are produced and tested for B cell immune responses (e.g., B cell proliferation and/or activity, allergen- specific antibody production).
- compositions that exhibit the desired properties may then be selected.
- Synthetic nanocarrier(s) means a discrete object that is not found in nature, and that possesses at least one dimension that is less than or equal to 5 microns in size. Albumin nanoparticles are generally included as synthetic nanocarriers, however in certain
- the synthetic nanocarriers do not comprise albumin nanoparticles. In embodiments, inventive synthetic nanocarriers do not comprise chitosan. In other words,
- inventive synthetic nanocarriers are not lipid-based nanoparticles. In further embodiments, inventive synthetic nanocarriers do not comprise a phospholipid.
- a synthetic nanocarrier can be, but is not limited to, one or a plurality of lipid-based nanoparticles (also referred to herein as lipid nanoparticles, i.e., nanoparticles where the majority of the material that makes up their structure are lipids), polymeric nanoparticles, metallic nanoparticles, surfactant-based emulsions, dendrimers, buckyballs, nanowires, viruslike particles (i.e., particles that are primarily made up of viral structural proteins but that are not infectious or have low infectivity), peptide or protein-based particles (also referred to herein as protein particles, i.e., particles where the majority of the material that makes up their structure are peptides or proteins) (such as albumin nanoparticles) and/or nanoparticles that are developed using a combination of nanomaterials such as lipid-polymer nanoparticles.
- lipid-based nanoparticles also referred to herein as lipid nanoparticles, i.
- Synthetic nanocarriers may be a variety of different shapes, including but not limited to spheroidal, cuboidal, pyramidal, oblong, cylindrical, toroidal, and the like. Synthetic nanocarriers according to the invention comprise one or more surfaces.
- Exemplary synthetic nanocarriers that can be adapted for use in the practice of the present invention comprise: (1) the biodegradable nanoparticles disclosed in US Patent 5,543,158 to Gref et al., (2) the polymeric nanoparticles of Published US Patent Application 20060002852 to Saltzman et al., (3) the lithographically constructed nanoparticles of Published US Patent Application 20090028910 to DeSimone et al., (4) the disclosure of WO 2009/051837 to von Andrian et al., (5) the nanoparticles disclosed in Published US Patent Application 2008/0145441 to Penades et al., (6) the protein nanoparticles disclosed in Published US Patent Application 20090226525 to de los Rios et al., (7) the virus-like particles disclosed in published US Patent Application 20060222652 to Sebbel et al., (8) the nucleic acid coupled virus-like particles disclosed in published US Patent Application 20060251677 to Bachmann et al., (9) the virus
- synthetic nanocarriers may possess an aspect ratio greater than 1: 1, 1: 1.2, 1: 1.5, 1:2, 1:3, 1:5, 1:7, or greater than 1: 10.
- Synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface with hydroxyl groups that activate complement or alternatively comprise a surface that consists essentially of moieties that are not hydroxyl groups that activate complement.
- synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface that substantially activates complement or alternatively comprise a surface that consists essentially of moieties that do not substantially activate complement.
- synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface that activates complement or alternatively comprise a surface that consists essentially of moieties that do not activate complement.
- synthetic nanocarriers exclude virus-like particles.
- synthetic nanocarriers may possess an aspect ratio greater than 1: 1, 1: 1.2, 1: 1.5, 1:2, 1:3, 1:5, 1:7, or greater than 1: 10.
- T cell antigen means a CD4+ T-cell antigen or CD8+ cell antigen.
- CD4+ T-cell antigen means any antigen that is recognized by and triggers an immune response in a CD4+ T-cell e.g., an antigen that is specifically recognized by a T-cell receptor on a CD4+T cell via presentation of the antigen or portion thereof bound to a Class II major histocompatability complex molecule (MHC).
- CD8+ T cell antigen means any antigen that is recognized by and triggers an immune response in a CD8+ T-cell e.g., an antigen that is specifically recognized by a T-cell receptor on a CD8+T cell via presentation of the antigen or portion thereof bound to a Class I major histocompatability complex molecule (MHC).
- MHC major histocompatability complex molecule
- an antigen that is a T cell antigen is also a B cell antigen.
- the T cell antigen is not also a B cell antigen.
- T cell antigens generally are proteins or peptides.
- Tolerogenic immune response means any immune response that can lead to immune suppression specific to an antigen or a cell, tissue, organ, etc. that expresses such an antigen. Such immune responses include any reduction, delay or inhibition in an undesired immune response specific to the antigen or cell, tissue, organ, etc. that expresses such antigen. Such immune responses also include any stimulation, production, induction, promotion or recruitment in a desired immune response specific to the antigen or cell, tissue, organ, etc. that expresses such antigen. Tolerogenic immune responses, therefore, include the absence of or reduction in an undesired immune response to an antigen that can be mediated by antigen reactive cells as well as the presence or promotion of suppressive cells.
- Tolerogenic immune responses as provided herein include immunological tolerance.
- To "generate a tolerogenic immune response” refers to the generation of any of the foregoing immune responses specific to an antigen or cell, tissue, organ, etc. that expresses such antigen.
- the tolerogenic immune response can be the result of MHC Class I-restricted presentation and/or MHC Class II-restricted presentation and/or B cell presentation and/or presentation by CD Id, etc.
- Tolerogenic immune responses include any reduction, delay or inhibition in CD4+ T cell, CD8+ T cell or B cell proliferation and/or activity. Tolerogenic immune responses also include a reduction in antigen- specific antibody production. Tolerogenic immune responses can also include any response that leads to the stimulation, induction, production or recruitment of regulatory cells, such as CD4+ Treg cells, CD8+ Treg cells, Breg cells, etc. In some embodiments, the tolerogenic immune response, is one that results in the conversion to a regulatory phenotype characterized by the production, induction, stimulation or recruitment of regulatory cells.
- Tolerogenic immune responses also include any response that leads to the stimulation, production or recruitment of CD4+ Treg cells and/or CD8+ Treg cells.
- CD4+ Treg cells can express the transcription factor FoxP3 and inhibit inflammatory responses and auto-immune inflammatory diseases (Human regulatory T cells in autoimmune diseases. Cvetanovich GL, Hafler DA. Curr Opin Immunol. 2010 Dec;22(6):753-60. Regulatory T cells and
- CD8+ Treg cells which recognize antigen presented by Class I (and Qa- 1), can also suppress T-cell help to B-cells and result in activation of antigen- specific suppression inducing tolerance to both self and foreign antigens.
- Disruption of the interaction of Qa-1 with CD8+ Treg cells has been shown to dysregulate immune responses and results in the development of auto-antibody formation and an auto-immune lethal systemic-lupus-erythematosus (Kim et al., Nature. 2010 Sep 16, 467 (7313): 328-32).
- CD8+ Treg cells have also been shown to inhibit models of autoimmune inflammatory diseases including rheumatoid arthritis and colitis (CD4+CD25+ regulatory T cells in autoimmune arthritis.
- compositions provided can effectively result in both types of responses (CD4+ Treg and CD8+ Treg).
- FoxP3 can be induced in other immune cells, such as macrophages, iNKT cells, etc., and the
- compositions provided herein can result in one or more of these responses as well.
- Tolerogenic immune responses also include, but are not limited to, the induction of regulatory cytokines, such as Treg cytokines; induction of inhibitory cytokines; the inhibition of inflammatory cytokines (e.g., IL-4, IL-lb, IL-5, TNF-a, IL-6, GM-CSF, IFN- ⁇ , IL-2, IL-9, IL-12, IL-17, IL-18, IL-21, IL-22, IL-23, M-CSF, C reactive protein, acute phase protein, chemokines (e.g., MCP-1, RANTES, MIP- l cc, ⁇ - ⁇ , MIG, ITAC or IP- 10), the production of anti-inflammatory cytokines (e.g., IL-4, IL-13, IL-10, etc.), chemokines (e.g., CCL-2, CXCL8), proteases (e.g., MMP-3, MMP-9), leukotrienes (
- Undesired immune responses or tolerogenic immune responses can be monitored using, for example, methods of assessing immune cell number and/or function, tetramer analysis, ELISPOT, flow cytometry-based analysis of cytokine expression, cytokine secretion, cytokine expression profiling, gene expression profiling, protein expression profiling, analysis of cell surface markers, PCR-based detection of immune cell receptor gene usage (see T.
- Undesired immune responses or tolerogenic immune responses may also be monitored using, for example, methods of assessing protein levels in plasma or serum, immune cell proliferation and/or functional assays, etc.
- tolerogenic immune responses can be monitored by assessing the induction of FoxP3.
- specific methods are described in more detail in the Examples.
- tolerogenic immune responses lead to the inhibition of the development, progression or pathology of the diseases, disorders or conditions described herein. Whether or not the inventive compositions can lead to the inhibition of the development, progression or pathology of the diseases, disorders or conditions described herein can be measured with animal models of such diseases, disorders or conditions.
- the reduction of an undesired immune response or generation of a tolerogenic immune response may be assessed by determining clinical endpoints, clinical efficacy, clinical symptoms, disease biomarkers and/or clinical scores.
- Undesired immune responses or tolerogenic immune responses can also be assessed with diagnostic tests to assess the presence or absence of a disease, disorder or condition as provided herein.
- methods for monitoring or assessing undesired immune (e.g., allergic) responses include assessing an immune response in a subject by skin reactivity and/or allergen- specific antibody production.
- monitoring or assessing the generation of an undesired immune response or a tolerogenic immune response in a subject can be prior to the administration of a composition of synthetic nanocarriers provided herein and/or prior to exposure to an allergen. In other embodiments, assessing the generation of an undesired immune response or tolerogenic immune response can be after administration of a
- composition of synthetic nanocarriers provided herein and/or and after exposure to an allergen.
- the assessment is done after administration of the composition of synthetic nanocarriers, but prior to exposure to an allergen. In other embodiments, the assessment is done after exposure to an allergen, but prior to
- the assessment is performed prior to both the administration of the synthetic nanocarriers and exposure to an allergen, while in yet other embodiments the assessment is performed after both the administration of synthetic nanocarriers and the exposure to an allergen. In further embodiments, the assessment is performed both prior to and after the administration of the synthetic nanocarriers and the exposure to an allergen.
- the assessment is performed more than once on the subject to determine that a desirable immune state is maintained in the subject, such as a subject that has or is at risk of having an allergy.
- an antibody response can be assessed by determining one or more antibody titers.
- Antibody titer means a measurable level of antibody production. Methods for measuring antibody titers are known in the art and include Enzyme-linked Immunosorbent Assay (ELISA). In embodiments, the antibody response can be quantitated, for example, as the number of antibodies, concentration of antibodies or titer. The values can be absolute or they can be relative. Assays for quantifying an antibody response include antibody capture assays, enzyme-linked immunosorbent assays (ELISAs), inhibition liquid phase absorption assays (ILPAAs), rocket Immunoelectrophoresis (RIE) assays and line Immunoelectrophoresis (LIE) assays.
- ELISAs enzyme-linked immunosorbent assays
- IPAAs inhibition liquid phase absorption assays
- RIE rocket Immunoelectrophoresis
- LIE line Immunoelectrophoresis
- An ELISA method for measuring an antibody titer may consist of the following steps (i) preparing an ELISA-plate coating material such that the antibody target of interest is coupled to a substrate polymer or other suitable material (ii) preparing the coating material in an aqueous solution (such as PBS) and delivering the coating material solution to the wells of a multiwell plate for overnight deposition of the coating onto the multiwell plate (iii) thoroughly washing the multiwell plate with wash buffer (such as 0.05% Tween-20 in PBS) to remove excess coating material (iv) blocking the plate for nonspecific binding by applying a diluent solution (such as 10% fetal bovine serum in PBS), (v) washing the blocking/diluent solution from the plate with wash buffer (vi) di
- Undesired immune response refers to any undesired immune response that results from exposure to an antigen, promotes or exacerbates a disease, disorder or condition provided herein (or a symptom thereof), or is symptomatic of a disease, disorder or condition provided herein. Such immune responses generally have a negative impact on a subject's health or is symptomatic of a negative impact on a subject's health. Undesired immune responses include antigen- specific antibody production, antigen-specific B cell proliferation and/or activity or antigen-specific CD4+ T cell proliferation and/or activity.
- compositions comprising immunosuppressants and MHC Class II-restricted epitopes of an allergen and related methods.
- Such compositions and methods are useful for reducing the generation of undesired immune responses (e.g., undesired B cell or CD4+ T cell proliferation and/or activity, undesired antibody production, etc.) and promoting the generation of tolerogenic immune responses that are specific to the allergen.
- the compositions can be administered to subjects in which a tolerogenic immune response to an allergen is desired. Such subjects include those that have been, are being or will be exposed to an allergen.
- Such subjects include those that have experienced, are experiencing or are expected to experience an undesired immune (e.g., allergic) response to any of the allergens described herein. Such subjects also include those that have or are at risk of having an allergy to any of the allergens described herein.
- an undesired immune e.g., allergic
- the synthetic nanocarriers are designed to comprise
- immunosuppressants and, in some embodiments, MHC Class II-restricted epitopes of an allergen against which a tolerogenic effect is desired.
- nanocarriers can be used according to the invention.
- synthetic nanocarriers are spheres or spheroids.
- synthetic nanocarriers are flat or plate-shaped.
- synthetic nanocarriers are cubes or cubic.
- synthetic nanocarriers are ovals or ellipses.
- synthetic nanocarriers are cylinders, cones, or pyramids.
- a population of synthetic nanocarriers that is relatively uniform in terms of size, shape, and/or composition so that each synthetic nanocarrier has similar properties. For example, at least 80%, at least 90%, or at least 95% of the synthetic nanocarriers, based on the total number of synthetic nanocarriers, may have a minimum dimension or maximum dimension that falls within 5%, 10%, or 20% of the average diameter or average dimension of the synthetic nanocarriers. In some embodiments, a population of synthetic nanocarriers may be heterogeneous with respect to size, shape, and/or composition.
- Synthetic nanocarriers can be solid or hollow and can comprise one or more layers. In some embodiments, each layer has a unique composition and unique properties relative to the other layer(s).
- synthetic nanocarriers may have a core/shell structure, wherein the core is one layer (e.g. a polymeric core) and the shell is a second layer (e.g. a lipid bilayer or monolayer). Synthetic nanocarriers may comprise a plurality of different layers.
- synthetic nanocarriers may optionally comprise one or more lipids.
- a synthetic nanocarrier may comprise a liposome.
- a synthetic nanocarrier may comprise a lipid bilayer.
- a synthetic nanocarrier may comprise a lipid monolayer.
- a synthetic nanocarrier may comprise a micelle.
- a synthetic nanocarrier may comprise a core comprising a polymeric matrix surrounded by a lipid layer (e.g., lipid bilayer, lipid monolayer, etc.).
- a synthetic nanocarrier may comprise a non- polymeric core (e.g., metal particle, quantum dot, ceramic particle, bone particle, viral particle, proteins, nucleic acids, carbohydrates, etc.) surrounded by a lipid layer (e.g., lipid bilayer, lipid monolayer, etc.).
- a non- polymeric core e.g., metal particle, quantum dot, ceramic particle, bone particle, viral particle, proteins, nucleic acids, carbohydrates, etc.
- lipid layer e.g., lipid bilayer, lipid monolayer, etc.
- synthetic nanocarriers may comprise metal particles, quantum dots, ceramic particles, etc.
- a non-polymeric synthetic nanocarrier is an aggregate of non-polymeric components, such as an aggregate of metal atoms (e.g., gold atoms).
- synthetic nanocarriers may optionally comprise one or more amphiphilic entities.
- an amphiphilic entity can promote the production of synthetic nanocarriers with increased stability, improved uniformity, or increased viscosity.
- amphiphilic entities can be associated with the interior surface of a lipid membrane (e.g., lipid bilayer, lipid monolayer, etc.).
- lipid membrane e.g., lipid bilayer, lipid monolayer, etc.
- amphiphilic entities known in the art are suitable for use in making synthetic nanocarriers in accordance with the present invention.
- amphiphilic entities include, but are not limited to, phosphoglycerides; phosphatidylcholines; dipalmitoyl phosphatidylcholine (DPPC);
- dioleylphosphatidyl ethanolamine DOPE
- dioleyloxypropyltriethylammonium DOTMA
- dioleoylphosphatidylcholine cholesterol; cholesterol ester; diacylglycerol;
- diacylglycerolsuccinate diphosphatidyl glycerol (DPPG); hexanedecanol
- fatty alcohols such as polyethylene glycol (PEG); polyoxyethylene-9-lauryl ether
- a surface active fatty acid such as palmitic acid or oleic acid
- fatty acids fatty acid monoglycerides; fatty acid diglycerides; fatty acid amides; sorbitan trioleate (Span®85) glycocholate; sorbitan monolaurate (Span®20); polysorbate 20 (Tween®20); polysorbate 60 (Tween®60);
- polysorbate 65 (Tween®65); polysorbate 80 (Tween®80); polysorbate 85 (Tween®85); polyoxyethylene monostearate; surfactin; a poloxomer; a sorbitan fatty acid ester such as sorbitan trioleate; lecithin; lysolecithin; phosphatidylserine;
- phosphatidylinositol phosphatidylinositol
- sphingomyelin phosphatidylethanolamine (cephalin); cardiolipin
- phosphatidic acid cerebrosides
- dicetylphosphate dipalmitoylphosphatidylglycerol
- amphiphilic entity component may be a mixture of different amphiphilic entities. Those skilled in the art will recognize that this is an exemplary, not comprehensive, list of substances with surfactant activity. Any amphiphilic entity may be used in the production of synthetic nanocarriers to be used in accordance with the present invention.
- synthetic nanocarriers may optionally comprise one or more carbohydrates.
- Carbohydrates may be natural or synthetic.
- a carbohydrate may be a derivatized natural carbohydrate.
- a carbohydrate comprises monosaccharide or disaccharide, including but not limited to glucose, fructose, galactose, ribose, lactose, sucrose, maltose, trehalose, cellbiose, mannose, xylose, arabinose, glucoronic acid, galactoronic acid, mannuronic acid, glucosamine, galatosamine, and neuramic acid.
- a carbohydrate is a polysaccharide, including but not limited to pullulan, cellulose, microcrystalline cellulose, hydroxypropyl methylcellulose (HPMC), hydroxycellulose (HC), methylcellulose (MC), dextran, cyclodextran, glycogen,
- inventive synthetic nanocarriers do not comprise (or specifically exclude) carbohydrates, such as a polysaccharide.
- the carbohydrate may comprise a carbohydrate derivative such as a sugar alcohol, including but not limited to mannitol, sorbitol, xylitol, erythritol, maltitol, and lactitol.
- a carbohydrate derivative such as a sugar alcohol, including but not limited to mannitol, sorbitol, xylitol, erythritol, maltitol, and lactitol.
- synthetic nanocarriers can comprise one or more polymers.
- the synthetic nanocarriers comprise one or more polymers that is a nonmethoxy-terminated, pluronic polymer.
- at least 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, or 99% (weight/weight) of the polymers that make up the synthetic nanocarners are non-methoxy-terminated, pluronic polymers.
- all of the polymers that make up the synthetic nanocarriers are non-methoxy-terminated, pluronic polymers.
- the synthetic nanocarriers comprise one or more polymers that is a non-methoxy-terminated polymer. In some embodiments, at least 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, or 99% (weight/weight) of the polymers that make up the synthetic nanocarriers are nonmethoxy- terminated polymers.
- all of the polymers that make up the synthetic nanocarriers are non-methoxy-terminated polymers.
- the synthetic nanocarriers comprise one or more polymers that does not comprise of pluronic polymer. In some embodiments, at least 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, or 99% (weight/weight) of the polymers that make up the synthetic nanocarriers do not comprise pluronic polymer. In some embodiments, all of the polymers that make up the synthetic nanocarriers do not comprise pluronic polymer. In some embodiments, such a polymer can be surrounded by a coating layer (e.g., liposome, lipid monolayer, micelle, etc.). In some embodiments, various elements of the synthetic nanocarriers can be coupled with the polymer.
- a coating layer e.g., lipo
- the immunosuppressants and/or antigens can be coupled to the synthetic nanocarriers by any of a number of methods. Generally, the coupling can be a result of bonding between the immunosuppressants and/or antigens and the synthetic nanocarriers. This bonding can result in the immunosuppressants and/or antigens being attached to the surface of the synthetic nanocarrierss and/or contained within (encapsulated) the synthetic nanocarriers. In some embodiments, however, the immunosuppressants and/or antigens are encapsulated by the synthetic nanocarriers as a result of the structure of the synthetic nanocarriers rather than bonding to the synthetic nanocarriers. In preferable embodiments, the synthetic nanocarriers comprise a polymer as provided herein, and the immunosuppressants and/or antigens are coupled to the polymer.
- a coupling moiety can be any moiety through which an immunosuppressant and/or antigen is bonded to a synthetic nanocarrier.
- moieties include covalent bonds, such as an amide bond or ester bond, as well as separate molecules that bond (covalently or non-covalently) the immunosuppressant and/or antigen to the synthetic nanocarrier.
- molecules include linkers or polymers or a unit thereof.
- the coupling moiety can comprise a charged polymer to which an immunosuppressant and/or antigen electrostatically binds.
- the coupling moiety can comprise a polymer or unit thereof to which it is covalently bonded.
- the synthetic nanocarriers comprise a polymer as provided herein. These synthetic nanocarriers can be completely polymeric or they can be a mix of polymers and other materials.
- the polymers of a synthetic nanocarrier associate to form a polymeric matrix.
- a component such as an
- immunosuppressant or antigen can be covalently associated with one or more polymers of the polymeric matrix.
- covalent association is mediated by a linker.
- a component can be noncovalently associated with one or more polymers of the polymeric matrix.
- a component can be
- a component can be associated with one or more polymers of a polymeric matrix by hydrophobic interactions, charge interactions, van der Waals forces, etc.
- hydrophobic interactions e.g., hydrophobic interactions, charge interactions, van der Waals forces, etc.
- Polymers may be natural or unnatural (synthetic) polymers. Polymers may be homopolymers or copolymers comprising two or more monomers. In terms of sequence, copolymers may be random, block, or comprise a combination of random and block sequences. Typically, polymers in accordance with the present invention are organic polymers.
- the polymer comprises a polyester, polycarbonate, polyamide, or polyether, or unit thereof.
- the polymer comprises poly(ethylene glycol) (PEG), polypropylene glycol, poly(lactic acid), poly(glycolic acid), poly(lactic-co- glycolic acid), or a polycaprolactone, or unit thereof.
- PEG poly(ethylene glycol)
- polypropylene glycol poly(lactic acid), poly(glycolic acid), poly(lactic-co- glycolic acid), or a polycaprolactone, or unit thereof.
- the polymer is biodegradable. Therefore, in these embodiments, it is preferred that if the polymer comprises a polyether, such as poly(ethylene glycol) or polypropylene glycol or unit thereof, the polymer comprises a block-co-polymer of a polyether and a biodegradable polymer such that the polymer is biodegradable.
- the polymer does not solely comprise a polyether or unit thereof, such as poly(ethylene glycol) or polypropylene glycol or unit thereof.
- polymers suitable for use in the present invention include, but are not limited to polyethylenes, polycarbonates (e.g. poly(l,3-dioxan-2one)), polyanhydrides (e.g. poly(sebacic anhydride)), polypropylfumerates, polyamides (e.g. polycaprolactam), polyacetals, polyethers, polyesters (e.g., polylactide, polyglycolide, polylactide-co-glycolide, polycaprolactone, polyhydroxyacid (e.g.
- polymers in accordance with the present invention include polymers which have been approved for use in humans by the U.S. Food and Drug
- polyesters e.g., polylactic acid, poly(lactic-co-glycolic acid), polycaprolactone, polyvalerolactone, poly(l,3-dioxan-2one)
- polyanhydrides e.g., poly(sebacic anhydride)
- polyethers e.g., polyethylene glycol
- polyurethanes polymethacrylates; polyacrylates; and
- polymers can be hydrophilic.
- polymers may comprise anionic groups (e.g., phosphate group, sulphate group, carboxylate group); cationic groups (e.g., quaternary amine group); or polar groups (e.g., hydroxyl group, thiol group, amine group).
- a synthetic nanocarrier comprising a hydrophilic polymeric matrix generates a hydrophilic environment within the synthetic nanocarrier.
- polymers can be hydrophobic.
- a synthetic nanocarrier comprising a hydrophobic polymeric matrix generates a hydrophobic
- hydrophobicity of the polymer may have an impact on the nature of materials that are incorporated (e.g., coupled) within the synthetic nanocarrier.
- polymers may be modified with one or more moieties and/or functional groups.
- moieties or functional groups can be used in accordance with the present invention.
- polymers may be modified with polyethylene glycol (PEG), with a carbohydrate, and/or with acyclic polyacetals derived from
- polysaccharides (Papisov, 2001, ACS Symposium Series, 786:301). Certain embodiments may be made using the general teachings of US Patent No. 5543158 to Gref et al., or WO publication WO2009/051837 by Von Andrian et al.
- polymers may be modified with a lipid or fatty acid group.
- a fatty acid group may be one or more of butyric, caproic, caprylic, capric, lauric, myristic, palmitic, stearic, arachidic, behenic, or lignoceric acid.
- a fatty acid group may be one or more of palmitoleic, oleic, vaccenic, linoleic, alpha-linoleic, gamma-linoleic, arachidonic, gadoleic, arachidonic, eicosapentaenoic, docosahexaenoic, or erucic acid.
- polymers may be polyesters, including copolymers comprising lactic acid and glycolic acid units, such as poly(lactic acid-co-glycolic acid) and poly(lactide- co-glycolide), collectively referred to herein as "PLGA”; and homopolymers comprising glycolic acid units, referred to herein as "PGA,” and lactic acid units, such as poly-L-lactic acid, poly-D-lactic acid, poly-D,L-lactic acid, poly-L-lactide, poly-D-lactide, and poly-D,L- lactide, collectively referred to herein as "PLA.”
- exemplary polyesters include, for example, polyhydroxyacids; PEG copolymers and copolymers of lactide and glycolide (e.g., PLA-PEG copolymers, PGA-PEG copolymers, PLGA-PEG copolymers, and derivatives thereof.
- polyesters include, for example,
- a polymer may be PLGA.
- PLGA is a biocompatible and biodegradable co-polymer of lactic acid and glycolic acid, and various forms of PLGA are characterized by the ratio of lactic acid:glycolic acid.
- Lactic acid can be L-lactic acid, D- lactic acid, or D,L-lactic acid.
- the degradation rate of PLGA can be adjusted by altering the lactic acid:glycolic acid ratio.
- PLGA to be used in accordance with the present invention is characterized by a lactic acid:glycolic acid ratio of approximately 85: 15, approximately 75:25, approximately 60:40, approximately 50:50, approximately 40:60, approximately 25:75, or approximately 15:85.
- polymers may be one or more acrylic polymers.
- acrylic polymers include, for example, acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), poly(methacrylic acid anhydride), methyl methacrylate, polymethacrylate, poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, glycidyl methacrylate copolymers, polycyanoacrylates, and combinations comprising one or more of the foregoing polymers.
- the acrylic polymer may comprise fully-polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammoni
- polymers can be cationic polymers.
- cationic polymers are able to condense and/or protect negatively charged strands of nucleic acids (e.g. DNA, or derivatives thereof).
- Amine-containing polymers such as poly(lysine) (Zauner et al.,
- inventive synthetic nanocarriers are positively-charged at physiological pH, form ion pairs with nucleic acids, and mediate transfection in a variety of cell lines.
- inventive synthetic nanocarriers may not comprise (or may exclude) cationic polymers.
- polymers can be degradable polyesters bearing cationic side chains (Putnam et al., 1999, Macromolecules, 32:3658; Barrera et al., 1993, J. Am. Chem. Soc, 115: 11010; Kwon et al., 1989, Macromolecules, 22:3250; Lim et al., 1999, J. Am. Chem. Soc, 121:5633; and Zhou et al., 1990, Macromolecules, 23:3399).
- polyesters include poly(L-lactide-co-L-lysine) (Barrera et al., 1993, J. Am. Chem.
- polymers can be linear or branched polymers. In some embodiments, polymers can be dendrimers. In some embodiments, polymers can be substantially cross-linked to one another. In some embodiments, polymers can be
- polymers can be used in accordance with the present invention without undergoing a cross-linking step.
- inventive synthetic nanocarriers may comprise block copolymers, graft copolymers, blends, mixtures, and/or adducts of any of the foregoing and other polymers.
- polymers listed herein represent an exemplary, not comprehensive, list of polymers that can be of use in accordance with the present invention.
- synthetic nanocarriers may comprise metal particles, quantum dots, ceramic particles, etc.
- a non-polymeric synthetic nanocarrier is an aggregate of non-polymeric components, such as an aggregate of metal atoms (e.g., gold atoms).
- compositions according to the invention comprise synthetic nanocarriers in combination with pharmaceutically acceptable excipients, such as preservatives, buffers, saline, or phosphate buffered saline.
- pharmaceutically acceptable excipients such as preservatives, buffers, saline, or phosphate buffered saline.
- inventive synthetic nanocarriers are suspended in sterile saline solution for injection together with a preservative.
- the component when preparing synthetic nanocarriers as carriers, methods for coupling components to the synthetic nanocarriers may be useful. If the component is a small molecule it may be of advantage to attach the component to a polymer prior to the assembly of the synthetic nanocarriers. In embodiments, it may also be an advantage to prepare the synthetic nanocarriers with surface groups that are used to couple the components to the synthetic nanocarriers through the use of these surface groups rather than attaching the components to a polymer and then using this polymer conjugate in the construction of synthetic nanocarriers.
- the coupling can be a covalent linker.
- peptides according to the invention can be covalently coupled to the external surface via a 1,2,3-triazole linker formed by the 1,3-dipolar cycloaddition reaction of azido groups on the surface of the nanocarrier with antigen or immunosuppressant containing an alkyne group or by the 1,3-dipolar cycloaddition reaction of alkynes on the surface of the nanocarrier with antigens or immunosuppressants containing an azido group.
- Such cycloaddition reactions are preferably performed in the presence of a Cu(I) catalyst along with a suitable Cu(I)-ligand and a reducing agent to reduce Cu(II) compound to catalytic active Cu(I) compound.
- This Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) can also be referred as the click reaction.
- the covalent coupling may comprise a covalent linker that comprises an amide linker, a disulfide linker, a thioether linker, a hydrazone linker, a hydrazide linker, an imine or oxime linker, an urea or thiourea linker, an amidine linker, an amine linker, and a sulfonamide linker.
- a covalent linker that comprises an amide linker, a disulfide linker, a thioether linker, a hydrazone linker, a hydrazide linker, an imine or oxime linker, an urea or thiourea linker, an amidine linker, an amine linker, and a sulfonamide linker.
