WO2007072659A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2007072659A1
WO2007072659A1 PCT/JP2006/323778 JP2006323778W WO2007072659A1 WO 2007072659 A1 WO2007072659 A1 WO 2007072659A1 JP 2006323778 W JP2006323778 W JP 2006323778W WO 2007072659 A1 WO2007072659 A1 WO 2007072659A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
insulating layer
emitting element
emitting device
Prior art date
Application number
PCT/JP2006/323778
Other languages
English (en)
French (fr)
Inventor
Mitsuru Shiozaki
Akiko Saito
Tomohiro Sanpei
Nobuhiro Tamura
Seiko Kawashima
Masami Iwamoto
Takayoshi Moriyama
Masahiro Toda
Hisayo Uetake
Akiko Nakanishi
Masahiro Izumi
Original Assignee
Toshiba Lighting & Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting & Technology Corporation filed Critical Toshiba Lighting & Technology Corporation
Publication of WO2007072659A1 publication Critical patent/WO2007072659A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer

Definitions

  • the present invention relates to a light emitting device using a light emitting element.
  • a light-emitting device using a light-emitting diode element that is a solid-state light-emitting element as a light-emitting element uses a metal substrate having excellent heat dissipation, and an insulating layer and a circuit pattern layer are sequentially formed on the substrate.
  • a reflector having a housing portion opened on the insulating layer and the circuit pattern layer is provided.
  • An insulating layer and a circuit pattern layer on the substrate face the housing portion. Inside the housing portion, the light emitting diode elements are disposed on the circuit pattern layer and are electrically connected.
  • an insulating substrate that is a white and highly reflective resin-containing material is used as the substrate, and light emitting diode element power efficiently reflects light directed toward the surface of the insulating substrate to increase brightness.
  • the light emitting diode element is mounted on one circuit pattern formed on the insulating substrate, and one electrode of the light emitting diode element is electrically connected, and the other electrode of the light emitting diode element is connected to the other electrode. It is electrically connected to the circuit pattern by wire bonding (for example, see Patent Document 1) o
  • a printed wiring board is used as a substrate, a reflector having a housing portion is provided on the printed wiring board, and a white filler is mixed on the printed wiring board in the housing portion of the reflector.
  • a light emitting diode element is disposed via an adhesive, and the light emitting diode element is electrically connected to a circuit pattern layer on a printed wiring board by wire bonding.
  • This light-emitting diode element uses a so-called double wire type in which a semiconductor is laminated on a sapphire substrate, and a cathode side electrode and an anode side electrode for wire bonding are provided on the surface, respectively. .
  • Patent Document 1 Japanese Patent No. 3356069 (Page 3, Figure 1)
  • Patent Document 2 Japanese Patent No. 3329573 (Page 4, Figure 1-3)
  • the present invention has been made in view of these points, and an object thereof is to provide a light-emitting device that can improve the light extraction efficiency of a light-emitting element.
  • the light emitting device includes a substrate; a white insulating layer provided on the substrate; a circuit pattern layer having a light emitting element connection portion provided on the insulating layer; and disposed on the insulating layer. And a light emitting element electrically connected to the light emitting element connecting portion of the circuit pattern layer.
  • the substrate may be conductive because a metal material or glass epoxy resin material having excellent heat dissipation is used and an insulating layer is provided.
  • White insulation layer has white insulation It is preferable to use resin, titanium oxide, alumina, silica, calcium phosphate or the like.
  • the circuit pattern layer a copper foil pattern is generally used.
  • the light emitting element for example, a solid light emitting element such as a light emitting diode element is used.
  • the light emitting device comprising: a substrate; a white insulating layer provided on the substrate; a circuit pattern layer having a light emitting element connection provided on the insulating layer; an insulating layer on the substrate; An accommodation portion is provided on the circuit pattern layer and opened on the insulating layer of the substrate and the light emitting element connection portion of the circuit pattern layer corresponding to the light emitting element arrangement position, and the circuit pattern is formed in the peripheral area in the accommodation portion.
  • a reflector configured such that the light emitting element connection portion of the layer is located; and the light emitting element connection portion of the circuit pattern layer disposed on the insulating layer in the central region of the bottom surface in the housing portion and located in the peripheral area in the housing portion And a light emitting element electrically connected by wire bonding.
  • the reflector may be integrally molded by pouring a resin such as PBT (polybutylene terephthalate), PPA (polyphthalamide), or PC (polycarbonate) onto the substrate! /.
  • the housing portion may be concave and may be formed in a truncated cone shape that gradually expands toward the opposite side of the substrate.
  • a light emitting element connecting portion of the insulating layer of the substrate and the circuit pattern layer is disposed, and the light emitting element can be arranged and connected by wire bonding.
  • GaN gallium nitride
  • a gallium nitride (GaN) -based semiconductor is stacked on a sapphire substrate and emits blue light with an emission peak of 450 to 460 nm, and the cathode and anode electrodes for wire bonding are formed on the surface.
  • the light directed toward the substrate side is efficiently reflected by the white insulating layer, and the light from the light emitting element is reflected by the reflector, so that the light extraction efficiency of the light emitting element is improved.
  • a light-emitting device is the light-emitting device according to claim 1 or 2, wherein the insulating layer is provided on the entire surface of the substrate.
  • the insulating layer can be provided by applying the insulating layer material over the entire surface of the substrate. It is easier to provide the layer than if the layer is to be accurately provided at the required location on the substrate.
  • a light-emitting device is the light-emitting device according to any one of claims 1 to 3, wherein the insulating layer has a thickness in a range of 30 ⁇ m force to 90 ⁇ m.
  • the thickness of the insulating layer is less than 30 m, light is transmitted through the insulating layer, resulting in a decrease in reflectance and a decrease in insulating performance.
  • the thickness of the insulating layer is greater than 90 / zm, the thermal resistance of the insulating layer is increased, heat dissipation is reduced, and the life of the light emitting element is shortened.
  • the light emitting device according to claim 5 is the light emitting device according to any one of claims 1 to 4, wherein the reflectance of the surface of the insulating layer is 85% or more in a wavelength range of 400 to 740 nm. .
  • the light emitting device according to claim 6 is the light emitting device according to any one of claims 1 to 5, wherein the light emitting element is fixed on the insulating layer by a transparent adhesive.
  • transparent adhesive transparent epoxy resin, silicone resin, or the like may be used.
  • transparent adhesive By using a transparent adhesive, light from the light-emitting element is transmitted and reflected by the insulating layer, and the light extraction efficiency is improved compared to the case of using a silver paste.
  • the light-emitting device has a metal frame having a light-emitting element connection portion; a housing portion that opens on the light-emitting element connection portion of the metal frame corresponding to the light-emitting element placement position; A white base body that is inserted and molded with a metal frame so that the light emitting element connection portion is located in the peripheral region of the housing; and disposed in the central region of the bottom surface in the housing portion and located in the peripheral region in the housing portion A light emitting element electrically connected to the light emitting element connecting portion of the metal frame by wire bonding.
  • a conductive copper plate or the like may be used.
  • white substrates it is preferable to use white resin because the metal frame is insert molded.
  • the light traveling from the light emitting element toward the bottom surface in the housing portion is efficiently reflected by the white base, and the light extraction efficiency of the light emitting element is improved.
  • the light-emitting device according to claim 8 is the light-emitting device according to claim 7, wherein the surface of the substrate is warped.
  • the emissivity is 85% or more in the wavelength range of 400 to 740 nm.
  • the reflectance of the surface of the substrate is less than 85%! /, And the efficiency of reflecting the light from the light emitting element toward the bottom surface of the housing portion on the white bottom surface is effective. A sufficient improvement in the light extraction efficiency of the light emitting element that is low cannot be obtained.
  • the light-emitting device according to claim 9 is the same as the light-emitting device according to claim 2, 7, 8, or any one of them.
  • the ratio of the surface area of the light emitting element connection portion to the surface area of the bottom surface in the housing portion is 50% or less.
  • the light-emitting device according to claim 10 is the light-emitting device according to any one of claims 2, 7, 8, and 9, wherein the light-emitting element is fixed to the center area of the bottom surface in the housing portion by a transparent adhesive. It is.
  • transparent adhesive transparent epoxy resin or silicone resin may be used.
  • transparent adhesive By using a transparent adhesive, light from the light emitting element is transmitted and reflected by the substrate, and the light extraction efficiency is improved as compared with the case of using a silver paste.
  • the light-emitting device according to claim 11 is the light-emitting device according to claim 10, wherein the transparent adhesive protrudes from the space between the light-emitting element and the bottom surface in the housing portion to the periphery of the light-emitting element, so It has a projecting portion that emits light.
  • the protrusion is formed, for example, by pressing the light emitting element against the transparent adhesive so that part of the transparent adhesive protrudes around the light emitting element. Even when a part of the transparent adhesive is applied to the side surface of the light emitting element and a protrusion is formed when the transparent adhesive protrudes, the light emitted from the side surface of the light emitting element is transmitted through the side protrusion and the light is transmitted. It is used effectively.
  • the light-emitting device according to claim 12 is the light-emitting device according to claim 10 or 11, wherein the light-emitting element connection portion is positioned near the periphery in the accommodating portion that is separated from the light-emitting element force in the central region in the accommodating portion. Is.
  • the light emitting element connecting portion has a minimum size within a range that allows wire bonding, for example, and the light emitting element connecting portion may be located near the periphery in the housing portion.
