WO2014157324A1 - アルミノフォスフェート-金属酸化物接合体及びその製造方法 - Google Patents
アルミノフォスフェート-金属酸化物接合体及びその製造方法 Download PDFInfo
- Publication number
- WO2014157324A1 WO2014157324A1 PCT/JP2014/058512 JP2014058512W WO2014157324A1 WO 2014157324 A1 WO2014157324 A1 WO 2014157324A1 JP 2014058512 W JP2014058512 W JP 2014058512W WO 2014157324 A1 WO2014157324 A1 WO 2014157324A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal oxide
- aluminophosphate
- metal
- assembly according
- seed crystal
- Prior art date
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 326
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 234
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 38
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 38
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 239000013078 crystal Substances 0.000 claims description 82
- 239000002994 raw material Substances 0.000 claims description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 49
- 239000002002 slurry Substances 0.000 claims description 46
- 239000000126 substance Substances 0.000 claims description 42
- 238000010899 nucleation Methods 0.000 claims description 36
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 34
- 229910052783 alkali metal Inorganic materials 0.000 claims description 30
- 150000001340 alkali metals Chemical class 0.000 claims description 30
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 26
- 230000015572 biosynthetic process Effects 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 20
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 20
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 17
- 239000003795 chemical substances by application Substances 0.000 claims description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 14
- 238000003786 synthesis reaction Methods 0.000 claims description 14
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 10
- 229910052749 magnesium Inorganic materials 0.000 claims description 10
- 239000011777 magnesium Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 239000007791 liquid phase Substances 0.000 claims description 2
- 238000005304 joining Methods 0.000 abstract description 39
- 230000002349 favourable effect Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 45
- 238000012360 testing method Methods 0.000 description 30
- 238000000034 method Methods 0.000 description 24
- 238000005406 washing Methods 0.000 description 24
- 238000010438 heat treatment Methods 0.000 description 22
- 238000012790 confirmation Methods 0.000 description 17
- 239000010410 layer Substances 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 15
- 230000001737 promoting effect Effects 0.000 description 15
- 238000000926 separation method Methods 0.000 description 15
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 14
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 14
- 239000012528 membrane Substances 0.000 description 13
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 12
- 239000002344 surface layer Substances 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002808 molecular sieve Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- CURJNMSGPBXOGK-UHFFFAOYSA-N n',n'-di(propan-2-yl)ethane-1,2-diamine Chemical compound CC(C)N(C(C)C)CCN CURJNMSGPBXOGK-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- -1 aluminum ions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000034655 secondary growth Effects 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
- B01D63/066—Tubular membrane modules with a porous block having membrane coated passages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0051—Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/022—Metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/028—Molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28042—Shaped bodies; Monolithic structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/447—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
- C04B35/6306—Binders based on phosphoric acids or phosphates
- C04B35/6309—Aluminium phosphates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
- C04B35/6306—Binders based on phosphoric acids or phosphates
- C04B35/6313—Alkali metal or alkaline earth metal phosphates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0022—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
- C04B38/0035—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors by evaporation induced self-assembly
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/12—Specific ratios of components used
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B37/00—Compounds having molecular sieve properties but not having base-exchange properties
- C01B37/04—Aluminophosphates [APO compounds]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/54—Phosphates, e.g. APO or SAPO compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00793—Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
- C04B2111/00801—Membranes; Diaphragms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/447—Phosphates or phosphites, e.g. orthophosphate or hypophosphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/781—Nanograined materials, i.e. having grain sizes below 100 nm
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Definitions
- the present invention relates to an aluminophosphate-metal oxide assembly and a method for producing the same. More specifically, an aluminophosphate-metal oxide assembly having a good bonding state even in a complicated shape, and an aluminophosphate-metal capable of producing such an aluminophosphate-metal oxide assembly
- the present invention relates to a method for manufacturing an oxide joined body.
- Aluminophosphate is a material that is expected to be used for separation membranes, refrigerant adsorption carriers for heat pumps, and the like.
- the aluminophosphate is in the form of a film, it is preferable from the viewpoint of securing strength, etc., that the film is bonded to the surface of the structure and used in the bonded state.
- the seed crystal attached to the structure is grown by a secondary growth method, which is a method of forming a film on the surface of the structure. (For example, refer nonpatent literature 1).
- the aluminophosphate membrane is bonded to the inside of the tube by rubbing the seed crystal on the inside of the stainless steel tube by a rubbing method and then hydrothermally synthesizing the seed crystal.
- This method is a method in which the seed crystal is rubbed and attached to the surface of the structure. Therefore, when the structure has a complicated shape, it is difficult to sufficiently attach the seed crystal and the bonding state is improved. There was a problem that it was difficult.
- Non-Patent Document 1 when the structure has a complicated shape as described above, it is difficult to improve the bonding state. Therefore, for example, when an aluminophosphate is to be joined to the inner wall surface of the through hole of a monolithic structure, it is difficult to rub the seed crystal on the inner wall surface of the elongated through hole. It was difficult to use the method described in 1. Since the aluminophosphate seed crystal has low adhesiveness, it has been difficult to sufficiently adhere to a complex-shaped structure by simply rubbing.
- the present invention has been made in view of such problems of the prior art.
- the present invention is characterized by providing an aluminophosphate-metal oxide joined body having a good joint state even in a complicated shape. Furthermore, the present invention provides a method for producing an aluminophosphate-metal oxide assembly capable of producing an aluminophosphate-metal oxide assembly having a good bonding state even in a complicated shape. It is characterized by.
- the following aluminophosphate-metal oxide assembly and a method for producing the same are provided.
- a metal oxide having a bonding surface on a part of a surface, and an aluminophosphate disposed on the bonding surface of the metal oxide, an alkali metal on the bonding surface of the metal oxide, Alkaline earth metal or both of them are arranged, and the content of the alkali metal, alkaline earth metal or both of them is from 0.3 to the whole substance arranged on the joint surface of the metal oxide. 30.0 mass% aluminophosphate-metal oxide assembly.
- the content ratio of the alkali metal, alkaline earth metal, or both is 0.5 to 20.0 mass% with respect to the entire material disposed on the joint surface of the metal oxide [1] ] Or aluminophosphate-metal oxide assembly according to [2].
- aluminophosphate according to any one of [1] to [3], wherein the metal oxide contains at least 70% by mass in total of at least one selected from the group consisting of alumina, titania and silica. -Metal oxide assemblies.
- the metal oxide is a structure having at least one internal space, and a value obtained by dividing the area of the joint surface of the metal oxide by the space volume of the metal oxide is 100 or more.
- the aluminophosphate-metal oxide assembly according to any one of [4].
- the internal space of the metal oxide is a space having at least one opening on the surface of the metal oxide, and the length of the internal space in the extending direction of the internal space is 100 mm or more.
- the aluminophosphate-metal oxide assembly according to any one of [1] to [5], wherein the diameter of the opening in the internal space is 5 mm or less.
- the internal space is a through hole having openings at both ends, the metal oxide has a monolith shape having 10 or more through holes, and the through hole extends in the direction in which the through holes extend.
- the aluminophosphate-metal oxide assembly according to any one of [1] to [6], wherein the diameter of the cross section orthogonal to is 5 mm or less.
- the area ratio of the surface not bonded to the metal oxide is 1% or less.
- a seed crystal adhering step in which a seeding slurry containing an aluminophosphate seed crystal is applied to a joint surface that is a part of the surface of the metal oxide; and the metal oxide to which the seeding slurry is applied Immersing in a film forming raw material solution containing an aluminum source raw material, a structure-directing agent and phosphoric acid, hydrothermally synthesizing, and placing an aluminophosphate on the joint surface of the metal oxide;
- An aluminophosphate-metal oxide assembly in which the content of both is 0.3 to 30.0% by mass with respect to the entire material disposed on the bonding surface of the metal oxide Manufacturing method.
- the average particle diameter of the aluminophosphate seed crystal is 80 to 500 nm
- the metal oxide is porous
- the opening diameter of the pores opening in the joint surface of the metal oxide is The method for producing an aluminophosphate-metal oxide assembly according to any one of [11] to [14], which is 0.3 to 1.5 times the average particle size of the aluminophosphate seed crystal.
- the aluminophosphate-metal oxide assembly of the present invention is an assembly of an aluminophosphate and a metal oxide, and “alkaline metal, alkaline earth metal or both” is present on the metal oxide bonding surface. A predetermined amount is arranged. Therefore, “alkaline metal, alkaline earth metal, or both” arranged on the metal oxide bonding surface plays a role of firmly bonding the aluminophosphate and the metal oxide. Therefore, an aluminophosphate-metal oxide bonded body having a good bonding state even with a complicated shape is obtained.
- 1 is a perspective view schematically showing one embodiment of an aluminophosphate-metal oxide assembly of the present invention.
- 1 is a schematic view showing a cross section parallel to the direction in which a through hole extends in one embodiment of an aluminophosphate-metal oxide assembly of the present invention.
- Aluminophosphate-metal oxide assembly As shown in FIG. 1 and FIG. 2, one embodiment of the aluminophosphate-metal oxide assembly of the present invention includes a metal oxide 3 having a joint surface 5 on a part of a surface 4, and a metal oxide 3 The aluminophosphate 6 disposed on the joint surface 5 is provided. Then, “alkaline metal, alkaline earth metal, or both” is arranged on the joint surface 5 of the metal oxide 3. Further, the content of alkali metal, alkaline earth metal, or both is 0.3 to 30.0 mass% with respect to the entire material disposed on the bonding surface 5 of the metal oxide 3.
