JP7356798B2 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP7356798B2
JP7356798B2 JP2019001432A JP2019001432A JP7356798B2 JP 7356798 B2 JP7356798 B2 JP 7356798B2 JP 2019001432 A JP2019001432 A JP 2019001432A JP 2019001432 A JP2019001432 A JP 2019001432A JP 7356798 B2 JP7356798 B2 JP 7356798B2
Authority
JP
Japan
Prior art keywords
light
wavelength
wavelength conversion
layer
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019001432A
Other languages
English (en)
Other versions
JP2019215515A (ja
Inventor
熙 光 宋
胄 永 尹
榮 根 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Display Co Ltd filed Critical Samsung Display Co Ltd
Publication of JP2019215515A publication Critical patent/JP2019215515A/ja
Application granted granted Critical
Publication of JP7356798B2 publication Critical patent/JP7356798B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Led Device Packages (AREA)

Description

本発明は、表示装置に関する。
液晶表示装置は、バックライトアセンブリからの光を受けて映像を表示する。一部のバックライトアセンブリは光源と導光板を含む。導光板は、光源からの光を受けて表示パネルの側へと光の進行方向をガイドする。一部の製品は、光源から提供される光が白色であり、この白色の光を、表示パネルにあるカラーフィルターでフィルタリングして色を実現する。
最近では、青色LEDを使用し、蛍光体として赤色光および緑色光を放出する量子ドット(QD)を用いて白色光を実現する技術が多数登場している。これは、量子ドットを用いて実現される白色光が高輝度および優れた色再現性を持つからである。それでも、これをLEDバックライトユニットに適用する場合、発生する可能性のある光損失を低減し且つ色の均一性を改善するための研究の必要性は、依然として求められている。
本発明が解決しようとする課題は、一体化された単一の部材として光ガイド機能と波長変換機能を同時に行うことができ、特には、近紫外光(nUV;near UV;ピーク波長が特には320~400nm)または紫色光(ピーク波長が400~420nm)を放出する光源の条件で光抽出に最適化されたバックライトユニット、表示装置および光学部材を提供することにある。
本発明の課題は上述した技術的課題に制限されず、上述していない別の技術的課題は以降の記載から当業者に明確に理解できるだろう。
上記課題を解決するための本発明の一実施形態に係るバックライトユニットは、(i)導光板と、(ii)前記導光板に配置され、TiO2のアナターゼ結晶型の散乱粒子であって粒子サイズが200nm以下である散乱粒子を含む波長変換層を含む光学部材と、(iii)前記導光板の一側面に配置された光源とを含んでいる。上記課題を解決するための本発明の一実施形態に係る表示装置は、(i)導光板と、(ii)前記導光板に配置され、TiO2のアナターゼ結晶型の散乱粒子であって粒子サイズが200nm以下である散乱粒子を含む波長変換層を含む光学部材、及び(iii)前記導光板の一側に配置された光源を含むバックライトユニット;と、上記バックライトユニットの上に配置された表示パネルを含んでいる。
一実施形態によれば、一体化された単一の部材として光ガイド機能と波長変換機能を同時に行うことができ、特には、ピーク波長が350~420nmまたは350~420nmのLEDチップ、例えば400nmの紫色LEDチップを含む、近紫外(nUV;near UV)-紫色光源の条件で光抽出に最適化されたバックライトユニット、表示装置および光学部材を提供することができる。
本発明の実施形態による効果は以上で例示された内容によって制限されず、更に様々な効果が本明細書内に含まれている。
一実施形態に係る光学部材と光源の斜視図である。 図1のII-II’線に沿った断面図である。 図2の導光板の変形例に係る光学部材の断面図である。 様々な実施形態に係る低屈折層の断面図(1)である。 様々な実施形態に係る低屈折層の断面図(2)である。 図1の光源の断面図である。 図1の波長変換層の断面図である。 図7の波長変換粒子を拡大して示す図である。 図7の散乱粒子を拡大して示す図である。 第2波長変換粒子および第3波長変換粒子の波長による光吸収率を示すグラフである。 互いに異なる2種類の散乱粒子の波長による散乱率を説明するためのグラフである。 散乱粒子の大きさによる光散乱率を説明するためのグラフである。 一実施形態の散乱粒子を含む光学部材の光源による緑色光および赤色光の強度を説明するためのグラフである。 他の実施形態に係る光学部材と光源の斜視図である。 他の実施形態に係る光学部材の断面図である。 他の実施形態に係る光源の断面図である。 他の実施形態に係る波長変換層の断面図である。 一実施形態(導光板の変形例を含む)による表示装置の分解斜視図である。 一実施形態に係る表示装置の断面図である。 他の実施形態に係る光源の断面図である。 他の実施形態に係る波長変換層の断面図である。 別の実施形態に係る表示装置の分解斜視図である。 別の実施形態に係る表示装置の断面図である。 別の実施形態に係る光源の断面図である。 別の実施形態に係る波長変換層の断面図である。
図1は一実施形態に係る光学部材と光源の斜視図であり、図2は図1のII-II’線に沿った断面図であり、図3は図2の導光板の変形例による光学部材の断面図であり、図4および図5は、様々な実施形態に係る低屈折層の断面図である。
図1乃至図5を参照すると、バックライトユニットは、光源400および光学部材100を含む。光源400は、光学部材100の一側に配置できる。光学部材は、光源から出射された光を受けて、光路および/または光の波長(すなわち、これらの少なくとも一方)を変換または調節する役割を果たすことができる。
バックライトユニットBLUの一適用例において、光源400は、プリント基板401と、プリント基板401に実装された複数のLED430とを含むことができる。光源400は、導光板10の少なくとも一側面10sに隣接して配置されうる。また、光源400が含むLED430は、導光板10の少なくとも一側面10sに隣接して配置されうる。図面では、導光板10の一長辺に位置する側面10s1に、複数のLED430が配置された場合を例示したが、これに限定されるものではない。例えば、両長辺の側面10s1、10s3のいずれにも隣接して配置されてもよく、一短辺または両短辺の側面10s2、10s4に隣接して配置されてもよい。図1の実施形態において、LED430が隣接して配置された、導光板10の一長辺の側面10s1は、LED430の光が直接入射される入光面(図面において、説明の便宜上「10s1」と表記する。)となり、それに対向する他の長辺の側面10s3は、対光面(図面において、説明の便宜上、「10s3」と表記する)となる。
一実施形態において、LED430は、図1に示すように、上面に光を放出する上面発光LEDであり得る。但し、これに制限されず、LED430は、図示の如く、側面に光を放出する側面発光LEDであり得る。
光源400の構造および発光原理についての詳細な説明は、図3を参照して後述する。
光学部材100は、導光板10、導光板10上に配置された低屈折層20、低屈折層20上に配置された波長変換層30、および波長変換層30上に配置されたパッシベーション層40を含む。導光板10、低屈折層20、波長変換層30およびパッシベーション層40は、互に一体化されるように結合することができる。
導光板10は、光の進行経路を導く役割を果たす。光源は導光板の一側に(一つの側端面に沿って)配置される。
導光板10は略多角柱状を有することができる。導光板10の平面形状は長方形であり得るが、これらに制限されるものではない。例示的な実施形態において、導光板10は、平面形状が長方形の六角柱状であって、上面10a、下面10b、4つの側面10s(10s1、10s2、10s3、10s4)を含むことができる。
一実施形態において、導光板10の上面10aと下面10bは、それぞれ、一つの幾何学的な平面上に位置し、上面10aが位置する平面と下面10bが位置する平面とは概して平行であるから、導光板10が全体として均一な厚さを持つことができる。
いくつかの実施形態(図3参照)において、導光板は、上面10aと側面10sとの間、および/または、下面10bと側面10sとの間に、面取り状などの、傾斜したエッジ面10s11、10s12をさらに含むことができる。例えば、一側面10s1(例えば、入光面)の上辺から平坦な上面10aの縁にまで延び、厚さ方向上方に向かうにつれて内側へと傾斜する第1エッジ面10s11を含むことができる。また、これとともに、または、これに代えて、一側面10s1の下辺から平坦な下面10bの縁にまで延び、厚さ方向下方に向かうにつれて内側へと傾斜する第2エッジ面10s12を含むことができる。これにより、導光板10を横切るように、一側面10s1からそれに対向する他の側面10s3へと向かう場合、導光板10の厚さは、一旦増加した後、上面10aおよび下面10bが平坦な形状を持つために一定の厚さを持ち、再度減少するのでありうる。通常、傾斜するエッジ面10s11、10s12は、面取り(chamfer)面(例えば、第1面取り面10s11、第2面取り面10s12)と呼びうる。但し、これに限定されず、導光板は第1エッジ面10s11(例えば、第1面取り面)および第2エッジ面10s12(例えば、第2面取り面)のいずれか一方のみを持つことができる。上述した第1面10s11および第2エッジ面10s12は、導光板10の周辺部(例えば、一側面10s1)に沿って、うろつき回る光を、効率よく導光板10の外部(例えば、波長変換層30)に向かって出射されるようにする役割を果たす。