  • the white insulating layer and the circuit pattern layer are provided on the substrate, the light emitting element is disposed on the insulating layer, and then the light emitting element emits light to the light emitting element connection portion of the circuit pattern layer. Since the elements are electrically connected, light traveling from the light emitting element toward the substrate can be efficiently reflected by the white insulating layer, and the light extraction efficiency of the light emitting element can be improved.
  • the white insulating layer and the circuit pattern layer are provided on the substrate, and the insulating layer and the circuit pattern layer are provided on the insulating layer in a central area in the reflector housing provided on the insulating layer and the circuit pattern.
  • the light emitting element is electrically connected to the light emitting element connecting portion of the circuit pattern layer located in the peripheral area in the housing portion by wire bonding, so that the light from the light emitting element toward the substrate side is transmitted by the white insulating layer. The light can be reflected efficiently, and the light extraction efficiency of the light emitting element can be improved.
  • the insulating layer is provided at a necessary position on the substrate. Manufacturability can be improved as compared with the case of providing it accurately.
  • the thickness of the insulating layer is in the range of 30 m to 90 m. Heat dissipation can be improved while ensuring the rate.
  • the reflectance of the surface of the insulating layer is in a wavelength range of 400 to 740 nm. Since it is 85% or more, the directional light can be efficiently reflected by the white insulating layer to the substrate side of the light emitting element, and the light extraction efficiency of the light emitting element can be improved.
  • the light emitting element is fixed on the insulating layer by the transparent adhesive, Even in the case of a light emitting element that emits light from the back side in addition to the front side of the optical element, the back side force of the light emitting element is transmitted through the transparent adhesive and efficiently reflected by the white insulating layer. Therefore, the light extraction efficiency of the light emitting element can be improved.
  • the metal frame is arranged so that the light emitting element connection portion is positioned in the peripheral area in the housing portion, and the white base body is insert-molded, and the base body is stored. Since the light emitting element is disposed in the center area of the bottom surface in the section and is electrically connected to the light emitting element connection section of the metal frame located in the peripheral area in the accommodating section by wire bonding, the light emitting element force is directed toward the bottom surface in the accommodating section. The bright light can be efficiently reflected by the white bottom surface, and the light extraction efficiency of the light emitting element can be improved.
  • the reflectance of the surface of the substrate is 85% or more in the wavelength region of 400 to 740nm, Light that travels from the element toward the bottom surface inside the housing can be efficiently reflected by the white bottom surface, and the light extraction efficiency of the light emitting element can be improved.
  • the ratio of the surface area of the light emitting element connection portion to the surface area of the bottom surface in the housing portion is By setting it to 50% or less, the light extraction efficiency of the light emitting element can be further improved.
  • the light-emitting element is centered on the bottom surface in the housing portion with a transparent adhesive. Even in the case of a light emitting element that emits light from the back side in addition to the surface side of the light emitting element, the light emitted from the back side of the light emitting element is transmitted with a transparent adhesive. The light can be efficiently reflected by the white insulating layer or the white base, and the light extraction efficiency of the light emitting element can be improved.
  • the light emitting element connection portion is near the periphery in the accommodating portion where the light emitting element force is separated in the central region in the accommodating portion. Therefore, the light that travels from the light emitting element to the white insulating layer or the white substrate, and the light that passes through the transparent adhesive and is reflected by the white insulating layer or the white substrate is reflected by the light emitting element connecting portion having a low reflectance. It is possible to reduce the inability to reflect light and improve the light extraction efficiency of the light emitting element.
  • FIG. 1 is an enlarged cross-sectional view of a part of a light-emitting device showing a first embodiment of the present invention.
  • FIG. 2 is an enlarged front view in which a part of the light emitting device is omitted.
  • FIG. 3 is a cross-sectional view of a light emitting element and a transparent adhesive of the light emitting device.
  • FIG. 4 is a front view of the light emitting element and the transparent adhesive of the light emitting device.
  • FIG. 5 is a front view of the light emitting device.
  • FIG. 6 is an enlarged sectional view of the light emitting device.
  • FIG. 7 is a table showing the reflectance and thermal resistance for each thickness of the insulating layer of the light emitting device.
  • FIG. 8 is a table showing the temperature increase for each thickness of the insulating layer of the light emitting device.
  • FIG. 9 is a table showing the total luminous flux and ratio for each thickness of the insulating layer of the light emitting device.
  • FIG. 10 is a cross-sectional view of a light emitting device showing a second embodiment of the present invention.
  • FIG. 11 is a front view of the light emitting device.
  • FIG. 12 is a graph showing the relationship between reflectance and emission intensity in a wavelength region of 460 nm.
  • FIG. 13 is a graph showing the relationship between wavelength and emission intensity for samples A, B, C, and D.
  • FIG. 14 is a table showing the results of measurement of luminous efficiency for samples A, B, C, and D.
  • FIG. 1 to FIG. 9 show a first embodiment
  • FIG. 1 is an enlarged sectional view of a part of the light emitting device
  • FIG. 2 is an enlarged front view of the light emitting device omitted
  • FIG. 4 is a front view of the light emitting device and the transparent adhesive of the light emitting device
  • FIG. 5 is a front view of the light emitting device
  • FIG. 6 is an enlarged cross sectional view of the light emitting device
  • FIG. 8 is a table showing temperature rise for each thickness of insulating layer of light emitting device
  • FIG. 9 is for each thickness of insulating layer of light emitting device. It is a table
  • the light-emitting device 11 includes a light-emitting module 12, and the light-emitting module 12 is detachably attached to a light-emitting device main body (not shown) such as a fixture main body of a lighting fixture. .
  • a light-emitting device main body such as a fixture main body of a lighting fixture.
  • light emitting diode elements (light emitting diode chips) 13 which are chip-shaped solid light emitting elements as a plurality of light emitting elements are arranged in a matrix.
  • the light-emitting diode element 13 has, for example, a gallium nitride (GaN) -based semiconductor that emits blue light having an emission peak of 450 to 460 nm laminated on a sapphire substrate, and a cathode for wire bonding on the surface.
  • GaN gallium nitride
  • This type of light-emitting diode element 13 has a characteristic that the light transmitted to the back side through the sapphire substrate is about twice as much as the light transmitted to the front side.
  • the light emitting module 12 includes a flat substrate 14 made of aluminum (A1), nickel (Ni), glass epoxy resin or the like having heat dissipation and rigidity, on one surface of the substrate 14.
  • the white insulating layer 15 formed, the circuit pattern layer 16 formed on the insulating layer 15, and the reflector 17 integrally formed on the insulating layer 15 and the circuit pattern layer 16 are provided.
  • the insulating layer 15 is made of white resin having an insulating property, titanium oxide, alumina, silica, calcium phosphate, or the like, and is formed to cover the entire surface of the substrate 14.
  • the reflectance of the surface of the insulating layer 15 is preferably 85% or more in the wavelength range of 400 to 740 nm. 85% If it is smaller, the efficiency of reflecting the light directed from the light emitting diode element 13 to the substrate 14 side by the insulating layer 15 is low, and the light extraction efficiency of the light emitting diode element 13 cannot be sufficiently improved.
  • the thickness of the insulating layer 15 is preferably in the range of 30 ⁇ m force and 90 ⁇ m. If the thickness of the insulating layer 15 is less than 3 O / zm, light is transmitted through the insulating layer 15, reducing the reflectivity and insulating. If the thickness of the insulating layer 15 is greater than 90 / zm, the thermal resistance of the insulating layer 15 increases, heat dissipation decreases, and the life of the light-emitting diode element 13 is shortened. .
  • circuit patterns (wiring patterns) 16 a and 16 b on the cathode side and the anode side are formed for each arrangement position of each light emitting diode element 13 that is a light emitting element arrangement position. End portions of the circuit patterns 16a and 16b are formed as connection portions 16al and 16bl as light emitting element connection portions for electrically connecting the light emitting diode elements 13.
  • the circuit pattern layer 16 is formed, for example, by forming a Cu layer on the insulating layer 15 of the substrate 14 and removing a portion of the Cu layer other than the circuit pattern layer 16, and then forming a Ni layer and an Ag layer on the Cu layer by electric field measurement. Is formed.
  • the reflector 17 is integrally formed by pouring a resin such as PBT (polybutylene terephthalate), PPA (polyphthalamide), PC (polycarbonate) or the like onto one surface of the substrate 14.
  • a plurality of accommodating portions 19 that are recesses for accommodating the respective light emitting diode elements 13 are formed for each arrangement position of the respective light emitting diode elements 13.
  • Each accommodating portion 19 is formed in a truncated cone shape that gradually expands toward the opposite side with respect to the substrate 14.
  • a lens holder part 20 for fixing a lens (not shown) is formed concentrically.
  • the white insulating layer 15 faces most of the bottom surface 19a in each accommodating portion 19 including the central area of the bottom surface 19a of the accommodating portion 19, and the accommodating portion
  • the connection parts 16al and 16bl of the circuit patterns 16a and 16b are located in the peripheral area of the bottom part of 19.
  • the connecting portions 16al and 16bl have the minimum required dimensions within the range that allows the wire bonding, and the connecting portions 16al and 16bl are disposed in the central area of the housing portion 19 and the light emitting diode element 13 is separated. Located in the vicinity of the inside of the containment unit 1 9.
  • each light-emitting diode element 13 includes a transparent adhesive such as a transparent epoxy resin or a silicone resin on the insulating layer 15 in the central region of the bottom surface 19a of the housing part 19. Fixed with Agent 21.
  • a transparent adhesive 21 is applied on the insulating layer 15 in the central region of the bottom surface 19a of the accommodating portion 19, and the light-emitting diode element 13 is pressed against the transparent adhesive 21.
  • the transparent adhesive 21 protrudes around the light emitting diode element 13 from between the light emitting diode element 13 and the insulating layer 15, and a protruding portion 22 is formed around the light emitting diode element 13.