- Each content rate of the alkali metal and alkaline-earth metal contained in a metal oxide is the value measured with the following method. First, a sample capable of observing a cross section of the bonded interface between the aluminophosphate and the metal oxide is cut out. Then, the content of alkali metal and alkaline earth metal at three locations in the “region of 1 ⁇ m thickness from the bonding surface 5” of the metal oxide was measured on a scanning electron microscope (SEM-EDS) with an energy dispersive X-ray analyzer. To measure. And the value of 3 places obtained is averaged, and it is set as the content rate of an alkali metal and an alkaline-earth metal.
- SEM-EDS scanning electron microscope
- the “alkali metal, alkaline earth metal, or both” disposed on the metal oxide bonding surface is the aluminophosphine. It plays the role of firmly joining the fate and the metal oxide. Therefore, an aluminophosphate-metal oxide bonded body having a good bonding state even with a complicated shape is obtained.
- the aluminophosphate-metal oxide assembly of the present embodiment includes a metal oxide 3 having a bonding surface 5 on a part of the surface 4, and an aluminophosphate (AlPO) disposed on the bonding surface 5 of the metal oxide 3. 4- n) 6.
- the aluminophosphate preferably has a molecular structure having an oxygen 8-membered ring. Furthermore, the aluminophosphate preferably has an AEI structure.
- the aluminophosphate has a crystal structure having pores in the crystal, acts as a molecular sieve, and can be used as a separation membrane, an adsorbent, an adsorbent for a heat exchanger, and the like.
- Aluminophosphate can also be used as a low dielectric constant material or a protective film.
- the aluminophosphate is preferably formed with pores extending (or facing) in “three directions” (x direction, y direction, z direction) orthogonal to each other.
- aluminophosphate is preferably AlPO 4 -18.
- the aluminophosphate is preferably in the form of a film, but may be in the form of a plate or other shapes.
- the thickness of the film is preferably 0.5 to 5 ⁇ m, more preferably 0.5 to 3 ⁇ m, and particularly preferably 0.5 to 2 ⁇ m.
- the thickness is less than 0.5 ⁇ m, the function as a molecular sieve is hardly exhibited.
- the separation performance may be lowered. If it is thicker than 5 ⁇ m, molecules are difficult to permeate, and when used as a separation membrane, the amount of treatment may be reduced, or defects may be generated in the step of removing the structure-directing agent.
- the metal oxide 3 is a structure having a bonding surface 5 on a part of the surface 4. It is preferable that the metal oxide 3 contains at least 70% by mass in total of at least one selected from the group consisting of alumina, titania and silica. It is more preferable that the metal oxide 3 contains at least one selected from the group consisting of alumina, titania and silica in a total amount of 80% by mass or more, and a total of 90% by mass or more. It is particularly preferred.
- the “at least one selected from the group consisting of alumina, titania and silica contained in the metal oxide 3” is referred to as “specific oxide”.
- the content rate of the specific oxide contained in the metal oxide 3 is a value measured by the following method.
- the metal oxide 3 may contain “alkali metal, alkaline earth metal, or both” in the entire metal oxide.
- the metal oxide 3 may contain “alkali metal, alkaline earth metal, or both” in the “surface layer whose surface is the bonding surface 5”.
- the “surface layer whose surface is the bonding surface 5” may be a layer bonded to the metal oxide by firing, or a layer attached to the surface of the metal oxide.
- the “layer attached to the surface of the metal oxide” is a layer that is not bonded to the surface of the metal oxide by sintering, and is simply coated with the raw material slurry and dried. That is.
- the metal oxide is preferably a porous body. The porosity and average pore diameter of the metal oxide can be appropriately determined according to the application.
- the metal oxide 3 is preferably a structure having at least one internal space 7.
- a value obtained by dividing the area of the bonding surface 5 of the metal oxide 3 by the space volume of the metal oxide 3 is preferably 100 or more, more preferably 300 or more, and particularly preferably 400 to 2000.
- the space volume of the metal oxide 3 is a value obtained by adding the volume of the metal oxide and the volume of the internal space.
- the value obtained by dividing the area of the joint surface 5 of the metal oxide 3 by the space volume of the metal oxide 3 is less than 100, the amount of aluminophosphate disposed in the aluminophosphate-metal oxide joint is small. Less. If it does so, it may become inadequate quantity as quantity for exhibiting the "function as a molecular sieve" etc. of aluminophosphate.
- the internal space 7 of the metal oxide 3 is preferably a space having at least one opening 8 on the surface 4 of the metal oxide 3.
- the length of the internal space 7 in the “extending direction of the internal space 7” is preferably 100 mm or more, more preferably 150 to 2000 mm, and particularly preferably 500 to 2000 mm.
- the present invention exhibits a higher effect when the length of the internal space 7 in the “direction in which the internal space 7 extends” is 100 mm or more. If it is less than 100 mm, a sufficient joint surface may not be obtained.
- the diameter of the opening 8 of the internal space 7 is preferably 5 mm or less, more preferably 1 to 4 mm, and particularly preferably 1 to 2.5 mm.
- the present invention exhibits a higher effect when the diameter of the opening 8 of the internal space 7 is 5 mm or less. If it exceeds 5 mm, a sufficient joint surface may not be obtained.
- the metal oxide 3 preferably has a monolith shape having 10 or more through holes 2. Further, the number of the through holes 2 of the metal oxide 3 is more preferably 50 or more, and particularly preferably 1000 or more.
- the monolith shape is a shape having a porous partition wall 1 that defines a plurality of through holes 2 extending from one end face 11 to the other end face 12 that serve as a fluid flow path, and an outer peripheral wall 9 that is located on the outermost periphery. is there.
- the diameter of the “cross section perpendicular to the direction in which the internal space extends” of the through hole 2 is preferably 5 mm or less, more preferably 1 to 4 mm, and particularly preferably 1 to 2.5 mm. In the case where the diameter of the “cross section perpendicular to the direction in which the internal space extends” of the through hole 2 is 5 mm or less, the present invention exhibits a higher effect. If it exceeds 5 mm, a sufficient joint surface may not be obtained.
- the inner wall surface of the through hole is preferably a bonding surface.
- alkaline metal, alkaline earth metal, or both are arranged on the joint surface 5 of the metal oxide 3.
- the content of “alkaline metal, alkaline earth metal, or both” is 0.3 to 30.0 mass% with respect to the entire substance disposed on the bonding surface 5 of the metal oxide 3, and 0% More preferably, the content is 5 to 20% by mass, and particularly preferably 2 to 10% by mass. If it is less than 0.3% by mass, it may be difficult to improve the bonding state between the aluminophosphate and the metal oxide. When it is more than 30.0% by mass, the bonding strength may be lowered.
- good bonding state means that the area ratio of the surface of the aluminophosphate that is not bonded to the metal oxide (unbonded portion) in the surface facing the surface of the metal oxide is 1%. It means the following.
- “arranged on the bonding surface” means “present in the range from the bonding surface to a depth of 1 ⁇ m”.
- the content (content) of the “substance disposed on the bonding surface (for example, alkali metal, etc.)” corresponds to the substance (for example, alkali metal) existing in the “range from the surface to a depth of 1 ⁇ m”. , Etc.).
- “Content ratio of alkali metal, alkaline earth metal or both” is, for example, when both the alkali metal and alkaline earth metal are contained in the joint surface, “alkaline metal and alkaline earth metal” Is the ratio of the "total content of each" to the entire joint surface.
- the alkali metal is preferably sodium.
- the alkaline earth metal is preferably “calcium, magnesium, or both”. Further, when an alkali metal and an alkaline earth metal are compared, an alkaline earth metal is more preferable.
- the area ratio of the surface of the aluminophosphate that is not bonded to the metal oxide in the surface facing the surface of the metal oxide is 1% or less. Preferably there is. That is, it is preferable that the aluminophosphate-metal oxide bonded body has a good bonding state.
- the area ratio is more preferably 0.01% or less, and particularly preferably 0.001% or less. When the area ratio exceeds 1%, when the aluminophosphate is used for “separation membrane etc. for separating the fluid to be treated”, the fluid to be treated is discharged without being separated by not passing through the separation membrane. May increase and may not be sufficiently separated.
- the metal oxide is preferably porous.
- the fluid to be treated that does not pass through the separation membrane enters the metal oxide from the “surface facing the aluminophosphate but not joining” in the surface of the metal oxide, and is discharged to the outside.
- the “surface of the aluminophosphate facing the surface of the metal oxide” means, for example, the surface of the aluminophosphate film facing the surface side of the metal oxide when the aluminophosphate is in the form of a film. It is.
- One embodiment of the method for producing an aluminophosphate-metal oxide assembly of the present invention includes a seed crystal attaching step and a synthesizing step. Then, an alkali metal, an alkaline earth metal, or both of them are arranged on the joint surface of the metal oxide. Furthermore, the content of alkali metal, alkaline earth metal, or both is 0.3 to 30.0% by mass with respect to the entire material disposed on the metal oxide bonding surface.
- the seed crystal attachment step is a step of applying a seeding slurry containing an aluminophosphate seed crystal to a bonding surface that is a part of the surface of the metal oxide.
- the synthesis step is a step of obtaining an aluminophosphate-metal oxide assembly by the following method. That is, first, the metal oxide coated with the seeding slurry is immersed in a film forming raw material solution containing an aluminum source raw material, a structure directing agent, and phosphoric acid. Then, hydrothermal synthesis is performed, and an aluminophosphate is disposed on the metal oxide bonding surface to obtain an aluminophosphate-metal oxide assembly.
