WO2011125753A1 - 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード - Google Patents

硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード Download PDF

Info

Publication number
WO2011125753A1
WO2011125753A1 PCT/JP2011/058047 JP2011058047W WO2011125753A1 WO 2011125753 A1 WO2011125753 A1 WO 2011125753A1 JP 2011058047 W JP2011058047 W JP 2011058047W WO 2011125753 A1 WO2011125753 A1 WO 2011125753A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin composition
curable resin
group
composition according
Prior art date
Application number
PCT/JP2011/058047
Other languages
English (en)
French (fr)
Inventor
匡 小久保
大内 克哉
岩原 孝尚
平林 和彦
洋 大越
友和 戸澤
修平 尾崎
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2012509522A priority Critical patent/JP5844252B2/ja
Priority to US13/638,992 priority patent/US9178120B2/en
Priority to CN201180017231.8A priority patent/CN102844383B/zh
Publication of WO2011125753A1 publication Critical patent/WO2011125753A1/ja
Priority to US14/643,609 priority patent/US9496468B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49586Insulating layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a curable resin composition, a curable resin composition tablet, a molded body, a semiconductor package, a semiconductor component, and a light emitting diode.
  • packages using curable resins of various shapes are applied to semiconductors.
  • Various metal materials are used for these packages in order to make electrical connection between the semiconductor and the outside of the package, to maintain the strength of the package, or to transfer heat generated from the semiconductor to the outside of the package.
  • resins generally have a large coefficient of linear expansion, and the coefficient of linear expansion is generally difficult to match that of a metal material having a small coefficient of linear expansion, various types of heating during heat molding, post-curing, or in use as semiconductor components— Problems such as warpage, peeling, cracking, and damage to the semiconductor may occur in the process involving cooling.
  • an object of the present invention is to provide a curable resin composition that provides a cured product having a low coefficient of linear expansion, and a semiconductor package with reduced warpage integrally formed with a metal using the same, and It is providing the semiconductor manufactured using this.
  • the present inventors have intensively studied and (A) an organic compound containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule, (B) 1 A compound containing at least two SiH groups in the molecule, (C) a hydrosilylation catalyst, (D) a silicone compound containing at least one carbon-carbon double bond reactive with the SiH group in one molecule, (E) It discovered that the said subject could be achieved by making a curable resin composition by making an inorganic filler into an essential component, and it came to this invention.
  • the present invention has the following configuration. (1) (A) an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule; (B) a compound containing at least two SiH groups in one molecule; (C) a hydrosilylation catalyst, (D) a silicone compound containing at least one carbon-carbon double bond reactive with a SiH group in one molecule; (E) inorganic filler, Is contained as an essential component. Curable resin composition characterized by the above-mentioned.
  • component (F) is at least one selected from zinc oxide, zirconia oxide, strontium oxide, niobium oxide, boron nitride, barium titanate and barium sulfate. object.
  • Spectral reflectance at 420 nm, 440 nm, and 460 nm after curing is 80 R% or more, and retention ratio of spectral reflectance after heat resistance test at 180 ° C. for 72 hours (spectral reflectance after heat resistance test / initial spectral reflectance
  • the curable resin composition according to any one of (1) to (19), wherein the light reflectance at a wavelength of 470 nm on the surface of the molded product obtained by curing is 90% or more.
  • (F) a tablet comprising a curable resin composition containing a white pigment as an essential component, At least one of the component (A) and the component (B) is a liquid having a viscosity at 23 ° C. of 50 Pa seconds or less, The total content of component (E) and component (F) is 70 to 95% by weight, The ratio of the particle
  • (25) A semiconductor package formed using the curable resin composition according to (22).
  • (26) A semiconductor package, which is integrally formed with a metal using the curable resin composition according to (22).
  • (27) The semiconductor package according to (25) or (26), wherein the curable resin composition and the lead frame are integrally formed by transfer molding.
  • (28) The semiconductor package according to any one of (25) to (27), wherein the semiconductor package is a package formed by substantially molding a resin on one side of a metal.
  • (29) A semiconductor package, which is transfer molded using the curable resin composition according to (22).
  • the curable resin composition of the present invention it is possible to obtain a curable resin composition that gives a cured product having a low linear expansion coefficient. Therefore, a semiconductor that is integrally molded with a metal and that has a reduced warpage. Package and a semiconductor manufactured using the same package.
  • the curable resin composition of the present invention is (A) an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule; (B) a compound containing at least two SiH groups in one molecule; (C) a hydrosilylation catalyst, (D) a silicone compound containing at least one carbon-carbon double bond reactive with a SiH group in one molecule; (E) A curable resin composition containing an inorganic filler as an essential component.
  • each component will be described.
  • the component (A) is not particularly limited as long as it is an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule.
  • Organic compounds do not contain siloxane units (Si-O-Si) like polysiloxane-organic block copolymers and polysiloxane-organic graft copolymers, but other than C, H, N, O, S and halogen as constituent elements A compound containing no element is more preferable. In the case of those containing siloxane units, there is a problem that the adhesiveness between the semiconductor package and the lead frame or the sealing resin tends to be low.
  • the organic compound (A) can be classified into an organic polymer compound and an organic monomer compound.
  • component (A) is a polymer
  • component (A) of the organic polymer system for example, polyether-based, polyester-based, polyarylate-based, polycarbonate-based, saturated hydrocarbon-based, unsaturated hydrocarbon-based, polyacrylate ester-based, polyamide-based, phenol-formaldehyde
  • examples thereof include those having a skeleton of a system (phenolic resin system) or a polyimide system.
  • examples of the polyether polymer include polyoxyethylene, polyoxypropylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, and the like. More specific examples:
  • R 1 and R 2 are C, H, N, O, S, C 1 -C 6 divalent organic groups not containing any elements other than halogen as constituent elements, n, m, and l are 1 to Represents a number of 300.) Etc.
  • Examples of other polymers include dibasic acids such as adipic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydrophthalic acid, and glycols such as ethylene glycol, diethylene glycol, propylene glycol, tetramethylene glycol, and neopentyl glycol.
  • dibasic acids such as adipic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydrophthalic acid
  • glycols such as ethylene glycol, diethylene glycol, propylene glycol, tetramethylene glycol, and neopentyl glycol.
  • Polyester polymers obtained by condensation of lactones or ring-opening polymerization of lactones, ethylene-propylene copolymers, polyisobutylene, copolymers of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene and butadiene, acrylonitrile, Copolymers with styrene, etc., polybutadiene, copolymers with butadiene and styrene, acrylonitrile, etc., polyisoprene, polybutadiene, isoprene or copolymers with butadiene and acrylonitrile, styrene, etc.
  • Polyolefin (saturated hydrocarbon) polymers obtained by hydrogenating the body polyacrylates obtained by radical polymerization of monomers such as ethyl acrylate and butyl acrylate, acrylic esters such as ethyl acrylate and butyl acrylate, and Acrylate ester copolymer with vinyl acetate, acrylonitrile, methyl methacrylate, styrene, etc., graft polymer obtained by polymerizing vinyl monomer in the organic polymer, polysulfide polymer, ring opening of ⁇ -aminocaprolactam Nylon 6 by polymerization, Nylon 66 by polycondensation of hexamethylenediamine and adipic acid, Nylon 610 by polycondensation of hexamethylenediamine and sebacic acid, Nylon 11 by polycondensation of ⁇ -aminoundecanoic acid, ⁇ -aminolauracta Nylon 12 by ring-opening polymer
  • An alkenyl group having a carbon-carbon double bond can be introduced into these polymer skeletons to obtain the component (A).
  • the alkenyl group having a carbon-carbon double bond may be present anywhere in the molecule, but is preferably present in the side chain or the terminal from the viewpoint of reactivity.
  • an organic polymer having a functional group such as a hydroxyl group, an alkoxide group, a carboxyl group, or an epoxy group at the terminal, main chain, or side chain is reactive with the functional group.
  • An alkenyl group can be introduced into the terminal, main chain or side chain by reacting an organic compound having both an active group and an alkenyl group.
  • organic compounds having both an active group and an alkenyl group reactive to the functional group include C3-C20 unsaturated groups such as acrylic acid, methacrylic acid, vinyl acetic acid, acrylic acid chloride, and acrylic acid bromide.
  • Allyl chloride allyl bromide
  • vinyl (chloromethyl) benzene allyl (chloromethyl)
  • This method is a method of transesterifying an alcohol residue of an ester portion of a polyester resin or an acrylic resin with an alkenyl group-containing alcohol or an alkenyl group-containing phenol derivative using a transesterification catalyst.
  • the alkenyl group-containing alcohol and alkenyl group-containing phenol derivative used for exchange with an alcohol residue may be any alcohol or phenol derivative having at least one alkenyl group and having at least one hydroxyl group. It is preferable to have it.
  • a catalyst may or may not be used, but a titanium-based catalyst and a tin-based catalyst are preferable.
  • Examples of the above compounds include vinyl alcohol, allyl alcohol, 3-buten-1-ol, 4-penten-1-ol, 5-hexen-1-ol, 6-hepten-1-ol, and 7-octene-1. -Ol, 8-nonen-1-ol, 9-decen-1-ol, 2- (allyloxy) ethanol, neopentyl glycol monoallyl ether, glyceryl diallyl ether, trimethylolpropane triallyl ether, trimethylolethane triallyl ether Pentaerythritol tetraallyl ether, 1,2,6-hexanetriol triallyl ether, sorbitan triallyl ether,
  • ester residue of the above-mentioned alcohol or phenol derivative such as acetate ester and the ester part of the polyester resin or acrylic resin are transesterified using a transesterification catalyst, and the alcohol residue of the ester part of the produced polyester resin or acrylic resin is changed.
  • a method of introducing an alkenyl group by a method of distilling low molecular weight esterified products such as acetates out of the system by vacuum devolatilization or the like.
  • an alkenyl group can also be introduce
  • an alkenyl group during the polymerization for example, in the case of producing the organic polymer skeleton of the component (A) used in the present invention by radical polymerization, radical reactivity in the molecule of allyl methacrylate, allyl acrylate, etc.
  • a vinyl monomer having a low alkenyl group or a radical chain transfer agent having a low alkenyl group such as allyl mercaptan
  • an alkenyl group can be introduced into the side chain or terminal of the organic polymer skeleton. .
  • the molecular weight is not particularly limited, but any of 100 to 100,000 can be suitably used, and an organic polymer containing an alkenyl group is particularly preferably 500 to 20,000.
  • an organic polymer containing an alkenyl group is particularly preferably 500 to 20,000.
  • the molecular weight is 500 or less, characteristics due to the use of an organic polymer such as imparting flexibility are hardly exhibited, and when the molecular weight is 100,000 or more, the effect of crosslinking due to the reaction between the alkenyl group and the SiH group is hardly exhibited.
  • component (A) is a monomer
  • organic monomer-based component (A) examples include, for example, aromatic hydrocarbons such as phenols, bisphenols, benzene, and naphthalene: aliphatic hydrocarbons such as linear and alicyclic: heterocyclic compounds And mixtures thereof.
  • Carbon-carbon double bond of component (A) The bonding position of the carbon-carbon double bond having reactivity with the SiH group is not particularly limited, and may be present anywhere in the molecule.
  • the carbon-carbon double bond having reactivity with the SiH group of the component (A) is not particularly limited, but the following general formula (I)
  • a group represented by the formula (wherein R 1 represents a hydrogen atom or a methyl group) is preferred from the viewpoint of reactivity.
  • R 1 represents a hydrogen atom or a methyl group
  • An alicyclic group represented by the formula (wherein R 2 represents a hydrogen atom or a methyl group) is preferred from the viewpoint that the heat resistance of the cured product is high.
  • R 2 represents a hydrogen atom or a methyl group
  • the alicyclic group represented by is particularly preferable.
  • the carbon-carbon double bond having reactivity with the SiH group may be directly bonded to the skeleton of the component (A) or may be covalently bonded through a divalent or higher substituent.
  • the divalent or higher valent substituent is not particularly limited as long as it is a substituent having 0 to 10 carbon atoms. However, a constituent element containing no element other than C, H, N, O, S and halogen is preferable. Examples of these substituents include
  • divalent or higher valent substituents may be connected by a covalent bond to constitute one divalent or higher valent substituent.
  • Examples of the group covalently bonded to the skeleton as described above include vinyl group, allyl group, methallyl group, acrylic group, methacryl group, 2-hydroxy-3- (allyloxy) propyl group, 2-allylphenyl group, 3 -Allylphenyl group, 4-allylphenyl group, 2- (allyloxy) phenyl group, 3- (allyloxy) phenyl group, 4- (allyloxy) phenyl group, 2- (allyloxy) ethyl group, 2,2-bis (allyl) Oxymethyl) butyl group, 3-allyloxy-2,2-bis (allyloxymethyl) propyl group,
  • component (A) Specific examples of component (A) in the organic polymer system include 1,2-polybutadiene (1,2 ratio of 10 to 100%, preferably 1,2 ratio of 50 to 100%), novolak phenol Allyl ether, allylated polyphenylene oxide,
  • R 1 is H or CH 3
  • R 2 , R 3 is a divalent organic group having 1 to 6 carbon atoms that does not contain elements other than C, H, N, O, S, and halogen as constituent elements
  • X and Y are divalent substituents having 0 to 10 carbon atoms
  • n, m, and l are numbers 1 to 300.
  • R 1 is H or CH 3
  • R 4 , R 5 is a divalent organic group having 1 to 6 carbon atoms
  • X and Y are divalent substituents having 0 to 10 carbon atoms
  • n, m, l represents a number from 1 to 300.
  • R 1 is H or CH 3
  • R 6 , R 7 is a divalent organic group having 1 to 20 carbon atoms
  • X and Y are divalent substituents having 0 to 10 carbon atoms
  • n, m, l represents a number from 1 to 300.
  • R 1 is H or CH 3
  • R 8 and R 9 are divalent organic groups having 1 to 6 carbon atoms
  • X and Y are divalent substituents having 0 to 10 carbon atoms
  • n, m, l represents a number from 1 to 300.
  • R 1 is H or CH 3
  • R 10 , R 11 , R 12 are divalent organic groups having 1 to 6 carbon atoms
  • X and Y are divalent substituents having 0 to 10 carbon atoms
  • n , M, l, and p represent numbers of 1 to 300).
  • organic monomer type (A) component examples include diallyl phthalate, triallyl trimellitate, diethylene glycol bisallyl carbonate, trimethylolpropane diallyl ether, pentaerythritol triallyl ether, 1,1,2,2 -Tetraallyloxyethane, diarylidenepentaerythritol, triallyl cyanurate, triallyl isocyanurate, 1,2,4-trivinylcyclohexane, divinylbenzenes (having a purity of 50 to 100%, preferably a purity of 80 to 100%), divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, and oligomers thereof,
  • low molecular weight compounds that are difficult to express separately as described above for the skeleton portion and the alkenyl group can also be used.
  • these low molecular weight compounds include aliphatic chain polyene compound systems such as butadiene, isoprene, octadiene and decadiene, fats such as cyclopentadiene, cyclohexadiene, cyclooctadiene, dicyclopentadiene, tricyclopentadiene and norbornadiene.
  • examples thereof include aromatic cyclic polyene compound systems and substituted aliphatic cyclic olefin compound systems such as vinylcyclopentene and vinylcyclohexene.
  • the component (A) preferably contains 0.001 mol or more of a carbon-carbon double bond having reactivity with the SiH group per 1 g of the component (A) from the viewpoint of further improving the heat resistance. What contains 0.005 mol or more per is more preferable, and what contains 0.008 mol or more is still more preferable.
  • the number of carbon-carbon double bonds reactive with the SiH group of the component (A) should be on average at least 2 per molecule, but it may exceed 2 if it is desired to further improve the mechanical strength. Preferably, it is 3 or more. When the number of carbon-carbon double bonds reactive with the SiH group of component (A) is 1 or less per molecule, the reaction with component (B) only results in a graft structure and a crosslinked structure. Don't be.
  • the component (A) From the viewpoint of good reactivity as the component (A), it is preferable that one or more vinyl groups are contained in one molecule, and two or more vinyl groups are contained in one molecule. Is more preferable. Further, from the viewpoint that the storage stability tends to be good, it is preferable that 6 or less vinyl groups are contained in one molecule, and it is more preferable that 4 or less vinyl groups are contained in one molecule.
  • the viscosity is preferably less than 1000 poise at 23 ° C., more preferably less than 300 poise, More preferred is less than 30 poise.
  • the viscosity can be measured with an E-type viscometer.
  • those having a low content of a compound having a phenolic hydroxyl group and / or a derivative of a phenolic hydroxyl group are preferable from the viewpoint of higher light resistance.
  • a phenolic hydroxyl group and / or a derivative of a phenolic hydroxyl group is preferable. What does not contain the compound which has is preferable.
  • the phenolic hydroxyl group means a hydroxyl group directly bonded to an aromatic hydrocarbon nucleus exemplified by a benzene ring, naphthalene ring, anthracene ring, etc.
  • a phenolic hydroxyl group derivative means a hydrogen atom of the above-mentioned phenolic hydroxyl group.
  • a group substituted by an alkyl group such as a methyl group or an ethyl group, an alkenyl group such as a vinyl group or an allyl group, an acyl group such as an acetoxy group, or the like.
  • the weight ratio of the component (A) in the aromatic ring is preferably 50% by weight or less, more preferably 40% by weight or less, and more preferably 30% by weight. The following are more preferable. Most preferred are those that do not contain an aromatic hydrocarbon ring.
  • the component (A) includes vinylcyclohexene, dicyclopentadiene, vinylnorbornene, triallyl isocyanurate, 2,2-bis (4-hydroxycyclohexyl).
  • Preferred is diallyl ether of propane, 1,2,4-trivinylcyclohexane, particularly preferred is triallyl isocyanurate, diallyl ether of 2,2-bis (4-hydroxycyclohexyl) propane, and 1,2,4-trivinylcyclohexane. . *
  • R 1 represents a monovalent organic group having 1 to 50 carbon atoms, and each R 1 may be different or the same).
  • R 1 in the general formula (III) is preferably a monovalent organic group having 1 to 20 carbon atoms from the viewpoint that the heat resistance of the resulting cured product can be further increased. 10 monovalent organic groups are more preferable, and monovalent organic groups having 1 to 4 carbon atoms are more preferable. Examples of these preferable R 1 are methyl group, ethyl group, propyl group, butyl group, phenyl group, benzyl group, phenethyl group, vinyl group, allyl group, glycidyl group,
  • the R 1 in the general formula (III) includes three R 1 from the viewpoint that the adhesiveness between the package and the lead frame or the sealing agent can be improved, or the mechanical strength of the obtained package can be increased.
  • at least one of them is a monovalent organic group having 1 to 50 carbon atoms containing one or more epoxy groups,
  • R 1 a monovalent organic group having 1 to 50 carbon atoms containing at least one epoxy group represented by the formula:
  • R 1 examples include a glycidyl group
  • R 1 in the general formula (III) is a carbon containing two or less oxygen atoms and containing only C, H, and O as constituent elements from the viewpoint that the heat resistance of the resulting cured product can be improved.
  • a monovalent organic group having 1 to 50 carbon atoms is preferable, and a monovalent hydrocarbon group having 1 to 50 carbon atoms is more preferable.
  • examples of these preferable R 1 are methyl group, ethyl group, propyl group, butyl group, phenyl group, benzyl group, phenethyl group, vinyl group, allyl group, glycidyl group,
  • R 1 in the general formula (III) is at least one of three R 1 from the viewpoint of good reactivity.
  • R 2 represents a hydrogen atom or a. Represents methyl group
  • R 1 is a monovalent organic group of 1 to 50 carbon atoms containing a group represented by one or more at least of the three R 1 Two are the following general formula (V)
  • R 3 represents a direct bond or a divalent organic group having 1 to 48 carbon atoms
  • R 4 represents a hydrogen atom or a methyl group
  • a plurality of R 3 and R 4 are More preferably, they may be the same or different.
  • R 3 in the general formula (V) is a direct bond or a divalent organic group having 1 to 48 carbon atoms. From the viewpoint that the heat resistance of the resulting package can be further increased, the direct bond or the carbon number It is preferably a divalent organic group having 1 to 20, more preferably a direct bond or a divalent organic group having 1 to 10 carbon atoms, and a direct bond or a divalent organic group having 1 to 4 carbon atoms. More preferably. Examples of these preferred R 3 include
  • R 3 in the general formula (V) from the viewpoint that the heat resistance of the resulting package can be improved, only C, H, or O is included as a constituent element including a direct bond or two or less oxygen atoms. It is preferably a divalent organic group having 1 to 48 carbon atoms, more preferably a direct bond or a divalent hydrocarbon group having 1 to 48 carbon atoms. Examples of these preferred R 3 include
  • R 4 in the general formula (V) is a hydrogen atom or a methyl group, and a hydrogen atom is preferable from the viewpoint of good reactivity.
  • the organic compound represented by the general formula (III) as described above it is necessary to contain at least two carbon-carbon double bonds having reactivity with the SiH group in one molecule. is there. From the viewpoint of further improving the heat resistance, it is more preferably an organic compound containing three or more carbon-carbon double bonds having reactivity with SiH groups in one molecule.
  • organic compound represented by the above general formula (III) examples include triallyl isocyanurate,
  • the component ( ⁇ ) is a compound having a SiH group, and a chain and / or cyclic polyorganosiloxane having a SiH group is an example.
  • R 1 represents an organic group having 1 to 6 carbon atoms, and n represents a number of 3 to 10).
  • Cyclic polyorganosiloxane having at least 3 SiH groups in one molecule Is preferred.
  • the substituent R 1 in the compound represented by the general formula (VI) preferably does not contain a constituent element other than C, H, and O, more preferably a hydrocarbon group, and a methyl group. Further preferred.
  • ( ⁇ ) component examples include compounds having a SiH group such as bisdimethylsilylbenzene. *
  • component (A) of the present invention an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule and ( ⁇ ) component are obtained by hydrosilylation reaction.
  • the hydrosilylation reaction between an organic compound containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule and the ( ⁇ ) component in the case of using a compound capable of reacting with SiH will be described.
  • a hydrosilylation reaction of an organic compound containing at least two carbon-carbon double bonds reactive with a SiH group in one molecule and the ( ⁇ ) component results in a plurality of compounds containing the component (A) of the present invention.
  • the curable resin composition of the present invention can also be prepared by using the mixture as it is without separating the component (A).
  • Carbon-carbon double having reactivity with SiH group when hydrosilylation reaction of ( ⁇ ) component with organic compound containing at least two carbon-carbon double bonds reactive with SiH group in one molecule The mixing ratio of the organic compound containing at least two bonds in one molecule and the ( ⁇ ) component is not particularly limited, but generally is reactive with the SiH group to be mixed in that gelation during the reaction can be suppressed.
  • an appropriate catalyst may be used.
  • catalysts other than platinum compounds include RhCl (PPh) 3 , RhCl 3 , RhAl 2 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 .2H 2 O, NiCl 2 , TiCl 4. , Etc.
  • chloroplatinic acid platinum-olefin complexes, platinum-vinylsiloxane complexes and the like are preferable from the viewpoint of catalytic activity.
  • these catalysts may be used independently and may be used together 2 or more types.
  • the addition amount of the catalyst is not particularly limited, the lower limit of the preferable addition amount is sufficient with respect to 1 mol of SiH groups of the ( ⁇ ) component in order to have sufficient curability and keep the cost of the curable resin composition relatively low. 10 -8 mol Te, more preferably 10 -6 mole, preferable amount of the upper limit is 10 -1 moles per mole of the SiH group (beta) component, more preferably 10 -2 moles.
  • a cocatalyst can be used in combination with the above catalyst.
  • examples thereof include phosphorus compounds such as triphenylphosphine, 1,2-diester compounds such as dimethyl malate, 2-hydroxy-2-methyl-1 -Acetylene alcohol compounds such as butyne, sulfur compounds such as simple sulfur, and amine compounds such as triethylamine.
  • the addition amount of the cocatalyst is not particularly limited, but the lower limit of the preferable addition amount with respect to 1 mol of the hydrosilylation catalyst is 10 ⁇ 2 mol, more preferably 10 ⁇ 1 mol, and the upper limit of the preferable addition amount is 10 2. Mol, more preferably 10 mol.
  • Various methods can be used as a method of mixing an organic compound containing at least two carbon-carbon double bonds that are reactive with SiH groups in one molecule, a ( ⁇ ) component, and a catalyst.
  • a method in which a catalyst is mixed with an organic compound containing at least two carbon-carbon double bonds reactive with an SiH group in one molecule is mixed with the ( ⁇ ) component. It is difficult to control the reaction by a method of mixing a catalyst with a mixture of an organic compound ( ⁇ ) component containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule.
  • the reaction temperature can be variously set.
  • the lower limit of the preferable temperature range is 30 ° C., more preferably 50 ° C.
  • the upper limit of the preferable temperature range is 200 ° C., more preferably 150 ° C. If the reaction temperature is low, the reaction time for sufficiently reacting becomes long, and if the reaction temperature is high, it is not practical.
  • the reaction may be carried out at a constant temperature, but the temperature may be changed in multiple steps or continuously as required. *
  • a solvent may be used during the hydrosilylation reaction.
  • Solvents that can be used are not particularly limited as long as they do not inhibit the hydrosilylation reaction. Specifically, hydrocarbon solvents such as benzene, toluene, hexane, heptane, tetrahydrofuran, 1,1,4-dioxane, 1, Ether solvents such as 3-dioxolane and diethyl ether, ketone solvents such as acetone and methyl ethyl ketone, and halogen solvents such as chloroform, methylene chloride and 1, 2-dichloroethane can be preferably used.
  • the solvent can also be used as a mixed solvent of two or more types.
  • As the solvent toluene, tetrahydrofuran, 1,3-dioxolane and chloroform are preferable.
  • the amount of solvent to be used can also be set as appropriate. *
  • Examples of the component (A), which is a reaction product of the organic compound containing at least two carbon-carbon double bonds reactive with the SiH group in one molecule and the component ( ⁇ ), include bisphenol A reaction product of diallyl ether and 1,3,5,7-tetramethylcyclotetrasiloxane, reaction product of vinylcyclohexene and 1,3,5,7-tetramethylcyclotetrasiloxane, divinylbenzene and 1,3,5, Reaction product of 7-tetramethylcyclotetrasiloxane, reaction product of dicyclopentadiene and 1,3,5,7-tetramethylcyclotetrasiloxane, triallyl isocyanurate and 1,3,5,7-tetramethylcyclotetrasiloxane Reaction products of diallyl monoglycidyl isocyanurate and 1,3,5,7-tetramethylcyclotetrasiloxane Applied Physics, mention may be made of reaction products of vinyl norbornene and bis dimethylsilyl
  • (Other reactive groups of component (A)) (A) As a component, you may have another reactive group.
  • the reactive group in this case include an epoxy group, an amino group, a radical polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group.
  • an epoxy group is preferable from the viewpoint that the adhesiveness can be further increased.
  • (Mixing of component (A)) (A) component can be used individually or in mixture of 2 or more types.
  • the component (B) is a compound containing at least two SiH groups in one molecule.
  • the component (B) is not particularly limited as long as it is a compound containing at least two SiH groups in one molecule.
  • the compound described in International Publication WO 96/15194 is at least two SiH groups in one molecule. Those having a group can be used. *
  • R 1 represents an organic group having 1 to 6 carbon atoms, and n represents a number of 3 to 10).
  • Cyclic organopolysiloxane having at least two SiH groups in one molecule Is preferred.
  • the substituent R 1 in the compound represented by the general formula (VI) is preferably composed of C, H and O, more preferably a hydrocarbon group, and a methyl group. Further preferred.
  • the compound represented by the general formula (VI) is preferably 1,3,5,7-tetramethylcyclotetrasiloxane from the viewpoint of availability.
  • the molecular weight of the component (B) is not particularly limited, and any one can be suitably used. However, the viewpoint that the fluidity is more easily expressed and the powder such as the component (E) and the component (F) is easily mixed uniformly. Are preferably those having a low molecular weight. In this case, the lower limit of the preferred molecular weight is 50, and the upper limit of the preferred molecular weight is 100,000, more preferably 1,000, and still more preferably 700. *
  • component (B) in order to facilitate uniform mixing with other components, particularly powders such as component (E) and component (F), more specifically, heating above the melting point for uniform mixing.
  • the liquid is preferably liquid at 23 ° C., and its viscosity is preferably 50 Pa seconds or less at 23 ° C., more preferably 20 Pa seconds or less, and more preferably 5 Pa seconds or less. Further preferred.
  • the viscosity can be measured with an E-type viscometer.
  • Component (B) can be used alone or in combination of two or more. *
  • component (B) From the viewpoint of having good compatibility with the component (A), and from the viewpoint that the problem of outgas from the curable resin composition that can be reduced in volatility of the component (B) is less likely to occur, the component (B) An organic compound ( ⁇ ) containing at least one carbon-carbon double bond reactive with a SiH group in one molecule and a compound ( ⁇ ) having at least two SiH groups in one molecule are hydrosilylated. It is preferable that the compound is obtained by a chemical reaction.
  • the component ( ⁇ ) used here is the same component ( ⁇ 1) as the component (A) described above, which is the same as the organic compound containing at least two carbon-carbon double bonds reactive with the SiH group in one molecule. Can do.
  • the component ( ⁇ 1) is used, the resulting cured product has a high crosslink density and tends to be a cured product having high mechanical strength.
  • an organic compound ( ⁇ 2) containing one carbon-carbon double bond having reactivity with the SiH group in one molecule can also be used.
  • the obtained cured product tends to have low elasticity.
  • the component ( ⁇ 2) is not particularly limited as long as it is an organic compound containing one carbon-carbon double bond having reactivity with the SiH group in one molecule, but the component (B) is compatible with the component (A).
  • the compound does not contain a siloxane unit (Si—O—Si) such as polysiloxane-organic block copolymer or polysiloxane-organic graft copolymer, and C, H, N as constituent elements , O, S, and halogen are preferred.
  • the bonding position of the carbon-carbon double bond reactive with the SiH group of the ( ⁇ 2) component is not particularly limited, and may be present anywhere in the molecule.
  • the ( ⁇ 2) component compound can be classified into a polymer compound and a monomer compound.
  • polysiloxane examples include polysiloxane, polyether, polyester, polyarylate, polycarbonate, saturated hydrocarbon, unsaturated hydrocarbon, polyacrylate ester, polyamide, phenol-formaldehyde ( Phenol resin type) and polyimide type compounds can be used.
  • polysiloxane examples include polysiloxane, polyether, polyester, polyarylate, polycarbonate, saturated hydrocarbon, unsaturated hydrocarbon, polyacrylate ester, polyamide, phenol-formaldehyde ( Phenol resin type) and polyimide type compounds can be used.
  • monomer compounds include aromatic hydrocarbons such as phenols, bisphenols, benzene, and naphthalene: aliphatic hydrocarbons such as straight-chain and alicyclics: heterocyclic compounds, and silicon-based compounds. Examples thereof include compounds and mixtures thereof.
  • the carbon-carbon double bond having reactivity with the SiH group of the ( ⁇ 2) component is not particularly limited, but the following general formula (I)
  • a group represented by the formula (wherein R 1 represents a hydrogen atom or a methyl group) is preferred from the viewpoint of reactivity.
  • R 1 represents a hydrogen atom or a methyl group
  • the carbon-carbon double bond having reactivity with the SiH group of the component ( ⁇ 2) is represented by the following general formula (II)
  • An alicyclic group represented by the formula (wherein R 2 represents a hydrogen atom or a methyl group) is preferred from the viewpoint that the heat resistance of the cured product is high.
  • R 2 represents a hydrogen atom or a methyl group
  • the alicyclic group represented by is particularly preferable. *
  • the carbon-carbon double bond having reactivity with the SiH group may be directly bonded to the skeleton portion of the ( ⁇ 2) component, or may be covalently bonded through a divalent or higher substituent.
  • the divalent or higher valent substituent is not particularly limited as long as it is a substituent having 0 to 10 carbon atoms.
  • C Those containing only H, N, O, S and halogen are preferred. Examples of these substituents are:
  • divalent or higher valent substituents may be connected by a covalent bond to constitute one divalent or higher valent substituent.