  • the protruding portion 22 is also applied to the lower side of the side surface of the light emitting diode element 13, and the surface of the protruding portion 22 is concave due to contraction when the transparent adhesive 21 is solidified.
  • each electrode on the surface of the light-emitting diode element 13 and the connection portions 16al, 16bl of the circuit patterns 16a, 16b are electrically connected by bonding wires 23 by wire bonding. Connected to!
  • each housing portion 19 is formed with a covering layer 25 that covers the light emitting diode element 13.
  • the covering layer 25 is formed in two layers: a diffusion layer 26 that covers the light-emitting diode element 13 and a phosphor layer 27 that is disposed on the opening side of the accommodating portion 19 above the diffusion layer 26. Yes.
  • the diffusion layer 26 is a mixture of a translucent silicone resin, a thermosetting transparent resin such as epoxy resin, and a diffusing agent such as alumina (Al 2 O 3), TiO, BaSO, SiO, or YO.
  • the resin blended with the diffusing agent is filled up to a position higher than the light emitting diode element 13 in the accommodating portion 19 and is thermally cured.
  • junction surface (boundary surface) 28 between the diffusion layer 26 and the phosphor layer 27 is formed as a curved surface that is concave toward the light emitting diode element 13 side (the lower surface side in FIG. 1).
  • the phosphor layer 27 is a yellow color that emits yellow light by receiving blue light emitted from the light-emitting diode element 13 in a thermosetting transparent resin such as translucent silicone resin or epoxy resin.
  • the phosphor is mainly blended. After the thermosetting of the diffusion layer 26, the resin containing the phosphor is filled in the housing portion 19 and thermally cured.
  • the phosphor is mainly a yellow phosphor, but a red phosphor or the like is also blended.
  • an illumination device can be configured by combining the light emitting device 11 and a lens. Next, the operation of the light emitting device 11 will be described.
  • each light-emitting diode element 13 emits blue light. This blue light emission is diffused in multiple directions by the diffusion layer 26 and then enters the phosphor layer 27, where the yellow phosphor is excited from multiple directions to emit yellow light. Then, the blue light from the light emitting diode element 13 and the yellow light from the yellow phosphor are mixed and become white light, which is emitted to the outside of the housing portion 19.
  • minute light emission of the light emitting diode element 13 is diffused in multiple directions by the diffusion layer 26, and the yellow phosphor of the phosphor layer 27 is excited from multiple directions to emit yellow light. Since yellow light and blue light in parentheses are mixed to emit white light, the color of white light (uneven color) can be reduced.
  • the light directed toward the substrate 14 side can be efficiently reflected by the white insulating layer 15, the light extraction efficiency of the light emitting diode element 13 can be improved.
  • the ratio of the surface area of the connecting portions 16al and 16bl to the surface area of the bottom surface 19a in the accommodating portion 19 is 50% or less, and the reflectance of the surface of the insulating layer 15 is 85 in the wavelength range of 400 to 740 nm.
  • the light directed from the light emitting diode element 13 toward the substrate 14 can be efficiently reflected by the white insulating layer 15, and the light extraction efficiency of the light emitting diode element 13 can be further improved.
  • the light-emitting diode element 13 is fixed on the white insulating layer 15 in the center region of the bottom surface 19a in the accommodating portion 19 by the transparent adhesive 21, the light-emitting diode element 13 is emitted from the back side of the light-emitting diode element 13. Light can be transmitted through the transparent adhesive 21 and efficiently reflected by the white insulating layer 15, and the light extraction efficiency of the light emitting diode element 13 can be improved.
  • the light from the light emitting diode element 13 is emitted from the protruding portion 22 of the transparent adhesive 21 protruding around the light emitting diode element 13, the light emitting diode element is seen from the front as shown in FIG. In addition to 13, the protruding portion 22 around it can also be seen to increase the light emitting area, and the light extraction efficiency of the light emitting diode element 13 can be improved.
  • the surface of the protrusion 22 of the transparent adhesive 21 is concave, the light emitted from the surface of the protrusion 22 spreads in multiple directions and the light extraction efficiency of the light-emitting diode element 13 is increased. Can be improved.
  • connection portions 16al and 16bl are located near the periphery in the housing portion 19 that is separated from the light emitting diode element 13 in the central region in the housing portion 19, the connection portions 16al and 16bl face the white insulating layer 15 from the light emitting diode device 13.
  • the light that passes through the transparent light and the transparent adhesive 21 and is reflected by the white insulating layer 15 can be reduced by being unable to be reflected by the low-reflectivity connecting portions 16al and 16bl.
  • the take-out efficiency can be improved.
  • the insulating layer 15 is provided on the entire substrate 14, the insulating layer 15 is manufactured more accurately than the required position on the substrate 14, that is, the position of the accommodating portion 19 of the reflector 17 more precisely. Can be improved.
  • the insulating layer 15 can improve heat dissipation while securing a preferable reflectance in the range of 30 ⁇ m force to 90 ⁇ m.
  • the thickness of the insulating layer 15 will be described by taking respective thicknesses of 30 / ⁇ ⁇ , 90 m, and 120 m as examples.
  • Figure 7 shows the reflectivity at a wavelength of 460 nm, the reflectivity at a wavelength of 550 nm, and the thermal resistance (° CZW) when the insulating layer 15 has a thickness of 30 m, 90 m, and 120 m. Show. The thinner the insulating layer 15, the lower the reflectivity. On the other hand, the thicker the insulating layer 15, the higher the thermal resistance.
  • the light emitting diode element 13 has a life of 40,000 hours when the junction temperature is used at 100 ° C. Therefore, to increase the life of the light emitting diode element 13, the junction temperature should be 100 ° C. It is preferable to use it while keeping it below C.
  • the ambient temperature in the fixture is 60 ° C to 70 ° C. Since the junction temperature is obtained by adding this temperature increase to the above temperature, the junction temperature exceeds 100 ° C when the thickness of the insulating layer 15 is 120 ⁇ m. In order to be used below, the thickness of the insulating layer 15 needs to be 90 m or less. On the other hand, when the thickness of the insulating layer 15 is reduced, light is transmitted through the insulating layer 15, so that the reflectance decreases. As shown in Fig.
  • the thickness of the insulating layer 15 is the relationship between the thickness of the insulating layer 15 and the total luminous flux (lm) per chip of the light-emitting diode element 13, the decrease in the total luminous flux is the maximum value.
  • the thickness force of the insulating layer 15 ⁇ 20 / ⁇ It is thought that the thickness of the insulating layer 15 should be 30 m or more because it is desired to suppress it to about 10% with respect to ⁇ .
  • the heat dissipation can be improved while ensuring the reflectivity that the thickness of the insulating layer 15 is preferably in the range of 30 ⁇ m force to 90 ⁇ m.
  • FIG. 10 and FIG. 11 show a second embodiment
  • FIG. 10 is a sectional view of the light emitting device
  • FIG. 11 is a front view of the light emitting device.
  • a metal frame 31 constituting the circuit patterns 16a and 16b having the connection portions 16al and 16bl is used, and the base body 32 is formed by molding the metal frame 31.
  • the base body 32 is formed of white resin having insulation properties, and has a housing portion 19 that opens on the connection portions 16al and 16bl of the metal frame 31 corresponding to the position where the light emitting diode element 13 is disposed.
  • the metal frame 31 is disposed and insert-molded so that the connection portions 16al and 16bl are positioned in the peripheral area in the housing portion 19.
  • the light-emitting diode element 13 is fixed on the white base 32 in the center region of the bottom surface 19a in the housing part 19 by the transparent adhesive 21.
  • the other configurations are the same as those in the first embodiment. Therefore, also in the second embodiment, the same operational effects as those of the first embodiment described above can be obtained.
  • FIG. 12 is a graph showing the relationship between reflectance and emission intensity in the wavelength region of 460 nm.
  • the reflectivity was measured for the base material on which the light-emitting diode element 13 is disposed with respect to gold plating, silver plating, and white grease.
  • the gold plating was 26.4%
  • the silver plating was 53.7%
  • the white grease. was 90.0%.
  • the higher the reflectance the higher the emission intensity. Therefore, when the base material is a white resin, the light extraction efficiency of the light emitting diode element 13 having the highest reflectance and light emission intensity is excellent.
  • Fig. 13 is a graph showing the relationship between the wavelength and emission intensity for samples A, B, C, and D
  • Fig. 14 is a table showing the measurement results of the emission efficiency for samples A, B, C, and D. is there.
  • Samples A and C are of the present example in which the base material is white resin and the transparent adhesive 21 is used to fix the light-emitting diode element 13.
  • Samples B and D are the base material that is gold-plated and light-emitting diodes. This is a comparative example using a silver paste for fixing the element 13.
  • the phosphor blending ratio of the phosphor layer 27 is 10% by mass, and the phosphor blending ratio of the phosphor layer 27 is 15% by mass with respect to the samples C and D.
  • the emission spectrum was measured at a distance of 320 mm from each sample using an instantaneous spectrophotometer, and the total luminous flux was measured at a distance of 100 mm from each sample using a goo.
  • Each sample A, C of this example has a higher emission intensity than the corresponding sample B, D of the corresponding comparative example, both at the wavelength in the blue region and at the wavelength in the yellow region.
  • the luminous efficiency was about twice as high.
  • the color temperature also increased.
  • the phosphor layer 27 contains a phosphor on which fine particles having a reflectance of 90% or more are attached by surface treatment, so that the phosphor layer 27 also has a light diffusion effect, The light extraction efficiency can be further improved and the occurrence of color cracks can be reduced.
  • the fine particles high reflectivity fine particles such as alumina, silica, and calcium phosphate, which are smaller than the phosphor particles, are used.
  • the surface-treated phosphor is preferably within a range of 0.5 to LO weight% of the phosphor used for the phosphor layer 27. If the amount is less than 5% by weight, a sufficient diffusion effect cannot be obtained. If the amount is more than 10% by weight, the light transmission efficiency of the phosphor layer 27 becomes an obstacle and the light extraction efficiency decreases.
  • the diffusion layer 26 may be provided as necessary. That is, the diffusion layer 26 may not be provided in the accommodating portion 19 and only the phosphor layer 27 may be provided.
  • the present invention is used for light emitting devices for illumination and display.