- “alkaline metal, alkaline earth metal or both” (hereinafter referred to as “joint”) is formed on the joint surface of the metal oxide.
- a predetermined amount of “promoting substance” is arranged. Therefore, the film forming raw material (aluminum source raw material, phosphoric acid, etc.) in the film forming raw material solution is attracted to the bonding promoting substance and gathers on the metal oxide bonding surface, and an aluminophosphate is formed on the bonding surface. Is done.
- the film forming raw material is attracted to the bonding promoting substance and gathers on the bonding surface of the metal oxide, the aluminophosphate is bonded to the bonding surface of the metal oxide in a good bonding state. More specifically, phosphate ions, which are negative ions, are attracted to the bonding promoting substance disposed on the bonding surface of the metal oxide. Then, aluminum ions which are positive ions are attracted to the phosphate ions attracted to the joint surface, and an aluminophosphate is formed on the joint surface.
- the aluminophosphate is used. Can be joined in a good joined state.
- a surface bonded to the aluminophosphate is referred to as a bonded surface, but a surface before bonding to the aluminophosphate (surface to be bonded) is also referred to as a bonded surface.
- the seed crystal attachment step is a step of applying a seeding slurry containing an aluminophosphate seed crystal to a bonding surface that is a part of the surface of the metal oxide.
- the method for producing the seed crystal is not particularly limited.
- the aluminum source material is a compound that becomes a material for supplying aluminum contained in aluminophosphate.
- the aluminum source material include aluminum triisopropoxide, aluminum sulfate, aluminum hydroxide, sodium aluminate and the like. Among these, aluminum triisopropoxide is preferable.
- the structure-directing agent include tetraethylammonium hydroxide and N, N-diisopropylethylenediamine. Among these, tetraethylammonium hydroxide is preferable.
- the aluminum content in the aluminum source material in the raw material solution is preferably 30 to 150 moles per 100 moles of phosphoric acid.
- the content of the structure-directing agent in the raw material solution is preferably 50 to 100 mol with respect to 100 mol of phosphoric acid.
- the content of water in the raw material solution is preferably 5000 to 12000 mol with respect to 100 mol of phosphoric acid.
- hydrothermal synthesis it is preferable to carry out hydrothermal synthesis by heating at 130 to 180 ° C. for 10 to 40 hours with the raw material solution standing still. And it is preferable to dry the solution obtained by hydrothermal synthesis to obtain aluminophosphate microcrystals (seed crystals).
- a seeding slurry by dispersing the obtained aluminophosphate seed crystal in a dispersion medium.
- a dispersion medium water, ethanol or a mixture thereof is preferable.
- the concentration of the aluminophosphate seed crystal in the seeding slurry is preferably 0.01 to 1.00% by mass.
- the aluminophosphate seed crystal preferably contains a structure-directing agent.
- the average particle size of the aluminophosphate seed crystal is preferably 80 to 500 nm, more preferably 80 to 400 nm, and particularly preferably 80 to 300 nm. If it is smaller than 80 nm, it may aggregate. If it is larger than 500 nm, the aluminophosphate layer may become thick.
- the average particle diameter is a D50 value (median diameter) (volume distribution) measured by a laser diffraction method.
- the metal oxide is preferably porous.
- the metal oxide preferably contains at least 70% by mass in total of at least one selected from the group consisting of alumina, titania and silica.
- the metal oxide further preferably contains at least one selected from the group consisting of alumina, titania and silica in a total of 80% by mass or more, and in total contains 90% by mass or more. It is particularly preferred.
- the metal oxide may contain “alkali metal, alkaline earth metal or both” in the entire metal oxide.
- the metal oxide may contain “alkali metal, alkaline earth metal, or both” in the surface layer having the bonding surface.
- the “surface layer having the bonding surface 5” may be a layer bonded to the metal oxide by firing, or a layer attached to the surface of the metal oxide.
- the porosity and average pore diameter of the metal oxide can be appropriately determined according to the application.
- the metal oxide is porous, and the opening diameter of the pores that open to the metal oxide bonding surface is preferably 0.3 to 1.5 times the average particle diameter of the aluminophosphate seed crystal.
- the ratio is more preferably 4 to 1.3 times, and particularly preferably 0.6 to 1.2 times. If it is less than 0.3 times, the aluminophosphate may be difficult to adhere uniformly. If the ratio is larger than 1.5 times, the aluminophosphate may penetrate into the metal oxide and be generated on the surface other than the joint surface, which may be a cause of permeation inhibition.
- the metal oxide is not particularly limited, but is preferably a monolithic structure.
- the inner wall surface of the through hole be a bonding surface. That is, it is preferable to apply the seeding slurry to the inner wall surface of the through hole of the monolithic structure (metal oxide).
- the monolithic structure (metal oxide) may be a structure in which the “joining promoting substance” is dispersed throughout the structure.
- the “surface layer whose surface is a bonding surface” may contain a “bonding promoting substance” (parts other than the surface layer include “ The “joining promoting substance” may or may not be contained.)
- the “surface layer whose surface is a bonding surface” may be a layer bonded to a metal oxide by firing, or a layer attached to the surface of the metal oxide.
- the “layer attached to the surface of the metal oxide” is a layer that is not bonded to the surface of the metal oxide by sintering, and is simply coated with the raw material slurry and dried. That is.
- the manufacturing method of the monolith-shaped structure (metal oxide) is not particularly limited, and a known method can be used.
- a forming raw material containing a predetermined ceramic raw material is kneaded and extruded using a die that forms a monolith-shaped formed body to obtain a monolith-shaped formed body.
- the method of obtaining a monolith-shaped structure (metal oxide) by drying and baking can be mentioned.
- a ceramic raw material may be further applied and fired in the through hole of the molded body obtained by extrusion molding, and the inner wall of the through hole may be formed into a plurality of layers.
- the layer exposed on the surface of the plurality of layers may be a surface layer containing the “bonding promoting substance”.
- the monolithic structure may have a “non-sintered film-like layer” on the inner wall surface of the through hole.
- the “unsintered film-like layer” include a sodium hydroxide layer. In this case, sodium in sodium hydroxide becomes a “joining promoting substance”.
- the content of the “joining promoting substance” is 0.3 to 30.0% by mass, and more preferably 0.5 to 20% by mass with respect to the entire substance disposed on the joining surface of the metal oxide. 2 to 10% by mass is particularly preferable. If it is less than 0.3% by mass, it may be difficult to improve the bonding state between the aluminophosphate and the metal oxide. When it is more than 30.0% by mass, the bonding strength may be lowered.
- the seeding slurry When applying the seeding slurry to the inner wall surface of the through hole of the monolithic structure (metal oxide), the seeding slurry is poured into the through hole, and the seeding slurry is formed on the inner wall surface of the through hole. It is preferable to apply in the shape of a film. And then, it is preferable to dry the membranous seeding slurry.
- the operation of applying a seeding slurry in the form of a film to the inner wall surface of the through-hole and drying it is preferably performed 1 to 3 times, more preferably 1 to 2 times.
- the other conditions for the metal oxide are preferably those described above that are preferable for the aluminophosphate-metal oxide assembly of the present invention.
- the synthesis step is a step of obtaining an aluminophosphate-metal oxide assembly by the following method. First, the metal oxide coated with the seeding slurry is immersed in a film forming raw material solution containing an aluminum source raw material, a structure directing agent, and phosphoric acid. Then, hydrothermal synthesis is performed, and an aluminophosphate is disposed on the metal oxide bonding surface to obtain an aluminophosphate-metal oxide assembly.
- the raw material solution for film formation is preferably prepared by putting an aluminum source raw material, a structure-directing agent, phosphoric acid, water and the like in a sealed container.
- the aluminum source material include aluminum triisopropoxide, aluminum sulfate, aluminum hydroxide, sodium aluminate and the like. Among these, aluminum triisopropoxide is preferable.
- the structure-directing agent include tetraethylammonium hydroxide and N, N-diisopropylethylenediamine. Among these, tetraethylammonium hydroxide is preferable.
- the content of the aluminum source material in the raw material solution is preferably 30 to 150 mol with respect to 100 mol of phosphoric acid.
- the content of the structure-directing agent in the raw material solution is preferably 50 to 150 mol with respect to 100 mol of phosphoric acid.
- the water content in the raw material solution is preferably 12,000 to 50,000 moles per 100 moles of phosphoric acid.
- the metal oxide coated with the seeding slurry is immersed in the film forming raw material solution.
- aluminophosphate is disposed on the metal oxide bonding surface by hydrothermal synthesis to obtain an aluminophosphate-metal oxide assembly.
- hydrothermal synthesis is preferably carried out by heating at 130 to 170 ° C. for 10 to 50 hours with the film forming raw material solution standing still.
- the aluminophosphate-metal oxide assembly can be obtained by disposing the aluminophosphate on the metal oxide bonding surface.
- the above method is a method for producing a joined body by growing a film on the surface of the structure and joining an aluminophosphate film to the structure.
- Example 1 (1) Preparation of Aluminophosphate (AlPO 4 -18) Seed Crystal After putting 6.15 g of aluminum triisopropoxide (manufactured by Kanto Chemical Co., Inc.) into a 100 ml sealed container made of fluororesin, 40.07 g of 35 % Tetraethylammonium hydroxide (manufactured by Sigma-Aldrich) was added and stirred. Thereby, aluminum triisopropoxide was completely dissolved in tetraethylammonium hydroxide. 20 g of pure water was added thereto and further stirred.
- Tetraethylammonium hydroxide is a structure directing agent.
- aluminophosphate (AlPO 4 -18) crystal seed crystal
- 80 g of the raw material solution was put into a stainless steel pressure-resistant container with a fluororesin inner cylinder having an internal volume of 100 ml. And the raw material solution in a container was heated at 150 degreeC for 20 hours in the state left still (hydrothermal synthesis was performed).
- aluminophosphate (AlPO 4 -18) recovering the solution that crystals dispersed, pure water was added, by repeating operations twice centrifuging, was washed. Some dried overnight at 80 ° C., to obtain a dry powder (aluminophosphate (AlPO 4 -18) seed crystals).
- the crystal phase of the obtained powder was confirmed to be AlPO 4 -18 by XRD measurement (powder X-ray diffraction measurement).
- Monolithic porous metal oxide is a slurry containing alumina and magnesium chloride in the through-holes of monolithic alumina-titania composite material (no surface layer).
- the solid content was attached to the inner wall surface by filtering through a partition wall, and firing was performed.
- the surface of the baked “solid matter attached to the inner wall surface” becomes a “surface layer”.
- the solid content was mainly composed of alumina in which magnesium element was dissolved.
- the monolithic porous metal oxide had 30 through holes.
- the opening diameter of the through hole was 2.34 mm.
- the length of the monolithic porous metal oxide in the direction in which the through holes extend was 160 mm.
- the metal oxide constituting the porous metal oxide is an alumina-titania composite material, and the mixing ratio of alumina (Al 2 O 3 ) and titania (TiO 2 ) is about 60: 1 (alumina : Titania).
- alumina containing 10% by mass of magnesium (bonding promoting substance) was used on the inner wall surface (bonding surface) of the through hole.
- the monolithic porous metal oxide had a “surface layer” containing 10% by mass of magnesium in the through hole.
- seed crystal slurry was prepared by dispersing aluminophosphate seed crystals in water (dispersion medium of the seeding slurry). The concentration of the aluminophosphate seed crystal was 0.1% by mass.
- the seeding slurry was poured into the through hole (cell) of the monolithic porous metal oxide, and the seeding slurry was coated on the inner wall surface of the through hole. Thereafter, air at room temperature was allowed to flow through the through hole for 30 minutes under the condition of a wind speed of 2 to 7 m / sec, and the seeding slurry coated on the wall surface in the through hole was dried. The above operation was repeated twice in total to obtain a porous metal oxide in which the aluminophosphate seed crystal adhered to the inner wall surface of the through hole.
- the obtained aluminophosphate-metal oxide assembly was subjected to a “permeation test” by the following method.
- the first substance was water and the second substance was ethanol.
- the first substance / second substance (molar ratio) was 50/50.
- the secondary pressure (predetermined pressure) was 50 torr, and the predetermined temperature was 70 ° C.
- only water permeated and the amount of water permeated was 1 kg / h ⁇ m 2 .
- the ratio of the unbonded portion is “the secondary side of N 2 (of the metal oxide joined body) after the formation of the aluminophosphate film relative to the flow rate of N 2 permeating the metal oxide before forming the aluminophosphate film.
- the mixture of the first substance and the second substance is aluminophosphate-metal at a predetermined temperature while the secondary side of the aluminophosphate film (inner side of the aluminophosphate-metal oxide assembly) is depressurized at a predetermined pressure.
- the through hole of the oxide joined body is passed.
- transmitted to the secondary side is confirmed and a separation state (separation performance) is evaluated.
- Example 2 The aluminophosphate (AlPO 4 -18) seed crystals prepared aluminophosphate of (AlPO 4 -18) seed crystal was prepared in the same manner as in Example 1.
- ⁇ indicates the concentrations of the components A and B on the supply side and the transmission side as “X A , X B (supply side)” and “Y A , Y B, respectively.
- Example 3 The aluminophosphate (AlPO 4 -18) seed crystals prepared aluminophosphate of (AlPO 4 -18) seed crystal was prepared in the same manner as in Example 1.
- Example 4 The aluminophosphate (AlPO 4 -18) seed crystals prepared aluminophosphate of (AlPO 4 -18) seed crystal was prepared in the same manner as in Example 1.
- Example 5 The aluminophosphate (AlPO 4 -18) seed crystals prepared aluminophosphate of (AlPO 4 -18) seed crystal was prepared in the same manner as in Example 1.
- a monolithic porous metal oxide was prepared by the following method. First, a sodium hydroxide aqueous solution of about 0.25 mol / liter was poured into the through-holes of a monolithic alumina-silica composite material (no surface layer). Then, after allowing room temperature air to flow through the through holes for 30 minutes and drying, it was left in an oven at 80 ° C. overnight, sodium was placed on the inner wall surface of the through holes, and a monolithic porous metal oxide Formed. The inner wall surface (bonding surface) of the through hole of the monolithic porous metal oxide was alumina-silica containing 0.36% by mass of sodium.
- the metal oxide constituting the porous metal oxide is specifically an alumina-silica composite material, and the mixing ratio of alumina (Al 2 O 3 ) and silica (SiO 2 ) is about 500: 1 (alumina : Silica).
- the monolithic porous metal oxide had 61 through holes.
- the opening diameter of the through hole was 2.14 mm.
- the length of the monolithic porous metal oxide in the direction in which the through holes extend was 140 mm.
- a seeding slurry was prepared by dispersing aluminophosphate seed crystals in water.
- the concentration of the aluminophosphate seed crystal was 0.06% by mass.
- the seeding slurry was poured into the through hole (cell) of the monolithic porous metal oxide, and the seeding slurry was coated on the inner wall surface of the through hole. Thereafter, air at room temperature was allowed to flow through the through hole for 30 minutes under the condition of a wind speed of 2 to 7 m / sec, and the seeding slurry coated on the wall surface in the through hole was dried. The above operation was repeated twice in total to obtain a porous metal oxide having an aluminophosphate seed crystal attached thereto.
- a seeding slurry was prepared by dispersing aluminophosphate seed crystals in water. The concentration of the aluminophosphate seed crystal was 0.1% by mass.
- the seeding slurry was poured into the through hole (cell) of the monolithic porous metal oxide, and the seeding slurry was coated on the inner wall surface of the through hole. Thereafter, air at room temperature was allowed to flow through the through hole for 30 minutes under the condition of a wind speed of 2 to 7 m / sec, and the seeding slurry coated on the wall surface in the through hole was dried. The above operation was repeated twice in total to obtain a porous metal oxide having an aluminophosphate seed crystal attached thereto.
- the aluminophosphate-metal oxide joined body (Examples 1 to 5) in which the “joining promoting substance” such as magnesium is arranged on the joining surface has good separation performance and joining state. Further, it can be seen that the aluminophosphate-metal oxide joined body (Comparative Examples 1 and 2) in which no “joining promoting substance” such as magnesium is arranged on the joining surface has a poor joining state. In addition, if the bonding state is poor, the separation performance naturally decreases.
- the aluminophosphate-metal oxide assembly of the present invention can be suitably used for a separation membrane, a refrigerant adsorption carrier of a heat pump, and the like. Further, the method for producing an aluminophosphate-metal oxide assembly of the present invention can be suitably used for the production of such an aluminophosphate-metal oxide assembly of the present invention.
