WO2005096399A1 - 窒化物半導体発光素子 - Google Patents

窒化物半導体発光素子 Download PDF

Info

Publication number
WO2005096399A1
WO2005096399A1 PCT/JP2005/006174 JP2005006174W WO2005096399A1 WO 2005096399 A1 WO2005096399 A1 WO 2005096399A1 JP 2005006174 W JP2005006174 W JP 2005006174W WO 2005096399 A1 WO2005096399 A1 WO 2005096399A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
semiconductor layer
layer
region
emitting device
Prior art date
Application number
PCT/JP2005/006174
Other languages
English (en)
French (fr)
Inventor
Takahiko Sakamoto
Yasutaka Hamaguchi
Original Assignee
Nichia Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corporation filed Critical Nichia Corporation
Priority to KR1020067020371A priority Critical patent/KR101119727B1/ko
Priority to EP05721672.3A priority patent/EP1746664B1/en
Priority to JP2006511771A priority patent/JP4320676B2/ja
Publication of WO2005096399A1 publication Critical patent/WO2005096399A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Definitions

  • the present invention relates to a nitride semiconductor light emitting device having a nitride semiconductor represented by a general formula of InAlGa__ (0 ⁇ ⁇ 1, 0 ⁇ y ⁇ 1).
  • the present invention relates to a small nitride semiconductor light emitting device having a large pad electrode area ratio for connection.
  • a general nitride semiconductor light emitting device at least an n-side nitride semiconductor layer and a p-side nitride semiconductor layer are laminated on a substrate such as sapphire, SiC, or GaN, and a p-side to n-side semiconductor is formed. Light emission is obtained by energizing the layer in a directed manner.
  • a p-side pad electrode is formed on the p-side nitride semiconductor layer to connect the brush side of the external power supply by wire bonding or the like, and an n-side pad electrode is connected to the n-side nitride semiconductor layer to connect the negative side. Is formed.
  • an insulating substrate such as a sapphire
  • a part of the p-side nitride semiconductor layer is removed to expose the n-side nitride semiconductor layer, and an n-side pad electrode is formed there.
  • an n-side pad electrode is formed directly on the back surface of the substrate.
  • Patent Document 1 JP-A-6-338632
  • Patent Document 2 JP-A-10-144962
  • the p-side pad electrode and the n-side pad electrode are light-shielding, the p-side pad electrode and the n-side pad electrode are basically excluded.
  • the entire upper surface of the p-side nitride semiconductor layer is a light emitting region.
  • the size of the nitride semiconductor light emitting device is small. As the number of semiconductor devices increases, the area ratio of the p-side pad electrode and n-side pad electrode to the chip increases, and securing external quantum efficiency becomes an important issue.
  • the p-side pad electrode and the n-side nod electrode need to be large enough to enable wire bonding or the like, they have basically a constant size even if the chip size is reduced. Therefore, as the element becomes smaller, the area ratio of light shielding by the P-side pad electrode and the n-side pad electrode becomes larger, and it becomes difficult to efficiently extract light emitted from the semiconductor layer.
  • the present invention provides a nitride semiconductor light emitting device in which a light-transmitting electrode and a p-side pad electrode are formed on a p-side nitride semiconductor layer and light emission is observed through the light-transmitting electrode, so that light can be efficiently extracted. It is an object of the present invention to provide a novel device structure.
  • a P-side pad serving as a starting point of current flow is provided.
  • An in-plane light emission distribution is formed according to factors such as the arrangement of the electrodes and the n-side pad electrode, the shape of the translucent electrode that determines the light-emitting region, and the shape of the p-side nitride semiconductor layer. In particular, at the end portion away from the p-side pad electrode and the n-side pad electrode, the current does not sufficiently flow!
  • the emission intensity at the end of the light emitting region can be improved by reducing the taper angle of the end face of the translucent electrode or the P-side nitride semiconductor layer, and have accomplished the present invention.
  • a nitride semiconductor light emitting device has an n-side nitride semiconductor layer and a p-side nitride semiconductor layer on a substrate, and has a light-transmitting property on the p-side nitride semiconductor layer.
  • An electrode is formed, a p-side pad electrode for connection to an external circuit is formed, and an n-side pad electrode for connection to an external circuit is formed on the n-side nitride semiconductor layer.
  • the translucent electrode and the end face of Z or the P-side nitride semiconductor layer are provided on the end face.
  • the taper angle different depending on the position, the light extraction efficiency at the end can be increased and more uniform light emission can be realized.
  • the end face taper angle of the translucent electrode and the Z- or P-side nitride semiconductor layer becomes smaller at the end where the light emission weakens due to the current flow due to the positional relationship between the p-side pad electrode and the n-side pad electrode. With such control, the light extraction efficiency at the terminal portion can be increased, and the uniformity of light emission can be improved.
  • the decrease in the emission intensity can be suppressed by reducing the end face taper angle of the translucent electrode and the Z or P-side nitride semiconductor layer.
  • Such effects of the present invention become more remarkable as chip miniaturization progresses. That is, as the chip becomes smaller, the ratio of the area of the end face to the area of the light emitting region becomes larger, so that the effect of controlling the taper of the end face becomes more remarkable.
  • the "region with the strongest light emission” or “the region with the weakest light emission” refers to the region where the luminance is the highest in the in-plane luminance distribution of the P-side nitride semiconductor layer of the nitride semiconductor light emitting device. Or the smallest area.
  • the “region where light emission is relatively weak” refers to the light emission intensity distribution in the plane of the p-side nitride semiconductor layer of the nitride semiconductor light-emitting element, and the luminance in that part is the surface of the p-side nitride semiconductor layer. Refers to the area below the average brightness.
  • the "tapered shape” refers to a planar shape whose width gradually becomes narrower toward the front end, and as long as the width gradually decreases, the leading end may have a radius. .
  • “upper” or “upper surface” refers to being on the p-side nitride semiconductor layer side or the surface on the P-side nitride semiconductor layer side
  • “Lower” or “lower surface” refers to being on the n-side nitride semiconductor layer side or a surface on the n-side nitride semiconductor layer side.
  • FIG. 1 is a top view showing a nitride semiconductor light emitting device according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross section taken along line AA ′ of FIG. 1.
  • FIG. 3A is an enlarged top view of a part of the nitride semiconductor light emitting device shown in FIG. 1.
  • FIG. 3B is an enlarged sectional view of a part of the nitride semiconductor light emitting device shown in FIG. 1.
  • FIG. 4A is a schematic view showing the progress of light when the end faces of the translucent electrode and the p-layer are vertical.
  • FIG. 4B is a schematic diagram showing the progress of light when the end faces of the translucent electrode and the p-layer have a taper angle.
  • FIG. 5 is a cross-sectional view showing another modification of FIG. 3B.
  • FIG. 6A is a schematic sectional view showing one step of laser scribe.
  • FIG. 6B is a schematic sectional view showing a step subsequent to FIG. 6A.
  • FIG. 6C is a schematic sectional view showing a step subsequent to FIG. 6B.
  • FIG. 7 is a schematic cross-sectional view showing scribe grooves after laser scribing.
  • FIG. 8A is a schematic diagram showing a cross-sectional shape of a chip after laser scribing.
  • FIG. 8B is a schematic view showing a cross-sectional shape of a chip after blasting.
  • FIG. 8C is a partially enlarged cross-sectional view showing a part A in FIG. 8B.
  • FIG. 9 is a schematic diagram showing the progress of light near the end face of the element when laser scribe is performed.
  • FIG. 10 is a top view showing a nitride semiconductor light emitting device according to Embodiment 3 of the present invention.
  • FIG. 11 is a top view showing a nitride semiconductor light emitting device according to Embodiment 4 of the present invention.
  • FIG. 12 is a top view showing a nitride semiconductor light emitting device according to Embodiment 5 of the present invention.
  • FIG. 13A is a top view showing a nitride semiconductor light emitting device according to Embodiment 6 of the present invention.
  • FIG. 13B shows another example of the nitride semiconductor light emitting device according to the sixth embodiment of the present invention.
  • FIG. 13C is a top view showing another example of the nitride semiconductor light emitting device according to Embodiment 6 of the present invention.
  • FIG. 13D is a top view showing another example of the nitride semiconductor light emitting device according to Embodiment 6 of the present invention.
  • FIG. 13E is a top view showing another example of the nitride semiconductor light emitting device according to Embodiment 6 of the present invention.
  • FIG. 13F is a top view showing another example of the nitride semiconductor light emitting device according to Embodiment 6 of the present invention.
  • FIG. 14A is a top view showing a nitride semiconductor light emitting device according to Embodiment 7 of the present invention.
  • FIG. 14B is a sectional view showing a nitride semiconductor light emitting device according to Embodiment 7 of the present invention.
  • FIG. 15A is a top view showing a nitride semiconductor light emitting device according to Embodiment 8 of the present invention.
  • FIG. 15B is a sectional view showing a nitride semiconductor light emitting device according to Embodiment 8 of the present invention.
  • FIG. 16 is a sectional view showing a nitride semiconductor light emitting device according to a ninth embodiment of the present invention.
  • FIG. 1 is a top view showing a nitride semiconductor light emitting device according to Embodiment 1 of the present invention
  • FIG. 2 is a sectional view thereof.
  • a nitride semiconductor light-emitting device 1 includes an n-side nitride semiconductor layer 4, an active layer 6, and a p-side nitride semiconductor layer on a substrate 2, such as sapphire, SiC, Si, or GaN. 8 are sequentially formed and have a double hetero structure.
  • a translucent electrode 10 made of ITO or a metal thin film is formed on almost the entire surface of the p-side nitride semiconductor layer 8, and a p-side pad electrode 14 for connecting to an external circuit by wire bonding or the like is formed thereon. Has been established.
  • the p-side nitride semiconductor layer 8, the active layer 6 and the upper portion 4 ′′ of the n-side nitride semiconductor layer are removed, and the n-side nitride semiconductor layer The surface of the lower portion 4 'is exposed.
  • the p-side nitride semiconductor layer 8, the active layer 6, and the n-side nitride semiconductor layer 4 "are collectively referred to as a p-side layer 9 for convenience of description.
  • the lower portion of the n-side nitride semiconductor layer may be referred to as an n-side layer 4 '.
  • the n-side pad electrode 12 is formed on the exposed surface of the n-side layer 4 '.
  • the entire upper surface of the nitride semiconductor light emitting device 1 is covered with an insulating film 16 such as SiO.