以下、上面10aと側面10sが、エッジ面10s11、10s12を有することなしに、直接接して90°の角度を持つ場合(図1~2の実施形態)について説明する。
導光板10の下面10bには散乱パターン70が配置できる。散乱パターン70は、導光板10の内部からの全反射により、進行する光の進行角度を変えて、導光板10の外部へと出射させる役割を果たす。
一実施形態において、散乱パターン70は、導光板10とは別の層またはパターンとして提供できる。例えば、導光板10の下面10b上に、凸パターンまたは凹パターン(例えば、導光板10の長辺方向に延びるリブ状の突起または溝、または島状の突起または凹部)を含むパターン層を形成するか、或いは印刷パターンを形成して、散乱パターン70として機能するようにすることができる。図面では、散乱パターン70の全てが、一定の形状の突出パターンとなっているが、これに制限されるものではない。散乱パターン70は、凸パターンおよび凹パターンを含むことができ、凸パターンと、凸パターンの一部の領域(例えば、各凸パターンの中心領域)に形成された凹部(recess)または溝(groove)とを有するパターンを含むこともできる。
他の実施形態において、散乱パターン70は、導光板10自体の表面形状から形成されるのであってもよい。例えば、導光板10の下面10bに、凹部または溝を形成して散乱パターン70として機能するようにすることができる。
散乱パターン70の配置密度は領域によって異なりうる。例えば、進行する光量が豊富である、入光面10s1に隣接した領域では配置密度を小さくし、進行する光量が相対的に小さい、対光面10s3に隣接した領域では、配置密度を大きくすることができる。
導光板10は、無機物質または有機物質を含むことができる。例えば、導光板10はガラスからなり得るが、これらに制限されるものではない。
導光板10の上面には低屈折層20が配置できる。低屈折層20は、導光板10の上面に直接形成され、導光板10の上面と接触することができる。低屈折層20は、導光板10と波長変換層30との間に介在し、導光板10の全反射を助ける。
導光板10の屈折率と低屈折層20との屈折率の差は0.2以上であり得る。低屈折層20の屈折率が導光板10の屈折率よりも0.2以上小さい場合、導光板10の上面を介して十分な全反射が行われ得る。導光板10の屈折率と、低屈折層20の屈折率との差の上限には制限がないが、通常適用される、導光板10の材料の屈折率と低屈折層20の屈折率を考慮するとき、1以下であり得る。
低屈折層20の屈折率は1.2乃至1.4の範囲にあり得る。低屈折層20の屈折率が1.2以上である場合には、過度な製造コストの増加を防ぐことができ、低屈折層20の屈折率が1.4以下である場合には、導光板10の上面の全反射臨界角を十分に小さくすることに有利である。例示的な実施形態において、約1.25の屈折率を有する低屈折層20が適用できる。
上述した低屈折率を示すようにするために、その屈折層20は、微細なボイド(空隙)を含むことができる。各ボイドの内部は、真空とするか、或いは空気層、気体などで満たすことができる。各ボイドの内部空間は、パーティクルやマトリクスなどによって取り囲まれて画定されうる。さらに詳細な説明のために、図3および図4が参照される。
一実施形態において、低屈折層20は、図3に示すように、複数のパーティクルPTと、これらパーティクルPTを包み込んで全体が一つに連結されたマトリクスMXと、複数のボイドVDとを含むことができる。パーティクルPTは、低屈折層20の屈折率および機械的強度を調節するためのフィラー(filler)であり得る。
低屈折層20には、複数のマトリクスMXの内部にパーティクルPTが分散配置され、マトリクスMXが部分的に開くことで当該部位にボイドVDが形成されうる。たとえば、複数のパーティクルPTとマトリクスMXを溶媒に混合した後、乾燥および/または硬化させると、溶媒が蒸発するが、この際、マトリクスMX中のところどころにボイドVDが形成されうる。
他の実施形態において、低屈折層20は、図4に示すように、パーティクルPTを含むことなく、マトリクスMXとボイドVDを含むこともできる。例えば、低屈折層20は、発泡樹脂のように全体が一つに連結されたマトリクスMX、およびその内部に配置された複数のボイドVDを含むこともできる。
低屈折層20上には波長変換層30が配置される。波長変換層30は、波長変換層30に入射された少なくとも一部の光の波長を変換する役割を果たす。波長変換層は、第2バインダー層31、波長変換粒子P2、P3および散乱粒子35を含む。波長変換粒子P2、P3と散乱粒子35についての詳細な説明は後述する。
波長変換層30は低屈折層20よりも厚くてもよい。波長変換層30の厚さは約10~50μmであり得る。例示的な実施形態において、波長変換層30の厚さは約15μmであり得る。
波長変換層30は、低屈折層の上面20aを覆い、低屈折層20と完全にオーバーラップすることができる。波長変換層の下面30bは低屈折層の上面20aに直接接するのでありうる。一実施形態において、波長変換層の側面30sは低屈折層の側面20sに整列できる。波長変換層の側面30s傾斜角は低屈折層の側面20s傾斜角よりも小さくてもよい。後述するように、波長変換層30をスリットコーティングなどの方法で形成する場合、相対的に厚い波長変換層の側面30sは、低屈折層の側面20sより緩やかな傾斜角を持つことができる。しかし、これに制限されるものではなく、形成方法によっては、波長変換層の側面30s傾斜角が低屈折層の側面20s傾斜角と実質的に同じか、それより小さくてもよい。
波長変換層30は、コーティングなどの方法で形成できる。例えば、低屈折層20が形成された導光板10上に波長変換組成物をスリットコーティングし、乾燥および硬化させて波長変換層30を形成することができる。しかし、これに制限されるものではなく、他の様々な積層方法が適用できる。
低屈折層20および波長変換層30上にはパッシベーション層40が配置される。パッシベーション層40は、水分および/または酸素(以下、「水分/酸素」という。)の浸透を防ぐ役割を果たす。パッシベーション層40は無機物質を含んで構成できる。例えば、シリコン窒化物、アルミニウム窒化物、ジルコニウム窒化物、チタン窒化物、ハフニウム窒化物、タンタル窒化物、シリコン酸化物、アルミニウム酸化物、チタン酸化物、スズ酸化物、セリウム酸化物およびシリコン酸化窒化物や、光透過率が確保された金属薄膜などを含んで構成できる。例示的な実施形態において、パッシベーション層40はシリコン窒化物から構成できる。
パッシベーション層40は、少なくとも一側面部(一方の側の縁部)において低屈折層20と波長変換層30を完全に覆うことができる。例示的な実施形態において、パッシベーション層40は、すべての側面部において低屈折層20と波長変換層30を完全に覆うことができるが、これらに制限されるものではない。
パッシベーション層40は、波長変換層30にの全体を被覆するように波長変換層の上面30aに配置され、それから外側にさらに延びて、波長変換層の側面30sおよび低屈折層20の側面20sまで覆う。パッシベーション層40は、波長変換層の上面30a、側面30sおよび低屈折層の側面20sと接触することができる。パッシベーション層40は、低屈折層20が露出する導光板の縁部の上面10aにまで延び、パッシベーション層40の縁部の一部が導光板の上面10aに直接接することができる。一実施形態において、パッシベーション層の側面40sは導光板の側面10sに整列されうる。パッシベーション層の側面40s傾斜角は、波長変換層の側面30s傾斜角よりも大きくてもよい。さらに、パッシベーション層の側面40s傾斜角は、低屈折層の側面20s傾斜角よりも大きくてもよい。但し、図3に関連して上述した面取り面10s11、10s12を含む導光板を適用する場合、導光板の一側面10s1は、パッシベーション層の一側面40s、導光板の側面10s1に隣接した側面よりも外側に突出する構造を持ちうる。
以下、上述した光源400および波長変換層30について詳細に説明する。
図6は図1の光源400の断面図である。
光源400は、プリント基板401、第1電極410、第2電極420、LED430、および第1バインダー層450を含むことができる。プリント基板401は、LED430を含む光源400の複数のエレメントを支持する。プリント基板401は無機物質の絶縁基板であり得る。
光源400は、出射された光(例えば、第1波長光L1および第2波長光L2)を導光板10に提供することができる。
第1電極410は、プリント基板401上に配置され、第2電極420から離隔して配置できる。第1電極410および第2電極420は、導電性物質を含み、外部からの電源の供給を受け、LEDに順方向または逆方向電流を形成する役割を果たす。第1電極410はアノード電極(Anode)、第2電極420はカソード電極(Cathode)であり得る。これに制限されず、第1電極410がカソード電極(Cathode)、第2電極420がアノード電極(Anode)であってもよい。第1電極410と第2電極420との離隔空間は空き空間であり得る。但し、図示してはいないが、第1電極410と第2電極420との間の空間には、隔壁440と同一の物質が介在してもよい。隔壁440は、後述するように、絶縁性物質を含むので、第1電極410と第2電極420との予期せぬ間接的な電気的接続(contact)を防止することができる。