  • Examples of the group covalently bonded to the skeleton as described above include vinyl group, allyl group, methallyl group, acrylic group, methacryl group, 2-hydroxy-3- (allyloxy) propyl group, 2-allylphenyl group, 3 -Allylphenyl group, 4-allylphenyl group, 2- (allyloxy) phenyl group, 3- (allyloxy) phenyl group, 4- (allyloxy) phenyl group, 2- (allyloxy) ethyl group, 2,2-bis (allyl) Oxymethyl) butyl group, 3-allyloxy-2,2-bis (allyloxymethyl) propyl group,
  • component ( ⁇ 2) examples include propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-undecene, Idemitsu Petrochemical's linearene, 4,4-dimethyl-1-pentene, 2-methyl-1-hexene, 2,3,3-trimethyl-1-butene, 2,4,4-trimethyl-1-pentene, etc.
  • Chain aliphatic hydrocarbon compounds such as cyclohexene, methylcyclohexene, methylenecyclohexane, norbornylene, ethylidenecyclohexane, vinylcyclohexane, camphene, carene, ⁇ -pinene, ⁇ -pinene and the like, Styrene, ⁇ -methylstyrene, indene, phenylacetylene, 4-ethynyltoluene, allylbenzene, 4- Aromatic hydrocarbon compounds such as phenyl-1-butene, allyl ethers such as alkyl allyl ether and allyl phenyl ether, glycerin monoallyl ether, ethylene glycol monoallyl ether, 4-vinyl-1,3-dioxolane- Substitution of aliphatic compounds such as 2-one, aromatic compounds such as 1,2-dimethoxy-4-allylbenzene, o-allylphenol
  • polyether resins such as one-end allylated polyethylene oxide and one-end allylated polypropylene oxide
  • hydrocarbon resins such as one-end allylated polyisobutylene, one-end allylated polybutyl acrylate, one-end allylated polymethyl methacrylate
  • polymers or oligomers having a vinyl group at one end such as acrylic resins.
  • the structure of the ( ⁇ 2) component may be linear or branched, and the molecular weight is not particularly limited, and various types can be used.
  • the molecular weight distribution is not particularly limited, but the molecular weight distribution is preferably 3 or less, more preferably 2 or less, and more preferably 1.5 or less in that the viscosity of the mixture is low and the moldability tends to be good. More preferably it is. *
  • the glass transition temperature of the component ( ⁇ 2) there is no particular limitation on this, and various materials are used.
  • the glass point transfer temperature is 100 ° C. or lower in that the obtained cured product tends to be tough. Preferably, it is 50 ° C. or lower, and more preferably 0 ° C. or lower. Examples of preferred resins include polybutyl acrylate resins.
  • the glass transition temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, further preferably 150 ° C. or higher, in that the heat resistance of the cured product obtained is increased. Most preferably, it is 170 ° C. or higher.
  • the glass transition temperature can be determined as a temperature at which tan ⁇ exhibits a maximum in the dynamic viscoelasticity measurement.
  • the component ( ⁇ 2) is preferably a hydrocarbon compound in that the heat resistance of the resulting cured product is increased.
  • the preferable lower limit of the carbon number is 7, and the preferable upper limit of the carbon number is 10.
  • the component ( ⁇ 2) may have other reactive groups.
  • the reactive group in this case include an epoxy group, an amino group, a radical polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group.
  • an epoxy group is preferable from the viewpoint that the adhesiveness can be further increased.
  • ( ⁇ 1) component and / or ( ⁇ 2) component a single component may be used, or a plurality of components may be used in combination.
  • the component ( ⁇ ) is a compound having at least two SiH groups in one molecule, and chain and / or cyclic polyorganosiloxanes are also examples.
  • R 1 represents an organic group having 1 to 6 carbon atoms, and n represents a number of 3 to 10).
  • Cyclic polyorganosiloxane having at least 3 SiH groups in one molecule Is preferred.
  • the substituent R 1 in the compound represented by the general formula (VI) is preferably composed of C, H, and O, more preferably a hydrocarbon group, and a methyl group. Is more preferable.
  • ( ⁇ ) component examples include compounds having a SiH group such as bisdimethylsilylbenzene. *
  • the mixing ratio of the ( ⁇ ) component and the ( ⁇ ) component when the ( ⁇ ) component and the ( ⁇ ) component are subjected to a hydrosilylation reaction is not particularly limited, but the hydrosilylation of the obtained (B) component and (A) component is not limited.
  • the component (B) since it is preferable that the component (B) has more SiH groups, the total number of carbon-carbon double bonds having reactivity with SiH groups in the component ( ⁇ ) to be mixed (
  • the ratio of X) to the total number of SiH groups (Y) in the ( ⁇ ) component to be mixed is preferably Y / X ⁇ 2, and more preferably Y / X ⁇ 3.
  • an appropriate catalyst may be used.
  • catalysts other than platinum compounds include RhCl (PPh) 3 , RhCl 3 , RhAl 2 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 .2H 2 O, NiCl 2 , TiCl 4. , Etc.
  • chloroplatinic acid platinum-olefin complexes, platinum-vinylsiloxane complexes and the like are preferable from the viewpoint of catalytic activity.
  • these catalysts may be used independently and may be used together 2 or more types.
  • the addition amount of the catalyst is not particularly limited, the lower limit of the preferable addition amount is sufficient with respect to 1 mol of SiH groups of the ( ⁇ ) component in order to have sufficient curability and keep the cost of the curable resin composition relatively low. 10 -8 mol Te, more preferably 10 -6 mole, preferable amount of the upper limit is 10 -1 moles per mole of the SiH group (beta) component, more preferably 10 -2 moles.
  • a cocatalyst can be used in combination with the above catalyst.
  • examples thereof include phosphorus compounds such as triphenylphosphine, 1,2-diester compounds such as dimethyl malate, 2-hydroxy-2-methyl-1 -Acetylene alcohol compounds such as butyne, sulfur compounds such as simple sulfur, and amine compounds such as triethylamine.
  • the addition amount of the cocatalyst is not particularly limited, but the lower limit of the preferable addition amount with respect to 1 mol of the hydrosilylation catalyst is 10 ⁇ 2 mol, more preferably 10 ⁇ 1 mol, and the upper limit of the preferable addition amount is 10 2. Mol, more preferably 10 mol.
  • the reaction temperature can be variously set.
  • the lower limit of the preferable temperature range is 30 ° C., more preferably 50 ° C.
  • the upper limit of the preferable temperature range is 200 ° C., more preferably 150 ° C. If the reaction temperature is low, the reaction time for sufficiently reacting becomes long, and if the reaction temperature is high, it is not practical.
  • the reaction may be carried out at a constant temperature, but the temperature may be changed in multiple steps or continuously as required. *
  • a solvent may be used during the hydrosilylation reaction.
  • Solvents that can be used are not particularly limited as long as they do not inhibit the hydrosilylation reaction. Specifically, hydrocarbon solvents such as benzene, toluene, hexane, heptane, tetrahydrofuran, 1,1,4-dioxane, 1, Ether solvents such as 3-dioxolane and diethyl ether, ketone solvents such as acetone and methyl ethyl ketone, and halogen solvents such as chloroform, methylene chloride and 1, 2-dichloroethane can be preferably used.
  • the solvent can also be used as a mixed solvent of two or more types.
  • As the solvent toluene, tetrahydrofuran, 1,3-dioxolane and chloroform are preferable.
  • the amount of solvent to be used can also be set as appropriate. *
  • the solvent or / and the unreacted ( ⁇ ) component or / and the ( ⁇ ) component can be removed.
  • the component (B) obtained does not have volatile components, so that the problem of voids and cracks due to volatilization of the volatile components hardly occurs in the case of curing with the component (A).
  • the removal method include treatment with activated carbon, aluminum silicate, silica gel and the like in addition to vacuum devolatilization.
  • the upper limit of the preferable temperature in this case is 100 ° C, more preferably 60 ° C.
  • Examples of the component (B) that is a reaction product of the components ( ⁇ ) and ( ⁇ ) as described above include a reaction product of bisphenol A diallyl ether and 1,3,5,7-tetramethylcyclotetrasiloxane, Reaction product of vinylcyclohexene and 1,3,5,7-tetramethylcyclotetrasiloxane, reaction product of divinylbenzene and 1,3,5,7-tetramethylcyclotetrasiloxane, dicyclopentadiene and 1,3,5, Reaction product of 7-tetramethylcyclotetrasiloxane, reaction product of triallyl isocyanurate and 1,3,5,7-tetramethylcyclotetrasiloxane, diallyl monoglycidyl isocyanurate and 1,3,5,7-tetramethylcyclo Reactant of tetrasiloxane, allyl glycidyl ether and 1,3,5,7-tetramethylcyclotetrasilo A reaction product of
  • the mixing ratio of the component (A) and the component (B) is not particularly limited as long as the required strength is not lost, but the number of SiH groups in the component (B) (Y) is the carbon-carbon in the component (A).
  • the lower limit of the preferred range is Y / X ⁇ 0.3, more preferably Y / X ⁇ 0.5, and even more preferably Y / X ⁇ 0.7, which is preferable.
  • the upper limit of the range is 3 ⁇ Y / X, more preferably 2 ⁇ Y / X, and even more preferably 1.5 ⁇ Y / X.
  • Component (C) is a hydrosilylation catalyst.
  • the hydrosilylation catalyst is not particularly limited as long as it has a catalytic activity for the hydrosilylation reaction.
  • a platinum simple substance a support made of alumina, silica, carbon black or the like on which solid platinum is supported, chloroplatinic acid, platinum chloride Complexes of acids with alcohols, aldehydes, ketones, etc., platinum-olefin complexes (eg, Pt (CH 2 ⁇ CH 2 ) 2 (PPh 3 ) 2 , Pt (CH 2 ⁇ CH 2 ) 2 Cl 2 ), platinum-vinyl Siloxane complexes (eg, Pt (ViMe 2 SiOSiMe 2 Vi) n , Pt [(MeViSiO) 4 ] m ), platinum-phosphine complexes (eg, Pt (PPh 3 ) 4 , Pt (PBu 3 ) 4 ), platinum-phos Fight complexes (e.g., Pt [P (OP
  • catalysts other than platinum compounds include RhCl (PPh) 3 , RhCl 3 , RhAl 2 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 .2H 2 O, NiCl 2 , TiCl 4. , Etc.
  • chloroplatinic acid platinum-olefin complexes, platinum-vinylsiloxane complexes and the like are preferable from the viewpoint of catalytic activity.
  • these catalysts may be used independently and may be used together 2 or more types.
  • the addition amount of the catalyst is not particularly limited, the lower limit of the preferable addition amount is sufficient with respect to 1 mol of SiH groups of the component (B) in order to have sufficient curability and keep the cost of the curable resin composition relatively low. 10 -8 mol Te, more preferably 10 -6 mole, preferable amount of the upper limit is 10 -1 moles per mole of the SiH group (beta) component, more preferably 10 -2 moles.
  • a cocatalyst can be used in combination with the above catalyst.
  • examples thereof include phosphorus compounds such as triphenylphosphine, 1,2-diester compounds such as dimethyl malate, 2-hydroxy-2-methyl-1 -Acetylene alcohol compounds such as butyne, sulfur compounds such as simple sulfur, and amine compounds such as triethylamine.
  • the addition amount of the cocatalyst is not particularly limited, but the lower limit of the preferable addition amount with respect to 1 mol of the hydrosilylation catalyst is 10 ⁇ 2 mol, more preferably 10 ⁇ 1 mol, and the upper limit of the preferable addition amount is 10 2. Mol, more preferably 10 mol.
  • the component (D) of the present invention is a silicone compound containing at least one carbon-carbon double bond having reactivity with the SiH group in one molecule.
  • a curable resin composition that gives a cured product having a smaller linear expansion coefficient when mixed with the inorganic filler of the component (E) can be obtained.
  • the silicone compound of component (D) is a compound whose skeleton is substantially formed of Si—O—Si bonds, and various compounds such as linear, cyclic, branched, and partial networks are available. Used.
  • examples of the substituent bonded to the skeleton include alkyl groups such as methyl group, ethyl group, propyl group, and octyl group, aryl groups such as phenyl group, 2-phenylethyl group, and 2-phenylpropyl group, methoxy group, Examples thereof include alkoxy groups such as ethoxy group and isopropoxy group, and groups such as hydroxyl group.
  • alkyl groups such as methyl group, ethyl group, propyl group, and octyl group
  • aryl groups such as phenyl group, 2-phenylethyl group, and 2-phenylpropyl group, methoxy group
  • alkoxy groups such as ethoxy group and isopropoxy group
  • groups such as hydroxyl group.
  • a methyl group, a phenyl group, a hydroxyl group, and a methoxy group are preferable, and a methyl group and a pheny
  • Examples of the substituent having a carbon-carbon double bond reactive with the SiH group include a vinyl group, an allyl group, an acryloxy group, a methacryloxy group, an acryloxypropyl group, and a methacryloxypropyl group. Of these, a vinyl group is preferred in terms of good reactivity.
  • R is a group selected from a hydroxyl group, a methyl group or a phenyl group, and n and m are numbers satisfying 0 ⁇ n ⁇ 4, 0 ⁇ m ⁇ 4, and 0 ⁇ n + m ⁇ 4)
  • the component (D) include polydimethylsiloxane having a vinyl group as a terminal group or side chain group, polydiphenylsiloxane, polymethylphenylsiloxane, and two or three kinds of random or block copolymers, 1, 3 -Divinyltetramethyldisiloxane, 1,3,5,7-tetravinylcyclotetrasiloxane and the like.
  • a plurality of components may be mixed and used.
  • linear polysiloxanes having vinyl groups at the ends are preferable, linear polysiloxanes having vinyl groups at both ends are more preferable, and both ends are more preferable in that the effects of the present invention are more easily obtained.
  • a linear polymethylphenylsiloxane having a vinyl group is more preferable, and a linear polymethylphenylsiloxane having a vinyl group at both ends, wherein the amount of phenyl groups with respect to all substituents is 20 mol% or more. It is particularly preferred that
  • the weight average molecular weight (Mw) is preferably 1,000 or more, more preferably 5,000 or more, and further preferably 10,000 or more. When the molecular weight is high, the obtained cured product tends to have low stress. Further, the molecular weight of the component (D) is preferably 1,000,000 or less, and more preferably 100,000 or less. When the molecular weight is large, it becomes difficult to obtain compatibility with the component (A).
  • the amount of the component (D) is preferably 30% by weight or more, more preferably 50% by weight or more based on the total weight of the component (A) and the component (B). 80% by weight or more is more preferable.
  • the mixing ratio of the component (A), the component (B), and the component (D) is not particularly limited as long as the required strength is not lost, but the component (A) having the number of SiH groups (Y) in the component (B).
  • the ratio of the number of carbon-carbon double bonds (X) having reactivity with SiH groups in component (D) is preferably Y / X ⁇ 0.3, more preferably Y / X ⁇ 0. 0.5, more preferably Y / X ⁇ 0.7, and the upper limit of the preferred range is 3 ⁇ Y / X, more preferably 2 ⁇ Y / X, and even more preferably 1.5 ⁇ Y / X. When it deviates from the preferred range, sufficient strength may not be obtained or thermal deterioration may easily occur. *
  • the component (E) is an inorganic filler.
  • the component (E) has an effect of increasing the strength and hardness of the obtained cured product and reducing the linear expansion coefficient.
  • silica-based materials such as quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, and ultrafine powder amorphous silica.
  • Inorganic filler alumina, zircon, titanium oxide, zinc oxide, silicon nitride, boron nitride, aluminum nitride, silicon carbide, glass fiber, alumina fiber, carbon fiber, mica, graphite, carbon black, graphite, diatomaceous earth, white clay, clay , Talc, aluminum hydroxide, calcium carbonate, magnesium carbonate, barium sulfate, barium titanate, potassium titanate, calcium silicate, inorganic balloon, silver powder, and other conventional sealing materials such as epoxy Inorganic fillers that are generally used and / or proposed as fillers for That.
  • the inorganic filler is preferably low radiation from the viewpoint of hardly damaging the semiconductor element. *
  • the inorganic filler may be appropriately surface treated.
  • Examples of the surface treatment include alkylation treatment, trimethylsilylation treatment, silicone treatment, treatment with a coupling agent, and the like. *
  • the coupling agent in this case examples include a silane coupling agent.
  • the silane coupling agent is not particularly limited as long as it is a compound having at least one functional group reactive with an organic group and one hydrolyzable silicon group in the molecule.
  • the group reactive with the organic group is preferably at least one functional group selected from an epoxy group, a methacryl group, an acrylic group, an isocyanate group, an isocyanurate group, a vinyl group, and a carbamate group from the viewpoint of handleability.
  • an epoxy group, a methacryl group, and an acrylic group are particularly preferable.
  • As the hydrolyzable silicon group an alkoxysilyl group is preferable from the viewpoint of handleability, and a methoxysilyl group and an ethoxysilyl group are particularly preferable from the viewpoint of reactivity. *
  • Preferred silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4- Epoxycyclohexyl) alkoxysilanes having an epoxy functional group such as ethyltriethoxysilane: 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyl Methacrylic or acrylic groups such as triethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, acryloxymethyltrimethoxysilane, acryloxymethyltriethoxysilane Alkoxysilanes which can be exemplified. *
  • an inorganic filler is mentioned.
  • a hydrolyzable silane monomer or oligomer such as alkoxysilane, acyloxysilane or halogenated silane, or an alkoxide, acyloxide or halide of a metal such as titanium or aluminum is added to the curable resin composition of the present invention.
  • a method of reacting in a curable resin composition or a partial reaction product of the curable resin composition to produce an inorganic filler in the curable resin composition can also be mentioned.
  • a silica-based inorganic filler is preferable from the viewpoint that it is difficult to inhibit the curing reaction, has a large effect of reducing the linear expansion coefficient, and tends to have high adhesion to the lead frame.
  • fused silica is preferable in terms of a good balance of physical properties such as moldability and electrical characteristics
  • crystalline silica is preferable in terms of easy package thermal conductivity and high heat dissipation.
  • Alumina is preferable in that heat dissipation tends to be higher.
  • Titanium oxide is preferred in that the light reflectance of the package resin is high and the light extraction efficiency of the resulting light emitting diode tends to be high.
  • glass fiber, potassium titanate, and calcium silicate are preferable in that the reinforcing effect is high and the strength of the package tends to be high.
  • the average particle size and particle size distribution of the inorganic filler various types are used without particular limitation, including those used or / and proposed as fillers for conventional sealing materials such as epoxy type,
  • the lower limit of the average particle size usually used is 0.1 ⁇ m, preferably 0.5 ⁇ m from the viewpoint that the fluidity tends to be good, and the upper limit of the average particle size usually used is 120 ⁇ m, the fluidity tends to be good. From the viewpoint, it is preferably 60 ⁇ m, more preferably 15 ⁇ m.
  • the specific surface area of the inorganic filler can also be set in various ways including those used and / or proposed as fillers for conventional sealing materials such as epoxy.
  • the shape of the inorganic filler various types such as a crushed shape, a piece shape, a spherical shape, and a rod shape are used.
  • Various aspect ratios are used.
  • the aspect ratio of 10 or more is preferable in that the strength of the obtained cured product tends to increase.
  • a powder form is preferable to a fiber form.
  • the spherical thing is preferable at the point that the fluidity
  • the amount of the component (E) is not particularly limited, but the total amount of the component (E) in the entire curable resin composition is preferably 70% by weight or more, more preferably 80% by weight or more, More preferably, it is 90% by weight or more.
  • the amount of the component (E) is small, it is difficult to obtain the effects of increasing the strength and hardness and reducing the linear expansion coefficient.
  • the component (A) A method of mixing the component (C) and the inorganic filler with the component (B) is preferable.
  • the component (B) is present in the presence and / or absence of the component (C).
  • (A) component, (B) component, (C) in that (A) component, (B) component, and (C) component which are reaction components are well mixed and a stable molded product is easily obtained. It is preferable to mix a mixture of components and an inorganic filler.
  • the inorganic filler of component (E) various means conventionally used and / or proposed for epoxy resins and the like can be used.
  • a two-roll or three-roll a planetary stirring and defoaming device, a stirrer such as a homogenizer, a dissolver and a planetary mixer, a melt kneader such as a plast mill, and the like can be mentioned.
  • a triple roll and a melt kneader are preferred in that sufficient dispersibility of the inorganic filler is easily obtained even with high filling.
  • the mixing of the inorganic filler may be performed at normal temperature or may be performed by heating.
  • the curable resin composition of the present invention preferably contains a white pigment (component (F)).
  • the component (F) is a white pigment and has an effect of increasing the light reflectance of the obtained cured product.
  • Various components can be used as the component (F), for example, titanium oxide, zinc oxide, magnesium oxide, antimony oxide, zirconia oxide, strontium oxide, niobium oxide, boron nitride, barium titanate, zinc sulfide, barium sulfate. , Magnesium carbonate, hollow glass particles, and the like.
  • titanium oxide or zinc oxide is preferable from the viewpoint of ease of handling, availability, and cost.
  • component (F) titanium oxide which may be anatase type or rutile type, but it is not photocatalytic and the curable resin composition is likely to be stable.
  • a rutile type is preferred.
  • (F) Although various things are used also as an average particle diameter of a component, 1.0 micrometer or less from a viewpoint that the light reflectivity of the hardened
  • the average particle diameter can be measured using a laser diffraction / scattering particle size distribution analyzer.
  • the method for producing the component (F) titanium oxide those produced by any method such as sulfuric acid method and chlorine method can be used.
  • the component (F) may be subjected to surface treatment.
  • the surface of the component (F) is coated with at least one selected from an inorganic compound and an organic compound.
  • inorganic compounds include aluminum compounds, silicon compounds, zirconium compounds, tin compounds, titanium compounds, antimony compounds, and the like
  • organic compounds include polyhydric alcohols, alkanolamines or derivatives thereof, and organic siloxanes. Examples thereof include organosilicon compounds, higher fatty acids or metal salts thereof, and organometallic compounds.
  • a known method such as a wet method or a dry method is used, for example, when dry pulverizing titanium oxide, when slurrying, or when wet pulverizing. It can be carried out.
  • various methods such as a liquid phase method and a gas phase method.
  • the cured product obtained is preferably treated with an organic siloxane treatment because the light reflectance is high and the heat and light resistance is improved.
  • an organosiloxane-treated titanium oxide is suitable for producing an excellent light-emitting diode that has high light extraction efficiency and does not decrease light extraction efficiency even when used for a long period of time.
  • various organic siloxane treating agents are used.
  • polysiloxanes such as polydimethylsiloxane, polymethylphenylsiloxane, polymethylhydrogensiloxane, or copolymers thereof, hexamethylcyclotrisiloxane, heptamethylcyclotetrasiloxane, 1,3,5,7-tetra Cyclosiloxanes such as methylcyclotetrasiloxane, chlorosilanes such as trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane and other silanes having an epoxy functional group, 3-methacryloxypropyltrimethyl Xy
  • These surface treatment agents preferably do not contain a carbon-carbon double bond, and if they contain a carbon-carbon double bond, the heat resistance tends to decrease. Further, a surface treatment other than the organic siloxane can be used in combination, and treatment with Al, Zr, Zn, or the like can also be performed.
  • the surface treatment with an inorganic compound is not particularly limited, and various surface treatments such as an aluminum compound, a silicon compound, and a zirconium compound are used. Titanium oxide may be surface-treated with an inorganic compound or an organic compound for the purpose of improving durability, improving affinity with the medium, or preventing the collapse of the particle shape, but the component (F) is inorganic. It is considered that the surface treatment with the compound improves the affinity with the component contained in the curable resin composition, improves the dispersibility of the component (F) in the curable resin composition, and improves the strength of the cured product. .
  • Various methods can be applied as the surface treatment method, and various methods such as a wet method, a dry method, a liquid phase method, and a gas phase method can be exemplified.
  • the amount of the component (F) is not particularly limited, but the amount of the component (F) in the entire curable resin composition is preferably 10% by weight or more, more preferably 15% by weight or more, More preferably, it is 20% by weight or more. If it is less than 10% by weight, the light reflectance of the resulting cured product may be lowered.
  • the total amount of the component (E) and the component (F) is not particularly limited, but the total amount of the component (E) and the component (F) in the entire curable resin composition is preferably 85% by weight or more. More preferably, it is 90% by weight or more.
  • the total amount of the component (E) and the component (F) is small, it is difficult to obtain the effects of increasing the strength and hardness and reducing the linear expansion coefficient.
  • the curable resin composition of the present invention desirably contains a metal soap (component (G)).
  • component (G) A component is added in order to improve the moldability including the mold release property of a curable resin composition.
  • Examples of the component (G) include various conventionally used metal soaps.
  • the metal soap here is generally a combination of long-chain fatty acids and metal ions.
  • the nonpolar or low polarity part based on fatty acids and the polar part based on the metal binding part are combined in one molecule.
  • Examples of long-chain fatty acids include saturated fatty acids having 1 to 18 carbon atoms, unsaturated fatty acids having 3 to 18 carbon atoms, and aliphatic dicarboxylic acids. Among these, saturated fatty acids having 1 to 18 carbon atoms are preferable from the viewpoint of easy availability and high industrial feasibility, and further, from 6 to 18 carbon atoms from the viewpoint of high releasing effect. The saturated fatty acid is more preferable.
  • metal ions include zinc, cobalt, aluminum, strontium, and the like in addition to alkali metals and alkaline earth metals. More specific examples of metal soaps include lithium stearate, lithium 12-hydroxystearate, lithium laurate, lithium oleate, lithium 2-ethylhexanoate, sodium stearate, sodium 12-hydroxystearate, lauric acid Sodium, sodium oleate, sodium 2-ethylhexanoate, potassium stearate, potassium 12-hydroxystearate, potassium laurate, potassium oleate, potassium 2-ethylhexanoate, magnesium stearate, magnesium 12-hydroxystearate, Magnesium laurate, magnesium oleate, magnesium 2-ethylhexanoate, calcium stearate, calcium 12-hydroxystearate, calcium laurate , Calcium oleate, calcium 2-ethylhexanoate, barium stearate, barium 12-hydroxystearate, barium laurate, zinc stea
  • metal stearates are preferred from the viewpoint of easy availability, safety and industrial feasibility, and calcium stearate, magnesium stearate, stearin are particularly preferred from the viewpoint of economy. Most preferred is one or more selected from the group consisting of zinc acid.
  • the minimum of a preferable amount is 0.01 weight part with respect to 100 weight part of the whole curable resin composition, More preferably, it is 0.025 weight part, More preferably, it is 0.
  • the upper limit of the preferable amount is 5 parts by weight, more preferably 4 parts by weight with respect to 100 parts by weight of the entire curable resin composition.
  • additives can be added to the curable resin composition of the present invention.
  • a curing retarder can be used for the purpose of improving the storage stability of the curable resin composition of the present invention or adjusting the reactivity of the hydrosilylation reaction during the production process.
  • the curing retarder include a compound containing an aliphatic unsaturated bond, an organic phosphorus compound, an organic sulfur compound, a nitrogen-containing compound, a tin-based compound, and an organic peroxide, and these may be used in combination.
  • Examples of the compound containing an aliphatic unsaturated bond include propargyl alcohols such as 3-hydroxy-3-methyl-1-butyne, 3-hydroxy-3-phenyl-1-butyne and 1-ethynyl-1-cyclohexanol. And maleic esters such as ene-yne compounds and dimethyl malate.
  • Examples of the organophosphorus compound include triorganophosphine, diorganophosphine, organophosphon, and triorganophosphite.
  • Examples of organic sulfur compounds include organomercaptans, diorganosulfides, hydrogen sulfide, benzothiazole, thiazole, benzothiazole disulfide and the like.
  • nitrogen-containing compounds include ammonia, primary to tertiary alkylamines, arylamines, urea, hydrazine and the like.
  • tin compounds include stannous halide dihydrate and stannous carboxylate.
  • organic peroxide include di-tert-butyl peroxide, dicumyl peroxide, benzoyl peroxide, and t-butyl perbenzoate.
  • the addition amount of the curing retarder can be selected at various levels, the preferred amount of the lower limit is 10 -1 moles with respect to hydrosilylation catalyst 1mol used, more preferably 1 mol, the upper limit of the preferable amount is 10 3 mol, more preferably Is 50 moles.
  • hardening retarders may be used independently and may be used together 2 or more types.
  • adhesion improver An adhesion improver can also be added to the curable resin composition of the present invention.
  • adhesives for example, various coupling agents, epoxy compounds, phenol resins, coumarone-indene resins, rosin ester resins, terpene-phenol resins, ⁇ -methylstyrene-vinyltoluene A copolymer, polyethylmethylstyrene, aromatic polyisocyanate, etc. can be mentioned.
  • coupling agents include silane coupling agents and titanate coupling agents. *
  • the addition amount of the coupling agent can be variously set, but the lower limit of the preferable addition amount with respect to 100 parts by weight of [(A) component + (B) component] is 0.1 parts by weight, more preferably 0.5 parts by weight.
  • the upper limit of the preferable addition amount is 50 parts by weight, more preferably 25 parts by weight.
  • epoxy compound examples include novolak phenol type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, and 2,2′-bis (4-glycidyloxycyclohexyl).
  • the lower limit of the preferable addition amount with respect to 100 parts by weight of [(A) component + (B) component] is preferably 1 part by weight, more preferably 3 parts by weight.
  • the upper limit of the addition amount is 50 parts by weight, more preferably 25 parts by weight.
  • a silanol condensation catalyst can be further used to enhance the effect of the coupling agent or the epoxy compound, and the adhesion can be improved and / or stabilized.
  • a silanol condensation catalyst is not particularly limited, but is preferably a boron compound or / and an aluminum compound or / and a titanium compound.
  • Examples of the aluminum compound used as the silanol condensation catalyst include aluminum alkoxides such as aluminum triisopropoxide, sec-butoxyaluminum diisoflopoxide, aluminum trisec-butoxide, ethyl acetoacetate aluminum diisopropoxide, aluminum tris ( Ethyl acetoacetate), aluminum chelate M (manufactured by Kawaken Fine Chemicals, alkyl acetoacetate aluminum diisopropoxide), aluminum tris (acetylacetonate), aluminum monoacetylacetonate bis (ethylacetoacetate), etc.
  • Aluminum chelates are more preferable from the viewpoint of handleability.
  • Titanium compounds used as silanol condensation catalysts include tetraalkoxy titaniums such as tetraisopropoxy titanium and tetrabutoxy titanium: titanium chelates such as titanium tetraacetylacetonate: general residues having residues such as oxyacetic acid and ethylene glycol And titanate coupling agents. *
  • Examples of the boron compound that serves as a silanol condensation catalyst include boric acid esters.
  • the borate ester those represented by the following general formulas (VII) and (VIII) can be preferably used. *
  • boric acid esters include tri-2-ethylhexyl borate, normal trioctadecyl borate, trinormal octyl borate, triphenyl borate, trimethylene borate, tris (trimethylsilyl) borate, trinormal butyl borate, tri-sec-butyl borate, Tri-tert-butyl borate, triisopropyl borate, trinormalpropyl borate, triallyl borate, triethyl borate, trimethyl borate, and methoxymethoxy boronate can be preferably used.
  • borate esters may be used alone or in combination of two or more. Mixing may be performed in advance or may be performed at the time of producing a cured product.
  • trimethyl borate triethyl borate, and trinormal butyl borate are preferable, and trimethyl borate is more preferable among them because it is easily available and has high industrial practicality.
  • normal trioctadecyl borate, tri-tert-butyl borate, triphenyl borate, and tributyl normal borate are more preferable. preferable. *
  • trinormal butyl borate triisopropyl borate and trinormal propyl borate are preferable, and trinormal butyl borate is more preferable.
  • trimethyl borate and triethyl borate are preferred, and trimethyl borate is more preferred.
  • the amount used in the case of using a silanol condensation catalyst can be variously set, but the lower limit of the preferred addition amount with respect to 100 parts by weight of the coupling agent or / and epoxy compound is 0.1 parts by weight, more preferably 1 part by weight.
  • the upper limit of the preferable addition amount is 50 parts by weight, more preferably 30 parts by weight.
  • silanol condensation catalysts may be used alone or in combination of two or more.
  • a silanol source compound can be further used in order to further enhance the effect of improving adhesiveness, and the adhesiveness can be improved and / or stabilized.
  • a silanol source include silanol compounds such as triphenylsilanol and diphenyldihydroxysilane, and alkoxysilanes such as diphenyldimethoxysilane, tetramethoxysilane, and methyltrimethoxysilane.
  • the amount used in the case of using a silanol source compound can be variously set, but the lower limit of the preferable addition amount with respect to 100 parts by weight of the coupling agent and / or epoxy compound is 0.1 parts by weight, more preferably 1 part by weight.
  • the upper limit of the preferable addition amount is 50 parts by weight, more preferably 30 parts by weight.
  • silanol source compounds may be used independently and may be used together 2 or more types.
  • carboxylic acids and / or acid anhydrides can be used to enhance the effect of the coupling agent or epoxy compound, and adhesion can be improved and / or stabilized.
  • Such carboxylic acids and acid anhydrides are not particularly limited,
