JP2017191839A - 赤外led発光装置の半導体パッケージ用熱硬化性樹脂組成物、タブレット、半導体パッケージ、赤外led発光装置。 - Google Patents
赤外led発光装置の半導体パッケージ用熱硬化性樹脂組成物、タブレット、半導体パッケージ、赤外led発光装置。 Download PDFInfo
- Publication number
- JP2017191839A JP2017191839A JP2016079835A JP2016079835A JP2017191839A JP 2017191839 A JP2017191839 A JP 2017191839A JP 2016079835 A JP2016079835 A JP 2016079835A JP 2016079835 A JP2016079835 A JP 2016079835A JP 2017191839 A JP2017191839 A JP 2017191839A
- Authority
- JP
- Japan
- Prior art keywords
- component
- emitting device
- led light
- resin composition
- infrared led
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 C*CCCN(C(N(CCC[Si]C)C(N1CCC[Si]2(C)O[S-]O[Si-](C)O[Si](C)O2)=O)=O)C1=O Chemical compound C*CCCN(C(N(CCC[Si]C)C(N1CCC[Si]2(C)O[S-]O[Si-](C)O[Si](C)O2)=O)=O)C1=O 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Led Device Packages (AREA)
Abstract
【課題】近赤外線領域における反射率が高い樹脂組成物および、耐熱性に優れ高出力に耐える半導体パッケージを提供する。【解決手段】(A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する化合物、(B)SiH基を1分子中に少なくとも2個含有する化合物、および(C)ヒドロシリル化触媒、を含有する赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。【選択図】なし
Description
本発明は、赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物、タブレット、半導体パッケージ、赤外LED発光装置に関する。
従来、LED発光装置においては種々のパッケージを有するタイプのものが提案されている。特にこれらの内でパッケージに耐光性が要求されるものとして、半導体が発光ダイオードであるものが挙げられる。
従来、発光ダイオードとしてはパッケージを用いた表面実装タイプのものが製造されており、そのパッケージ用材料としては、セラミック、ポリアミド樹脂あるいはポリエステル樹脂等が主として用いられている(例えば、特許文献1)。
しかしながら、これらは成形加工性に優れず工業的な適用性が不足している、または、耐熱性、耐光性に優れず着色劣化する等の問題があった。
これの課題に対し、近年、耐熱性が高い、ヒドロシリル化反応によって硬化する樹脂の半導体パッケージ用への適用が開示されている(例えば、特許文献2)。しかしながら、800nm以上の近赤外線領域における反射率が十分ではなく、赤外線通信への適用が課題とされている。
このような背景から、近赤外線領域における反射率が高く、高出力に伴い発生する熱への耐性に優れる赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物の開発が望まれていた。
本発明が解決しようとする課題は、近赤外線領域における反射率が高い樹脂組成物を提供することであり、耐熱性に優れ、高出力に耐える半導体パッケージ、およびそれを用いた赤外LED発光装置を提供することである。
本発明者らは、上記課題を解決するべく鋭意研究を重ねた結果、(A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する化合物、(B)SiH基を1分子中に少なくとも2個含有する化合物、および(C)ヒドロシリル化触媒を含有することを特徴とする赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物により上記課題を解決することを見出し、本発明に至った。
すなわち、本発明は以下の構成を有するものである。
1).(A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する化合物、(B)SiH基を1分子中に少なくとも2個含有する化合物、および(C)ヒドロシリル化触媒を含有することを特徴とする赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
1).(A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する化合物、(B)SiH基を1分子中に少なくとも2個含有する化合物、および(C)ヒドロシリル化触媒を含有することを特徴とする赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
2).更に(D)平均粒径1μm以上10μm未満の無機充填剤、および(E)平均粒径10μm以上20μm未満の無機充填剤を含有し、(D)成分と(E)成分が同一種の無機充填剤であることを特徴とする1)記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
3).(D)成分、及び(E)成分が球状シリカである2)に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
3).(D)成分、及び(E)成分が球状シリカである2)に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
4).更に(F)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物を含有する1)〜3)のいずれかに記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
5).(F)成分がビニル基を末端に有する直鎖状ポリシロキサンである4)に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
6).(F)成分の分子量が2,000以上かつ1,000,000以下である4)または5)に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
7).更に(G)白色顔料を含有する1)〜6)のいずれか1項に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
8).(G)成分が酸化チタン、酸化亜鉛、酸化ジルコニア、酸化ストロンチウム、酸化ニオブ、窒化ホウ素、チタン酸バリウム及び硫酸バリウムから選ばれる少なくとも一種である7)に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
9).1)〜8)のいずれか1項に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を含有するタブレット。
10).1)〜8)のいずれか1項に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物の硬化成形体であることを特徴とする半導体パッケージ。
11).発光波長ピークが800〜980nmであるLED(発光素子)と10)に記載の半導体パッケージからなる赤外LED発光装置。
本発明によれば、近赤外線領域における反射率が高い樹脂組成物を得ることができ、耐熱性に優れ、高出力に耐える半導体パッケージ、それを用いた赤外LED発光装置を提供することが可能となる。
以下、本発明を詳細に説明する。
本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物は、
(A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する化合物、
(B)SiH基を1分子中に少なくとも2個含有する化合物、および
(C)ヒドロシリル化触媒、を必須成分として含有することを特徴とする。
以下、各成分について説明する。
本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物は、
(A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する化合物、
(B)SiH基を1分子中に少なくとも2個含有する化合物、および
(C)ヒドロシリル化触媒、を必須成分として含有することを特徴とする。
以下、各成分について説明する。
((A)成分)
(A)成分はSiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する化合物であれば特に限定されず、種々の有機化合物やシロキサン結合を主鎖に有する化合物を用いることができる。
(A)成分はSiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する化合物であれば特に限定されず、種々の有機化合物やシロキサン結合を主鎖に有する化合物を用いることができる。
(A)成分における有機化合物の例としては、ジアリルフタレート、トリアリルトリメリテート、ジエチレングリコールビスアリルカーボネート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、1,1,2,2−テトラアリロキシエタン、ジアリリデンペンタエリスリット、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、ジアリルモノメチルイソシアヌレート、1,2,4−トリビニルシクロヘキサン、ジビニルベンゼン類(純度50〜100%のもの、好ましくは純度80〜100%のもの)、ジビニルビフェニル、1,3−ジイソプロペニルベンゼン、1,4−ジイソプロペニルベンゼン、ブタジエン、イソプレン、オクタジエン、デカジエン等の脂肪族鎖状ポリエン化合物系、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、ジシクロペンタジエン、トリシクロペンタジエン、ノルボルナジエン等の脂肪族環状ポリエン化合物系、ビニルシクロペンテン、ビニルシクロヘキセン等の置換脂肪族環状オレフィン化合物系等が挙げられる。
上記の内、耐熱性の観点からはトリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、ジアリルモノメチルイソシアヌレート、1,2,4−トリビニルシクロヘキサン、ジビニルベンゼン類(純度50〜100%のもの、好ましくは純度80〜100%のもの)、ジビニルビフェニルを使用することが好ましく、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、ジアリルモノメチルイソシアヌレート、1,2,4−トリビニルシクロヘキサンを使用することがより好ましく、トリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、ジアリルモノメチルイソシアヌレートを用いることがさらに好ましい。