LED430は、第1電極410と第2電極420の上に配置され、第1電極410および第2電極420と同時に接して正孔(hole)と電子(elctron)とを再結合(recombination)させて光を生成することができる。すなわち、前記正孔(hole)と電子(elctron)は、光源から再結合(recombination)されて励起子(exciton)を生成し、前記励起子(exciton)は、励起状態から基底状態に変化し、バンドギャップ(band gap)に該当する光を放出することができる。
LED430は第1波長光L1を放出することができる。一実施形態において、第1波長光L1は第1波長λ1を有することができる。第1波長は、約320nm~420nmの波長帯の光であり得る。通常、第1波長光の波長帯は、可視光線波長帯に隣接した紫外線波長帯(320nm~400nm)、または紫外線波長帯に隣接した可視光線波長帯(400nm~420nm)を含むことができる。
LED430の周囲には隔壁440が配置できる。具体的には、隔壁440は、アノード電極(Anode)410およびカソード電極(Cathode)420の上に配置され、LED430から離隔して配置されうる。図示してはいないが、隔壁440は、LED430をリング状に囲む一体の構造であり得る。
隔壁440は、LED430から放出される第1波長光L1、または後述する第2波長光L2を導光板10に反射させる機能をする。隔壁440は、生成された光を、導光板10に実効的に反射させるために、反射率の高いプラスチック樹脂から形成できる。前記プラスチック樹脂の反射率は約80%以上であり得る。すなわち、一実施形態において、隔壁440の反射率は約80%以上であり、吸収率は約20%以下であり得る。隔壁440は、光源400を保護するために、絶縁物質で形成できる。
また、隔壁440における内側の一側面440s1は、出射側に向かうにつれて外側へとへと傾斜する面であり得る。これにより、光源400から出て隔壁440の一側面440s1、440s2に衝突する光を、導光板10に向かって効果的に反射させることができる。プリント基板401に垂直な方向の寸法を「厚さ」とした場合、隔壁440の厚さは、隔壁440の内側に充填される第1バインダー層450の厚さよりも大きくてもよい。但し、これに制限されるものではなく、隔壁440の厚さと、第1バインダー層450の厚さとは実質的に同一であってもよい。
隔壁440の間には第1バインダー層450が配置できる。第1バインダー層450は隔壁の一側面440s1、440s2と接することができる。第1バインダー層450は、第1電極410および第2電極420の上に配置され、LED430について、その上面および側面を被覆するようにして、包み込むことができる。第1バインダー層450は、波長変換粒子(例えば、第1波長変換粒子)が分散する媒質であって、一般にバインダーと呼ばれる、様々な樹脂組成物から構成できる。
第1バインダー層450は、第1波長変換粒子P1を含むことができる。第1波長変換粒子P1は複数であり得る。第1波長変換粒子P1は、特定の波長領域、例えば、第2波長λ2よりも短い波長の入射光(例えば、第1波長光L1)を第2波長λ2に変換することができる。第2波長λ2は、第1波長λ1よりも長い波長を持つことができる。一実施形態において、第2波長λ2の波長帯は略420nm~470nm(通常、ブルー波長)であり得る。一実施形態において、第1波長変換粒子P1は、第1波長光L1の波長帯(約320nm~420nm)よりも長い波長の光を吸収し、特定の波長帯(例えば、ブルー波長帯(420nm~470nm))の波長を放出することができる。
第1波長変換粒子P1は、燐光物質または蛍光物質のうちの少なくとも一つを含むことができる。例えば、第1波長変換粒子P1は蛍光物質を含むことができる。一例において、蛍光物質は、4,4’-ビス(9-エチル-3-カルバゾビニレン)-1,1’-ビフェニル(4,4’-bis(9-ethyl-3-carbazovinylene)-1,1’ -biphenyl)(BczVBi)、ジスチリルアリーレン(distyrylarylene;DSA)、ジスチリルアリーレン誘導体、ジスチリルベンゼン(distyrylbenzene;DSB)、ジスチリルベンゼン誘導体、DPVBi(4,4’-bis(2,2’-diphenylvinyl)-1,1’-biphenyl)、DPVBi誘導体、スピロ-DPVBiおよびスピロ-6Pなどが挙げられる。
一実施形態において、第1波長変換粒子P1に吸収されていない残りの第1波長光L1は、第1波長変換粒子P1に入射されずにそのまま導光板10に向かって出射されうる。よって、第1バインダー層450を通過して光源400から出て来た光は、第1波長光L1及び第2波長光L2を含むことができる。図7に関連して後述するように、LED430として、上記の第1波長光L1(約320nm~420nm)を放出するものを使用すると、第2および第3波長変換粒子(例えば、グリーンおよびレッド波長変換粒子P2、P3)の光吸収度(light absorption)が増加して、第3波長光(例えば、グリーン光)および第4波長光(例えば、レッド光)の強度が増加し得る。
図7は、図1の波長変換層の断面図を拡大して示す図であり、図8の(a)および(b)は、それぞれ、図7の第2波長変換粒子および第3波長変換粒子を拡大して示す図であり、図9は散乱粒子の構造図である。
図7乃至図9を参照すると、波長変換層30は、入射された少なくとも一部の光の波長を変換する。波長変換層30は、第2バインダー層31と、第2バインダー層31内に分散された波長変換粒子(例えば、第2波長変換粒子P2および第3波長変換粒子P3)とを含むことができる。波長変換層30は、第2バインダー層31に分散された散乱粒子35をさらに含むことができる。第2波長変換粒子P2は、特定の波長(例えば、第3波長λ3よりも短い波長)を吸収して第3波長λ3の第3波長光L3に変換する粒子であり、第3波長変換粒子P3は、特定の波長(例えば、第4波長λ4よりも短い波長)を吸収して第4波長λ4の光L4に変換する粒子である。後述するように、波長変換粒子P2、P3の構成物質によって、吸収する波長領域帯が異なる。一実施形態において、第3波長光L3の波長は略520nm~570nmの波長帯(通常、グリーン光)を持つことができる。第4波長帯L4の波長は略620nm~670nmの波長帯(通常、レッド光)を持つことができる。ブルー、グリーン、レッドの波長が上記の例示に制限されるものではなく、本技術分野でブルー、グリーン、レッドとして認識できる波長範囲を全て含むものと理解されるべきである。
第2バインダー層31は、波長変換粒子P2、P3が分散される媒質であって、上述した光源400の第1バインダー層450と実質的に機能および構成が同一であり得る。
波長変換粒子P2、P3は、量子ドット(QD)または蛍光物質で構成できる。一実施形態において、第2波長変換粒子P2および第3波長変換粒子P3の一形態である量子ドット(QD)は、数nmサイズの結晶構造を持つ物質であって、数百~数千個程度の原子から構成され、小さいサイズにより、エネルギーバンドギャップ(band gap)が大きくなる量子閉じ込め(quantum confinement)効果を示す。量子ドット(QD)に、バンドギャップよりもエネルギーが高い波長の光が入射する場合、量子ドット(QD)は、その光を吸収して励起状態となり、特定の波長の光を放出しながら基底状態に落ちる。放出された波長の光は、バンドギャップに該当する値を持つ。量子ドット(QD)は、その大きさや組成などを調節すると、量子閉じ込め効果による発光特性を調節することができる。
量子ドット(QD)は、例えば、II-VI族化合物、II-V族化合物、III-VI族化合物
、III-V族化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物およ
びII-IV-V族化合物のうちの少なくとも一つを含むことができる。
量子ドット(QD)は、コア(Core)、およびコアをオーバーコーティングするシェル(Shell)を含むものである。コア(Core)は、これに限定されるものではないが、例えば、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InP、InAs、InSb、SiC、Ca、Se、In、P、Fe、Pt、Ni、Co、Al、Ag、Au、Cu、FePt、Fe23、Fe34、Si、およびGeのうちの少なくとも一つを含むものであり得る。シェル(Shell)は、これに限定するものではないが、例えば、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、HgTe、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、GaSe、InN、InP、InAs、InSb、TlN、TlP、TlAs、TlSb、PbS、PbSe、およびPbTeのうちの少なくとも一つを含むことができる。波長変換粒子P2、P3が量子ドット(QD)である場合、第2波長変換粒子P2は、第2波長λ2よりも短い波長の光を第2波長λ2に変換して放出することができ、第3波長変換粒子P3は、第3波長λ3よりも短い波長の光を第3波長λ3に変換して放出することができる。
一実施形態において、波長変換層30は、第3波長光L3の波長λ3(例えば、520nm~570nm)よりも短い光(例えば、第1波長光L1(約320nm~420nm)、または、第2波長の光L2(約420nm~470nm))を第3波長光L3に変換する第2波長変換粒子P2と、第4波長光L4の波長λ4(例えば、620nm乃至670nm)よりも短い光(例えば、第1波長光L1、第2波長光L2および第3波長光L3)を第4波長光L4に変換する第3波長変換粒子P3とを含むことができる。
但し、これに制限されず、第2波長変換粒子P2は量子ドット(QD)を含み、第3波長変換粒子P3は蛍光物質(phosphor)を含むことができる。この場合、蛍光物質は、K2SiF6:Mn(以下、KSFという。)であり得る。KSF蛍光物質は、半値幅の狭い赤色を発現する特徴があって、色再現率に優れるという利点がある。
