WO2011092525A1 - Filter comprising combined soot oxidation and nh3-scr catalyst - Google Patents
Filter comprising combined soot oxidation and nh3-scr catalyst Download PDFInfo
- Publication number
- WO2011092525A1 WO2011092525A1 PCT/GB2011/050170 GB2011050170W WO2011092525A1 WO 2011092525 A1 WO2011092525 A1 WO 2011092525A1 GB 2011050170 W GB2011050170 W GB 2011050170W WO 2011092525 A1 WO2011092525 A1 WO 2011092525A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid body
- extruded
- wall
- weight
- extruded solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
- B01D53/565—Nitrogen oxides by treating the gases with solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/864—Removing carbon monoxide or hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8643—Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
- B01D53/8646—Simultaneous elimination of the components
- B01D53/865—Simultaneous elimination of the components characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/10—Magnesium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
- B01J23/04—Alkali metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/30—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/464—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/83—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/888—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/7215—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
- B01J29/7415—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/7615—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/78—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J29/7815—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/84—Aluminophosphates containing other elements, e.g. metals, boron
- B01J29/85—Silicoaluminophosphates [SAPO compounds]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/396—Distribution of the active metal ingredient
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0244—Coatings comprising several layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0246—Coatings comprising a zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63448—Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63488—Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/636—Polysaccharides or derivatives thereof
- C04B35/6365—Cellulose or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/82—Asbestos; Glass; Fused silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0006—Honeycomb structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20776—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/915—Catalyst supported on particulate filters
- B01D2255/9155—Wall flow filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00793—Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/0081—Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/3218—Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/322—Transition aluminas, e.g. delta or gamma aluminas
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6021—Extrusion moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/606—Drying
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S55/00—Gas separation
- Y10S55/30—Exhaust treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49345—Catalytic device making
Definitions
- the present invention relates to a filter for filtering particulate matter from an exhaust gas also containing oxides of nitrogen of an internal combustion engines from stationary source and mobile applications, which filter comprising a catalyst for converting oxides of nitrogen to N 2 using a nitrogenous reductant.
- EP 1739066 discloses a honeycomb structure comprising multiple honeycomb units having multiple through holes; and a seal layer that joins honeycomb units with each other via respective closed outer faces of the honeycomb units where the through holes are not open.
- the honeycomb unit includes at least inorganic particles, inorganic fibers and/or whiskers.
- the inorganic particles exemplified are alumina, titania, silica and zirconia; the inorganic fibres exemplified are silica alumina fibres; and the inorganic binders exemplified are silica sol, alumina sol, sepiolite and attapulgite.
- a catalyst component can be carried on the honeycomb structure.
- the catalyst component may include at least one type selected among noble metals including platinum, palladium and rhodium, alkali metals such as potassium and sodium, alkaline earth metal e.g. barium and oxides.
- the honeycomb structure can be used as a catalytic converter e.g. a three-way catalyst or a NO x storage catalyst for conversion of the exhaust gas of vehicles.
- WO 2009/093071 discloses a wall- flow filter monolith substrate having a porosity of at least 40% formed from a selective catalytic reduction catalyst of extruded type.
- US 7,507,684 discloses an extruded monolithic catalytic converter for converting oxides of nitrogen in the presence of a reducing agent and a method of manufacturing such an extruded monolithic catalytic converter.
- WO 2009/001131 discloses a method of converting nitrogen oxides in a gas stream to nitrogen comprising contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a non-zeolite base metal catalyst consisting of: (a) at least one transition metal dispersed on a mixed oxide or composite oxide or a mixture thereof as support material consisting of cerium and zirconium; or (b) cerium oxide and zirconium oxide as single oxides or a composite oxide thereof or a mixture of the single oxides and the composite oxide dispersed on an inert oxide support material, on which inert support material is also dispersed at least one transition metal.
- a non-zeolite base metal catalyst consisting of: (a) at least one transition metal dispersed on a mixed oxide or composite oxide or a mixture thereof as support material consisting of cerium and zirconium; or (b) cerium oxide and zirconium oxide as single oxides or a composite oxide thereof or a mixture of the single oxides and the composite oxide disper
- US patent no. 5,552,128 discloses a catalytic method for converting nitrogen oxides to nitrogen (i.e., N 2 ), which catalyst comprising an acidic solid component comprising a Group IVB metal oxide modified with an oxyanion of a Group VIB metal and further comprising at least one metal selected from the group consisting of Group IB, Group IVA, Group VB, Group VIIB, Group VIII, and mixtures thereof.
- a given example of this catalyst is zirconia, modified with tungstate, and iron.
- the method may be used for reducing emissions of nitrogen oxides from waste gases, including industrial exhaust gases and automobile exhaust gases.
- nitrogen oxides in waste gases may be reacted with ammonia before the waste gases are discharged to the atmosphere.
- the invention provides a wall- flow filter for filtering particulate matter from a flowing exhaust gas, which filter comprising a catalyst for catalysing the conversion of solid carbon in the particulate matter by oxygen and for catalysing the selective reduction of oxides of nitrogen in the exhaust gas with a nitrogenous reductant, which catalyst comprising optionally stabilised ceria and at least one metal selected from (i) tungsten and (ii) both tungsten and iron.
- the catalyst is coated on an inert filter substrate.
- the catalyst comprises an extruded solid body comprising: 10-90% by weight of at least one binder/matrix component; and 5-80% by weight optionally stabilised ceria, wherein the at least one metal: (i) is present throughout the extruded solid body; (ii) is located in a majority at a surface of the extruded solid body; (iii) is present throughout the extruded solid body and is also present in a higher concentration at a surface of the extruded solid body; (iv) is present throughout the extruded solid body and is also carried in one or more coating layer(s) on a surface of the extruded solid body; or (v) is present throughout the extruded solid body, is present in a higher concentration at a surface of the extruded solid body and is also carried in one or more coating layer(s) on the surface of the extruded solid body.
- An advantage of the present invention is that by removing catalytic components that are often used in catalytic coatings, the number of coatings can be reduced, e.g. from two layers to one layer; or a single layer can be removed altogether and catalytic metal can be supported on a surface of the extruded solid body as such. This has benefits in reducing backpressure in an exhaust system, increasing the efficiency of the engine. Furthermore, by providing the possibility of uncoated catalysts, the extruded solid body can be manufactured at higher cell density, increasing strength and decreasing the thickness of cell walls which can improve light off performance and increasing activity through mass transfer. Also it is possible to increase the volume of active components in an extruded solid body relative to a coating on an inert substrate monolith.
- catalysts disclosed in our WO 2009/001131 disclosed above can be coated at about 2.7 g in “3 , whereas the equivalent material can be extruded as a solid body at 12 g in "3 .
- This increased catalyst density has advantages for long term durability and catalyst performance, which is important for on-board diagnostics.
- On board diagnostics in the context of a motor vehicle is a generic term to describe the self diagnostic and reporting capability of the vehicle's systems provided by a network of sensors linked to a suitable electronic management system.
- OBD On board diagnostics
- Early examples of OBD systems would simply illuminate a malfunction indicator light if a problem were detected, but it provided no information on the nature of the problem.
- More modern OBD systems use a standardised digital connection port and are capable of providing information on standardised diagnostic trouble codes and a selection of real-time data, which enable rapid problem identification and resolution of a vehicle's systems.
- the OBD limits for Euro 4 98/69/EC for passenger diesel vehicles (category M vehicles as defined by 70/156/EEC) are: carbon monoxide (CO) - 3.2g/km; hydrocarbons (HC) - 0.4 g/km; nitrogen oxides (NO x ) - 1.2 g/km; and particulate matter (PM) 0.18 g/km.
- the Euro 4 limits are: CO - 3.2 g/km; HC - 0.4 g/km; NO x - 0.6 g/km; and PM - no limit.
- Extruded solid bodies according to the present invention generally comprise a unitary structure in the form of a honeycomb having uniform-sized and parallel channels extending from a first end to a second end thereof.
- Channels at a first, upstream end can be blocked e.g. with a suitable ceramic cement, and channels not blocked at the first, upstream end can also be blocked at a second, downstream end to form a so-called wall- flow filter.
- the arrangement of the blocked channels at the first, upstream end resembles a chequer board with a similar arrangement of blocked and open downstream channel ends.
- Channel walls defining the channels are porous.
- an external "skin" surrounds a plurality of the channels of the extruded solid body.
- the extruded solid body can be formed from any desired cross section, such as circular, square or oval. Individual channels in the plurality of channels can be square, triangular, hexagonal, circular etc.
- the honeycomb structure disclosed in EP 1739066 has a Thermal Shock Parameter (TSP) too low to be used in a single unitary extrudate, because the honeycomb structure comprises an assembly of individual honeycomb units cemented together.
- TSP Thermal Shock Parameter
- This, arrangement, also seen in commercially available silicon carbide honeycombs, is designed to avoid catastrophic catalyst substrate failure due to inter alia thermal shock as a result of a relatively high Coefficient of Thermal Expansion (CTE) of the extruded material.
- CTE Coefficient of Thermal Expansion
- the manufacture of a honeycomb structure from individual honeycomb units is complicated, laborious, time consuming and expensive and increases the number of possible physical failure modes, e.g. at the cement bonds, compared with a single piece extrusion.
- the extruded solid body of the catalyst according to the invention has an axial Thermal Shock Parameter (TSP) and a radial TSP sufficient to avoid radial cracks and ring cracks in the extruded solid body when used for treating exhaust gases from a stationary or mobile source of emissions. In this way the extruded solid body can be formed from a single unitary extrudate.
- TSP Thermal Shock Parameter
- each segment of the whole catalyst would meet the functional limitation that the axial TSP and the radial TSP are sufficient to avoid radial cracks and ring cracks in the individual extruded solid body segments when used for treating exhaust gases from a stationary or mobile source of emissions.
- the radial TSP is >0.4 at 750°C, such as >0.5, >0.6, >0.7, >0.8 >0.9 or >1.0.
- the radial TSP is desirably also >0.4 and at 1000°C is preferably >0.8.
- the CTE of wall- flow filters is preferably 20 x 10 "7 /°C in order to be formed from a one-piece extrudate.
- the at least one binder/matrix component can be selected from the group consisting of cordierite, nitrides, carbides, borides, intermetallics, lithium
- aluminosilicate a spinel, an optionally doped alumina, a silica source, titania, zirconia, titania-zirconia, zircon and mixtures of any two or more thereof.
- Spinels can be MgAl 2 0 4 or the Mg can be partially replaced by a metal from the group consisting of Co, Zr, Zn or Mn.
- the alumina binder/matrix component is preferably gamma alumina, but can be any other transition alumina, i.e. alpha alumina, beta alumina, chi alumina, eta alumina, rho alumina, kappa alumina, theta alumina, delta alumina, lanthanum beta alumina and mixtures of any two or more such transition aluminas.
- the alumina is doped with at least one non-aluminium element to increase the thermal stability of the alumina.
- Suitable alumina dopants include silicon, zirconium, barium, lanthanides and mixtures of any two or more thereof.
- Suitable lanthanide dopants include La, Ce, Nd, Pr, Gd and mixtures of any two or more thereof.
- Sources of silica can include a silica, a silica sol, quartz, fused or amorphous silica, sodium silicate, an amorphous aluminosilicate, an alkoxysilane, a silicone resin binder such as methylphenyl silicone resin, a clay, talc or a mixture of any two or more thereof.
- the silica can be Si0 2 as such, feldspar, mullite, silica-alumina, silica- magnesia, silica-zirconia, silica-thoria, silica-berylia, silica-titania, ternary silica-alumina- zirconia, ternary silica-alumina-magnesia, ternary-silica-magnesia-zirconia, ternary silica- alumina-thoria and mixtures of any two or more thereof.
- the silica can be derived from calcining tetramethyl ortho silicate (TMOS) added to the extrusion composition.
- TMOS tetramethyl ortho silicate
- Suitable clays include fullers earth, sepiolite, hectorite, a smectite, a kaolin and mixtures of any two or more thereof, wherein the kaolin can be chosen from subbentonite, anauxite, hallo ysite, kaolinite, dickite, nacrite and mixtures of any two of more thereof; the smectite can be selected from the group consisting of montmorillonite, nontronite, vermiculite, saponite and mixtures of any two or more thereof; and the fullers earth can be montmorillonite or palygorskite (attapulgite).