- An amide linker is formed via an amide bond between an amine on one component with the carboxylic acid group of a second component.
- the amide bond in the linker can be made using any of the conventional amide bond forming reactions with suitably protected amino acids and activated carboxylic acid such N-hydroxysuccinimide-activated ester.
- a disulfide linker is made via the formation of a disulfide (S-S) bond between two sulfur atoms of the form, for instance, of R1-S-S-R2.
- a disulfide bond can be formed by thiol exchange of a component containing thiol/mercaptan group(-SH) with another activated thiol group and another containing thiol/mercaptan groups with a component containing activated thiol group.
- a triazole linker specifically a 1,2,3-triazole of the form , wherein RI and R2 may be any chemical entities, is made by the 1,3-dipolar cycloaddition reaction of an azide attached to a first component such as the nanocarrier with a terminal alkyne attached to a second component such as the immunosuppressant antigen.
- the 1,3-dipolar cycloaddition reaction is performed with or without a catalyst, preferably with Cu(I)-catalyst, which links the two components through a 1,2,3-triazole function.
- This chemistry is described in detail by Sharpless et al., Angew. Chem. Int. Ed. 41(14), 2596, (2002) and Meldal, et al, Chem. Rev., 2008, 108(8), 2952-3015 and is often referred to as a "click" reaction or CuAAC.
- a polymer containing an azide or alkyne group, terminal to the polymer chain is prepared.
- This polymer is then used to prepare a synthetic nanocarrier in such a manner that a plurality of the alkyne or azide groups are positioned on the surface of that nanocarrier.
- the synthetic nanocarrier can be prepared by another route, and subsequently functionalized with alkyne or azide groups.
- the component is prepared with the presence of either an alkyne (if the polymer contains an azide) or an azide (if the polymer contains an alkyne) group.
- the component is then allowed to react with the nanocarrier via the 1,3-dipolar cycloaddition reaction with or without a catalyst which covalently couples the component to the particle through the 1,4-disubstituted 1,2,3-triazole linker.
- a thioether linker is made by the formation of a sulfur-carbon (thioether) bond in the form, for instance, of R1-S-R2.
- Thioether can be made by either alkylation of a
- thiol/mercaptan (-SH) group on one component with an alkylating group such as halide or epoxide on a second component.
- Thioether linkers can also be formed by Michael addition of a thiol/mercaptan group on one component to an electron-deficient alkene group on a second component containing a maleimide group or vinyl sulfone group as the Michael acceptor.
- thioether linkers can be prepared by the radical thiol-ene reaction of a thiol/mercaptan group on one component with an alkene group on a second component.
- a hydrazone linker is made by the reaction of a hydrazide group on one component with an aldehyde/ketone group on the second component.
- a hydrazide linker is formed by the reaction of a hydrazine group on one component with a carboxylic acid group on the second component. Such reaction is generally performed using chemistry similar to the formation of amide bond where the carboxylic acid is activated with an activating reagent.
- An imine or oxime linker is formed by the reaction of an amine or N-alkoxyamine (or aminooxy) group on one component with an aldehyde or ketone group on the second component.
- An urea or thiourea linker is prepared by the reaction of an amine group on one component with an isocyanate or thioisocyanate group on the second component.
- An amidine linker is prepared by the reaction of an amine group on one component with an imidoester group on the second component.
- An amine linker is made by the alkylation reaction of an amine group on one component with an alkylating group such as halide, epoxide, or sulfonate ester group on the second component.
- an amine linker can also be made by reductive amination of an amine group on one component with an aldehyde or ketone group on the second component with a suitable reducing reagent such as sodium cyanoborohydride or sodium triacetoxyborohydride.
- a sulfonamide linker is made by the reaction of an amine group on one component with a sulfonyl halide (such as sulfonyl chloride) group on the second component.
- a sulfonyl halide such as sulfonyl chloride
- a sulfone linker is made by Michael addition of a nucleophile to a vinyl sulfone.
- Either the vinyl sulfone or the nucleophile may be on the surface of the nanocarrier or attached to a component.
- the component can also be conjugated to the nanocarrier via non-covalent conjugation methods.
- a negative charged antigen or immunosuppressant can be conjugated to a positive charged nanocarrier through electrostatic adsorption.
- a component containing a metal ligand can also be conjugated to a nanocarrier containing a metal complex via a metal-ligand complex.
- the component can be attached to a polymer, for example polylactic acid-block-polyethylene glycol, prior to the assembly of the synthetic nanocarrier or the synthetic nanocarrier can be formed with reactive or activatible groups on its surface.
- the component may be prepared with a group which is compatible with the attachment chemistry that is presented by the synthetic nanocarriers' surface.
- a peptide component can be attached to VLPs or liposomes using a suitable linker.
- a linker is a compound or reagent that capable of coupling two molecules together.
- the linker can be a homobifuntional or heterobifunctional reagent as described in Hermanson 2008.
- an VLP or liposome synthetic nanocarrier containing a carboxylic group on the surface can be treated with a homobifunctional linker, adipic dihydrazide (ADH), in the presence of EDC to form the corresponding synthetic nanocarrier with the ADH linker.
- ADH adipic dihydrazide
- the resulting ADH linked synthetic nanocarrier is then conjugated with a peptide component containing an acid group via the other end of the ADH linker on NC to produce the corresponding VLP or liposome peptide conjugate.
- the component can be coupled by adsorption to a pre-formed synthetic nanocarrier or it can be coupled by encapsulation during the formation of the synthetic nanocarrier.
- Immunosuppressants include, but are not limited to, statins; mTOR inhibitors, such as rapamycin or a rapamycin analog; TGF- ⁇ signaling agents; TGF- ⁇ receptor agonists; histone deacetylase (HDAC) inhibitors; corticosteroids; inhibitors of mitochondrial function, such as rotenone; P38 inhibitors; NF- ⁇ inhibitors; adenosine receptor agonists;
- prostaglandin E2 agonists include phosphodiesterase inhibitors, such as phosphodiesterase 4 inhibitor; proteasome inhibitors; kinase inhibitors; G-protein coupled receptor agonists; G- protein coupled receptor antagonists; glucocorticoids; retinoids; cytokine inhibitors; cytokine receptor inhibitors; cytokine receptor activators; peroxisome proliferator- activated receptor antagonists; peroxisome proliferator- activated receptor agonists; histone deacetylase inhibitors; calcineurin inhibitors; phosphatase inhibitors and oxidized ATPs.
- phosphodiesterase inhibitors such as phosphodiesterase 4 inhibitor
- proteasome inhibitors such as phosphodiesterase 4 inhibitor
- proteasome inhibitors such as phosphodiesterase 4 inhibitor
- proteasome inhibitors such as phosphodiesterase 4 inhibitor
- proteasome inhibitors such as phosphodiesterase 4 inhibitor
- proteasome inhibitors such as phosphodiesterase 4 inhibitor
- Immunosuppressants also include IDO, vitamin D3, cyclosporine A, aryl hydrocarbon receptor inhibitors, resveratrol, azathiopurine, 6-mercaptopurine, aspirin, niflumic acid, estriol, tripolide, interleukins (e.g., IL-1, IL-10), cyclosporine A, siRNAs targeting cytokines or cytokine receptors and the like.
- statins examples include atorvastatin (LIPITOR ® , TOR VAST ® ), cerivastatin, fluvastatin (LESCOL ® , LESCOL ® XL), lovastatin (MEVACOR ® , ALTOCOR ® ,
- ALTOPREV ® mevastatin (COMPACTIN ® ), pitavastatin (LIVALO ® , PIAVA ® ), rosuvastatin (PRAVACHOL ® , SELEKTINE ® , LIPOSTAT ® ), rosuvastatin (CRESTOR ® ), and simvastatin (ZOCOR ® , LIPEX ® ).
- mTOR inhibitors include rapamycin and analogs thereof (e.g., CCL-779, RAD001, AP23573, C20-methallylrapamycin (C20-Marap), C16-(S)- butylsulfonamidorapamycin (C16-BSrap), C16-(S)-3-methylindolerapamycin (C16-iRap) (Bayle et al.
- rapamycin and analogs thereof e.g., CCL-779, RAD001, AP23573, C20-methallylrapamycin (C20-Marap), C16-(S)- butylsulfonamidorapamycin (C16-BSrap), C16-(S)-3-methylindolerapamycin (C16-iRap) (Bayle et al.
- TGF- ⁇ signaling agents include TGF- ⁇ ligands (e.g., activin A, GDF1, GDF11, bone morphogenic proteins, nodal, TGF ⁇ s) and their receptors (e.g., ACVR1B, ACVR1C, ACVR2A, ACVR2B, BMPR2, BMPR1A, BMPR1B, TGF ⁇ RI, TGF ⁇ RII), R- SMADS/co-SMADS (e.g., SMAD1, SMAD2, SMAD3, SMAD4, SMAD5, SMAD8), and ligand inhibitors (e.g, follistatin, noggin, chordin, DAN, lefty, LTBP1, THBS1, Decorin).
- TGF- ⁇ ligands e.g., activin A, GDF1, GDF11, bone morphogenic proteins, nodal, TGF ⁇ s
- their receptors e.g., ACVR1B, ACVR1C, ACVR2A
- inhibitors of mitochondrial function include atractyloside (dipotassium salt), bongkrekic acid (triammonium salt), carbonyl cyanide m-chlorophenylhydrazone, carboxyatractyloside (e.g., from Atractylis gummifera), CGP-37157, (-)-Deguelin (e.g., from Mundulea sericea), F16, hexokinase II VDAC binding domain peptide, oligomycin, rotenone, Ru360, SFK1, and valinomycin (e.g., from Streptomyces fulvissimus)
- atractyloside dipotassium salt
- bongkrekic acid triammonium salt
- carbonyl cyanide m-chlorophenylhydrazone e.g., from Atractylis gummifera
- CGP-37157 e.g., from CGP-37157
- P38 inhibitors examples include SB-203580 (4-(4-Fluorophenyl)-2-(4- methylsulfinylphenyl)-5-(4-pyridyl)lH-imidazole), SB-239063 (trans- 1- (4hydroxycyclohexyl)-4-(fluorophenyl)-5-(2-methoxy-pyrimidin-4-yl) imidazole), SB- 220025 (5-(2amino-4-pyrimidinyl)-4-(4-fluorophenyl)-l-(4-piperidinyl)imidazole)), and ARRY-797.
- NF e.g., ⁇ - ⁇
- NF e.g., ⁇ - ⁇
- NF e.g., ⁇ - ⁇
- examples of NF (e.g., ⁇ - ⁇ ) inhibitors include IFRD1, 2-(l,8-naphthyridin-2-yl)-
- Phenethylester diethylmaleate
- IKK-2 Inhibitor IV IMD 0354
- lactacystin MG-132 [Z-Leu- Leu-Leu-CHO]
- NFKB Activation Inhibitor III NF- ⁇ Activation Inhibitor II
- JSH-23 parthenolide
- PPM- 18 pyrrolidinedithiocarbamic acid
- ammonium salt QNZ, RO 106-9920, rocaglamide, rocaglamide AL, rocaglamide C, rocaglamide I, rocaglamide J, rocaglaol, (R)-MG-132, sodium salicylate, triptolide (PG490), wedelolactone.
- adenosine receptor agonists examples include CGS-21680 and ATL-146e.
- prostaglandin E2 agonists include E-Prostanoid 2 and E-Prostanoid 4.
- phosphodiesterase inhibitors non- selective and selective inhibitors
- caffeine aminophylline
- IB MX 3-isobutyl-l-methylxanthine
- paraxanthine pentoxifylline
- theobromine theophylline
- methylated xanthines vinpocetine
- EHNA EHNA
- DALIRESPTM sildenafil
- VIAGRA ® tadalafil
- ADCIRCA ® CIALIS ®
- vardenafil LEVITRA ®
- STAXYN ® udenafil
- icariin 4- methylpiperazine
- pyrazolo pyrimidin-7-1 4- methylpiperazine
- proteasome inhibitors examples include bortezomib, disulfiram, epigallocatechin- 3-gallate, and salinosporamide A.
- kinase inhibitors examples include bevacizumab, BIBW 2992, cetuximab
- glucocorticoids include hydrocortisone (Cortisol), cortisone acetate, prednisone, prednisolone, methylprednisolone, dexamethasone, betamethasone,
- retinoids examples include retinol, retinal, tretinoin (retinoic acid, RETIN-A ® ), isotretinoin (ACCUTANE ® , AMNESTEEM ® , CLARA VIS ® , SOTRET ® ), alitretinoin (PANRETIN ® ), etretinate (TEGISONTM) and its metabolite acitretin (S ORIAT ANE ® ) , tazarotene (TAZORAC ® , AVAGE ® , ZORAC ® ), bexarotene (TARGRETIN ® ), and adapalene (DIFFERIN ® ).
- retinoids include retinol, retinal, tretinoin (retinoic acid, RETIN-A ® ), isotretinoin (ACCUTANE ® , AMNESTEEM ® , CLARA VIS ® , SOTRET ®
- cytokine inhibitors examples include ILlra, IL1 receptor antagonist, IGFBP, TNF-
- peroxisome proliferator-activated receptor antagonists examples include GW9662,
- PPARy antagonist III G335, T0070907 (EMD4Biosciences, USA).
- peroxisome proliferator-activated receptor agonists examples include pioglitazone, ciglitazone, clofibrate, GW1929, GW7647, L-165,041, LY 171883, PPARy activator, Fmoc-
- histone deacetylase inhibitors examples include hydroxamic acids (or
- hydroxamates such as trichostatin A, cyclic tetrapeptides (such as trapoxin B) and depsipeptides, benzamides, electrophilic ketones, aliphatic acid compounds such as phenylbutyrate and valproic acid, hydroxamic acids such as vorinostat (SAHA), belinostat
- MGCD0103 mocetinostat
- calcineurin inhibitors examples include cyclosporine, pimecrolimus, voclosporin, and tacrolimus.
- phosphatase inhibitors examples include BN82002 hydrochloride, CP-91149, calyculin A, cantharidic acid, cantharidin, cypermethrin, ethyl-3,4-dephostatin, fostriecin sodium salt, MAZ51, methyl-3,4-dephostatin, NSC 95397, norcantharidin, okadaic acid ammonium salt from prorocentrum concavum, okadaic acid, okadaic acid potassium salt, okadaic acid sodium salt, phenylarsine oxide, various phosphatase inhibitor cocktails, protein phosphatase 1C, protein phosphatase 2A inhibitor protein, protein phosphatase 2A1, protein phosphatase 2A2, sodium ortho vanadate.
- antigens as described herein are also coupled to synthetic nanocarriers.
- the antigens are coupled to the same or different synthetic nanocarriers as to
- the antigens are not coupled to any synthetic nanocarriers.
- a component such as an antigen or immunosuppressant
- Isolated refers to the element being separated from its native environment and present in sufficient quantities to permit its identification or use. This means, for example, the element may be (i) selectively produced by expression cloning or (ii) purified as by chromatography or electrophoresis. Isolated elements may be, but need not be, substantially pure. Because an isolated element may be admixed with a pharmaceutically acceptable excipient in a pharmaceutical preparation, the element may comprise only a small percentage by weight of the preparation. The element is nonetheless isolated in that it has been separated from the substances with which it may be associated in living systems, i.e., isolated from other lipids or proteins. Any of the elements provided herein may be isolated and can be included in the compositions in isolated form.
- Synthetic nanocarriers may be prepared using a wide variety of methods known in the art.
- synthetic nanocarriers can be formed by methods as nanoprecipitation, flow focusing using fluidic channels, spray drying, single and double emulsion solvent evaporation, solvent extraction, phase separation, milling, microemulsion procedures, microfabrication, nanofabrication, sacrificial layers, simple and complex coacervation, and other methods well known to those of ordinary skill in the art.
- aqueous and organic solvent syntheses for monodisperse semiconductor, conductive, magnetic, organic, and other nanomaterials have been described (Pellegrino et al., 2005, Small, 1:48; Murray et al., 2000, Ann. Rev. Mat.
- synthetic nanocarriers are prepared by a nanoprecipitation process or spray drying. Conditions used in preparing synthetic nanocarriers may be altered to yield particles of a desired size or property (e.g., hydrophobicity, hydrophilicity, external morphology, "stickiness," shape, etc.). The method of preparing the synthetic nanocarriers and the conditions (e.g., solvent, temperature, concentration, air flow rate, etc.) used may depend on the materials to be coupled to the synthetic nanocarriers and/or the composition of the polymer matrix.
- Conditions used in preparing synthetic nanocarriers may be altered to yield particles of a desired size or property (e.g., hydrophobicity, hydrophilicity, external morphology, "stickiness," shape, etc.).
- the method of preparing the synthetic nanocarriers and the conditions (e.g., solvent, temperature, concentration, air flow rate, etc.) used may depend on the materials to be coupled to the synthetic nanocarriers and/or the composition of the polymer matrix.
- particles prepared by any of the above methods have a size range outside of the desired range, particles can be sized, for example, using a sieve.
- Elements (i.e., components) of the inventive synthetic nanocarriers may be coupled to the overall synthetic nanocarrier, e.g., by one or more covalent bonds, or may be coupled by means of one or more linkers. Additional methods of functionalizing synthetic nanocarriers may be adapted from Published US Patent Application 2006/0002852 to Saltzman et al., Published US Patent Application 2009/0028910 to DeSimone et al., or Published International Patent Application WO/2008/127532 Al to Murthy et al.
- synthetic nanocarriers can be coupled to components directly or indirectly via non-covalent interactions.
- the non-covalent coupling is mediated by non-covalent interactions including but not limited to charge interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, hydrophobic interactions, TT stacking interactions, hydrogen bonding interactions, van der Waals interactions, magnetic interactions, electrostatic interactions, dipole-dipole interactions, and/or combinations thereof.
- Such couplings may be arranged to be on an external surface or an internal surface of an inventive synthetic nanocarrier.
- encapsulation and/or absorption is a form of coupling.
- the inventive synthetic nanocarriers can be combined with an antigen by admixing in the same vehicle or delivery system.
- Synthetic nanocarriers may be combined to form pharmaceutical dosage forms according to the present invention using traditional pharmaceutical mixing methods. These include liquid-liquid mixing in which two or more suspensions, each containing one or more subsets of nanocarriers, are directly combined or are brought together via one or more vessels containing diluent. As synthetic nanocarriers may also be produced or stored in a powder form, dry powder-powder mixing could be performed as could the re- suspension of two or more powders in a common media. Depending on the properties of the nanocarriers and their interaction potentials, there may be advantages conferred to one or another route of mixing.
- Typical inventive compositions that comprise synthetic nanocarriers may comprise inorganic or organic buffers (e.g., sodium or potassium salts of phosphate, carbonate, acetate, or citrate) and pH adjustment agents (e.g., hydrochloric acid, sodium or potassium hydroxide, salts of citrate or acetate, amino acids and their salts) antioxidants (e.g., ascorbic acid, alpha- tocopherol), surfactants (e.g., polysorbate 20, polysorbate 80, polyoxyethylene9-10 nonyl phenol, sodium desoxycholate), solution and/or cryo/lyo stabilizers (e.g., sucrose, lactose, mannitol, trehalose), osmotic adjustment agents (e.g., salts or sugars), antibacterial agents (e.g., benzoic acid, phenol, gentamicin), antifoaming agents (e.g., polydimethylsilozone), preservatives (e.g.,
- carboxymethylcellulose carboxymethylcellulose
- co-solvents e.g., glycerol, polyethylene glycol, ethanol
- compositions according to the invention comprise inventive synthetic nanocarriers in combination with pharmaceutically acceptable excipients.
- the compositions may be made using conventional pharmaceutical manufacturing and compounding techniques to arrive at useful dosage forms. Techniques suitable for use in practicing the present invention may be found in Handbook of Industrial Mixing: Science and Practice, Edited by Edward L. Paul, Victor A. Atiemo-Obeng, and Suzanne M. Kresta, 2004 John Wiley & Sons, Inc.; and Pharmaceutics: The Science of Dosage Form Design, 2nd Ed. Edited by M. E. Auten, 2001, Churchill Livingstone.
- inventive synthetic nanocarriers are suspended in sterile saline solution for injection together with a preservative.
- compositions of the invention can be made in any suitable manner, and the invention is in no way limited to compositions that can be produced using the methods described herein. Selection of an appropriate method may require attention to the properties of the particular moieties being associated.
- inventive synthetic nanocarriers are manufactured under sterile conditions or are terminally sterilized. This can ensure that resulting compositions are sterile and non-infectious, thus improving safety when compared to non-sterile compositions. This provides a valuable safety measure, especially when subjects receiving synthetic nanocarriers have immune defects, are suffering from infection, and/or are susceptible to infection.
- inventive synthetic nanocarriers may be lyophilized and stored in suspension or as lyophilized powder depending on the formulation strategy for extended periods without losing activity.
- compositions of the invention can be administered by a variety of routes, including but not limited to subcutaneous, intranasal, oral, intravenous, intraperitoneal, intramuscular, transmucosal, transmucosal, sublingual, rectal, ophthalmic, pulmonary, intradermal, transdermal, transcutaneous or intradermal or by a combination of these routes.
- Routes of administration also include administration by inhalation or pulmonary aerosol. Techniques for preparing aerosol delivery systems are well known to those of skill in the art (see, for example, Sciarra and Cutie, "Aerosols," in Remington's Pharmaceutical Sciences, 18th edition, 1990, pp. 1694-1712; incorporated by reference).
- compositions of the invention can be administered in effective amounts, such as the effective amounts described elsewhere herein.
- Doses of dosage forms contain varying amounts of populations of synthetic nanocarriers and/or varying amounts of antigens and/or immunosuppressants, according to the invention.
- the amount of synthetic nanocarriers and/or antigens and/or immunosuppressants present in the inventive dosage forms can be varied according to the nature of the antigens and/or immunosuppressants, the therapeutic benefit to be accomplished, and other such parameters.
- dose ranging studies can be conducted to establish optimal therapeutic amount of the population of synthetic nanocarriers and the amount of antigens and/or immunosuppressants to be present in the dosage form.
- the synthetic nanocarriers and/or the antigens and/or immunosuppressants are present in the dosage form in an amount effective to generate a tolerogenic immune response to the antigens upon administration to a subject. It may be possible to determine amounts of the antigens and/or immunosuppressants effective to generate a tolerogenic immune response using conventional dose ranging studies and techniques in subjects.
- Inventive dosage forms may be administered at a variety of frequencies. In a preferred embodiment, at least one administration of the dosage form is sufficient to generate a pharmacologically relevant response. In more preferred
- At least two administrations, at least three administrations, or at least four administrations, of the dosage form are utilized to ensure a pharmacologically relevant response.
- Prophylactic administration of the inventive compositions can be initiated prior to the onset of disease, disorder or condition or therapeutic administration can be initiated after a disorder, disorder or condition is established.
- synthetic nanocarriers are administered at one or more times including, but not limited to, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0 days prior to exposure to an allergen.
- synthetic nanocarriers can be administered to a subject following exposure to an allergen.
- synthetic nanocarriers are administered at one or more times including, but not limited to, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, etc. days following exposure to an allergen.
- a maintenance dose (e.g., of a synthetic nanocarrier composition provided herein) is administered to a subject after an initial administration has resulted in a tolerogenic response in the subject, for example to maintain the tolerogenic effect achieved after the initial dose, to prevent an undesired immune reaction in the subject, or to prevent the subject becoming a subject at risk of experiencing an undesired immune response or an undesired level of an immune response.
- the maintenance dose is the same dose as the initial dose the subject received. In some embodiments, the maintenance dose is a lower dose than the initial dose.
- the maintenance dose is about 3/4, about 2/3, about 1/2, about 1/3, about 1/4, about 1/8, about 1/10, about 1/20, about 1/25, about 1/50, about 1/100, about 1/1,000, about 1/10,000, about 1/100,000, or about 1/1,000,000 (weight/weight) of the initial dose.
- compositions and methods described herein can be used to induce or enhance a tolerogenic immune response and/or to suppress, modulate, direct or redirect an undesired immune response for the purpose of immune suppression.
- the compositions and methods described herein can be used for the generation of a tolerogenic immune response in a subject that has been, is being or will be exposed to an allergen.
- Example 1 Immune Response of Synthetic Nanocarriers with Coupled Rapamycin with and without Ovalbumin Peptide (323-339)
- Ovalbumin peptide 323-339 a 17 amino acid peptide known to be a T and B cell epitope of Ovalbumin protein, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance CA 90505; Part # 4065609). Rapamycin was purchased from TSZ CHEM (185 Wilson Street, Framingham, MA 01702; Product Catalogue # R1017).
- PLGA with a lactide:glycolide ratio of 3: 1 and an inherent viscosity of 0.75 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, AL 35211; Product Code 7525 DLG 7A).
- Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD
- Solution 1 Ovalbumin peptide 323-339 @ 20 mg/mL in dilute hydrochloric acid aqueous solution. The solution was prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature.
- Solution 2 Rapamycin @ 50 mg/mL in methylene chloride. The solution was prepared by dissolving rapamycin in pure methylene chloride.
- Solution 3 PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.
- Solution 4 Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.
- a primary water-in-oil emulsion was prepared first. Wl/01 was prepared by combining solution 1 (0.2 mL), solution 2 (0.2 mL), and solution 3 (1.0 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary emulsion (W1/01/W2) was then prepared by combining solution 4 (3.0 mL) with the primary Wl/Ol emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250.
- the W1/01/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the synthetic nanocarriers to form.
- a portion of the synthetic nanocarriers were washed by transferring the synthetic nanocarrier suspension to a centrifuge tube and centrifuging at 21,000xg and 4 °C for one hour, removing the supernatant, and re- suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final synthetic nanocarrier dispersion of about 10 mg/mL.
- the amounts of peptide and rapamycin in the synthetic nanocarriers were determined by HPLC analysis.
- the total dry-synthetic nanocarrier mass per mL of suspension was determined by a gravimetric method.
- a primary water-in-oil emulsion was prepared first.
- Wl/Ol was prepared by combining 0.13 M hydrochloric acid solution (0.2 mL), solution 2 (0.2 mL), and solution 3 (1.0 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
- a secondary emulsion (W1/01/W2) was then prepared by combining solution 4 (3.0 mL) with the primary Wl/Ol emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250.
- the W1/01/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the synthetic nanocarriers to form.
- a portion of the synthetic nanocarriers were washed by transferring the synthetic nanocarrier suspension to a centrifuge tube and centrifuging at 21,000xg and 4 °C for one hour, removing the supernatant, and re- suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final synthetic nanocarrier dispersion of about 10 mg/mL.
- the amount of rapamycin in the synthetic nanocarrier was determined by HPLC analysis.
- the total dry-synthetic nanocarrier mass per mL of suspension was determined by a gravimetric method.
- Tdc Antigen-specific Tolerogenic Dendritic Cells
- the assay included the use of OTII mice which have a transgenic T-cell receptor specific for an immune-dominant ovalbumin (323-339).
- OTII mice which have a transgenic T-cell receptor specific for an immune-dominant ovalbumin (323-339).
- CD11C+ splenocytes were isolated, and the ovalbumin (323-339) peptide added in vitro at ⁇ g/ml or no antigen.
- Soluble or nanocarrier-encapsulated rapamycin was then added to the DCs for 2 hours which were then washed extensively to remove free rapamycin from the culture.
- Purified responder CD4+CD25- cells were isolated from OTII mice and added to tDC at a 10: 1 T to DC ratio.
- Treg cells CD4+CD25highFoxP3+
- Fig. 1 Regions were selected based on isotype controls.
- Example 2 Mesoporous Silica Nanoparticles with Coupled Ibuprofen (Prophetic) Mesoporous Si02 nanoparticle cores are created through a sol-gel process.
- CTAB Hexadecyltrimethyl-ammonium bromide
- 2 M aqueous NaOH solution 3.5 mL
- TEOS Tetraethoxysilane
- the resulting gel is stirred for 3 h at a temperature of 80 °C.
- the white precipitate which forms is captured by filtration, followed by washing with deionized water and drying at room temperature.
- the remaining surfactant is then extracted from the particles by suspension in an ethanolic solution of HC1 overnight. The particles are washed with ethanol, centrifuged, and redispersed under ultrasonication. This wash procedure is repeated two additional times.
- the Si02 nanoparticles are then functionalized with amino groups using (3- aminopropyl)-triethoxysilane (APTMS).
- APTMS (3- aminopropyl)-triethoxysilane
- the particles are suspended in ethanol (30 mL), and APTMS (50 ⁇ ) is added to the suspension.
- the suspension is allowed to stand at room temperature for 2 h and then is boiled for 4 h, keeping the volume constant by periodically adding ethanol. Remaining reactants are removed by five cycles of washing by centrifugation and redispersing in pure ethanol.
- a separate reaction 1-4 nm diameter gold seeds are created. All water used in this reaction is first deionized and then distilled from glass. Water (45.5 mL) is added to a 100 mL round-bottom flask. While stirring, 0.2 M aqueous NaOH (1.5 mL) is added, followed by a 1% aqueous solution of tetrakis(hydroxymethyl)phosphonium chloride (THPC) (1.0 mL). Two minutes after the addition of THPC solution, a 10 mg/mL aqueous solution of chloroauric acid (2 mL), which has been aged at least 15 min, is added. The gold seeds are purified through dialysis against water.
- THPC tetrakis(hydroxymethyl)phosphonium chloride
- the amino-functionalized Si02 nanoparticles formed above are first mixed with the gold seeds for 2 h at room temperature.
- the gold- decorated Si02 particles are collected through centrifugation and mixed with an aqueous solution of chloroauric acid and potassium bicarbonate to form the gold shell.
- the particles are then washed by centrifugation and redispersed in water.
- Ibuprofen is loaded by suspending the particles in a solution of sodium ibuprofen (1 mg/L) for 72 h. Free ibuprofen is then washed from the particles by centrifugation and redispersing in water.
- Example 3 Liposomes Containing Cyclosporine A (Prophetic) The liposomes are formed using thin film hydration. l,2-Dipalmitoyl-sn-glycero-3- phosphocholine (DPPC) (32 ⁇ ), cholesterol (32 ⁇ ), and cyclosporin A (6.4 ⁇ ) are dissolved in pure chloroform (3 mL). This lipid solution is added to a 50 mL round-bottom flask, and the solvent is evaporated on a rotary evaporator at a temperature of 60 °C. The flask is then flushed with nitrogen gas to remove remaining solvent.
- DPPC Dipalmitoyl-sn-glycero-3- phosphocholine
- cholesterol 32 ⁇
- cyclosporin A 6.4 ⁇
- Phosphate buffered saline (2 mL) and five glass beads are added to the flask, and the lipid film is hydrated by shaking at 60 °C for 1 h to form a suspension.
- the suspension is transferred to a small pressure tube and sonicated at 60 °C for four cycles of 30s pulses with a 30 s delay between each pulse.