Abstract

 発光ダイオード素子13の光の取り出し効率を向上できる発光装置11を提供する。  基板14上の全体に白色の絶縁層15を設け、絶縁層15上に回路パターン層16および反射体17を設ける。反射体17には発光ダイオード素子13を収容する収容部19を設ける。収容部19内の底面中心域で絶縁層15上に、発光ダイオード素子13を透明接着剤21によって配設する。収容部19内の周縁域に位置する回路パターン層16に、発光ダイオード素子13をワイヤボンディングによって電気的に接続する。発光ダイオード素子13から基板14側へ向かう光は、透明接着剤21を透過し、白色の絶縁層15によって効率よく反射するため、発光ダイオード素子13の光の取り出し効率が向上する。

Description

明 細 書
発光装置
技術分野
[0001] 本発明は、発光素子を用いた発光装置に関する。
背景技術
[0002] 従来、発光素子として固体発光素子である発光ダイオード素子を用いた発光装置 は、放熱性に優れた金属製の基板を用い、この基板上に絶縁層および回路パターン 層を順に形成するとともに絶縁層および回路パターン層上に開口する収容部を有す る反射体を設けている。収容部内には、基板上の絶縁層および回路パターン層が臨 んでいる。この収容部内で回路パターン層上に発光ダイオード素子を配設するととも に電気的に接続している。
[0003] また、基板として、白色で反射率の高い榭脂含有材である絶縁基板を用い、発光ダ ィオード素子力 絶縁基板の表面へ向力う光を効率的に反射させて輝度を高くして いる。この場合、発光ダイオード素子を絶縁基板上に形成された一方の回路パター ン上にマウントして発光ダイオード素子の一方の電極を電気的に接続し、発光ダイォ ード素子の他方の電極を他方の回路パターン上にワイヤボンディングによって電気 的に接続している (例えば、特許文献 1参照。 ) o
[0004] また、基板として、プリント配線基板を用い、このプリント配線基板上に収容部を有 する反射体を設け、この反射体の収容部内で、プリント配線基板上に白色フィラーを 混入した絶縁性接着剤を介して発光ダイオード素子を配設するとともに、この発光ダ ィオード素子をプリント配線基板上の回路パターン層にワイヤボンディングによって 電気的に接続している。この発光ダイオード素子には、サファイア基板上に半導体が 積層され、その表面にワイヤボンディングするための陰極側と陽極側の電極がそれ ぞれ設けられた 、わゆるダブルワイヤタイプが用いられて 、る。このタイプの発光ダイ オード素子は、表面側へ透光する光に対して裏面側へ透過する光は 2倍程度あるた め、裏面側に透過する光を反射率の高 ヽ白色フイラ一を混入した絶縁性接着剤で反 射させることにより、光を取り出す効率を高めている (例えば、特許文献 2参照。 )0 特許文献 1 :特許第 3356069号公報 (第 3頁、図 1)
特許文献 2 :特許第 3329573号公報 (第 4頁、図 1— 3)
発明の開示
発明が解決しょうとする課題
[0005] 放熱性に優れた金属製の基板を用いる場合、発光ダイオード素子の熱を効率よく 逃し、発光ダイオード素子の発光効率の低下を防止できる力 この基板上には絶縁 層を形成したうえで回路パターン層を形成する必要があるため、反射体の収容部内 には絶縁層が臨むことになる。しかし、この絶縁層は光の反射率が低ぐ発光ダイォ ード素子力 基板へ向力う光が吸収されやすいため、発光ダイオード素子の光を取り 出す効率が低くなる問題がある。
[0006] また、基板として、白色で反射率の高い榭脂含有材である絶縁基板を用いる場合 でも、発光ダイオード素子を回路パターン上にマウントするために、絶縁基板の表面 の大部分が反射率の低 、回路パターン層で覆われてしま 、、発光ダイオード素子か ら回路パターン層へ向力う光が吸収されやすぐ発光ダイオード素子の光を取り出す 効率が低くなる問題がある。
[0007] また、プリント配線基板上に反射率の高い白色フィラーを混入した絶縁性接着剤を 介して発光ダイオード素子を配設する場合でも、発光ダイオード素子力 反射率の 低いプリント配線基板の表面へ向力つた光が吸収されやすぐ発光ダイオード素子の 光を取り出す効率が低くなる問題がある。
[0008] 本発明は、このような点に鑑みなされたもので、発光素子の光の取り出し効率を向 上できる発光装置を提供することを目的とする。
課題を解決するための手段
[0009] 請求項 1記載の発光装置は、基板と;基板上に設けられた白色の絶縁層と;絶縁層 上に設けられた発光素子接続部を有する回路パターン層と;絶縁層上に配設される とともに回路パターン層の発光素子接続部に電気的に接続された発光素子と;を具 備しているものである。
[0010] 基板は、放熱性に優れた金属材料やガラスエポキシ榭脂材料が用いられ、絶縁層 を設けるので導電性を有していてもよい。白色の絶縁層には、絶縁性を有する白色 榭脂、酸化チタン、アルミナ、シリカ、燐酸カルシウムなどを用いるのが好ましい。回 路パターン層は、一般的に、銅箔のパターンが用いられる。発光素子は、例えば、発 光ダイオード素子などの固体発光素子が用いられる。
[0011] そして、発光素子力 基板側へ向力う光が白色の絶縁層によって効率よく反射し、 発光素子の光の取り出し効率が向上する。
[0012] 請求項 2記載の発光装置は、基板と;基板上に設けられた白色の絶縁層と;絶縁層 上に設けられた発光素子接続部を有する回路パターン層と;基板の絶縁層および回 路パターン層上に設けられるとともに発光素子配設位置に対応して基板の絶縁層お よび回路パターン層の発光素子接続部上に開口する収容部が設けられ、収容部内 の周縁域に回路パターン層の発光素子接続部が位置するように構成された反射体と ;収容部内の底面中心域で絶縁層上に配設されるとともに収容部内の周縁域に位置 する回路パターン層の発光素子接続部にワイヤボンディングによって電気的に接続 された発光素子と;を具備して ヽるものである。
[0013] 反射体は、例えば、 PBT (ポリブチレンテレフタレート)や PPA (ポリフタルアミド)、 P C (ポリカーボネート)などの榭脂を基板上に流し込んで一体に成形してもよ!/、。収容 部は、凹状で、基板に対して反対側へ向けて漸次拡開する円錐台状に形成してもよ い。収容部内には、基板の絶縁層および回路パターン層の発光素子接続部が配置 され、発光素子の配設およびワイヤボンディングによる接続を可能としている。発光 素子は、サファイア基板上に発光ピークが 450〜460nmの青色の光を発光する例 えば窒化ガリウム (GaN)系半導体が積層され、その表面にはワイヤボンディングする ための陰極側と陽極側の電極がそれぞれ設けられたいわゆるダブルワイヤタイプを 用いてもよい。
[0014] そして、発光素子力 基板側へ向力う光が白色の絶縁層によって効率よく反射する とともに反射体によって発光素子の光が反射し、発光素子の光の取り出し効率が向 上する。
[0015] 請求項 3記載の発光装置は、請求項 1または 2記載の発光装置において、絶縁層 は、基板上の全体に設けられているものである。
[0016] 絶縁層は、絶縁層の材料を基板上の全体に塗布して設けることが可能となり、絶縁 層を基板上の必要な位置に正確に設ける場合よりも、容易に設けられる。
[0017] 請求項 4記載の発光装置は、請求項 1ないし 3いずれか一記載の発光装置におい て、絶縁層の厚みは、 30 μ m力ら 90 μ mの範囲であるものである。
[0018] 絶縁層の厚みが 30 mより薄いと、絶縁層を光が透過し、反射率を低下するととも に、絶縁性能が低下してしまう。また、絶縁層の厚みが 90 /z mより厚いと、絶縁層の 熱抵抗が高くなり、放熱性が低下し、発光素子の寿命が短くなつてしまう。
[0019] 請求項 5記載の発光装置は、請求項 1ないし 4いずれか一記載の発光装置におい て、絶縁層の表面の反射率は、波長 400〜740nm域において 85%以上であるもの である。
[0020] 波長 400〜740nm域において絶縁層の表面の反射率が 85%より小さいと、発光 素子力 基板側へ向力う光を絶縁層で反射させる効率が低くなり、発光素子の光の 取り出し効率の十分な向上が得られない。
[0021] 請求項 6記載の発光装置は、請求項 1ないし 5いずれか一記載の発光装置におい て、発光素子は、透明接着剤によって絶縁層上に固定されているものである。
[0022] 透明接着剤には、透明なエポキシ榭脂ゃシリコーン榭脂などを用いてもよい。透明 接着剤を用いることにより、発光素子の光が透過して絶縁層で反射し、銀ペーストを 用いる場合に比べて、光の取り出し効率が向上する。