- Inorganic fibres are selected from the group consisting of carbon fibres, glass fibres, metal fibres, boron fibres, alumina fibres, silica fibres, silica-alumina fibres, silicon carbide fibres, potassium titanate fibres, aluminum borate fibres and ceramic fibres.
- the ceria component can be optionally stabilised with at least one non-cerium element to increase the thermal stability of the ceria.
- Suitable ceria stabilisers include zirconium, lanthanides and mixtures of any two or more thereof.
- Lanthanide stabilisers include La, Nd, Pr, Gd and mixtures of any two or more thereof.
- the Ce0 2 :Zr0 2 ratio by weight can be e.g. between 80:20 or 20:80.
- the at least one metal can be: (a) present throughout the extruded solid body, i.e. the at least one metal is present in the extrudate composition; (b) present in a higher concentration at a surface of the extruded solid body; and/or (c) carried in one or more coating layer(s) on a surface of the extruded solid body in features (iii), (iv) and (v).
- the at least one metal can be present at location (a), (b), (c), (a) plus (b), (a) plus (c) or (a) plus (b) plus (c). Where the at least one metal is present in (a) and (b), (a) and (c) or (a), (b) and (c), the at least one metal in each location can be the same or different.
- the at least one metal present: throughout the extruded solid body but not associated with the or each molecular sieve; in the majority of the at least one metal located at the surface of the extruded solid body; in one or more coating layer(s) on the surface of the extruded solid body; or in the higher concentration at the surface of the extruded solid body can be selected from the group consisting of an alkali metal, an alkaline earth metal, a transition metal, a lanthanide or a mixture of any two or more thereof.
- Suitable coatings for supporting catalytic metals for use in the present invention include one or more of alumina (AI 2 O 3 ), particularly ⁇ -alumina, silica (Si0 2 ), titania (Ti0 2 ), ceria (Ce0 2 ), zirconia (Zr0 2 ), vanadia (V 2 0 5 ), lanthana (La 2 0 3 ) and zeolites.
- alumina AI 2 O 3
- silica Si0 2
- titania Ti0 2
- ceria Ce0 2
- Zr0 2 zirconia
- V 2 0 5 vanadia
- La 2 0 3 lanthana
- zeolites zeolites.
- the ceria and alumina can be optionally stabilised using the same stabilisers as used for the extruded solid body.
- Techniques for locating at least one metal in higher concentration at the surface of the extruded solid body include impregnation, preferably thickened impregnation, i.e. an impregnation medium thickened with a rheology modifier. Drying methods can also be used to concentrate metals at a surface of the extruded solid body. For example, a so- called “egg shell” technique, where metals are concentrated at the surface can be obtained by drying the impregnated extruded solid body relatively slowly so that the metals are deposited at the surface by wicking.
- Particular choices of salts and pH conditions can also be used to direct metal deposition, e.g. by determining the isoelectric point of the extruded solid body and then using the correct combination of pH and metal salts to benefit from an electrostatic attraction between cations or anions in the metal salts and the extruded solid body.
- the total metal content throughout the extruded solid body but not associated with the or each molecular sieve component; located at the surface of the extruded solid body; and/or in the higher concentration at the surface of the extruded solid body can be from 0.1 to 20% by weight, such as from 1 to 9% by weight.
- the total metal content of the extruded solid body i.e. including any metal associated with the or each molecular sieve, can be from 0.1 to 25% by weight, such as from 1 to 15% by weight.
- the total metal content of the catalyst as a whole, including one or more coating layer(s) on a surface of the extruded solid body comprises at least one metal, can be from 0.1 to 30%) by weight, such as from 1 to 25% by weight.
- the wall- flow filter according to the invention comprises an extruded solid body comprising:
- a cordierite 10-90% by weight of a cordierite, nitrides, carbides, borides, intermetallics, lithium aluminosilicate, an optionally doped alumina, a silica source, titania, zirconia, titania- zirconia, zircon and mixtures of any two or more thereof;
- the content of the at least one binder/matrix component can be > 15% by weight, >
- the content of the spinel can be >10% by weight, >15% by weight, > 20%> by weight, >30% by weight, >35% by weight, >40% by weight, > 45% by weight, >50% by weight, >55% by weight, >60% by weight, >65% by weight or >70% by weight, >75% by weight, >80% by weight or >85% by weight.
- the content of the spinel can be >10% by weight, >15% by weight, > 20%> by weight, >30% by weight, >35% by weight, >40% by weight, > 45% by weight, >50% by weight, >55%> by weight, >60%> by weight, >65%> by weight or >70%> by weight.
- the content of the optionally stabilised ceria can be >10% by weight, >15% by weight, > 20% by weight, >30% by weight, >35% by weight, >40% by weight, > 45% by weight, >50% by weight, >55% by weight, >60% by weight, >65% by weight or >70% by weight.
- the content of the inorganic fibres can be >5% by weight, >10% by weight, >15% by weight or > 20% by weight.
- the extruded solid body can consist essentially of: 10-90%) by weight of cordierite, nitrides, carbides, borides, intermetallics, lithium aluminosilicate, an optionally doped alumina, a spinel, a silica source, titania, zirconia, titania-zirconia, zircon and mixtures of any two or more thereof; 20-80% by weight optionally stabilised ceria; and 0-25% by weight of inorganic fibres.
- Preferred embodiments contain inorganic fibres.
- the extruded solid body consists essentially of: 10-90% by weight of cordierite, nitrides, carbides, borides, intermetallics, lithium aluminosilicate, an optionally doped alumina, titania, zirconia, titania-zirconia, zircon and mixtures of any two or more thereof; 0-20%> by weight of a source of silica; 0-50%> by weight of magnesium aluminate spinel; 20-80%) by weight optionally stabilised ceria; and 0-20% by weight inorganic fibres.
- Preferred embodiments may contain magnesium aluminate spinel and inorganic fibres.
- the extruded solid body consists essentially of: 10-50%) by weight of cordierite, nitrides, carbides, borides, intermetallics, lithium aluminosilicate, an optionally doped alumina, titania, zirconia, titania-zirconia, zircon and mixtures of any two or more thereof; 0-10% by weight of a source of silica; 20-50%) by weight of magnesium aluminate; 20-80%) by weight optionally stabilised ceria; and 0-10% by weight inorganic fibres.
- a wall- flow filter for converting oxides of nitrogen in the presence of a reducing agent and for combusting particulate matter comprises an extruded solid catalyst body consists essentially of: 10- 90% by weight of cordierite, nitrides, carbides, borides, intermetallics, lithium
- aluminosilicate, a spinel an optionally doped alumina, titania, zirconia, titania-zirconia, zircon and mixtures of any two or more thereof; 0-30% by weight of a source of silica; 20- 80%) by weight optionally stabilised ceria; and 0-20%> by weight inorganic fibres, which extruded solid catalyst body being impregnated with tungsten, iron or tungsten and iron.
- a nitrogenous reductant e.g.
- NH 3 -selective catalytic reduction (NH 3 -SCR)); and the combustion of soot by lowering the temperature for the ignition of the carbon/oxygen (C-0 2 ) reaction.
- this invention embraces a series of W0 3 -Ce0 2 -Zr0 2 systems with the ability to perform both the NO x reduction reaction with a nitrogenous reductant and soot oxidation reaction with 0 2 .
- the W and Zr loading on these materials can be optimized to achieve this dual functionality. It will be understood that the benefit of this particular invention extends to catalyst coatings applied to inert filter substrates, such as ceramic wall- flow filters.
- the invention provides an exhaust system for a vehicle, which system comprising a source of nitrogenous reductant, injector means for injecting the nitrogenous reductant into a flowing exhaust gas and a wall- flow filter according to any preceding claim disposed downstream of the injector means.
- the exhaust system comprises an oxidation catalyst disposed upstream of the injector means for oxidising nitric oxide to nitrogen dioxide.
- a vehicle e.g. an automobile, comprising an internal combustion engine and an exhaust system according to the invention.
- the internal combustion engine can be a compression ignition engine or a positive ignition engine.
- a positive ignition engine is typically fuelled with gasoline fuel, but other fuels can be used including gasoline fuel blended with oxygenates including methanol and/or ethanol, liquid petroleum gas or compressed natural gas.
- Compression ignition engines can be fuelled by diesel fuel, blends of diesel fuel and biodiesel or Fischer-Tropsch derived fuels, biodiesel as such or natural gas as such.
- Modern compression ignition engines including those known as the Dilution Controlled Combustion System (DCCS), for example Toyota's Smoke-less Rich Combustion concept.
- Emissions from Homogeneous Charge Compression Ignition (HCCI) engines may also be treated.
- modern engines wherein substantially all fuel for combustion is injected into a combustion chamber prior to the start of combustion may be treated.
- the internal combustion engine is a compression ignition engine.
- the invention provides a process of manufacturing a wall- flow filter according to the invention, which process comprising the steps of: forming a solid extruded body by mixing powdered starting materials of: at least one binder/matrix component or a precursor of one or more thereof; an optionally stabilised ceria; and an optional salt of tungsten and/or iron; with optional inorganic fibres; optionally adding an organic auxiliary agent; processing by mixing and/or kneading in an acid or alkaline aqueous solution to form a mixture; extruding the mixture into a catalyst body, drying the catalyst body and calcining to form a solid extruded body; and selecting quantitative proportions of the starting materials such that the solid extruded body contains 10-90% by weight of at least one binder/matrix component; and 5-80% by weight optionally stabilised ceria, and optionally impregnating a surface of the solid extruded body with at least one of tungsten and iron and/or
- an extruded solid body, a binder, an organic viscosity-enhancing compound and a liquid for converting the material by blending into an homogeneous paste are added to the binder/matrix component or a precursor thereof and optional molecular sieve, optional optionally stabilised ceria, optional inorganic fibres and optional at least one metal compound, and the mixture is compacted in a mixing or kneading apparatus or an extruder.
- the mixtures have organic additives such as binders, plasticizers, surfactants, lubricants, dispersants as processing aids to enhance wetting and therefore produce a uniform batch.
- the resulting plastic material is then moulded, in particular using an extrusion press or an extruder including an extrusion die, and the resulting mouldings are dried and calcined.
- the organic additives are "burnt out” during calcinations of the extruded solid body.
- the at least one binder/matrix component is selected from the group consisting of cordierite, nitrides, carbides, borides, intermetallics, lithium alumino silicate, a spinel, an optionally doped alumina, a silica source, titania, zirconia, titania-zirconia, zircon and mixtures of any two or more thereof.
- An alumina precursor can be used which is aluminium hydroxide or boehmite. Where an aluminium oxide is used, to ensure the binding with the aluminium oxide, it is advantageous to add an aqueous solution of a water-soluble metal salt to the aluminium oxide or the precursor substance of the aluminium oxide before adding the other starting materials.
- the silica source can be selected from the group consisting of a silica, a silica sol, quartz, fused or amorphous silica, sodium silicate, an amorphous aluminosilicate, an alkoxysilane, a silicone resin binder, a clay, talc or a mixture of any two or more thereof.
- the silica source is a silicone resin binder and a solvent for the silicone resin binder is isopropyl alcohol or a dibasic ester.
- the organic auxiliary agent for use in the process according to the present invention can be one or more selected from the group consisting of a cellulose derivative, an organic plasticizer, a lubricant and a water-soluble resin.
- suitable cellulose derivatives include cellulose ethers selected from the group consisting of methylcellulose, ethylcellulose, carboxymethylcellulose, ethylhydroxyethylcellulose,
- methylhydroxypropylcellulose and combinations of any two or more thereof.
- Cellulose derivatives increase the porosity of the final product, which is advantageous for the catalytic activity of the solid catalyst body. Initially the cellulose swells in the aqueous suspension but is ultimately removed during the calcining process.
- the organic plasticizer for use in the process of the present invention is selected from the group consisting of polyvinyl alcohol, polyvinyl butyral, an ionomer, acrylics, copolyethylene/acrylic acid, polyurethane, a thermoplastic elastomers, a relatively low molecular weight polyester, linseed oil, a ricinoleate and combinations of any two or more thereof.
- the water-soluble resin can be a polyacrylate.
- the lubricant for use in the process according to the present invention is selected from at least one of the group consisting of ethylene glycol, stearic acid, sodium stearate, glycerine and glycols.
- the pH can be acid or alkaline.
- the pH-value of the solution can be between 3 and 4.
- acetic acid is used to acidify the solution.
- the pH-value of the solution can be between 8 and 9.
- Ammonia can be used to adjust the pH to the alkaline side.
- Figure 1 is a graph showing the effect of tungsten concentration on the oxidation of soot in a physical mixture of the soot and catalyst in a temperature programmed oxidation experiment whereby the catalyst mixture is ramped in a gas mixture containing 5%0 2 and He balance;
- Figure 2 is a graph showing NH 3 -SCR activity of W-Ce0 2 -Zr0 2 ;
- Figure 3 is a graph showing the activity of 10wt%W-CeO 2 and 10wt%W-CeO 2 -
- Figure 4 is a graph comparing the pore volume and porosity of various V 2 0 5 /WO x - Ti0 2 filter materials prepared using various pore modifiers relative to a Reference product used in a flow-through configuration;
- Figure 5 is a graph plotting the pore volume against pore radius for a number of pore modifiers relative to the V 2 0 5 /WO x -Ti0 2 Reference and a commercially available wallflow filter substrate.
- TPO temperature-programmed oxidation
- SCAT laboratory synthetic catalytic activity test
- the W-Ce0 2 -Zr0 2 catalysts show high reactivity for the NH 3 -SCR reaction. It can also be seen that the catalyst containing 5wt% W is more active at relatively lower temperatures than the 15wt% W catalyst, whereas the 15wt% W- containing catalyst retains activity at higher temperatures. Depending on the prevailing temperature of the exhaust gas, the appropriate catalyst can be selected.
- Figure 3 compares 10wt%> W-Ce0 2 -Zr0 2 and 10wt%> W-Ce0 2 and shows that both materials are active for NH 3 -SCR.
- a Reference extruded V 2 0 5 /WO x -Ti0 2 solid body was prepared similarly to Examples 1 and 5 by blending components A, B, F and S as set out in Table 1 with water to make a kneadable paste.
- Additives H pore modifiers
- the resulting composition was extruded, dried and calcined as described in Examples 1 and 5. It should be noted that the percentage quantities of inorganic solids present in the final calcined article is 100%. Quantities of additives (here H and S) that are removed by combustion during calcination are provided in wt% relative to the 100% inorganic solids content.
- Al TiW (98,9%, MC 10/Cristal)
- A2 V 2 0 5 from AMV (78% V 2 0 5 , GFE)
- HI Cellulose (QPIOOOOH/Nordmann)
- H2 PEO (Alkox/Alroko)
- Pore Modifier Wt% Used in Pore Volume Pore Radius Porosity (%) Table 1 Recipe (mm 3 /g) (A)
- Porosity and pore volume and pore radius can be measured e.g. using mercury intrusion porosimetry.
- Figure 5 compares the pore volume of a different Reference with solid extruded V 2 O 5 /W O x -Ti0 2 materials prepared using other pore modifiers set out in Table 2 compared also with a commercially available wallflow filter (NGK). It can be seen from the graph that the inclusion of pore modifiers has improved the porosity and pore volume of the Reference extruded solid body so that the materials have properties approaching those of commercially available wall- flow filters.
- NNK wallflow filter
- EXAMPLE 3 EXTRUDED WALL-FLOW NON-ZEOLITE SCR FILTER This is a prophetic example.
- Ce0 2 -Zr0 2 catalyst of Example 12 may be prepared using an appropriate amount of Ce0 2 /Zr0 2 mixed oxide mixed with glass fibres, powdered synthetic boehmite (Disperal), and ammonium metatungstate and processed in an aqueous solution with a pH-value of about 4 into a shapeable and flowable slip containing a wt% of 4.5wt% cellulose (CMC- QP10000H) and 3.5wt% of the organic auxiliary agent PEO Alkox (a polyethylene oxide) and a total of 13wt% of a mixture of the pore modifiers Rettenmaier BC200, a natural cellulosic material, and PAN fibres.
- CMC- QP10000H 4.5wt% cellulose
- PEO Alkox a polyethylene oxide
- the quantitative proportions of the starting materials may be selected in such a way that the active material of the finished solid catalyst body may contain 63.6% by weight of Ce0 2 /Zr0 2 , 15.9% by weight of ⁇ - ⁇ 1 2 0 3 , 12.5 by weight of tungstate (WO3) and 8% by weight of glass fibres.
- the resulting product would have a mean pore size of approximately ⁇ .
- the extruded flow-through monolith substrate comprising a plurality of channels may be made into a wall- flow filter arrangement whereby a plurality of first channels is plugged at an upstream end and a plurality of second channels not plugged at the upstream end are plugged at a downstream end, wherein the arrangement of the first and second channels is such that laterally and vertically adjacent channels are plugged at opposite ends in the appearance of a checkerboard by inserting substantially gas impermeable plugs at the ends of the channels in the desired pattern according to EP 1837063.
- This filter arrangement is also disclosed in SAE 810114.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Structural Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Filtering Materials (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201180016979.6A CN102869429B (zh) | 2010-02-01 | 2011-02-01 | 包括组合的烟灰氧化和nh3-scr的催化剂的过滤器 |
| US13/384,572 US9283519B2 (en) | 2010-02-01 | 2011-02-01 | Filter comprising combined soot oxidation and NH3-SCR catalyst |
| EP11702690.6A EP2539050B1 (en) | 2010-02-01 | 2011-02-01 | Filter comprising combined soot oxidation and nh3-scr catalyst |
| RU2012137280/04A RU2570934C2 (ru) | 2010-02-01 | 2011-02-01 | Фильтр, содержащий объединенный катализатор для окисления сажи и nh3-scr катализатор |
| JP2012550523A JP6312361B2 (ja) | 2010-02-01 | 2011-02-01 | 結合された媒煙酸化及びnh3−scr触媒を含むフィルタ |
| KR1020127022966A KR101922734B1 (ko) | 2010-02-01 | 2011-02-01 | 그을음 산화와 nh3-scr 촉매의 조합을 포함하는 필터 |
| BR112012019018-0A BR112012019018B1 (pt) | 2010-02-01 | 2011-02-01 | filtro de fluxo de parede, sistema de escapamento para um veículo, e, processo para a fabricação de um filtro de fluxo de parede |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US30027910P | 2010-02-01 | 2010-02-01 | |
| US61/300,279 | 2010-02-01 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2011092525A1 true WO2011092525A1 (en) | 2011-08-04 |
Family
ID=43629577
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2011/050162 Ceased WO2011092521A1 (en) | 2010-02-01 | 2011-02-01 | Extruded scr filter |
| PCT/GB2011/050160 Ceased WO2011092519A1 (en) | 2010-02-01 | 2011-02-01 | Oxidation catalyst |
| PCT/GB2011/050164 Ceased WO2011092523A1 (en) | 2010-02-01 | 2011-02-01 | NOx ABSORBER CATALYSTS |
| PCT/GB2011/050170 Ceased WO2011092525A1 (en) | 2010-02-01 | 2011-02-01 | Filter comprising combined soot oxidation and nh3-scr catalyst |
| PCT/GB2011/050158 Ceased WO2011092517A1 (en) | 2010-02-01 | 2011-02-01 | Three way catalyst comprising extruded solid body |
Family Applications Before (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2011/050162 Ceased WO2011092521A1 (en) | 2010-02-01 | 2011-02-01 | Extruded scr filter |
| PCT/GB2011/050160 Ceased WO2011092519A1 (en) | 2010-02-01 | 2011-02-01 | Oxidation catalyst |
| PCT/GB2011/050164 Ceased WO2011092523A1 (en) | 2010-02-01 | 2011-02-01 | NOx ABSORBER CATALYSTS |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2011/050158 Ceased WO2011092517A1 (en) | 2010-02-01 | 2011-02-01 | Three way catalyst comprising extruded solid body |
Country Status (11)
| Country | Link |
|---|---|
| US (7) | US8609047B2 (enExample) |
| EP (5) | EP2531279B1 (enExample) |
| JP (10) | JP5782050B2 (enExample) |
| KR (8) | KR102014664B1 (enExample) |
| CN (6) | CN102811798B (enExample) |
| BR (4) | BR112012019009A2 (enExample) |
| DE (6) | DE102011010107A1 (enExample) |
| GB (7) | GB2479807B (enExample) |
| HU (4) | HUE026104T2 (enExample) |
| RU (5) | RU2570883C2 (enExample) |
| WO (5) | WO2011092521A1 (enExample) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015516929A (ja) * | 2012-03-02 | 2015-06-18 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 多孔性無機体 |
| US9266092B2 (en) | 2013-01-24 | 2016-02-23 | Basf Corporation | Automotive catalyst composites having a two-metal layer |
| US9636634B2 (en) | 2014-01-23 | 2017-05-02 | Johnson Matthey Public Limited Company | Diesel oxidation catalyst and exhaust system |
| US20230191326A1 (en) * | 2020-06-25 | 2023-06-22 | Basf Corporation | Method of preparing a copper-promoted zeolite |
| US11766662B2 (en) | 2020-09-21 | 2023-09-26 | Unifrax I Llc | Homogeneous catalytic fiber coatings and methods of preparing same |
| US11987914B2 (en) | 2018-04-04 | 2024-05-21 | Unifrax I Llc | Activated porous fibers and products including same |
Families Citing this family (239)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5275342B2 (ja) | 2007-05-11 | 2013-08-28 | エスディーシー マテリアルズ インコーポレイテッド | 粒子生産システム及び粒子生産方法 |
| US8575059B1 (en) | 2007-10-15 | 2013-11-05 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
| US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
| US8652992B2 (en) | 2009-12-15 | 2014-02-18 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
| US9119309B1 (en) | 2009-12-15 | 2015-08-25 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying |
| US8557727B2 (en) | 2009-12-15 | 2013-10-15 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
| US9149797B2 (en) | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
| US8803025B2 (en) | 2009-12-15 | 2014-08-12 | SDCmaterials, Inc. | Non-plugging D.C. plasma gun |
| US8609047B2 (en) | 2010-02-01 | 2013-12-17 | Johnson Matthey Public Limited Company | Extruded SCR filter |
| CN102741515B (zh) | 2010-03-15 | 2014-10-01 | 丰田自动车株式会社 | 内燃机排气净化装置 |
| US8683784B2 (en) | 2010-03-15 | 2014-04-01 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
| ES2590924T3 (es) | 2010-04-01 | 2016-11-24 | Toyota Jidosha Kabushiki Kaisha | Método de purificación de gases de escape para motor de combustión interna |
| EP2579985A4 (en) * | 2010-06-10 | 2015-01-21 | Basf Se | NOX MEMORY CATALYST WITH IMPROVED HYDROCARBON FLUORATIVE ACTIVITY |
| FR2962923B1 (fr) * | 2010-07-22 | 2015-01-02 | Peugeot Citroen Automobiles Sa | Composition catalytique et dispositif de traitement des gaz comprenant une telle composition |
| US9108153B2 (en) | 2010-07-28 | 2015-08-18 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
| DE102010032576A1 (de) * | 2010-07-28 | 2012-02-02 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Vorrichtung zur motornahen Abgasbehandlung |
| US9121325B2 (en) | 2010-08-30 | 2015-09-01 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
| WO2012029187A1 (ja) | 2010-08-30 | 2012-03-08 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
| ES2600959T3 (es) * | 2010-09-02 | 2017-02-13 | Toyota Jidosha Kabushiki Kaisha | Método de purificación de NOx de un sistema de purificación de gases de escape de un motor de combustión interna |
| EP2428659B1 (de) * | 2010-09-13 | 2016-05-18 | Umicore AG & Co. KG | Katalysator zur Entfernung von Stickoxiden aus dem Abgas von Dieselmotoren |
| WO2012046332A1 (ja) | 2010-10-04 | 2012-04-12 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
| US9038372B2 (en) | 2010-10-04 | 2015-05-26 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
| ES2720620T3 (es) | 2010-10-18 | 2019-07-23 | Toyota Motor Co Ltd | Método de purificación de NOx de un sistema de purificación de gases de escape de un motor de combustión interna |
| EP2484876B8 (en) | 2010-12-06 | 2016-09-14 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification method for internal combustion engine |
| WO2012086093A1 (ja) | 2010-12-20 | 2012-06-28 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
| GB201021887D0 (en) * | 2010-12-21 | 2011-02-02 | Johnson Matthey Plc | Oxidation catalyst for a lean burn internal combustion engine |
| JP5131389B2 (ja) | 2010-12-24 | 2013-01-30 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
| US9109491B2 (en) | 2011-02-07 | 2015-08-18 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
| EP2503120B1 (en) | 2011-02-10 | 2016-09-14 | Toyota Jidosha Kabushiki Kaisha | Nox purification method of an exhaust-gas purifying system for internal-combustion engine |
| US8669202B2 (en) | 2011-02-23 | 2014-03-11 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
| EP2687693B1 (en) | 2011-03-17 | 2016-11-30 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine exhaust gas purification device |
| JP5218672B2 (ja) | 2011-04-15 | 2013-06-26 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
| US8763364B2 (en) * | 2011-04-18 | 2014-07-01 | Chevron U.S.A. Inc. | Treatment of cold start engine exhaust |
| US9138731B2 (en) | 2011-08-03 | 2015-09-22 | Johnson Matthey Public Limited Company | Extruded honeycomb catalyst |
| US20140112835A1 (en) * | 2011-08-18 | 2014-04-24 | Ibiden Co., Ltd. | Honeycomb structure, method for producing same, exhaust gas purification device and silicoaluminophosphate particles |
| US20140147673A1 (en) * | 2011-08-18 | 2014-05-29 | Ibiden Co., Ltd. | Honeycomb structure, method for manufacturing the same exhaust gas purifying apparatus and silicoaluminophosphate particles |
| CN107096576A (zh) | 2011-08-19 | 2017-08-29 | Sdc材料公司 | 用于催化和催化转化器中的涂覆基质和将基质用修补基面涂料组合物涂覆的方法 |
| JP5981854B2 (ja) * | 2011-09-29 | 2016-08-31 | 日本碍子株式会社 | ハニカムフィルタ、及びその製造方法 |
| EP2747878B1 (en) * | 2011-09-30 | 2019-04-10 | Pirelli Tyre S.p.A. | Process for preparing an oxidizing catalyst and a post-treatment system of an exhaust gas |
| JP5938819B2 (ja) | 2011-10-06 | 2016-06-22 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | 排気ガス処理用酸化触媒 |
| CN103998731B (zh) | 2011-11-07 | 2016-11-16 | 丰田自动车株式会社 | 内燃机的排气净化装置 |
| JP5288055B1 (ja) | 2011-11-09 | 2013-09-11 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
| WO2013080328A1 (ja) | 2011-11-30 | 2013-06-06 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
| CN103228883B (zh) | 2011-11-30 | 2015-08-19 | 丰田自动车株式会社 | 内燃机的排气净化装置 |
| GB2497597A (en) | 2011-12-12 | 2013-06-19 | Johnson Matthey Plc | A Catalysed Substrate Monolith with Two Wash-Coats |
| GB201200784D0 (en) | 2011-12-12 | 2012-02-29 | Johnson Matthey Plc | Exhaust system for a lean-burn internal combustion engine including SCR catalyst |
| GB201200781D0 (en) | 2011-12-12 | 2012-02-29 | Johnson Matthey Plc | Exhaust system for a lean-burn ic engine comprising a pgm component and a scr catalyst |
| GB201200783D0 (en) | 2011-12-12 | 2012-02-29 | Johnson Matthey Plc | Substrate monolith comprising SCR catalyst |
| JP2015515429A (ja) | 2011-12-22 | 2015-05-28 | ユーオーピー エルエルシー | ゼオライトの層状転化合成 |
| SG11201402970RA (en) | 2011-12-22 | 2014-11-27 | Uop Llc | Uzm-39 aluminosilicate zeolite |
| JP5852749B2 (ja) | 2011-12-22 | 2016-02-03 | ユーオーピー エルエルシー | Uzm−39アルミノシリケートゼオライトを用いた芳香族化合物の転化反応 |
| JP5635488B2 (ja) * | 2011-12-28 | 2014-12-03 | 本田技研工業株式会社 | 排気浄化触媒 |
| JP5304948B1 (ja) * | 2012-01-30 | 2013-10-02 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
| EP2639419B1 (en) | 2012-02-07 | 2017-05-03 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification device for internal combustion engine |
| JP5926593B2 (ja) * | 2012-03-28 | 2016-05-25 | 日本碍子株式会社 | 多孔質材料及びその製造方法、並びにハニカム構造体 |
| US8668890B2 (en) | 2012-04-26 | 2014-03-11 | Basf Corporation | Base metal catalyst composition and methods of treating exhaust from a motorcycle |
| US8765085B2 (en) | 2012-04-26 | 2014-07-01 | Basf Corporation | Base metal catalyst and method of using same |
| KR101535088B1 (ko) * | 2012-06-12 | 2015-07-08 | 희성촉매 주식회사 | 고성능 scr 촉매 시스템 |
| US20140044625A1 (en) * | 2012-08-08 | 2014-02-13 | Ford Global Technologies, Llc | Hydrocarbon trap having improved adsorption capacity |
| US8568674B1 (en) | 2012-08-10 | 2013-10-29 | Basf Corporation | Diesel oxidation catalyst composites |
| WO2014038690A1 (ja) * | 2012-09-10 | 2014-03-13 | 東ソー株式会社 | シリコアルミノリン酸塩及びこれを含む窒素酸化物還元触媒 |
| US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
| US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
| WO2014093416A1 (en) | 2012-12-12 | 2014-06-19 | Uop Llc | Dehydrocyclodimerization using uzm-39 aluminosilicate zeolite |
| WO2014093440A1 (en) | 2012-12-12 | 2014-06-19 | Uop Llc | Conversion of methane to aromatic compounds using uzm-44 aluminosilicate zeolite |
| US8889939B2 (en) | 2012-12-12 | 2014-11-18 | Uop Llc | Dehydrocyclodimerization using UZM-44 aluminosilicate zeolite |
| US8609911B1 (en) | 2012-12-12 | 2013-12-17 | Uop Llc | Catalytic pyrolysis using UZM-44 aluminosilicate zeolite |
| US8618343B1 (en) | 2012-12-12 | 2013-12-31 | Uop Llc | Aromatic transalkylation using UZM-39 aluminosilicate zeolite |
| US8609921B1 (en) | 2012-12-12 | 2013-12-17 | Uop Llc | Aromatic transalkylation using UZM-44 aluminosilicate zeolite |
| US8609910B1 (en) | 2012-12-12 | 2013-12-17 | Uop Llc | Catalytic pyrolysis using UZM-39 aluminosilicate zeolite |
| WO2014093461A1 (en) | 2012-12-12 | 2014-06-19 | Uop Llc | Conversion of methane to aromatic compounds using uzm-39 aluminosilicate zeolite |
| US8609920B1 (en) | 2012-12-12 | 2013-12-17 | Uop Llc | UZM-44 aluminosilicate zeolite |
| US8609919B1 (en) | 2012-12-12 | 2013-12-17 | Uop Llc | Aromatic transformation using UZM-44 aluminosilicate zeolite |
| KR101438953B1 (ko) * | 2012-12-18 | 2014-09-11 | 현대자동차주식회사 | 저온에서의 NOx 흡장성능이 개선된 LNT촉매 |
| MX2015011154A (es) | 2013-03-14 | 2016-03-11 | Basf Corp | Articulo catalitico con revestimiento segregado y metodos para fabricarlo. |
| CN104043330B (zh) | 2013-03-15 | 2017-03-01 | 通用电气公司 | 氧化含碳物质的方法、柴油颗粒捕集器和排气装置 |
| WO2014157324A1 (ja) * | 2013-03-29 | 2014-10-02 | 日本碍子株式会社 | アルミノフォスフェート-金属酸化物接合体及びその製造方法 |
| CN103406139A (zh) * | 2013-06-04 | 2013-11-27 | 东南大学 | 一种高机械稳定性的分子筛整体式催化剂的制备方法 |
| CN105592921A (zh) | 2013-07-25 | 2016-05-18 | Sdc材料公司 | 用于催化转化器的洗涂层和经涂覆基底及其制造和使用方法 |
| CN106061605A (zh) * | 2013-07-31 | 2016-10-26 | 研究三角协会 | 混合金属铁氧化物及其应用 |
| JP5922629B2 (ja) * | 2013-09-27 | 2016-05-24 | 日本碍子株式会社 | 多孔質材料及びその製造方法、並びにハニカム構造体 |
| WO2015061477A1 (en) | 2013-10-22 | 2015-04-30 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
| EP3068517A4 (en) | 2013-10-22 | 2017-07-05 | SDCMaterials, Inc. | Compositions of lean nox trap |
| JP6208540B2 (ja) * | 2013-10-29 | 2017-10-04 | トヨタ自動車株式会社 | 排ガス浄化触媒 |
| EP3062926A1 (en) * | 2013-10-30 | 2016-09-07 | Johnson Matthey Public Limited Company | Three-way catalyst comprising a silver-containing extruded zeolite substrate and its use in exhaust systems |
| US9713805B2 (en) | 2013-12-04 | 2017-07-25 | Mitsui Mining & Smelting Co., Ltd. | Exhaust gas purification catalyst and exhaust gas purification catalyst structure |
| CN115430458A (zh) | 2013-12-06 | 2022-12-06 | 庄信万丰股份有限公司 | 冷启动催化剂和其在排气系统中的用途 |
| US10335776B2 (en) | 2013-12-16 | 2019-07-02 | Basf Corporation | Manganese-containing diesel oxidation catalyst |
| US10864502B2 (en) | 2013-12-16 | 2020-12-15 | Basf Corporation | Manganese-containing diesel oxidation catalyst |
| RU2544241C1 (ru) | 2014-01-22 | 2015-03-20 | Общество С Ограниченной Ответственностью "Новые Газовые Технологии-Синтез" | Способ получения ароматических углеводородов из природного газа и установка для его осуществления |
| RU2558955C1 (ru) | 2014-08-12 | 2015-08-10 | Общество С Ограниченной Ответственностью "Новые Газовые Технологии-Синтез" | Способ получения концентрата ароматических углеводородов из жидких углеводородных фракций и установка для его осуществления |
| RU2550354C1 (ru) | 2014-03-28 | 2015-05-10 | Общество С Ограниченной Ответственностью "Новые Газовые Технологии-Синтез" | Способ получения концентрата ароматических углеводородов из легких алифатических углеводородов и установка для его осуществления |
| RU2544017C1 (ru) | 2014-01-28 | 2015-03-10 | Ольга Васильевна Малова | Катализатор и способ ароматизации с3-с4 газов, легких углеводородных фракций алифатических спиртов, а также их смесей |
| DE102014201263A1 (de) * | 2014-01-23 | 2015-07-23 | Johnson Matthey Catalysts (Germany) Gmbh | Katalysator |
| US9789468B2 (en) * | 2014-02-18 | 2017-10-17 | Korea Institute Of Industrial Technology | SCR catalyst containing carbon material loaded with vanadium and tungsten and method of preparing same |
| US9687811B2 (en) | 2014-03-21 | 2017-06-27 | SDCmaterials, Inc. | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
| DE102014205783A1 (de) * | 2014-03-27 | 2015-10-01 | Johnson Matthey Public Limited Company | Katalysator sowie Verfahren zum Herstellen eines Katalysator |
| DE102014205760A1 (de) * | 2014-03-27 | 2015-10-01 | Johnson Matthey Public Limited Company | Verfahren zum Herstellen eines Katalysator sowie Katalysator |
| US10131615B2 (en) * | 2014-04-10 | 2018-11-20 | Mitsubishi Gas Chemical Company, Inc. | Molded catalyst for use in manufacture of methyl methacrylate, and method for manufacture of methyl methacrylate using same |
| KR101575327B1 (ko) | 2014-04-24 | 2015-12-21 | 현대자동차 주식회사 | 질소산화물 저감 촉매, 이의 제조 방법, 및 질소산화물 저감 촉매 시스템 |
| RU2561638C1 (ru) * | 2014-05-21 | 2015-08-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Дальневосточный государственный технический рыбохозяйственный университет" (ФГБОУ ВПО "Дальрыбвтуз") | Способ изготовления формованных керамических мембран |
| US9267409B2 (en) | 2014-06-18 | 2016-02-23 | Ford Global Technologies, Llc | Reverse flow hydrocarbon trap |
| DE102014215112A1 (de) | 2014-07-31 | 2016-02-04 | Johnson Matthey Public Limited Company | Verfahren zur Herstellung eines Katalysators sowie Katalysator-Artikel |
| JP6248011B2 (ja) * | 2014-08-08 | 2017-12-13 | 株式会社デンソー | ハニカム構造体及びその製造方法 |
| US10830117B2 (en) | 2014-12-31 | 2020-11-10 | Cummins Emission Solutions Inc. | Compact side inlet and outlet exhaust aftertreatment system |
| DE112015005872B4 (de) | 2014-12-31 | 2025-03-27 | Cummins Emission Solutions, Inc. | Direktgekoppeltes einmoduliges Nachbehandlungssystem |
| GB2549638B (en) | 2014-12-31 | 2021-04-21 | Cummins Emission Solutions Inc | Single module integrated aftertreatment module |
| JP2016131918A (ja) * | 2015-01-19 | 2016-07-25 | 大塚化学株式会社 | 排ガス浄化フィルタの製造方法、排ガス浄化フィルタ及び排ガス浄化装置 |
| US20160207840A1 (en) * | 2015-01-21 | 2016-07-21 | The Boeing Company | Extrudable ceramic composition and method of making |
| CN107206358B (zh) * | 2015-02-06 | 2021-03-16 | 庄信万丰股份有限公司 | 三效催化剂及其在排气系统中的应用 |
| GB201504986D0 (en) | 2015-02-13 | 2015-05-06 | Johnson Matthey Plc | Oxidation catalyst for treating a natural gas emission |
| EP3265212A4 (en) * | 2015-03-03 | 2019-02-13 | BASF Corporation | NOX MEMORY CATALYST, METHOD AND SYSTEMS |
| CN106031861A (zh) * | 2015-03-19 | 2016-10-19 | 上海融熠投资管理有限公司 | 复合吸附剂 |
| CN104826395A (zh) * | 2015-04-21 | 2015-08-12 | 蚌埠德美过滤技术有限公司 | 一种抗静电吸附过滤剂及其制作方法 |
| CN104826385A (zh) * | 2015-04-29 | 2015-08-12 | 安徽天诚环保机械有限公司 | 一种新型环保改性活性炭过滤材料及其制备方法 |
| MX393829B (es) * | 2015-06-12 | 2025-03-24 | Basf Mobile Emissions Catalysts Llc | Sistema de tratamiento de gases de escape. |
| EP3310477A1 (en) * | 2015-06-18 | 2018-04-25 | Johnson Matthey Public Limited Company | Single or dual layer ammonia slip catalyst |
| US10207258B2 (en) | 2015-06-29 | 2019-02-19 | Corning Incorporated | Porous ceramic body to reduce emissions |
| US10267199B2 (en) | 2015-07-28 | 2019-04-23 | Cummins Emission Solutions Inc. | Angled sensor mount for use with a single module aftertreatment system or the like |
| US10799833B2 (en) | 2015-08-03 | 2020-10-13 | Cummins Emission Solutions Inc. | Sensor configuration for aftertreatment system including SCR on filter |
| KR102360435B1 (ko) * | 2015-09-21 | 2022-02-09 | 한국전력공사 | 배기가스 정화 장치 및 배기가스 정화 방법 |
| USD794100S1 (en) | 2015-09-28 | 2017-08-08 | Cummins Emission Solutions Inc. | Aftertreatment system housing |
| EP3356039B1 (en) * | 2015-09-30 | 2021-03-03 | VITO NV (Vlaamse Instelling voor Technologisch Onderzoek NV) | Method for preparing a bulk catalytic structure and its use for methanol to olefins reactions |
| CN106608637B (zh) * | 2015-10-27 | 2019-02-01 | 中国石油化工股份有限公司 | 一种合成stt结构分子筛的方法 |
| CN105214706B (zh) * | 2015-10-28 | 2018-07-31 | 杭州正清环保科技有限公司 | 一种用于废气处理的催化陶瓷烧结环及制备方法 |
| US9764287B2 (en) * | 2015-11-06 | 2017-09-19 | Paccar Inc | Binary catalyst based selective catalytic reduction filter |
| US9757691B2 (en) | 2015-11-06 | 2017-09-12 | Paccar Inc | High efficiency and durability selective catalytic reduction catalyst |
| US10058819B2 (en) | 2015-11-06 | 2018-08-28 | Paccar Inc | Thermally integrated compact aftertreatment system |
| US10188986B2 (en) | 2015-11-06 | 2019-01-29 | Paccar Inc | Electrochemical reductant generation while dosing DEF |
| GB2545747A (en) * | 2015-12-24 | 2017-06-28 | Johnson Matthey Plc | Gasoline particulate filter |
| JP6578938B2 (ja) * | 2015-12-25 | 2019-09-25 | 株式会社デンソー | 排ガスフィルタ |
| EP3205398A1 (en) | 2016-02-12 | 2017-08-16 | Hyundai Motor Company | Method for preparing zeolite catalyst |
| WO2017155424A1 (en) | 2016-03-09 | 2017-09-14 | Limited Liability Company "New Gas Technologies-Synthesis" (Llc "Ngt-Synthesis") | Method and plant for producing high-octane gasolines |
| CN107042122A (zh) * | 2016-04-11 | 2017-08-15 | 北京为康环保科技有限公司 | 一种光催化致霾气体净化喷剂的制备方法 |
| SG11201809019YA (en) * | 2016-04-21 | 2018-11-29 | Rohm & Haas | Methods for using macroporous inert materials in monomer production |
| CN105797737B (zh) * | 2016-04-27 | 2018-04-24 | 柳州申通汽车科技有限公司 | 一种三元催化剂的制备方法 |
| CN105903467B (zh) * | 2016-04-27 | 2018-03-16 | 柳州申通汽车科技有限公司 | 单钯汽车尾气催化剂的制备方法 |
| CN105817230B (zh) * | 2016-04-27 | 2018-04-24 | 柳州申通汽车科技有限公司 | 三元尾气催化剂的制备方法 |
| CN105797708B (zh) * | 2016-04-27 | 2018-02-16 | 柳州申通汽车科技有限公司 | 一种三元尾气催化剂的制备工艺 |
| CN105688905B (zh) * | 2016-04-27 | 2018-03-16 | 柳州申通汽车科技有限公司 | 汽车尾气催化剂的制备工艺 |
| CN105772025B (zh) * | 2016-04-27 | 2018-03-16 | 柳州申通汽车科技有限公司 | 汽车尾气三元催化剂的制备方法 |
| CN105688933B (zh) * | 2016-04-27 | 2018-03-20 | 柳州申通汽车科技有限公司 | 球磨法制备三元催化剂的工艺 |
| CN105772026B (zh) * | 2016-04-27 | 2018-04-24 | 柳州申通汽车科技有限公司 | 一种汽车尾气催化剂的制备方法 |
| CN105797745A (zh) * | 2016-04-27 | 2016-07-27 | 柳州申通汽车科技有限公司 | 浸渍法制备汽车尾气三元催化剂的方法 |
| CN105797744B (zh) * | 2016-04-27 | 2018-02-27 | 柳州申通汽车科技有限公司 | 一种汽车尾气三元催化剂的制备工艺 |
| KR20190003975A (ko) * | 2016-04-29 | 2019-01-10 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | 배기 시스템 |
| US10253669B2 (en) * | 2016-05-12 | 2019-04-09 | CDT Advanced Materials, Inc. | Application of synergized-PGM with ultra-low PGM loadings as underfloor three-way catalysts for internal combustion engines |
| US10533472B2 (en) * | 2016-05-12 | 2020-01-14 | Cdti Advanced Materials, Inc. | Application of synergized-PGM with ultra-low PGM loadings as close-coupled three-way catalysts for internal combustion engines |
| KR101795404B1 (ko) * | 2016-05-18 | 2017-11-08 | 현대자동차 주식회사 | 촉매 및 촉매의 제조 방법 |
| DE102017115378A1 (de) | 2016-07-12 | 2018-01-18 | Johnson Matthey Public Limited Company | Oxidationskatalysator für einen stöchiometrischen Erdgasmotor |
| CN109414690A (zh) * | 2016-07-14 | 2019-03-01 | 揖斐电株式会社 | 蜂窝结构体和该蜂窝结构体的制造方法 |
| CN106238031A (zh) * | 2016-07-26 | 2016-12-21 | 浙江三龙催化剂有限公司 | 氧化铈基scr烟气脱硝催化剂 |
| CN106238032A (zh) * | 2016-07-26 | 2016-12-21 | 浙江三龙催化剂有限公司 | 氧化铈基scr烟气脱硝催化剂的制作方法 |
| CN106345515B (zh) * | 2016-07-31 | 2018-07-06 | 合肥学院 | 一种Ce-Zn-Co-Cu混合掺杂ZSM-5沸石分子筛的制备方法 |
| WO2018064273A1 (en) | 2016-09-30 | 2018-04-05 | Johnson Matthey Public Limited Company | A novel zeolite synthesis with a fluoride source |
| GB201616812D0 (en) * | 2016-10-04 | 2016-11-16 | Johnson Matthey Public Limited Company | NOx adsorber catalyst |
| US20200263588A1 (en) * | 2016-10-21 | 2020-08-20 | Cummins Emission Solutions Inc. | Catalyst substrate and filter structure including plates and method of forming same |
| RU2019115863A (ru) * | 2016-10-24 | 2020-11-24 | Басф Корпорейшн | Интегрированный катализатор scr и lnt для уменьшения nox |
| JP7125391B2 (ja) * | 2016-10-31 | 2022-08-24 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | 排ガス処理のための骨格外の鉄及び/又はマンガンを有するlta触媒 |
| CN107051466B (zh) * | 2016-12-30 | 2019-06-18 | 浙江大学 | 高效脱除碳烟的船舶柴油机scr脱硝催化剂及其制备方法 |
| US11471863B2 (en) | 2017-02-08 | 2022-10-18 | Basf Corporation | Catalytic articles |
| PL3579971T3 (pl) * | 2017-02-08 | 2024-03-11 | Basf Corporation | Kompozycja katalizatora |
| EP3363540B1 (en) * | 2017-02-17 | 2019-07-24 | Umicore Ag & Co. Kg | Copper containing moz zeolite for selective nox reduction catalysis |
| JP2018143955A (ja) | 2017-03-06 | 2018-09-20 | イビデン株式会社 | ハニカムフィルタ |
| JP2018143956A (ja) | 2017-03-06 | 2018-09-20 | イビデン株式会社 | ハニカムフィルタ |
| GB2560942A (en) * | 2017-03-29 | 2018-10-03 | Johnson Matthey Plc | NOx Adsorber catalyst |
| GB2560941A (en) * | 2017-03-29 | 2018-10-03 | Johnson Matthey Plc | NOx Adsorber catalyst |
| GB2560940A (en) * | 2017-03-29 | 2018-10-03 | Johnson Matthey Plc | Three layer NOx Adsorber catalyst |
| GB201705158D0 (en) | 2017-03-30 | 2017-05-17 | Johnson Matthey Plc | Catalyst article for use in a emission treatment system |
| GB201705279D0 (en) | 2017-03-31 | 2017-05-17 | Johnson Matthey Plc | Selective catalytic reduction catalyst |
| GB201705289D0 (en) | 2017-03-31 | 2017-05-17 | Johnson Matthey Catalysts (Germany) Gmbh | Selective catalytic reduction catalyst |
| CN106984148A (zh) * | 2017-04-24 | 2017-07-28 | 河北工业大学 | 一种低温等离子体协同催化氧化烟气中多种污染物的方法 |
| JP6408062B1 (ja) * | 2017-04-28 | 2018-10-17 | 株式会社キャタラー | 排ガス浄化用触媒 |
| CN108862294A (zh) * | 2017-05-08 | 2018-11-23 | 上海大学 | 一种纳米镨锆黄色料及其制备方法 |
| CN110621397B (zh) | 2017-05-11 | 2024-06-11 | 罗地亚经营管理公司 | 具有增强的耐受性和nox储存容量的混合氧化物 |
| US10835866B2 (en) | 2017-06-02 | 2020-11-17 | Paccar Inc | 4-way hybrid binary catalysts, methods and uses thereof |
| US10675586B2 (en) | 2017-06-02 | 2020-06-09 | Paccar Inc | Hybrid binary catalysts, methods and uses thereof |
| JP7177143B2 (ja) | 2017-09-27 | 2022-11-22 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | 排気ガス浄化用途のための低ウォッシュコート充填量単層触媒 |
| JP2019084482A (ja) * | 2017-11-03 | 2019-06-06 | 株式会社デンソー | 排ガス浄化装置 |
| US10220376B1 (en) * | 2017-12-05 | 2019-03-05 | James G. Davidson | Catalytic composition and system for exhaust purification |
| EP3721990A4 (en) | 2017-12-08 | 2021-09-01 | Johnson Matthey (Shanghai) Chemicals Limited | NEW MULTI-REGION TWC FOR TREATMENT OF EXHAUST GAS FROM A PETROL ENGINE |
| CN114961940A (zh) | 2017-12-08 | 2022-08-30 | 庄信万丰(上海)化工有限公司 | 用于汽油废气应用的新型三区两层twc催化剂 |
| US10634078B2 (en) | 2017-12-11 | 2020-04-28 | Ford Global Technologies, Llc | Methods and systems for an exhaust aftertreatment device |
| GB2572396A (en) * | 2018-03-28 | 2019-10-02 | Johnson Matthey Plc | Passive NOx adsorber |
| GB201805312D0 (en) | 2018-03-29 | 2018-05-16 | Johnson Matthey Plc | Catalyst article for use in emission treatment system |
| CN108855207B (zh) * | 2018-06-17 | 2021-04-27 | 复旦大学 | 含碱金属的杂原子Beta沸石催化剂及其制备方法和应用 |
| CN108855132B (zh) * | 2018-06-26 | 2020-06-05 | 中国石油大学(北京) | 多级孔铈锆氧化物担载尖晶石型钯钴复合氧化物催化剂 |
| WO2020047499A1 (en) | 2018-08-31 | 2020-03-05 | Corning Incorporated | Methods of making honeycomb bodies having inorganic filtration deposits |
| US20210347702A1 (en) * | 2018-08-31 | 2021-11-11 | Corning Incorporated | Methods of making honeycomb bodies having inorganic filtration deposits |
| MX2021002538A (es) | 2018-09-03 | 2021-07-21 | Corning Inc | Cuerpo de panal con material poroso. |
| JP6771005B2 (ja) * | 2018-09-12 | 2020-10-21 | イビデン株式会社 | ハニカム構造体の製造方法 |
| JP6764451B2 (ja) * | 2018-09-12 | 2020-09-30 | イビデン株式会社 | ハニカム構造体の製造方法 |
| KR102193496B1 (ko) * | 2018-09-21 | 2020-12-21 | (주) 세라컴 | 열 내구성이 우수한 디젤 산화촉매 및 그의 제조 방법 |
| WO2020065573A1 (en) | 2018-09-28 | 2020-04-02 | Johnson Matthey Public Limited Company | Novel twc catalysts for gasoline exhaust gas applications |
| CN111001434B (zh) * | 2018-10-08 | 2021-03-16 | 中自环保科技股份有限公司 | 一种当量燃烧天然气车集成催化剂体系及其制备方法 |
| CN109225317A (zh) * | 2018-10-29 | 2019-01-18 | 钟祥博谦信息科技有限公司 | 一种在afi磷酸铝分子筛膜上负载贵金属钯的合成工艺 |
| CN112672811B (zh) * | 2018-11-16 | 2023-07-14 | 优美科股份公司及两合公司 | 低温氮氧化物吸附剂 |
| KR102150081B1 (ko) * | 2018-11-19 | 2020-09-02 | 한국화학연구원 | 제올라이트 기반 scr 촉매, 이의 제조방법, 및 이를 이용한 배기가스의 처리방법 |
| BR112021011920A2 (pt) * | 2018-12-19 | 2021-08-31 | Basf Corporation | Artigo catalítico em camadas, processo para a preparação do artigo catalítico em camadas, sistema de exaustão para motores de combustão interna, método para reduzir níveis de hidrocarbonetos e uso do artigo catalítico em camadas |
| KR102021420B1 (ko) * | 2019-02-27 | 2019-09-16 | 우태영 | 광촉매 프리코트를 이용한 유리 및 알루미늄 구조체 공기필터 및 이의 제조방법 |
| GB201903006D0 (en) * | 2019-03-06 | 2019-04-17 | Johnson Matthey Plc | Lean nox trap catalyst |
| US10906031B2 (en) | 2019-04-05 | 2021-02-02 | Paccar Inc | Intra-crystalline binary catalysts and uses thereof |
| US11007514B2 (en) | 2019-04-05 | 2021-05-18 | Paccar Inc | Ammonia facilitated cation loading of zeolite catalysts |
| WO2020227455A1 (en) * | 2019-05-09 | 2020-11-12 | Basf Corporation | Low temperature no x adsorber with enhanced hydrothermal stability |
| EP3741449A1 (en) * | 2019-05-21 | 2020-11-25 | Haldor Topsøe A/S | A process for the removal of dinitrogen oxide in process off-gas |
| CN110270341B (zh) * | 2019-06-19 | 2021-01-01 | 福州大学 | 一种催化剂及其制备方法和应用 |
| US11465122B2 (en) * | 2019-08-07 | 2022-10-11 | Chevron U.S.A. Inc. | Potassium-merlinoite zeolite, its synthesis and use |
| KR20210034783A (ko) * | 2019-09-23 | 2021-03-31 | 희성촉매 주식회사 | 저온 NOx 흡장 조성물 및 이를 함유한 디젤산화촉매 |
| CN110639608A (zh) * | 2019-09-24 | 2020-01-03 | 中国科学院大连化学物理研究所 | 一种用于苯吸收高浓度乙烯液相烷基化催化剂及其制备方法和应用 |
| WO2021058484A1 (en) | 2019-09-27 | 2021-04-01 | Johnson Matthey Catalysts (Germany) Gmbh | MULTI-FUNCTION CATALYST ARTICLE FOR TREATING BOTH CO AND NOx IN STATIONARY EMISSION SOURCE EXHAUST GAS |
| US10934918B1 (en) | 2019-10-14 | 2021-03-02 | Paccar Inc | Combined urea hydrolysis and selective catalytic reduction for emissions control |
| US11291976B2 (en) | 2019-10-18 | 2022-04-05 | Carus Llc | Mixed valent manganese-based NOx adsorber |
| WO2021096841A1 (en) * | 2019-11-12 | 2021-05-20 | Basf Corporation | Particulate filter |
| GB201917634D0 (en) | 2019-12-03 | 2020-01-15 | Johnson Matthey Catalysts Germany Gmbh | Element frame assemblies containing monoliths |
| BR112022019161A2 (pt) | 2020-04-30 | 2022-11-08 | Johnson Matthey Plc | Método para a formação de um artigo catalítico, artigo catalítico, e, sistema de exaustão |
| CN113582193B (zh) * | 2020-04-30 | 2022-10-21 | 中国石油化工股份有限公司 | 一种改性β沸石、催化裂化催化剂及其制备方法和应用 |
| RU2747869C1 (ru) | 2020-06-29 | 2021-05-17 | Общество С Ограниченной Ответственностью "Новые Газовые Технологии-Синтез" (Ооо "Нгт-Синтез") | Способ получения бензинов или концентратов ароматических соединений с различным распределением потоков оксигената и олефинсодержащей фракции |
| KR20230040999A (ko) * | 2020-07-21 | 2023-03-23 | 셰브런 유.에스.에이.인크. | 분자체 ssz-122, 이의 합성 및 용도 |
| CN112206766A (zh) * | 2020-10-23 | 2021-01-12 | 湖北群有长物环保科技有限公司 | 一种蜂窝状高温550℃的scr脱硝催化剂及其制备方法 |
| JP7602938B2 (ja) * | 2021-03-05 | 2024-12-19 | エヌ・イーケムキャット株式会社 | 排ガス用炭化水素吸着材、及びその製造方法、並びに、排ガス浄化用hcトラップ |
| AU2022288401B2 (en) * | 2021-06-07 | 2025-04-03 | Asahi Kasei Kabushiki Kaisha | Gis-type zeolite molded body, adsorption device, separation method, and gis-type zeolite |
| CN113325042B (zh) * | 2021-06-11 | 2022-11-15 | 吉林大学 | 一种钠型mtw分子筛及其制备方法和应用、氨气气体传感器及其制备方法和应用 |
| JP7696022B2 (ja) * | 2021-08-27 | 2025-06-19 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | モノリス物品上に無機酸化物コーティングを形成する方法 |
| CN116002698B (zh) * | 2021-10-22 | 2025-01-03 | 中国石油化工股份有限公司 | Uos/mfi共结晶分子筛及其制备方法和应用和uos/mfi共结晶分子筛组合物及其应用 |
| CN116002704B (zh) * | 2021-10-22 | 2025-01-03 | 中国石油化工股份有限公司 | Uos/ton共结晶分子筛及其制备方法和应用和uos/ton共结晶分子筛组合物及其应用 |
| KR102478940B1 (ko) * | 2021-11-30 | 2022-12-19 | 주식회사 마이크로원 | Ptfe 파이버 제조 방법 및 이를 이용한 ptfe 멤브레인 촉매필터 |
| KR20240090648A (ko) | 2021-12-20 | 2024-06-21 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | 천연 가스 엔진에서 생성되는 배기 가스 처리용 촉매 물질 |
| CN118265573A (zh) | 2021-12-20 | 2024-06-28 | 庄信万丰股份有限公司 | 用于处理由天然气发动机产生的排气的催化材料 |
| CN114917920A (zh) * | 2022-04-20 | 2022-08-19 | 山东亮剑环保新材料有限公司 | 一种高效VOCs催化剂及其生产方法 |
| GB2621175B (en) * | 2022-08-05 | 2024-12-25 | Johnson Matthey Plc | Coated filters |
| CN115382543A (zh) * | 2022-08-30 | 2022-11-25 | 惠州市瑞合环保科技有限公司 | 一种含锶和钨的柴油氧化催化剂及其制备方法 |
| CN115385353A (zh) * | 2022-09-14 | 2022-11-25 | 青岛惠城环保科技集团股份有限公司 | 一种绿色低模板剂制备Beta分子筛的方法 |
| CN115845891B (zh) * | 2022-12-21 | 2024-06-21 | 赞宇科技集团股份有限公司 | 一种复合催化剂合成二聚酸的方法 |
| EP4400202A1 (en) * | 2023-01-16 | 2024-07-17 | Johnson Matthey Public Limited Company | Coatings on a monolith article |
| CN116212944B (zh) * | 2023-03-23 | 2023-09-22 | 北方稀土华凯高科技河北有限公司 | 一种稀燃甲醇燃料汽车尾气净化催化剂及其制备方法 |
| CN117019206B (zh) * | 2023-08-17 | 2025-11-25 | 福州大学 | 用于低碳烷烃脱氢制烯烃的高性能Pt基@分子筛催化剂 |
| CN119565594A (zh) * | 2023-09-06 | 2025-03-07 | 中国石油化工股份有限公司 | 石蜡裂化催化剂及其制备方法和应用 |
| CN118080021B (zh) * | 2024-04-23 | 2024-08-06 | 广东银牛环境信息科技有限公司 | 一种超低温脱硝催化剂及其应用 |
| CN120794321B (zh) * | 2025-09-10 | 2025-11-18 | 陕西华远尚润新型建材有限公司 | 一种防火隔热岩棉板及其制备方法 |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5552128A (en) | 1993-08-03 | 1996-09-03 | Mobil Oil Corporation | Selective catalytic reduction of nitrogen oxides |
| US6488903B2 (en) * | 1998-05-29 | 2002-12-03 | Siemens Aktiengesellschaft | Method for cleaning diesel engine exhaust gas |
| EP1338322A1 (en) * | 2000-09-29 | 2003-08-27 | Ibiden Co., Ltd. | Catalyst-carrying filter |
| EP1493484A1 (en) * | 2003-07-02 | 2005-01-05 | Haldor Topsoe A/S | Diesel particulate filter |
| US20060179825A1 (en) | 2005-02-16 | 2006-08-17 | Eaton Corporation | Integrated NOx and PM reduction devices for the treatment of emissions from internal combustion engines |
| EP1739066A1 (en) | 2005-06-27 | 2007-01-03 | Ibiden Co., Ltd. | Honeycomb structure |
| US20080069743A1 (en) * | 2006-09-20 | 2008-03-20 | Castellano Christopher R | Catalysts, systems and methods to reduce nox in an exhaust gas stream |
| WO2008049491A1 (de) | 2006-10-23 | 2008-05-02 | Umicore Ag & Co. Kg | Vanadiumfreier katalysator zur selektiven katalytischen reduktion und verfahren zu seiner herstellung |
| WO2009001131A1 (en) | 2007-06-25 | 2008-12-31 | Johnson Matthey Public Limited Company | Non-zeolite base metal scr catalyst |