(A)成分におけるシロキサン結合を主鎖に有する化合物の例としてはCH2=CHSiMe2O(SiMe2O)nSiMe2CH=CH2(n=0〜10), CH2=CHSiMe2O(SiMe2O)m(SiPh2O)nSiMe2CH=CH2(m=0〜5,n=1〜4), CH2=CHSiPh2O(SiMe2O)m(SiPh2O)nSiPh2CH=CH2(m=0〜3,n=1〜2), CH2=CHSiMe2O(SiMe2O)m(SiPhMeO)nSiMe2CH=CH2(m=0〜5,n=1〜6), Me3SiO(SiMe2O)m(SiMe(CH=CH2)O)nSiMe3(m=0〜5,n=1〜9), MeSi[O(SiMe2O)mSiMe2CH=CH2]3(m=0〜2) などの直鎖状、分岐状シロキサン化合物、 1,3,5,7−テトラビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5-トリビニル−ペンタメチルシクロテトラシロキサン、1,3−ジビニル−ヘキサメチルシクロテトラシロキサン、1,5−ジビニル−ヘキサメチルシクロテトラシロキサン、1,3,5,7−テトラビニル−1−フェニル−3,5,7−トリメチルシクロテトラシロキサン、1,3,5,7−テトラビニル−1,3−ジフェニル−5,7−ジメチルシクロテトラシロキサン、1,3,5,7−テトラビニル−1,5−ジフェニル−3,7−ジメチルシクロテトラシロキサン、1,3,5,7−テトラビニル−1,3,5−トリフェニル−7−メチルシクロテトラシロキサン、1−フェニル−3,5,7−トリビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,3−ジフェニル−5,7−ジビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−ジフェニル−3,7−ジビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5−トリビニル−1,3,5−トリメチルシクロトリシロキサン、1,3,5,7,9−ペンタビニル−1,3,5,7,9−ペンタメチルシクロペンタシロキサン、1,3,5,7,9,11−ヘキサビニル−1,3,5,7,9,11−ヘキサメチルシクロヘキサシロキサンなどの環状シロキサン化合物が例示される。
シロキサン以外の化合物としては、ClCH2CH2CH2SiMe(CH=CH2)2, (CH2=CH)2SiMe2, (CH2=CH)2SiPhMe, (CH2=CH)2SiPh2,(CH2=CH)2Si(OEt)2, PhSi(CH=CH2)3, (CH2=CH)4Si, CH2=CHMe2Si-C6H4-SiMe2CH=CH2, CH2=CHMe2SiO-C6H4-OSiMe2CH=CH2などをあげることができる。
上記に示した具体例のうちフェニル(Ph)基を含む化合物においては、フェニル基の一部又は全部を次にあげるアリール基と置き換えてもよい。そのようなアリール基としては、例えば、ナフチル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、2−エチルフェニル基、3−エチルフェニル基、4−エチルフェニル基、2−プロピルフェニル基、3−プロピルフェニル基、4−プロピルフェニル基、3−イソプロピルフェニル基、4−イソプロピルフェニル基、2−ブチルフェニル基、3−ブチルフェニル基、4−ブチルフェニル基、3−イソブチルフェニル基、4−イソブチルフェニル基、3−tブチルフェニル基、4−tブチルフェニル基、3−ペンチルフェニル基、4−ペンチルフェニル基、3−ヘキシルフェニル基、4−ヘキシルフェニル基、3−シクロヘキシルフェニル基、4−シクロヘキシルフェニル基、2,3−ジメチルフェニル基、2,4−ジメチルフェニル基、2,5−ジメチルフェニル基、2,6−ジメチルフェニル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、2,3−ジエチルフェニル基、2,4−ジエチルフェニル基、2,5−ジエチルフェニル基、2,6−ジエチルフェニル基、3,4−ジエチルフェニル基、3,5−ジエチルフェニル基、ビフェニル基、2,3,4−トリメチルフェニル基、2,3,5−トリメチルフェニル基、2,4,5−トリメチルフェニル基、3−エポキシフェニル基、4−エポキシフェニル基、3−グリシジルフェニル基、4−グリシジルフェニル基等が挙げられる。これらは、単独で用いても良く、2種以上併用して用いてもよい。
上記の内で、入手性がよいこと、揮発性が低いこと、本発明における他成分との相溶性がよいこと、ヒドロシリル化硬化に伴う反応性が高いこと、本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を硬化して得られる硬化物が低線膨張係数を持つこと、強靭であることなどの観点から、CH2=CHSiMe2O(SiMe2O)nSiMe2CH=CH2(n=1〜3), CH2=CHSiMe2OSiPh2OSiMe2CH=CH2, CH2=CHSiMe2O(SiPh2O)2SiMe2CH=CH2, CH2=CHSiMe2OSiPhMeOSiMe2CH=CH2, CH2=CHSiMe2O(SiPhMeO)2SiMe2CH=CH2, CH2=CHSiPh2OSiPh2CH=CH2, 1,3,5-トリビニル−ペンタメチルシクロテトラシロキサン、1,3−ジビニル−ヘキサメチルシクロテトラシロキサン、1,5−ジビニル−ヘキサメチルシクロテトラシロキサン、1,3−ジフェニル−5,7−ジビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5−トリビニル−1,3,5−トリメチルシクロトリシロキサン、1,5−ジフェニル−3,7−ジビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、CH2=CHMe2Si-C6H4-SiMe2CH=CH2, CH2=CHMe2SiO-C6H4-OSiMe2CH=CH2を好ましく用いることができる。
((B)成分)
(B)成分は1分子中に少なくとも2個のSiH基を含有する化合物であれば特に制限は無く、具体的に例えば、
(B)成分は1分子中に少なくとも2個のSiH基を含有する化合物であれば特に制限は無く、具体的に例えば、
が挙げられ、これら以外にも後に記載する(β)成分等が使用できる。
これらのうち、入手性の面からは、1分子中に少なくとも2個のSiH基を有する鎖状及び/又は環状オルガノポリシロキサンが好ましく、(A)成分との相溶性が良いという観点からは、さらに、下記一般式(I)
(式中、R1は炭素数1〜6の有機基を表し、nは3〜10の数を表す。)で表される、1分子中に少なくとも2個のSiH基を有する環状オルガノポリシロキサンが好ましい。
一般式(I)で表される化合物中の置換基R1は、C、H、Oから構成されるものであることが好ましく、炭化水素基であることがより好ましく、メチル基であることがさらに好ましい。
一般式(I)で表される化合物としては、入手容易性の観点からは、1,3,5,7−テトラメチルシクロテトラシロキサンであることが好ましい。
(B)成分は単独もしくは2種以上のものを混合して用いることが可能である。
一般式(I)で表される化合物としては、入手容易性の観点からは、1,3,5,7−テトラメチルシクロテトラシロキサンであることが好ましい。
(B)成分は単独もしくは2種以上のものを混合して用いることが可能である。
((B)成分の好ましい構造)
(B)成分の揮発性が低くなり得られる赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物からのアウトガスの問題が生じ難いという観点及び該組成物から得られる硬化物に実用的な強度・靭性を与えるという観点から、揮発性が実質上なく、シロキサン骨格に加えて有機化合物由来の骨格が導入された成分を有することが、シロキサン骨格だけから構成される化合物よりも好ましい。該化合物の製造法は限定されないが(B)成分は、SiH基と反応性を有する炭素−炭素二重結合を1分子中に1個以上含有する有機化合物(α)と、1分子中に少なくとも2個のSiH基を有する化合物(β)を、ヒドロシリル化反応して得ることができる化合物であることが好ましい。
(B)成分の揮発性が低くなり得られる赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物からのアウトガスの問題が生じ難いという観点及び該組成物から得られる硬化物に実用的な強度・靭性を与えるという観点から、揮発性が実質上なく、シロキサン骨格に加えて有機化合物由来の骨格が導入された成分を有することが、シロキサン骨格だけから構成される化合物よりも好ましい。該化合物の製造法は限定されないが(B)成分は、SiH基と反応性を有する炭素−炭素二重結合を1分子中に1個以上含有する有機化合物(α)と、1分子中に少なくとも2個のSiH基を有する化合物(β)を、ヒドロシリル化反応して得ることができる化合物であることが好ましい。
((α)成分)
ここで(α)成分は上記した(A)成分の説明の中で示したSiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する化合物と同じもの(α1)も用いることができる。(α1)成分を用いると得られる硬化物の架橋密度が高くなり力学強度が高い硬化物となりやすい。
その他、SiH基と反応性を有する炭素−炭素二重結合を1分子中に1個含有する化合物(α2)も用いることができる。(α2)成分を用いると得られる硬化物が低弾性となりやすい。
ここで(α)成分は上記した(A)成分の説明の中で示したSiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する化合物と同じもの(α1)も用いることができる。(α1)成分を用いると得られる硬化物の架橋密度が高くなり力学強度が高い硬化物となりやすい。
その他、SiH基と反応性を有する炭素−炭素二重結合を1分子中に1個含有する化合物(α2)も用いることができる。(α2)成分を用いると得られる硬化物が低弾性となりやすい。
((α2)成分)
(α2)成分としては、SiH基と反応性を有する炭素−炭素二重結合を1分子中に1個含有する化合物であれば特に限定されない。(α2)成分のSiH基と反応性を有する炭素−炭素二重結合の結合位置は特に限定されず、分子内のどこに存在してもよい。
(α2)成分としては、SiH基と反応性を有する炭素−炭素二重結合を1分子中に1個含有する化合物であれば特に限定されない。(α2)成分のSiH基と反応性を有する炭素−炭素二重結合の結合位置は特に限定されず、分子内のどこに存在してもよい。
(α2)成分の具体的な例としては、プロペン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、1−ウンデセン、出光石油化学社製リニアレン、4,4−ジメチル−1−ペンテン、2−メチル−1−ヘキセン、2,3,3−トリメチル−1−ブテン、2,4,4−トリメチル−1−ペンテン等のような鎖状脂肪族炭化水素系化合物類、シクロヘキセン、メチルシクロヘキセン、メチレンシクロヘキサン、ノルボルニレン、エチリデンシクロヘキサン、ビニルシクロヘキサン、カンフェン、カレン、αピネン、βピネン等のような環状脂肪族炭化水素系化合物類、スチレン、αメチルスチレン、インデン、フェニルアセチレン、4−エチニルトルエン、アリルベンゼン、4−フェニル−1−ブテン等のような芳香族炭化水素系化合物、アルキルアリルエーテル、アリルフェニルエーテル等のアリルエーテル類、グリセリンモノアリルエーテル、エチレングリコールモノアリルエーテル、4−ビニル−1,3−ジオキソラン−2−オン等の脂肪族系化合物類、1,2−ジメトキシ−4−アリルベンゼン、o−アリルフェノール等の芳香族系化合物類、モノアリルジベンジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等の置換イソシアヌレート類、ビニルトリメチルシラン、ビニルトリメトキシシラン、ビニルトリフェニルシラン等のシリコン化合物等が挙げられる。さらに、片末端アリル化ポリエチレンオキサイド、片末端アリル化ポリプロピレンオキサイド等のポリエーテル系樹脂、片末端アリル化ポリイソブチレン等の炭化水素系樹脂、片末端アリル化ポリブチルアクリレート、片末端アリル化ポリメチルメタクリレート等のアクリル系樹脂、等の片末端にビニル基を有するポリマーあるいはオリゴマー類等も挙げることができる。