[0023] 請求項 7記載の発光装置は、発光素子接続部を有する金属フレームと;発光素子 配設位置に対応して金属フレームの発光素子接続部上に開口する収容部を有し、 収容部内の周縁域に発光素子接続部が位置するように金属フレームを配置してイン サート成形された白色の基体と;収容部内の底面中心域に配設されるとともに収容部 内の周縁域に位置する金属フレームの発光素子接続部にワイヤボンディングによつ て電気的に接続された発光素子と;を具備して ヽるものである。
[0024] 金属フレームは、導電性を有する銅板などを用いてもよい。白色の基体には、金属 フレームをインサート成形するので白色榭脂を用いることが好まし 、。
[0025] そして、発光素子から収容部内の底面側へ向かう光が白色の基体によって効率よ く反射し、発光素子の光の取り出し効率が向上する。
[0026] 請求項 8記載の発光装置は、請求項 7記載の発光装置において、基体の表面の反 射率は、波長 400〜740nm域にお!、て 85%以上であるものである。
[0027] 波長 400〜740nm域にお!、て基体の表面の反射率が 85%より小さ!/、と、発光素 子から収容部の底面側へ向かう光を白色の底面で反射させる効率が低ぐ発光素子 の光の取り出し効率の十分な向上が得られない。
[0028] 請求項 9記載の発光装置は、請求項 2、 7、 8 、ずれか一記載の発光装置にぉ 、て
、収容部内の底面の表面積に対する発光素子接続部の表面積の割合が 50%以下 であるものである。
[0029] 収容部内の底面の表面積に対する発光素子接続部の表面積の割合が 50%より大 きいと、発光素子から収容部の底面側へ向かう光を白色の底面で反射させる効率が 低くなり、発光素子の光の取り出し効率の十分な向上が得られない。
[0030] 請求項 10記載の発光装置は、請求項 2、 7、 8、 9いずれか一記載の発光装置にお いて、発光素子は、透明接着剤によって収容部内の底面中心域に固定されているも のである。
[0031] 透明接着剤には、透明なエポキシ榭脂ゃシリコーン榭脂などを用いてもよい。透明 接着剤を用いることにより、発光素子の光が透過して基体で反射し、銀ペーストを用 いる場合に比べて、光の取り出し効率が向上する。
[0032] 請求項 11記載の発光装置は、請求項 10記載の発光装置において、透明接着剤 は、発光素子と収容部内の底面との間から発光素子の周囲に突出して発光素子力 の光が出射する突出部を有するものである。
[0033] 突出部は、例えば、発光素子を透明接着剤に押し付けることにより、透明接着剤の 一部が発光素子の周囲にはみ出して形成される。透明接着剤がはみ出した際に発 光素子の側面に透明接着剤の一部が力かって突出部が形成されても、発光素子の 側面から出射する光が側面の突出部を透過し、光が有効に利用される。
[0034] 請求項 12記載の発光装置は、請求項 10または 11記載の発光装置において、発 光素子接続部は、収容部内の中心域の発光素子力 離反した収容部内の周辺近く に位置されて 、るものである。
[0035] 発光素子接続部は、例えば、ワイヤボンディングを許容する範囲内で最小限の寸 法であり、この発光素子接続部が収容部内の周辺近くに位置すればよい。 発明の効果
[0036] 請求項 1記載の発光装置によれば、基板上に白色の絶縁層および回路パターン層 を設け、絶縁層上に発光素子を配設したうえで回路パターン層の発光素子接続部に 発光素子を電気的に接続するため、発光素子から基板側へ向かう光を白色の絶縁 層によって効率よく反射でき、発光素子の光の取り出し効率を向上できる。
[0037] 請求項 2記載の発光装置によれば、基板上に白色の絶縁層および回路パターン層 を設け、これら絶縁層および回路パターン上に設けた反射体の収容部内の中心域で 絶縁層上に発光素子を配設するとともに収容部内の周縁域に位置する回路パター ン層の発光素子接続部にワイヤボンディングによって電気的に接続するため、発光 素子から基板側へ向かう光を白色の絶縁層によって効率よく反射でき、発光素子の 光の取り出し効率を向上できる。
[0038] 請求項 3記載の発光装置によれば、請求項 1または 2記載の発光装置の効果に加 えて、絶縁層を基板上の全体に設けるため、絶縁層を基板上の必要な位置に正確 に設ける場合よりも、製造性を向上できる。
[0039] 請求項 4記載の発光装置によれば、請求項 1ないし 3いずれか一記載の発光装置 の効果にカ卩えて、絶縁層の厚みを 30 mから 90 mの範囲とするため、反射率を確 保しながら、放熱性を向上させることができる。
[0040] 請求項 5記載の発光装置によれば、請求項 1な!、し 4 、ずれか一記載の発光装置 の効果に加えて、絶縁層の表面の反射率は、波長 400〜740nm域〖こおいて 85% 以上であるため、発光素子力 基板側へ向力 光を白色の絶縁層によって効率よく 反射でき、発光素子の光の取り出し効率を向上できる。
[0041] 請求項 6記載の発光装置によれば、請求項 1ないし 5いずれか一記載の発光装置 の効果に加えて、発光素子を透明接着剤によって絶縁層上に固定しているため、発 光素子の表面側に加えて裏面側からも光を出射するタイプの発光素子の場合でも、 発光素子の裏面側力 出射する光を透明接着剤で透過させて白色の絶縁層により 効率よく反射させることができ、発光素子の光の取り出し効率を向上できる。
[0042] 請求項 7記載の発光装置によれば、収容部内の周縁域に発光素子接続部が位置 するように金属フレームを配置して白色の基体をインサート成形し、この基体の収容 部内の底面中心域に発光素子を配設するとともに収容部内の周縁域に位置する金 属フレームの発光素子接続部にワイヤボンディングによって電気的に接続するため、 発光素子力 収容部内の底面側へ向力う光を白色の底面によって効率よく反射でき 、発光素子の光の取り出し効率を向上できる。
[0043] 請求項 8記載の発光装置によれば、請求項 7記載の発光装置の効果に加えて、基 体の表面の反射率は、波長 400〜740nm域において 85%以上であるため、発光素 子から収容部内の底面側へ向かう光を白色の底面によって効率よく反射でき、発光 素子の光の取り出し効率を向上できる。
[0044] 請求項 9記載の発光装置によれば、請求項 2、 7、 8いずれか一記載の発光装置の 効果に加えて、収容部内の底面の表面積に対する発光素子接続部の表面積の割合 が 50%以下とすることにより、発光素子の光の取り出し効率をより向上できる。
[0045] 請求項 10記載の発光装置によれば、請求項 2、 7、 8、 9いずれか一記載の発光装 置の効果に加えて、発光素子を透明接着剤によって収容部内の底面中心域に固定 しているため、発光素子の表面側に加えて裏面側からも光を出射するタイプの発光 素子の場合でも、発光素子の裏面側力ゝら出射する光を透明接着剤で透過させて白 色の絶縁層や白色の基体により効率よく反射させることができ、発光素子の光の取り 出し効率を向上できる。
[0046] 請求項 11記載の発光装置によれば、請求項 10記載の発光装置の効果に加えて、 発光素子の周囲に突出する透明接着剤の突出部から発光素子力 の光が出射する ので、正面からは発光素子に加えてその周囲の突出部も光って見えて発光面積を 増大させることができ、発光素子の光の取り出し効率を向上できる。
[0047] 請求項 12記載の発光装置によれば、請求項 10または 11記載の発光装置の効果 に加えて、発光素子接続部が収容部内の中心域の発光素子力 離反した収容部内 の周辺近くに位置するので、発光素子から白色の絶縁層や白色の基体へ向かう光、 および透明接着剤を透過して白色の絶縁層や白色の基体で反射する光を反射率の 低い発光素子接続部によって反射できなくなるのを低減でき、発光素子の光の取り 出し効率を向上できる。
図面の簡単な説明 [0048] [図 1]本発明の第 1の実施の形態を示す発光装置の一部の拡大断面図である。
[図 2]同上発光装置の一部を省略した拡大正面図である。
[図 3]同上発光装置の発光素子および透明接着剤の断面図である。
[図 4]同上発光装置の発光素子および透明接着剤の正面図である。
[図 5]同上発光装置の正面図である。
[図 6]同上発光装置の拡大断面図である。
[図 7]同上発光装置の絶縁層の各厚み毎の反射率および熱抵抗を示す表である。
[図 8]同上発光装置の絶縁層の各厚み毎の温度上昇を示す表である。
[図 9]同上発光装置の絶縁層の各厚み毎の全光束および比率を示す表である。
[図 10]本発明の第 2の実施の形態を示す発光装置の断面図である。
[図 11]同上発光装置の正面図である。
[図 12]波長 460nm域における反射率と発光強度との関係を示すグラフである。
[図 13]サンプル A、 B、 C、 Dについての波長と発光強度との関係を示すグラフである
[図 14]サンプル A、 B、 C、 Dについての発光効率の測定結果の表である。
符号の説明
[0049] 11 発光装置