  • the insulating film 16 is provided with openings 16a and 16b so as to expose part of the n-side pad electrode 12 and the p-side nod electrode 14.
  • the current injected from the p-side pad electrode 14 is applied to almost the entire surface of the p-side nitride semiconductor layer 8 by the translucent electrode 10. It spreads and flows to the n-side pad electrode 12 through the active layer 6 and the n-side nitride semiconductor layer 4. As a result, light emission occurs in the active layer 6, and light is extracted from the upper surface of the substrate through the translucent electrode 10. Since the light generated in the active layer 6 propagates in the lateral direction, the entire surface of the p-side nitride semiconductor layer 8 (that is, the entire surface of the p-side layer 9) becomes a light emitting region when viewed from the upper surface of the substrate.
  • FIG. 1 shows the nitride semiconductor light emitting device 1 when viewed also from above.
  • the p-side layer 9 is formed in a substantially rectangular island shape having a notch in a half arc on one side.
  • a translucent electrode 10 is formed on the surface.
  • a p-side pad electrode 14 is arranged at a position on the left side of the center of the translucent electrode 10.
  • the n-side pad electrode is disposed on the n-side layer 4 ′ and along the cutout on the arc of the p-side layer 9.
  • the light emission intensity at the end portion where the force and the current path force are separated from the p-side pad electrode 14 and the n-side pad electrode 12 is apt to decrease.
  • the light emission intensity at the end portion where the force and the current path force are separated from the p-side pad electrode 14 and the n-side pad electrode 12 is apt to decrease.
  • FIG. 1 assuming a center line 18 connecting the center of the p-side pad electrode 14 and the center of the n-side pad electrode and a tangent line 20 of the n-side pad electrode 12 orthogonal to the center line 18,
  • the light emission intensity tends to decrease in a region farther from the P-side pad electrode 14 than the tangent line 20. Therefore, in the present embodiment, a decrease in emission intensity is suppressed by reducing the end face taper angle of the p-side layer 9a and the translucent electrode 10a in this region.
  • the end face taper angle can be controlled by the mask etching conditions (pattern cross-sectional shape, mask material, selection of etching gas, etc.) during pattern etching.
  • the p-side The taper angle of the end face is controlled by forming the terminal end portion of the layer 9 or the translucent electrode 10 into a tapered flat shape, that is, a flat shape having a V at the tip, and a width gradually decreasing in accordance with the V.
  • 3A and 3B are a plan view and a cross-sectional view schematically showing the shapes of the translucent electrode 10a and the p-side layer 9a in the above-described region.
  • the p-side layer 9a has a planar shape in which the width W gradually decreases toward the tip,
  • the translucent electrode 10a also has a similar shape.
  • the taper angle of the end face is reduced by the following two effects. First, in normal pattern etching, etching proceeds in a direction perpendicular to the pattern edge. On the other hand, when the p-side layer has a tapered shape, as shown in FIG.3A, etching proceeds on both sides sandwiching the terminal end of the tapered shape, so that the etched end face tends to be tapered. Become.
  • This mask is also thinned at a certain speed by etching. Since the mask also has a tapered shape in the portion where the p-side layer is tapered, the mask is particularly easily thinned at such a tapered tip. Therefore, the tapered portion is more likely to be tapered.
  • This principle is exactly the same when the translucent electrode 10a is tapered.
  • the end portion of the tapered shape is approximated by a triangle, the end portion is sandwiched.
  • the angle formed between both sides is at least less than 90 degrees, more preferably 45 degrees or less, and further preferably 30 degrees or less.
  • the ratio of WZL may be considered, where W is the width of the terminal end and L is the distance from the virtual tangent 20 to the end of the terminal end.
  • L is a fixed value (for example, 10 m) and WZL is used as an index.
  • WZL is 1.8 or less, more preferably 1.4 or less.
  • the taper angle (X becomes relatively small.
  • FIG. 4A shows a case where the end faces of the p-side layer 9 and the translucent electrode 10 are substantially perpendicular to each other as usual
  • FIG. 4B shows a case where the taper angle of the end face is reduced.
  • the light refractive index of the nitride semiconductor layer is larger than that of the substrate or the translucent electrode 10
  • multiple reflection easily occurs in the nitride semiconductor layer.
  • FIG.4A when the end face 7 of the P-side layer 9 is substantially vertical, the light that has propagated in the lateral direction while making multiple reflections at the incident angle at which total internal reflection occurs is applied to the end face 7 at a relatively large incident angle. To reach. Therefore, the light that reaches the end face 7 is reflected at a high rate and returns to the semiconductor layer.
  • the end face 7 and the substrate plane are orthogonal to each other, the light reflected by the end face 7 returns to the semiconductor layer at the same angle again, and repeats multiple reflection while performing total reflection. Since the semiconductor layer has a high light absorptance, light is attenuated during repeated multiple reflections. Furthermore, the light emitted from the end face 7 without being reflected is also emitted in the horizontal direction, so that the contribution to the emission observation is relatively small. against this However, as shown in FIG. 4B, when the end face 7 of the p-side layer has a small taper angle, the light that has propagated in the lateral direction while undergoing multiple reflections at the angle of incidence at which total reflection occurs is relatively small on the end face 7.
  • the light Since the light arrives at a small angle of incidence, it is transmitted at a high rate and extracted to the outside. At this time, the extracted light has many directional components above the substrate, and thus effectively contributes to the observed emission intensity.
  • the light reflected by the end face 7 also has a small incident angle with respect to the plane of the substrate when reflected, so that the upper or lower surface of the substrate is effectively extracted to the outside.
  • the p-side layer 9 includes a p-side nitride semiconductor layer 8, an active layer 6, and an n-side nitride semiconductor layer 4 ′′. If the taper angle of the end face of the p-side layer 9 (or the p-side nitride semiconductor layer 8 and the active layer 6) is controlled to be small, the same principle as described above is established.
  • the same effect can be obtained even if the end face taper angle of the light-transmitting electrode 10 is reduced, that is, since the refractive index of the light-transmitting electrode 10 is larger than that of the air layer outside thereof.
  • An optical waveguide in which the light-transmitting electrode 10 and the semiconductor layer are integrated is also formed.When light propagating laterally through this optical waveguide reaches the end face of the light-transmitting electrode 10, the same phenomenon as described above occurs. Therefore, by reducing the taper angle of the end face of the translucent electrode 10, the luminous intensity at that portion is reduced. It can be improved.
  • the end face taper angle of the translucent electrode and the p-side nitride semiconductor layer is preferably at least 70 degrees or less, more preferably 60 degrees or less, and further preferably 50 degrees or less.
  • the end face of the translucent electrode or the p-side layer 9 is tapered to control the end face taper angle, and when the tapered end is approximated by a triangle, the angle between both sides sandwiching the end ( Alternatively, the smaller the above-mentioned WZL), the smaller the taper angle.
  • the taper angle can also be controlled by adjusting the etching conditions.
  • the taper angle the smaller the taper angle of the p-side nitride semiconductor layer (for example, 1.5 m (When etching the nitride semiconductor layer at a depth, if an inclination angle of about 30 ° is provided on the end face of the etching mask, the end face of the nitride semiconductor layer will have an inclination angle of about 45 °.)
  • the table also depends on the etching rate when etching the P-side nitride semiconductor layer 8. Since the angle changes, the taper angle can be controlled by appropriately selecting the etching rate according to the tendency confirmed experimentally.
  • the end face taper angle of the translucent electrode 10 and the p-side nitride semiconductor layer 8 is preferably 70 ° or more.
  • the taper angle of the end face 11 of the translucent electrode 10 is an obtuse angle exceeding 90 ° in the region where the intensity of light emission is relatively high.
  • the end face 11 of the translucent electrode 10 has an inverse taper.
  • the “reverse taper” refers to a case where the end face 11 of the translucent electrode 10 is inclined inwardly from the upper surface to the lower surface. If the taper angle of the end face 11 of the translucent electrode 10 is set to an obtuse angle in the region where the light emission is relatively strong, the concentration of light emission on the end face can be relaxed and the uniformity of light emission can be improved. .
  • the light-emitting element satisfies the relationship of X ⁇ 2R, where R is the maximum width of the n-side pad electrode 12 in the lateral direction of the substrate.
  • the effect of controlling the end face taper angle is also remarkable in an element in which the ratio of the total area of the p-side pad electrode 14 and the n-side pad electrode 12 to the area of the element is 0.2 or more.
  • a center line 18 connecting the p-side pad electrode 14 and the n-side pad electrode 12 and a tangent line 20 (p-side pad) of the n-side pad electrode 12 orthogonal to the center line 18 are provided.
  • the tangent line closer to the electrode 14 is the same as in other embodiments.
  • the tapered end portions 9a and 10a are formed in a region farther from the p-side pad electrode 14 than the tangent line 20. Is also advantageous from the viewpoint of electrode layout accompanying chip miniaturization.
  • the area of the p-side pad electrode 14 and the n-side pad electrode 12 shown on the entire chip Since the ratio increases, the area where the p-side layer 9 (and the translucent electrode 10), which is the light emitting area, can be formed becomes narrower.
  • the P-side pad electrode 14 and the n-side pad electrode 12 need to have a certain size (for example, a diameter of about 70 m) according to the thickness of the wire.
  • a certain size for example, a diameter of about 70 m
  • the P-side pad electrode 14 and n-side pad electrode The area ratio of 12 becomes considerably higher.
  • the p-side layer 9 and the translucent electrode 10 need to be formed so as to avoid at least the n-side pad electrode 12, and the chip outer peripheral force needs to be formed to some extent.
  • the clearance between the n-side pad electrode 12 and the outer periphery of the chip is narrow, and an attempt to extend the p-side layer in such a region results in an elongated shape.
  • the region sandwiched between the n-side pad electrode and the outer periphery of the chip deviates from the p-side pad electrode force and the current path force toward the n-side pad electrode. That tendency becomes stronger.
  • the p-side layer 9 can be spread over such a narrow region, and at the same time, a decrease in the light emission intensity at that portion can be suppressed.
  • the method is the same as the method for manufacturing a general nitride semiconductor light emitting device.
  • necessary parts will be described with reference to specific compositions and film thicknesses, but are not limited thereto.
  • the following example assumes that the nitride semiconductor layer is etched by 1.5 m to expose the n-side nitride semiconductor layer.
  • an n-side nitride semiconductor layer 4, an active layer 6, and a p-side nitride semiconductor layer 8 are stacked on a substrate (wafer) 2.
