WO2011118108A1 - シリコーン樹脂製反射基材、その製造方法、及びその反射基材に用いる原材料組成物 - Google Patents

シリコーン樹脂製反射基材、その製造方法、及びその反射基材に用いる原材料組成物 Download PDF

Info

Publication number
WO2011118108A1
WO2011118108A1 PCT/JP2010/073445 JP2010073445W WO2011118108A1 WO 2011118108 A1 WO2011118108 A1 WO 2011118108A1 JP 2010073445 W JP2010073445 W JP 2010073445W WO 2011118108 A1 WO2011118108 A1 WO 2011118108A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone resin
reflective
raw material
inorganic filler
reflective substrate
Prior art date
Application number
PCT/JP2010/073445
Other languages
English (en)
French (fr)
Inventor
田崎 益次
直人 五十嵐
明 市川
勉 小田喜
舞美 吉田
Original Assignee
株式会社朝日ラバー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44672691&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011118108(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to KR1020127027662A priority Critical patent/KR20130038847A/ko
Priority to JP2012506781A priority patent/JP5519774B2/ja
Priority to KR1020177014956A priority patent/KR101853598B1/ko
Priority to CN201080065663.1A priority patent/CN102893417B/zh
Priority to US13/636,963 priority patent/US9574050B2/en
Application filed by 株式会社朝日ラバー filed Critical 株式会社朝日ラバー
Priority to EP10848500.4A priority patent/EP2551929A4/en
Priority to EP19150557.7A priority patent/EP3490015A1/en
Publication of WO2011118108A1 publication Critical patent/WO2011118108A1/ja
Priority to HK13106030.4A priority patent/HK1179048A1/zh
Priority to US15/399,058 priority patent/US10533094B2/en
Priority to US16/693,471 priority patent/US11326065B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/002Combinations of extrusion moulding with other shaping operations combined with surface shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0027Cutting off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • B29C48/155Partial coating thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/20Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • B29K2705/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/003Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/005Layered products coated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24413Metal or metal compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention is incorporated in a light-emitting device such as a lighting fixture and reflects light from the light source to the side to be irradiated, or is incorporated in a solar cell assembly and reflects incident light on the photoelectric conversion element.
  • the present invention relates to a reflective base made of silicone resin, a method for producing the same, and a raw material composition used for forming the reflective base.
  • a light-emitting element that emits light of a desired wavelength such as a light-emitting diode (LED) is used as a light source of various light-emitting devices such as lighting fixtures, traffic lights, and backlights of liquid crystal displays.
  • LED light-emitting diode
  • Such light-emitting diodes, particularly high-intensity light-emitting diodes, are brighter, consume less power, and have a longer lifetime than white-type lighting fixtures such as incandescent bulbs, halogen lamps, mercury lamps, and fluorescent lamps.
  • a photoelectric conversion element made of P-type silicon and N-type silicon that performs photoelectric conversion upon incidence of sunlight is incorporated in the solar cell assembly.
  • a wiring board that mounts an element that receives and emits light such as a light emitting element or a photoelectric conversion element, and a package case that encloses and accommodates these elements reflect light from the light emitting element to the side to be irradiated.
  • a reflective base made of ceramic or resin that can reflect these lights.
  • the reflective base material of the wiring board or package case is made of ceramics, sufficient reflection efficiency cannot be obtained due to leakage of emitted light.
  • Patent Document 1 an epoxy resin containing an alicyclic epoxy resin, a glycidyl (meth) acrylate polymer, a white pigment, and a resin composition containing a curing agent as essential components are disclosed.
  • a white prepreg impregnated and dried on a substrate which is a support such as a sheet-like glass fiber is disclosed.
  • Such resins and resin compositions such as liquid crystal polymers, polyamides, and bismaleimide / triazine (BT) resins are too low in viscosity to be applied only a few ⁇ m at a time, and the base of the support can be seen through. In addition, sufficient reflection efficiency cannot be obtained. Forcibly, even if it is applied in large amounts, dripping may occur, or only the surface will cause solvent volatilization and hardening preferentially, resulting in wrinkles. It becomes uniform. Therefore, the coating and drying of such a composition on the support are repeated to form a two-dimensional resin in several layers, and finally a thickness of about several tens of ⁇ m that shows the desired reflectance is sufficient. A whitened reflective layer was formed.
  • a reflective non-silicone varnish containing a reflective component was cured to form a reflective substrate.
  • these resin and varnish reflective base materials generally lack heat resistance such as yellowing and light resistance, and absorb light in a wavelength region of 400 nm or less, and thus are difficult to reflect.
  • these resin and varnish reflective bases have the advantage of being inexpensive and easy to mold, they are heated to around 300 ° C. in the reflow process for lead flow soldering in recent years, so the heat causes yellowing. Initial deterioration, and with recent performance improvements such as shortening of the emission wavelength and higher output, etc. The surface gradually becomes dull, leading to a decrease in reflection efficiency. As a result, there is a problem in that the illumination characteristics of the initial design gradually change and become insufficient and dark.
  • a versatile and simple reflective base material that is excellent in heat resistance and light resistance, does not deteriorate in reflectance over long periods of use, and has excellent thermal conductivity.
  • the present invention has been made in order to solve the above-described problems, and includes a short wavelength of about 340 to 500 nm of the light emission wavelength of the LED light source including a wavelength of about 380 to 400 nm near the lower limit of the visible region, and a long wavelength in the near infrared region.
  • An object of the present invention is to provide a reflective base made of silicone resin that is high in cost and can be manufactured at low cost.
  • the present invention provides a raw material composition for a reflective layer in which a reflective layer can be formed by thick coating once on a support having various shapes, and a film shape having a thickness that provides sufficient reflectivity using the raw material composition.
  • Another object of the present invention is to provide a method for producing a simple silicone resin reflective base material that can be molded into a three-dimensional shape or a plate shape.
  • the reflective base made of silicone resin according to claim 1, which has been made to achieve the above object, has a white inorganic filler powder having a higher refractive index dispersed in a three-dimensionally crosslinked silicone resin.
  • the reflective layer contained in the film is formed into a film shape, a three-dimensional shape or a plate shape on the support.
  • the reflective base material made of silicone resin according to claim 2 is the one described in claim 1, wherein the silicone resin contains an acyclic dimethylsiloxy repeating unit as a main component.
  • the reflective base material made of silicone resin according to claim 3 is the reflective base material according to claim 1, wherein the low molecular weight polysiloxane having a siloxy group repeating unit of 4 to 10 contained in the silicone resin is a maximum. However, it is characterized by 300 ppm.
  • the reflective substrate made of silicone resin according to claim 4 is the reflective substrate according to claim 1, characterized in that the reflective layer is formed with a thickness of 1 to 2000 ⁇ m.
  • the reflective substrate made of silicone resin according to claim 5 is the reflective substrate according to claim 1, wherein the silicone resin has a refractive index of 1.35 or more and less than 1.65.
  • the reflective base material made of silicone resin according to claim 6 is the one described in claim 1, wherein the white inorganic filler powder is titanium oxide, alumina, barium sulfate, magnesia, aluminum nitride, boron nitride, titanium. It is at least one light reflecting agent selected from barium acid, kaolin, talc, calcium carbonate, zinc oxide, silica, mica powder, powdered glass, powdered nickel and powdered aluminum.
  • the reflective base material made of silicone resin according to claim 7 is the reflective base material according to claim 1, wherein the white inorganic filler powder is a silane coupling treatment and dispersed in the silicone resin.
  • the reflective base material made of silicone resin according to claim 8 is the reflective base material according to claim 6, wherein the white inorganic filler powder is anatase type or rutile type titanium oxide, alumina, or barium sulfate. It is characterized by that.
  • the reflective substrate made of silicone resin according to claim 9 is the reflective base material according to claim 8, wherein the titanium oxide is surface-treated with Al, Al 2 O 3 , ZnO, ZrO 2 , and / or SiO 2. It is characterized by being coated.
  • the reflective base material made of silicone resin according to claim 10 is the reflective base material according to claim 1, wherein the white inorganic filler powder has an average particle size of 0.05 to 50 ⁇ m, and 2 in the silicone resin. It is characterized by containing ⁇ 80% by mass.
  • the reflective base material made of silicone resin according to claim 11 is the reflective base material according to claim 1, characterized in that the white inorganic filler powder and the phosphor are contained in the reflective layer while being dispersed. To do.
  • the reflective base material made of silicone resin according to claim 12 is the reflective base material according to claim 11, wherein at least one of the white inorganic filler powder and the phosphor is exposed on the surface of the reflective layer. It is characterized by that.
  • the reflective base material made of silicone resin according to claim 13 is the reflective base material according to claim 1, wherein the surface of the reflective layer is continuous, and has a concave-convex shape of nanometer to micrometer order, a prism shape, and / or It is characterized by a non-mirror surface having a pear ground shape.
  • the reflective substrate made of silicone resin according to claim 14 is the reflective base material according to claim 1, wherein at least a part of the surface of the silicone resin is polished, roughened, molded by a rough mold or stamped. A part of the white inorganic filler powder is exposed from the surface by molding and / or chemical etching.
  • the reflective substrate made of silicone resin according to claim 15 is the reflective substrate made of silicone resin according to claim 1, wherein the reflective layer covering the support with the conductive pattern attached is polished, and the conductive pattern is exposed. It is characterized by that.
  • the reflective substrate made of silicone resin according to claim 16 is the one according to claim 15, characterized in that a metal film is attached on the surface.
  • the reflective substrate made of silicone resin according to claim 17 is the reflective base material according to claim 16, wherein the metal film is formed of at least one metal selected from copper, silver, gold, nickel, and palladium. It is characterized by.
  • the reflective substrate made of silicone resin according to claim 18 is the reflective substrate according to claim 16, wherein the metal film is a plating film, a metal vapor-deposited film, a metal sprayed film, or a bonded metal foil film. It is characterized by.
  • the method for producing a reflective base made of silicone resin according to claim 19 is the method according to claim 1, wherein the back surface, outer periphery and / or light guide material reflection of any one of the light emitting element, the light emitting device and the photoelectric conversion element. It is arranged on the surface.
  • the method for producing a reflective base made of a silicone resin according to claim 20 of the present invention comprises the step of forming the silicone resin into a polymerizable silicone resin raw material that is polymerized into a three-dimensionally crosslinked silicone resin. After dispersing the white inorganic filler powder having a higher refractive index than the raw material composition, the raw material composition is applied to the support in the form of a film, three-dimensionally crosslinked, and polymerized to the silicone resin, The reflective layer is formed in a film shape, a three-dimensional shape or a plate shape on the support.
  • the method for producing a reflective substrate made of a silicone resin according to claim 21 is the method according to claim 20, wherein the polymerization is performed by at least one of humidification, pressurization, and ultraviolet irradiation. To do.
  • the method for producing a reflective substrate made of a silicone resin according to claim 22 is the method according to claim 20, wherein the polymerization is performed during injection molding in a mold or pressure molding in a mold. And / or by pressurization.
  • the method for producing a reflective base made of silicone resin according to claim 23 is the method according to claim 22, wherein the surface of the mold is coated with a fluororesin.
  • the method for producing a reflective substrate made of silicone resin according to claim 24 is the method according to claim 20, wherein the polymerizable silicone resin raw material is cross-linked with a three-dimensional crosslinking agent for the silicone resin, and heated. Inactive or volatilized reaction inhibitor is dispersed and contained, and after dispersing white inorganic filler powder having a refractive index higher than that of the silicone resin to obtain the raw material composition, the heating causes the Polymerization is performed.
  • the raw material composition according to claim 25 of the present invention made to achieve the above object comprises: a raw material for a polymerizable silicone resin; a cross-linking agent for three-dimensionally cross-linking the raw material for the silicone resin; and the silicone resin.
  • the raw material composition according to claim 26 is the raw material composition according to claim 25, and is characterized by containing a reaction inhibitor that is deactivated or volatilized by heating.
  • a raw material composition according to a twenty-seventh aspect is the one according to the twenty-fifth aspect, characterized in that it contains an organic solvent and / or a reactive diluent for viscosity adjustment.
  • the reflective base made of silicone resin of the present invention contains a white inorganic filler powder having a refractive index higher than that of the silicone resin while being dispersed. Therefore, from the emission wavelength of the LED light source of about 340 to 500 nm, the near infrared region, for example, 1000 nm. High reflection efficiency of high-intensity light in a wide range of wavelengths up to long wavelengths, especially high reflection efficiency even in the short wavelength region such as blue light and near ultraviolet rays, which were difficult to reflect in the past, and excellent heat conductivity and easy heat dissipation Is. Moreover, this silicone resin reflective base material is excellent in concealing property and does not cause light leakage.
  • the reflective layer in the reflective base made of silicone resin is formed of a stable three-dimensional cross-linked silicone resin that is unlikely to be decomposed or altered by light or heat, and preferably has an acyclic dimethylsiloxy repeating unit in the main chain. It is made of a silicone resin containing as a main component. Therefore, it is far more stable than light and heat-resistant epoxy resin, and is stable to light and heat. It is not only reflective efficiency but also light resistance over time, especially UV light resistance or high brightness light resistance, and heat resistance. Property, durability such as weather resistance, flame retardancy, and workability are excellent, and yellowing does not occur over a long period of time and hardly deteriorates.
  • the reflective base made of silicone resin can maintain high reflectivity because the reflective layer remains white even after a long period of time.
  • This reflective base made of silicone resin is a high-intensity light-emitting diode, even if it contains white inorganic filler powder, especially titanium oxide with extremely high decomposition catalytic activity, due to heat and light stable siloxy repeating units. Even when exposed to direct sunlight or high temperatures for a long period of time, neither yellowing nor deterioration occurs.
  • This silicone resin reflective base material improves the reflectivity when white inorganic filler powder and phosphor are dispersed in the reflective layer and the particles are exposed from the surface, so the irradiation efficiency when mounted on a light emitting device Can be improved.
  • the difference in refractive index between the white inorganic filler powder and the low refractive index silicone rubber raw material in contact with the phosphor surface is desirable because the reflection of light is more efficiently reflected and the light is reflected and emitted more efficiently from the surface of the exposed white inorganic filler powder or phosphor.
  • the surface of the reflective layer of the reflective base made of silicone resin may be a mirror surface that reflects the surface.
  • the surface is a non-mirror surface, it is easy to diffuse and diffuse reflectance is improved, and light reflection unevenness can be reduced.
  • the reflective layer having the silicone resin has a film-like, three-dimensional structure on the support. It can be formed in a shape or plate shape.
  • a liquid composition containing a white inorganic filler powder and a polymerizable silicone resin raw material or a grease-like or plastic raw material composition is coated to a thickness of 2000 ⁇ m at the maximum, and is then three-dimensionally cross-linked and cured to produce a reflective layer Can be formed.
  • the reflective base made of silicone resin is highly versatile because the reflective layer can be shaped freely according to the wiring board, assembly or package case of the optical element.
  • the raw material composition can also be used to form a reflective material that also serves as an adhesive for bonding a component such as a package case to a support.
  • the polymerizable silicone resin raw material composition is formed so as to have a high viscosity and can be applied thickly.
  • the metal such as a conductive pattern and the conductor of an element such as a light-emitting diode can be reduced. It is easy to perform wiring processing such as soldering.
  • the surface of the reflective base made of silicone resin itself is on the order of nanometer to micrometer by surface treatment such as physical polishing / roughening, rough metal mold, or chemical chemical etching.
  • surface treatment such as physical polishing / roughening, rough metal mold, or chemical chemical etching.
  • the polishing may be mirror polishing, rough surface polishing, or cutting polishing.
  • This reflective base made of silicone resin is highly productive because it can be manufactured easily, homogeneously and with high quality precisely, reliably and in large quantities at a low cost in a simple process.
  • the reflective base made of silicone resin is not only a light emitting element such as a light emitting diode, but also various optical elements such as a photoelectric conversion element such as a solar cell element, a wiring case, a package case, a back sheet, and other lighting fixture members. It can be used for general purposes as a reflective base material for devices in various fields such as electrical members.
  • a thick coating of 2000 ⁇ m can be made without dripping. For this reason, it is polymerized into a three-dimensionally crosslinked silicone resin by injection molding (LIMS), stamp molding using a pressing mold / roller, spraying or coating, and from a thin film of 1 to 10 ⁇ m.
  • the reflective layer can be formed in a thick film or plate having a thickness of 2000 ⁇ m or a three-dimensional shape.
  • the silicone resin raw material composition is directly or after adjusting to an appropriate viscosity, followed by screen printing, bar coater, roll coater, reverse coater, gravure coater.
  • an air knife coater, a spray coater, or a curtain coater may be used, and a thin film may be applied by a known application method such as a high-precision offset coater or a multi-stage roll coater. Since this thick coating can form the desired shape even once, it is not necessary to repeat coating and drying.
  • molds are preferably coated with a release agent such as a fluororesin such as polytetrafluoroethylene.
  • the polymerizable silicone resin raw material composition does not cause deformation during heating because it does not cause a decrease in viscosity when heated as in the case of a raw material composition such as an epoxy resin, even if diluted with a suitable solvent. In this way, a reflective layer having a desired shape and thickness can be formed.
  • Such polymerization is simply completed by heating, humidification, ultraviolet irradiation, or if necessary under pressure, to form a reflective layer having excellent adhesion to the support. Therefore, this manufacturing method is excellent in processing characteristics, high in production efficiency, and can be manufactured in any shape of a reflective base material. Therefore, it is excellent in versatility and suitable for mass industrial production.
  • the manufacturing method of the reflective base made of silicone resin makes it easy to release using a mold which is vapor-deposited with fluorine resin or spray-coated and coated to about 0.1 mm, and has any desired shape, arbitrary A reflective layer having a surface roughness of 5 mm can be formed accurately and with good reproducibility, and the yield and production efficiency can be further improved.
  • This method for producing a reflective base made of silicone resin includes a raw material for a silicone resin in which a polymerizable silicone resin raw material contains a three-dimensional crosslinking agent, a reaction inhibitor deactivated or volatilized by heating, and a white inorganic filler.
  • a polymerizable silicone resin raw material contains a three-dimensional crosslinking agent, a reaction inhibitor deactivated or volatilized by heating, and a white inorganic filler.
  • 1 is a light emitting device
  • 2 is a solar cell assembly
  • 10 is a package case of a reflective base made of silicone resin
  • 11 is an inner wall
  • 12a and 12b are white inorganic filler powders
  • 13 is a light emitting diode
  • 14a and 14b are lead wires
  • 15a 15b is a copper film
  • 16 is a support
  • 17 is a solar cell element
  • 17a is a p-type silicon semiconductor
  • 17b is an n-type silicon semiconductor
  • 18a and 18b are copper films
  • 20 and 21 are substrates of a silicone resin reflective base material
  • 22 is a glass cloth
  • 31 is a mold
  • 32 is a hole
  • 33 is a dicing saw
  • 34 is a coating nozzle
  • 35 is a roller
  • 36 is a grinder.
  • the reflective base made of silicone resin of the present invention is incorporated in a lighting fixture 1 that is a kind of light emitting device, and copper foils 15 a and 15 b that are wiring patterns for mounting a light emitting diode 13 as a light emitting element. Is used for a wiring board provided with a reflective base material 20 made of silicone resin and a package case 10 surrounding the light emitting element 13.
  • the reflective base material 10/20 made of silicone resin which is such a package case or wiring board, has a reflective layer containing a white inorganic filler powder having a higher refractive index dispersed in a silicone resin on the support. It is formed in a film shape, a three-dimensional shape or a plate shape.
  • the silicone resin reflective base materials 10 and 20 are exposed with a silicone resin, and a portion of, for example, anatase-type titanium oxide particles that are white inorganic filler powders 12a and 12b are exposed.
  • the reflective base materials 10 and 20 made of silicone resin are white and have an excellent concealing property so that light is not leaked. Furthermore, the reflectance of light from the short wavelength region of 380 to 420 nm to the long-wavelength near infrared ray is extremely high at that portion.
  • the reflective base materials 10 and 20 made of silicone resin have high reflectivity, can maintain a white color without being yellowed even when exposed to high luminance light for a long period of time, and have high mechanical strength and are excellent. Since it shows light resistance, heat resistance, and weather resistance, it has excellent durability.
  • the reflective layer of the reflective base material 10 or 20 made of silicone resin is a silicone resin containing a non-cyclic dimethylsiloxy repeating unit [—Si (—CH 3 ) 2 —O—] as a main component in the main chain, for example, refraction.
  • a white inorganic material composed of a silicone resin comprising polydimethylsiloxane having a refractive index of 1.41, a silicone resin having a polydimethylsiloxane main chain and three-dimensionally cross-linked main chains, and a titanium oxide having a higher refractive index.
  • Filler powders 12a and 12b are contained.
  • the silicone resin containing an acyclic dimethylsiloxy repeating unit as a main component in the main chain is not particularly limited, and includes a hard silicone resin, a soft silicone resin, and a silicone rubber. Silicone resin should be used properly according to the application. For example, when it is used in a three-dimensional shape such as a casing, it is preferably a hard or soft silicone resin from the viewpoint of shape stability. When the support is a flexible material, it is preferably silicone rubber. When manufactured by grinding as shown in FIGS. 6 and 7 described later, a hard silicone resin or a soft silicone resin is preferable because it can be adjusted to a desired thickness with high accuracy.
  • the rubber is generally 90 or less in Shore A hardness as measured with a JIS A type hardness meter, and according to a JIS D type hardness meter.
  • Shore D hardness in the measurement is 30 or less, it is a feeling that it is a rubber when touched.
  • a Shore D hardness of 50 or less can be regarded as a rubber region.
  • the Shore D hardness is from 40 to 60, it is a soft resin reflective layer, and when it exceeds 60, the rubber property is lost and it can be said to be a hard reflective layer having high resin properties.
  • Such a silicone resin is bonded to the Si atom of the next repeating unit of the same main chain or the repeating unit of another main chain via an oxygen atom and / or a crosslinkable functional group and three-dimensionally cross-linked.
  • examples of the silicone resin include the following substances.
  • the silicone resin is hard or soft and exhibits inelasticity or rubber elasticity.
  • the silicone resin raw material composition used to form the silicone resin reflective substrate of the present invention includes various curable types such as addition reaction curable type, organic peroxide curable type, and condensation curable type.
  • curable types such as addition reaction curable type, organic peroxide curable type, and condensation curable type.
  • an addition reaction curing type is preferable.
  • the addition reaction curable type is small in curing shrinkage at the time of curing and can prevent generation of wrinkles on the film when cured.
  • a silicone resin containing an acyclic dimethylsiloxy repeating unit as a main component in the main chain is more specifically a polymer having a degree of polymerization of about 5000 to 10,000 and an average molecular weight of about 400,000 to 800,000. It is.
  • This silicone resin may be polydimethylsiloxane composed of only the dimethylsiloxy repeating unit [—Si (—CH 3 ) 2 —O—], so-called dimethyl silicone, and may be [—Si (—CH 3 ) 2 —.
  • the silicone resin raw material in such a silicone resin raw material composition has, as a main component, an organopolysiloxane having one or more alkenyl groups in the molecule, and one or more silicon-bonded hydrogen atoms in the molecule.
  • Organohydrogenpolysiloxane and platinum group metal catalyst-containing polysiloxane can be mentioned.
  • it contains fine powder silica of 0.2% or more by mass ratio with respect to the organopolysiloxane in order to surely express non-conductivity while preventing the decrease in volume resistivity due to the metal powder content. Good.
  • this silicone resin raw material composition is provided with an adhesive property having a reactive functional group such as an epoxy group, an alkoxysilyl group, a carbonyl group, and a phenyl group in order to improve adhesion and adhesion to the support. It may contain components.
  • the silicone resin used to form the reflective substrate of the present invention may be three-dimensionally cross-linked with another cross-linkable functional group.
  • the intermediate Si group may be an alkyloxysilyl group, a dialkyloxysilyl group, a vinylsilyl group, a divinylsilyl group, a hydrosilyl group, a dihydrosilyl group, or a plurality of such groups.
  • the main chain of the acyclic dimethylsiloxy repeating unit is three-dimensionally crosslinked in a network form through the presence of these functional groups.
  • the main chains may be three-dimensionally crosslinked directly by these crosslinkable functional groups and / or indirectly via a silane coupling agent.
  • the main chains are condensed between each crosslinkable functional group or between a crosslinkable functional group and a silane coupling agent by a dealcoholization reaction between each alkyloxysilyl group or dialkyloxysilyl group.
  • a platinum catalyst such as a platinum complex
  • a vinylsilyl group or divinylsilyl group and a hydrosilyl group or dihydrosilyl group are added and crosslinked by heating or light irradiation in the absence of a solvent.
  • the silicone resin is preferably added and crosslinked.
  • the silicone resin has a repeating unit such as a repeating unit of a dimethylsiloxy group (—Si (CH 3 ) 2 —O—) forming a main chain and a diphenylsiloxy group (—Si (C 6 H 5 ) 2 —O—). It may have a unit.
  • the silicone resin has a repeating unit of a dimethylsiloxy group in the main chain and is crosslinked with an alkyloxysilyl group, a dialkyloxysilyl group, a vinylsilyl group, a divinylsilyl group, a hydrosilyl group, or a dihydrosilyl group. preferable.
  • the three-dimensionally cross-linked silicone resin is obtained, for example, when a polymerizable silicone resin raw material is three-dimensionally cross-linked and cured. More specifically, the raw material of an addition reaction curable type silicone resin will be described as an example.
  • a silicone resin is formed by thermosetting.
  • an organopolysiloxane is used as a base polymer, and an organohydrogenpolysiloxane and a platinum-based material are used.
  • the thing containing heavy metal type catalysts, such as a catalyst, is mentioned.
  • organopolysiloxane examples include the following average unit formula R 1 a SiO (4-a) / 2 Wherein R 1 is an unsubstituted or substituted monovalent hydrocarbon group, preferably having 1 to 10 carbon atoms, especially 1 to 8. a is 0.8 to 2, especially 1 to 1.8. (It is a positive number.) The thing shown by is mentioned.
  • R is an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, an alkenyl group such as a vinyl group, an allyl group or a butenyl group, an aryl group such as a phenyl group or a tolyl group, or an aralkyl such as a benzyl group.
  • a halogen-substituted hydrocarbon group such as a chloromethyl group, a chloropropyl group, or a 3,3,3-trifluoropropyl group in which some or all of the hydrogen atoms bonded to these carbon atoms are substituted with a halogen atom
  • a cyano group-substituted hydrocarbon group such as a 2-cyanoethyl group substituted with a cyano group may be mentioned, and R 1 may be the same or different, but R 1 may be a methyl group, particularly a dimethylsiloxy group. What is a methyl group which becomes a main component is preferable from the viewpoints of reflectivity, heat resistance and durability.
  • R 1 containing an alkenyl group having 2 to 8 carbon atoms such as a vinyl group, particularly 1 to 20 mol% of all R is preferably an alkenyl group. Those having at least one are preferably used.
  • organopolysiloxane include dimethylpolysiloxane having a alkenyl group such as a vinyl group and / or a dimethylsiloxane / methylphenylsiloxane copolymer at the terminal and / or in the middle of the main chain, and / or Alternatively, an alkenyl group-containing diorganopolysiloxane may be mentioned in the middle of the main chain, and in particular, those which are liquid at normal temperature are preferably used.
  • alkenyl group-containing organopolysiloxane is R 2 — [Si (R 3 ) 2 —O] b — [Si (R 3 ) (R 4 ) —O] c —R 2
  • R 2 is the same or different, saturated hydrocarbon group such as methyl group exemplified by R 1 or aromatic hydrocarbon group such as phenyl group or alkenyl group exemplified by R 1
  • R 3 is the same or different
  • R 1 is a saturated hydrocarbon group or aromatic hydrocarbon group exemplified by R 1
  • R 4 is an alkenyl group exemplified by R 1
  • b and c are positive numbers). Or random copolymerization.
  • Such an alkenyl group-containing organopolysiloxane may be linear, may include a branched structure in a part of the molecular structure, or may be a cyclic body.
  • a linear diorganopolysiloxane is preferred from the viewpoint of physical properties such as mechanical strength, elasticity, and resistance to repeated bending of a reflective substrate containing a three-dimensionally crosslinked silicone resin.
  • the number of repeating units is preferably 10 to 10,000.
  • Such alkenyl group-containing diorganopolysiloxane preferably has a viscosity at 25 ° C. of about 10 to 1,000,000 cSt.
  • the organohydrogenpolysiloxane is linear, branched, cyclic, or three-dimensional network, and is singular or plural, preferably trifunctional or more (that is, hydrogen atoms bonded to silicon atoms in one molecule). (Having three or more (Si—H groups)) is preferable, and it is not particularly limited as long as it has Si—H groups at the ends and / or in the middle of the main chain.
  • Si—H groups Si—H groups
  • methyl hydrogen polysiloxane Methylphenyl hydrogen polysiloxane, and the like, and liquids at room temperature are particularly preferable.
  • the catalyst examples include platinum, platinum compounds, organometallic compounds such as dibutyltin diacetate and dibutyltin dilaurate, and metal fatty acid salts such as tin octenoate.
  • organometallic compounds such as dibutyltin diacetate and dibutyltin dilaurate
  • metal fatty acid salts such as tin octenoate.
  • the types and amounts of these organohydrogenpolysiloxanes and catalysts may be appropriately determined in consideration of the degree of crosslinking and the curing rate.
  • organohydrogenpolysiloxane examples include the following average unit formula H d R 5 e SiO (4-de) / 2 (Wherein R 5 is a group exemplified by R 1 , particularly a saturated hydrocarbon group, and d and e are numbers satisfying 0 ⁇ d ⁇ 2, 0.8 ⁇ e ⁇ 2). .