| US7507684B2 (en) | 2006-05-02 | 2009-03-24 | Argillon Gmbh | Extruded monolithic catalytic converter and manufacturing method |
| US20090143221A1 (en) * | 2007-11-30 | 2009-06-04 | Steven Bolaji Ogunwumi | Zeolite-Based Honeycomb Body |
| WO2009093071A1 (en) | 2008-01-23 | 2009-07-30 | Johnson Matthey Public Limited Company | Catalysed filter |
Family Cites Families (76)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3181231A (en) | 1963-08-06 | 1965-05-04 | Union Carbide Corp | Molecular sieve-metal agglomerates and their preparation |
| US4510261A (en) | 1983-10-17 | 1985-04-09 | W. R. Grace & Co. | Catalyst with high geometric surface area |
| US4735930A (en) * | 1986-02-18 | 1988-04-05 | Norton Company | Catalyst for the reduction of oxides of nitrogen |
| JPS6372342A (ja) * | 1986-09-13 | 1988-04-02 | Sakai Chem Ind Co Ltd | 窒素酸化物除去用触媒 |
| US5244852A (en) | 1988-11-18 | 1993-09-14 | Corning Incorporated | Molecular sieve-palladium-platinum catalyst on a substrate |
| DE3940758A1 (de) * | 1989-12-09 | 1991-06-13 | Degussa | Verfahren zur reinigung der abgase von dieselmotoren |
| US6869573B2 (en) | 1990-11-09 | 2005-03-22 | Ngk Insulators, Ltd. | Heater and catalytic converter |
| EP0593898B1 (en) | 1992-10-20 | 1997-01-29 | Corning Incorporated | Exhaust gas conversion method and apparatus using thermally stable zeolites |
| US6248684B1 (en) | 1992-11-19 | 2001-06-19 | Englehard Corporation | Zeolite-containing oxidation catalyst and method of use |
| US6667018B2 (en) | 1994-07-05 | 2003-12-23 | Ngk Insulators, Ltd. | Catalyst-adsorbent for purification of exhaust gases and method for purification of exhaust gases |
| US5589147A (en) * | 1994-07-07 | 1996-12-31 | Mobil Oil Corporation | Catalytic system for the reducton of nitrogen oxides |
| US5772972A (en) | 1995-01-09 | 1998-06-30 | Ford Global Technologies, Inc. | Catalyst/hydrocarbon trap hybrid system |
| EP0756891A1 (en) | 1995-07-26 | 1997-02-05 | Corning Incorporated | Iron zeolite for conversion of NOx |
| DE19614540A1 (de) * | 1996-04-12 | 1997-10-16 | Degussa | Dieselkatalysator |
| JPH09276703A (ja) | 1996-04-19 | 1997-10-28 | Honda Motor Co Ltd | 排気ガス浄化用触媒 |
| US5897846A (en) | 1997-01-27 | 1999-04-27 | Asec Manufacturing | Catalytic converter having a catalyst with noble metal on molecular sieve crystal surface and method of treating diesel engine exhaust gas with same |
| DE19714536A1 (de) * | 1997-04-09 | 1998-10-15 | Degussa | Autoabgaskatalysator |
| CN1179357A (zh) * | 1997-08-18 | 1998-04-22 | 秦建武 | 一种复合金属氧化物催化剂及其制备方法 |
| DE19753738A1 (de) * | 1997-12-04 | 1999-06-10 | Degussa | Verfahren zur Herstellung eines Katalysators |
| GB9805815D0 (en) | 1998-03-19 | 1998-05-13 | Johnson Matthey Plc | Manufacturing process |
| US6110862A (en) | 1998-05-07 | 2000-08-29 | Engelhard Corporation | Catalytic material having improved conversion performance |
| JP4012320B2 (ja) | 1998-10-15 | 2007-11-21 | 株式会社アイシーティー | 希薄燃焼エンジン用排気ガス浄化用触媒 |
| JP2000176298A (ja) | 1998-12-11 | 2000-06-27 | Mazda Motor Corp | 排気ガス浄化用触媒及びその製造方法 |
| GB9919013D0 (en) * | 1999-08-13 | 1999-10-13 | Johnson Matthey Plc | Reactor |
| BR0016776A (pt) * | 1999-12-28 | 2002-08-27 | Corning Inc | Composições de suporte de catalisador de zeólito / alumina e método de produção das mesmas |
| EP1242182B1 (en) * | 1999-12-29 | 2005-11-02 | Corning Incorporated | High strength and high surface area catalyst, catalyst support or adsorber compositions |
| US6569392B1 (en) * | 2000-02-02 | 2003-05-27 | Ford Global Technologies Llc | Three-way rare earth oxide catalyst |
| ES2250035T3 (es) * | 2000-03-01 | 2006-04-16 | UMICORE AG & CO. KG | Catalizador para la purificacion de los gases de escape de motores diesel y proceso para su preparacion. |
| EP1166855B1 (en) * | 2000-06-27 | 2009-06-17 | ICT Co., Ltd. | Exhaust gas purifying catalyst |
| JP4573320B2 (ja) * | 2000-09-08 | 2010-11-04 | 昭和電工株式会社 | 亜酸化窒素分解触媒、その製造方法及び亜酸化窒素の分解方法 |
| DE10063220A1 (de) | 2000-12-19 | 2002-06-20 | Basf Ag | NOx-Speicher-Katalysator, Verfahren zu seiner Herstellung sowie seine Verwendung |
| RU2199389C1 (ru) * | 2001-09-17 | 2003-02-27 | Институт катализа им. Г.К. Борескова СО РАН | Катализатор, носитель катализатора, способ их приготовления (варианты) и способ очистки отходящих газов от оксидов азота |
| JP3936238B2 (ja) | 2002-05-20 | 2007-06-27 | 株式会社デンソー | 触媒体および触媒体の製造方法 |
| JP2004060494A (ja) * | 2002-07-26 | 2004-02-26 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
| JP4228623B2 (ja) * | 2002-08-23 | 2009-02-25 | トヨタ自動車株式会社 | ディーゼル排ガス浄化用装置 |
| US7229597B2 (en) | 2003-08-05 | 2007-06-12 | Basfd Catalysts Llc | Catalyzed SCR filter and emission treatment system |
| DE10340653B4 (de) | 2003-09-03 | 2006-04-27 | Hte Ag The High Throughput Experimentation Company | Katalysator für die Entfernung von Schadstoffen aus Abgasen von Mager-Motoren mit Ruthenium als Aktiv-Metall |
| DE102004005997A1 (de) | 2004-02-06 | 2005-09-01 | Hte Ag The High Throughput Experimentation Company | Mit Eisenoxid stabilisierter Edelmetall-Katalysator zur Entfernung von Schadstoffen aus Abgasen von Mager-Motoren |
| WO2005099873A1 (en) | 2004-04-16 | 2005-10-27 | Hte Aktiengesellschaft The High Throughput Experimentation Company | Process for the removal of harmful substances from exhaust gases of combustion engines and catalyst for carrying out said process |
| EP1837063B1 (en) | 2004-12-22 | 2011-06-01 | Hitachi Metals, Ltd. | Method for manufacturing honeycomb filter and honeycomb filter |
| US8580216B2 (en) | 2005-02-28 | 2013-11-12 | Ecs Holdings, Inc. | Catalyst and method for reducing nitrogen oxides in exhaust streams with hydrocarbons or alcohols |
| DE102005024108A1 (de) * | 2005-05-25 | 2006-11-30 | Süd-Chemie AG | Verfahren und Vorrichtung zur Herstellung von Katalysatoren und deren Verwendung bei der Reinigung von Abgasen |
| US7389638B2 (en) | 2005-07-12 | 2008-06-24 | Exxonmobil Research And Engineering Company | Sulfur oxide/nitrogen oxide trap system and method for the protection of nitrogen oxide storage reduction catalyst from sulfur poisoning |
| JP2007196146A (ja) * | 2006-01-27 | 2007-08-09 | Babcock Hitachi Kk | 排ガス浄化用触媒 |
| EP1996328B1 (en) | 2006-02-14 | 2016-07-13 | ExxonMobil Chemical Patents Inc. | Method of preparing a molecular sieve composition |
| JP2007296514A (ja) * | 2006-04-07 | 2007-11-15 | Ngk Insulators Ltd | 触媒体とその製造方法 |
| FR2905371B1 (fr) | 2006-08-31 | 2010-11-05 | Rhodia Recherches & Tech | Composition a reductibilite elevee a base d'un oxyde de cerium nanometrique sur un support, procede de preparation et utilisation comme catalyseur |
| CN100998941B (zh) * | 2007-01-04 | 2012-09-05 | 华东理工大学 | 一种前置催化剂及其制备方法 |
| KR101017490B1 (ko) | 2007-03-26 | 2011-02-25 | 피큐 코포레이션 | 8-고리 기공 입구 구조를 갖는 분자체 또는 제올라이트를 포함하는 신규한 미세다공성 결정상 물질, 이를 제조하는 방법, 및 이를 이용하는 방법 |
| MX2009011443A (es) | 2007-04-26 | 2010-01-18 | Johnson Matthey Plc | Catalizadores de reduccion catalitica selectiva de metal de transicion/zeolita. |
| CN101322941A (zh) * | 2007-06-13 | 2008-12-17 | 曾庆琳 | 节能型汽车尾气净化纳米催化剂 |
| WO2008154739A1 (en) * | 2007-06-18 | 2008-12-24 | Valorbec Societe En Commandite | Co-catalysts for hybrid catalysts, hybrid catalysts comprising same, monocomponent catalysts, methods of manufacture and uses thereof |
| CN201050105Y (zh) | 2007-06-26 | 2008-04-23 | 郭太成 | 自动座便器 |
| KR101513887B1 (ko) | 2007-07-26 | 2015-04-21 | 삼성전자주식회사 | 정보 서버의 위치 검색 방법 및 장치, 그리고 정보 서버의위치를 이용한 핸드오버 정보 수신 방법 및 장치 |
| DE102007061776A1 (de) | 2007-12-20 | 2009-06-25 | Argillon Gmbh | Verfahren zur Trocknung von keramischen Wabenkörpern |
| US7695703B2 (en) | 2008-02-01 | 2010-04-13 | Siemens Energy, Inc. | High temperature catalyst and process for selective catalytic reduction of NOx in exhaust gases of fossil fuel combustion |
| JP2009255034A (ja) * | 2008-03-27 | 2009-11-05 | Ibiden Co Ltd | ハニカム構造体および排ガス処理装置 |
| JP2009255030A (ja) * | 2008-03-27 | 2009-11-05 | Ibiden Co Ltd | ハニカム構造体 |
| WO2009118868A1 (ja) | 2008-03-27 | 2009-10-01 | イビデン株式会社 | ハニカム構造体 |
| WO2009141884A1 (ja) | 2008-05-20 | 2009-11-26 | イビデン株式会社 | ハニカム構造体 |
| JP2010000499A (ja) | 2008-05-20 | 2010-01-07 | Ibiden Co Ltd | ハニカム構造体 |
| WO2009141889A1 (ja) * | 2008-05-20 | 2009-11-26 | イビデン株式会社 | ハニカム構造体 |
| JP5356065B2 (ja) | 2008-05-20 | 2013-12-04 | イビデン株式会社 | ハニカム構造体 |
| CN101678351B (zh) * | 2008-05-20 | 2012-07-04 | 揖斐电株式会社 | 蜂窝结构体 |
| JPWO2009141895A1 (ja) * | 2008-05-20 | 2011-09-22 | イビデン株式会社 | 排ガス浄化装置 |
| KR100997579B1 (ko) | 2008-07-08 | 2010-11-30 | 임재주 | 구명로프 |
| US20100050604A1 (en) * | 2008-08-28 | 2010-03-04 | John William Hoard | SCR-LNT CATALYST COMBINATION FOR IMPROVED NOx CONTROL OF LEAN GASOLINE AND DIESEL ENGINES |
| CN101485980B (zh) | 2009-02-27 | 2012-09-05 | 中国科学院大连化学物理研究所 | 沸石和氧化还原氧化物组合催化剂结构体 |
| US8703636B2 (en) | 2009-02-27 | 2014-04-22 | Corning Incorporated | Method of manufacturing a catalyst body by post-impregnation |
| RU2546666C2 (ru) | 2009-04-17 | 2015-04-10 | Джонсон Мэттей Паблик Лимитед Компани | Катализаторы восстановления оксидов азота из нанесенной на мелкопористое молекулярное сито меди, стойкие к старению при колебаниях состава бедной/богатой смеси |
| US20100296992A1 (en) * | 2009-05-22 | 2010-11-25 | Yi Jiang | Honeycomb Catalyst And Catalytic Reduction Method |
| DE102009040352A1 (de) | 2009-09-05 | 2011-03-17 | Johnson Matthey Catalysts (Germany) Gmbh | Verfahren zur Herstellung eines SCR aktiven Zeolith-Katalysators sowie SCR aktiver Zeolith-Katalysator |