13 発光素子としての発光ダイオード素子
14 基板
15 絶縁層
16 回路パターン層
16al, 16bl 発光素子接続部としての接続部
17 反射体
19 収容部
21 透明接着剤
22 突出部
31 金属フレーム
32 基体 発明を実施するための最良の形態
[0050] 以下、本発明の実施の形態を図面を参照して説明する。
[0051] 図 1ないし図 9に第 1の実施の形態を示し、図 1は発光装置の一部の拡大断面図、 図 2は発光装置の一部を省略した拡大正面図、図 3は発光装置の発光素子および 透明接着剤の断面図、図 4は発光装置の発光素子および透明接着剤の正面図、図 5は発光装置の正面図、図 6は発光装置の拡大断面図、図 7は発光装置の絶縁層の 各厚み毎の反射率および熱抵抗を示す表、図 8は発光装置の絶縁層の各厚み毎の 温度上昇を示す表、図 9は発光装置の絶縁層の各厚み毎の全光束および比率を示 す表である。
[0052] 図 5および図 6に示すように、発光装置 11は、発光モジュール 12を備え、この発光 モジュール 12が例えば照明器具の器具本体などの図示しない発光装置本体に対し て着脱可能に取り付けられる。発光モジュール 12には、複数の発光素子としてのチッ プ状の固体発光素子である発光ダイオード素子 (発光ダイオードチップ) 13がマトリク ス状に配列されている。
[0053] 発光ダイオード素子 13は、サファイア基板上に発光ピークが 450〜460nmの青色 の光を発光する例えば窒化ガリウム (GaN)系半導体が積層されており、その表面に はワイヤボンディングするための陰極側と陽極側の電極がそれぞれ設けられたいわ ゆるダブルワイヤタイプが用いられている。このタイプの発光ダイオード素子 13は、表 面側へ透光する光に対し、サファイア基板を通じて裏面側へ透過する光が 2倍程度 ある特性を有している。
[0054] 図 1に示すように、発光モジュール 12は、放熱性および剛性を有するアルミニウム( A1)やニッケル (Ni)、ガラスエポキシ榭脂などの平板状の基板 14、この基板 14の一 面に形成された白色の絶縁層 15、この絶縁層 15上に形成された回路パターン層 16、 これら絶縁層 15および回路パターン層 16上に一体に形成された反射体 17を有してい る。
[0055] 絶縁層 15は、絶縁性を有する白色榭脂、酸化チタン、アルミナ、シリカ、燐酸カルシ ゥムなどが用いられ、基板 14の一面の全体を覆って形成されている。絶縁層 15の表 面の反射率は波長 400〜740nm域において 85%以上であることが好ましぐ 85% より小さいと、発光ダイオード素子 13から基板 14側へ向力う光を絶縁層 15で反射させ る効率が低ぐ発光ダイオード素子 13の光の取り出し効率の十分な向上が得られなく なる。絶縁層 15の厚みは 30 μ m力 90 μ mの範囲が好ましぐ絶縁層 15の厚みが 3 O /z mより薄いと、絶縁層 15を光が透過し、反射率を低下するとともに、絶縁性能が低 下してしまい、また、絶縁層 15の厚みが 90 /z mより厚いと、絶縁層 15の熱抵抗が高く なり、放熱性が低下し、発光ダイオード素子 13の寿命が短くなつてしまう。
[0056] 回路パターン層 16には、発光素子配設位置である各発光ダイオード素子 13の配設 位置毎に、陰極側と陽極側の回路パターン (配線パターン) 16a, 16bが形成され、そ の回路パターン 16a, 16bの端部が発光ダイオード素子 13を電気的に接続するための 発光素子接続部としての接続部 16al, 16blとして形成されている。回路パターン層 1 6は、例えば、基板 14の絶縁層 15上に Cu層を形成し、回路パターン層 16以外の Cu 層の部分を除去した後、電界メツキによって Cu層上に Ni層および Ag層を形成して 構成されている。
[0057] 反射体 17は、例えば PBT (ポリブチレンテレフタレート)や PPA (ポリフタルアミド)、 PC (ポリカーボネート)などの榭脂を基板 14の一面に流し込んで一体に成形されてい る。各発光ダイオード素子 13の配設位置毎に、各発光ダイオード素子 13を収容する 凹部である複数の収容部 19が形成されている。各収容部 19は、基板 14に対して反対 側へ向けて漸次拡開する円錐台状に形成されている。収容部 19の周囲には、図示し ないレンズを固定するレンズホルダ部 20が同心状に形成されている。
[0058] 図 1および図 2に示すように、各収容部 19内の底面 19aには、その収容部 19の底面 1 9aの中心域を含む大部分に白色の絶縁層 15が臨み、収容部 19の底部の周縁域に 回路パターン 16a, 16bの接続部 16al, 16blが位置している。接続部 16al, 16blは、ヮ ィャボンディングを許容する範囲内で必要最小限の寸法とされ、この接続部 16al, 16 blが収容部 19内の中心域に配設される発光ダイオード素子 13力 離反した収容部 1 9内の周辺近くに位置する。そして、収容部 19内の底面 19aの表面積に対する接続部 16al, 16blの表面積の割合は 50%以下であり、 50%より大きいと、発光ダイオード 素子 13から収容部 19の底面 19a側へ向力う光を白色の絶縁層 15で反射させる効率が 低くなり、発光ダイオード素子 13の光の取り出し効率の十分な向上が得られなくなる。 [0059] 図 3および図 4に示すように、各発光ダイオード素子 13は、収容部 19の底面 19aの 中心域で絶縁層 15上に例えば透明なエポキシ榭脂ゃシリコーン榭脂などの透明接 着剤 21を用いて固定されている。固定作業では、収容部 19の底面 19aの中心域で絶 縁層 15上に透明接着剤 21を塗布し、この透明接着剤 21に発光ダイオード素子 13を 押し付ける。このとき、発光ダイオード素子 13と絶縁層 15との間から発光ダイオード素 子 13の周囲に透明接着剤 21がはみ出し、発光ダイオード素子 13の周囲に突出部 22 が形成されている。突出部 22は発光ダイオード素子 13の側面の下部側にも力かって おり、透明接着剤 21が凝固する際の収縮によって突出部 22の表面が凹面となってい る。
[0060] 図 1および図 2に示すように、発光ダイオード素子 13の表面の各電極と各回路パタ ーン 16a, 16bの接続部 16al, 16blとは、ワイヤボンディングによるボンディングワイヤ 2 3によって電気的に接続されて!ヽる。
[0061] 図 1に示すように、各収容部 19には、発光ダイオード素子 13を被覆する被覆層 25が 形成されている。この被覆層 25は、発光ダイオード素子 13を被覆する拡散層 26と、こ の拡散層 26の上層で収容部 19の開口側に配設される蛍光体層 27との 2層に形成さ れている。
[0062] 拡散層 26は、透光性を有するシリコーン榭脂ゃエポキシ榭脂などの熱硬化性透明 榭脂にアルミナ(Al O )や TiO、 BaSO、 SiO、 Y Oなどの拡散剤を配合したもの
2 3 2 4 2 2 3
で、この拡散剤を配合した榭脂を、収容部 19内の発光ダイオード素子 13よりも高い位 置まで充填し、熱硬化させることにより形成されている。
[0063] 拡散層 26と蛍光体層 27との接合面 (境界面) 28は、発光ダイオード素子 13側(図 1 では下面側)へ凹面となる湾曲面に形成されている。
[0064] 蛍光体層 27は、透光性を有するシリコーン榭脂ゃエポキシ榭脂などの熱硬化性透 明榭脂に発光ダイオード素子 13からの青色発光を受光して黄色に蛍光発光する黄 色蛍光体を主体として配合したもので、拡散層 26の熱硬化形成後、蛍光体を配合し た榭脂を収容部 19内に充填し、熱硬化させることにより形成されている。蛍光体として は、黄色蛍光体が主体であるが、赤蛍光体なども配合されている。
[0065] なお、発光装置 11とレンズを組み合わせて照明装置を構成できる。 [0066] 次に、発光装置 11の作用を説明する。
[0067] 各陰極側と陽極側の回路パターン 16a, 16b間に外部力 所定の直流電圧が印加さ れると、各発光ダイオード素子 13が青色発光する。この青色発光は、拡散層 26により 多方向へ拡散してから蛍光体層 27内に入射し、ここで黄色蛍光体を多方向から励起 して黄色に発光させる。そして、発光ダイオード素子 13からの青色光と黄色蛍光体か らの黄色光とが混色し、白色光となって収容部 19力 外部へ放射される。
[0068] したがって、この発光装置 11では、発光ダイオード素子 13の微小な発光を拡散層 2 6により多方向へ拡散し、多方向から蛍光体層 27の黄色蛍光体を励起させて黄色に 発光させ、かっこの黄色光と青色光とを混色させて白色光を発光させるので、白色光 の色われ (色むら)を低減できる。