- the suspension is then left undisturbed at room temperature for 2 h to allow for complete hydration.
- the liposomes are washed by centrifugation followed by resuspension in fresh phosphate buffered saline.
- PLGA polymer with acid end group 7525 DLG1A, acid number 0.46 mmol/g, Lakeshore Biomaterials; 5 g, 2.3 mmol, 1.0 eq
- DCM dichloromethane
- N,N-Dicyclohexylcarbodimide 1.2 eq, 2.8 mmol, 0.57 g
- rapamycin 1.0 eq, 2.3 mmol, 2.1 g
- DMAP 4-dimethylaminopyridine
- the filtrate is concentrated to ca. 10 mL in volume and added to 100 mL of isopropyl alcohol (IPA) to precipitate out the PLGA-rapamycin conjugate.
- IPA isopropyl alcohol
- the IPA layer is removed and the polymer is then washed with 50 mL of IPA and 50 mL of methyl t-butyl ether (MTBE).
- MTBE methyl t-butyl ether
- the polymer is then dried under vacuum at 35 C for 2 days to give PLGA-rapamycin as a white solid (ca. 6.5 g).
- Nanocarrier containing PLGA-rapamycin is prepared according to the procedure described in Example 1 as follows:
- Solution 1 Ovalbumin peptide 323-339 @ 20 mg/mL in dilute hydrochloric acid aqueous solution. The solution is prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature.
- Solution 2 PLGA-rapamycin @ 100 mg/mL in methylene chloride. The solution is prepared by dissolving PLGA-rapamycin in pure methylene chloride.
- Solution 3 PLA-PEG @ 100 mg/mL in methylene chloride. The solution is prepared by dissolving PLA-PEG in pure methylene chloride.
- Solution 4 is prepared by dissolving PLA-PEG in pure methylene chloride.
- a primary water-in-oil emulsion is prepared first.
- Wl/Ol is prepared by combining solution 1 (0.2 mL), solution 2 (0.75 mL), and solution 3 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
- a secondary emulsion (W1/01/W2) is then prepared by combining solution 4 (3.0 mL) with the primary Wl/Ol emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250.
- the W1/01/W2 emulsion is added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form.
- a portion of the nanocarriers is washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 75,600xg and 4 °C for 35 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure is repeated, and the pellet is re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.
- a solution of 150 ⁇ of HS-PEG-rapamycin (10 ⁇ in 10 mM pH 9.0 carbonate buffer) is added to 1 mL of 20 nm diameter citrate-capped gold nanocarriers (1.16 nM) to produce a molar ratio of thiol to gold of 2500: 1.
- the mixture is stirred at room temperature under argon for 1 hour to allow complete exchange of thiol with citrate on the gold nanocarriers.
- the AuNCs with PEG-rapamycin on the surface is then purified by centrifuge at 12,000g for 30 minutes. The supernatant is decanted and the pellet containing AuNC-S- PEG-rapamycin is then pellet washed with lx PBS buffer.
- the purified Gold-PEG-rapamycin nanocarriers are then resuspend in suitable buffer for further analysis and bioassays.
- Example 6 Mesoporous Silica-gold Core-shell Nanocarriers Containing Ovalbumin (Prophetic)
- Mesoporous Si02 nanoparticle cores are created through a sol-gel process.
- CTAB Hexadecyltrimethyl-ammonium bromide
- 2 M aqueous NaOH solution 3.5 mL
- TEOS Tetraethoxysilane
- the resulting gel is stirred for 3 h at a temperature of 80 °C.
- the white precipitate which forms is captured by filtration, followed by washing with deionized water and drying at room temperature.
- the remaining surfactant is then extracted from the particles by suspension in an ethanolic solution of HC1 overnight. The particles are washed with ethanol, centrifuged, and redispersed under ultrasonication. This wash procedure is repeated two additional times.
- the Si02 nanoparticles are then functionalized with amino groups using (3- aminopropyl)-triethoxysilane (APTMS).
- APTMS (3- aminopropyl)-triethoxysilane
- the particles are suspended in ethanol (30 mL), and APTMS (50 ⁇ ) is added to the suspension.
- the suspension is allowed to stand at room temperature for 2 h and then is boiled for 4 h, keeping the volume constant by periodically adding ethanol. Remaining reactants are removed by five cycles of washing by centrifugation and redispersing in pure ethanol.
- 1-4 nm diameter gold seeds are created. All water used in this reaction is first deionized and then distilled from glass. Water (45.5 mL) is added to a 100 mL round-bottom flask.
- aqueous NaOH 1.5 mL
- THPC tetrakis(hydroxymethyl)phosphonium chloride
- the amino-functionalized Si02 nanoparticles formed above are first mixed with the gold seeds for 2 h at room temperature.
- the gold- decorated Si02 particles are collected through centrifugation and mixed with an aqueous solution of chloroauric acid and potassium bicarbonate to form the gold shell.
- the particles are then washed by centrifugation and redispersed in water.
- Thiolated Ovalbumin (made by treating Ovalbumin with 2-iminothiolane hydrochloride) is loaded by suspending the particles in a solution of thiolated Ovalbumin (1 mg/L) for 72 h.
- the particles is then pellet washed with lx PBS (pH 7.4) to remove free protein.
- nanocarriers containing Ovalbumin are then re-suspended in lx PBS for further analysis and assays.
- the liposomes are formed by thin film hydration.
- l,2-Dipalmitoyl-sn-glycero-3- phosphocholine (DPPC) (32 ⁇ ), cholesterol (32 ⁇ ), and rapamycin (6.4 ⁇ ) are dissolved in pure chloroform (3 mL).
- This lipid solution is added to a 10 mL glass tube and the solvent is removed under nitrogen gas stream and desiccated for 6 hr. under vacuum.
- Multilamellar vesicles are obtained by hydration of the film with 2.0 ml of 25 mM MOPS buffer pH 8.5, containing excess amount of Ovalbumin. The tube is vortexed until the lipid film is peeled of from the tube surface. To break the multilamellar vesicles into
- Example 8 Polymeric Nanocarriers Composed of Modified Polyamino Acid with Surface Conjugated Ovalbumin (Prophetic)
- Step-2 Preparation of nanoparticles from ⁇ -PGA-graft- L-PAE polymer:
- Nanoparticles composed of ⁇ -PGA-graft-L-PAE are prepared by a precipitation and dialysis method.
- ⁇ -PGA-graft-L-PAE (20 mg) was dissolved in 2 ml of DMSO followed by addition of 2 mL of water to form a translucent solution.
- the solution is then dialyzed against distilled water using cellulose membrane tubing (50,000 MWCO) to form the nanoparticles and to remove the organic solvents for 72 h at room temperature.
- the distilled water is exchanged at intervals of 12 h.
- the resulting nanoparticle solution (10 mg/mL in water) is then used for antigen conjugation.
- Step-3 Ovalbumin conjugation to ⁇ -PGA nanoparticles: Surface carboxylic acid groups of the ⁇ -PGA nanoparticles (10 mg/ml) are first activated by EDC and NHS (10 mg/mL each in phosphate buffer, pH 5.8) for 2 h at ambient temperature. After pellet washing to remove excess EDC/NHS, the activated nanoparticles are mixed with 1 mL of Ovalbumin (10 mg/ml) in phosphate-buffered saline (PBS, pH 7.4) and the mixture is incubated at 4-8 C for 24 h. The resulting Ovalbumin conjugated ⁇ -PGA nanoparticles are washed twice with PBS and resuspended at 5 mg/mL in PBS for further analysis and bioassays.
- EPO Erythropoietin
- EPO-encapsulated ⁇ -PGA nanoparticles 0.25-4 mg of EPO is dissolved in 1 mL of PBS (pH 7.4) and 1 mL of the ⁇ -PGA-graft-L-PAE (10 mg/mL in DMSO) is added to the EPO solution. The resulting solution is centrifuged at 14,000 x g for 15 min and repeatedly rinsed with PBS. The resulting EPO-encapsulated ⁇ -PGA
- Example 10 Preparation of Gold Nanocarriers (AuNCs) Containing Ovalbumin (Prophetic)
- Step-1 Formation of Gold NCs (AuNCs): An aq. solution of 500 mL of 1 mM HAuC14 is heated to reflux for 10 min with vigorous stirring in a 1 L round-bottom flask equipped with a condenser. A solution of 50 mL of 40 mM of trisodium citrate is then rapidly added to the stirring solution. The resulting deep wine red solution is kept at reflux for 25-30 min and the heat is withdrawn and the solution is cooled to room temperature. The solution is then filtered through a 0.8 ⁇ membrane filter to give the AuNCs solution. The AuNCs are characterized using visible spectroscopy and transmission electron microscopy. The AuNCs are ca. 20 nm diameter capped by citrate with peak absorption at 520 nm.
- Step-2 Conjugation of Ovalbumin to AuNCs: A solution of 150 ⁇ of thiolated Ovalbumin (10 ⁇ in 10 mM pH 9.0 carbonate buffer) is added to 1 mL of 20 nm diameter citrate-capped gold nanocarriers (1.16 nM) to produce a molar ratio of thiol to gold of 2500: 1. The mixture is stirred at room temperature under argon for 1 hour to allow complete exchange of thiol with citrate on the gold nanocarriers. The AuNCs with Ovalbumin on the surface is then purified by centrifuge at 12,000g for 30 minutes.
- the supernatant is decanted and the pellet containing AuNC-Ovalbumin is then pellet washed with lx PBS buffer.
- the purified Gold- Ovalbumin nanocarriers are then resuspend in suitable buffer for further analysis and bioassays.
- mice are immunized with a Der PI antigen in incomplete Freunds adjuvant to induce CD4+ T-cell proliferation, the level of which is assessed. Subsequently, a
- composition of the invention comprising MHC Class Il-restricted epitopes of Der PI antigen and an immunosuppressant is administered subcutaneously in a dose-dependent manner.
- mice are then again exposed to the Der PI antigen, and the level of CD4+ T cell proliferation is again assessed. Changes in the CD4+ T cell population are then monitored with a reduction in CD4+ T cell proliferation upon subsequent challenge with the Der PI antigen indicating a tolerogenic immune response.
- Example 12 Evaluating Tolerogenic Immune Responses with Synthetic Nanocarriers Comprising Immunosuppressant and APC Presentable Antigen In Vivo
- Rapamycin was purchased from TSZ CHEM (185 Wilson Street, Framingham, MA 01702; Product Catalogue # R1017).
- PLGA with a lactide:glycolide ratio of 3: 1 and an inherent viscosity of 0.75 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, AL 35211 ; Product Code 7525 DLG 7A).
- PLA-PEG block copolymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized.
- Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).
- Solution 1 Rapamycin @ 50 mg/mL in methylene chloride. The solution was prepared by dissolving rapamycin in pure methylene chloride.
- Solution 2 PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.
- Solution 3 PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride.
- Solution 4 Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.
- An oil-in-water emulsion was used to prepare the nanocarriers.
- the O/W emulsion was prepared by combining solution 1 (0.2 mL), solution 2 (0.75 mL), solution 3 (0.25 mL), and solution 4 (3 mL) in a small pressure tube and sonicating at 30% amplitude for 60 seconds using a Branson Digital Sonifier 250.
- the O/W emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form.
- Nanocarrier size was determined by dynamic light scattering. The amount of rapamycin in the nanocarrier was determined by HPLC analysis. The total dry-nanocarrier mass per mL of suspension was determined by a gravimetric method.
- Ovalbumin peptide 323-339 a 17 amino acid peptide known to be a T and B cell epitope of Ovalbumin protein, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance CA 90505; Part # 4065609).
- PLGA with a lactide:glycolide ratio of 3: 1 and an inherent viscosity of 0.75 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, AL 35211 ; Product Code 7525 DLG 7A).
- PLA-PEG block copolymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized.
- Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).
- Solution 1 Ovalbumin peptide 323-339 @ 20 mg/mL in dilute hydrochloric acid aqueous solution. The solution was prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature.
- Solution 2 PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.
- Solution 3 PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride.
- Solution 4 Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.
- a primary water-in-oil emulsion was prepared first.
- Wl/Ol was prepared by combining solution 1 (0.2 mL), solution 2 (0.75 mL), and solution 3 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital
- a secondary emulsion (W1/01/W2) was then prepared by combining solution 4 (3.0 mL) with the primary Wl/Ol emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250.
- the W1/01/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form.
- a portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 75,600xg and 4 °C for 35 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re- suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.
- Nanocarrier size was determined by dynamic light scattering.
- the amount of peptide in the nanocarrier was determined by HPLC analysis.
- the total dry-nanocarrier mass per mL of suspension was determined by a gravimetric method.
- Simvastatin was purchased from LKT Laboratories, Inc. (2233 University Avenue West, St. Paul, MN 55114; Product Catalogue # S3449).
- PLGA with a lactide:glycolide ratio of 3: 1 and an inherent viscosity of 0.75 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, AL 35211; Product Code 7525 DLG 7A).
- PLA-PEG block co-polymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized.
- Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).
- Solution 1 Simvastatin @ 50 mg/mL in methylene chloride. The solution was prepared by dissolving simvastatin in pure methylene chloride.
- Solution 2 PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.
- Solution 3 PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride.
- Solution 4 Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.
- An oil-in-water emulsion was used to prepare the nanocarriers.
- the O/W emulsion was prepared by combining solution 1 (0.15 mL), solution 2 (0.75 mL), solution 3 (0.25 mL), and solution 4 (3 mL) in a small pressure tube and sonicating at 30% amplitude for 60 seconds using a Branson Digital Sonifier 250.
- the O/W emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form.
- nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 75,600xg and 4 °C for 35 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.
- Nanocarrier size was determined by dynamic light scattering.
- the amount of simvastatin in the nanocarrier was determined by HPLC analysis.
- the total dry-nanocarrier mass per mL of suspension was determined by a gravimetric method.
- Ovalbumin peptide 323-339 a 17 amino acid peptide known to be a T and B cell epitope of Ovalbumin protein, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance CA 90505; Part # 4065609). Rapamycin was purchased from TSZ CHEM (185 Wilson Street, Framingham, MA 01702; Product Catalogue # R1017).
- PLGA with a lactide:glycolide ratio of 3: 1 and an inherent viscosity of 0.75 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, AL 35211; Product Code 7525 DLG 7A).
- PLA-PEG block co-polymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized.
- Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).
- Solution 1 Ovalbumin peptide 323-339 @ 20 mg/mL in dilute hydrochloric acid aqueous solution. The solution was prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature.
- Solution 2 Rapamycin @ 50 mg/mL in methylene chloride. The solution was prepared by dissolving rapamycin in pure methylene chloride.
- Solution 3 PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.
- Solution 4 PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride.
- Solution 5 Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.
- a primary water-in-oil emulsion was prepared first.
- Wl/Ol was prepared by combining solution 1 (0.2 mL), solution 2 (0.2 mL), solution 3 (0.75 mL), and solution 4 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
- a secondary emulsion (W1/01/W2) was then prepared by combining solution 5 (3.0 mL) with the primary Wl/Ol emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250.
- the W1/01/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form.
- a portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 21,000xg and 4 °C for 45 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re- suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.
- Nanocarrier size was determined by dynamic light scattering. The amounts of peptide and rapamycin in the nanocarrier were determined by HPLC analysis. The total dry- nanocarrier mass per mL of suspension was determined by a gravimetric method.
- Ovalbumin peptide 323-339 a 17 amino acid peptide known to be a T and B cell epitope of Ovalbumin protein, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance CA 90505; Part # 4065609). Simvastatin was purchased from LKT
- PLA-PEG block co-polymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized.
- Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).
- Solution 1 Ovalbumin peptide 323-339 @ 20 mg/mL in dilute hydrochloric acid aqueous solution. The solution was prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature.
- Solution 2 Simvastatin @ 50 mg/mL in methylene chloride. The solution was prepared by dissolving simvastatin in pure methylene chloride.
- Solution 3 PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.
- Solution 4 PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride.
- Solution 5 Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.
- a primary water-in-oil emulsion was prepared first.
- Wl/Ol was prepared by combining solution 1 (0.2 mL), solution 2 (0.15 mL), solution 3 (0.75 mL), and solution 4 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
- a secondary emulsion (W1/01/W2) was then prepared by combining solution 5 (3.0 mL) with the primary Wl/Ol emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250.
- the W1/01/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form.
- a portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 75,600xg and 4 °C for 35 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re- suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.
- Nanocarrier size was determined by dynamic light scattering. The amounts of peptide and simvastatin in the nanocarrier were determined by HPLC analysis. The total dry- nanocarrier mass per mL of suspension was determined by a gravimetric method.
- Spleens from B6.Cg-Tg(TcraTcrb)425Cbn/J (OTII) and C57BL/6 (B6) mice were harvested, mechanically dissociated and filtered separately through a 70 ⁇ sieve to yield a single-cell suspension.
- Purified CD4 + CD25- cells were then extracted in a 2-step process. Using a Miltenyi Biotec AutoMACS magnetic cell sorter spleen cells were first labeled with CD4 + T-cell isolation kit II and the unlabeled fraction was depleted of CD25 + cells with CD25 depletion kit. The purified B6 cells were stained with an intracellular dye,
- mice were treated with targeted tolerogenic synthetic vaccine particles (t SVP). They were loaded with combinations of ovalbumin peptide (323-339) (OVA 323- " 339 ), Rapamycin (Rapa) and/or Simvastatin (Simva) and were administered subcutaneously (s.c).
- OVA 323-339 ovalbumin peptide
- Rapamycin Rapamycin
- Simvastatin Simvastatin
- the injection constitutes a tolerogenic treatment and was followed by 4 more injections each spaced 2 weeks apart.
- the recipient CD45.1 animals were killed and their spleens and popliteal lymph nodes were harvested, mechanically dissociated and filtered separately through a 70 ⁇ sieve to yield a single-cell suspension.
- the spleen cells were depleted of red blood cells (RBCs) by incubation with RBC lysis buffer (Stem Cell Technologies) and cell counts were performed on both the spleens and lymph nodes.
- RBCs red blood cells
- Spleen or lymph node cells were cultured in CM (complete media) supplemented with lOU/ml IL-2, restimulated with OPII at 0.3xl0 6 cells/well in 96-well round bottom (RB) plates and incubated at 37 °C, 5% C0 2 . Cells were split at Day 2 and harvested on Day 5. Supernatants were collected and frozen while cells were stained for phenotypic analysis by flow cytometry. The cells were analyzed on a Becton Dickinson FacsCanto flow cytometer.
- Spleens from B6.Cg-Tg(TcraTcrb)425Cbn/J (OTII) and C57BL/6 (B6) mice were harvested, mechanically dissociated and filtered separately through a 70 ⁇ sieve to yield a single-cell suspension.
- Purified CD4 + CD25- cells were then extracted in a 2-step process using a Miltenyi Biotec AutoMACS magnetic cell sorter. Spleen cells were labeled using Miltenyi's CD4 + T-cell isolation kit II. The unlabeled CD4+ T-cell fraction was then depleted of CD25 + cells with CD25 depletion kit.
- the purified CD4 cells from B6 mice were then stained with an intracellular dye, Carboxyfluorescein Succinimidyl Ester (CFSE), before being admixed at equal concentrations with the purified OTII cells. They were then injected intravenously (i.v.) into B6.SJL-Pi/?rc7BoyAi (CD45.1) recipient mice.
- CFSE Carboxyfluorescein Succinimidyl Ester
- mice were treated with targeted tolerogenic synthetic vaccine particles. They comprised combinations of ovalbumin peptide (323-339)
- subcutaneously s.c.
- intravenously i.v.
- the recipient CD45.1 animals were killed and their spleens and popliteal lymph nodes were harvested, mechanically dissociated and filtered separately through a 70 ⁇ sieve to yield a single-cell suspension.
- the spleen cells were depleted of red blood cells (RBCs) by incorporation with RBC lysis buffer (Stem Cell Technologies) and cell counts were performed on both the spleens and lymph nodes.
- RBCs red blood cells
- Spleen or lymph node cells were cultured in CM supplemented with lOU/ml IL-2, restimulated with 1 ⁇ OPII at 0.3xl0 6 cells/well in 96-well round bottom (RB) plates and incubated at 37°C, 5% C0 2 . Cells were split at Day 2 and harvested on Day 5. Supernatants were collected and frozen while cells were stained for phenotypic analysis by flow cytometry. The cells were analyzed on a Becton Dickinson FacsCanto flow cytometer.
- immunomodulator 2 simvastatin
- Nanocarrier 1 Ovalbumin peptide 323-339 a 17 amino acid peptide known to be a T and B cell epitope of Ovalbumin protein, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance CA 90505; Part # 4065609).
- PLGA with a lactide:glycolide ratio of 3: 1 and an inherent viscosity of 0.75 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, AL 35211 ; Product Code 7525 DLG 7A).
- PLA-PEG block copolymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized.
- Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).
- Solution 1 Ovalbumin peptide 323-339 @ 20 mg/mL in dilute hydrochloric acid aqueous solution. The solution was prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature.
- Solution 2 PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.
- Solution 3 PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride.
- Solution 4 Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.
- a primary water-in-oil emulsion was prepared first.
- Wl/Ol was prepared by combining solution 1 (0.2 mL), solution 2 (0.75 mL), and solution 3 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
- a secondary emulsion (W1/01/W2) was then prepared by combining solution 4 (3.0 mL) with the primary Wl/Ol emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250.
- the W1/01/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form.
- a portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 75,600xg and 4 °C for 35 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.
- Nanocarrier size was determined by dynamic light scattering.
- the amount of peptide in the nanocarrier was determined by HPLC analysis.
- the total dry-nanocarrier mass per mL of suspension was determined by a gravimetric method. Effective Diameter Peptide Content
- Ovalbumin peptide 323-339 a 17 amino acid peptide known to be a T and B cell epitope of Ovalbumin protein, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance CA 90505; Part # 4065609). Rapamycin was purchased from TSZ CHEM (185 Wilson Street, Framingham, MA 01702; Product Catalogue # R1017).
- PLGA with a lactide:glycolide ratio of 3: 1 and an inherent viscosity of 0.75 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, AL 35211 ; Product Code 7525 DLG 7A).
- PLA-PEG block co-polymer with a PEG block of approximately 5,000 Da and PLA block of approximately 20,000 Da was synthesized.
- Polyvinyl alcohol (85-89% hydrolyzed) was purchased from EMD Chemicals (Product Number 1.41350.1001).
- Solution 1 Ovalbumin peptide 323-339 @ 20 mg/mL in dilute hydrochloric acid aqueous solution. The solution was prepared by dissolving ovalbumin peptide in 0.13 M hydrochloric acid solution at room temperature.
- Solution 2 Rapamycin @ 50 mg/mL in methylene chloride. The solution was prepared by dissolving rapamycin in pure methylene chloride.
- Solution 3 PLGA @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLGA in pure methylene chloride.
- Solution 4 PLA-PEG @ 100 mg/mL in methylene chloride. The solution was prepared by dissolving PLA-PEG in pure methylene chloride.
- Solution 5 Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.
- a primary water-in-oil emulsion was prepared first.
- Wl/Ol was prepared by combining solution 1 (0.2 mL), solution 2 (0.2 mL), solution 3 (0.75 mL), and solution 4 (0.25 mL) in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
- a secondary emulsion (W1/01/W2) was then prepared by combining solution 5 (3.0 mL) with the primary Wl/Ol emulsion, vortexing for 10 s, and sonicating at 30% amplitude for 60 seconds using the Branson Digital Sonifier 250.
- the W1/01/W2 emulsion was added to a beaker containing 70 mM pH 8 phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow the methylene chloride to evaporate and for the nanocarriers to form.
- a portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and centrifuging at 21,000xg and 4 °C for 45 min, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated, and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.
- Nanocarrier size was determined by dynamic light scattering. The amounts of peptide and rapamycin in the nanocarrier were determined by HPLC analysis. The total dry- nanocarrier mass per mL of suspension was determined by a gravimetric method.
- Immunization was administered via the following routes (values are per animal): 20 ⁇ /limb of OVA+CpG (12 ⁇ g OVA+10 ⁇ g CpG), both hind limbs s.c.
- Tolerogenic treatments were administered via the following route (values are per animal): 200 ⁇ nanocarriers were provided at 100 ⁇ g/ml of OVA 323 -339 content. Measurement of IgG
- the level of IgG antibodies were measured. This level is indicative of
- OVA protein at a stock concentration of 5 mg/ml was used as a coating material.
- Each well of the assay plates was coated with 100 ⁇ diluted OVA per well, plates were sealed with sealing film (VWR catalog #60941-120), and incubated overnight at 4°C.
- Costar9017 96-well Flat bottom plates were used as assay plates, Costar9017.
- Low-binding polypropylene 96-well plate or tubes were used as set-up plates, in which samples were prepared before being transferred to the assay plate.
- the setup plates did not contain any antigen and, therefore, serum antibodies did not bind to the plate during the setup of the samples.
- Setup plates were used for sample preparation to minimize binding that might occur during preparation or pipetting of samples if an antigen-coated plate was used to prepare the samples.
- wells were covered with diluent to block any non-specific binding and the plate was sealed and incubated at 4°C overnight.
- Assay plates were washed three times with wash buffer, and wash buffer was completely aspirated out of the wells after the last wash. After washing, 300 ⁇ diluent were added to each well of assay plate(s) to block non-specific binding and plates were incubated at least 2 hours at room temperature. Serum samples were prepared in the setup plate at appropriate starting dilutions. Starting dilutions were sometimes also prepared in 1.5 ml tubes using diluent. Appropriate starting dilutions were determined based on previous data, where available. Where no previous data was available, the lowest starting dilution was 1:40. Once diluted, 200 ⁇ of the starting dilution of the serum sample was transferred from to the appropriate well of the setup plate.
- An exemplary setup plate layout is described as follows: Columns 2 and 11 contained anti-Ovabumin monoclonal IgG2b isotype (AbCam, ab 17291) standard, diluted to 1 ⁇ g/mL (1:4000 dilution). Columns 3-10 contained serum samples (at appropriate dilutions).
- columns 1 and 12 were not used for samples or standards to avoid any bias of measurements due to edge effect. Instead, columns 1 and 12 contained 200 ⁇ diluent. Normal mouse serum diluted 1:40 was used as a negative control. Anti-mouse IgG2a diluted 1:500 from 0.5mg/mL stock (BD Bioscience) was used as an isotype control.
- serial dilutions were pipetted on the assay plate as follows: 50 ⁇ of each serum sample was removed from row A using 12-channel pipet and mixed with the 100 ⁇ of diluent previously added to each well of row B. This step was repeated down the entire plate. After pipetting the dilution of the final row, 50 ⁇ of fluid was removed from the wells in the final row and discarded, resulting in a final volume of 100 ⁇ in every well of the assay plate. Once sample dilutions were prepared in the assay plates, the plates were incubated at room temperature for at least 2 hours.
- Detection antibody (Goat anti-mouse anti-IgG, HRP conjugated, AbCam ab98717) was diluted 1: 1500 (0.33 ⁇ g/mL) in diluent and 100 ⁇ of the diluted antibody was added to each well. Plates were incubated for 1 hour at room temperature and then washed three times with wash buffer, with each washing step including a soak time of at least 30 seconds.
- detection substrate was added to the wells. Equal parts of substrate A and substrate B (BD Biosciences TMB Substrate Reagent Set, catalog #555214) were combined immediately before addition to the assay plates, and 100 ⁇ of the mixed substrate solution were added to each well and incubated for 10 minutes in the dark. The reaction was stopped by adding 50 ⁇ of stop solution (2N H2S04) to each well after the 10 minute period. The optical density (OD) of the wells was assessed immediately after adding the stop solution on a plate reader at 450 nm with subtraction at 570 nm. Data analysis was performed using Molecular Device's software SoftMax Pro v5.4.
- a four-parameter logistic curve-fit graph was prepared with the dilution on the x-axis (log scale) and the OD value on the y-axis (linear scale), and the half maximum value (EC50) for each sample was
- the plate template at the top of the layout was adjusted to reflect the dilution of each sample (1 per column).
- Ovalbumin-i- B-cell division was assessed by flow cytometry.
- Splenocytes from experimental animals were stained with Cell Tracker Orange (CTO), a thiol-reactive fluorescent probe suitable for long-term cell labeling, and cultured in complete media at 37C, 5% C0 2 with Ovalbumin protein or peptide for 3 days.
- CTO Cell Tracker Orange
- the cells were washed, blocked with anti-CD 16/32 antibody and then stained with conjugated antibodies specific to B220 and CD 19.
- Alexa 647 conjugated ovalbumin protein was also incubated with the cells to label Ovalbumin specific BCRs.
- Those splenocytes that were CD19+ B220+ OVA- Alexa647+ were assessed for proliferation by comparing the differential CTO staining.
- Those that were CTO low were labeled as proliferating Ovalbumin-i- B-cells and were compared to the CTO high Ovalbumin-i- B-cells to quantify
- Fig. 4 shows a reduction in antigen- specific IgG levels with the administration of synthetic nanocarriers comprising ova peptide and the immunosuppressant rapamycin.
- the level of IgG antibodies is reflective of antibody production in general including the production of IgE antibodies, which are of particular relevance in allergy and allergic reactions.
- Fig. 5 also demonstrates a reduction, but in the number of antigen- specific B cells with the synthetic nanocarriers. These results demonstrate the reduction in undesired immune responses relevant to allergy and allergic responses with synthetic nanocarriers coupled to ova peptide (comprising an MHC Class II-restricted epitope) and
- Nanocarriers were prepared according to methods provided above (Example 13). Immunization
- the nanocarriers were thawed and equilibrated. Initial dilutions constituted a lOx stock solution, and were further diluted to a concentration of 100 ⁇ g/ml in OVA 323 -339, or a lx solution. This lx solution was used for injections at 200 ⁇ 1 per i.v. injection. Animals were immunized with OVA protein (OVA) and treated with OVA 323 -339 peptide to assess the capacity of nanocarriers to control the allergic response in absence of B cell antigens.
- OVA protein OVA protein
- Immunization routes were as follows: 10 ⁇ g of OVA+ 4mg Alum i.p. in 400 ⁇ 1 per each Balb/C immunologically naive female mouse. Experimental groups consisted of 5 animals each. Spleen cells were restimulated with antigen using CFSE or CTO to determine the amount of Ag- specific proliferation.
- FCS files were analyzed using FlowJo software. 7AAD positive cells (a nuclear dye that label dead cells) positive cells were excluded and cell morphologies dependent on expression of CD4, CD8, Gr-1, F4/80, B220, TCRb and CD l ib were quantified.
- the frequency of Ovalbumin reactive CD4 + T cells was calculated by way of flow cytometry.