  • carboxylic acids and / or acid anhydrides react with SiH groups in that they have hydrosilylation reactivity and are unlikely to impair the physical properties of the resulting cured product with little possibility of seepage from the cured product. Those having a carbon-carbon double bond having properties are preferred.
  • Preferred carboxylic acids and / or acid anhydrides include, for example,
  • the amount used in the case of using carboxylic acids or / and acid anhydrides can be variously set, but the lower limit of the preferred addition amount with respect to 100 parts by weight of the coupling agent or / and epoxy compound epoxy compound is 0.1 parts by weight, More preferably, it is 1 part by weight, and the upper limit of the preferable addition amount is 50 parts by weight, more preferably 10 parts by weight.
  • the addition amount is small, the effect of improving the adhesiveness does not appear, and when the addition amount is large, the physical properties of the cured product may be adversely affected.
  • carboxylic acids or / and acid anhydrides may be used alone or in combination of two or more.
  • the silane compound described above can be used in the curable resin composition of the present invention.
  • the silane compound contributes to improvement in adhesion to the lead and is effective in preventing moisture from entering from the interface between the package and the lead.
  • Illustrative examples include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, and the like, with dimethyldimethoxysilane being particularly preferred.
  • thermosetting resin a cured resin may be pulverized and mixed in a particle state.
  • the average particle diameter can be variously set, but the lower limit of the preferable average particle diameter is 10 nm, and the upper limit of the preferable average particle diameter is 10 ⁇ m.
  • the particle system may be distributed, and may be monodispersed or have a plurality of peak particle diameters. However, from the viewpoint that the viscosity of the curable resin composition is low and the moldability tends to be good.
  • the diameter variation coefficient is preferably 10% or less.
  • thermoplastic resin Various thermoplastic resins can be added to the curable resin composition of the present invention for the purpose of modifying the properties.
  • Various thermoplastic resins can be used.
  • a homopolymer of methyl methacrylate or a polymethyl methacrylate resin such as a random, block or graft polymer of methyl methacrylate and other monomers (for example, Hitachi Chemical) Optretz, etc.)
  • acrylic resins represented by polybutyl acrylate resins such as butyl acrylate homopolymers or random, block or graft polymers of butyl acrylate and other monomers
  • a polycarbonate resin such as a polycarbonate resin containing 3,5-trimethylcyclohexylidenebisphenol or the like as a monomer structure (for example, APEC manufactured by Teijin Limited), a norbornene derivative, a vinyl monomer, or the like is copolymerized.
  • Cycloolefin resins such as resins obtained by ring-opening metathesis polymerization of fats and norbornene derivatives, or hydrogenated products thereof (for example, APEL manufactured by Mitsui Chemicals, ZEONOR, ZEONEX manufactured by Nippon Zeon, ARTON manufactured by JSR, etc.), ethylene and Olefin-maleimide resins such as maleimide copolymers (eg, TI-PAS manufactured by Tosoh Corporation), bisphenols such as bisphenol A and bis (4- (2-hydroxyethoxy) phenyl) fluorene, and diols such as diethylene glycol Polyester resins such as polyester obtained by polycondensation of phthalic acids and aliphatic dicarboxylic acids such as terephthalic acid and isophthalic acid (eg O-PET manufactured by Kanebo Co., Ltd.), polyethersulfone resins, polyarylate resins, polyvinyl acetal resins, Polyethylene resin Polypropy
  • the thermoplastic resin may have a carbon-carbon double bond or / and a SiH group having reactivity with the SiH group in the molecule.
  • the molecule has one or more carbon-carbon double bonds or / and SiH groups having reactivity with SiH groups in the molecule on average. It is preferable.
  • the thermoplastic resin may have other crosslinkable groups.
  • the crosslinkable group in this case include an epoxy group, an amino group, a radical polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group. From the viewpoint that the heat resistance of the obtained cured product tends to be high, it is preferable to have one or more crosslinkable groups in one molecule on average.
  • the molecular weight of the thermoplastic resin is not particularly limited, but the number average molecular weight is preferably 10,000 or less in that the compatibility with the component (A) or the component (B) tends to be good. The following is more preferable. On the contrary, the number average molecular weight is preferably 10,000 or more, and more preferably 100,000 or more in that the obtained cured product tends to be tough.
  • the molecular weight distribution is not particularly limited, but the molecular weight distribution is preferably 3 or less, more preferably 2 or less, in that the viscosity of the mixture tends to be low and the moldability tends to be good. More preferably, it is as follows.
  • the blending amount of the thermoplastic resin is not particularly limited, but the lower limit of the preferable amount used is 5% by weight of the entire curable resin composition, more preferably 10% by weight, and the upper limit of the preferable amount used is the curable resin composition. 50% by weight in the product, more preferably 30% by weight.
  • the addition amount is small, the obtained cured product tends to be brittle, and when it is large, the heat resistance (elastic modulus at high temperature) tends to be low.
  • thermoplastic resin may be used, or a plurality of thermoplastic resins may be used in combination.
  • the thermoplastic resin may be dissolved in the component (A) or / and the component (B) and mixed in a uniform state, pulverized and mixed in a particle state, or dissolved in a solvent and mixed. It may be in a dispersed state. In the point that the obtained hardened
  • the average particle diameter can be variously set, but the lower limit of the preferable average particle diameter is 10 nm, and the upper limit of the preferable average particle diameter is 10 ⁇ m.
  • the particle system may be distributed, and may be monodispersed or have a plurality of peak particle diameters. However, from the viewpoint that the viscosity of the curable resin composition is low and the moldability tends to be good.
  • the diameter variation coefficient is preferably 10% or less. *
  • An aging inhibitor may be added to the curable resin composition of the present invention.
  • the anti-aging agent include citric acid, phosphoric acid, sulfur-based anti-aging agent and the like in addition to the anti-aging agents generally used such as hindered phenol type.
  • antioxidants As the hindered phenol-based anti-aging agent, various types such as Irganox 1010 available from Ciba Specialty Chemicals are used. *
  • Sulfur-based antioxidants include mercaptans, mercaptan salts, sulfide carboxylic acid esters, sulfides including hindered phenol sulfides, polysulfides, dithiocarboxylates, thioureas, thiophosphates, sulfonium Examples thereof include compounds, thioaldehydes, thioketones, mercaptals, mercaptols, monothioacids, polythioacids, thioamides, and sulfoxides. *
  • anti-aging agents may be used independently and may be used together 2 or more types.
  • a radical inhibitor may be added to the curable resin composition of the present invention.
  • the radical inhibitor include 2,6-di-tert-butyl-3-methylphenol (BHT), 2,2′-methylene-bis (4-methyl-6-tert-butylphenol), tetrakis (methylene- Phenol radical inhibitors such as 3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) methane, phenyl- ⁇ -naphthylamine, ⁇ -naphthylamine, N, N′-secondary butyl-p- Examples include amine radical inhibitors such as phenylenediamine, phenothiazine, N, N′-diphenyl-p-phenylenediamine.
  • radical inhibitors may be used alone or in combination of two or more.
  • UV absorber An ultraviolet absorber may be added to the curable resin composition of the present invention.
  • examples of the ultraviolet absorber include 2 (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, bis (2,2,6,6-tetramethyl-4-piperidine) sebacate and the like. Can be mentioned.
  • ultraviolet absorbers may be used independently and may be used together 2 or more types.
  • the curable resin composition of the present invention can be used by dissolving in a solvent.
  • Solvents that can be used are not particularly limited, and specific examples include hydrocarbon solvents such as benzene, toluene, hexane, heptane, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diethyl ether, and the like.
  • An ether solvent such as acetone, a ketone solvent such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, and a halogen solvent such as chloroform, methylene chloride, and 1,2-dichloroethane can be preferably used.
  • the amount of solvent to be used can be set as appropriate, the lower limit of the preferable usage amount relative to 1 g of the curable resin composition to be used is 0.1 mL, and the upper limit of the preferable usage amount is 10 mL. If the amount used is small, it is difficult to obtain the effect of using a solvent such as a low viscosity, and if the amount used is large, the solvent tends to remain in the material, causing problems such as thermal cracks, and also from a cost standpoint. It is disadvantageous and the industrial utility value decreases.
  • solvents may be used alone or as a mixed solvent of two or more.
  • additives include phosphors such as yttrium, aluminum, and garnet phosphors activated with cerium that absorb light from the light emitting element to emit longer wavelength fluorescence, and blue that absorbs a specific wavelength.
  • Coloring agents such as ing agents, diffusion materials such as titanium oxide, aluminum oxide, melamine resin, CTU guanamine resin, benzoguanamine resin for diffusing light, metal oxides such as aluminosilicate, aluminum nitride, boron nitride, etc.
  • thermally conductive fillers such as metal nitrides.
  • the additive for improving the characteristics of the light emitting diode may be contained uniformly, or the content may be added with a gradient.
  • release agent Various releasing agents may be added to the curable resin composition of the present invention in order to improve the releasing property at the time of molding.
  • the release agent include the component (G) already described and waxes.
  • waxes include natural wax, synthetic wax, oxidized or non-oxidized polyolefin, and polyethylene wax.
  • the curable resin composition of the present invention includes other colorants, flame retardants, flame retardant aids, surfactants, antifoaming agents, emulsifiers, leveling agents, anti-fogging agents, ion trapping agents such as antimony-bismuth, Thixotropic agent, tackifier, storage stability improver, ozone degradation inhibitor, light stabilizer, thickener, plasticizer, reactive diluent, antioxidant, heat stabilizer, conductivity enhancer, Antistatic agents, radiation blocking agents, nucleating agents, phosphorus peroxide decomposing agents, lubricants, pigments, metal deactivators, thermal conductivity-imparting agents, physical property modifiers, and the like that do not impair the purpose and effect of the present invention Can be added.
  • the curable resin composition of the present invention may be used as it is by blending each component and additives, or may be used after being partially reacted (B-staged) by heating or the like. Viscosity can be adjusted by using B-stage, and transfer moldability can also be adjusted. In addition, there is an effect of further suppressing curing shrinkage.
  • the curable resin composition of the present invention has a temperature of 150 ° C. or less in terms of good moldability by transfer molding or the like. And those having fluidity are preferred.
  • the curability of the curable resin composition can be arbitrarily set, but the gelation time at 120 ° C. is preferably within 120 seconds, more preferably within 60 seconds in that the molding cycle can be shortened. preferable. Further, the gelation time at 150 ° C. is preferably within 60 seconds, and more preferably within 30 seconds. Further, the gelation time at 100 ° C. is preferably within 180 seconds, and more preferably within 120 seconds. *
  • the gelation time in this case is examined as follows. An aluminum foil having a thickness of 50 ⁇ m is placed on a hot plate adjusted to a set temperature, and 100 mg of the curable resin composition is placed thereon, and the time until gelation is measured is defined as the gelation time. *
  • the weight during the curing is from the viewpoint that the generation of voids in the curable resin composition and the process problems due to the outgas from the curable resin composition hardly occur.
  • the decrease is preferably 5% by weight or less, more preferably 3% by weight or less, and further preferably 1% or less.
  • the weight loss during curing is examined as follows. Using a thermogravimetric analyzer, 10 mg of the sealant is heated from room temperature to 150 ° C. at a rate of temperature increase of 10 ° C./min, and can be determined as a ratio of the initial weight of the reduced weight. *
  • the content of Si atoms in the volatile component in this case is 1% or less in that the problem of silicone contamination hardly occurs.
  • the cured product obtained by curing the curable resin composition preferably has a Tg of 100 ° C. or higher, more preferably 150 ° C. or higher.
  • Tg is examined as follows. Dynamic viscoelasticity measurement using a 3 mm x 5 mm x 30 mm prismatic test piece under the conditions of tensile mode, measurement frequency 10 Hz, strain 0.1%, static / power ratio 1.5, temperature rising side 5 ° C / min ( Tg is a peak temperature of tan ⁇ of DVA-200 manufactured by IT Measurement & Control Co.). *
  • the content of ions extracted from the cured product is preferably less than 10 ppm, more preferably less than 5 ppm, More preferably, it is less than 1 ppm.
  • the extracted ion content is examined as follows. 1 g of the cut cured product is sealed in a Teflon container (Teflon is a registered trademark) together with 50 ml of ultrapure water, and treated under conditions of 121 ° C., 2 atm and 20 hours. The obtained extract was analyzed by ICP mass spectrometry (HP-4500 manufactured by Yokogawa Analytical Systems Co., Ltd.), and the obtained Na and K content values were converted to the concentration in the cured product used. Ask. On the other hand, the same extract was analyzed by ion chromatography (using DX-500 manufactured by Dionex, column: AS12-SC), and the obtained Cl and Br content values were converted to the concentrations in the cured product used. Ask. The contents of Na, K, Cl, and Br obtained as described above in the cured product are totaled to obtain the extracted ion content.
  • the linear expansion coefficient of the cured product is not particularly limited, but the average linear expansion coefficient from 23 ° C. to 150 ° C. is 30 ppm in that the adhesion to a metal such as a lead frame or ceramic is likely to be good. Or less, more preferably 20 ppm or less, and even more preferably 10 ppm or less.
  • the curable resin composition of the present invention has a spectral reflectance at 420 nm, 440 nm, and 460 nm after curing of 80 R% or more, and a spectral reflectance retention ratio after a heat test at 180 ° C. for 72 hours (after the heat test).
  • Spectral reflectance / initial spectral reflectance ⁇ 100 is desirably 90% or more.
  • the spectral reflectance of the cured product is examined as follows. Spectral reflectance at wavelengths of 400 nm to 700 nm (20 nm intervals) was measured using a micro-surface spectral color difference meter (VSS400 manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the spectral reflectance is preferably 75% or more and more preferably 80% or more in the wavelength band of 420 to 700 nm from the viewpoint that the light extraction efficiency of the light emitting diode tends to be high.
  • the retention rate with respect to the initial spectral reflectance of the spectral reflectance after the heat resistance test was obtained by the following calculation formula.
  • Retention rate (%) (spectral reflectance after heat test) / (initial spectral reflectance) ⁇ 100
  • the retention rate is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more in terms of high reliability when used as an electronic material.
  • the light reflectance at a surface wavelength of 470 nm is preferably 90% or more, more preferably 95% or more, 97 % Or more is more preferable, and 99% or more is particularly preferable.
  • the light reflectance of the surface can be measured as follows. Using a PET film as a release film, a 0.5 mm-thick molded body without voids is prepared by press molding under a predetermined temperature condition. The obtained molded body is subjected to predetermined post-curing as necessary. It can obtain
  • the curable resin composition of the present invention can be made into a curable resin composition tablet when it contains at least the component (F) in addition to the components (A) to (E). Specifically, at least one of the curable resin composition tablet cures the component (A) and the component (B), the component (A) and the component (B) that are liquids having a viscosity at 23 ° C. of 50 Pa seconds or less. (C) component, (E) component and (F) component which are both powder, Furthermore, (D) component is contained, It is characterized by the above-mentioned.
  • This curable resin composition tablet is capable of flowing the entire curable resin composition due to a decrease in viscosity of the component (A) and the component (B) at a high temperature. It can be formed into a shape.
  • the molding method is not particularly limited, and a molding method such as transfer molding or compression molding, which is generally used for molding a curable resin composition, can be used.
  • a molding method such as transfer molding or compression molding, which is generally used for molding a curable resin composition
  • the tablet shape makes it easy to measure, transport, and supply to a molding machine, and can be automated, greatly improving productivity.
  • a tablet means a solid that retains a constant shape at room temperature, has substantially no change in shape over time, and does not stick together or become integrated when brought into contact with each other.
  • the shape of the tablet of the present invention is not particularly limited, and includes a columnar shape, a prismatic shape, a disk shape, a spherical shape, and the like, and a general columnar shape for transfer molding is preferable.
  • the total ratio of the component (E) and the component (F) in the curable resin composition tablet of the present invention (hereinafter sometimes referred to as a filling rate) is preferably 70 to 95% by weight.
  • the distribution of the (E) component and the (F) component in the filling rate is not particularly limited and can be set freely.
  • the filling rate is 70% by weight or less, the thermal expansion coefficient of the resulting cured product becomes large, causing a problem of dimensional change of the molded product, and the resulting curable resin composition becomes a hard paste or clay. There is a problem that can not be tableted.
  • the filling rate is 95% by weight or more, the viscosity at high temperature becomes too high and the moldability may be lowered, and the resulting tablet may become too brittle.
  • the curable resin composition of the present invention when at least one of the component (A) and the component (B) is liquid at room temperature, it tends to be in the form of a paste or clay when the filling rate is low. In this case, the tablet does not become a tablet, but the moldability at high temperature tends to be good. On the other hand, when the filling rate is high, since there are few components to be flowed, it tends to be flaky or powdery. These can be compressed into a tablet shape by being compressed, but they tend to have poor fluidity at high temperatures and easily deteriorate moldability. Until now, it has been difficult to achieve both tableting and moldability by simply increasing the filling rate.
  • the proportion of particles of 12 ⁇ m or less in the total powder of the component (E) and the component (F) is 40% by volume or more, so that tableting and moldability are achieved. It was found that both can be achieved.
  • the semiconductor package referred to in the present invention is a member provided for supporting and / or protecting a semiconductor element or / and an external extraction electrode.
  • the semiconductor element may not be directly covered but may be one that supports and fixes an external extraction electrode or the like, or that forms the periphery or bottom surface of a semiconductor element such as a light-emitting diode reflector.
  • an integrated circuit such as an IC or LSI
  • an element such as a transistor, a diode, or a light emitting diode, or a light receiving element such as a CCD can be used.
  • the shape is not specified, the effect of the present invention is particularly easily obtained when the semiconductor package has a shape in which a resin is substantially molded on one side of a metal (MAP type).
  • MAP type a metal
  • the semiconductor package of the present invention does not directly cover the semiconductor element as described above, it can be further sealed with a sealing agent, for example, a conventionally used epoxy resin, silicone resin, A sealing resin such as an acrylic resin, a urea resin, or an imide resin can be used.
  • a sealing agent for example, a conventionally used epoxy resin, silicone resin, A sealing resin such as an acrylic resin, a urea resin, or an imide resin can be used.
  • an aliphatic organic compound having at least two carbon-carbon double bonds having reactivity with SiH groups as proposed in Japanese Patent Application Laid-Open Nos. 2002-80733 and 2002-88244, 1
  • a sealant made of a curable resin composition containing a compound having at least two SiH groups in the molecule and a hydrosilylation catalyst may be used. Adhesion with the package resin is better when this sealant is used. It is preferable in that it is highly effective and the effect of high transparency and high light resistance of the package of the present invention is remarkable. On the other
  • a lens in the case of a light emitting diode or a light receiving element, a lens can be further applied, and a sealing agent can be molded into a lens shape to have a lens function.
  • thermosetting resins such as thermoplastic resins, epoxy resins, and silicone resins
  • injection molding is preferred in that the molding cycle is short and the moldability is good.
  • the molding conditions can be arbitrarily set, for example, the molding temperature is also arbitrary. However, in terms of fast curing and a short molding cycle, the moldability tends to be good, more preferably 100 ° C. or higher, more preferably 120 ° C. or higher. A temperature of 150 ° C. or higher is preferable.
  • post-curing After molding by the various methods as described above, post-curing (after-curing) is optional as required. Post-curing tends to increase the heat resistance.
  • Molding may be performed at a constant temperature, but the temperature may be changed in multiple steps or continuously as required. It is preferable to carry out the reaction while raising the temperature in a multistage manner or continuously, as compared with the case where the temperature is constant, in that a uniform cured product without distortion can be easily obtained. Moreover, it is preferable to perform at a constant temperature in that the molding cycle can be shortened.
  • the pressure at the time of molding can be variously set as required, and the molding can be performed at normal pressure, high pressure, or reduced pressure. It is preferable to cure under reduced pressure in terms of suppressing the generation of voids, improving the filling property, and easily removing volatile components generated in some cases. In terms of preventing cracks in the molded body, it is preferable to cure under pressure.
  • the semiconductor of the present invention can be used for various known applications. Specific examples include LSIs such as logic and memory, various sensors, light emitting and receiving devices, and the like. Also, when the semiconductor is a light emitting diode, it can be used for various known applications. Specifically, for example, backlights such as liquid crystal display devices, illumination, sensor light sources, vehicle instrument light sources, signal lights, display lights, display devices, planar light source, display, decoration, various lights, etc. it can.
  • backlights such as liquid crystal display devices, illumination, sensor light sources, vehicle instrument light sources, signal lights, display lights, display devices, planar light source, display, decoration, various lights, etc. it can.
  • the curable resin composition of the present invention desirably has a package warpage of ⁇ 1.0 mm or less when formed into a package by molding on one side of a lead frame for a light emitting diode.
  • the warpage in this case is measured based on the maximum warpage measuring method described in JIS C 6481.
  • a semiconductor package is suspended vertically at the center of one side, and a straight ruler is applied parallel to that side.
  • the straight ruler is applied to the concave surface of the semiconductor package, and the maximum distance between the straight ruler and the substrate surface of the semiconductor package is measured to a unit of 1.0 mm with a metal straight scale.
  • the resin is molded on the concave surface of the semiconductor package, measure the maximum distance between the straight ruler and the resin surface molded on the semiconductor package to a unit of 1.0 mm with a metal linear scale. The value obtained by subtracting the thickness is rounded off to the nearest 1.0 mm. The other sides are also measured sequentially, and the greatest gap is warped.
  • the semiconductor package shown by the (molding method) of an Example was used for the semiconductor package used for measurement of curvature.
  • the total amount of unreacted 1,3,5,7-tetramethylcyclotetrasiloxane, toluene, and allyl glycidyl ether by-products is 5,000 ppm or less in total.
  • the solution was distilled off under reduced pressure until a colorless and transparent liquid was obtained.
  • compositions A to D were prepared by blending each component according to the contents of Table 1.
  • TMA thermomechanical analysis
  • a tablet-like sample molded to a thickness of 20 ⁇ 20 ⁇ 4.0 mm is cut into a 20 ⁇ 10 ⁇ 4.0 mm with a diamond cutter, and the temperature is raised in a compression mode using a BRUKER burning thermal analyzer TMA4000SA in the 20 mm direction.
  • the dimensional change was measured when changing to heating to 280 ° C. at a rate of 5 ° C./min, holding for 20 minutes, and cooling to room temperature.
  • the point at which the inclination of the chart during heating changes was Tg, and the linear expansion coefficient ⁇ 1 of Tg or less and the linear expansion coefficient ⁇ 2 of Tg or more were obtained.
  • a package (MAP type) having a shape in which a resin is molded on one side of a metal was obtained by transfer molding. Molding was performed under the following conditions. Molding temperature: 170 ° C Molding time: 180 seconds Molding pressure: 7.8 to 13.7 MPa Further, after the above molding, curing was performed at 180 ° C. for 1 hour.
  • Table 4 shows the blending ratio of each component of the curable resin composition.
  • the raw materials used for the component (D), the component (E), and the component (F) are as follows.
  • Table 4 shows the final blending ratio of each component of the curable resin composition and the properties of the resin.
  • a lead frame made of Cu with 50 mm in length, 55 mm in width, and 0.25 mm in thickness is prepared.
  • the MAP after molding includes a total of 180 reflectors in 15 rows and 12 rows. Each reflector has a top surface of 2.1 mm, a bottom surface of 1.8 mm (taper angle: 15 degrees), a height of 0.55 mm, a width of 0.20 mm from the right end along the transverse diameter, and a width of 0.20 mm.
  • the electrode slit which consists of a white compound which hardened the conductive resin composition is provided vertically.
  • the interval between the reflectors is 1.1 mm in both the vertical and horizontal diameter directions.
  • the lead frame and the mold are not particularly limited as long as a reflector with a lead frame that satisfies the above requirements can be manufactured.
  • a conceptual diagram of the molded product is shown in FIG.
  • Transfer molding was performed using a G-Line manual press manufactured by Apic Yamada Co., Ltd. Clamping force 30 ton, injection pressure 8 MPa, injection speed 3 mm / s.
  • a white compound (5.0 g) was weighed, formed into a cylindrical shape, loaded into a cylinder, and molded. The molding conditions were 150 ° C. and 5 minutes. After molding, it was post-cured (aftercured) in a hot air oven at 150 ° C. for 1 hour + 180 ° C. for 30 minutes.
  • warpage The warpage was measured by the following method based on the method for measuring the maximum warpage described in JIS C 6481.
  • the semiconductor package is suspended vertically at the center of one side, and a straight ruler is applied to the concave side of the semiconductor package so that it is parallel to that side, and the maximum gap between the straight ruler and the substrate surface of the semiconductor package is The scale was measured to a unit of 1.0 mm.
  • the resin is molded on the concave surface of the semiconductor package, measure the maximum distance between the straight ruler and the resin surface molded on the semiconductor package to a unit of 1.0 mm with a metal linear scale.
  • the value obtained by subtracting the thickness was rounded to the nearest 1.0 mm.
  • the other sides were also measured sequentially, and the greatest gap was warped.
  • Table 4 Comparing the example and the comparative example, it can be seen that when the component (D) is added, a semiconductor package having a warpage of 1.0 mm or less can be obtained.
  • the curable resin composition shown in Table 4 is made of a PET film as a release film, a rectangular mold made of stainless steel (SUS304) having an inner dimension of 80 mm ⁇ 50 mm and a thickness of 0.5 mm, and a condition of 150 ° C./5 minutes. And press-molded.
  • the produced rectangular plate-shaped press-molded body was post-cured in an oven at 150 ° C./1 hour and 180 ° C./0.5 hour.
  • the resulting molded product was measured for light reflectance at a wavelength of 470 nm using a spectrophotometer (manufactured by JASCO Corporation, UV-visible spectrophotometer V-560) equipped with an integrating sphere.
  • the reflectance was measured using a Spectralon plate manufactured by Labsphere as a standard plate. The measurement results are shown in Table 4.
  • Table 5 shows the blending ratio of each component of the curable resin composition.
  • Each raw material used is as follows.
  • Table 6 shows the final proportions of the components (A), (B), (C), (D), (E), and (F).
  • the curable resin composition shown in Table 5 is made of a PET film as a release film, a stainless steel (SUS304) rectangular mold having an internal dimension of 80 mm ⁇ 50 mm and a thickness of 0.5 mm, and a condition of 150 ° C./5 minutes. And press-molded.
  • the produced rectangular plate-shaped press-molded body was post-cured in an oven at 150 ° C./1 hour and 180 ° C./0.5 hour to produce a flat plate.
  • test piece was cut out so that two sides facing each other with a length of about 50 mm to 80 mm and a width of about 7 mm to 8 mm were parallel. As shown in FIG. 4, the test piece was installed between the metal fulcrums with rounded corners so that the shape formed between the fulcrums was rectangular. About the test piece width and thickness, three places of the test piece which enter between fulcrum were measured to 0.01 mm, and each average value was made into the measurement result. The area was calculated from the specimen width and thickness. Texture Microscope TA. Manufactured by Stable Micro Systems.
  • a pressure wedge made of a right-angled triangle made of glass with round corners with a width of 10 mm at plus, applying a load at a speed of 2.0 mm / sec to the center of the test piece, and the load when the test piece breaks (maximum load) ) was measured. The values of the five measurements were averaged to obtain a measurement result. The maximum stress was calculated by dividing the maximum load by the area. Table 6 shows the measurement results.
  • titanium oxide surface-treated with an aluminum compound in addition to using surface treatment with an aluminum compound and a silica compound, titanium oxide that has been surface-treated with an organic silicon compound or an organic compound is the maximum. It can be seen that the load is large. It is considered that the reason why the surface treatment with the aluminum compound alone is better is the dispersibility of the titanium oxide as the component (D) in the curable resin composition.
  • a lead frame made of Cu with 50 mm in length, 55 mm in width, and 0.25 mm in thickness is prepared.
  • the MAP after molding includes a total of 180 reflectors in 15 rows and 12 rows. Each reflector has a top surface of 2.1 mm, a bottom surface of 1.8 mm (taper angle: 15 degrees), a height of 0.55 mm, a width of 0.20 mm from the right end along the transverse diameter, and a width of 0.20 mm.
  • the electrode slit which consists of a white compound which hardened the conductive resin composition is provided vertically.
  • the interval between the reflectors is 1.1 mm in both the vertical and horizontal diameter directions.
  • the lead frame and the mold are not particularly limited as long as a reflector with a lead frame that satisfies the above requirements can be manufactured. This shape of the molded product is called a 3030 MAP type.
  • Transfer molding was performed using a G-Line manual press manufactured by Apic Yamada Co., Ltd.
  • the values shown in Table 8 were set for the mold clamping force 30 ton, the injection pressure, and the injection speed.
  • a white compound of 5.0 g is weighed, shaped into a cylindrical shape, loaded into a cylinder, and sprayed with a fluorine type mold release agent (Daikin Kogyo Co., Ltd .: Die Free GA-7500). did. Molding conditions are 170 ° C./3 minutes. After molding, it was post-cured at 180 ° C./1 h.
  • the filling rate was determined by the ratio of the unfilled area when the compound resin was completely filled in the molded part as 100%.
  • the warp is defined as a forward warp when the molded part is concave when viewed from the side, and the reverse warp is defined as a convex part.
  • the MAP product was placed on a smooth surface, and the value (mm) having the longest distance among the four sides away from the surface was quantified.
  • Examples 19 to 22 Components shown in Table 9 were mixed to obtain a curable resin composition of the present invention.
  • the obtained curable resin composition was pasty, it was kneaded with a stirring bar to make it uniform.
  • clay In the case of clay, it was homogenized by repeating the work of stretching with a round bar-shaped jig and then folding and stretching again.
  • flakes or powders In the case of flakes or powders, they were crushed with a mortar and made uniform.
  • the curable resin composition shown in Table 9 is a condition of 170 ° C./3 minutes using a rectangular form made of stainless steel (SUS304) having a PET film as a release film, an internal dimension of 80 mm ⁇ 50 mm, and a thickness of 0.5 mm. And press-molded.
  • the formed rectangular plate-shaped press-molded body was post-cured in an oven at 180 ° C./1 hour. This was cut into a size of 50 mm ⁇ 25 mm to obtain a sample for evaluation.
  • the durability test a heat resistance test, a light resistance test, and a constant temperature and humidity test were performed by the following methods. Before the endurance test, the light reflectance of the sample at a wavelength of 470 nm was measured and used as the initial reflectance.
  • the light reflectance at a wavelength of 470 nm was measured using a spectrophotometer (manufactured by JASCO Corporation, UV-visible spectrophotometer V-560) equipped with an integrating sphere. The reflectance was measured using a Spectralon plate manufactured by Labsphere as a standard plate. The measurement results are shown in Table 9.