  • a mask is formed over the semiconductor layer.
  • photo resist SiO or the like is used as a material of the mask. If SiO is used as a mask, the photoresist using resist
  • the SiO mask is patterned into a predetermined shape by lithography. And using a mask
  • the p-side nitride semiconductor layer 8, the active layer 6, and a part 4 ′′ of the n-side nitride semiconductor layer are removed by reactive ion etching (RIE) to expose the surface of the n-side nitride semiconductor layer 4.
  • RIE reactive ion etching
  • P-side layer 9 (p-side nitride semiconductor layer 8, active layer 6, n-side nitride semiconductor layer 4 ") Is controlled.
  • the taper angle at the end face of the p-side layer 9 may be controlled by reducing the end face taper angle of the mask itself. For example, even in a normal part that is not tapered, if a taper angle of about 30 ° is provided on the end face of the SiO
  • the end face of the semiconductor layer has a taper angle of about 45 °.
  • the resist end surface taper angle can be controlled by the temperature during sintering and the developing time. That is, when the temperature at the time of resist sintering is increased and the development time is lengthened, the taper angle of the resist tends to decrease.
  • the translucent electrode 10 is formed, and the translucent electrode 10 itself is
  • Materials for the translucent electrode include nickel (Ni), platinum (Pt), palladium (Pd), rhodium (R h), noredium (Ru), osmium (Os), iridium (Ir), and titanium (Ti ), Zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), cobalt (Co), iron (Fe), manganese (Mn), molybdenum (Mo), chromium (Cr ), Tungsten (W), lanthanum (La), copper (Cu), silver (Ag), and yttrium (Y). And their compounds.
  • the compounds include conductive oxides and nitrides.
  • the conductive metal oxide oxide semiconductor
  • examples of the conductive metal oxide (oxide semiconductor) include a conductive oxide film containing at least one element selected from the group consisting of zinc, indium, tin, and magnesium.
  • ITO Indium Tin Oxide
  • a shape having an opening such as a rectangular lattice or a stripe may be employed.
  • n-side pad electrode 12 can be used for the n-side pad electrode 12, and an appropriate configuration may be selected in consideration of items such as ohmic properties, adhesion, prevention of impurity diffusion, and adhesion to wires.
  • a first layer having excellent force such as W, Mo, Ti, etc. having excellent ohmic contact and adhesion to the n-type semiconductor layer, and gold, Al
  • a second layer for a node that also has a platinum group strength may be laminated.
  • TiZAu, TiZAl, and the like may be laminated.
  • a three-layer structure in which a high melting point metal layer (W, Mo, platinum group) is provided as a barrier layer between the first layer for the ohmic layer and the second layer for the pad.
  • W high melting point metal layer
  • Mo platinum group
  • Rh which has excellent reflectivity and barrier properties, as a barrier layer because light extraction efficiency is improved.
  • a conductive oxide such as ITO, a metal of a platinum group element, RhZlr, PtZPd, and the like are preferably used in this order from the semiconductor layer side.
  • the p-side pad electrode further includes an extended conductive portion. This allows the entire active layer to emit light efficiently, and is particularly effective when the semiconductor light emitting device of the present invention is provided by face-up mounting. Further, the p-side pad electrode may be formed on the translucent electrode or may be formed so as to be in contact with the p-side nitride semiconductor layer through an opening provided in the translucent electrode.
  • Specific examples of the semiconductor laminated structure constituting the nitride semiconductor light emitting device according to the present invention are not particularly limited, and include, for example, the following laminated structures (1) to (5).
  • the following (1) to (5) are all formed on a growth substrate, and the growth substrate is preferably a sapphire.
  • n- type contact layer made of Si-doped ⁇ -type GaN having a thickness of 4 ⁇ m and an undoped InGaN film having a thickness of 30 A
  • An n-side first multilayer film layer (total thickness: 3350 A) consisting of an intermediate layer that also has a GaN force of 5 ⁇ 10 18 / cm 3 and an upper layer that is made of undoped GaN at 50 A,
  • the undoped GaN nitride semiconductor layer is composed of 40 A and undoped InGaN.
  • InGaN well layers are alternately and alternately stacked in layers of 6
  • the undoped GaN nitride semiconductor layer is composed of 40 A and undoped InGaN.
  • An active layer with a multiple quantum well structure (total thickness of 1930 A) formed by alternately stacking six layers of second barrier layers that also have undoped GaN power with a thickness of 150 A (total thickness of 1930 A). Layers to 6 layers are preferred),
  • a p-side contact layer that also has a GaN force containing 1200 A of Mg at l ⁇ 10 2 ° / cm 3 .
  • the lower layer made of undoped GaN of 3000 A provided on the n side is made up of a first layer made of undoped GaN of 1500 A from the bottom, and a second layer made of GaN containing 5 ⁇ 10 17 / cm 3 of 100 A of Si from the bottom.
  • (4) (a) buffer layer, (b) undoped GaN layer, (c) n-side contact layer made of GaN containing 6.OX10 18 Zcm 3 of Si, (d) undoped GaN layer (E) N-type nitride semiconductor layer with a thickness of 6 nm), (e) a multiple quantum well layer in which five layers are alternately stacked by repeating a GaN barrier layer containing 2.0 ⁇ 10 18 Zcm 3 of Si and an InGaN well layer. (F) A p-type nitride semiconductor layer having a thickness of 1300 A and a GaN force of 5.0 X 10 18 Zcm 3 containing Mg.
  • an InGaN layer having a thickness of 50 A may be provided between the translucent electrode and the p-type nitride semiconductor layer.
  • an InGaN layer having a thickness of 30 to L00A and a preferable thickness of 50 A is provided in this manner, this layer comes into contact with the positive electrode and can be a p-side contact layer.
  • the semiconductor light emitting device of the present invention may have a light conversion member that converts a part of the light emitted from the light emitting device into light having a different wavelength.
  • a light-emitting device in which light from the light-emitting element is converted can be obtained, and a light-emitting device such as a white light-bulb or a light bulb can be obtained by using mixed light of light emitted from the light-emitting element and converted light.
  • the light conversion member includes at least one element selected from Y, Lu, Sc, La, Gd, Tb, Eu, and Sm containing A1, and one element selected from Ga and In. And an aluminum garnet-based phosphor containing at least one element selected from rare earth elements. This makes it possible to obtain a light emitting device having excellent temperature characteristics and excellent durability even when the light emitting element is used with high output and high heat generation.
  • the light conversion member is (Re Rx) (Al Ga) O (0 x x 1, 0 ⁇ y ⁇ 1, where Re is Y, l-x 3 1-y y 5 12
  • Gd, La, Lu, Tb, and Sm are at least one element selected from the group consisting of R, and R is Ce or Ce and Pr).
  • the light conversion member includes N, and at least one element selected from Be, Mg, Ca, Sr, Ba, and Zn, and C, Si, Ge, Sn, Ti, Zr, and Hf.
  • the nitride-based phosphor may include at least one selected element and be activated by at least one element selected from rare earth elements.
  • Laser scribing is a method of forming a separation groove by a laser beam. After forming the separation groove by laser scribing, the substrate can be divided into element units by normal breaking. When laser scribe is used, a deep isolation groove can be formed with a narrower width than conventional dicing or the like. Therefore, the area occupied by the split lanes in the substrate can be reduced to increase the number of elements that can be obtained. Further, by making the separation groove deeper, it is possible to suppress the occurrence of defects during braking. For this reason, the division method using a laser scribe is particularly suitable for dividing small elements.
  • a laser scribe is used for dividing the nitride semiconductor light emitting device described in the first embodiment.
  • 6A to 6C are cross-sectional views schematically showing a method of dividing a substrate by laser scribing.
  • electrodes and protective films are omitted for simplification of the drawings.
  • the substrate 2 on which the elements have been formed is fixed to the adhesive sheet 40 with the semiconductor layer 9 facing downward. Then, after the substrate 2 is polished and thinned (for example, a substrate of 450 ⁇ m is polished to 85 ⁇ m), the back surface of the substrate 2 is also irradiated with the laser beam 42 along the divided lanes of the element.
  • the laser beam 42 for example, a 355 nm YAG laser can be used.
  • the beam diameter of the laser beam 42 is, eg, 3 to 8111.
  • a substantially V-shaped groove 50 is formed in the substrate 2 by the irradiation of the laser beam 42. Inside the groove 50, a re-solidified material 52 of the substrate material melted by the laser beam 42 adheres.
  • An enlarged view of the V-shaped groove 50 is shown in FIG.
  • the ratio WZD between the width W and the depth D of the V-shaped groove 50 is preferably 0.5 or less, more preferably 0.3 or less.
  • the depth D of the V-shaped groove reaches 40 to 60% of the thickness of the substrate 2.
  • typical Typical V-shaped groove 50 has a width W of about 8 to 15 ⁇ m and a depth D of 40 to 60 ⁇ m.
  • Such a V-shaped groove 50 has a sufficient depth as a separation groove of the substrate 2 which is thinned to, for example, about 85 ⁇ m.
  • the substrate 2 is divided into chips using an appropriate technique such as roller braking. Since the V-shaped groove 50 formed by the laser scribe is sufficiently deep, it is possible to suppress the occurrence of defects at the time of cutting such as chipping or cracking. Further, since the separation groove 50 formed by the laser scribe is narrow, the width of the divided lane can be reduced to increase the number of elements to be obtained. In addition, most of the re-melted solidified material 52 falls off during braking.
  • FIG. 8A is a schematic cross-sectional view showing a shape of a side surface of a nitride semiconductor formed by laser scribe and breaking.
  • the side surface of the nitride semiconductor light emitting device divided by the above method is divided into a semiconductor layer side region 2a formed by breaking and a back surface side region 2b formed by laser scribe. It is divided vertically.
  • the semiconductor layer side region 2a formed by breaking is substantially perpendicular to the main surface of the substrate, whereas the back surface side region 2b formed by laser scribing has a diagonal surface force orthogonal to the main surface of the substrate. It is inclined.
  • the cross-sectional shape of the nitride semiconductor light-emitting element has a substantially trapezoidal shape on the back half of the substrate.
  • the rear surface region 2b on the side surface of the substrate has its surface changed in quality as a result of being melted by the laser beam, the surface roughness increases, and the vicinity of the surface is discolored. Since the altered rear surface side region 2b is present on all four sides of the rectangular nitride semiconductor light emitting device, if it is used as it is, the light extraction efficiency is reduced. That is, the light emitted from the side surface of the substrate 2 is partially absorbed by the altered region 2b on the side surface. In addition, since the substrate 2 forms a light waveguide, light that is multiply reflected in the substrate 2 is partially absorbed by the altered region 2b.