  • organohydrogenpolysiloxane examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyltetracyclosiloxane, 1,3,5 , 7,8-pentamethylpentacyclosiloxane, etc., a siloxane oligomer having a Si—H group at its terminal; trimethylsiloxy end group-containing methylhydrogen polysiloxane, trimethylsiloxy end group-containing dimethylsiloxane / methylhydrogensiloxane copolymer, Silanol terminal group-containing methyl hydrogen polysiloxane, Silanol terminal group-containing dimethyl siloxane-methyl hydrogen siloxane copolymer, dimethyl hydrogen siloxy terminal group-containing dimethyl polysiloxane, dimethyl hydrogen siloxy terminal group-containing methyl Hydrogen polysiloxane, dimethyl hydrogen siloxy terminal groups containing homopolymer or copoly
  • Such organohydrogenpolysiloxanes contain R 5 2 (H) SiO 1/2 units and SiO 4/2 units, R 5 3 SiO 1/2 units, R 5 2 SiO 2/2 units, R 5 It may contain (H) SiO 2/2 units, (H) SiO 3/2 units or R 5 SiO 3/2 units.
  • This organohydrogenpolysiloxane can be obtained by, for example, cohydrolyzing a chlorosilane compound such as R 5 SiHCl 2 or R 5 2 SiHCl (where R 5 is the same as described above), or these chlorosilane compound and R 5 3 SiCl or the like. It may be prepared by cohydrolyzing another chlorosilane compound such as R 5 2 SiCl 2 (wherein R 5 is the same as described above), or may be prepared by equilibrating it.
  • This organohydrogenpolysiloxane is used together with an alkenyl group-containing organopolysiloxane. Both are preferably blended so that the SiH group of the organohydrogenpolysiloxane is 0.5 to 4 molar equivalents relative to 1 molar equivalent of the alkenyl groups of the alkenyl group-containing organopolysiloxane.
  • a platinum group metal catalyst used for a platinum group metal catalyst-containing polysiloxane is a hydrosilylation reaction catalyst for promoting an addition reaction between an alkenyl group of an alkenyl group-containing organopolysiloxane and an SiH group of an organohydrogenpolysiloxane. It is.
  • the catalyst include various metal catalysts.
  • platinum group metal simple substance such as platinum, platinum black, rhodium and palladium; H 2 PtCl 4 ⁇ mH 2 O, H 2 PtCl 6 ⁇ mH 2 O, NaHPtCl 6 ⁇ mH 2 O, KHPtCl 6 ⁇ mH 2 O, Na 2 PtCl 6 ⁇ mH 2 O, K 2 PtCl 4 ⁇ mH 2 O, PtCl 4 ⁇ mH 2 O, PtCl 2 , Na 2 HPtCl 4 ⁇ mH 2 O (Where m is a number from 0 to 6), such as platinum chloride complex, chloroplatinic acid complex and chloroplatinic acid complex salt; alcohol-modified chloroplatinic acid; chloroplatinic acid-olefin complex; platinum group metals such as platinum and palladium Support metal supported on a support such as alumina, silica, carbon, etc .; rhodium-olefin complex;
  • the platinum group metal catalyst may be used in the presence of an alkenyl group-containing organopolysiloxane or organohydrogenpolysiloxane, and may be used in a catalyst amount of about 0.1 to 500 ppm relative to them. Good.
  • Silicone resins include, for example, triorganosiloxy units (R 3 SiO 1/2 units: M units), diorganosiloxy units (R 2 SiO units: D units), monoorganosiloxy units (RSiO 3/2 units: T units). Unit) and siloxy units (SiO 2 unit: Q unit) arbitrarily combined resin (however, the organo groups R are the same or different and are crosslinkable such as alkyl groups such as methyl groups, phenyl groups, or vinyl groups) A group derived from a functional group). With these combinations, any combination of resins such as MQ resin, MDQ resin, MTQ resin, MDTQ resin, TD resin, TQ resin, and TDQ resin in which three-dimensional crosslinking is formed can be used as the silicone resin.
  • the Si atom of the repeating unit is bonded to the Si atom of the next repeating unit via an oxygen atom or a crosslinkable functional group, and is three-dimensionally crosslinked.
  • the reflective base made of silicone resin is attached to an electrical component, it causes electric contact obstruction and cloudiness, and low molecular siloxane contained in the silicone resin, for example, 4 to 10 repeating units of siloxy group It is even more preferable that the low molecular weight siloxane (D4 to D10) is formed of a silicone resin from which 300 ppm, preferably less than 50 ppm, has been previously removed.
  • a commercially available low molecular weight siloxane-reducing grade polymerizable silicone resin raw material is used, or as a low molecular weight siloxane removal treatment, a heating oven treatment (eg, heat treatment at 200 ° C.
  • a vacuum heat treatment eg, under vacuum
  • a silicone resin raw material that has been subjected to a heat treatment such as heating at 200 ° C. for 2 hours can be used.
  • low molecular siloxane can be removed from the molded article by means such as ultrasonic solvent extraction. Although the low molecular siloxane can be removed from the silicone resin raw material, it is preferable to remove the low molecular siloxane from the molded product because it can be removed to a lower level.
  • the silicone resin raw material composition may be a so-called two-component composition in which the two components are mixed and cured at the time of use, as in the case of a normal curable silicone resin composition. It is preferable to use a one-pack type from the viewpoint of workability and the like.
  • This silicone resin raw material composition can be cured under normal conditions.
  • the silicone resin raw material composition can be crosslinked and cured by heating or irradiation with ultraviolet rays to develop hard or soft inelasticity or rubber elasticity.
  • Such a reflective base material 10/20 made of silicone resin may have a reflective layer formed on an untreated support.
  • the adhesive strength and adhesion of the silicone resin are excellent, and thus the adhesive strength between the support and the reflective layer is high.
  • the coated surface side of the support is previously subjected to corona discharge treatment, plasma treatment, ultraviolet treatment, flame treatment, and intro treatment.
  • a reflective layer is formed on a surface-treated support such as a roughened surface because the reflective base material is more firmly adhered and adhered to the surface-treated support.
  • these supports and the reflective material layer are firmly bonded by corona discharge treatment, plasma treatment, ultraviolet irradiation treatment, flame treatment or itro treatment, and the reactive group-containing polysiloxane which becomes an adhesive body. It may be surface-treated with a solution.
  • a functional silane compound such as a silane coupling agent may be used on the surface to be either or one of the adhesive bodies.
  • functional silane compounds include polysiloxanes containing reactive groups that are highly reactive with OH groups.
  • n is a number of 3 to 4, and at least one of the reactive groups —OCH 3 reacts with a functional group such as an OH group on the surface of the reflective layer and the metal foil layer
  • the repeating unit may be one obtained by block copolymerization or random copolymerization.
  • a platinum catalyst may be held on a vinyl group.
  • Table 1 shows the bending strength and hardness of the silicone resin reflective base material with and without the silane coupling treatment.
  • the composition of the silicone resin raw material containing the white inorganic filler powder in the silicone resin raw material adjusts the addition amount of the white inorganic filler powder and silicone rubber powder or the addition amount of organic solvent and reactive diluent to the polymerizable silicone resin raw material as appropriate.
  • it can be appropriately adjusted so as to be plastic, which is a liquid, a grease, or a plastic as defined by plasticity.
  • the resist ink used for spraying, dispenser, or screen printing is preferably liquid and has a viscosity of 0.5 to 500 Pa ⁇ s, more preferably 10 to 200 Pa ⁇ s.
  • the plasticity based on international standard ISO 7323 is preferably used as a raw material composition as a millable type or plastic material of 100 to 500 mm / 100.
  • silicone rubber powder and white inorganic filler When silicone rubber powder and white inorganic filler are used, 3 to 400 parts by weight, preferably 50 to 300 parts by weight are added to 100 parts by weight of the silicone resin raw material in order to adjust viscosity and hardness. Is preferred. If the addition amount of the white inorganic filler is less than this range, sufficient reflection cannot be obtained, and conversely, if the addition amount of the white inorganic filler is more than this range, the workability deteriorates. When the silicone resin raw material composition is applied thinly, the greater the amount of white inorganic filler added, the higher the reflectivity, whereas when it is applied thickly, it is sufficient that the amount added is small. Reflectance is obtained. The silicone rubber powder is added with the white inorganic filler within the above range.
  • the organic solvent may be added for storage stability, coating property improvement, coating amount control, viscosity adjustment and the like.
  • an organic solvent it is preferably added in an amount of 100 to 10,000 parts by mass with respect to 100 parts by mass of the silicone resin raw material. If the amount of the organic solvent is less than this range, stringing and clogging may occur during application and printing, resulting in decreased productivity. On the other hand, when the organic solvent is larger than this range, thick coating cannot be performed, or sufficient reflectance cannot be obtained once coating.
  • the organic solvent is appropriately adjusted and used in accordance with various coating methods and required reflectance, film thickness, and viscosity. As the organic solvent, those that do not react with the silicone resin raw material, the crosslinking agent, and the reaction inhibitor are appropriately used.
  • the addition concentration of the organic solvent relatively decreases the filling concentration of the white inorganic filler powder.
  • the organic solvent evaporates after curing, the filling concentration of the white inorganic filler powder is increased before the viscosity adjustment. Since the density is restored, the coating thickness is thin and high density printing is possible.
  • the reactive diluent is used especially for adjusting the viscosity of the one-pack type adhesive, and unlike an organic solvent, it does not volatilize and is cured as it is as a silicone resin.
  • the reactive diluent include a reactive diluent for liquid silicone resin (trade name: ME91, manufactured by Momentive Materials Performance).
  • the reactive diluent is used by adding 0.1 to 30 parts by weight, preferably 1 to 20 parts by weight, based on 100 parts by weight of the silicone resin raw material. If the amount added is too small, the viscosity cannot be adjusted. If the amount added is too large, the physical properties of the silicone resin will be weak. Since the reactive diluent is cured into a silicone resin, it does not cause volatilization and thinning after curing as in the case where a large amount of an organic solvent is used. Therefore, it is useful for forming a thick reflective layer.
  • the amount of the organic solvent and the reactive diluent is appropriately adjusted according to the thickness of the reflective layer and the coating method such as printing / coating.
  • a liquid or grease-like or plastic raw material composition containing a white inorganic filler powder in a polymerizable silicone resin raw material is a cross-linking agent for three-dimensional cross-linking to a silicone resin such as hydrogen organopolysiloxane or platinum group metal as described above.
  • Cross-linking agents such as system catalyst-containing polysiloxanes and peroxides may be contained.
  • the liquid, grease-like or plastic raw material composition containing the white inorganic filler powder in the polymerizable silicone resin raw material may contain a reaction inhibitor that is deactivated or volatilized by heating.
  • the reaction inhibitor does not lower the activity of the catalyst added as necessary during storage of the raw material composition, and can perform addition reaction of a silicone resin raw material such as an alkenyl group-containing organopolysiloxane or organohydrogenpolysiloxane. It suppresses and enhances storage stability.
  • Reaction inhibitors include, for example, methylvinylcyclotetrasiloxanes; 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, 3-methyl-1-pentene-3
  • Acetylene alcohols such as ol and phenylbutynol
  • acetylene compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-1-hexyne-3-yne
  • these acetylene compounds and alkoxy Examples include siloxane-modified acetylene alcohols obtained by reacting silane, alkoxysiloxane, hydrogensilane, or hydrogensiloxane; nitrogen-containing organic compounds such as benzotriazole; organic phosphorus compounds; oxime compounds;
  • this raw material composition can be stored for a long period of time because the three-dimensional crosslinking does not start before heating, while the three-dimensional crosslinking is quickly completed by heating, and the three-dimensional crosslinking is quickly completed and cured.
  • a reflective layer is formed.
  • the liquid or grease-like or plastic composition is diluted with an organic solvent, a uniform coating film is formed even if it is applied not only when the organic solvent is not volatilized but also when it is volatilized. Therefore, the reflective layer cannot be uneven.
  • the crosslinking agent and reaction inhibitor are preferably contained in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymerizable silicone resin raw material.
  • Such a raw material composition is also used as a resist.
  • This raw material is a thermosetting resist, and is cured when heated to, for example, 100 ° C. or higher.
  • the curing temperature can be appropriately adjusted by appropriately selecting a reaction inhibitor depending on its temperature dependency and crosslink initiation temperature controllability.
  • the raw material composition may contain a crosslinking agent, a platinum catalyst, a reaction inhibitor, a reinforcing agent, and other various additives depending on the use in addition to the main component.
  • This raw material composition may contain an adhesion-imparting component as an adhesive component.
  • Adhesion imparting components include vinyl groups, phenyl groups, alkoxy groups, epoxy ring-containing groups such as 2,3-epoxypropyl groups (C 2 H 3 O—), and reactive functional groups such as (meth) acryloyl groups. Examples thereof include silane compounds and siloxane compounds having a group.
  • the reflective base made of silicone resin formed using this it is preferable that 3 to 400 parts by mass of white inorganic filler powders 12a and 12b are contained with respect to 100 parts by mass of the silicone resin. It is more preferable that the white inorganic filler powder has an average particle size of 0.1 to 10 ⁇ m.
  • Examples of the white inorganic filler powders 12a and 12b include titanium oxide, and more specifically, anatase type titanium oxide and rutile type titanium oxide. With or instead of titanium oxide, alumina, barium sulfate, magnesia, aluminum nitride, boron nitride (hexagonal and cubic), barium titanate, kaolin, silica, talc, powdered mica, powdered glass, powdered aluminum, Inorganic white pigments such as powdered nickel and calcium carbonate may be used in combination or may be used alone.
  • the silicone resin contains a maximum amount capable of dispersing only an inorganic white pigment such as alumina or barium sulfate, there is a risk of light leakage, but with such an inorganic white pigment, titanium oxide has particularly high hiding power. Coexistence of rutile type titanium oxide is more preferable because light leakage is eliminated.
  • heat conductive materials may be dispersed and filled in a silicone resin and laminated or placed as a part of the reflective base material of the present invention as a separate heat conductive layer or heat conductive member.
  • the thermal conductivity was 1.2 W / m ⁇ ° C.
  • the reflectance was 95% or more in the region of 450 to 1000 nm.
  • A-42-6 100 parts by mass of alumina 100 parts by weight of silicone raw material 100
  • a test piece having a size of 70 ⁇ 70 mm and a thickness of 0.8 mm was prepared by mixing with the mass part, and the thermal conductivity and the reflectance were measured.
  • the thermal conductivity was 1.4 W / m ⁇ ° C.
  • the reflectance was 450. It was 85 to 90% in the region of ⁇ 1000 nm.
  • a test piece having a size of 70 ⁇ 70 mm and a thickness of 0.8 mm was prepared by mixing 200 parts by mass of alumina with 100 parts by mass of a silicone raw material, manufactured by Showa Denko Co., Ltd.
  • the thermal conductivity was 1.9 W / m ⁇ ° C., and the reflectance was 75 to 80% in the region of 450 to 1000 nm. From this result, it was possible to improve the thermal conductivity while maintaining the reflectance of 90%. Moreover, it turned out that a reflectance and thermal conductivity can be adjusted by laminating
  • the phosphor is included in the reflective layer to expose the particles from the surface and reflect the light directly or light.
  • fluorescence or phosphorescence emitted when returning from the ground state to the ground state via the excited state may be emitted.
  • an inorganic phosphor or an organic phosphor such as a halogenated phosphate phosphor, a rare earth metal-containing phosphor such as Eu, or a YAG (yttrium-aluminum-garnet) phosphor is used.
  • reinforcing inorganic fillers such as silica, kaolin calcium carbonate, and zinc carbonate; reinforcing organic fillers such as silicone resin powder may be blended.
  • Non-reinforcing inorganic fillers such as calcium silicate and titanium dioxide may be blended.
  • the white inorganic filler powders 12a and 12b in the reflective base materials 10 and 20 made of silicone resin are more preferably titanium oxide, especially anatase-type titanium oxide, because the wavelengths of near-ultraviolet LEDs and blue LEDs are reflected.
  • titanium oxide especially anatase-type titanium oxide
  • the anatase-type titanium oxide is less than 3 parts by mass with respect to 100 parts by mass of the silicone resin, sufficient reflectivity cannot be obtained.
  • it exceeds 400 parts by mass workability becomes difficult and productivity is lowered.
  • the anatase type titanium oxide is contained in an amount of 30 to 300 parts by mass with respect to 100 parts by mass of the silicone resin.
  • the anatase-type titanium oxide is not limited in shape, and may be any particle shape, for example, flaky, indeterminate or spherical particles, but the particle size is 0.05 to 50 ⁇ m, preferably 0.05 to
  • the photocatalyst of titanium oxide is 30 ⁇ m, more preferably 0.1 to 10 ⁇ m. Since the organic oxidative decomposition reaction due to can be suppressed, it can withstand long-term use.
  • the white titanium oxide powder particularly the anatase type titanium oxide powder, contained in the reflective base material 10 or 20 made of silicone resin has a much larger decomposition catalytic activity than the rutile type titanium oxide.
  • Anatase-type titanium oxide powder is added to building materials such as tiles made of inorganic materials and outer wall materials, and acts as a powerful photolysis catalyst that decomposes adhering foreign matter such as dust adhering to the surface of the building material.
  • polymer compounds such as thermoplastics such as polycarbonate, polyphthalamide, polyetheretherketone, it will decompose and yellow, or it will deteriorate and cause cracks. End up.
  • silicone resins particularly silicone resins containing dimethylsiloxy repeating units as the main component
  • the silicone resin reflective substrates 10 and 20 can be used for a long time. It does not change or deform like crossover yellowing.
  • the surface of the anatase-type titanium oxide powder is treated with Al, Al 2 O 3 , ZnO, ZrO 2 , and / or SiO 2 , the decomposition catalytic activity is suppressed and yellowing occurs for a longer period of time. Such a change can be prevented, or the dispersibility in the silicone resin is improved and the reflectance of the reflective layer is further improved.
  • the surface treatment is performed by kneading with titanium oxide and a raw powder of these surface treatment agents, or by dipping or spraying in a suspension containing the raw powder of these surface treatment agents.
  • Commercially available surface-treated titanium oxide may be used. When titanium oxide is surface-treated, whiteness is enhanced and the reflectance of the reflective layer is further improved.
  • the surface of the reflective layer of the reflective base made of silicone resin has an irregular shape of the order of 100 nm to 10 ⁇ m, a prismatic shape such as a pyramidal or prismatic shape, an etching treatment or a sandblast treatment, and the like. If the surface is non-specular, the incident light diffuses in all directions, improving the diffuse reflectance compared to reflection in a specific direction like a mirror surface, reducing light reflection unevenness, and increasing whiteness. The reflection efficiency is further improved.
  • FIG. 11 shows anatase-type titanium oxide, Al 2 O 3 surface-treated with silane-coupled Al 2 O 3 in 100 parts by mass of silicone resin composed of only polydimethylsiloxane and only polyphenylsiloxane.
  • silicone resin composed of only polydimethylsiloxane and only polyphenylsiloxane.
  • the reflection base made of silicone resin in which 200 parts by mass of surface-treated rutile type titanium oxide and alumina (Al 2 O 3 ) are dispersed respectively the correlation between the irradiation wavelength and the reflectance thereof is FIG.
  • the silicone resin reflective substrate made of polydimethylsiloxane having a low refractive index is any one containing anatase-type titanium oxide and rutile-type titanium oxide than those made of polyphenylsiloxane having a high refractive index.
  • the reflectance is 3% higher over a wide range of wavelengths of 200 to 1000 nm, particularly 350 to 1000 nm.
  • the reflective base made of silicone resin of either polydimethylsiloxane or polyphenylsiloxane has a wavelength of 400 nm and the reflectance of rutile-type titanium oxide-containing material is only about 30%, whereas it contains anatase-type titanium oxide.
  • the reflectivity of the product is over 80%.
  • those containing anatase-type titanium oxide have a reflectance as high as 40%, particularly at wavelengths of 380 to 420 nm, compared with those containing rutile-type titanium oxide.
  • the reflectance of rutile titanium oxide is 6% higher.
  • the refractive index of anatase type titanium oxide is 2.45 to 2.55, while the refractive index of rutile type titanium oxide is 2.61 to 2.90.
  • the refractive index of alumina is about 1.76.
  • Anatase-type titanium oxide has a higher refractive index than alumina, as does rutile-type titanium oxide, and thus exhibits a whiter color.
  • Alumina has a lower refractive index than titanium oxide, but has high thermal conductivity and excellent heat dissipation.
  • the reflective substrate made of alumina containing polydimethylsiloxane and silicone resin has a reflectance of 6 to 9% higher at a wavelength of 340 to 1000 nm than that of polyphenylsiloxane containing alumina.
  • a conventional silicone resin composed only of polyphenylsiloxane containing alumina has a reflectance of about 80% at a wavelength of 400 nm or more and is not suitable as a reflective base material.
  • the base polymer is a dimethyl such as polydimethylsiloxane.
  • the reflectance becomes 90% or more at a wavelength of 400 nm or more, which is suitable as a reflective substrate.
  • a white inorganic filler powder while using a silicone resin containing a dimethylsiloxy repeating unit as a main component, it is possible to have reflectivity and heat dissipation, but titanium was selected as the white inorganic filler powder.
  • the improvement in reflectivity is emphasized, and in the case of selecting alumina, the improvement in heat dissipation is emphasized, and the reflective base material 10 made of silicone resin according to the intended use of adjusting the reflectivity and heat radiation by using in combination. 20 can be obtained.
  • FIG. 12 shows a silicone resin reflective base material in which 200 parts by mass of anatase-type titanium oxide and rutile-type titanium oxide are dispersed and contained in 100 parts by mass of a silicone resin composed only of polyphenylsiloxane at 150 ° C. It is a figure which shows the correlation with an irradiation wavelength and its reflectance before and after heating for 1000 hours.
  • the reflectance of the silicone resin composed only of the rutile titanium oxide-containing polyphenylsiloxane at a wavelength of 460 nm is 97%, whereas the silicone composed only of the rutile titanium oxide-containing polydimethylsiloxane.
  • the reflectance of the resin is over 100%.
  • the silicone resin composed only of polydimethylsiloxane has higher reflectance in the entire wavelength region than the silicone resin composed only of polyphenylsiloxane.
  • the reflectance of the silicone resin consisting only of polydimethylsiloxane containing rutile-type titanium oxide also exceeded 100%.
  • Reflective base materials 10 and 20 made of silicone resin are added using a liquid or grease-like or plastic raw material composition containing a silicone resin raw material, white inorganic filler powders 12a and 12b and, if necessary, a silane coupling agent. It is heat-cured in the absence of a solvent by reaction, and is formed on a support using a mold by a method such as compression molding, injection molding, transfer molding, injection molding (LIMS), extrusion molding, or calendar molding. . Such a liquid or grease-like or plastic composition may be applied while adjusting to an appropriate thickness of 1 to 2000 ⁇ m using a coater. In the case of a chip-on-board in which an electronic circuit is mounted by combining a chip and a device, this raw material composition is applied by a method such as screen printing, leaving a portion where the chip is mounted.
  • a liquid or grease-like or plastic raw material composition containing a silicone resin raw material, white inorganic filler powders 12a and 12b and, if necessary, a silane
  • silane coupling agent examples include those having an alkyloxy group, a vinyl group, an amino group, or an epoxy group as a reactive functional group.
  • the coupling agent may be a titanate or aluminate coupling agent in addition to the silane coupling agent.
  • the silicone resin takes in the white inorganic filler powder, for example, anatase-type titanium oxide, into the network structure more securely than when the silane coupling agent is not included. The strength of is significantly increased.
  • the reflective substrate made of silicone resin containing white inorganic filler powder treated with silane coupling agent is cross-linked with silicone via silane coupling agent, so that the bending strength, wettability and dispersion The quality is improved and the quality is improved.
  • a silane coupling treatment for example, 1% by mass of a silane coupling agent is added to anatase-type titanium oxide, and the surface treatment is performed by stirring with a Henschel mixer at 100 to 130 ° C. for 30 to 90 minutes. It is to dry.
  • polishing is performed with abrasive cloths having a roughness of 500 to 10,000, for example, rubbing with a sandpaper, polishing with a fine particle-containing abrasive, polishing with a grindstone, or rubbing with a soft material such as cloth.
  • the white inorganic filler is exposed on the surface of the silicone resin by performing buffing or by contacting the surface with embossed surfaces with irregularities such as a file while rotating at high speed.
  • the roughening is performed by sandblasting or finishing with metal coarse particles, sand or abrasives, wet blasting by spraying a liquid in which abrasives are suspended, or scratching with a metal file.
  • the reflection efficiency is further improved. Physical polishing is more preferred.
  • FIG. 13 shows a silicone resin reflective group in which 100 parts by mass of anatase-type titanium oxide and rutile-type titanium oxide as a white inorganic filler powder are dispersed in 100 parts by mass of a silicone resin composed only of polydimethylsiloxane. It is a figure which shows the correlation with the irradiation wavelength before and behind grind
  • these roughened silicone resin reflective base materials are either polydimethylsiloxane or polyphenylsiloxane, and whether the white inorganic filler powder is anatase-type titanium oxide or rutile-type titanium oxide. Regardless, the reflectance is as high as about 3% over a wide range of wavelengths from 200 to 1000 nm.
  • the reflective base made of silicone resin conforms to JIS K7375, and when the standard white plate is 100, it also shows a relative reflectance value of about 100, indicating that the reflection efficiency is high.
  • the reflective base made of silicone resin made only of polydimethylsiloxane containing rutile-type titanium oxide had a reflectance exceeding 100% and a very high reflection efficiency.
  • the surface-roughened silicone resin reflecting base material is easy to adhere to a metal, and the metal film is easily attached to the surface of the silicone resin.
  • the silicone resin reflective base material using the white inorganic filler subjected to the coupling treatment is easy to adhere to the metal, and the metal film is easily attached to the surface of the silicone resin.
  • the metal film include plating films such as copper, silver, gold, nickel, and palladium, metal vapor-deposited films, adhesives, and metal foil films bonded by metal spraying.
  • Silicon resin is usually difficult to adhere, so it is difficult to attach a metal film. However, if this silicone resin reflective substrate is used, the adhesion to the metal film is good.
  • the metal film may be formed by directly plating on a reflective base made of silicone resin, vapor-depositing metal, or bonding a metal foil film with an adhesive.
  • a reflective base made of silicone resin may be pre-corona-treated, plasma-treated, UV-treated, flame-treated, itro-treated, or coated with polyparaxylylene, and then coated with a metal film by vapor deposition or the like. Good.
  • An example of the method for forming the metal film is as follows. A film is affixed as a masking material to a silicone resin reflective base material containing a white inorganic filler powder and formed into a plate shape.
  • “Parylene C” which is a polyparaxylylene (trade name manufactured by Japan Parylene Co., Ltd .; “Parylene” is a registered trademark; — [(CH 2 ) —C 6 H 3 Cl— (CH 2 )] n ⁇ ),
  • the powdered monochloroparaxylylene dimer that is the raw material dimer of “Parylene C” is placed in the vaporization chamber and heated under reduced pressure, and the evaporated dimer is induced in the thermal decomposition chamber and reacted.
  • a radical of highly functional paraxylylene monomer After forming a radical of highly functional paraxylylene monomer, it is vapor-deposited on a reflective substrate and coated with a polyparaxylylene coating of 0.5 to 5 microns, preferably 1 to 2 microns to form an undercoat layer. To do. On the undercoat layer, a silver layer having a thickness of several microns is formed as a metal layer by vacuum deposition. Thereafter, when the masking material is peeled off, a reflective base made of silicone resin having a metal film attached and a small gas permeability coefficient and insulation resistance is obtained.
  • metal plating or adhesion of a metal foil film may be used, and the preparation method thereof is not particularly limited.
  • a reflective surface made of a silicone resin containing a white inorganic filler powder and formed into a plate shape is roughened using an acid or alkali, and then nickel plating is performed by electroless nickel plating. Then, copper plating is performed by electrolytic plating. Furthermore, gold or silver is plated according to the application.
  • an adhesive layer is formed on the back surface of the copper foil, and the adhesive layer side is bonded to a reflective substrate made of a silicone resin containing a white inorganic filler powder and formed into a plate shape. It is heat-cured with a combined hydraulic press and cross-linked.
  • the copper foil may be a roll-like continuous sheet or an individual sheet obtained by cutting it. The copper foil wound in the shape of a rolled roll may be pulled out and bonded to the reflective base made of silicone resin, and then rolled up again in a roll shape.
  • a metal layer is provided on the support, a circuit is formed on the metal layer by etching, and the silicone resin raw material composition is applied by silk printing, except for the portion where the light emitting diode chip is connected and the portion where it is mounted.
  • a gas barrier layer may be provided between the circuit and the silicone resin reflective substrate.
  • the reflective base made of silicone resin consists of a three-dimensionally crosslinked silicone resin and inorganic filler powder, and therefore has higher gas permeability than ordinary resins such as epoxy resins, so that the metal layer of the circuit is corroded to form an oxide film. Therefore, peeling may occur between the reflective base made of silicone resin and the metal layer.
  • a film having gas barrier properties may be formed between the reflective base made of silicone resin and the metal layer.
  • the gas barrier layer may be flexible or inflexible.
  • the thickness of the gas barrier layer is preferably 1 to 30 ⁇ m, and any material can be selected and used as long as it has a lower gas permeability than that of a silicone resin. Examples include ren coat, polyimide resin, polyparaxylylene, urethane resin, acrylic resin, and polyamide.
  • Silicone resin is highly gas permeable and easily penetrates corrosive gas, so that the metal layer is corroded. Therefore, in order to prevent this, it is preferable to coat a gas barrier resin as a gas barrier layer and to provide a reflective base made of silicone resin thereon.
  • Metal foil or metal plating may be applied on the silicone resin reflective base material.
  • a silicone resin raw material composition may be applied to a copper foil and bonded to a substrate and etched to produce a pattern, or a silicone resin may be applied to a substrate and then plated.
  • This silicone resin reflective base material has non-adhesiveness because the reflective layer uses a silicone resin. Therefore, if dust or foreign matter such as dust or dirt adheres to it, using an adhesive roller, the dust and foreign matter can easily adhere to the adhesive roll without sticking to the silicone resin reflective substrate. And removed. Moreover, although this silicone resin reflective base material is non-adhesive, it has high insulating properties, so that dust and foreign matters such as dust and dust are easily adsorbed and adhered by static electricity. Therefore, by coating a silicone hard coat layer on the reflective surface of the silicone resin reflective base material, it is possible to prevent these dusts and foreign substances from adhering. Moreover, even if dust / foreign matter adheres, it can be easily removed by blowing air. As a silicone hard coating agent that can be used for this silicone resin reflective substrate, a silicone hard agent in which silica or fluorine powder is dispersed, or a silicone coating agent used for air bag surface treatment can be used.
  • a package case 10 which is a silicone resin reflective base material and a silicone resin reflective base material 20 include a silicone resin containing a dimethylsiloxy repeating unit as a main component in the main chain.