- Splenocytes from experimental animals were stained with CFSE, a thiol-reactive Fluorescent Probe suitable for long-term cell labeling, and cultured in complete media at 37C, 5% C0 2 with Ovalbumin protein for 3 days. On day 3 the cells were washed, blocked with anti-CD 16/32 antibody and then stained with conjugated antibodies specific to TCR CD4 and CD8a. Splenocytes that were TCR+CD4 or TCR+CD8a+ were assessed for proliferation by comparing the differential CFSE staining.
- IgE antibodies were measured using a Mouse OVA-IgE ELISA kit provided by MDBioproducts (Cat# M036005) consistent with the manufacturer's instructions. Results
- Figs. 6 and 7 demonstrate the effectiveness of the nanocarriers in an animal model for allergic asthma.
- Fig. 6 demonstrates an overall reduction in the number of various immune cells in lavage samples from asthma model animal subjects treated with synthetic nanocarriers comprising OVA 323 -339 (an MHC Class II-restricted epitope) and immunosuppressant.
- Fig. 7 demonstrates a reduction in the percentage of dividing CD4+ T cells as a result of the same treatment.
- Fig. 8 demonstrates a reduction in the production of antigen-specific IgE antibodies.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Mycology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Hematology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Optics & Photonics (AREA)
- Gastroenterology & Hepatology (AREA)
- Urology & Nephrology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Inorganic Chemistry (AREA)
- Pulmonology (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
Priority Applications (13)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MX2013012595A MX373641B (es) | 2011-04-29 | 2012-04-27 | Nanoportadores sintéticos tolerogénicos para la terapia contra alergias. |
| CN201280020380.4A CN103501812A (zh) | 2011-04-29 | 2012-04-27 | 用于过敏症治疗的致耐受性合成纳米载体 |
| CA2834533A CA2834533A1 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers for allergy therapy |
| KR1020137031636A KR20140033066A (ko) | 2011-04-29 | 2012-04-27 | 알러지 치료법을 위한 관용원성 합성 나노운반체 |
| EA201391611A EA201391611A1 (ru) | 2011-04-29 | 2012-04-27 | Вызывающие иммунную толерантность синтетические наноносители для терапевтического лечения аллергии |
| JP2014508585A JP6422774B2 (ja) | 2011-04-29 | 2012-04-27 | アレルギー治療用寛容原性合成ナノキャリア |
| AU2012249553A AU2012249553A1 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers for allergy therapy |
| EP12777486.7A EP2701737B8 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers for allergy therapy |
| IL228936A IL228936A0 (en) | 2011-04-29 | 2013-10-17 | Tolerogenic synthetic nanocarriers for allergy treatment |
| AU2017204317A AU2017204317A1 (en) | 2011-04-29 | 2017-06-26 | Tolerogenic synthetic nanocarriers for allergy therapy |
| AU2019232938A AU2019232938B2 (en) | 2011-04-29 | 2019-09-20 | Tolerogenic synthetic nanocarriers for allergy therapy |
| IL284303A IL284303A (en) | 2011-04-29 | 2021-06-22 | Tolerogenic synthetic nanocarriers for allergy therapy |
| AU2022204381A AU2022204381A1 (en) | 2011-04-29 | 2022-06-22 | Tolerogenic synthetic nanocarriers for allergy therapy |
Applications Claiming Priority (24)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161480946P | 2011-04-29 | 2011-04-29 | |
| US61/480,946 | 2011-04-29 | ||
| US201161513514P | 2011-07-29 | 2011-07-29 | |
| US61/513,514 | 2011-07-29 | ||
| US201161531204P | 2011-09-06 | 2011-09-06 | |
| US201161531164P | 2011-09-06 | 2011-09-06 | |
| US201161531175P | 2011-09-06 | 2011-09-06 | |
| US201161531209P | 2011-09-06 | 2011-09-06 | |
| US201161531194P | 2011-09-06 | 2011-09-06 | |
| US201161531180P | 2011-09-06 | 2011-09-06 | |
| US201161531168P | 2011-09-06 | 2011-09-06 | |
| US201161531153P | 2011-09-06 | 2011-09-06 | |
| US201161531215P | 2011-09-06 | 2011-09-06 | |
| US201161531147P | 2011-09-06 | 2011-09-06 | |
| US61/531,164 | 2011-09-06 | ||
| US61/531,180 | 2011-09-06 | ||
| US61/531,175 | 2011-09-06 | ||
| US61/531,209 | 2011-09-06 | ||
| US61/531,204 | 2011-09-06 | ||
| US61/531,153 | 2011-09-06 | ||
| US61/531,168 | 2011-09-06 | ||
| US61/531,147 | 2011-09-06 | ||
| US61/531,194 | 2011-09-06 | ||
| US61/531,215 | 2011-09-06 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2012149268A1 true WO2012149268A1 (en) | 2012-11-01 |
| WO2012149268A8 WO2012149268A8 (en) | 2012-12-13 |
Family
ID=47068065
Family Applications (12)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2012/035383 Ceased WO2012149268A1 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers for allergy therapy |
| PCT/US2012/035405 Ceased WO2012149282A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers for generating cd8+regulatory t cells |
| PCT/US2012/035366 Ceased WO2012149255A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers to reduce immune responses to therapeutic proteins |
| PCT/US2012/035378 Ceased WO2012149265A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers to reduce cytotoxic t lymphocyte responses |
| PCT/US2012/035629 Ceased WO2012149454A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers coupled to cd1d-restricted antigens and methods of use |
| PCT/US2012/035574 Ceased WO2012149405A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers for regulating innate immune responses |
| PCT/US2012/035360 Ceased WO2012149252A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers |
| PCT/US2012/035354 Ceased WO2012149247A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarrier compositions with transplantable graft antigens and methods of use |
| PCT/US2012/035555 Ceased WO2012149393A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers for antigen-specific deletion of t effector cells |
| PCT/US2012/035371 Ceased WO2012149259A1 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers to reduce antibody responses |
| PCT/US2012/035431 Ceased WO2012149301A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers for inducing regulatory b cells |
| PCT/US2012/035581 Ceased WO2012149411A1 (en) | 2011-04-29 | 2012-04-27 | Controlled release of immunosuppressants from synthetic nanocarriers |
Family Applications After (11)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2012/035405 Ceased WO2012149282A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers for generating cd8+regulatory t cells |
| PCT/US2012/035366 Ceased WO2012149255A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers to reduce immune responses to therapeutic proteins |
| PCT/US2012/035378 Ceased WO2012149265A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers to reduce cytotoxic t lymphocyte responses |
| PCT/US2012/035629 Ceased WO2012149454A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers coupled to cd1d-restricted antigens and methods of use |
| PCT/US2012/035574 Ceased WO2012149405A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers for regulating innate immune responses |
| PCT/US2012/035360 Ceased WO2012149252A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers |
| PCT/US2012/035354 Ceased WO2012149247A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarrier compositions with transplantable graft antigens and methods of use |
| PCT/US2012/035555 Ceased WO2012149393A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers for antigen-specific deletion of t effector cells |
| PCT/US2012/035371 Ceased WO2012149259A1 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers to reduce antibody responses |
| PCT/US2012/035431 Ceased WO2012149301A2 (en) | 2011-04-29 | 2012-04-27 | Tolerogenic synthetic nanocarriers for inducing regulatory b cells |
| PCT/US2012/035581 Ceased WO2012149411A1 (en) | 2011-04-29 | 2012-04-27 | Controlled release of immunosuppressants from synthetic nanocarriers |
Country Status (15)
| Country | Link |
|---|---|
| US (34) | US8652487B2 (enExample) |
| EP (15) | EP3760201A1 (enExample) |
| JP (32) | JP6602536B2 (enExample) |
| KR (26) | KR102344744B1 (enExample) |
| CN (34) | CN103501812A (enExample) |
| AU (34) | AU2012249537A1 (enExample) |
| BR (5) | BR112013027508A2 (enExample) |
| CA (13) | CA2834533A1 (enExample) |
| DK (1) | DK2701739T3 (enExample) |
| EA (16) | EA027103B1 (enExample) |
| ES (1) | ES2806268T3 (enExample) |
| HU (1) | HUE050142T2 (enExample) |
| IL (15) | IL305229A (enExample) |
| MX (13) | MX377068B (enExample) |
| WO (12) | WO2012149268A1 (enExample) |
Cited By (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013151736A2 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | In vivo production of proteins |
| WO2013151666A2 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | Modified polynucleotides for the production of biologics and proteins associated with human disease |
| WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
| WO2015034925A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Circular polynucleotides |
| WO2015034928A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
| WO2015075557A2 (en) | 2013-11-22 | 2015-05-28 | Mina Alpha Limited | C/ebp alpha compositions and methods of use |
| WO2016014846A1 (en) | 2014-07-23 | 2016-01-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of intrabodies |
| JP2016526048A (ja) * | 2013-06-04 | 2016-09-01 | セレクタ バイオサイエンシーズ インコーポレーテッドSelecta Biosciences,Inc. | 非免疫抑制性の抗原特異的免疫治療薬の反復投与 |
| WO2017112943A1 (en) | 2015-12-23 | 2017-06-29 | Modernatx, Inc. | Methods of using ox40 ligand encoding polynucleotides |
| WO2017120612A1 (en) | 2016-01-10 | 2017-07-13 | Modernatx, Inc. | Therapeutic mrnas encoding anti ctla-4 antibodies |
| US9987354B2 (en) | 2011-04-29 | 2018-06-05 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for antigen-specific deletion of T effector cells |
| WO2018104538A1 (en) | 2016-12-08 | 2018-06-14 | Curevac Ag | Rna for treatment or prophylaxis of a liver disease |
| WO2018104540A1 (en) | 2016-12-08 | 2018-06-14 | Curevac Ag | Rnas for wound healing |
| US10046064B2 (en) | 2014-09-07 | 2018-08-14 | Selecta Biosciences, Inc. | Methods and compositions for attenuating exon skipping anti-viral transfer vector immune responses |
| EP3310342A4 (en) * | 2015-06-16 | 2019-03-06 | The Trustees of the University of Pennsylvania | INORGANIC RETARD PARTICLES WITH FAST ACTIVE LOAD |
| WO2019048632A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | STABILIZED COMPOSITIONS OF SMALL ACTIVATORY RNA (PARNA) OF HNF4A AND METHODS OF USE |
| WO2019048645A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | STABILIZED COMPOSITIONS OF SMALL ACTIVATOR RNA (PARNA) FROM CEBPA AND METHODS OF USE |
| US10335395B2 (en) | 2013-05-03 | 2019-07-02 | Selecta Biosciences, Inc. | Methods of administering immunosuppressants having a specified pharmacodynamic effective life and therapeutic macromolecules for the induction of immune tolerance |
| WO2019197845A1 (en) | 2018-04-12 | 2019-10-17 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
| WO2020033791A1 (en) | 2018-08-09 | 2020-02-13 | Verseau Therapeutics, Inc. | Oligonucleotide compositions for targeting ccr2 and csf1r and uses thereof |
| WO2020208361A1 (en) | 2019-04-12 | 2020-10-15 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
| WO2021061815A1 (en) | 2019-09-23 | 2021-04-01 | Omega Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR MODULATING HEPATOCYTE NUCLEAR FACTOR 4-ALPHA (HNF4α) GENE EXPRESSION |
| WO2021061707A1 (en) | 2019-09-23 | 2021-04-01 | Omega Therapeutics, Inc. | Compositions and methods for modulating apolipoprotein b (apob) gene expression |
| WO2021183720A1 (en) | 2020-03-11 | 2021-09-16 | Omega Therapeutics, Inc. | Compositions and methods for modulating forkhead box p3 (foxp3) gene expression |
| WO2022122872A1 (en) | 2020-12-09 | 2022-06-16 | Ucl Business Ltd | Therapeutics for the treatment of neurodegenerative disorders |
| US11426451B2 (en) | 2017-03-11 | 2022-08-30 | Selecta Biosciences, Inc. | Methods and compositions related to combined treatment with antiinflammatories and synthetic nanocarriers comprising an immunosuppressant |
| WO2022200810A1 (en) | 2021-03-26 | 2022-09-29 | Mina Therapeutics Limited | Tmem173 sarna compositions and methods of use |
| WO2023283359A2 (en) | 2021-07-07 | 2023-01-12 | Omega Therapeutics, Inc. | Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression |
| WO2023006999A2 (en) | 2021-07-30 | 2023-02-02 | CureVac SE | Mrnas for treatment or prophylaxis of liver diseases |
| EP4144378A1 (en) | 2011-12-16 | 2023-03-08 | ModernaTX, Inc. | Modified nucleoside, nucleotide, and nucleic acid compositions |
| WO2023099884A1 (en) | 2021-12-01 | 2023-06-08 | Mina Therapeutics Limited | Pax6 sarna compositions and methods of use |
| WO2023104964A1 (en) | 2021-12-09 | 2023-06-15 | Ucl Business Ltd | Therapeutics for the treatment of neurodegenerative disorders |
| WO2023144193A1 (en) | 2022-01-25 | 2023-08-03 | CureVac SE | Mrnas for treatment of hereditary tyrosinemia type i |
| WO2023161350A1 (en) | 2022-02-24 | 2023-08-31 | Io Biotech Aps | Nucleotide delivery of cancer therapy |
| WO2023170435A1 (en) | 2022-03-07 | 2023-09-14 | Mina Therapeutics Limited | Il10 sarna compositions and methods of use |
| WO2024125597A1 (en) | 2022-12-14 | 2024-06-20 | Providence Therapeutics Holdings Inc. | Compositions and methods for infectious diseases |
| WO2024134199A1 (en) | 2022-12-22 | 2024-06-27 | Mina Therapeutics Limited | Chemically modified sarna compositions and methods of use |
| WO2024243438A2 (en) | 2023-05-23 | 2024-11-28 | Omega Therapeutics, Inc. | Compositions and methods for reducing cxcl9, cxcl10, and cxcl11 gene expression |
| EP4520345A1 (en) | 2023-09-06 | 2025-03-12 | Myneo Nv | Product |
Families Citing this family (511)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6993506B2 (en) | 2000-12-05 | 2006-01-31 | Jgr Acquisition, Inc. | Method and device utilizing polymorphic data in e-commerce |
| US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
| US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
| US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
| US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
| US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
| US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
| US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
| US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
| US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
| US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
| US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
| US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
| US8991676B2 (en) | 2007-03-15 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Surgical staple having a slidable crown |
| US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
| DK2347775T3 (da) | 2005-12-13 | 2020-07-13 | Harvard College | Skabeloner til celletransplantation |
| US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
| US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
| US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
| US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
| US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
| US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
| US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
| US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
| US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
| US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
| US20110290856A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument with force-feedback capabilities |
| US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
| US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
| US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
| US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
| US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
| US8632535B2 (en) | 2007-01-10 | 2014-01-21 | Ethicon Endo-Surgery, Inc. | Interlock and surgical instrument including same |
| US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
| US8540128B2 (en) | 2007-01-11 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with a curved end effector |
| US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
| US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
| US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
| US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
| US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
| US10328133B2 (en) | 2008-02-13 | 2019-06-25 | President And Fellows Of Harvard College | Continuous cell programming devices |
| US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
| US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
| US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
| US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
| US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
| JP5410110B2 (ja) | 2008-02-14 | 2014-02-05 | エシコン・エンド−サージェリィ・インコーポレイテッド | Rf電極を有する外科用切断・固定器具 |
| US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
| US9615826B2 (en) | 2010-09-30 | 2017-04-11 | Ethicon Endo-Surgery, Llc | Multiple thickness implantable layers for surgical stapling devices |
| US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
| US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
| US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
| US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
| US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
| US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
| WO2010090940A1 (en) | 2009-02-06 | 2010-08-12 | Ethicon Endo-Surgery, Inc. | Driven surgical stapler improvements |
| CA2759332A1 (en) * | 2009-04-21 | 2010-10-28 | Selecta Biosciences, Inc. | Immunonanotherapeutics providing a th1-biased response |
| WO2010138193A2 (en) * | 2009-05-27 | 2010-12-02 | Selecta Biosciences, Inc. | Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents |
| AU2010293059B2 (en) * | 2009-08-26 | 2017-03-16 | Selecta Biosciences, Inc. | Compositions that induce T cell help |
| US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
| US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
| US20110293700A1 (en) | 2010-05-26 | 2011-12-01 | Selecta Biosciences, Inc. | Nanocarrier compositions with uncoupled adjuvant |
| KR20130102534A (ko) | 2010-07-12 | 2013-09-17 | 에이티와이알 파마, 인코포레이티드 | 히스티딜trna 합성효소의 단백질 단편에 관련된 치료적, 진단적, 및 항체 조성물의 혁신적 발견 |
| US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
| CA2807552A1 (en) | 2010-08-06 | 2012-02-09 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US9839420B2 (en) | 2010-09-30 | 2017-12-12 | Ethicon Llc | Tissue thickness compensator comprising at least one medicament |
| US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
| US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
| US12213666B2 (en) | 2010-09-30 | 2025-02-04 | Cilag Gmbh International | Tissue thickness compensator comprising layers |
| US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
| US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
| US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
| US9272406B2 (en) | 2010-09-30 | 2016-03-01 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator |
| US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
| US20120080336A1 (en) | 2010-09-30 | 2012-04-05 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising staples positioned within a compressible portion thereof |
| EP3431485B2 (en) | 2010-10-01 | 2024-09-04 | ModernaTX, Inc. | Engineered nucleic acids and methods of use thereof |
| US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
| CN107648668B (zh) | 2010-10-06 | 2021-06-18 | 哈佛学院董事会 | 用于基于材料的细胞疗法的可注射的成孔水凝胶 |
| EP2640190A4 (en) | 2010-11-05 | 2016-05-11 | Selecta Biosciences Inc | MODIFIED NICOTINIC COMPOUNDS AND ASSOCIATED METHODS |
| JP5909745B2 (ja) | 2010-11-12 | 2016-04-27 | クール ファーマシューティカルズ ディベロップメント カンパニー | 炎症性疾患の治療薬、ならびにウイルスまたは細菌感染疾患の治療薬 |
| WO2012135805A2 (en) | 2011-03-31 | 2012-10-04 | modeRNA Therapeutics | Delivery and formulation of engineered nucleic acids |
| EP2702077A2 (en) | 2011-04-27 | 2014-03-05 | AbbVie Inc. | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
| US9675561B2 (en) | 2011-04-28 | 2017-06-13 | President And Fellows Of Harvard College | Injectable cryogel vaccine devices and methods of use thereof |
| JP6026509B2 (ja) | 2011-04-29 | 2016-11-16 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | ステープルカートリッジ自体の圧縮可能部分内に配置されたステープルを含むステープルカートリッジ |
| US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
| CN109172819A (zh) | 2011-07-29 | 2019-01-11 | 西莱克塔生物科技公司 | 产生体液和细胞毒性t淋巴细胞(ctl)免疫应答的合成纳米载体 |
| US9901616B2 (en) | 2011-08-31 | 2018-02-27 | University Of Georgia Research Foundation, Inc. | Apoptosis-targeting nanoparticles |
| EP2753351B1 (en) | 2011-09-08 | 2017-06-21 | Yeda Research and Development Co. Ltd. | Anti third party central memory t cells, methods of producing same and use of same in transplantation and disease treatment |
| US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| EP2763701B1 (en) | 2011-10-03 | 2018-12-19 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| EP2591801A1 (en) * | 2011-11-14 | 2013-05-15 | Universitätsklinikum Hamburg-Eppendorf | Nanoparticle compositions for generation of regulatory T cells and treatment of autoimmune diseases and other chronic inflammatory conditions |
| US20150004189A1 (en) | 2012-02-07 | 2015-01-01 | La Jolla Institute For Allergy And Immunology | Epitopes from allergen proteins and methods and uses for immune response modulation |
| JP6170077B2 (ja) | 2012-02-16 | 2017-07-26 | エータイアー ファーマ, インコーポレイテッド | 自己免疫および炎症疾患を処置するためのヒスチジルtRNA合成酵素 |
| US10416167B2 (en) | 2012-02-17 | 2019-09-17 | University Of Georgia Research Foundation, Inc. | Nanoparticles for mitochondrial trafficking of agents |
| EP2828656B1 (en) * | 2012-03-23 | 2019-09-18 | Fundació Privada Institut de Recerca de la SIDA-Caixa | Method for monitoring hiv specific t cell responses |
| JP6105041B2 (ja) | 2012-03-28 | 2017-03-29 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | 低圧環境を画定するカプセルを含む組織厚コンペンセーター |
| RU2644272C2 (ru) | 2012-03-28 | 2018-02-08 | Этикон Эндо-Серджери, Инк. | Узел ограничения, включающий компенсатор толщины ткани |
| RU2014143258A (ru) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | Компенсатор толщины ткани, содержащий множество слоев |
| US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
| US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
| US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| CN104244929B (zh) | 2012-04-16 | 2017-04-05 | 哈佛学院董事会 | 用于调节免疫反应的介孔二氧化硅组合物 |
| WO2013158273A1 (en) | 2012-04-20 | 2013-10-24 | Abbvie Inc. | Methods to modulate c-terminal lysine variant distribution |
| US9067990B2 (en) | 2013-03-14 | 2015-06-30 | Abbvie, Inc. | Protein purification using displacement chromatography |
| WO2013158279A1 (en) | 2012-04-20 | 2013-10-24 | Abbvie Inc. | Protein purification methods to reduce acidic species |
| US9597385B2 (en) | 2012-04-23 | 2017-03-21 | Allertein Therapeutics, Llc | Nanoparticles for treatment of allergy |
| US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
| KR20250052503A (ko) | 2012-06-21 | 2025-04-18 | 노쓰웨스턴유니버시티 | 펩티드 접합된 입자 |
| US20140001234A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Coupling arrangements for attaching surgical end effectors to drive systems therefor |
| US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
| US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
| US12383267B2 (en) | 2012-06-28 | 2025-08-12 | Cilag Gmbh International | Robotically powered surgical device with manually-actuatable reversing system |
| BR112014032776B1 (pt) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico |
| EP2866686A1 (en) | 2012-06-28 | 2015-05-06 | Ethicon Endo-Surgery, Inc. | Empty clip cartridge lockout |
| US11202631B2 (en) | 2012-06-28 | 2021-12-21 | Cilag Gmbh International | Stapling assembly comprising a firing lockout |
| US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
| US9512214B2 (en) | 2012-09-02 | 2016-12-06 | Abbvie, Inc. | Methods to control protein heterogeneity |
| DK2914286T3 (da) | 2012-10-30 | 2021-11-08 | Aravax Pty Ltd | Hidtil ukendte immunterapeutiske molekyler og anvendelser deraf |
| WO2014069655A1 (ja) * | 2012-11-05 | 2014-05-08 | 株式会社レグイミューン | 免疫寛容誘導剤 |
| CA2892529C (en) | 2012-11-26 | 2023-04-25 | Moderna Therapeutics, Inc. | Terminally modified rna |
| JP6345707B2 (ja) | 2013-03-01 | 2018-06-20 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | ソフトストップを備えた外科用器具 |
| JP6382235B2 (ja) | 2013-03-01 | 2018-08-29 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | 信号通信用の導電路を備えた関節運動可能な外科用器具 |
| CA2905010A1 (en) | 2013-03-12 | 2014-09-18 | Abbvie Inc. | Human antibodies that bind human tnf-alpha and methods of preparing the same |
| HK1220368A1 (zh) | 2013-03-13 | 2017-05-05 | Cour Pharmaceuticals Development Company | 用於治疗炎症的免疫修饰性颗粒 |
| US9017687B1 (en) | 2013-10-18 | 2015-04-28 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same using displacement chromatography |
| US10470762B2 (en) | 2013-03-14 | 2019-11-12 | Ethicon Llc | Multi-function motor for a surgical instrument |
| US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
| WO2014151878A2 (en) | 2013-03-14 | 2014-09-25 | Abbvie Inc. | Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosacharides |
| ES2708565T3 (es) | 2013-03-15 | 2019-04-10 | Atyr Pharma Inc | Conjugados de Fc-histidil-ARNt sintetasa |
| US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
| WO2014154907A1 (de) * | 2013-03-28 | 2014-10-02 | Protagen Ag | Verfahren zur diagnose von neuromyelitis optica |
| EP3760223A1 (en) | 2013-04-03 | 2021-01-06 | N-Fold Llc | Nanoparticle composition for desensitizing a subject to peanut allergens |
| US9867612B2 (en) | 2013-04-16 | 2018-01-16 | Ethicon Llc | Powered surgical stapler |
| BR112015026109B1 (pt) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | Instrumento cirúrgico |
| CA2910579C (en) * | 2013-05-03 | 2023-09-26 | Selecta Biosciences, Inc. | Dosing combinations for reducing undesired humoral immune responses |
| EP2813242A1 (en) * | 2013-06-13 | 2014-12-17 | PLS-Design GmbH | Low molecular weight immune-modulators as adjuvants for specific immunotherapy |
| JP6553033B2 (ja) | 2013-08-13 | 2019-07-31 | ノースウェスタン ユニバーシティ | ペプチドコンジュゲート粒子 |
| US20150053743A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | Error detection arrangements for surgical instrument assemblies |
| JP6416260B2 (ja) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | 動力付き外科用器具のための発射部材後退装置 |
| US20160228521A1 (en) * | 2013-09-16 | 2016-08-11 | Allertein Therapeutics, Llc | Managing immune responses in transplantation |
| KR20160075532A (ko) | 2013-09-25 | 2016-06-29 | 아라백스 피티와이 엘티디 | 신규한 면역치료제 조성물 및 이의 용도 |
| US10023626B2 (en) | 2013-09-30 | 2018-07-17 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
| EA201690675A1 (ru) | 2013-10-03 | 2016-08-31 | Модерна Терапьютикс, Инк. | Полинуклеотиды, кодирующие рецептор липопротеинов низкой плотности |
| US9598667B2 (en) | 2013-10-04 | 2017-03-21 | Abbvie Inc. | Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins |
| US9181337B2 (en) | 2013-10-18 | 2015-11-10 | Abbvie, Inc. | Modulated lysine variant species compositions and methods for producing and using the same |
| US9085618B2 (en) | 2013-10-18 | 2015-07-21 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
| US20150139988A1 (en) | 2013-11-15 | 2015-05-21 | Abbvie, Inc. | Glycoengineered binding protein compositions |
| KR101483378B1 (ko) * | 2013-12-24 | 2015-01-15 | 이영환 | 금 나노 입자를 함유하는 물을 이용한 금 나노 입자를 포함하는 달걀 제조방법 |
| JP6546195B2 (ja) * | 2014-01-17 | 2019-07-17 | フンダシオ・インスティトゥート・ディンベスティガシオ・エン・シエンシス・デ・ラ・サルー・ヘルマンス・トリアス・イ・プホル | リポソームに基づく免疫療法 |
| US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
| EP2918262B1 (en) * | 2014-03-10 | 2023-08-09 | PLS-Design GmbH | Induction of antigen-specific tolerance by peripheral phagocytosis |
| US10398663B2 (en) | 2014-03-14 | 2019-09-03 | University Of Georgia Research Foundation, Inc. | Mitochondrial delivery of 3-bromopyruvate |
| BR112016021943B1 (pt) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico |
| US12232723B2 (en) | 2014-03-26 | 2025-02-25 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
| US10004497B2 (en) | 2014-03-26 | 2018-06-26 | Ethicon Llc | Interface systems for use with surgical instruments |
| US20150272571A1 (en) | 2014-03-26 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument utilizing sensor adaptation |
| US9733663B2 (en) | 2014-03-26 | 2017-08-15 | Ethicon Llc | Power management through segmented circuit and variable voltage protection |
| US9801627B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Fastener cartridge for creating a flexible staple line |