図8の(a)および(b)を参照すると、一実施形態において、第2波長変換粒子P2は第3波長変換粒子P3の大きさよりも小さくてもよい。これは、大きさが小さいほどエネルギーバンドギャップ(band gap)が大きくなる量子閉じ込め(quantum confinement)効果に起因する。よって、第2波長変換粒子P2が放出する光は、第3波長変換粒子P3が放出する光よりも波長が短いのでありうる。
一実施形態によれば、波長変換層30を通過した光は、第1波長光L1、第2波長光L2、第3波長光L3、および第4波長光L4をすべて含む。波長変換層30に変換された光は、狭い範囲の特定の波長内に集中し、狭い半値幅を持つシャープなスペクトルを有する。よって、このようなスペクトルの光をカラーフィルターでフィルタリングして色を実現する場合には、色再現性が改善できる。
前記例示的な実施形態とは異なり、いくつかの実施形態において、光源は、第2波長光λ2を放出するLEDをさらに含むことができる。この場合、第1波長光λ1を放出するLEDと区分するために、それぞれ第1LEDおよび第2LEDと、区分されて呼ばれる。第1LEDおよび第2LEDは、互いに隣接して配置できる。例えば、導光板の一側面10sに隣接した領域に一つの第1LEDが配置され、導光板の一側面10sの延長方向に沿って一つの第1LEDに隣接するように第2LEDが配置され、前記第2LEDに隣接し、一つの第1LEDから離隔して他の第1LEDが配置され得る。
波長変換層30は散乱粒子35をさらに含むことができる。散乱粒子35は、非量子ドット粒子であって、波長変換機能のない粒子であり得る。散乱粒子35は、入射された光を散乱させて、より多くの入射光が波長変換粒子P2、P3の側に入射できるようにする。それだけではなく、散乱粒子35は、波長別の光の出射角を均一に制御する役割を果たすことができる。具体的に説明すると、一部の入射光が波長変換粒子に入射された後、波長が変換されて放出される際、その放出方向がランダムであるという散乱特性を有する。もし、波長変換層30内に散乱粒子35がなければ、波長変換粒子の衝突後に放出する第3波長光L3及び第4波長光L4は散乱放出特性を持つのであるが、波長変換粒子の衝突なしで放出される第1波長光L1および第2波長光L2は、散乱放出特性を持たない。そのため、出射角度によって、第1波長光L1/第2波長光L2/第3波長光L3/第4波長光L4の放出量が異なることとなる。散乱粒子35は、波長変換粒子に衝突せずに放出される第1波長光L1および第2波長光L2に対しても、散乱放出特性を与えることにより、波長別の光の出射角を互い同様となるように調節することができる。
散乱粒子35は、SiO2、TiO2、ZnOおよびSnO2を含む金属酸化物のいずれか一つまたは二つ以上の組み合わせから構成できる。一実施形態において、散乱粒子35はTiO2から構成できる。TiO2はアナターゼ(anatase)結晶相とルチル(rutile)結晶相のうちの少なくとも一つを持つことができる。一実施形態に係る散乱粒子35は、TiO2の結晶相のうち、アナターゼ(anatase)結晶相(図9参照)のみを含むことができる。
アナターゼ(anatase)結晶相は、ルチル(rutile)結晶相に比べて、第波長光L(370nm~420nm)以下の波長帯で高い反射率を持つのでありうる。したがって、第1波長光L1を光源として使用する場合、アナターゼ(anatase)結晶相は、ルチル(rutile)結晶相に比べて、散乱効果がさらに良いのでありうる。これに関連した内容については、TiO2結晶による反射率を示す図8を参照して詳細に説明する。
また、散乱粒子35の大きさは200nm以下であり得る。例示的な実施形態において、散乱粒子35の大きさは、好ましくは100nm以上150nm以下である。これに関連した内容については、図12に示されたグラフを参照して詳細に後述する。
波長変換層30の散乱粒子35の含有量は5重量%未満であり得る。さらに好ましくは、散乱粒子35の含有量は2重量%以下または1.5重量%以下であり得る。波長変換層30内で散乱粒子35の含有量が5重量%以上である場合、波長変換層30の透明度が低くなり、光抽出効率が低くなるおそれがある。また、波長変換層30の散乱粒子35の含有量は、0.3重量%以上、0.5重量%以上、または1重量%以上でありうる。含有量が過度に少ないと、光を散乱させる効果が不十分となりうる。
以下、一実施形態に係る光学部材の効果について種々のグラフを参照して説明する。
これらグラフに示すデータを得るための実験で、散乱粒子としては、四塩化チタンからゾルゲル法により合成した、アナターゼ型(正方晶)の二酸化チタンの結晶粒子を、そのまま用いた。この結晶粒子は、下記に特に記載しない限り粒子サイズ(粒径)が120nmであり、アスペクト比が約1~2の直方体状のものである。ここでの粒子サイズは、レーザー動的光散乱法(Horiba SZ-100)により得られたメジアン径(D50)である。
また、このような散乱粒子を、アクリレート樹脂(PMMA)中に、1.5重量%となるように配合した。また、この際、第2波長変換粒子P2および第3波長変換粒子P3として、インジウム系(InP/ZnS)のコア・シェル型量子ドットを用い、いずれも、1重量%となるように配合した。グラフの実験データは、厚みが1mmのアクリレート樹脂の板を作製して測定することで得られたものである。
図10の横軸は光源の波長であり、縦軸は光源の波長により変化する第2波長変換粒子P2および第3波長変換粒子P3の吸収率を示す。図10を参照すると、第2波長変換粒子P2(Cd-G,CF-G)および第3波長変換粒子P3(Cd-R,CF-R)は、第2波長光L2(420nm~470nmの青色光、具体的には450nm)と比較して、第1波長光L1(320nm~420nm紫外-紫色光、具体的には400nm)を吸収する程度がさらに大きくなるのが分かる。
波長変換粒子P2、P3が、変換可能な光を吸収する程度が大きくなると、吸収した光によってそれぞれの波長変換粒子P2、P3のエネルギーレベルが励起され、これにより、それぞれ放出される光の強度(例えば、グリーン光、レッド光)が増加し得る。図10では、カドミウム(Cd)化合物またはインジウム(In)化合物で構成された第2波長変換粒子P2および第3波長変換粒子P3を例示した。
具体的に説明すると、波長450nmでカドミウム(Cd)化合物の第2波長変換粒子P2の光吸収率ACd-G(450nm)は略0.3に近い値を持つのに対し、400nm波長帯の光源では略0.9以上に近い光吸収率ACd-G(400nm)を持つ。そのため、略3倍以上、光吸収率が増加することが分かる。また、450nm波長帯の光源ではインジウム(In)化合物の第2波長変換粒子P2の光吸収率ACF-G(450nm)は略0.1に近い値を持つのに対し、400nm波長帯の光源では略0.3に近い光吸収率ACF-G(400nm)を持つため、略3倍以上、光吸収率が増加することが分かる。また、450nm波長帯の光源ではインジウム(In)化合物の第3波長変換粒子P3の光吸収率ACF-R(450nm)は略0.3に近い値を持つのに対し、400nm波長帯の光源では略0.8に近い光吸収率ACF-R(400nm)を持つ。そのため、略2.6倍以上、光吸収率が増加することが分かる。具体的な数値を比較しなかったが、カドミウム(Cd)化合物からの第3波長変換粒子P3(Cd-R)の場合、400nm波長帯での光吸収率、及び、450nm波長帯での光吸収率が、共に1.0(100%)に近くなるようであった。
図11は、互いに異なる2種類の散乱粒子を用いた場合の、波長により変化する散乱率を説明するためのグラフである。
図11を参照すると、第1波長光L1を光源として使用する場合、散乱粒子35の結晶形によって反射率が変わることが分かる。具体的に説明すると、図11の横軸は光源からの光の波長であり、縦軸は、散乱粒子35(一実施形態において、TiO2)の結晶形(アナターゼ(anatase)、ルチル(rutile))によって、波長に対する反射率の依存性が変化することを示す。
アナターゼ(anatase)結晶相は、ルチル(rutile)結晶相に比べて、約420nm以下の波長帯で高い反射率を持ちうる。特に、400nmで、アナターゼ(anatase)結晶形のものを散乱粒子35として使用する場合、図示の例で反射率Ran(400nm)は略90%であることから、反射率Ran(400nm)が80%以上であり得る。一方、ルチル(rutile)結晶形を散乱粒子35として使用する場合、図示の例で反射率Rru(400nm)は略45%であることが分かる。したがって、第1波長光L1を光源として使用する場合、アナターゼ(anatase)結晶相は、ルチル(rutile)結晶相に比べて略2倍の良好な反射率を持つ。高い反射率を持つことにより、散乱粒子35が光を吸収する程度が相対的に低くなり、散乱粒子35の散乱効果は、低い反射率を持つ散乱粒子35に比べて大きくなる可能性がある。よって、一実施形態に係る散乱粒子(例えば、アナターゼ(anatase))によって、波長変換層30における光の散乱効果が高まりうる。
図12は、散乱粒子の大きさにより変化する光散乱率を説明するためのグラフである。
図12中、実線は、ピーク波長が400nmである近紫外(nUV)ないし紫色の光、二点鎖線はピーク波長が450nmの青色光、一点鎖線はピーク波長が560nmの緑色光、破線はピーク波長が650nmの赤色光を照射した場合の曲線である。
散乱粒子35の大きさ(直径)は200nm以下であり得る。例示的な実施形態において、散乱粒子35の大きさは、好ましくは100nm以上150nm以下である。散乱粒子35の粒子サイズが略120nmである場合に、第1波長光L1についての最大散乱効果を示すことができる。第1波長光L1の散乱効果が大きいほど、スペクトルの光をカラーフィルターでフィルタリングして色を実現する場合、色再現性が改善され、第3波長光L3および第4波長光L4の抽出される光の強度が増加し得る。
図13は、一実施形態の散乱粒子を含む光学部材の光源による緑色光および赤色光の強度を説明するためのグラフである。