  • the lighting fixture which is a light emitting device of an example containing anatase type titanium oxide particles will be specifically described.
  • the reflective base material 20 made of silicone resin that forms a part of the wiring board is formed of a silicone resin containing anatase-type titanium oxide particles 12b. A part of the titanium oxide particles 12b is exposed from the surface on the mounting surface side to the light emitting diode 13 on the reflective base material 20 made of silicone resin. Copper films 15a and 15b, which are conductive metal films, are attached to the surface of the reflective base material 20 made of silicone resin to form a conductive pattern connected to a power source (not shown). Two lead wires 14a and 14b extending from the light emitting diode 13 are connected to the copper film 15a and the copper film 15b, respectively.
  • the portions other than the conductive pattern portion on the surface of the reflective base material 20 made of silicone resin are exposed to the silicone resin, and a part of the anatase-type titanium oxide particles 12b is exposed there, and thus white color is exhibited. Moreover, since it has an excellent concealing property, light is not leaked and leaked. In addition, the reflectance of light, particularly not only in the wavelength region of 380 to 420 nm but also in the visible region longer than that, and heat rays such as infrared rays having longer wavelengths is extremely high.
  • the package case 10 is also molded from a raw material composition containing the same kind of anatase-type titanium oxide particles 12a in a silicone resin.
  • the package case 10 surrounds the light emitting diode 13 and is opened toward the emission direction by an inclined inner wall 11, and is disposed on the mounting surface side of the light emitting diode 13 on the silicone resin reflective base material 20 of the wiring board.
  • the surface is integrally bonded via an adhesive layer (not shown).
  • This package case body 10 also exhibits white color due to the anatase-type titanium oxide particles 12a and has excellent concealing properties, so that light does not leak, and light, particularly light having a wavelength of 380 nm or more, particularly 400 nm or more.
  • the reflectivity is extremely high.
  • Both the silicone resin reflective substrate 20 and the package case 10 are three-dimensionally cross-linked while containing an acyclic dimethylsiloxy repeating unit as a main component in a main chain such as polydimethylsiloxane which is chemically stable and hardly discolored. Because it is made of silicone resin, it has high reflectivity, can remain white even when exposed to high-intensity light for a long time, has a high mechanical strength, and has excellent light and heat resistance. Because of its durability and weather resistance, it has excellent durability.
  • a support 16 is attached to the surface on the non-mounting surface side of the light emitting diode 13 on the reflective base material 20 made of silicone resin, and the lighting fixture 1 is formed.
  • a lighting fixture in which a plurality of sets of the silicone resin reflective base material 20 to which the light emitting diodes 13 are mounted and the package case 10 are arranged in an orderly manner may be used.
  • the opening on the emission direction side of the package case 10 may be covered with a transparent plate or transparent film made of glass or resin.
  • the transparent plate or transparent film may contain a pigment, a dye, a fluorescent agent, or a phosphorescent agent that converts the wavelength of the transmitted light to a desired wavelength.
  • the opening on the emission direction side of the package case 10 may be covered with a lens such as a convex lens, a concave lens, or a Fresnel lens (not shown).
  • the silicone resin reflective base material 20 is formed on the support 16 by various printing such as screen printing, spraying, brush coating, coating, and the like.
  • Such a support 16 may have any shape such as a non-deformable hard or rigid film shape, a plate shape, a cylindrical shape such as a cylinder, a spherical shape, or a three-dimensional shape such as a bowl. It may be a flexible and flexible sheet such as a circuit (FPC), a hard sheet that is energized when bent, or a roll that can be wound, and can be used for various elements. It may be a small working chip that is built in and does not take up much area.
  • the support may be conductive, or may have thermal conductivity and heat dissipation.
  • the front surface may have a reflective layer, and if necessary, the back surface may have an adhesive layer / adhesive layer.
  • the support 16 may be an organic material or an inorganic material. Silicone resin, imide resin, bismaleimide / triazine resin, glass fiber-containing epoxy resin (glass epoxy), paper phenol resin, bakelite, polyethylene terephthalate resin, polybutylene terephthalate resin Polyacrylonitrile resins, plastic films include polycarbonate resins, fluorine resins, polyimide resins, polyphenylene sulfide resins, aramid resins, polyether ether resins, polyether imide resins, liquid crystal polymers, polyether sulfone resins, cycloolefin resins, silicone resins , And silicone rubber, aluminum foil, copper foil, nickel foil and the like molded as raw materials, but are not limited thereto.
  • the reflective base material 20 made of silicone resin that forms a part of the wiring board contains an expensive silicone resin containing a dimethylsiloxy repeating unit as a main component in the main chain, but is only thinly attached to the inexpensive support 16. And because it has a sufficient reflection effect, it contributes to the reduction of production costs.
  • the film-shaped silicone reflective substrate is applied on the support 16 as a 10-200 ⁇ m film by applying the raw material-containing composition.
  • the wiring board having the package case 10 and the silicone resin reflective base material 20 is used as follows.
  • the cathode side copper film 15a and the lead wire 14a, and the anode side copper film 15b and the lead wire 14b are applied to the light emitting diode 13
  • the light emitting diode 13 emits light.
  • Part of the emitted light is directly irradiated to the outside through the opening on the emission direction side of the package case 10.
  • Another part of the emitted light is reflected from the inner wall 11 of the package case 10 or the portion of the reflective base material 20 made of silicone resin other than the conductive pattern on the surface of the wiring board, and from the opening on the emission direction side to the outside Is irradiated.
  • the wiring substrate 21 is made of titanium oxide particles 12 c that are white inorganic filler powder having a high refractive index.
  • the silicone resin contained is molded with the glass cloth 22 inside, and the conductive patterns of the copper films 15a and 15b, which are conductive metal films, are formed on the surface, and the lead wires 14a and 14b of the light emitting diode 13 are formed.
  • the copper film 15a and the copper film 15b are connected to each other.
  • Another embodiment of the reflective base material 1 made of silicone resin is used by being mounted on another lighting fixture as shown in FIG. 3 (d), and conductive metal films 15a and 15b, such as a copper film, forming a conductive line pattern,
  • a package case 10 serving as a reflective layer formed of a silicone resin containing titanium oxide particles 12 which is a white inorganic filler powder having a high refractive index is attached on a support 16 formed of a suitable material such as rigid plastic.
  • the support 15 and the copper films 15a and 15b are covered as a reflective base made of silicone resin.
  • a conductive metal film 15a that forms a conductor pattern of a desired shape by printing, chemical etching, or the like on a support 16 such as a glass epoxy substrate in which a glass fiber cloth is impregnated with an epoxy resin.
  • a support 16 such as a glass epoxy substrate in which a glass fiber cloth is impregnated with an epoxy resin.
  • -Form 15b Next, a liquid or grease-like or plastic composition of the polymerizable silicone resin raw material is applied so as to cover the support 16 and the conductive metal films 15a and 15b, and the mold 31 having a large number of substantially hemispherical protrusions is used.
  • the polymerizable silicone resin raw material When heated so that the thick part is 100 to 1000 ⁇ m and the thinnest part is 10 to 100 ⁇ m, the polymerizable silicone resin raw material is cured while being three-dimensionally cross-linked, and the package case 10 also serving as a reflective layer is obtained.
  • the support 16 and the conductive metal films 15a and 15b are formed in close contact with each other.
  • the mold 31 is released from the package case 10, the inner wall 11 formed in the released part becomes a reflective surface.
  • a hole 32 is formed in the thinnest part of the package case 10 until reaching the conductive metal films 15a and 15b. As shown in FIG.
  • a light emitting diode is inserted therein, and the negative and positive terminals are appropriately connected to the conductive metal films 15a and 15b with a connecting material such as solder. If necessary, a light emitting diode chip for a lighting fixture is formed by cutting the dicing saw 33 into a predetermined size.
  • a sandblast surface treatment is performed.
  • the mold 31 is heated while being pressed, the raw material for the polymerizable silicone resin is cured while being three-dimensionally crosslinked, and the reflective base material 20 made of a silicone resin that also serves as a reflective layer is formed.
  • the support sheet is pulled out from the flexible support sheet raw material roll provided with the conductive metal film 15a / 15b having a conductor pattern of a desired shape, and applied to the surface on the conductive metal film 15a / 15b side.
  • the polymerizable silicone resin raw material was cured while being three-dimensionally cross-linked by heating while being pressed with a roller 35 subjected to sandblasting, and also served as a reflective layer A reflective base material 20 made of silicone resin is formed. If necessary, it may be cut into a desired size with a dicing saw 33.
  • the reflective base material 20 made of silicone resin as shown in FIGS. 4 to 5 has a slightly tapered grinder 36 as shown in FIG. 6A or a substantially hemispherical grinder 36 as shown in FIG. While rotating, until the conductive metal films 15a and 15b are exposed, they are cut in the thickness direction so as to form a recess in the package case, and then, if necessary, to a lighting fixture (not shown) by mounting a light emitting diode or the like. You may lead. As shown in FIG. 6C, while rotating the disc-shaped grinder 36, the conductive metal films 15a and 15b may be cut along a groove shape until they are exposed.
  • the reflective base material 20 made of silicone resin is cut and polished until the conductive metal films 15 a and 15 b are reached while rotating the roller-shaped grinder 36 at a high speed, and the conductive metal is formed on the support 16.
  • the films 15a and 15b and the reflective base 20 made of a silicone resin to be a reflective layer may be exposed without being spaced apart.
  • the reflective base material 1 made of silicone resin has the light emitting diodes 13 as light emitting elements connected to the conductive metal films 15 a and 15 b of the conductor pattern having a desired shape attached to the support 16.
  • the raw material of the polymerizable silicone resin that has flowed out from the nozzle 34 may be dropped and molded so as to surround and swell it.
  • the silicone resin reflective base material 1 is spray-coated with a polymerizable silicone resin raw material on the surface of the support 16 that also serves as a package case having a depression, and then heated, You may form the reflective base material 20 made from a silicone resin.
  • a mold release agent for example, die-free (manufactured by Daikin Industries, Ltd.) every time the mold is released from these molds when the reflective substrate 1 made of a silicone resin is formed, or every several to 10 times. May be applied to the mold to further improve the releasability.
  • the reflective base made of silicone resin is incorporated as an assembly of the solar cell 2 as shown in FIG. 10, and is used in the package case 10 to which the photoelectric conversion element as the solar cell element 17 is attached.
  • the package case 10 is a silicone resin containing anatase-type titanium oxide particles 12a, and is formed by arranging a plurality of rows that are recessed in a bowl shape.
  • the solar cell element 17 includes a substantially spherical p-type silicon semiconductor 17a inside and an n-type silicon semiconductor 17b covering the periphery thereof and PN-junctioned. The lower end of the n-type silicon semiconductor 17b is missing due to polishing, and the p-type silicon semiconductor 17a is exposed therefrom.
  • the n-type silicon semiconductor 17b is connected only to the copper film 18b that is the negative electrode element layer, while the p-type silicon semiconductor 17a is connected only to the copper film 18a that is the positive electrode element layer.
  • the copper films 18a and 18b, which are both electrodes, are isolated and insulated by an insulator layer 19 stacked between them.
  • the package case 10 surrounds the solar cell element 17 and opens toward the emission direction by the inner wall 11 that is recessed in a bowl shape, and is integrated with the copper film 18b through an adhesive layer (not shown). It is glued.
  • the silicone resin reflective base material that is the package case 10 is used as follows. As shown in FIG. 10, light, for example, sunlight is incident on the solar cell element 17 of the solar cell assembly 2. For example, incident sunlight from directly above enters the top of the solar cell element 17 perpendicularly and perpendicularly. Incident sunlight slightly off from directly above is reflected by the inner wall 11 of the package case 10 and enters the side surface of the solar cell element 17 substantially perpendicularly. In this way, the light incident on the solar cell assembly 2 efficiently reaches the PN junction interface between the n-type silicon semiconductor 17b and the p-type silicon semiconductor 17a to generate a photovoltaic force. Flowing.
  • the surface of the silicone resin of the silicone reflective substrate 20 as shown in FIGS. 1 to 10, that is, the surface on the side of the mounting surface to the light emitting diode 13 on the wiring board, and the surface of the inner wall 11 of the package case 10 are polished.
  • Surface treatment is performed by roughening and / or chemical etching, and some of the white inorganic filler particles may be exposed from the surface of the silicone resin.
  • the package case 10 and the surface on the mounting surface side of the light emitting diode 13 on the reflective base material 20 made of silicone resin of the wiring board are integrally bonded via an adhesive layer.
  • the silicone resin adhesive include low molecular siloxane cut product SE-9186L (manufactured by Toray Dow Corning Co., Ltd .; trade name).
  • the reflective base made of silicone resin is used to reflect light like a solar cell in addition to various light emitting devices such as lighting fixtures such as desk lamps with general incandescent bulbs, halogen lamps and LEDs. Alternatively, it may be applied to a wall or a fixture near a heat source such as an electric stove or a combustion stove to reflect infrared rays to increase the heating efficiency or to protect the wall or fixture against heat.
  • the following shows an example in which the silicone resin reflective substrate of the present invention is prototyped and incorporated in the apparatus.
  • Example 1 Comparison of initial reflectance (comparison between polyphenylsiloxane resin and polydimethylsiloxane resin) Anatase-type titanium oxide (trade name A-) using polyphenylsiloxane resin (trade name XE14-C2508: Momentive Performance Materials) and polydimethylsiloxane resin (trade name IVSM4500: manufactured by Momentive Performance Materials) 950: Sakai Chemical Industry Co., Ltd.), rutile type titanium oxide (trade name GTR-100; Sakai Chemical Industry Co., Ltd.) and alumina (trade name AES12: Sumitomo Chemical Co., Ltd.) were added in an amount of 200 parts by mass, respectively, and 25 ⁇ m.
  • a reflective base made of a silicone resin which is a white silicone reflector having a length of 70 mm, a width of 70 mm, and a thickness of 0.3 mm, was prepared on a support using a heating press at 150 ° C. for 10 minutes.
  • Each reflectance was measured using a spectrophotometer UV-3150 (manufactured by Shimadzu Corporation). From FIG. 11 showing the results, in all cases, when polydimethylsiloxane was used as the base polymer, the reflectance was improved by 3 to 5%.
  • Example 2 Reflectance after aging at high temperature Polyphenylsiloxane resin (trade name XE14-C2508: Momentive Performance Materials) and polydimethylsiloxane resin (trade name IVSM4500: manufactured by Momentive Performance Materials) anatase titanium oxide (Trade name A-950: manufactured by Sakai Chemical Industry Co., Ltd.) and rutile-type titanium oxide (trade name GTR-100; manufactured by Sakai Chemical Industry Co., Ltd.) were added in an amount of 200 parts by mass, respectively. A reflective layer was formed on the support under curing conditions at 150 ° C.
  • a reflective base made of silicone resin which was a silicone white reflective plate having a length of 70 mm, a width of 70 mm, and a thickness of 0.3 mm, was produced.
  • the reflectance after heating for 1000 hours at 150 ° C. was measured using a spectrophotometer UV-3150 (manufactured by Shimadzu Corporation). From FIG. 12, which shows the result, the silicone white reflector made of polyphenylsiloxane resin shows a decrease in reflectance on the short wavelength side, whereas the silicone white reflector made of polydimethylsiloxane resin shows a decrease in reflectance. Absent.
  • Example 3 Polydimethylsiloxane resin (trade name: IVSM4500: manufactured by Momentive Performance Materials), anatase type titanium oxide (trade name: A-950: manufactured by Sakai Chemical Industry Co., Ltd.) and rutile type titanium oxide (trade name: GTR-100; 100 parts by mass of each (made by Chemical Industry Co., Ltd.) was added, and a reflective layer was formed by heating press at 150 ° C. for 10 minutes under a curing condition, and a silicone white reflector having a length of 70 mm, a width of 70 mm, and a thickness of 0.3 mm A silicone resin reflective substrate was prepared.
  • IVSM4500 manufactured by Momentive Performance Materials
  • anatase type titanium oxide trade name: A-950: manufactured by Sakai Chemical Industry Co., Ltd.
  • rutile type titanium oxide trade name: GTR-100; 100 parts by mass of each (made by Chemical Industry Co., Ltd.
  • each silicone white reflector After measuring the initial reflectivity of each reflectivity using a spectrophotometer (trade name UV-3150; manufactured by Shimadzu Corporation), the surface of each silicone white reflector is polished with # 1500 sandpaper, Measure the reflectance again. From FIG. 13 showing the result, the reflectance was improved by 2 to 3% by performing surface processing by polishing or the like.
  • the polyphenylsiloxane resin reflector has a sufficient reflectance. Further, when polydimethylsiloxane is used as a base polymer, the reflectance is higher than when polyphenylsiloxane is used as a base, and further, no reduction in reflectance is observed even after 1000 hours. Since it does not yellow or deteriorate from this, it has been found that it is excellent in light resistance, heat resistance and weather resistance, and is a useful reflective material. Moreover, it turned out that a reflectance improves by surface-treating.
  • Example 4 100 parts by mass of rutile titanium oxide (trade name GTR-100; manufactured by Sakai Chemical Industry Co., Ltd.) is added to 100 parts by mass of silicone resin in polydimethylsiloxane resin (trade name IVSM4500: manufactured by Momentive Performance Materials). Then, a reflective layer was formed on a 25 ⁇ m polyimide support under a heating condition at 150 ° C. for 10 minutes by a heating press, and a white silicone resin reflective substrate having a length of 70 mm, a width of 70 mm, and a thickness of 50 ⁇ m was produced. .
  • rutile titanium oxide trade name GTR-100; manufactured by Sakai Chemical Industry Co., Ltd.
  • silicone resin in polydimethylsiloxane resin trade name IVSM4500: manufactured by Momentive Performance Materials
  • Comparative Example 1 Except having used the epoxy resin composition which added 100 mass parts of rutile type titanium oxide (brand name GTR-100; Sakai Chemical Industry Co., Ltd.) with respect to 100 mass parts of epoxy resins, it carried out similarly to Example 4, and using. An epoxy resin white reflective sheet was prepared.
  • rutile type titanium oxide brand name GTR-100; Sakai Chemical Industry Co., Ltd.
  • the heat resistance test was performed on the silicone resin reflective substrate of Example 4 and the reflective sheet of Comparative Example 1 in the same manner as in Example 2.
  • the reflectance before heating and after 1000 hours of heating at 150 ° C. was measured using a spectrophotometer UV-3150 (manufactured by Shimadzu Corporation).
  • the result is shown in FIG.
  • the epoxy resin white reflective sheet has a lower reflectance than the reflective substrate made of polydimethylsiloxane resin in the entire wavelength region.
  • the epoxy resin white reflective sheet subjected to heating has a significant decrease in reflectance on the short wavelength side, whereas the polydimethylsiloxane resin reflective substrate does not have a decrease in reflectance.
  • Example 5 As a support, a 15 ⁇ m copper plating was applied to a 25 ⁇ m polyimide film. A circuit was formed by etching using a photoresist. Next, the composition of anatase-type titanium oxide is changed in the range of 150 to 200 parts by mass with respect to 100 parts by mass of the silicone resin, and if necessary, silicone rubber powder is added in an appropriate amount to each raw material for the white reflector containing anatase-type titanium oxide. This is a composition, and this is applied to the surface of the circuit except for the portion where the LED chip and the wiring are to be applied, using screen printing to a thickness of 30 ⁇ m, and heated at 150 ° C.
  • the reflective base material made of silicone resin had a reflective layer hardness of 80 with a JIS A type hardness meter and 70 with a JIS D type hardness meter.
  • Example 6 As a support, a 15 ⁇ m copper plating was applied to a 25 ⁇ m polyimide film. A circuit was formed by etching using a photoresist. On the entire surface of the circuit, including the LED chip and the copper plating part for wiring thereof, the composition of anatase-type titanium oxide is changed in the range of 150 to 200 parts by mass with respect to 100 parts by mass of the silicone resin, and silicone rubber powder is added if necessary. An appropriate amount of each was added to form a raw material composition for anatase-type titanium oxide-containing white reflective material, which was applied at a thickness of 30 ⁇ m using screen printing, and heated at 150 ° C. for 1 hour to form a reflective layer.
  • the hardness of the reflective layer was 70 according to JIS D type hardness tester.
  • the reflective layer was ground until the copper plating was exposed, and a white reflective base made of silicone resin in which the copper plating portion and the silicone resin portion were separated was produced.
  • Example 7 As a support, a 15 ⁇ m copper plating was applied to a 25 ⁇ m polyimide film. A circuit was formed by etching using a photoresist for the copper plating. Except for the part where the LED chip and the wiring are connected to the surface of this circuit, polyimide varnish (trade name; FC-114 fine polyimide varnish: manufactured by Fine Chemical Japan Co., Ltd.) is applied twice and cured by heating to form a gas barrier with a film thickness of 4 ⁇ m. A layer was provided. Thereafter, a white reflective base material made of silicone resin (the hardness of the reflective layer was the same) was produced in the same manner as in Example 5.
  • FC-114 fine polyimide varnish manufactured by Fine Chemical Japan Co., Ltd.
  • Example 8 100 parts by mass of rutile titanium oxide (trade name GTR-100; manufactured by Sakai Chemical Industry Co., Ltd.) is added to a silicone adhesive (trade name X-32-1964, manufactured by Shin-Etsu Chemical Co., Ltd.), and acetylene is used as a reaction inhibitor. 0.01 parts of alcohol was added to obtain a liquid raw material composition (viscosity 600 Pa ⁇ s) used for a silicone resin reflective substrate. After the storage can was opened, it was left at room temperature for 7 days and the viscosity was measured. As a result, no change was observed, no precipitation of titanium oxide was observed, and even in heat curing at 150 ° C. for 1 hour, both reflectivity and hardness were initial. It showed the same characteristics as those of the raw material composition, showed long-term storability, was able to mount LEDs as shown in FIG. 1, and was found to be excellent in productivity in mass production.
  • Example 9 As a chip-on film (hereinafter referred to as COF), a circuit is formed on a conductor (copper foil) having a thickness of 8 ⁇ m on a polyimide film having a thickness of 38 ⁇ m, and a polyimide varnish (trade name; FC-) is formed as a gas barrier layer excluding the land pattern portion.
  • FC- polyimide varnish
  • 114 fine polyimide varnish (made by Fine Chemical Japan Co., Ltd.) was applied twice and heat-cured to provide a gas barrier layer having a film thickness of 4 ⁇ m, and then screen printing was used to remove the land pattern portion and the white inorganic filler-containing raw material composition to 30 ⁇ m. It was applied and cured at 150 ° C.
  • the white inorganic filler-containing raw material composition is composed of 100 parts by mass of polydimethylsiloxane resin (trade name IVSM4500: manufactured by Momentive Performance Materials) and anatase-type titanium oxide (trade name A-950: manufactured by Sakai Chemical Industry Co., Ltd.) and rutile. 80 parts by mass of type titanium oxide (trade name GTR-100; manufactured by Sakai Chemical Industry Co., Ltd.) is added.
  • a white LED package NSSW064 made by Nichia Chemical was directly mounted on the land portion on the reflective base made of silicone resin, and was soldered through lead-free reflow to obtain a flexible LED lighting substrate of a high reflection COF substrate.
  • This substrate was thin and could be inserted into a narrow part, and was not yellowed by heat, resulting in a COF with a reflectance of 98%. Also, no peeling between the metal and the reflective layer was observed.
  • Example 10 After preparing the silicone resin raw material composition, low molecular weight polysiloxane having a siloxy group repeating unit of 4 to 10 was maintained under reduced pressure and / or 200 ° C. until it became less than 300 ppm, and then returned to normal pressure and used. Except for the above, a silicone resin reflective base material was produced in the same manner as in Examples 1 to 10, and each LED was mounted to manufacture an LED lighting board. As a result, electrical contact failure, illuminance reduction due to clouding, etc. The phenomenon was not observed.
  • Example 11 A reflective substrate made of silicone resin was prepared in the same manner as in Example 1 except that titanium oxide was immersed in the reactive group-containing polysiloxane represented by the chemical formula (1) as a silane coupling agent and surface-treated. As a result, the bending strength and hardness of the resin-made reflective base material were improved as in the case shown in Table 1 above, compared with the case where the surface treatment was not performed.
  • Example 12 After the circuit was formed in the same manner as in Example 9, the titanium oxide-containing dimethyl silicone resin raw material composition was applied by screen printing except for the land pattern portion that fits in ⁇ 1 mm, cured at 150 ° C. ⁇ 1 hour, and finer with ⁇ 1 mm It was possible to form a reflective layer without sagging into a land pattern.
  • Example 13 After the circuit was formed in the same manner as in Example 9, the titanium oxide-containing dimethyl silicone resin raw material composition was applied by screen printing except for the land pattern portion that fits in ⁇ 1 mm, cured at 150 ° C. ⁇ 1 hour, and finer with ⁇ 1 mm It was possible to form a reflective layer without sagging into a land pattern. Further, when the reflectance of the substrate on which the surface was polished with sandpaper # 1000 and the titanium oxide powder was exposed was measured, an improvement in reflectance of 3% was observed.
  • Example 14 After the circuit was formed in the same manner as in Example 9, the raw material composition of dimethyl silicone resin containing 100 parts by mass of anatase titanium oxide and 3 parts by mass of YAG phosphor as an inorganic white filler powder except for the land pattern part that fits within 1 mm.
  • the product was applied by screen printing, cured at 150 ° C. for 1 hour, and a reflective layer could be formed without sagging into a fine land pattern of ⁇ 1 mm.
  • the reflectance of the substrate on which the surface was polished with sandpaper # 1000 and the inorganic white filler powder was exposed was 90%. Absorption at 400 to 500 nm was confirmed and the reflectivity was reduced accordingly, but sufficient reflectivity could be maintained and excitation light at 550 nm was confirmed.
  • Example 15 As a support, a 25 ⁇ m polyimide film is subjected to a plasma treatment, a primer treatment is performed, and 200 parts by mass of anatase-type titanium oxide subjected to a surface treatment with alumina with respect to 100 parts by mass of a silicone resin is mixed and dispersed as 30 ⁇ m. On the opposite side of the support, a silicone adhesive was applied at 30 ⁇ m, a release sheet was laminated, heated at 150 ° C. for 1 hour, and a cover layer having a reflective layer and an adhesive layer. A film was obtained. The coverlay film was bonded to the FR-4 substrate provided with a circuit by making a hole so as to allow the land pattern to escape.
  • Example 16 After preparing the silicone resin raw material composition, low molecular weight polysiloxane having a siloxy group repeating unit of 4 to 10 was maintained under reduced pressure and / or 200 ° C. until it became less than 300 ppm, and then returned to normal pressure and used. Except for the above, a reflective base made of silicone resin was prepared in the same manner as in Examples 1 to 15, and LED lighting substrates were manufactured by mounting LEDs, respectively. Such a phenomenon was not recognized.
  • Example 17 A reflective substrate made of silicone resin was prepared in the same manner as in Example 1 except that titanium oxide was immersed in the reactive group-containing polysiloxane represented by the chemical formula (1) as a silane coupling agent and surface-treated. As a result, the bending strength and hardness of the resin-made reflective base material were improved as in the case shown in Table 1 above, compared with the case where the surface treatment was not performed.
  • COB chip-on-board
  • a circuit is formed on a glass epoxy substrate (FR-4 substrate) with a conductor thickness of 8 ⁇ m (copper foil), the land pattern portion is removed, and a gas barrier layer is coated with an epoxy resin at 150 ° C.
  • the titanium resin-containing silicone resin raw material composition by screen printing (the silicone resin raw material composition is polydimethylsiloxane resin (trade name IVSM4500: manufactured by Momentive Performance Materials) 100 parts by mass of anatase type Titanium oxide (trade name A-950: manufactured by Sakai Chemical Industry Co., Ltd.) and rutile type titanium oxide (trade name GTR-100; manufactured by Sakai Chemical Industry Co., Ltd., 80 parts by mass) were applied, and 150 ° C. ⁇ It was cured in 1 hour to obtain a reflective substrate having a COF silicone resin reflective layer. A white LED package NSSW064 made by Nichia was directly mounted on the film and soldered through lead-free reflow to obtain a highly reflective COB substrate.
  • the silicone resin raw material composition is polydimethylsiloxane resin (trade name IVSM4500: manufactured by Momentive Performance Materials) 100 parts by mass of anatase type Titanium oxide (trade name A-950: manufactured by Sakai Chemical Industry Co., Ltd.
  • a titanium oxide-containing silicone resin raw material composition is discharged as a reflective frame so as to surround the resin-enclosed bare chip by a dispenser at a height of 0.5 mm, and then cured at 150 ° C. for 1 hour to form a thick material.
  • a highly reflective COB with a resin reflective frame was obtained.
  • Example 8 A silicone resin raw material composition was formed in the same manner as in Example 7, and this was soldered to a conductive circuit on a 25 ⁇ m polyimide film support as a casing with an outermost diameter of 3 mm around a bare chip, in a donut shape with a height of 1 mm. Potting was provided to provide a highly reflective frame, and the corresponding portion of the chip was sealed with a transparent silicone resin to produce a reflective substrate. Although this reflective substrate was bent to a radius of curvature of 20 mm, no abnormal reflection occurred.
  • the hardness of the potted portion was Shore D hardness of 70 according to JIS D type hardness tester.
  • a liquid or plastic raw material composition made of a silicone resin containing a white inorganic filler powder having a higher refractive index than that of a silicone resin such as a silicone resin and titanium oxide is a support.
  • a silicone resin containing a white inorganic filler powder having a higher refractive index than that of a silicone resin such as a silicone resin and titanium oxide is a support.
  • it can be combined with a plate-like support.
  • a liquid or plastic raw material composition made of silicone resin containing a white inorganic filler powder having a refractive index higher than that of a silicone resin such as titanium oxide is used as a bare chip casing, and the diameter is 4 mm or less. Even if it is used by potting in such a way that it does not take up an area, if the curvature radius of bending of the support is as large as 20 mm or more, it can be used for the substrate.
  • the reflective substrate made of silicone resin of the present invention is mounted on a light emitting device such as a light emitting diode, a light emitting device such as an incandescent bulb, a halogen lamp, a mercury lamp, or a fluorescent lamp, and reflects the emitted light in a desired direction. In order to emit light to the light source, it is used for a wiring board or a package case mounted on the light emitting source.
  • this silicone resin reflective substrate is mounted on a photoelectric conversion element such as a solar cell element, and is mounted on these photoelectric conversion elements in order to reflect incident light and collect it on the photoelectric conversion elements. Used for printed circuit boards and package cases.
  • the method for producing a reflective substrate made of a silicone resin of the present invention is useful for producing these light emitting devices.
  • the raw material composition of the present invention is useful for easily forming a reflective base made of silicone resin by coating, spraying, dipping, molding or the like.
  • the raw material composition of the present invention can be stored stably at room temperature, it is put into a can and becomes a product as a resist ink. Moreover, it is useful for adjusting a viscosity suitably and forming a reflective layer.