Abstract

本発明は、低い線膨張係数を有する硬化物を与える硬化性組成物を提供することを目的とし、本発明の硬化性樹脂組成物は、(A)SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(B)1分子中に少なくとも2個のSiH基を含有する化合物、(C)ヒドロシリル化触媒、(D)SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物、(E)無機充填材、を必須成分とすることを特徴とする。 

Description

硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
本発明は、硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオードに関する。
従来、半導体には種々の形状の硬化性樹脂を用いたパッケージが適用されている。こうしたパッケージには半導体とパッケージ外部との電気的な接続のため、パッケージの強度保持のため、あるいは半導体から発生する熱をパッケージ外部へ伝えるなどのために、種々の金属材料が用いられ、硬化性樹脂と一体成形される場合が多い。
しかし、樹脂は一般に線膨張係数が大きく、一般に小さな線膨張係数を有する金属材料と線膨張係数が整合しにくいことから、加熱成形時、後硬化時、あるいは半導体部品として使用中における種々の加熱-冷却を伴う工程において反り、剥離、割れ、半導体へのダメージなどといった問題を生ずる場合がある。
特に線膨張の不整合に伴う反りに関しては、金属の両面に均等になるように硬化性樹脂を成形することにより反りの低減をはかる方法もある。
しかし、近年半導体から発生する熱量の増大により放熱性の高い設計が求められるようになっており、熱をパッケージの外へ有効に導くために、半導体素子を接着する金属がパッケージの底面を形成するようなパッケージ設計がなされるようになってきている(特許文献1、2)。
その場合、上記のような反りの低減化をとることができず、反りの問題が重要となってくる。
これまで樹脂による反りの低減に関しては、樹脂の線膨張を低減させて一体成形する金属の線膨張に近づけること、樹脂を低弾性率化することなどにより対策がとられてきた。
しかし、線膨張を低減させるために無機フィラーを大量に充填すると樹脂の成形時の流動性が低下して成型加工性を損なうため限界があり、また低弾性化すると樹脂の強度が低下して半導体素子を保護するというパッケージとしての主要機能を損なうことにもなる。
以上のことから、半導体のパッケージにおいて反りを低減化できる硬化性樹脂が求められている。
一方、半導体から発生する熱(半導体が発光ダイオードの場合はさらに光)が増大してきており、半導体のパッケージ用樹脂の耐熱性(耐光性)がよりいっそう求められるようになってきている。これらの要求に対して、耐熱性が高い、ヒドロシリル化反応によって硬化する樹脂が半導体のパッケージ用樹脂として適用されてきている(特許文献1、3)。
特開2010-62272号公報 特開2009-302241号公報 特開2005-146191号公報
従って、本発明の課題は、低い線膨張係数を有する硬化物を与える硬化性樹脂組成物を提供することであり、それを用いて金属と一体成形された反りの低減された半導体のパッケージおよびそれを用いて製造された半導体を提供することである。
かかる課題を解決するために本発明者らは鋭意研究の結果、(A)SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(B)1分子中に少なくとも2個のSiH基を含有する化合物、(C)ヒドロシリル化触媒、(D)SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物、(E)無機充填材、を必須成分として硬化性樹脂組成物とすることにより上記課題を達成できることを見出し本発明に至った。
すなわち、本発明は以下の構成を有するものである。
(1)(A)SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物、
(B)1分子中に少なくとも2個のSiH基を含有する化合物、
(C)ヒドロシリル化触媒、
(D)SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物、
(E)無機充填材、
を必須成分として含有することを特徴とする硬化性樹脂組成物。
(2)(D)成分がビニル基を末端に有する直鎖状ポリシロキサンである(1)に記載の硬化性樹脂組成物。
(3)(D)成分の重量平均分子量が1,000以上かつ1,000,000以下である(1)または(2)に記載の硬化性樹脂組成物。
(4)(E)成分が球状シリカである(1)~(3)のいずれかに記載の硬化性樹脂組成物。
(5)更に(F)白色顔料を含有する(1)~(4)のいずれかに記載の硬化性樹脂組成物。
(6)(F)成分の平均粒子径が1.0μm以下である(5)に記載の硬化性樹脂組成物。
(7)(F)成分が酸化チタンである(5)または(6)に記載の硬化性樹脂組成物。
(8)(F)成分が有機シロキサンにより表面処理された酸化チタンである(7)に記載の硬化性樹脂組成物。
(9)(F)成分が無機化合物で表面処理された酸化チタンである(7)に記載の硬化性樹脂組成物。
(10)(F)成分がアルミニウム化合物で表面処理されている(9)に記載の硬化性樹脂組成物。
(11)(F)成分が酸化亜鉛、酸化ジルコニア、酸化ストロンチウム、酸化ニオブ、窒化ホウ素、チタン酸バリウム及び硫酸バリウムから選ばれる少なくとも一種である(5)または(6)に記載の硬化性樹脂組成物。
(12)更に、(G)金属石鹸を含有する(1)~(11)のいずれかに記載の硬化性樹脂組成物。
(13)(G)成分がステアリン酸金属塩である(12)に記載の硬化性樹脂組成物。
(14)(G)成分がステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウムからなる群より選択される1つ以上である(13)に記載の硬化性樹脂組成物。
(15)(A)成分および(B)成分の合計の重量に対する(D)成分の重量が30重量%以上である(1)~(14)のいずれかに記載の硬化性樹脂組成物。
(16)硬化性樹脂組成物全体に占める(E)成分の合計の量が70重量%以上である(1)~(15)のいずれかに記載の硬化性樹脂組成物。
(17)硬化性樹脂組成物全体に占める(F)成分の含有量が10重量%以上である(5)~(16)のいずれかに記載の硬化性樹脂組成物。
(18)硬化性樹脂組成物全体に占める(G)成分の含有量が0.01~5重量%である(12)~(17)のいずれかに記載の硬化性樹脂組成物。
(19)硬化後の420nm、440nm、460nmにおける分光反射率が80R%以上であり、180℃72時間の耐熱試験後の分光反射率の保持率(耐熱試験後の分光反射率/初期の分光反射率×100)が90%以上である(1)~(18)のいずれかに記載の硬化性樹脂組成物。
(20)硬化させてなる成形体の表面の波長470nmの光線反射率が90%以上である(1)~(19)のいずれかに記載の硬化性樹脂組成物。
(21)発光ダイオード用のリードフレームの片面に成形してパッケージとした場合の、パッケージの反りが±1.00mm以下である(1)~(20)のいずれかに記載の硬化性樹脂組成物。
(22)半導体のパッケージに用いられる(1)~(21)のいずれかに記載の硬化性樹脂組成物。
(23)(1)~(22)のいずれかに記載の硬化性樹脂組成物のうち、(F)白色顔料を必須成分として含有する硬化性樹脂組成物からなるタブレットであって、
(A)成分および(B)成分の少なくとも一方が23℃における粘度が50Pa秒以下の液体であり、
(E)成分と(F)成分の合計の含有量が70~95重量%であり、
(E)成分と(F)成分の合計に占める12μm以下の粒子の割合が40体積%以上であることを特徴とする硬化性樹脂組成物タブレット。
(24)(1)~(21)のいずれかに記載の硬化性樹脂組成物を硬化してなり、表面の波長470nmの光線反射率が90%以上であることを特徴とする成形体。
(25)(22)に記載の硬化性樹脂組成物を用いて成形したことを特徴とする半導体のパッケージ。
(26)(22)に記載の硬化性樹脂組成物を用いて金属と一体成形したことを特徴とする半導体のパッケージ。
(27)硬化性樹脂組成物とリードフレームとをトランスファーモールドにより一体成形した(25)または(26)に記載の半導体のパッケージ。
(28)半導体のパッケージが実質的に金属の片面に樹脂が成形されてなるパッケージである、(25)~(27)のいずれかに記載の半導体のパッケージ。
(29)(22)に記載の硬化性樹脂組成物を用いてトランスファー成形されたことを特徴とする半導体のパッケージ。
(30)(25)~(29)のいずれかに記載の半導体のパッケージを用いて製造された半導体部品。
(31)(25)~(29)のいずれかに記載の半導体のパッケージを用いて製造された発光ダイオード。
本発明の硬化性樹脂組成物を用いれば、低い線膨張係数を有する硬化物を与える硬化性樹脂組成物を得ることができるため、それを用いて金属と一体成形された反りの低減された半導体のパッケージおよびそれを用いて製造された半導体を作成できる。
初期の各波長における反射率を表す図である。 耐熱試験後の各波長における反射率を表す図である。 成形品の概念図である。 強度の測定方法を示す模式図である。
以下、本発明を詳細に説明する。
本発明の硬化性樹脂組成物は、
(A)SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物、
(B)1分子中に少なくとも2個のSiH基を含有する化合物、
(C)ヒドロシリル化触媒、
(D)SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物、
(E)無機充填材、を必須成分として含有することを特徴とする硬化性樹脂組成物である。
以下、各成分について説明する。
((A)成分)
(A)成分はSiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物であれば特に限定されない。
((A)成分の骨格)
有機化合物としてはポリシロキサン-有機ブロックコポリマーやポリシロキサン-有機グラフトコポリマーのようなシロキサン単位(Si-O-Si)を含むものではなく、構成元素としてC、H、N、O、S及びハロゲン以外の元素を含まない化合物がより好ましい。
シロキサン単位を含むものの場合は、半導体のパッケージとリードフレームや封止樹脂との接着性が低くなりやすいという問題がある。
(A)成分の有機化合物は、有機重合体系の化合物と有機単量体系化合物に分類できる。
((A)成分が重合体の場合の例)
有機重合体系の(A)成分としては、例えば、ポリエーテル系、ポリエステル系、ポリアリレート系、ポリカーボネート系、飽和炭化水素系、不飽和炭化水素系、ポリアクリル酸エステル系、ポリアミド系、フェノール-ホルムアルデヒド系(フェノール樹脂系)、ポリイミド系の骨格を有するものを挙げることができる。
これらのうち、ポリエーテル系重合体としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体等が挙げられる。さらに具体的な例を示すと、
Figure JPOXMLDOC01-appb-C000001
(式中、R1、R2は構成元素としてC、H、N、O、S、ハロゲン以外の元素を含まない炭素数1~6の2価の有機基、n、m、lは1~300の数を表す。)
等が挙げられる。
その他の重合体としては、例えば、アジピン酸、フタル酸、イソフタル酸、テレフタル酸、ヘキサヒドロフタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール等のグリコールとの縮合またはラクトン類の開環重合で得られるポリエステル系重合体、エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、ポリクロロプレン、ポリイソプレン、イソプレンとブタジエン、アクリロニトリル、スチレン等との共重合体、ポリブタジエン、ブタジエンとスチレン、アクリロニトリル等との共重合体、ポリイソプレン、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリル、スチレン等との共重合体を水素添加して得られるポリオレフィン系(飽和炭化水素系)重合体、エチルアクリレート、ブチルアクリレート等のモノマーをラジカル重合して得られるポリアクリル酸エステル、エチルアクリレート、ブチルアクリレート等のアクリル酸エステルと酢酸ビニル、アクリロニトリル、メチルメタクリレート、スチレン等とのアクリル酸エステル系共重合体、前記有機重合体中でビニルモノマーを重合して得られるグラフト重合体、ポリサルファイド系重合体、ε-アミノカプロラクタムの開環重合によるナイロン6、ヘキサメチレンジアミンとアジピン酸の重縮合によるナイロン66、ヘキサメチレンジアミンとセバシン酸の重縮合によるナイロン610、ε-アミノウンデカン酸の重縮合によるナイロン11、ε-アミノラウロラクタムの開環重合によるナイロン12、上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等のポリアミド系重合体、例えば、ビスフェノールAと塩化カルボニルより重縮合して製造されたポリカルボネート系重合体、ジアリルフタレート系重合体、フェノール-ホルムアルデヒド系(フェノール樹脂系)骨格としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、アンモニアレゾール型フェノール樹脂、ベンジリックエーテル型フェノール樹脂などが挙げられる。
これらの重合体骨格に、炭素-炭素二重結合を有するアルケニル基を導入して(A)成分とすることができる。
この場合、炭素-炭素二重結合を有するアルケニル基は分子内のどこに存在してもよいが、反応性の点から側鎖または末端に存在する方が好ましい。
アルケニル基を前記重合体骨格に導入する方法については、種々提案されているものを用いることができるが、重合後にアルケニル基を導入する方法と重合中にアルケニル基を導入する方法に大別することができる。
重合後にアルケニル基を導入する方法としては、例えば、末端、主鎖あるいは側鎖に水酸基、アルコキシド基、カルボキシル基、エポキシ基等の官能基を有する有機重合体に、その官能基に対して反応性を示す活性基とアルケニル基の両方を有する有機化合物を反応させることによりアルケニル基を末端、主鎖あるいは側鎖に導入することができる。上記官能基に対して反応性を示す活性基とアルケニル基の両方を有する有機化合物の例としては、アクリル酸、メタクリル酸、ビニル酢酸、アクリル酸クロライド、アクリル酸ブロマイド等のC3-C20の不飽和脂肪酸、酸ハライド、酸無水物等やアリルクロロホルメート(CH2=CHCH2OCOCl)、アリルブロモホルメート(CH2=CHCH2OCOBr)等のC3~C20の不飽和脂肪族アルコール置換炭酸ハライド、アリルクロライド、アリルブロマイド、ビニル(クロロメチル)ベンゼン、アリル(クロロメチル)ベンゼン、アリル(ブロモメチル)ベンゼン、アリル(クロロメチル)エーテル、アリル(クロロメトキシ)ベンゼン、1-ブテニル(クロロメチル)エーテル、1-ヘキセニル(クロロメトキシ)ベンゼン、アリルオキシ(クロロメチル)ベンゼン、アリルイソシアネート等が挙げられる。
また、エステル交換法を用いてアルケニル基を導入する方法がある。この方法はポリエステル樹脂やアクリル樹脂のエステル部分のアルコール残基をエステル交換触媒を用いてアルケニル基含有アルコール又はアルケニル基含有フェノール誘導体とエステル交換する方法である。アルコール残基との交換に用いるアルケニル基含有アルコール及びアルケニル基含有フェノール誘導体は、少なくとも1個のアルケニル基を有し少なくとも1個の水酸基を有するアルコール又はフェノール誘導体であれば良いが、水酸基を1個有する方が好ましい。触媒は使用してもしなくても良いが、チタン系および錫系の触媒が良い。
上記化合物の例としては、ビニルアルコール、アリルアルコール、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、6-ヘプテン-1-オール、7-オクテン-1-オール、8-ノネン-1-オール、9-デセン-1-オール、2-(アリルオキシ)エタノール、ネオペンチルグリコールモノアリルエーテル、グリセリンジアリルエーテル、トリメチロールプロパントリアリルエーテル、トリメチロールエタントリアリルエーテル、ペンタエリストールテトラアリルエーテル、1,2,6-ヘキサントリオールトリアリルエーテル、ソルビタントリアリルエーテル、
Figure JPOXMLDOC01-appb-C000002
などが挙げられる。この中でも、入手の容易さから、アリルアルコール、ビニルアルコール、3-ブテン-1-オール、2-(アリルオキシ)エタノール、および
Figure JPOXMLDOC01-appb-C000003
が好ましい。
さらに、上記アルコール又はフェノール誘導体の酢酸エステル等のエステル化物とポリエステル樹脂やアクリル樹脂のエステル部分をエステル交換触媒を用いてエステル交換しながら、生成するポリエステル樹脂やアクリル樹脂のエステル部分のアルコール残基の酢酸エステル等の低分子量エステル化物を減圧脱揮等で系外に留去する方法でアルケニル基を導入する方法もある。
また、リビング重合によりメチル(メタ)アクリレート等の重合を行った後、リビング末端をアルケニル基を有する化合物によって停止させる方法により末端にアルケニル基を導入することもできる。
重合中にアルケニル基を導入する方法としては、例えば、ラジカル重合法で本発明に用いる(A)成分の有機重合体骨格を製造する場合に、アリルメタクリレート、アリルアクリレート等の分子中にラジカル反応性の低いアルケニル基を有するビニルモノマーや、アリルメルカプタン等のラジカル反応性の低いアルケニル基を有するラジカル連鎖移動剤を用いることにより、有機重合体骨格の側鎖や末端にアルケニル基を導入することができる。
(A)成分としては、分子量は特に制約はないが、100~100,000の任意のものが好適に使用でき、アルケニル基含有有機重合体であれば500~20,000のものが特に好ましい。分子量が500以下では可とう性の付与等の有機重合体の利用による特徴が発現し難く、分子量が100,000以上ではアルケニル基とSiH基との反応による架橋の効果が発現し難い。
((A)成分が単量体の場合の例)
有機単量体系の(A)成分としては例えば、フェノール系、ビスフェノール系、ベンゼン、ナフタレン等の芳香族炭化水素系:直鎖系、脂環系等の脂肪族炭化水素系:複素環系の化合物およびこれらの混合物等が挙げられる。
((A)成分の炭素-炭素二重結合)
SiH基と反応性を有する炭素-炭素二重結合の結合位置は特に限定されず、分子内のどこに存在してもよい。
(A)成分のSiH基と反応性を有する炭素-炭素二重結合としては特に限定されないが、下記一般式(I)
Figure JPOXMLDOC01-appb-C000004
(式中R1は水素原子あるいはメチル基を表す。)で示される基が反応性の点から好適である。また、原料の入手の容易さからは、
Figure JPOXMLDOC01-appb-C000005
で示される基が特に好ましい。
(A)成分のSiH基と反応性を有する炭素-炭素二重結合としては、下記一般式(II)
Figure JPOXMLDOC01-appb-C000006
(式中R2は水素原子あるいはメチル基を表す。)で示される脂環式の基が、硬化物の耐熱性が高いという点から好適である。また、原料の入手の容易さからは、
Figure JPOXMLDOC01-appb-C000007
で示される脂環式の基が特に好ましい。
((A)成分の炭素-炭素二重結合と骨格の結合基)
SiH基と反応性を有する炭素-炭素二重結合は(A)成分の骨格部分に直接結合していてもよく、2価以上の置換基を介して共有結合していても良い。2価以上の置換基としては炭素数0~10の置換基であれば特に限定されないが、構成元素としてC、H、N、O、S、およびハロゲン以外の元素を含まないものが好ましい。これらの置換基の例としては、
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
が挙げられる。また、これらの2価以上の置換基の2つ以上が共有結合によりつながって1つの2価以上の置換基を構成していてもよい。
以上のような骨格部分に共有結合する基の例としては、ビニル基、アリル基、メタリル基、アクリル基、メタクリル基、2-ヒドロキシ-3-(アリルオキシ)プロピル基、2-アリルフェニル基、3-アリルフェニル基、4-アリルフェニル基、2-(アリルオキシ)フェニル基、3-(アリルオキシ)フェニル基、4-(アリルオキシ)フェニル基、2-(アリルオキシ)エチル基、2,2-ビス(アリルオキシメチル)ブチル基、3-アリルオキシ-2,2-ビス(アリルオキシメチル)プロピル基、
Figure JPOXMLDOC01-appb-C000010
が挙げられる。
((A)成分の具体例)
有機重合体系の(A)成分の具体的な例としては、1,2-ポリブタジエン(1,2比率10~100%のもの、好ましくは1,2比率50~100%のもの)、ノボラックフェノールのアリルエーテル、アリル化ポリフェニレンオキサイド、
Figure JPOXMLDOC01-appb-C000011
(式中、R1はHまたはCH3、R2、R3は構成元素としてC、H、N、O、S、ハロゲン以外の元素を含まない炭素数1~6の2価の有機基、X、Yは炭素数0~10の2価の置換基、n、m、lは1~300の数を表す。)
Figure JPOXMLDOC01-appb-C000012
(式中、R1はHまたはCH3、R4、R5は炭素数1~6の2価の有機基、X、Yは炭素数0~10の2価の置換基、n、m、lは1~300の数を表す。)
Figure JPOXMLDOC01-appb-C000013
(式中、R1はHまたはCH3、R6、R7は炭素数1~20の2価の有機基、X、Yは炭素数0~10の2価の置換基、n、m、lは1~300の数を表す。)
Figure JPOXMLDOC01-appb-C000014
(式中、R1はHまたはCH3、R8、R9は炭素数1~6の2価の有機基、X、Yは炭素数0~10の2価の置換基、n、m、lは1~300の数を表す。)
Figure JPOXMLDOC01-appb-C000015
(式中、R1はHまたはCH3、R10、R11、R12は炭素数1~6の2価の有機基、X、Yは炭素数0~10の2価の置換基、n、m、l、pは1~300の数を表す。)等が挙げられる。
有機単量体系の(A)成分の具体的な例としては、ジアリルフタレート、トリアリルトリメリテート、ジエチレングリコールビスアリルカーボネート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、1,1,2,2-テトラアリロキシエタン、ジアリリデンペンタエリスリット、トリアリルシアヌレート、トリアリルイソシアヌレート、1,2,4-トリビニルシクロヘキサン、ジビニルベンゼン類(純度50~100%のもの、好ましくは純度80~100%のもの)、ジビニルビフェニル、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、およびそれらのオリゴマー、
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
の他、従来公知のエポキシ樹脂のグリシジル基の一部あるいは全部をアリル基に置き換えたもの等が挙げられる。
(A)成分としては、上記のように骨格部分とアルケニル基とに分けて表現しがたい、低分子量化合物も用いることができる。これらの低分子量化合物の具体例としては、ブタジエン、イソプレン、オクタジエン、デカジエン等の脂肪族鎖状ポリエン化合物系、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、ジシクロペンタジエン、トリシクロペンタジエン、ノルボルナジエン等の脂肪族環状ポリエン化合物系、ビニルシクロペンテン、ビニルシクロヘキセン等の置換脂肪族環状オレフィン化合物系等が挙げられる。
((A)成分の好ましい要件)
(A)成分としては、耐熱性をより向上し得るという観点からは、SiH基と反応性を有する炭素-炭素二重結合を(A)成分1gあたり0.001mol以上含有するものが好ましく、1gあたり0.005mol以上含有するものがより好ましく、0.008mol以上含有するものがさらに好ましい。
(A)成分のSiH基と反応性を有する炭素-炭素二重結合の数は、平均して1分子当たり少なくとも2個あればよいが、力学強度をより向上したい場合には2を越えることが好ましく、3個以上であることがより好ましい。(A)成分のSiH基と反応性を有する炭素-炭素二重結合の数が1分子内当たり1個以下の場合は、(B)成分と反応してもグラフト構造となるのみで架橋構造とならない。
(A)成分としては反応性が良好であるという観点からは、1分子中にビニル基を1個以上含有していることが好ましく、1分子中にビニル基を2個以上含有していることがより好ましい。また貯蔵安定性が良好となりやすいという観点からは、1分子中にビニル基を6個以下含有していることが好ましく、1分子中にビニル基を4個以下含有していることがより好ましい。
(A)成分としては、力学的耐熱性が高いという観点および原料液の糸引き性が少なく成形性、取扱い性が良好であるという観点、(E)成分および(F)成分などの粉体との均一な混合が容易という点、および硬化性樹脂組成物タブレットとした際の成形性が良好であるという観点からは、分子量が900未満のものが好ましく、700未満のものがより好ましく、500未満のものがさらに好ましい。
(A)成分としては、他の成分との均一な混合、および良好な作業性を得るためには、粘度としては23℃において1000ポイズ未満のものが好ましく、300ポイズ未満のものがより好ましく、30ポイズ未満のものがさらに好ましい。粘度はE型粘度計によって測定することができる。 
(A)成分としては、耐光性がより高いという観点から、フェノール性水酸基および/あるいはフェノール性水酸基の誘導体を有する化合物の含有量が少ないものが好ましく、フェノール性水酸基および/あるいはフェノール性水酸基の誘導体を有する化合物を含まないものが好ましい。本発明におけるフェノール性水酸基とはベンゼン環、ナフタレン環、アントラセン環等に例示される芳香族炭化水素核に直接結合した水酸基を示し、フェノール性水酸基の誘導体とは上述のフェノール性水酸基の水素原子をメチル基、エチル基等のアルキル基、ビニル基、アリル基等のアルケニル基、アセトキシ基等のアシル基等により置換された基を示す。 
また、特に耐光性が良好であるという観点からは、芳香環の(A)成分中の成分重量比が50重量%以下であるものが好ましく、40重量%以下のものがより好ましく、30重量%以下のものがさらに好ましい。最も好ましいのは芳香族炭化水素環を含まないものである。
得られる硬化物の着色が少なく、耐光性が高いという観点からは、(A)成分としてはビニルシクロヘキセン、ジシクロペンタジエン、ビニルノルボルネン、トリアリルイソシアヌレート、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパンのジアリルエーテル、1,2,4-トリビニルシクロヘキサンが好ましく、トリアリルイソシアヌレート、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパンのジアリルエーテル、1,2,4-トリビニルシクロヘキサンが特に好ましい。 
((A)成分の好ましい構造1)
(A)成分としては、耐熱性および耐光性が特に高いという観点からは、下記一般式(III) 
Figure JPOXMLDOC01-appb-C000018
(式中R1は炭素数1~50の一価の有機基を表し、それぞれのR1は異なっていても同一であってもよい。)で表される化合物が好ましい。 
上記一般式(III)のR1としては、得られる硬化物の耐熱性がより高くなりうるという観点からは、炭素数1~20の一価の有機基であることが好ましく、炭素数1~10の一価の有機基であることがより好ましく、炭素数1~4の一価の有機基であることがさらに好ましい。これらの好ましいR1の例としては、メチル基、エチル基、プロピル基、ブチル基、フェニル基、ベンジル基、フェネチル基、ビニル基、アリル基、グリシジル基、 
Figure JPOXMLDOC01-appb-C000019
等が挙げられる。
上記一般式(III)のR1としては、パッケージとリードフレームあるいは封止剤との接着性が良好になりうる、あるいは得られるパッケージの力学強度が高くなり得るという観点からは、3つのR1のうち少なくとも1つがエポキシ基を一つ以上含む炭素数1~50の一価の有機基であることが好ましく、
Figure JPOXMLDOC01-appb-C000020
で表されるエポキシ基を1個以上含む炭素数1~50の一価の有機基であることがより好ましい。これらの好ましいR1の例としては、グリシジル基、 
Figure JPOXMLDOC01-appb-C000021
等が挙げられる。 
上記一般式(III)のR1としては、得られる硬化物の耐熱性が良好になりうるという観点からは、2個以下の酸素原子を含みかつ構成元素としてC、H、Oのみを含む炭素数1~50の一価の有機基であることが好ましく、炭素数1~50の一価の炭化水素基であることがより好ましい。これらの好ましいR1の例としては、メチル基、エチル基、プロピル基、ブチル基、フェニル基、ベンジル基、フェネチル基、ビニル基、アリル基、グリシジル基、 
Figure JPOXMLDOC01-appb-C000022
等が挙げられる。 
上記一般式(III)のR1としては、反応性が良好になるという観点からは、3つのR1のうち少なくとも1つが 
Figure JPOXMLDOC01-appb-C000023
で表される基を1個以上含む炭素数1~50の一価の有機基であることが好ましく、下記一般式(IV) 
Figure JPOXMLDOC01-appb-C000024
(式中R2は水素原子あるいはメチル基を表す。)で表される基を1個以上含む炭素数1~50の一価の有機基であることがより好ましく、 3つのR1のうち少なくとも2つが下記一般式(V) 
Figure JPOXMLDOC01-appb-C000025
(式中R3は直接結合あるいは炭素数1~48の二価の有機基を表し、R4は水素原子あるいはメチル基を表す。)で表される有機化合物(複数のR3およびR4はそれぞれ異なっていても同一であってもよい。)であることがさらに好ましい。 
上記一般式(V)のR3は、直接結合あるいは炭素数1~48の二価の有機基であるが、得られるパッケージの耐熱性がより高くなりうるという観点からは、直接結合あるいは炭素数1~20の二価の有機基であることが好ましく、直接結合あるいは炭素数1~10の二価の有機基であることがより好ましく、直接結合あるいは炭素数1~4の二価の有機基であることがさらに好ましい。これらの好ましいR3の例としては、 
Figure JPOXMLDOC01-appb-C000026
等が挙げられる。 
上記一般式(V)のR3としては、得られるパッケージの耐熱性が良好になりうるという観点からは、直接結合あるいは2つ以下の酸素原子を含みかつ構成元素としてC、H、Oのみを含む炭素数1~48の二価の有機基であることが好ましく、直接結合あるいは炭素数1~48の二価の炭化水素基であることがより好ましい。これらの好ましいR3の例としては、
Figure JPOXMLDOC01-appb-C000027
が挙げられる。 
上記一般式(V)のR4は、水素原子あるいはメチル基であるが、反応性が良好であるという観点からは、水素原子が好ましい。 
ただし、上記のような一般式(III)で表される有機化合物の好ましい例においても、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有することは必要である。耐熱性をより向上し得るという観点からは、SiH基と反応性を有する炭素-炭素二重結合を1分子中に3個以上含有する有機化合物であることがより好ましい。 
以上のような一般式(III)で表される有機化合物の好ましい具体例としては、トリアリルイソシアヌレート、 
Figure JPOXMLDOC01-appb-C000028
等が挙げられる。 
((A)成分の好ましい構造2)
また、(B)成分と良好な相溶性を有するという観点、および(A)成分の揮発性が低くなり、得られるパッケージからのアウトガスの問題が生じ難いという観点からは、(A)成分の例として上記したような、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物から選ばれた1種以上の化合物と、SiH基を有する化合物(β)との反応物も好ましい。 
((β)成分)
(β)成分は、SiH基を有する化合物であり、SiH基を有する鎖状及び/又は環状のポリオルガノシロキサンもその例である。 
具体的には、例えば 
Figure JPOXMLDOC01-appb-C000030
が挙げられる。 
ここで、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物との相溶性が良くなりやすいという観点から、下記一般式(VI) 
Figure JPOXMLDOC01-appb-C000031
(式中、R1は炭素数1~6の有機基を表し、nは3~10の数を表す。)で表される、1分子中に少なくとも3個のSiH基を有する環状ポリオルガノシロキサンが好ましい。 
一般式(VI)で表される化合物中の置換基R1は、C、H、O以外の構成元素を含まないものが好ましく、炭化水素基であることがより好ましく、メチル基であることがさらに好ましい。 
入手容易性等から、1,3,5,7-テトラメチルシクロテトラシロキサンであることが好ましい。 
(β)成分のその他の例として、ビスジメチルシリルベンゼンなどのSiH基を有する化合物をあげることができる。 
上記したような各種(β)成分は単独もしくは2種以上のものを混合して用いることが可能である。 
(SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分の反応)
次に、本発明の(A)成分として、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分をヒドロシリル化反応して得ることができる化合物を用いる場合の、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分とのヒドロシリル化反応に関して説明する。 
尚、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分をヒドロシリル化反応すると、本発明の(A)成分を含む複数の化合物の混合物が得られることがあるが、そこから(A)成分を分離することなく混合物のままで用いて本発明の硬化性樹脂組成物を作成することもできる。 
SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分をヒドロシリル化反応させる場合の、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分の混合比率は、特に限定されないが、反応中のゲル化が抑制できるという点においては、一般に、混合するSiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物中のSiH基との反応性を有する炭素-炭素二重結合の総数(X)と、混合する(β)成分中のSiH基の総数(Y)との比が、X/Y≧2であることが好ましく、X/Y≧3であることがより好ましい。また(A)成分の(B)成分との相溶性がよくなりやすいという点からは、10≧X/Yであることが好ましく、5≧X/Yであることがより好ましい。 
SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分をヒドロシリル化反応させる場合には適当な触媒を用いてもよい。触媒としては、例えば次のようなものを用いることができる。白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金-オレフィン錯体(例えば、Pt(CH2=CH22(PPh32、Pt(CH2=CH22Cl2)、白金-ビニルシロキサン錯体(例えば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4m)、白金-ホスフィン錯体(例えば、Pt(PPh34、Pt(PBu34)、白金-ホスファイト錯体(例えば、Pt[P(OPh)34、Pt[P(OBu)34)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号及び3159662号明細書中に記載された白金-炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。更に、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金-オレフィン複合体も本発明において有用である。 
また、白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl23、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4、等が挙げられる。 
これらの中では、触媒活性の点から塩化白金酸、白金-オレフィン錯体、白金-ビニルシロキサン錯体等が好ましい。また、これらの触媒は単独で使用してもよく、2種以上併用してもよい。 
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ硬化性樹脂組成物のコストを比較的低く抑えるため好ましい添加量の下限は、(β)成分のSiH基1モルに対して10-8モル、より好ましくは10-6モルであり、好ましい添加量の上限は(β)成分のSiH基1モルに対して10-1モル、より好ましくは10-2モルである。 
また、上記触媒には助触媒を併用することが可能であり、例としてトリフェニルホスフィン等のリン系化合物、ジメチルマレート等の1,2-ジエステル系化合物、2-ヒドロキシ-2-メチル-1-ブチン等のアセチレンアルコール系化合物、単体の硫黄等の硫黄系化合物、トリエチルアミン等のアミン系化合物等が挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対しての好ましい添加量の下限は、10-2モル、より好ましくは10-1モルであり、好ましい添加量の上限は102モル、より好ましくは10モルである。 
反応させる場合のSiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(β)成分、触媒の混合の方法としては、各種方法をとることができるが、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物に触媒を混合したものを、(β)成分に混合する方法が好ましい。SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(β)成分の混合物に触媒を混合する方法だと反応の制御が困難である。(β)成分と触媒を混合したものにSiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物を混合する方法をとる場合は、触媒の存在下(β)成分が混入している水分と反応性を有するため、変質することがある。 
反応温度としては種々設定できるが、この場合好ましい温度範囲の下限は30℃、より好ましくは50℃であり、好ましい温度範囲の上限は200℃、より好ましくは150℃である。反応温度が低いと十分に反応させるための反応時間が長くなり、反応温度が高いと実用的でない。反応は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。 
反応時間、反応時の圧力も必要に応じ種々設定できる。 
ヒドロシリル化反応の際に溶媒を使用してもよい。使用できる溶剤はヒドロシリル化反応を阻害しない限り特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1, 4-ジオキサン、1,3-ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、クロロホルム、塩化メチレン、1, 2-ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。溶媒は2種類以上の混合溶媒として用いることもできる。溶媒としては、トルエン、テトラヒドロフラン、1,3-ジオキソラン、クロロホルムが好ましい。使用する溶媒量も適宜設定できる。 
その他、反応性を制御する目的等のために種々の添加剤を用いてもよい。 
SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分を反応させた後に、溶媒あるいは/および未反応のSiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物あるいは/および(β)成分を除去することもできる。これらの揮発分を除去することにより、得られる(A)成分が揮発分を有さないため(B)成分との硬化の場合に揮発分の揮発によるボイド、クラックの問題が生じにくい。除去する方法としては例えば、減圧脱揮の他、活性炭、ケイ酸アルミニウム、シリカゲル等による処理等が挙げられる。減圧脱揮する場合には低温で処理することが好ましい。この場合の好ましい温度の上限は100℃であり、より好ましくは60℃である。高温で処理すると増粘等の変質を伴いやすい。 
以上のような、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物と(β)成分の反応物である(A)成分の例としては、ビスフェノールAジアリルエーテルと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ビニルシクロヘキセンと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ジビニルベンゼンと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ジシクロペンタジエンと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、トリアリルイソシアヌレートと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ジアリルモノグリシジルイソシアヌレートと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ビニルノルボルネンとビスジメチルシリルベンゼンとの反応物等を挙げることができる。 
((A)成分のその他の反応性基)
(A)成分としてはその他の反応性基を有していてもよい。この場合の反応性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。これらの官能基を有している場合には得られる硬化性樹脂組成物の接着性が高くなりやすく、得られる硬化物の強度が高くなりやすい。接着性がより高くなりうるという点からは、これらの官能基のうちエポキシ基が好ましい。また、得られる硬化物の耐熱性が高くなりやすいという点においては、反応性基を平均して1分子中に1個以上有していることが好ましい。 
((A)成分の混合)
(A)成分は、単独もしくは2種以上のものを混合して用いることが可能である。 
((B)成分) 
(B)成分は、1分子中に少なくとも2個のSiH基を含有する化合物である。 
(B)成分については1分子中に少なくとも2個のSiH基を含有する化合物であれば特に制限がなく、例えば国際公開WO96/15194に記載される化合物で、1分子中に少なくとも2個のSiH基を有するもの等が使用できる。 
これらのうち、入手性の面からは、1分子中に少なくとも2個のSiH基を有する鎖状及び/又は環状オルガノポリシロキサンが好ましく、(A)成分との相溶性が良いという観点からは、さらに、下記一般式(VI) 
Figure JPOXMLDOC01-appb-C000032
(式中、R1は炭素数1~6の有機基を表し、nは3~10の数を表す。)で表される、1分子中に少なくとも2個のSiH基を有する環状オルガノポリシロキサンが好ましい。 
一般式(VI)で表される化合物中の置換基R1は、C、H、Oから構成されるものであることが好ましく、炭化水素基であることがより好ましく、メチル基であることがさらに好ましい。 
一般式(VI)で表される化合物としては、入手容易性の観点からは、1,3,5,7-テトラメチルシクロテトラシロキサンであることが好ましい。
(B)成分の分子量は特に制約はなく任意のものが好適に使用できるが、より流動性を発現しやすく、(E)成分および(F)成分などの粉体と均一に混合しやすいという観点からは低分子量のものが好ましく用いられる。この場合、好ましい分子量の下限は50であり、好ましい分子量の上限は100,000、より好ましくは1,000、さらに好ましくは700である。 
(B)成分としては、他の成分、特に(E)成分および(F)成分などの粉体との均一な混合を容易にするため、更に詳しくは均一な混合のために融点以上に加熱して液体化させる必要がないことから、23℃において液体であることが好ましく、その粘度としては23℃において50Pa秒以下のものが好ましく、20Pa秒以下のものがより好ましく、5Pa秒以下のものがさらに好ましい。粘度はE型粘度計によって測定することができる。
(B)成分は単独もしくは2種以上のものを混合して用いることが可能である。 
((B)成分の好ましい構造)
(A)成分と良好な相溶性を有するという観点、および(B)成分の揮発性が低くなり得られる硬化性樹脂組成物からのアウトガスの問題が生じ難いという観点からは、(B)成分は、SiH基と反応性を有する炭素-炭素二重結合を1分子中に1個以上含有する有機化合物(α)と、1分子中に少なくとも2個のSiH基を有する化合物(β)を、ヒドロシリル化反応して得ることができる化合物であることが好ましい。 
((α)成分)
ここで(α)成分は上記した(A)成分である、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物と同じもの(α1)も用いることができる。(α1)成分を用いると得られる硬化物の架橋密度が高くなり力学強度が高い硬化物となりやすい。 
その他、SiH基と反応性を有する炭素-炭素二重結合を1分子中に1個含有する有機化合物(α2)も用いることができる。(α2)成分を用いると得られる硬化物が低弾性となりやすい。 
((α2)成分)
(α2)成分としては、SiH基と反応性を有する炭素-炭素二重結合を1分子中に1個含有する有機化合物であれば特に限定されないが、(B)成分が(A)成分と相溶性がよくなるという点においては、化合物としてはポリシロキサン-有機ブロックコポリマーやポリシロキサン-有機グラフトコポリマーのようなシロキサン単位(Si-O-Si)を含むものではなく、構成元素としてC、H、N、O、S、およびハロゲンのみを含むものであることが好ましい。 
(α2)成分のSiH基と反応性を有する炭素-炭素二重結合の結合位置は特に限定されず、分子内のどこに存在してもよい。 
(α2)成分の化合物は、重合体系の化合物と単量体系化合物に分類できる。 
重合体系化合物としては例えば、ポリシロキサン系、ポリエーテル系、ポリエステル系、ポリアリレート系、ポリカーボネート系、飽和炭化水素系、不飽和炭化水素系、ポリアクリル酸エステル系、ポリアミド系、フェノール-ホルムアルデヒド系(フェノール樹脂系)、ポリイミド系の化合物を用いることができる。 
また単量体系化合物としては例えば、フェノール系、ビスフェノール系、ベンゼン、ナフタレン等の芳香族炭化水素系:直鎖系、脂環系等の脂肪族炭化水素系:複素環系の化合物、シリコン系の化合物およびこれらの混合物等が挙げられる。 
(α2)成分のSiH基と反応性を有する炭素-炭素二重結合としては特に限定されないが、下記一般式(I) 
Figure JPOXMLDOC01-appb-C000033
(式中R1は水素原子あるいはメチル基を表す。)で示される基が反応性の点から好適である。また、原料の入手の容易さからは、
Figure JPOXMLDOC01-appb-C000034
で示される基が特に好ましい。
(α2)成分のSiH基と反応性を有する炭素-炭素二重結合としては、下記一般式(II)
Figure JPOXMLDOC01-appb-C000035
(式中R2は水素原子あるいはメチル基を表す。)で示される脂環式の基が、硬化物の耐熱性が高いという点から好適である。また、原料の入手の容易さからは、 
Figure JPOXMLDOC01-appb-C000036
で示される脂環式の基が特に好ましい。 
SiH基と反応性を有する炭素-炭素二重結合は(α2)成分の骨格部分に直接結合していてもよく、2価以上の置換基を介して共有結合していても良い。2価以上の置換基としては炭素数0~10の置換基であれば特に限定されないが、(B)成分が(A)成分と相溶性がよくなりやすいという点においては、構成元素としてC、H、N、O、S、およびハロゲンのみを含むものが好ましい。これらの置換基の例としては、 
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
が挙げられる。また、これらの2価以上の置換基の2つ以上が共有結合によりつながって1つの2価以上の置換基を構成していてもよい。 
以上のような骨格部分に共有結合する基の例としては、ビニル基、アリル基、メタリル基、アクリル基、メタクリル基、2-ヒドロキシ-3-(アリルオキシ)プロピル基、2-アリルフェニル基、3-アリルフェニル基、4-アリルフェニル基、2-(アリルオキシ)フェニル基、3-(アリルオキシ)フェニル基、4-(アリルオキシ)フェニル基、2-(アリルオキシ)エチル基、2、2-ビス(アリルオキシメチル)ブチル基、3-アリルオキシ-2、2-ビス(アリルオキシメチル)プロピル基、 
Figure JPOXMLDOC01-appb-C000039
が挙げられる。 
(α2)成分の具体的な例としては、プロペン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-ウンデセン、出光石油化学社製リニアレン、4,4-ジメチル-1-ペンテン、2-メチル-1-ヘキセン、2,3,3-トリメチル-1-ブテン、2,4,4-トリメチル-1-ペンテン等のような鎖状脂肪族炭化水素系化合物類、シクロヘキセン、メチルシクロヘキセン、メチレンシクロヘキサン、ノルボルニレン、エチリデンシクロヘキサン、ビニルシクロヘキサン、カンフェン、カレン、αピネン、βピネン等のような環状脂肪族炭化水素系化合物類、スチレン、αメチルスチレン、インデン、フェニルアセチレン、4-エチニルトルエン、アリルベンゼン、4-フェニル-1-ブテン等のような芳香族炭化水素系化合物、アルキルアリルエーテル、アリルフェニルエーテル等のアリルエーテル類、グリセリンモノアリルエーテル、エチレングリコールモノアリルエーテル、4-ビニル-1,3-ジオキソラン-2-オン等の脂肪族系化合物類、1,2-ジメトキシ-4-アリルベンゼン、o-アリルフェノール等の芳香族系化合物類、モノアリルジベンジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等の置換イソシアヌレート類、ビニルトリメチルシラン、ビニルトリメトキシシラン、ビニルトリフェニルシラン等のシリコン化合物等が挙げられる。さらに、片末端アリル化ポリエチレンオキサイド、片末端アリル化ポリプロピレンオキサイド等のポリエーテル系樹脂、片末端アリル化ポリイソブチレン等の炭化水素系樹脂、片末端アリル化ポリブチルアクリレート、片末端アリル化ポリメチルメタクリレート等のアクリル系樹脂、等の片末端にビニル基を有するポリマーあるいはオリゴマー類等も挙げることができる。 
(α2)成分の構造は線状でも枝分かれ状でもよく、分子量は特に制約はなく種々のものを用いることができる。分子量分布も特に制限ないが、混合物の粘度が低くなり成形性が良好となりやすいという点においては、分子量分布が3以下であることが好ましく、2以下であることがより好ましく、1.5以下であることがさらに好ましい。 
(α2)成分のガラス転位温度が存在する場合はこれについても特に限定はなく種々のものが用いられるが、得られる硬化物が強靭となりやすいという点においては、ガラス点移転温度は100℃以下であることが好ましく、50℃以下であることがより好ましく、0℃以下であることがさらに好ましい。好ましい樹脂の例としてはポリブチルアクリレート樹脂等が挙げられる。逆に得られる硬化物の耐熱性が高くなるという点においては、ガラス転位温度は100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることがさらに好ましく、170℃以上であることが最も好ましい。ガラス転位温度は動的粘弾性測定においてtanδが極大を示す温度として求めることができる。
(α2)成分としては、得られる硬化物の耐熱性が高くなるという点においては、炭化水素化合物であることが好ましい。この場合好ましい炭素数の下限は7であり、好ましい炭素数の上限は10である。 
(α2)成分としてはその他の反応性基を有していてもよい。この場合の反応性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。これらの官能基を有している場合には得られる硬化性樹脂組成物の接着性が高くなりやすく、得られる硬化物の強度が高くなりやすい。接着性がより高くなりうるという点からは、これらの官能基のうちエポキシ基が好ましい。また、得られる硬化物の耐熱性が高くなりやすいという点においては、反応性基を平均して1分子中に1個以上有していることが好ましい。具体的にはモノアリルジグリシジルイソシアヌレート、アリルグリシジルエーテル、アリロキシエチルメタクリレート、アリロキシエチルアクリレート、ビニルトリメトキシシラン等が挙げられる。 
上記のような(α1)成分あるいは/および(α2)成分としては単一のものを用いてもよいし、複数のものを組み合わせて用いてもよい。 
((β)成分)
(β)成分は、1分子中に少なくとも2個のSiH基を有する化合物であり、鎖状及び/又は環状のポリオルガノシロキサンもその例である。 
具体的には、例えば 
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
が挙げられる。 
ここで、(α)成分との相溶性が良くなりやすいという観点から、下記一般式(VI)
Figure JPOXMLDOC01-appb-C000042
(式中、R1は炭素数1~6の有機基を表し、nは3~10の数を表す。)で表される、1分子中に少なくとも3個のSiH基を有する環状ポリオルガノシロキサンが好ましい。
上記一般式(VI)で表される化合物中の置換基R1は、C、H、Oから構成されるものであることが好ましく、炭化水素基であることがより好ましく、メチル基であることがさらに好ましい。
入手容易性等から、1,3,5,7-テトラメチルシクロテトラシロキサンであることが好ましい。 
(β)成分のその他の例として、ビスジメチルシリルベンゼンなどのSiH基を有する化合物をあげることができる。 
上記したような各種(β)成分は単独もしくは2種以上のものを混合して用いることが可能である。
((α)成分と(β)成分の反応)
次に、本発明の(B)成分として、(α)成分と(β)成分をヒドロシリル化反応して得ることができる化合物を用いる場合の、(α)成分と(β)成分とのヒドロシリル化反応に関して説明する。
尚、(α)成分と(β)成分をヒドロシリル化反応すると、本発明の(B)成分を含む複数の化合物の混合物が得られることがあるが、そこから(B)成分を分離することなく混合物のままで用いて本発明の硬化性樹脂組成物を作成することもできる。 
(α)成分と(β)成分をヒドロシリル化反応させる場合の(α)成分と(β)成分の混合比率は、特に限定されないが、得られる(B)成分と(A)成分とのヒドロシリル化による硬化物の強度を考えた場合、(B)成分のSiH基が多い方が好ましいため、一般に混合する(α)成分中のSiH基との反応性を有する炭素-炭素二重結合の総数(X)と、混合する(β)成分中のSiH基の総数(Y)との比が、Y/X≧2であることが好ましく、Y/X≧3であることがより好ましい。また(B)成分の(A)成分との相溶性がよくなりやすいという点からは、10≧Y/Xであることが好ましく、5≧Y/Xであることがより好ましい。 
(α)成分と(β)成分をヒドロシリル化反応させる場合には適当な触媒を用いてもよい。触媒としては、例えば次のようなものを用いることができる。白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金-オレフィン錯体(例えば、Pt(CH2=CH22(PPh32、Pt(CH2=CH22Cl2)、白金-ビニルシロキサン錯体(例えば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4m)、白金-ホスフィン錯体(例えば、Pt(PPh34、Pt(PBu34)、白金-ホスファイト錯体(例えば、Pt[P(OPh)34、Pt[P(OBu)34)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号及び3159662号明細書中に記載された白金-炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。更に、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金-オレフィン複合体も本発明において有用である。 
また、白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl23、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4、等が挙げられる。 
これらの中では、触媒活性の点から塩化白金酸、白金-オレフィン錯体、白金-ビニルシロキサン錯体等が好ましい。また、これらの触媒は単独で使用してもよく、2種以上併用してもよい。 
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ硬化性樹脂組成物のコストを比較的低く抑えるため好ましい添加量の下限は、(β)成分のSiH基1モルに対して10-8モル、より好ましくは10-6モルであり、好ましい添加量の上限は(β)成分のSiH基1モルに対して10-1モル、より好ましくは10-2モルである。 
また、上記触媒には助触媒を併用することが可能であり、例としてトリフェニルホスフィン等のリン系化合物、ジメチルマレート等の1,2-ジエステル系化合物、2-ヒドロキシ-2-メチル-1-ブチン等のアセチレンアルコール系化合物、単体の硫黄等の硫黄系化合物、トリエチルアミン等のアミン系化合物等が挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対しての好ましい添加量の下限は、10-2モル、より好ましくは10-1モルであり、好ましい添加量の上限は102モル、より好ましくは10モルである。 
反応させる場合の(α)成分、(β)成分、触媒の混合の方法としては、各種方法をとることができるが、(α)成分に触媒を混合したものを、(β)成分に混合する方法が好ましい。(α)成分、(β)成分の混合物に触媒を混合する方法だと反応の制御が困難である。(β)成分と触媒を混合したものに(α)成分を混合する方法をとる場合は、触媒の存在下(β)成分が混入している水分と反応性を有するため、変質することがある。 
反応温度としては種々設定できるが、この場合好ましい温度範囲の下限は30℃、より好ましくは50℃であり、好ましい温度範囲の上限は200℃、より好ましくは150℃である。反応温度が低いと十分に反応させるための反応時間が長くなり、反応温度が高いと実用的でない。反応は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。 
反応時間、反応時の圧力も必要に応じ種々設定できる。 
ヒドロシリル化反応の際に溶媒を使用してもよい。使用できる溶剤はヒドロシリル化反応を阻害しない限り特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1, 4-ジオキサン、1,3-ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、クロロホルム、塩化メチレン、1, 2-ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。溶媒は2種類以上の混合溶媒として用いることもできる。溶媒としては、トルエン、テトラヒドロフラン、1,3-ジオキソラン、クロロホルムが好ましい。使用する溶媒量も適宜設定できる。 
その他、反応性を制御する目的等のために種々の添加剤を用いてもよい。 
(α)成分と(β)成分を反応させた後に、溶媒あるいは/および未反応の(α)成分あるいは/および(β)成分を除去することもできる。これらの揮発分を除去することにより、得られる(B)成分が揮発分を有さないため(A)成分との硬化の場合に揮発分の揮発によるボイド、クラックの問題が生じにくい。除去する方法としては例えば、減圧脱揮の他、活性炭、ケイ酸アルミニウム、シリカゲル等による処理等が挙げられる。減圧脱揮する場合には低温で処理することが好ましい。この場合の好ましい温度の上限は100℃であり、より好ましくは60℃である。高温で処理すると増粘等の変質を伴いやすい。 
以上のような、(α)成分と(β)成分の反応物である(B)成分の例としては、ビスフェノールAジアリルエーテルと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ビニルシクロヘキセンと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ジビニルベンゼンと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ジシクロペンタジエンと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、トリアリルイソシアヌレートと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ジアリルモノグリシジルイソシアヌレートと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、アリルグリシジルエーテルと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、αメチルスチレンと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、モノアリルジグリシジルイソシアヌレートと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ビニルノルボルネンとビスジメチルシリルベンゼンとの反応物等を挙げることができる。 
((A)成分と(B)成分の混合)
(A)成分と(B)成分の組合せについては(A)成分の例として挙げたものおよびそれらの各種混合物/(B)成分の例として挙げたものおよびそれらの各種混合物、の各種組み合わせを挙げることができる。 
(A)成分と(B)成分の混合比率は、必要な強度を失わない限りは特に限定されないが、(B)成分中のSiH基の数(Y)の(A)成分中の炭素-炭素二重結合の数(X)に対する比において、好ましい範囲の下限はY/X≧0.3、より好ましくはY/X≧0.5、さらに好ましくはY/X≧0.7であり、好ましい範囲の上限は3≧Y/X、より好ましくは2≧Y/X、さらに好ましくは1.5≧Y/Xである。好ましい範囲からはずれた場合には十分な強度が得られなかったり、熱劣化しやすくなる場合がある。
((C)成分)
(C)成分はヒドロシリル化触媒である。 
ヒドロシリル化触媒としては、ヒドロシリル化反応の触媒活性があれば特に限定されないが、例えば、白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金-オレフィン錯体(例えば、Pt(CH2=CH22(PPh32、Pt(CH2=CH22Cl2)、白金-ビニルシロキサン錯体(例えば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4m)、白金-ホスフィン錯体(例えば、Pt(PPh34、Pt(PBu34)、白金-ホスファイト錯体(例えば、Pt[P(OPh)34、Pt[P(OBu)34)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号および3159662号明細書中に記載された白金-炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。さらに、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金-オレフィン複合体も本発明において有用である。 
また、白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl23、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4、等が挙げられる。 
これらの中では、触媒活性の点から塩化白金酸、白金-オレフィン錯体、白金-ビニルシロキサン錯体等が好ましい。また、これらの触媒は単独で使用してもよく、2種以上併用してもよい。 
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ硬化性樹脂組成物のコストを比較的低く抑えるため好ましい添加量の下限は、(B)成分のSiH基1モルに対して10-8モル、より好ましくは10-6モルであり、好ましい添加量の上限は(β)成分のSiH基1モルに対して10-1モル、より好ましくは10-2モルである。 
また、上記触媒には助触媒を併用することが可能であり、例としてトリフェニルホスフィン等のリン系化合物、ジメチルマレート等の1,2-ジエステル系化合物、2-ヒドロキシ-2-メチル-1-ブチン等のアセチレンアルコール系化合物、単体の硫黄等の硫黄系化合物、トリエチルアミン等のアミン系化合物等が挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対しての好ましい添加量の下限は、10-2モル、より好ましくは10-1モルであり、好ましい添加量の上限は10モル、より好ましくは10モルである。 
((D)成分)
本発明の(D)成分は、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物である。(D)成分を用いることにより(E)成分の無機充填材と混合した場合に、より小さな線膨張係数を有する硬化物を与える硬化性樹脂組成物とすることができる。
(D)成分のシリコーン化合物は、実質的にその骨格がSi-O-Si結合で形成されている化合物であり、直鎖状、環状、分枝状、部分ネットワークを有するもの等種々のものが用いられる。
この場合、骨格に結合した置換基としては、メチル基、エチル基、プロピル基、オクチル基等のアルキル基、フェニル基、2-フェニルエチル基、2-フェニルプロピル基等のアリール基、メトキシ基、エトキシ基、イソプロポキシ基等のアルコキシ基、水酸基等の基を挙げることができる。これらのうち、耐熱性が高くなりやすいという点においては、メチル基、フェニル基、水酸基、メトキシ基が好ましく、メチル基、フェニル基がより好ましい。また、SiH基と反応性を有する炭素-炭素二重結合を有する置換基としては、ビニル基、アリル基、アクリロキシ基、メタクリロキシ基、アクリロキシプロピル基、メタクリロキシプロピル基等を挙げることができるが、これらのうち反応性がよいという点においては、ビニル基が好ましい。
(D)成分の例としては次の式で表すことができるものであってもよい。 
n(CH2=CH)mSiO(4-n-m)/2
(式中、Rは水酸基、メチル基あるいはフェニル基から選ばれる基であり、n、mは0≦n<4、0<m≦4、0<n+m≦4を満たす数)
(D)成分の例としては、末端基あるいは側鎖基としてビニル基を有するポリジメチルシロキサン、ポリジフェニルシロキサン、ポリメチルフェニルシロキサンやこれら2種あるいは3種のランダムあるいはブロック共重合体、1,3-ジビニルテトラメチルジシロキサン、1,3,5,7-テトラビニルシクロテトラシロキサンなどを挙げることができる。(D)成分としては複数のものを混合して用いてもよい。
これらの内、本発明の効果がより得られやすいという点においては、ビニル基を末端に有する直鎖状ポリシロキサンが好ましく、ビニル基を両末端に有する直鎖状ポリシロキサンがより好ましく、両末端にビニル基を有する直鎖状ポリメチルフェニルシロキサンがさらに好ましく、両末端にビニル基を有する直鎖状ポリメチルフェニルシロキサンであって、全置換基に対するフェニル基の量が20モル%以上であるシロキサンであることが特に好ましい。
(D)成分の分子量としては、重量平均分子量(Mw)が1,000以上であることが好ましく、5,000以上であることがより好ましく、10,000以上であることがさらに好ましい。分子量が高い場合にはさらに得られる硬化物が低応力となりやすい。また、(D)成分の分子量としては1,000,000以下であることが好ましく、100,000以下であることがより好ましい。分子量が大きい場合には(A)成分との相溶性が得られにくくなる。
(D)成分の量としては、(A)成分および(B)成分の合計の重量に対する(D)成分の重量が30重量%以上であることが好ましく、50重量%以上であることがより好ましく、80重量%以上であることがさらに好ましい。 
(A)成分、(B)成分、(D)成分の混合比率は、必要な強度を失わない限りは特に限定されないが、(B)成分中のSiH基の数(Y)の(A)成分および(D)成分中のSiH基と反応性を有する炭素-炭素二重結合の数(X)に対する比において、好ましい範囲の下限はY/X≧0.3、より好ましくはY/X≧0.5、さらに好ましくはY/X≧0.7であり、好ましい範囲の上限は3≧Y/X、より好ましくは2≧Y/X、さらに好ましくは1.5≧Y/Xである。好ましい範囲からはずれた場合には十分な強度が得られなかったり、熱劣化しやすくなる場合がある。 
(E)成分は無機充填材である。
(E)成分は、得られる硬化物の強度や硬度を高くしたり、線膨張率を低減化したりする効果を有する。
(E)成分の無機充填材としては各種のものが用いられるが、例えば、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系無機充填材、アルミナ、ジルコン、酸化チタン、酸化亜鉛、窒化ケイ素、窒化ホウ素、窒化アルミ、炭化ケイ素、ガラス繊維、アルミナ繊維、炭素繊維、マイカ、黒鉛、カーボンブラック、グラファイト、ケイソウ土、白土、クレー、タルク、水酸化アルミニウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、チタン酸バリウム、チタン酸カリウム、ケイ酸カルシウム、無機バルーン、銀粉等の無機充填材をはじめとして、エポキシ系等の従来の封止材の充填材として一般に使用あるいは/および提案されている無機充填材等を挙げることができる。無機充填材としては、半導体素子へダメージを与え難いという観点からは、低放射線性であることが好ましい。 
無機充填材は適宜表面処理してもよい。表面処理としては、アルキル化処理、トリメチルシリル化処理、シリコーン処理、カップリング剤による処理等が挙げられる。 