  • blast processing is also performed in which the back surface side force of the substrate 2 also sprays abrasive grains, and the altered portion formed in the back surface side region 2b on the side surface of the substrate 2 is removed as much as possible.
  • the blasting can be performed using, for example, alumina cannonball.
  • the substrate 2 has a rounded back surface region 2b on the side surface of the substrate, as shown in FIG. 8B.
  • the surface roughness of the rear surface side region 2b on the side surface of the substrate is reduced to some extent by the blasting.
  • the end 2c on the back surface of the substrate has a rounded corner shape as shown in FIG. 8C.
  • the surface roughness in the back surface side region 2b on the side surface of the substrate also reflects the degree of removal of the deteriorated layer.
  • the blast processing may be performed before the breaking of the substrate 2 shown in FIG. 6C or may be performed after the breaking. If performed before the breaking, the breaking can be performed after the re-solidified material 52 deposited in the separation groove 50 of the substrate 2 is removed. Therefore, it is possible to prevent a problem that occurs when the re-solidified material 52 scatters and adheres to the element during braking. On the other hand, if blasting is performed after the breaking step shown in FIG. 6C, blasting can be performed in a state where the distance between the elements is widened by expanding the adhesive layer 40. Therefore, the altered layer formed on the back surface region 2b on the side surface of the substrate can be removed more efficiently. Blasting can also be performed using larger cannonballs.
  • the diameter of the abrasive grains is preferably 10 / zm or more, more preferably 40 m or more.
  • the yield that the substrate is less likely to be cracked and the like is improved as compared with the case where the blasting is performed before the breaking.
  • the surface roughness of the rear surface region 2b on the side surface of the substrate need only be the same as that of the other surface (except for the back surface of the substrate if it can be removed if the deteriorated layer that absorbs light can be removed by blasting). Even after blasting, the surface roughness of the rear surface region 2b on the side surface of the substrate is larger than that of the rear surface of the substrate (for example, 1.5 times or more).
  • FIG. 9 is a cross-sectional view schematically showing an element peripheral portion of an element divided by using a laser scribe. As described above, as a result of the V-shaped separation groove being formed by laser scribing, the rear surface side region 2b of the substrate side surface becomes an inclined surface. As shown in Fig.
  • the light traveling at an angle that makes total internal reflection in the substrate changes its reflection angle in the inclined rear surface side region 2b, so that the substrate force is also taken outside. It becomes easy to be issued. In addition, most of them go to the upper side of the element. Therefore, as compared with the case where the side surface of the substrate 2 is an orthogonal surface, the light extraction efficiency can be increased, and the emission intensity in the peripheral portion of the element can be improved.
  • the inclined surface formed on the side surface of the substrate 2 has an inclination such that the cross-sectional area of the substrate in a cross section parallel to the main surface of the substrate gradually decreases toward the back surface of the substrate.
  • FIG. 10 is a top view showing a nitride semiconductor light emitting device according to Embodiment 2 of the present invention. This is the same as Embodiment 1 except for the points described below.
  • the n-side pad electrode 12 is formed at a position near the corner of the chip, and the p-side layer 9 extends along one side surface of the n-side pad electrode 12.
  • the above-mentioned p-type layer 9 The extension portion of this is located farther from the p-pad electrode 14 than the virtual tangent 20. Therefore, the emission intensity of the extending portion of the p-type layer 9 tends to be low, and the emission intensity is particularly remarkable in the tip region 22 thereof.
  • a tapered end portion 9a is provided in the tip region 22 of the extending portion of the p-type layer 9.
  • the translucent electrode 10 also has a tapered end portion 1 Oa at a similar position. Also in the present embodiment, since the end face taper angle is small at the tapered end portion provided on the p-side layer 9 and the translucent electrode 10, the light extraction efficiency of the front end region 22 where the emission intensity tends to decrease is reduced. As a result, the luminous efficiency of the entire device is improved, and uniform light emission can be realized over the entire surface.
  • FIG. 11 is a top view showing a nitride semiconductor light emitting device according to Embodiment 3 of the present invention. This is the same as Embodiment 1 except for the points described below.
  • the nitride semiconductor light emitting device has a parallelogram chip shape as shown in FIG.
  • the chip corner on one diagonal is obtuse, and the chip corner on the other diagonal is acute.
  • a region where the current path force connecting the p-side pad electrode 14 and the n-pad electrode 12 with a straight line is also far apart basically has a tendency for the current density to decrease and the light emission intensity to decrease. Since the corners 23 and 26 have an acute chip shape, if the p-side layer 9 is etched along the chip, a tapered end portion is formed in the p-side layer 9. Further, since the translucent electrode 10 also has a similar shape to the p-side layer 9, the translucent electrode 10 also has a tapered end portion. Therefore, in the chip corners 23 and 26 where the light emission intensity tends to decrease, the taper angle of the end face can be reduced, and the light extraction efficiency can be increased.
  • the p-side layer 9 extends along both side surfaces of the n-side pad electrode 12.
  • the position is also a position where the force of the p pad electrode 14 is farther than the virtual tangent 20. Therefore, in the present embodiment, the p-side layer 9 is formed not only with the region 23 close to the corner of the chip but also with the region 25 opposite thereto, and has a tapered end portion.
  • the light emission intensity is apt to decrease! In the region, the end face taper angle is reduced to increase the light extraction efficiency, the light emission efficiency of the entire device is improved, and the entire surface is uniform. Light emission can be realized.
  • FIG. 12 is a top view showing a nitride semiconductor light emitting device according to Embodiment 4 of the present invention. This is the same as Embodiment 3 except for the points described below.
  • the p-side layer 9 is extended from a region 23 close to one corner of the chip toward the n-side pad electrode 12, and a tapered end portion is formed in a region 24 at the tip thereof. Is provided. By doing so, the area for forming the translucent electrode 10 can be increased, and more uniform light emission can be realized, while increasing the light extraction efficiency at the end portion where the light emission intensity tends to decrease.
  • the p-side layer 9 and the light-transmitting electrode 10 have the same planar shape as before, and the p-side layer 9 and the light-transmitting electrode The end face taper angle of the conductive electrode 10 is controlled to be small.
  • 13A to 13F are top views showing variations of the shape of the nitride semiconductor light emitting device according to the present embodiment.
  • the area where the light emission is relatively weak is the force that changes depending on the arrangement of the n-side pad electrode and the p-side pad electrode and the resistance of the translucent electrode.
  • the luminous intensity tends to decrease as the distance from the current path connected by the increases. In other words, basically, the light emission intensity tends to be lower at a position farther from the p-side pad electrode, and in particular, the light emission intensity at a position farther from the n-side pad electrode tends to be lower.
  • n-side pad electrode 12 and p-side pad electrode 14 are arranged at two diagonal corners of a rectangular chip.
  • the corner regions 28 and 29 where the n-side pad electrode 12 and the p-side pad electrode 14 are not formed emit light relatively weakly. Therefore, the end face taper angles of the translucent electrode 10 and the Z or P-side layer 9 in these regions are relatively reduced.
  • the position of the p-side pad electrode 14 has moved to the approximate center of the side along one side of the chip from the example shown in FIG. 13A. Therefore, the corner region 28 closer to the p-side pad electrode 14 emits light more intensely than the corner region 29 on the diagonal line.
  • the taper angles of the end faces of the translucent electrode 10 and the Z or P-side layer 9 in the corner region 29 are made smaller than those in the corner region 28.
  • Other points are the same as the example in FIG. 13A. is there.
  • the n-side pad electrode 12 and the P-side pad electrode 14 are arranged at both corners along one side of the rectangular chip. In this case, light emission in regions 30 and 31 near both corners of the side opposite to the side where the pad electrode is arranged tends to be weak. Therefore, the end face taper angles of the translucent electrode 10 and the Z or P-side layer 9 in these regions are made relatively small.
  • a p-side pad electrode 14 and an n-side pad electrode 12 are formed substantially at the center of two opposing sides.
  • the corner regions 32 and 33 on both sides of the n-side pad electrode 12 emit light relatively weakly. Therefore, the end face taper angles of the translucent electrode 10 and the Z or P-side layer 9 in these regions are relatively reduced.
  • the example shown in FIG. 13E is the same as the example shown in FIG. 13D except for the shape of the p-side pad electrode 14.
  • An extended conductive portion a extends from both sides of the p-side pad electrode 14 toward the regions 32 and 33. The current density in the corner regions 32 and 33 can be improved by the extended conductive portion 14a.
  • the synergistic effect of the effect of improving the current density by the extended conductive portion 14a and the effect of improving the light extraction efficiency by controlling the taper angle can further suppress the decrease in the light emission intensity in the regions 32 and 33.
  • the example shown in FIG. 13F is the same as the example shown in FIG. 13E except for the shape of the p-side pad electrode 14, and has an extended conductive portion extending from the p-side pad electrode 14 toward the corner region 28.
  • the taper angle control in the corner region 28 is omitted in consideration of the effect of the extended conductive portion.
  • the nitride semiconductor light emitting device according to the present embodiment does not have a heterogeneous substrate different from the nitride semiconductor, and includes an n-side nitride semiconductor layer 4, an active layer 6, and a p-side nitride semiconductor layer 8,
  • the translucent electrode 10 is formed on the upper surface of the nitride semiconductor layer, the p-side pad electrode 14 is further formed, and the n-side pad electrode 12 is formed on the lower surface of the n-side nitride semiconductor layer.
  • the nitride semiconductor light emitting device having such a structure can be manufactured by using, for example, a GaN substrate as a part of the n-side nitride semiconductor.
  • the upper surface of the p-side nitride semiconductor tank 8 serves as a light emission observation surface, but since the n-side pad electrode 12 is formed on the back surface of the n-side nitride semiconductor layer, the p-side pad electrode 14 Or The luminous intensity distribution is determined only by these distances. In other words, the longer the distance between the p-side pad electrode and the electrode, the lower the current density, and the lower the light emission intensity. Therefore, in the present embodiment, a plurality of protrusions 10a are formed radially on the translucent electrode 10, and each protrusion 10a is tapered.
  • the end face taper angle can be reduced in a region where light emission is relatively weak, that is, in a region distant from the p-side pad electrode 14, and light extraction efficiency in the region can be improved. Therefore, a nitride semiconductor light emitting device having a uniform and high emission intensity over the entire chip can be obtained.