- partition wall 1: partition wall, 2: through-hole, 3: metal oxide, 4: surface, 5: bonding surface, 6: aluminophosphate, 7: internal space, 8: opening, 9: outer peripheral wall, 11: one end surface 12: the other end face, 100: aluminophosphate-metal oxide joined body.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Ceramic Products (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Nanotechnology (AREA)
Abstract
Description
本発明のアルミノフォスフェート-金属酸化物接合体の一実施形態は、図1、図2に示されるように、表面4の一部に接合面5を有する金属酸化物3と、金属酸化物3の接合面5に配設されたアルミノフォスフェート6とを備えるものである。そして、金属酸化物3の接合面5に、「アルカリ金属、アルカリ土類金属又はこれらの両方」が配置されている。更に、アルカリ金属、アルカリ土類金属又はこれらの両方の含有率が、金属酸化物3の接合面5に配置される物質全体に対して0.3~30.0質量%である。金属酸化物に含有されるアルカリ金属及びアルカリ土類金属のそれぞれの含有率は、以下の方法で測定した値である。まず、アルミノフォスフェートと金属酸化物の接合界面の断面観察が可能な試料を切り出す。そして、金属酸化物の「接合面5から厚み1μmの領域」における3箇所のアルカリ金属、アルカリ土類金属の含有率を、エネルギー分散型X線分析装置付走査型電子顕微鏡(SEM-EDS)にて測定する。そして、得られた3箇所の値を平均して、アルカリ金属、アルカリ土類金属の含有率とする。
本発明のアルミノフォスフェート-金属酸化物接合体の製造方法の一実施形態は、種結晶付着工程と合成工程とを有するものである。そして、金属酸化物の接合面に、アルカリ金属、アルカリ土類金属又はこれらの両方が配置されている。更に、アルカリ金属、アルカリ土類金属又はこれらの両方の含有率が、金属酸化物の接合面に配置される物質全体に対して0.3~30.0質量%である。種結晶付着工程は、アルミノフォスフェート種結晶を含有する種付け用スラリーを、金属酸化物の表面の一部である接合面に塗布する工程である。合成工程は、以下の方法でアルミノフォスフェート-金属酸化物接合体を得る工程である。つまり、まず、種付け用スラリーが塗布された金属酸化物を、アルミニウム源原料、構造規定剤及びりん酸を含有する膜形成用原料溶液に浸漬する。そして、水熱合成し、金属酸化物の接合面にアルミノフォスフェートを配設して、アルミノフォスフェート-金属酸化物接合体を得る工程である。
種結晶付着工程は、アルミノフォスフェート種結晶を含有する種付け用スラリーを、金属酸化物の表面の一部である接合面に塗布する工程である。
合成工程は、以下の方法でアルミノフォスフェート-金属酸化物接合体を得る工程である。まず、種付け用スラリーが塗布された金属酸化物を、アルミニウム源原料、構造規定剤及びりん酸を含有する膜形成用原料溶液に浸漬する。そして、水熱合成し、金属酸化物の接合面にアルミノフォスフェートを配設して、アルミノフォスフェート-金属酸化物接合体を得る工程である。
(1)アルミノフォスフェート(AlPO4-18)種結晶の作製
フッ素樹脂製の100mlの密閉容器に6.15gのアルミニウムトリイソプロポキシド(関東化学社製)を入れた後、40.07gの35%テトラエチルアンモニウム水酸化物(シグマアルドリッチ社製)を加えて、撹拌した。これにより、アルミニウムトリイソプロポキシドを、テトラエチルアンモニウム水酸化物に完全に溶解した。そこに純水を20g加え、更に撹拌した。その後、85%りん酸(シグマアルドリッチ社製)10.98gをスポイトでゆっくりと滴下して加えた。滴下後に、2.80gの純水で、スポイトを共洗いして、共洗い後の液を密閉容器に加えた。その後、約120分間攪拌を続け、透明な原料溶液を得た。テトラエチルアンモニウム水酸化物は構造規定剤である。
モノリス形状の多孔質金属酸化物は、モノリス形状のアルミナ-チタニア複合材料(表面層なし)の貫通孔内に、アルミナ及び塩化マグネシウムを含有するスラリーを流し込み、隔壁で濾過することにより内壁面に固形分を付着させ、焼成することによって得た。焼成された上記「内壁面に付着した固形分」の表面が、「表面層」となる。固形分は、マグネシウム元素を固溶したアルミナを主成分とするものであった。
アルミノフォスフェート種結晶を水(種付け用スラリーの分散媒)に分散させることで種付け用スラリー(種結晶スラリー)を作製した。アルミノフォスフェート種結晶の濃度は0.1質量%とした。
次に、フッ素樹脂製容器に、4.72gのアルミニウムトリイソプロポキシド(関東化学社製)を入れた後、30.71gの35%テトラエチルアンモニウム水酸化物(シグマアルドリッチ社製)を加え、撹拌した。これにより、アルミニウムトリイソプロポキシドをテトラエチルアンモニウム水酸化物に完全に溶解した。そこに純水を43g加え、更に撹拌した。その後、「85%りん酸(シグマアルドリッチ社製)8.41gを、12gの純水で希釈した液」を、スポイトを用いてゆっくりと滴下して加えた。その後、101.17gの純水で、スポイトを共洗いし、共洗い後の液を加えた。その後、約120分間撹拌を続け、透明な膜形成用原料溶液を調製した。
容積300cm3のフッ素樹脂製内筒付きステンレス製耐圧容器内に、種結晶の付着した多孔質金属酸化物を配置し、膜形成用原料溶液を入れ、150℃(合成温度)にて30時間(合成時間)、加熱処理(水熱合成)を行った。これにより、多孔質金属酸化物の貫通孔内の壁面にアルミノフォスフェート(AlPO4-18)膜を接合した。その後、アルミノフォスフェート(AlPO4-18)膜が接合した多孔質金属酸化物を取り出し、48時間、水で洗浄を行った。尚、「アルミノフォスフェート(AlPO4-18)膜が接合した多孔質金属酸化物」は、水洗後に「(6)接合状態確認試験」を行い、「(6)接合状態確認試験」後に「(7)加熱処理」を行った。
水洗後の「アルミノフォスフェート(AlPO4-18)膜が接合した多孔質金属酸化物」について、以下の方法で「接合状態確認試験」を行った。結果を表1に示す。尚、アルミノフォスフェート(AlPO4-18)膜を透過したN2の量は、測定装置の測定下限値以下であった。N2の量を測定する際には、貫通孔内をN2で約200kPaに加圧し、その状態でアルミノフォスフェート膜を透過したN2の流量を、石鹸膜流量計で測定した。測定限界は、10-5(L/(分・m2・kPa))であった。
水洗後の「アルミノフォスフェート(AlPO4-18)膜が接合した多孔質金属酸化物」について、400℃で、10時間、加熱処理を行った。この加熱処理によって、アルミノフォスフェート(AlPO4-18)膜に含有されているテトラエチルアンモニウム水酸化物を燃焼除去し、アルミノフォスフェート-金属酸化物接合体を得た。
得られたアルミノフォスフェート-金属酸化物接合体について、以下の方法で、「透過試験」を行った。「透過試験」において、第一物質を水とし、第二物質をエタノールとした。また、第一物質/第二物質(モル比)は、50/50であった。また、2次側の圧力(所定圧力)を50torrとし、所定温度を70℃とした。結果は、水のみが透過し、水の透過量は1kg/h・m2であった。
アルミノフォスフェート-金属酸化物接合体の貫通孔内を、N2を用いて200kPaで加圧し、N2の2次側(金属酸化物接合体の内部側)への透過量を確認する。そして、N2の透過量から、アルミノフォスフェート膜の未接合部分の面積の、接合面全体に対する比率(未接合部分の比率)を算出する。構造規定剤を含むアルミノフォスフェート膜はN2が透過しないため、膜を形成した後に透過するN2は未接合部分を透過したものである。未接合部分の比率は、アルミノフォスフェート膜を形成する前の金属酸化物を透過するN2の流量に対するアルミノフォスフェート膜を形成した後の「N2の2次側(金属酸化物接合体の内部側)への透過量」の比率とする。未接合部分の比率が小さいほど、接合状態が良好であることを示す。
第一物質と第二物質との混合物を、アルミノフォスフェート膜の2次側(アルミノフォスフェート-金属酸化物接合体の内部側)を所定圧力で減圧しながら、所定温度でアルミノフォスフェート-金属酸化物接合体の貫通孔を通す。そして、2次側に透過した物質を確認し、分離状態(分離性能)を評価する。
(1)アルミノフォスフェート(AlPO4-18)種結晶の作製
アルミノフォスフェート(AlPO4-18)種結晶を、実施例1と同様にして作製した。
実施例1と同様にして、モノリス形状の多孔質金属酸化物を得た。
実施例1と同様にして、アルミノフォスフェート種結晶が貫通孔の内壁面に付着した多孔質金属酸化物を得た。
実施例1と同様にして、膜形成用原料溶液を調製した。
水熱合成(アルミノフォスフェート膜形成)の時間を27時間とした以外は、実施例1と同様にして「水洗後の、アルミノフォスフェート膜が接合した多孔質金属酸化物」を得た。
実施例1と同様にして、水洗後の「アルミノフォスフェート(AlPO4-18)膜が接合した多孔質金属酸化物」について、「接合状態確認試験」を行った。結果を表1に示す。尚、アルミノフォスフェート(AlPO4-18)膜を透過したN2の量は、測定装置の測定下限値以下であった。
実施例1と同様にして、「水洗後の、アルミノフォスフェート膜が接合した多孔質金属酸化物」について、加熱処理を行い、アルミノフォスフェート-金属酸化物接合体を得た。
(1)アルミノフォスフェート(AlPO4-18)種結晶の作製
アルミノフォスフェート(AlPO4-18)種結晶を、実施例1と同様にして作製した。
実施例1と同様にして、モノリス形状の多孔質金属酸化物を得た。
アルミノフォスフェート(AlPO4-18)種結晶をエタノールに分散させることでアルミノフォスフェート種付け用スラリーを作製した。種結晶の濃度は0.23質量%であった。実施例1と同様の操作を行い、アルミノフォスフェート(AlPO4-18)種結晶の付着した多孔質金属酸化物を得た。
実施例1と同様にして、膜形成用原料溶液を調製した。
次に、容積300cm3のフッ素樹脂製内筒付きステンレス製耐圧容器内に、実施例1と同様に種結晶の付着した多孔質金属酸化物を配置し、実施例1の場合と同じ組成の膜形成原料溶液を入れた。そして、150℃(合成温度)にて30時間(合成時間)、加熱処理(水熱合成)を行った。これにより、多孔質金属酸化物の貫通孔(セル)内の壁面にアルミノフォスフェート(AlPO4-18)膜を接合した。その後、アルミノフォスフェート(AlPO4-18)膜が接合した多孔質金属酸化物を取り出し、48時間、水で洗浄を行った。これにより、「水洗後の、アルミノフォスフェート膜が接合した多孔質金属酸化物」を得た。
実施例1と同様にして、水洗後の「アルミノフォスフェート膜が接合した多孔質金属酸化物」について、「接合状態確認試験」を行った。結果を表1に示す。尚、アルミノフォスフェート(AlPO4-18)膜を透過したN2の量は、測定装置の測定下限値以下であった。
実施例1と同様にして、「水洗後の、アルミノフォスフェート膜が接合した多孔質金属酸化物」について、加熱処理を行い、アルミノフォスフェート-金属酸化物接合体を得た。
得られたアルミノフォスフェート-金属酸化物接合体について、上記方法で、「透過試験」を行った。「透過試験」において、第一物質を水とし、第二物質を酢酸とした。また、第一物質/第二物質(質量比)は、10/90であった。また、2次側の圧力(所定圧力)を50torrとし、所定温度を90℃とした。結果は、透過(2次)側には主として水が透過し、水の透過量は0.26kg/(m2・h)、透過液の酢酸濃度は0.027質量%であった。
(1)アルミノフォスフェート(AlPO4-18)種結晶の作製