| US10542988B2 (en) | 2014-04-16 | 2020-01-28 | Ethicon Llc | End effector comprising an anvil including projections extending therefrom |
| BR112016023825B1 (pt) | 2014-04-16 | 2022-08-02 | Ethicon Endo-Surgery, Llc | Cartucho de grampos para uso com um grampeador cirúrgico e cartucho de grampos para uso com um instrumento cirúrgico |
| US20150297223A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
| JP6532889B2 (ja) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | 締結具カートリッジ組立体及びステープル保持具カバー配置構成 |
| BR112016023698B1 (pt) | 2014-04-16 | 2022-07-26 | Ethicon Endo-Surgery, Llc | Cartucho de prendedores para uso com um instrumento cirúrgico |
| US10682400B2 (en) | 2014-04-30 | 2020-06-16 | President And Fellows Of Harvard College | Combination vaccine devices and methods of killing cancer cells |
| CN104028745A (zh) * | 2014-06-11 | 2014-09-10 | 浙江大学 | 一种利用丝素蛋白调控金纳米颗粒自组装的方法 |
| US20150359865A1 (en) * | 2014-06-17 | 2015-12-17 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for t-cell-mediated autoimmune disease |
| US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
| US9724094B2 (en) | 2014-09-05 | 2017-08-08 | Ethicon Llc | Adjunct with integrated sensors to quantify tissue compression |
| BR112017004361B1 (pt) | 2014-09-05 | 2023-04-11 | Ethicon Llc | Sistema eletrônico para um instrumento cirúrgico |
| WO2016040806A1 (en) * | 2014-09-11 | 2016-03-17 | The Regents Of The University Of California | mTORC1 INHIBITORS |
| US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
| AU2015323334B2 (en) | 2014-09-26 | 2021-02-25 | Seqirus UK Limited | Vaccination of immunocompromised subjects |
| US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
| JP6648119B2 (ja) | 2014-09-26 | 2020-02-14 | エシコン エルエルシーEthicon LLC | 外科ステープル留めバットレス及び付属物材料 |
| US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
| US20180015101A1 (en) | 2014-10-28 | 2018-01-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Compositions and methods for antigen-specific tolerance |
| US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
| US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
| IL283699B (en) * | 2014-11-05 | 2022-09-01 | Selecta Biosciences Inc | Methods and preparations related to artificial nanocarriers with rapamycin in a super-saturated steady state |
| US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
| US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
| US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
| US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
| US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
| RU2703684C2 (ru) | 2014-12-18 | 2019-10-21 | ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи | Хирургический инструмент с упором, который выполнен с возможностью избирательного перемещения относительно кассеты со скобами вокруг дискретной неподвижной оси |
| US10004501B2 (en) | 2014-12-18 | 2018-06-26 | Ethicon Llc | Surgical instruments with improved closure arrangements |
| US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
| EP3250250A4 (en) | 2015-01-30 | 2019-05-22 | President and Fellows of Harvard College | PERITUMORAL AND INTRATUMORAL MATERIALS FOR CANCER THERAPY |
| US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
| US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
| US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
| US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
| US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
| JP2020121162A (ja) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価 |
| US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
| US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
| JP7094533B2 (ja) | 2015-04-10 | 2022-07-04 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 免疫細胞捕捉デバイスおよびその製造および使用方法 |
| CN104758261A (zh) * | 2015-04-30 | 2015-07-08 | 中国医学科学院生物医学工程研究所 | 淫羊藿苷plga纳米粒子及制备方法及用途 |
| EP3303635B1 (en) | 2015-06-01 | 2021-09-01 | California Institute of Technology | Compositions and methods for screening t cells with antigens for specific populations |
| AU2016294617B2 (en) * | 2015-07-15 | 2021-09-16 | Celator Pharmaceuticals, Inc. | Improved nanoparticle delivery systems |
| US11179448B2 (en) | 2015-07-16 | 2021-11-23 | Yeda Research And Development Co. Ltd. | Genetically modified anti-third party central memory T cells and use of same in immunotherapy |
| WO2017019214A1 (en) | 2015-07-29 | 2017-02-02 | Musc Foundation For Research Development | Donor organ pre-treatment formulation |
| US10617418B2 (en) | 2015-08-17 | 2020-04-14 | Ethicon Llc | Implantable layers for a surgical instrument |
| WO2017044933A1 (en) * | 2015-09-13 | 2017-03-16 | The Research Foundation for State University of New York | Functional, segregated, charged telodendrimers and nanocarriers and methods of making and using same |
| DK3350157T3 (da) | 2015-09-17 | 2022-02-14 | Modernatx Inc | Forbindelser og sammensætninger til intracellulær afgivelse af terapeutiske midler |
| US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
| US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
| KR102514116B1 (ko) | 2015-09-24 | 2023-03-23 | 삼성전자주식회사 | 반도체 나노결정 입자 및 이를 포함하는 소자 |
| US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
| US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
| US10736633B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Compressible adjunct with looping members |
| US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
| US10172620B2 (en) | 2015-09-30 | 2019-01-08 | Ethicon Llc | Compressible adjuncts with bonding nodes |
| US20170157215A1 (en) | 2015-12-04 | 2017-06-08 | Jomoco, Corp. | Compositions and methods to mitigate or prevent an immune response to an immunogenic therapeutic molecule in non-human primates |
| MD3386484T2 (ro) | 2015-12-10 | 2022-11-30 | Modernatx Inc | Compoziții și metode de livrare a unor agenți terapeutici |
| US11433136B2 (en) | 2015-12-18 | 2022-09-06 | The General Hospital Corporation | Polyacetal polymers, conjugates, particles and uses thereof |
| AU2016377681B2 (en) | 2015-12-22 | 2021-05-13 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
| US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
| US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
| US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
| EP3411475B1 (en) | 2016-02-06 | 2025-08-27 | President and Fellows of Harvard College | Recapitulating the hematopoietic niche to reconstitute immunity |
| US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
| JP6911054B2 (ja) | 2016-02-09 | 2021-07-28 | エシコン エルエルシーEthicon LLC | 非対称の関節構成を備えた外科用器具 |
| US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
| US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
| SI3426285T1 (sl) * | 2016-03-11 | 2025-05-30 | Cartesian Therapeutics, Inc. | Formulacije in odmerki pegilirane urikaze |
| US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
| US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
| US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
| US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
| US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
| US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
| US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
| US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
| US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
| US10426469B2 (en) | 2016-04-18 | 2019-10-01 | Ethicon Llc | Surgical instrument comprising a primary firing lockout and a secondary firing lockout |
| US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
| EP3251662A1 (en) * | 2016-06-07 | 2017-12-06 | Tolerogenics S.à.r.l. | Matrix-embedded tolerance-promotion adjuvants for subcutaneous immunotherapy |
| NL2017204B1 (en) | 2016-06-08 | 2017-12-18 | Kei International Ltd | Solid substrate comprising antigens immobilised thereto, biosensor comprising said solid substrate and method for detecting the presence of mycobacterial material in a sample |
| CA3029813A1 (en) | 2016-06-13 | 2017-12-21 | Torque Therapeutics, Inc. | Methods and compositions for promoting immune cell function |
| JP2018012694A (ja) * | 2016-07-12 | 2018-01-25 | 日本化薬株式会社 | ラパマイシン類結合ブロック共重合体 |
| CN115537372A (zh) | 2016-07-13 | 2022-12-30 | 哈佛学院院长等 | 抗原呈递细胞模拟支架及其制备和使用方法 |
| EP3493842A4 (en) | 2016-08-02 | 2020-07-29 | President and Fellows of Harvard College | BIOMATERIALS TO MODULATE IMMUNE RESPONSES |
| US10548673B2 (en) | 2016-08-16 | 2020-02-04 | Ethicon Llc | Surgical tool with a display |
| US20190008900A1 (en) * | 2017-07-07 | 2019-01-10 | Tian Xin Wang | Methods and reagents to treat autoimmune diseases and allergy |
| US20210363220A1 (en) * | 2016-10-05 | 2021-11-25 | Tianxin Wang | Methods and reagents to treat autoimmune diseases and allergy |
| WO2018067477A1 (en) * | 2016-10-05 | 2018-04-12 | Wang tian xin | Methods and reagents to treat autoimmune diseases and allergy |
| US10398732B2 (en) | 2016-10-13 | 2019-09-03 | Marshall University Research Corporation | Compositions and methods for treating striated muscle injury, treating striated muscle atrophy and/or for promoting striated muscle growth |
| US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| JP7010956B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | 組織をステープル留めする方法 |
| US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
| CN110114014B (zh) | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | 包括端部执行器闭锁件和击发组件闭锁件的外科器械系统 |
| US10568626B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Surgical instruments with jaw opening features for increasing a jaw opening distance |
| US20180168598A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Staple forming pocket arrangements comprising zoned forming surface grooves |
| JP2020501779A (ja) | 2016-12-21 | 2020-01-23 | エシコン エルエルシーEthicon LLC | 外科用ステープル留めシステム |
| US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
| US10835246B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
| JP6983893B2 (ja) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成 |
| US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
| US10524789B2 (en) | 2016-12-21 | 2020-01-07 | Ethicon Llc | Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration |
| US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
| CN110114003A (zh) | 2016-12-21 | 2019-08-09 | 爱惜康有限责任公司 | 外科缝合系统 |
| US10588632B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical end effectors and firing members thereof |
| JP7010957B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | ロックアウトを備えるシャフトアセンブリ |
| US10980536B2 (en) | 2016-12-21 | 2021-04-20 | Ethicon Llc | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
| US10918385B2 (en) | 2016-12-21 | 2021-02-16 | Ethicon Llc | Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system |
| US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
| US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
| PL3565823T3 (pl) * | 2017-01-04 | 2024-10-28 | Worg Pharmaceuticals (Zhejiang) Co., Ltd. | Peptydy S-arestyn oraz ich zastosowanie terapeutyczne |
| KR20190104194A (ko) * | 2017-01-07 | 2019-09-06 | 셀렉타 바이오사이언시즈, 인크. | 합성 나노담체에 커플링된 면역억제제의 패턴화된 투여 |
| US10751368B2 (en) | 2017-01-18 | 2020-08-25 | Yeda Research And Development Co. Ltd. | Methods of transplantation and disease treatment |
| IL268126B2 (en) | 2017-01-18 | 2024-02-01 | Yeda Res & Dev | Genetically engineered Veto cells and their uses in immunotherapy |
| US12258613B2 (en) | 2017-03-08 | 2025-03-25 | California Institute Of Technology | Pairing antigen specificity of a T cell with T cell receptor sequences |
| AU2018234692B2 (en) | 2017-03-15 | 2022-06-02 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| ES2911186T3 (es) | 2017-03-15 | 2022-05-18 | Modernatx Inc | Formas cristalinas de aminolípidos |
| CA3055653A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Lipid nanoparticle formulation |
| EP3607074A4 (en) | 2017-04-05 | 2021-07-07 | Modernatx, Inc. | REDUCTION OR ELIMINATION OF IMMUNE RESPONSES TO NON-INTRAVENOUS THERAPEUTIC PROTEINS, FOR EXAMPLE SUBCUTANEOUSLY |
| EP3612215B1 (en) | 2017-04-20 | 2024-08-28 | aTyr Pharma, Inc. | Compositions for treating lung inflammation |
| WO2018232120A1 (en) | 2017-06-14 | 2018-12-20 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
| US11786607B2 (en) | 2017-06-15 | 2023-10-17 | Modernatx, Inc. | RNA formulations |
| US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
| US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
| US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
| US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
| US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
| US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
| US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
| US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
| US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
| USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
| US12490980B2 (en) | 2017-06-20 | 2025-12-09 | Cilag Gmbh International | Surgical instrument having controllable articulation velocity |
| US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
| US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
| US11090049B2 (en) | 2017-06-27 | 2021-08-17 | Cilag Gmbh International | Staple forming pocket arrangements |
| US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
| US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
| US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
| US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
| US11484310B2 (en) | 2017-06-28 | 2022-11-01 | Cilag Gmbh International | Surgical instrument comprising a shaft including a closure tube profile |
| US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
| US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
| USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
| US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
| US10695057B2 (en) | 2017-06-28 | 2020-06-30 | Ethicon Llc | Surgical instrument lockout arrangement |
| EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
| US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
| CN111132686A (zh) * | 2017-07-07 | 2020-05-08 | 王天欣 | 治疗自身免疫性疾病和过敏的方法和试剂 |
| US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
| US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
| US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
| US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
| MX2020002348A (es) | 2017-08-31 | 2020-10-08 | Modernatx Inc | Métodos de elaboración de nanopartículas lipídicas. |
| KR20210032924A (ko) | 2017-09-05 | 2021-03-25 | 토크 테라퓨틱스, 인코포레이티드 | 치료용 단백질 조성물 및 그의 제조 및 사용 방법 |
| USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
| US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
| US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
| USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
| US20220025015A1 (en) * | 2017-10-03 | 2022-01-27 | Tianxin Wang | Methods, compositions and therapeutical vaccine for autoimmune diseases and allergy treatment |
| US11441122B2 (en) | 2017-10-05 | 2022-09-13 | Epivax Inc. | Regulatory T cell epitopes |
| US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
| US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
| US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
| US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
| US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
| US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
| US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
| US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
| US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
| US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
| US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
| US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
| USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
| US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
| US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
| US12336705B2 (en) | 2017-12-21 | 2025-06-24 | Cilag Gmbh International | Continuous use self-propelled stapling instrument |
| US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
| US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
| US11751867B2 (en) | 2017-12-21 | 2023-09-12 | Cilag Gmbh International | Surgical instrument comprising sequenced systems |
| CA3092372A1 (en) * | 2018-02-26 | 2019-08-29 | AnTolRx, Inc. | Tolerogenic liposomes and methods of use thereof |
| CN108841774B (zh) * | 2018-05-02 | 2021-11-26 | 南开大学 | 一种双响应型纳米仿生界面的制备及其在细胞捕获与应需无损释放中的应用 |
| CN108753716A (zh) * | 2018-06-14 | 2018-11-06 | 杭州启澜生物医学技术有限公司 | 一种体外扩增人外周血cd3+t细胞的方法 |
| NL2021443B1 (en) | 2018-08-08 | 2020-02-20 | Kei International Ltd | Synthetic antigens for tuberculosis detection |
| CN110836966A (zh) * | 2018-08-15 | 2020-02-25 | 王镕 | 用于抗原特异性t细胞含量检测的检测纳米颗粒、检测方法及试剂盒等 |
| US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
| US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
| US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
| US20200054321A1 (en) | 2018-08-20 | 2020-02-20 | Ethicon Llc | Surgical instruments with progressive jaw closure arrangements |
| US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
| USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
| US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
| US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
| US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
| US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
| US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
| IL280880B2 (en) | 2018-08-27 | 2025-04-01 | Regeneron Pharma | Using Raman Spectroscopy in Downstream Purification |
| CA3113025A1 (en) | 2018-09-19 | 2020-03-26 | Modernatx, Inc. | Peg lipids and uses thereof |
| US12263248B2 (en) | 2018-09-19 | 2025-04-01 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| EP4509118A3 (en) | 2018-09-19 | 2025-05-14 | ModernaTX, Inc. | High-purity peg lipids and uses thereof |
| WO2020061129A1 (en) | 2018-09-19 | 2020-03-26 | President And Fellows Of Harvard College | Compositions and methods for labeling and modulation of cells in vitro and in vivo |
| US12090235B2 (en) | 2018-09-20 | 2024-09-17 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
| CN109439626B (zh) * | 2018-11-09 | 2022-10-14 | 复旦大学附属中山医院 | 一种有助于体外获得Th22细胞的组合物及其用途 |
| DE102018220631A1 (de) * | 2018-11-29 | 2020-06-04 | B. Braun Melsungen Ag | Wässrige Zusammensetzung, insbesondere zur Behandlung von Schleimhaut und/oder Wunden |
| CN111388679A (zh) * | 2019-01-03 | 2020-07-10 | 北京大学 | 蛋白质-螺旋聚氨基酸偶联物、其制备方法及用途 |
| CN111574590B (zh) * | 2019-02-18 | 2022-04-22 | 常州市第一人民医院 | 一种具有抗肿瘤功能的多肽及其应用 |
| US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
| US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
| US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
| US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
| US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
| US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
| US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
| US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
| US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
| US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
| US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
| CN114341175A (zh) * | 2019-05-23 | 2022-04-12 | 乌第有限合伙公司 | 包含非经典mhc的纳米颗粒及其用途 |
| US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
| US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
| US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
| US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
| US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
| US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
| US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
| US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
| US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
| US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
| US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
| US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
| US11350938B2 (en) | 2019-06-28 | 2022-06-07 | Cilag Gmbh International | Surgical instrument comprising an aligned rfid sensor |
| US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
| US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
| US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
| US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
| US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
| US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
| US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
| US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
| US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
| US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
| WO2021041991A1 (en) * | 2019-08-29 | 2021-03-04 | Diomics Corporation | Hydrophilic biopolymer medicament delivery mechanism |
| CA3154618A1 (en) | 2019-09-19 | 2021-03-25 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
| CA3158408A1 (en) * | 2019-10-21 | 2021-04-29 | Selecta Biosciences, Inc. | Methods and compositions for treating liver diseases and disorders |
| US20220395563A1 (en) * | 2019-11-11 | 2022-12-15 | The Regents Of The University Of California | Polymeric nanoparticles that target liver sinusoidal endothelial cells to induce antigen-specific immune tolerance |
| US12162953B2 (en) * | 2019-12-06 | 2024-12-10 | Yale University | Enhanced targeting platform |
| US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
| US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
| US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
| US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
| US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
| US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
| US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
| US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
| US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
| US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
| US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
| US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
| US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
| US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
| US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
| US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
| JP2023515202A (ja) * | 2020-02-26 | 2023-04-12 | セレクタ バイオサイエンシーズ インコーポレーテッド | 免疫抑制薬を含む合成ナノキャリアを使用する方法および組成物 |
| CA3180166A1 (en) * | 2020-04-14 | 2021-10-21 | Selecta Biosciences, Inc. | Methods and compositions for inducing autophagy |
| USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
| USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
| USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
| USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
| USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
| USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
| USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
| US12064107B2 (en) | 2020-07-28 | 2024-08-20 | Cilag Gmbh International | Articulatable surgical instruments with articulation joints comprising flexible exoskeleton arrangements |
| US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
| US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
| USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
| US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
| US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
| US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
| US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
| US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
| US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
| US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
| US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
| USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
| EP4241761A4 (en) * | 2020-11-09 | 2024-09-25 | Scai Therapeutics Co., Ltd. | CYCLOSPORINE A SOLID AND DISPERSION COMPOSITION COMPRISING SAME |
| CN116406256A (zh) * | 2020-11-09 | 2023-07-07 | 思凯制药有限公司 | 固体物质和包含其的分散组合物 |
| CN112480244A (zh) * | 2020-11-24 | 2021-03-12 | 华科同济干细胞基因工程有限公司 | 一种抗过敏性纳米抗体组合物、抗体测定方法及喷雾剂 |
| US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
| US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
| US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
| US12471982B2 (en) | 2020-12-02 | 2025-11-18 | Cilag Gmbh International | Method for tissue treatment by surgical instrument |
| US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
| US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
| US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
| US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
| US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
| US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
| IL303671A (en) * | 2020-12-18 | 2023-08-01 | Defence Therapeutics Inc | Covalently modified antigens for improved immune response and/or stability |
| CN112807425A (zh) * | 2021-01-14 | 2021-05-18 | 南方医科大学深圳医院 | 一种tTIM融合蛋白疫苗、制备方法及应用 |
| US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
| US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
| US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
| US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
| US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
| US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
| US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
| US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
| US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
| US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
| US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
| US12324580B2 (en) | 2021-02-26 | 2025-06-10 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
| US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
| US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
| US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
| US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
| US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
| US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
| US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
| US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
| US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
| US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
| US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
| US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
| US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
| US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
| US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
| US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
| US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
| US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
| US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
| US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
| US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
| US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
| US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
| US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
| WO2022221529A1 (en) | 2021-04-16 | 2022-10-20 | Asklepios Biopharmaceutical, Inc. | Rational polyploid aav virions that cross the blood brain barrier and elicit reduced humoral response |
| US11918217B2 (en) | 2021-05-28 | 2024-03-05 | Cilag Gmbh International | Stapling instrument comprising a staple cartridge insertion stop |
| CN113425702B (zh) * | 2021-06-25 | 2022-08-26 | 中国药科大学 | 应用微流控技术制备纳米颗粒、制备方法及装置和用途 |
| US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
| US12239317B2 (en) | 2021-10-18 | 2025-03-04 | Cilag Gmbh International | Anvil comprising an arrangement of forming pockets proximal to tissue stop |
| US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
| US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
| US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
| US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
| US12432790B2 (en) | 2021-10-28 | 2025-09-30 | Cilag Gmbh International | Method and device for transmitting UART communications over a security short range wireless communication |
| CN116919970A (zh) * | 2022-04-11 | 2023-10-24 | 北京大学 | 3-甲基腺嘌呤作为制备预防或治疗术后组织黏连药物的用途 |
| CN115475255B (zh) * | 2022-06-14 | 2025-04-04 | 澳门科技大学 | 一种酶响应型二氧化硅纳米制剂、制备方法及应用 |
| CN120379646A (zh) * | 2022-11-23 | 2025-07-25 | 艾赫德疗法公司 | 致耐受性组合物 |
| KR102714037B1 (ko) * | 2023-11-30 | 2024-10-07 | 주식회사 지엔티파마 | 자가면역 질환 치료용 조성물 및 방법 |