この場合のカップリング剤の例としては、シランカップリング剤が挙げられる。シランカップリング剤としては、分子中に有機基と反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。有機基と反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。 
好ましいシランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するアルコキシシラン類:3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が例示できる。 
その他にも無機充填材を添加する方法が挙げられる。例えばアルコキシシラン、アシロキシシラン、ハロゲン化シラン等の加水分解性シランモノマーあるいはオリゴマーや、チタン、アルミニウム等の金属のアルコキシド、アシロキシド、ハロゲン化物等を、本発明の硬化性樹脂組成物に添加して、硬化性樹脂組成物中あるいは硬化性樹脂組成物の部分反応物中で反応させ、硬化性樹脂組成物中で無機充填材を生成させる方法も挙げることができる。 
以上のような無機充填材のうち硬化反応を阻害し難く、線膨張係数の低減化効果が大きく、リードフレームとの接着性が高くなりやすいという観点からは、シリカ系無機充填材が好ましい。さらに、成形性、電気特性等の物性バランスがよいという点において溶融シリカが好ましく、パッケージの熱伝導性が高くなり易く放熱性の高いパッケージ設計が可能になるという点においては結晶性シリカが好ましい。より放熱性が高くなり易いという点ではアルミナが好ましい。また、パッケージ樹脂の光の反射率が高く、得られる発光ダイオードの光取りだし効率が高くなりやすいという点においては、酸化チタンが好ましい。その他、補強効果が高くパッケージの強度が高くなり易いという点においてはガラス繊維、チタン酸カリウム、ケイ酸カルシウムが好ましい。 
無機充填材の平均粒径や粒径分布としては、エポキシ系等の従来の封止材の充填材として使用あるいは/および提案されているものをはじめ、特に限定なく各種のものが用いられるが、通常用いられる平均粒径の下限は0.1μm、流動性が良好になりやすいという点から好ましくは0.5μmであり、通常用いられる平均粒径の上限は120μm、流動性が良好になりやすいという点から好ましくは60μm、より好ましくは15μmである。
無機充填材の比表面積についても、エポキシ系等の従来の封止材の充填材として使用あるいは/および提案されているものをはじめ、各種設定できる。
無機充填材の形状としては、破砕状、片状、球状、棒状等、各種のものが用いられる。アスペクト比も種々のものが用いられる。得られる硬化物の強度が高くなりやすいという点においてはアスペクト比が10以上のものが好ましい。また、樹脂の等方性収縮の点からは繊維状よりは粉末状が好ましい。あるいは、高充填時にも成形時の流れ性がよくなり易いという点においては球状のものが好ましい。
これら無機充填材は単独で使用してもよく、2種以上併用してもよい。 
(E)成分の量は特に限定されないが、硬化性樹脂組成物全体に占める(E)成分の合計の量が70重量%以上であることが好ましく、80重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。(E)成分の量が少ないと、強度や硬度を高くしたり、線膨張率を低減化するという効果が得られにくくなる。 
(E)成分の無機充填材の混合の順序としては、各種方法をとることができるが、硬化性樹脂組成物の中間原料の貯蔵安定性が良好になりやすいという点においては、(A)成分に(C)成分および無機充填材を混合したものと、(B)成分を混合する方法が好ましい。(B)成分に(C)成分および/または無機充填材を混合したものに(A)成分を混合する方法をとる場合は、(C)成分存在下および/または非存在下において(B)成分が環境中の水分および/または無機充填材との反応性を有するため、貯蔵中等に変質することもある。また、反応成分である(A)成分、(B)成分、(C)成分がよく混合され安定した成形物が得られやすいという点においては、(A)成分、(B)成分、(C)成分を混合したものと無機充填材とを混合することが好ましい。 
(E)成分の無機充填材を混合する手段としては、従来エポキシ樹脂等に用いられおよび/または提案されている種々の手段を用いることができる。例えば、2本ロールまたは3本ロール、遊星式撹拌脱泡装置、ホモジナイザー、ディゾルバー、プラネタリーミキサー等の撹拌機、プラストミル等の溶融混練機等が挙げられる。これらのうち、高充填であっても無機充填材の十分な分散性が得られやすいという点においては、3本ロール、溶融混練機が好ましい。無機充填材の混合は、常温で行ってもよいし加熱して行ってもよい。また、常圧下に行ってもよいし減圧状態で行ってもよい。高充填であっても無機充填材の十分な分散性が得られやすいという点においては、加熱状態で混合することが好ましく、無機充填材表面の塗れ性を向上し十分な分散性が得られやすいという点においては減圧状態で混合することが好ましい。 
((F)成分)
本発明の硬化性樹脂組成物は、白色顔料((F)成分)を含有することが望ましい。
(F)成分は白色顔料であり、得られる硬化物の光線反射率を高める効果を有する。
(F)成分としては種々のものを用いることができ、例えば、酸化チタン、酸化亜鉛、酸化マグネシウム、酸化アンチモン、酸化ジルコニア、酸化ストロンチウム、酸化ニオブ、窒化ホウ素、チタン酸バリウム、硫化亜鉛、硫酸バリウム、炭酸マグネシウム、中空ガラス粒子、などが挙げられる。中でも、取り扱いの容易性や入手性、コストの観点から酸化チタンまたは酸化亜鉛が好ましい。
(F)成分の酸化チタンとしては種々のものを用いることができ、アナターゼ型であってもルチル型であってもよいが、光触媒作用がなく硬化性樹脂組成物が安定になりやすいという点ではルチル型であることが好ましい。
(F)成分の平均粒径としても種々のものが用いられるが、得られる硬化物の光線反射率が高くなりやすく、また硬化性樹脂組成物タブレットがより硬くなるという観点から、1.0μm以下のものが好ましく、0.30μm以下のものがより好ましく、0.25μm以下のものが最も好ましい。
一方、硬化性樹脂組成物の流動性が高いという点では、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましい。
平均粒径は、レーザー回折散乱式粒度分布計を用いて測定することができる。
(F)成分の酸化チタンの製造方法としても硫酸法、塩素法などいずれの方法により製造されたものも使用できる。
(F)成分は表面処理が施されていても良い。
(F)成分の表面処理では、(F)成分の表面に無機化合物、有機化合物から選ばれる少なくとも1種を被覆する。無機化合物としては、例えば、アルミニウム化合物、ケイ素化合物、ジルコニウム化合物、スズ化合物、チタニウム化合物、アンチモン化合物等が挙げられ、また、有機化合物としては、多価アルコール、アルカノールアミン又はその誘導体、有機シロキサン等の有機ケイ素化合物、高級脂肪酸又はその金属塩、有機金属化合物等が挙げられる。
(F)成分の表面に無機化合物や有機化合物を被覆する場合は、湿式法や乾式法の公知の方法を用いて、例えば酸化チタンの乾式粉砕の際、スラリー化した際あるいは湿式粉砕した際に行うことができる。他にも、液相法、気相法等、種々の方法が挙げられる。
これらのなかでは、得られる硬化物の光線反射率が高く、耐熱耐光性が良好になることから有機シロキサン処理で処理されていることが好ましい。また、有機シロキサン処理された酸化チタンを含有させることは、光取り出し効率が高く、長期間使用しても光取り出し効率が低下しない優良な発光ダイオードを作製するうえでも好適である。
その場合の有機シロキサン処理剤としては種々のものが適用される。例えば、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリメチルハイドロジェンシロキサン、あるいはそれらの共重合体などのポリシロキサン類、ヘキサメチルシクロトリシロキサン、ヘプタメチルシクロテトラシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、などのシクロシロキサン類、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシランなどのクロロシラン類、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するシラン類、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するシラン類、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリアセトキシシラン等のビニル基を有するシラン類、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のメルカプトシラン類、γ-アミノプロピルトリエトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン等のアミノ基を有するシラン類、イソシアネートプロピルトリメトキシシラン、イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン等のアルキル基を有するシラン類、γ-クロロプロピルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン等のその他のシラン類等の各種シラン類で例示されるシランカップリング剤や、ヘキサメチルジシロキサン、ヘキサメチルジシラザンなどを挙げることができる。これらの表面処理剤としては炭素-炭素二重結合を含まないものであることが好ましく、炭素-炭素二重結合を含むと耐熱性が低下しやすくなる。また、有機シロキサン以外の表面処理を併用することも可能であり、Al、Zr、Zn等で処理することもできる。
また、無機化合物により表面処理されていてもよい。
無機化合物による表面処理について特に限定されず、アルミニウム化合物、ケイ素化合物、ジルコニウム化合物、等種々の表面処理が用いられる。酸化チタンは、耐久性向上、媒体との親和性向上のため、あるいは、粒子形状の崩れを防止するなどの目的で無機化合物、有機化合物で表面処理する場合があるが、(F)成分を無機化合物で表面処理することで、硬化性樹脂組成物に含まれる成分との親和性が向上し、(F)成分の硬化性樹脂組成物に対する分散性が良くなり硬化物の強度が向上すると考えられる。
表面処理の方法としても各種方法を適用することができ、湿式法、乾式法、液相法、気相法等、種々の方法が例示できる。
(F)成分の量としては、特に限定されないが、硬化性樹脂組成物全体に占める(F)成分の量が10重量%以上であることが好ましく、15重量%以上であることがより好ましく、20重量%以上であることがさらに好ましい。10重量%未満であると、得られる硬化物の光線反射率が低下することがある。
((E)成分および(F)成分)
(E)成分および(F)成分の合計量は特に限定されないが、硬化性樹脂組成物全体に占める(E)成分および(F)成分の合計の量が85重量%以上であることが好ましく、90重量%以上であることがより好ましい。
(E)成分および(F)成分の合計量が少ないと、強度や硬度を高くしたり、線膨張率を低減化するという効果が得られにくくなる。
(F)成分の混合の順序としては、各種方法をとることができるが、好ましい態様は、既に説明した(E)と同様である。また、(F)成分と(E)成分とは同時に添加してもよい。
(F)成分を混合する手段としては、(E)成分を混合する手段と同様の手段を用いることかできる。
((G)成分)
本発明の硬化性樹脂組成物は、金属石鹸((G)成分)を含有することが望ましい。
(G)成分は、硬化性樹脂組成物の離型性をはじめとする成型性を改良するために添加される。
(G)成分としては、従来使用されている各種金属石鹸があげられる。ここでいう金属石鹸とは、一般に長鎖脂肪酸と金属イオンが結合したものであり、脂肪酸に基づく無極性あるいは低極性の部分と、金属との結合部分に基づく極性の部分を一分子中に併せて持っていれば使用できる。長鎖脂肪酸としては、例えば炭素数1~18の飽和脂肪酸、炭素数3~18の不飽和脂肪酸、脂肪族ジカルボン酸などが挙げられる。これらの中では、入手性が容易であり工業的実現性が高いという点からは炭素数1~18の飽和脂肪酸が好ましく、さらに、離型性の効果が高いという点からは炭素数6~18の飽和脂肪酸がより好ましい。金属イオンとしては、アルカリ金属、アルカリ土類金属の他に亜鉛、コバルト、アルミニウム、ストロンチウム等が挙げられる。金属石鹸をより具体的に例示すれば、ステアリン酸リチウム、12-ヒドロキシステアリン酸リチウム、ラウリン酸リチウム、オレイン酸リチウム、2-エチルヘキサン酸リチウム、ステアリン酸ナトリウム、12-ヒドロキシステアリン酸ナトリウム、ラウリン酸ナトリウム、オレイン酸ナトリウム、2-エチルヘキサン酸ナトリウム、ステアリン酸カリウム、12-ヒドロキシステアリン酸カリウム、ラウリン酸カリウム、オレイン酸カリウム、2-エチルヘキサン酸カリウム、ステアリン酸マグネシウム、12-ヒドロキシステアリン酸マグネシウム、ラウリン酸マグネシウム、オレイン酸マグネシウム、2-エチルヘキサン酸マグネシウム、ステアリン酸カルシウム、12-ヒドロキシステアリン酸カルシウム、ラウリン酸カルシウム、オレイン酸カルシウム、2-エチルヘキサン酸カルシウム、ステアリン酸バリウム、12-ヒドロキシステアリン酸バリウム、ラウリン酸バリウム、ステアリン酸亜鉛、12-ヒドロキシステアリン酸亜鉛、ラウリン酸亜鉛、オレイン酸亜鉛、2-エチルヘキサン酸亜鉛、ステアリン酸鉛、12-ヒドロキシステアリン酸鉛、ステアリン酸コバルト、ステアリン酸アルミニウム、オレイン酸マンガン、リシノール酸バリウム、などが例示される。これらの金属石鹸の中では、入手性が容易であり、安全性が高く工業的実現性が高いという点からステアリン酸金属塩類が好ましく、特に経済性の点から、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛からなる群から選択される1つ以上のものが最も好ましい。
この金属石鹸の添加量としては特に制限はないが、好ましい量の下限は硬化性樹脂組成物全体100重量部に対して0.01重量部、より好ましくは0.025重量部、さらに好ましくは0.05重量部であり、好ましい量の上限は硬化性樹脂組成物全体100重量部に対して5重量部、より好ましくは4重量部である。添加量が多すぎる場合は硬化物の物性の低下をきたし、少なすぎると金型離型性が得られないことがある。
(添加剤)
本発明の硬化性樹脂組成物には種々の添加剤を添加することができる。
(硬化遅延剤)
本発明の硬化性樹脂組成物の保存安定性を改良する目的、あるいは製造過程でのヒドロシリル化反応の反応性を調整する目的で、硬化遅延剤を使用することができる。硬化遅延剤としては、脂肪族不飽和結合を含有する化合物、有機リン化合物、有機イオウ化合物、窒素含有化合物、スズ系化合物、有機過酸化物等が挙げられ、これらを併用してもかまわない。 
脂肪族不飽和結合を含有する化合物としては、3-ヒドロキシ-3-メチル-1-ブチン、3-ヒドロキシ-3-フェニル-1-ブチン、1-エチニル-1-シクロヘキサノール等のプロパギルアルコール類、エン-イン化合物類、ジメチルマレート等のマレイン酸エステル類等が例示される。有機リン化合物としては、トリオルガノフォスフィン類、ジオルガノフォスフィン類、オルガノフォスフォン類、トリオルガノフォスファイト類等が例示される。有機イオウ化合物としては、オルガノメルカプタン類、ジオルガノスルフィド類、硫化水素、ベンゾチアゾール、チアゾール、ベンゾチアゾールジサルファイド等が例示される。窒素含有化合物としては、アンモニア、1~3級アルキルアミン類、アリールアミン類、尿素、ヒドラジン等が例示される。スズ系化合物としては、ハロゲン化第一スズ2水和物、カルボン酸第一スズ等が例示される。有機過酸化物としては、ジ-tert-ブチルペルオキシド、ジクミルペルオキシド、ベンゾイルペルオキシド、過安息香酸t-ブチル等が例示される。 
これらの硬化遅延剤のうち、遅延活性が良好で原料入手性がよいという観点からは、ベンゾチアゾール、チアゾール、ジメチルマレート、3-ヒドロキシ-3-メチル-1-ブチン、1-エチニル-1-シクロヘキサノールが好ましい。 
硬化遅延剤の添加量は種々設定できるが、使用するヒドロシリル化触媒1molに対する好ましい添加量の下限は10-1モル、より好ましくは1モルであり、好ましい添加量の上限は10モル、より好ましくは50モルである。
また、これらの硬化遅延剤は単独で使用してもよく、2種以上併用してもよい。 
(接着性改良剤)
本発明の硬化性樹脂組成物には、接着性改良剤を添加することもできる。接着性改良剤としては一般に用いられている接着剤の他、例えば種々のカップリング剤、エポキシ化合物、フェノール樹脂、クマロン-インデン樹脂、ロジンエステル樹脂、テルペン-フェノール樹脂、α-メチルスチレン-ビニルトルエン共重合体、ポリエチルメチルスチレン、芳香族ポリイソシアネート等を挙げることができる。 
カップリング剤としては例えばシランカップリング剤、チタネート系カップリング剤等が挙げられる。 
カップリング剤の例や好ましい例は、上記したものと同じである。 
カップリング剤の添加量としては種々設定できるが、[(A)成分+(B)成分]100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは0.5重量部であり、好ましい添加量の上限は50重量部、より好ましくは25重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。
エポキシ化合物としては、例えば、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2’-ビス(4-グリシジルオキシシクロヘキシル)プロパン、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキサイド、2-(3,4-エポキシシクロヘキシル)-5,5-スピロ-(3,4-エポキシシクロヘキサン)-1,3-ジオキサン、ビス(3,4-エポキシシクロヘキシル)アジペート、1,2-シクロプロパンジカルボン酸ビスグリシジルエステル、トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート等を挙げることができる。 
エポキシ化合物の添加量としては種々設定できるが、[(A)成分+(B)成分]100重量部に対しての好ましい添加量の下限は1重量部、より好ましくは3重量部であり、好ましい添加量の上限は50重量部、より好ましくは25重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。 
また、これらのカップリング剤、シランカップリング剤、エポキシ化合物等は単独で使用してもよく、2種以上併用してもよい。 
また、本発明においてはカップリング剤やエポキシ化合物の効果を高めるために、さらにシラノール縮合触媒を用いることができ、接着性の向上および/あるいは安定化が可能である。このようなシラノール縮合触媒としては特に限定されないが、ほう素系化合物あるいは/およびアルミニウム系化合物あるいは/およびチタン系化合物が好ましい。シラノール縮合触媒となるアルミニウム系化合物としては、アルミニウムトリイソプロポキシド、sec-ブトキシアルミニウムジイソフロポキシド、アルミニウムトリsec-ブトキシド等のアルミニウムアルコキシド類:、エチルアセトアセテートアルミニウムジイソプロポキシド、アルミニウムトリス(エチルアセトアセテート)、アルミキレートM(川研ファインケミカル製、アルキルアセトアセテートアルミニウムジイソプロポキシド)、アルミニウムトリス(アセチルアセトネート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)等のアルミニウムキレート類等が例示でき、取扱い性の点からアルミニウムキレート類がより好ましい。シラノール縮合触媒となるチタン系化合物としては、テトライソプロポキシチタン、テトラブトキシチタン等のテトラアルコキシチタン類:チタンテトラアセチルアセトナート等のチタンキレート類:オキシ酢酸やエチレングリコール等の残基を有する一般的なチタネートカップリング剤が例示できる。 
シラノール縮合触媒となるほう素系化合物としては、ほう酸エステルが挙げられる。ほう酸エステルとしては下記一般式(VII)、(VIII)で示されるものを好適に用いることが出来る。 
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
(式中R1は炭素数1~48の有機基を表す。)
ほう酸エステルの具体例として、ほう酸トリ-2-エチルヘキシル、ほう酸ノルマルトリオクタデシル、ほう酸トリノルマルオクチル、ほう酸トリフェニル、トリメチレンボレート、トリス(トリメチルシリル)ボレート、ほう酸トリノルマルブチル、ほう酸トリ-sec-ブチル、ほう酸トリ-tert-ブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピル、ほう酸トリアリル、ほう酸トリエチル、ほう酸トリメチル、ほう素メトキシエトキサイドを好適に用いることができる。
これらほう酸エステルは1種類のみを用いてもよく、2種類以上を混合して用いても良い。混合は事前に行っても良く、また硬化物作成時に混合しても良い。
これらほう酸エステルのうち、容易に入手でき工業的実用性が高いという点からは、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリノルマルブチルが好ましく、なかでもほう酸トリメチルがより好ましい。 
硬化時の揮発性を抑制できるという点からは、ほう酸ノルマルトリオクタデシル、ほう酸トリノルマルオクチル、ほう酸トリフェニル、トリメチレンボレート、トリス(トリメチルシリル)ボレート、ほう酸トリノルマルブチル、ほう酸トリ-sec-ブチル、ほう酸トリ-tert-ブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピル、ほう酸トリアリル、ほう素メトキシエトキサイドが好ましく、なかでもほう酸ノルマルトリオクタデシル、ほう酸トリ-tert-ブチル、ほう酸トリフェニル、ほう酸トリノルマルブチルがより好ましい。 
揮発性の抑制、および作業性がよいという点からは、ほう酸トリノルマルブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピルが好ましく、なかでもほう酸トリノルマルブチルがより好ましい。 
高温下での着色性が低いという点からは、ほう酸トリメチル、ほう酸トリエチルが好ましく、なかでもほう酸トリメチルがより好ましい。 
シラノール縮合触媒を用いる場合の使用量は種々設定できるが、カップリング剤あるいは/およびエポキシ化合物エポキシ化合物100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは1重量部であり、好ましい添加量の上限は50重量部、より好ましくは30重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。 
また、これらのシラノール縮合触媒は単独で使用してもよく、2種以上併用してもよい。
また、本発明においては接着性改良効果をさらに高めるために、さらにシラノール源化合物を用いることができ、接着性の向上および/あるいは安定化が可能である。このようなシラノール源としては、例えばトリフェニルシラノール、ジフェニルジヒドロキシシラン等のシラノール化合物、ジフェニルジメトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン等のアルコキシシラン類等を挙げることができる。 
シラノール源化合物を用いる場合の使用量は種々設定できるが、カップリング剤あるいは/およびエポキシ化合物エポキシ化合物100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは1重量部であり、好ましい添加量の上限は50重量部、より好ましくは30重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。 
また、これらのシラノール源化合物は単独で使用してもよく、2種以上併用してもよい。
本発明においてはカップリング剤やエポキシ化合物の効果を高めるために、カルボン酸類あるいは/および酸無水物類を用いることができ、接着性の向上および/あるいは安定化が可能である。このようなカルボン酸類、酸無水物類としては特に限定されないが、 
Figure JPOXMLDOC01-appb-C000045
、2-エチルヘキサン酸、シクロヘキサンカルボン酸、シクロヘキサンジカルボン酸、メチルシクロヘキサンジカルボン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、メチルハイミック酸、ノルボルネンジカルボン酸、水素化メチルナジック酸、マレイン酸、アセチレンジカルボン酸、乳酸、リンゴ酸、クエン酸、酒石酸、安息香酸、ヒドロキシ安息香酸、桂皮酸、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンカルボン酸、ナフタレンジカルボン酸、およびそれらの単独あるいは複合酸無水物が挙げられる。 
これらのカルボン酸類あるいは/および酸無水物類のうち、ヒドロシリル化反応性を有し硬化物からの染み出しの可能性が少なく得られる硬化物の物性を損ない難いという点においては、SiH基と反応性を有する炭素-炭素二重結合を含有するものが好ましい。好ましいカルボン酸類あるいは/および酸無水物類としては、例えば、 
Figure JPOXMLDOC01-appb-C000046
、テトラヒドロフタル酸、メチルテトラヒドロフタル酸およびそれらの単独あるいは複合酸無水物等が挙げられる。 
カルボン酸類あるいは/および酸無水物類を用いる場合の使用量は種々設定できるが、カップリング剤あるいは/およびエポキシ化合物エポキシ化合物100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは1重量部であり、好ましい添加量の上限は50重量部、より好ましくは10重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。 
また、これらのカルボン酸類あるいは/および酸無水物類は単独で使用してもよく、2種以上併用してもよい。 
本発明の硬化性樹脂組成物には、上記のシラン化合物を使用することができる。シラン化合物は、リードとの密着性向上に寄与し、パッケージとリードの界面からの水分の浸入の防止に効果的である。これを例示すると、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン等が挙げられ、中でも特にジメチルジメトキシシランが好ましい。 
(熱硬化性樹脂の硬化物)
熱硬化樹脂は樹脂を硬化させたものを、粉砕して粒子状態で混合してもよい。熱硬化性樹脂を分散させて用いる場合は、平均粒子径は種々設定できるが、好ましい平均粒子径の下限は10nmであり、好ましい平均粒子径の上限は10μmである。粒子系の分布はあってもよく、単一分散であっても複数のピーク粒径を持っていてもよいが、硬化性樹脂組成物の粘度が低く成形性が良好となりやすいという観点からは粒子径の変動係数が10%以下であることが好ましい。 
(熱可塑性樹脂)
本発明の硬化性樹脂組成物には特性を改質する等の目的で、種々の熱可塑性樹脂を添加することも可能である。熱可塑性樹脂としては種々のものを用いることができるが、例えば、メチルメタクリレートの単独重合体あるいはメチルメタクリレートと他モノマーとのランダム、ブロック、あるいはグラフト重合体等のポリメチルメタクリレート系樹脂(例えば日立化成社製オプトレッツ等)、ブチルアクリレートの単独重合体あるいはブチルアクリレートと他モノマーとのランダム、ブロック、あるいはグラフト重合体等のポリブチルアクリレート系樹脂等に代表されるアクリル系樹脂、ビスフェノールA、3,3,5-トリメチルシクロヘキシリデンビスフェノール等をモノマー構造として含有するポリカーボネート樹脂等のポリカーボネート系樹脂(例えば帝人社製APEC等)、ノルボルネン誘導体、ビニルモノマー等を単独あるいは共重合した樹脂、ノルボルネン誘導体を開環メタセシス重合させた樹脂、あるいはその水素添加物等のシクロオレフィン系樹脂(例えば、三井化学社製APEL、日本ゼオン社製ZEONOR、ZEONEX、JSR社製ARTON等)、エチレンとマレイミドの共重合体等のオレフィン-マレイミド系樹脂(例えば東ソー社製TI-PAS等)、ビスフェノールA、ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン等のビスフェノール類やジエチレングリコール等のジオール類とテレフタル酸、イソフタル酸、等のフタル酸類や脂肪族ジカルボン酸類を重縮合させたポリエステル等のポリエステル系樹脂(例えば鐘紡社製O-PET等)、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリビニルアセタール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリアミド樹脂、シリコーン樹脂、フッ素樹脂等の他、天然ゴム、EPDMといったゴム状樹脂が例示されるがこれに限定されるものではない。 
熱可塑性樹脂としては、分子中にSiH基と反応性を有する炭素-炭素二重結合あるいは/およびSiH基を有していてもよい。得られる硬化物がより強靭となりやすいという点においては、分子中にSiH基と反応性を有する炭素-炭素二重結合あるいは/およびSiH基を平均して1分子中に1個以上有していることが好ましい。 
熱可塑性樹脂としてはその他の架橋性基を有していてもよい。この場合の架橋性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。得られる硬化物の耐熱性が高くなりやすいという点においては、架橋性基を平均して1分子中に1個以上有していることが好ましい。 
熱可塑製樹脂の分子量としては、特に限定はないが、(A)成分や(B)成分との相溶性が良好となりやすいという点においては、数平均分子量が10000以下であることが好ましく、5000以下であることがより好ましい。逆に、得られる硬化物が強靭となりやすいという点においては、数平均分子量が10000以上であることが好ましく、100000以上であることがより好ましい。分子量分布についても特に限定はないが、混合物の粘度が低くなり成形性が良好となりやすいという点においては、分子量分布が3以下であることが好ましく、2以下であることがより好ましく、1.5以下であることがさらに好ましい。
熱可塑性樹脂の配合量としては特に限定はないが、好ましい使用量の下限は硬化性樹脂組成物全体の5重量%、より好ましくは10重量%であり、好ましい使用量の上限は硬化性樹脂組成物中の50重量%、より好ましくは30重量%である。添加量が少ないと得られる硬化物が脆くなりやすいし、多いと耐熱性(高温での弾性率)が低くなりやすい。
熱可塑性樹脂としては単一のものを用いてもよいし、複数のものを組み合わせて用いてもよい。 
熱可塑性樹脂は(A)成分あるいは/および(B)成分に溶かして均一な状態として混合してもよいし、粉砕して粒子状態で混合してもよいし、溶媒に溶かして混合する等して分散状態としてもよい。得られる硬化物がより透明になりやすいという点においては、(A)成分あるいは/および(B)成分に溶かして均一な状態として混合することが好ましい。この場合も、熱可塑性樹脂を(A)成分あるいは/および(B)成分に直接溶解させてもよいし、溶媒等を用いて均一に混合してもよいし、その後溶媒を除いて均一な分散状態あるいは/および混合状態としてもよい。 
熱可塑性樹脂を分散させて用いる場合は、平均粒子径は種々設定できるが、好ましい平均粒子径の下限は10nmであり、好ましい平均粒子径の上限は10μmである。粒子系の分布はあってもよく、単一分散であっても複数のピーク粒径を持っていてもよいが、硬化性樹脂組成物の粘度が低く成形性が良好となりやすいという観点からは粒子径の変動係数が10%以下であることが好ましい。 
(老化防止剤)
本発明の硬化性樹脂組成物には老化防止剤を添加してもよい。老化防止剤としては、ヒンダートフェノール系等一般に用いられている老化防止剤の他、クエン酸やリン酸、硫黄系老化防止剤等が挙げられる。 
ヒンダートフェノール系老化防止剤としては、チバスペシャリティーケミカルズ社から入手できるイルガノックス1010をはじめとして、各種のものが用いられる。 
硫黄系老化防止剤としては、メルカプタン類、メルカプタンの塩類、スルフィドカルボン酸エステル類や、ヒンダードフェノール系スルフィド類を含むスルフィド類、ポリスルフィド類、ジチオカルボン酸塩類、チオウレア類、チオホスフェイト類、スルホニウム化合物、チオアルデヒド類、チオケトン類、メルカプタール類、メルカプトール類、モノチオ酸類、ポリチオ酸類、チオアミド類、スルホキシド類等が挙げられる。 
また、これらの老化防止剤は単独で使用してもよく、2種以上併用してもよい。 
(ラジカル禁止剤)
本発明の硬化性樹脂組成物にはラジカル禁止剤を添加してもよい。ラジカル禁止剤としては、例えば、2,6-ジ-tert-ブチル-3-メチルフェノール(BHT)、2,2’-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)、テトラキス(メチレン-3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)メタン等のフェノール系ラジカル禁止剤や、フェニル-β-ナフチルアミン、α-ナフチルアミン、N,N’-第二ブチル-p-フェニレンジアミン、フェノチアジン、N,N’-ジフェニル-p-フェニレンジアミン等のアミン系ラジカル禁止剤等が挙げられる。 
また、これらのラジカル禁止剤は単独で使用してもよく、2種以上併用してもよい。 
(紫外線吸収剤)
本発明の硬化性樹脂組成物には紫外線吸収剤を添加してもよい。紫外線吸収剤としては、例えば2(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、ビス(2,2,6,6-テトラメチル-4-ピペリジン)セバケート等が挙げられる。 
また、これらの紫外線吸収剤は単独で使用してもよく、2種以上併用してもよい。 
(溶剤)
本発明の硬化性樹脂組成物は溶剤に溶解して用いることも可能である。使用できる溶剤は特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1, 4-ジオキサン、1,3-ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、クロロホルム、塩化メチレン、1, 2-ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。 
溶媒としては、トルエン、テトラヒドロフラン、1,3-ジオキソラン、クロロホルムが好ましい。 
使用する溶媒量は適宜設定できるが、用いる硬化性樹脂組成物1gに対しての好ましい使用量の下限は0.1mLであり、好ましい使用量の上限は10mLである。使用量が少ないと、低粘度化等の溶媒を用いることの効果が得られにくく、また、使用量が多いと、材料に溶剤が残留して熱クラック等の問題となり易く、またコスト的にも不利になり工業的利用価値が低下する。
これらの、溶媒は単独で使用してもよく、2種類以上の混合溶媒として用いることもできる。 
(発光ダイオードのための添加剤)
さらに、本発明の硬化性樹脂組成物には必要に応じて、種々の発光ダイオード特性改善のための添加剤を添加してもよい。添加剤としては例えば、発光素子からの光を吸収してより長波長の蛍光を出す、セリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体等の蛍光体や、特定の波長を吸収するブルーイング剤等の着色剤、光を拡散させるための酸化チタン、酸化アルミニウム、メラミン樹脂、CTUグアナミン樹脂、ベンゾグアナミン樹脂等のような拡散材、アルミノシリケート等の金属酸化物、窒化アルミニウム、窒化ボロン等の金属窒化物等の熱伝導性充填材等を挙げることができる。 
発光ダイオード特性改善のための添加剤は均一に含有させても良いし、含有量に傾斜を付けて含有させてもよい。 
(離型剤)
本発明の硬化性樹脂組成物には成形時の離型性を改良するために種々の離型剤を添加してもよい。 
離型剤としては、既に説明した(G)成分や、ワックス類等が挙げられる。
ワックス類としては、天然ワックス、合成ワックス、酸化または非酸化のポリオレフィン、ポリエチレンワックス等が例示できる。 
尚、離型剤を添加しなくても十分な離型性が得られる場合には離型剤は用いない方がよい。
(その他添加剤)
本発明の硬化性樹脂組成物には、その他、着色剤、難燃剤、難燃助剤、界面活性剤、消泡剤、乳化剤、レベリング剤、はじき防止剤、アンチモン-ビスマス等のイオントラップ剤、チクソ性付与剤、粘着性付与剤、保存安定改良剤、オゾン劣化防止剤、光安定剤、増粘剤、可塑剤、反応性希釈剤、酸化防止剤、熱安定化剤、導電性付与剤、帯電防止剤、放射線遮断剤、核剤、リン系過酸化物分解剤、滑剤、顔料、金属不活性化剤、熱伝導性付与剤、物性調整剤等を本発明の目的および効果を損なわない範囲において添加することができる。 
(Bステージ化)
本発明の硬化性樹脂組成物は、各成分および添加剤等の配合物をそのまま用いてもよいし、加熱等により部分的に反応(Bステージ化)させてから使用してもよい。Bステージ化することにより粘度調整が可能であり、トランスファー成形性を調整することもできる。また、硬化収縮をより抑制する効果もある。 
(硬化性樹脂組成物性状)
本発明の硬化性樹脂組成物としては上記したように各種組み合わせのものが使用できるが、トランスファー成形などによる成形性が良好であるという点においては、硬化性樹脂組成物としては150℃以下の温度で流動性を有するものが好ましい。 
硬化性樹脂組成物の硬化性については、任意に設定できるが、成形サイクルが短くできるという点においては120℃におけるゲル化時間が120秒以内であることが好ましく、60秒以内であることがより好ましい。また、150℃におけるゲル化時間が60秒以内であることが好ましく、30秒以内であることがより好ましい。また、100℃におけるゲル化時間が180秒以内であることが好ましく、120秒以内であることがより好ましい。 
この場合のゲル化時間は、以下のようにして調べられる。設定温度に調整したホットプレート上に厚み50μmのアルミ箔を置き、その上に硬化性樹脂組成物100mgを置いてゲル化するまでの時間を測定してゲル化時間とする。 
硬化性樹脂組成物が使用される製造工程において、硬化性樹脂組成物中へのボイドの発生および硬化性樹脂組成物からのアウトガスによる工程上の問題が生じ難いという観点においては、硬化中の重量減少が5重量%以下であることが好ましく、3重量%以下であることがより好ましく、1%以下であることがさらに好ましい。
硬化中の重量減少は以下のように調べられる。熱重量分析装置を用いて封止剤10mgを室温から150℃まで10℃/分の昇温速度で昇温して、減少した重量の初期重量の割合として求めることができる。 
また、電子材料等として用いた場合にシリコーン汚染の問題を起こし難いという点においては、この場合の揮発成分中のSi原子の含有量が1%以下であることが好ましい。 
(硬化物性状)
耐熱性が良好であるという観点からは、硬化性樹脂組成物を硬化させて得られる硬化物のTgが100℃以上となるものが好ましく、150℃以上となるものがより好ましい。
この場合、Tgは以下のようにして調べられる。3mmx5mmx30mmの角柱状試験片を用いて引張りモード、測定周波数10Hz、歪0.1%、静/動力比1.5、昇温側度5℃/分の条件にて測定した動的粘弾性測定(アイティー計測制御社製DVA-200使用)のtanδのピーク温度をTgとする。 
また、リードフレーム等にイオンマイグレーション等の問題が生じ難く信頼性が高くなるという点においては、硬化物からの抽出イオン含有量が10ppm未満であることが好ましく、5ppm未満であることがより好ましく、1ppm未満であることがさらに好ましい。
この場合、抽出イオン含有量は以下のようにして調べられる。裁断した硬化物1gを超純水50mlとともにテフロン製容器(テフロンは登録商標)に入れて密閉し、121℃、2気圧、20時間の条件で処理する。得られた抽出液をICP質量分析法(横河アナリティカルシステムズ社製HP-4500使用)によって分析し、得られたNaおよびKの含有量の値を、用いた硬化物中の濃度に換算して求める。一方同じ抽出液をイオンクロマト法(ダイオネクス社製DX-500使用、カラム:AS12-SC)によって分析し、得られたClおよびBrの含有量の値を、用いた硬化物中の濃度に換算して求める。以上のように得られたNa、K、Cl、Brの硬化物中の含有量を合計して抽出イオン含有量とする。
硬化物の線膨張係数としては、特に制約はないが、リードフレーム等の金属やセラミック等との接着性が良好になりやすいという点においては、23℃から150℃までの平均線膨張係数が30ppm以下であることが好ましく、20ppm以下であることがより好ましく、10ppm以下であることがより好ましい。
また、本発明の硬化性樹脂組成物は、硬化後の420nm、440nm、460nmにおける分光反射率が80R%以上であり、180℃72時間の耐熱試験後の分光反射率の保持率(耐熱試験後の分光反射率/初期の分光反射率×100)が90%以上であることが望ましい。
硬化物の分光反射率は以下のように調べられる。
微小面分光色差計(日本電色工業社製VSS400)を用いて波長400nm~700nm(20nm間隔)における分光反射率を測定した。ここで各波長における測定値は、パッケージ上面の任意の4箇所(測定面積0.1mmφ)の測定値の平均値を採用した。
分光反射率は、発光ダイオードの光取りだし効率が高くなりやすいという点においては、420~700nmの波長帯域において75%以上が好ましく、80%以上であることがより好ましい。
また、耐熱試験(例えば、180℃のオーブンで72時間加熱する試験)後の分光反射率の初期の分光反射率に対する保持率を下記計算式によって求めた。
保持率(%)=(耐熱試験後の分光反射率)/(初期の分光反射率)×100
保持率は、電子材料として用いた場合に信頼性が高いといった点においては、80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがさらに好ましい。
また、本発明の硬化性樹脂組成物を硬化して得た成形体としては、表面の波長470nmの光線反射率が90%以上であることが好ましく、95%以上であることがより好ましく、97%以上であることがさらに好ましく、99%以上であることが特に好ましい。
表面の光線反射率は以下のように測定することができる。
PETフィルムを離型フィルムとして用い、所定の温度条件でプレス成形にてボイドのない0.5mm厚の成形体を作成する。得られた成形体に必要に応じて所定の後硬化を実施する。得られた成形体について積分球を設置した分光光度計を用いて470nmの全反射を測定することにより求めることができる。
(硬化性樹脂組成物タブレット)
本発明の硬化性樹脂組成物は、(A)~(E)成分に加えて、少なくとも(F)成分を含有する場合は、硬化性樹脂組成物タブレットとすることができる。
具体的には、硬化性樹脂組成物タブレットは、少なくとも一方が23℃における粘度が50Pa秒以下の液体である(A)成分および(B)成分、(A)成分と(B)成分を硬化させるための(C)成分、共に粉体である(E)成分および(F)成分、更には、(D)成分を含有することを特徴とする。
この硬化性樹脂組成物タブレットは、高温で(A)成分および(B)成分が粘度低下することによって硬化性樹脂組成物全体が流動可能となり、さらに加熱を続けると硬化反応が進行して所望の形状に成形することが可能である。
成形方法としては、特に限定されず、硬化性樹脂組成物の成形に一般的であるトランスファー成形や圧縮成形などの成形方法を用いることができる。これらの成形方法を用いる場合、原料である硬化性樹脂組成物がペースト状や粘土状であると、一定した形状を保持できず、互着や一体化、変形したりするため、計量や搬送、成形機への供給が非常に困難となる。一方、タブレット形状であると、計量や搬送、成形機への供給が容易となり、自動化も可能となって生産性が大幅に向上する。ここで言うタブレットとは、室温において一定した形状を保持し、経時的な形状の変化が実質的になく、また互いに接触させたときに互着や一体化することのない固体のことを意味する。
本発明のタブレットの形状は、特に限定されず、円柱状、角柱状、円盤状、球状などの形状を含むが、トランスファー成形に一般的な円柱状が好ましい。
本発明の硬化性樹脂組成物タブレットに占める(E)成分および(F)成分の合計の割合(以下、充填率と言うことがある)としては、70~95重量%であることが好ましい。充填率における(E)成分と(F)成分の配分については特に限定されず、自由に設定できる。
充填率が70重量%以下であると、得られる硬化物の熱膨張率が大きくなって成形体の寸法変化が問題となることや、得られる硬化性樹脂組成物が硬いペースト状や粘土状となりタブレット化ができなくなる問題がある。充填率が95重量%以上であると、高温での粘度が高くなりすぎて成形性が低下することや、得られるタブレットが脆くなりすぎることがある。
本発明の硬化性樹脂組成物において、(A)成分および(B)成分の少なくとも一方が常温で液体であると、充填率が低い場合には、ペースト状や粘土状となりやすい。この場合、タブレットにはならないが高温での成形性は良好となりやすい傾向がある。一方、充填率が高い場合には、流動させる成分が少ないため、フレーク状や粉状になりやすい。これらは圧縮することでタブレット状に押し固めることが可能であるが、高温での流動性に乏しく成形性が低下しやすい傾向がある。これまで、充填率を単純に増加させていくだけでは、タブレット化と成形性を両立させることが困難であった。
しかしながら本発明の硬化性樹脂組成物では、(E)成分および(F)成分を合計した粉体のうち、12μm以下の粒子の占める割合を40体積%以上とすることで、タブレット化と成形性を両立できることを見出した。
この理由としては推測ではあるが次のように考えられる。液体と粒子の混合系において、液体成分は粒子の表面を被覆していると考えられ、全ての粒子を被覆した余分の液体成分が変形に寄与していると思われる。そのため、充填率が同じであっても、小粒子の割合が多いほど総表面積が大きくなって被覆に費やされる液体成分が増加し、変形しにくくなっていると考えられる。液体の粘度は高温になると顕著に低下するため、高温では小粒子の割合に対する流動性の変化が小さいが、低温では粘度が高いために、小粒子が多いとペースト状や粘土状のように流動することができずにフレーク状や粉状になることが考えられる。
言い換えると、粒子中の小粒子の割合を増やすことで、硬化性樹脂組成物の高温での流動性を維持したまま、常温での状態を固くすることができることになる。このことは、常温で固体のエポキシ樹脂やシリコーン系樹脂を用いた文献(特開2008-112977号公報や、特開2009-155415号公報)、また、粒子の粒度分布まで言及せず平均粒径のみを記載している特許文献3からは想到できない。
(半導体のパッケージ)
本発明で言う半導体のパッケージとは、半導体素子あるいは/および外部取出し電極等を支持固定あるいは/および保護するために設けられた部材である。半導体素子を直接被覆せず、外部取り出し電極等を支持固定するものや発光ダイオードのリフレクターのような半導体素子の周囲や底面を形成するものであってもよい。
この場合の半導体素子としては各種のものが挙げられる。例えばIC、LSI等の集積回路、トランジスター、ダイオード、発光ダイオード等の素子の他、CCD等の受光素子等を挙げることができる。 
形状についても特定されないが、半導体のパッケージが実質的に金属の片面に樹脂が成形されている形状を有する場合(MAPタイプ)において特に本発明の効果が得られやすい。
尚、上記のように本発明の半導体のパッケージが半導体素子を直接被覆しないような場合などにおいては、さらに封止剤を用いて封止することもでき、例えば従来用いられるエポキシ樹脂、シリコーン樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂等の封止樹脂を用いることができる。また、特開2002-80733、特開2002-88244で提案されているような、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個有する脂肪族系有機化合物、1分子中に少なくとも2個のSiH基を有する化合物、およびヒドロシリル化触媒を含有する硬化性樹脂組成物からなる封止剤を用いてもよく、この封止剤を用いる方が、パッケージ樹脂との接着性が高いという点、および透明性が高く本発明のパッケージの耐光性が高いという効果が顕著であるという点において、好ましい。一方、樹脂封止を用いず、ガラス等でカバーしてハーメチック封止により封止することも可能である。 
また発光ダイオードや受光素子の場合などにおいてはさらにレンズを適用することも可能であり、封止剤をレンズ形状に成形してレンズ機能を持たせることも可能である。 
(成形方法)
本発明で言う半導体パッケージの成形方法としては各種の方法が用いられる。例えば、射出成形、トランスファー成形、RIM成形、キャスティング成形、プレス成形、コンプレッション成形等、熱可塑性樹脂やエポキシ樹脂、シリコーン樹脂等の熱硬化性樹脂に一般に用いられる各種成形方法が用いられる。これらの内、成形サイクルが短く成形性が良好であるという点においてはトランスファー成形が好ましい。成形条件も任意に設定可能であり、例えば成形温度についても任意であるが、硬化が速く成形サイクルが短く成形性が良好になりやすいという点においては100℃以上、より好ましくは120℃以上、さらに好ましくは150℃以上の温度が好ましい。上記のような各種方法によって成形した後、必要に応じて後硬化(アフターキュア)することも任意である。後硬化した方が耐熱性が高くなり易い。 
成形は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。一定の温度で行うより多段階的あるいは連続的に温度を上昇させながら反応させた方が歪のない均一な硬化物が得られやすいという点において好ましい。また、一定温度で行う方が成形サイクルを短くできるという点において好ましい。 
硬化時間も種々設定できるが、高温短時間で反応させるより、比較的低温長時間で反応させた方が歪のない均一な硬化物が得られやすいという点において好ましい。逆に、高温短時間で反応させる方が成形サイクルを短くできるという点において好ましい。 
成形時の圧力も必要に応じ種々設定でき、常圧、高圧、あるいは減圧状態で成形することもできる。ボイドの発生を抑制したり、充填性をよくしたり、場合によって発生する揮発分を除きやすいという点においては、減圧状態で硬化させることが好ましい。成形体へのクラックを防止できるという点においては、加圧状態で硬化させることが好ましい。
(発光ダイオードの用途)
本発明の半導体は従来公知の各種の用途に用いることができる。具体的には、ロジック、メモリーなどのLSI、各種センサー、受発光デバイスなどをあげることができる。また、半導体が発光ダイオードの場合も従来公知の各種の用途に用いることができる。具体的には、例えば液晶表示装置等のバックライト、照明、センサー光源、車両用計器光源、信号灯、表示灯、表示装置、面状発光体の光源、ディスプレイ、装飾、各種ライト等を挙げることができる。
(反り)
本発明の硬化性樹脂組成物は、発光ダイオード用のリードフレームの片面に成形してパッケージとした場合の、パッケージの反りが±1.0mm以下であることが望ましい。
この場合の反りはJIS C 6481に記載の最大反りの測定方法に基づき測定される。半導体パッケージを一辺の中央で垂直に吊り下げ、その辺に平行に直定規を当てる。直定規は半導体パッケージの凹面に当て、直定規と半導体パッケージの基材面との最大の隔たりを金属製直尺で1.0mmの単位まで測定する。半導体パッケージの凹面に樹脂が成形されている場合は、直定規と半導体パッケージに成形された樹脂面との最大の隔たりを金属製直尺で1.0mmの単位まで測定し、その値から樹脂の厚み分を引いた値を、1.0mmの単位に四捨五入する。
他の辺についても順次測定し、最も大きな隔たりを反りとする。尚、反りの測定に用いる半導体パッケージは、実施例の(成型方法)で示した半導体パッケージを用いた。
以下に、本発明の実施例および比較例を示すが、本発明は以下によって限定されるものではない。
(合成例1)
5Lの四つ口フラスコに、攪拌装置、滴下漏斗、冷却管をセットした。このフラスコにトルエン1800g、1,3,5,7-テトラメチルシクロテトラシロキサン1440gを入れ、120℃のオイルバス中で加熱、攪拌した。トリアリルイソシアヌレート200g、トルエン200g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)1.44mlの混合液を50分かけて滴下した。得られた溶液をそのまま6時間加温、攪拌した後、未反応の1,3,5,7-テトラメチルシクロテトラシロキサン及びトルエンを減圧留去した。1H-NMRの測定によりこのものは1,3,5,7-テトラメチルシクロテトラシロキサンのSiH基の一部がトリアリルイソシアヌレートと反応した以下の構造を有するものであることがわかった。 
Figure JPOXMLDOC01-appb-C000047
(合成例2)
2Lオートクレーブにトルエン720g、1,3,5,7-テトラメチルシクロテトラシロキサン240gを入れ、気相部を窒素で置換した後、ジャケット温50℃で加熱、攪拌した。アリルグリシジルエーテル171g、トルエン171g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.049gの混合液を90分かけて滴下した。滴下終了後にジャケット温を60℃に上げて40分反応、1H-NMRでアリル基の反応率が95%以上であることを確認した。トリアリルイソシアヌレート17g、トルエン17gの混合液を滴下した後、ジャケット温を105℃に上げて、トリアリルイソシアヌレート66g、トルエン66g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.033gの混合液を30分かけて滴下した。滴下終了から4時間後に1H-NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。1,3,5,7-テトラメチルシクロテトラシロキサンの未反応率は0.8%だった。未反応の1,3,5,7-テトラメチルシクロテトラシロキサンとトルエンとアリルグリシジルエーテルの副生物(アリルグリシジルエーテルのビニル基の内転移物(シス体およびトランス体))が合計5,000ppm以下となるまで減圧留去し、無色透明の液体を得た。1H-NMRの測定によりこのものは1,3,5,7-テトラメチルシクロテトラシロキサンのSiH基の一部がアリルグリシジルエーテル及びトリアリルイソシアヌレートと反応したものであり平均的に以下の構造を有するものであることがわかった。 
Figure JPOXMLDOC01-appb-C000048
(a+b=3、c+d=3、e+f=3、a+c+e=3.5、b+d+f=5.5) 
(配合例1~4)
表1の内容に従って各成分を配合して組成物A~Dを調製した。
Figure JPOXMLDOC01-appb-T000049
(実施例1~5および比較例1)
表2の内容に従って各成分を混合して本発明の硬化性樹脂組成物とした。
(測定例1)
硬化性樹脂組成物を150℃にてプレス成形し、得られた成形体をオーブン中で150℃/1時間、180℃/0.5時間の条件で後硬化させた。このサンプルについて熱機械分析(TMA)を用いて線膨張係数を測定した。TMAの測定方法は、下記の通りである。
内寸法20×20×4.0mmの厚みに成形したタブレット状サンプルをダイヤモンドカッターで20×10×4.0mmに切断し、20mm方向についてBRUKER製 熱分析装置TMA4000SAを用いて、圧縮モードで昇温速度5℃/分にて280℃まで加熱、20分ホールド、室温まで冷却、と変化させたときの寸法変化を測定した。加熱時のチャートの傾きが変わる点をTgとし、Tg以下の線膨張係数α1、Tg以上の線膨張係数α2をそれぞれ求めた。
Figure JPOXMLDOC01-appb-T000050
表2に示されるとおり、本発明の硬化性樹脂組成物を用いれば、線膨張係数が小さいことがわかる。
実施例5で調製した硬化性樹脂組成物を銀メッキした銅リードフレームを用い、トランスファー成形により、金属の片面に樹脂が成形されている形状を有する(MAPタイプ)パッケージを得た。成形は下記の条件で行った。
成形温度:170℃
成形時間:180秒
成形圧力:7.8~13.7MPa
さらに上記成形後に、180℃で1時間のキュアを行った。
(測定例2)
上記成形により得られた硬化性樹脂組成物のパッケージおよび比較例2~6のパッケージについて、微小面分光色差計(日本電色工業社製VSS400)を用いて波長400nm~700nm(20nm間隔)における分光反射率を測定した。ここで各波長における測定値は、パッケージ上面の任意の4箇所(測定面積0.1mmφ)の測定値の平均値を採用した。また、耐熱試験(180℃のオーブンで72時間加熱する試験)後の分光反射率の初期の分光反射率に対する保持率を下記計算式によって求めた。
保持率(%)=(耐熱試験後の分光反射率)/(初期の分光反射率)×100
分光反射率の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000051
実施例5、比較例1および比較例2の初期および180℃耐熱試験後の分光反射率を図1および2に示す。
(実施例6~8、比較例7~9)
表4に、硬化性樹脂組成物の各成分の配合割合を記載した。(D)成分、(E)成分、および、(F)成分に使用した各原料は以下の通りである。
((D)成分)
PDV2331(Gelest製、両末端ビニルのジフェニルジメチルシリコーン)
((E)成分)
球状シリカ(龍森製MSR-3500、比重2.2、平均粒径36.5μm、12μm以下の粒子の割合:19%)
球状シリカ(龍森製MSR-2212-TN、比重2.2、平均粒径24.8μm、12μm以下の粒子の割合:28%)
球状シリカ(アドマテックス製アドマファインSO-C2、比重2.2、平均粒径0.5μm、12μm以下の粒子の割合:100%)
((F)成分)
酸化チタン(石原産業製タイペークPC-3、ルチル型、比重4.2、塩素法、表面有機:Al、Si、ポリメチルハイドロジェンシロキサン、平均粒径0.21μm、12μm以下の粒子の割合:100%)
Figure JPOXMLDOC01-appb-T000052
(硬化性樹脂組成物の配合)
別途作成した組成物A、B、および(D)成分の混合液に、あらかじめ混合しておいた(F)成分および(E)成分の混合粉体を少量ずつ加えて混練した。得られた硬化性樹脂組成物がペースト状の場合は、攪拌棒で混練して均一化した。粘土状の場合は、丸棒状の冶具にて押し延ばした後、折り重ねて再度押し延ばす作業を繰り返して均一化した。フレーク状や粉体状の場合は、乳鉢ですり潰して均一化した。
(タブレット化)
作製した硬化性樹脂組成物がフレーク状や粉体状の場合、金属製の杵と臼からなるタブレット製造冶具で圧縮してタブレットとした。
硬化性樹脂組成物の各成分の最終的な配合割合、および樹脂の性状を表4に示した。
(成形方法)
発光ダイオード用のリードフレームの片面に、表4に示した実施例6~8及び比較例7~9の硬化性樹脂組成物を成形してMAPタイプ(半導体のパッケージが実質的に金属の片面に樹脂が成形されている形状を有するタイプ)の発光ダイオード用パッケージを作製した。
Agメッキした縦50mm、横55mm、厚み0.25mmのCu製のリードフレームを準備する。成形後のMAPは縦15列、横12列で合計180個のリフレクターが含まれる。各リフレクターは上面φ2.1mm、底面φ1.8mm(テーパー角度:15度)、高さ0.55mmで、横方向直径に沿って右端から0.45mmのところに幅0.20mmの本発明の硬化性樹脂組成物を硬化させた白色コンパウンドからなる電極スリットが縦に設けられている。各リフレクター間の間隔は縦横直径方向ともに1.1mmである。リードフレームおよび金型は、上記の要件を満足するリードフレーム付きリフレクターが作製できれば、特に制約はない。成形品の概念図を図3に示した。
トランスファー成形は、アピックヤマダ株式会社製G-Lineマニュアルプレスを用いて実施した。型締力30ton、注入圧力8MPa、注入速度3mm/s。白色コンパウンド5.0gを計量、円柱状に賦形しシリンダー内へ装填し成形した。成形条件は、150℃5分とした。成形後、熱風オーブンにて150℃1時間+180℃30分で後硬化(アフターキュア)した。
(反り)
反りはJIS C 6481に記載の最大反りの測定方法に基づき次に述べる方法で測定した。半導体パッケージを一辺の中央で垂直に吊り下げ、その辺に平行となるように、半導体パッケージの凹面側に直定規を当て、直定規と半導体パッケージの基材面との最大の隔たりを金属製直尺で1.0mmの単位まで測定した。半導体パッケージの凹面に樹脂が成形されている場合は、直定規と半導体パッケージに成形された樹脂面との最大の隔たりを金属製直尺で1.0mmの単位まで測定し、その値から樹脂の厚み分を引いた値を、1.0mmの単位に四捨五入した。他の辺についても順次測定し、最も大きな隔たりを反りとした。測定結果を表4に示した。
実施例と比較例を比較すると、(D)成分を入れた場合、反りが1.0mm以下の半導体パッケージを得られることがわかる。
(波長470nmの光線反射率)
表4の硬化性樹脂組成物を、PETフィルムを離型フィルムとし、内寸法が80mmx50mmであり厚み0.5mmのステンレス鋼(SUS304)製の長方形型枠を用いて、150℃/5分の条件でプレス成形した。作成した長方形板状のプレス成形体をオーブン中で150℃/1時間、180℃/0.5時間の条件で後硬化させた。得られた成形体について積分球を設置した分光光度計(日本分光(株)製、紫外可視分光光度計V-560)を用いて波長470nmの光線反射率を測定した。反射率は、ラブスフェア製スペクトラロン板を標準板として測定した。測定結果を表4に示した。
(実施例9~11)
表5に、硬化性樹脂組成物の各成分の配合割合を記載した。使用した各原料は以下の通りである。
((D)成分)
PDV2331(Gelest製、両末端ビニルのジフェニルジメチルシリコーン)
((E)成分)
球状シリカ(龍森製MSR-3500、比重2.2、平均粒径36.5μm、12μm以下の粒子の割合:19%)
((F)成分)
酸化チタン(石原産業製タイペークCR-60、ルチル型、比重4.2、塩素法、表面処理:アルミニウム化合物、平均粒径0.21μm、12μm以下の粒子の割合:100%)
酸化チタン(石原産業製タイペークPC-3、ルチル型、比重4.2、塩素法、表面処理:アルミニウム化合物、ケイ素化合物、有機ケイ素化合物、平均粒径0.21μm、12μm以下の粒子の割合:100%)
酸化チタン(石原産業製タイペークPF690、ルチル型、比重4.2、塩素法、表面処理:アルミニウム化合物、ケイ素化合物、有機化合物、平均粒径0.21μm、12μm以下の粒子の割合:100%)
Figure JPOXMLDOC01-appb-T000053
最終的な(A)(B)(C)(D)(E)(F)成分の割合を表6に示した。
Figure JPOXMLDOC01-appb-T000054
(硬化性樹脂組成物の配合)
別途作成した組成物A、B、および(D)成分の混合液に、あらかじめ混合しておいた(F)成分および(E)成分の混合粉体を少量ずつ加えて混練した。得られた硬化性樹脂組成物を、丸棒状の冶具にて押し延ばした後、折り重ねて再度押し延ばす作業を繰り返して均一化した。フレーク状や粉体状の場合は、乳鉢ですり潰して均一化した。
(硬化性樹脂組成物を熱硬化した平板の作製)
表5の硬化性樹脂組成物を、PETフィルムを離型フィルムとし、内寸法が80mmx50mmであり厚み0.5mmのステンレス鋼(SUS304)製の長方形型枠を用いて、150℃/5分の条件でプレス成形した。作成した長方形板状のプレス成形体をオーブン中で150℃/1時間、180℃/0.5時間の条件で後硬化させて、平板を作製した。
(強度の測定方法)
作製された平板から、試験片を、長さ50mm以上80mm以下、幅が7mmから8mm程度で向かい合う2辺が平行となるように切り出した。図4に示すように、角が丸い直方体の金属製の支点間に、支点間に形成される形が長方形となるように試験片を設置した。試験片幅と厚さについて、支点間に入る試験片の3箇所を0.01mmまで測定し、それぞれの平均値を測定結果とした。試験片幅と厚さから面積を算出した。Stable Micro Systems社製、テクスチャーアナライザーTA.plusにて、幅10mmの角の丸いガラス製の直角三角形からなる加圧くさびで、試験片の中央に2.0mm/secの速度で荷重を加え、試験片が折れたときの荷重(最大荷重)を測定した。5回測定の値を平均して測定結果とした。最大荷重を面積で割ることで最大応力を算出した。
表6に測定結果を示す。アルミニウム化合物による表面処理をした酸化チタンを用いた場合の方が、アルミニウム化合物およびシリカ化合物による表面処理に加えて、有機ケイ素化合物あるいは有機化合物による表面処理をした酸化チタンを用いた場合よりも、最大荷重が大きいことがわかる。単にアルミニウム化合物による表面処理のみをした方が、(D)成分の酸化チタンの硬化性樹脂組成物に対する分散性が良いことが要因と考えられる。
(波長470nmの光線反射率)
作製された試験片について、積分球を設置した分光光度計(日本分光(株)製、紫外可視分光光度計V-560)を用いて波長470nmの光線反射率を測定した。反射率は、ラブスフェア製スペクトラロン板を標準板として測定した。測定結果を表6に示した。
(実施例12~18)
表7、8の内容に従って各成分を混合して本発明の硬化性樹脂組成物とした。
(測定例1)
PETフイルム(25x30x0.15mm)とポリイミドテープでマスキングした1枚のSUS304板(冷間圧延ステンレス鋼板:(株)太佑機材製;25x70x0.15mm)とL字型に加工しパンチ穴を開けたSUS304板(25x50x0.15mm)の間に、硬化性樹脂組成物0.5gを挟み、室温条件下、5MPaで10秒間プレスした。これを170℃のホットプレート上で5kg加重をかけながら5分間圧着硬化させた。得られた硬化物成形体を170℃のホットプレート上で、SUS板テストサンプルのSUS304板の一端を抑えながら、L字に曲げたSUS304板にプッシュプルゲージ(DS2-20N:IMADA)を用いて5mm/sの速度でSUS304板を剥がしたときの樹脂剥離強度を測定した。さらに、剥離面の状態を観察し、樹脂自身が破壊した状態を凝集破壊(CF)、樹脂とSUS板間できれいに剥離した場合を界面剥離(AF)と評価した。
Figure JPOXMLDOC01-appb-T000055
表7に示されるとおり、本発明の硬化性樹脂組成物を用いれば、離型性にすぐれた材料が得られる。
(MAP(Mold Array Package)状リードフレーム付リフレクターの作製)
表8に示した実施例14~18の硬化性樹脂組成物を用いて下記の方法に従いMAP状リードフレーム付リフレクターを作製した。
Agメッキした縦50mm、横55mm、厚み0.25mmのCu製のリードフレームを準備する。成形後のMAPは縦15列、横12列で合計180個のリフレクターが含まれる。各リフレクターは上面φ2.1mm、底面φ1.8mm(テーパー角度:15度)、高さ0.55mmで、横方向直径に沿って右端から0.45mmのところに幅0.20mmの本発明の硬化性樹脂組成物を硬化させた白色コンパウンドからなる電極スリットが縦に設けられている。各リフレクター間の間隔は縦横直径方向ともに1.1mmである。リードフレームおよび金型は、上記の要件を満足するリードフレーム付きリフレクターが作製できれば、特に制約はない。この成形品形状を3030MAP型とよぶ。
トランスファー成形は、アピックヤマダ株式会社製G-Lineマニュアルプレスを用いた実施した。型締力30ton、注入圧力と注入速度は表8に示す値を設定した。白色コンパウンド5.0gを計量、円柱状に賦形し、シリンダー内へ装填し、金型表面にはスプレー式フッ素系離型剤(ダイキン工業社製:ダイフリーGA-7500)を塗布して成形した。成形条件は、170℃/3分。成形後180℃/1hで後キュアした。
Figure JPOXMLDOC01-appb-T000056
表8に示されるとおり、3030MAP成形の際、ステアリン酸カルシウムを添加した系では、MAPの充填性がより優れ、反りのほとんどない良品が得られた。一方、ステアリン酸カルシウム未添加系では、充填性が悪くかつ成形体に反りが観測された。このように(G)成分の添加は、表7で例示した離型性の向上に加え、樹脂の充填性を良くし成形品の反り低減にも寄与する発見に至った。
(充填率)
充填率はコンパウンド樹脂が成形部に完全に充填された状態を100%としたときの未充填面積の割合で決定した。
(反りの判定)
MAP品の反りは成形部を上にして平滑な面に置いたとき、成形部が真横から見た状態凹になっている場合を順反り、凸になっている場合を逆反りと定義した。反りの程度はMAP品を平滑な面に置き、面から離れている4辺のうちで最も距離がある値(mm)を数値化した。
(実施例19~22)
表9に記載の成分をそれぞれ混合し本発明の硬化性樹脂組成物を得た。得られた硬化性樹脂組成物がペースト状の場合は、攪拌棒で混練して均一化した。粘土状の場合は、丸棒状の冶具にて押し延ばした後、折り重ねて再度押し延ばす作業を繰り返して均一化した。フレーク状や粉体状の場合は、乳鉢ですり潰して均一化した。
Figure JPOXMLDOC01-appb-T000057
(サンプル作成)
表9の硬化性樹脂組成物を、PETフィルムを離型フィルムとし、内寸法が80mmx50mmであり厚み0.5mmのステンレス鋼(SUS304)製の長方形型枠を用いて、170℃/3分の条件でプレス成形した。作成した長方形板状のプレス成形体をオーブン中で180℃/1時間の条件で後硬化させた。これを50mmx25mmのサイズにカットし、評価用サンプルとした。
耐久試験として、下記の方法により耐熱試験、耐光試験及び恒温恒湿試験を行った。なお、耐久試験前にサンプルの波長470nmの光線反射率を測定し、初期反射率とした。
(耐熱試験)
上記の通り作成したサンプルを、180℃に温度設定した対流式オーブン内(空気中)で20時間養生した。その後、波長470nmの光線反射率を測定した。
(耐光試験:メタリング)
スガ試験機(株)製、メタリングウェザーメーター(形式M6T)を用いた。上記の通り作成したサンプルを、ブラックパネル温度120℃、放射照度0.53kW/mで、積算放射照度50MJ/mまで照射し、その後、波長470nmの光線反射率を測定した。
(恒温恒湿試験:85℃/85%RH)
NAGANO SCIENCE社製、低温恒温恒湿器(LH43-13M)を用いた。上記の通り作成したサンプルを、温度85℃、85%RHで90時間養生した。その後、波長470nmの光線反射率を測定した。
(波長470nmの光線反射率)
耐久試験前後のサンプルについて、積分球を設置した分光光度計(日本分光(株)製、紫外可視分光光度計V-560)を用いて波長470nmの光線反射率を測定した。反射率は、ラブスフェア製スペクトラロン板を標準板として測定した。測定結果を表9に示した。