アルミノフォスフェート(AlPO4-18)種結晶を、実施例1と同様にして作製した。
実施例1と同様にして、モノリス形状の多孔質金属酸化物を得た。
実施例3と同様にして、アルミノフォスフェート(AlPO4-18)種結晶の付着した多孔質金属酸化物を得た。
実施例1と同様にして、膜形成用原料溶液を調製した。
水熱合成(アルミノフォスフェート膜形成)の時間を20時間とした以外は、実施例3と同様にして「水洗後の、アルミノフォスフェート膜が接合した多孔質金属酸化物」を得た。
実施例1と同様にして、「水洗後の、アルミノフォスフェート膜が接合した多孔質金属酸化物」について、「接合状態確認試験」を行った。結果を表1に示す。尚、アルミノフォスフェート(AlPO4-18)膜を透過したN2の量は、測定装置の測定下限値以下であった。
実施例1と同様にして、「水洗後の、アルミノフォスフェート膜が接合した多孔質金属酸化物」について、加熱処理を行い、アルミノフォスフェート-金属酸化物接合体を得た。
得られたアルミノフォスフェート-金属酸化物接合体について、上記方法で、「透過試験」を行った。「透過試験」において、第一物質を二酸化炭素とし、第二物質をメタンとした。また、第一物質/第二物質(質量比)は、50/50であった。また、2次側の圧力(所定圧力)を50torrとし、所定温度を70℃とした。結果は、二酸化炭素流束197(リットル/(分・m2))、α44であった。
(1)アルミノフォスフェート(AlPO4-18)種結晶の作製
アルミノフォスフェート(AlPO4-18)種結晶を、実施例1と同様にして作製した。
モノリス形状の多孔質金属酸化物は、以下の方法で作製した。まず、モノリス形状のアルミナ-シリカ複合材料(表面層なし)の貫通孔内に、約0.25モル/リットルの水酸化ナトリウム水溶液を流し込んだ。そして、貫通孔内に室温の空気を30分間流して乾燥させた後、一晩80℃の乾燥機内に静置し、貫通孔の内壁面にナトリウムを配置して、モノリス形状の多孔質金属酸化物を形成した。モノリス形状の多孔質金属酸化物の貫通孔の内壁面(接合面)は、アルミナ-シリカに0.36質量%のナトリウムが含有されたものであった。多孔質金属酸化物を構成する金属酸化物は、具体的には、アルミナ-シリカ複合材料であり、アルミナ(Al2O3)とシリカ(SiO2)の混合比は、約500:1(アルミナ:シリカ)であった。
実施例1と同様にして、アルミノフォスフェート(AlPO4-18)種結晶の付着した多孔質金属酸化物を得た。
実施例1と同様にして、膜形成用原料溶液を調製した。
水熱合成条件を138℃、30時間とした以外は、実施例1と同様にして「水洗後の、アルミノフォスフェート膜が接合した多孔質金属酸化物」を得た。
実施例1と同様にして、水洗後の「アルミノフォスフェート膜が接合した多孔質金属酸化物」について、「接合状態確認試験」を行った。結果を表1に示す。N2の2次側(金属酸化物接合体の内部側)への透過量は、0.413(リットル/(分・m2・kPa))であった。
実施例1と同様にして、「水洗後の、アルミノフォスフェート膜が接合した多孔質金属酸化物」について、加熱処理を行い、アルミノフォスフェート-金属酸化物接合体を得た。
(1)アルミノフォスフェート(AlPO4-18)種結晶の作製
アルミノフォスフェート(AlPO4-18)種結晶を、実施例1と同様にして作製した。
モノリス形状の多孔質金属酸化物としては、モノリス形状の多孔質金属酸化物の貫通孔の内壁面(接合面)に、マグネシウム等の「接合促進物質」を配置しないものを用いた。多孔質金属酸化物を構成する金属酸化物は、具体的には、アルミナであった。モノリス形状の多孔質金属酸化物は、61本の貫通孔を有するものであった。当該貫通孔の開口径は、2.34mmであった。モノリス形状の多孔質金属酸化物の、貫通孔の延びる方向における長さは、160mmであった。
アルミノフォスフェート種結晶を水に分散させることで種付け用スラリーを作製した。アルミノフォスフェート種結晶の濃度は0.06質量%とした。モノリス形状の多孔質金属酸化物の貫通孔(セル)に、種付け用スラリーを流し込み、貫通孔の内壁面に種付け用スラリーを塗膜した。その後、風速2~7m/秒の条件で、貫通孔内に室温の空気を30分間流し、貫通孔内の壁面に塗膜された種付け用スラリーを乾燥させた。上記操作を合計で2回繰り返し、アルミノフォスフェート種結晶の付着した多孔質金属酸化物を得た。
次に、フッ素樹脂製容器に、5.67gのアルミニウムトリイソプロポキシド(関東化学社製)を入れた後、37.03gの35%テトラエチルアンモニウム水酸化物(シグマアルドリッチ社製)を加え、撹拌した。これにより、アルミニウムトリイソプロポキシドをテトラエチルアンモニウム水酸化物に完全に溶解した。そこに純水を50g加え、更に撹拌した。その後、「85%りん酸(シグマアルドリッチ社製)10.15gを、17gの純水で希釈した液」を、スポイトを用いてゆっくりと滴下して加えた。その後、80.14gの純水で、スポイトを共洗いし、共洗い後の液を加えた。その後、約120分間撹拌を続け、透明な膜形成用原料溶液を調製した。
容積300cm3のフッ素樹脂製内筒付きステンレス製耐圧容器内に、種結晶の付着した多孔質金属酸化物を配置し、膜形成用原料溶液を入れ、150℃(合成温度)にて20時間(合成時間)、加熱処理(水熱合成)を行った。これにより、多孔質金属酸化物の貫通孔内の壁面にアルミノフォスフェート(AlPO4-18)膜を接合した。その後、アルミノフォスフェート(AlPO4-18)膜が接合した多孔質金属酸化物を取り出し、24時間、水で洗浄を行い、「水洗後の、アルミノフォスフェート膜が接合した多孔質金属酸化物」を得た。
実施例1と同様にして、水洗後の「アルミノフォスフェート膜が接合した多孔質金属酸化物」について、「接合状態確認試験」を行った。結果を表1に示す。N2の2次側(金属酸化物接合体の内部側)への透過量は、16.18(リットル/(分・m2・kPa))であった。アルミノフォスフェートを形成する前の金属酸化物を透過するN2の流量が19.54(リットル/(分・m2・kPa))であったため、N2流量全体の約83%が、2次側(金属酸化物接合体の内部側)に、抜けたことになる。これより、未接合部分の面積は、接合面全体の約83%であったことがわかる。
実施例1と同様にして、「水洗後の、アルミノフォスフェート膜が接合した多孔質金属酸化物」について、加熱処理を行い、アルミノフォスフェート-金属酸化物接合体を得た。
(1)アルミノフォスフェート(AlPO4-18)種結晶の作製
アルミノフォスフェート(AlPO4-18)種結晶を、実施例1と同様にして作製した。
モノリス形状の多孔質金属酸化物としては、モノリス形状の多孔質金属酸化物の貫通孔の内壁面(接合面)に、マグネシウム等の「接合促進物質」を配置しないものを用いた。多孔質金属酸化物を構成する金属酸化物は、具体的には、アルミナであった。モノリス形状の多孔質金属酸化物は、61本の貫通孔を有するものであった。当該貫通孔の開口径は、2.14mmであった。モノリス形状の多孔質金属酸化物の、貫通孔の延びる方向における長さは、160mmであった。
アルミノフォスフェート種結晶を水に分散させることで種付け用スラリーを作製した。アルミノフォスフェート種結晶の濃度は0.1質量%とした。モノリス形状の多孔質金属酸化物の貫通孔(セル)に、種付け用スラリーを流し込み、貫通孔の内壁面に種付け用スラリーを塗膜した。その後、風速2~7m/秒の条件で、貫通孔内に室温の空気を30分間流し、貫通孔内の壁面に塗膜された種付け用スラリーを乾燥させた。上記操作を合計で2回繰り返し、アルミノフォスフェート種結晶の付着した多孔質金属酸化物を得た。
次に、フッ素樹脂製容器に、5.68gのアルミニウムトリイソプロポキシド(関東化学社製)を入れた後、37.03gの35%テトラエチルアンモニウム水酸化物(シグマアルドリッチ社製)を加え、撹拌した。これにより、アルミニウムトリイソプロポキシドをテトラエチルアンモニウム水酸化物に完全に溶解した。そこに純水を50g加え、更に撹拌した。その後、「85%りん酸(シグマアルドリッチ社製)10.15gを、17gの純水で希釈した液」を、スポイトを用いてゆっくりと滴下して加えた。その後、80.14gの純水で、スポイトを共洗いし、共洗い後の液を加えた。その後、約120分間撹拌を続け、透明な膜形成用原料溶液を調製した。
容積300cm3のフッ素樹脂製内筒付きステンレス製耐圧容器内に、種結晶の付着した多孔質金属酸化物を配置し、膜形成用原料溶液を入れ、138℃(合成温度)にて35時間(合成時間)、加熱処理(水熱合成)を行った。これにより、多孔質金属酸化物の貫通孔内の壁面にアルミノフォスフェート(AlPO4-18)膜を接合した。その後、アルミノフォスフェート(AlPO4-18)膜が接合した多孔質金属酸化物を取り出し、48時間、水で洗浄を行い、「水洗後の、アルミノフォスフェート膜が接合した多孔質金属酸化物」を得た。
実施例1と同様にして、水洗後の「アルミノフォスフェート膜が接合した多孔質金属酸化物」について、「接合状態確認試験」を行った。結果を表1に示す。N2の2次側(金属酸化物接合体の内部側)への透過量は、21.00(リットル/(分・m2・kPa))であった。アルミノフォスフェートを形成する前の金属酸化物を透過するN2の流量が24.00(リットル/(分・m2・kPa))であったため、N2流量全体の約87%が、2次側(金属酸化物接合体の内部側)に、抜けたことになる。これより、未接合部分の面積は、接合面全体の約87%であったことがわかる。
実施例1と同様にして、「水洗後の、アルミノフォスフェート膜が接合した多孔質金属酸化物」について、加熱処理を行い、アルミノフォスフェート-金属酸化物接合体を得た。
Claims (17)
- 表面の一部に接合面を有する金属酸化物と、前記金属酸化物の前記接合面に配設されたアルミノフォスフェートとを備え、
前記金属酸化物の前記接合面に、アルカリ金属、アルカリ土類金属又はこれらの両方が配置され、
前記アルカリ金属、アルカリ土類金属又はこれらの両方の含有率が、前記金属酸化物の前記接合面に配置される物質全体に対して0.3~30.0質量%であるアルミノフォスフェート-金属酸化物接合体。 - 前記アルカリ金属がナトリウムであり、前記アルカリ土類金属がカルシウム、マグネシウム又はこれらの両方である請求項1に記載のアルミノフォスフェート-金属酸化物接合体。
- 前記アルカリ金属、アルカリ土類金属又はこれらの両方の含有率が、前記金属酸化物の前記接合面に配置される物質全体に対して0.5~20.0質量%である請求項1又は2に記載のアルミノフォスフェート-金属酸化物接合体。
- 前記金属酸化物が、アルミナ、チタニア及びシリカからなる群から選択される少なくとも1種を、合計で70質量%以上含有する請求項1~3のいずれかに記載のアルミノフォスフェート-金属酸化物接合体。
- 前記金属酸化物が、少なくとも1つの内部空間を有する構造体であり、
前記金属酸化物の前記接合面の面積を、前記金属酸化物の空間容積で除した値が100以上である請求項1~4のいずれかに記載のアルミノフォスフェート-金属酸化物接合体。 - 前記金属酸化物の前記内部空間が、前記金属酸化物の表面に少なくとも1つの開口部を有する空間であり、
前記内部空間の、前記内部空間の延びる方向における長さが100mm以上であり、
前記内部空間の前記開口部の直径が、5mm以下である請求項1~5のいずれかに記載のアルミノフォスフェート-金属酸化物接合体。 - 前記内部空間が、両端部に開口部を有する貫通孔であり、
前記金属酸化物が、前記貫通孔を10本以上有するモノリス形状であり、
前記貫通孔の、前記貫通孔の延びる方向に直交する断面の直径が5mm以下である請求項1~6のいずれかに記載のアルミノフォスフェート-金属酸化物接合体。 - 前記アルミノフォスフェートの、前記金属酸化物の表面に対向する面の中で、前記金属酸化物に接合していない面の面積比率が1%以下である請求項1~7のいずれかに記載のアルミノフォスフェート-金属酸化物接合体。
- 前記アルミノフォスフェートの分子構造が、酸素8員環を有する構造である請求項1~8のいずれかに記載のアルミノフォスフェート-金属酸化物接合体。