図13を参照すると、散乱粒子35としてアナターゼ(anatase)結晶相を使用し、アナターゼ(anatase)結晶相の粒子サイズが略200nmであるとき、第1波長光L1(ピーク波長が400nm)を使用した場合(図13中の実線)、第2波長光L2(ピーク波長が450nm)を使用した場合(図13中の一点鎖線)に比べて、第3波長光L3(520nm~570nm)および第4波長光L4(620nm~670nm)の発光量を顕著に増大させることができる。すなわち、出力量に僅かな差のみを有する、紫外-紫色LEDの第1波長光L1と、青色LEDの第2波長光L2とで、顕著な値の差を示す第3波長光L3および第4波長光L4の発光量が抽出されることが分かる。図10の横軸は光源の波長(nm)、縦軸は光源の波長による第3波長光L3および第4波長光L4の相対的な発光量を示す。
より具体的に説明すると、散乱粒子35としてアナターゼ(anatase)結晶相を使用し、アナターゼ(anatase)結晶相の粒子サイズが略200nmであるとき、光源として第1波長光L1を使用した場合には、第3波長光L3(略520nm~570nm)の発光量Igreen(400nm)は、第2波長光L2を使用した場合のグリーン光の発光量Igreen(450nm)に比べて約45%増加することが分かる。同様に、光源として第1波長光L1を使用した場合には、レッド光(略620nm~670nm)の発光量Ired(400nm)は、第2波長光L2を使用した場合のレッド光の発光量Ired(450nm)に比べて約57%増加することが分かる。
上述したように、光源が第1波長光L1(例えば、ピーク波長が400nm)である場合、第2波長光L2(例えば、ピーク波長が450nm)に比べて第2波長変換粒子P2および第3波長変換粒子P3の光吸収度が増加し、これにより、第3波長光L3および第4波長光L4の強度も増加しうる。但し、光源光の相異なる波長領域によって、散乱粒子35による散乱効果が異なり得る。本実施形態のように、第1波長光L1を光源光として使用する場合、アナターゼ(anatase)結晶形の散乱粒子(TiO2)が、入射光に対する散乱効果、および/または、波長変換粒子P2、P3によって波長が変換された放出光に対する散乱効果を極大化させることができることを確認することができる。入射光(例えば、第1波長光L1)に対する散乱効果が極大化されることにより、第1波長光L1に散乱放出特性が与えられ、その結果、出射光の出射角を、広い角度範囲にわたって均一に分布するように調節することができる。さらに、入射光の散乱効果が極大化されることにより、既に説明したように、連鎖作用として、放出光(例えば、グリーン光およびレッド光)の強度も増加しうる。
以下、光学部材に関する他の実施形態について説明する。以下の実施形態において、既に説明した実施形態と同様の構成については説明を省略または簡略化し、相違点を中心に説明する。
図14は他の実施形態に係る光学部材と光源の斜視図、図15は他の実施形態に係る光学部材の断面図、図16は他の実施形態に係る光源の断面図、図17は他の実施形態に係る波長変換層の断面図である。
図14乃至図17の他の実施形態は、光源のバインダー層中にでなく、第1波長変換粒子P1_1が導光板10上の波長変換層30_1中に含まれるという点で、上記の一実施形態の構成とは相違する。
より具体的に説明すると、他の実施形態に係る光源400_1は、第1波長変換粒子P1を含まず、よって、第1波長光L1だけ発光するのでありうる。また、波長変換層30_1は、第1波長変換粒子P1_1、第2波長変換粒子P2および第3波長変換粒子P3(例えば、ブルー、グリーン、レッドの波長に変換する3種類の波長変換粒子)を含み、第1波長変換粒子P1_1、第2波長変換粒子P2および第3波長変換粒子P3の強度を適切に調節することで、白色光を出射することもできる。
本実施形態において、第1波長変換粒子P1_1は、第1波長光L1を吸収し、第2波長光L2を放出することができる。第1波長変換粒子P1_1は、例えば、量子ドット(Quantum dot:QD)、蛍光物質または燐光物質であり得る。第1波長変換粒子P1_1が一例の量子ドット(QD)である場合、第1波長変換粒子P1_1の大きさは、第2波長変換粒子P2および第3波長変換粒子P3よりも小さくてもよい。これは、大きさが、より小さいほど、エネルギーバンドギャップ(band gap)が大きくなるという量子閉じ込め(quantum confinement)効果に起因する。よって、第1波長変換粒子P1_1が放出する光は、第2波長変換粒子P2および第3波長変換粒子P3が放出する光よりも波長が短いのでありうる。
上述したように、光源が第1波長光L1(例えば、ピーク波長が400nm)である場合には、第2波長光L2(例えば、ピーク波長が450nm)に比べて、第2波長変換粒子P2および第3波長変換粒子P3の光吸収度(本実施形態では、第1波長変換粒子P1_1を含む)が増加し、これにより、第3波長光L3および第4波長光L4の強度も増加しうる。但し、光源光の相異なる波長領域によって、散乱粒子35による散乱効果が異なる。本実施形態のように、第1波長光L1を光源として使用する場合、アナターゼ(anatase)結晶形の散乱粒子(TiO2)が、入射光に対する散乱効果、および/または、波長変換粒子P2、P3によって波長が変換された放出光に対する散乱効果を極大化させることができることを確認することができる。入射光(例えば、第1波長光L1)に対する散乱効果が極大化されることにより、第1波長光L1に散乱放出特性が付与され、その結果、出射光の出射角を、広い角度範囲にわたって均一に分布するように調節することができる。さらに、入射光の散乱効果が極大化されることにより、既に説明したように、連鎖作用として、放出光(例えば、グリーン光およびレッド光)の強度も増加しうる。
図18は実施形態(導光板の変形例を含む)に係る表示装置の分解斜視図、図19は一実施形態に係る表示装置の断面図である。
図18および図19を参照すると、表示装置1000は、光源400、光源400の出射経路上に配置された光学部材100、および光学部材100の上部に配置された表示パネル300を含む。
光源400は光学部材100の一側に配置される。光源400は、光学部材100の導光板10の入光面10s1に隣接して配置できる。光源400は、複数の点光源または線光源を含むことができる。前記点光源はLED(light emitting diode)光源410であり得る。複数のLED430はプリント基板401に実装できる。LED430は第1波長光L1および第2波長光L2を発光することができる。
一実施形態において、LED430は、上面に光を放出する上面発光LEDであり得る。この場合、プリント基板401はハウジング500の側壁520上に配置できる。但し、これに制限されるものではなく、LED430は、側面に光を放出する側面発光LEDであり得る。この場合、プリント基板401は、ハウジング500の底面510上に配置できる。
LED430から放出された第1波長光L1および第2波長光L2は、光学部材100の導光板10に入射される。光学部材100の導光板10は、光を導き、導光板10の上面10aまたは下面10bを通じて出射させる。光学部材100の波長変換層30は、導光板10から入射された第1波長光L1および第2波長光L2の一部を、他の波長、例えば、第3波長光L3と第4波長光L4に変換する。変換された第3波長光L3と第4波長光L4は、第1波長光L1および第2波長光L2と一緒に、上部に放出されて、表示パネル300側に提供される。
表示装置1000は、光学部材100の下部に配置された反射部材250をさらに含むことができる。反射部材250は反射フィルムまたは反射コーティング層を含むことができる。反射部材250は、光学部材100の導光板10の下面10bへ出射された光を反射して再び導光板10の内部に進入させる。
表示パネル300は光学部材100の上部に配置される。表示パネル300は、光学部材100からの光の提供を受けて画面を表示する。このように光を受けて画面を表示する受光性表示パネルの例としては、液晶表示パネルや電気泳動パネルなどを挙げることができる。以下では、表示パネルとして液晶表示パネルの例を挙げるが、これに制限されず、他の様々な受光性表示パネルが適用できる。
表示パネル300は、第1基板310、第1基板310に対向する第2基板320、および第1基板310と第2基板320との間に配置された液晶層(図示せず)を含むことができる。第1基板310と第2基板320とは相互に位置合わせされて重ね合わされる。一実施形態において、いずれかの基板がもう一つの基板よりも大きく、少なくとも一辺が、より外側へ突出しうる。図面では、上部に位置する第2基板320が、より大きく、光源400が配置された側面から突出した場合が例示されている。第2基板320の突出領域は、駆動チップまたは外部回路基板が実装される空間を提供するのでありうる。例示された例とは異なり、下方に位置する第1基板310が、第2基板320よりも大きく外側へ突出することもありうる。表示パネル300における、前記突出領域を除いた第1基板310と第2基板320とが重ね合わされる領域は、その四周が、光学部材100の導光板10の側面10sに、概ね整列されるのでありうる。
表示パネル300は、第1基板310の厚さ方向下方にある下面310b、および第2基板320の厚さ方向上方にある上面320aに、それぞれ、第1偏光部材POL1および第2偏光部材POL2を、さらに含むことができる。第1偏光部材POL1および第2偏光部材POL2は、ポリビニルアルコール系偏光子を含むことができ、フィルム状であり得る。第1偏光部材POL1および第2偏光部材POL2は、偏光軸が互いに直交するように配置できる。第1偏光部材POL1は、光学部材100を介して提供された光を偏光させて、一方向に偏光された光を表示パネル300に入射させることができる。第2偏光部材POL2は、表示パネル300から出射した光を偏光させ、ユーザーの目に入射させて画像を表示することができる。
光学部材100は、モジュール間結合部材610を介して表示パネル300と結合することができる。モジュール間結合部材610は、平面視にて四角枠状を有することができる。モジュール間結合部材610は、表示パネル300および光学部材100の縁に対応する箇所に位置することができる。