Abstract

 可視領域下限近傍の波長380~400nm程度を含む、LED光源の発光波長340~500nm程度の短波長から赤外線領域の長波長に至る幅広い波長の高輝度光の反射率が高く、熱伝導性に優れ、その高輝度光が照射されても経時的に黄変したり劣化したりせず、耐光性、耐熱性、耐候性、難燃性に優れ、機械的にも化学的にも安定で、白色のまま長期間維持できるうえ、金属や樹脂への接着性に優れ、配線基板やパッケージケースなどとして、簡便に成形できて、生産効率が高く、安価に製造できる汎用性のシリコーン樹脂製反射基材を提供する。 シリコーン樹脂製反射基材10・20は、三次元架橋したシリコーン樹脂に、それよりも高屈折率の白色無機フィラー粉末12a・12bが分散されつつ含有された反射層が、支持体上で膜状、立体状又は板状に形成されている。

Description

シリコーン樹脂製反射基材、その製造方法、及びその反射基材に用いる原材料組成物
 本発明は、照明器具等の発光装置に組み込まれそれらの光源からの光を照射すべき側へ反射させたり、太陽電池アセンブリに組み込まれそれへ入射した光を反射して光電変換素子へ集光させたりするシリコーン樹脂製反射基材、それの製造方法、及びその反射基材の形成に用いる原材料組成物に関するものである。
 照明器具、信号機、液晶ディスプレイのバックライトなど様々な発光装置の光源として、発光ダイオード(LED)のように所望の波長光を出射する発光素子が用いられている。このような発光ダイオード、特に高輝度発光ダイオードは、白熱電球、ハロゲンランプ、水銀灯、蛍光灯などの白色系照明器具よりも、明るくて消費電力が少なく、しかも寿命が長いため、屋内外の発光装置に、組み込まれている。また、太陽光を入射して光電変換するP型シリコンとN型シリコンとからなるような光電変換素子が、太陽電池アセンブリに、組み込まれている。
 このような発光素子や光電変換素子のように光が入出射する素子を実装する配線基板や、これら素子を取り巻いて収容するパッケージケースは、発光素子からの光を照射すべき側へ反射させたり、太陽電池アセンブリへ入射した光を光電変換素子へ反射させて効率よく集光させてエネルギー変換させたりするために、これらの光を反射可能なセラミック製や樹脂製の反射基材で形成されている。
 配線基板やパッケージケースの反射基材がセラミックス製であると、出射光が漏洩することにより、十分な反射効率が得られない。
 一方、樹脂製の反射基材として、例えば、特許文献1に、脂環式エポキシ樹脂を含むエポキシ樹脂、グリシジル(メタ)アクリレート系ポリマー、白色顔料、及び硬化剤を必須成分とする樹脂組成物を、シート状ガラス繊維のような支持体である基板に含浸、乾燥させた白色プリプレグが開示されている。
 このような樹脂や、液晶ポリマー、ポリアミド、ビスマレイミド・トリアジン(BT)樹脂のような樹脂の組成物は粘性が低すぎて一度に高々数μmしか塗布できず、支持体の下地が透けて見えるうえ充分な反射効率が得られない。無理やり、多量に塗ったとしても、液垂れが生じたり表面ばかり優先的に溶媒揮発や硬化を引き起こして皺を生じたり、またそのせいで塗工面の中央部と端部とで塗膜厚が不均一になったりしてしまう。そのため支持体へのこのような組成物の塗工・乾燥を繰り返して二次元的な樹脂を何層にも形成して、ようやく、所望の反射率を示す数10μm程度の厚さにして、十分に白色化した反射層を形成していた。
 又は、反射剤成分を含有する粘度の高い非シリコーン系のワニスを硬化させて、反射基材を形成していた。
 また、これら樹脂製やワニス製の反射基材は、一般的に黄変等耐熱性や耐光性に欠けるうえ、波長400nm以下の波長域の光を吸収するため反射し難い。しかもこれら樹脂製やワニス製の反射基材は、安価で成形し易いという特長を有するものの、近年の鉛フロー半田化のためにリフロー工程で300℃前後に加熱されるので熱での黄変により初期劣化したり、また近年の発光波長の短波長化や高出力化等の性能向上に伴い一層高輝度の白色出射光やそれに伴う高熱に耐え切れず黄変して経時劣化したりして、表面が次第にくすんでしまい、反射効率の低下を招いてしまう。その結果、初期設計の照明特性が次第に変化し、不十分となって暗くなってしまうという問題がある。
 LED光源の発光波長である340~500nmの短波長域から長波長の赤外線領域の波長の光を、十分に反射でき、発光装置のみならず太陽電池アセンブリ等の配線基板やパッケージケースに用いることができ、耐熱性・耐光性に優れ、長期間の使用によって反射率が低下せず、熱伝導性に優れた、汎用性の簡易な反射基材が求められている。
 さらに、様々な形状の支持体上に反射層が設けられた反射基材の簡便な製造方法が求められている。また、反射層原材料組成物の一度の厚塗りにより簡便に反射層を、充分な反射率を示す程度の厚さの膜状、立体状又は板状に成形できる簡便な反射基材の製造方法が求められている。さらに、これら反射基材及びその製造に有用で、単回の塗布で十分な反射効率を有する反射層を形成できる簡易な組成の原材料組成物が求められている。
特開2006-316173号公報
 本発明は前記の課題を解決するためになされたもので、可視領域下限近傍の波長380~400nm程度を含む、LED光源の発光波長340~500nm程度の短波長から近赤外線領域の長波長に至る幅広い波長で反射率が高く、熱伝導性に優れ、その光が照射されても経時的に黄変したり劣化したりせず、耐光性、耐熱性、耐候性、難燃性に優れ、機械的にも化学的にも安定で、白色のまま長期間、高い反射率が維持できるうえ、金属や樹脂への接着性に優れ、配線基板やパッケージケースなどとして、簡便に成形できて、生産効率が高く、安価に製造できるシリコーン樹脂製反射基材を提供することを目的とする。
 また、本発明は、様々な形状の支持体上へ一度の厚塗りにより反射層を形成できる反射層原材料組成物、及びその原材料組成物を用いて、充分な反射率となる厚さの膜状、立体状又は板状に成形できる簡便なシリコーン樹脂製反射基材の製造方法を提供すること別の目的とする。
 前記の目的を達成するためになされた請求の範囲の請求項1に記載のシリコーン樹脂製反射基材は、三次元架橋したシリコーン樹脂に、それよりも高屈折率の白色無機フィラー粉末が分散されつつ含有された反射層が、支持体上で膜状、立体状又は板状に形成されていることを特徴とする。
 請求項2に記載のシリコーン樹脂製反射基材は、請求項1に記載されたもので、前記シリコーン樹脂が、非環状のジメチルシロキシ繰返単位を主成分として含んでいることを特徴とする。
 請求項3に記載のシリコーン樹脂製反射基材は、請求項1に記載されたもので、前記シリコーン樹脂中に含まれる、シロキシ基繰返単位を4~10とする低分子量ポリシロキサンが、最大でも300ppmであることを特徴とする。
 請求項4に記載のシリコーン樹脂製反射基材は、請求項1に記載されたもので、前記反射層が、1~2000μmの厚さで形成されていることを特徴とする。
 請求項5に記載のシリコーン樹脂製反射基材は、請求項1に記載されたもので、前記シリコーン樹脂が、屈折率を1.35以上、1.65未満とすることを特徴とする。
 請求項6に記載のシリコーン樹脂製反射基材は、請求項1に記載されたもので、前記白色無機フィラー粉末が、酸化チタン、アルミナ、硫酸バリウム、マグネシア、チッ化アルミニウム、チッ化ホウ素、チタン酸バリウム、カオリン、タルク、炭酸カルシウム、酸化亜鉛、シリカ、マイカ粉、粉末ガラス、粉末ニッケル及び粉末アルミニウムから選ばれる少なくとも1種の光反射剤であることを特徴とする。
 請求項7に記載のシリコーン樹脂製反射基材は、請求項1に記載されたもので、前記白色無機フィラー粉末が、シランカップリング処理されてシリコーン樹脂中に分散されたものであることを特徴とする。
 請求項8に記載のシリコーン樹脂製反射基材は、請求項6に記載されたもので、前記白色無機フィラー粉末が、アナターゼ型若しくはルチル型の前記酸化チタン、前記アルミナ、又は前記硫酸バリウムであることを特徴とする。
 請求項9に記載のシリコーン樹脂製反射基材は、請求項8に記載されたもので、前記酸化チタンが、Al、Al、ZnO、ZrO、及び/又はSiOで表面処理されて被覆されていることを特徴とする。
 請求項10に記載のシリコーン樹脂製反射基材は、請求項1に記載されたもので、前記白色無機フィラー粉末が、平均粒径0.05~50μmであって、前記シリコーン樹脂中に、2~80質量%含有されていることを特徴とする。
 請求項11に記載のシリコーン樹脂製反射基材は、請求項1に記載されたもので、前記反射層に、前記白色無機フィラー粉末と蛍光体とが分散されつつ含有されていることを特徴とする。
  請求項12に記載のシリコーン樹脂製反射基材は、請求項11に記載されたもので、前記反射層の表面に、前記白色無機フィラー粉末と前記蛍光体との少なくとも何れかが露出していることを特徴とする。
  請求項13に記載のシリコーン樹脂製反射基材は、請求項1に記載されたもので、前記反射層の表面が連続して、ナノメートル乃至マイクロメートルオーダーの凹凸形状、プリズム形状、及び/又は梨地面形状の何れかの非鏡面となっていることを特徴とする。
 請求項14に記載のシリコーン樹脂製反射基材は、請求項1に記載されたもので、前記シリコーン樹脂の少なくとも一部の表面の研磨、粗面化、ざらついた金型による金型成形若しくはスタンプ成形、及び/又はケミカルエッチングによって、前記白色無機フィラー粉末の一部が、前記表面から露出していることを特徴とする。
 請求項15に記載のシリコーン樹脂製反射基材は、請求項1に記載されたもので、導電パターンの付された前記支持体を覆う前記反射層が研磨され、前記導電パターンが露出していることを特徴とする。
 請求項16に記載のシリコーン樹脂製反射基材は、請求項15に記載されたもので、前記表面の上に、金属膜が付されていることを特徴とする。
 請求項17に記載のシリコーン樹脂製反射基材は、請求項16に記載されたもので、前記金属膜が、銅、銀、金、ニッケル、及びパラジウムから選ばれる少なくとも何れかの金属で形成されていることを特徴とする。
 請求項18に記載のシリコーン樹脂製反射基材は、請求項16に記載されたもので、前記金属膜が、めっき被膜、金属蒸着被膜、金属溶射膜、又は接着された金属箔膜であることを特徴とする。
 請求項19に記載のシリコーン樹脂製反射基材の製造方法は、請求項1に記載されたもので、発光素子、発光装置及び光電変換素子の何れかの背面、外周及び/又は導光材反射面に、配置されていることを特徴とする。
 前記の目的を達成するためになされた本発明の請求項20に記載のシリコーン樹脂製反射基材の製造方法は、三次元架橋したシリコーン樹脂へと重合させる重合性シリコーン樹脂原材料に、前記シリコーン樹脂よりも高屈折率の白色無機フィラー粉末を分散させて原材料組成物とした後、前記原材料組成物を膜状に支持体上に付し、三次元架橋させて前記シリコーン樹脂へ重合させることにより、反射層を前記支持体上で膜状、立体状又は板状に形成することを特徴とする。
 請求項21に記載のシリコーン樹脂製反射基材の製造方法は、請求項20に記載されたもので、前記重合が、加湿、加圧及び紫外線照射の少なくとも何れかにより、なされることを特徴とする。
 請求項22に記載のシリコーン樹脂製反射基材の製造方法は、請求項20に記載されたもので、前記重合が、金型内での射出成形、又は金型での押圧成形の際加熱及び/又は加圧により、なされることを特徴とする。
 請求項23に記載のシリコーン樹脂製反射基材の製造方法は、請求項22に記載されたもので、前記金型の表面が、フッ素樹脂でコーティングされていることを特徴とする。
 請求項24に記載のシリコーン樹脂製反射基材の製造方法は、請求項20に記載されたもので、前記重合性シリコーン樹脂原材料に、前記シリコーン樹脂への三次元架橋の架橋剤と、加熱によって失活又は揮発する反応抑制剤とが、分散して含有されており、前記シリコーン樹脂よりも高屈折率の白色無機フィラー粉末を分散させて、前記原材料組成物となした後、前記加熱によって前記重合がなされることを特徴とする。
 前記の目的を達成するためになされた本発明の請求項25に記載の原材料組成物は、重合性シリコーン樹脂の原材料と、前記シリコーン樹脂の原材料を三次元架橋させる架橋剤と、前記シリコーン樹脂よりも高屈折率の白色無機フィラー粉末とが含まれた液状又はグリース状若しくは塑性の原材料組成物であって、請求項1に記載のシリコーン樹脂製反射基材を形成するために用いられるものである。
 請求項26に記載の原材料組成物は、請求項25に記載されたもので、加熱によって失活又は揮発する反応抑制剤が含まれていることを特徴とする。
 請求項27に記載の原材料組成物は、請求項25に記載されたもので、粘度調整のための有機溶剤及び/又は反応性希釈剤が含まれていることを特徴とする。
 本発明のシリコーン樹脂製反射基材は、シリコーン樹脂よりも高屈折率の白色無機フィラー粉末が分散されつつ含有されているので、LED光源の発光波長340~500nm程度から、近赤外線領域、例えば1000nmの長波長までの幅広い波長での高輝度光の反射効率が高く、特に従来反射し難かった青色光や近紫外線のような短波長領域でも反射効率が高く、しかも熱伝導性に優れ放熱し易いものである。またこのシリコーン樹脂製反射基材は、隠蔽性に優れ、光漏れを引き起こさない。
 このシリコーン樹脂製反射基材中の反射層は、光や熱による分解や変質を引き起こし難い安定な三次元架橋シリコーン樹脂で形成され、好ましくは、非環状のジメチルシロキシ繰返単位を主鎖中に主成分として含むシリコーン樹脂で形成されている。そのため、熱や光で黄変し易いエポキシ樹脂などよりも遥かに、光や熱に安定で、反射効率のみならず経時的な耐光性とりわけ対紫外線耐光性又は対高輝度光耐光性や、耐熱性や、耐候性のような耐久性、さらに難燃性、加工性に優れ、長期間に亘って黄変を引き起こさず、劣化し難いものである。このシリコーン樹脂製反射基材は、長期間経過しても、反射層が白色のままであるので、高反射性が維持できる。
 このシリコーン樹脂製反射基材は、熱や光に安定なシロキシ繰返単位に起因して、白色無機フィラー粉末、特に分解触媒活性が極めて高い酸化チタンを含有していてさえ、高輝度発光ダイオードや直射日光や高温に長期間曝されても、黄変も劣化もしない。
 このシリコーン樹脂製反射基材は、反射層に白色無機フィラー粉末や蛍光体が分散され表面からそれらの粒子が露出していると、反射率が向上するので、発光装置に実装したときの照射効率を向上させることができる。
 特にフッ素変性シリコーンゴム、ジメチルシリコーンゴムなどの屈折率が比較的小さいシリコーンゴム原材料を用いると、白色無機フィラー粉末や蛍光体の表面に接する低屈折率のシリコーンゴム原材料との間の屈折率の差が大きくなり、反射が効率よく行われ、露出された白色無機フィラー粉末や蛍光体の表面からより効率的に光が反射、発光されるので望ましい。
 このシリコーン樹脂製反射基材の反射層の表面が、鏡面となって反射するものであってもよいが、100nm~10μm程度のナノメートル乃至マイクロメートルオーダーの凹凸形状、プリズム形状、サンドブラスト処理などによる梨地面形状となって非鏡面であると、拡散し易くなって拡散反射率が向上し、光の反射ムラを低減することができる。
 また、このシリコーン樹脂製反射基材は、シリコーン樹脂が酸素原子及び/又は架橋性官能基を介して三次元架橋しているので、そのシリコーン樹脂を有する反射層が支持体上で膜状、立体状又は板状に形成できる。また、白色無機フィラー粉末及び重合性シリコーン樹脂原材料を含む液状組成物又はグリース状若しくは塑性の原材料組成物は、最大で2000μmもの厚さに塗工した後に、三次元架橋させて硬化させ、反射層を形成することができる。そのため、シリコーン樹脂製反射基材は、反射層を光学素子の配線基板やアセンブリやパッケージケースに応じた自在な形状にすることが可能であるので、汎用性が高い。また、原材料組成物は、パッケージケースなどの部品を支持体に接着する接着剤を兼ねた反射材を形成するのにも用いることができる。
 シリコーン樹脂中のSi原子の1~4個の三次元架橋した各モル数量、酸素原子を介したエーテル結合や架橋性官能基を介した縮合型又は付加型結合のような結合様式を適宜調整することにより、重合性シリコーン樹脂原材料組成物を高粘度にして厚塗り可能に、形成される。また、シリコーン樹脂中に、表面張力が低くて溶融金属などをはじき易い揮発性の残留低分子シロキサンの含有量が少ないと、導電パターンのような金属と、発光ダイオードのような素子の導線との半田付けなどの配線加工を施し易い。
 しかもこのシリコーン樹脂製反射基材は、物理的な研磨・粗面化やざらついた金型による金型成形や化学的なケミカルエッチングのような表面処理によって、その表面自体がナノメートル乃至マイクロメートルオーダーで粗面化又は凹凸化することによって乱反射し易くなると共に、反射性の白色無機フィラー粉末が露出して反射効率が90%程度から97~98%程度にまで約数%も一層向上したものとなる。またこのような表面処理されたシリコーン樹脂製反射基材は、露出した白色無機フィラー粉末の表面がシランカップリング処理されていると金属との接着が容易になり、表面粗さによるアンカー効果、シランカップリングによる化学的結合の向上により難接着性のシリコーン樹脂の表面においても、金属めっき等の金属膜が施され易くなっている。また、反射層自体の強度も向上する。さらに粗面化することにより、ゴミ、異物の付着防止又はゴミ、異物の除去が一層容易になる。
 とりわけこのシリコーン樹脂製反射基材は、導電パターンの付された配線(回路)基板を覆う反射層が研磨され、導電パターンが露出していると、配線基板上の導電パターン部位以外が全て反射層となるので、反射効率が極めて高いものとなっている。研磨は、鏡面研磨であっても粗面研磨であってもよく切削研磨であってもよい。
 このシリコーン樹脂製反射基材は、簡便な工程で簡易に、均質で高品質のものを精密に、確実かつ大量に、安価で製造できるものであるため、生産性が高いものである。
 また、このシリコーン樹脂製反射基材は、発光ダイオードのような発光素子のみならず太陽電池素子のような光電変換素子等の各種光学素子のための配線基板やパッケージケース、バックシートその他照明器具部材等の電気部材など様々な分野の機器の反射基材として、汎用的に用いることができる。
 また、本発明のシリコーン樹脂製反射基材の製造方法によれば、支持体の材質・形状・表面の凹凸性や平滑性の大小又は広狭・硬軟・厚さに関わらず、高粘度の重合性シリコーン樹脂原材料組成物を用いて、液垂れすることなく、2000μmもの厚塗りができる。そのため、射出成形(LIMS)や、押圧用金型・ローラーなどを用いたスタンプ成形、噴霧や塗布のような塗工によって、三次元架橋したシリコーン樹脂へと重合させて、1~10μmの薄膜から2000μmの厚膜乃至板、又は立体形状に、反射層を形成することができる。また、この原材料組成物を用いて、反射層を形成するには、シリコーン樹脂原材料組成物を、直接、又は適当な粘度に調整した後、スクリーン印刷、バーコーター、ロールコーター、リバースコーター、グラビアコーター、エアナイフコーター、スプレーコーター、カーテンコーターにより、さらに薄膜の塗工には、高精度のオフセットコーター、多段ロールコーターなどの公知の塗布方法により、塗布してもよい。この厚塗りは、一度でも所期の形状を形成できるため、塗工・乾燥を繰り返す必要がない。
 これら金型は、フッ素樹脂例えばポリテトラフルオロエチレン等の離型剤でコーティングされていることが好ましい。
 しかも重合性シリコーン樹脂原材料組成物は、適宜溶媒で希釈して用いても、エポキシ樹脂等の原材料組成物のような加熱による硬化時の粘度低下を惹き起さないので、加熱時に変形を起こさずにそのまま硬化し所望の形状・厚さの反射層を形成することができる。
 このような重合は、加熱、加湿、紫外線照射や必要により加圧下で簡便に完了し、支持体への接着性に優れた反射層を形成する。そのためこの製造方法は、加工特性に優れ、生産効率が高く、如何なる形状の反射基材でも製造できるので、汎用性に優れ、大量の工業生産に適している。
 このシリコーン樹脂製反射基材の製造方法は、フッ素樹脂で蒸着されたり噴霧塗装されたりして0.1mm程度にコーティングされた金型を用い離型し易くして、所望の任意の形状、任意の表面粗さの反射層を、正確かつ再現性良く、形成することができ、歩留り・生産効率を一層向上させることができる。
 このシリコーン樹脂製反射基材の製造方法は、重合性シリコーン樹脂原材料に、三次元架橋の架橋剤と、加熱によって失活又は揮発する反応抑制剤、及び白色無機フィラーが含有されているシリコーン樹脂原材料組成物を用いることにより、長期間、室温下で安定に保管でき、加熱開始までは重合されないが加熱によって確実に重合が開始し短時間で重合が完了して反射層を形成するので、生産効率の向上に資する。
本発明を適用するシリコーン樹脂製反射基材10・20を用いた発光装置1を示す模式断面図である。 本発明を適用する別なシリコーン樹脂製反射基材21を用いた発光装置を示す模式断面図である。 本発明を適用する別なシリコーン樹脂製反射基材10の金型成形による製造過程、及びそれを用いた発光装置1の製造過程を示す模式断面図である。 本発明を適用する別なシリコーン樹脂製反射基材20の金型成形による製造過程を示す模式断面図である。 本発明を適用する別なシリコーン樹脂製反射基材20の塗工による製造過程を示す模式断面図である。 本発明を適用する別なシリコーン樹脂製反射基材20の研削による製造過程を示す模式断面図である。 本発明を適用する別なシリコーン樹脂製反射基材20の研削による製造過程を示す模式断面図である。 本発明を適用する別なシリコーン樹脂製反射基材20の盛上による製造過程を示す模式断面図である。 本発明を適用する別なシリコーン樹脂製反射基材20の噴霧塗装による製造過程を示す模式断面図である。 本発明を適用する別なシリコーン樹脂製反射基材10を用いた太陽電池を示す模式断面図である。 本発明を適用するシリコーン樹脂製反射基材における照射波長と反射率との相関関係を示す図である。 本発明を適用する、シリコーン樹脂の種類を変えた、シリコーン樹脂製反射基材の加熱の有無における照射波長と反射率との相関関係を示す図である。 本発明を適用するシリコーン樹脂製反射基材の研磨前後における照射波長と反射率との相関関係を示す図である。 本発明を適用するシリコーン樹脂製反射基材と本発明を適用外のエポキシ樹脂製反射基材との照射波長と反射率との相関関係を示す図である。
 1は発光装置、2は太陽電池アセンブリ、10はシリコーン樹脂製反射基材のパッケージケース、11は内壁、12a・12bは白色無機フィラー粉末、13は発光ダイオード、14a・14bはリード線、15a・15bは銅膜、16は支持体、17は太陽電池素子、17aはp型シリコン半導体、17bはn型シリコン半導体、18a・18bは銅膜、20・21はシリコーン樹脂製反射基材の基板、22はガラスクロス、31は金型、32は穴、33はダイシングソー、34は塗工ノズル、35はローラー、36はグラインダーである。
 以下、本発明を実施するための形態について、図1~10を参照しながら詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。
 先ず、本発明のシリコーン樹脂製反射基材の好ましい一形態について、図1を参照しながら、詳細に説明する。
 本発明のシリコーン樹脂製反射基材は、図1の通り、発光装置の一種である照明器具1に組み込まれるもので、発光素子である発光ダイオード13を装着する配線パターンである銅箔15a・15bを有するシリコーン樹脂製反射基材20が付された配線基板と、その発光素子13を取り巻くパッケージケース10とに、用いられている。
 このようなパッケージケースや配線基板であるシリコーン樹脂製反射基材10・20は、シリコーン樹脂に、それよりも高屈折率の白色無機フィラー粉末が分散されつつ含有された反射層が、支持体上で膜状、立体状又は板状に形成されている。
 シリコーン樹脂製反射基材10・20は、シリコーン樹脂がむき出しになっており、そこで白色無機フィラー粉末12a・12bである例えばアナターゼ型酸化チタン粒子の一部が露出している。シリコーン樹脂製反射基材10・20は、白色を呈し、しかも優れた隠蔽性を有するから光を漏洩しないようになっている。さらにその部位で、380~420nmの短波長域から長波長の近赤外線までに渡る光の反射率が、極めて高くなっている。このようにシリコーン樹脂製反射基材10・20は、高反射率であり、高輝度光に長期間曝されても黄変せず白色を維持でき、しかも高い機械的強度を有し、優れた耐光性、耐熱性、耐候性を示すので、耐久性に優れている。
 このシリコーン樹脂製反射基材10・20の反射層は、主鎖中に非環状のジメチルシロキシ繰返単位〔-Si(-CH)-O-〕を主成分として含むシリコーン樹脂、例えば屈折率が1.41であるポリジメチルシロキサンを含んでなるシリコーン樹脂や、主鎖にポリジメチルシロキサンとし主鎖同士が三次元架橋したシリコーン樹脂に、それよりも高屈折率の酸化チタンからなる白色無機フィラー粉末12a・12bが、含有されたものである。
 主鎖中に非環状のジメチルシロキシ繰返単位を主成分として含むシリコーン樹脂は、特に限定されず、硬質シリコーン樹脂、軟質シリコーン樹脂、シリコーンゴムを、包含するものである。シリコーン樹脂は、用途に応じて使い分けるとよい。例えばケーシングなどの立体状に用いる場合は、形状安定の意味から硬質又は軟質のシリコーン樹脂であることが好ましい。支持体が可撓性の材料である場合はシリコーンゴムであることが好ましい。後述する図6,7のように研削により製造される場合は、硬質シリコーン樹脂、軟質シリコーン樹脂であると、所望の厚さに精度良く調整できるので好ましい。
 このようなシリコーン樹脂に白色無機フィラー粉末を含有した反射層の硬度について、ゴムとしては、一般的には、JIS A型硬度計による測定でのショアA硬度で90以下、JIS D型硬度計による測定でのショアD硬度で30以下であると、触ったときの感触でゴムであるという感覚であるが、本願発明においては、ショアD硬度で50以下をゴムの領域として捉えることができ、また、ショアD硬度で40~60までは軟質の樹脂反射層、60を超えるとゴム性はなくなり、樹脂性の高い硬質の反射層ということができる。
 このようなシリコーン樹脂は、酸素原子及び/又は架橋性官能基を介して、同一主鎖の次の繰返単位又は別な主鎖の繰返単位のSi原子に結合して三次元架橋しているもので、ポリ(ジメチルシロキサン)構造を主鎖とし、その他のポリ(ジアルキルシロキサン)構造やポリ(ジフェニルシロキサン)のようなポリ(ジアリールシロキサン)構造やポリ(架橋性官能基由来架橋基含有シロキサン)を部分的に有していてもよい。
 シリコーン樹脂は、より具体的には以下のような物質が挙げられ、三次元的な架橋構造を有することにより、硬質性若しくは軟質性で非弾性、又はゴム弾性を発現している。
 本発明のシリコーン樹脂製反射基材を形成するために用いられるシリコーン樹脂原材料組成物は、付加反応硬化型、有機過酸化物硬化型、縮合硬化型のような種々の硬化型のものが挙げられるが、硬化時間を短縮して製造効率を向上させる観点から、付加反応硬化型のものが好ましい。更に付加反応硬化型のものは、硬化時に硬化収縮が小さくフィルムに塗工し、硬化させた際フィルムの皺の発生を防止することができる。
 例えば、このような主鎖中に非環状のジメチルシロキシ繰返単位を主成分として含むシリコーン樹脂は、より具体的には重合度5000~10000程度で平均分子量約40万~80万の高分子体である。このシリコーン樹脂は、ジメチルシロキシ繰返単位〔-Si(-CH)-O-〕のみからなるポリジメチルシロキサン、所謂ジメチル系シリコーンであってもよく、〔-Si(-CH)-O-〕と〔-Si(-CH)(-CH=CH)-O-〕又は更に〔-Si(-CH)(-C)-O-〕とを含むような所謂メチルビニル系シリコーン又はメチルフェニルビニル系シリコーンであってもよい。
 そのようなシリコーン樹脂原材料組成物中のシリコーン樹脂原材料は、主要成分として、分子中に単一又は複数のアルケニル基を有するオルガノポリシロキサン、分子中に単一又は複数のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサン、白金族金属系触媒含有ポリシロキサンが挙げられる。また、金属粉含有のせいによる体積抵抗率の低減を防止しつつ非導電性を確実に発現するため、オルガノポリシロキサンに対し質量比で0.2%以上の微粉末シリカを含有していてもよい。更に、このシリコーン樹脂原材料組成物は、支持体との密着性・接着性を向上させるために、エポキシ基、アルコキシシリル基、カルボニル基、フェニル基のような反応性の官能基を有する接着性付与成分を含有していてもよい。
 また本発明の反射基材を形成するのに用いられるシリコーン樹脂は、別な架橋性官能基で三次元架橋していてもよい。このような三次元架橋したシリコーン樹脂は、その途中のSi基が、アルキルオキシシリル基やジアルキルオキシシリル基、ビニルシリル基やジビニルシリル基、ヒドロシリル基やジヒドロシリル基であったり、それらの基が複数存在したりすることにより、それら官能基を介して、非環状のジメチルシロキシ繰返単位の主鎖同士が、網目状に三次元的に架橋したものである。シリコーン樹脂は、これら架橋性官能基によって直接的に、及び/又はシランカップリング剤を介して間接的に、主鎖同士が三次元的に架橋していてもよい。その主鎖同士は、夫々の架橋性官能基の間や、架橋性官能基とシランカップリング剤との間で、夫々のアルキルオキシシリル基又はジアルキルオキシシリル基同士が脱アルコール化反応により縮合して架橋したり、ビニルシリル基やジビニルシリル基とヒドロシリル基やジヒドロシリル基とが白金錯体等の白金触媒存在下で、無溶媒中、加熱や光照射によって付加して架橋したりしたものである。シリコーン樹脂はその中でも、付加して架橋したものであることが好ましい。シリコーン樹脂は、主鎖をなすジメチルシロキシ基(-Si(CH)-O-)の繰返単位とジフェニルシロキシ基(-Si(C)-O-)のような繰返単位とを有するものであってもよい。シリコーン樹脂は、主鎖のジメチルシロキシ基の繰返単位を有し、アルキルオキシシリル基、ジアルキルオキシシリル基、ビニルシリル基、ジビニルシリル基、ヒドロシリル基、ジヒドロシリル基で架橋したものであると、一層好ましい。
 三次元架橋したシリコーン樹脂は、例えば重合性シリコーン樹脂原材料が三次元架橋して硬化することによって得られる。より具体的には、付加反応硬化型のシリコーン樹脂の原材料を例に説明すると、熱硬化によりシリコーン樹脂を形成するもので、例えば、オルガノポリシロキサンをベースポリマーとし、オルガノハイドロジェンポリシロキサン及び白金系触媒等の重金属系触媒を含むものが挙げられる。
 上記オルガノポリシロキサンとしては、下記平均単位式
  R1 SiO(4-a)/2
(式中、Rは非置換又は置換一価炭化水素基で、好ましくは炭素数1~10、特に1~8のものである。aは0.8~2、特に1~1.8の正数である。)
で示されるものが挙げられる。ここで、Rとしてはメチル基、エチル基、プロピル基、ブチル基等のアルキル基、ビニル基、アリル基、ブテニル基等のアルケニル基、フェニル基、トリル基等のアリール基、ベンジル基等のアラルキル基や、これらの炭素原子に結合した水素原子の一部又は全部がハロゲン原子で置換されたクロロメチル基、クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン置換炭化水素基、或いはシアノ基で置換された2-シアノエチル基等のシアノ基置換炭化水素基などが挙げられ、Rは同一であっても異なっていてもよいが、Rとしてメチル基、特にジメチルシロキシ基を主成分となるようなメチル基であるものが、反射性発現、耐熱性・耐久性等の観点から好ましい。
 また、Rとしてビニル基等の炭素数2~8のアルケニル基を含むもの、特に全Rのうちの1~20モル%がアルケニル基であるものが好ましく、中でもアルケニル基を1分子中に2個以上有するものが好ましく用いられる。このようなオルガノポリシロキサンとしては、例えば、末端に、及び/又は主鎖の途中にビニル基等のアルケニル基を有するジメチルポリシロキサンやジメチルシロキサン・メチルフェニルシロキサン共重合体等、末端に、及び/又は主鎖の途中にアルケニル基含有ジオルガノポリシロキサンが挙げられ、特に、常温で液状のものが好ましく用いられる。
 より具体的には、このようなアルケニル基含有オルガノポリシロキサンは、
2-[Si(R3)2-O]-[Si(R3)(R4)-O]-R2
(Rは同一又は異なり前記Rで例示されたメチル基等の飽和炭化水素基若しくはフェニル基等の芳香族炭化水素基又は前記Rで例示されたアルケニル基、Rは同一又は異なり前記Rで例示された飽和炭化水素基若しくは芳香族炭化水素基、Rは前記Rで例示されたアルケニル基、b、cは正数)で模式的に示されるもので、ブロック共重合であってもランダム共重合であってもよいものである。
 このようなアルケニル基含有オルガノポリシロキサンは、直鎖状であっても、分子構造の一部に分枝状の構造を含んでいてもよく、環状体であってもよい。三次元架橋したシリコーン樹脂を含んでいる反射基材の機械的強度、弾性、耐繰り返し屈曲性などの物性の点から直鎖状のジオルガノポリシロキサンが好ましい。アルケニル基含有オルガノポリシロキサンは、その繰り返し単位の繰り返し数が、10~10000であることが好ましい。このようなアルケニル基含有ジオルガノポリシロキサンは、25℃における粘度が10~1,000,000cSt程度のものが好ましい。
 一方、オルガノハイドロジェンポリシロキサンとしては、直鎖状、分岐状、環状、或いは三次元網状であって、単数又は複数、好ましくは3官能以上(即ち、1分子中にケイ素原子に結合する水素原子(Si-H基)を3個以上有するもの)が好ましく、末端に、及び/又は主鎖の途中にSi-H基を有するものであれば、特に限定されないが、例えば、メチルハイドロジェンポリシロキサン、メチルフェニルハイドロジェンポリシロキサン等が挙げられ、特に、常温で液状のものが好ましい。また、触媒としては、白金、白金化合物、ジブチル錫ジアセテートやジブチル錫ジラウリレート等の有機金属化合物、又はオクテン酸錫のような金属脂肪酸塩などが挙げられる。これらオルガノハイドロジェンポリシロキサンや触媒の種類や量は、架橋度や硬化速度を考慮して適宜決定すればよい。
 前記オルガノハイドロジェンポリシロキサンとしては、下記平均単位式
 H5 SiO(4-d-e)/2
(式中、RはRで例示された基、特に飽和炭化水素基、d及びeは、0<d<2、0.8≦e≦2となる数)で表されるものである。