[0069] また、発光ダイオード素子 13力 基板 14側へ向力う光を白色の絶縁層 15によって効 率よく反射させることができるため、発光ダイオード素子 13の光の取り出し効率を向上 できる。
[0070] 特に、収容部 19内の底面 19aの表面積に対する接続部 16al, 16blの表面積の割合 は 50%以下であること、および波長 400〜740nm域において絶縁層 15の表面の反 射率が 85%以上であることにより、発光ダイオード素子 13から基板 14側へ向力う光を 白色の絶縁層 15によって効率よく反射でき、発光ダイオード素子 13の光の取り出し効 率をより向上できる。
[0071] また、発光ダイオード素子 13を透明接着剤 21によって収容部 19内の底面 19aの中 心域で白色の絶縁層 15上に固定しているため、発光ダイオード素子 13の裏面側から 出射する光を透明接着剤 21で透過させて白色の絶縁層 15により効率よく反射させる ことができ、発光ダイオード素子 13の光の取り出し効率を向上できる。
[0072] し力も、発光ダイオード素子 13の周囲に突出する透明接着剤 21の突出部 22から発 光ダイオード素子 13からの光が出射するので、図 4に示すように正面からは発光ダイ オード素子 13に加えてその周囲の突出部 22も光って見えて発光面積を増大させるこ とができ、発光ダイオード素子 13の光の取り出し効率を向上できる。
[0073] さらに、透明接着剤 21の突出部 22の表面は凹面であるため、突出部 22の表面から 出射する光が多方向に向力つて広がり、発光ダイオード素子 13の光の取り出し効率 を向上できる。
[0074] また、接続部 16al, 16blが収容部 19内の中心域の発光ダイオード素子 13から離反 した収容部 19内の周辺近くに位置するので、発光ダイオード素子 13から白色の絶縁 層 15へ向カゝぅ光、および透明接着剤 21を透過して白色の絶縁層 15で反射する光を 反射率の低い接続部 16al, 16blによって反射できなくなるのを低減でき、発光ダイォ ード素子 13の光の取り出し効率を向上できる。
[0075] また、絶縁層 15を基板 14上の全体に設けるため、絶縁層 15を基板 14上の必要な位 置つまり反射体 17の収容部 19の位置にのみ正確に設ける場合よりも、製造性を向上 できる。
[0076] また、絶縁層 15の厚みは 30 μ m力ら 90 μ mの範囲が好ましぐ反射率を確保しな がら、放熱性を向上させることができる。
[0077] ここで、絶縁層 15の厚みについて、 30 /ζ πι、 90 m、 120 mの各厚みを例にとつ て説明する。図 7には、絶縁層 15が 30 m、 90 m、 120 mの各厚みの場合にお いて、波長 460nmでの反射率と、波長 550nmでの反射率と、熱抵抗 (°CZW)とを 示す。絶縁層 15の厚みが薄い方が反射率が低下し、一方、絶縁層 15の厚みが厚い 方が熱抵抗が高くなる特性がある。
[0078] 発光ダイオード素子 13は、ジャンクション温度を 100°Cで使用した場合の発光ダイ オード素子 13の寿命は 40000時間であるので、発光ダイオード素子 13の寿命を長く するにはジャンクション温度を 100°C以下に抑えて使用するのが好ましい。
[0079] 発光ダイオード素子 13の 1チップ当たりの W数が 0. 06Wである場合、 0. 06Wの電 力の投入で点灯させた場合の温度上昇は、図 8に示すように、絶縁層 15の厚みが薄 い方が熱抵抗が低いために温度上昇が低ぐ一方、絶縁層 15の厚みが厚い方が熱 抵抗が高くなるために温度上昇が高くなる。
[0080] 例えば 50001mの光束が得られる発光ダイオード素子を光源とする密閉型照明器 具では、器具内の雰囲気温度が 60°C〜70°Cになる。この温度に、上述した温度上 昇分を足した値がジャンクション温度となるので、絶縁層 15の厚みが 120 μ mではジ ヤンクシヨン温度が 100°Cを超えてしまうため、ジャンクション温度を 100°C以下で使 用するためには、絶縁層 15の厚みは 90 m以下とする必要がある。 [0081] 一方、絶縁層 15の厚みを薄くした場合、絶縁層 15を光が透過してしまうために反射 率が低下してしまう。図 9に絶縁層 15の厚みと発光ダイオード素子 13の 1チップ当たり の全光束 (lm)との関係を示すように、全光束の低下は最大値である絶縁層 15の厚み 力 ^20 /ζ πιの場合に対して 10%程度に抑えたいことから、絶縁層 15の厚みは 30 m以上必要であると考えられる。
[0082] したがって、絶縁層 15の厚みは 30 μ m力ら 90 μ mの範囲が好ましぐ反射率を確 保しながら、放熱性を向上させることができる。
[0083] 次に、図 10および図 11に第 2の実施の形態を示し、図 10は発光装置の断面図、 図 11は発光装置の正面図である。
[0084] 接続部 16al, 16blを有する回路パターン 16a, 16bを構成する金属フレーム 31が用 いられ、この金属フレーム 31をモールドして基体 32が形成されている。基体 32は、絶 縁性を有する白色榭脂にて形成され、発光ダイオード素子 13の配設位置に対応して 金属フレーム 31の接続部 16al, 16bl上に開口する収容部 19を有し、この収容部 19内 の周縁域に接続部 16al, 16blが位置するように金属フレーム 31を配置してインサート 成形されている。発光ダイオード素子 13は透明接着剤 21によって収容部 19内の底面 19aの中心域で白色の基体 32上に固定されている。そして、その他の構成は第 1の実 施の形態と同様である。したがって、この第 2の実施の形態においても、上述した第 1 の実施の形態と同様の作用効果を奏する。
[0085] 次に、発光ダイオード素子 13の光の取り出し効率の向上について、実験データを 参照して説明する。
[0086] 図 12は波長 460nm域における反射率と発光強度との関係を示すグラフである。
[0087] 反射率は、発光ダイオード素子 13を配設する下地素材が金メッキ、銀メツキ、白色 榭脂について測定したもので、金メッキは 26. 4%、銀メツキは 53. 7%、白色榭脂は 90. 0%であった。そして、反射率が高いほど、発光強度が高くなる結果が得られた。 したがって、下地素材が白色樹脂の場合に、最も反射率、発光強度が高ぐ発光ダイ オード素子 13の光の取り出し効率が優れるものであった。
[0088] 図 13はサンプル A、 B、 C、 Dについての波長と発光強度との関係を示すグラフで あり、図 14はサンプル A、 B、 C、 Dについての発光効率の測定結果の表である。 [0089] サンプル A、 Cは下地素材が白色樹脂で、発光ダイオード素子 13の固定に透明接 着剤 21を用いた本実施例のものであり、サンプル B、 Dは下地素材が金メッキ、発光 ダイオード素子 13の固定に銀ペーストを用いた比較例である。サンプル A、 Bは蛍光 体層 27の蛍光体の配合比を 10質量%、サンプル C、 Dに対して蛍光体層 27の蛍光 体の配合比を 15質量%としている。そして、瞬間分光光度計を用いて各サンプルか ら 320mmの距離で発光スペクトルを測定し、ゴ-ォを用いて各サンプルから 100m mの距離で全光束を測定した。
[0090] 本実施例の各サンプル A、 Cは、対応する比較例の各サンプル B、 Dに比べて、そ れぞれ青色域の波長および黄色域の波長とも発光強度が高くなり、それぞれ約 2倍 程度の発光効率を得ることができた。また、色温度についても高くなつた。
[0091] したがって、このような高い発光効率は、下地素材を白色榭脂とし、発光ダイオード 素子 13の固定に透明接着剤 21を用いることによって得ることができた。
[0092] なお、蛍光体層 27には、反射率 90%以上の微粒子を表面処理して付着させた蛍 光体を含有させることにより、蛍光体層 27においても光の拡散効果が得られ、光取り 出し効率をより向上できるとともに、色われの発生を低減できる。この場合、微粒子に は、蛍光体の粒子よりも小さい、例えばアルミナ、シリカ、燐酸カルシウムなどの高反 射率微粒子を用いる。表面処理した蛍光体は、蛍光体層 27に用いられる蛍光体の 0 . 5〜: LO重量%の範囲内とすることが好ましい。 0. 5重量%より少ないと十分な拡散 効果が得られず、 10重量%より多いと蛍光体層 27の光の透過の障害となって光の取 り出し効率が低下してしまう。
[0093] また、拡散層 26は、必要に応じて設ければよぐつまり、収容部 19内には拡散層 26 を設けず、蛍光体層 27のみを設けるようにしてもよい。
産業上の利用可能性
[0094] 本発明は、照明用や表示用の発光装置などに利用される。