  • the insulating protective film 16 is omitted for simplification of the drawing.
  • the light extraction efficiency in the peripheral portion of the device is further improved by forming the projection group 54 of the semiconductor layer in the region between the p-side layer 9 and the outer periphery of the device.
  • the other points are the same as in the first embodiment.
  • the p-side layer 9 having the translucent electrode 10 is a first region, a region surrounded by the first region and the outer periphery of the device. Is referred to as a second region. As shown in FIG. 15A, the first area is surrounded by the second area. Further, the second region is surrounded by the outer periphery of the element.
  • a plurality of protrusions (dimples) 54 are formed in the exposed second region of the n-side nitride semiconductor layer 4.
  • the plurality of convex portions 54 have an effect of increasing light extraction efficiency, as described later.
  • the exposed second region of the n-side nitride semiconductor layer 4 'serves as a surface on which the n-side pad electrode 12 is formed (the surface of the n-side contact layer) and also serves as a division lane when dividing the element. There are various advantages in forming the projection 54 in the second region.
  • the projections 54 can be formed without increasing the number of steps.
  • the size of the device can be reduced as compared with the case where a special region for forming the convex portion 54 is provided.
  • the second region around the element does not emit light directly, and thus has a low light emission intensity.
  • the formation of the projection 54 improves the light extraction efficiency of the second region, and the entire region on the observation surface side The uniformity of light emission can be improved over a wide range.
  • the convex portion 54 in the second region By providing the convex portion 54 in the second region, the light extraction efficiency to the emission observation surface side can be improved. For example, it can be improved by 10 to 20 percent. The reason is not always clear, but is considered as follows.
  • the light emitted to the side of the end face force of the active layer 6 is also reflected and scattered by the plurality of projections 54 and is extracted to the observation surface side.
  • n-side layer 4 (especially the n-side contact layer) is irregularly reflected on the side surface of the protrusion 54 near the root of the protrusion 54 (the connection portion between the n-side layer 4 and the protrusion 54). Then, light is extracted to the observation surface side.
  • each protrusion 54 provided in the second region be higher than the active layer 6 in the element cross section. It is preferable that the bottom between the protrusions 54 is lower than the active layer 6. More specifically, the protrusion 54 may be at least higher than the interface between the active layer 6 and the adjacent n-side nitride semiconductor layer 4 ′ ′, but the active layer 6 and the adjacent p-side nitride semiconductor layer It is more preferably higher than the interface with 8.
  • the bottom between the protrusions 54 may be at least lower than the interface between the active layer 6 and the p-side nitride semiconductor layer 8 adjacent thereto, but the active layer 6 and the adjacent n-side nitride semiconductor More preferably, it is lower than the interface with the layer 4 ′ ′′. As a result, the efficiency of extracting light emitted from the active layer 6 can be effectively increased.
  • the height of the protrusion 54 is substantially the same as that of the p-side layer 9. As a result, the projections 54 are not blocked by the semiconductor layer 9 in the first region where the light-transmitting electrode 10 is formed. Light can be effectively extracted from the top to the observation surface side. Further, by making the protrusion 54 higher than the p-side contact layer 8, more preferably higher than the translucent electrode 10, light can be more effectively extracted.
  • the above effect can be further enhanced by gradually reducing the width of the cross-sectional shape of the projection 54 in the semiconductor lamination direction, that is, from the n-side layer 4 to the p-side layer 8. Become. That is, by inclining the side surface of the convex portion 54, light from the active layer 6 can be reflected on the side surface of the convex portion 54 with high efficiency. Further, light guided through the n-side layer 4 can be scattered with high efficiency. Therefore, light can be effectively extracted to the observation surface side.
  • the inclination angle of the side surface of the projection 54 is preferably 30 ° to 80 °, more preferably 40 ° to 70 °.
  • the inclination angle of the side surface of the protrusion 54 refers to the inner angle on the base side in the cross section of the protrusion 54.
  • the cross-sectional shape of the convex portion 54 can be various shapes such as a triangle, a semi-ellipse, and a trapezoid.
  • the planar shape of the convex portion 54 can be various shapes such as a circle and a triangle.
  • it is preferable that the cross-sectional shape of the convex portion 54 is gradually tapered, and the planar shape is circular. With this configuration, the directivity of light can be more easily controlled, and more uniform light can be extracted as a whole.
  • the planar shape of the convex part that looks at the observation surface side force is not a point but may have a certain area. It is considered preferable.
  • a depression may be formed in a substantially central portion of the upper surface of the projection 54.
  • the protrusions 54 are arranged in two or more rows, preferably three or more rows, with the first area force directed toward the element periphery.
  • the projections 54 are arranged so that the projections 54 in different rows partially overlap each other when viewed in a direction parallel to the main surface of the substrate from the first region toward the outer periphery of the element. Is preferred. As a result, the light emitted from the first region is reflected and scattered by the projections 54 with a high probability, and the light extraction efficiency increases.
  • the projections 54 are formed simultaneously with exposing the n-side nitride semiconductor layer 4 ".
  • the pole 10 Cover the part of the p-side layer 9 (first region) and the part where the projection 54 is to be formed (part of the second region) with a resist film, exposing the n-side nitride semiconductor layer 4 '' Etch until done. Thereby, the exposed surface for forming the n-side pad electrode 12 and the projection 54 can be formed simultaneously.
  • an insulating film such as SiO may be used as a mask instead of the resist film.
  • the protrusion 54 thus formed has the same laminated structure as the semiconductor laminated structure in the first region.
  • the active layer 6 included in the first region functions as a light emitting layer
  • the active layer 6 included in the convex portion of the second region does not function as a light emitting layer.
  • the p-side pad electrode 14 is not formed in the second region (convex portion) while the first region has the positive side pad electrode 14. That is, carriers (holes and electrons) can be supplied to the active layer 6 in the first region by energization, whereas carriers are not supplied to the active layer 6 in the convex portion provided in the second region by energization. . Therefore, the protrusion 54 of the present embodiment cannot emit light by itself. Therefore, even if a part of the convex portion 54 is broken when the element is divided, the luminous efficiency hardly decreases.
  • the protrusion 54 in the present embodiment reduces the light emitted in the lateral direction (the side direction of the nitride semiconductor light emitting element) and increases the light emitted in the upward direction (the observation surface side).
  • the area occupied by the second region is large, so that a region having a high luminous intensity is reduced.
  • the projections 54 in the second region By forming the projections 54 in the second region, the region with relatively high luminous intensity can be increased.
  • FIG. 16 is a top view showing the nitride semiconductor light emitting device according to the present embodiment.
  • a plurality of protrusions 9a are provided in p-side layer 9 in a portion surrounding n-side pad electrode 12 in the eighth embodiment. Due to the formation of the protruding portion 9a, the current passes to emit light The first region having a region is increased. Further, since each protruding portion 9a has a tapered shape, light can be irregularly reflected at the end face of the protruding portion 9a, and the light extraction efficiency is improved. Further, the taper angle at the end face of the end portion of each protrusion 9a is reduced, and the light extraction efficiency from the region is improved.
  • a nitride semiconductor light emitting device having the structure shown in FIGS. 1 and 2 is manufactured. Specifically, on the sapphire substrate 2, (a) a buffer layer (not shown) made of AlGaN, (b) a non-doped GaN layer (not shown), and (c) an n-side nitride semiconductor layer 4 As an example, an n-side contact layer made of Si-doped GaN, an n-side clad layer of a superlattice in which a GaN layer (40 A) and an InGaN layer (20 A) are alternately laminated 10 times, and (d) a GaN layer (250 A ) And an InGaN layer (30 A) are alternately stacked 3 to 6 times.
  • a buffer layer made of AlGaN
  • a non-doped GaN layer not shown
  • an n-side nitride semiconductor layer 4 As an example, an n-side contact layer made of Si-doped GaN, an n-side
  • the active layer 6 has a multiple quantum well structure
  • the p-side nitride semiconductor layer 8 is an Mg-doped GaN layer (4 OA).
  • the surface of the nitride semiconductor layer 4 ' is exposed.
  • etching is performed so that the end face taper angle of the p-side layer 9 in a region farther from the p-side pad electrode 14 than the tangent line 20 becomes small.
  • an n-side pad electrode 12 is formed on the exposed n-side layer 4 '.
  • a light-transmitting electrode 10 having an ITO force is formed on almost the entire surface of the p-side nitride semiconductor layer 8, and a p-side pad electrode 14 is formed on a part of the light-transmitting electrode 10.
  • etching is performed so that the end face taper angle of the translucent electrode 10 in the region where the force of the p-side pad electrode 14 is further than the tangent 20 is smaller.
  • a sapphire substrate with a diameter of 2 inches and a C-plane as the main surface is set in a MOVPE reaction vessel, the temperature is set to 500 ° C, and trimethylgallium (TMG), trimethylaluminum (TMA) and ammonia (NH) are used.
  • TMG trimethylgallium
  • TMA trimethylaluminum
  • NH ammonia
  • the temperature is set to 1050 ° C, and an undoped GaN layer is grown to a thickness of 1.5 / zm using TMG and ammonia.
  • This layer is the growth of each layer forming the element structure. In this case, it acts as an underlayer (growth substrate).
  • the n-side contact layer made of is grown to a thickness of 2.165 / zm.
  • the temperature was set to 800 ° C, and trimethylindium was intermittently flown into the source gas while the GaN layer (40A) and the InGaN layer (20A) were alternately stacked 10 times. It grows with the film thickness of.
  • an active layer 6 having a multiple quantum well structure in which a GaN layer (250 A) and an InGaN layer (30 A) are alternately stacked three to six times is grown.
  • a superlattice p-type cladding layer which is alternately stacked 10 times with the layer (20 A), is grown to a thickness of 0.2 m.
  • 4 cc of TMG, 3.0 liters of ammonia, 2.5 liters of hydrogen gas as carrier gas were introduced, and Mg was doped on the p-type cladding layer by 1.5 ⁇ 10 2 Vcm 3
  • a p-side contact layer made of p-type GaN is grown to a thickness of 0.5 m.
  • the obtained wafer is annealed at 600 ° C. in a nitrogen atmosphere in a reaction vessel to further reduce the resistance of the p-type cladding layer and the P-side contact layer.
  • the wafer After annealing, the wafer is taken out of the reaction vessel, a mask of a predetermined shape is formed on the surface of the uppermost p-side contact layer, and a tapered shape is formed at a position away from the power of the p-side pad electrode 14 of the p-side layer 9 ( WZL forms a terminal portion 9a of about 1.2).
  • the p-side layer 9 is etched to expose a part of the n-side contact layer so that the end portion 9a has a smaller taper angle than the other end portions. At this time, the end face taper angle at the tapered end portion 9a is about 27 °.
  • the target is placed in a sputtering apparatus.
  • the sputtering apparatus an oxygen gas atmosphere, a mixed gas of argon gas and oxygen as the sputtering gas (20: 1), for example, by sputtering for 20 minutes at an RF power 10 W / cm 2, subsequently, the RF power 2W / cm 2
  • the light-transmitting electrode 10 made of ITO is formed with a thickness of 5000 A.
  • the p-side A mask having a tapered end (WZL is about 0.86) is provided at a position away from the nod electrode 14 by force, and the upper force of the mask is also etched. At this time, the end face taper angle at the tapered end portion 10a is about 60 °.
  • a mask having a predetermined pattern is formed by a resist on the translucent electrode 10, a W layer, a Pt layer, and an Au layer are laminated thereon in this order, and lift-off is performed to form a P side for bonding.
  • the pad electrode 14 is formed with a total film thickness of 1 ⁇ m.
  • an 11-side pad electrode 12 composed of!? 7? 811 is formed with a film thickness of 7,000.
  • a heat treatment is performed at about 400 to 600 ° C. in a steel mill.
  • nitride semiconductor light emitting device 1 By dividing the obtained wafer at a predetermined position, nitride semiconductor light emitting device 1 can be obtained.
  • the nitride semiconductor light emitting device formed as described above has the highest light emission intensity in a region between the p-side pad electrode and the n-side pad electrode.
  • the end faces of the tapered end portions 9a and 10a formed on the p-side layer 9 and the light-transmitting electrode 10 are compared with the end face taper angles of the P-side layer 9 and the light-transmitting electrode 10 in the region where the emission intensity is highest. Since the taper angle force is reduced, the directional light can be increased upward from this end face, and the light emission uniformity is improved. Also, the light extraction efficiency is improved.
  • Example 1 by changing the etching conditions (etching solution, gas, etc.) of the translucent electrode, the translucent electrode 10 in the region between the p-side pad electrode and the n-side pad electrode was changed. Shall be 110 °. Other points are the same as in the first embodiment. Compared to the first embodiment, the concentration of light emission on the end face of the translucent electrode 10 in the region between the P-side pad electrode and the n-side pad electrode is reduced.
  • etching conditions etching solution, gas, etc.
  • Example 1 the etching rates of the p-side layer 9 and the translucent electrode 10 were increased so that the taper angles of the end faces of the p-side layer 9 and the translucent electrode 10 were substantially the same over the entire circumference. 90 °.
  • a nitride semiconductor light emitting device is manufactured in the same manner as in the first embodiment. As compared with the first embodiment, the light emission intensity in a region apart from the P-side pad electrode is reduced.
  • a plurality of semicircular protrusions 9b are formed, and at the same time, a mask is left so that a plurality of circular protrusions 54 are formed between the p-side layer 9 and the outer periphery of the element (second region).
  • the protrusions 54 have a circular shape with a diameter of 5 / zm, and the centers of the protrusions 54 are arranged at intervals of 7 m.
  • convex portions 54 two or three rows of convex portions 54 are arranged along the outer periphery of the element, and the positions of the convex portions 54 of the even-numbered rows and the convex portions 54 of the odd-numbered rows are shifted from each other by a half cycle. Otherwise, a nitride semiconductor light emitting device is manufactured in the same manner as in the first embodiment.
  • the end face taper angle of the semicircular protrusion 9b and the circular protrusion 54 is 75 °.
  • the light extraction efficiency is higher than that of the first embodiment due to the projection 54 and the semicircular projection 9b.
  • the device is divided using a laser scribe.
  • the other points are the same as in the first embodiment.
  • the sapphire substrate 2 is polished to a thickness of 85 m with a back surface force.
  • the sapphire substrate 2 is fixed to the pressure-sensitive adhesive sheet 40 so that the back surface faces upward.
  • a YAG laser beam having a wavelength of 355 nm and a beam diameter of 5 ⁇ m is scanned on the back surface of the sapphire substrate 2 to form a separation groove having a width of about 10 ⁇ m and a depth of about 47 / zm on the front surface.
  • blast processing is also performed on the back surface force of the sapphire substrate 2 to remove the melted and re-solidified material adhered to the inside of the separation groove.
  • Al O with a diameter of about 4 m is used.
  • the chip size is 150 / zm in the short direction and 25O / zm in the long direction.
  • a region of about 47 m on the back surface side of the side surface of the sapphire substrate is obliquely inclined.
  • the inclination angle (the angle formed by the inclined surface 2b with respect to the plane orthogonal to the main surface of the substrate) is about 6 °. Due to the effect of the inclination of the side surface, the light extraction efficiency at the peripheral portion of the device is increased.
  • Example 4 a nitride semiconductor light-emitting device is manufactured in the same manner as in Example 4, except that blasting is performed after roller braking.
  • Example 4 after performing laser scribing and further performing roller braking, the adhesive sheet 40 is expanded to increase the distance between the elements. Then, blast processing is performed from the back surface of the sapphire substrate 2. For blasting cannonballs, AlO with a diameter of 40 m is used.
  • the blasting process can be completed in a shorter time because the rifle of the last force is larger than that of the fourth embodiment.
  • the altered layer on the back surface 2b of the side surface of the sapphire substrate 2 is removed better than in Example 4.
  • the back surface 2b of the side surface of the sapphire substrate 2 is obliquely inclined, and the light extraction efficiency at the peripheral portion of the device is improved.
  • the surface roughness in the back surface side region 2b of the side surface of the sapphire substrate 2 was about 1. l / zm, which was twice the surface roughness of the back surface of the sapphire substrate 2 (about 0.5 ⁇ m). .

Abstract

 基板上に、n側窒化物半導体層及びp側窒化物半導体層を有し、p側窒化物半導体層の上に透光性電極10が形成され、さらに外部回路と接続するためのp側パッド電極14が形成されており、n側窒化物半導体層に外部回路と接続するためのn側パッド電極12が形成され、p側窒化物半導体層側から発光を観測する窒化物半導体発光素子であって、透光性電極10及び/又はp側窒化物半導体層の端面におけるテーパ角を位置によって異ならしめる。

Description

窒化物半導体発光素子
技術分野
[0001] 本件発明は、一般式が In Al Ga _ _ Ν (0≤χ< 1、 0≤y< 1)で表される窒化物 半導体を有する窒化物半導体発光素子に関し、特に、外部回路と接続するためのパ ッド電極の面積比の大きな小型窒化物半導体発光素子に関する。
背景技術
[0002] 一般的な窒化物半導体発光素子では、サファイア、 SiC、 GaN等の基板上に、少 なくとも n側窒化物半導体層と p側窒化物半導体層を積層し、 p側から n側半導体層 に向力つて通電することにより発光を得る。 p側窒化物半導体層には外部電源のブラ ス側をワイヤボンディング等によって接続するための P側パッド電極が形成され、 n側 窒化物半導体層にはマイナス側を接続するための n側パッド電極が形成される。サフ アイァ等の絶縁性基板を用いた場合は、 p側窒化物半導体層を一部除去して n側窒 化物半導体層を露出させ、そこに n側パッド電極を形成する。一方、 SiCや GaN基板 等の導電性基板を用いた場合は、基板裏面に直接 n側パッド電極を形成する。
[0003] このような窒化物半導体発光素子では、 p側窒化物半導体層側から発光観測面と し、 p側窒化物半導体層に電流を均一に広げるための透光性電極を形成することが 一般的である(例えば、特許文献 1又は 2)。透光性電極は、 p側窒化物半導体層の ほぼ全面に形成され、 p側窒化物半導体層の全体に電流を広げる役割を果たしてお り、発光を遮らな!/ヽように金属薄膜等の透光性材料で形成されて!ヽる。
[0004] 特許文献 1 :特開平 6— 338632号公報
特許文献 2:特開平 10— 144962号公報
発明の開示
発明が解決しょうとする課題
[0005] 上記のような窒化物半導体発光素子にお!、て、 p側パッド電極や n側パッド電極は 遮光性であるため、基本的に p側パッド電極と n側パッド電極を除 、た p側窒化物半 導体層の上面全面が発光領域となる。しかしながら、窒化物半導体発光素子の小型 化が進むに従!、、 p側パッド電極や n側パッド電極のチップに占める面積比率が大き くなり、外部量子効率の確保が重要な問題となってくる。即ち、 p側パッド電極や n側 ノッド電極は、ワイヤボンディング等が可能となるだけの大きさが必要であるため、チ ップの小型化が進んでも基本的に一定の大きさである。そのため、素子が小型になる ほど P側パッド電極や n側パッド電極によって遮光される面積比が大きくなり、半導体 層で生じた発光を効率良く取り出すことが難しくなる。
課題を解決するための手段
[0006] そこで本件発明は、 p側窒化物半導体層に透光性電極と p側パッド電極を形成し、 透光性電極を通じて発光を観測する窒化物半導体発光素子において発光を効率良 く取り出し可能な新規な素子構造を提供することを目的とする。
[0007] p側窒化物半導体層に透光性電極と p側パッド電極を形成し、透光性電極を通じて 発光を観測する窒化物半導体発光素子においては、電流を流す起点となる P側パッ ド電極及び n側パッド電極の配置、発光領域を決める透光性電極や p側窒化物半導 体層の形状といった要素に応じて、面内に発光分布が形成される。特に p側パッド電 極や n側パッド電極から離れた末端部は、電流が十分に流れな!/ヽため発光強度が低 下する傾向にある。チップが小型化するに従い、発光領域そのものが狭くなるため、 こうした末端部の発光強度低下の影響は相対的に大きくなる。本件発明者等は、発 光領域の末端部における発光強度を透光性電極や P側窒化物半導体層の端面テー パ角を減少させることによって改善できることを見出して本件発明を成すに至った。
[0008] 即ち、本件発明に係る窒化物半導体発光素子は、基板上に、 n側窒化物半導体層 及び P側窒化物半導体層を有し、前記 p側窒化物半導体層の上に透光性電極が形 成され、さらに外部回路と接続するための p側パッド電極が形成されており、前記 n側 窒化物半導体層に外部回路と接続するための n側パッド電極が形成され、前記 p側 窒化物半導体層側から発光を観測する窒化物半導体発光素子であって、前記透光 性電極及び Z又は前記 P側窒化物半導体層の端面におけるテーパ角を位置によつ て異ならしめたことを特徴とする。
発明の効果
[0009] 本件発明によれば、透光性電極及び Z又は前記 P側窒化物半導体層の端面にお けるテーパ角を位置によって異ならしめることにより、末端部における光取り出し効率 を高めて、より均一な発光を実現できる。例えば、 p側パッド電極及び n側パッド電極 との位置関係によって電流が流れにくぐ発光が弱くなる末端部において、透光性電 極及び Z又は P側窒化物半導体層の端面テーパ角が小さくなるように制御すれば、 その末端部における光取り出し効率を高めて、発光の均一性を向上できる。ここで、 透光性電極及び Z又は P側窒化物半導体層の端面テーパ角を小さくすることによつ て発光強度の低下を抑制できるのは、一つには、半導体層内を多重反射しながら横 方向に伝播する成分について端面で反射角を変えて多重反射を抑制できるからで あり、もう一つには端面から上方向(=発光観察方向)に向力う光線を増加させること ができるからである。このような本件発明の効果は、チップ小型化が進むと一層顕著 になる。即ち、チップが小型になるほど、発光領域の面積に対して端面の面積比が 大きくなるため、端面のテーパ制御の効果が一層顕著に現れるようになる。
[0010] 尚、本件発明において、「端面におけるテーパ角」とは、基板主面に垂直な面内に おいて、透光性電極や p側窒化物半導体層の端面(=側面)が基板主面との間で成 す角をいう。「最も発光の強い領域」又は「最も発光の弱い領域」とは、窒化物半導体 発光素子の P側窒化物半導体層の面内における輝度分布をみたときに、その部分に おける輝度が最も大きな領域又は最も小さな領域を指す。「相対的に発光の弱い領 域」とは、窒化物半導体発光素子の p側窒化物半導体層の面内における発光強度 分布をみたときに、その部分における輝度が p側窒化物半導体層の面全体の平均輝 度以下の部分を指す。
[0011] また、「先細形状」とは、幅が先端に向かうに従って次第に細くなる平面形状を指し ており、幅が徐々に減少するものであれば、最先端がアールを有していても良い。本 件発明に係る窒化物半導体発光素子お!、て、「上」又は「上面」とは p側窒化物半導 体層側にあること又は P側窒化物半導体層側の面を指し、「下」又は「下面」とは n側 窒化物半導体層側にあること又は n側窒化物半導体層側の面を指す。
図面の簡単な説明
[0012] [図 1]図 1は、本件発明の実施の形態 1に係る窒化物半導体発光素子を示す上面図 である。 [図 2]図 2は、図 1の A— A'線における断面を示す断面図である。
[図 3A]図 3Aは、図 1に示す窒化物半導体発光素子の一部を拡大した上面図である
[図 3B]図 3Bは、図 1に示す窒化物半導体発光素子の一部を拡大した断面図である
[図 4A]図 4Aは、透光性電極及び p層の端面が垂直である場合の光の進行を示す模 式図である。
[図 4B]図 4Bは、透光性電極及び p層の端面がテーパ角を有する場合の光の進行を 示す模式図である。
[図 5]図 5は、図 3Bの別のノ リエーシヨンを示す断面図である。
[図 6A]図 6Aは、レーザスクライブの一工程を示す模式断面図である。
[図 6B]図 6Bは、図 6Aの次の工程を示す模式断面図である。
[図 6C]図 6Cは、図 6Bの次の工程を示す模式断面図である。
[図 7]図 7は、レーザスクライブした後のスクライブ溝を示す模式断面図である。
[図 8A]図 8Aは、レーザスクライブ後のチップの断面形状を示す模式図である。
[図 8B]図 8Bは、ブラスト後のチップの断面形状を示す模式図である。
[図 8C]図 8Cは、図 8Bの A部を示す部分拡大断面図である。
[図 9]図 9は、レーザスクライブをした場合の素子の端面近傍における光の進行を示 す模式図である。
[図 10]図 10は、本件発明の実施の形態 3に係る窒化物半導体発光素子を示す上面 図である。
[図 11]図 11は、本件発明の実施の形態 4に係る窒化物半導体発光素子を示す上面 図である。
[図 12]図 12は、本件発明の実施の形態 5に係る窒化物半導体発光素子を示す上面 図である。
[図 13A]図 13Aは、本件発明の実施の形態 6に係る窒化物半導体発光素子を示す 上面図である。
圆 13B]図 13Bは、本件発明の実施の形態 6に係る窒化物半導体発光素子の別例を 示す上面図である。
[図 13C]図 13Cは、本件発明の実施の形態 6に係る窒化物半導体発光素子の別例 を示す上面図である。
[図 13D]図 13Dは、本件発明の実施の形態 6に係る窒化物半導体発光素子の別例 を示す上面図である。
[図 13E]図 13Eは、本件発明の実施の形態 6に係る窒化物半導体発光素子の別例を 示す上面図である。
[図 13F]図 13Fは、本件発明の実施の形態 6に係る窒化物半導体発光素子の別例を 示す上面図である。
[図 14A]図 14Aは、本件発明の実施の形態 7に係る窒化物半導体発光素子を示す 上面図である。
[図 14B]図 14Bは、本件発明の実施の形態 7に係る窒化物半導体発光素子を示す 断面図である。
[図 15A]図 15Aは、本発明の実施の形態 8に係る窒化物半導体発光素子を示す上 面図である。
[図 15B]図 15Bは、本件発明の実施の形態 8に係る窒化物半導体発光素子を示す 断面図である。
[図 16]図 16は、本発明の実施の形態 9に係る窒化物半導体発光素子を示す断面図 である。
符号の説明
1 窒化物半導体発光素子、
4 n側窒化物半導体層、
6 活性層、
8 p側窒化物半導体層、
10 透光性電極、
12 n側パッド電極、
14 p側パッド電極、 18 パッド電極中心線
20 接線
発明を実施するための最良の形態
[0014] 以下、本件発明の実施の形態について図面を参照しながら説明する。
¾施の形餱 ί
図 1は、本発明の実施の形態 1に係る窒化物半導体発光素子を示す上面図であり 、図 2は、その断面図である。図 2に示すように、窒化物半導体発光素子 1は、サファ ィァ、 SiC、 Si、 GaN等の基板 2の上に、 n側窒化物半導体層 4、活性層 6、 p側窒化 物半導体層 8が順次形成され、ダブルへテロ構造を有している。 p側窒化物半導体 層 8の表面のほぼ全面に、 ITOや金属薄膜からなる透光性電極 10が形成され、その 上にワイヤボンディング等によって外部回路と接続するための p側パッド電極 14が形 成されている。
[0015] 一方、 n側パッド電極 12を形成するために、 p側窒化物半導体層 8、活性層 6及び n 側窒化物半導体層の上側部分 4"が除去されて、 n側窒化物半導体層の下側部分 4' の表面が露出されている。以下、説明の便宜のため p側窒化物半導体層 8、活性層 6 及び n側窒化物半導体層 4"をまとめて p側層 9と称し、 n側窒化物半導体層の下側 部分を n側層 4'と称することがある。 n側パッド電極 12は、露出した n側層 4'の表面に 形成される。また、窒化物半導体発光素子 1の上面全体が SiO等の絶縁膜 16によ