 具体的には、このようなオルガノハイドロジェンポリシロキサンの例としては、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルテトラシクロシロキサン、1,3,5,7,8-ペンタメチルペンタシクロシロキサン等の末端にSi-H基を有するシロキサンオリゴマー;トリメチルシロキシ末端基含有メチルハイドロジェンポリシロキサン、トリメチルシロキシ末端基含有ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、シラノール末端基含有メチルハイドロジェンポリシロキサン、シラノール末端基含有ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、ジメチルハイドロジェンシロキシ末端基含有ジメチルポリシロキサン、ジメチルハイドロジェンシロキシ末端基含有メチルハイドロジェンポリシロキサン、ジメチルハイドロジェンシロキシ末端基含有ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体のような主鎖の途中にSi-H基を有するホモポリマー又はコポリマーのハイドロジェンポリシロキサンが挙げられる。このようなオルガノハイドロジェンポリシロキサンは、R5 2(H)SiO1/2単位とSiO4/2単位とを含み、R5 3SiO1/2単位、R5 2SiO2/2単位、R5(H)SiO2/2単位、(H)SiO3/2単位又はR5SiO3/2単位を含んでいてもよいものである。
 より具体的には、環状の-[SiH(CH3)]4-、H-[Si(CH3)2-O]-[Si(CH3)2-O]f-[Si(CH3)2]-H(但し、fは0~200の数)、(CH3)3SiO-[Si(CH3)2-O]g-OSi(CH3)3(但し、gは0~200の数)、(CH3)3SiO-[Si(CH3)2-O]h-[Si(CH3)2-O]i-OSi(CH3)3(但し、hは0~200、iは1~100の数)が挙げられる。
 このオルガノハイドロジェンポリシロキサンは、例えば、R5SiHCl2やR5 2SiHCl(但し、R5は前記と同じ)のようなクロロシラン化合物を共加水分解し、又はこれらクロロシラン化合物とR5 3SiClやR5 2SiCl2(但し、R5は前記と同じ)のような別なクロロシラン化合物とを共加水分解して調製してもよく、さらにそれを平衡化して調製してもよい。
 このオルガノハイドロジェンポリシロキサンは、アルケニル基含有オルガノポリシロキサンと共に、用いられる。アルケニル基含有オルガノポリシロキサンのアルケニル基の1モル当量に対し、オルガノハイドロジェンポリシロキサンのSiH基が0.5~4モル当量となるように、両者が配合されていることが好ましい。
 白金族金属系触媒含有ポリシロキサンに用いられる白金族金属系触媒は、アルケニル基含有オルガノポリシロキサンのアルケニル基と、オルガノハイドロジェンポリシロキサンのSiH基との付加反応を促進するためのヒドロシリル化反応触媒である。この触媒は、各種金属触媒が挙げられ、具体的には、白金、白金ブラック、ロジウム、パラジウムのような白金族金属単体;H2PtCl4・mH2O、H2PtCl6・mH2O、NaHPtCl6・mH2O、KHPtCl6・mH2O、Na2PtCl6・mH2O、K2PtCl4・mH2O、PtCl4・mH2O、PtCl2、Na2HPtCl4・mH2O(但し、mは0~6の数)のような塩化白金錯体、塩化白金酸錯体及び塩化白金酸錯塩;アルコール変性塩化白金酸;塩化白金酸-オレフィン錯体;白金、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させた担体金属;ロジウム-オレフィン錯体;クロロトリス(トリフェニルフォスフィン)ロジウムのようなウィルキンソン触媒;塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有の鎖状又は環状シロキサンとの錯体などが挙げられる。白金族金属系触媒は、アルケニル基含有オルガノポリシロキサンやオルガノハイドロジェンポリシロキサンと共存させて、それらに対して0.1~500ppm程度の触媒量、用いられてもよく、予め担持させていてもよい。
 シリコーン樹脂は、例えば、トリオルガノシロキシ単位(R3SiO1/2単位:M単位、)、ジオルガノシロキシ単位(R2SiO単位:D単位)、モノオルガノシロキシ単位(RSiO3/2単位:T単位)、シロキシ単位(SiO2単位:Q単位)を任意に組み合わせた樹脂(但し、オルガノ基Rは、同一又は異なり、メチル基のようなアルキル基やフェニル基、又はビニル基のような架橋性官能基に由来する基)であることが好ましい。これらの組み合わせにより、シリコーン樹脂は、三次元架橋が形成されたMQ樹脂、MDQ樹脂、MTQ樹脂、MDTQ樹脂、TD樹脂、TQ樹脂、TDQ樹脂などの任意の組み合わせの樹脂を用いることができる。
 このシリコーン樹脂が、繰返単位のSi原子が酸素原子又は架橋性官能基を介して次なる繰返単位のSi原子に結合して三次元架橋している。
 シリコーン樹脂製反射基材は、電気部品に装着されるものであるから、電気接点障害やくもりの原因となるものでシリコーン樹脂中に含有される低分子シロキサン例えばシロキシ基繰返単位が4~10(D4~D10)の環状低分子量シロキサンを、予め300ppm、好ましくは50ppm未満にまで除去したシリコーン樹脂で形成されていると、なお一層好ましい。具体的には、市販の低分子シロキサン低減グレードの重合性シリコーン樹脂原材料を用いたり、低分子シロキサン除去処理として、加熱オーブン処理(例えば200℃で4時間加熱処理)、真空加熱処理(例えば真空下200℃で2時間加熱)などの加熱処理を施したりしたシリコーン樹脂原材料を用いることができる。また、これらの処理に加えて、超音波溶媒抽出などの手段を施して成型品から低分子シロキサン除去することもできる。シリコーン樹脂原材料から低分子シロキサンを除去できるが、成形品から低分子シロキサンを除去する方が、より低レベルにまで除去できるので、好ましい。
 シリコーン樹脂原材料組成物は、通常の硬化性シリコーン樹脂組成物と同様に、2液に分け、使用時にこの2液を混合して硬化させる所謂二液型の組成物でもよいが、組成物を使用する際の作業性等の点から一液型とすることが好ましい。このシリコーン樹脂原材料組成物は、通常の条件で硬化でき、例えば加熱により、又は紫外線照射により、架橋させて、硬化させ、硬質性若しくは軟質性の非弾性、又はゴム弾性を発現させることができる。
 このようなシリコーン樹脂製反射基材10・20は、未処理の支持体上に反射層が形成されていてもよい。重合性シリコーン樹脂原材料の三次元架橋による硬化の際に、シリコーン樹脂の密着性・接着性が優れていることから、支持体と反射層との接着強度が高い。
 支持体を予め表面処理することは必ずしも必要でないが、シリコーン樹脂原材料組成物の塗工の前に、支持体の塗工面側を予め、コロナ放電処理、プラズマ処理、紫外線処理、フレーム処理、イトロ処理又は粗面処理のような表面処理された支持体上に反射層が形成されていると、表面処理された支持体上に反射基材が、一層強固に密着して接着するのでなお好ましい。これらのコロナ放電処理、プラズマ処理、紫外線照射処理、フレーム処理又はイトロ処理は、支持体上に重合性シリコーン樹脂原材料組成物が付される直前に行われることが好ましい。
 また、これらの支持体と反射材層とが、コロナ放電処理、プラズマ処理、紫外線照射処理、フレーム処理又はイトロ処理により強固に接着をしていればよく、接着体となる反応性基含有ポリシロキサン溶液で表面処理されていてもよい。
 支持体と反射材層とを接触によってより一層強固に接着させるには、両者又は一方の接着体となる面に、シランカップリング剤のような機能性シラン化合物を用いてもよい。このような機能性シラン化合物は、OH基との反応性が高い反応性基を含有するポリシロキサンが挙げられる。
 このような反応性基含有ポリシロキサンとして、下記化学式(1)
Figure JPOXMLDOC01-appb-C000001
(式(1)中、nは3~4の数であって、反応性基である-OCHの少なくとも何れかが、反射層及び金属箔層の表面の官能基例えばOH基と反応するものである)で示される化合物が挙げられる。この化合物は、繰返単位が、ブロック共重合、又はランダム共重合したものであってもよい。このビニルメトキシシロキサンホモポリマーのようなビニルアルコキシシロキサンホモポリマーの溶液に浸漬したりその溶液を塗布したり、反応性を向上させるために、それを白金触媒懸濁液に浸し、活性シリル基中のビニル基に白金触媒を保持させてもよい。
 そのシランカップリング処理の有無によるシリコーン樹脂製反射基材の曲げ強度と硬度とを、表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1から明らかな通り、このシランカップリング処理によりシリコーン樹脂製反射基材の強度が、向上している。
 シリコーン樹脂原材料に白色無機フィラー粉末を含有したシリコーン樹脂原材料の組成物は、重合性シリコーン樹脂原材料に白色無機フィラー粉末やシリコーンゴムパウダーの添加量又は有機溶剤や反応性希釈剤の添加量を適宜調整して加えて調製することができ、用途に応じて、液状、グリース状、又は可塑度で定義されるような可塑物である塑性となるように適度に調整して用いることができる。例えば、スプレー、ディスペンサー、或いはスクリーン印刷するときのレジストインクとしては、液状のものとして、粘度を0.5~500Pa・s、より好ましくは10~200Pa・sとすることが好ましい。また、熱プレス成形をする場合は、国際規格ISO 7323に基づく可塑度としては、100~500mm/100のミラブルタイプ又は可塑物としての原材料組成物として用いることが好ましい。
 シリコーンゴムパウダー及び白色無機フィラーを用いる場合、粘度や硬度を調整するために、その添加量としてシリコーン樹脂原材料100質量部に対し、3~400質量部、好ましくは50~300質量部添加されることが好ましい。白色無機フィラーの添加量がこの範囲よりも少な過ぎると十分な反射が得られず、逆に白色無機フィラーの添加量がこの範囲よりも多過ぎると加工性が悪くなってしまう。シリコーン樹脂原材料組成物を、薄く塗布する場合には、白色無機フィラーの添加量が多い程、高い反射率を発現し、一方、厚く塗布する場合には、これらの添加量が少なくても十分な反射率が得られる。シリコーンゴムパウダーは、前記範囲内で、白色無機フィラーと共に加えられる。
 また、有機溶剤は、保存安定性、塗工性向上、塗工量の制御、粘度の調整などのために、添加されてもよい。有機溶剤を用いる場合、その添加量としてシリコーン樹脂原材料100質量部に対し、100~10000質量部添加されることが好ましい。有機溶剤がこの範囲よりも少ない場合には塗布、印刷時において糸引き、目詰まりが生じ生産性が落ちてしまう。一方、有機溶剤がこの範囲よりも多い場合には、厚塗りができなかったり、一度塗りで十分な反射率が得られなかったりする。有機溶媒は、各種コーティング方法や要求される反射率、膜厚、粘度に応じ、適宜調整して用いられる。有機溶剤は、シリコーン樹脂原材料、架橋剤、反応抑制剤と反応しないものが適宜用いられ、具体的には、トルエン、キシレン、酢酸エチル、アセトン、メチルエチルケトン、ヘキサンが挙げられる。有機溶剤で粘度を調整する場合、有機溶剤を添加によって白色無機フィラー粉末の充填濃度が相対的に低下するが、硬化後に有機溶剤が揮発すると、白色無機フィラー粉末の充填濃度が粘度調整前の高濃度に戻ることとなるため、塗膜厚みが薄くて高濃度の印刷が可能となる。
 反応性希釈剤は、特に一液型接着剤の粘度調整用に使われるもので、有機溶媒と異なり揮発せず、そのままシリコーン樹脂として硬化するものである。反応性希釈剤として、例えば液状シリコーン樹脂用反応性希釈剤(モメンティブ・マテリアルズ・パフォーマンス社製 商品名:ME91)が挙げられる。反応性希釈剤は、シリコーン樹脂原材料100質量部に対し、0.1~30質量部、好ましくは1~20質量部添加されて用いられる。添加量がこの範囲より少な過ぎると、粘度の調整ができず、添加量がこの範囲より多過ぎると、シリコーン樹脂としても物性が弱くなる。反応性希釈剤は、シリコーン樹脂へと硬化するものであるため、有機溶剤を大量に使用した場合のように硬化後に揮発して肉痩せするようなことが起こらない。そのため、肉厚の反射層を形成するのに有用である。
 有機溶媒と反応性希釈剤との量は、反射層の厚さや印刷・塗布等の塗工方法に応じ、適宜調整される。
 重合性シリコーン樹脂原材料に白色無機フィラー粉末を含有した液状又はグリース状若しくは塑性の原材料組成物は、シリコーン樹脂への三次元架橋の架橋剤例えば例えば前記のようなハイドロジェンオルガノポリシロキサンや白金族金属系触媒含有ポリシロキサン、過酸化物のような架橋剤が、含有されていてもよい。
 重合性シリコーン樹脂原材料に白色無機フィラー粉末を含有した液状、又はグリース状若しくは塑性の原材料組成物は、加熱によって失活又は揮発する反応抑制剤が、含有されていてもよい。反応抑制剤は、この原材料組成物の保存中に、必要に応じて添加されている触媒の活性を低下させることなく、シリコーン樹脂原材料、例えばアルケニル基含有オルガノポリシロキサンオルガノハイドロジェンポリシロキサン付加反応を抑制し、保存安定性を高めるものである。反応抑制剤は、例えば、メチルビニルシクロテトラシロキサン類;3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-へキシン-3-オール、3-メチル-1-ペンテン-3-オール、フェニルブチノ-ルのようなアセチレンアルコール類;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-1-へキシン-3-インなどのアセチレン化合物;これらのアセチレン化合物とアルコキシシラン、アルコキシシロキサン、ハイドロジェンシラン、又はハイドロジェンシロキサンとを反応させたシロキサン変性アセチレンアルコール類;ベンゾトリアゾールのような窒素含有有機化合物;有機リン化合物;オキシム化合物;有機クロム化合物が挙げられる。
 これにより、この原材料組成物は、加熱前には三次元架橋が開始しないから長期間保存ができ、一方、加熱によって三次元架橋が速やかに開始し迅速に三次元架橋が完了して硬化し、反射層を形成する。しかも液状又はグリース状若しくは塑性組成物が有機溶媒で希釈されたものであったとしても、有機溶媒の揮発が無い時のみならず揮発したときでさえ、塗装しても均一な塗膜を形成することができるので、反射層にむらができない。
 架橋剤や反応抑制剤は、重合性シリコーン樹脂原材料100質量部に対して、夫々0.01~10質量部含有されていることが好ましい。
 このような原材料組成物は、レジストとしても用いられるものである。この原材料は、加熱硬化型のレジストであり、例えば100℃以上に加熱されると硬化する。その硬化の際に、反応抑制剤を適宜選択することによりそれの温度依存性及び架橋開始温度制御性によって、硬化温度を適宜調整することができる。
 この原材料組成物に、付加反応型の場合、主成分に加え、架橋剤、白金触媒、反応抑制剤、補強剤、用途に応じたその他の種々の添加剤が配合されていてもよい。
 この原材料組成物に、接着成分として接着性付与成分が含有されていてもよい。接着性付与成分は、ビニル基、フェニル基、アルコシキ基、2,3-エポキシプロピル基(C23O-)のようなエポキシ環含有基、(メタ)アクリロイル基のような反応性の官能基を有するシラン化合物やシロキサン化合物が挙げられる。このような接着性付与成分は、具体的には、CH2=CHSi(OCH3)3、C65Si(OCH3)3、CH2=CHSi(OCH24OCH3)3、C23O-CH2O(CH2)3Si(OCH3)3、C23O-CH2O(CH2)3SiCH3(OCH3)2、CH2=CH-CO-O(CH2)3SiCH3(OCH3)2、CH2=CCH3-CO-O(CH2)3SiCH3(OCH3)2、2-(2,3-エポキシプロピルオキシプロピル)-2、4,6,8-テトラメチル-シクロテトラシロキサン、2-(2,3-エポキシプロピルオキシプロピル)-2、4,6,8-テトラメチル-6-(トリメトキシシリルエチル)シクロテトラシロキサンなどが挙げられる。
 これを用いて形成されたシリコーン樹脂製反射基材中、シリコーン樹脂100質量部に対し、白色無機フィラー粉末12a・12bが3~400質量部含まれていることが好ましい。白色無機フィラー粉末が、平均粒径0.1~10μmであると一層好ましい。
 白色無機フィラー粉末12a・12bは、例えば、酸化チタン、より具体的にはアナターゼ型酸化チタンやルチル型酸化チタンが挙げられる。酸化チタンと共に、又はその代わりに、アルミナや硫酸バリウム、マグネシア、チッ化アルミニウム、チッ化ホウ素(六方晶・立方晶)、チタン酸バリウム、カオリン、シリカ、タルク、粉末マイカ、粉末ガラス、粉末アルミニウム、粉末ニッケル、炭酸カルシウムのような無機白色顔料を、組み合わせて用いてもよく単独で用いてもよい。
 シリコーン樹脂にアルミナや硫酸バリウムのような無機白色顔料のみを分散可能な最大量を含有させても、光の漏洩を生じる恐れがあるが、このような無機白色顔料と共に酸化チタン特に隠蔽力の大きいルチル型酸化チタンが共存していると、光の漏洩が無くなるので一層好ましい。
 熱伝導性改善のために、チッ化アルミニウム、チッ化ホウ素(六方晶・立方晶)、アルミナを配合することが好ましい。なお、これらの熱伝導性材料をシリコーン樹脂に分散充填し、別途熱伝導層又は熱伝導部材として、本発明の反射基材を構成する一部として積層又は載置してもよい。
 例えば、堺化学工業株式会社製 商品名:GTR-100 ルチル型酸化チタン200質量部をシリコーン原材料100質量部に配合し、寸法70×70mm、厚み0.8mmのテストピースを作製し、熱伝導率と反射率を測定したところ、熱伝導率は1.2W/m・℃となり、反射率は450~1000nmの領域で95%以上となった。一方、熱伝導性向上配合として、堺化学工業株式会社製 商品名:GTR-100 ルチル型酸化チタン100質量部と昭和電工株式会社製 商品名:A-42-6 アルミナ100質量部をシリコーン原材料100質量部に配合し、寸法70×70mm、厚み0.8mmのテストピースを作製し、熱伝導率と反射率を測定したところ、熱伝導率は1.4W/m・℃となり、反射率は450~1000nmの領域で85~90%となった。また比較として、昭和電工株式会社製 商品名:A-42-6 アルミナ200質量部をシリコーン原材料100質量部に配合した寸法70×70mm、厚み0.8mmのテストピースを作製し、熱伝導率と反射率を測定したところ、熱伝導率は1.9W/m・℃となり、反射率は450~1000nmの領域で75~80%であった。この結果より、反射率90%を維持しながら、熱伝導率を向上することができた。また必要に応じて積層したり配合したりして反射率や熱伝導率を調整することができることが分かった。
 反射層表面での光の散乱を増加させ反射率を向上させるために、白色無機フィラー粉末と共に、蛍光体を反射層に含有させ、それら粒子を表面から露出させ、光を直接反射したり、光で基底状態から励起状態を経て基底状態へ戻るときに発する蛍光やりん光を発光させたりしてもよい。このような蛍光体として、ハロゲン化リン酸塩蛍光体やEu等の希土類金属含有蛍光体やYAG(イットリウム アルミニウム ガーネット)蛍光体のような無機蛍光物資や有機蛍光物質が用いられる。
 その他、補強材としては、シリカ、カオリン炭酸カルシウム、炭酸亜鉛のような補強性無機充填剤;シリコーンレジン粉末のような補強性有機充填剤などが配合されていてもよい。ケイ酸カルシウム、二酸化チタン等の非補強性無機充填剤が配合されていてもよい。これらの補強材は、これ以外の成分の総量100質量部に対し、0~200質量部用いられる。
 シリコーン樹脂製反射基材10・20中の白色無機フィラー粉末12a・12bは、酸化チタン、中でもアナターゼ型酸化チタンであると、近紫外LED、青色LEDの波長を反射するため一層好ましい。アナターゼ型酸化チタンが、シリコーン樹脂100質量部に対し3質量部より少ないと十分な反射性が得られず、一方400質量部を超えると加工性が困難となり生産性が低下してしまう。アナターゼ型酸化チタンは、シリコーン樹脂100質量部に対し、30~300質量部含まれているとなお一層好ましい。アナターゼ型酸化チタンは、形状に制限がなく任意の粒形状のもの、例えばフレーク状、不定形状、又は球状の粒子が使用できるが、その粒径が0.05~50μm、好ましくは0.05~30μm、一層好ましくは0.1~10μmであり、また、酸化チタン表面をAl、Al、ZnO、ZrO、及び/又はSiOなどで処理した酸化チタンを用いると、酸化チタンの光触媒による有機質の酸化分解反応を抑制することができるため、より長期間の使用に耐えることができる。
 シリコーン樹脂製反射基材10・20に含有された白色の酸化チタン粉末、特にアナターゼ型酸化チタン粉末は、ルチル型酸化チタンと比較し、遥かに分解触媒活性作用が大きい。アナターゼ型酸化チタン粉末は、無機物からなるタイルや外壁材のような建材などに添加されその建材表面に付着した塵埃等の付着異物を分解するほどの強力な光分解触媒として作用するものであるから、通常、ポリカーボネート、ポリフタルアミド、ポリエーテルエーテルケトンのような熱可塑性樹脂等の様々な高分子化合物に添加されるとそれを分解し黄変させたり、劣化してひび割れを生じさせたりしてしまう。しかし、シリコーン樹脂、特にジメチルシロキシ繰返単位を主成分として含むシリコーン樹脂は、アナターゼ型酸化チタンに対しても化学的に安定であるから、このシリコーン樹脂製反射基材10・20は長期間に渡り黄変のような変質も変形もしない。さらにアナターゼ型酸化チタン粉末の表面に、Al、Al、ZnO、ZrO、及び/又はSiOなどで表面処理を行うと、分解触媒活性作用が抑制され、より長期間に渡り黄変のような変質を防止できたり、シリコーン樹脂への分散性が向上して反射層の反射率が一層向上したりする。表面処理は、酸化チタンと、これらの表面処理剤の原末と混練、又はこれら表面処理剤の原末を含有する懸濁液への浸漬又は噴霧等によって施される。市販の表面処理酸化チタンを用いてもよい。酸化チタンが表面処理されていると白色性が高まり、反射層の反射率が一層向上する。
 このシリコーン樹脂製反射基材の反射層の表面が、100nm~10μm程度のナノメートル乃至マイクロメートルオーダーの凹凸形状、角錐状や角柱状のプリズム形状、エッチング処理やサンドブラスト処理などによる梨地面形状となって非鏡面であると、入射した光が四方八方へ拡散し、鏡面のような特定方向への反射よりも拡散反射率が向上し、光の反射ムラを低減して、白色度が高くなって、反射効率が一層向上する。
 図11は、ポリジメチルシロキサンのみとポリフェニルシロキサンのみとから夫々成るシリコーン樹脂100質量部中に、シランカップリング処理されたAlで表面処理されたアナターゼ型酸化チタン、Alで表面処理されたルチル型酸化チタン、アルミナ(Al)の200質量部が、各々分散されつつ含有されたシリコーン樹脂製反射基材について、照射波長と、それの反射率との相関関係を示す図である。
 図11から明らかな通り、低屈折率のポリジメチルシロキサンからなるシリコーン樹脂製反射基材は、高屈折率のポリフェニルシロキサンからなるものよりも、アナターゼ型酸化チタン及びルチル型酸化チタンを含有する何れでも、波長200~1000nm、とりわけ350~1000nmの広範囲に渡り、反射率は3%高い。
 また、ポリジメチルシロキサンとポリフェニルシロキサンとの何れのシリコーン樹脂製反射基材も、波長400nmで、ルチル型酸化チタン含有のものの反射率は僅か30%程度であるのに対し、アナターゼ型酸化チタン含有のものの反射率は80%を超えている。しかもアナターゼ型酸化チタン含有のものは、ルチル型酸化チタン含有のものよりも、波長380~420nmで特に、反射率が40%も高くなっている。一方、波長420~1000nmの領域ではルチル型酸化チタンの反射率が6%高い。
 アナターゼ型酸化チタンの屈折率は2.45~2.55であるのに対し、ルチル型酸化チタンの屈折率は2.61~2.90である。一方、アルミナの屈折率は約1.76である。アナターゼ型酸化チタンもルチル型酸化チタンと同様にアルミナよりも屈折率が高いから、より白色を呈する。
 アルミナは、酸化チタンよりも屈折率が低い反面、熱伝導性が高く、放熱性に優れている。しかも図11から明らかな通り、アルミナを含有したポリジメチルシロキサンのシリコーン樹脂製反射基材は、アルミナを含有したポリフェニルシロキサンのものよりも、波長340~1000nmで反射率は6~9%高い。従来、アルミナを含有したポリフェニルシロキサンのみからなる従来のシリコーン樹脂では、波長400nm以上の反射率が80%程度であり反射基材として不向きであったが、ベースポリマーをポリジメチルシロキサンのようなジメチルシロキシ繰返単位が主成分であるシリコーン樹脂にすることにより、白色無機フィラー粉末をアルミナにしても、波長400nm以上で反射率が90%以上となり、反射基材として好適となる。
 従って、ジメチルシロキシ繰返単位を主成分として含むシリコーン樹脂を用いつつ白色無機フィラー粉末を適宜選択することにより、反射性と放熱性とを有することができるが、白色無機フィラー粉末としてチタンを選択した場合には反射性向上を重視し、アルミナを選択した場合には放熱性向上を重視し、併用することにより反射性及び熱放射性を調節するという目的用途に応じたシリコーン樹脂製反射基材10・20を、得ることができる。
 図12は、ポリフェニルシロキサンのみから成るシリコーン樹脂100質量部中に、アナターゼ型酸化チタン、ルチル型酸化チタンの200質量部が、各々分散されつつ含有されたシリコーン樹脂製反射基材を150℃で1000時間加熱した前後において、照射波長と、それの反射率との相関関係を示す図である。
 図12から明らかな通り、波長460nmで、ルチル型酸化チタン含有のポリフェニルシロキサンのみからなるシリコーン樹脂の反射率は97%であるのに対し、ルチル型酸化チタン含有のポリジメチルシロキサンのみからなるシリコーン樹脂の反射率は100%を超えている。ポリジメチルシロキサンのみからなるシリコーン樹脂は、ポリフェニルシロキサンのみからなるシリコーン樹脂よりも、全波長領域において、反射率が高くなっている結果であった。一方、ルチル型酸化チタン含有のポリジメチルシロキサンのみからなるシリコーン樹脂の反射率も100%を超えていた。
 シリコーン樹脂製反射基材10・20は、シリコーン樹脂原材料と白色無機フィラー粉末12a・12bと必要に応じシランカップリング剤とが含有された液状又はグリース状若しくは塑性の原材料組成物を用いて、付加反応により無溶媒下で加熱硬化するものであり、型を用いて、コンプレッション成形、射出成形、トランスファー成形、射出成形(LIMS)、押し出し成形、カレンダー成形のような方法で支持体上に形成される。このような液状又はグリース状若しくは塑性組成物は、コーターを用いて1~2000μmの適切な厚さとなるように調整しながら、塗布されてもよい。チップ及びデバイスを組み合わせて電子回路を実装するチップオンボードの場合、チップが搭載される部分を残して、スクリーン印刷等の手法で、この原料組成物を塗布される。
 シランカップリング剤は、反応性官能基として、アルキルオキシ基やビニル基やアミノ基やエポキシ基を有するものが挙げられる。カップリング剤としては、シランカップリング剤の他に、チタネートやアルミネートのカップリング剤でもよい。この組成物にシランカップリング剤が含まれていると、それが含まれていない場合よりも、シリコーン樹脂が、白色無機フィラー粉末例えばアナターゼ型酸化チタンを網目構造の中に確りと取り込むため、それの強度が顕著に強くなる。特に、シランカップリング剤処理された白色無機フィラー粉末含有のシリコーン樹脂製反射基材は、白色無機フィラー粉末がシランカップリング剤を介してシリコーンと架橋しているため、曲げ強度、濡れ性・分散性が向上しており、高品質のものとなる。このようなシランカップリング処理は、例えばアナターゼ型酸化チタンに対し1質量%のシランカップリング剤を添加し、ヘンシェルミキサーで撹拌して表面処理を行い、100~130℃で、30~90分間、乾燥させるというものである。
 研磨は、具体的には、粗さ500~10000番の研磨布紙、例えば紙やすりで擦ったり、微粒子含有研磨剤で磨いたり、砥石で磨くホーニングを行ったり、布皮などの柔軟材料で擦るバフ研磨を行ったり、表面をエンボス加工してやすりのような凹凸を付したローラーを高速回転させながら接触させたりして、シリコーン樹脂の表面に白色無機フィラーを露出させるものである。粗面化は、具体的には、金属粗粒、砂又は研磨剤を吹き付けるサンドブラストや梨地加工を行ったり、研磨剤を懸濁した液を噴射するウェットブラストを行ったり、金属やすり等で擦傷したり、金属ブラシや金属タワシやスチールウールで毛掻いたり、紫外線照射による洗浄処理や、コロナ放電処理により、有機物を除去して、シリコーン樹脂の表面に、白色無機フィラーが露出するまで物理的に付して表面加工するというものである。ケミカルエッチングは、具体的には、塩酸、硫酸、硝酸、フッ化水素酸のような強酸による酸処理を行ったり、苛性ソーダなどでアルカリ処理をしたりして、シリコーン樹脂の表面に、白色無機フィラーが露出するまで化学的に付して表面加工するというものである。反射層の研磨による粗面化の場合、材料硬度はJIS K 6253 に準拠したJIS A硬度計で60以上あると容易に研磨することができるので望ましい。
 このような研磨や粗面化やケミカルエッチングにより露出した白色無機フィラー粒子の表面で、光が反射することから、反射効率が一層向上する。物理的研磨がより好ましい。
 図13は、ポリジメチルシロキサンのみから成るシリコーン樹脂100質量部中に、白色無機フィラー粉末としてアナターゼ型酸化チタンとルチル型酸化チタンの100質量部が、夫々分散されつつ含有されたシリコーン樹脂製反射基材について、#1500の紙やすりで、表面を擦って研磨した前後における照射波長と、それの反射率との相関関係を示す図である。
 図13から明らかな通り、これらの粗面化したシリコーン樹脂製反射基材は、ポリジメチルシロキサン、ポリフェニルシロキサンにおいても白色無機フィラー粉末がアナターゼ型酸化チタンであるかルチル型酸化チタンであるかに関わらず、波長200~1000nmの広範囲に渡り、反射率は3%程度高い。しかも、シリコーン樹脂製反射基材は、JIS K7375に準拠し、標準白板を100としたとき、同じく100程度の反射率相対値を示し、反射効率が高いことが示された。
 特に、図13に示す通り、ルチル型酸化チタンを含有するポリジメチルシロキサンのみから成るシリコーン樹脂製反射基材は、反射率が100%を越え、反射効率が極めて高いものであった。
 これらの表面を粗面化したシリコーン樹脂製反射基材は、金属と接着し易く、そのシリコーン樹脂の表面で、金属膜が確りと付され易くなる。また、カップリング処理された白色無機フィラーを用いたシリコーン樹脂製反射基材は金属と接着し易く、そのシリコーン樹脂の表面で、金属膜が確りと付され易くなる。金属膜は、銅、銀、金、ニッケル、パラジウム等のめっき被膜、金属蒸着被膜、接着剤、金属溶射で接着された金属箔膜が挙げられる。
 シリコーン樹脂は、通常、難接着性のため、金属膜が付され難い。しかし、このシリコーン樹脂製反射基材を用いれば、金属膜との密着性が良い。
 金属膜は、シリコーン樹脂製反射基材に直接、めっきされ、金属蒸着され、又は金属箔膜を接着剤で接着されて形成されていてもよい。シリコーン樹脂製反射基材が予めコロナ処理、プラズマ処理、紫外線処理、フレーム処理、イトロ処理され、あるいはポリパラキシリレンでコーティング処理されて下塗りされ、その上に蒸着等による金属膜で被覆されてもよい。
 金属膜の形成方法の一例は、以下の通りである。白色無機フィラー粉末が含有されて板状に形成されたシリコーン樹脂製反射基材に、マスキング材としてフィルムを貼付する。次にポリパラキシリレン類である「パリレンC」(日本パリレン株式会社製の商品名;「パリレン」は登録商標;-[(CH)-CCl-(CH)]-)の被膜を設けるため、「パリレンC」の原料ダイマーである粉末状のモノクロロパラキシリレン類2量体を気化室に入れ減圧下で加熱して、蒸発したダイマーが熱分解室に誘導され反応性の高いパラキシリレンモノマーのラジカルとした後、反射基材に蒸着させて0.5~5ミクロン、好ましくは1~2ミクロンのポリパラキシリレン類コーティング処理し、下塗り層を形成して調製する。その下塗り層の上に、真空蒸着により、金属層として厚さ数ミクロンの銀層を形成させる。その後、マスキング材を剥がすと、金属膜が付されてしかもガス透過係数や絶縁抵抗の小さいシリコーン樹脂製反射基材が得られる。
 金属蒸着に代え、金属めっき、金属箔膜の接着であってもよく、それの調製方法は、特に限定されない。
 めっきの方法としては、まず白色無機フィラー粉末が含有されて板状に形成されたシリコーン樹脂製反射基材を、酸又はアルカリを用いて表面を粗面化し、その後、無電解ニッケルめっきによってニッケルめっきし、その後電解めっきにより銅めっきをする。さらに用途に合わせ金や銀のめっきを行う。
 銅箔を貼り合わせる方法としては、銅箔の裏面に接着剤層を形成し、その接着剤層側を、白色無機フィラー粉末が含有されて板状に形成されたシリコーン樹脂製反射基材に貼り合わせ油圧プレスにて加熱硬化させ、架橋接着をする。銅箔はロール状の連続シートであってもそれを裁断した個別シートであってもよい。巻かれているロール状に巻かれた銅箔を、引き出し、シリコーン樹脂製反射基材と貼り合わせてから、再度、ロール状に巻き取られてもよい。
 このように支持体の上に金属層を設け、その金属層に回路をエッチングにより形成し、発光ダイオードチップを結線する部分及び搭載する部分を除いて、シルク印刷によりシリコーン樹脂原材料組成物を塗布し、シリコーン樹脂製反射基材を形成する場合、前記回路とシリコーン樹脂製反射基材の間に、ガスバリア層を設けてもよい。シリコーン樹脂製反射基材は、三次元架橋したシリコーン樹脂及び無機フィラー粉末よりなるので、エポキシ樹脂などの通常の樹脂よりもガス透過性が高いため、回路の金属層が腐食され酸化皮膜を形成するためシリコーン樹脂製反射基材と金属層の間で剥離が発生する場合がある。これを防止するためガスバリア性を有する皮膜をシリコーン樹脂製反射基材と金属層の間に形成するとよい。ガスバリア層は、可撓性であっても非可撓性であってもよい。ガスバリア層の厚みとしては、1~30μmが好ましく、材料としては、シリコーン樹脂よりガス透過性が小さい樹脂であれば適宜選択して使用することができるが、エポキシ樹脂などのフォトレジストや、パラキシリレンコート、ポリイミド樹脂、ポリパラキシリレン、ウレタン樹脂、アクリル樹脂、ポリアミドが挙げられる。
 シリコーン樹脂は、気体透過性が大きく腐食性ガスを透過し易いため金属層が腐食してしまう。そこでこれを防止するためにガスバリア性のある樹脂をガスバリア層としてコーティングし、その上にシリコーン樹脂製反射基材を設けておくことが好ましい。
 シリコーン樹脂製反射基材の上に金属箔や金属めっきを付してもよい。また、銅箔にシリコーン樹脂原材料組成物を塗工し基板に貼り合わせてエッチングしパターンを作製してもよく、基板にシリコーン樹脂を塗工しその後めっきを付してもよい。
 このシリコーン樹脂反射基材は、反射層がシリコーン樹脂を用いていることから、非接着性を有している。そのためそこへ、埃や塵のようなゴミ・異物が付着した場合は、粘着ローラーを用いて、なぞれば、シリコーン樹脂製反射基材に粘着することなくゴミ、異物が容易に粘着ロールへ粘着され除去される。またこのシリコーン樹脂製反射基材は、非接着性であるが、絶縁性が高いため静電気により、埃や塵のようなゴミ・異物が吸着して付着し易い。そこでシリコーン樹脂反射基材の反射面にシリコーンハードコート層をコーティングすることにより、これらゴミ・異物の付着を防止することができる。また、ゴミ・異物が付着したとしてもエアーを吹き付けることにより容易に除去することができる。このシリコーン樹脂製反射基材に用いることができるシリコーンハードコート剤としては、シリカやフッ素パウダーが分散されたシリコーンハード剤や、エアーバックの表面処理に使用されるシリコーンコーティング剤が使用できる。
 次に、図1を参照しながら、このシリコーン樹脂製反射基材であるパッケージケース10とシリコーン樹脂製反射基材20とが、主鎖中にジメチルシロキシ繰返単位を主成分として含むシリコーン樹脂と、アナターゼ型酸化チタン粒子とを含有した例の発光装置である照明器具について、具体的に説明する。
 配線基板の一部をなすシリコーン樹脂製反射基材20は、アナターゼ型酸化チタン粒子12bを含有しているシリコーン樹脂で、成形されている。シリコーン樹脂製反射基材20上の発光ダイオード13への装着面側の表面から酸化チタン粒子12bの一部が露出している。シリコーン樹脂製反射基材20のその表面に、導電金属膜である銅膜15a・15bが、付され、電源(不図示)へ接続される導電パターンを形成している。発光ダイオード13から伸びた2本のリード線14a・14bが、その銅膜15aと銅膜15bとに、夫々接続されている。そのシリコーン樹脂製反射基材20の表面上の導電パターン部位以外の部位は、シリコーン樹脂がむき出しになっており、そこでアナターゼ型酸化チタン粒子12bの一部が露出しているために、白色を呈し、しかも優れた隠蔽性を有するから光を遺漏漏洩しないようになっている。さらにその部位で、光、特に380~420nmの波長域のみならずそれ以上の可視領域の光と、それより長波長の赤外線のような熱線との光の反射率が、極めて高くなっている。
 また、パッケージケース10も、シリコーン樹脂に同種のアナターゼ型酸化チタン粒子12aを含有する原材料組成物により、成形されている。パッケージケース10は、発光ダイオード13を取り巻きつつ、傾斜した内壁11によってその出射方向へ向かって末広がりに開口しており、配線基板のシリコーン樹脂製反射基材20上で発光ダイオード13の装着面側の表面に、接着剤層(不図示)を介して一体に接着されている。このパッケージケース体10も、アナターゼ型酸化チタン粒子12aのために、白色を呈し、しかも優れた隠蔽性を有するから光漏れすることがなく、光、特に380nm以上、中でも400nm以上の波長の光の反射率が極めて高いものとなっている。
 これらシリコーン樹脂製反射基材20もパッケージケース10も、化学的に安定で変色し難いポリジメチルシロキサンのような主鎖中に非環状のジメチルシロキシ繰返単位を主成分として含みつつ三次元架橋したシリコーン樹脂で形成されているために、高反射率であり、高輝度光に長期間曝されても黄変せず白色を維持でき、しかも高い機械的強度を有し、優れた耐光性、耐熱性、耐候性を示すので、耐久性に優れている。
 シリコーン樹脂製反射基材20上の発光ダイオード13の非装着面側の表面に、支持体16が、付されて、照明器具1となっている。発光ダイオード13が装着されたシリコーン樹脂製反射基材20とパッケージケース10との複数組が、整然と四方八方に並べられた照明器具であってもよい。パッケージケース10の出射方向側の開口が、ガラス製や樹脂製の透明板や透明フィルムで覆われていてもよい。その透明板や透明フィルムが、それの透過光の波長を所期の波長へ変換する顔料、色素、蛍光剤、りん光剤を含有していてもよい。パッケージケース10の出射方向側の開口が、凸レンズ、凹レンズ、フレネルレンズのようなレンズで、覆われていてもよい(不図示)。
 シリコーン樹脂製反射基材20は、支持体16上に、スクリーン印刷のような各種印刷、噴霧、刷毛塗り、塗布等の塗工によって形成される。
 このような支持体16は、非変形性の硬質乃至剛直な膜状、板状、円筒のような筒状・球体状・椀状等の立体状など如何なる形状であってもよく、所謂フレキシブルプリントサーキット(FPC)のようにフレキシブルであって柔軟な軟質のシートや撓むと付勢される程度の硬質なシートであってもよく、巻き取り可能なロール状であってもよく、様々な素子に内蔵されてさほど面積をとらない微小なワーキングチップであってもよい。支持体は、導電性を有するものや、熱伝導性・放熱性を有するものであってもよい。おもて面に反射層、必要に応じ、うら面に粘着剤層・接着剤層を有していてもよい。
 支持体16は、有機材料、無機材料の何れでもよく、シリコーン樹脂、イミド樹脂、ビスマレイミド・トリアジン樹脂、ガラス繊維含有エポキシ樹脂(ガラエポ)、紙フェノール樹脂、ベークライト、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリアクリロニトリル樹脂、プラスチックフィルムとしてはポリカーボネート樹脂、フッ素樹脂、ポリイミド樹脂、ポリフェニレンサルファイド樹脂、アラミド樹脂、ポリエーテルエーテル樹脂、ポリエーテルイミド樹脂、液晶ポリマー、ポリエーテルサルフォン樹脂、シクロオレフィン樹脂、シリコーン樹脂、及びシリコーンゴム、アルミニウム箔、銅箔、ニッケル箔などを原材料に用いて成形したものが挙げられるが、これに限定されるものではない。配線基板の一部をなすシリコーン樹脂製反射基材20は、主鎖中にジメチルシロキシ繰返単位を主成分として含む高価なシリコーン樹脂を含むものであるが、安価な支持体16に薄く付されただけで、十分な反射効果を奏するから、生産コストの削減に資する。
 その場合、膜状のシリコーン製反射基材は、その原材料含有組成物を塗布して、10~200μmの被膜として支持体16上に付されていることが好ましい。
 パッケージケース10とシリコーン樹脂製反射基材20を有する配線基板とは、以下のようにして使用される。この発光ダイオード13に、陰極側銅膜15a及びリード線14aと、陽極側銅膜15b及びリード線14bとにより、印加すると、発光ダイオード13は、発光する。発光した光の一部は、パッケージケース10の出射方向側の開口から、直接、外界へ照射される。発光した光の別な一部は、パッケージケース10の内壁11、又は配線基板表面上の導電パターン以外をなすシリコーン樹脂製反射基材20の部位で反射して、出射方向側の開口から、外界へ照射される。
 別なシリコーン樹脂製反射基材の態様は、図2の通り、別な照明器具に実装されて用いられるもので、配線基板21が、高屈折率の白色無機フィラー粉末である酸化チタン粒子12cを含有しているシリコーン樹脂で、ガラスクロス22を内在しつつ成形されて、その表面に、導電金属膜である銅膜15a・15bの導電パターンが形成され、発光ダイオード13のリード線14a・14bがその銅膜15aと銅膜15bとに、夫々接続されているというものである。
 別なシリコーン樹脂製反射基材1の態様は、図3(d)の通り、別な照明器具に実装されて用いられるもので、導線パターンを成す導電金属膜15a・15b、例えば銅膜が、剛直なプラスチックなど適切な材料で形成された支持体16上に付され、高屈折率の白色無機フィラー粉末である酸化チタン粒子12を含有するシリコーン樹脂で形成された反射層を兼ねるパッケージケース10が、シリコーン樹脂製反射基材として、支持体15及び銅膜15a・15bを覆っている。
 図3のシリコーン樹脂製反射基材1は、以下のようにして、製造される。先ず、同図(a)のように、ガラス繊維布にエポキシ樹脂を含浸させたガラスエポキシ基板などの支持体16に、印刷、ケミカルエッチング等により、所望の形状の導線パターンを成す導電金属膜15a・15bを形成する。次いで、支持体16及び導電金属膜15a・15bを覆うように重合性シリコーン樹脂原材料の液状又はグリース状若しくは塑性の組成物を塗工し、略半球状の突起を多数有する金型31で、最厚部を100~1000μm、最薄部と10~100μmとなるように、押圧しながら、加熱すると、重合性シリコーン樹脂原材料が三次元架橋しつつ硬化し、反射層を兼ねたパッケージケース10が、支持体16及び導電金属膜15a・15bと密着して成形される。金型31をパッケージケース10から、離型させると、その離型された部位に形成された内壁11が、反射面となる。次いで、同図(c)のように、パッケージケース10の最薄部に、導電金属膜15a・15bに到達するまでの穴32を開ける。同図(d)のように、そこへ発光ダイオードを挿入して、適宜、半田等の接続材でその陰陽端子を導電金属膜15a・15bに接続させる。必要に応じて、ダイシングソー33で所定の大きさに切断すると、照明器具用の発光ダイオードチップが形成される。
 図4に示すように、所望の形状の導線パターンの導電金属膜(回路)15a・15bが付された支持体16へ、重合性シリコーン樹脂原材料の液状組成物を塗工した後、サンドブラスト表面処理された金型31で、押圧しながら、加熱すると、重合性シリコーン樹脂原材料が三次元架橋しつつ硬化し、反射層を兼ねたシリコーン樹脂製反射基材20が成形される。導電金属膜とシリコーン樹脂製反射基材との間にエポキシ樹脂やポリイミドワニスなどで剥離防止のために形成されたバリア層を有していてもよい(不図示)。
 図5に示すように、所望の形状の導線パターンの導電金属膜15a・15bが付された柔軟な支持体シート原料ロールから支持体シートを引き出し、導電金属膜15a・15b側の表面に、塗工ノズル34から流れ出る重合性シリコーン樹脂原材料を塗工した後、サンドブラスト処理されたローラー35で、押圧しながら、加熱すると、重合性シリコーン樹脂原材料が三次元架橋しつつ硬化し、反射層を兼ねたシリコーン樹脂製反射基材20が成形される。必要に応じ、ダイシングソー33で、所望の大きさに切断してもよい。
 図4~5のようにして形成されたシリコーン樹脂製反射基材20は、図6(a)のようなやや先細りのグラインダー36や、同図(b)のような略半球状のグラインダー36を回転させつつ、導電金属膜15a・15bが露出するまで、パッケージケースの窪みを形成するように厚み方向へ切削され、その後、必要に応じ、発光ダイオードの実装などにより、照明器具(不図示)へと導いてもよい。図6(c)のように、円盤状のグラインダー36を回転させつつ、導電金属膜15a・15bが露出するまでそれに沿って溝状に、切削されてもよい。
 又は、シリコーン樹脂製反射基材20は、図7のように、ローラー状のグラインダー36を高速回転させつつ、導電金属膜15a・15bに達するまで、切削研磨し、支持体16上に、導電金属膜15a・15bと反射層となるシリコーン樹脂製反射基材20とが隙間なく仕切られたまま露出していてもよい。
 シリコーン樹脂製反射基材1は、図8に示すように、支持体16へ付された所望の形状の導線パターンの導電金属膜15a・15bに発光素子である発光ダイオード13を接続しておき、それを取り巻き盛上げるように、ノズル34から流し出した重合性シリコーン樹脂原材料を、垂らして、成形されてもよい。
 また、シリコーン樹脂製反射基材1は、図9に示すように、窪みを有するパッケージケースを兼ねる支持体16の表面に、重合性シリコーン樹脂原材料を噴霧塗装した後、加熱して、反射層となるシリコーン樹脂製反射基材20を形成してもよい。
 シリコーン樹脂製反射基材1を成形する際のこれらの金型から離型の度に、又は数回~10回の離型の度に、離型剤、例えば、ダイフリー(ダイキン工業株式会社製の商品名)を金型に塗布して、離型性を一層向上させてもよい。
 別なシリコーン樹脂製反射基材の態様は、図10の通り、太陽電池2のアセンブリとして組み込まれるもので、太陽電池素子17である光電変換素子を装着したパッケージケース10に、用いられているというものである。パッケージケース10は、アナターゼ型酸化チタン粒子12aを含有するシリコーン樹脂で、椀状に複数窪んだ列が幾重にも並んで、成形されている。太陽電池素子17は、内部の略球状のp型シリコン半導体17aとその周りを覆ってPN接合しているn型シリコン半導体17bとからなる。n型シリコン半導体17bの下端が研磨によって欠落しており、そこからp型シリコン半導体17aが露出している。n型シリコン半導体17bは、負電極の電極エレメント層である銅膜18bのみに接続し、一方p型シリコン半導体17aは、正電極の電極エレメント層である銅膜18aのみに接続している。両電極である銅膜18a・18bは、その間で積層されている絶縁体層19で、隔離され絶縁されている。パッケージケース10は、太陽電池素子17を取り巻きつつ、椀状に窪んだ内壁11によってその出射方向へ向かって末広がりに開口しており、銅膜18bへ接着剤層(不図示)を介して一体に接着されている。
 このパッケージケース10であるシリコーン樹脂製反射基材は、以下のようにして使用される。図10のようにこの太陽電池アセンブリ2の太陽電池素子17に向けて光例えば太陽光を入射させる。例えば真上からの入射太陽光は真直ぐに太陽電池素子17の頂部に垂直に入射する。その真上よりもやや外れた入射太陽光は、パッケージケース10の内壁11で反射し、太陽電池素子17の側面へ略垂直に入射する。このようにして、太陽電池アセンブリ2へ入射した光は、n型シリコン半導体17bとp型シリコン半導体17aとのPN接合界面に効率よく到達し、光起電力が生じ、回路にすると、光電流が流れる。
 また、図1~図10のようなシリコーン製反射基材20のシリコーン樹脂の表面、即ち配線基板上の発光ダイオード13への装着面側の表面や、パッケージケース10の内壁11の表面が、研磨、粗面化及び/又はケミカルエッチングによって、表面処理されており、白色無機フィラー粒子の一部が、そのシリコーン樹脂の表面から、露出していてもよい。
 パッケージケース10と、配線基板のシリコーン樹脂製反射基材20上で発光ダイオード13の装着面側の表面とは、接着剤層を介して一体に接着される。シリコーン樹脂製接着剤として、例えば、低分子シロキサンカット品SE-9186L(東レ・ダウコーニング株式会社製;商品名)が挙げられる。
 シリコーン樹脂製反射基材は、一般的な白熱電球やハロゲンランプやLED等による電気スタンドのような照明器具をはじめとする様々な発光装置の他、太陽電池のように光を反射するのに用いてもよく、電気ストーブや燃焼ストーブ等の熱源近傍の壁や什器に貼付して赤外線を反射させ加熱効率を上げたり壁や什器の対熱保護のために用いられたりしてもよい。
 以下に、本発明のシリコーン樹脂製反射基材を試作し、装置に組み込んだ例を示す。
(実施例1)
 初期反射率の比較
(ポリフェニルシロキサン樹脂とポリジメチルシロキサン樹脂との比較)
 ポリフェニルシロキサン樹脂(商品名XE14-C2508:モメンティブ・パフォーマンス・マテリアルズ)とポリジメチルシロキサン樹脂(商品名IVSM4500:モメンティブ・パフォーマンス・マテリアルズ社製)を用いて、アナターゼ型酸化チタン(商品名A-950:堺化学工業株式会社製)とルチル型酸化チタン(商品名GTR-100;堺化学工業株式会社製)とアルミナ(商品名AES12:住友化学株式会社製)を各々200質量部添加し、25μmのポリイミドを支持体に加熱プレスにて、150℃で10分間の硬化条件によって、縦70mm、横70mm、厚さ0.3mmのシリコーン白色反射板であるシリコーン樹脂製反射基材を作製した。それぞれの反射率を、分光光度計UV-3150(株式会社島津製作所製)を用いて測定した。その結果を示す図11よりすべてにおいてポリジメチルシロキサンをベースポリマーとした場合3~5%の反射率の向上が見られた。
(実施例2)
 高温での経時後の反射率
 ポリフェニルシロキサン樹脂(商品名XE14-C2508:モメンティブ・パフォーマンス・マテリアルズ)とポリジメチルシロキサン樹脂(商品名IVSM4500:モメンティブ・パフォーマンス・マテリアルズ社製)にアナターゼ型酸化チタン(商品名A-950:堺化学工業株式会社製)とルチル型酸化チタン(商品名GTR-100;堺化学工業株式会社製)をそれぞれ200質量部添加し、加熱プレスにて、25μmのポリイミドの支持体に150℃で10分間の硬化条件によって反射層を形成し、縦70mm、横70mm、厚さ0.3mmのシリコーン白色反射板であるシリコーン樹脂製反射基材を作製した。150℃で1000時間、加熱経過後の反射率を、分光光度計UV-3150(株式会社島津製作所製)を用いて測定した。その結果を示す図12より、ポリフェニルシロキサン樹脂のシリコーン白色反射板は短波長側で反射率の低下が見られるのに対し、ポリジメチルシロキサン樹脂のシリコーン白色反射板は反射率の低下が見られない。
(実施例3)
 ポリジメチルシロキサン樹脂(商品名IVSM4500:モメンティブ・パフォーマンス・マテリアルズ社製)にアナターゼ型酸化チタン(商品名A-950:堺化学工業株式会社製)とルチル型酸化チタン(商品名GTR-100;堺化学工業株式会社製)をそれぞれ100質量部添加し、加熱プレスにて、150℃で10分間の硬化条件によって反射層を形成し、縦70mm、横70mm、厚さ0.3mmのシリコーン白色反射板であるシリコーン樹脂製反射基材を作製した。それぞれの反射率を、分光光度計(商品名UV-3150;株式会社島津製作所製)を用いて初期反射率を測定した後、#1500のサンドペーパーでシリコーン白色反射板の表面をそれぞれ研磨し、再度反射率を測定する。その結果を示す図13より、研磨などで表面加工を行うことにより2~3%反射率が向上した。
 以上から明らかな通り、ポリフェニルシロキサン樹脂の反射板は、十分な反射率を有している。また、ポリジメチルシロキサンをベースポリマーとした場合ポリフェニルシロキサンをベースにした場合よりも反射率が高くさらには1000時間経過後でも反射率の低下は見られない。これより黄変したり劣化したりすることが無いため、耐光性、耐熱性、耐候性に優れており、有用な反射材料であることがわかった。また表面加工をすることによって、反射率が向上するとも分かった。
(実施例4)
 ポリジメチルシロキサン樹脂(商品名IVSM4500:モメンティブ・パフォーマンス・マテリアルズ社製)にシリコーン樹脂100質量部に対してルチル型酸化チタン(商品名GTR-100;堺化学工業株式会社製)を100質量部添加し、加熱プレスにて、25μmのポリイミドの支持体に150℃で10分間の硬化条件によって反射層を形成し、縦70mm、横70mm、厚さ50μmの白色のシリコーン樹脂製反射基材を作製した。
(比較例1)
 エポキシ樹脂100質量部に対してルチル型酸化チタン(商品名GTR-100;堺化学工業株式会社製)を100質量部添加したエポキシ樹脂組成物を用いたこと以外は、実施例4と同様にして、エポキシ樹脂白色反射シートを作製した。
 実施例4のシリコーン樹脂製反射基材と比較例1の反射シートとを、実施例2と同様に耐熱性試験を行った。加熱前と150℃で1000時間加熱経過後の反射率を、分光光度計UV-3150(株式会社島津製作所製)を用いて測定した。その結果を図14に示す。図14から明らかな通り、エポキシ樹脂白色反射シートは全波長領域でポリジメチルシロキサン樹脂製反射基材より反射率が低い。また、加熱経時したエポキシ樹脂白色反射シートは、短波長側で著しい反射率の低下が見られるのに対し、ポリジメチルシロキサン樹脂製反射基材は反射率の低下が見られない。
(実施例5)
 支持体として、25μmのポリイミドフィルムに15μmの銅めっきを施した。これにフォトレジストを用いて、エッチング加工により回路を形成した。次に、アナターゼ型酸化チタンをシリコーン樹脂100質量部に対して150~200質量部の範囲で配合を変え、必要によりシリコーンゴムパウダーを夫々適量ずつ加えてアナターゼ型酸化チタン含有白色反射材用の原材料組成物となし、これを回路の表面にLEDチップ及び配線を行う部分を除いて、スクリーン印刷を用いて30μmの厚みで塗布し、150℃×1時間加熱し、反射層を形成し、シリコーン樹脂製反射基材を作製した。このときシリコーン樹脂製反射基材は、反射層の硬度はJIS A型硬度計で80と、JIS D型硬度計で70の硬度とであった。
(実施例6)
 支持体として、25μmのポリイミドフィルムに15μmの銅めっきを施した。これにフォトレジストを用いて、エッチング加工により回路を形成した。回路の表面にLEDチップ及びその配線を行う銅めっき部分を含む全面に、アナターゼ型酸化チタンをシリコーン樹脂100質量部に対して150~200質量部の範囲で配合を変え、必要によりシリコーンゴムパウダーを夫々適量加えてアナターゼ型酸化チタン含有白色反射材用の原材料組成物となし、これを、スクリーン印刷を用いて30μmの厚みで塗布し、150℃×1時間加熱し、反射層を形成した。このとき反射層の硬さはJIS D型硬度計で70の硬度を有していた。次いで、図7に示すように、銅めっきが露出するまで反射層を研削し、銅めっき部分とシリコーン樹脂部分とが区分けされたシリコーン樹脂製白色反射基材を作製した。
(実施例7)
 支持体として、25μmのポリイミドフィルムに15μmの銅めっきを施した。この銅めっきにフォトレジストを用いて、エッチング加工により回路を形成した。この回路の表面にLEDチップ及びその配線を行う部分を除いてポリイミドワニス(商品名;FC-114 ファイン・ポリイミドワニス:ファインケミカルジャパン社製)を2回塗りして加熱硬化し膜厚4μmのガスバリアー層を設けた。しかる後、実施例5と同様にしてシリコーン樹脂製白色反射基材(反射層の硬度は同値)を作製した。
(実施例8)
 シリコーン接着剤(商品名X-32-1964:信越化学工業株式会社製)にルチル型酸化チタン(商品名GTR-100;堺化学工業株式会社製)を100質量部添加しさらに反応抑制剤としてアセチレンアルコールを0.01部添加しシリコーン樹脂製反射基材に用いる液状の原材料組成物(粘度600Pa・s)を得た。この保存缶を開封後、室温において7日間放置し粘度を測定した結果変化が見られず、酸化チタンの沈降が見られず、150℃1時間の加熱硬化においても反射率、硬さとも初期の原材料組成物のものと同じ特性を示し、長期の保管性を示し、図1のようにLEDを実装でき、量産において生産性に優れていることが分かった。
(比較例2)
 一液型エポキシ樹脂性レジストインクにおいては、その保存缶の開封後、室温において24時間放置し確認した結果、外周が硬化し内部がゲル化し使用ができない状況であった。
(実施例9)
 チップオンフィルム(以下COFとする)として、厚さ38μmのポリイミドフィルムに厚さ8μmの導体(銅箔)に回路を形成し、ランドパターン部を除いてガスバリア層としてポリイミドワニス(商品名;FC-114 ファイン・ポリイミドワニス:ファインケミカルジャパン社製)を2回塗りして加熱硬化し膜厚4μmのガスバリアー層を設けたのち、スクリーン印刷により、ランドパターン部を除き白色無機フィラー含有原材料組成物を30μm塗布し、150℃×1時間で硬化させ、反射層を形成し、COFのシリコーン樹脂製反射基材を得た。白色無機フィラー含有原材料組成物はポリジメチルシロキサン樹脂(商品名IVSM4500:モメンティブ・パフォーマンス・マテリアルズ社製)100質量部にアナターゼ型酸化チタン(商品名A-950:堺化学工業株式会社製)とルチル型酸化チタン(商品名GTR-100;堺化学工業株式会社製)を80質量部添加したものである。このシリコーン樹脂製反射基材に日亜化学製白色LEDパッケージNSSW064を直接ランド部の上にマウントし、鉛フリーリフローに通しハンダを行い、高反射COF基板のフレキシブルLED照明基板を得た。この基板は厚みが薄く狭い箇所に挿入可能であり、熱による黄変がなく反射率98%のCOFとなった。また、金属と反射層との剥離も認めれなかった。
(実施例10)
 シリコーン樹脂原材料組成物を調製後、シロキシ基繰返単位を4~10とする低分子量ポリシロキサンを300ppm未満になるまで、減圧下及び/又は200℃で維持した後、常圧に戻して用いたこと以外は、実施例1~10と同様にして、シリコーン樹脂製反射基材を作製し、夫々LEDを実装してLED照明基板を製造したところ、電気接点障害、くもりの発生による照度低下などの現象は、認められなかった。
(実施例11)
 酸化チタンを、前記化学式(1)で示される反応性基含有ポリシロキサンをシランカップリング剤として浸漬し、表面処理したこと以外は、実施例1と同様にして、シリコーン樹脂製反射基材を作製したところ、表面処理しない場合よりも、前記表1で示す場合と同様に、樹脂製反射基材の曲げ強度と硬度とが、向上していた。
(実施例12)
 実施例9と同様にして回路を形成した後、φ1mmに収まるランドパターン部を除いて酸化チタン含有ジメチルシリコーン樹脂原材料組成物をスクリーン印刷により塗布し、150℃×1時間で硬化させ、φ1mmの微細なランドパターンにダレることなく反射層を形成することができた。
(実施例13)
 実施例9と同様にして回路を形成した後、φ1mmに収まるランドパターン部を除いて酸化チタン含有ジメチルシリコーン樹脂原材料組成物をスクリーン印刷により塗布し、150℃×1時間で硬化させ、φ1mmの微細なランドパターンにダレることなく反射層を形成することができた。更に、サンドペーパー#1000を用い表面を研磨し、酸化チタン粉末を露出させた基板の反射率を測定したところ、3%の反射率向上が見られた。
(実施例14)
 実施例9と同様にして回路を形成した後、φ1mmに収まるランドパターン部を除いて無機白色フィラー粉末としてアナターゼ酸化チタンを100質量部、YAG蛍光体を3質量部含有させたジメチルシリコーン樹脂原材料組成物をスクリーン印刷により塗布し、150℃×1時間で硬化させ、φ1mmの微細なランドパターンにダレることなく反射層を形成することができた。サンドペーパー#1000を用い表面を研磨し、無機白色フィラー粉末を露出させた基板の反射率を測定したところ90%であった。400~500nmの吸収が確認されその分反射率が低下したものの十分な反射率を維持できるとともに、550nmの励起光が確認された。
(実施例15)
 支持体として、25μmのポリイミドフィルムにプラズマ処理を行い、プライマー処理を行い反射層として、シリコーン樹脂100質量部に対してアルミナで表面処理を行ったアナターゼ型酸化チタン200質量部を配合し分散させ30μmの厚みで塗布し、その支持体の反対の面にはシリコーン粘着剤を30μmで塗工し、離型シートを積層し、150℃×1時間加熱し、反射層と粘着層を有したカバーレイフィルムを得た。このカバーレイフィルムを、回路を設けてあるFR-4基板にランドパターンを逃がすように穴を開け、位置を合わせて、貼り合わせた。
(実施例16)
 シリコーン樹脂原材料組成物を調製後、シロキシ基繰返単位を4~10とする低分子量ポリシロキサンを300ppm未満になるまで、減圧下及び/又は200℃で維持した後、常圧に戻して用いたこと以外は、実施例1~15と同様にして、シリコーン樹脂製反射基材を作製し、夫々LEDを実装してLED照明基板を製造したところ、何れも電気接点障害、くもりの発生による照度低下などの現象は、認められなかった。
(実施例17)
 酸化チタンを、前記化学式(1)で示される反応性基含有ポリシロキサンをシランカップリング剤として浸漬し、表面処理したこと以外は、実施例1と同様にして、シリコーン樹脂製反射基材を作製したところ、表面処理しない場合よりも、前記表1で示す場合と同様に、樹脂製反射基材の曲げ強度と硬度とが、向上していた。
(製造例1)
 チップオンボード(以下COBとする)として、ガラエポ基板(FR-4基板)に導体厚み8μm(銅箔)に回路を形成しランドパターン部を除き、ガスバリア層としてエポキシ樹脂でコーティングし150℃×4時間で硬化させたのち、スクリーン印刷により酸化チタン含有のシリコーン樹脂原材料組成物(シリコーン樹脂原材料組成物はポリジメチルシロキサン樹脂(商品名IVSM4500:モメンティブ・パフォーマンス・マテリアルズ社製)100質量部にアナターゼ型酸化チタン(商品名A-950:堺化学工業株式会社製)とルチル型酸化チタン(商品名GTR-100;堺化学工業株式会社製)を80質量部添加したもの)を塗布し、150℃×1時間で硬化させ、COFのシリコーン樹脂製反射層を有する反射基材を得た。そこに日亜化学製白色LEDパッケージNSSW064を直接フィルム上にマウントし、鉛フリーリフローに通しハンダを行い、高反射COB基板を得た。
(製造例2)
 製造例1と同様にしてCOBのシリコーン樹脂製反射層を有する基材を得た。そこにベアチップ(LED素子自体)を直接基板上のランドパターンに実装しワイヤー(金線)ボンディングし、シリコーン透明樹脂で封止を行い、ガラスエポキシLED照明基板を得た。この基板は熱による黄変もなく反射率98%のCOBとなった。
(製造例3)
 COBとしてBTレジン製基板(三菱ガス化学株式会社製)に導体厚み8μm(銅箔)を形成しランドパターン部を除き、ガスバリア層としてエポキシ樹脂を20μmコーティングし150℃×4時間で硬化させたのち、反射層をスクリーン印刷により塗布し、150℃×1時間で硬化させ、COBのシリコーン樹脂製反射層を有する基材を得た。そこにベアチップ(LED素子自体)を直接基板上のパターンに実装しワイヤー(金線)ボンディングしシリコーン透明樹脂で封止を行った。さらに、樹脂封止されたベアチップ周辺を囲むようにして反射枠として酸化チタン含有シリコーン樹脂原材料組成物をディスペンサーにより、高さ0.5mmで吐出したのち150℃×1時間で硬化させ厚物成形を行いシリコーン樹脂製反射枠付高反射COBを得た。
(製造例4)
 製造例1と同様にして回路を形成した後、φ1mmに収まるランドパターン部を除いて酸化チタン含有ジメチルシリコーン樹脂原材料組成物をスクリーン印刷により塗布し、150℃×1時間で硬化させ、φ1mmの微細なランドパターンにダレることなく反射層を形成することができた。
(製造例5)
 製造例1と同様にして回路を形成した後、φ1mmに収まるランドパターン部を除いて酸化チタンジメチルシリコーン樹脂原材料組成物をスクリーン印刷により塗布し、150℃×1時間で硬化させ、φ1mmの微細なランドパターンにダレることなく反射層を形成することができた。更に、サンドペーパー#1000を用い表面を研磨し、酸化チタン粉末を露出させた基板の反射率を測定したところ、3%の反射率向上が見られた。
(製造例6)
 製造例1と同様にして回路を形成した後、φ1mmに収まるランドパターン部を除いて無機白色フィラー粉末としてアナターゼ酸化チタンを100質量部、YAG蛍光体を3質量部含有させたジメチルシリコーン樹脂原材料組成物をスクリーン印刷により塗布し、150℃×1時間で硬化させ、φ1mmの微細なランドパターンにダレることなく反射層を形成することができた。サンドペーパー#1000を用い表面を研磨し、無機白色フィラー粉末を露出させた基板の反射率を測定したところ90%であった。400~500nmの吸収が確認されその分反射率が低下したものの十分な反射率を維持できるとともに、550nmの励起光が確認された。
(製造例7)
 支持体として、25μmのポリイミドフィルムにプラズマ処理を行い、プライマー処理を行い反射層としてシリコーン樹脂100質量部に対してアルミナで表面処理を行ったアナターゼ型酸化チタン200質量部を配合し分散させ30μmの厚みで塗布し、その支持体の反対の面にはシリコーン粘着剤を10μmで塗工し、熱伝導層として、50μmのアルミ箔を積層し、更に粘着剤を10μmで塗工し離型シートを積層し、150℃×1時間加熱し、反射層と粘着層を有したカバーレイフィルムを得た。このカバーレイフィルムを、回路を設けてあるFR-4基板にランドパターンを逃がすように穴を開け、位置を合わせて、貼り合わせた。
(製造例8)
 実施例7と同様にシリコーン樹脂原材料組成物となし、これを25μmのポリイミドフィルムの支持体上の導電回路に半田付けしたベアチップの周りに最外直径3mmのケーシングとして、高さ1mmでドーナッツ状にポッティングして高反射枠を設け、チップ該当箇所を透明シリコーン樹脂で封止し、反射基材を作製した。この反射基材を曲率半径20mmに撓ませたが反射異常は起きなかった。このポッティングした箇所の硬度は、JIS D型硬度計により、ショアD硬度で70であった
 以上の製造例1~7に示すように、シリコーン樹脂及び酸化チタンのようなシリコーン樹脂よりも高屈折率の白色無機フィラー粉末を含有するシリコーン樹脂製の液状又は塑性の原材料組成物は、支持体のみならず、板状支持体とも組み合わせることができる。
 また、製造例8のように、酸化チタンのようなシリコーン樹脂よりも高屈折率の白色無機フィラー粉末を含有するシリコーン樹脂製の液状又は塑性の原材料組成物をベアチップのケーシングとして、直径4mm以下といったように面積を取らない形でポッティングして用いても支持体の撓みの曲率半径が例えば20mm以上と大きい場合は、基材に用いることができる。
 本発明のシリコーン樹脂製反射基材は、発光ダイオードのような発光素子、白熱電球、ハロゲンランプ、水銀灯、蛍光灯のような発光装置に装着するもので、発光した光を反射して所望の方向へ出射させるために、それら発光光源に実装される配線基板やパッケージケースに用いられる。また、このシリコーン樹脂製反射基材は、太陽電池素子のような光電変換素子に装着するもので、入射する光を反射して、光電変換素子へ集光させるために、それら光電変換素子に実装される配線基板やパッケージケースに用いられる。
 本発明のシリコーン樹脂製反射基材の製造方法は、それら発光装置の作製に有用である。
 また、本発明の原材料組成物は、シリコーン樹脂製反射基材を塗布、噴霧、浸漬、成型等により簡易に形成するのに有用である。
 また、本発明の原材料組成物は、室温に対して安定して保管することができるので、缶に入れ、レジストインクとして製品となる。また、適宜に粘度を調整して、反射層を形成するのに有用である。

Claims (27)

  1.  三次元架橋したシリコーン樹脂に、それよりも高屈折率の白色無機フィラー粉末が分散されつつ含有された反射層が、支持体上で膜状、立体状又は板状に形成されていることを特徴とするシリコーン樹脂製反射基材。
  2.  前記シリコーン樹脂が、非環状のジメチルシロキシ繰返単位を主成分として含んでいることを特徴とする請求項1に記載のシリコーン樹脂製反射基材。
  3.  前記シリコーン樹脂中に含まれる、シロキシ基繰返単位を4~10とする低分子量ポリシロキサンが、最大でも300ppmであることを特徴とする請求項1に記載のシリコーン樹脂製反射基材。
  4.  前記反射層が、1~2000μmの厚さで形成されていることを特徴とする請求項1に記載のシリコーン樹脂製反射基材。
  5.  前記シリコーン樹脂が、屈折率を1.35以上、1.65未満とすることを特徴とする請求項1に記載のシリコーン樹脂製反射基材。
  6.  前記白色無機フィラー粉末が、酸化チタン、アルミナ、硫酸バリウム、マグネシア、チッ化アルミニウム、チッ化ホウ素、チタン酸バリウム、カオリン、タルク、炭酸カルシウム、酸化亜鉛、シリカ、マイカ粉、粉末ガラス、粉末ニッケル及び粉末アルミニウムから選ばれる少なくとも1種の光反射剤であることを特徴とする請求項1に記載のシリコーン樹脂製反射基材。
  7.  前記白色無機フィラー粉末が、シランカップリング処理されてシリコーン樹脂中に分散されたものであることを特徴とする請求項1に記載のシリコーン樹脂製反射基材。
  8.  前記白色無機フィラー粉末が、アナターゼ型若しくはルチル型の前記酸化チタン、前記アルミナ、又は前記硫酸バリウムであることを特徴とする請求項6に記載のシリコーン樹脂製反射基材。
  9.  前記酸化チタンが、Al、Al、ZnO、ZrO、及び/又はSiOで表面処理されて被覆されていることを特徴とする請求項8に記載のシリコーン樹脂製反射基材。
  10.  前記白色無機フィラー粉末が、平均粒径0.05~50μmであって、前記シリコーン樹脂中に、2~80質量%含有されていることを特徴とする請求項1に記載のシリコーン樹脂製反射基材。
  11.  前記反射層に、前記白色無機フィラー粉末と蛍光体とが分散されつつ含有されていることを特徴とする請求項1に記載のシリコーン樹脂製反射基材。
  12.  前記反射層の表面に、前記白色無機フィラー粉末と前記蛍光体との少なくとも何れかが露出していることを特徴とする請求項11に記載のシリコーン樹脂製反射基材。
  13.  前記反射層の表面が連続して、ナノメートル乃至マイクロメートルオーダーの凹凸形状、プリズム形状、及び/又は梨地面形状の何れかの非鏡面となっていることを特徴とする請求項1に記載のシリコーン樹脂製反射基材。
  14.  前記シリコーン樹脂の少なくとも一部の表面の研磨、粗面化、ざらついた金型による金型成形若しくはスタンプ成形、及び/又はケミカルエッチングによって、前記白色無機フィラー粉末の一部が、前記表面から露出していることを特徴とする請求項1に記載のシリコーン樹脂製反射基材。
  15.  導電パターンの付された前記支持体を覆う前記反射層が研磨され、前記導電パターンが露出していることを特徴とする請求項1に記載のシリコーン樹脂製反射基材。
  16.  前記表面の上に、金属膜が付されていることを特徴とする請求項15に記載のシリコーン樹脂製反射基材。
  17.  前記金属膜が、銅、銀、金、ニッケル、及びパラジウムから選ばれる少なくとも何れかの金属で形成されていることを特徴とする請求項16に記載のシリコーン樹脂製反射基材。
  18.  前記金属膜が、めっき被膜、金属蒸着被膜、金属溶射膜、又は接着された金属箔膜であることを特徴とする請求項16に記載のシリコーン樹脂製反射基材。
  19.  発光素子、発光装置及び光電変換素子の何れかの背面、外周及び/又は導光材反射面に、配置されていることを特徴とする請求項1に記載のシリコーン樹脂製反射基材。
  20.  三次元架橋したシリコーン樹脂へと重合させる重合性シリコーン樹脂原材料に、前記シリコーン樹脂よりも高屈折率の白色無機フィラー粉末を分散させて原材料組成物とした後、前記原材料組成物を膜状に支持体上に付し、三次元架橋させて前記シリコーン樹脂へ重合させることにより、反射層を前記支持体上で膜状、立体状又は板状に形成することを特徴とするシリコーン樹脂製反射基材の製造方法。
  21.  前記重合が、加湿、加圧及び紫外線照射の少なくとも何れかにより、なされることを特徴とする請求項20に記載のシリコーン樹脂製反射基材の製造方法。
  22.  前記重合が、金型内での射出成形、又は金型での押圧成形の際加熱及び/又は加圧により、なされることを特徴とする請求項20に記載のシリコーン樹脂製反射基材の製造方法。
  23.  前記金型の表面が、フッ素樹脂でコーティングされていることを特徴とする請求項22に記載のシリコーン樹脂製反射基材の製造方法。
  24.  前記重合性シリコーン樹脂原材料に、前記シリコーン樹脂への三次元架橋の架橋剤と、加熱によって失活又は揮発する反応抑制剤とが、分散して含有されており、前記シリコーン樹脂よりも高屈折率の白色無機フィラー粉末を分散させて、前記原材料組成物となした後、前記加熱によって前記重合がなされることを特徴とする請求項20に記載のシリコーン樹脂製反射基材の製造方法。
  25.  重合性シリコーン樹脂の原材料と、前記シリコーン樹脂の原材料を三次元架橋させる架橋剤と、前記シリコーン樹脂よりも高屈折率の白色無機フィラー粉末とが含まれた液状又は塑性の原材料組成物であって、請求項1に記載のシリコーン樹脂製反射基材を形成するために用いられる原材料組成物。
  26.  加熱によって失活又は揮発する反応抑制剤が含まれていることを特徴とする請求項25に記載の原材料組成物。
  27.  粘度調整のための有機溶剤及び/又は反応性希釈剤が含まれていることを特徴とする請求項25に記載の原材料組成物。
PCT/JP2010/073445 2010-03-23 2010-12-24 シリコーン樹脂製反射基材、その製造方法、及びその反射基材に用いる原材料組成物 WO2011118108A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP19150557.7A EP3490015A1 (en) 2010-03-23 2010-12-24 Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
JP2012506781A JP5519774B2 (ja) 2010-03-23 2010-12-24 シリコーン樹脂製反射基材、その製造方法、及びその反射基材に用いる原材料組成物
KR1020177014956A KR101853598B1 (ko) 2010-03-23 2010-12-24 실리콘 수지제 반사 기재, 그 제조 방법, 및 그 반사 기재에 이용하는 원재료 조성물
CN201080065663.1A CN102893417B (zh) 2010-03-23 2010-12-24 有机硅树脂制反射基材及其制造方法、以及用于该反射基材的原材料组合物
US13/636,963 US9574050B2 (en) 2010-03-23 2010-12-24 Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
KR1020127027662A KR20130038847A (ko) 2010-03-23 2010-12-24 실리콘 수지제 반사 기재, 그 제조 방법, 및 그 반사 기재에 이용하는 원재료 조성물
EP10848500.4A EP2551929A4 (en) 2010-03-23 2010-12-24 SILICONE RESIN REFLECTIVE SUBSTRATE, METHOD OF MANUFACTURING SAME, AND BASE MATERIAL COMPOSITION USED IN REFLECTIVE SUBSTRATE
HK13106030.4A HK1179048A1 (zh) 2010-03-23 2013-05-21 有機矽樹脂製反射基材及其製造方法、以及用於該反射基材的原材料組合物
US15/399,058 US10533094B2 (en) 2010-03-23 2017-01-05 Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
US16/693,471 US11326065B2 (en) 2010-03-23 2019-11-25 Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-065888 2010-03-23
JP2010065888 2010-03-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/636,963 A-371-Of-International US9574050B2 (en) 2010-03-23 2010-12-24 Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
US15/399,058 Division US10533094B2 (en) 2010-03-23 2017-01-05 Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate

Publications (1)

Publication Number Publication Date
WO2011118108A1 true WO2011118108A1 (ja) 2011-09-29

Family

ID=44672691

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/073445 WO2011118108A1 (ja) 2010-03-23 2010-12-24 シリコーン樹脂製反射基材、その製造方法、及びその反射基材に用いる原材料組成物
PCT/JP2010/073446 WO2011118109A1 (ja) 2010-03-23 2010-12-24 可撓性反射基材、その製造方法及びその反射基材に用いる原材料組成物

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073446 WO2011118109A1 (ja) 2010-03-23 2010-12-24 可撓性反射基材、その製造方法及びその反射基材に用いる原材料組成物

Country Status (7)

Country Link
US (3) US9574050B2 (ja)
EP (2) EP2551929A4 (ja)
JP (7) JP5519774B2 (ja)
KR (2) KR20130038847A (ja)
CN (2) CN106025053B (ja)
HK (1) HK1179048A1 (ja)
WO (2) WO2011118108A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157592A (ja) * 2012-01-05 2013-08-15 Canon Components Inc 発光素子実装用フレキシブル回路基板
JP2013175528A (ja) * 2012-02-24 2013-09-05 Stanley Electric Co Ltd 発光装置及びその製造方法
US20130273259A1 (en) * 2012-04-13 2013-10-17 Mélanie Emilie Céline Depardieu Marking coating
US20140043814A1 (en) * 2012-08-07 2014-02-13 Toshiba Lighting & Technology Corporation Light emitting module and lighting system
JP2014053582A (ja) * 2012-08-07 2014-03-20 Toshiba Lighting & Technology Corp 発光モジュール及び照明装置
WO2014132646A1 (ja) * 2013-02-27 2014-09-04 株式会社朝日ラバー 白色反射膜用インク、白色反射膜用粉体塗料、白色反射膜の製造方法、白色反射膜、光源マウント及び照明器具シェード
US20150008424A1 (en) * 2012-03-30 2015-01-08 Lg Chem, Ltd. Substrate for organic electronic device
US20150007876A1 (en) * 2012-03-29 2015-01-08 Dai Nippon Printing Co., Ltd. Collector sheet for solar cell, and solar cell module using collector sheet for solar cell
US8963012B2 (en) 2011-01-17 2015-02-24 Canon Components, Inc. Flexible circuit board
JP2015103694A (ja) * 2013-11-26 2015-06-04 日亜化学工業株式会社 発光装置
US9232634B2 (en) 2011-01-17 2016-01-05 Canon Components, Inc. Flexible circuit board for mounting light emitting element, illumination apparatus, and vehicle lighting apparatus
JP2016009689A (ja) * 2014-06-20 2016-01-18 大日本印刷株式会社 実装基板の製造方法および実装基板
JP2016021545A (ja) * 2014-06-20 2016-02-04 大日本印刷株式会社 発光部品が実装された実装基板、および発光部品が実装される配線基板
WO2016027759A1 (ja) * 2014-08-21 2016-02-25 東洋アルミニウム株式会社 インターコネクタ用光拡散部材及びこれを備える太陽電池用インターコネクタ、並びに太陽電池モジュール
WO2016157587A1 (ja) * 2015-03-31 2016-10-06 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2016214607A (ja) * 2015-05-21 2016-12-22 コニカミノルタ株式会社 音響レンズ、その製造方法、超音波探触子および超音波撮像装置
JP2017518636A (ja) * 2014-05-15 2017-07-06 スリーエム イノベイティブ プロパティズ カンパニー 反射基材上のフレキシブル回路
JP2017191839A (ja) * 2016-04-12 2017-10-19 株式会社カネカ 赤外led発光装置の半導体パッケージ用熱硬化性樹脂組成物、タブレット、半導体パッケージ、赤外led発光装置。
US10276757B2 (en) 2016-12-27 2019-04-30 Nichia Corporation Light emitting device and method for manufacturing the same
US10418533B2 (en) 2016-05-31 2019-09-17 Nichia Corporation Light-emitting device having a light-transmissive member including particles of at least one first filler and method for manufacturing the same
JP2019536265A (ja) * 2016-11-07 2019-12-12 コーニング インコーポレイテッド 基板上に流体アセンブリ構造を製造するためのシステムおよび方法
JP2019215515A (ja) * 2018-06-11 2019-12-19 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置
CN110800118A (zh) * 2017-06-29 2020-02-14 京瓷株式会社 电路基板以及具备该电路基板的发光装置
JP2020052158A (ja) * 2018-09-26 2020-04-02 富士ゼロックス株式会社 定着部材、定着装置、プロセスカートリッジ及び画像形成装置
JP2021076753A (ja) * 2019-11-11 2021-05-20 株式会社朝日ラバー シリコーン樹脂製紫外線反射保護基材、その製造方法、及びそれに用いる原材料組成物
WO2021117400A1 (ja) * 2019-12-11 2021-06-17 ヌヴォトンテクノロジージャパン株式会社 半導体装置
TWI750476B (zh) * 2018-06-04 2021-12-21 日商日亞化學工業股份有限公司 發光裝置及面發光光源
CN115418164A (zh) * 2022-09-16 2022-12-02 南京奥创先进材料科技有限公司 一种高温热反射材料及其施工工艺
US11762190B2 (en) 2019-04-19 2023-09-19 Materion Precision Optics (Shanghai) Limited High temperature resistant reflective layer for wavelength conversion devices

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102791801B (zh) * 2010-02-19 2014-08-27 东丽株式会社 含有荧光体的硅氧烷固化物、其制造方法、含有荧光体的硅氧烷组合物、其组合物前体、片状成型物、led封装、发光装置及led安装基板的制造方法
EP2649131A1 (en) * 2010-12-08 2013-10-16 Dow Corning Corporation Siloxane compositions including titanium dioxide nanoparticles suitable for forming encapsulants
SG190320A1 (en) 2010-12-13 2013-07-31 Toray Industries Phosphor sheet, led and light emitting device using same and method for producing led
GB2491209B (en) * 2011-05-27 2013-08-21 Renewable Energy Corp Asa Solar cell and method for producing same
JP5764423B2 (ja) * 2011-08-02 2015-08-19 日東電工株式会社 光半導体装置用エポキシ樹脂組成物およびそれを用いて得られる光半導体装置用リードフレームまたは光半導体装置用基板、ならびに光半導体装置
JP5897862B2 (ja) * 2011-10-13 2016-04-06 シチズン電子株式会社 半導体発光装置
CN103115282A (zh) * 2011-11-16 2013-05-22 苏州通亮照明科技有限公司 一种背光模组及用于背光模组上的扩散构件
US10115862B2 (en) 2011-12-27 2018-10-30 eLux Inc. Fluidic assembly top-contact LED disk
JP2013157341A (ja) * 2012-01-05 2013-08-15 Canon Components Inc Led照明装置
WO2013108773A1 (ja) * 2012-01-16 2013-07-25 日立化成株式会社 銀の表面処理剤及び発光装置
JP5948890B2 (ja) * 2012-01-20 2016-07-06 住友電気工業株式会社 集光型太陽光発電モジュール、集光型太陽光発電パネル、及び、集光型太陽光発電モジュール用フレキシブルプリント配線板
CN104303103B (zh) * 2012-02-10 2019-04-26 得克萨斯大学体系董事会 用于薄膜嵌段共聚物的取向控制的酸酐共聚物的面涂层
JP5926986B2 (ja) * 2012-03-05 2016-05-25 株式会社朝日ラバー 回路付白色反射シートロール、及びその製造方法
JP2013226769A (ja) * 2012-04-27 2013-11-07 Asahi Rubber Inc 白色反射膜付基材、それを用いた白色反射膜付カバーレイシート及び白色反射膜付回路基板
JP5234209B1 (ja) * 2012-07-20 2013-07-10 東洋インキScホールディングス株式会社 太陽電池封止材用樹脂組成物
JP6060578B2 (ja) * 2012-09-14 2017-01-18 日亜化学工業株式会社 発光装置
US9203002B2 (en) * 2012-10-19 2015-12-01 Osram Sylvania Inc. Ultraviolet reflective silicone compositions, reflectors, and light sources incorporating the same
JP2014095038A (ja) * 2012-11-09 2014-05-22 Idemitsu Kosan Co Ltd 反射材用組成物及びこれを用いた光半導体発光装置
EP2938678B1 (en) 2012-12-27 2018-12-19 Dow Silicones Corporation Composition for forming an article having excellent reflectance and flame retardant properties and article formed therefrom
WO2014109293A1 (ja) * 2013-01-10 2014-07-17 コニカミノルタ株式会社 Led装置およびその製造に用いられる塗布液
JP6105966B2 (ja) * 2013-02-15 2017-03-29 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置
TWI616489B (zh) * 2013-02-18 2018-03-01 可應用於發光二極體元件之聚矽氧烷組合物、基座配方及其發光二極體元件
US9115870B2 (en) * 2013-03-14 2015-08-25 Cree, Inc. LED lamp and hybrid reflector
WO2014149670A2 (en) * 2013-03-15 2014-09-25 Dow Corning Corporation Aryl group-containing siloxane compositions including alkaline earth metal
EP3004230B1 (en) * 2013-06-06 2016-10-05 Philips Lighting Holding B.V. Reflective composition
TW201509524A (zh) 2013-07-05 2015-03-16 Nitto Denko Corp 光觸媒片材
JP6301602B2 (ja) 2013-07-22 2018-03-28 ローム株式会社 パワーモジュールおよびその製造方法
EP2846361B1 (en) * 2013-09-04 2020-05-13 SOFTPV Inc. Solar cell using printed circuit board
US9666733B2 (en) 2013-09-04 2017-05-30 Hyeon Woo AHN Solar cell using printed circuit board
JP6352613B2 (ja) * 2013-10-24 2018-07-04 帝人フィルムソリューション株式会社 白色反射フィルム
JP5954295B2 (ja) * 2013-10-28 2016-07-20 住友電気工業株式会社 フラットケーブルとその製造方法
WO2015072696A1 (ko) * 2013-11-12 2015-05-21 주식회사 피치텍 Led 패드, led 패드 제조 방법 및 led 패드를 포함하는 개인용 치료기
CN104730606A (zh) * 2013-12-24 2015-06-24 鸿富锦精密工业(深圳)有限公司 光反射片及其制造方法
JP2015138704A (ja) * 2014-01-23 2015-07-30 スリーエム イノベイティブ プロパティズ カンパニー 発光素子モジュール
CN104804660B (zh) * 2014-01-23 2017-03-15 台虹科技股份有限公司 具耐高温性及高反射率的印刷电路板用覆盖保护胶片
JP6332787B2 (ja) * 2014-02-17 2018-05-30 住友電工プリントサーキット株式会社 カバーレイ及びプリント配線板
WO2015126431A1 (en) * 2014-02-24 2015-08-27 Empire Technology Development Llc Increased interlayer adhesions of three-dimensional printed articles
US10743412B2 (en) * 2014-02-27 2020-08-11 Shin-Etsu Chemical Co., Ltd. Substrate and semiconductor apparatus
JP5702482B2 (ja) * 2014-03-05 2015-04-15 帝人デュポンフィルム株式会社 白色反射フィルム
EP2916628A1 (en) * 2014-03-07 2015-09-09 Taiflex Scientific Co., Ltd. Cover layer with high thermal resistance and high reflectivity for a printed circuit board
CN106103094B (zh) * 2014-03-07 2018-11-09 富士胶片株式会社 带有装饰材料的基板及其制造方法、触控面板、以及信息显示装置
US20150257296A1 (en) * 2014-03-07 2015-09-10 Taiflex Scientific Co., Ltd. Cover layer with high thermal resistance and high reflectivity for a printed circuit board
CN103895615A (zh) * 2014-03-14 2014-07-02 金少青 一种汽车大灯翻新工艺
FR3019314B1 (fr) * 2014-03-28 2017-08-11 Gaggione Sas Collimateur de lumiere
TWI651017B (zh) * 2014-03-28 2019-02-11 日商日產化學工業股份有限公司 表面粗化方法
US9671085B2 (en) 2014-04-22 2017-06-06 Dow Corning Corporation Reflector for an LED light source
JP2015216353A (ja) * 2014-04-23 2015-12-03 日東電工株式会社 波長変換接合部材、波長変換放熱部材および発光装置
WO2015170773A1 (ja) * 2014-05-09 2015-11-12 京セラ株式会社 発光素子搭載用基板および発光装置
CN105322433B (zh) * 2014-05-28 2020-02-04 深圳光峰科技股份有限公司 波长转换装置及其相关发光装置
US9356185B2 (en) 2014-06-20 2016-05-31 Heptagon Micro Optics Pte. Ltd. Compact light sensing modules including reflective surfaces to enhance light collection and/or emission, and methods of fabricating such modules
JP2016009690A (ja) * 2014-06-20 2016-01-18 大日本印刷株式会社 実装基板および実装基板の製造方法
RU2571176C1 (ru) * 2014-07-14 2015-12-20 Гиа Маргович Гвичия Светодиодная матрица
JP6634668B2 (ja) * 2014-08-29 2020-01-22 大日本印刷株式会社 実装基板の製造方法および実装基板
JP6579419B2 (ja) * 2014-09-03 2019-09-25 大日本印刷株式会社 配線基板および実装基板
WO2016038836A1 (ja) * 2014-09-10 2016-03-17 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置
JP6378020B2 (ja) * 2014-09-26 2018-08-22 株式会社T&K Toka 積層シート
KR20160038568A (ko) * 2014-09-30 2016-04-07 (주)포인트엔지니어링 복수의 곡면 캐비티를 포함하는 칩 기판
EP3218940A4 (en) * 2014-10-27 2018-08-15 Henkel AG & Co. KGaA A method for manufacturing an optical semiconductor device and a silicone resin composition therefor
CN105732118B (zh) * 2014-12-11 2020-03-24 深圳光峰科技股份有限公司 漫反射材料、漫反射层、波长转换装置以及光源系统
KR101640588B1 (ko) * 2015-01-13 2016-07-19 주식회사 베이스 광균일도가 우수한 led용 색변환 유리
DE102015001902A1 (de) * 2015-02-18 2016-08-18 Continental Reifen Deutschland Gmbh Verfahren zur Verbesserung der Haftung zwischen einem Verstärkungselement und einem elastomeren Matrixmaterial
JP2016171199A (ja) * 2015-03-12 2016-09-23 イビデン株式会社 発光素子搭載基板
WO2016172290A1 (en) * 2015-04-21 2016-10-27 Salk Institute For Biological Studies Methods of treating lipodystrophy using fgf-1 compounds
CN106206904B (zh) * 2015-04-29 2019-05-03 深圳光峰科技股份有限公司 一种波长转换装置、荧光色轮及发光装置
JP7046608B2 (ja) * 2015-06-18 2022-04-04 ヌシル テクノロジー エルエルシー 高強度シリコーンエラストマー及びそのための組成物
KR101788381B1 (ko) * 2015-06-18 2017-10-20 삼성에스디아이 주식회사 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
CN106317894B (zh) * 2015-06-30 2019-03-29 比亚迪股份有限公司 有机硅组合物、反光涂层及其制备方法与包括其的光伏组件
CN105086381B (zh) * 2015-07-31 2017-04-26 深圳市兴盛迪新材料有限公司 聚对苯二甲酸丁二醇酯复合材料及其制备方法
JP6718132B2 (ja) * 2015-11-06 2020-07-08 セイコーエプソン株式会社 三次元構造物の製造方法及びその製造装置
JP2017088776A (ja) * 2015-11-13 2017-05-25 信越化学工業株式会社 付加硬化型シリコーン樹脂組成物、該組成物の製造方法、及び光学半導体装置
KR102450574B1 (ko) 2015-11-19 2022-10-11 삼성전자주식회사 반도체 패키지용 본딩 와이어 및 이를 포함하는 반도체 패키지
DE102016202103A1 (de) * 2016-02-11 2017-08-17 Osram Gmbh Verfahren zum Herstellen eines Leuchtmoduls, Leuchtmodul sowie Verwendung eines Optikelements in einem Leuchtmodul
US11077597B2 (en) 2016-02-23 2021-08-03 Moistureshield, Inc. Compositions and methods for reducing the surface temperature of composite articles
JP6089144B1 (ja) * 2016-03-30 2017-03-01 日本タングステン株式会社 銅張積層板およびその製造方法
WO2017168649A1 (ja) * 2016-03-30 2017-10-05 日立化成株式会社 熱硬化性樹脂組成物、光半導体素子搭載用基板及びその製造方法並びに光半導体装置
EP3226290B1 (en) 2016-04-01 2024-04-17 Nichia Corporation Method of manufacturing a light emitting element mounting base member, and light emitting element mounting base member
CN105895719B (zh) * 2016-05-13 2017-12-26 广东大粤新能源科技股份有限公司 一种太阳能光伏组件
JP6658295B2 (ja) * 2016-05-19 2020-03-04 株式会社オートネットワーク技術研究所 止水用シリコーンゴム組成物、止水用シリコーンゴム成形体およびワイヤーハーネス
JP6680081B2 (ja) * 2016-05-30 2020-04-15 日亜化学工業株式会社 発光装置及びその製造方法
US10074626B2 (en) * 2016-06-06 2018-09-11 Shin-Etsu Chemical Co., Ltd. Wafer laminate and making method
CN105949998B (zh) * 2016-06-12 2018-12-04 上海宜瓷龙新材料股份有限公司 用于太阳能背板高反射率的陶瓷涂料及其制备方法
CN106085214B (zh) * 2016-06-12 2019-01-11 上海宜瓷龙新材料股份有限公司 一种用于玻璃基太阳能背板的陶瓷涂料及其制备方法
US20200313049A1 (en) * 2016-06-21 2020-10-01 Soraa, Inc. Light emitting diode package
CN107546301B (zh) * 2016-06-29 2019-12-06 江西省晶能半导体有限公司 一种白胶、led灯珠及其的封装方法
JP7065382B2 (ja) * 2016-07-19 2022-05-12 パナソニックIpマネジメント株式会社 光反射体用成形材料及びその製造方法、光反射体、ベース体及びその製造方法、並びに発光装置
KR102543179B1 (ko) * 2016-08-22 2023-06-14 삼성전자주식회사 발광다이오드 모듈 제조방법
EP3511378A4 (en) * 2016-09-07 2020-04-22 Sumitomo Chemical Co., Ltd. WAVELENGTH CONVERSION MATERIAL CONTAINING SILICONE RESIN COMPOSITION AND WAVELENGTH CONVERSION MATERIAL CONTAINER
CN106542820A (zh) * 2016-11-08 2017-03-29 泰州职业技术学院 一种用于降低沥青路面温度的红外热辐射功能降温粉体
CN106775167B (zh) * 2017-01-13 2020-12-18 京东方科技集团股份有限公司 触控基板及其制备方法、显示装置
DE102017101729A1 (de) * 2017-01-30 2018-08-02 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung
JP6867203B2 (ja) * 2017-03-17 2021-04-28 旭化成株式会社 硬化性組成物
CN110573579A (zh) * 2017-04-19 2019-12-13 科思创有限公司 反射涂层和用于将其施加到聚合物基材上的模内方法
US10153416B1 (en) * 2017-05-23 2018-12-11 Radiant Choice Limited Package body and light emitting device using same
EP3637158A4 (en) * 2017-06-06 2020-06-10 Panasonic Intellectual Property Management Co., Ltd. WAVELENGTH CONVERTER AND MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE USING THE WAVELENGTH CONVERTER
JP6965040B2 (ja) 2017-06-26 2021-11-10 テクノUmg株式会社 熱可塑性樹脂組成物並びにその樹脂成形品及び塗装加工品
DE102017117150A1 (de) * 2017-07-28 2019-01-31 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von optoelektronischen Halbleiterbauteilen und optoelektronisches Halbleiterbauteil
DE102017117441A1 (de) * 2017-08-01 2019-02-07 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines optoelektronischen Bauelements
TWI633645B (zh) * 2017-08-04 2018-08-21 鼎展電子股份有限公司 可撓性led元件與可撓性led顯示面板
JP6988295B2 (ja) * 2017-09-14 2022-01-05 京セラドキュメントソリューションズ株式会社 照明装置及び該照明装置を備えた画像読取装置
CN111183376A (zh) * 2017-09-29 2020-05-19 日立化成株式会社 波长转换构件、背光单元、图像显示装置、波长转换用树脂组合物、以及波长转换用树脂固化物
US10897824B2 (en) * 2017-10-30 2021-01-19 Baker Hughes, A Ge Company, Llc Encapsulation of downhole microelectronics and method the same
KR102542426B1 (ko) * 2017-12-20 2023-06-12 삼성전자주식회사 파장변환 필름과, 이를 구비한 반도체 발광장치
TWI642047B (zh) * 2018-01-26 2018-11-21 鼎展電子股份有限公司 可撓性微發光二極體顯示模組
CN110120623B (zh) * 2018-02-05 2021-06-08 深圳光峰科技股份有限公司 密封件及发光装置
CN110299441A (zh) * 2018-03-22 2019-10-01 中国科学院半导体研究所 可提高led出光效率的硅基反射圈、制备方法及led器件
JP6992654B2 (ja) * 2018-03-30 2022-01-13 Jnc株式会社 積層シート、放熱部品、発光デバイス、発光装置
CN111087819A (zh) * 2018-10-23 2020-05-01 北京科化新材料科技有限公司 一种液体硅材料复合物及其制备方法和应用
US20200163209A1 (en) * 2018-11-20 2020-05-21 Wen Yao Chang Circuit board with substrate made of silicone
WO2020111180A1 (ja) * 2018-11-30 2020-06-04 デンカ株式会社 積層体
US20220009134A1 (en) * 2018-12-04 2022-01-13 Harima Chemicals, Incorporated Hard coating layer-laminated mold resin and method of producing the same
KR102127425B1 (ko) * 2019-01-10 2020-06-26 미르텍알앤디 주식회사 마이크로 콘택트 핀 조립체
CN109825212A (zh) * 2019-03-07 2019-05-31 昆山雅森电子材料科技有限公司 Led用高反射性超薄覆盖膜及其制备方法
JP7111041B2 (ja) * 2019-03-25 2022-08-02 信越化学工業株式会社 積層体の製造方法
KR102149426B1 (ko) * 2019-05-13 2020-08-31 주식회사 레다즈 엘씨디 모듈 및 그 제조방법
US11447659B2 (en) * 2019-06-24 2022-09-20 The Johns Hopkins University Low solar absorptance coatings
CN110469787A (zh) * 2019-08-19 2019-11-19 深圳市百柔新材料技术有限公司 一种可印制led背光板的制作方法
JP7121294B2 (ja) * 2019-09-10 2022-08-18 日亜化学工業株式会社 発光装置の製造方法
CN110964323A (zh) * 2019-10-30 2020-04-07 安徽康宁油脂科技有限公司 一种高性能工业复合甘油及其制备方法
DE102019134728A1 (de) * 2019-12-17 2021-06-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optische komponente, optoelektronisches halbleiterbauteil und verfahren zur herstellung einer optischen komponente
US11842944B2 (en) * 2019-12-26 2023-12-12 Intel Corporation IC assemblies including die perimeter frames suitable for containing thermal interface materials
CN114762135A (zh) * 2020-01-20 2022-07-15 冈本硝子株式会社 光阻墨水
JPWO2021166433A1 (ja) 2020-02-18 2021-08-26
CN115136066B (zh) 2020-02-18 2024-03-05 富士胶片株式会社 光源单元、显示装置及光源单元制造装置
JP7078863B2 (ja) * 2020-04-01 2022-06-01 日亜化学工業株式会社 発光装置及びその製造方法
CN111552166B (zh) * 2020-04-03 2021-05-25 维沃移动通信有限公司 电子设备、交互方法及装置
JP7337025B2 (ja) * 2020-05-01 2023-09-01 株式会社小糸製作所 車両用灯具
JPWO2021235310A1 (ja) * 2020-05-22 2021-11-25
US11865200B2 (en) 2020-10-02 2024-01-09 Michael E. Stein Chemical composition and related methods
JP7305236B2 (ja) * 2020-10-05 2023-07-10 株式会社朝日ラバー 紫外線led用光学部材
CN112251088B (zh) * 2020-10-22 2022-03-11 重庆建谊祥科技有限公司 双氟处理液、制备方法及镁合金建筑模板表面处理方法
CN112266571A (zh) * 2020-10-26 2021-01-26 东莞市鑫聚光电科技股份有限公司 一种pdlc调光膜
CN114958063B (zh) * 2021-02-25 2023-11-17 合肥京东方光电科技有限公司 组合物、基板及反光层的制备方法
WO2022209840A1 (ja) * 2021-03-30 2022-10-06 株式会社朝日ラバー 紫外線反射材、その製造方法、及びそれの原材料組成物
CN113443487B (zh) * 2021-08-30 2021-11-23 常州欣盛半导体技术股份有限公司 Fpc烘烤箱用转向调节装置
CN115212591B (zh) * 2021-09-27 2023-09-29 江门市尚逸家居用品有限公司 一种拼图玩具组件
CN114023899A (zh) * 2021-10-25 2022-02-08 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
JP2023173245A (ja) * 2022-05-25 2023-12-07 北陽電機株式会社 反射ミラー部材、光電センサ、および光測距装置
CN115248469B (zh) * 2022-07-11 2023-09-12 中国科学院上海技术物理研究所 一种长波红外宽波段吸收结构
CN115407554A (zh) * 2022-08-16 2022-11-29 昆山锦林光电材料有限公司 一种小型led背光模组反光白胶封装结构
WO2024084965A1 (ja) * 2022-10-18 2024-04-25 東京エレクトロン株式会社 回折格子の形成方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315654A (ja) * 1992-05-08 1993-11-26 Denki Kagaku Kogyo Kk 発光ダイオードランプ
JP2006124600A (ja) * 2004-11-01 2006-05-18 Teijin Chem Ltd 光高反射性ポリカーボネート樹脂組成物およびその製造方法
JP2006316173A (ja) 2005-05-12 2006-11-24 Risho Kogyo Co Ltd 白色プリプレグ、白色積層板、及び金属箔張り白色積層板
JP2006324623A (ja) * 2005-05-19 2006-11-30 Yo Hifuku 発光デバイス及びその製造方法
WO2007074892A1 (ja) * 2005-12-26 2007-07-05 Teijin Limited 透明フィルム
JP2008135390A (ja) * 2006-11-21 2008-06-12 Avago Technologies Ecbu Ip (Singapore) Pte Ltd フレキシブル回路キャリアおよびフレキシブル反射体を利用する光源
JP2008159713A (ja) * 2006-12-21 2008-07-10 Momentive Performance Materials Japan Kk 発光装置
JP2008251316A (ja) * 2007-03-30 2008-10-16 Hitachi Ltd プラズマディスプレイパネル及びその製造方法
JP2009129801A (ja) * 2007-11-27 2009-06-11 Denki Kagaku Kogyo Kk 金属ベース回路基板
JP2009164275A (ja) * 2007-12-28 2009-07-23 Asahi Rubber:Kk シリコーン樹脂基材
JP2009182149A (ja) * 2008-01-30 2009-08-13 Nitto Denko Corp 光半導体素子封止用樹脂シートおよび光半導体装置