- 前記アルミノフォスフェートが、AEI構造である請求項1~9のいずれかに記載のアルミノフォスフェート-金属酸化物接合体。
- アルミノフォスフェート種結晶を含有する種付け用スラリーを、金属酸化物の表面の一部である接合面に塗布する種結晶付着工程と、
前記種付け用スラリーが塗布された前記金属酸化物を、アルミニウム源原料、構造規定剤及びりん酸を含有する膜形成用原料溶液に浸漬し、水熱合成し、前記金属酸化物の前記接合面にアルミノフォスフェートを配設して、アルミノフォスフェート-金属酸化物接合体を得る合成工程とを有し、
前記金属酸化物の前記接合面に、アルカリ金属、アルカリ土類金属又はこれらの両方が配置され、
前記アルカリ金属、アルカリ土類金属又はこれらの両方の含有率が、前記金属酸化物の前記接合面に配置される物質全体に対して0.3~30.0質量%であるアルミノフォスフェート-金属酸化物接合体の製造方法。 - 前記種付け用スラリーの、前記アルミノフォスフェート種結晶を分散させる液相が、水、エタノール又はこれらの混合物である請求項11に記載のアルミノフォスフェート-金属酸化物接合体の製造方法。
- 前記種付け用スラリー中の前記アルミノフォスフェート種結晶の濃度が、0.01~1.00質量%である請求項11又は12に記載のアルミノフォスフェート-金属酸化物接合体の製造方法。
- 前記アルミノフォスフェート種結晶が、構造規定剤を含有している請求項11~13のいずれかに記載のアルミノフォスフェート-金属酸化物接合体の製造方法。
- 前記アルミノフォスフェート種結晶の平均粒子径が、80~500nmであり、
前記金属酸化物が多孔質であり、前記金属酸化物の前記接合面に開口する細孔の開口径が、前記アルミノフォスフェート種結晶の平均粒子径の0.3~1.5倍である請求項11~14のいずれかに記載のアルミノフォスフェート-金属酸化物接合体の製造方法。 - 前記水熱合成における温度条件が、130~170℃である請求項11~15のいずれかに記載のアルミノフォスフェート-金属酸化物接合体の製造方法。
- 前記水熱合成の時間が、10~50時間である請求項11~16のいずれかに記載のアルミノフォスフェート-金属酸化物接合体の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015508583A JP6219931B2 (ja) | 2013-03-29 | 2014-03-26 | アルミノフォスフェート−金属酸化物接合体及びその製造方法 |
CN201480019407.7A CN105073687B (zh) | 2013-03-29 | 2014-03-26 | 磷酸铝‑金属氧化物接合体及其制造方法 |
EP14775097.0A EP2980050B1 (en) | 2013-03-29 | 2014-03-26 | Aluminophosphate-metal oxide bonded body and production method for same |
US14/867,127 US11219879B2 (en) | 2013-03-29 | 2015-09-28 | Aluminophosphate-metal oxide bonded body and production method for same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-074511 | 2013-03-29 | ||
JP2013074511 | 2013-03-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/867,127 Continuation US11219879B2 (en) | 2013-03-29 | 2015-09-28 | Aluminophosphate-metal oxide bonded body and production method for same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014157324A1 true WO2014157324A1 (ja) | 2014-10-02 |
Family
ID=51624287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/058512 WO2014157324A1 (ja) | 2013-03-29 | 2014-03-26 | アルミノフォスフェート-金属酸化物接合体及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11219879B2 (ja) |
EP (1) | EP2980050B1 (ja) |
JP (1) | JP6219931B2 (ja) |
CN (1) | CN105073687B (ja) |
WO (1) | WO2014157324A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016080547A1 (ja) * | 2014-11-21 | 2016-05-26 | 三菱化学株式会社 | Aei型ゼオライト、その製造方法及びその用途 |
WO2018180095A1 (ja) * | 2017-03-30 | 2018-10-04 | 日本碍子株式会社 | 分離膜モジュールの検査方法及び分離膜モジュールの製造方法 |
JP2022524472A (ja) * | 2018-10-02 | 2022-05-06 | プレジデント アンド フェローズ オブ ハーバード カレッジ | セラミック間接蒸発冷却システムの疎水性バリア層 |
US11492264B2 (en) | 2018-03-23 | 2022-11-08 | Ngk Insulators, Ltd. | Seed crystals, method of producing seed crystals, method of producing seed crystals attachment support, and method of producing zeolite membrane complex |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5777015A (en) * | 1980-07-07 | 1982-05-14 | Union Carbide Corp | Crystalline metallophosphate composition |
JPH0789714A (ja) * | 1993-09-22 | 1995-04-04 | Ngk Insulators Ltd | ゼオライト膜の製造方法 |
JP2013059714A (ja) * | 2011-09-12 | 2013-04-04 | Waseda Univ | 支持体−ゼオライト膜複合体の製造方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4171288A (en) * | 1977-09-23 | 1979-10-16 | Engelhard Minerals & Chemicals Corporation | Catalyst compositions and the method of manufacturing them |
US4385994A (en) | 1980-07-07 | 1983-05-31 | Union Carbide Corporation | Adsorptive use of crystalline metallophosphate compositions |
US4898660A (en) | 1980-07-07 | 1990-02-06 | Union Carbide Corporation | Catalytic uses of crystalline metallophosphate compositions |
US5001096A (en) * | 1987-12-28 | 1991-03-19 | Mobil Oil Corporation | Metal passivating agents |
US6355093B1 (en) * | 1993-12-08 | 2002-03-12 | Eltron Research, Inc | Two component-three dimensional catalysis |
SE9600970D0 (sv) * | 1996-03-14 | 1996-03-14 | Johan Sterte | Förfarande för framställning av mycket tunna filmer av molekylsiktar |
DE69819989T3 (de) * | 1997-09-17 | 2012-10-04 | China Petrochemical Corp. | Zusammensetzung, die Molekularsiebe vom Pentasil-Typ enthõlt, sowie ihre Herstellung und Verwendung |
US6509290B1 (en) * | 2000-07-17 | 2003-01-21 | Exxon Mobil Chemical Patents, Inc. | Catalyst composition including attrition particles and method for making same |
US6652737B2 (en) * | 2000-07-21 | 2003-11-25 | Exxonmobil Research And Engineering Company | Production of naphtha and light olefins |
CN1199913C (zh) * | 2002-11-21 | 2005-05-04 | 上海交通大学 | 镁合金专用泡沫陶瓷过滤器制备方法 |
JP3837561B2 (ja) * | 2003-10-06 | 2006-10-25 | 国立大学法人岐阜大学 | Afi構造を有する新規アルカリ土類金属アルミノホスフェート及びその前駆体 |
US20070243129A1 (en) * | 2006-03-16 | 2007-10-18 | Bell Valerie A | Exchange cation selection in ETS-4 to control adsorption strength and effective pore diameter |
WO2008078779A1 (ja) * | 2006-12-26 | 2008-07-03 | Nippon Sheet Glass Company, Limited | 多孔質セラミックス物品の製造方法 |
GB0704797D0 (en) * | 2007-03-13 | 2007-04-18 | Phoenix Ipr Ltd | Membrane structures and their production and use |
EP3626329B1 (en) * | 2007-04-26 | 2021-10-27 | Johnson Matthey Public Limited Company | Exhaust system comprising copper/zsm-34 zeolite scr catalyst and method of converting nitrogen oxides |
WO2010116458A1 (ja) * | 2009-03-30 | 2010-10-14 | イビデン株式会社 | ハニカム構造体用シール材、ハニカム構造体、及び、ハニカム構造体の製造方法 |
HUE026104T2 (en) * | 2010-02-01 | 2016-05-30 | Johnson Matthey Plc | Extruded SCR filter |
EP2540384B1 (en) * | 2010-02-25 | 2022-02-16 | NGK Insulators, Ltd. | Process for producing zeolite film |
JP5953674B2 (ja) * | 2010-08-26 | 2016-07-20 | 三菱化学株式会社 | 多孔質支持体―ゼオライト膜複合体およびそれを用いる分離方法 |
US9561477B2 (en) * | 2013-02-28 | 2017-02-07 | Ohio State Innovation Foundation | Methods for synthesizing microporous crystals and microporous crystal membranes |
-
2014
- 2014-03-26 EP EP14775097.0A patent/EP2980050B1/en active Active
- 2014-03-26 WO PCT/JP2014/058512 patent/WO2014157324A1/ja active Application Filing
- 2014-03-26 JP JP2015508583A patent/JP6219931B2/ja active Active
- 2014-03-26 CN CN201480019407.7A patent/CN105073687B/zh active Active
-
2015
- 2015-09-28 US US14/867,127 patent/US11219879B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5777015A (en) * | 1980-07-07 | 1982-05-14 | Union Carbide Corp | Crystalline metallophosphate composition |
JPH0789714A (ja) * | 1993-09-22 | 1995-04-04 | Ngk Insulators Ltd | ゼオライト膜の製造方法 |
JP2013059714A (ja) * | 2011-09-12 | 2013-04-04 | Waseda Univ | 支持体−ゼオライト膜複合体の製造方法 |
Non-Patent Citations (5)
Title |
---|
APPLIED SURFACE SCIENCE, vol. 226, pages 1 - 6 |
GUAN,GUOQING ET AL.: "Characterization of AlPO4-type molecular sieving membranes formed on a porous alpha-alumina tube", JOURNAL OF MEMBRANE SCIENCE, vol. 214, 2003, pages 191 - 198, XP004414825 * |
LINDQUIST,D.A. ET AL.: "SUPPORTED MEMBRANES OF ALUMINUM PHOSPHATE ON POROUS ALUMINA SUBSTRATES", MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, vol. 371, 1995, pages 345 - 350, XP055292235 * |
MARIA L. CARREON; SHIGUANG LI; MOISES A. CARREON, CHEM. COMMUN., vol. 48, 2012, pages 2310 - 2312 |
MASAHIKO MATSUKATA ET AL.: "AlPO4-18 Maku no Gosei Oyobi Toka Bunri Seino no Kento", ABSTRACTS OF ANNUAL MEETING OF THE SOCIETY OF CHEMICAL ENGINEERS, vol. 77 TH, 15 February 2012 (2012-02-15), JAPAN, pages 207 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016080547A1 (ja) * | 2014-11-21 | 2016-05-26 | 三菱化学株式会社 | Aei型ゼオライト、その製造方法及びその用途 |
JP2017081809A (ja) * | 2014-11-21 | 2017-05-18 | 三菱化学株式会社 | Aei型ゼオライト及びその製造方法と用途 |
US10357760B2 (en) | 2014-11-21 | 2019-07-23 | Mitsubishi Chemical Corporation | AEI type zeolite, method for producing same, and uses thereof |
JP2020019703A (ja) * | 2014-11-21 | 2020-02-06 | 三菱ケミカル株式会社 | Aei型ゼオライト及びその用途 |
US11084025B2 (en) | 2014-11-21 | 2021-08-10 | Mitsubishi Chemical Corporation | AEI type zeolite, method for producing same, and uses thereof |
WO2018180095A1 (ja) * | 2017-03-30 | 2018-10-04 | 日本碍子株式会社 | 分離膜モジュールの検査方法及び分離膜モジュールの製造方法 |
DE112018001678T5 (de) | 2017-03-30 | 2019-12-19 | Ngk Insulators, Ltd. | Verfahren zum Prüfen eines Trennmembranmoduls und Verfahren zur Herstellung eines Trennmembranmoduls |
US11872520B2 (en) | 2017-03-30 | 2024-01-16 | Ngk Insulators, Ltd. | Method for inspecting separation membrane module and method for manufacturing separation membrane module |
US11492264B2 (en) | 2018-03-23 | 2022-11-08 | Ngk Insulators, Ltd. | Seed crystals, method of producing seed crystals, method of producing seed crystals attachment support, and method of producing zeolite membrane complex |
JP2022524472A (ja) * | 2018-10-02 | 2022-05-06 | プレジデント アンド フェローズ オブ ハーバード カレッジ | セラミック間接蒸発冷却システムの疎水性バリア層 |
US11890579B2 (en) | 2018-10-02 | 2024-02-06 | President And Fellows Of Harvard College | Hydrophobic barrier layer for ceramic indirect evaporative cooling systems |
JP7492267B2 (ja) | 2018-10-02 | 2024-05-29 | プレジデント アンド フェローズ オブ ハーバード カレッジ | セラミック間接蒸発冷却システムの疎水性バリア層 |
Also Published As
Publication number | Publication date |
---|---|
CN105073687A (zh) | 2015-11-18 |
CN105073687B (zh) | 2017-04-12 |
US20160016146A1 (en) | 2016-01-21 |
JPWO2014157324A1 (ja) | 2017-02-16 |
EP2980050B1 (en) | 2019-10-23 |
EP2980050A4 (en) | 2016-11-30 |
US11219879B2 (en) | 2022-01-11 |
EP2980050A1 (en) | 2016-02-03 |
JP6219931B2 (ja) | 2017-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5690325B2 (ja) | ゼオライト膜、及びゼオライト膜の製造方法 | |
AU2007263408B2 (en) | Ceramic filter | |
JP6008943B2 (ja) | ハニカム形状セラミック多孔質体、その製造方法、及びハニカム形状セラミック分離膜構造体 | |
JP5937569B2 (ja) | ハニカム形状セラミック製分離膜構造体 | |
US9205417B2 (en) | Zeolite membrane regeneration method | |
JP5599777B2 (ja) | Ddr型ゼオライト膜の製造方法 | |
JP6219931B2 (ja) | アルミノフォスフェート−金属酸化物接合体及びその製造方法 | |
US20140291245A1 (en) | Ceramic separation filter and dehydration method | |
JP6301313B2 (ja) | ゼオライト膜の製造方法 | |
WO2013129625A1 (ja) | セラミック分離膜及び脱水方法 | |
JPWO2013146956A1 (ja) | ハニカム形状セラミック多孔質体、その製造方法、及びハニカム形状セラミック分離膜構造体 | |
WO2014156579A1 (ja) | セラミック分離膜構造体、およびその製造方法 | |
WO2018180564A1 (ja) | Afx構造のゼオライト膜、膜構造体、及び膜構造体の製造方法 | |
US10835875B2 (en) | Zeolite membrane having AFX structure, membrane structure, and method for manufacturing membrane structure | |
JP2005262189A (ja) | 分離膜および分離膜の作製方法 | |
CN110446544B (zh) | Afx结构的沸石膜、膜结构体以及膜结构体的制造方法 | |
US11229886B2 (en) | ERI-structure zeolite membrane and membrane structure | |
WO2020111111A1 (ja) | 分離膜の製造方法 | |
WO2016148132A1 (ja) | シリカ膜及び分離膜フィルタ | |
Das | Effect of cellulose buffer layer on synthesis and gas permeation properties of NaA zeolite membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480019407.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14775097 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015508583 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014775097 Country of ref document: EP |