(α2)成分の構造は線状でも枝分かれ状でもよく、分子量は特に制約はなく種々のものを用いることができる。分子量分布も特に制限ないが、混合物の粘度が低くなり成形性が良好となりやすいという点においては、分子量分布が3以下であることが好ましく、2以下であることがより好ましく、1.5以下であることがさらに好ましい。
(α2)成分のガラス転位温度が存在する場合はこれについても特に限定はなく種々のものが用いられるが、得られる硬化物が強靭となりやすいという点においては、ガラス点移転温度は100℃以下であることが好ましく、50℃以下であることがより好ましく、0℃以下であることがさらに好ましい。好ましい樹脂の例としてはポリブチルアクリレート樹脂等が挙げられる。逆に得られる硬化物の耐熱性が高くなるという点においては、ガラス転位温度は100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることがさらに好ましく、170℃以上であることが最も好ましい。ガラス転位温度は動的粘弾性測定においてtanδが極大を示す温度として求めることができる。
(α2)成分としては、得られる硬化物の耐熱性が高くなるという点においては、炭化水素化合物であることが好ましい。この場合好ましい炭素数の下限は7であり、好ましい炭素数の上限は10である。
(α2)成分としてはその他の反応性基を有していてもよい。この場合の反応性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。これらの官能基を有している場合には得られる赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物の接着性が高くなりやすく、得られる硬化物の強度が高くなりやすい。接着性がより高くなりうるという点からは、これらの官能基のうちエポキシ基が好ましい。また、得られる硬化物の耐熱性が高くなりやすいという点においては、反応性基を平均して1分子中に1個以上有していることが好ましい。具体的にはモノアリルジグリシジルイソシアヌレート、アリルグリシジルエーテル、アリロキシエチルメタクリレート、アリロキシエチルアクリレート、ビニルトリメトキシシラン等が挙げられる。上記のような(α1)成分あるいは/および(α2)成分としては単一のものを用いてもよいし、複数のものを組み合わせて用いてもよい。
((β)成分)
(β)成分は、1分子中に少なくとも2個のSiH基を有する化合物であり、鎖状及び/又は環状のポリオルガノシロキサンもその例である。
具体的には、例えば
(β)成分は、1分子中に少なくとも2個のSiH基を有する化合物であり、鎖状及び/又は環状のポリオルガノシロキサンもその例である。
具体的には、例えば
が挙げられる。
ここで、(α)成分との相溶性が良くなりやすいという観点から、下記一般式(II)
ここで、(α)成分との相溶性が良くなりやすいという観点から、下記一般式(II)
(式中、R1は炭素数1〜6の有機基を表し、nは3〜10の数を表す。)で表される、1分子中に少なくとも3個のSiH基を有する環状ポリオルガノシロキサンが好ましい。
上記一般式(3)で表される化合物中の置換基R1は、C、H、Oから構成されるものであることが好ましく、炭化水素基であることがより好ましく、メチル基であることがさらに好ましい。
入手容易性等から、1,3,5,7−テトラメチルシクロテトラシロキサンであることが好ましい。
(β)成分のその他の例として、ビスジメチルシリルベンゼンなどのSiH基を有する化合物をあげることができる。
上記したような各種(β)成分は単独もしくは2種以上のものを混合して用いることが可能である。
入手容易性等から、1,3,5,7−テトラメチルシクロテトラシロキサンであることが好ましい。
(β)成分のその他の例として、ビスジメチルシリルベンゼンなどのSiH基を有する化合物をあげることができる。
上記したような各種(β)成分は単独もしくは2種以上のものを混合して用いることが可能である。
((α)成分と(β)成分の反応)
次に、本発明の(B)成分として、(α)成分と(β)成分をヒドロシリル化反応して得ることができる化合物を用いる場合の、(α)成分と(β)成分とのヒドロシリル化反応に関して説明する。
次に、本発明の(B)成分として、(α)成分と(β)成分をヒドロシリル化反応して得ることができる化合物を用いる場合の、(α)成分と(β)成分とのヒドロシリル化反応に関して説明する。
尚、(α)成分と(β)成分をヒドロシリル化反応すると、本発明の(B)成分を含む複数の化合物の混合物が得られることがあるが、そこから(B)成分を分離することなく混合物のままで用いて本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を作製することもできる。
(α)成分と(β)成分をヒドロシリル化反応させる場合の(α)成分と(β)成分の混合比率は、特に限定されないが、得られる(B)成分と(A)成分とのヒドロシリル化による硬化物の強度を考えた場合、(B)成分のSiH基が多い方が好ましいため、一般に混合する(α)成分中のSiH基との反応性を有する炭素−炭素二重結合の総数(X)と、混合する(β)成分中のSiH基の総数(Y)との比が、Y/X≧2であることが好ましく、Y/X≧3であることがより好ましい。また(B)成分の(A)成分との相溶性がよくなりやすいという点からは、10≧Y/Xであることが好ましく、5≧Y/Xであることがより好ましい。
(α)成分と(β)成分をヒドロシリル化反応させる場合には適当な触媒を用いてもよい。触媒としては、例えば次のようなものを用いることができる。白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体(例えば、Pt(CH2=CH2)2(PPh3)2、Pt(CH2=CH2)2Cl2)、白金−ビニルシロキサン錯体(例えば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4]m)、白金−ホスフィン錯体(例えば、Pt(PPh3)4、Pt(PBu3)4)、白金−ホスファイト錯体(例えば、Pt[P(OPh)3]4、Pt[P(OBu)3]4)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号及び3159662号明細書中に記載された白金−炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。更に、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体も本発明において有用である。
また、白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl2O3、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4、等が挙げられる。
これらの中では、触媒活性の点から塩化白金酸、白金−オレフィン錯体、白金−ビニルシロキサン錯体等が好ましい。また、これらの触媒は単独で使用してもよく、2種以上併用してもよい。
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物のコストを比較的低く抑えるため好ましい添加量の下限は、(β)成分のSiH基1モルに対して10-8モル、より好ましくは10-6モルであり、好ましい添加量の上限は(β)成分のSiH基1モルに対して10-1モル、より好ましくは10-2モルである。
また、上記触媒には助触媒を併用することが可能であり、例としてトリフェニルホスフィン等のリン系化合物、ジメチルマレート等の1,2−ジエステル系化合物、2−ヒドロキシ−2−メチル−1−ブチン等のアセチレンアルコール系化合物、単体の硫黄等の硫黄系化合物、トリエチルアミン等のアミン系化合物等が挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対しての好ましい添加量の下限は、10-2モル、より好ましくは10-1モルであり、好ましい添加量の上限は102モル、より好ましくは10モルである。
反応させる場合の(α)成分、(β)成分、触媒の混合の方法としては、各種方法をとることができるが、(α)成分に触媒を混合したものを、(β)成分に混合する方法が好ましい。(α)成分、(β)成分の混合物に触媒を混合する方法だと反応の制御が困難である。(β)成分と触媒を混合したものに(α)成分を混合する方法をとる場合は、触媒の存在下(β)成分が混入している水分と反応性を有するため、変質することがある。
反応温度としては種々設定できるが、この場合好ましい温度範囲の下限は30℃、より好ましくは50℃であり、好ましい温度範囲の上限は200℃、より好ましくは150℃である。反応温度が低いと十分に反応させるための反応時間が長くなり、反応温度が高いと実用的でない。反応は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。
反応時間、反応時の圧力も必要に応じ種々設定できる。
反応時間、反応時の圧力も必要に応じ種々設定できる。
ヒドロシリル化反応の際に溶媒を使用してもよい。使用できる溶剤はヒドロシリル化反応を阻害しない限り特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1, 4−ジオキサン、1,3−ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、クロロホルム、塩化メチレン、1, 2−ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。溶媒は2種類以上の混合溶媒として用いることもできる。溶媒としては、トルエン、テトラヒドロフラン、1,3−ジオキソラン、クロロホルムが好ましい。使用する溶媒量も適宜設定できる。
その他、反応性を制御する目的等のために種々の添加剤を用いてもよい。
その他、反応性を制御する目的等のために種々の添加剤を用いてもよい。
(α)成分と(β)成分を反応させた後に、溶媒あるいは/および未反応の(α)成分あるいは/および(β)成分を除去することもできる。これらの揮発分を除去することにより、得られる(B)成分が揮発分を有さないため揮発分の揮発によるボイド、クラックの問題が生じにくい。除去する方法としては例えば、減圧脱揮の他、活性炭、ケイ酸アルミニウム、シリカゲル等による処理等が挙げられる。減圧脱揮する場合には低温で処理することが好ましい。この場合の好ましい温度の上限は100℃であり、より好ましくは60℃である。高温で処理すると増粘等の変質を伴いやすい。
以上のような、(α)成分と(β)成分の反応物である(B)成分の例としては、ビスフェノールAジアリルエーテルと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ビニルシクロヘキセンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジビニルベンゼンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジシクロペンタジエンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、トリアリルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジアリルモノグリシジルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、アリルグリシジルエーテルと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、αメチルスチレンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、モノアリルジグリシジルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ビニルノルボルネンとビスジメチルシリルベンゼンとの反応物等を挙げることができる。