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087585A (en) * 1977-05-23 1978-05-02 Dow Corning Corporation Self-adhering silicone compositions and preparations thereof
JPS61103931A (ja) * 1984-10-26 1986-05-22 Shin Etsu Polymer Co Ltd シリコ−ンゴム成形体の製造方法
US4544696A (en) * 1984-10-29 1985-10-01 Sws Silicones Corporation Silicone elastomers having thermally conductive properties
JPS62223722A (ja) * 1986-03-25 1987-10-01 Canon Inc 光変調素子用材料
JP3029680B2 (ja) * 1991-01-29 2000-04-04 東レ・ダウコーニング・シリコーン株式会社 オルガノペンタシロキサンおよびその製造方法
JPH06329803A (ja) * 1993-05-24 1994-11-29 Shin Etsu Chem Co Ltd 電気接点障害のないシリコーン製品
JP2879773B2 (ja) * 1993-05-31 1999-04-05 京セラ株式会社 画像装置及びその製造方法
US5599894A (en) * 1994-06-07 1997-02-04 Shin-Etsu Chemical Co., Ltd. Silicone gel compositions
JP3031184B2 (ja) * 1994-11-22 2000-04-10 株式会社コスモテック シリコーンゴム粘着シート及びその製造方法
JPH1077413A (ja) * 1996-08-30 1998-03-24 Toray Dow Corning Silicone Co Ltd 加熱硬化性シリコーンゴム組成物
US6468638B2 (en) 1999-03-16 2002-10-22 Alien Technology Corporation Web process interconnect in electronic assemblies
JP3704286B2 (ja) 1999-11-17 2005-10-12 信越化学工業株式会社 酸化チタン充填付加反応硬化型シリコーンゴム組成物及びその硬化物
JP4735910B2 (ja) * 2000-09-28 2011-07-27 Dic株式会社 水性インク組成物
JP2002258020A (ja) * 2001-02-19 2002-09-11 Three M Innovative Properties Co 反射シート及び反射膜
JP2002265901A (ja) * 2001-03-15 2002-09-18 Fujimori Kogyo Co Ltd 剥離シートの製造方法
JP4101468B2 (ja) * 2001-04-09 2008-06-18 豊田合成株式会社 発光装置の製造方法
US6632892B2 (en) * 2001-08-21 2003-10-14 General Electric Company Composition comprising silicone epoxy resin, hydroxyl compound, anhydride and curing catalyst
JP2003185813A (ja) * 2001-12-21 2003-07-03 Mitsui Chemicals Inc 反射体およびその用途
JP4121874B2 (ja) 2002-03-13 2008-07-23 日世株式会社 生分解性成形物の製造方法およびそれに用いる成形型
JP4180844B2 (ja) 2002-06-06 2008-11-12 昭和電工株式会社 硬化性難燃組成物、その硬化物及びその製造方法
US6800373B2 (en) 2002-10-07 2004-10-05 General Electric Company Epoxy resin compositions, solid state devices encapsulated therewith and method
US7445769B2 (en) * 2002-10-31 2008-11-04 Cadbury Adams Usa Llc Compositions for removing stains from dental surfaces and methods of making and using the same
JP4774201B2 (ja) 2003-10-08 2011-09-14 日亜化学工業株式会社 パッケージ成形体及び半導体装置
US7403008B2 (en) * 2004-08-02 2008-07-22 Cornell Research Foundation, Inc. Electron spin resonance microscope for imaging with micron resolution
JP4803342B2 (ja) * 2004-10-19 2011-10-26 信越化学工業株式会社 耐擦傷性表面被膜形成用シリコーンコーティング組成物及びそれを用いた被覆物品
JP4634810B2 (ja) * 2005-01-20 2011-02-16 信越化学工業株式会社 シリコーン封止型led
WO2006077667A1 (ja) * 2005-01-24 2006-07-27 Momentive Performance Materials Japan Llc. 発光素子封止用シリコーン組成物及び発光装置
AT501491B1 (de) * 2005-02-18 2007-03-15 Knorr Bremse Gmbh Dichtungsprofil
JP4371234B2 (ja) 2005-03-03 2009-11-25 信越化学工業株式会社 フレキシブル金属箔ポリイミド積層板
KR101207186B1 (ko) * 2005-04-08 2012-11-30 니치아 카가쿠 고교 가부시키가이샤 스크린 인쇄에 의해 형성된 실리콘 수지 층을 가진 발광장치
JP2006343445A (ja) 2005-06-08 2006-12-21 Mitsubishi Engineering Plastics Corp 光反射材及びその製造法
EP2323178B1 (en) * 2005-08-04 2015-08-19 Nichia Corporation Light-emitting device, method for manufacturing same, molded body and sealing member
EP1935921B1 (en) * 2005-09-22 2017-01-04 Mitsubishi Chemical Corporation Sealant for semiconductor light emitting device and method for manufacturing such sealant, and semiconductor light emitting device using such sealant
JP5066333B2 (ja) * 2005-11-02 2012-11-07 シチズン電子株式会社 Led発光装置。
US8017687B2 (en) * 2005-11-15 2011-09-13 Momentive Performance Materials Inc. Swollen silicone composition and process of producing same
US7863361B2 (en) * 2005-11-15 2011-01-04 Momentive Performance Materials Inc. Swollen silicone composition, process of producing same and products thereof
JP4518013B2 (ja) * 2005-12-14 2010-08-04 Tdk株式会社 電子部品
WO2007072659A1 (ja) 2005-12-20 2007-06-28 Toshiba Lighting & Technology Corporation 発光装置
WO2007074813A1 (ja) * 2005-12-26 2007-07-05 Kaneka Corporation 硬化性組成物
JP5232369B2 (ja) * 2006-02-03 2013-07-10 日立化成株式会社 光半導体素子搭載用パッケージ基板の製造方法およびこれを用いた光半導体装置の製造方法
JP2007270054A (ja) 2006-03-31 2007-10-18 Jsr Corp 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法
CN101461057A (zh) * 2006-06-05 2009-06-17 陶氏康宁公司 电子组件及其制备方法
EP2056364A4 (en) * 2006-08-11 2013-07-24 Mitsubishi Chem Corp LIGHTING APPARATUS
ATE530946T1 (de) 2006-08-22 2011-11-15 Konica Minolta Holdings Inc Anzeigeelement
TWI404791B (zh) * 2006-08-22 2013-08-11 Mitsubishi Chem Corp A semiconductor light emitting device, a lighting device, and an image display device
TW200821632A (en) * 2006-08-23 2008-05-16 Mitsui Chemicals Inc Light reflector and light source having same
EP2066757A1 (en) * 2006-10-05 2009-06-10 Dow Corning Corporation Silicone resin film and method of preparing same
JP2008143981A (ja) 2006-12-07 2008-06-26 Three M Innovative Properties Co 光反射性樹脂組成物、発光装置及び光学表示装置
US20080144322A1 (en) * 2006-12-15 2008-06-19 Aizar Abdul Karim Norfidathul LED Light Source Having Flexible Reflectors
JP2008187030A (ja) 2007-01-30 2008-08-14 Stanley Electric Co Ltd 発光装置
JP2008222828A (ja) * 2007-03-12 2008-09-25 Momentive Performance Materials Japan Kk 凸レンズ形成用シリコーンゴム組成物及びそれを用いた光半導体装置
JP2008225326A (ja) * 2007-03-15 2008-09-25 Mitsubishi Plastics Ind Ltd 反射フィルム及び反射板
JP4973279B2 (ja) 2007-03-29 2012-07-11 豊田合成株式会社 発光装置及びその製造方法
JP4771179B2 (ja) * 2007-05-31 2011-09-14 東芝ライテック株式会社 照明装置
JP2009021394A (ja) * 2007-07-12 2009-01-29 Nitto Denko Corp 光半導体素子収納用実装パッケージ用樹脂組成物およびそれを用いて得られる光半導体発光装置
JP2009046658A (ja) * 2007-07-23 2009-03-05 Sony Corp 硬化性樹脂材料−微粒子複合材料及びその製造方法、光学材料、並びに発光装置
US20090032829A1 (en) 2007-07-30 2009-02-05 Tong Fatt Chew LED Light Source with Increased Thermal Conductivity
US7968899B2 (en) 2007-08-27 2011-06-28 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. LED light source having improved resistance to thermal cycling
JP5315654B2 (ja) 2007-09-20 2013-10-16 横浜ゴム株式会社 空気入りタイヤ
JP2009103915A (ja) * 2007-10-23 2009-05-14 Fuji Xerox Co Ltd 光導波路フィルム及びその製造方法、並びに、光送受信モジュール
JP2009135485A (ja) * 2007-11-07 2009-06-18 Mitsubishi Chemicals Corp 半導体発光装置及びその製造方法
US8017246B2 (en) * 2007-11-08 2011-09-13 Philips Lumileds Lighting Company, Llc Silicone resin for protecting a light transmitting surface of an optoelectronic device
JP4623322B2 (ja) * 2007-12-26 2011-02-02 信越化学工業株式会社 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物並びに光半導体ケース及びその成形方法
JP2009173773A (ja) * 2008-01-24 2009-08-06 Toshiba Corp シリコーン樹脂組成物および半導体装置
JP2009224538A (ja) * 2008-03-17 2009-10-01 Citizen Holdings Co Ltd 半導体発光装置
JP2009235279A (ja) * 2008-03-27 2009-10-15 Shin Etsu Chem Co Ltd 熱伝導性成形体およびその製造方法
JP2009244551A (ja) 2008-03-31 2009-10-22 Konica Minolta Business Technologies Inc 画像表示装置用表示粒子および画像表示装置
JP5355030B2 (ja) * 2008-04-24 2013-11-27 シチズンホールディングス株式会社 Led光源及びled光源の色度調整方法
JP4966915B2 (ja) * 2008-05-09 2012-07-04 株式会社タイカ 熱伝導性シート、熱伝導性シート積層体及びその製造方法
JP2009275196A (ja) * 2008-05-19 2009-11-26 Sony Corp 硬化性樹脂材料組成物、光学材料、発光装置及びその製造方法、並びに電子デバイス
JP2010004035A (ja) * 2008-05-22 2010-01-07 Mitsubishi Chemicals Corp 半導体発光装置、照明装置、および画像表示装置
JP5289835B2 (ja) * 2008-06-25 2013-09-11 シャープ株式会社 発光装置およびその製造方法
KR101277778B1 (ko) 2008-12-03 2013-06-24 신닛테츠스미킨 카부시키카이샤 도장 금속재 및 그 제조 방법
JP2010232252A (ja) 2009-03-26 2010-10-14 Unon Giken:Kk 白色反射層を有するカバーレイフィルム
JP5230532B2 (ja) * 2009-05-29 2013-07-10 三菱樹脂株式会社 白色フィルム、金属積層体、led搭載用基板及び光源装置
JP5332921B2 (ja) * 2009-06-05 2013-11-06 三菱化学株式会社 半導体発光装置、照明装置、及び画像表示装置
KR20120123242A (ko) * 2009-06-26 2012-11-08 가부시키가이샤 아사히 러버 백색 반사재 및 그 제조방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315654A (ja) * 1992-05-08 1993-11-26 Denki Kagaku Kogyo Kk 発光ダイオードランプ
JP2006124600A (ja) * 2004-11-01 2006-05-18 Teijin Chem Ltd 光高反射性ポリカーボネート樹脂組成物およびその製造方法
JP2006316173A (ja) 2005-05-12 2006-11-24 Risho Kogyo Co Ltd 白色プリプレグ、白色積層板、及び金属箔張り白色積層板
JP2006324623A (ja) * 2005-05-19 2006-11-30 Yo Hifuku 発光デバイス及びその製造方法
WO2007074892A1 (ja) * 2005-12-26 2007-07-05 Teijin Limited 透明フィルム
JP2008135390A (ja) * 2006-11-21 2008-06-12 Avago Technologies Ecbu Ip (Singapore) Pte Ltd フレキシブル回路キャリアおよびフレキシブル反射体を利用する光源
JP2008159713A (ja) * 2006-12-21 2008-07-10 Momentive Performance Materials Japan Kk 発光装置
JP2008251316A (ja) * 2007-03-30 2008-10-16 Hitachi Ltd プラズマディスプレイパネル及びその製造方法
JP2009129801A (ja) * 2007-11-27 2009-06-11 Denki Kagaku Kogyo Kk 金属ベース回路基板
JP2009164275A (ja) * 2007-12-28 2009-07-23 Asahi Rubber:Kk シリコーン樹脂基材
JP2009182149A (ja) * 2008-01-30 2009-08-13 Nitto Denko Corp 光半導体素子封止用樹脂シートおよび光半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2551929A4

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232634B2 (en) 2011-01-17 2016-01-05 Canon Components, Inc. Flexible circuit board for mounting light emitting element, illumination apparatus, and vehicle lighting apparatus
US8963012B2 (en) 2011-01-17 2015-02-24 Canon Components, Inc. Flexible circuit board
JP2013157592A (ja) * 2012-01-05 2013-08-15 Canon Components Inc 発光素子実装用フレキシブル回路基板
JP2013175528A (ja) * 2012-02-24 2013-09-05 Stanley Electric Co Ltd 発光装置及びその製造方法
US20150007876A1 (en) * 2012-03-29 2015-01-08 Dai Nippon Printing Co., Ltd. Collector sheet for solar cell, and solar cell module using collector sheet for solar cell
CN104335381B (zh) * 2012-03-30 2017-07-07 株式会社Lg化学 用于有机电子器件的基板
US20150008424A1 (en) * 2012-03-30 2015-01-08 Lg Chem, Ltd. Substrate for organic electronic device
US9583721B2 (en) * 2012-03-30 2017-02-28 Lg Chem, Ltd. Substrate for organic electronic device
CN104335381A (zh) * 2012-03-30 2015-02-04 株式会社Lg化学 用于有机电子器件的基板
CN104507699A (zh) * 2012-04-13 2015-04-08 康宁股份有限公司 标记涂料
US20130273259A1 (en) * 2012-04-13 2013-10-17 Mélanie Emilie Céline Depardieu Marking coating
US10000426B2 (en) 2012-04-13 2018-06-19 Corning Incorporated Marking coating
JP2014053582A (ja) * 2012-08-07 2014-03-20 Toshiba Lighting & Technology Corp 発光モジュール及び照明装置
US20140043814A1 (en) * 2012-08-07 2014-02-13 Toshiba Lighting & Technology Corporation Light emitting module and lighting system
JPWO2014132646A1 (ja) * 2013-02-27 2017-02-02 株式会社朝日ラバー 白色反射膜用インク、白色反射膜用粉体塗料及び白色反射膜の製造方法
JP5996085B2 (ja) * 2013-02-27 2016-09-21 株式会社朝日ラバー 白色反射膜用インク、白色反射膜用粉体塗料及び白色反射膜の製造方法
US10351713B2 (en) 2013-02-27 2019-07-16 Asahi Rubber Inc. Ink for white reflective film, powder coating material for white reflective film, production method of white reflective film, white reflective film, light source mount, and lighting device shade
WO2014132646A1 (ja) * 2013-02-27 2014-09-04 株式会社朝日ラバー 白色反射膜用インク、白色反射膜用粉体塗料、白色反射膜の製造方法、白色反射膜、光源マウント及び照明器具シェード
US9663664B2 (en) 2013-02-27 2017-05-30 Asahi Rubber Inc. Ink for white reflective film, powder coating material for white reflective film, production method of white reflective film, white reflective film, light source mount, and lighting device shade
JP2015103694A (ja) * 2013-11-26 2015-06-04 日亜化学工業株式会社 発光装置
JP2017518636A (ja) * 2014-05-15 2017-07-06 スリーエム イノベイティブ プロパティズ カンパニー 反射基材上のフレキシブル回路
JP2016009689A (ja) * 2014-06-20 2016-01-18 大日本印刷株式会社 実装基板の製造方法および実装基板
JP2016021545A (ja) * 2014-06-20 2016-02-04 大日本印刷株式会社 発光部品が実装された実装基板、および発光部品が実装される配線基板
JP2016046350A (ja) * 2014-08-21 2016-04-04 東洋アルミニウム株式会社 インターコネクタ用光拡散部材及びこれを備える太陽電池用インターコネクタ、並びに太陽電池モジュール
WO2016027759A1 (ja) * 2014-08-21 2016-02-25 東洋アルミニウム株式会社 インターコネクタ用光拡散部材及びこれを備える太陽電池用インターコネクタ、並びに太陽電池モジュール
WO2016157587A1 (ja) * 2015-03-31 2016-10-06 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JPWO2016157587A1 (ja) * 2015-03-31 2018-01-25 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
US10610199B2 (en) 2015-05-21 2020-04-07 Konica Minolta, Inc. Acoustic lens, method for producing same, ultrasound probe, and ultrasound imaging apparatus
JP2016214607A (ja) * 2015-05-21 2016-12-22 コニカミノルタ株式会社 音響レンズ、その製造方法、超音波探触子および超音波撮像装置
JP2017191839A (ja) * 2016-04-12 2017-10-19 株式会社カネカ 赤外led発光装置の半導体パッケージ用熱硬化性樹脂組成物、タブレット、半導体パッケージ、赤外led発光装置。
US11430928B2 (en) 2016-05-31 2022-08-30 Nichia Corporation Light-emitting device with exposed filter particles
US10418533B2 (en) 2016-05-31 2019-09-17 Nichia Corporation Light-emitting device having a light-transmissive member including particles of at least one first filler and method for manufacturing the same
JP2019536265A (ja) * 2016-11-07 2019-12-12 コーニング インコーポレイテッド 基板上に流体アセンブリ構造を製造するためのシステムおよび方法
US10741733B2 (en) 2016-12-27 2020-08-11 Nichia Corporation Light emitting device
US10276757B2 (en) 2016-12-27 2019-04-30 Nichia Corporation Light emitting device and method for manufacturing the same
CN110800118B (zh) * 2017-06-29 2022-10-28 京瓷株式会社 电路基板以及具备该电路基板的发光装置
CN110800118A (zh) * 2017-06-29 2020-02-14 京瓷株式会社 电路基板以及具备该电路基板的发光装置
US11973171B2 (en) 2018-06-04 2024-04-30 Nichia Corporation Light-emitting device and surface-emitting light source
TWI750476B (zh) * 2018-06-04 2021-12-21 日商日亞化學工業股份有限公司 發光裝置及面發光光源
JP2019215515A (ja) * 2018-06-11 2019-12-19 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置
JP7356798B2 (ja) 2018-06-11 2023-10-05 三星ディスプレイ株式會社 表示装置
JP7206746B2 (ja) 2018-09-26 2023-01-18 富士フイルムビジネスイノベーション株式会社 定着部材、定着装置、プロセスカートリッジ及び画像形成装置
JP2020052158A (ja) * 2018-09-26 2020-04-02 富士ゼロックス株式会社 定着部材、定着装置、プロセスカートリッジ及び画像形成装置
US11762190B2 (en) 2019-04-19 2023-09-19 Materion Precision Optics (Shanghai) Limited High temperature resistant reflective layer for wavelength conversion devices
JP2021076753A (ja) * 2019-11-11 2021-05-20 株式会社朝日ラバー シリコーン樹脂製紫外線反射保護基材、その製造方法、及びそれに用いる原材料組成物
WO2021117400A1 (ja) * 2019-12-11 2021-06-17 ヌヴォトンテクノロジージャパン株式会社 半導体装置
CN115418164A (zh) * 2022-09-16 2022-12-02 南京奥创先进材料科技有限公司 一种高温热反射材料及其施工工艺
CN115418164B (zh) * 2022-09-16 2024-03-26 奥创特新(苏州)科技有限公司 一种高温热反射材料及其施工工艺

Also Published As

Publication number Publication date
US20130011617A1 (en) 2013-01-10
US20170114226A1 (en) 2017-04-27
JP5770502B2 (ja) 2015-08-26
JP2014129549A (ja) 2014-07-10
CN106025053B (zh) 2020-01-10
US11326065B2 (en) 2022-05-10
CN102893417B (zh) 2016-06-15
US9574050B2 (en) 2017-02-21
JP2017124632A (ja) 2017-07-20
KR20130038847A (ko) 2013-04-18
KR20170066684A (ko) 2017-06-14
JP2020013142A (ja) 2020-01-23
JP5836420B2 (ja) 2015-12-24
JPWO2011118108A1 (ja) 2013-07-04
EP3490015A1 (en) 2019-05-29
KR101853598B1 (ko) 2018-04-30
JP6581695B2 (ja) 2019-09-25
CN102893417A (zh) 2013-01-23
JP5519774B2 (ja) 2014-06-11
US10533094B2 (en) 2020-01-14
JP6717512B2 (ja) 2020-07-01
CN106025053A (zh) 2016-10-12
WO2011118109A1 (ja) 2011-09-29
JPWO2011118109A1 (ja) 2013-07-04
JP2018180551A (ja) 2018-11-15
JP2011221518A (ja) 2011-11-04
HK1179048A1 (zh) 2013-09-19
JP6157118B2 (ja) 2017-07-05
US20200095430A1 (en) 2020-03-26
JP6363756B2 (ja) 2018-07-25
EP2551929A4 (en) 2013-08-14
EP2551929A1 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP6581695B2 (ja) 可撓性反射基材、その製造方法及びその反射基材に用いる原材料組成物
JP5746620B2 (ja) 白色反射材及びその製造方法
JP5424843B2 (ja) 熱硬化性シリコーン樹脂用組成物
JP5149529B2 (ja) 照明用光学部品及びそれを用いた照明器具
CN110268019B (zh) 可固化的硅酮组合物
WO2022209840A1 (ja) 紫外線反射材、その製造方法、及びそれの原材料組成物
JP2021076753A (ja) シリコーン樹脂製紫外線反射保護基材、その製造方法、及びそれに用いる原材料組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065663.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506781

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13636963

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010848500

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127027662

Country of ref document: KR

Kind code of ref document: A