一実施形態において、モジュール間結合部材610の下面は、光学部材100のパッシベーション層40の上面に配置される。モジュール間結合部材610の下面は、パッシベーション層40上で、波長変換層30の上面30aにのみ重ねられ、側面30sには重ならないように配置できる。
モジュール間結合部材610は、エラストマー樹脂や接着テープまたは粘着テープなどを含むことができる。
表示装置1000はハウジング500をさらに含むことができる。ハウジング500は、一面が開放されており、底面510、および底面510に連結された側壁520を含む。底面510と側壁520によって取り囲まれて画定された空間内に、光源400、光学部材100-表示パネル300アセンブリーおよび反射部材250が収納できる。光源400、反射部材250および光学部材100-表示パネル300アセンブリーは、ハウジング500の底面510上に配置される。表示パネル300は、ハウジング500の側壁上端に隣接して配置され、これらはハウジング結合部材620によって相互に結合できる。ハウジング結合部材620は平面視にて四角枠状を有することができる。ハウジング結合部材620は、エラストマー樹脂や接着テープまたは粘着テープなどを含むことができる。
表示装置1000は、少なくとも一つの光学フィルム200をさらに含むことができる。一つまたは複数の光学フィルム200は、光学部材100と表示パネル300との間でモジュール間結合部材610によって囲まれた空間に収納できる。一つまたは複数の光学フィルム200の側面は、モジュール間結合部材610の内側面に接し、それに取り付けまたは付着されうる。図面では、光学フィルム200と光学部材100との間、および光学フィルム200と表示パネル300との間が、それぞれ離隔している場合を例示的に示したが、前記離隔空間が必須的に要求されるものではない。
本実施形態において、光学フィルム200は、二層のプリズムフィルムが積層され、プリズムフィルム上に輝度改善フィルムが積層された光学フィルム200を含むことを示す。但し、これに制限されるものではなく、表示装置1000は、同じ種類または異なる種類の複数の光学フィルム200を含むことができる。例えば、プリズムフィルム、拡散フィルム、マイクロレンズフィルム、レンチキュラーフィルム、偏光フィルム、反射偏光フィルム、位相差フィルム、輝度改善フィルムの中から選択されたフィルムの様々な組み合わせで積層構造を形成することができる。複数の光学フィルム200が適用される場合、各光学フィルム200は、互いに重なり合うように配置され、それぞれの側面がモジュール間結合部材610の内側面に接してそれに取り付けまたは付着されうる。これらの光学フィルム200同士は、互いに離隔し、それらの間に空気層が配置されうる。
図20は他の実施形態に係る光源の断面図、図21は、図20に示す他の実施形態に係る波長変換層の断面図である。
本実施形態の表示装置1000_1の場合、図14乃至図17による他の実施形態の光学部材100_1および光源400_1を含む以外は、図18および図19の表示装置1000とは構成が同一である。先立って、図14乃至図17において、図18および図19の表示装置1000との相違点がある光学部材100_1および光源400_1について説明したので、本実施形態の光学部材100_1および光源400_1についての説明は省略する。また、本実施形態に係る光学部材100_1および光源400_1を除いた残りの構成は、図15および図16で説明した内容と実質的に同一であって、これに関連した内容も同じ趣旨で省略する。
上述したように、光源が第1波長光L1である場合、第2波長光L2に比べて第2波長変換粒子P2および第3波長変換粒子P3の光吸収度が増加し、これにより、第3波長光L3および第4波長光L4の強度も増加しうる。但し、光源の異なる波長領域によって、散乱粒子35による散乱効果が異なり得る。本実施形態のように、第1波長光L1を光源として使用する場合、アナターゼ(anatase)結晶形の散乱粒子(TiO2)が、入射光に対する散乱効果、および/または、波長変換粒子P2、P3によって波長が変換された放出光に対する散乱効果を極大化させることができることを確認することができる。入射光(例えば、第1波長光L1)に対する散乱効果が極大化されることにより、第1波長光L1に散乱放出特性が付与され、その結果、出射光の出射角を、広い角度範囲にわたって均一に分布するように調節することができる。さらに、入射光の散乱効果が極大化されることにより、既に説明したように、連鎖作用として放出光(例えば、グリーン光およびレッド光)の強度も増加することができる。
図22は別の実施形態に係る表示装置の分解斜視図、図23は、図22に示す別の実施形態に係る表示装置の断面図である。
図22および図23による表示装置1000_2は、図18および図19の実施形態に係る表示装置1000における導光板10および低屈折層20が省略され、光源400_2が表示パネル300の下部に配置されるという点で、図15および図16の一実施形態に係る表示装置1000とは異なる。
より具体的に説明すると、本実施形態に係る表示装置1000_2は、反射部材250、反射部材250上に配置される光源400_2、光源400_2上に配置される支持部材(Base)、支持部材(Base)上に配置される波長変換層30、波長変換層30上に配置されるパッシベーション層40、およびパッシベーション層40上に配置される表示パネル300を含むことができる。光源400_2を実装するプリント基板401_2は、反射部材250の全面にわたって実質的に平らな形状に配置できる。プリント基板401_2の大きさは反射部材250の大きさと同一であり得るが、これらに制限されず、それより小さいか大きくてもよい。プリント基板401_2上には、複数のLED430_2が配置できる。本実施形態において、LED430_2は、図22および図23に示すように、上面に光を放出する上面発光LEDであり得る。光源400_2上には、波長変換層30を支持する支持部材(Base)が配置できる。支持部材(Base)は、波長変換層30を支持する機能を行うことができる。支持部材(Base)の平面形状は長方形であり得るが、これらに制限されるものではない。例示的な実施形態において、支持部材(Base)は、平面形状が長方形の六角柱形状であり得る。支持部材(Base)は、無機物質で構成できるが、これらに制限されるものではない。支持部材(Base)上には、波長変換層30、および波長変換層30を覆い、外部酸素、水分などから保護するパッシベーション層40が配置できる。パッシベーション層40上には表示パネル300が配置できる。表示装置1000_2は、少なくとも一つの光学フィルム200をさらに含むことができる。一つまたは複数の光学フィルム200は、光学部材100_2と表示パネル300との間でモジュール間結合部材610によって囲まれた空間に収納できる。例えば、プリズムフィルム、拡散フィルム、マイクロレンズフィルム、レンチキュラーフィルム、偏光フィルム、反射偏光フィルム、位相差フィルム、輝度改善フィルムの中から選択されたフィルムの様々な組み合わせで積層構造を形成することができる。
上述したように、光源が第1波長光L1である場合、第2波長光L2に比べて、第2波長変換粒子P2および第3波長変換粒子P3の光吸収度が増加し、これにより、第3波長光L3および第4波長光L4の強度も増加することができる。但し、光源光の相異なる波長領域によって散乱粒子35による散乱効果が異なり得る。本実施形態のように、第1波長光L1を光源として使用する場合、アナターゼ(anatase)結晶形の散乱粒子(TiO2)が、入射光に対する散乱効果、および/または波長変換粒子P2、P3によって波長が変換された放出光に対する散乱効果を極大化させることができることを確認することができる。入射光(例えば、第1波長光L1)に対する散乱効果が極大化されることにより、第1波長光L1に散乱放出特性が付与され、その結果、出射光の出射角を、広い角度範囲にわたって均一に分布するように調節することができる。さらに、入射光の散乱効果が極大化されることにより、既に説明したように、連鎖作用として、放出光(例えば、グリーン光およびレッド光)の強度も増加しうる。
図24は別の実施形態に係る光源の断面図、図25は、図24に示す別の実施形態に係る波長変換層の断面図である。
図24および図25による表示装置1000_3は、図14および図17に係る光学部材100_1および光源400_1を含む以外は、図22および図23の表示装置1000_2とは構成が同一である。
上述したように、光源が第1波長光L1(320nm~420nm)である場合、第2波長光L2(420nm~470nm)に比べて、第2波長変換粒子P2および第3波長変換粒子P3の光吸収度が増加し、これにより、第3波長光L3(520nm~570nm)および第4波長光L4(620nm~670nm)の強度も増加しうる。但し、光源光の相異なる波長領域によって、散乱粒子35による散乱効果が異なり得る。本実施形態のように、第1波長光L1を光源として使用する場合、アナターゼ(anatase)結晶形の散乱粒子(TiO2)が、入射光に対する散乱効果、および/または波長変換粒子P2、P3によって波長が変換された放出光に対する散乱効果を極大化させることができることを確認することができる。入射光(例えば、第1波長光L1)の散乱効果が極大化されることにより、第1波長光L1に散乱放出特性が付与され、その結果、出射光の出射角を、広い角度範囲にわたって均一に分布するように調節することができる。さらに、入射光の散乱効果が極大化されることにより、既に説明したように、連鎖作用として放出光(例えば、グリーン光とレッド光)の強度も増加しうる。
好ましい一実施形態においては、次のとおりである。
近紫外または紫色の光(ピーク波長が例えば400nm)を発するLEDチップを用い、波長変換粒子(量子ドット(QD))P2~P3及び散乱粒子35を含む波長変換層30が、導光板10の上面または光拡散板の上面に設けられたバックライト100において、光損失をさらに低減し、色の均一性をさらに改善すべく、下記A1~A2及びB1~B2のとおりである。