Claims (31)

  1. (A)SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物、
    (B)1分子中に少なくとも2個のSiH基を含有する化合物、
    (C)ヒドロシリル化触媒、
    (D)SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも1個含有するシリコーン化合物、
    (E)無機充填材、
    を必須成分として含有することを特徴とする硬化性樹脂組成物。
  2. (D)成分がビニル基を末端に有する直鎖状ポリシロキサンである請求項1に記載の硬化性樹脂組成物。
  3. (D)成分の重量平均分子量が1,000以上かつ1,000,000以下である請求項1または2に記載の硬化性樹脂組成物。
  4. (E)成分が球状シリカである請求項1~3のいずれか1項に記載の硬化性樹脂組成物。
  5. 更に(F)白色顔料を含有する請求項1~4のいずれか1項に記載の硬化性樹脂組成物。
  6. (F)成分の平均粒子径が1.0μm以下である請求項5に記載の硬化性樹脂組成物。
  7. (F)成分が酸化チタンである請求項5または6に記載の硬化性樹脂組成物。
  8. (F)成分が有機シロキサンにより表面処理された酸化チタンである請求項7に記載の硬化性樹脂組成物。
  9. (F)成分が無機化合物で表面処理された酸化チタンである請求項7に記載の硬化性樹脂組成物。
  10. (F)成分がアルミニウム化合物で表面処理されている請求項9に記載の硬化性樹脂組成物。
  11. (F)成分が酸化亜鉛、酸化ジルコニア、酸化ストロンチウム、酸化ニオブ、窒化ホウ素、チタン酸バリウム及び硫酸バリウムから選ばれる少なくとも一種である請求項5または6に記載の硬化性樹脂組成物。
  12. 更に、(G)金属石鹸を含有する請求項1~11のいずれか1項に記載の硬化性樹脂組成物。
  13. (G)成分がステアリン酸金属塩である請求項12に記載の硬化性樹脂組成物。
  14. (G)成分がステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウムからなる群より選択される1つ以上である請求項13に記載の硬化性樹脂組成物。
  15. (A)成分および(B)成分の合計の重量に対する(D)成分の重量が30重量%以上である請求項1~14のいずれか1項に記載の硬化性樹脂組成物。
  16. 硬化性樹脂組成物全体に占める(E)成分の合計の量が70重量%以上である請求項1~15のいずれか1項に記載の硬化性樹脂組成物。
  17. 硬化性樹脂組成物全体に占める(F)成分の含有量が10重量%以上である請求項5~16のいずれか1項に記載の硬化性樹脂組成物。
  18. 硬化性樹脂組成物全体に占める(G)成分の含有量が0.01~5重量%である請求項12~17のいずれか1項に記載の硬化性樹脂組成物。
  19. 硬化後の420nm、440nm、460nmにおける分光反射率が80R%以上であり、180℃72時間の耐熱試験後の分光反射率の保持率(耐熱試験後の分光反射率/初期の分光反射率×100)が90%以上である請求項1~18のいずれか1項に記載の硬化性樹脂組成物。
  20. 硬化させてなる成形体の表面の波長470nmの光線反射率が90%以上である請求項1~19のいずれか1項に記載の硬化性樹脂組成物。
  21. 発光ダイオード用のリードフレームの片面に成形してパッケージとした場合の、パッケージの反りが±1.0mm以下である請求項1~20のいずれか1項に記載の硬化性樹脂組成物。
  22. 半導体のパッケージに用いられる請求項1~21のいずれか1項に記載の硬化性樹脂組成物。
  23. 請求項1~22のいずれか1項に記載の硬化性樹脂組成物のうち、(F)白色顔料を必須成分として含有する硬化性樹脂組成物からなるタブレットであって、
    (A)成分および(B)成分の少なくとも一方が23℃における粘度が50Pa秒以下の液体であり、
    (E)成分と(F)成分の合計の含有量が70~95重量%であり、
    (E)成分と(F)成分の合計に占める12μm以下の粒子の割合が40体積%以上であることを特徴とする硬化性樹脂組成物タブレット。
  24. 請求項1~21のいずれか1項に記載の硬化性樹脂組成物を硬化してなり、表面の波長470nmの光線反射率が90%以上であることを特徴とする成形体。
  25. 請求項22に記載の硬化性樹脂組成物を用いて成形したことを特徴とする半導体のパッケージ。
  26. 請求項22に記載の硬化性樹脂組成物を用いて金属と一体成形したことを特徴とする半導体のパッケージ。
  27. 硬化性樹脂組成物とリードフレームとをトランスファーモールドにより一体成形した請求項25または26に記載の半導体のパッケージ。
  28. 半導体のパッケージが実質的に金属の片面に樹脂が成形されてなるパッケージである、請求項25~27のいずれか1項に記載の半導体のパッケージ。
  29. 請求項22に記載の硬化性樹脂組成物を用いてトランスファー成形されたことを特徴とする半導体のパッケージ。
  30. 請求項25~29のいずれか1項に記載の半導体のパッケージを用いて製造された半導体部品。
  31. 請求項25~29のいずれか1項に記載の半導体のパッケージを用いて製造された発光ダイオード。
     
PCT/JP2011/058047 2010-04-02 2011-03-30 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード WO2011125753A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012509522A JP5844252B2 (ja) 2010-04-02 2011-03-30 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
US13/638,992 US9178120B2 (en) 2010-04-02 2011-03-30 Curable resin composition, curable resin composition tablet, molded body, semiconductor package, semiconductor component and light emitting diode
CN201180017231.8A CN102844383B (zh) 2010-04-02 2011-03-30 固化性树脂组合物、固化性树脂组合物片、成型体、半导体封装材料、半导体部件及发光二极管
US14/643,609 US9496468B2 (en) 2010-04-02 2015-03-10 Curable resin composition, curable resin composition tablet, molded body, semiconductor package, semiconductor component and light emitting diode

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2010085900 2010-04-02
JP2010-085901 2010-04-02
JP2010-085900 2010-04-02
JP2010085901 2010-04-02
JP2010139362 2010-06-18
JP2010-139362 2010-06-18
JP2010228853 2010-10-08
JP2010-228853 2010-10-08
JP2010252977 2010-11-11
JP2010-252977 2010-11-11
JP2011013229 2011-01-25
JP2011-013229 2011-01-25
JP2011038455 2011-02-24
JP2011-038455 2011-02-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/638,992 A-371-Of-International US9178120B2 (en) 2010-04-02 2011-03-30 Curable resin composition, curable resin composition tablet, molded body, semiconductor package, semiconductor component and light emitting diode
US14/643,609 Division US9496468B2 (en) 2010-04-02 2015-03-10 Curable resin composition, curable resin composition tablet, molded body, semiconductor package, semiconductor component and light emitting diode

Publications (1)

Publication Number Publication Date
WO2011125753A1 true WO2011125753A1 (ja) 2011-10-13

Family

ID=44762694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058047 WO2011125753A1 (ja) 2010-04-02 2011-03-30 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード

Country Status (5)

Country Link
US (2) US9178120B2 (ja)
JP (1) JP5844252B2 (ja)
CN (1) CN102844383B (ja)
TW (1) TWI593758B (ja)
WO (1) WO2011125753A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051600A1 (ja) * 2011-10-04 2013-04-11 株式会社カネカ 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP2013133428A (ja) * 2011-12-27 2013-07-08 Kaneka Corp 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置
JP2013203798A (ja) * 2012-03-27 2013-10-07 Kaneka Corp タック性を改善した熱硬化性樹脂組成物タブレット及びそれを用いた半導体のパッケージ
JP2013206968A (ja) * 2012-03-27 2013-10-07 Kaneka Corp 光半導体パッケージ用タブレット成形金型及びその金型を用いたタブレットの製造方法
JP2013225573A (ja) * 2012-04-20 2013-10-31 Kaneka Corp 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置
JP2014133822A (ja) * 2013-01-10 2014-07-24 Kaneka Corp 硬化性樹脂組成物、硬化性樹脂組物用タブレットおよびそれを用いた半導体のパッケージ
JP2014210843A (ja) * 2013-04-17 2014-11-13 株式会社カネカ 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
WO2014200110A1 (ja) * 2013-06-14 2014-12-18 東レ・ダウコーニング株式会社 反応性シリコーン組成物、反応性熱可塑体、硬化物、および光半導体装置
KR20150103134A (ko) * 2012-12-28 2015-09-09 다우 코닝 코포레이션 변환기용 경화성 유기폴리실록산 조성물 및 그러한 변환기용 경화성 실리콘 조성물의 응용
JP2016503108A (ja) * 2012-12-28 2016-02-01 ダウ コーニング コーポレーションDow Corning Corporation トランスデューサーのための硬化性オルガノポリシロキサン組成物及びかかる硬化性シリコーン組成物のトランスデューサーへの使用
JP2016076723A (ja) * 2015-12-10 2016-05-12 株式会社カネカ 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置
EP2945197A4 (en) * 2013-01-10 2016-08-03 Konica Minolta Inc LED DEVICE AND COATING LIQUID USED IN THE MANUFACTURE THEREOF
KR20210038838A (ko) * 2019-09-25 2021-04-08 테코어 신케이엠 인크 습기에 민감한 높은 색영역의 백라이트 애플리케이션용 칩 스케일 패키지 구조 및 제조방법
US11162004B2 (en) 2016-09-23 2021-11-02 Nichia Corporation Electrically conductive adhesive and electrically conductive material

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733178A4 (en) * 2011-07-14 2015-03-04 Sekisui Chemical Co Ltd SEALING AGENT FOR OPTICAL SEMICONDUCTOR DEVICES AND OPTICAL SEMICONDUCTOR DEVICE
MY163345A (en) * 2011-08-10 2017-09-15 Adeka Corp Silicon-containing curing composition and cured product thereof
JP2013159670A (ja) * 2012-02-02 2013-08-19 Dow Corning Toray Co Ltd 硬化性シリコーン組成物、その硬化物、および光半導体装置
JP5627619B2 (ja) * 2012-02-28 2014-11-19 Towa株式会社 樹脂封止装置及び樹脂封止体の製造方法
CN103408945B (zh) * 2013-02-18 2016-01-20 永信新材料有限公司 可应用于发光二极管元件的聚硅氧烷组合物、基座配方及其发光二极管元件
US9070660B2 (en) * 2013-03-15 2015-06-30 Intel Corporation Polymer thermal interface material having enhanced thermal conductivity
DE102013215105A1 (de) * 2013-08-01 2015-02-05 Wacker Chemie Ag Polyorganosiloxanzubereitung für optische Halbleiter
WO2015061075A1 (en) * 2013-10-24 2015-04-30 Dow Corning Corporation Cured silicone with high light transmittance, curable silicone for preparing same, devices and methods
KR20170052649A (ko) * 2014-09-10 2017-05-12 다우 코닝 도레이 캄파니 리미티드 경화성 실리콘 조성물, 그 경화물 및 광 반도체 장치
US10276467B2 (en) 2016-03-25 2019-04-30 Samsung Electro-Mechanics Co., Ltd. Fan-out semiconductor package
CN109312165B (zh) * 2016-06-28 2021-08-10 三键有限公司 固化性树脂组合物、燃料电池和密封方法
WO2018155325A1 (ja) * 2017-02-22 2018-08-30 住友化学株式会社 組成物
CN109593311B (zh) * 2017-09-30 2021-05-14 比亚迪股份有限公司 丙烯酸酯树脂组合物以及丙烯酸酯树脂注模产品及其制备方法和应用
KR102540533B1 (ko) * 2018-06-01 2023-06-07 현대자동차주식회사 열전도성이 우수한 경량 고분자 조성물과 그 제조방법 및 이 조성물을 이용하여 제조한 물품
JP7170450B2 (ja) 2018-07-31 2022-11-14 信越化学工業株式会社 付加硬化型シリコーン樹脂組成物及び半導体装置
JP6695012B1 (ja) * 2018-07-31 2020-05-20 ポリプラスチックス株式会社 液晶性樹脂の製造方法
JP7103974B2 (ja) * 2019-02-25 2022-07-20 信越化学工業株式会社 付加硬化型シリコーン組成物、光反射材用シリコーン硬化物、光反射材及び光半導体装置
US20220195121A1 (en) * 2019-03-25 2022-06-23 Lord Corporation Moldable silicone elastomers having selective primerless adhesion
CN112750766B (zh) * 2020-12-14 2022-12-27 山东融创电子科技有限公司 一种长寿命二极管的制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146191A (ja) * 2003-11-19 2005-06-09 Kaneka Corp 半導体のパッケージ用硬化性樹脂組成物および半導体
WO2007142018A1 (ja) * 2006-06-02 2007-12-13 Hitachi Chemical Co., Ltd. 光半導体素子搭載用パッケージおよびこれを用いた光半導体装置
JP2009062490A (ja) * 2007-09-07 2009-03-26 Kaneka Corp 硬化性組成物
JP2009280747A (ja) * 2008-05-26 2009-12-03 Adeka Corp ケイ素含有硬化性組成物
JP2010001474A (ja) * 2008-06-20 2010-01-07 Wacker Chemie Ag ヒドロシリル化法
JP2010018719A (ja) * 2008-07-11 2010-01-28 Adeka Corp ケイ素含有硬化性組成物

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297559A (ja) * 1988-10-03 1990-04-10 Toshiba Silicone Co Ltd 熱伝導性シリコーン組成物
US5438094A (en) * 1993-07-06 1995-08-01 Shin-Etsu Chemical Co., Ltd. Adhesive silicone compositions
JP3456240B2 (ja) 1993-12-17 2003-10-14 昭和電工株式会社 熱可塑性樹脂組成物およびその製造方法
JP3494323B2 (ja) 1995-06-26 2004-02-09 帝人化成株式会社 高反射性芳香族ポリカーボネート樹脂組成物及びその成形品
JP3737279B2 (ja) * 1998-05-20 2006-01-18 株式会社カネカ 硬化性組成物
TWI224617B (en) * 1999-11-08 2004-12-01 Kaneka Corp Copper foil with insulating adhesive
JP3704286B2 (ja) 1999-11-17 2005-10-12 信越化学工業株式会社 酸化チタン充填付加反応硬化型シリコーンゴム組成物及びその硬化物
CA2398202A1 (en) * 2000-02-08 2001-08-16 Kaneka Corporation Curable compositions
JP3580358B2 (ja) * 2000-06-23 2004-10-20 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
JP3687738B2 (ja) * 2001-01-16 2005-08-24 信越化学工業株式会社 硬化性組成物
TWI242584B (en) * 2001-07-03 2005-11-01 Lord Corp High thermal conductivity spin castable potting compound
JP3803058B2 (ja) * 2001-12-11 2006-08-02 信越化学工業株式会社 熱伝導性シリコーン組成物、その硬化物及び敷設方法並びにそれを用いた半導体装置の放熱構造体
US7195720B2 (en) * 2002-02-20 2007-03-27 Kaneka Corporation Curable composition for heat conductive material
JP4610839B2 (ja) 2002-03-08 2011-01-12 株式会社カネカ 封止剤、半導体等の封止方法、半導体装置の製造方法、および半導体装置
ATE383404T1 (de) * 2002-04-26 2008-01-15 Kaneka Corp Härtbare zusammensetzung, härtendes produkt, herstellungsverfahren dafür und mit dem härtenden produkt versiegelte lichtemittierende diode
TW200427111A (en) * 2003-03-12 2004-12-01 Shinetsu Chemical Co Material for coating/protecting light-emitting semiconductor and the light-emitting semiconductor device
CN1798811A (zh) * 2003-07-25 2006-07-05 陶氏康宁公司 硅橡胶组合物
US20050038188A1 (en) * 2003-08-14 2005-02-17 Dongchan Ahn Silicones having improved chemical resistance and curable silicone compositions having improved migration resistance
US20050038183A1 (en) * 2003-08-14 2005-02-17 Dongchan Ahn Silicones having improved surface properties and curable silicone compositions for preparing the silicones
US20050049350A1 (en) * 2003-08-25 2005-03-03 Sandeep Tonapi Thin bond-line silicone adhesive composition and method for preparing the same
JP4803339B2 (ja) * 2003-11-20 2011-10-26 信越化学工業株式会社 エポキシ・シリコーン混成樹脂組成物及び発光半導体装置
JP2005162859A (ja) * 2003-12-02 2005-06-23 Dow Corning Toray Silicone Co Ltd 付加反応硬化型オルガノポリシロキサン樹脂組成物および光学部材
DE102004005562A1 (de) * 2004-02-03 2005-08-25 Kettenbach Gmbh & Co. Kg Über Hydrosilylierungs-Reaktion additionsvernetzende Zweikomponenten-Dentalmaterial mit starren und/oder voluminösen Gruppen sowie mit hoher Biegefestigkeit und E-Modul
JP4300418B2 (ja) * 2004-04-30 2009-07-22 信越化学工業株式会社 エポキシ・シリコーン混成樹脂組成物及び発光半導体装置
JP4802456B2 (ja) * 2004-06-02 2011-10-26 株式会社カネカ 硬化性組成物及び該硬化性組成物により封止された半導体装置
WO2006060141A2 (en) * 2004-11-16 2006-06-08 Nanocrystal Lighting Corporation Optically reliable nanoparticle based nanocomposite hri encapsulant and photonic waveguiding material
JP6346724B2 (ja) 2004-11-30 2018-06-20 日亜化学工業株式会社 表面実装型発光装置及びその製造方法
JP4608294B2 (ja) 2004-11-30 2011-01-12 日亜化学工業株式会社 樹脂成形体及び表面実装型発光装置並びにそれらの製造方法
KR100922488B1 (ko) 2005-02-23 2009-10-20 미쓰비시 가가꾸 가부시키가이샤 반도체 발광 디바이스용 부재 및 그 제조 방법, 그리고그것을 사용한 반도체 발광 디바이스
JP4882413B2 (ja) 2005-02-23 2012-02-22 三菱化学株式会社 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
TWI256737B (en) * 2005-05-19 2006-06-11 Pi-Fu Yang One-block light-emitting device and manufacturing method thereof
WO2006127100A1 (en) * 2005-05-26 2006-11-30 Dow Corning Corporation Process and silicone encapsulant composition for molding small shapes
US7595515B2 (en) * 2005-10-24 2009-09-29 3M Innovative Properties Company Method of making light emitting device having a molded encapsulant
JP5232369B2 (ja) 2006-02-03 2013-07-10 日立化成株式会社 光半導体素子搭載用パッケージ基板の製造方法およびこれを用いた光半導体装置の製造方法
CN101389695B (zh) * 2006-02-24 2012-07-04 陶氏康宁公司 用硅氧烷包封的发光器件和用于制备该硅氧烷的可固化的硅氧烷组合物
US20070219312A1 (en) * 2006-03-17 2007-09-20 Jennifer Lynn David Silicone adhesive composition and method for preparing the same
JPWO2007119627A1 (ja) 2006-04-10 2009-08-27 宇部興産株式会社 硬化性組成物、シルセスキオキサン硬化物、及びこれらの製造方法
US9502624B2 (en) 2006-05-18 2016-11-22 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
US8092735B2 (en) * 2006-08-17 2012-01-10 3M Innovative Properties Company Method of making a light emitting device having a molded encapsulant
KR101523482B1 (ko) 2006-08-22 2015-05-28 미쓰비시 가가꾸 가부시키가이샤 반도체 디바이스용 부재, 그리고 반도체 디바이스용 부재 형성액 및 반도체 디바이스용 부재의 제조 방법, 그리고 그것을 이용한 반도체 디바이스용 부재 형성액, 형광체 조성물, 반도체 발광 디바이스, 조명 장치, 및 화상 표시 장치
JP5446078B2 (ja) 2006-08-22 2014-03-19 三菱化学株式会社 半導体デバイス用部材、並びに半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法、並びに、それを用いた半導体発光デバイス、半導体デバイス用部材形成液、及び蛍光体組成物
KR101308173B1 (ko) 2006-11-15 2013-09-12 히타치가세이가부시끼가이샤 열경화성 광반사용 수지 조성물 및 그 제조방법, 및 그 수지 조성물을 이용한 광반도체 소자 탑재용 기판 및 광반도체 장치
JP5421546B2 (ja) 2007-07-05 2014-02-19 日立化成株式会社 熱硬化性光反射用樹脂組成物、並びにその樹脂組成物を用いた光半導体素子搭載用基板及び光半導体装置
US8017246B2 (en) * 2007-11-08 2011-09-13 Philips Lumileds Lighting Company, Llc Silicone resin for protecting a light transmitting surface of an optoelectronic device
JP2009120437A (ja) * 2007-11-14 2009-06-04 Niigata Univ シロキサンをグラフト化したシリカ及び高透明シリコーン組成物並びに該組成物で封止した発光半導体装置
US8466210B2 (en) * 2007-12-18 2013-06-18 3M Innovative Properties Company Dental composition containing a surfactant and an F-containing compound, process of production and use thereof
JP4623322B2 (ja) 2007-12-26 2011-02-02 信越化学工業株式会社 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物並びに光半導体ケース及びその成形方法
JP5071126B2 (ja) 2008-01-30 2012-11-14 東洋インキScホールディングス株式会社 熱可塑性樹脂組成物
JP2009256400A (ja) * 2008-04-11 2009-11-05 Shin Etsu Chem Co Ltd 半導体素子用シリコーン接着剤
JP2009269968A (ja) * 2008-05-02 2009-11-19 Shin Etsu Chem Co Ltd シリコーン接着剤
JP2010018786A (ja) 2008-06-09 2010-01-28 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP2010021533A (ja) 2008-06-09 2010-01-28 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP5180694B2 (ja) 2008-06-12 2013-04-10 アピックヤマダ株式会社 Ledチップ実装用基板の製造方法、ledチップ実装用基板のモールド金型、ledチップ実装用基板、及び、led
JP5218298B2 (ja) * 2008-07-02 2013-06-26 信越化学工業株式会社 熱硬化性シリコーン樹脂−エポキシ樹脂組成物及び当該樹脂で成形したプレモールドパッケージ
JP5217800B2 (ja) 2008-09-03 2013-06-19 日亜化学工業株式会社 発光装置、樹脂パッケージ、樹脂成形体並びにこれらの製造方法
JP5471180B2 (ja) * 2008-09-11 2014-04-16 信越化学工業株式会社 シリコーン積層基板、その製造方法、シリコーン積層基板製造用シリコーン樹脂組成物及びled装置
JP2010106243A (ja) * 2008-09-30 2010-05-13 Shin-Etsu Chemical Co Ltd 光半導体装置用シリコーン樹脂組成物
JP5499774B2 (ja) * 2009-03-04 2014-05-21 信越化学工業株式会社 光半導体封止用組成物及びそれを用いた光半導体装置
CN102341459B (zh) * 2009-03-12 2014-01-01 道康宁公司 热界面材料和它们的制备与使用方法
CN101851386B (zh) * 2009-04-01 2012-09-05 汉高华威电子有限公司 一种环氧树脂组合物
JP2011140550A (ja) 2010-01-06 2011-07-21 Shin-Etsu Chemical Co Ltd 光学素子ケース成形用付加硬化型シリコーン樹脂組成物及び光半導体装置
JP5545246B2 (ja) * 2010-03-30 2014-07-09 信越化学工業株式会社 樹脂組成物及び発光半導体素子用リフレクター、及び発光半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146191A (ja) * 2003-11-19 2005-06-09 Kaneka Corp 半導体のパッケージ用硬化性樹脂組成物および半導体
WO2007142018A1 (ja) * 2006-06-02 2007-12-13 Hitachi Chemical Co., Ltd. 光半導体素子搭載用パッケージおよびこれを用いた光半導体装置
JP2009062490A (ja) * 2007-09-07 2009-03-26 Kaneka Corp 硬化性組成物
JP2009280747A (ja) * 2008-05-26 2009-12-03 Adeka Corp ケイ素含有硬化性組成物
JP2010001474A (ja) * 2008-06-20 2010-01-07 Wacker Chemie Ag ヒドロシリル化法
JP2010018719A (ja) * 2008-07-11 2010-01-28 Adeka Corp ケイ素含有硬化性組成物

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051600A1 (ja) * 2011-10-04 2013-04-11 株式会社カネカ 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP2013133428A (ja) * 2011-12-27 2013-07-08 Kaneka Corp 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置
JP2013203798A (ja) * 2012-03-27 2013-10-07 Kaneka Corp タック性を改善した熱硬化性樹脂組成物タブレット及びそれを用いた半導体のパッケージ
JP2013206968A (ja) * 2012-03-27 2013-10-07 Kaneka Corp 光半導体パッケージ用タブレット成形金型及びその金型を用いたタブレットの製造方法
JP2013225573A (ja) * 2012-04-20 2013-10-31 Kaneka Corp 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置
US9947858B2 (en) 2012-12-28 2018-04-17 Dow Corning Corporation Curable organopolysiloxane composition for transducers and applications of such curable silicone composition for transducers
US9879126B2 (en) 2012-12-28 2018-01-30 Dow Corning Corporation Curable organopolysiloxane composition for transducers and applications of such curable silicone composition for transducers
KR101983010B1 (ko) * 2012-12-28 2019-09-10 다우 코닝 도레이 캄파니 리미티드 변환기용 경화성 유기폴리실록산 조성물 및 그러한 변환기용 경화성 실리콘 조성물의 응용
KR20150103134A (ko) * 2012-12-28 2015-09-09 다우 코닝 코포레이션 변환기용 경화성 유기폴리실록산 조성물 및 그러한 변환기용 경화성 실리콘 조성물의 응용
JP2016503108A (ja) * 2012-12-28 2016-02-01 ダウ コーニング コーポレーションDow Corning Corporation トランスデューサーのための硬化性オルガノポリシロキサン組成物及びかかる硬化性シリコーン組成物のトランスデューサーへの使用
JP2016505693A (ja) * 2012-12-28 2016-02-25 ダウ コーニング コーポレーションDow Corning Corporation トランスデューサー用硬化性オルガノシロキサン組成物及び硬化性シリコーン組成物のトランスデューサーへの使用
EP2945197A4 (en) * 2013-01-10 2016-08-03 Konica Minolta Inc LED DEVICE AND COATING LIQUID USED IN THE MANUFACTURE THEREOF
JP2014133822A (ja) * 2013-01-10 2014-07-24 Kaneka Corp 硬化性樹脂組成物、硬化性樹脂組物用タブレットおよびそれを用いた半導体のパッケージ
JP2014210843A (ja) * 2013-04-17 2014-11-13 株式会社カネカ 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JPWO2014200110A1 (ja) * 2013-06-14 2017-02-23 東レ・ダウコーニング株式会社 反応性シリコーン組成物、反応性熱可塑体、硬化物、および光半導体装置
WO2014200110A1 (ja) * 2013-06-14 2014-12-18 東レ・ダウコーニング株式会社 反応性シリコーン組成物、反応性熱可塑体、硬化物、および光半導体装置
JP2016076723A (ja) * 2015-12-10 2016-05-12 株式会社カネカ 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置
US11162004B2 (en) 2016-09-23 2021-11-02 Nichia Corporation Electrically conductive adhesive and electrically conductive material
US11739238B2 (en) 2016-09-23 2023-08-29 Nichia Corporation Electrically conductive adhesive and electrically conductive material
KR20210038838A (ko) * 2019-09-25 2021-04-08 테코어 신케이엠 인크 습기에 민감한 높은 색영역의 백라이트 애플리케이션용 칩 스케일 패키지 구조 및 제조방법
KR102423795B1 (ko) 2019-09-25 2022-07-22 테코어 신케이엠 인크 습기에 민감한 높은 색영역의 백라이트 애플리케이션용 칩 스케일 패키지 구조 및 제조방법

Also Published As

Publication number Publication date
TW201200563A (en) 2012-01-01
US9496468B2 (en) 2016-11-15
TWI593758B (zh) 2017-08-01
JPWO2011125753A1 (ja) 2013-07-08
US20150188008A1 (en) 2015-07-02
CN102844383B (zh) 2016-01-20
CN102844383A (zh) 2012-12-26
US9178120B2 (en) 2015-11-03
US20130082369A1 (en) 2013-04-04
JP5844252B2 (ja) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5844252B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP6043292B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP4778085B2 (ja) 半導体のパッケージ用硬化性樹脂組成物および半導体
JP5685284B2 (ja) 発光ダイオード用パッケージおよび発光ダイオード
JP6227884B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP5837385B2 (ja) 熱硬化性樹脂組成物およびそれを用いた発光ダイオード用のパッケージ
JP5749543B2 (ja) 熱硬化性樹脂組成物タブレットおよびそれを用いた半導体のパッケージ
JP2013225573A (ja) 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置
JP5767550B2 (ja) Ledモジュール用樹脂成形体
JP5946684B2 (ja) 熱硬化性樹脂組成物、タブレット、発光ダイオード用パッケージ、それらの製造方法
JP5848572B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP5875780B2 (ja) 白色硬化性樹脂組成物およびそれを用いた半導体のパッケージ
JP2013080822A (ja) パッケージ成形体とその製造方法及び発光装置
JP5813446B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP5869827B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP2013080821A (ja) 樹脂成形体および側面発光型の半導体発光装置
JP6154094B2 (ja) 半導体のパッケージ
JP5563628B2 (ja) 半導体のパッケージ用硬化性樹脂組成物および半導体
JP2013080820A (ja) 樹脂成形体および発光装置
JP2017197595A (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体パッケージ、半導体部品、発光ダイオードおよび半導体パッケージの製造方法。
JP5563695B2 (ja) 半導体のパッケージ用硬化性樹脂組成物および半導体
JP5563696B2 (ja) 半導体のパッケージ用硬化性樹脂組成物および半導体
JP2012102244A (ja) 熱硬化性樹脂組成物およびそれを用いた半導体のパッケージ
JP2015199811A (ja) 発光ダイオード用硬化性樹脂組成物、発光ダイオードのパッケージ
JP2013080819A (ja) 発光装置用樹脂成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017231.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509522

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13638992

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11765653

Country of ref document: EP

Kind code of ref document: A1