| US8557203B2 (en) * | 2009-11-03 | 2013-10-15 | Umicore Ag & Co. Kg | Architectural diesel oxidation catalyst for enhanced NO2 generator |
| GB201000019D0 (en) | 2010-01-04 | 2010-02-17 | Johnson Matthey Plc | Coating a monolith substrate with catalyst component |
| US8609047B2 (en) | 2010-02-01 | 2013-12-17 | Johnson Matthey Public Limited Company | Extruded SCR filter |
| US8529853B2 (en) * | 2010-03-26 | 2013-09-10 | Umicore Ag & Co. Kg | ZrOx, Ce-ZrOx, Ce-Zr-REOx as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant SCR catalysts |
-
2011
- 2011-02-01 US US13/384,562 patent/US8609047B2/en not_active Expired - Fee Related
- 2011-02-01 CN CN201180017647.XA patent/CN102811798B/zh active Active
- 2011-02-01 BR BR112012019009A patent/BR112012019009A2/pt active Search and Examination
- 2011-02-01 JP JP2012550522A patent/JP5782050B2/ja not_active Expired - Fee Related
- 2011-02-01 CN CN201180017114.1A patent/CN102811797B/zh not_active Expired - Fee Related
- 2011-02-01 GB GB1101655.7A patent/GB2479807B/en not_active Expired - Fee Related
- 2011-02-01 HU HUE11703251A patent/HUE026104T2/en unknown
- 2011-02-01 DE DE102011010107A patent/DE102011010107A1/de not_active Ceased
- 2011-02-01 CN CN201180016979.6A patent/CN102869429B/zh active Active
- 2011-02-01 WO PCT/GB2011/050162 patent/WO2011092521A1/en not_active Ceased
- 2011-02-01 HU HUE11702861A patent/HUE027335T2/en unknown
- 2011-02-01 RU RU2012137278/05A patent/RU2570883C2/ru active
- 2011-02-01 EP EP11703251.6A patent/EP2531279B1/en active Active
- 2011-02-01 HU HUE11702688A patent/HUE027305T2/en unknown
- 2011-02-01 KR KR1020187005928A patent/KR102014664B1/ko not_active Expired - Fee Related
- 2011-02-01 DE DE102011010106A patent/DE102011010106A1/de not_active Withdrawn
- 2011-02-01 GB GB1101719.1A patent/GB2479808B/en not_active Expired - Fee Related
- 2011-02-01 EP EP11702688.0A patent/EP2531277B1/en active Active
- 2011-02-01 US US13/384,568 patent/US8263032B2/en active Active
- 2011-02-01 EP EP11702861.3A patent/EP2531278B1/en not_active Not-in-force
- 2011-02-01 KR KR1020177021961A patent/KR101922828B1/ko not_active Expired - Fee Related
- 2011-02-01 WO PCT/GB2011/050160 patent/WO2011092519A1/en not_active Ceased
- 2011-02-01 GB GB1101691.2A patent/GB2477628B/en active Active
- 2011-02-01 JP JP2012550519A patent/JP5847094B2/ja active Active
- 2011-02-01 CN CN201180016293.7A patent/CN102821836B/zh active Active
- 2011-02-01 JP JP2012550520A patent/JP5847095B2/ja active Active
- 2011-02-01 GB GB1101730.8A patent/GB2477630B/en active Active
- 2011-02-01 DE DE202011110610.5U patent/DE202011110610U1/de not_active Expired - Lifetime
- 2011-02-01 WO PCT/GB2011/050164 patent/WO2011092523A1/en not_active Ceased
- 2011-02-01 KR KR1020127021892A patent/KR101800699B1/ko active Active
- 2011-02-01 BR BR112012019036-9A patent/BR112012019036B1/pt not_active IP Right Cessation
- 2011-02-01 US US13/384,572 patent/US9283519B2/en active Active
- 2011-02-01 KR KR1020127022965A patent/KR20120125337A/ko not_active Ceased
- 2011-02-01 WO PCT/GB2011/050170 patent/WO2011092525A1/en not_active Ceased
- 2011-02-01 DE DE102011010104A patent/DE102011010104A1/de not_active Ceased
- 2011-02-01 RU RU2012137238/04A patent/RU2505355C1/ru active
- 2011-02-01 GB GB1101674.8A patent/GB2477626B/en active Active
- 2011-02-01 RU RU2012137282/05A patent/RU2570454C2/ru active
- 2011-02-01 DE DE102011010103A patent/DE102011010103A1/de not_active Ceased
- 2011-02-01 CN CN201610922055.7A patent/CN107008261B/zh not_active Expired - Fee Related
- 2011-02-01 KR KR1020187018706A patent/KR102040863B1/ko not_active Expired - Fee Related
- 2011-02-01 GB GB1411517.4A patent/GB2511706B/en not_active Expired - Fee Related
- 2011-02-01 US US13/384,564 patent/US8641993B2/en not_active Expired - Fee Related
- 2011-02-01 JP JP2012550521A patent/JP5784042B2/ja active Active
- 2011-02-01 KR KR1020127021891A patent/KR101922733B1/ko not_active Expired - Fee Related
- 2011-02-01 JP JP2012550523A patent/JP6312361B2/ja not_active Expired - Fee Related
- 2011-02-01 BR BR112012019030-0A patent/BR112012019030B1/pt not_active IP Right Cessation
- 2011-02-01 RU RU2012137280/04A patent/RU2570934C2/ru active
- 2011-02-01 CN CN201510097465.8A patent/CN104759275B/zh active Active
- 2011-02-01 DE DE102011010105A patent/DE102011010105A1/de not_active Ceased
- 2011-02-01 KR KR1020127022964A patent/KR101940329B1/ko active Active
- 2011-02-01 KR KR1020127022966A patent/KR101922734B1/ko not_active Expired - Fee Related
- 2011-02-01 BR BR112012019018-0A patent/BR112012019018B1/pt not_active IP Right Cessation
- 2011-02-01 US US13/384,570 patent/US8603423B2/en active Active
- 2011-02-01 RU RU2015142478/05A patent/RU2604231C1/ru active
- 2011-02-01 EP EP11702690.6A patent/EP2539050B1/en active Active
- 2011-02-01 EP EP11704303.4A patent/EP2531280B1/en not_active Not-in-force
- 2011-02-01 HU HUE11702690A patent/HUE026281T2/en unknown
- 2011-02-01 WO PCT/GB2011/050158 patent/WO2011092517A1/en not_active Ceased
-
2013
- 2013-11-12 US US14/077,549 patent/US8815190B2/en active Active
- 2013-11-13 US US14/079,210 patent/US9040003B2/en active Active
-
2014
- 2014-06-10 GB GBGB1410311.3A patent/GB201410311D0/en not_active Ceased
- 2014-11-05 JP JP2014225243A patent/JP2015077597A/ja active Pending
- 2014-11-05 JP JP2014225245A patent/JP2015077598A/ja active Pending
-
2015
- 2015-03-02 JP JP2015039918A patent/JP6383683B2/ja not_active Expired - Fee Related
- 2015-09-24 JP JP2015186579A patent/JP6123095B2/ja not_active Expired - Fee Related
-
2018
- 2018-03-05 JP JP2018038330A patent/JP6582078B2/ja not_active Expired - Fee Related
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5552128A (en) | 1993-08-03 | 1996-09-03 | Mobil Oil Corporation | Selective catalytic reduction of nitrogen oxides |
| US6488903B2 (en) * | 1998-05-29 | 2002-12-03 | Siemens Aktiengesellschaft | Method for cleaning diesel engine exhaust gas |
| EP1338322A1 (en) * | 2000-09-29 | 2003-08-27 | Ibiden Co., Ltd. | Catalyst-carrying filter |
| EP1493484A1 (en) * | 2003-07-02 | 2005-01-05 | Haldor Topsoe A/S | Diesel particulate filter |
| US20060179825A1 (en) | 2005-02-16 | 2006-08-17 | Eaton Corporation | Integrated NOx and PM reduction devices for the treatment of emissions from internal combustion engines |
| EP1739066A1 (en) | 2005-06-27 | 2007-01-03 | Ibiden Co., Ltd. | Honeycomb structure |
| US7507684B2 (en) | 2006-05-02 | 2009-03-24 | Argillon Gmbh | Extruded monolithic catalytic converter and manufacturing method |
| US20080069743A1 (en) * | 2006-09-20 | 2008-03-20 | Castellano Christopher R | Catalysts, systems and methods to reduce nox in an exhaust gas stream |
| WO2008049491A1 (de) | 2006-10-23 | 2008-05-02 | Umicore Ag & Co. Kg | Vanadiumfreier katalysator zur selektiven katalytischen reduktion und verfahren zu seiner herstellung |
| WO2009001131A1 (en) | 2007-06-25 | 2008-12-31 | Johnson Matthey Public Limited Company | Non-zeolite base metal scr catalyst |
| US20090143221A1 (en) * | 2007-11-30 | 2009-06-04 | Steven Bolaji Ogunwumi | Zeolite-Based Honeycomb Body |
| WO2009093071A1 (en) | 2008-01-23 | 2009-07-30 | Johnson Matthey Public Limited Company | Catalysed filter |
Non-Patent Citations (1)
| Title |
|---|
| R.M. HECK ET AL.: "Catalytic Air Pollution Control - Commercial Technology", 2002, JOHN WILEY & SONS, INC. |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015516929A (ja) * | 2012-03-02 | 2015-06-18 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 多孔性無機体 |
| US9266092B2 (en) | 2013-01-24 | 2016-02-23 | Basf Corporation | Automotive catalyst composites having a two-metal layer |
| US9636634B2 (en) | 2014-01-23 | 2017-05-02 | Johnson Matthey Public Limited Company | Diesel oxidation catalyst and exhaust system |
| US9849423B2 (en) | 2014-01-23 | 2017-12-26 | Johnson Matthey Public Limited Company | Diesel oxidation catalyst and exhaust system |
| US10286359B2 (en) | 2014-01-23 | 2019-05-14 | Johnson Matthey Public Limited Company | Diesel oxidation catalyst and exhaust system |
| US11167246B2 (en) | 2014-01-23 | 2021-11-09 | Johnson Matthey Public Limited Company | Diesel oxidation catalyst and exhaust system |
| US11987914B2 (en) | 2018-04-04 | 2024-05-21 | Unifrax I Llc | Activated porous fibers and products including same |
| US20230191326A1 (en) * | 2020-06-25 | 2023-06-22 | Basf Corporation | Method of preparing a copper-promoted zeolite |
| US11766662B2 (en) | 2020-09-21 | 2023-09-26 | Unifrax I Llc | Homogeneous catalytic fiber coatings and methods of preparing same |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9283519B2 (en) | Filter comprising combined soot oxidation and NH3-SCR catalyst | |
| GB2511178A (en) | NOx absorber catalysts |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201180016979.6 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11702690 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13384572 Country of ref document: US |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012550523 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011702690 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 7409/CHENP/2012 Country of ref document: IN |
|
| ENP | Entry into the national phase |
Ref document number: 20127022966 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012137280 Country of ref document: RU |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012019018 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 112012019018 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120730 |