A1 散乱粒子35として、二酸化チタン(TiO2)のアナターゼ型(正方晶)の結晶粒子であって、粒径(メジアン径)が200nm以下、特には100~150nmのものを用いる。
A2 散乱粒子35は、波長変換層30の2重量%以下、例えば0.5~1.5重量%含まれる。
B1 青色(ピーク波長が例えば450nm)から緑色(ピーク波長が例えば560nm)に変換する波長変換粒子P2~P3が、導光板10上の波長変換層30中に含まれる。
B2 近紫外または紫色の光を青色光に変化する波長変換粒子P1は、LEDチップを被覆するバインダー層450中、及び/または、波長変換層30中に含まれる。
また、次のとおりとすることができる。
C 散乱粒子35には、純度が高い(例えば99.9%以上)の結晶粒子であって、長方形状などの角張ったものを用いる。
D アナターゼ型が維持されるべく、波長変換層30及びこれを覆うパッシベーション層40を形成する際には、工程温度を、例えば400℃以下とする。
100 光学部材
300 表示パネル
400 光源
500 ハウジング

Claims (14)

  1. 導光板と、前記導光板上に配置され、TiO2のアナターゼ結晶形の散乱粒子であって粒子サイズが200nm以下の散乱粒子を含む波長変換層とを含む光学部材;および
    前記導光板の一側面に配置された光源;を含み、
    前記光源は、第1波長の第1光を前記導光板に提供し、前記波長変換層は、前記第1光を第2波長の光に変換する第1波長変換粒子、および前記第1光を第3波長の光に変換する第2波長変換粒子を含み、
    前記光源は第1波長と異なる第5波長の第2光を前記導光板に提供し、前記第1波長変換粒子は前記第2光を前記第2波長の光に変換し、前記第2波長変換粒子は前記第2光を前記第3波長の光に変換し、
    前記第1波長および前記第5波長が青色光または近紫外線の波長範囲内にあり、
    前記第1波長が320nm乃至420nmであり、前記第5波長が420nm乃至470nmであり、
    前記第2波長が緑色光の波長範囲内にあり、前記第3波長が赤色光の波長範囲内にあり、
    前記光学部材は前記導光板と前記波長変換層との間に配置された低屈折層をさらに含み、前記導光板、前記低屈折層および前記波長変換層は互いに結合して一体化されており、
    前記波長変換層および前記低屈折層を覆うパッシベーション層をさらに含み、
    前記波長変換層は、前記低屈折層よりも厚く、厚さが10~50μmであり、
    前記波長変換層の側面は前記低屈折層の側面に整列され、前記パッシベーション層は、前記低屈折層が露出する前記導光板の縁部の上面にまで延びて、縁部の一部が前記導光板の上面に直接接しており、
    前記波長変換層の側面は、前記低屈折層の側面より緩やかな傾斜角を持つ、バックライトユニット。
  2. 前記光源が、前記第1光を発光する発光素子、および前記第1光を前記第波長の前記第2光に変換する第3波長変換粒子を含む、請求項に記載のバックライトユニット。
  3. 前記第1波長変換粒子が量子ドットを含み、前記第2波長変換粒子がKSF蛍光物質を含む、請求項に記載のバックライトユニット。
  4. 前記第1波長変換粒子及び前記第2波長変換粒子が、それぞれ、カドミウム(Cd)化合物、及び、インジウム(In)化合物を含む請求項1または3に記載のバックライトユニット。
  5. 前記波長変換層が、前記第1光を第波長の第2光に変換する第3波長変換粒子をさらに含む、請求項1に記載のバックライトユニット。
  6. 前記第1波長変換粒子が前記第2光を前記第2波長の光に変換し、前記第2波長変換粒子が前記第2光を前記第3波長の光に変換する、請求項に記載のバックライトユニット。
  7. 前記散乱粒子の含有量が5%未満である、請求項1に記載のバックライトユニット。
  8. 波長400nmの光に対する前記散乱粒子の反射率が80%以上である、請求項に記載のバックライトユニット。
  9. 前記導光板がガラスを含む、請求項1に記載のバックライトユニット。
  10. 導光板と、前記導光板上に配置され、TiO2アナターゼ結晶形の散乱粒子として粒子サイズ200nm以下の散乱粒子を含む波長変換層とを含む光学部材;
    前記導光板の一側に配置された光源を含むバックライトユニット;及び
    前記バックライトユニットの上部に配置された表示パネル;を含み、
    前記光源は、第1波長の第1光を前記導光板に提供し、前記波長変換層は、前記第1光を第2波長の光に変換する第1波長変換粒子、および前記第1光を第3波長の光に変換する第2波長変換粒子を含み、
    前記光源は第1波長と異なる第5波長の第2光を前記導光板に提供し、前記第1波長変換粒子は前記第2光を前記第2波長の光に変換し、前記第2波長変換粒子は前記第2光を前記第3波長の光に変換し、
    前記第1波長および前記第5波長が青色光または近紫外線の波長範囲内にあり、
    前記第1波長が320nm乃至420nmであり、前記第5波長が420nm乃至470nmであり、
    前記第2波長が緑色光の波長範囲内にあり、前記第3波長が赤色光の波長範囲内にあり、
    前記光学部材は前記導光板と前記波長変換層との間に配置された低屈折層をさらに含み、前記導光板、前記低屈折層および前記波長変換層は互いに結合して一体化されており、
    前記波長変換層および前記低屈折層を覆うパッシベーション層をさらに含み、
    前記波長変換層は、前記低屈折層よりも厚く、厚さが10~50μmであり、
    前記波長変換層の側面は前記低屈折層の側面に整列され、前記パッシベーション層は、前記低屈折層が露出する前記導光板の縁部の上面にまで延びて、縁部の一部が前記導光板の上面に直接接しており、
    前記波長変換層の側面は、前記低屈折層の側面より緩やかな傾斜角を持つ、表示装置。
  11. 前記第1波長変換粒子及び前記第2波長変換粒子が、それぞれ、カドミウム(Cd)化合物、及び、インジウム(In)化合物を含む請求項10に記載の表示装置。
  12. 第1波長の第1光を第2波長の光に変換する第1波長変換粒子と、
    前記第1光を第3波長の光に変換する第2波長変換粒子と、
    アナターゼ結晶形のTiO2を含む散乱粒子であって粒子サイズが200nm以下の散乱粒子を含む波長変換層とを含み、
    前記波長変換層は、光源から提供される、第1波長の第1光を第2波長の光に変換する第1波長変換粒子、および前記第1光を第3波長の光に変換する第2波長変換粒子を含み、
    前記第1波長変換粒子は、光源から提供される、第1波長と異なる第5波長の第2光を前記第2波長の光に変換し、前記第2波長変換粒子は前記第2光を前記第3波長の光に変換し、
    前記第1波長および前記第5波長が青色光または近紫外線の波長範囲内にあり、
    前記第1波長が320nm乃至420nmであり、前記第5波長が420nm乃至470nmであり、
    前記第2波長が緑色光の波長範囲内にあり、前記第3波長が赤色光の波長範囲内にあり、
    導光板と前記波長変換層との間に配置される低屈折層をさらに含み、前記導光板、前記低屈折層および前記波長変換層は互いに結合して一体化されるのであり、
    前記波長変換層および前記低屈折層を覆うパッシベーション層をさらに含み、
    前記波長変換層は、前記低屈折層よりも厚く、厚さが10~50μmであり、
    前記波長変換層の側面は前記低屈折層の側面に整列され、前記パッシベーション層は、前記低屈折層が露出する前記導光板の縁部の上面にまで延びて、縁部の一部が前記導光板の上面に直接接しており、
    前記波長変換層の側面は、前記低屈折層の側面より緩やかな傾斜角を持つ、光学部材。
  13. 前記導光板がガラスを含む、請求項12に記載の光学部材。
  14. 前記第1波長変換粒子及び前記第2波長変換粒子が、それぞれ、カドミウム(Cd)化合物、及び、インジウム(In)化合物を含む請求項12に記載の光学部材。
JP2019001432A 2018-06-11 2019-01-08 表示装置 Active JP7356798B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0067000 2018-06-11
KR1020180067000A KR102567653B1 (ko) 2018-06-11 2018-06-11 백라이트 유닛 및 이를 포함하는 표시 장치

Publications (2)

Publication Number Publication Date
JP2019215515A JP2019215515A (ja) 2019-12-19
JP7356798B2 true JP7356798B2 (ja) 2023-10-05

Family

ID=68764775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019001432A Active JP7356798B2 (ja) 2018-06-11 2019-01-08 表示装置

Country Status (4)

Country Link
US (1) US20190377229A1 (ja)
JP (1) JP7356798B2 (ja)
KR (1) KR102567653B1 (ja)
CN (1) CN110579904A (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102562289B1 (ko) * 2018-08-28 2023-08-02 삼성디스플레이 주식회사 광원 부재 및 이를 포함하는 표시 장치
KR20200049938A (ko) * 2018-10-29 2020-05-11 삼성디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 표시 장치
TWI693455B (zh) * 2019-04-10 2020-05-11 瑞軒科技股份有限公司 發光二極體背光模組