((C)成分)
ヒドロシリル化触媒としては、ヒドロシリル化反応の触媒活性があれば特に限定されないが、例えば、白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体(例えば、Pt(CH2=CH2)2(PPh3)2、Pt(CH2=CH2)2Cl2)、白金−ビニルシロキサン錯体(例えば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4]m)、白金−ホスフィン錯体(例えば、Pt(PPh3)4、Pt(PBu3)4)、白金−ホスファイト錯体(例えば、Pt[P(OPh)3]4、Pt[P(OBu)3]4)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号および3159662号明細書中に記載された白金−炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。さらに、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体も本発明において有用である。
ヒドロシリル化触媒としては、ヒドロシリル化反応の触媒活性があれば特に限定されないが、例えば、白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体(例えば、Pt(CH2=CH2)2(PPh3)2、Pt(CH2=CH2)2Cl2)、白金−ビニルシロキサン錯体(例えば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4]m)、白金−ホスフィン錯体(例えば、Pt(PPh3)4、Pt(PBu3)4)、白金−ホスファイト錯体(例えば、Pt[P(OPh)3]4、Pt[P(OBu)3]4)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号および3159662号明細書中に記載された白金−炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。さらに、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体も本発明において有用である。
また、白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl2O3、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4、等が挙げられる。
これらの中では、触媒活性の点から塩化白金酸、白金−オレフィン錯体、白金−ビニルシロキサン錯体等が好ましい。また、これらの触媒は単独で使用してもよく、2種以上併用してもよい。
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物のコストを比較的低く抑えるため好ましい添加量の下限は、(B)成分のSiH基1モルに対して10−8モル、より好ましくは10−6モルであり、好ましい添加量の上限は(B)成分のSiH基1モルに対して10−1モル、より好ましくは10−2モルである。
また、上記触媒には助触媒を併用することが可能であり、例としてトリフェニルホスフィン等のリン系化合物、ジメチルマレート等の1,2−ジエステル系化合物、2−ヒドロキシ−2−メチル−1−ブチン等のアセチレンアルコール系化合物、単体の硫黄等の硫黄系化合物、トリエチルアミン等のアミン系化合物等が挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対しての好ましい添加量の下限は、10-2モル、より好ましくは10−1モルであり、好ましい添加量の上限は102モル、より好ましくは10モルである。
((D)成分)
(D)成分は、平均粒径1μm以上10μm未満の無機充填剤であれば特に限定はされない。
(D)成分の例としては、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系無機充填材、アルミナ、ジルコン、酸化チタン、酸化亜鉛、窒化ケイ素、窒化ホウ素、窒化アルミ、炭化ケイ素、ガラス繊維、アルミナ繊維、炭素繊維、マイカ、黒鉛、カーボンブラック、グラファイト、ケイソウ土、白土、クレー、タルク、水酸化アルミニウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、チタン酸バリウム、チタン酸カリウム、ケイ酸カルシウム、無機バルーン、銀粉等の無機充填材をはじめとして、エポキシ系等の従来の封止材の充填材として一般に使用あるいは/および提案されている無機充填材等を挙げることができる。無機充填材としては、半導体素子へダメージを与え難いという観点からは、低放射線性であることが好ましい。
(D)成分は、平均粒径1μm以上10μm未満の無機充填剤であれば特に限定はされない。
(D)成分の例としては、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系無機充填材、アルミナ、ジルコン、酸化チタン、酸化亜鉛、窒化ケイ素、窒化ホウ素、窒化アルミ、炭化ケイ素、ガラス繊維、アルミナ繊維、炭素繊維、マイカ、黒鉛、カーボンブラック、グラファイト、ケイソウ土、白土、クレー、タルク、水酸化アルミニウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、チタン酸バリウム、チタン酸カリウム、ケイ酸カルシウム、無機バルーン、銀粉等の無機充填材をはじめとして、エポキシ系等の従来の封止材の充填材として一般に使用あるいは/および提案されている無機充填材等を挙げることができる。無機充填材としては、半導体素子へダメージを与え難いという観点からは、低放射線性であることが好ましい。
無機充填材は適宜表面処理してもよい。表面処理としては、アルキル化処理、トリメチルシリル化処理、シリコーン処理、カップリング剤による処理等が挙げられる。
この場合のカップリング剤の例としては、シランカップリング剤が挙げられる。シランカップリング剤としては、分子中に有機基と反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。有機基と反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。
この場合のカップリング剤の例としては、シランカップリング剤が挙げられる。シランカップリング剤としては、分子中に有機基と反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。有機基と反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。
好ましいシランカップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するアルコキシシラン類:3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が例示できる。
その他にも無機充填材を添加する方法が挙げられる。例えばアルコキシシラン、アシロキシシラン、ハロゲン化シラン等の加水分解性シランモノマーあるいはオリゴマーや、チタン、アルミニウム等の金属のアルコキシド、アシロキシド、ハロゲン化物等を、本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物に添加して、赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物中あるいは赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物の部分反応物中で反応させ、赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物中で無機充填材を生成させる方法も挙げることができる。
以上のような無機充填材のうち硬化反応を阻害し難く、線膨張係数の低減化効果が大きく、リードフレームとの接着性が高くなりやすいという観点からは、シリカ系無機充填材が好ましい。さらに、成形性、電気特性等の物性バランスがよいという点において溶融シリカが好ましく、パッケージの熱伝導性が高くなり易く放熱性の高いパッケージ設計が可能になるという点においては結晶性シリカが好ましい。より放熱性が高くなり易いという点ではアルミナが好ましい。また、パッケージ樹脂の光の反射率が高く、得られる発光ダイオードの光取りだし効率が高くなりやすいという点においては、酸化チタンが好ましい。その他、補強効果が高くパッケージの強度が高くなり易いという点においてはガラス繊維、チタン酸カリウム、ケイ酸カルシウムが好ましい。
また、(D)成分の平均粒径が1μm未満のものであれば凝集が起こり、成形性を損なう恐れがあり好ましくない。
また、(D)成分の平均粒径が1μm未満のものであれば凝集が起こり、成形性を損なう恐れがあり好ましくない。
(D)成分は、(D)成分および後述の(E)成分との合計(100重量%)に対し、好ましくは、1重量%〜80重量%、さらに好ましくは10〜50重量%となる範囲で用いることが好ましい。(D)成分が多すぎると、分散性が低下する場合があり、少なすぎると熱硬化後の組成物の隠蔽力が低下し、具体的に例えば、硬化物の反射率を損なう恐れがある。
((E)成分)
(E)成分は、平均粒径10μm以上20μm未満の無機充填剤であれば特に限定はされず、例えば、上記無機充填剤で挙げられた材料のものと同様の充填剤を用いることができる。このうち前記(D)成分と同一種のものを用いることが好ましく、(D)成分、及び(E)成分が球状シリカであることが更に好ましい。
また、(E)成分の平均粒径が20μm以上のものであれば組成物中における空隙が大きくなり反射率が低下し好ましくない。
(E)成分は、平均粒径10μm以上20μm未満の無機充填剤であれば特に限定はされず、例えば、上記無機充填剤で挙げられた材料のものと同様の充填剤を用いることができる。このうち前記(D)成分と同一種のものを用いることが好ましく、(D)成分、及び(E)成分が球状シリカであることが更に好ましい。
また、(E)成分の平均粒径が20μm以上のものであれば組成物中における空隙が大きくなり反射率が低下し好ましくない。
(E)成分は、(E)成分および前述の(D)成分との合計(100重量%)に対し、好ましくは、20重量%〜99重量%、さらに好ましくは50〜90重量%となる範囲で用いることが好ましい。(E)成分が多すぎると、熱硬化後の組成物の隠ぺい力が低下し、反射率を損なう恐れが有り、少なすぎると流動性が低下し成形性を損なう恐れがある。
(D)成分、及び(E)成分の量は特に限定されないが、赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物全体に占める(D)成分と(E)成分の合計の量が50重量%〜95重量%であることが好ましく、60重量%〜95重量%であることがより好ましく、70重量%〜95重量%であることがさらに好ましい。(D)成分、及び(E)成分の合計の量が50重量%未満である場合は、本発明における(D)成分、及び(E)成分の効果を好適に発現できない場合があり、また95重量%を超える場合は、たとえば赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を成形して得られる成形体が柔軟性に欠け、脆くなる恐れがある。(D)成分、及び(E)成分は併用して用いることで本発明の効果を好適に発現させることができ、(D)成分のみの場合では組成物の凝集性の観点で好ましくなく、(E)成分のみでは散乱の観点から好ましい効果が得られなく、上述の比率にて用いるのが好ましい。
((F)成分)
(F)成分は、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物である。実質的にSi−O−Si結合からなるシロキサン骨格で構成されるシリコーン化合物を用いることにより、一般の有機系高分子を用いる場合と比較して、耐熱性、耐光性に優れた硬化物を得ることができる。さらに、(F)成分を用いることにより(D)成分、および(E)成分の無機充填材と混合した場合に、より小さな線膨張係数を有しながら、靭性に優れた硬化物を与える赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物とすることができる。またCuをはじめとするリードフレームなどの金属基材の実質片面に成形したときに反りがほとんどない成形品を提供することができる。
(F)成分は、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物である。実質的にSi−O−Si結合からなるシロキサン骨格で構成されるシリコーン化合物を用いることにより、一般の有機系高分子を用いる場合と比較して、耐熱性、耐光性に優れた硬化物を得ることができる。さらに、(F)成分を用いることにより(D)成分、および(E)成分の無機充填材と混合した場合に、より小さな線膨張係数を有しながら、靭性に優れた硬化物を与える赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物とすることができる。またCuをはじめとするリードフレームなどの金属基材の実質片面に成形したときに反りがほとんどない成形品を提供することができる。
(F)成分のシリコーン化合物は、実質的にその骨格がSi−O−Si結合で形成されている化合物であり、直鎖状、環状、分枝状、部分ネットワークを有するもの等種々のものを用いることができる。
この場合、骨格に結合した置換基としては、メチル基、エチル基、プロピル基、オクチル基等のアルキル基、フェニル基、2−フェニルエチル基、2−フェニルプロピル基等のアリール基、メトキシ基、エトキシ基、イソプロポキシ基等のアルコキシ基、水酸基等の基を挙げることができる。これらのうち、耐熱性が高くなりやすいという点においては、メチル基、フェニル基、水酸基、メトキシ基が好ましく、メチル基、フェニル基がより好ましい。また、SiH基と反応性を有する炭素−炭素二重結合を有する置換基としては、ビニル基、アリル基、アクリロキシ基、メタクリロキシ基、アクリロキシプロピル基、メタクリロキシプロピル基等を挙げることができるが、これらのうち反応性がよいという点においては、ビニル基が好ましい。
この場合、骨格に結合した置換基としては、メチル基、エチル基、プロピル基、オクチル基等のアルキル基、フェニル基、2−フェニルエチル基、2−フェニルプロピル基等のアリール基、メトキシ基、エトキシ基、イソプロポキシ基等のアルコキシ基、水酸基等の基を挙げることができる。これらのうち、耐熱性が高くなりやすいという点においては、メチル基、フェニル基、水酸基、メトキシ基が好ましく、メチル基、フェニル基がより好ましい。また、SiH基と反応性を有する炭素−炭素二重結合を有する置換基としては、ビニル基、アリル基、アクリロキシ基、メタクリロキシ基、アクリロキシプロピル基、メタクリロキシプロピル基等を挙げることができるが、これらのうち反応性がよいという点においては、ビニル基が好ましい。
(F)成分の例としては次の式で表すことができるものであってもよい。
[R1 n(CH2=CH)mSiO(4-n-m)/2]a[R2 SSiO(4-S)/2]b
(式中、R1およびR2は水酸基、メチル基あるいはフェニル基から選ばれる基であり、m、n、s、a、bは、1≦m≦3、0≦n≦2、1≦s≦3、0<a/(a+b)≦1を満たす数)
[R1 n(CH2=CH)mSiO(4-n-m)/2]a[R2 SSiO(4-S)/2]b
(式中、R1およびR2は水酸基、メチル基あるいはフェニル基から選ばれる基であり、m、n、s、a、bは、1≦m≦3、0≦n≦2、1≦s≦3、0<a/(a+b)≦1を満たす数)
(F)成分の例としては、末端基あるいは側鎖基としてビニル基を有するポリジメチルシロキサン、ポリジフェニルシロキサン、ポリメチルフェニルシロキサンやこれら2種あるいは3種のランダムあるいはブロック共重合体、などを挙げることができる。(F)成分としては複数のものを混合して用いてもよい。
これらの内、反り抑制効果がより得られやすいという点においては、ビニル基を末端に有する直鎖状ポリシロキサンが好ましく、ビニル基を両末端に有する直鎖状ポリシロキサンがより好ましく、両末端にビニル基を有する直鎖状ポリジメチル−ポリジフェニルシロキサンあるいは直鎖状ポリメチルフェニルシロキサンがさらに好ましく、両末端にビニル基を有する直鎖状ポリジメチル−ポリジフェニルシロキサンあるいは直鎖状ポリメチルフェニルシロキサンであって、全置換基に対するフェニル基の量が10モル%以上であるシロキサンであることが特に好ましい。
これらの内、反り抑制効果がより得られやすいという点においては、ビニル基を末端に有する直鎖状ポリシロキサンが好ましく、ビニル基を両末端に有する直鎖状ポリシロキサンがより好ましく、両末端にビニル基を有する直鎖状ポリジメチル−ポリジフェニルシロキサンあるいは直鎖状ポリメチルフェニルシロキサンがさらに好ましく、両末端にビニル基を有する直鎖状ポリジメチル−ポリジフェニルシロキサンあるいは直鎖状ポリメチルフェニルシロキサンであって、全置換基に対するフェニル基の量が10モル%以上であるシロキサンであることが特に好ましい。
(F)成分の分子量としては、重量平均分子量(Mw)が2,000以上であることが好ましく、5,000以上であることがより好ましく、10,000以上であることがさらに好ましい。分子量が高い場合にはさらに得られる硬化物が低応力となりやすい。また、(F)成分の分子量としては1,000,000以下であることが好ましく、100,000以下であることがより好ましい。分子量が大きい場合には(A)成分、(B)成分との相溶性が得られにくくなる。
(F)成分の量としては、(A)成分および(B)成分の合計(100重量%)に対し、1重量%〜80重量%であることが好ましく、5重量%〜60重量%であることがより好ましく、10重量%〜50重量%であることがさらに好ましい。
(A)成分、(B)成分、(F)成分の混合比率は、必要な強度を失わない限りは特に限定されないが、(B)成分中のSiH基の数(Y)の(A)成分および(F)成分中のSiH基と反応性を有する炭素−炭素二重結合の数(X)に対する比において、好ましい範囲の下限はY/X≧0.3、より好ましくはY/X≧0.5、さらに好ましくはY/X≧0.7であり、好ましい範囲の上限は3≧Y/X、より好ましくは2≧Y/X、さらに好ましくは1.5≧Y/Xである。好ましい範囲からはずれた場合には十分な強度が得られなかったり、熱劣化しやすくなる場合がある。
((G)成分)白色顔料
本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物は、白色顔料((G)成分)を含有することが望ましい。(G)成分は白色顔料であり、得られる硬化物の光線反射率を高める効果を有する。
本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物は、白色顔料((G)成分)を含有することが望ましい。(G)成分は白色顔料であり、得られる硬化物の光線反射率を高める効果を有する。
(G)成分としては種々のものを用いることができ、例えば、酸化チタン、酸化亜鉛、酸化マグネシウム、酸化アンチモン、酸化ジルコニア、酸化ストロンチウム、酸化ニオブ、窒化ホウ素、チタン酸バリウム、硫化亜鉛、硫酸バリウム、炭酸マグネシウム、中空ガラス粒子、などが挙げられる。この中で、酸化チタン、酸化亜鉛、酸化ジルコニア、酸化ストロンチウム、酸化ニオブ、窒化ホウ素、チタン酸バリウム及び硫酸バリウムから選ばれる少なくとも一種であることが好ましく、中でも、取り扱いの容易性や入手性、コストの観点から酸化チタンまたは酸化亜鉛が更に好ましい。
(G)成分の酸化チタンとしては種々のものを用いることができ、アナターゼ型であってもルチル型であってもよいが、光触媒作用がなく赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物が安定になりやすいという点ではルチル型であることが好ましい。
(G)成分の平均粒径としても種々のものが用いられるが、得られる硬化物の光線反射率が高くなりやすく、また赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物タブレットがより硬くなるという観点から、1.0μm以下のものが好ましく、0.30μm以下のものがより好ましく、0.25μm以下のものが最も好ましい。
一方、赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物の流動性が高いという点では、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましい。
平均粒径は、レーザー回折散乱式粒度分布計を用いて測定することができる。
一方、赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物の流動性が高いという点では、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましい。
平均粒径は、レーザー回折散乱式粒度分布計を用いて測定することができる。
(G)成分の酸化チタンの製造方法としても硫酸法、塩素法などいずれの方法により製造されたものも使用できる。
(G)成分は表面処理が施されていても良い。
(G)成分の表面処理では、(G)成分の表面に無機化合物、有機化合物から選ばれる少なくとも1種を被覆する。無機化合物としては、例えば、アルミニウム化合物、ケイ素化合物、ジルコニウム化合物、スズ化合物、チタニウム化合物、アンチモン化合物等が挙げられ、また、有機化合物としては、多価アルコール、アルカノールアミン又はその誘導体、有機シロキサン等の有機ケイ素化合物、高級脂肪酸又はその金属塩、有機金属化合物等が挙げられる。
(G)成分の表面に無機化合物や有機化合物を被覆する場合は、湿式法や乾式法の公知の方法を用いて、例えば酸化チタンの乾式粉砕の際、スラリー化した際あるいは湿式粉砕した際に行うことができる。他にも、液相法、気相法等、種々の方法が挙げられる。
これらのなかでは、得られる硬化物の光線反射率が高く、耐熱耐光性が良好になることから有機シロキサン処理で処理されていることが好ましい。また、有機シロキサン処理された酸化チタンを含有させることは、光取り出し効率が高く、長期間使用しても光取り出し効率が低下しない優良な発光ダイオードを作製するうえでも好適である。
その場合の有機シロキサン処理剤としては種々のものが適用される。例えば、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリメチルハイドロジェンシロキサン、あるいはそれらの共重合体などのポリシロキサン類、ヘキサメチルシクロトリシロキサン、ヘプタメチルシクロテトラシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、などのシクロシロキサン類、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシランなどのクロロシラン類、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するシラン類、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するシラン類、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリアセトキシシラン等のビニル基を有するシラン類、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等のメルカプトシラン類、γ−アミノプロピルトリエトキシシラン、γ−[ビス(β−ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−(β−アミノエチル)アミノプロピルジメトキシメチルシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン等のアミノ基を有するシラン類、イソシアネートプロピルトリメトキシシラン、イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン等のアルキル基を有するシラン類、γ−クロロプロピルトリメトキシシラン、γ−アニリノプロピルトリメトキシシラン等のその他のシラン類等の各種シラン類で例示されるシランカップリング剤や、ヘキサメチルジシロキサン、ヘキサメチルジシラザンなどを挙げることができる。これらの表面処理剤としては炭素−炭素二重結合を含まないものであることが好ましく、炭素−炭素二重結合を含むと耐熱性が低下しやすくなる。また、有機シロキサン以外の表面処理を併用することも可能であり、Al、Zr、Zn等で処理することもできる。
また、無機化合物により表面処理されていてもよい。
無機化合物による表面処理についても特に限定されず、アルミニウム化合物、ケイ素化合物、ジルコニウム化合物、等種々の表面処理が用いられる。酸化チタンは、耐久性向上、媒体との親和性向上のため、あるいは、粒子形状の崩れを防止するなどの目的で無機化合物、有機化合物で表面処理する場合があるが、(G)成分を無機化合物で表面処理することで、赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物に含まれる成分との親和性が向上し、(G)成分の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物に対する分散性が良くなり硬化物の強度が向上すると考えられる。
表面処理の方法としても各種方法を適用することができ、湿式法、乾式法、液相法、気相法等、種々の方法が例示できる。
(G)成分の量としては、特に限定されないが、赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物全体に占める(G)成分の量が10重量%以上であることが好ましく、15重量%以上であることがより好ましく、20重量%以上であることがさらに好ましい。10重量%未満であると、得られる硬化物の光線反射率が低下することがある。
(G)成分を使用するのは白色の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を作製する場合であるが、表示デバイスのブラックマトリックスなどに適用する場合には、黒色の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を使用することができる。
この場合に用いることのできる、黒色顔料しては、無機顔料及び有機顔料のいずれでもよく、1種を単独で又は2種以上の顔料を混合したものを用いてもよい。無機顔料としては、例えば、カーボンブラック、黒鉛、鉄黒、チタンカーボン、チタンブラック、二酸価マンガン、銅クロムマンガン酸化物を挙げることができる。着色力を向上する観点から、カーボンブラック又はチタンブラックが好ましい。さらに、光学濃度及び電気抵抗値を大きくできる観点から、チタンブラックがより好ましい。また、表面を樹脂等で被覆したカーボンブラック又はチタンブラックを使用することもできる。アニリンブラック、アントラキノン系黒色顔料、ペリレン系黒色顔料などを用いることもできる。
また金属複合酸化物系の黒色顔料としては、銅−クロム−マンガン系複合酸化物黒色顔料、銅の酸化物、マンガンの酸化物、コバルトの酸化物およびアルミニウムの酸化物を含有することを特徴とする複合酸化物黒色顔料であり、顔料を構成する銅、マンガン、コバルトおよびアルミニウムの割合が、これらの金属の合計を100モル%とした場合、銅が5〜30モル%、マンガンが5〜30モル%、コバルトが15〜40モル%、そしてアルミニウムが25〜50モル%である複合酸化物黒色顔料も使用することができる。
(その他添加剤)
本発明においては、必要に応じて以下に示す各種添加剤を使用することができる。
本発明においては、必要に応じて以下に示す各種添加剤を使用することができる。
(硬化遅延剤)
本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物の保存安定性を改良する目的、あるいは製造過程でのヒドロシリル化反応の反応性を調整する目的で、硬化遅延剤を使用することができる。硬化遅延剤としては、脂肪族不飽和結合を含有する化合物、有機リン化合物、有機イオウ化合物、窒素含有化合物、スズ系化合物、有機過酸化物等が挙げられ、これらを併用してもかまわない。
本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物の保存安定性を改良する目的、あるいは製造過程でのヒドロシリル化反応の反応性を調整する目的で、硬化遅延剤を使用することができる。硬化遅延剤としては、脂肪族不飽和結合を含有する化合物、有機リン化合物、有機イオウ化合物、窒素含有化合物、スズ系化合物、有機過酸化物等が挙げられ、これらを併用してもかまわない。
脂肪族不飽和結合を含有する化合物としては、3−ヒドロキシ−3−メチル−1−ブチン、3−ヒドロキシ−3−フェニル−1−ブチン、1−エチニル−1−シクロヘキサノール等のプロパギルアルコール類、エン−イン化合物類、ジメチルマレート等のマレイン酸エステル類等が例示される。有機リン化合物としては、トリオルガノフォスフィン類、ジオルガノフォスフィン類、オルガノフォスフォン類、トリオルガノフォスファイト類等が例示される。有機イオウ化合物としては、オルガノメルカプタン類、ジオルガノスルフィド類、硫化水素、ベンゾチアゾール、チアゾール、ベンゾチアゾールジサルファイド等が例示される。窒素含有化合物としては、アンモニア、1〜3級アルキルアミン類、アリールアミン類、尿素、ヒドラジン等が例示される。スズ系化合物としては、ハロゲン化第一スズ2水和物、カルボン酸第一スズ等が例示される。有機過酸化物としては、ジ−tert−ブチルペルオキシド、ジクミルペルオキシド、ベンゾイルペルオキシド、過安息香酸t−ブチル等が例示される。
これらのヒドロシリル化硬化遅延剤のうち、遅延活性が良好で原料入手性がよいという観点からは、ベンゾチアゾール、チアゾール、ジメチルマレート、3−ヒドロキシ−3−メチル−1−ブチン、1−エチニル−1−シクロヘキサノールが好ましい。
ヒドロシリル化硬化遅延剤の添加量は種々設定できるが、使用するヒドロシリル化触媒1molに対する好ましい添加量の下限は10−1モル、より好ましくは1モルであり、好ましい添加量の上限は103モル、より好ましくは50モルである。
また、これらのヒドロシリル化硬化遅延剤は単独で使用してもよく、2種以上併用してもよい。
ヒドロシリル化硬化遅延剤の添加量は種々設定できるが、使用するヒドロシリル化触媒1molに対する好ましい添加量の下限は10−1モル、より好ましくは1モルであり、好ましい添加量の上限は103モル、より好ましくは50モルである。
また、これらのヒドロシリル化硬化遅延剤は単独で使用してもよく、2種以上併用してもよい。
(老化防止剤)
本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物には老化防止剤を添加してもよい。老化防止剤としては、ヒンダートフェノール系等一般に用いられている老化防止剤の他、クエン酸やリン酸、硫黄系老化防止剤等が挙げられる。
ヒンダートフェノール系老化防止剤としては、チバスペシャリティーケミカルズ社から入手できるイルガノックス1010をはじめとして、各種のものが用いられる。
本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物には老化防止剤を添加してもよい。老化防止剤としては、ヒンダートフェノール系等一般に用いられている老化防止剤の他、クエン酸やリン酸、硫黄系老化防止剤等が挙げられる。
ヒンダートフェノール系老化防止剤としては、チバスペシャリティーケミカルズ社から入手できるイルガノックス1010をはじめとして、各種のものが用いられる。
硫黄系老化防止剤としては、メルカプタン類、メルカプタンの塩類、スルフィドカルボン酸エステル類や、ヒンダードフェノール系スルフィド類を含むスルフィド類、ポリスルフィド類、ジチオカルボン酸塩類、チオウレア類、チオホスフェイト類、スルホニウム化合物、チオアルデヒド類、チオケトン類、メルカプタール類、メルカプトール類、モノチオ酸類、ポリチオ酸類、チオアミド類、スルホキシド類等が挙げられる。
また、これらの老化防止剤は単独で使用してもよく、2種以上併用してもよい。
また、これらの老化防止剤は単独で使用してもよく、2種以上併用してもよい。
(赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を含有することを特徴とするタブレット)
本発明における赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物は、各種成形のためにタブレットとして使用することもできる。成形方法としては、特に限定されず、赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物の成形に一般的であるトランスファー成形や圧縮成形などの成形方法を用いることができる。これらの成形方法を用いる場合、原料である赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物がペースト状や粘土状であると、一定した形状を保持できず、互着や一体化、変形したりするため、計量や搬送、成形機への供給が非常に困難となる。一方、タブレット形状であると、計量や搬送、成形機への供給が容易となり、自動化も可能となって生産性が大幅に向上する。ここで言うタブレットとは、室温において一定した形状を保持し、経時的な形状の変化が実質的になく、また互いに接触させたときに互着や一体化することのない固体のことを意味する。
本発明のタブレットの形状は、特に限定されず、円柱状、角柱状、円盤状、球状などの形状を含むが、トランスファー成形に一般的な円柱状が好ましい。
本発明における赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物は、各種成形のためにタブレットとして使用することもできる。成形方法としては、特に限定されず、赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物の成形に一般的であるトランスファー成形や圧縮成形などの成形方法を用いることができる。これらの成形方法を用いる場合、原料である赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物がペースト状や粘土状であると、一定した形状を保持できず、互着や一体化、変形したりするため、計量や搬送、成形機への供給が非常に困難となる。一方、タブレット形状であると、計量や搬送、成形機への供給が容易となり、自動化も可能となって生産性が大幅に向上する。ここで言うタブレットとは、室温において一定した形状を保持し、経時的な形状の変化が実質的になく、また互いに接触させたときに互着や一体化することのない固体のことを意味する。
本発明のタブレットの形状は、特に限定されず、円柱状、角柱状、円盤状、球状などの形状を含むが、トランスファー成形に一般的な円柱状が好ましい。
(半導体のパッケージ)
本発明における赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を成形して、半導体のパッケージをつくることができる。本発明で言う半導体のパッケージとは、半導体素子あるいは/および外部取出し電極等を支持固定あるいは/および保護するために設けられた部材である。半導体素子を直接被覆せず、外部取り出し電極等を支持固定するものや発光ダイオードのリフレクターのような半導体素子の周囲や底面を形成するものであってもよい。
本発明における赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を成形して、半導体のパッケージをつくることができる。本発明で言う半導体のパッケージとは、半導体素子あるいは/および外部取出し電極等を支持固定あるいは/および保護するために設けられた部材である。半導体素子を直接被覆せず、外部取り出し電極等を支持固定するものや発光ダイオードのリフレクターのような半導体素子の周囲や底面を形成するものであってもよい。
この場合の半導体素子としては各種のものが挙げられる。例えばIC、LSI等の集積回路、トランジスター、ダイオード、発光ダイオード等の素子の他、CCD等の受光素子等を挙げることができる。
形状についても特定されないが、半導体のパッケージが実質的に金属の片面に樹脂が成形されている形状を有する場合(MAPタイプ)において特に本発明の効果が得られやすい。
尚、上記のように本発明の半導体のパッケージが半導体素子を直接被覆しないような場合などにおいては、さらに封止剤を用いて封止することもでき、例えば従来用いられるエポキシ樹脂、シリコーン樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂等の封止樹脂を用いることができる。また、特開2002−80733、特開2002−88244で提案されているような、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個有する有機化合物、1分子中に少なくとも2個のSiH基を有する化合物、およびヒドロシリル化触媒を含有する組成物からなる封止剤を用いてもよく、この封止剤を用いる方が、パッケージ樹脂との接着性が高いという点、および透明性が高く本発明のパッケージの耐光性が高いという効果が顕著であるという点において、好ましい。一方、樹脂封止を用いず、ガラス等でカバーしてハーメチック封止により封止することも可能である。
また発光ダイオードや受光素子の場合などにおいてはさらにレンズを適用することも可能であり、封止剤をレンズ形状に成形してレンズ機能を持たせることも可能である。
(成形方法)
本発明で言う半導体パッケージの成形方法としては各種の方法が用いられる。例えば、射出成形、トランスファー成形、RIM成形、キャスティング成形、プレス成形、コンプレッション成形等、熱可塑性樹脂やエポキシ樹脂、シリコーン樹脂等の熱硬化性樹脂に一般に用いられる各種成形方法が用いられる。これらの内、成形サイクルが短く成形性が良好であるという点においてはトランスファー成形が好ましい。成形条件も任意に設定可能であり、例えば成形温度についても任意であるが、硬化が速く成形サイクルが短く成形性が良好になりやすいという点においては100℃以上、より好ましくは120℃以上、さらに好ましくは150℃以上の温度が好ましい。上記のような各種方法によって成形した後、必要に応じて後硬化(アフターキュア)することも任意である。後硬化した方が耐熱性が高くなり易い。
本発明で言う半導体パッケージの成形方法としては各種の方法が用いられる。例えば、射出成形、トランスファー成形、RIM成形、キャスティング成形、プレス成形、コンプレッション成形等、熱可塑性樹脂やエポキシ樹脂、シリコーン樹脂等の熱硬化性樹脂に一般に用いられる各種成形方法が用いられる。これらの内、成形サイクルが短く成形性が良好であるという点においてはトランスファー成形が好ましい。成形条件も任意に設定可能であり、例えば成形温度についても任意であるが、硬化が速く成形サイクルが短く成形性が良好になりやすいという点においては100℃以上、より好ましくは120℃以上、さらに好ましくは150℃以上の温度が好ましい。上記のような各種方法によって成形した後、必要に応じて後硬化(アフターキュア)することも任意である。後硬化した方が耐熱性が高くなり易い。
成形は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。一定の温度で行うより多段階的あるいは連続的に温度を上昇させながら反応させた方が歪のない均一な硬化物が得られやすいという点において好ましい。また、一定温度で行う方が成形サイクルを短くできるという点において好ましい。
硬化時間も種々設定できるが、高温短時間で反応させるより、比較的低温長時間で反応させた方が歪のない均一な硬化物が得られやすいという点において好ましい。逆に、高温短時間で反応させる方が成形サイクルを短くできるという点において好ましい。
成形時の圧力も必要に応じ種々設定でき、常圧、高圧、あるいは減圧状態で成形することもできる。ボイドの発生を抑制したり、充填性をよくしたり、場合によって発生する揮発分を除きやすいという点においては、減圧状態で硬化させることが好ましい。成形体へのクラックを防止できるという点においては、加圧状態で硬化させることが好ましい。
(赤外LED)
赤外LEDは発光波長のピークが赤外領域(800〜980nm)の発光ダイオードであり、本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物から作成される半導体パッケージはこれらに用いることができる。具体的な用途としては、リモコンの光源、フォトカプラー、IrDA(Infrared Data Association)、監視カメラ、ナンバープレート読み取り用光源、FA(Factory Automation)、煙検知等のセンサ、デジタルカメラ等の測距用途が挙げられる。また、従来公知の各種の用途に用いることができる。具体的には、例えば液晶表示装置等のバックライト、照明、センサー光源、車両用計器光源、信号灯、表示灯、表示装置、面状発光体の光源、ディスプレイ、装飾、各種ライト等を挙げることができる。
赤外LEDは発光波長のピークが赤外領域(800〜980nm)の発光ダイオードであり、本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物から作成される半導体パッケージはこれらに用いることができる。具体的な用途としては、リモコンの光源、フォトカプラー、IrDA(Infrared Data Association)、監視カメラ、ナンバープレート読み取り用光源、FA(Factory Automation)、煙検知等のセンサ、デジタルカメラ等の測距用途が挙げられる。また、従来公知の各種の用途に用いることができる。具体的には、例えば液晶表示装置等のバックライト、照明、センサー光源、車両用計器光源、信号灯、表示灯、表示装置、面状発光体の光源、ディスプレイ、装飾、各種ライト等を挙げることができる。
以下に、本発明の実施例および比較例を示すが、本発明は以下によって限定されるものではない。
(製造例1)
5Lの四つ口フラスコに、攪拌装置、滴下漏斗、冷却管をセットした。このフラスコにトルエン1800g、1,3,5,7−テトラメチルシクロテトラシロキサン1440gを入れ、120℃のオイルバス中で加熱、攪拌した。トリアリルイソシアヌレート200g、トルエン200g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)1.44mlの混合液を50分かけて滴下した。得られた溶液をそのまま6時間加温、攪拌した後、未反応の1,3,5,7−テトラメチルシクロテトラシロキサン及びトルエンを減圧留去した。1H−NMRの測定によりこのものは1,3,5,7−テトラメチルシクロテトラシロキサンのSiH基の一部がトリアリルイソシアヌレートと反応した以下の構造を有することがわかった。
5Lの四つ口フラスコに、攪拌装置、滴下漏斗、冷却管をセットした。このフラスコにトルエン1800g、1,3,5,7−テトラメチルシクロテトラシロキサン1440gを入れ、120℃のオイルバス中で加熱、攪拌した。トリアリルイソシアヌレート200g、トルエン200g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)1.44mlの混合液を50分かけて滴下した。得られた溶液をそのまま6時間加温、攪拌した後、未反応の1,3,5,7−テトラメチルシクロテトラシロキサン及びトルエンを減圧留去した。1H−NMRの測定によりこのものは1,3,5,7−テトラメチルシクロテトラシロキサンのSiH基の一部がトリアリルイソシアヌレートと反応した以下の構造を有することがわかった。
(赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物の作製)
表1に示す通り、実施例及び比較例の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を作製、タブレット化した後、MAP品の成形を行った。
表1に示す通り、実施例及び比較例の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を作製、タブレット化した後、MAP品の成形を行った。
(タブレット化)
作製した赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を、金属製の杵と臼からなるタブレット製造冶具で圧縮してタブレットとした。具体的にはφ13mmの臼の中に配合物を所定量入れ、100kg/cm2の圧力で杵で上から5秒間圧縮することにより、所定体積のタブレットを得た。
作製した赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を、金属製の杵と臼からなるタブレット製造冶具で圧縮してタブレットとした。具体的にはφ13mmの臼の中に配合物を所定量入れ、100kg/cm2の圧力で杵で上から5秒間圧縮することにより、所定体積のタブレットを得た。
(トランスファー成形によるMAP品の成形方法)
Agメッキした縦50mm、横55mm、厚み0.25mmのCu製の発光ダイオード用リードフレームを準備する。成形後のMAP(Mold Array Package:半導体のパッケージが実質的に金属の片面に樹脂が成形されている形状を有するタイプ)は縦15列、横12列で合計180個のリフレクターが含まれる。各リフレクターは上面φ2.1mm、底面φ1.8mm(テーパー角度:15度)、高さ0.55mmで、横方向直径に沿って右端から0.45mmのところに幅0.20mmの本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を硬化させた白色コンパウンドからなる電極スリットが縦に設けられている。各リフレクター間の間隔は縦横直径方向ともに1.1mmである。リードフレームおよび金型は、上記の要件を満足するリードフレーム付きリフレクターが作製できれば、特に制約はない。この成形品形状を3030MAP型と呼ぶ。成形品の概念図を図1に示した。
Agメッキした縦50mm、横55mm、厚み0.25mmのCu製の発光ダイオード用リードフレームを準備する。成形後のMAP(Mold Array Package:半導体のパッケージが実質的に金属の片面に樹脂が成形されている形状を有するタイプ)は縦15列、横12列で合計180個のリフレクターが含まれる。各リフレクターは上面φ2.1mm、底面φ1.8mm(テーパー角度:15度)、高さ0.55mmで、横方向直径に沿って右端から0.45mmのところに幅0.20mmの本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を硬化させた白色コンパウンドからなる電極スリットが縦に設けられている。各リフレクター間の間隔は縦横直径方向ともに1.1mmである。リードフレームおよび金型は、上記の要件を満足するリードフレーム付きリフレクターが作製できれば、特に制約はない。この成形品形状を3030MAP型と呼ぶ。成形品の概念図を図1に示した。
トランスファー成形は、アピックヤマダ株式会社製G−Lineマニュアルプレスを用いて実施した。型締力30ton、注入圧力8MPa、注入速度3mm/s。白色コンパウンド5.0gを計量、円柱状に賦形(上記に記載したタブレット化)しシリンダー内へ装填し成形した。成形条件は、170℃、150秒とした。成形後、熱風オーブンにて180℃、1時間後硬化(アフターキュア)した。
(反射率の測定方法)
トランスファ成型機及び平板用金型を用いて、MAP成形と同様の上記方法により作成した0.25mm厚平板について、紫外可視分光光度計(日本分光社製V−560)を用いて波長850nmにおける反射率を測定し、結果を表2に記載した。
トランスファ成型機及び平板用金型を用いて、MAP成形と同様の上記方法により作成した0.25mm厚平板について、紫外可視分光光度計(日本分光社製V−560)を用いて波長850nmにおける反射率を測定し、結果を表2に記載した。
(耐熱試験)
上記の通り作製したサンプルを、180℃に温度設定した対流式オーブン内(空気中)で24時間養生した。その後、波長850nmの反射率を測定し、結果を表2に記載した。
上記の通り作製したサンプルを、180℃に温度設定した対流式オーブン内(空気中)で24時間養生した。その後、波長850nmの反射率を測定し、結果を表2に記載した。
評価の結果、本発明の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を用いることにより赤外領域において高い反射率を発現することが可能となった。また、該赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物により耐熱性に優れる赤外LED用発光装置用半導体パッケージを提供することが可能である。
Claims (11)
- (A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する化合物、(B)SiH基を1分子中に少なくとも2個含有する化合物、および(C)ヒドロシリル化触媒を含有することを特徴とする赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
- 更に(D)平均粒径1μm以上10μm未満の無機充填剤、および(E)平均粒径10μm以上20μm未満の無機充填剤を含有し、(D)成分と(E)成分が同一種の無機充填剤であることを特徴とする請求項1記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
- (D)成分、及び(E)成分が球状シリカである請求項2に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
- 更に(F)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物を含有する請求項1〜3のいずれかに記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
- (F)成分がビニル基を末端に有する直鎖状ポリシロキサンである請求項4に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
- (F)成分の分子量が2,000以上かつ1,000,000以下である請求項4または5に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
- 更に(G)白色顔料を含有する請求項1〜6のいずれか1項に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
- (G)成分が酸化チタン、酸化亜鉛、酸化ジルコニア、酸化ストロンチウム、酸化ニオブ、窒化ホウ素、チタン酸バリウム及び硫酸バリウムから選ばれる少なくとも一種である請求項7に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物。
- 請求項1〜8のいずれか1項に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物を含有するタブレット。
- 請求項1〜8のいずれか1項に記載の赤外LED発光装置の半導体パッケージ用熱硬化性樹脂組成物の硬化成形体であることを特徴とする半導体パッケージ。
- 発光波長ピークが800〜980nmであるLED(発光素子)と請求項10に記載の半導体パッケージからなる赤外LED発光装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016079835A JP2017191839A (ja) | 2016-04-12 | 2016-04-12 | 赤外led発光装置の半導体パッケージ用熱硬化性樹脂組成物、タブレット、半導体パッケージ、赤外led発光装置。 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016079835A JP2017191839A (ja) | 2016-04-12 | 2016-04-12 | 赤外led発光装置の半導体パッケージ用熱硬化性樹脂組成物、タブレット、半導体パッケージ、赤外led発光装置。 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017191839A true JP2017191839A (ja) | 2017-10-19 |
Family
ID=60086046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016079835A Pending JP2017191839A (ja) | 2016-04-12 | 2016-04-12 | 赤外led発光装置の半導体パッケージ用熱硬化性樹脂組成物、タブレット、半導体パッケージ、赤外led発光装置。 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017191839A (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005146191A (ja) * | 2003-11-19 | 2005-06-09 | Kaneka Corp | 半導体のパッケージ用硬化性樹脂組成物および半導体 |
WO2011118108A1 (ja) * | 2010-03-23 | 2011-09-29 | 株式会社朝日ラバー | シリコーン樹脂製反射基材、その製造方法、及びその反射基材に用いる原材料組成物 |
JP2011225871A (ja) * | 2010-04-02 | 2011-11-10 | Kaneka Corp | 白色硬化性樹脂組成物およびそれを用いた半導体のパッケージ |
JP2014118464A (ja) * | 2012-12-14 | 2014-06-30 | Kaneka Corp | 流動性を改善した熱硬化性樹脂組成物及びそれを用いた半導体のパッケージ |
-
2016
- 2016-04-12 JP JP2016079835A patent/JP2017191839A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005146191A (ja) * | 2003-11-19 | 2005-06-09 | Kaneka Corp | 半導体のパッケージ用硬化性樹脂組成物および半導体 |
WO2011118108A1 (ja) * | 2010-03-23 | 2011-09-29 | 株式会社朝日ラバー | シリコーン樹脂製反射基材、その製造方法、及びその反射基材に用いる原材料組成物 |
JP2011225871A (ja) * | 2010-04-02 | 2011-11-10 | Kaneka Corp | 白色硬化性樹脂組成物およびそれを用いた半導体のパッケージ |
JP2014118464A (ja) * | 2012-12-14 | 2014-06-30 | Kaneka Corp | 流動性を改善した熱硬化性樹脂組成物及びそれを用いた半導体のパッケージ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6043292B2 (ja) | 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード | |
JP5844252B2 (ja) | 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード | |
KR101774306B1 (ko) | 폴리실록산계 조성물, 경화물, 및, 광학 디바이스 | |
JP5524424B1 (ja) | 光半導体素子封止用シリコーン組成物および光半導体装置 | |
JP6087127B2 (ja) | 流動性を改善した熱硬化性樹脂組成物及びそれを用いた半導体のパッケージ | |
JP5643009B2 (ja) | オルガノポリシロキサン系組成物を用いた光学デバイス | |
JP2012162666A (ja) | 多面体構造ポリシロキサン系組成物 | |
JP5837385B2 (ja) | 熱硬化性樹脂組成物およびそれを用いた発光ダイオード用のパッケージ | |
JP6227884B2 (ja) | 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード | |
JP6227975B2 (ja) | 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ | |
JP5749543B2 (ja) | 熱硬化性樹脂組成物タブレットおよびそれを用いた半導体のパッケージ | |
JP6467125B2 (ja) | 硬化性樹脂組成物、該組成物を硬化させてなる硬化物 | |
JP6464210B2 (ja) | 流動性を改善した熱硬化性樹脂組成物及びそれを用いた半導体のパッケージ | |
JP5946684B2 (ja) | 熱硬化性樹脂組成物、タブレット、発光ダイオード用パッケージ、それらの製造方法 | |
JP2013225573A (ja) | 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置 | |
JP2017191839A (ja) | 赤外led発光装置の半導体パッケージ用熱硬化性樹脂組成物、タブレット、半導体パッケージ、赤外led発光装置。 | |
JP5996858B2 (ja) | オルガノポリシロキサン系組成物を用いたイメージセンサー | |
JP5813446B2 (ja) | 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード | |
JP2017200988A (ja) | 紫外led発光装置の半導体パッケージ用熱硬化性樹脂組成物、タブレット、半導体パッケージそれを用いた紫外led発光装置。 | |
JP2013203798A (ja) | タック性を改善した熱硬化性樹脂組成物タブレット及びそれを用いた半導体のパッケージ | |
JP5848572B2 (ja) | 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード | |
JP5869827B2 (ja) | 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード | |
JP5616147B2 (ja) | オルガノポリシロキサン系組成物および、それを用いてなる光学デバイス。 | |
JP5620151B2 (ja) | 光学デバイス | |
JP2014133822A (ja) | 硬化性樹脂組成物、硬化性樹脂組物用タブレットおよびそれを用いた半導体のパッケージ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190301 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200304 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200908 |