Claims

請求の範囲
[1] 基板と;
基板上に設けられた白色の絶縁層と;
絶縁層上に設けられた発光素子接続部を有する回路パターン層と;
絶縁層上に配設されるとともに回路パターン層の発光素子接続部に電気的に接続 された発光素子と;
を具備して 、ることを特徴とする発光装置。
[2] 基板と;
基板上に設けられた白色の絶縁層と;
絶縁層上に設けられた発光素子接続部を有する回路パターン層と;
基板の絶縁層および回路パターン層上に設けられるとともに発光素子配設位置に 対応して基板の絶縁層および回路パターン層の発光素子接続部上に開口する収容 部が設けられ、収容部内の周縁域に回路パターン層の発光素子接続部が位置する ように構成された反射体と;
収容部内の底面中心域で絶縁層上に配設されるとともに収容部内の周縁域に位 置する回路パターン層の発光素子接続部にワイヤボンディングによって電気的に接 続された発光素子と;
を具備して 、ることを特徴とする発光装置。
[3] 絶縁層は、基板上の全体に設けられて!/、る
ことを特徴とする請求項 1または 2記載の発光装置。
[4] 絶縁層の厚みは、 30 μ m力ら 90 μ mの範囲である
ことを特徴とする請求項 1な 、し 3 、ずれか一記載の発光装置。
[5] 絶縁層の表面の反射率は、波長 400〜740nm域において 85%以上である
ことを特徴とする請求項 1な 、し 4 、ずれか一記載の発光装置。
[6] 発光素子は、透明接着剤によって絶縁層上に固定されている
ことを特徴とする請求項 1な 、し 5 、ずれか一記載の発光装置。
[7] 発光素子接続部を有する金属フレームと;
発光素子配設位置に対応して金属フレームの発光素子接続部上に開口する収容 部を有し、収容部内の周縁域に発光素子接続部が位置するように金属フレームを配 置してインサート成形された白色の基体と;
収容部内の底面中心域に配設されるとともに収容部内の周縁域に位置する金属フ レームの発光素子接続部にワイヤボンディングによって電気的に接続された発光素 子と;
を具備して 、ることを特徴とする発光装置。
[8] 基体の表面の反射率は、波長 400〜740nm域において 85%以上である
ことを特徴とする請求項 7記載の発光装置。
[9] 収容部内の底面の表面積に対する発光素子接続部の表面積の割合が 50%以下 である
ことを特徴とする請求項 2、 7、 8いずれか一記載の発光装置。
[10] 発光素子は、透明接着剤によって収容部内の底面中心域に固定されている
ことを特徴とする請求項 2、 7、 8、 9いずれか一記載の発光装置。
[11] 透明接着剤は、発光素子と収容部内の底面との間から発光素子の周囲に突出して 発光素子からの光が出射する突出部を有する
ことを特徴とする請求項 10記載の発光装置。
[12] 発光素子接続部は、収容部内の中心域の発光素子力 離反した収容部内の周辺 近くに位置されている
ことを特徴とする請求項 10または 11記載の発光装置。
PCT/JP2006/323778 2005-12-20 2006-11-29 発光装置 WO2007072659A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-366504 2005-12-20
JP2005366504 2005-12-20
JP2006-023636 2006-01-31
JP2006023636 2006-01-31
JP2006-254646 2006-09-20
JP2006254646 2006-09-20

Publications (1)

Publication Number Publication Date
WO2007072659A1 true WO2007072659A1 (ja) 2007-06-28

Family

ID=38188440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323778 WO2007072659A1 (ja) 2005-12-20 2006-11-29 発光装置

Country Status (2)

Country Link
TW (1) TW200733430A (ja)
WO (1) WO2007072659A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150880A1 (ja) * 2009-06-26 2010-12-29 株式会社朝日ラバー 白色反射材及びその製造方法
WO2011160968A1 (de) * 2010-06-24 2011-12-29 Osram Opto Semiconductors Gmbh Optoelektronisches halbleiterbauteil
WO2012007245A1 (de) * 2010-07-15 2012-01-19 Osram Opto Semiconductors Gmbh Optoelektronisches halbleiterbauteil
US9574050B2 (en) 2010-03-23 2017-02-21 Asahi Rubber Inc. Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877071U (ja) * 1981-11-17 1983-05-24 三洋電機株式会社 発光ダイオ−ド表示器
JP2001148514A (ja) * 1999-11-18 2001-05-29 Matsushita Electric Works Ltd 照明光源
JP2003124528A (ja) * 2001-08-09 2003-04-25 Matsushita Electric Ind Co Ltd Led照明装置およびカード型led照明光源
JP2004207655A (ja) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd 金属ベース基板および発光ユニット
JP2004266168A (ja) * 2003-03-03 2004-09-24 Sanyu Rec Co Ltd 発光体を備えた電子機器及びその製造方法
JP2005330459A (ja) * 2003-10-28 2005-12-02 Nichia Chem Ind Ltd 蛍光物質および発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877071U (ja) * 1981-11-17 1983-05-24 三洋電機株式会社 発光ダイオ−ド表示器
JP2001148514A (ja) * 1999-11-18 2001-05-29 Matsushita Electric Works Ltd 照明光源
JP2003124528A (ja) * 2001-08-09 2003-04-25 Matsushita Electric Ind Co Ltd Led照明装置およびカード型led照明光源
JP2004207655A (ja) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd 金属ベース基板および発光ユニット
JP2004266168A (ja) * 2003-03-03 2004-09-24 Sanyu Rec Co Ltd 発光体を備えた電子機器及びその製造方法
JP2005330459A (ja) * 2003-10-28 2005-12-02 Nichia Chem Ind Ltd 蛍光物質および発光装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2448026A1 (en) * 2009-06-26 2012-05-02 Asahi Rubber Inc. White color reflecting material and process for production thereof
JPWO2010150880A1 (ja) * 2009-06-26 2012-12-10 株式会社朝日ラバー 白色反射材及びその製造方法
WO2010150880A1 (ja) * 2009-06-26 2010-12-29 株式会社朝日ラバー 白色反射材及びその製造方法
EP2448026A4 (en) * 2009-06-26 2013-08-14 Asahi Rubber Inc REFLECTIVE MATERIAL OF WHITE COLOR AND PRODUCTION PROCESS
US8704258B2 (en) 2009-06-26 2014-04-22 Asahi Rubber Inc. White color reflecting material and process for production thereof
JP5746620B2 (ja) * 2009-06-26 2015-07-08 株式会社朝日ラバー 白色反射材及びその製造方法
US9574050B2 (en) 2010-03-23 2017-02-21 Asahi Rubber Inc. Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
US9818921B2 (en) 2010-06-24 2017-11-14 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
WO2011160968A1 (de) * 2010-06-24 2011-12-29 Osram Opto Semiconductors Gmbh Optoelektronisches halbleiterbauteil
DE102010024864B4 (de) * 2010-06-24 2021-01-21 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Halbleiterbauteil
CN102959746A (zh) * 2010-06-24 2013-03-06 欧司朗光电半导体有限公司 光电子半导体构件
US10217915B2 (en) 2010-06-24 2019-02-26 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
CN103038904A (zh) * 2010-07-15 2013-04-10 奥斯兰姆奥普托半导体有限责任公司 光电子半导体组件
US8860062B2 (en) 2010-07-15 2014-10-14 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
WO2012007245A1 (de) * 2010-07-15 2012-01-19 Osram Opto Semiconductors Gmbh Optoelektronisches halbleiterbauteil

Also Published As

Publication number Publication date
TW200733430A (en) 2007-09-01

Similar Documents

Publication Publication Date Title
JP5273486B2 (ja) 照明装置
JP4989614B2 (ja) 高出力ledパッケージの製造方法
RU2473152C1 (ru) Полупроводниковое светоизлучающее устройство
CN107275301B (zh) 发光装置
KR101360732B1 (ko) 발광 다이오드 패키지
JP4678391B2 (ja) 照明装置
JP4808550B2 (ja) 発光ダイオード光源装置、照明装置、表示装置及び交通信号機
JP2003152225A (ja) 発光装置
JP2006049814A (ja) 発光装置および照明装置
CN103579466A (zh) 发光装置
US9553245B2 (en) Light emitting device
JP2011258991A (ja) 高出力ledパッケージ及びその製造方法
KR20130119908A (ko) 발광 다이오드
JP2007180430A (ja) 発光ダイオード装置
JP2007294890A (ja) 発光装置
JP2007294867A (ja) 発光装置
JP6225910B2 (ja) 発光装置
JP2007266222A (ja) 発光素子搭載用基板、発光素子収納用パッケージ、発光装置および照明装置
JP5530321B2 (ja) ランプ及び照明装置
WO2007072659A1 (ja) 発光装置
JP2006237571A (ja) 発光ダイオード装置
JP4511238B2 (ja) 発光素子収納用パッケージおよび発光装置ならびに照明装置
JP2005347467A (ja) 発光デバイス及び照明装置
JP2005310911A (ja) 発光素子収納用パッケージおよび発光装置ならびに照明装置
JP4206334B2 (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP