JP2013225573A - 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置 - Google Patents

表面実装型発光装置用樹脂成形体およびそれを用いた発光装置 Download PDF

Info

Publication number
JP2013225573A
JP2013225573A JP2012096656A JP2012096656A JP2013225573A JP 2013225573 A JP2013225573 A JP 2013225573A JP 2012096656 A JP2012096656 A JP 2012096656A JP 2012096656 A JP2012096656 A JP 2012096656A JP 2013225573 A JP2013225573 A JP 2013225573A
Authority
JP
Japan
Prior art keywords
component
resin
group
light
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012096656A
Other languages
English (en)
Inventor
Ryoichi Narita
涼一 成田
Tomokazu Tozawa
友和 戸澤
Takanao Iwahara
孝尚 岩原
Kazuaki Matsumoto
一昭 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2012096656A priority Critical patent/JP2013225573A/ja
Publication of JP2013225573A publication Critical patent/JP2013225573A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】近紫外領域の光の反射率が改善され、耐久性に優れた白色熱硬化性組成物からなる表面実装型発光装置用樹脂成形体、およびこれを用いた表面実装型発光装置を提供することを目的とする。
【解決手段】発光波長のピークが350〜420nmの近紫外線領域にある発光素子、該発光素子が搭載される凹部、該凹部内に設けられる封止剤を有し、前記凹部を構成する壁面の少なくとも一部が、白色硬化性樹脂組成物の成形体からなる表面実装型発光装置用樹脂成形体において、前記白色硬化性樹脂組成物が、(A)熱硬化性樹脂、(B)白色顔料、(C)無機充填剤、を必須成分として含み、前記(B)成分がチタン酸バリウムであることを特徴とする、表面実装型発光装置用樹脂成形体。
【選択図】なし

Description

本発明は白色熱硬化性組成物ならびにそれを用いた表面実装型発光装置用樹脂成形体および表面実装型発光装置に関する。
近年、電子機器の小型化、軽量化、高性能化、多機能化に伴い、電子部品を基板上に高密度に実装することが行われている。高密度に実装するための電子部品としては、例えば、基板上の配線パターンにリフロー半田付け等により接続することが可能なSMD(Surface mounted device)が広く用いられている(例えば、特許文献1参照)。
このような電子部品の一例であるLED(Light Emitting Diode:発光ダイオード)は、光半導体素子と蛍光体を組み合わせた光半導体装置であり、省電力で寿命が長い発光装置として注目されている。
白色熱硬化性組成物を用いた表面実装型発光装置用樹脂成形体は、光半導体素子の外周を取り囲むように備えられた壁面、および基板底部の電極間の充填部分に用いられ、発光素子から射出された光を反射させ上方へ導くリフレクタ−としての役割を果たす。このように、白色熱硬化性組成物からなる樹脂硬化体には十分な光反射性が求められる。
例えば、特許文献2には可視光から近紫外光領域において高い反射率を有する白色熱硬化性組成物を用いた表面実装型発光装置用樹脂成形体が開示されており、特許文献3には、酸化チタンを充填し白色度を長く維持できる成形用樹脂組成物が開示されている。
近年になって、このような光半導体装置に対してより微妙な色再現性、発光色の安定性が要求されてきている。従来の光半導体装置は、中心波長が約450nm付近の青色光を発光する発光素子の発光面上に、セリウムを付活したイットリウム・アルミニウム・ガーネット(YAG)などの青色光を吸収して黄色に発光する蛍光体を含有する層を形成し、光半導体素子からの青色光と、前記蛍光体からの黄色光を混色して白色光とするものである。しかし、青色半導体素子は一般的にピーク波長の変動幅が±10nm程度あるため、得られる白色光に色バラツキが生じていた。
このような色バラツキを抑えるため、発光素子としてより波長ピークのバラツキが小さい近紫外線発光素子を用いた光半導体素子を使用した光半導体装置が提案されている(例えば、特許文献4参照)。
またこれまで、表面実装型発行装置用樹脂成形体に使用されている白色顔料としては、可視光における反射率の高い酸化チタンが主に使用されてきた。一方で酸化チタンは420〜800nmの可視光領域の光の反射率は高いのに対し、300〜400nmの近紫外領域の光の反射率は極端に低い。また、光触媒活性が比較的高いため、上記のような発光エネルギーの高い紫外線を発光する発光素子を使用した発光装置では、その発光素子からの紫外線によって触媒活性が誘発され、成形体中の熱硬化性樹脂成分が分解されてしまい、結果としてリフレクターの反射率が低下する可能性がある。
特開2003−218398号公報 特開2006−140207号公報 特開2008−255338号公報 特開2000−183408号公報
本発明は、上記事情に鑑みてなされたものであり、近紫外領域の光の反射率が改善され、耐久性に優れた白色熱硬化性組成物からなる表面実装型発光装置用樹脂成形体、およびこれを用いた表面実装型発光装置を提供することを目的とする。
上記課題を解決するために、本発明者は鋭意研究した結果、近紫外領域の光の反射率が酸化チタンと比較して優れており、また光触媒活性も酸化チタンと比べて格段に低いチタン酸バリウムを白色顔料として使用することにより、近紫外領域において十分な初期反射率を持ち、なおかつ耐久性にも優れた成形体が得られることを見出し、本発明を完成させるに至った。
すなわち本発明は、下記(1)〜(16)に記載の事項をその特徴とするものである。
(1)発光波長のピークが350〜420nmの近紫外線領域にある発光素子、該発光素子が搭載される凹部、該凹部内に設けられる封止剤を有し、前記凹部を構成する壁面の少なくとも一部が、白色硬化性樹脂組成物の成形体からなる表面実装型発光装置用樹脂成形体において、前記白色硬化性樹脂組成物が、(A)熱硬化性樹脂、(B)白色顔料、(C)無機充填剤、を必須成分として含み、前記(B)成分がチタン酸バリウムであることを特徴とする、表面実装型発光装置用樹脂成形体。
(2)前記(A)成分が、(A−1)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(A−2)1分子中に少なくとも2個のSiH基を含有する化合物、(A−3)ヒドロシリル化触媒、を含むことを特徴とする(1)に記載の表面実装型発光装置用樹脂成形体。
(3)前記(C)成分が球状シリカであることを特徴とする請求項(1)、(2)に記載の表面実装型発光装置用樹脂成形体。
(4)前記白色硬化性樹脂組成物が、更に(D)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物を含有することを特徴とする(1)〜(3)に記載の表面実装型発光装置用樹脂成形体。
(5)前記(D)成分の重量平均分子量が1,000以上かつ1,000,000以下であることを特徴とする(1)〜(4)に記載の表面実装型発光装置用樹脂成形体。
(6)前記白色硬化性樹脂組成物が、更に(E)金属石鹸を含有することを特徴とする(1)〜(5)に記載の表面実装型発光装置用樹脂成形体。
(7)前記(E)成分がステアリン酸金属塩であることを特徴とする請求項6に記載の表面実装型発光装置用樹脂成形体。
(8)前記(E)成分がステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウムからなる群より選択される1つ以上である(6)、(7)に記載の表面実装型発行装置用樹脂成形体。
(9)前期硬化性樹脂組成物全体に占める(B)成分の含有量が10重量%以上であることを特徴とする(1)〜(8)に記載の表面実装型発行装置用樹脂成形体。
(10)前期硬化性樹脂組成物全体に占める(C)成分の含有量が70重量%以上であることを特徴とする(1)〜(9)に記載の表面実装型発行装置用樹脂成形体。
(11)(A)成分の重量に対する(D)成分の含有量が30重量%以上であることを特徴とする(4)〜(10)に記載の表面実装型発行装置用樹脂成形体。
(12)前期硬化性樹脂組成物全体に占める(E)成分の含有量が0.01〜5重量%以上であることを特徴とする(6)〜(11)に記載の表面実装型発行装置用樹脂成形体。
(13)前記白色硬化性樹脂組成物を硬化してなる樹脂硬化体の表面の波長470nmの光線反射率が90%以上であることを特徴とする(1)〜(12)に記載の表面実装型発光装置用樹脂成形体。
(14)(1)〜(13)のいずれか1項に記載の硬化性樹脂組成物からなるタブレットであって、
(A)成分および(B)成分の少なくとも一方が23℃における粘度が50Pa秒以下の液体であり、
(B)成分と(C)成分の合計の含有量が70〜95重量%であり、
(B)成分と(C)成分の合計に占める12μm以下の粒子の割合が40体積%以上であることを特徴とする硬化性樹脂組成物タブレット。
(15)(1)〜(14)に記載の白色硬化性樹脂組成物とリードフレームとをトランスファー成形により一体成形することにより得られる表面実装型発光装置。
(16)前記封止剤が蛍光体を含有し、前記蛍光体が前記発光素子の光を受けて緑色および/または赤色および/または青色の光を放射することを特徴とする、(1)〜(15)に記載の表面実装型発光装置。
本発明によれば、近紫外領域において十分な初期反射率を持ち、なおかつ耐久性に優れた成形体を与える白色熱硬化性組成物を得ることができ、それを用いて表面実装型発光装置用樹脂成形体及びこれを用いた表面実装型発光装置を提供することができる。
本発明に係る樹脂成型体の一実施形態の構成を模式的に示す断面図である。 本発明に係る樹脂成型体の他の実施形態の構成を模式的に示す断面図である。 本発明に係る樹脂成型体の他の実施形態の構成を模式的に示す断面図である。 本発明に係る樹脂成型体の他の実施形態の構成を模式的に示す斜視図である。 本発明に係る樹脂成形体の製造方法により得られる樹脂成形体の構成を模式的に示す図面である 図5(a)は上面図、図5(b)は部分拡大上面図および図5(c)は部分拡大断面図である。
以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
[表面実装型発光装置用樹脂成形体]
本発明の表面実装型発光装置用樹脂成形体(以下特に断らない限り単に「樹脂成形体」とする)は、樹脂硬化体と複数のリードとが一体成形され、底部に複数のリードが露出する凹部を有することを特徴とする。
図1は、本発明の一実施形態に係る樹脂成形体1の構成を模式的に示す断面図である。樹脂成形体1は、複数のリードとしての第1リード10および第2リード11と、樹脂硬化体12とを備え、凹部13を有している。さらに、樹脂成形体1は、その厚み方向の側面の少なくとも一部に第1リード10および第2リード11が露出している。本実施形態の樹脂成形体1は、平面形状がほぼ正方形であり、かつ厚みを有する薄板状の形状を有し、その中心部分に開口形状がほぼ円形である凹部13を有している。凹部は光半導体素子を搭載するためのものであり、前記凹部の少なくとも一部が白色熱硬化性組成物の成形体からなる表面実装型発光装置用樹脂成型体を形成する。
第1リード10と第2リード11とは、正負一対であり、互いに離隔するように平行に配置され、かつ一体化されて図示しないフレーム単位を形成している。複数のフレーム単位を縦横に平行に配置して一体化することにより、リードフレームが構成される。リードフレームは、薄板状金属板に打ち抜き加工またはエッチング加工を施すことにより作製できる。リードフレームは、電気良導体である金属材料を用いて形成される。このような金属材料としては特に限定されないが、たとえば、鉄、リン青銅、銅合金などが挙げられる。
リードの表面はめっき層を形成していてもよい。これにより、発光素子から発せられる光の反射率をさらに高めることができる。
めっきの材質としては、たとえば、金、銀、銅、アルミニウムなどが挙げられる。たとえば、めっき層が銀からなる場合は、その膜厚は特に限定されないが、0.5μm〜20μmであることが好ましく、1μm〜15μmであることが好ましい。
また、白色熱硬化性組成物を加圧成形し後硬化して得られる樹脂硬化体12の凹部開口面12cおよび凹部13の内壁面13bは、460nmにおける分光反射率が80%以上であり、このような樹脂硬化体12を用いることにより、樹脂成形体1を表面実装型発光装置に用いた場合の信頼性が顕著に向上する。
なお、上記のような加圧成形、特にトランスファー成形法に用いられる金型の表面処理法、具体的にはコーティングと表面メッキ処理について、および金型リコートを必要とする状態については、後に詳述する。
上記した各実施形態において、発光素子から発せられる光を反射するための樹脂硬化体を与える樹脂材料としては、特に限定されないが、トランスファー成形法を実施する観点からは、(A)熱硬化性樹脂を用いるのが好ましい。(A)熱硬化性樹脂としては、表面実装型発光装置の分野で使用されるものを特に限定なく使用できるが、たとえば、エポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂、アクリレート樹脂、付加型の有機−無機ハイブリッド樹脂、ポリウレタンなどが挙げられる。これらの熱硬化性樹脂は1種を単独でまたは2種以上を組み合わせて使用できる。
発光素子の発熱などによる、樹脂硬化体の反りの発生、および変色を伴う熱劣化をさらに抑制する観点からは、(A)熱硬化性樹脂が、(A−1)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(A−2)1分子中に少なくとも2個のSiH基を含有する化合物および(A−3)ヒドロシリル化触媒、を含有することが好ましく、上記(A−1)成分、(A−2)成分および(A−3)成分と共に、(B)白色顔料、(C)無機充填剤および(D)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物を含有する白色硬化性樹脂組成物がさらに好ましい。
白色硬化性樹脂組成物は、線膨張係数が比較的低いため、リードに用いられる金属材料の線膨張係数との差が小さくなる。また、白色硬化性樹脂組成物は、耐熱性が高く、変色を伴う熱劣化が起こり難いため、高温に晒されても分光反射率が使用初期の高水準に維持される。
以下に、(A)〜(D)の各成分について詳しく説明する。
(A)熱硬化性樹脂
(A)成分は(A−1)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(A−2)1分子中に少なくとも2個のSiH基を含有する化合物および(A−3)ヒドロシリル化触媒からなる付加型の有機−無機ハイブリッド樹脂であることが望ましい。
(A−1)成分は、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物であれば特に限定されない。
(A−1)成分の骨格は、有機化合物としては、ポリシロキサン−有機ブロックコポリマーやポリシロキサン−有機グラフトコポリマーのようなシロキサン単位(Si−O−Si)を含むものではなく、構成元素としてC、H、N、O、S及びハロゲン以外の元素を含まない化合物がより好ましい。シロキサン単位を含むものの場合は、半導体のパッケージとリードフレームや封止樹脂との接着性が低くなりやすいという問題がある。
(A−1)成分は、有機重合体系の化合物と有機単量体系化合物とに分類できる。
有機重合体系の(A−1)成分としては、たとえば、ポリエーテル系、ポリエステル系、ポリアリレート系、ポリカーボネート系、飽和炭化水素系、不飽和炭化水素系、ポリアクリル酸エステル系、ポリアミド系、フェノール−ホルムアルデヒド系(フェノール樹脂系)、ポリイミド系の骨格を有するものを挙げることができる。
これらのうち、ポリエーテル系重合体としては、たとえば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシテトラメチレン、ポリオキシエチレン−ポリオキシプロピレン共重合体などが挙げられる。さらに具体的な例を示すと、下記[化1]で示される重合体が挙げられる。
Figure 2013225573
(式中、R1、R2は構成元素としてC、H、N、O、S、ハロゲン以外の元素を含まない炭素数1〜6の2価の有機基、n、m、lは1〜300の数を表す。)
その他の重合体としては、たとえば、アジピン酸、フタル酸、イソフタル酸、テレフタル酸、ヘキサヒドロフタル酸などの2塩基酸とエチレングリコール、ジエチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコールなどのグリコールとの縮合またはラクトン類の開環重合で得られるポリエステル系重合体;エチレン−プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレンなどとの共重合体、ポリクロロプレン、ポリイソプレン、イソプレンとブタジエン、アクリロニトリル、スチレンなどとの共重合体、ポリブタジエン、ブタジエンとスチレン、アクリロニトリルなどとの共重合体、ポリイソプレン、ポリブタジエン、イソプレンまたはブタジエンとアクリロニトリル、スチレンなどとの共重合体を水素添加して得られるポリオレフィン系(飽和炭化水素系)重合体;エチルアクリレート、ブチルアクリレートなどのモノマーをラジカル重合して得られるポリアクリル酸エステル、エチルアクリレート、ブチルアクリレートなどのアクリル酸エステルと酢酸ビニル、アクリロニトリル、メチルメタクリレート、スチレンなどとのアクリル酸エステル系共重合体;前記有機重合体中でビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ε−アミノカプロラクタムの開環重合によるナイロン6、ヘキサメチレンジアミンとアジピン酸の重縮合によるナイロン66、ヘキサメチレンジアミンとセバシン酸の重縮合によるナイロン610、ε−アミノウンデカン酸の重縮合によるナイロン11、ε−アミノラウロラクタムの開環重合によるナイロン12、上記のナイロンのうち2成分以上の成分を有する共重合ナイロンなどのポリアミド系重合体;たとえば、ビスフェノールAと塩化カルボニルより重縮合して製造されたポリカルボネート系重合体;ジアリルフタレート系重合体;ノボラック型フェノール樹脂、レゾール型フェノール樹脂、アンモニアレゾール型フェノール樹脂、ベンジリックエーテル型フェノール樹脂などのフェノール−ホルムアルデヒド系樹脂(フェノール系樹脂);などが挙げられる。
これらの重合体骨格に、炭素−炭素二重結合を有するアルケニル基を導入して(A−1)成分とすることができる。この場合、炭素−炭素二重結合を有するアルケニル基は分子内のどこに存在してもよいが、反応性の点から側鎖または末端に存在する方が好ましい。
アルケニル基を前記重合体骨格に導入する方法については、種々提案されているものを用いることができるが、重合後にアルケニル基を導入する方法と重合中にアルケニル基を導入する方法に大別することができる。
重合後にアルケニル基を導入する方法としては、たとえば、末端、主鎖または側鎖に水酸基、アルコキシド基、カルボキシル基、エポキシ基などの官能基を有する有機重合体に、その官能基に対して反応性を示す活性基とアルケニル基の両方を有する有機化合物を反応させることにより、末端、主鎖または側鎖にアルケニル基を導入することができる。
上記官能基に対して反応性を示す活性基とアルケニル基の両方を有する有機化合物の例としては、アクリル酸、メタクリル酸、ビニル酢酸、アクリル酸クロライド、アクリル酸ブロマイドなどの炭素原子数3〜20の不飽和脂肪酸、酸ハライド、酸無水物などやアリルクロロホルメート(CH2=CHCH2OCOCl)、アリルブロモホルメート(CH2=CHCH2OCOBr)などのC3〜C20の不飽和脂肪族アルコール置換炭酸ハライド、アリルクロライド、アリルブロマイド、ビニル(クロロメチル)ベンゼン、アリル(クロロメチル)ベンゼン、アリル(ブロモメチル)ベンゼン、アリル(クロロメチル)エーテル、アリル(クロロメトキシ)ベンゼン、1−ブテニル(クロロメチル)エーテル、1−ヘキセニル(クロロメトキシ)ベンゼン、アリルオキシ(クロロメチル)ベンゼン、アリルイソシアネートなどが挙げられる。
また、エステル交換法を用いてアルケニル基を導入する方法がある。この方法はポリエステル樹脂やアクリル樹脂のエステル部分のアルコール残基を、エステル交換触媒を用いてアルケニル基含有アルコールまたはアルケニル基含有フェノール誘導体とエステル交換する方法である。アルコール残基とのエステル交換に用いるアルケニル基含有アルコール及びアルケニル基含有フェノール誘導体は、少なくとも1個のアルケニル基を有しかつ少なくとも1個の水酸基を有するアルコールまたはフェノール誘導体であれば良いが、水酸基を1個有する方が好ましい。触媒は使用してもしなくても良いが、チタン系および錫系の触媒が良い。
アルケニル基含有アルコールとしては、たとえば、ビニルアルコール、アリルアルコール、3−ブテン−1−オール、4−ペンテン−1−オール、5−ヘキセン−1−オール、6−ヘプテン−1−オール、7−オクテン−1−オール、8−ノネン−1−オール、9−デセン−1−オール、2−(アリルオキシ)エタノール、ネオペンチルグリコールモノアリルエーテル、グリセリンジアリルエーテル、トリメチロールプロパントリアリルエーテル、トリメチロールエタントリアリルエーテル、ペンタエリストールテトラアリルエーテル、1,2,6−ヘキサントリオールトリアリルエーテル、ソルビタントリアリルエーテルなどが挙げられる。また、アルケニル基含有フェノール誘導体としては、たとえば、下記[化2]に示すものが挙げられる。
Figure 2013225573
これらの中でも、入手の容易さから、アリルアルコール、ビニルアルコール、3−ブテン−1−オール、2−(アリルオキシ)エタノール、および下記[化3]で示されるものが好ましい。
Figure 2013225573
さらに、上記アルコール又はフェノール誘導体の酢酸エステルなどのエステル化物とポリエステル樹脂やアクリル樹脂のエステル部分とを、エステル交換触媒を用いてエステル交換しながら、生成するポリエステル樹脂やアクリル樹脂のエステル部分のアルコール残基の酢酸エステルなどの低分子量エステル化物を減圧脱揮などで系外に留去する方法でアルケニル基を導入する方法もある。
また、リビング重合によりメチル(メタ)アクリレートなどの重合を行った後、リビング末端にアルケニル基を有する化合物を結合させることにより、重合反応を停止させる方法により末端にアルケニル基を導入することもできる。
重合中にアルケニル基を導入する方法としては、たとえば、ラジカル重合法で本発明に用いる(A−1)成分の有機重合体骨格を製造する場合に、ラジカル反応性の低いアルケニル基を有するラジカル連鎖移動剤を用いることにより、有機重合体骨格の側鎖や末端にアルケニル基を導入することができる。このようなラジカル連鎖移動剤としては、たとえば、アリルメタクリレート、アリルアクリレートなどの、分子中にラジカル反応性の低いアルケニル基を有するビニルモノマー、アリルメルカプタンなどが挙げられる。
(A−1)成分の分子量は特に限定されないが、100〜100,000、好ましくは300〜100,000の任意のものが好適に使用でき、アルケニル基含有有機重合体であれば500〜20,000のものが特に好ましい。分子量が300未満では、可とう性の付与などの有機重合体の利用による特徴が発現し難く、分子量が100,000を超えると、アルケニル基とSiH基との反応による架橋の効果が発現し難い。
有機単量体系の(A−1)成分としては、たとえば、フェノール系、ビスフェノール系、ベンゼン、ナフタレンなどの芳香族炭化水素系:直鎖系、脂環系などの脂肪族炭化水素系:複素環系の化合物およびこれらの混合物などが挙げられる。
(A−1)成分において、SiH基に対して反応性を有する炭素−炭素二重結合の結合位置は特に限定されず、分子内のどこに存在してもよい。SiH基に対して反応性を有する炭素−炭素二重結合としては、特に限定されないが、下記一般式(I)で示される基が反応性の点から好適である。また、原料の入手の容易さからは、下記[化5]に示される基が特に好ましい。
Figure 2013225573
(式中R1は水素原子またはメチル基を表す。)
Figure 2013225573
(A−1)成分のSiH基と反応性を有する炭素−炭素二重結合としては、下記一般式(II)で示される脂環式の基が、樹脂硬化体の耐熱性が高いという点から好適である。また、原料の入手の容易さからは、下記[化7]で示される脂環式の基が特に好ましい。
Figure 2013225573
(式中R2は水素原子またはメチル基を表す。)
Figure 2013225573
SiH基に対して反応性を有する炭素−炭素二重結合は、(A−1)成分の骨格部分に直接結合していてもよく、2価以上の置換基を介して共有結合していても良い。2価以上の置換基としては炭素数0〜10の置換基であれば特に限定されないが、構成元素としてC、H、N、O、S、およびハロゲン以外の元素を含まないものが好ましい。これらの置換基の例としては、下記[化8]および[化9]で示されるものが挙げられる。また、これらの2価以上の置換基の2つ以上が共有結合によりつながって1つの2価以上の置換基を構成していてもよい。
Figure 2013225573
Figure 2013225573
以上のような骨格部分に共有結合する基の例としては、ビニル基、アリル基、メタリル基、アクリル基、メタクリル基、2−ヒドロキシ−3−(アリルオキシ)プロピル基、2−アリルフェニル基、3−アリルフェニル基、4−アリルフェニル基、2−(アリルオキシ)フェニル基、3−(アリルオキシ)フェニル基、4−(アリルオキシ)フェニル基、2−(アリルオキシ)エチル基、2,2−ビス(アリルオキシメチル)ブチル基、3−アリルオキシ−2,2−ビス(アリルオキシメチル)プロピル基、下記[化10]で示される各基などが挙げられる。
Figure 2013225573
有機重合体系の(A−1)成分の具体例としては、1,2−ポリブタジエン(1,2比率10〜100%のもの、好ましくは1,2比率50〜100%のもの)、ノボラックフェノールのアリルエーテル、アリル化ポリフェニレンオキサイド、下記[化11]〜[化15]に示される重合体などが挙げられる。
Figure 2013225573
(式中、R1はHまたはCH3、R2、R3は構成元素としてC、H、N、O、S、ハロゲン以外の元素を含まない炭素数1〜6の2価の有機基、X、Yは炭素数0〜10の2価の置換基、n、m、lは1〜300の数を表す。)
Figure 2013225573
(式中、R1はHまたはCH3、R4、R5は炭素数1〜6の2価の有機基、X、Yは炭素数0〜10の2価の置換基、n、m、lは1〜300の数を表す。)
Figure 2013225573
(式中、R1はHまたはCH3、R6、R7は炭素数1〜20の2価の有機基、X、Yは炭素数0〜10の2価の置換基、n、m、lは1〜300の数を表す。)
Figure 2013225573
(式中、R1はHまたはCH3、R8、R9は炭素数1〜6の2価の有機基、X、Yは炭素数0〜10の2価の置換基、n、m、lは1〜300の数を表す。)
Figure 2013225573
(式中、R1はHまたはCH3、R10、R11、R12は炭素数1〜6の2価の有機基、X、Yは炭素数0〜10の2価の置換基、n、m、l、pは1〜300の数を表す。)などが挙げられる。
有機単量体系の(A−1)成分の具体的な例としては、ジアリルフタレート、トリアリルトリメリテート、ジエチレングリコールビスアリルカーボネート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、1,1,2,2−テトラアリロキシエタン、ジアリリデンペンタエリスリット、トリアリルシアヌレート、トリアリルイソシアヌレート、1,2,4−トリビニルシクロヘキサン、ジビニルベンゼン類(純度50〜100%のもの、好ましくは純度80〜100%のもの)、ジビニルビフェニル、1,3−ジイソプロペニルベンゼン、1,4−ジイソプロペニルベンゼン、およびそれらのオリゴマー、下記[化16]〜[化17]に示されるような、従来公知のエポキシ樹脂のグリシジル基の一部または全部をアリル基に置き換えた化合物などが挙げられる。
Figure 2013225573
Figure 2013225573
(A−1)成分としては、上記のように骨格部分とアルケニル基とに分けて表現しがたい、低分子量化合物も用いることができる。これらの低分子量化合物の具体例としては、ブタジエン、イソプレン、オクタジエン、デカジエンなどの脂肪族鎖状ポリエン化合物系、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、ジシクロペンタジエン、トリシクロペンタジエン、ノルボルナジエンなどの脂肪族環状ポリエン化合物系、ビニルシクロペンテン、ビニルシクロヘキセンなどの置換脂肪族環状オレフィン化合物系などが挙げられる。
(A−1)成分としては、耐熱性をより向上させ得るという観点からは、SiH基に対して反応性を有する炭素−炭素二重結合を、(A−1)成分1gあたり0.001mol以上含有するものが好ましく、(A−1)成分1gあたり0.005mol以上含有するものがより好ましく、(A−1)成分1gあたり0.008mol以上含有するものがさらに好ましい。
(A−1)成分において、SiH基に対して反応性を有する炭素−炭素二重結合の数は、平均して1分子当たり少なくとも2個あればよいが、力学強度をより向上したい場合には2を越えることが好ましく、3個以上であることがより好ましい。(A−1)成分のSiH基に対して反応性を有する炭素−炭素二重結合の数が1分子内当たり1個以下の場合は、(A−1)成分と(A−2)成分とが反応しても、グラフト構造のみが生成するだけで、架橋構造は生成しない。
(A−1)成分としては、反応性が良好であるという観点からは、1分子中にビニル基を1個以上含有していることが好ましく、1分子中にビニル基を2個以上含有していることがより好ましい。また貯蔵安定性が良好となりやすいという観点からは、1分子中にビニル基を6個以下含有していることが好ましく、1分子中にビニル基を4個以下含有していることがより好ましい。
(A−1)成分の分子量は、力学的耐熱性が高いという観点および原料液の糸引き性が少なく成形性、取扱い性が良好であるという観点、(B)成分および(C)成分などの粉体との均一な混合が容易という観点、および熱硬化性樹脂組成物タブレットとした際の成形性が良好であるという観点からは、好ましくは900未満、より好ましくは700未満、さらに好ましくは500未満である。
(A−1)成分の粘度は、他の成分との均一な混合、および良好な作業性を得るためには、23℃において、好ましくは1000ポイズ未満、より好ましくは300ポイズ未満、さらに好ましくは30ポイズ未満である。粘度はE型粘度計によって測定することができる。
(A−1)成分としては、耐光性がより高いという観点から、フェノール性水酸基および/またはフェノール性水酸基の誘導体を有する化合物の含有量が少ないものが好ましく、フェノール性水酸基および/およびフェノール性水酸基の誘導体を有する化合物を含まないものが好ましい。本発明におけるフェノール性水酸基とは、ベンゼン環、ナフタレン環、アントラセン環などに例示される芳香族炭化水素核に直接結合した水酸基であり、フェノール性水酸基の誘導体とは上述のフェノール性水酸基の水素原子をメチル基、エチル基などのアルキル基、ビニル基、アリル基などのアルケニル基、アセトキシ基などのアシル基などにより置換された基を示す。
また、特に耐光性が良好であるという観点からは、(A−1)成分における芳香環の成分重量比が50重量%以下であるものが好ましく、40重量%以下のものがより好ましく、30重量%以下のものがさらに好ましい。最も好ましいのは芳香族炭化水素環を含まないものである。
得られる樹脂硬化体の着色が少なく、耐光性が高いという観点からは、(A−1)成分としてはビニルシクロヘキセン、ジシクロペンタジエン、ビニルノルボルネン、トリアリルイソシアヌレート、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジアリルエーテル、1,2,4−トリビニルシクロヘキサンが好ましく、トリアリルイソシアヌレート、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジアリルエーテル、1,2,4−トリビニルシクロヘキサンが特に好ましい。
(A−1)成分としては、耐熱性および耐光性が特に高いという観点からは、下記一般式(III)で表される化合物が好ましい。
Figure 2013225573
(式中3つのR1は同一または異なって、炭素数1〜50の一価の有機基を示す。)
上記一般式(III)のR1は、得られる樹脂硬化体の耐熱性がより高くなりうるという観点からは、好ましくは炭素数1〜20の一価の有機基であり、より好ましくは炭素数1〜10の一価の有機基であり、さらに好ましくは炭素数1〜4の一価の有機基である。これらの好ましいR1の例としては、メチル基、エチル基、プロピル基、ブチル基、フェニル基、ベンジル基、フェネチル基、ビニル基、アリル基、グリシジル基、下記[化19]に例示される各一価基などが挙げられる。
Figure 2013225573
上記一般式(III)のR1としては、樹脂成形体とリードまたは樹脂成形体と封止剤との接着性が良好になりうるか、または得られる樹脂成形体の力学強度が高くなり得るという観点からは、3つのR1のうち少なくとも1つがエポキシ基を一つ以上含む炭素数1〜50の一価の有機基であることが好ましく、下記[化20]で表されるエポキシ基を1個以上含む炭素数1〜50の一価の有機基であることがより好ましい。
Figure 2013225573
これらの好ましいR1の例としては、グリシジル基、[化21]に示される各基などが挙げられる。
Figure 2013225573
上記一般式(III)のR1は、得られる樹脂硬化体の耐熱性が良好になりうるという観点からは、好ましくは、2個以下の酸素原子を含みかつ構成元素としてC、H、Oのみを含む炭素数1〜50の一価の有機基であり、より好ましくは、炭素数1〜50の一価の炭化水素基である。これらの好ましいR1の例としては、メチル基、エチル基、プロピル基、ブチル基、フェニル基、ベンジル基、フェネチル基、ビニル基、アリル基、グリシジル基、下記[化22]に示される各基などが挙げられる。
Figure 2013225573
上記一般式(III)のR1としては、反応性が良好になるという観点からは、3つのR1のうち少なくとも1つが、下記[化23]で表される基を1個以上含む炭素数1〜50の一価の有機基であることが好ましい。また、3つのR1のうち少なくとも1つが、下記一般式(IV)で表わされる基を1個以上含む炭素数1〜50の一価の有機基であることがより好ましい。また、3つのR1のうち少なくとも2つが下記一般式(V)で表される有機化合物であることがさらに好ましい。
Figure 2013225573
Figure 2013225573
(式中R2は水素原子またはメチル基を示す。)
Figure 2013225573
(式中R3は直接結合または炭素数1〜48の二価の有機基を表し、R4は水素原子またはメチル基を表す。)
上記一般式(V)のR3は、直接結合または炭素数1〜48の二価の有機基であるが、得られる樹脂成形体の耐熱性をより向上させるという観点からは、好ましくは直接結合または炭素数1〜20の二価の有機基であり、より好ましくは直接結合または炭素数1〜10の二価の有機基であり、さらに好ましくは直接結合または炭素数1〜4の二価の有機基である。これらの好ましいR3の例としては、下記[化26]に示される各基が挙げられる。
Figure 2013225573
上記一般式(V)のR3としては、得られる樹脂硬化体の耐熱性をさらに向上させるという観点からは、好ましくは、直接結合しているかまたは2つ以下の酸素原子を含みかつ構成元素としてC、H、Oのみを含む炭素数1〜48の二価の有機基であり、より好ましくは直接結合または炭素数1〜48の二価の炭化水素基である。これらの好ましいR3の例としては、下記[化27]に示される各基などが挙げられる。
Figure 2013225573
上記一般式(V)のR4は、水素原子またはメチル基であるが、反応性が良好であるという観点からは、水素原子が好ましい。
ただし、上記のような一般式(III)で表される有機化合物の好ましい例においても、SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有することは必要である。耐熱性をより向上させるという観点からは、SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に3個以上含有する有機化合物であることがより好ましい。
以上のような一般式(III)で表される有機化合物の好ましい具体例としては、トリアリルイソシアヌレート、下記[化28]に示される各化合物などが挙げられる。
Figure 2013225573
別形態の(A−1)成分の好ましい具体例としては、(A−1)成分の例として上記したような、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物から選ばれた1種以上の化合物と、SiH基を有する化合物(β)(以下「(β)成分」とする)との反応物が挙げられる。このような反応物は、(B)成分と良好な相溶性を有すると共に、その揮発性が低いことから、得られる樹脂成形体からのアウトガスの問題が生じ難いという利点を有している。
(β)成分は、SiH基を有する化合物であり、SiH基を有する鎖状及び/又は環状のポリオルガノシロキサンもその例である。具体的には、たとえば、[化29]〜[化30]に示される各化合物などが挙げられる。
Figure 2013225573
Figure 2013225573
ここで、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物との相溶性が良くなりやすいという観点から、下記一般式(VI)で表される、1分子中に少なくとも3個のSiH基を有する環状ポリオルガノシロキサンが好ましい。
Figure 2013225573
(式中、R1は炭素数1〜6の有機基を表し、nは3〜10の数を表す。)
一般式(VI)で表される化合物中の置換基R1は、好ましくはC、H、O以外の構成元素を含まない基であり、より好ましくは炭化水素基であり、さらに好ましくはメチル基である。また、入手容易性などから、一般式(VI)で表わされる化合物は、1,3,5,7−テトラメチルシクロテトラシロキサンであることが好ましい。
(β)成分のその他の例として、ビスジメチルシリルベンゼンなどのSiH基を有する化合物をあげることができる。
上記したような各種(β)成分は1種を単独でまたは2種以上を組み合わせて使用できる。
本発明では、上記したように、SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分とをヒドロシリル化反応することにより得られる化合物を、(A−1)成分として使用できる。尚、SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分とをヒドロシリル化反応させると、本発明の(A−1)成分となり得る化合物とそれ以外の複数の化合物を含む混合物が得られることがある。このような混合物から(A−1)成分となり得る化合物を分離することなく、そのまま用いて、本発明の熱硬化性樹脂組成物を作製することもできる。
ここでは、このヒドロシリル化反応について詳細に説明する。
このヒドロシリル化反応において、SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分との混合比率は、特に限定されないが、反応中のゲル化が抑制できるという点においては、一般に、前者におけるSiH基に対して反応性を有する炭素−炭素二重結合の総数(X)と後者におけるSiH基の総数(Y)との比が、好ましくはX/Y≧2、より好ましくはX/Y≧3である。また(A)成分の(B)成分に対する相溶性がよくなりやすいという観点からは、好ましくは10≧X/Y、より好ましくは5≧X/Yである。
このヒドロシリル化反応においては、適当な触媒を用いてもよい。触媒としては、たとえば、白金の単体、アルミナ、シリカ、カーボンブラックなどの担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトンなどとの錯体、白金−オレフィン錯体(たとえば、Pt(CH2=CH22(PPh32、Pt(CH2=CH22Cl2)、白金−ビニルシロキサン錯体(たとえば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4m)、白金−ホスフィン錯体(たとえば、Pt(PPh34、Pt(PBu34)、白金−ホスファイト錯体(たとえば、Pt[P(OPh)34、Pt[P(OBu)34)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、アシュビー(Ashby)の米国特許第3159601号及び3159662号明細書中に記載された白金−炭化水素複合体、ラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体などが挙げられる。
また、白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl23、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4などが挙げられる。
これらの触媒の中では、触媒活性の観点から塩化白金酸、白金−オレフィン錯体、白金−ビニルシロキサン錯体などが好ましい。また、これらの触媒は1種を単独でまたは2種以上を組み合わせて使用できる。
触媒の添加量は特に限定されないが、十分な硬化性を有し、コストが比較的低く抑えられた熱硬化性樹脂組成物を得るためには、(β)成分のSiH基1モルに対して、好ましくは10-8〜10-1モル、より好ましくは10-6〜10-2モルである。
また、上記触媒と共に助触媒を使用できる。助触媒の具体例としては、トリフェニルホスフィンなどのリン系化合物、ジメチルマレートなどの1,2−ジエステル系化合物、2−ヒドロキシ−2−メチル−1−ブチンなどのアセチレンアルコール系化合物、単体の硫黄などの硫黄系化合物、トリエチルアミンなどのアミン系化合物などが挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対して、好ましくは10-2〜102モル、より好ましくは10-1モル〜10モルである。
ヒドロシリル化反応において、SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(β)成分および触媒の混合の方法としては、各種方法をとることができるが、SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物に触媒を混合し、得られた混合物と(β)成分とを混合する方法が好ましい。SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分とを混合し、得られた混合物に触媒を混合する方法では、反応の制御が困難になるおそれがある。また、(β)成分と触媒とを混合し、得られた混合物とSiH基に対して反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物とを混合する方法をとる場合は、触媒の存在下で(β)成分が混入している水分に対して反応性を有するため、最終的に得られる化合物が変質するおそれがある。
反応温度は種々設定できるが、好ましくは30℃〜200℃、より好ましくは50℃〜150℃である。反応温度が低いと、十分に反応させるための反応時間が長くなり、反応温度が高いと実用的でない。反応は一定の温度で行ってもよいが、必要に応じて多段階または連続的に温度を変化させてもよい。
反応時間、反応時の圧力も必要に応じ種々設定できる。
ヒドロシリル化反応には溶剤を使用してもよい。使用できる溶剤はヒドロシリル化反応を阻害しない限り特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタンなどの炭化水素系溶剤、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン、ジエチルエーテルなどのエーテル系溶剤、アセトン、メチルエチルケトンなどのケトン系溶剤、クロロホルム、塩化メチレン、1,2−ジクロロエタンなどのハロゲン系溶剤を好適に用いることができる。溶剤は2種類以上の混合溶媒として用いることもできる。これらの溶剤の中でも、トルエン、テトラヒドロフラン、1,3−ジオキソラン、クロロホルムが好ましい。使用する溶剤量も適宜設定できる。
その他、反応性を制御する目的などのために種々の添加剤を用いてもよい。
SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分とを反応させた後に、溶剤および/または、未反応の、SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物および/または(β)成分を除去することもできる。これらは揮発分であり、これらを除去することにより、得られる(A−1)成分が揮発分を含まなくなる。その結果、(A−1)成分と(A−2)成分との硬化の場合に、揮発分の揮発によるボイド、クラックの問題が生じにくい。除去する方法としては、たとえば、減圧脱揮の他、活性炭、ケイ酸アルミニウム、シリカゲルなどによる処理などが挙げられる。減圧脱揮する場合には低温で処理することが好ましい。この場合の温度の上限は好ましくは100℃であり、より好ましくは60℃である。高温で処理すると増粘などの変質を伴いやすい。
以上のような、SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分とのヒドロシリル化反応物である(A−1)成分の例としては、ビスフェノールAジアリルエーテルと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ビニルシクロヘキセンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジビニルベンゼンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジシクロペンタジエンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、トリアリルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジアリルモノグリシジルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ビニルノルボルネンとビスジメチルシリルベンゼンとの反応物などが挙げられる。
(A−1)成分はその他の反応性基を有していてもよい。この場合の反応性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基などが挙げられる。これらの官能基を有している場合には、得られる熱硬化性樹脂組成物の接着性が高くなりやすく、得られる樹脂硬化体の強度が高くなりやすい。接着性がより高くなりうるという観点からは、これらの官能基のうちエポキシ基が好ましい。また、得られる樹脂硬化体の耐熱性が高くなりやすいという観点からは、反応性基を平均して1分子中に1個以上有していることが好ましい。
(A−1)成分は、1種を単独でまたは2種以上を組み合わせて使用できる。
次に、(A−2)成分について詳細に説明する。(A−2)成分は、1分子中に少なくとも2個のSiH基を含有する化合物である。
(A−2)成分としては、1分子中に少なくとも2個のSiH基を含有する化合物であれば特に制限がなく、たとえば、国際公開WO96/15194に記載される化合物で、1分子中に少なくとも2個のSiH基を有するものなどが使用できる。
これらのうち、入手性の面からは、1分子中に少なくとも2個のSiH基を有する鎖状
及び/又は環状オルガノポリシロキサンが好ましく、(A−1)成分との相溶性が良いという観点からは、さらに、下記一般式(VI)で表される、1分子中に少なくとも2個のSiH基を有する環状オルガノポリシロキサンが好ましい。
Figure 2013225573
(式中、R1は炭素数1〜6の有機基を表し、nは3〜10の数を表す。)
一般式(VI)で表される化合物中の置換基R1は、好ましくはC、H、Oから構成されるものであり、より好ましくは炭化水素基であり、さらに好ましくはメチル基である。また、一般式(VI)で表される化合物としては、入手容易性の観点からは、1,3,5,7−テトラメチルシクロテトラシロキサンであることが好ましい。
(A−2)成分の分子量は特に限定されないが、より流動性を発現しやすく、(B)成分および(C)成分などの粉体と均一に混合しやすいという観点からは、低分子量のものが好ましく用いられる。この場合、分子量は、好ましくは50〜100,000、より好ましくは50〜1,000、さらに好ましくは50〜700である。
(A−2)成分としては、他の成分、特に(B)成分および(C)成分などの粉体との均一な混合を容易にするため、更に詳しくは均一な混合のために融点以上に加熱して液体化させる必要がないことから、23℃において液体であることが好ましく、その粘度は、23℃において、好ましくは50Pa秒以下、より好ましくは20Pa秒以下、さらに好ましくは5Pa秒以下である。粘度はE型粘度計によって測定することができる。
(A−2)成分は、一種を単独でまたは2種以上を組み合わせて使用できる。
(A−2)成分の好ましい具体例としては、SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に1個以上含有する有機化合物(α)(以下「α成分」とする)と、1分子中に少なくとも2個のSiH基を有する化合物(β)とを、ヒドロシリル化反応して得ることができる化合物が挙げられる。このような化合物は、(A−1)成分と良好な相溶性を有すると共に、その揮発性が低いことから、得られる熱硬化性樹脂組成物からのアウトガスの問題が生じ難いという利点を有している。
ここで(α)成分は、上記した(A−1)成分である、SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物と同じもの(以下「(α1)成分」とする)も用いることができる。(α1)成分を用いると、得られる樹脂硬化体の架橋密度が高くなり、力学強度が高い樹脂硬化体となりやすい。
それ以外にも、SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に1個
含有する有機化合物(α2)(以下「α2成分」とする)も用いることができる。(α2
)成分を用いると得られる樹脂硬化体が低弾性となりやすい。
(α2)成分としては、SiH基に対して反応性を有する炭素−炭素二重結合を1分子
中に1個含有する有機化合物であれば特に限定されないが、(A−2)成分の(A−1)成分に対する相溶性がよくなるという点においては、ポリシロキサン−有機ブロックコポリマーやポリシロキサン−有機グラフトコポリマーのようなシロキサン単位(Si−O−Si)を含む化合物ではなく、構成元素としてC、H、N、O、S、およびハロゲンのみを含む化合物であることが好ましい。なお、(α2)成分において、SiH基に対して反応性を有する炭素−炭素二重結合の結合位置は特に限定されず、分子内のどこに存在してもよい。
(α2)成分である化合物は、重合体系化合物と単量体系化合物とに分類できる。
重合体系化合物としては、たとえば、ポリシロキサン系、ポリエーテル系、ポリエステル系、ポリアリレート系、ポリカーボネート系、飽和炭化水素系、不飽和炭化水素系、ポリアクリル酸エステル系、ポリアミド系、フェノール−ホルムアルデヒド系(フェノール樹脂系)、ポリイミド系の化合物などが挙げられる。
単量体系化合物としては、たとえば、フェノール系、ビスフェノール系、ベンゼン、ナフタレンなどの芳香族炭化水素系:直鎖系、脂環系などの脂肪族炭化水素系:複素環系の化合物;シリコン系の化合物;これらの混合物;などが挙げられる。
(α2)成分における、SiH基と反応性を有する炭素−炭素二重結合としては特に限定されないが、たとえば、下記一般式(I)で表わされる基が反応性の点から好適である。また、原料の入手の容易さからは、[化34]で示される基が特に好ましい。
Figure 2013225573
(式中R1は水素原子またはメチル基を表す。)
Figure 2013225573
また、(α2)成分における、SiH基と反応性を有する炭素−炭素二重結合としては、下記一般式(II)で示される脂環式の基が、樹脂硬化体の耐熱性が高いという点から好適である。また、原料の入手の容易さからは、下記[化36]で示される脂環式の基が特に好ましい。
Figure 2013225573
(式中R2は水素原子またはメチル基を表す。)
Figure 2013225573
SiH基に対して反応性を有する炭素−炭素二重結合は、(α2)成分の骨格部分に直接結合していてもよく、2価以上の置換基を介して共有結合していても良い。2価以上の置換基としては、炭素数0〜10の置換基であれば特に限定されないが、(B)成分の(A)成分に対する相溶性がよくなりやすいという点においては、構成元素としてC、H、N、O、S、およびハロゲンのみを含むものが好ましい。これらの置換基の例としては、下記[化37]および[化38]で示される2価以上の基が挙げられる。また、これらの2価以上の置換基の2つ以上が共有結合によりつながって1つの2価以上の置換基を構成していてもよい。
Figure 2013225573
Figure 2013225573
以上のような骨格部分に共有結合する基の例としては、ビニル基、アリル基、メタリル基、アクリル基、メタクリル基、2−ヒドロキシ−3−(アリルオキシ)プロピル基、2−アリルフェニル基、3−アリルフェニル基、4−アリルフェニル基、2−(アリルオキシ)フェニル基、3−(アリルオキシ)フェニル基、4−(アリルオキシ)フェニル基、2−(アリルオキシ)エチル基、2、2−ビス(アリルオキシメチル)ブチル基、3−アリルオキシ−2、2−ビス(アリルオキシメチル)プロピル基、下記[化39]で示される各基などが挙げられる。
Figure 2013225573
(α2)成分の具体例としては、プロペン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、1−ウンデセン、出光石油化学社製リニアレン、4,4−ジメチル−1−ペンテン、2−メチル−1−ヘキセン、2,3,3−トリメチル−1−ブテン、2,4,4−トリメチル−1−ペンテンなどの鎖状脂肪族炭化水素系化合物類、シクロヘキセン、メチルシクロヘキセン、メチレンシクロヘキサン、ノルボルニレン、エチリデンシクロヘキサン、ビニルシクロヘキサン、カンフェン、カレン、αピネン、βピネンなどの環状脂肪族炭化水素系化合物類、スチレン、αメチルスチレン、インデン、フェニルアセチレン、4−エチニルトルエン、アリルベンゼン、4−フェニル−1−ブテンなどの芳香族炭化水素系化合物、アルキルアリルエーテル、アリルフェニルエーテルなどのアリルエーテル類、グリセリンモノアリルエーテル、エチレングリコールモノアリルエーテル、4−ビニル−1,3−ジオキソラン−2−オンなどの脂肪族系化合物類、1,2−ジメトキシ−4−アリルベンゼン、o−アリルフェノールなどの芳香族系化合物類、モノアリルジベンジルイソシアヌレート、モノアリルジグリシジルイソシアヌレートなどの置換イソシアヌレート類、ビニルトリメチルシラン、ビニルトリメトキシシラン、ビニルトリフェニルシランなどのシリコン化合物などが挙げられる。
さらに、(α2)成分の具体例として、片末端アリル化ポリエチレンオキサイド、片末端アリル化ポリプロピレンオキサイドなどのポリエーテル系樹脂、片末端アリル化ポリイソブチレンなどの炭化水素系樹脂、片末端アリル化ポリブチルアクリレート、片末端アリル化ポリメチルメタクリレートなどのアクリル系樹脂などの、片末端にビニル基を有するポリマーまたはオリゴマー類などが挙げられる。
(α2)成分の構造は線状でも枝分かれ状でもよく、分子量は特に制約はなく種々のものを使用できる。分子量分布も特に制限されないが、熱硬化性樹脂組成物の粘度が低くなり、成形性が良好となりやすいという点においては、分子量分布は好ましくは3以下であり、より好ましくは2以下であり、さらに好ましくは1.5以下である。本明細書において、分子量分布(重量平均分子量と数平均分子量との比)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出した。ただし、GPCカラムとしてポリスチレン架橋ゲルを充填したもの(shodex GPC K−804、K−802.5、昭和電工株式会社製)を、GPC溶媒としてクロロホルムを用いた。
(α2)成分がTgを有する場合、Tgについても特に限定はなく種々のものが用いられるが、得られる樹脂硬化体が強靭となりやすいという点においては、Tgは、好ましくは100℃以下であり、より好ましくは50℃以下であり、さらに好ましくは0℃以下である。好ましい樹脂の例としては、ポリブチルアクリレート樹脂などが挙げられる。逆に得られる樹脂硬化体の耐熱性が高くなるという点においては、Tgは、好ましくは100℃以上であり、より好ましくは120℃以上であり、さらに好ましくは150℃以上であり、最も好ましくは170℃以上である。Tgは動的粘弾性測定においてtanδが極大を示す温度として求めることができる。
(α2)成分は、得られる樹脂硬化体の耐熱性が高くなるという観点からは、炭化水素化合物であることが好ましい。この場合、好ましい炭素数は7〜10である。
(α2)成分は、その他の反応性基を有していてもよい。この場合の反応性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基などが挙げられる。これらの官能基を有している場合には、得られる熱硬化性樹脂組成物の接着性が高くなりやすく、得られる樹脂硬化体の強度が高くなりやすい。接着性がより高くなりうるという点からは、これらの官能基のうちエポキシ基が好ましい。また、得られる樹脂硬化体の耐熱性が高くなりやすいという点においては、反応性基を平均して1分子中に1個以上有していることが好ましい。具体的にはモノアリルジグリシジルイソシアヌレート、アリルグリシジルエーテル、アリロキシエチルメタクリレート、アリロキシエチルアクリレート、ビニルトリメトキシシランなどが挙げられる。
上記のような(α1)成分は、1種を単独でまたは2種以上を組み合わせて使用できる。また、(α2)成分も、1種を単独でまたは2種以上を組み合わせて使用できる。
次に(β)成分について、詳細に説明する。(β)成分は、1分子中に少なくとも2個
のSiH基を有する化合物であり、鎖状及び/又は環状のポリオルガノシロキサンもその
例である。具体的には、たとえば、下記[化40]および[化41]に示される各化合物
が挙げられる。
Figure 2013225573
Figure 2013225573
ここで、(α)成分との相溶性が良くなりやすいという観点から、下記一般式(VI)で表される、1分子中に少なくとも3個のSiH基を有する環状ポリオルガノシロキサンが好ましい。下記一般式(VI)で表される化合物中の置換基R1は、好ましくはC、H、Oから構成される基であり、より好ましくは炭化水素基であり、さらに好ましくはメチル基である。また、入手容易性などから、1,3,5,7−テトラメチルシクロテトラシロキサンであることが好ましい。
Figure 2013225573
(式中、R1は炭素数1〜6の有機基を表し、nは3〜10の数を表す。)
(β)成分のその他の例として、ビスジメチルシリルベンゼンなどのSiH基を有する化合物が挙げられる。
上記した各種(β)成分は、1種を単独でまたは2種以上を組み合わせて使用できる。
上記したように、本発明においては、(α)成分と(β)成分とをヒドロシリル化反応させることにより得られる化合物を(A−2)成分として使用できる。尚、(α)成分と(β)成分とをヒドロシリル化反応すると、本発明の(A−2)成分として使用できる化合物と共に、他の1種以上の化合物を含む混合物が得られることがある。このような混合物は、そこから(A−2)成分として使用できる化合物を分離することなく、そのまま(A−2)成分として用いて本発明の熱硬化性樹脂組成物を作製することもできる。
(α)成分と(β)成分とのヒドロシリル化反応は、具体的には次の通りである。(α)成分と(β)成分の混合比率は、特に限定されないが、得られる(A−2)成分と(A−1)成分とのヒドロシリル化による樹脂硬化体の強度を考えた場合、(A−2)成分のSiH基が多い方が好ましいため、一般に混在する(α)成分中のSiH基に対する反応性を有する炭素−炭素二重結合の総数(X)と、混在する(β)成分中のSiH基の総数(Y)との比(Y/X)が、好ましくはY/X≧2であり、より好ましくはY/X≧3である。また(B)成分の(A)成分に対する相溶性がよくなりやすいという観点からは、好ましくは10≧Y/Xであり、より好ましくは5≧Y/Xである。
(α)成分と(β)成分とのヒドロシリル化反応においては、適当な触媒を用いてもよい。触媒としては、たとえば、白金の単体、アルミナ、シリカ、カーボンブラックなどの担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトンなどとの錯体、白金−オレフィン錯体(たとえば、Pt(CH2=CH22(PPh32、Pt(CH2=CH22Cl2)、白金−ビニルシロキサン錯体(たとえば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4m)、白金−ホスフィン錯体(たとえば、Pt(PPh34、Pt(PBu34)、白金−ホスファイト錯体(たとえば、Pt[P(OPh)34、Pt[P(OBu)34)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、アシュビー(Ashby)の米国特許第3159601号及び第3159662号明細書中に記載された白金−炭化水素複合体、ラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体などが挙げられる。
また、白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl23、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4、などが挙げられる。
上記した各触媒の中では、触媒活性の点から塩化白金酸、白金−オレフィン錯体、白金−ビニルシロキサン錯体などが好ましい。
上記した各種の触媒は、1種を単独でまたは2種以上を組み合わせて使用できる。
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつコストが比較的に低く抑えられた熱硬化性樹脂組成物を得るためには、好ましくは10-8モル〜10-1モル、より好ましくは10-6モル〜10-2モルである。
また、上記触媒と共に助触媒を使用できる。助触媒の具体例としては、トリフェニルホスフィンなどのリン系化合物、ジメチルマレートなどの1,2−ジエステル系化合物、2−ヒドロキシ−2−メチル−1−ブチンなどのアセチレンアルコール系化合物、単体の硫黄などの硫黄系化合物、トリエチルアミンなどのアミン系化合物などが挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対して、好ましくは10-2モル〜102モル、より好ましくは10-1モル〜10モルである。
反応させる場合の(α)成分、(β)成分および触媒の混合の方法としては、各種方法をとることができるが、(α)成分に触媒を混合し、得られた混合物を(β)成分に混合する方法が好ましい。(α)成分と(β)成分との混合物に触媒を混合する方法をとる場合は、反応の制御が困難になるおそれがある。(β)成分と触媒との混合物に(α)成分を混合する方法をとる場合は、触媒の存在下で(β)成分が混入している水分に対して反応性を有するため、得られる最終生成物が変質するおそれがある。
反応温度としては種々設定できるが、好ましくは30℃〜200℃、より好ましくは50℃〜150℃である。反応温度が低いと十分に反応させるための反応時間が長くなり、反応温度が高いと実用的でない。反応は一定の温度で行ってもよいが、必要に応じて多段階または連続的に温度を変化させてもよい。
反応時間、反応時の圧力も必要に応じ種々設定できる。
(α)成分と(β)成分とのヒドロシリル化反応に溶剤を使用してもよい。使用できる溶剤はヒドロシリル化反応を阻害しない限り特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタンなどの炭化水素系溶剤、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン、ジエチルエーテルなどのエーテル系溶剤、アセトン、メチルエチルケトンなどのケトン系溶剤、クロロホルム、塩化メチレン、1,2−ジクロロエタンなどのハロゲン系溶剤を好適に用いることができる。溶剤は1種を単独でまたは2種以上を組み合わせて使用できる。これらの溶剤の中でも、トルエン、テトラヒドロフラン、1,3−ジオキソラン、クロロホルムが好ましい。溶剤の使用量も適宜設定できる。
その他、反応性を制御する目的などのために種々の添加剤を用いてもよい。
(α)成分と(β)成分とを反応させた後に、溶剤および/または未反応の(α)成分および/または(β)成分を除去することもできる。これらは揮発分であり、これらを除去することにより、揮発分を有しない(B)成分が得られる。その結果、(A)成分と(B)成分とを硬化させる場合に揮発分の揮発によるボイド、クラックの問題が生じにくい。除去する方法としては、たとえば、減圧脱揮の他、活性炭、ケイ酸アルミニウム、シリカゲルなどによる処理などが挙げられる。減圧脱揮する場合には低温で処理することが好ましい。この場合の温度の上限は、好ましくは100℃、より好ましくは60℃である。高温で処理すると増粘などの変質を伴いやすい。
以上のような、(α)成分と(β)成分のヒドロシリル化反応物である(A−2)成分の具体例としては、ビスフェノールAジアリルエーテルと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ビニルシクロヘキセンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジビニルベンゼンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジシクロペンタジエンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、トリアリルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジアリルモノグリシジルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、アリルグリシジルエーテルと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、αメチルスチレンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、モノアリルジグリシジルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ビニルノルボルネンとビスジメチルシリルベンゼンとの反応物などが挙げられる。
(A−1)成分と(A−2)成分とを混合する場合、(A−1)成分と(A−2)成分の組合せとしては、上記に例示した(A−1)成分から選ばれる少なくとも1種と、上記に例示した(A−2)成分から選ばれる少なくとも1種と、の各種組み合わせが挙げられる。
(A−1)成分と(A−2)成分との混合比率は、必要な強度を失わない限りは特に限定されないが、(A−2)成分中のSiH基の数(Y)の、(A−1)成分中の炭素−炭素二重結合の数(X)に対する比(Y/X)が、好ましくは0.3≦Y/X≦3、より好ましくは0.5≦Y/X≦2、さらに好ましくは0.7≦Y/X≦1.5である。好ましい範囲からはずれた場合には、十分な強度が得られなかったり、熱劣化しやすくなったりする場合がある。
本発明の(A−3)成分はヒドロシリル化触媒である。ヒドロシリル化触媒としては、ヒドロシリル化反応の触媒活性があれば特に限定されないが、たとえば、白金の単体、アルミナ、シリカ、カーボンブラックなどの担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトンなどとの錯体、白金−オレフィン錯体(たとえば、Pt(CH2=CH22(PPh32、Pt(CH2=CH22Cl2)、白金−ビニルシロキサン錯体(たとえば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4]m)、白金−ホスフィン錯体(たとえば、Pt(PPh34、Pt(PBu34)、白金−ホスファイト錯体(たとえば、Pt[P(OPh)34、Pt[P(OBu)34)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号および3159662号明細書中に記載された白金−炭化水素複合体、ラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体などが挙げられる。
また、白金化合物以外の触媒としては、RhCl(PPh)3、RhCl3、RhAl23、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4、などが挙げられる。
これらの触媒の中では、触媒活性の点から塩化白金酸、白金−オレフィン錯体、白金−
ビニルシロキサン錯体などが好ましい。また、これらの触媒は1種を単独でまたは2種以
上を組み合わせて使用できる。
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ熱硬化性樹脂組成物のコストを比較的低く抑えるためには、(A−2)成分のSiH基1モルに対して、好ましくは10-8モル〜10-1モル、より好ましくは10-6モル〜10-2モルである。
また、上記触媒と共に助触媒を使用できる。助触媒の具体例としては、トリフェニルホスフィンなどのリン系化合物、ジメチルマレートなどの1,2−ジエステル系化合物、2−ヒドロキシ−2−メチル−1−ブチンなどのアセチレンアルコール系化合物、単体の硫黄などの硫黄系化合物、トリエチルアミンなどのアミン系化合物などが挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対して、好ましくは10-2モル〜102モルであり、より好ましくは10-1モル〜10モルである。
(A)成分である熱硬化性樹脂の使用量は、特に限定されないが、白色熱硬化組成物全体に占める(A)成分の量が5重量%以上20重量%以下であることが好ましい。20重量%以上であると白色熱硬化組成物の硬化物の熱膨張係数が大きくなる傾向があり、5重量%以下であると白色熱硬化組成物の硬化物の強度が低下する傾向があるからである。
<(B)白色顔料>
白色熱硬化組成物は、(B)成分を含有することを必須とする。(B)成分は白色顔料であり、得られる樹脂硬化体の光線反射率を高める効果を有する。
(B)成分としてはチタン酸バリウムを使用することが好ましい。発明者らは、鋭意検討し、チタン酸バリウムは従来白色顔料として使用されている顔料よりも近紫外線領域における反射率が高いことを見出した。また白色顔料として広く用いられている酸化チタンと比較して近紫外線領域での光触媒活性が格段に低いため、LEDのリフレクターとして使用した場合に、紫外線を発光する発光素子からの光エネルギーに暴露された場合の反射率の低下が抑制され、チタン酸バリウムを用いたリフレクターの耐久性が優れることも併せて見出したものである。白色顔料にチタン酸バリウムを用いた場合、350nm〜420nmの光反射率が30%以上を実現できるため望ましい。特に(A)熱硬化性樹脂をエポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂、アクリレート樹脂、付加型の有機−無機ハイブリッド樹脂とした場合、350nm〜420nmの光反射率が35%以上を実現できるためさらに望ましい。
(B)成分の平均粒径としては特に限定されず、種々のものが用いられるが、得られる樹脂硬化体の分光反射率が高くなりやすく、また白色熱硬化組成物のタブレットがより硬くなるという観点からは、好ましくは1μm以下、より好ましくは0.3μm以下、さらに好ましくは0.25μm以下である。白色熱硬化組成物のタブレットについては後述する。一方、白色熱硬化組成物の流動性が高いという観点からは、好ましくは0.05μm以上、より好ましくは0.1μm以上である。平均粒径は、レーザー回折散乱式粒度分布計を用いて測定することができる。
(B)成分は表面処理が施されていても良い。(B)成分の表面処理では、(B)成分の表面に無機化合物および有機化合物から選ばれる少なくとも1種を被覆する。無機化合物としては、たとえば、アルミニウム化合物、ケイ素化合物、ジルコニウム化合物、スズ化合物、チタニウム化合物、アンチモン化合物などが挙げられ、また、有機化合物としては、多価アルコール、アルカノールアミン又はその誘導体、有機シロキサンなどの有機ケイ素化合物、高級脂肪酸およびその金属塩、有機金属化合物などが挙げられる。
(B)成分表面への無機化合物や有機化合物の被覆は、湿式法や乾式法の公知の方法を用いて、たとえばチタン酸バリウムを乾式粉砕する際、湿式粉砕する際またはスラリー化する際に行うことができる。他にも、液相法、気相法など、種々の方法が挙げられる。
これらの中では、得られる樹脂硬化体の分光反射率が高く、耐熱性および耐光性が良好になる観点から、有機シロキサンで処理されていることが好ましい。また、有機シロキサン処理されたチタン酸バリウムを含有させることにより、光取り出し効率が高く、長期間使用しても光取り出し効率が低下しない優良な発光装置を得ることができる。
ここで、有機シロキサン処理剤としては種々のものを使用でき、たとえば、シランカップリング剤や、ヘキサメチルジシロキサン、ヘキサメチルジシラザンなどが挙げられる。シランカップリング剤としては各種シラン類を使用でき、たとえば、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリメチルハイドロジェンシロキサン、それらの2種以上の共重合体などのポリシロキサン類、ヘキサメチルシクロトリシロキサン、ヘプタメチルシクロテトラシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサンなどのシクロシロキサン類、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシランなどのクロロシラン類、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシランなどのエポキシ官能基を有するシラン類、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシランなどのメタクリル基またはアクリル基を有するシラン類、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリアセトキシシランなどのビニル基を有するシラン類、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシランなどのメルカプトシラン類、γ−アミノプロピルトリエトキシシラン、γ−[ビス(β−ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−(β−アミノエチル)アミノプロピルジメトキシメチルシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシランなどのアミノ基を有するシラン類、イソシアネートプロピルトリメトキシシラン、イソシアネートプロピルトリエトキシシランなどのイソシアネート基を有するシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシランなどのアルキル基を有するシラン類、γ−クロロプロピルトリメトキシシラン、γ−アニリノプロピルトリメトキシシランなどのその他のシラン類などが挙げられる。これらの有機シロキサン処理剤の中でも、炭素−炭素二重結合を含まないものが好ましい。炭素−炭素二重結合を含むと、耐熱性が低下しやすくなる。また、有機シロキサン以外の表面処理剤を併用することも可能である。このような表面処理剤
としては、Al、Zr、Znなどが挙げられる。
また、(B)成分は、無機化合物により表面処理されていてもよい。無機化合物による表面処理方法としては特に限定されず、アルミニウム化合物、ケイ素化合物、ジルコニウム化合物などを用いる、種々の表面処理方法が挙げられる。表面処理の方法としても各種方法を適用することができ、湿式法、乾式法、液相法、気相法など、種々の方法が例示できる。チタン酸バリウムは、耐久性を向上させ、媒体との親和性を向上させ、さらには粒子形状の崩れを防止するなどの目的で無機化合物、有機化合物で表面処理する場合がある。(B)成分を無機化合物で表面処理することにより、白色熱硬化組成物に含まれる各成分との親和性が向上し、(B)成分の白色熱硬化組成物に対する分散性が良くなり、樹脂硬化体の強度が向上すると考えられる。
(B)成分の使用量は、特に限定されないが、白色熱硬化組成物全体に占める(B)成分の量が10重量%以上30重量%以下であることが好ましい。10重量%未満であると、得られる樹脂硬化体の光線反射率が低下することがある。
(B)成分の白色顔料の混合の順序としては、各種方法をとることができるが、白色硬化性樹脂組成物の中間原料の貯蔵安定性が良好になりやすいという観点からは、(A−1)成分に(A−3)成分および白色顔料を混合したものと、(A−2)成分とを混合する方法が好ましい。(A−2)成分に(A−3)成分および/または白色顔料を混合したものに(A−1)成分を混合する方法をとる場合は、(A−3)成分の存在下および/または非存在下において(A−2)成分が環境中の水分および/または白色顔料との反応性を有するため、貯蔵中などに変質することもある。また、反応成分である(A−1)成分、(A−2)成分および(A−3)成分がよく混合されて安定した成形物が得られやすいという観点からは、(A−1)成分、(A−2)成分および(A−3)成分を混合したものと、白色顔料と、を混合することが好ましい。
(B)成分の白色顔料を混合する手段としては、従来エポキシ樹脂などに用いられおよび/または提案されている種々の手段を用いることができる。たとえば、2本ロール、3本ロール、遊星式撹拌脱泡装置、ホモジナイザー、ディゾルバー、プラネタリーミキサーなどの撹拌機、プラストミルなどの溶融混練機などが挙げられる。これらのうち、高充填であっても白色顔料の十分な分散性が得られやすいという観点からは、3本ロール、溶融混練機が好ましい。無機充填材の混合は、常温で行ってもよいし加熱して行ってもよい。また、常圧下に行ってもよいし減圧状態で行ってもよい。高充填であっても白色顔料の十分な分散性が得られやすいという観点からは、加熱状態で混合することが好ましく、白色顔料表面の塗れ性を向上させ、十分な分散性が得られやすいという観点からは、減圧状態で混合することが好ましい。
<(C)無機充填材>
本発明の(C)成分は無機充填材である。(C)成分は、得られる樹脂硬化体の強度や硬度を高くしたり、線膨張率を低減化したりする効果を有する。
(C)成分の無機充填材としては、従来のエポキシ系などの封止材の充填材として一般に使用および/または提案されている各種無機充填材が用いられるが、たとえば、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカなどのシリカ系無機充填材、アルミナ、ジルコン、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ガラス繊維、アルミナ繊維、炭素繊維、マイカ、黒鉛、カーボンブラック、グラファイト、ケイソウ土、白土、クレー、タルク、水酸化アルミニウム、炭酸カルシウム、チタン酸カリウム、ケイ酸カルシウム、無機バルーン、銀粉などが挙げられる。無機充填材としては、半導体素子へダメージを与え難いという観点からは、低放射線性であることが好ましい。
無機充填材は適宜表面処理してもよい。表面処理としては、カップリング剤による処理、アルキル化処理、トリメチルシリル化処理、シリコーン処理などが挙げられる。
この場合のカップリング剤の例としては、シランカップリング剤が挙げられる。シランカップリング剤としては、分子中に有機基と反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。有機基と反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。
好ましいシランカップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシランなどのエポキシ官能基を有するアルコキシシラン類:3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラ、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシランなどのメタクリル基またはアクリル基を有するアルコキシシラン類などが挙げられる。
その他にも、無機化合物を添加する方法が挙げられる。たとえば、本発明で用いる白色熱硬化性組成物に無機化合物を添加して、白色熱硬化性組成物中または白色熱硬化性組成物の部分反応物中で反応させ、白色熱硬化性組成物中で無機充填材を生成させる方法が挙げられる。このような無機化合物としては、アルコキシシラン、アシロキシシラン、ハロゲン化シランなどの加水分解性シランモノマーまたはオリゴマー、チタン、アルミニウムなどの金属のアルコキシド、アシロキシド、ハロゲン化物などが挙げられる。
以上のような無機充填材のうち、硬化反応を阻害し難く、線膨張係数の低減化効果が大きく、リードまたはリードフレームとの接着性が高くなりやすいという観点からは、シリカ系無機充填材が好ましい。さらに、成形性、電気特性などの物性バランスがよいという観点からは、溶融シリカが好ましく、樹脂硬化体の熱伝導性が高くなり易く、放熱性の高い樹脂成形体設計が可能になるという観点からは、結晶性シリカが好ましい。より放熱性が高くなり易いという観点からは、アルミナが好ましい。その他、補強効果が高く、樹脂成形体の強度が高くなり易いという観点からは、ガラス繊維、チタン酸カリウム、ケイ酸カルシウムが好ましい。
無機充填材の平均粒径や粒径分布としては、エポキシ系などの従来の封止材の充填材として使用および/または提案されているものをはじめ、特に限定なく各種のものが用いられるが、通常用いられる平均粒径は0.1μm〜120μmであり、流動性が良好になりやすいという観点から好ましくは0.5μm〜60μm、より好ましくは0.5μm〜15μmである。
無機充填材の比表面積についても、エポキシ系などの従来の封止材の充填材として使用および/または提案されているものをはじめ、各種設定できる。
無機充填材の形状としては、破砕状、片状、球状、棒状など、各種のものが用いられる。アスペクト比も種々のものが用いられる。得られる樹脂硬化体の強度が高くなりやすいという観点からは、アスペクト比が10以上のものが好ましい。また、樹脂のなど方性収縮の観点からは、繊維状よりは粉末状が好ましい。高充填時にも成形時の流れ性がよくなり易いという観点からは、球状のものが好ましい。
上記した各種の無機充填材は、1種を単独でまたは2種以上を組み合わせて使用できる。
(C)成分の使用量は特に限定されないが、白色熱硬化組成物全体に占める(C)成分の量が50重量%以上であることが好ましい。(C)成分の量が少ないと、強度や硬度を向上させる効果、線膨張率を低減化する効果などが得られにくくなる。
(B)成分および(C)成分の合計量は特に限定されないが、白色硬化性樹脂組成物全体に占める(B)成分および(C)成分の合計量が70重量%以上であることが好ましく、80重量%以上であることがより好ましい。
(B)成分および(C)成分の合計量が少ないと、強度や硬度を高くする効果や、線膨張率を低減化する効果が得られにくくなる。
(C)成分の混合の順序としては、各種方法をとることができるが、好ましい態様は、
既に説明した(B)成分の場合と同様である。また、(C)成分と(B)成分とは同時に添加してもよい。(C)成分を混合する手段としては、(B)成分を混合する手段と同様の手段を用いることができる。
<(D)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物>
本発明の(D)成分は、SiH基に対して反応性を有する炭素−炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物である。(D)成分を用いることにより、(C)成分の無機充填材と混合した場合に、より小さな線膨張係数を有する樹脂硬化体を与える白色硬化性樹脂組成物とすることができる。
(D)成分のシリコーン化合物は、実質的にその骨格がSi−O−Si結合で形成されている化合物であり、直鎖状、環状、分枝状、部分ネットワークを有するものなど種々のものが用いられる。このような骨格には、種々の置換基が結合していてもよい。
骨格に結合する置換基としては、メチル基、エチル基、プロピル基、オクチル基などのアルキル基、フェニル基、2−フェニルエチル基、2−フェニルプロピル基などのアリール基、メトキシ基、エトキシ基、イソプロポキシ基などのアルコキシ基、水酸基などの基が挙げられる。これらのうち、耐熱性が高くなりやすいという点においては、メチル基、フェニル基、水酸基、メトキシ基が好ましく、メチル基、フェニル基がより好ましい。また、SiH基に対して反応性を有する炭素−炭素二重結合を有する置換基としては、ビニル基、アリル基、アクリロキシ基、メタクリロキシ基、アクリロキシプロピル基、メタクリロキシプロピル基などが挙げられる。これらの中でも、反応性がよいという点においては、ビニル基が好ましい。
(D)成分は、次の式で表わされる化合物であってもよい。
n(CH2=CH)mSiO(4-n-m)/2
(式中、Rは水酸基、メチル基あるいはフェニル基から選ばれる基であり、n、mは0≦n<4、0<m≦4、0<n+m≦4を満たす数)
(D)成分の具体例としては、末端基または側鎖基としてビニル基を有するポリジメチルシロキサン、ポリジフェニルシロキサン、ポリメチルフェニルシロキサン、これらのシロキサンから選ばれる2種または3種のランダムまたはブロック共重合体、1,3−ジビニルテトラメチルジシロキサン、1,3,5,7−テトラビニルシクロテトラシロキサンなどが挙げられる。(D)成分は1種を単独でまたは2種以上を組み合わせて使用できる。
これらの内、本発明の効果がより得られやすいという点においては、ビニル基を末端に有する直鎖状ポリシロキサンが好ましく、ビニル基を両末端に有する直鎖状ポリシロキサンがより好ましく、両末端にビニル基を有する直鎖状ポリメチルフェニルシロキサンがさらに好ましく、両末端にビニル基を有する直鎖状ポリメチルフェニルシロキサンであって、全置換基に対するフェニル基の量が20モル%以上であるシロキサンであることが特に好ましい。
(D)成分の分子量は、重量平均分子量(Mw)として、好ましくは1,000以上、1,000,000以下であり、より好ましくは5,000以上、100,000以下であり、さらに好ましくは10,000以上、100,000以下である。分子量が高い場合には、得られる樹脂硬化体が低応力となりやすい。分子量が大きい場合には、(A−1)成分との相溶性が得られにくくなる。
(D)成分の使用量は、(A−1)成分と(A−2)成分との合計量に対して、好ましくは30重量%以上、より好ましくは50重量%以上、さらに好ましくは80重量%以上である。
また、(A−1)成分、(A−2)成分および(D)成分の混合比率は、必要な強度を失わない限りは特に限定されないが、(A−2)成分中のSiH基の数(Y)の、(A−1)成分および(D)成分中のSiH基に対して反応性を有する炭素−炭素二重結合の数(X)に対する比が、好ましくは0.3≦Y/X≦3、より好ましくは0.5≦Y/X≦2、さらに好ましくは0.7≦Y/X≦1.5である。好ましい範囲からはずれた場合には、十分な強度が得られなかったり、熱劣化しやすくなったりする場合がある。
<金属石鹸(E)>
白色熱硬化性組成物は、(E)成分を含有することができる。(E)成分は金属石鹸であり、白色熱硬化性組成物の離型性をはじめとする成形性を改良するために添加される。
(E)成分としては、従来使用されている各種金属石鹸があげられる。ここでいう金属石鹸とは、一般に長鎖脂肪酸と金属イオンが結合したものであり、脂肪酸に基づく無極性または低極性の部分と、金属との結合部分に基づく極性の部分を一分子中に併せて持っていれば本発明で使用できる。長鎖脂肪酸としては、たとえば、炭素数1〜18の飽和脂肪酸、炭素数3〜18の不飽和脂肪酸、脂肪族ジカルボン酸などが挙げられる。これらの中では、入手性が容易であり、工業的実現性が高いという観点からは、炭素数1〜18の飽和脂肪酸が好ましく、さらに、離型性の効果が高いという観点からは、炭素数6〜18の飽和脂肪酸がより好ましい。金属イオンとしては、アルカリ金属、アルカリ土類金属、亜鉛、コバルト、アルミニウム、ストロンチウムなどのイオンが挙げられる。
金属石鹸をより具体的に例示すれば、ステアリン酸リチウム、12−ヒドロキシステアリン酸リチウム、ラウリン酸リチウム、オレイン酸リチウム、2−エチルヘキサン酸リチウム、ステアリン酸ナトリウム、12−ヒドロキシステアリン酸ナトリウム、ラウリン酸ナトリウム、オレイン酸ナトリウム、2−エチルヘキサン酸ナトリウム、ステアリン酸カリウム、12−ヒドロキシステアリン酸カリウム、ラウリン酸カリウム、オレイン酸カリウム、2−エチルヘキサン酸カリウム、ステアリン酸マグネシウム、12−ヒドロキシステアリン酸マグネシウム、ラウリン酸マグネシウム、オレイン酸マグネシウム、2−エチルヘキサン酸マグネシウム、ステアリン酸カルシウム、12−ヒドロキシステアリン酸カルシウム、ラウリン酸カルシウム、オレイン酸カルシウム、2−エチルヘキサン酸カルシウム、ステアリン酸バリウム、12−ヒドロキシステアリン酸バリウム、ラウリン酸バリウム、ステアリン酸亜鉛、12−ヒドロキシステアリン酸亜鉛、ラウリン酸亜鉛、オレイ
ン酸亜鉛、2−エチルヘキサン酸亜鉛、ステアリン酸鉛、12−ヒドロキシステアリン酸鉛、ステアリン酸コバルト、ステアリン酸アルミニウム、オレイン酸マンガン、リシノール酸バリウムなどが挙げられる。これらの金属石鹸の中では、入手性が容易であり、安性が高く、工業的実現性が高いという観点から、ステアリン酸金属塩類が好ましく、特に経済性の観点からは、ステアリン酸カルシウム、ステアリン酸マグネシウムおよびステアリン酸亜鉛からなる群から選択される1つ以上のものが最も好ましい。
金属石鹸の添加量は特に制限はないが、白色硬化性樹脂組成物全体100重量部に対して、好ましくは0.01重量部〜5重量部、より好ましくは0.025重量部〜4重量部、さらに好ましくは0.05重量部〜4重量部である。添加量が多すぎる場合は、得られる樹脂硬化体の物性が低下し、添加量が少なすぎる場合は、金型離型性が得られないことがある。
<その他の添加剤>
白色硬化性樹脂組成物には種々の添加剤を添加することができる。添加剤としては、表面実装型発光装置用の樹脂硬化体に用いられる各種の添加剤をいずれも使用でき、たとえば、硬化遅延剤、接着性改良剤、老化防止剤、ラジカル禁止剤、紫外線吸収剤、溶剤、発光素子のための添加剤、離型剤などが挙げられる。
硬化遅延剤は、たとえば、白色硬化性樹脂組成物の保存安定性を改良する目的または製造過程でのヒドロシリル化反応の反応性を調整する目的で使用することができる。硬化遅延剤としては、脂肪族不飽和結合を含有する化合物、有機リン化合物、有機イオウ化合物、窒素含有化合物、スズ系化合物、有機過酸化物などが挙げられる。
脂肪族不飽和結合を含有する化合物としては、3−ヒドロキシ−3−メチル−1−ブチン、3−ヒドロキシ−3−フェニル−1−ブチン、1−エチニル−1−シクロヘキサノールなどのプロパギルアルコール類、エン−イン化合物類、ジメチルマレートなどのマレイン酸エステル類などが挙げられる。有機リン化合物としては、トリオルガノフォスフィン類、ジオルガノフォスフィン類、オルガノフォスフォン類、トリオルガノフォスファイト類などが挙げられる。有機イオウ化合物としては、オルガノメルカプタン類、ジオルガノスルフィド類、硫化水素、ベンゾチアゾール、チアゾール、ベンゾチアゾールジサルファイドなどが挙げられる。窒素含有化合物としては、アンモニア、1〜3級アルキルアミン類、アリールアミン類、尿素、ヒドラジンなどが挙げられる。スズ系化合物としては、ハロゲン化第一スズ2水和物、カルボン酸第一スズなどが挙げられる。有機過酸化物としては、ジ−tert−ブチルペルオキシド、ジクミルペルオキシド、ベンゾイルペルオキシド、過安息香酸t−ブチルなどが挙げられる。
これらの硬化遅延剤のうち、遅延活性が良好でかつ原料入手性がよいという観点からは、ベンゾチアゾール、チアゾール、ジメチルマレート、3−ヒドロキシ−3−メチル−1−ブチン、1−エチニル−1−シクロヘキサノールが好ましい。これらの硬化遅延剤は1種を単独でまたは2種以上を組み合わせて使用できる。硬化遅延剤の添加量は種々設定できるが、使用するヒドロシリル化触媒1molに対して、好ましくは10-1モル〜103モル、より好ましくは1モル〜50モルである。
接着性改良剤としては、たとえば、一般に用いられている接着剤、種々のカップリング剤、エポキシ化合物、フェノール樹脂、クマロン−インデン樹脂、ロジンエステル樹脂、テルペン−フェノール樹脂、α−メチルスチレン−ビニルトルエン共重合体、ポリエチルメチルスチレン、芳香族ポリイソシアネートなどが挙げられる。
カップリング剤としては、たとえば、シランカップリング剤、チタネート系カップリング剤などが挙げられる。カップリング剤の例や好ましい例は、上記したものと同じである。これらのカップリング剤は、1種を単独でまたは2種以上を組み合わせて使用できる。カップリング剤の添加量は種々設定できるが、(A−1)成分と(A−2)成分との合計量100重量部に対して、好ましくは0.1重量部〜50重量部、より好ましくは0.5重量部〜25重量部である。添加量が少ないと、接着性改良効果が表れず、添加量が多いと、得られる樹脂硬化体の物性に悪影響を及ぼす場合がある。
接着性改良剤として用いるエポキシ化合物としては、たとえば、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2’−ビス(4−グリシジルオキシシクロヘキシル)プロパン、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキサイド、2−(3,4−エポキシシクロヘキシル)−5,5−スピロ−(3,4−エポキシシクロヘキサン)−1,3−ジオキサン、ビス(3,4−エポキシシクロヘキシル)アジペート、1,2−シクロプロパンジカルボン酸ビスグリシジルエステル、トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジアリルモノグリシジルイソシアヌレートなどが挙げられる。これらのエポキシ化合物は、1種を単独でまたは2種以上を組み合わせて使用できる。
エポキシ化合物の添加量は、(A−1)成分と(A−2)成分との合計量100重量部に対して、好ましくは1重量部〜50重量部、より好ましくは3重量部〜25重量部である。添加量が少ないと、接着性改良効果が表れず、添加量が多いと、樹脂硬化体の物性に悪影響を及ぼす場合がある。
また、本発明においては、上記したカップリング剤やエポキシ化合物の効果を高めるために、さらにシラノール縮合触媒を用いることができる。これにより、接着性の向上および/または安定化が可能である。このようなシラノール縮合触媒としては特に限定されないが、ほう素系化合物、アルミニウム系化合物およびチタン系化合物よりなる群から選ばれる少なくとも1種が好ましい。
シラノール縮合触媒となるアルミニウム系化合物としては、アルミニウムトリイソプロポキシド、sec−ブトキシアルミニウムジイソフロポキシド、アルミニウムトリsec−ブトキシドなどのアルミニウムアルコキシド類:、エチルアセトアセテートアルミニウムジイソプロポキシド、アルミニウムトリス(エチルアセトアセテート)、アルミキレートM(川研ファインケミカル製、アルキルアセトアセテートアルミニウムジイソプロポキシド)、アルミニウムトリス(アセチルアセトネート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)などのアルミニウムキレート類などが挙げられる。取扱い性の観点からは、アルミニウムキレート類がより好ましい。シラノール縮合触媒となるチタン系化合物としては、テトライソプロポキシチタン、テトラブトキシチタンなどのテトラアルコキシチタン類:チタンテトラアセチルアセトナートなどのチタンキレート類:オキシ酢酸やエチレングリコールなどの残基を有する一般的なチタネートカップ
リング剤が挙げられる。
シラノール縮合触媒となるほう素系化合物としては、ほう酸エステルが挙げられる。ほう酸エステルとしては下記一般式(V)、(VI)で示されるものを好適に用いることが出来る。
B(OR33 (V)
B(OCOR33 (VI)
(式中R3は炭素数1〜48の有機基を表す。)
ほう酸エステルの具体例として、ほう酸トリ−2−エチルヘキシル、ほう酸ノルマルトリオクタデシル、ほう酸トリノルマルオクチル、ほう酸トリフェニル、トリメチレンボレート、トリス(トリメチルシリル)ボレート、ほう酸トリノルマルブチル、ほう酸トリ−sec−ブチル、ほう酸トリ−tert−ブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピル、ほう酸トリアリル、ほう酸トリエチル、ほう酸トリメチル、ほう素メトキシエトキサイドなどが挙げられる。これらほう酸エステルは1種を単独で用いてもよく、2種以上を混合して用いても良い。混合は事前に行っても良く、また樹脂硬化体の作製時に混合しても良い。
これらほう酸エステルのうち、容易に入手でき、工業的実用性が高いという観点からは、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリノルマルブチルが好ましく、なかでもほう酸トリメチルがより好ましい。
硬化時の揮発性を抑制できるという観点からは、ほう酸ノルマルトリオクタデシル、ほう酸トリノルマルオクチル、ほう酸トリフェニル、トリメチレンボレート、トリス(トリメチルシリル)ボレート、ほう酸トリノルマルブチル、ほう酸トリ−sec−ブチル、ほう酸トリ−tert−ブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピル、ほう酸トリアリル、ほう素メトキシエトキサイドが好ましく、なかでもほう酸ノルマルトリオクタデシル、ほう酸トリ−tert−ブチル、ほう酸トリフェニル、ほう酸トリノル
マルブチルがより好ましい。
揮発性の抑制、および作業性がよいという観点からは、ほう酸トリノルマルブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピルが好ましく、なかでもほう酸トリノルマルブチルがより好ましい。また、高温下での着色性が低いという観点からは、ほう酸トリメチル、ほう酸トリエチルが好ましく、なかでもほう酸トリメチルがより好ましい。
シラノール縮合触媒の使用量は種々設定できるが、カップリング剤および/またはエポキシ化合物100重量部に対して、好ましくは0.1重量部〜50重量部、より好ましくは1重量部〜30重量部である。添加量が少ないと、接着性改良効果が表れず、添加量が多いと、樹脂硬化体の物性に悪影響を及ぼす場合がある。
これらのシラノール縮合触媒は1種を単独でまたは2種以上を組み合わせて使用できる。
また、本発明においては接着性改良効果をさらに高めるために、さらにシラノール源化合物を用いることができる。これにより、接着性の向上および/または安定化が可能である。このようなシラノール源化合物としては、たとえば、トリフェニルシラノール、ジフェニルジヒドロキシシランなどのシラノール化合物、ジフェニルジメトキシシラン、テトラメトキシシラン、メチルトリメトキシシランなどのアルコキシシラン類などが挙げられる。これらのシラノール源化合物は、1種を単独でまたは2種以上を組み合わせて使用できる。
シラノール源化合物の使用量は種々設定できるが、カップリング剤および/またはエポキシ化合物100重量部に対して、好ましくは0.1重量部〜50重量部、より好ましくは1重量部〜30重量部である。添加量が少ないと、接着性改良効果が表れず、添加量が多いと、得られる樹脂硬化体の物性に悪影響を及ぼす場合がある。
本発明においてはカップリング剤やエポキシ化合物の効果を高めるために、カルボン酸類および酸無水物類から選ばれる少なくとも1種を使用できる。これにより、接着性の向上および/または安定化が可能である。このようなカルボン酸類および酸無水物類としては特に限定されないが、下記[化43]に示される各カルボン酸、2−エチルヘキサン酸、シクロヘキサンカルボン酸、シクロヘキサンジカルボン酸、メチルシクロヘキサンジカルボン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、メチルハイミック酸、ノルボルネンジカルボン酸、水素化メチルナジック酸、マレイン酸、アセチレンジカルボン酸、乳酸、リンゴ酸、クエン酸、酒石酸、安息香酸、ヒドロキシ安息香酸、桂皮酸、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンカルボン酸、ナフタレンジカルボン酸、およびそれらの単独あるいは複合酸無水物が挙げられる。これらのカルボン酸類および/または酸無水物類は1種を単独でまたは2種以上を組み合わせて使用してもよい。
Figure 2013225573
これらのカルボン酸類および酸無水物類のうち、ヒドロシリル化反応性を有し、樹脂硬
化体からの染み出しの可能性が少なく、得られる樹脂硬化体の物性を損ない難いという観
点からは、SiH基と反応性を有する炭素−炭素二重結合を含有するものが好ましい。好
ましいカルボン酸類および/または酸無水物類としては、たとえば、下記[化44]に示
されるカルボン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、これらの単独
酸無水物、これらの複合酸無水物などが挙げられる。
Figure 2013225573
カルボン酸類および/または酸無水物類の使用量は種々設定できるが、カップリング剤および/またはエポキシ化合物100重量部に対して、好ましくは0.1重量部〜50重量部、より好ましくは1重量部〜10重量部である。添加量が少ないと、接着性改良効果が表れず、添加量が多いと、樹脂硬化体の物性に悪影響を及ぼす場合がある。
本発明の白色硬化性樹脂組成物には、上記のシラン化合物を使用することができる。シラン化合物は、リードとの密着性向上に寄与し、樹脂硬化体とリードとの界面からの水分の浸入の防止に効果的である。このようなシラン化合物の具体例としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシランなどが挙げられ、中でも特にジメチルジメトキシシランが好ましい。
老化防止剤としては、ヒンダートフェノール系など一般に用いられている老化防止剤の他、クエン酸やリン酸、硫黄系老化防止剤などが挙げられる。
ヒンダートフェノール系老化防止剤としては、チバスペシャリティーケミカルズ社から入手できるイルガノックス1010をはじめとして、各種のものが用いられる。
硫黄系老化防止剤としては、メルカプタン類、メルカプタンの塩類、スルフィドカルボン酸エステル類や、ヒンダードフェノール系スルフィド類を含むスルフィド類、ポリスルフィド類、ジチオカルボン酸塩類、チオウレア類、チオホスフェイト類、スルホニウム化合物、チオアルデヒド類、チオケトン類、メルカプタール類、メルカプトール類、モノチオ酸類、ポリチオ酸類、チオアミド類、スルホキシド類などが挙げられる。これらの老化防止剤は1種を単独でまたは2種以上を組み合わせて使用できる。
ラジカル禁止剤としては、たとえば、2,6−ジ−tert−ブチル−3−メチルフェノール(BHT)、2,2’−メチレン−ビス(4−メチル−6−tert−ブチルフェノール)、テトラキス(メチレン−3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート)メタンなどのフェノール系ラジカル禁止剤や、フェニル−β−ナフチルアミン、α−ナフチルアミン、N,N’−第二ブチル−p−フェニレンジアミン、フェノチアジン、N,N’−ジフェニル−p−フェニレンジアミンなどのアミン系ラジカル禁止剤などが挙げられる。これらのラジカル禁止剤は、1種を単独でまたは2種以上を組み合わせて使用できる。
紫外線吸収剤としては、たとえば、2(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、ビス(2,2,6,6−テトラメチル−4−ピペリジン)セバケートなどが挙げられる。紫外線吸収剤は、1種を単独でまたは2種以上を組み合わせて使用できる。
白色硬化性樹脂組成物は溶剤に溶解して用いることも可能である。使用できる溶剤は特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタンなどの炭化水素系溶剤、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン、ジエチルエーテルなどのエーテル系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤、クロロホルム、塩化メチレン、1,2−ジクロロエタンなどのハロゲン系溶剤を好適に用いることができる。これらの中でも、トルエン、テトラヒドロフラン、1,3−ジオキソラン、クロロホルムが好ましい。これらの溶剤は1種を単独でまたは2種以上を混合して使用できる。
溶剤の使用量は適宜設定できるが、用いる白色熱硬化性組成物1gに対して、好ましくは0.1mL〜10mLである。使用量が少ないと、低粘度化などの溶媒を用いることの効果が得られにくく、また、使用量が多いと、材料に溶剤が残留して熱クラックなどの問題となり易く、またコスト的にも不利になり工業的利用価値が低下する。
発光素子のための添加剤は、たとえば、発光素子の種々の特性を改善するために用いられる。添加剤としては、たとえば、発光素子からの光を吸収してより長波長の蛍光を出す、セリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体などの蛍光体、特定の波長を吸収するブルーイング剤などの着色剤、光を拡散させるための酸化チタン、酸化アルミニウム、メラミン樹脂、CTUグアナミン樹脂、ベンゾグアナミン樹脂などのような拡散材、アルミノシリケートなどの金属酸化物、窒化アルミニウム、窒化ボロンなどの金属窒化物などの熱伝導性充填材などが挙げられる。これらの添加剤は1種を単独でまたは2種以上を組み合わせて使用できる。また、これらの添加剤は、均一に含有させても良いし、含有量に傾斜を付けて含有させてもよい。
離型剤は、白色硬化性樹脂組成物の成形時の離型性を改良するために用いられる。離型剤としては、既に説明した(E)成分や、ワックス類などが挙げられる。ワックス類としては、天然ワックス、合成ワックス、酸化または非酸化のポリオレフィン、ポリエチレンワックスなどが挙げられる。尚、離型剤を添加しなくても十分な離型性が得られる場合には離型剤は用いない方がよい。
白色硬化性樹脂組成物には、その他、着色剤、難燃剤、難燃助剤、界面活性剤、消泡剤、乳化剤、レベリング剤、はじき防止剤、アンチモン−ビスマスなどのイオントラップ剤、チクソ性付与剤、粘着性付与剤、保存安定改良剤、オゾン劣化防止剤、光安定剤、増粘剤、可塑剤、反応性希釈剤、酸化防止剤、熱安定化剤、導電性付与剤、帯電防止剤、放射線遮断剤、核剤、リン系過酸化物分解剤、滑剤、顔料、金属不活性化剤、熱伝導性付与剤、物性調整剤などを本発明の目的および効果を損なわない範囲において添加することができる。
さらに、白色硬化性樹脂組成物には、特性を改質するなどの目的で、種々の熱可塑性樹脂を添加することも可能である。熱可塑性樹脂としては種々のものを用いることができるが、たとえば、メチルメタクリレートの単独重合体、メチルメタクリレートと他モノマーとのランダム、ブロックまたはグラフト重合体などのポリメチルメタクリレート系樹脂(たとえば日立化成社製オプトレッツなど)、ブチルアクリレートの単独重合体、ブチルアクリレートと他モノマーとのランダム、ブロックまたはグラフト重合体などのポリブチルアクリレート系樹脂などに代表されるアクリル系樹脂;ビスフェノールA、3,3,5−トリメチルシクロヘキシリデンビスフェノールなどをモノマー構造として含有するポリカーボネート樹脂などのポリカーボネート系樹脂(たとえば帝人社製APECなど);ノルボルネン誘導体、ビニルモノマーなどを単独重合または共重合した樹脂、ノルボルネン誘導体を開環メタセシス重合させた樹脂、その水素添加物などのシクロオレフィン系樹脂(たとえば、三井化学社製APEL、日本ゼオン社製ZEONOR、ZEONEX、JSR社製ARTONなど);エチレンとマレイミドの共重合体などのオレフィン−マレイミド系樹脂(たとえば東ソー社製TI−PASなど);ビスフェノールA、ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンなどのビスフェノール類やジエチレングリコールなどのジオール類とテレフタル酸、イソフタル酸などのフタル酸類や脂肪族ジカルボン酸類を重縮合させたポリエステルなどのポリエステル系樹脂(たとえば鐘紡社製O−PETなど);ポリエーテルスルホン樹脂;ポリアリレート樹脂;ポリビニルアセタール樹脂;ポリエチレン樹脂;ポリプロピレン樹脂;ポリスチレン樹脂;ポリアミド樹脂;シリコーン樹脂;フッ素樹脂などの他、天然ゴム、EPDMといったゴム状樹脂が例示されるがこれに限定されるものではない。
熱可塑性樹脂は、分子中にSiH基に対する反応性を有する炭素−炭素二重結合および/またはSiH基を有していてもよい。得られる樹脂硬化体がより強靭となりやすいという観点からは、分子中にSiH基に対する反応性を有する炭素−炭素二重結合および/またはSiH基を平均して1分子中に1個以上有していることが好ましい。
熱可塑性樹脂は、その他の架橋性基を有していてもよい。この場合の架橋性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基などが挙げられる。得られる樹脂硬化体の耐熱性が高くなりやすいという観点からは、架橋性基を平均して1分子中に1個以上有していることが好ましい。
熱可塑製樹脂の分子量は、特に限定はないが、(A−1)成分や(A−2)成分との相溶性が良好となりやすいという観点からは、数平均分子量が好ましくは10000以下、より好ましくは5000以下である。逆に、得られる樹脂硬化体が強靭となりやすいという観点からは、数平均分子量が好ましくは10000以上、より好ましくは100000以上である。分子量分布も特に限定はないが、白色熱硬化性組成物の粘度が低くなり成形性が良好となりやすいという観点からは、分子量分布は好ましくは3以下、より好ましくは2以下、さらに好ましくは1.5以下である。
熱可塑性樹脂の使用量は特に限定はないが、好ましくは白色熱硬化性組成物全体の5重量%〜50重量%、より好ましくは10重量%〜30重量%である。添加量が少ないと、得られる樹脂硬化体が脆くなりやすく、添加量が多いと、耐熱性(高温での弾性率)が低くなりやすい。
熱可塑性樹脂は1種を単独でまたは2種以上を組み合わせて使用できる。
熱可塑性樹脂は、(A−1)成分および/または(A−2)成分に溶かして均一な状態として混合してもよいし、粉砕して粒子状態で混合してもよいし、溶剤に溶かして混合するなどして分散状態としてもよい。得られる樹脂硬化体がより透明になりやすいという観点からは、(A−1)成分および/または(A−2)成分に溶かして均一な状態として混合することが好ましい。この場合も、熱可塑性樹脂を(A−1)成分および/または(A−2)成分に直接溶解させてもよいし、溶剤などを用いて均一に混合してもよいし、その後溶媒を除いて均一な分散状態および/または混合状態としてもよい。
熱可塑性樹脂を分散させて用いる場合は、平均粒子径は種々設定できるが、好ましくは10nm〜10μmである。粒子径分布はあってもよく、単一分散でも複数のピーク粒径を持っていてもよいが、白色熱硬化性組成物の粘度が低く成形性が良好となりやすいという観点からは、粒子径の変動係数が10%以下であることが好ましい。
さらに、白色硬化性樹脂組成物には、それ以外の熱硬化性樹脂の粒子を混合しても良い。熱硬化性樹脂粒子は、熱硬化性樹脂を硬化させて粉砕することにより得ることができる。熱硬化性樹脂粒子を白色熱硬化性組成物中に分散させて用いる場合は、平均粒子径は種々設定できるが、好ましくは10nm〜10μmである。粒子径分布はあってもよく、単一分散であっても複数のピーク粒径を持っていてもよいが、白色熱硬化性組成物の粘度が低く成形性が良好となりやすいという観点からは、粒子径の変動係数が10%以下であることが好ましい。
白色硬化性樹脂組成物は、上記の成分を、上記した方法に従って混合することにより、調製できる。こうして得られる白色硬化性樹脂組成物は、そのまま液状物またはペースト状物として使用できる。さらに、白色硬化性樹脂組成物は、各成分および添加剤などを混合した後、加熱などにより部分的に反応(Bステージ化)させてから使用してもよい。Bステージ化することにより粘度調整が可能であり、加熱加圧成形、例えばトランスファー成形性を調整することもできる。また、硬化収縮をより抑制する効果もある。
白色硬化性樹脂組成物は、トランスファー成形などによる成形性が良好であるという観点からは、150℃以下の温度で流動性を有することが好ましい。
また、白色硬化性樹脂組成物の硬化性は任意に設定できるが、成形サイクルが短くできるという観点からは、120℃におけるゲル化時間が120秒以内であることが好ましく、60秒以内であることがより好ましい。また、150℃におけるゲル化時間が60秒以内であることが好ましく、30秒以内であることがより好ましい。また、100℃におけるゲル化時間が180秒以内であることが好ましく、120秒以内であることがより好ましい。
この場合のゲル化時間は、以下のようにして調べられる。設定温度に調整したホットプレート上に厚み50μmのアルミ箔を置き、その上に白色硬化性樹脂組成物約100mgを置いてゲル化するまでの時間を測定してゲル化時間とする。
白色硬化性樹脂組成物を用いて樹脂成形体を製造する工程において、白色硬化性樹脂組成物中へのボイドの発生および白色熱硬化性組成物(X)からのアウトガスによる工程上の問題が生じ難いという観点からは、硬化中の重量減少は、好ましくは5重量%以下、より好ましくは3重量%以下、さらに好ましくは1重量%以下である。なお、硬化中の重量減少は、熱重量分析装置を用いて、試料(白色硬化性樹脂組成物)10mgを室温から150℃まで10℃/分の昇温速度で昇温して、減少した重量の初期重量に対する割合として求めることができる。
また、電子材料などとして用いた場合に、シリコーン汚染の問題を起こし難いという観点からは、揮発成分中のSi原子の含有量が1%以下であることが好ましい。
白色硬化性樹脂組成物は、次の理由からN元素を含んでいることが望ましい。電気・電子部品は一般に難燃性が求められており、従来はハロゲン系難燃剤が主に使用されていたが、環境負荷低減のために非ハロゲン系難燃剤にシフトしている。またRoHS(Restriction of Hazardous Substances)対応などの電機業界の規制の面からも、環境に配慮した難燃剤が望まれている。
たとえば、特開2010−77333号公報に記載されるホスフィン酸金属塩と有機リン系難燃剤とを含む非ハロゲン系難燃剤、特表2007−514828号公報に記載される、トリアジン、グアニジン、シアヌレートおよびイソシアヌレートからなる群から選ばれる少なくとも1種の含窒素難燃剤と、ホスフィン酸塩またはジホスフィン酸塩および/またはそのポリマーと、チャー生成ポリマーと、を含む非ハロゲン系難燃剤、特開2002−128969号公報に記載される、窒素原子を少なくとも1つ含有するアミン化合物とリン酸、ピロリン酸、縮合リン酸およびシアヌール酸の中から選ばれる少なくとも1種の酸とが反応して生成するアミン塩と、トリス(2−ヒドロキシエチル)イソシアヌレートとイソシアネート化合物との反応体と、を含む非ハロゲン系難燃剤、特開2002−60385号公報に記載された、トリス(2−ヒドロキシアルキル)イソシアヌレ−トと、有機ジイソシアネート化合物と、の付加反応により得られるトリアジン系含窒素化合物などは、非ハロゲン系難燃剤の有力なひとつである。そのため本発明の樹脂成形体においても、特に樹脂成分中に窒素原子を含有することが好ましい。特に窒素系難燃剤としての主要骨格であるイソシアヌレート骨格が組み込まれた骨格が特に好ましい。
また、特開平5−148423号公報、特開2004−67948号公報、特開2009−117809号公報、特開2010−77333号公報などに記載される、トリブチルアミン,テトラメチルエチレンジアミン,ベンゾトリアゾール、ベンゾチアゾール、チアゾールなどの窒素含有有機化合物は、ヒドロシリル化硬化反応における反応遅延剤としても作用する。そのため、樹脂成形体を与える熱硬化性樹脂組成物にこれらの窒素化合物を添加することにより、熱硬化性樹脂に十分な貯蔵安定性を付与できると共に、熱硬化性樹脂組成物を完全に硬化させることができる。このような観点からも、樹脂成分が窒素原子を含有することが好ましい。また、樹脂骨格とは別に、従来知られているヒドロシリル化反応の反応制御剤であるトリブチルアミン、テトラメチルエチレンジアミン、ベンゾトリアゾールなどの窒素含有有機化合物が共存していてもかまわない。
熱硬化性樹脂組成物中(X)のN含有量を求める方法については特に制限はないが、14N−NMRまたは14N−固体NMRによる測定により、樹脂骨格に組み込まれたN原子または窒素含有有機化合物のN原子を検出することができる。熱硬化性樹脂組成物中のN含有量は特に制限はないが、1000ppm以上含むことが好ましい。なお、フィラー成分として窒化ホウ素、窒化アルミなどの含窒素無機フィラーを含んでも全く問題なく、有機成分自体がN原子を含むことによる難燃効果、無機フィラーがN原子を含むことによる難燃効果を両方引き出してもかまわない。
また、白色硬化性樹脂組成物を硬化させて得られる樹脂硬化体のTgは、耐熱性が良好であるという観点からは、好ましくは100℃以上であり、より好ましくは150℃以上である。Tgは、動的粘弾性測定装置(商品名:DVA−200、アイティー計測制御株式会社製)および3mm×5mm×30mmの角柱状試験片を用い、所定の測定条件(引張りモード、測定周波数10Hz、歪0.1%、静/動力比1.5、昇温側度5℃/分)で動的粘弾性測定を行い、測定結果におけるtanδのピーク温度として求められる。
また、リードフレームなどにイオンマイグレーションなどの問題が生じ難く、信頼性が高くなるという観点からは、樹脂硬化体からの抽出イオン含有量は、好ましくは10ppm未満、より好ましくは5ppm未満、さらに好ましくは1ppm未満である。
この場合、抽出イオン含有量は以下のようにして調べられる。裁断した樹脂硬化体1gを超純水50mlとともにテフロン(登録商標)製容器に入れて密閉し、121℃、2気圧、20時間の条件で処理する。得られた抽出液をICP質量分析装置(商品名:HP−4500、横河アナリティカルシステムズ社製)によって分析し、得られたNaおよびKの含有量の値を、試料である樹脂硬化体中の濃度に換算して求める。一方、同じ抽出液をイオンクロマト法(ダイオネクス社製DX−500使用、カラム:AS12−SC)によって分析し、得られたClおよびBrの含有量の値を、試料である樹脂硬化体中の濃度に換算して求める。以上のように得られたNa、K、Cl、Brの樹脂硬化体中の含有量を合計して抽出イオン含有量とする。
樹脂硬化体の線膨張係数は、特に制約はないが、リードフレームなどの金属やセラミックなどとの接着性が良好になりやすいという観点からは、23℃から150℃までの平均線膨張係数は好ましくは30ppm以下、より好ましくは20ppm以下、さらに好ましくは10ppm以下である。
また、白色硬化性樹脂組成物は、硬化後の420nm、440nm、460nmにおける分光反射率が80R%以上であり、180℃72時間の耐熱試験後の分光反射率の保持率(耐熱試験後の分光反射率/初期の分光反射率×100)が90%以上であることが望ましい。分光反射率は、発光素子の光取りだし効率が高くなりやすいという観点からは、420〜700nmの波長帯域において75%以上が好ましく、80%以上であることがより好ましい。
樹脂硬化体の分光反射率は、微小面分光色差計(日本電色工業社製VSS400)を用いて波長400nm〜700nm(20nm間隔)における分光反射率として測定される。ここで各波長における測定値は、樹脂成形体の凹部開口面の任意の4箇所(測定面積0.1mmφ)の測定値の平均値を採用した。
耐熱試験(たとえば、180℃のオーブンで72時間加熱する試験)後の分光反射率の初期の分光反射率に対する保持率を下記計算式によって求めた。
保持率(%)=[(耐熱試験後の分光反射率)/(初期の分光反射率)]×100
保持率は、電子材料として用いた場合に信頼性が高いといった観点からは、好ましくは
80%以上、より好ましくは85%以上、さらに好ましくは90%以上である。
白色硬化性樹脂組成物を硬化して得た成形体表面の波長470nmにおける光線反
射率は、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以
上、特に好ましくは99%以上である。
表面の光線反射率は以下のようにしても測定することができる。PETフィルムを離型フィルムとして用い、所定の温度条件でプレス成形にてボイドのない0.5mm厚の成形体を作成する。得られた成形体に必要に応じて所定の後硬化を実施する。得られた成形体について積分球を設置した分光光度計を用いて460nmの全反射を測定することにより、光線反射率を求めることができる。
白色硬化性樹脂組成物は、発光素子用のリードフレームの片面に成形してパッケージとした場合の、樹脂硬化体の反りが±1.0mm以下であることが望ましい。
この場合の反りはJIS C 6481に記載の最大反りの測定方法に基づいて測定される。発光装置を一辺の中央で垂直に吊り下げ、その辺に平行に直定規を当てる。直定規は発光装置の凹面に当て、直定規と発光装置の基材面との最大の隔たりを金属製直尺で1.0mmの単位まで測定する。発光装置の凹面に樹脂が成形されている場合は、直定規と発光装置に成形された樹脂面との最大の隔たりを金属製直尺で1.0mmの単位まで測定し、その値から樹脂の厚み分を引いた値を、1.0mmの単位に四捨五入する。他の辺についても順次測定し、最も大きな隔たりを反りとする。
白色硬化性樹脂組成物は、タブレットとすることができる。ここで言うタブレットとは、室温において一定した形状を保持し、経時的な形状の変化が実質的になく、また互いに接触させたときに互着や一体化することのない固体のことを意味する。タブレットの形状は、特に限定されず、円柱状、角柱状、円盤状、球状などの形状を含むが、トランスファー成形に一般的な円柱状が好ましい。
具体的には、タブレットは、少なくとも一方が23℃における粘度が50Pa秒以下の液体である(A−1)成分および(A−2)成分、(A−1)成分および(A−2)成分を硬化させるための(A−3)成分、共に粉体である(B)成分および(C)成分を含有することを特徴とする。このようなタブレットは、高温で(A−1)成分および(A−2)成分が粘度低下することによって白色熱硬化性組成物全体が流動可能となり、さらに加熱を続けると硬化反応が進行して所望の形状に成形することが可能である。
成形方法としては、特に限定されず、白色硬化性樹脂組成物の成形に一般的であるトランスファー成形や圧縮成形などの成形方法を用いることができる。これらの成形方法を用いる場合、原料である熱硬化性樹脂組成物がペースト状や粘土状であると、一定した形状を保持できず、互着や一体化、変形したりするため、計量や搬送、成形機への供給が非常に困難となる。一方、タブレット形状であると、計量や搬送、成形機への供給が容易となり、自動化も可能となって生産性が大幅に向上する。
タブレットに占める(B)成分および(C)成分の合計の割合(以下「充填率」と言うことがある)は、好ましくは70〜95重量%である。充填率における(B)成分と(C)成分の配分については特に限定されず、自由に設定できる。充填率が70重量%未満であると、得られる樹脂硬化体の熱膨張率が大きくなって樹脂成形体の寸法変化が問題となることや、得られる白色硬化性樹脂組成物が硬いペースト状や粘土状となりタブレット化ができなくなる問題がある。充填率が95重量%を超えると、白色硬化性樹脂組成物の高温での粘度が高くなりすぎて成形性が低下することや、得られるタブレットが脆くなりすぎる。
白色硬化性樹脂組成物において、(A−1)成分および(A−2)成分の少なくとも一方が常温で液体であると、充填率が低い場合には、ペースト状や粘土状となりやすい。この場合、タブレットにはならないが高温での成形性は良好となりやすい傾向がある。一方、充填率が高い場合には、流動させる成分が少ないため、フレーク状や粉状になりやすい。これらは圧縮することでタブレット状に押し固めることが可能であるが、高温での流動性に乏しく成形性が低下しやすい傾向がある。これまで、充填率を単純に増加させていくだけでは、タブレット化と成形性を両立させることが困難であった。
しかしながら、白色硬化性樹脂組成物では、(B)成分および(C)成分を合計した粉体のうち、12μm以下の粒子の占める割合を40体積%以上とすることで、タブレット化と成形性を両立できることを見出した。
この理由としては推測ではあるが次のように考えられる。液体と粒子の混合系において、液体成分は粒子の表面を被覆していると考えられ、全ての粒子を被覆した余分の液体成分が変形に寄与していると思われる。そのため、充填率が同じであっても、小粒子の割合が多いほど総表面積が大きくなって被覆に費やされる液体成分が増加し、変形しにくくなっていると考えられる。液体の粘度は高温になると顕著に低下するため、高温では小粒子の割合に対する流動性の変化が小さいが、低温では粘度が高いために、小粒子が多いとペースト状や粘土状のように流動することができずにフレーク状や粉状になることが考えられる。
言い換えると、粒子中の小粒子の割合を増やすことで、熱硬化性樹脂組成物の高温での流動性を維持したまま、常温での状態を固くすることができることになる。このことは、常温で固体のエポキシ樹脂やシリコーン系樹脂を用いた文献(特開2008−112977号公報や、特開2009−155415号公報)、また、粒子の粒度分布まで言及せず平均粒径のみを記載している特許文献3からは想到できない。
[成形方法]
本発明で言う表面実装型発光装置用樹脂成形体の成形方法としては各種の方法が用いられる。例えば、射出成形、トランスファー成形、RIM成形、キャスティング成形、プレス成形、コンプレッション成形等、熱可塑性樹脂やエポキシ樹脂、シリコーン樹脂等の熱硬化性樹脂に一般に用いられる各種成形方法が用いられる。これらの内、成形サイクルが短く成形性が良好であるという点においてはトランスファー成形が好ましい。成形条件も任意に設定可能であり、例えば成形温度についても任意であるが、硬化が速く成形サイクルが短く成形性が良好になりやすいという点においては100℃以上、より好ましくは120℃以上、さらに好ましくは150℃以上の温度が好ましい。上記のような各種方法によって成形した後、必要に応じて後硬化(アフターキュア)することも任意である。後硬化した方が耐熱性は高くなり易い。
成形は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。一定の温度で行うより多段階的あるいは連続的に温度を上昇させながら反応させた方が歪のない均一な硬化物が得られやすいという点において好ましい。また、一定温度で行う方が成形サイクルを短くできるという点において好ましい。
硬化時間も種々設定できるが、高温短時間で反応させるより、比較的低温長時間で反応させた方が歪のない均一な硬化物が得られやすいという点において好ましい。逆に、高温短時間で反応させる方が成形サイクルを短くできるという点において好ましい。
成形時の圧力も必要に応じ種々設定でき、常圧、高圧、あるいは減圧状態で成形することもできる。ボイドの発生を抑制したり、充填性をよくしたり、場合によって発生する揮発分を除きやすいという点においては、減圧状態で硬化させることが好ましい。成形体へのクラックを防止できるという点においては、加圧状態で硬化させることが好ましい。
[成形用金型の表面処理]
本発明に係る樹脂成形体の成形用金型の表面形態は、耐磨耗性の向上、腐食防止、離型性の向上などの目的で、金型材質とは異なる成分をメッキまたはコーティングすることができる。金型の表面に5μm以下の厚みの硬質クロムメッキがなされ、そのメッキの上に厚さ2μm以下のフッ素樹脂をコーティングしたことを特徴とする。フッ素樹脂の下層に硬質クロムメッキ層を設けることにより、金型の離型性効果が長期間持続可能となる。フッ素樹脂は、PTFE、PEFなどが好適である。また、真空蒸着法により硬質クロムメッキ層と、フッ素樹脂皮膜を形成させることも離型性改善に効果がある。金型表面処理は上記の方法に限られず、DLC(ダイヤモンドライクカーボン)でも同様の効果が期待できる。このDLCは、高真空中のアーク放電プラズマで炭化水素ガスを分解し、プラズマ中のイオンや励起分子を金型に電気的に加速してエネルギーを持って衝突させることにより膜を形成するものであり、その膜は緻密なアモルファス構造となり、表面は非常に滑らかで結晶粒界が生じないために、低摩擦係数、耐磨耗性、離型性などに優れた特性を示すものである。
[金型クリーニング方法]
成形時の金型クリーニング方法は、市販されているメラミン樹脂等のモールド用クリーニングシートやタブレットが好適に利用できる。
[金型リコート]
金型表面コーティング層やメッキ層の剥離やキズなどの物理的劣化が観測された場合、金型リコート、すなわち再表面処理が必要となる。金型再表面処理の方法に制限はないが、既に付着している被膜を、薬液を用いて除去し(除膜)、ベース金属を露出させこの上に再度コーティングやメッキを施す。こうして金型の繰り返し使用が可能となる。
[表面実装型発光装置]
本発明の表面実装型発光装置(以下単に「発光装置」とする)は、樹脂硬化体と複数のリードとが一体成形され、底部に複数のリードが露出する凹部を有し、樹脂成形体の凹部底部に実装され、複数のリードと通電可能に接続される発光素子と、発光素子を封止する透明樹脂層と、を備えている。なお、樹脂成形体の凹部底部には、複数個の発光素子が実装されていても良い。
すなわち、本発明の発光装置は、樹脂成形体として、樹脂硬化体と複数のリードとが一体成形され、底部に複数のリードが露出する凹部を有する以外は、従来の表面実装型発光装置と同じ構成を有することができる。
ここで、樹脂成形体としては、上記した各種の樹脂成形体を使用できる。
また、発光素子としては、紫外線発光素子を使用することが好ましい。紫外線発光素子を使用することにより波長ピークのバラツキが青色発光素子を使用した場合と比較して小さくなるため、得られる白色光の色バラツキが抑えられると考えられる。紫外線発光素子としては、既存のあらゆるものを使用することができ、紫外線発光素子の発光ピーク波長は350〜420nmのものが好ましい。このような紫外線発光素子としては例えば、InGaN活性層を有する中心波長が 370nm付近の紫外LEDチップが挙げられる。
発光素子は、たとえば、ワイヤボンディング、フリップチップボンディングなどの公知の接続方法により、複数のリードと通電可能に接続される。通電可能な接続とは、たとえば、発光素子が2つの電極を有し、複数のリードが第1リードと第2リードとを有している場合、発光素子の一方の電極を第1リードのインナーリード部に接続し、発光素子の他方の電極を第2リードのインナーリード部に接続することである。
また、発光素子を樹脂成型体の凹部の底部に接着するための接着剤としては、たとえば、銀ペースト、共晶はんだ(AuSn、AuGe、AuSiなど)、金バンプなどが用いられる。共晶はんだの融点は、好ましくは200℃〜350℃の範囲である。高出力型LEDを用いる場合は、p−n接合温度が上昇するため、高温で安定した接合強度が得られる共晶はんだや金バンプなどを用いることが好ましい。発光素子は、たとえば、樹脂成形体の凹部底部の、めっき層を有するリード表面に接着剤層を形成し(このときリードと接着剤層とは電気的に接続されている)、その上に発光素子を載置し、加熱溶融することにより、リード表面に固定される。接着剤層は、たとえば、ペースト材料の印刷、ディスペンス、プリフォーム、箔成形、メタライズ、ボール成形などの一般的な手法により形成できる。金属からなる接着剤層を設けることにより、発光装置の放熱性を高めることができる。
また、リード表面における発光素子と接合する領域は、平坦度が好ましくは0.001〜50μmである。平坦度とは、測定する領域の任意の3隅を含む面を基準面とするとき、基準面に対する測定領域の中央の高さとして表される。平坦度が0.001μm未満では、リード表面に形成されためっき層の表面が滑らかになりすぎて、めっき層と接着剤層との密着強度が低下し、接着剤層が剥離し易くなる傾向がある。また、平坦度が50μmを超えると、めっき層と接着剤層との接合面積が小さくなる。その結果、発光装置の放熱性が低下したり、発光素子とリードフレームとの接合強度が低下したりする傾向がある。
発光素子を封止する透明性樹脂としては、従来から表面実装型発光装置に用いられている封止用の透明性樹脂をいずれも使用でき、たとえば、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂などが挙げられる。
透明性樹脂層は、たとえば、底部に発光素子を配置させたカップ、キャビティ、パッケージ(樹脂成形体)凹部などに液状の透明性樹脂をディスペンサーその他の方法にて注入して加熱などにより硬化させてもよいし、固体状あるいは高粘度液状の組成物を加熱するなどして流動させ、前記と同様にパッケージ凹部などに注入して、さらに加熱するなどして硬化させてもよい。また透明性樹脂をトランスファー成形、射出成形、インサート成形することによっても、形成できる。
また、透明性樹脂に代えて、樹脂成形体の発光素子を実装した後の凹部に、レンズを装着してもよい。レンズとしては特に限定されず、表面実装型発光素子の分野で一般に使用されるレンズをいずれも使用でき、また、透明性樹脂をレンズの形に成形して用いても良い。一方、透明性樹脂による封止およびレンズの装着を行わずに、ガラスなどでカバーしてハーメチック封止をすることも可能である。
封止剤中には、発光素子からの光によって励起され、別の波長の光を発する、蛍光体が用いられる。蛍光体は発行素子からの光を受けて緑色および/または赤色および/または青色の光を発するものであれば良い。これらの蛍光体は、均一に含有させても良いし、含有量に傾斜を付けても良い。
発光装置の形状についても限定されず、表面実装型発光装置の分野で用いられる各種形状を採用できるが、金属製リードフレームの片面に樹脂硬化体が付着しているMAPタイプが好ましい。MAPタイプを用いることにより、特に本発明の硬化が得られ易い。
本発明の発光装置は、従来公知の各種の用途に用いることができる。具体的には、たとえば、液晶表示装置などのバックライト、照明、センサー光源、車両用計器光源、信号灯、表示灯、表示装置、面状発光体の光源、ディスプレイ、装飾、各種ライトなどが挙げられる。
[白色熱硬化性組成物の作製方法]
本実施形態の白色熱硬化性組成物は、上述した各種成分を均一に分散混合することで得ることができ、その手段や条件等は特に限定されない。白色熱硬化性組成物を作製する一般的な方法として所定配合量の各種成分をミキサー等によって十分に均一に撹拌および混合した後、ミキシングロール、押出機、ニーダー、ロールおよびエクストルーダー等、らいかい機、自転と公転を組み合わせた遊星式混合機等を用いて混練し、さらに得られた混練物を冷却および粉砕する方法を挙げることができる。
混練の条件は、各成分の種類や配合量により適宜決定すればよく、例えば、15〜100℃で5〜40分間混練することが好ましく、20〜100℃で10〜30分間混練することがより好ましい。混練温度が15℃未満であると、各成分を混練させ難くなり、分散性も低下する傾向にあり、100℃を超えると、熱硬化性樹脂の高分子量化が進行し、混練時に熱硬化性樹脂が硬化してしまう可能性がある。また、混練時間が5分未満であると、十分な分散効果が得られない可能性がある。混練時間が40分を超えると、熱硬化性樹脂の高分子量化が進行し、熱硬化性樹脂が硬化してしまう可能性がある。
[白色熱硬化性組成物タブレットの作成]
本発明の成形方法において用いるタブレットは、出来上がりの形状が円柱状であれば、その作製方法は限定されない。例えば、熱硬化性樹脂と充填材からなる熱硬化性樹脂組成物を押出成形の要領にて、円柱状のストランドを排出させ、等間隔で切断し円柱状のタブレットを得る方法、あるいは、内部が円柱状の凹型である治具に、所定量の熱硬化性樹脂組成物を添加し、円柱状の凸型治具を押し込み、円柱状のタブレットを得る方法などが挙げられる。これらは、手動でもよく、また自動化して作製してもよい。
[熱硬化性樹脂組成物タブレットを用いた成形方法]
本発明の成形方法は、一般に知られたトランスファー成形機を用いて行われる。具体的には、熱硬化性樹脂組成物よりなるタブレットは、トランスファー成形機に備え付けられた樹脂成形用金型のポットと呼ばれる凹部に投入された後に金型を閉じ、注入用プレンジャーの前進にて樹脂を加圧し押し出すことで、樹脂流路から金型キャビティに樹脂組成物が注入されて成形が行われるものである。ここで、樹脂成形用金型のポットにタブレットが装填されるまでの工程を説明すると、現在は主に自動化が進んでおり、例を挙げると、成形用に作製されたタブレットは、専用のタブレット搬送装置を経て直接金型ポットに装填される場合、搬送装置を経て、専用の供給装置にてタブレット並びを整理させた後、金型ポットに装填される場合など、様々な方法が存在する。金型ポットへの装填の方法に制限は無く、タブレットの側面を直接ロボットアームで掴みポットに装填する場合や、円柱状にくり貫かれた供給装置にタブレットを事前に装填しておき、供給装置ごと金型ポット上部まで運び、供給装置下部のスリットをスライドさせることで、供給装置からタブレットを金型ポットに落下させ装填させる方法など様々である。しかし、本工程を用いる場合、タブレットの性状が軟質である場合は、搬送時に変形が生じ、供給装置や金型ポットに規則正しく装填できない場合があり、またタブレット性状が硬い場合でも、表面にタック感がある場合は、搬送装置、あるいは供給装置を汚染したり、タブレットの一部分が付着することで所定量のタブレットを装填できないこともある。そのため、本発明において用いるタブレットは、その表面温度を−40℃から10℃の間に調整したものを用いることで、材料の表面が硬くなり、またタック性も改善することで、成形時におけるタブレットの搬送や成形機内の金型ポットへのタブレット供給において、トラブルを起こすことなく、安定した生産が可能となる。タブレットの表面温度が10℃よりも高いと、タブレット供給装置あるいは搬送装置にタブレット表面の樹脂組成物が付着し、汚れの原因となるなどの傾向がある。また表面温度が特許範囲以下の場合については、オーバースペックであることや、タブレットを冷却するためのユーティリティコストが非常に高くなるため好ましくない。更に表面温度が−40℃から10℃に調整された円柱状タブレットは、タブレット供給装置あるいは搬送装置に投入してからトランスファー成形機内の金型ポット内に投入されるまでの時間が2分以内であることが好ましい。この時間を越えると、タブレット表面のタック性が低下し、タブレット供給装置あるいは搬送装置にタブレット表面の樹脂組成物が付着し、汚れの原因となるなどの傾向がある。したがって、本発明の成形方法において用いるタブレットは、冷却することによりその表面を硬くする、すなわち強度は特定の範囲に入ることが重要である。具体的には、白色熱硬化性樹脂組成物からなる円柱状タブレットの形状が直径13mmかつ高さが20mmである場合に、そのタブレット上面から同じく直径13mmの平板状プローブを用いて荷重を加え、タブレット高さが5mm変位するときの最大荷重が3.5kgf以上であることがタブレット形状保持性などの観点で好ましい。最大荷重が3.5kgf未満の場合には、タブレット供給時や搬送時の変形などを起こす傾向がある。
以上、本発明の好適な実施形態について説明したが、本発明はこれに制限されるものではない。
以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。
(合成例1)
5Lの四つ口フラスコに、攪拌装置、滴下漏斗および冷却管をセットした。このフラスコにトルエン1800gおよび1,3,5,7−テトラメチルシクロテトラシロキサン1440gを入れ、120℃のオイルバス中で加熱および攪拌した。これに、トリアリルイソシアヌレート200g、トルエン200gおよび白金ビニルシロキサン錯体のキシレン溶液(白金として3重量%含有)1.44mlの混合液を50分かけて滴下した。得られた溶液をそのまま6時間加温および攪拌した後、未反応の1,3,5,7−テトラメチルシクロテトラシロキサンおよびトルエンを減圧留去した。得られた化合物は、1H−NMRの測定により、1,3,5,7−テトラメチルシクロテトラシロキサンのSiH基の一部がトリアリルイソシアヌレートと反応した下記[化45]に示す構造を有するものであることがわかった。
Figure 2013225573
(合成例2)
2Lオートクレーブにトルエン720gおよび1,3,5,7−テトラメチルシクロテトラシロキサン240gを入れ、気相部を窒素で置換した後、ジャケット温50℃で加熱および攪拌した。これに、アリルグリシジルエーテル171g、トルエン171gおよび白金ビニルシロキサン錯体のキシレン溶液(白金として3重量%含有)0.049gの混合液を90分かけて滴下した。滴下終了後にジャケット温を60℃に上げてさらに40分間反応させ、1H−NMRでアリル基の反応率が95%以上であることを確認した。
得られた反応混合物に、トリアリルイソシアヌレート17gおよびトルエン17gの混合液を滴下した後、ジャケット温を105℃に上げて、さらにトリアリルイソシアヌレート66g、トルエン66gおよび白金ビニルシロキサン錯体のキシレン溶液(白金として3重量%含有)0.033gの混合液を30分かけて滴下した。滴下終了から4時間後に1H−NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。
1,3,5,7−テトラメチルシクロテトラシロキサンの未反応率は0.8%だった。未反応の1,3,5,7−テトラメチルシクロテトラシロキサンとトルエンとアリルグリシジルエーテルの副生物(アリルグリシジルエーテルのビニル基の内転移物(シス体およびトランス体))が合計5,000ppm以下となるまで減圧留去し、無色透明の液体を得た。1H−NMRの測定により、このものは1,3,5,7−テトラメチルシクロテトラシロキサンのSiH基の一部がアリルグリシジルエーテル及びトリアリルイソシアヌレートと反応したものであり平均的に下記[化46]に示す構造を有するものであることがわかった。下記[化46]において、a+b=3、c+d=3、e+f=3、a+c+e=3.5、b+d+f=5.5である。
Figure 2013225573
(配合例)
表1の内容に従って各成分を配合して、組成物Aを調整した。
(実施例1〜2、比較例1)
表2に示した配合比(質量部)に従い、各成分を配合し、得られた白色硬化性樹脂組成物の混合物を、丸棒状の冶具にて押し延ばした後、折り重ねて再度押し延ばす作業を繰り返して均一化した。フレーク状や粉体状の場合は、乳鉢ですり潰して均一化した。
(サンプル作成)
表2の硬化性樹脂組成物を、PETフィルムを離型フィルムとし、内寸法が80mm×50mmであり厚み0.5mmのステンレス鋼(SUS304)製の長方形枠を用いて、170/3分の条件でプレス成形した。作成した長方形板状のプレス成形体をオーブン中で180℃/1時間の条件で後硬化させた。これを50mm×25mmのサイズにカットし、評価用サンプルとした。
耐久性試験として、下記の方法により耐熱試験、耐光試験及び恒温恒湿試験を行った。なお、耐久性試験前にサンプルの波長350〜420nmの光線反射率を測定し、初期反射率とした。
(耐熱試験)
上記の通り作成したサンプルを、180℃に温度設定した対流式オーブン内(空気中)で20時間養生した。その後、波長350〜420nmの光線反射率を測定した。
(恒温恒湿試験:85℃/85%RH)
NAGANO SCIENCE社製、低温恒温恒湿器(LH43−13M)を用いた。上記の通り作成したサンプルを、温度85℃、85%RHで90時間養生した。その後、波長350〜420nmの光線反射率を測定した。
(耐光試験:メタリング)
スガ試験機(株)製、メタリングウェザーメーター(形式M6T)を用いた。上記の通り作成したサンプルを、ブラックパネル温度120℃、放熱照度0.53kW/m2で、積算放射照度50MJ/m2まで照射し、その後、波長350〜420mの光線反射率を測定した。
(光線反射率)
耐久性試験のサンプルについて、積分球を設置した分光光度計(日本分光(株)製、紫外可視分光光度計V−560)を用いて波長350〜420nmの光線反射率を測定した。反射率は、ラブスフェア製スペクトラロン板を標準板として測定した。評価結果を表2に示した。
Figure 2013225573
表1中の*1〜5は以下の通りである。
*1:PDV−2331(Gelest製、両末端ビニルのジフェニルジメチルシリコーン)
*2:溶融球状シリカ(株式会社龍森製、比重2.2、平均粒径24.8μm、12μm以下の粒子の割合:28%、商品名:MSR−2212−TN)
*3:チタン酸バリウム(共立マテリアル社製、平均粒径0.662μm、商品名:BT−HP9DX)
*4:酸化チタン(石原産業株式会社製、ルチル型、比重4.2、塩素法、表面有機:AI、Si、ボリメチルハイドロジェンシロキサン、平均粒径0. 21 μm、12μm以下の粒子の割合100、商品名:タイベークPC-3)
*5:ステアリン酸カルシウム(和光純薬株式会社製)
Figure 2013225573
表2に示したように、チタン酸バリウムを白色顔料として使用した白色熱硬化性組成物は350〜420nmにおける反射率が酸化チタンを使用した場合と比較して優れており、また、耐熱、耐光、恒温恒湿試験後の反射率に関しても初期値を維持していることが分かった。
本発明によれば、近紫外領域の光の反射率が改善され、なおかつ耐久性に優れた白色硬化性組成物からなる表面実装型発光装置用樹脂パッケージおよび表面実装型発光装置を提供することができる。
1、2、3、4 樹脂成形体
10 第1リード
10a 第1インナーリード部
10b 第1アウターリード部
11 第2リード
11a 第2インナーリード部
11b 第2アウターリード部
12、14、16、17 樹脂硬化体
12a 反射部
12b 絶縁部
12c 凹部開口面
13、15 凹部
13a 底部
13b 内壁面

Claims (16)

  1. 発光波長のピークが350〜420nmの近紫外線領域にある発光素子、該発光素子が搭載される凹部、該凹部内に設けられる封止剤を有し、前記凹部を構成する壁面の少なくとも一部が、白色硬化性樹脂組成物の成形体からなる表面実装型発光装置用樹脂成形体において、前記白色硬化性樹脂組成物が、(A)熱硬化性樹脂、(B)白色顔料、(C)無機充填剤、を必須成分として含み、前記(B)成分がチタン酸バリウムであることを特徴とする、表面実装型発光装置用樹脂成形体。
  2. 前記(A)成分が、(A−1)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(A−2)1分子中に少なくとも2個のSiH基を含有する化合物、(A−3)ヒドロシリル化触媒、を含むことを特徴とする請求項1に記載の表面実装型発光装置用樹脂成形体。
  3. 前記(C)成分が球状シリカであることを特徴とする請求項1、2に記載の表面実装型発光装置用樹脂成形体。
  4. 前記白色硬化性組成物が、更に(D)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物を含有することを特徴とする請求項1〜3に記載の表面実装型発光装置用樹脂成形体。
  5. 前記(D)成分の重量平均分子量が1,000以上かつ1,000,000以下であることを特徴とする請求項1〜4に記載の表面実装型発光装置用樹脂成形体。
  6. 前記白色硬化性樹脂組成物が、更に(E)金属石鹸を含有することを特徴とする請求項1〜5に記載の表面実装型発光装置用樹脂成形体。
  7. 前記(E)成分がステアリン酸金属塩であることを特徴とする請求項6に記載の表面実装型発光装置用樹脂成形体。
  8. 前記(E)成分がステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウムからなる群より選択される1つ以上である請求項6、7に記載の表面実装型発行装置用樹脂成形体。
  9. 前期硬化性樹脂組成物全体に占める(B)成分の含有量が10重量%以上であることを特徴とする請求項1〜8に記載の表面実装型発行装置用樹脂成形体。
  10. 前期硬化性樹脂組成物全体に占める(C)成分の含有量が70重量%以上であることを特徴とする請求項1〜9に記載の表面実装型発行装置用樹脂成形体。
  11. (A)成分の重量に対する(D)成分の含有量が30重量%以上であることを特徴とする請求項4〜10に記載の表面実装型発行装置用樹脂成形体。
  12. 前期硬化性樹脂組成物全体に占める(E)成分の含有量が0.01〜5重量%以上であることを特徴とする請求項6〜11に記載の表面実装型発行装置用樹脂成形体。
  13. 前記白色硬化性樹脂組成物を硬化してなる樹脂硬化体の表面の波長470nmの光線反射率が90%以上であることを特徴とする請求項1〜12に記載の表面実装型発光装置用樹脂成形体。
  14. 請求項1〜13のいずれか1項に記載の硬化性樹脂組成物からなるタブレットであって、
    (A)成分および(B)成分の少なくとも一方が23℃における粘度が50Pa秒以下の液体であり、
    (B)成分と(C)成分の合計の含有量が70〜95重量%であり、
    (B)成分と(C)成分の合計に占める12μm以下の粒子の割合が40体積%以上であることを特徴とする硬化性樹脂組成物タブレット。
  15. 請求項1〜14に記載の白色硬化性樹脂組成物とリードフレームとをトランスファー成形により一体成形することにより得られる表面実装型発光装置。
  16. 前記封止剤が蛍光体を含有し、前記蛍光体が前記発光素子の光を受けて緑色および/または赤色および/または青色の光を放射することを特徴とする、請求項1〜15に記載の表面実装型発光装置。
JP2012096656A 2012-04-20 2012-04-20 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置 Pending JP2013225573A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012096656A JP2013225573A (ja) 2012-04-20 2012-04-20 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096656A JP2013225573A (ja) 2012-04-20 2012-04-20 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置

Publications (1)

Publication Number Publication Date
JP2013225573A true JP2013225573A (ja) 2013-10-31

Family

ID=49595447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096656A Pending JP2013225573A (ja) 2012-04-20 2012-04-20 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置

Country Status (1)

Country Link
JP (1) JP2013225573A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089922A (ja) * 2013-11-06 2015-05-11 出光興産株式会社 反射材用組成物及びこれを用いた光半導体発光装置
JP2017200988A (ja) * 2016-04-27 2017-11-09 株式会社カネカ 紫外led発光装置の半導体パッケージ用熱硬化性樹脂組成物、タブレット、半導体パッケージそれを用いた紫外led発光装置。
JP2019106496A (ja) * 2017-12-14 2019-06-27 旭化成エレクトロニクス株式会社 光デバイス及び光デバイスの製造方法
US10873015B2 (en) 2018-03-01 2020-12-22 Nichia Corporation Light emitting device and method of manufacturing the light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076445A (ja) * 2000-09-01 2002-03-15 Sanken Electric Co Ltd 半導体発光装置
WO2011125753A1 (ja) * 2010-04-02 2011-10-13 株式会社カネカ 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP2012021137A (ja) * 2010-06-18 2012-02-02 Kaneka Corp 熱硬化性樹脂組成物タブレットおよびそれを用いた半導体のパッケージ
JP4893874B1 (ja) * 2010-10-22 2012-03-07 パナソニック電工株式会社 表面実装型発光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076445A (ja) * 2000-09-01 2002-03-15 Sanken Electric Co Ltd 半導体発光装置
WO2011125753A1 (ja) * 2010-04-02 2011-10-13 株式会社カネカ 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP2012021137A (ja) * 2010-06-18 2012-02-02 Kaneka Corp 熱硬化性樹脂組成物タブレットおよびそれを用いた半導体のパッケージ
JP4893874B1 (ja) * 2010-10-22 2012-03-07 パナソニック電工株式会社 表面実装型発光装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089922A (ja) * 2013-11-06 2015-05-11 出光興産株式会社 反射材用組成物及びこれを用いた光半導体発光装置
JP2017200988A (ja) * 2016-04-27 2017-11-09 株式会社カネカ 紫外led発光装置の半導体パッケージ用熱硬化性樹脂組成物、タブレット、半導体パッケージそれを用いた紫外led発光装置。
JP2019106496A (ja) * 2017-12-14 2019-06-27 旭化成エレクトロニクス株式会社 光デバイス及び光デバイスの製造方法
JP7015686B2 (ja) 2017-12-14 2022-02-03 旭化成エレクトロニクス株式会社 光デバイス及び光デバイスの製造方法
US10873015B2 (en) 2018-03-01 2020-12-22 Nichia Corporation Light emitting device and method of manufacturing the light emitting device

Similar Documents

Publication Publication Date Title
JP5844252B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP4778085B2 (ja) 半導体のパッケージ用硬化性樹脂組成物および半導体
JP6164087B2 (ja) 表面実装型発光装置用樹脂成形体およびその製造方法ならびに表面実装型発光装置
KR101141566B1 (ko) 경화성 조성물과 그 조제 방법, 차광 페이스트, 차광용수지와 그 형성 방법, 발광 다이오드용 패키지 및 반도체장치
JP5685284B2 (ja) 発光ダイオード用パッケージおよび発光ダイオード
JP5837385B2 (ja) 熱硬化性樹脂組成物およびそれを用いた発光ダイオード用のパッケージ
JP5749543B2 (ja) 熱硬化性樹脂組成物タブレットおよびそれを用いた半導体のパッケージ
JP2013225573A (ja) 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置
JP5767550B2 (ja) Ledモジュール用樹脂成形体
JP2013080822A (ja) パッケージ成形体とその製造方法及び発光装置
JP5875780B2 (ja) 白色硬化性樹脂組成物およびそれを用いた半導体のパッケージ
JP5848572B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP2013080821A (ja) 樹脂成形体および側面発光型の半導体発光装置
JP6010210B2 (ja) 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置
JP2013080820A (ja) 樹脂成形体および発光装置
JP5813446B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP5563628B2 (ja) 半導体のパッケージ用硬化性樹脂組成物および半導体
JP2013133429A (ja) 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置
JP6154094B2 (ja) 半導体のパッケージ
JP2016094000A (ja) 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置
JP5563695B2 (ja) 半導体のパッケージ用硬化性樹脂組成物および半導体
JP5563696B2 (ja) 半導体のパッケージ用硬化性樹脂組成物および半導体
JP2013133428A (ja) 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置
JP2012102244A (ja) 熱硬化性樹脂組成物およびそれを用いた半導体のパッケージ
JP2013080819A (ja) 発光装置用樹脂成形体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160419