KR20220097772A (ko) * 2020-12-31 2022-07-08 삼성디스플레이 주식회사 표시 패널, 이를 구비한 표시 장치, 및 표시 패널의 제조방법
KR20230044656A (ko) * 2021-09-27 2023-04-04 삼성전자주식회사 디스플레이 모듈 및 이를 포함하는 웨어러블 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118108A1 (ja) 2010-03-23 2011-09-29 株式会社朝日ラバー シリコーン樹脂製反射基材、その製造方法、及びその反射基材に用いる原材料組成物
JP2013532312A (ja) 2010-07-14 2013-08-15 エルジー イノテック カンパニー リミテッド 表示装置
US20140111968A1 (en) 2011-05-24 2014-04-24 Lg Innotek Co., Ltd. Optical member, display device including the same, method for manufacturing the same
WO2015199320A1 (en) 2014-06-27 2015-12-30 Lg Electronics Inc. Backlight unit and display device having the same
JP2016181474A (ja) 2015-03-25 2016-10-13 大日本印刷株式会社 導光部材、面光源装置及び表示装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036940A1 (de) * 2000-07-28 2002-02-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lumineszenz-Konversions-LED
EP1664393B1 (en) * 2003-07-14 2013-11-06 Allegis Technologies, Inc. METHOD OF PROducING GALLIUM NITRIDE LEDs
TWI266120B (en) * 2003-07-18 2006-11-11 Hon Hai Prec Ind Co Ltd Back light module and liquid crystal display using the same
JP2008071806A (ja) * 2006-09-12 2008-03-27 C I Kasei Co Ltd 発光装置
JP2009123803A (ja) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd 発光ダイオード装置
US8283686B2 (en) * 2007-12-11 2012-10-09 Koninklijke Philips Electronics N.V. Side emitting device with hybrid top reflector
US8740400B2 (en) * 2008-03-07 2014-06-03 Intematix Corporation White light illumination system with narrow band green phosphor and multiple-wavelength excitation
WO2011145247A1 (ja) * 2010-05-18 2011-11-24 シャープ株式会社 表示装置
CN102986044B (zh) * 2010-10-15 2015-05-06 三菱化学株式会社 白色发光装置及照明器具
EP3839335A1 (en) * 2010-11-10 2021-06-23 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
JP5737011B2 (ja) * 2011-01-18 2015-06-17 日本電気硝子株式会社 発光デバイス、発光デバイス用セル及び発光デバイスの製造方法
JP2012216717A (ja) * 2011-04-01 2012-11-08 Ccs Inc 発光装置
JP2014079905A (ja) * 2012-10-15 2014-05-08 Mitsubishi Chemicals Corp 波長変換部材の製造方法、及び発光装置の製造方法
KR102157244B1 (ko) * 2013-12-20 2020-09-18 삼성디스플레이 주식회사 파장 변환체 및 이를 포함하는 액정표시장치
JP6326003B2 (ja) * 2014-05-19 2018-05-16 富士フイルム株式会社 波長変換部材、バックライトユニット、および液晶表示装置、ならびに量子ドット含有重合性組成物
KR101581762B1 (ko) * 2014-06-27 2016-01-04 엘지전자 주식회사 백라이트유닛 및 이를 구비하는 디스플레이 장치
KR20160094888A (ko) * 2015-01-31 2016-08-10 주식회사 엘지화학 색변환 필름 및 이의 제조방법 및 이를 포함하는 백라이트 유닛
KR101849603B1 (ko) * 2016-07-27 2018-04-17 국민대학교산학협력단 액정표시패널 및 이를 포함하는 액정표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118108A1 (ja) 2010-03-23 2011-09-29 株式会社朝日ラバー シリコーン樹脂製反射基材、その製造方法、及びその反射基材に用いる原材料組成物
JP2013532312A (ja) 2010-07-14 2013-08-15 エルジー イノテック カンパニー リミテッド 表示装置
US20140111968A1 (en) 2011-05-24 2014-04-24 Lg Innotek Co., Ltd. Optical member, display device including the same, method for manufacturing the same
WO2015199320A1 (en) 2014-06-27 2015-12-30 Lg Electronics Inc. Backlight unit and display device having the same
JP2016181474A (ja) 2015-03-25 2016-10-13 大日本印刷株式会社 導光部材、面光源装置及び表示装置

Also Published As

Publication number Publication date
KR102567653B1 (ko) 2023-08-17
KR20190140548A (ko) 2019-12-20
US20190377229A1 (en) 2019-12-12
JP2019215515A (ja) 2019-12-19
CN110579904A (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
JP7356798B2 (ja) 表示装置
KR102533078B1 (ko) 광학 부재 및 이를 포함하는 표시 장치
KR102587654B1 (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
JP7419590B2 (ja) 発光モジュール及び表示装置
US7367691B2 (en) Omnidirectional one-dimensional photonic crystal and light emitting device made from the same
CN107407835B (zh) 照明装置、显示装置以及电视接收装置
US7075116B2 (en) Semiconductor light emitting device
KR102106045B1 (ko) 양자점을 이용한 백라이트 유닛을 구비한 액정표시장치
JP5583281B2 (ja) 蛍光体光学素子およびそれを用いた発光装置
KR102531351B1 (ko) 광학 부재 및 이를 포함하는 표시 장치
US20200132914A1 (en) Backlight unit and display device having the same
JP2015149468A (ja) 発光ダイオードパッケージ及びその製造方法
WO2019140768A1 (zh) 一种背光源
TWI386728B (zh) 背光模組與液晶顯示器
JP2005332963A (ja) 発光装置
KR102433161B1 (ko) 광학 부재 및 이를 포함하는 표시 장치
KR102523674B1 (ko) 광학 부재 및 이를 포함하는 표시 장치
US20200218004A1 (en) Backlight unit and a display including the same
KR20200005689A (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
US20200209683A1 (en) Backlight unit and liquid crystal display device including the same
US20150200340A1 (en) Light-emitting device
JP6687349B2 (ja) 液晶表示装置
US20200166808A1 (en) Optical member and display device including the same
JP2019211750A (ja) 光学部材及びこれを含む表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7356798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150