| KR102863096B1 (ko) * | 2024-09-05 | 2025-09-22 | 주식회사 지엔티파마 | 건선 치료용 조성물 및 방법 |
| WO2025123147A1 (en) * | 2023-12-14 | 2025-06-19 | Integrated Nanotherapeutics Inc. | Tolerizing immunomodulatory combination |
| CN118852345A (zh) * | 2024-04-30 | 2024-10-29 | 岭南现代农业科学与技术广东省实验室河源分中心 | 一种米酵菌酸模拟表位肽及其应用 |
| CN120241799B (zh) * | 2025-06-04 | 2025-08-29 | 滨州医学院 | 一种用于抗肿瘤的大肠杆菌制剂及其制备方法和应用 |
Citations (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4638045A (en) | 1985-02-19 | 1987-01-20 | Massachusetts Institute Of Technology | Non-peptide polyamino acid bioerodible polymers |
| US4806621A (en) | 1986-01-21 | 1989-02-21 | Massachusetts Institute Of Technology | Biocompatible, bioerodible, hydrophobic, implantable polyimino carbonate article |
| US4946929A (en) | 1983-03-22 | 1990-08-07 | Massachusetts Institute Of Technology | Bioerodible articles useful as implants and prostheses having predictable degradation rates |
| US5010167A (en) | 1989-03-31 | 1991-04-23 | Massachusetts Institute Of Technology | Poly(amide-and imide-co-anhydride) for biological application |
| US5019379A (en) | 1987-07-31 | 1991-05-28 | Massachusetts Institute Of Technology | Unsaturated polyanhydrides |
| US5399665A (en) | 1992-11-05 | 1995-03-21 | Massachusetts Institute Of Technology | Biodegradable polymers for cell transplantation |
| US5512600A (en) | 1993-01-15 | 1996-04-30 | Massachusetts Institute Of Technology | Preparation of bonded fiber structures for cell implantation |
| US5514378A (en) | 1993-02-01 | 1996-05-07 | Massachusetts Institute Of Technology | Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures |
| US5543158A (en) | 1993-07-23 | 1996-08-06 | Massachusetts Institute Of Technology | Biodegradable injectable nanoparticles |
| US5578325A (en) | 1993-07-23 | 1996-11-26 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
| US5716404A (en) | 1994-12-16 | 1998-02-10 | Massachusetts Institute Of Technology | Breast tissue engineering |
| US5736372A (en) | 1986-11-20 | 1998-04-07 | Massachusetts Institute Of Technology | Biodegradable synthetic polymeric fibrous matrix containing chondrocyte for in vivo production of a cartilaginous structure |
| US5770417A (en) | 1986-11-20 | 1998-06-23 | Massachusetts Institute Of Technology Children's Medical Center Corporation | Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo |
| US5804178A (en) | 1986-11-20 | 1998-09-08 | Massachusetts Institute Of Technology | Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue |
| US5837752A (en) | 1997-07-17 | 1998-11-17 | Massachusetts Institute Of Technology | Semi-interpenetrating polymer networks |
| US5902599A (en) | 1996-02-20 | 1999-05-11 | Massachusetts Institute Of Technology | Biodegradable polymer networks for use in orthopedic and dental applications |
| US6007845A (en) | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
| US6095148A (en) | 1995-11-03 | 2000-08-01 | Children's Medical Center Corporation | Neuronal stimulation using electrically conducting polymers |
| US6123727A (en) | 1995-05-01 | 2000-09-26 | Massachusetts Institute Of Technology | Tissue engineered tendons and ligaments |
| US20020086049A1 (en) | 2000-09-18 | 2002-07-04 | Bolton Anthony E. | Apoptosis-mimicking synthetic entities and use thereof in medical treatment |
| US6506577B1 (en) | 1998-03-19 | 2003-01-14 | The Regents Of The University Of California | Synthesis and crosslinking of catechol containing copolypeptides |
| US6632922B1 (en) | 1998-03-19 | 2003-10-14 | The Regents Of The University Of California | Methods and compositions for controlled polypeptide synthesis |
| US6632671B2 (en) | 2000-02-28 | 2003-10-14 | Genesegues, Inc. | Nanoparticle encapsulation system and method |
| US6686446B2 (en) | 1998-03-19 | 2004-02-03 | The Regents Of The University Of California | Methods and compositions for controlled polypeptide synthesis |
| US6818732B2 (en) | 2001-08-30 | 2004-11-16 | The Regents Of The University Of California | Transition metal initiators for controlled poly (beta-peptide) synthesis from beta-lactam monomers |
| US20060002852A1 (en) | 2004-07-01 | 2006-01-05 | Yale University | Targeted and high density drug loaded polymeric materials |
| US20060222652A1 (en) | 2000-05-05 | 2006-10-05 | Cytos Biotechnology Ag | Molecular antigen array |
| US20060251677A1 (en) | 2003-03-26 | 2006-11-09 | Cytos Biotechnology Ag | Packaging of immunostimulatory oligonucleotides into virus-like particles: method of preparation and use |
| US20080031899A1 (en) | 2006-02-21 | 2008-02-07 | Reddy Sai T | Nanoparticles for immunotherapy |
| US20080145441A1 (en) | 2000-10-16 | 2008-06-19 | Midatech Limited | Nanoparticles |
| WO2008127532A1 (en) | 2007-04-12 | 2008-10-23 | Emory University | Novel strategies for delivery of active agents using micelles and particles |
| US20090028910A1 (en) | 2003-12-19 | 2009-01-29 | University Of North Carolina At Chapel Hill | Methods for Fabrication Isolated Micro-and Nano-Structures Using Soft or Imprint Lithography |
| WO2009051837A2 (en) | 2007-10-12 | 2009-04-23 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
| WO2009106999A2 (en) | 2008-02-28 | 2009-09-03 | Deutsches Krebsforschungszentrum, Stiftung Des Öffentlichen Rechts | Hollow nanoparticles and uses thereof |
| US20090226525A1 (en) | 2007-04-09 | 2009-09-10 | Chimeros Inc. | Self-assembling nanoparticle drug delivery system |
| WO2010047839A1 (en) | 2008-10-25 | 2010-04-29 | Aura Biosciences | Modified plant virus particles and uses therefor |
| US20100129392A1 (en) | 2008-10-12 | 2010-05-27 | Jinjun Shi | Targeting of Antigen Presenting Cells with Immunonanotherapeutics |
| US20100129439A1 (en) * | 2008-10-12 | 2010-05-27 | Frank Alexis | Adjuvant Incorporation in Immunonanotherapeutics |
| US20100151000A1 (en) | 2006-10-12 | 2010-06-17 | The University Of Queensland | Compositions and methods for modulating immune responses |
| WO2010138192A2 (en) * | 2009-05-27 | 2010-12-02 | Selecta Biosciences, Inc. | Nanocarriers possessing components with different rates of release |
| US20110070154A1 (en) * | 2008-08-13 | 2011-03-24 | Hyde Roderick A | Artificial cells |
Family Cites Families (269)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1995A (en) | 1841-03-03 | Latch of door and other locks | ||
| US934897A (en) | 1907-08-08 | 1909-09-21 | Frank Dutcher | Fusee-cap. |
| US927297A (en) | 1908-02-24 | 1909-07-06 | Charles Tuckfield | Engine. |
| US6309669B1 (en) | 1984-03-16 | 2001-10-30 | The United States Of America As Represented By The Secretary Of The Army | Therapeutic treatment and prevention of infections with a bioactive materials encapsulated within a biodegradable-biocompatible polymeric matrix |
| DE3875306T2 (de) | 1987-02-24 | 1993-04-01 | Xoma Corp | Immunosuppression bei der auf immunotoxin basierten behandlung von menschen. |
| US5912017A (en) | 1987-05-01 | 1999-06-15 | Massachusetts Institute Of Technology | Multiwall polymeric microspheres |
| JP2670680B2 (ja) | 1988-02-24 | 1997-10-29 | 株式会社ビーエムジー | 生理活性物質含有ポリ乳酸系微小球およびその製造法 |
| US5268455A (en) * | 1989-05-25 | 1993-12-07 | Genentech, Inc. | Process for making biologically active polypeptides based on transforming growth factor-βsequences |
| US5679347A (en) | 1992-12-10 | 1997-10-21 | Brigham And Women's Hospital | Methods of isolating CD1-presented antigens, vaccines comprising CD1-presented antigens, and cell lines for use in said methods |
| WO1994015635A1 (en) | 1993-01-11 | 1994-07-21 | Dana-Farber Cancer Institute | Inducing cytotoxic t lymphocyte responses |
| WO1995003035A1 (en) | 1993-07-23 | 1995-02-02 | Massachusetts Institute Of Technology | Polymerized liposomes with enhanced stability for oral delivery |
| TW249754B (enExample) | 1993-10-26 | 1995-06-21 | Alpha I Biomedicals Inc | |
| JP2930421B2 (ja) | 1994-02-28 | 1999-08-03 | メディノヴァ メディカル コンサルティング ゲゼルシャフト ミット ベシュレンクテル ハフツング | 薬剤組成物、その製造方法及びその使用方法 |
| WO1995031480A1 (en) | 1994-05-18 | 1995-11-23 | S.P.I. Synthetic Peptides Incorporated | Heterodimer polypeptide immunogen carrier composition and method |
| CA2200869A1 (en) | 1994-10-19 | 1996-05-02 | Bruce C. Trapnell | Gene therapy involving concurrent and repeated administration of adenoviruses and immunosuppressive agents |
| EP0805678B1 (en) | 1995-01-05 | 2003-10-29 | THE BOARD OF REGENTS acting for and on behalf of THE UNIVERSITY OF MICHIGAN | Surface-modified nanoparticles and method of making and using same |
| US6251957B1 (en) | 1995-02-24 | 2001-06-26 | Trustees Of The University Of Pennsylvania | Method of reducing an immune response to a recombinant virus |
| JP3462313B2 (ja) | 1995-08-24 | 2003-11-05 | キッコーマン株式会社 | 変異型ウリカーゼ、変異型ウリカーゼ遺伝子、新規な組み換え体dna及び変異型ウリカーゼの製造法 |
| AU710347B2 (en) | 1995-08-31 | 1999-09-16 | Alkermes Controlled Therapeutics, Inc. | Composition for sustained release of an agent |
| US6258823B1 (en) | 1996-07-12 | 2001-07-10 | Ariad Pharmaceuticals, Inc. | Materials and method for treating or preventing pathogenic fungal infection |
| AU4176497A (en) | 1996-09-03 | 1998-03-26 | Health Research Inc. | Treatment of antigen presenting cells to modulate antigen presenting cell fun ction |
| US6368598B1 (en) | 1996-09-16 | 2002-04-09 | Jcrt Radiation Oncology Support Services, Inc. | Drug complex for treatment of metastatic prostate cancer |
| US6060082A (en) | 1997-04-18 | 2000-05-09 | Massachusetts Institute Of Technology | Polymerized liposomes targeted to M cells and useful for oral or mucosal drug delivery |
| AU741130B2 (en) | 1997-09-16 | 2001-11-22 | Oregon Health Sciences University | Recombinant MHC molecules useful for manipulation of antigen-specific T-cells |
| DK1024829T3 (da) | 1997-10-30 | 2009-02-09 | Lab Leti S L | Tolerogene fragmenter af naturlige allergener |
| US6018817A (en) | 1997-12-03 | 2000-01-25 | International Business Machines Corporation | Error correcting code retrofit method and apparatus for multiple memory configurations |
| US6197229B1 (en) | 1997-12-12 | 2001-03-06 | Massachusetts Institute Of Technology | Method for high supercoiled DNA content microspheres |
| US6254890B1 (en) | 1997-12-12 | 2001-07-03 | Massachusetts Institute Of Technology | Sub-100nm biodegradable polymer spheres capable of transporting and releasing nucleic acids |
| JP2001526900A (ja) | 1997-12-23 | 2001-12-25 | イントロヘーネ ベスローテン フェンノートシャップ | 標的細胞の染色体dnaへの外来遺伝子情報の組み込みに有用な、アデノ随伴ウイルスおよびアデノウイルスのキメラ組換えウイルス |
| JP2002500198A (ja) | 1998-01-09 | 2002-01-08 | サーカシア リミテッド | 脱感作のための方法及び組成物 |
| FR2775435B1 (fr) | 1998-02-27 | 2000-05-26 | Bioalliance Pharma | Nanoparticules comprenant au moins un polymere et au moins un compose apte a complexer un ou plusieurs principes actifs |
| SE9801288D0 (sv) | 1998-04-14 | 1998-04-14 | Astra Ab | Vaccine delivery system and metod of production |
| US6436392B1 (en) | 1998-05-20 | 2002-08-20 | University Of Iowa Research Foundation | Adeno-associated virus vectors |
| DE19827164A1 (de) | 1998-06-18 | 1999-12-23 | Merck Patent Gmbh | Katalytisch Titan(IV)-oxid vermittelte geminale symmetrische Dialkylierung von Carbonsäureamiden |
| US6306640B1 (en) | 1998-10-05 | 2001-10-23 | Genzyme Corporation | Melanoma antigenic peptides |
| DE69918146T2 (de) | 1998-10-05 | 2005-07-07 | Pharmexa A/S | Verfahren zur therapeutischen impfung |
| US6759237B1 (en) | 1998-11-05 | 2004-07-06 | The Trustees Of The University Of Pennsylvania | Adeno-associated virus serotype 1 nucleic acid sequences, vectors and host cells containing same |
| WO2000032626A1 (en) | 1998-11-25 | 2000-06-08 | Regents Of The University Of Minnesota | Methods of using epitope peptides of human pathogens |
| US6153217A (en) | 1999-01-22 | 2000-11-28 | Biodelivery Sciences, Inc. | Nanocochleate formulations, process of preparation and method of delivery of pharmaceutical agents |
| US6558951B1 (en) | 1999-02-11 | 2003-05-06 | 3M Innovative Properties Company | Maturation of dendritic cells with immune response modifying compounds |
| US7238368B2 (en) | 1999-04-23 | 2007-07-03 | Alza Corporation | Releasable linkage and compositions containing same |
| EP1880736A1 (en) | 1999-04-23 | 2008-01-23 | Alza Corporation | Releasable linkage and composition containing same |
| US6800296B1 (en) | 1999-05-19 | 2004-10-05 | Massachusetts Institute Of Technology | Modification of surfaces using biological recognition events |
| DE19951970A1 (de) * | 1999-10-28 | 2001-05-03 | Bionetworks Gmbh | Arzneimittel für die Toleranzinduktion |
| AU2001249182A1 (en) | 2000-03-14 | 2001-09-24 | Genetics Institute Inc. | Use of rapamycin and agents that inhibit b7 activity in immunomodulation |
| WO2001091802A1 (en) | 2000-05-30 | 2001-12-06 | Baylor College Of Medicine | Chimeric viral vectors for gene therapy |
| ES2256265T3 (es) | 2000-06-01 | 2006-07-16 | University Of North Carolina At Chapel Hill | Vectores de parvovirus duplicados. |
| US20020095135A1 (en) | 2000-06-19 | 2002-07-18 | David Meeker | Combination enzyme replacement, gene therapy and small molecule therapy for lysosomal storage diseases |
| US20040204379A1 (en) | 2000-06-19 | 2004-10-14 | Cheng Seng H. | Combination enzyme replacement, gene therapy and small molecule therapy for lysosomal storage diseases |
| US20020014242A1 (en) | 2000-07-31 | 2002-02-07 | Abraham Scaria | Use of rapamycin to inhibit immune response and induce tolerance to gene therapy vector and encoded transgene products |
| US7097837B2 (en) | 2001-02-19 | 2006-08-29 | Pharmexa A/S | Synthetic vaccine agents |
| WO2002088304A2 (en) | 2001-04-11 | 2002-11-07 | Trustees Of The University Of Pennsylvania | Compositions and methods for suppressing immune responses |
| US6913915B2 (en) | 2001-08-02 | 2005-07-05 | Phoenix Pharmacologics, Inc. | PEG-modified uricase |
| CN1294268C (zh) | 2001-09-03 | 2007-01-10 | 上海三维生物技术有限公司 | 可在肿瘤细胞内特异性复制并扩散的重组腺病毒载体 |
| CN100334106C (zh) * | 2001-10-19 | 2007-08-29 | 伊索泰克尼卡股份有限公司 | 环孢菌素类似物的合成 |
| ES2602352T3 (es) | 2001-12-17 | 2017-02-20 | The Trustees Of The University Of Pennsylvania | Secuencias de serotipo 8 de virus adenoasociado (VAA), vectores que las contienen y usos de las mismas |
| GB0207440D0 (en) | 2002-03-28 | 2002-05-08 | Ppl Therapeutics Scotland Ltd | Tolerogenic antigen-presenting cells |
| US20040038303A1 (en) | 2002-04-08 | 2004-02-26 | Unger Gretchen M. | Biologic modulations with nanoparticles |
| US7485314B2 (en) | 2002-05-06 | 2009-02-03 | Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center | Induction of antigen specific immunologic tolerance |
| US20040005315A1 (en) | 2002-05-22 | 2004-01-08 | Siemionow Maria Z. | Induction and maintenance of tolerance to composite tissue allografts |
| ATE469135T1 (de) | 2002-05-30 | 2010-06-15 | Scripps Research Inst | Kupferkatalysierte ligierung von aziden und acetylenen |
| BR0305018A (pt) | 2002-06-04 | 2004-09-21 | Univ Pittsburgh | Células dendrìticas tolerogênicas e usos terapêuticos para as mesmas |
| WO2004005476A2 (en) * | 2002-07-03 | 2004-01-15 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
| US20060121029A1 (en) * | 2002-08-30 | 2006-06-08 | Hiroshi Shiku | Method and composition for regulating the activity of regulatory t cells |
| US9809654B2 (en) | 2002-09-27 | 2017-11-07 | Vaccinex, Inc. | Targeted CD1d molecules |
| AU2003292137A1 (en) | 2002-11-29 | 2004-06-23 | Maria Grazia Roncarolo | Rapamycin and il-10 for the treatment of immune diseases |
| ATE371437T1 (de) | 2003-02-17 | 2007-09-15 | Peter Burkhard | Peptidische nanoteilchen als arzneimittelabgabe- und antigen-display-systeme |
| US7510872B2 (en) | 2003-02-26 | 2009-03-31 | Nationwide Children's Hospital | Recombinant adeno-associated virus production |
| JP4914209B2 (ja) * | 2003-03-14 | 2012-04-11 | ワイス | ヒトil−21受容体に対する抗体および該抗体の使用 |
| US7731967B2 (en) | 2003-04-30 | 2010-06-08 | Novartis Vaccines And Diagnostics, Inc. | Compositions for inducing immune responses |
| US7186699B2 (en) | 2003-06-03 | 2007-03-06 | Cell Genesys, Inc. | Method for treating cancer by vector-mediated delivery of one or more anti-angiogenic or pro-apoptotic genes |
| US7727969B2 (en) | 2003-06-06 | 2010-06-01 | Massachusetts Institute Of Technology | Controlled release nanoparticle having bound oligonucleotide for targeted delivery |
| EP1486567A1 (en) | 2003-06-11 | 2004-12-15 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Improved adeno-associated virus (AAV) vector for gene therapy |
| US20060251711A1 (en) | 2003-08-28 | 2006-11-09 | Vgsk Technologies, Inc. | Sterically stabilized carrier for aerosol therapeutics, compositions and methods for treating diseases of the respiratory tract of a mammal |
| US7943179B2 (en) | 2003-09-23 | 2011-05-17 | Massachusetts Institute Of Technology | pH triggerable polymeric particles |
| US20080160089A1 (en) | 2003-10-14 | 2008-07-03 | Medivas, Llc | Vaccine delivery compositions and methods of use |
| DE10347710B4 (de) | 2003-10-14 | 2006-03-30 | Johannes-Gutenberg-Universität Mainz | Rekombinante Impfstoffe und deren Verwendung |
| EP1691780A2 (en) | 2003-11-21 | 2006-08-23 | Alza Corporation | Gene delivery mediated by liposome-dna complex with cleavable peg surface modification |
| EP1694301A4 (en) | 2003-12-02 | 2009-11-18 | Cytimmune Sciences Inc | METHOD AND COMPOSITIONS FOR THE PRODUCTION OF MONOCLONAL ANTIBODIES |
| US20070116768A1 (en) | 2003-12-09 | 2007-05-24 | Michael Chorny | Sustained release preparations composed of biocompatible complex microparticles |
| EA017893B1 (ru) | 2004-04-08 | 2013-04-30 | Лаборатуар Сероно Са | Композиции, содержащие ингибитор jnk и циклоспорин |
| WO2005118626A2 (en) | 2004-06-01 | 2005-12-15 | Innogenetics N.V. | Peptides for inducing a ctl and/or htl response to hepatitis c virus |
| US7713550B2 (en) | 2004-06-15 | 2010-05-11 | Andrx Corporation | Controlled release sodium valproate formulation |
| US20080206270A1 (en) | 2004-07-08 | 2008-08-28 | Minev Boris R | Enhancing Class I Antigen Presentation With Synthetic Sequences |
| FR2874384B1 (fr) | 2004-08-17 | 2010-07-30 | Genethon | Vecteur viral adeno-associe pour realiser du saut d'exons dans un gene codant une proteine a domaines dispensables |
| GB0421296D0 (en) | 2004-09-24 | 2004-10-27 | Angiogene Pharm Ltd | Bioreductively-activated prodrugs |
| US20090017016A1 (en) | 2004-10-05 | 2009-01-15 | Tanox Inc. | Treatment and prevention of hypersensitivity and/or anaphylaxis with anti-ige antibodies in patients receiving replacement therapy |
| US9492400B2 (en) | 2004-11-04 | 2016-11-15 | Massachusetts Institute Of Technology | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
| JP2008524239A (ja) | 2004-12-15 | 2008-07-10 | エラン ファーマ インターナショナル リミティド | ナノ粒子のタクロリムス製剤 |
| CN104083342A (zh) | 2004-12-31 | 2014-10-08 | 伊休蒂卡有限公司 | 纳米微粒组合物及其合成方法 |
| GB0504206D0 (en) | 2005-03-01 | 2005-04-06 | Glaxo Group Ltd | Combination therapy |
| AU2006222409A1 (en) | 2005-03-08 | 2006-09-14 | Lifecycle Pharma A/S | Pharmaceutical compositions comprising sirolimus and/or an analogue thereof |
| CN101175481A (zh) | 2005-03-17 | 2008-05-07 | 伊兰制药国际有限公司 | 纳米颗粒免疫抑制化合物的可注射的组合物 |
| US7884109B2 (en) | 2005-04-05 | 2011-02-08 | Wyeth Llc | Purine and imidazopyridine derivatives for immunosuppression |
| KR20080009196A (ko) | 2005-04-12 | 2008-01-25 | 위스콘신 얼럼나이 리서어치 화운데이션 | 중합체 및 패신저 약물의 마이셀 조성물 |
| US20080305161A1 (en) | 2005-04-13 | 2008-12-11 | Pfizer Inc | Injectable depot formulations and methods for providing sustained release of nanoparticle compositions |
| JP2008540558A (ja) | 2005-05-10 | 2008-11-20 | エモリー・ユニバーシティ | ミセルおよび粒子を用いた、活性物質の送達のための新規の戦略 |
| TW200711649A (en) | 2005-06-17 | 2007-04-01 | Combinatorx Inc | Combination therapy for the treatment of immunoinflammatory disorders |
| AU2006282042B2 (en) * | 2005-06-17 | 2011-12-22 | The University Of North Carolina At Chapel Hill | Nanoparticle fabrication methods, systems, and materials |
| US9290617B2 (en) | 2005-07-06 | 2016-03-22 | Molly S. Shoichet | Method of biomolecule immobilization on polymers using click-type chemistry |
| JPWO2007024026A1 (ja) | 2005-08-25 | 2009-03-05 | 明石 満 | T細胞認識エピトープペプチドを固定化又は内包化した生分解性ナノ粒子 |
| CN1979166A (zh) | 2005-11-30 | 2007-06-13 | 北京有色金属研究总院 | 一种制备免疫检测用纳米胶体金的工艺方法及其反应装置 |
| ATE552837T1 (de) | 2005-12-02 | 2012-04-15 | Univ Johns Hopkins | Verwendung von hochdosierten oxazaphosphorin- arzneimitteln zur behandlung von immunstörungen |
| US20070128289A1 (en) | 2005-12-07 | 2007-06-07 | Zhao Jonathon Z | Nano-and/or micro-particulate formulations for local injection-based treatment of vascular diseases |
| CA2633161A1 (en) | 2005-12-08 | 2007-06-14 | University Of Louisville Research Foundation, Inc. | Methods and compositions for expanding t regulatory cells |
| EP1973608A1 (en) | 2005-12-14 | 2008-10-01 | Cytos Biotechnology AG | Immunostimulatory nucleic acid packaged particles for the treatment of hypersensitivity |
| US9267937B2 (en) | 2005-12-15 | 2016-02-23 | Massachusetts Institute Of Technology | System for screening particles |
| US20100028450A1 (en) | 2006-01-25 | 2010-02-04 | The Board Of Trustees Of The University Of Illinoi S | Tolerogenic biodegradable artificial antigen presenting system |
| US20070190032A1 (en) | 2006-02-13 | 2007-08-16 | Oncolytics Biotech Inc. | Use of Local Immune Suppression to Enhance Oncolytic Viral Therapy |
| CA2643322C (en) | 2006-02-24 | 2015-07-21 | Novartis Ag | Microparticles containing biodegradable polymer and cationic polysaccharide for use in immunogenic compositions |
| US8568487B2 (en) | 2006-02-27 | 2013-10-29 | Biomet Manufacturing, Llc | Patient-specific hip joint devices |
| CN101448848B (zh) | 2006-03-27 | 2013-12-04 | 全球免疫股份有限公司 | Ras突变及其相关组合物和方法 |
| WO2008105773A2 (en) | 2006-03-31 | 2008-09-04 | Massachusetts Institute Of Technology | System for targeted delivery of therapeutic agents |
| CA2650607A1 (en) | 2006-04-28 | 2007-11-08 | Resolvyx Pharmaceuticals, Inc. | Compositions and methods for the treatment of cardiovascular disease |
| JP5630998B2 (ja) | 2006-05-15 | 2014-11-26 | マサチューセッツ インスティテュート オブ テクノロジー | 機能的粒子のためのポリマー |
| US20110052697A1 (en) | 2006-05-17 | 2011-03-03 | Gwangju Institute Of Science & Technology | Aptamer-Directed Drug Delivery |
| NZ573622A (en) | 2006-06-12 | 2011-12-22 | Cytos Biotechnology Ag | Processes for packaging oligonucleotides into virus-like particles of rna bacteriophages |
| WO2007150030A2 (en) | 2006-06-23 | 2007-12-27 | Massachusetts Institute Of Technology | Microfluidic synthesis of organic nanoparticles |
| EP1880729A1 (en) | 2006-07-20 | 2008-01-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of soluble CD160 to suppress immunity |
| US20100144845A1 (en) | 2006-08-04 | 2010-06-10 | Massachusetts Institute Of Technology | Oligonucleotide systems for targeted intracellular delivery |
| US20080171059A1 (en) | 2006-08-07 | 2008-07-17 | Shanshan Wu Howland | Methods and compositions for increased priming of t-cells through cross-presentation of exogenous antigens |
| AR062334A1 (es) | 2006-08-11 | 2008-10-29 | Panacea Biotec Ltd | Particulas para suministrar ingredientes activos, proceso para hacerlas y composiciones de las mismas |
| EP2789625B1 (en) | 2006-08-18 | 2018-06-06 | Argos Therapeutics, Inc. | Use of soluble CD83 for perfusing a tissue for transplantation |
| US20120269774A1 (en) | 2006-09-21 | 2012-10-25 | Medistem Laboratories, Inc | Allogeneic stem cell transplants in non-conditioned recipients |
| AU2007333528B2 (en) | 2006-10-05 | 2013-10-17 | The Johns Hopkins University | Water-dispersible oral, parenteral, and topical formulations for poorly water soluble drugs using smart polymeric nanoparticles |
| CN101646418B (zh) | 2006-10-12 | 2013-07-17 | 昆士兰大学 | 调节免疫应答的组合物和方法 |
| US20100112077A1 (en) | 2006-11-06 | 2010-05-06 | Abraxis Bioscience, Llc | Nanoparticles of paclitaxel and albumin in combination with bevacizumab against cancer |
| WO2008147456A2 (en) | 2006-11-20 | 2008-12-04 | Massachusetts Institute Of Technology | Drug delivery systems using fc fragments |
| US20100172994A1 (en) * | 2006-11-22 | 2010-07-08 | University Of Florida Research Foundation, Inc. | Nanoparticles for Protection of Cells from Oxidative Stress |
| WO2008069942A2 (en) | 2006-12-05 | 2008-06-12 | Biogen Idec Ma Inc. | Novel methods of enhancing delivery of a gene therapy vector using steroids |
| WO2008071774A1 (en) | 2006-12-14 | 2008-06-19 | Cytos Biotechnology Ag | Purification process for coat protein of rna bacteriophages |
| JP5694668B2 (ja) * | 2006-12-29 | 2015-04-01 | ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate | 自己免疫疾患の診断上および治療上の標的ならびにその用途 |
| EP2112930B1 (en) | 2007-02-21 | 2017-01-11 | Vaccinex, Inc. | Modulation of nkt cell activity with antigen-loaded cdid molecules |
| KR20080078204A (ko) | 2007-02-22 | 2008-08-27 | 크레아젠 주식회사 | 면역억제능이 증가된 간엽줄기세포-매개 자가유래수지상세포 |
| DK2131856T3 (da) | 2007-03-07 | 2014-12-15 | Uti Limited Partnership | Sammensætninger og fremgangsmåder til forebyggelsen og behandlingen af autoimmune tilstande |
| CN101730526A (zh) | 2007-03-07 | 2010-06-09 | 阿布拉科斯生物科学有限公司 | 作为抗癌剂的包含雷帕霉素和白蛋白的纳米颗粒 |
| CA3201293A1 (en) | 2007-03-07 | 2008-09-12 | Abraxis Bioscience, Llc | Nanoparticle comprising rapamycin and albumin as anticancer agent |
| WO2008124639A2 (en) | 2007-04-04 | 2008-10-16 | Massachusetts Institute Of Technology | Poly (amino acid) targeting moieties |
| EP2380564B1 (en) * | 2007-04-04 | 2014-10-22 | Sigmoid Pharma Limited | An oral pharmaceutical composition |
| WO2008124634A1 (en) | 2007-04-04 | 2008-10-16 | Massachusetts Institute Of Technology | Polymer-encapsulated reverse micelles |
| EP1982729A1 (en) | 2007-04-20 | 2008-10-22 | Cytos Biotechnology AG | Vaccination Regimen for B-Cell Vaccines |
| US20080311140A1 (en) | 2007-05-29 | 2008-12-18 | Baylor College Of Medicine | Antigen specific immunosuppression by dendritic cell therapy |
| WO2008150868A1 (en) | 2007-05-29 | 2008-12-11 | The Board Of Trustees Of The University Of Illinois | Methods for inducing therapeutic t cells for immune diseases |
| ES2496916T3 (es) | 2007-05-31 | 2014-09-22 | Academisch Ziekenhuis Leiden H.O.D.N. Lumc | Epítopo de HPV al que se dirigen células T que infiltran tumores malignos cervicales para su uso en vacunas |
| BRPI0812205A2 (pt) | 2007-06-05 | 2014-11-25 | Novartis Ag | Indução de fenótipo tolerogênico em células dendríticas maduras |
| US20090004259A1 (en) | 2007-06-14 | 2009-01-01 | Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet) | Methods of preparing a therapeutic formulation comprising galectin-induced tolerogenic dendritic cells |
| CA2692720A1 (en) | 2007-07-09 | 2009-01-15 | Astrazeneca Ab | Morpholino pyrimidine derivatives used in diseases linked to mtor kinase and/or pi3k |
| GB0714963D0 (en) | 2007-08-01 | 2007-09-12 | Novartis Ag | Compositions comprising antigens |
| ES2402956T3 (es) | 2007-08-15 | 2013-05-10 | Circassia Limited | Péptido con formación de dímeros reducida |
| US8563738B2 (en) | 2007-09-18 | 2013-10-22 | The Scripps Research Institute | Ligands for copper-catalyzed azide-alkyne cycloaddition reactions |
| EP2200932A4 (en) | 2007-09-21 | 2014-09-10 | Cytimmune Sciences Inc | NANOTHERAPEUTIC COLLOIDAL METAL COMPOSITIONS AND METHODS |
| WO2009062502A1 (en) | 2007-11-13 | 2009-05-22 | Dandrit Biotech A/S | Method for generating tolerogenic dendritic cells employing decreased temperature |
| US20090142318A1 (en) | 2007-11-30 | 2009-06-04 | Therakos, Inc. | METHOD TO EXPAND nTREG CELLS USING p70 S6 KINASE ANTAGONIST |
| CA2711179A1 (en) | 2007-12-31 | 2009-07-16 | Nanocor Therapeutics, Inc. | Rna interference for the treatment of heart failure |
| WO2009100394A2 (en) | 2008-02-08 | 2009-08-13 | Terumo Kabushiki Kaisha | Device for local intraluminal transport of a biologically and physiologically active agent |
| EP2262480B1 (en) | 2008-03-04 | 2018-02-14 | Liquidia Technologies, Inc. | Immunomodulator particles |
| CA2722184A1 (en) | 2008-04-25 | 2009-10-29 | Duke University | Regulatory b cells and their uses |
| CA2724418A1 (en) | 2008-05-15 | 2009-11-19 | Dynavax Technologies Corporation | Long term disease modification using immunostimulatory oligonucleotides |
| JP5549014B2 (ja) | 2008-05-27 | 2014-07-16 | 国立大学法人名古屋大学 | 免疫調節剤及びその利用 |
| US20090297621A1 (en) | 2008-06-03 | 2009-12-03 | Abbott Cardiovascular Systems Inc. | Microparticles For The Treatment Of Disease |
| JP2012501965A (ja) | 2008-06-16 | 2012-01-26 | バインド バイオサイエンシズ インコーポレイテッド | 薬剤を装填したポリマーナノ粒子及びその製造方法と使用方法 |
| WO2010005726A2 (en) | 2008-06-16 | 2010-01-14 | Bind Biosciences Inc. | Therapeutic polymeric nanoparticles with mtor inhibitors and methods of making and using same |
| ES2433371T3 (es) | 2008-08-11 | 2013-12-10 | Glaxosmithkline Llc | Derivados de purina para uso en el tratamiento de enfermedades alérgicas, inflamatorias e infecciosas |
| KR20110042116A (ko) | 2008-08-11 | 2011-04-22 | 글락소스미스클라인 엘엘씨 | 알레르기성, 염증성 및 감염성 질환의 치료에서 사용하기 위한 푸린 유도체 |
| WO2010018132A1 (en) | 2008-08-11 | 2010-02-18 | Smithkline Beecham Corporation | Compounds |
| UA103195C2 (uk) | 2008-08-11 | 2013-09-25 | Глаксосмитклайн Ллк | Похідні пурину для застосування у лікуванні алергій, запальних та інфекційних захворювань |
| EP2331124A1 (en) | 2008-08-15 | 2011-06-15 | Circassia Limited | T-cell antigen peptide from allergen for stimulation of il-10 production |
| US8323696B2 (en) * | 2008-08-29 | 2012-12-04 | Ecole Polytechnique Federale De Lausanne | Nanoparticles for immunotherapy |
| JP5702723B2 (ja) | 2008-09-04 | 2015-04-15 | ザ ジェネラル ホスピタル コーポレイション | 声帯および軟組織の増強および修復用ヒドロゲル |
| CN101676291B (zh) | 2008-09-18 | 2012-05-09 | 上海海和药物研究开发有限公司 | 一类雷帕霉素碳酸酯类似物、其药物组合物及其制备方法和用途 |
| US8889124B2 (en) | 2008-09-25 | 2014-11-18 | The Board Of Trustees Of The Leland Stanford Junior University | Tolerogenic populations of dendritic cells |
| US10369204B2 (en) | 2008-10-02 | 2019-08-06 | Dako Denmark A/S | Molecular vaccines for infectious disease |
| US8591905B2 (en) | 2008-10-12 | 2013-11-26 | The Brigham And Women's Hospital, Inc. | Nicotine immunonanotherapeutics |
| US8277812B2 (en) | 2008-10-12 | 2012-10-02 | Massachusetts Institute Of Technology | Immunonanotherapeutics that provide IgG humoral response without T-cell antigen |
| JP5552630B2 (ja) * | 2008-10-24 | 2014-07-16 | 学校法人 聖マリアンナ医科大学 | Htlv−i関連脊髄症を治療または予防するための医薬、およびhtlv−i関連脊髄症の患者に対する抗体療法の効果を試験する方法 |
| WO2010056143A1 (en) | 2008-11-13 | 2010-05-20 | Instituto De Medicina Molecular | The use of adjuvant to facilitate the induction of immune tolerance |
| EP2379064B1 (en) | 2008-12-15 | 2020-02-26 | Pfizer Inc. | Long circulating nanoparticles for sustained release of therapeutic agents |
| US20100160089A1 (en) * | 2008-12-19 | 2010-06-24 | Tzu-Wei Lin | Appapatus and method for providing golfing information |
| CA2750098A1 (en) | 2009-01-20 | 2010-07-29 | Myelin Repair Foundation, Inc. | Compositions and methods for induction of antigen-specific tolerance |
| EP2218784A1 (en) | 2009-02-04 | 2010-08-18 | Universität Leipzig | Vector(s) containing an inducible gene encoding a CDK4/CD6 inhibitor useful for treating neurodegenerative disorders |
| CN103784952B (zh) * | 2009-02-05 | 2016-08-17 | 切尔卡西亚有限公司 | 用于疫苗的草肽 |
| KR20100099849A (ko) | 2009-03-04 | 2010-09-15 | 동국대학교 산학협력단 | 면역억제제와 트랜스글루타미나제 2의 억제제를 함유한 아토피 피부염 치료용 조성물 |
| WO2010114948A2 (en) | 2009-04-02 | 2010-10-07 | University Of Florida Research Foundation, Inc. | An inducible system for highly efficient production of recombinant adeno-associated virus (raav) vectors |
| GB0906159D0 (en) * | 2009-04-09 | 2009-05-20 | Summit Corp Plc | Drug combination for the treatment of proteostatic diseases |
| CA2759332A1 (en) | 2009-04-21 | 2010-10-28 | Selecta Biosciences, Inc. | Immunonanotherapeutics providing a th1-biased response |
| US20100273220A1 (en) | 2009-04-22 | 2010-10-28 | Massachusetts Institute Of Technology | Innate immune suppression enables repeated delivery of long rna molecules |
| ES2684696T3 (es) | 2009-04-27 | 2018-10-04 | Immuron Limited | Preparación de inmunoglobulina enriquecida con anti-LPS para su uso en el tratamiento y/o la profilaxis de esteatohepatitis no alcohólica |
| SG176897A1 (en) | 2009-06-25 | 2012-01-30 | Savient Pharmaceuticals Inc | Methods and kits for predicting infusion reaction risk and antibody-mediated loss of response by monitoring serum uric acid during pegylated uricase therapy |
| US20120164189A1 (en) | 2009-07-07 | 2012-06-28 | Balu-Iyer Sathy V | Lipidic Compositions for Induction of Immune Tolerance |
| AU2010293059B2 (en) | 2009-08-26 | 2017-03-16 | Selecta Biosciences, Inc. | Compositions that induce T cell help |
| AR078161A1 (es) | 2009-09-11 | 2011-10-19 | Hoffmann La Roche | Formulaciones farmaceuticas muy concentradas de un anticuerpo anti cd20. uso de la formulacion. metodo de tratamiento. |
| EP2305277A1 (en) | 2009-09-18 | 2011-04-06 | Forskarpatent I Syd AB | Use of tolerogenic dendritic cells in treatment and prevention of atherosclerosis |
| CN101703781A (zh) * | 2009-10-28 | 2010-05-12 | 陕西北美基因股份有限公司 | 一种免疫抑制剂的磁性载药方法 |
| KR101267813B1 (ko) | 2009-12-30 | 2013-06-04 | 주식회사 삼양바이오팜 | 향상된 수용해도를 갖는 라파마이신 함유 고분자나노입자 주사제형 조성물 및 그 제조방법, 및 방사선 요법과 병용하기 위한 항암 조성물 |
| US20110171248A1 (en) | 2010-01-08 | 2011-07-14 | Selecta Biosciences, Inc. | Synthetic virus-like particles conjugated to human papillomavirus capsid peptides for use as vaccines |
| US9228171B2 (en) | 2010-02-05 | 2016-01-05 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Regulatory B cells (tBREGS) and their use |
| WO2011109833A2 (en) | 2010-03-05 | 2011-09-09 | President And Fellows Of Harvard College | Induced dendritic cell compositions and uses thereof |
| US20110272836A1 (en) | 2010-04-12 | 2011-11-10 | Selecta Biosciences, Inc. | Eccentric vessels |
| US20110262491A1 (en) | 2010-04-12 | 2011-10-27 | Selecta Biosciences, Inc. | Emulsions and methods of making nanocarriers |
| US8927514B2 (en) | 2010-04-30 | 2015-01-06 | City Of Hope | Recombinant adeno-associated vectors for targeted treatment |
| US8551487B2 (en) | 2010-05-07 | 2013-10-08 | Xoma Technology, Ltd. | Methods for the treatment of IL-1β related conditions |
| US20110293700A1 (en) | 2010-05-26 | 2011-12-01 | Selecta Biosciences, Inc. | Nanocarrier compositions with uncoupled adjuvant |
| NZ707377A (en) | 2010-06-07 | 2015-09-25 | Abraxis Bioscience Llc | Combination therapy methods for treating proliferative diseases |
| US10131875B2 (en) | 2010-08-04 | 2018-11-20 | Duke University | Regulatory B cells and their uses |
| AU2011289579B2 (en) | 2010-08-10 | 2016-11-17 | Ecole Polytechnique Federale De Lausanne | Erythrocyte-binding therapeutics |
| US20120058154A1 (en) | 2010-08-20 | 2012-03-08 | Selecta Biosciences, Inc. | Synthetic nanocarrier vaccines comprising peptides obtained or derived from human influenza a virus m2e |
| BR112013004288A2 (pt) | 2010-08-23 | 2016-05-31 | Selecta Biosciences Inc | formas galênicas de múltiplos epítopos direcionados para indução de uma resposta imunológica a antigênios. |
| US9636309B2 (en) | 2010-09-09 | 2017-05-02 | Micell Technologies, Inc. | Macrolide dosage forms |
| US10016371B2 (en) * | 2010-10-22 | 2018-07-10 | University Of Florida Research Foundation | Antigen-specific, tolerance-inducing microparticles and uses thereof |
| EP2640190A4 (en) | 2010-11-05 | 2016-05-11 | Selecta Biosciences Inc | MODIFIED NICOTINIC COMPOUNDS AND ASSOCIATED METHODS |
| WO2012092552A1 (en) | 2010-12-30 | 2012-07-05 | Selecta Biosciences, Inc. | Synthetic nanocarriers with reactive groups that release biologically active agents |
| WO2012109296A1 (en) | 2011-02-08 | 2012-08-16 | The Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Medical Center | Antisense oligonucleotides |
| CA2827375C (en) | 2011-02-14 | 2022-07-19 | The Children's Hospital Of Philadelphia | Improved aav8 vector with enhanced functional activity and methods of use thereof |
| US8654487B2 (en) | 2011-03-11 | 2014-02-18 | Siemens Industry, Inc. | Methods, systems, and apparatus and for detecting parallel electrical arc faults |
| EA201391392A1 (ru) | 2011-03-25 | 2014-04-30 | Селекта Байосайенсиз, Инк. | Синтетические наноносители с осмотически опосредованным высвобождением |
| WO2012145509A2 (en) | 2011-04-19 | 2012-10-26 | The Research Foundation Of State University Of New York | Adeno-associated-virus rep sequences, vectors, and viruses |
| WO2012145572A1 (en) | 2011-04-20 | 2012-10-26 | The Trustees Of The University Of Pennsylvania | Regimens and compositions for aav-mediated passive immunization of airborne pathogens |
| CN103501812A (zh) | 2011-04-29 | 2014-01-08 | 西莱克塔生物科技公司 | 用于过敏症治疗的致耐受性合成纳米载体 |
| CA2835819A1 (en) | 2011-05-16 | 2012-11-22 | Genzyme Corporation | Induction of immune tolerance using methotrexate |
| CN109172819A (zh) | 2011-07-29 | 2019-01-11 | 西莱克塔生物科技公司 | 产生体液和细胞毒性t淋巴细胞(ctl)免疫应答的合成纳米载体 |
| US20130058970A1 (en) | 2011-09-06 | 2013-03-07 | Selecta Biosciences, Inc. | Induced tolerogenic dendritic cells to reduce systemic inflammatory cytokines |
| JP2014526472A (ja) | 2011-09-08 | 2014-10-06 | ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド | 免疫応答を調節するための材料および方法 |
| US8865487B2 (en) | 2011-09-20 | 2014-10-21 | General Electric Company | Large area hermetic encapsulation of an optoelectronic device using vacuum lamination |
| WO2013058812A1 (en) | 2011-10-19 | 2013-04-25 | President And Fellows Of Harvard College | Targeted delivery to pancreatic islet endothelial cells |
| EP2591801A1 (en) | 2011-11-14 | 2013-05-15 | Universitätsklinikum Hamburg-Eppendorf | Nanoparticle compositions for generation of regulatory T cells and treatment of autoimmune diseases and other chronic inflammatory conditions |
| JP6348064B2 (ja) | 2011-11-22 | 2018-06-27 | ザ チルドレンズ ホスピタル オブ フィラデルフィア | 効率の高いトランスジーン送達のためのウイルスベクター |
| BR112014020325A2 (pt) | 2012-02-17 | 2017-08-08 | Childrens Hospital Philadelphia | composições de vetor do aav e métodos para a transferência de gene para as células, órgãos e tecidos |
| SI2839014T1 (sl) | 2012-04-18 | 2021-05-31 | The Children's Hospital Of Philadelphia | Sestavek in postopki za zelo učinkovit prenos genov z uporabo variant kapside AAV-JA |
| CN109876139A (zh) | 2012-04-24 | 2019-06-14 | 俄亥俄州国家创新基金会 | 用于治疗和预防猪繁殖与呼吸综合征的组合物和方法 |
| CN102871966B (zh) | 2012-10-19 | 2013-11-20 | 东南大学 | 用于改善雷帕霉素生物利用度的纳米载药颗粒及其制备方法 |
| EP2968499A4 (en) | 2013-03-15 | 2016-11-30 | Haplomics Inc | COMPOSITIONS AND METHODS FOR THE IMMUNO-TOLERANCE INDUCTION FOR FACTOR VIII SPATIAL THERAPIES IN PERSONS WITH HEMOPHILIA A |
| EP2983707B1 (en) | 2013-04-08 | 2019-06-12 | University of Iowa Research Foundation | Chimeric adeno-associated virus/ bocavirus parvovirus vector |
| CA2910584A1 (en) | 2013-05-03 | 2014-11-06 | Selecta Biosciences, Inc. | Use of immunosuppressants attached to synthetic nanocarriers to enhance levels of cd4+ regulatory t cells |
| CA2910579C (en) | 2013-05-03 | 2023-09-26 | Selecta Biosciences, Inc. | Dosing combinations for reducing undesired humoral immune responses |
| KR102631173B1 (ko) | 2013-06-04 | 2024-01-31 | 셀렉타 바이오사이언시즈, 인크. | 비-면역억제성 항원 특이적 면역요법제의 반복 투여 |
| CN105849120A (zh) | 2013-10-06 | 2016-08-10 | 美国卫生和人力服务部 | 修饰的假单胞菌外毒素a |
| US9276815B2 (en) | 2013-12-27 | 2016-03-01 | Dell Products L.P. | N-node virtual link trunking (VLT) systems management plane |
| EP2916319A1 (en) | 2014-03-07 | 2015-09-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Concept for encoding of information |
| RS60902B1 (sr) | 2014-03-09 | 2020-11-30 | Univ Pennsylvania | Kompozicije korisne u lečenju nedostatka ornitinske transkarbamilaze (otc) |
| GB201407322D0 (en) | 2014-04-25 | 2014-06-11 | Ospedale San Raffaele | Gene therapy |
| US20150359865A1 (en) | 2014-06-17 | 2015-12-17 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for t-cell-mediated autoimmune disease |
| US20160220501A1 (en) | 2015-02-03 | 2016-08-04 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers to reduce immune responses to therapeutic proteins |
| AU2015279738A1 (en) | 2014-06-25 | 2016-12-22 | Selecta Biosciences, Inc. | Methods and compositions for treatment with synthetic nanocarriers and immune checkpoint inhibitors |
| WO2016037163A1 (en) | 2014-09-07 | 2016-03-10 | Selecta Biosciences, Inc. | Methods and compositions for attenuating gene therapy anti-viral transfer vector immune responses |
| JP2017531652A (ja) | 2014-10-06 | 2017-10-26 | アルスロジェン ビー.ブイ.Arthrogen B.V. | Aavに基づく遺伝子治療 |
| IL283699B (en) | 2014-11-05 | 2022-09-01 | Selecta Biosciences Inc | Methods and preparations related to artificial nanocarriers with rapamycin in a super-saturated steady state |
| WO2017139212A1 (en) | 2016-02-08 | 2017-08-17 | Cyta Therapeutics, Inc. | Particle delivery of rapamycin to the liver |
| AU2016392719A1 (en) | 2016-02-10 | 2018-08-02 | Pfizer Inc. | Therapeutic nanoparticles having EGFR ligands and methods of making and using same |
| SI3426285T1 (sl) | 2016-03-11 | 2025-05-30 | Cartesian Therapeutics, Inc. | Formulacije in odmerki pegilirane urikaze |
| WO2018039465A1 (en) | 2016-08-25 | 2018-03-01 | Selecta Biosciences, Inc. | Polyester polymer matrices for the delivery of allergens |
| CN109922819A (zh) | 2016-09-27 | 2019-06-21 | 西莱克塔生物科技公司 | 用于治疗癌症的重组免疫毒素 |
| US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| US11104887B2 (en) | 2017-01-03 | 2021-08-31 | Ethris Gmbh | Ornithine transcarbamylase coding polyribonucleotides and formulations thereof |
| KR20190104194A (ko) | 2017-01-07 | 2019-09-06 | 셀렉타 바이오사이언시즈, 인크. | 합성 나노담체에 커플링된 면역억제제의 패턴화된 투여 |
| EP3592389B1 (en) | 2017-03-11 | 2025-05-07 | Cartesian Therapeutics, Inc. | Methods and compositions related to combined treatment with anti-inflammatories and synthetic nanocarriers comprising an immunosuppressant |
| WO2019075360A1 (en) | 2017-10-13 | 2019-04-18 | Selecta Biosciences, Inc. | METHODS AND COMPOSITIONS FOR MITIGATING ANTI-VECTOR VIRAL TRANSFER IGM RESPONSES |
| EP3758677A1 (en) | 2018-02-26 | 2021-01-06 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd | Drug delivery systems |
| US11517628B2 (en) | 2018-05-09 | 2022-12-06 | Yale University | Particles for spatiotemporal release of agents |
| CN112771070A (zh) | 2018-07-16 | 2021-05-07 | 西莱克塔生物科技公司 | Otc构建体和载体的方法和组合物 |
| AU2019304992A1 (en) | 2018-07-16 | 2021-02-11 | National Institutes Of Health, A Component Of The United States Department Of Health And Human Services | Methods and compositions of MMA constructs and vectors |
| WO2020223205A1 (en) | 2019-04-28 | 2020-11-05 | Selecta Biosciences, Inc. | Methods for treatment of subjects with preexisting immunity to viral transfer vectors |
| US20200390718A1 (en) | 2019-05-28 | 2020-12-17 | Selecta Biosciences, Inc. | Methods and compositions for attenuated anti-viral transfer vector immune response |
| CN114207440A (zh) | 2019-06-04 | 2022-03-18 | 西莱克塔生物科技公司 | 聚乙二醇化尿酸酶的制剂和剂量 |
| CA3158408A1 (en) | 2019-10-21 | 2021-04-29 | Selecta Biosciences, Inc. | Methods and compositions for treating liver diseases and disorders |
| EP4054531A1 (en) | 2019-11-08 | 2022-09-14 | Selecta Biosciences, Inc. | Formulations and doses of pegylated uricase |
| JP2023515202A (ja) | 2020-02-26 | 2023-04-12 | セレクタ バイオサイエンシーズ インコーポレーテッド | 免疫抑制薬を含む合成ナノキャリアを使用する方法および組成物 |
| CN115484931A (zh) | 2020-03-11 | 2022-12-16 | 西莱克塔生物科技公司 | 与合成纳米载体相关的方法和组合物 |
| CN116568329A (zh) | 2020-11-04 | 2023-08-08 | 西莱克塔生物科技公司 | 用于降低针对免疫球蛋白蛋白酶的免疫应答的组合物 |
| MX2023011930A (es) | 2021-04-09 | 2024-03-11 | Selecta Biosciences Inc | Nanoportadores sintéticos que comprenden un inmunosupresor en combinación con antagonistas del receptor de il-2 de alta afinidad para mejorar la tolerancia inmune. |
-
2012
- 2012-04-27 CN CN201280020380.4A patent/CN103501812A/zh active Pending
- 2012-04-27 MX MX2013012591A patent/MX377068B/es active IP Right Grant
- 2012-04-27 JP JP2014508134A patent/JP6602536B2/ja not_active Expired - Fee Related
- 2012-04-27 AU AU2012249537A patent/AU2012249537A1/en not_active Abandoned
- 2012-04-27 CN CN201710304258.4A patent/CN107261154A/zh active Pending
- 2012-04-27 EP EP20167350.6A patent/EP3760201A1/en active Pending
- 2012-04-27 EP EP19203512.9A patent/EP3682878A1/en active Pending
- 2012-04-27 CA CA2834533A patent/CA2834533A1/en active Pending
- 2012-04-27 US US13/458,179 patent/US8652487B2/en not_active Expired - Fee Related
- 2012-04-27 EP EP12777148.3A patent/EP2704714A4/en not_active Withdrawn
- 2012-04-27 EA EA201391597A patent/EA027103B1/ru not_active IP Right Cessation
- 2012-04-27 KR KR1020207013389A patent/KR102344744B1/ko not_active Expired - Fee Related
- 2012-04-27 AU AU2012249544A patent/AU2012249544A1/en not_active Abandoned
- 2012-04-27 HU HUE12777688A patent/HUE050142T2/hu unknown
- 2012-04-27 KR KR1020227036124A patent/KR102674640B1/ko active Active
- 2012-04-27 KR KR1020137031614A patent/KR20140041505A/ko not_active Ceased
- 2012-04-27 CN CN201280020398.4A patent/CN103517707A/zh active Pending
- 2012-04-27 CN CN201280020311.3A patent/CN103501820B/zh active Active
- 2012-04-27 JP JP2014508131A patent/JP2014513092A/ja active Pending
- 2012-04-27 CA CA2834619A patent/CA2834619A1/en active Pending
- 2012-04-27 WO PCT/US2012/035383 patent/WO2012149268A1/en not_active Ceased
- 2012-04-27 US US13/458,067 patent/US9295718B2/en active Active
- 2012-04-27 CA CA2834599A patent/CA2834599C/en active Active
- 2012-04-27 CN CN202311101154.5A patent/CN117205331A/zh active Pending
- 2012-04-27 BR BR112013027508A patent/BR112013027508A2/pt not_active Application Discontinuation
- 2012-04-27 KR KR1020257001967A patent/KR20250020688A/ko active Pending
- 2012-04-27 CN CN201710194493.0A patent/CN107837402A/zh active Pending
- 2012-04-27 AU AU2012249553A patent/AU2012249553A1/en not_active Abandoned
- 2012-04-27 WO PCT/US2012/035405 patent/WO2012149282A2/en not_active Ceased
- 2012-04-27 WO PCT/US2012/035366 patent/WO2012149255A2/en not_active Ceased
- 2012-04-27 CN CN201280020302.4A patent/CN103491957A/zh active Pending
- 2012-04-27 AU AU2012249493A patent/AU2012249493B2/en not_active Ceased
- 2012-04-27 CN CN201710800310.5A patent/CN107670054A/zh active Pending
- 2012-04-27 CN CN201710755435.0A patent/CN107693798A/zh active Pending
- 2012-04-27 KR KR1020137031639A patent/KR20140029469A/ko not_active Ceased
- 2012-04-27 CN CN201280020312.8A patent/CN103501813A/zh active Pending
- 2012-04-27 US US13/458,021 patent/US9265815B2/en active Active
- 2012-04-27 EA EA201790044A patent/EA201790044A1/ru unknown
- 2012-04-27 KR KR1020227045491A patent/KR20230006042A/ko not_active Ceased
- 2012-04-27 EA EA201391600A patent/EA026880B1/ru not_active IP Right Cessation
- 2012-04-27 EA EA201391601A patent/EA027410B1/ru not_active IP Right Cessation
- 2012-04-27 JP JP2014508588A patent/JP6422775B2/ja not_active Expired - Fee Related
- 2012-04-27 KR KR1020137031612A patent/KR102112002B1/ko active Active
- 2012-04-27 KR KR1020217042405A patent/KR20220002713A/ko not_active Ceased
- 2012-04-27 EA EA201692374A patent/EA201692374A3/ru unknown
- 2012-04-27 IL IL305229A patent/IL305229A/en unknown
- 2012-04-27 CN CN201280020294.3A patent/CN103501787A/zh active Pending
- 2012-04-27 CA CA3192054A patent/CA3192054A1/en active Pending
- 2012-04-27 CN CN201710247155.9A patent/CN107252487A/zh active Pending
- 2012-04-27 MX MX2013012599A patent/MX2013012599A/es unknown
- 2012-04-27 CN CN202410143139.5A patent/CN118078980A/zh active Pending
- 2012-04-27 CA CA2834514A patent/CA2834514C/en active Active
- 2012-04-27 CN CN201611213970.5A patent/CN107029213A/zh active Pending
- 2012-04-27 EA EA201391599A patent/EA028807B1/ru not_active IP Right Cessation
- 2012-04-27 WO PCT/US2012/035378 patent/WO2012149265A2/en not_active Ceased
- 2012-04-27 CN CN201610345030.5A patent/CN105999295A/zh active Pending
- 2012-04-27 BR BR112013027500A patent/BR112013027500A2/pt not_active Application Discontinuation
- 2012-04-27 KR KR1020137031602A patent/KR20140051171A/ko not_active Ceased
- 2012-04-27 EA EA201391602A patent/EA201391602A1/ru unknown
- 2012-04-27 EA EA201790043A patent/EA201790043A1/ru unknown
- 2012-04-27 US US13/457,962 patent/US20120276156A1/en not_active Abandoned
- 2012-04-27 CN CN201710230780.2A patent/CN107343959A/zh active Pending
- 2012-04-27 EP EP20207539.6A patent/EP3871691A1/en active Pending
- 2012-04-27 KR KR1020137031613A patent/KR20140027361A/ko not_active Ceased
- 2012-04-27 MX MX2013012597A patent/MX2013012597A/es unknown
- 2012-04-27 WO PCT/US2012/035629 patent/WO2012149454A2/en not_active Ceased
- 2012-04-27 US US13/458,284 patent/US20120276160A1/en not_active Abandoned
- 2012-04-27 EA EA201790045A patent/EA201790045A1/ru unknown
- 2012-04-27 CN CN201710304257.XA patent/CN107970440A/zh active Pending
- 2012-04-27 US US13/457,977 patent/US9289476B2/en active Active
- 2012-04-27 CN CN201710420561.0A patent/CN107261123A/zh active Pending
- 2012-04-27 DK DK12777688.8T patent/DK2701739T3/da active
- 2012-04-27 KR KR1020217021916A patent/KR20210090745A/ko not_active Ceased
- 2012-04-27 KR KR1020227004780A patent/KR20220026601A/ko not_active Ceased
- 2012-04-27 CA CA2834519A patent/CA2834519A1/en active Pending
- 2012-04-27 CN CN201710234341.9A patent/CN107261151A/zh active Pending
- 2012-04-27 IL IL297146A patent/IL297146A/en unknown
- 2012-04-27 EA EA201790030A patent/EA201790030A1/ru unknown
- 2012-04-27 EP EP12777688.8A patent/EP2701739B1/en active Active
- 2012-04-27 CN CN202311101952.8A patent/CN117065050A/zh active Pending
- 2012-04-27 EP EP19203487.4A patent/EP3682877A1/en active Pending
- 2012-04-27 KR KR1020237021597A patent/KR20230104990A9/ko not_active Ceased
- 2012-04-27 EA EA201790109A patent/EA201790109A1/ru unknown
- 2012-04-27 CN CN201710800423.5A patent/CN107670030A/zh active Pending
- 2012-04-27 KR KR1020207013934A patent/KR20200057789A/ko not_active Ceased
- 2012-04-27 CN CN201710194492.6A patent/CN107320734A/zh active Pending
- 2012-04-27 EA EA201391609A patent/EA027379B1/ru not_active IP Right Cessation
- 2012-04-27 WO PCT/US2012/035574 patent/WO2012149405A2/en not_active Ceased
- 2012-04-27 US US13/457,936 patent/US10004802B2/en not_active Expired - Fee Related
- 2012-04-27 CN CN202111502784.4A patent/CN114306638A/zh active Pending
- 2012-04-27 JP JP2014508581A patent/JP6490964B2/ja not_active Expired - Fee Related
- 2012-04-27 EP EP12776474.4A patent/EP2704693A4/en not_active Withdrawn
- 2012-04-27 CA CA2834534A patent/CA2834534A1/en not_active Abandoned
- 2012-04-27 IL IL283728A patent/IL283728B2/en unknown
- 2012-04-27 KR KR1020237021526A patent/KR20230106708A9/ko not_active Ceased
- 2012-04-27 WO PCT/US2012/035360 patent/WO2012149252A2/en not_active Ceased
- 2012-04-27 BR BR112013027541-3A patent/BR112013027541B1/pt not_active IP Right Cessation
- 2012-04-27 CN CN201710247154.4A patent/CN107252481A/zh active Pending
- 2012-04-27 KR KR1020247024639A patent/KR20240116583A/ko not_active Ceased
- 2012-04-27 CN CN201710759432.4A patent/CN107693799A/zh active Pending
- 2012-04-27 EA EA201391608A patent/EA027259B1/ru not_active IP Right Cessation
- 2012-04-27 CA CA2834527A patent/CA2834527A1/en active Pending
- 2012-04-27 EP EP12777486.7A patent/EP2701737B8/en active Active
- 2012-04-27 CN CN201280020293.9A patent/CN103501786A/zh active Pending
- 2012-04-27 US US13/458,927 patent/US20120301510A1/en not_active Abandoned
- 2012-04-27 EP EP12777648.2A patent/EP2704715B1/en active Active
- 2012-04-27 CN CN202311101967.4A patent/CN117018224A/zh active Pending
- 2012-04-27 BR BR112013027514-6A patent/BR112013027514B1/pt not_active IP Right Cessation
- 2012-04-27 MX MX2013012595A patent/MX373641B/es active IP Right Grant
- 2012-04-27 CN CN201280020407.XA patent/CN103517716A/zh active Pending
- 2012-04-27 WO PCT/US2012/035354 patent/WO2012149247A2/en not_active Ceased
- 2012-04-27 CN CN202110202213.2A patent/CN113018452A/zh active Pending
- 2012-04-27 KR KR1020137031603A patent/KR20140029468A/ko not_active Ceased
- 2012-04-27 MX MX2013012596A patent/MX2013012596A/es unknown
- 2012-04-27 WO PCT/US2012/035555 patent/WO2012149393A2/en not_active Ceased
- 2012-04-27 KR KR1020217011489A patent/KR102457513B1/ko active Active
- 2012-04-27 US US13/458,220 patent/US9987354B2/en active Active
- 2012-04-27 KR KR1020137031601A patent/KR20140034202A/ko not_active Ceased
- 2012-04-27 MX MX2013012593A patent/MX374963B/es active IP Right Grant
- 2012-04-27 JP JP2014508594A patent/JP6491879B2/ja not_active Expired - Fee Related
- 2012-04-27 AU AU2012249540A patent/AU2012249540B2/en not_active Ceased
- 2012-04-27 CA CA3182519A patent/CA3182519A1/en active Pending
- 2012-04-27 CN CN202410142938.0A patent/CN118078979A/zh active Pending
- 2012-04-27 EP EP19203548.3A patent/EP3679933A1/en active Pending
- 2012-04-27 KR KR1020137031627A patent/KR102283951B1/ko not_active Expired - Fee Related
- 2012-04-27 BR BR112013027517A patent/BR112013027517A2/pt not_active Application Discontinuation
- 2012-04-27 AU AU2012249401A patent/AU2012249401A1/en not_active Abandoned
- 2012-04-27 KR KR1020237017278A patent/KR20230079465A/ko not_active Ceased
- 2012-04-27 CA CA2834532A patent/CA2834532C/en active Active
- 2012-04-27 JP JP2014508584A patent/JP6422773B2/ja not_active Expired - Fee Related
- 2012-04-27 MX MX2013012598A patent/MX2013012598A/es unknown
- 2012-04-27 CA CA3251686A patent/CA3251686A1/en active Pending
- 2012-04-27 WO PCT/US2012/035371 patent/WO2012149259A1/en not_active Ceased
- 2012-04-27 CA CA2834571A patent/CA2834571A1/en not_active Abandoned
- 2012-04-27 US US13/458,980 patent/US20120301498A1/en not_active Abandoned
- 2012-04-27 KR KR1020197028264A patent/KR20190112211A/ko not_active Ceased
- 2012-04-27 KR KR1020217023501A patent/KR102536881B1/ko active Active
- 2012-04-27 CN CN201611214876.1A patent/CN107126552A/zh active Pending
- 2012-04-27 WO PCT/US2012/035431 patent/WO2012149301A2/en not_active Ceased
- 2012-04-27 US US13/457,994 patent/US20120276157A1/en not_active Abandoned
- 2012-04-27 MX MX2013012592A patent/MX374700B/es active IP Right Grant
- 2012-04-27 WO PCT/US2012/035581 patent/WO2012149411A1/en not_active Ceased
- 2012-04-27 CN CN202311202032.5A patent/CN117298266A/zh active Pending
- 2012-04-27 JP JP2014508582A patent/JP6401609B2/ja active Active
- 2012-04-27 EA EA201391611A patent/EA201391611A1/ru unknown
- 2012-04-27 KR KR1020137031636A patent/KR20140033066A/ko not_active Ceased
- 2012-04-27 ES ES12777688T patent/ES2806268T3/es active Active
- 2012-04-27 AU AU2012249419A patent/AU2012249419A1/en not_active Abandoned
- 2012-04-27 EP EP12777473.5A patent/EP2701706A4/en not_active Withdrawn
- 2012-04-27 KR KR1020207027170A patent/KR20200115655A/ko not_active Ceased
- 2012-04-27 JP JP2014508585A patent/JP6422774B2/ja not_active Expired - Fee Related
- 2012-04-27 EA EA201791679A patent/EA201791679A1/ru unknown
- 2012-04-27 EP EP12777664.9A patent/EP2704750B1/en active Active
- 2012-04-27 IL IL228932A patent/IL228932B2/en unknown
- 2012-04-27 KR KR1020197031091A patent/KR20190123796A/ko not_active Ceased
- 2012-04-27 CA CA3249285A patent/CA3249285A1/en active Pending
- 2012-04-27 CN CN201280020361.1A patent/CN103533935A/zh active Pending
- 2012-04-27 CN CN201410795620.9A patent/CN104623666A/zh active Pending
- 2012-04-27 EA EA201391610A patent/EA027380B1/ru not_active IP Right Cessation
- 2012-04-27 AU AU2012249567A patent/AU2012249567B2/en not_active Ceased
- 2012-04-27 EP EP20202438.6A patent/EP3848030A1/en active Pending
- 2012-04-27 EP EP12776063.5A patent/EP2701705A4/en not_active Withdrawn
- 2012-04-27 AU AU2012249550A patent/AU2012249550B2/en not_active Ceased
- 2012-04-27 EP EP12777475.0A patent/EP2701738B1/en active Active
- 2012-04-27 JP JP2014508579A patent/JP6336900B2/ja active Active
- 2012-04-27 US US13/457,999 patent/US9289477B2/en active Active
- 2012-04-27 MX MX2013012594A patent/MX2013012594A/es unknown
-
2013
- 2013-10-17 IL IL228938A patent/IL228938A0/en unknown
- 2013-10-17 IL IL228935A patent/IL228935A0/en unknown
- 2013-10-17 IL IL228936A patent/IL228936A0/en unknown
- 2013-10-17 IL IL228939A patent/IL228939A0/en unknown
- 2013-10-17 IL IL228934A patent/IL228934A0/en unknown
- 2013-10-17 IL IL228937A patent/IL228937A0/en unknown
- 2013-10-28 MX MX2019011890A patent/MX2019011890A/es unknown
- 2013-10-28 MX MX2019013118A patent/MX2019013118A/es unknown
- 2013-10-28 MX MX2020004906A patent/MX2020004906A/es unknown
- 2013-10-28 MX MX2019013515A patent/MX2019013515A/es unknown
-
2014
- 2014-01-22 US US14/161,660 patent/US9993548B2/en not_active Expired - Fee Related
-
2015
- 2015-07-17 US US14/802,260 patent/US10039822B2/en active Active
- 2015-07-27 US US14/810,450 patent/US20160022650A1/en not_active Abandoned
- 2015-07-27 US US14/810,466 patent/US10441651B2/en not_active Expired - Fee Related
- 2015-07-27 US US14/810,472 patent/US10420835B2/en active Active
- 2015-07-27 US US14/810,457 patent/US20160030554A1/en not_active Abandoned
- 2015-07-27 US US14/810,442 patent/US20150320728A1/en not_active Abandoned
- 2015-07-27 US US14/810,427 patent/US20150335762A1/en not_active Abandoned
- 2015-07-27 US US14/810,418 patent/US20150328333A1/en not_active Abandoned
- 2015-07-27 US US14/810,476 patent/US20150320870A1/en not_active Abandoned
-
2016
- 2016-02-22 US US15/050,397 patent/US11717569B2/en active Active
- 2016-03-04 US US15/061,204 patent/US11779641B2/en active Active
- 2016-03-04 US US15/061,096 patent/US20160256401A1/en not_active Abandoned
-
2017
- 2017-03-01 JP JP2017038658A patent/JP2017122113A/ja active Pending
- 2017-03-01 JP JP2017038592A patent/JP6737725B2/ja not_active Expired - Fee Related
- 2017-03-01 JP JP2017037976A patent/JP2017122110A/ja active Pending
- 2017-03-01 JP JP2017038086A patent/JP2017122111A/ja active Pending
- 2017-03-01 JP JP2017038613A patent/JP6529531B2/ja active Active
- 2017-05-29 AU AU2017203588A patent/AU2017203588B2/en not_active Ceased
- 2017-05-31 AU AU2017203655A patent/AU2017203655A1/en not_active Abandoned
- 2017-05-31 AU AU2017203656A patent/AU2017203656A1/en not_active Abandoned
- 2017-06-06 JP JP2017112098A patent/JP6833625B2/ja not_active Expired - Fee Related
- 2017-06-26 AU AU2017204317A patent/AU2017204317A1/en not_active Abandoned
- 2017-06-30 JP JP2017129024A patent/JP7018689B2/ja not_active Expired - Fee Related
- 2017-06-30 JP JP2017129071A patent/JP2017193568A/ja active Pending
- 2017-07-12 AU AU2017204814A patent/AU2017204814B2/en not_active Ceased
- 2017-09-11 AU AU2017225163A patent/AU2017225163B2/en not_active Ceased
- 2017-10-09 AU AU2017244514A patent/AU2017244514A1/en not_active Abandoned
- 2017-10-09 AU AU2017245278A patent/AU2017245278A1/en not_active Abandoned
- 2017-10-12 AU AU2017245402A patent/AU2017245402B2/en not_active Ceased
- 2017-12-26 JP JP2017249125A patent/JP6673893B2/ja not_active Expired - Fee Related
-
2018
- 2018-08-06 US US16/056,204 patent/US11235057B2/en active Active
- 2018-09-07 JP JP2018167490A patent/JP7389544B2/ja active Active
- 2018-12-25 JP JP2018240886A patent/JP7303627B2/ja active Active
- 2018-12-25 JP JP2018241280A patent/JP7389549B2/ja active Active
-
2019
- 2019-05-08 JP JP2019088347A patent/JP7491669B2/ja active Active
- 2019-08-02 JP JP2019142675A patent/JP2020002140A/ja active Pending
- 2019-08-08 US US16/536,154 patent/US20200101154A1/en not_active Abandoned
- 2019-09-04 US US16/560,419 patent/US20200101155A1/en not_active Abandoned
- 2019-09-20 AU AU2019232934A patent/AU2019232934B2/en not_active Expired - Fee Related
- 2019-09-20 AU AU2019232935A patent/AU2019232935B2/en not_active Ceased
- 2019-09-20 AU AU2019232928A patent/AU2019232928B2/en not_active Ceased
- 2019-09-20 AU AU2019232931A patent/AU2019232931B2/en not_active Ceased
- 2019-09-20 AU AU2019232938A patent/AU2019232938B2/en not_active Ceased
- 2019-09-30 AU AU2019240565A patent/AU2019240565A1/en not_active Abandoned
- 2019-10-24 JP JP2019193206A patent/JP2020050658A/ja active Pending
- 2019-12-16 JP JP2019226735A patent/JP7242519B2/ja active Active
-
2020
- 2020-01-14 AU AU2020200252A patent/AU2020200252A1/en not_active Abandoned
- 2020-01-14 AU AU2020200254A patent/AU2020200254A1/en not_active Abandoned
- 2020-01-22 AU AU2020200446A patent/AU2020200446B2/en not_active Ceased
-
2021
- 2021-05-18 IL IL283253A patent/IL283253A/en unknown
- 2021-05-18 IL IL283252A patent/IL283252A/en unknown
- 2021-06-06 IL IL283730A patent/IL283730A/en unknown
- 2021-06-22 IL IL284303A patent/IL284303A/en unknown
- 2021-07-26 JP JP2021121468A patent/JP2021183612A/ja active Pending
- 2021-07-26 JP JP2021121785A patent/JP2021183616A/ja active Pending
- 2021-07-26 JP JP2021121676A patent/JP2021183613A/ja active Pending
- 2021-08-19 IL IL285736A patent/IL285736A/en unknown
- 2021-09-07 JP JP2021145736A patent/JP2022003032A/ja active Pending
- 2021-12-16 US US17/552,392 patent/US20220354947A1/en not_active Abandoned
-
2022
- 2022-04-11 AU AU2022202396A patent/AU2022202396A1/en not_active Abandoned
- 2022-06-22 AU AU2022204392A patent/AU2022204392A1/en not_active Abandoned
- 2022-06-22 AU AU2022204381A patent/AU2022204381A1/en not_active Abandoned
- 2022-06-22 AU AU2022204395A patent/AU2022204395A1/en not_active Abandoned
- 2022-06-23 AU AU2022204439A patent/AU2022204439A1/en not_active Abandoned
- 2022-07-05 AU AU2022204820A patent/AU2022204820A1/en active Pending
- 2022-08-03 AU AU2022211839A patent/AU2022211839A1/en not_active Abandoned
- 2022-09-26 JP JP2022152657A patent/JP2023002542A/ja active Pending
- 2022-12-08 US US18/063,610 patent/US20230321224A1/en active Pending
- 2022-12-09 US US18/064,211 patent/US20230310593A1/en not_active Abandoned
-
2023
- 2023-03-02 US US18/177,714 patent/US20230321225A1/en active Pending
- 2023-03-08 JP JP2023035719A patent/JP2023085278A/ja active Pending
- 2023-06-06 US US18/330,345 patent/US20240156955A1/en not_active Abandoned
- 2023-08-29 US US18/458,043 patent/US20240261396A1/en not_active Abandoned
- 2023-09-15 JP JP2023150330A patent/JP2024022587A/ja active Pending
Patent Citations (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4946929A (en) | 1983-03-22 | 1990-08-07 | Massachusetts Institute Of Technology | Bioerodible articles useful as implants and prostheses having predictable degradation rates |
| US4638045A (en) | 1985-02-19 | 1987-01-20 | Massachusetts Institute Of Technology | Non-peptide polyamino acid bioerodible polymers |
| US4806621A (en) | 1986-01-21 | 1989-02-21 | Massachusetts Institute Of Technology | Biocompatible, bioerodible, hydrophobic, implantable polyimino carbonate article |
| US5736372A (en) | 1986-11-20 | 1998-04-07 | Massachusetts Institute Of Technology | Biodegradable synthetic polymeric fibrous matrix containing chondrocyte for in vivo production of a cartilaginous structure |
| US5804178A (en) | 1986-11-20 | 1998-09-08 | Massachusetts Institute Of Technology | Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue |
| US5770417A (en) | 1986-11-20 | 1998-06-23 | Massachusetts Institute Of Technology Children's Medical Center Corporation | Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo |
| US5019379A (en) | 1987-07-31 | 1991-05-28 | Massachusetts Institute Of Technology | Unsaturated polyanhydrides |
| US5010167A (en) | 1989-03-31 | 1991-04-23 | Massachusetts Institute Of Technology | Poly(amide-and imide-co-anhydride) for biological application |
| US5399665A (en) | 1992-11-05 | 1995-03-21 | Massachusetts Institute Of Technology | Biodegradable polymers for cell transplantation |
| US5512600A (en) | 1993-01-15 | 1996-04-30 | Massachusetts Institute Of Technology | Preparation of bonded fiber structures for cell implantation |
| US5696175A (en) | 1993-01-15 | 1997-12-09 | Massachusetts Institute Of Technology | Preparation of bonded fiber structures for cell implantation |
| US5514378A (en) | 1993-02-01 | 1996-05-07 | Massachusetts Institute Of Technology | Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures |
| US5578325A (en) | 1993-07-23 | 1996-11-26 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
| US5543158A (en) | 1993-07-23 | 1996-08-06 | Massachusetts Institute Of Technology | Biodegradable injectable nanoparticles |
| US6007845A (en) | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
| US5716404A (en) | 1994-12-16 | 1998-02-10 | Massachusetts Institute Of Technology | Breast tissue engineering |
| US6123727A (en) | 1995-05-01 | 2000-09-26 | Massachusetts Institute Of Technology | Tissue engineered tendons and ligaments |
| US6095148A (en) | 1995-11-03 | 2000-08-01 | Children's Medical Center Corporation | Neuronal stimulation using electrically conducting polymers |
| US5902599A (en) | 1996-02-20 | 1999-05-11 | Massachusetts Institute Of Technology | Biodegradable polymer networks for use in orthopedic and dental applications |
| US5837752A (en) | 1997-07-17 | 1998-11-17 | Massachusetts Institute Of Technology | Semi-interpenetrating polymer networks |
| US6506577B1 (en) | 1998-03-19 | 2003-01-14 | The Regents Of The University Of California | Synthesis and crosslinking of catechol containing copolypeptides |
| US6632922B1 (en) | 1998-03-19 | 2003-10-14 | The Regents Of The University Of California | Methods and compositions for controlled polypeptide synthesis |
| US6686446B2 (en) | 1998-03-19 | 2004-02-03 | The Regents Of The University Of California | Methods and compositions for controlled polypeptide synthesis |
| US6632671B2 (en) | 2000-02-28 | 2003-10-14 | Genesegues, Inc. | Nanoparticle encapsulation system and method |
| US20060222652A1 (en) | 2000-05-05 | 2006-10-05 | Cytos Biotechnology Ag | Molecular antigen array |
| US20020086049A1 (en) | 2000-09-18 | 2002-07-04 | Bolton Anthony E. | Apoptosis-mimicking synthetic entities and use thereof in medical treatment |
| US20080145441A1 (en) | 2000-10-16 | 2008-06-19 | Midatech Limited | Nanoparticles |
| US6818732B2 (en) | 2001-08-30 | 2004-11-16 | The Regents Of The University Of California | Transition metal initiators for controlled poly (beta-peptide) synthesis from beta-lactam monomers |
| US20060251677A1 (en) | 2003-03-26 | 2006-11-09 | Cytos Biotechnology Ag | Packaging of immunostimulatory oligonucleotides into virus-like particles: method of preparation and use |
| US20090028910A1 (en) | 2003-12-19 | 2009-01-29 | University Of North Carolina At Chapel Hill | Methods for Fabrication Isolated Micro-and Nano-Structures Using Soft or Imprint Lithography |
| US20060002852A1 (en) | 2004-07-01 | 2006-01-05 | Yale University | Targeted and high density drug loaded polymeric materials |
| US20080031899A1 (en) | 2006-02-21 | 2008-02-07 | Reddy Sai T | Nanoparticles for immunotherapy |
| US20100151000A1 (en) | 2006-10-12 | 2010-06-17 | The University Of Queensland | Compositions and methods for modulating immune responses |
| US20090226525A1 (en) | 2007-04-09 | 2009-09-10 | Chimeros Inc. | Self-assembling nanoparticle drug delivery system |
| WO2008127532A1 (en) | 2007-04-12 | 2008-10-23 | Emory University | Novel strategies for delivery of active agents using micelles and particles |
| WO2009051837A2 (en) | 2007-10-12 | 2009-04-23 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
| US20100233251A1 (en) | 2007-10-12 | 2010-09-16 | Massachusetts Institute of Technology Massachusetts | Vaccine Nanotechnology |
| WO2009106999A2 (en) | 2008-02-28 | 2009-09-03 | Deutsches Krebsforschungszentrum, Stiftung Des Öffentlichen Rechts | Hollow nanoparticles and uses thereof |
| US20110070154A1 (en) * | 2008-08-13 | 2011-03-24 | Hyde Roderick A | Artificial cells |
| US20100129439A1 (en) * | 2008-10-12 | 2010-05-27 | Frank Alexis | Adjuvant Incorporation in Immunonanotherapeutics |
| US20100129392A1 (en) | 2008-10-12 | 2010-05-27 | Jinjun Shi | Targeting of Antigen Presenting Cells with Immunonanotherapeutics |
| WO2010047839A1 (en) | 2008-10-25 | 2010-04-29 | Aura Biosciences | Modified plant virus particles and uses therefor |
| WO2010138192A2 (en) * | 2009-05-27 | 2010-12-02 | Selecta Biosciences, Inc. | Nanocarriers possessing components with different rates of release |
Non-Patent Citations (63)
| Title |
|---|
| "Concise Encyclopedia of Polymer Science and Polymeric Amines and Ammonium Salts", 1980, PERGAMON PRESS |
| "Handbook of Industrial Mixing: Science and Practice", 2004, JOHN WILEY & SONS, INC. |
| "Pharmaceutics: The Science of Dosage Form Design", 2001, CHURCHILL LIVINGSTONE |
| ALLCOCK ET AL.: "Contemporary Polymer Chemistry", 1981, PRENTICE-HALL |
| BARRERA ET AL., J. AM. CHEM. SOC., vol. 115, 1993, pages 11010 |
| BAYLE ET AL., CHEMISTRY & BIOLOGY, vol. 13, 2006, pages 99 - 107 |
| BODEN EKSNAPPER SB, CURR OPIN GASTROENTEROL., vol. 24, no. 6, November 2008 (2008-11-01), pages 733 - 41 |
| BOUSSIF ET AL., PROC. NATL. ACAD. SCI., USA, vol. 92, 1995, pages 7297 |
| BUI HHSIDNEY JPETERS BSATHIAMURTHY MSINICHI APURTON KAMOTHE BRCHISARI FVWATKINS DISETTE A: "Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications", IMMUNOGENETICS, vol. 57, 2005, pages 304 - 314, XP019331658, DOI: 10.1007/s00251-005-0798-y |
| C. ASTETE ET AL.: "Synthesis and characterization of PLGA nanoparticles", J. BIOMATER. SCI. POLYMER EDN, vol. 17, no. 3, 2006, pages 247 - 289, XP009134610 |
| C. REIS ET AL.: "Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles", NANOMEDICINE, vol. 2, 2006, pages 8 - 21 |
| CHOU PYFASMAN GD: "Prediction of the secondary structure of proteins from their amino acid sequence", ADV ENZYMOL RELAT AREAS MOL BIOL, vol. 47, 1978, pages 45 - 148 |
| CVETANOVICH GLHAFLER DA: "Human regulatory T cells in autoimmune diseases", CURR OPIN IMMUNOL., vol. 22, no. 6, December 2010 (2010-12-01), pages 753 - 60, XP027544862 |
| DEMING ET AL., NATURE, vol. 390, 1997, pages 386 |
| DOUBROW, ED.: "Microcapsules and Nanoparticles in Medicine and Pharmacy", 1992, CRC PRESS |
| EMINI EABOGER J: "Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide", J VIROL, vol. 55, 1985, pages 836 - 839 |
| HAENSLER ET AL., BIOCONJUGATE CHEM., vol. 4, 1993, pages 372 |
| HASTE ANDERSEN PNIELSEN MLUND O.: "Prediction of residues in discontinuous B-cell epitopes using protein 3D structures", PROTEIN SCI, vol. 15, 2006, pages 2558 - 2567, XP055113267, DOI: 10.1110/ps.062405906 |
| HERMANSON G T: "Bioconjugate Techniques", 2008, ACADEMIC PRESS, INC. |
| K. AVGOUSTAKIS: "Pegylated Poly(Lactide) and Poly(Lactide-Co-Glycolide) Nanoparticles: Preparation, Properties and Possible Applications in Drug Delivery", CURRENT DRUG DELIVERY, vol. 1, 2004, pages 321 - 333, XP009134627 |
| KABANOV ET AL., BIOCONJUGATE CHEM., vol. 6, 1995, pages 7 |
| KARPLUS PASCHULZ GE: "Prediction of chain flexibility in proteins", NATURWISSENSCHAFTEN, vol. 72, 1985, pages 212 - 213 |
| KIM ET AL., NATURE, vol. 467, no. 7313, 16 September 2010 (2010-09-16), pages 328 - 32 |
| KOLASKAR ASTONGAONKAR PC: "A semi-empirical method for prediction of antigenic determinants on protein antigens", FEBS LETT, vol. 276, 1990, pages 172 - 174, XP025603614, DOI: 10.1016/0014-5793(90)80535-Q |
| KUKOWSKA-LATALLO ET AL., PROC. NATL. ACAD. SCI., vol. 93, 1996, pages 4897 |
| KWON ET AL., MACROMOLECULES, vol. 22, 1989, pages 3250 |
| LANGER, ACC. CHEM. RES., vol. 33, 2000, pages 94 |
| LANGER, J. CONTROL. RELEASE, vol. 62, 1999, pages 7 |
| LARSEN JELUND ONIELSEN M: "Improved method for predicting linear B-cell epitopes", IMMUNOME RES, vol. 2, 2006, pages 2, XP021019965, DOI: 10.1186/1745-7580-2-2 |
| LIM ET AL., J. AM. CHEM. SOC., vol. 121, 1999, pages 5633 |
| MATHIOWITZ ET AL., J. APPL. POLYMER SCI., vol. 35, 1988, pages 755 |
| MATHIOWITZ ET AL., J. CONTROL. RELEASE, vol. 5, 1987, pages 13 |
| MATHIOWITZ ET AL., REACTIVE POLYMERS, vol. 6, 1987, pages 275 |
| MELDAL ET AL., CHEM. REV., vol. 108, no. 8, 2008, pages 2952 - 3015 |
| MIYARA MWING KSAKAGUCHI S, J ALLERGY CLIN IMMUNOL., vol. 123, no. 4, April 2009 (2009-04-01), pages 749 - 55 |
| MURRAY ET AL., ANN. REV. MAT. SCI., vol. 30, 2000, pages 545 |
| NIELSEN MLUND O: "NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction", BMC BIOINFORMATICS, vol. 10, 2009, pages 296, XP021055730, DOI: 10.1186/1471-2105-10-296 |
| NIELSEN MLUNDEGAARD CBLICHER TPETERS BSETTE AJUSTESEN SBUUS SLUND O, PLOS COMPUT BIOL., vol. 4, no. 7, 2008, pages e1 000107 |
| NIELSEN MLUNDEGAARD CLUND O: "Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method", BMC BIOINFORMATICS, vol. 8, 2007, pages 238, XP021027565, DOI: 10.1186/1471-2105-8-238 |
| NIELSEN MLUNDEGAARD CWORNING PLAUEMOLLER SLLAMBERTH KBUUS SBRUNAK SLUND O: "Reliable prediction of T-cell epitopes using neural networks with novel sequence representations", PROTEIN SCI, vol. 12, 2003, pages 1007 - 1017, XP002582947, DOI: 10.1110/PS.0239403 |
| OH SRANKIN ALCATON AJ, IMMUNOL REV., vol. 233, no. 1, January 2010 (2010-01-01), pages 97 - 111 |
| P. PAOLICELLI ET AL.: "Surface-modified PLGA-based Nanoparticles that can Efficiently Associate and Deliver Virus-like Particles", NANOMEDICINE, vol. 5, no. 6, 2010, pages 843 - 853 |
| PAPISOV, ACS SYMPOSIUM SERIES, vol. 786, 2001, pages 301 |
| PARKER JMGUO DHODGES RS: "New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites", BIOCHEMISTRY, vol. 25, 1986, pages 5425 - 5432, XP001062495, DOI: 10.1021/bi00367a013 |
| PELLEGRINO ET AL., SMALL, vol. 1, 2005, pages 48 |
| PETERS BSETTE A: "Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method", BMC BIOINFORMATICS, vol. 6, 2005, pages 132, XP021000724, DOI: 10.1186/1471-2105-6-132 |
| PONOMARENKO JVBOURNE PE: "Antibody-protein interactions: benchmark datasets and prediction tools evaluation", BMC STRUCT BIOL, vol. 7, 2007, pages 64, XP021035783 |
| PONOMARENKO JVBUI HLI WFUSSEDER NBOUME PESETTE APETERS B: "ElliPro: a new structure-based tool for the prediction of antibody epitopes", BMC BIOINFORMATICS, vol. 9, 2008, pages 514 |
| PUTNAM ET AL., MACROMOLECULES, vol. 32, 1999, pages 3658 |
| SCIARRACUTIE: "Remington's Pharmaceutical Sciences", 1990, article "Aerosols", pages: 1694 - 1712 |
| SHARPLESS ET AL., ANGEW. CHEM. INT. ED., vol. 41, no. 14, 2002, pages 2596 |
| STURNIOLO TBONO EDING JRADDRIZZANI LTUERECI OSAHIN UBRAXENTHALER MGALLAZZI FPROTTI MPSINIGAGLIA F: "Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices", NAT BIOTECHNOL., vol. 17, no. 6, 1999, pages 555 - 561, XP002168815 |
| T. CLAY ET AL.: "Assays for Monitoring Cellular Immune Response to Active Immunotherapy of Cancer", CLINICAL CANCER RESEARCH, vol. 7, 2001, pages 1127 - 1135 |
| TANG ET AL., BIOCONJUGATE CHEM., vol. 7, 1996, pages 703 |
| TRINDADE ET AL., CHEM. MAT., vol. 13, 2001, pages 3843 |
| UHRICH ET AL., CHEM. REV., vol. 99, 1999, pages 3181 |
| VILA JISAACS JDANDERSON AE: "Regulatory T cells and autoimmunity", CURR OPIN HEMATOL., vol. 16, no. 4, July 2009 (2009-07-01), pages 274 - 9 |
| VITA RZAREBSKI LGREENBAUM JAEMAMI HHOOF ISALIMI NDAMLE RSETTE APETERS B: "The immune epitope database 2.0", NUCLEIC ACIDS RES., vol. 38, January 2010 (2010-01-01), pages D854 - 62, XP055204880, Retrieved from the Internet <URL:www.immuneepitope.org> DOI: 10.1093/nar/gkp1004 |
| WANG ET AL., J. AM. CHEM. SOC., vol. 123, 2001, pages 2460 |
| WANG PSIDNEY JDOW CMOTHE BSETTE APETERS B.: "A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach", PLOS COMPUT BIOL., vol. 4, no. 4, 2008, pages el000048, XP002598739, DOI: 10.1371/journal.pcbi.1000048 |
| WANG PSIDNEY JKIM YSETTE ALUND ONIELSEN MPETERS B: "peptide binding predictions for HLA DR, DP and DQ molecules", BMC BIOINFORMATICS 2010, vol. 11, 2010, pages 568, XP021085842, DOI: 10.1186/1471-2105-11-568 |
| ZAUNER ET AL., ADV. DRUG DEL. REV., vol. 30, 1998, pages 97 |
| ZHOU ET AL., MACROMOLECULES, vol. 23, 1990, pages 3399 |
Cited By (70)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9987354B2 (en) | 2011-04-29 | 2018-06-05 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for antigen-specific deletion of T effector cells |
| US11235057B2 (en) | 2011-04-29 | 2022-02-01 | Selecta Biosciences, Inc. | Methods for providing polymeric synthetic nanocarriers for generating antigen-specific tolerance immune responses |
| US11717569B2 (en) | 2011-04-29 | 2023-08-08 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers |
| US10441651B2 (en) | 2011-04-29 | 2019-10-15 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for generating CD8+ regulatory T cells |
| US10420835B2 (en) | 2011-04-29 | 2019-09-24 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for antigen-specific deletion of T effector cells |
| US11779641B2 (en) | 2011-04-29 | 2023-10-10 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for allergy therapy |
| US10039822B2 (en) | 2011-04-29 | 2018-08-07 | Selecta Biosciences, Inc. | Method for providing polymeric synthetic nanocarriers for generating antigen-specific tolerance immune responses |
| US10004802B2 (en) | 2011-04-29 | 2018-06-26 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for generating CD8+ regulatory T cells |
| US9993548B2 (en) | 2011-04-29 | 2018-06-12 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for inducing regulatory B cells |
| EP4144378A1 (en) | 2011-12-16 | 2023-03-08 | ModernaTX, Inc. | Modified nucleoside, nucleotide, and nucleic acid compositions |
| WO2013151736A2 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | In vivo production of proteins |
| WO2013151666A2 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | Modified polynucleotides for the production of biologics and proteins associated with human disease |
| WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
| US10335395B2 (en) | 2013-05-03 | 2019-07-02 | Selecta Biosciences, Inc. | Methods of administering immunosuppressants having a specified pharmacodynamic effective life and therapeutic macromolecules for the induction of immune tolerance |
| US10434088B2 (en) | 2013-05-03 | 2019-10-08 | Selecta Biosciences, Inc. | Methods related to administering immunosuppressants and therapeutic macromolecules at a reduced pharmacodynamically effective dose |
| US10668053B2 (en) | 2013-05-03 | 2020-06-02 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers to reduce or prevent anaphylaxis in response to a non-allergenic antigen |
| US12472167B2 (en) | 2013-05-03 | 2025-11-18 | Cartesian Therapeutics, Inc. | Methods providing a therapeutic macromolecule and synthetic nanocarriers comprising immunosuppressant locally and concomitantly to reduce both Type 1 and Type IV hypersensitivity |
| US11298342B2 (en) | 2013-05-03 | 2022-04-12 | Selecta Biosciences, Inc. | Methods providing a therapeutic macromolecule and synthetic nanocarriers comprising immunosuppressant locally and concomitantly to reduce both type I and type IV hypersensitivity |
| US10357482B2 (en) | 2013-05-03 | 2019-07-23 | Selecta Biosciences, Inc. | Methods providing a therapeutic macromolecule and synthetic nanocarriers comprising immunosuppressant locally and concomitantly to reduce both type I and type IV hypersensitivity |
| US10357483B2 (en) | 2013-05-03 | 2019-07-23 | Selecta Biosciences, Inc. | Methods comprising dosing combinations for reducing undesired humoral immune responses |
| JP2022078020A (ja) * | 2013-06-04 | 2022-05-24 | セレクタ バイオサイエンシーズ インコーポレーテッド | 非免疫抑制性の抗原特異的免疫治療薬の反復投与 |
| JP2016526048A (ja) * | 2013-06-04 | 2016-09-01 | セレクタ バイオサイエンシーズ インコーポレーテッドSelecta Biosciences,Inc. | 非免疫抑制性の抗原特異的免疫治療薬の反復投与 |
| JP7126806B2 (ja) | 2013-06-04 | 2022-08-29 | セレクタ バイオサイエンシーズ インコーポレーテッド | 非免疫抑制性の抗原特異的免疫治療薬の反復投与 |
| JP2020055814A (ja) * | 2013-06-04 | 2020-04-09 | セレクタ バイオサイエンシーズ インコーポレーテッドSelecta Biosciences,Inc. | 非免疫抑制性の抗原特異的免疫治療薬の反復投与 |
| WO2015034925A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Circular polynucleotides |
| WO2015034928A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
| WO2015075557A2 (en) | 2013-11-22 | 2015-05-28 | Mina Alpha Limited | C/ebp alpha compositions and methods of use |
| EP3594348A1 (en) | 2013-11-22 | 2020-01-15 | Mina Therapeutics Limited | C/ebp alpha short activating rna compositions and methods of use |
| EP3985118A1 (en) | 2013-11-22 | 2022-04-20 | MiNA Therapeutics Limited | C/ebp alpha short activating rna compositions and methods of use |
| WO2016014846A1 (en) | 2014-07-23 | 2016-01-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of intrabodies |
| US10071114B2 (en) | 2014-09-07 | 2018-09-11 | Selecta Biosciences, Inc. | Methods and compositions for attenuating gene expression modulating anti-viral transfer vector immune responses |
| US10046064B2 (en) | 2014-09-07 | 2018-08-14 | Selecta Biosciences, Inc. | Methods and compositions for attenuating exon skipping anti-viral transfer vector immune responses |
| US11633422B2 (en) | 2014-09-07 | 2023-04-25 | Selecta Biosciences, Inc. | Methods and compositions for attenuating anti-viral transfer vector immune responses |
| EP3310342A4 (en) * | 2015-06-16 | 2019-03-06 | The Trustees of the University of Pennsylvania | INORGANIC RETARD PARTICLES WITH FAST ACTIVE LOAD |
| EP4039699A1 (en) | 2015-12-23 | 2022-08-10 | ModernaTX, Inc. | Methods of using ox40 ligand encoding polynucleotides |
| WO2017112943A1 (en) | 2015-12-23 | 2017-06-29 | Modernatx, Inc. | Methods of using ox40 ligand encoding polynucleotides |
| WO2017120612A1 (en) | 2016-01-10 | 2017-07-13 | Modernatx, Inc. | Therapeutic mrnas encoding anti ctla-4 antibodies |
| EP3808380A1 (en) | 2016-12-08 | 2021-04-21 | CureVac AG | Rna for treatment or prophylaxis of a liver disease |
| WO2018104540A1 (en) | 2016-12-08 | 2018-06-14 | Curevac Ag | Rnas for wound healing |
| WO2018104538A1 (en) | 2016-12-08 | 2018-06-14 | Curevac Ag | Rna for treatment or prophylaxis of a liver disease |
| US11426451B2 (en) | 2017-03-11 | 2022-08-30 | Selecta Biosciences, Inc. | Methods and compositions related to combined treatment with antiinflammatories and synthetic nanocarriers comprising an immunosuppressant |
| US12194078B2 (en) | 2017-03-11 | 2025-01-14 | Cartesian Therapeutics, Inc. | Methods and compositions related to combined treatment with anti-inflammatories and synthetic nanocarriers comprising an immunosuppressant |
| EP4183882A1 (en) | 2017-09-08 | 2023-05-24 | MiNA Therapeutics Limited | Stabilized hnf4a sarna compositions and methods of use |
| EP4219715A2 (en) | 2017-09-08 | 2023-08-02 | MiNA Therapeutics Limited | Stabilized cebpa sarna compositions and methods of use |
| WO2019048632A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | STABILIZED COMPOSITIONS OF SMALL ACTIVATORY RNA (PARNA) OF HNF4A AND METHODS OF USE |
| WO2019048631A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | SMALL HNF4A ACTIVATOR RNA COMPOSITIONS AND METHODS OF USE |
| WO2019048645A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | STABILIZED COMPOSITIONS OF SMALL ACTIVATOR RNA (PARNA) FROM CEBPA AND METHODS OF USE |
| EP4233880A2 (en) | 2017-09-08 | 2023-08-30 | MiNA Therapeutics Limited | Hnf4a sarna compositions and methods of use |
| EP4242307A2 (en) | 2018-04-12 | 2023-09-13 | MiNA Therapeutics Limited | Sirt1-sarna compositions and methods of use |
| WO2019197845A1 (en) | 2018-04-12 | 2019-10-17 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
| WO2020033791A1 (en) | 2018-08-09 | 2020-02-13 | Verseau Therapeutics, Inc. | Oligonucleotide compositions for targeting ccr2 and csf1r and uses thereof |
| WO2020208361A1 (en) | 2019-04-12 | 2020-10-15 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
| WO2021061815A1 (en) | 2019-09-23 | 2021-04-01 | Omega Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR MODULATING HEPATOCYTE NUCLEAR FACTOR 4-ALPHA (HNF4α) GENE EXPRESSION |
| WO2021061707A1 (en) | 2019-09-23 | 2021-04-01 | Omega Therapeutics, Inc. | Compositions and methods for modulating apolipoprotein b (apob) gene expression |
| WO2021183720A1 (en) | 2020-03-11 | 2021-09-16 | Omega Therapeutics, Inc. | Compositions and methods for modulating forkhead box p3 (foxp3) gene expression |
| EP4647124A2 (en) | 2020-12-09 | 2025-11-12 | UCL Business Ltd | Therapeutics for the treatment of neurodegenerative disorders |
| WO2022122872A1 (en) | 2020-12-09 | 2022-06-16 | Ucl Business Ltd | Therapeutics for the treatment of neurodegenerative disorders |
| WO2022200810A1 (en) | 2021-03-26 | 2022-09-29 | Mina Therapeutics Limited | Tmem173 sarna compositions and methods of use |
| WO2023283359A2 (en) | 2021-07-07 | 2023-01-12 | Omega Therapeutics, Inc. | Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression |
| WO2023006999A2 (en) | 2021-07-30 | 2023-02-02 | CureVac SE | Mrnas for treatment or prophylaxis of liver diseases |
| WO2023099884A1 (en) | 2021-12-01 | 2023-06-08 | Mina Therapeutics Limited | Pax6 sarna compositions and methods of use |
| WO2023104964A1 (en) | 2021-12-09 | 2023-06-15 | Ucl Business Ltd | Therapeutics for the treatment of neurodegenerative disorders |
| WO2023144193A1 (en) | 2022-01-25 | 2023-08-03 | CureVac SE | Mrnas for treatment of hereditary tyrosinemia type i |
| WO2023161350A1 (en) | 2022-02-24 | 2023-08-31 | Io Biotech Aps | Nucleotide delivery of cancer therapy |
| WO2023170435A1 (en) | 2022-03-07 | 2023-09-14 | Mina Therapeutics Limited | Il10 sarna compositions and methods of use |
| WO2024125597A1 (en) | 2022-12-14 | 2024-06-20 | Providence Therapeutics Holdings Inc. | Compositions and methods for infectious diseases |
| WO2024134199A1 (en) | 2022-12-22 | 2024-06-27 | Mina Therapeutics Limited | Chemically modified sarna compositions and methods of use |
| WO2024243438A2 (en) | 2023-05-23 | 2024-11-28 | Omega Therapeutics, Inc. | Compositions and methods for reducing cxcl9, cxcl10, and cxcl11 gene expression |
| EP4520345A1 (en) | 2023-09-06 | 2025-03-12 | Myneo Nv | Product |
| WO2025051915A1 (en) | 2023-09-06 | 2025-03-13 | Myneo Nv | Product |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240261396A1 (en) | Tolerogenic synthetic nanocarriers for allergy therapy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12777486 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2012249553 Country of ref document: AU Date of ref document: 20120427 Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2014508585 Country of ref document: JP Kind code of ref document: A Ref document number: 2834533 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/012595 Country of ref document: MX |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20137031636 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 201391611 Country of ref document: EA |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013027560 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 112013027560 Country of ref document: BR Kind code of ref document: A2 Effective date: 20131025 |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 284303 Country of ref document: IL |