2
つて覆われ、保護されている。絶縁膜 16には、 n側パッド電極 12及び p側ノッド電極 14の一部を露出するように、開口部 16a及び 16bが設けられている。
[0016] p側パッド電極 14から n側パッド電極 12に向力つて通電すると、 p側パッド電極 14か ら注入された電流は透光性電極 10によって p側窒化物半導体層 8のほぼ全面に広 がり、活性層 6、 n側窒化物半導体層 4を通過して n側パッド電極 12に流れる。その結 果、活性層 6で発光が生じ、透光性電極 10を通じて基板上面カゝら光が取り出される。 尚、活性層 6で生じた光は横方向に伝播するため、基板上面からみると p側窒化物半 導体層 8の全面 (即ち、 p側層 9の全面)が発光領域となる。
[0017] この窒化物半導体発光素子 1を上面力も見ると図 1に示すようになる。 p側層 9は一 辺に半弧状に切欠部を有する略矩形の島状に形成されており、その上面のほぼ全 面に透光性電極 10が形成されている。透光性電極 10の中央左寄りの位置に p側パ ッド電極 14が配置されている。 n側パッド電極は、 n側層 4'の上であって、 p側層 9の 円弧上の切欠部に沿うように配置されて 、る。
[0018] このような形状の窒化物半導体発光素子にぉ 、ては、 p側パッド電極 14と n側パッ ド電極 12に向力 電流経路力も離れた末端部の発光強度が低下し易い。例えば、図 1に示すように、 p側パッド電極 14の中心と n側パッド電極の中心を結ぶ中心線 18と、 その中心線 18に直交する n側パッド電極 12の接線 20とを仮想すると、その接線 20よ りも P側パッド電極 14から離れた領域において発光強度が低下し易い。そこで、本実 施の形態では、この領域における p側層 9a及び透光性電極 10aの端面テーパ角を 小さくすることによって、発光強度の低下を抑制している。
[0019] 端面テーパ角の制御は、パターンエッチングの際のマスクのエッチング条件(マスク の断面形状、マスクの材質、エッチングガスの選択等)によっても可能である力 本実 施の形態では、 p側層 9や透光性電極 10の終端部を先細の平面形状、即ち先端に V、くに従って幅が徐々に減少するような平面形状とすることによって端面のテーパ角 を制御する。図 3A及び図 3Bは、上記領域にある透光性電極 10a及び p側層 9aの形 状を模式的に示す平面図と断面図である。図 3Aに示すように、 n電極の仮想接線 2 0よりも外側の領域において、 p側層 9aは先端に向力うにしたがって幅 Wが徐々に減 少するような平面形状を有しており、透光性電極 10aもこれに相似の形状を有してい る。こうした平面形状の p側層 9をエッチングすると、次の 2つの効果によって端面のテ ーパ角が小さくなる。第 1に、通常パターンのエッチングでは、パターンエッジに垂直 な方向にエッチングが進行する。一方、 p側層を先細形状の形状とした場合、図 3A に示すように、エッチングは先細形状の終端部を挟む両側力 進行することになるた め、エッチングされた端面はテーパ状になり易くなる。また、第 2に、エッチングの際に は P側層 9の上面を所定形状のマスクで覆うことになる力 このマスクもエッチングによ つてある程度のスピードでやせ細って 、く。 p側層を先細形状にする部分ではマスク も先細形状であるため、そのような先細形状の先端部で特にマスクがやせ易い。この ため、先細形状の部分では一層テーパがっき易くなる。また、この原理は、透光性電 極 10aを先細形状にする場合も全く同様である。 [0020] ここで透光性電極又は p側層 9の終端部を先細形状とすることによって端面テーパ 角を小さくするには、先細形状の終端部を三角形で近似した場合に、終端部を挟む 両辺のつくる角度が少なくとも 90度未満、より好ましくは 45度以下、さらに好ましくは 30度以下とすることが望ましい。尚、この角度に代えて、上記終端部の幅を W、仮想 接線 20から終端部の端までの距離を Lとして、 WZLの比を考慮しても良い。このとき Lを固定値 (例えば 10 m)として、 WZLを指標とすることが好ましい。端面テーパ 角を好ましい範囲にするには、 WZLが 1. 8以下、より好ましくは 1. 4以下であること が望ましい。
[0021] こうして先細形状に形成された p側層 9及び透光性電極 10の終端部では、図 3Bに 示すように、テーパ角 (Xが相対的に小さくなる。テーパ角 (Xが小さくなると、半導体層 内を多重反射しながら横方向に伝播する成分について端面で反射角を変えて多重 反射を抑制でき、また、端面力も上方向(=発光観察方向)に向力 光線を増カロさせ ることができるため、その終端部における発光強度を向上することができる。この効果 について、図 4A及び Bを参照しながら詳細に説明する。
[0022] 図 4Aは、 p側層 9と透光性電極 10の端面が通常通りに略直角になっている場合を 示し、図 4Bは、端面のテーパ角を小さくした場合を示す。前述の通り、本件発明に係 る窒化物半導体発光素子では、半導体層で発生した光を透光性電極を通じて p側窒 化物半導体層側から取り出すが、各層間の屈折率差によって弱!、光導波路が形成 されるため、多重反射をしながら横方向に伝播する光成分が生じる。一般的な窒化 物半導体発光素子では、窒化物半導体層の光屈折率が基板や透光性電極 10に比 ベて大きいため、窒化物半導体層の中で多重反射が起き易い。図 4Aに示すように、 P側層 9の端面 7が略垂直である場合、全反射が起きる入射角で多重反射をしながら 横方向に伝播した光は、比較的大きな入射角で端面 7に到達する。このため端面 7 に到達した光は高い率で反射されて半導体層に戻る。また、端面 7と基板平面は直 交しているため、端面 7で反射された光は再び同じ角度で半導体層内に戻り、全反 射をしながら多重反射を繰り返すことになる。半導体層は光吸収率が高いため、多重 反射を繰り返すうちに光が減衰してしまう。さらに、反射されずに端面 7から放出され る光も横方向に放射されるため、発光観測に対する寄与は比較的小さい。これに対 し、図 4Bに示すように、 p側層の端面 7が小さなテーパ角を有している場合、全反射 が起きる入射角で多重反射しながら横方向に伝播した光は、端面 7に比較的小さな 入射角で到達するため、高い率で透過して外部に取り出される。このとき、取り出され た光は基板上方に向力 成分が多いため、観測される発光強度に有効に寄与する。 また、端面 7で反射された光についても、反射される際に基板平面に対する入射角 度が小さくなるため、基板上面又は下面力 有効に外部に取り出される。
[0023] このように、 p側層 9の端面のテーパ角度を小さくすることにより、光の取り出し効率 を高め、その部分の発光強度を向上することができる。尚、 p側層 9には、図 3Bに示 すように、 p側窒化物半導体層 8、活性層 6及び n側窒化物半導体層 4"が含まれるが 、少なくとも p側窒化物半導体層 8 (又は p側窒化物半導体層 8及び活性層 6)の端面 のテーパ角度が小さく制御されていれば、上記と同様の原理が成立する。また、ここ では P側層 9の端面テーパ角を小さくした効果について説明した力 透光性電極 10 の端面テーパ角を小さくしても同様の効果が得られる。即ち、透光性電極 10に屈折 率はその外側にある空気層よりも大きいため、透光性電極 10と半導体層が一体とな つた光導波路も形成される。この光導波路を横方向に伝播する光が透光性電極 10 の端面に到達した際も、上記と同様の現象が起きるため、透光性電極 10の端面テー パ角を小さくすることによって、その部分の発光強度を向上することができる。
[0024] ここで、透光性電極及び p側窒化物半導体層の端面テーパ角は、少なくとも 70度 以下、より好ましくは 60度以下、さらに好ましくは 50度以下とすることが望ましい。透 光性電極又は p側層 9の終端部を先細形状とすることによって端面テーパ角を制御 する場合、先細形状の終端部を三角形で近似した場合に、終端部を挟む両辺のつく る角度 (又は上述の WZL)を小さくするほど、テーパ角も小さくなる。また、エツチン グ条件を調整することによつてもテーパ角は制御できる。例えば、 p側窒化物半導体 層をエッチングする際のマスク自身にテーパをつけておけば、そのテーパ角度が小 さいほど p側窒化物半導体層のテーパ角度も小さくなる(例えば、 1. 5 mの深さで 窒化物半導体層をエッチングする場合、そのエッチング用マスクの端面に 30° 程度 の傾斜角を設けると、窒化物半導体層端面は 45° 程度の傾斜角を有することになる ) oまた、 P側窒化物半導体層 8をエッチングする際のエッチングレートによってもテー パ角度は変化するため、実験的に確認した傾向にしたがってエッチングレートを適宜 選択すればテーパ角を制御できる。
[0025] 一方、相対的に発光の強い領域においては、透光性電極 10及び p側窒化物半導 体層 8の端面テーパ角は 70° 以上であることが好ましい。特に、図 5に示すように、 相対的に発光の強 、領域にぉ 、て、透光性電極 10の端面 11が有するテーパ角は 9 0° を越える鈍角であることが好ましい。このとき透光性電極 10の端面 11は逆テーパ となる。ここで「逆テーパ」とは、透光性電極 10の端面 11が上面から下面に向力つて 内側に傾斜して 、る場合を指す。相対的に発光の強 、領域にぉ 、て透光性電極 10 の端面 11の有するテーパ角を鈍角にすれば、端面への発光の集中を緩和して発光 の均一性を向上することができる。
[0026] 尚、ここで説明したような端面テーパ角制御の効果は、素子の小型化が進むと一層 顕著になる。これは素子の小型化が進むと、 p側パッド電極や n側パッド電極によって 遮光される割合が高くなり、端面の発光が発光全体に寄与する割合が高くなるため である。即ち、端面テーパ角制御の効果は、次のような素子において顕著となる。
(1)図 1に示すように、基板の短手方向において、 p側パッド電極 14が接続されてい る P側層 9の幅(=p側窒化物半導体層 8の幅)を X、 p側パッド電極 14の最大幅を R
P
とすると、 X< 2Rの関係を充足する発光素子。
P
(2)さらに好ましくは、基板の短手方向において、 n側パッド電極 12の最大幅を Rと すると、 X< 2Rの関係も充足する発光素子。
また、端面テーパ角制御の効果は、 p側パッド電極 14と n側パッド電極 12の合計面 積が素子の面積に対して占める割合が 0. 2以上となるような素子においても顕著で ある。
[0027] ところで、本実施の形態のように、 p側パッド電極 14と n側パッド電極 12を結ぶ中心 線 18と、その中心線 18に直交する n側パッド電極 12の接線 20 (p側パッド電極 14に 近い方の接線を指す。他の実施形態においても同じ。)とを仮想し、接線 20よりも p側 パッド電極 14から離れた領域において先細形状の終端部 9a及び 10aを形成するこ とは、チップ小型化に伴う電極レイアウトの観点からも有利である。即ち、チップが小 型化するに従い、 p側パッド電極 14及び n側パッド電極 12のチップ全体に示す面積 比が高くなるため、発光領域となる p側層 9 (及び透光性電極 10)の形成可能領域は 狭くなつていく。例えば、ワイヤボンディングを行うためには、ワイヤの太さに合わせて P側パッド電極 14及び n側パッド電極 12をある程度の大きさ(例えば、直径を 70 m 程度)にする必要がある。一方、チップの小型化を進める結果、チップサイズが 250 X 150 /z mといったものも実用化が検討されており、その場合には図 1に示したように P側パッド電極 14と n側パッド電極 12の面積比がかなり高くなる。 p側層 9及び透光性 電極 10は、少なくとも n側パッド電極 12を避けて形成し、チップ外周力ももある程度 は離間して形成する必要があるため、その形成可能領域は力なり狭い。特に、 n側パ ッド電極 12とチップ外周の間のクリアランスは狭ぐそのような領域に p側層を延ばそ うとすれば細長い形状となってしまう。ところが、 n側パッド電極とチップ外周に挟まれ た領域は p側パッド電極力 n側パッド電極に向力う電流経路力 外れて 、るため、も ともと電流が流れにくぐ細長い形状にすると一層その傾向が強くなる。本件発明の 如ぐ先細形状の終端部とすれば、こうした狭い領域に p側層 9を広げながら、同時に 、その部分の発光強度の低下も抑制することができる。
[0028] 次に、本実施に形態に係る窒化物半導体発光素子の製造方法について説明する 。尚、以下に説明する以外の事項については、一般的な窒化物半導体発光素子の 製造方法と同様である。また、参考のため、必要な部分について具体的な組成と膜 厚を挙げながら説明するが、これらに限定されるものではない。以下の例は、 n側窒 化物半導体層を露出させるために窒化物半導体層を 1. 5 mエッチングする場合を 想定している。
[0029] まず、基板 (ウェハ) 2上に n側窒化物半導体層 4、活性層 6、 p側窒化物半導体層 8 を積層する。次に、半導体層上にマスクを形成する。マスクの材料としては、フオトレ ジストゃ SiO等を用いる。 SiOをマスクとして用いる場合は、レジストを用いたフォトリ
2 2
ソグラフィ一により、 SiOマスクを所定形状にパターユングする。そして、マスクを用い
2
て反応性イオンエッチング (RIE)によって p側窒化物半導体層 8、活性層 6、 n側窒化 物半導体層の一部分 4"を除去して、 n側窒化物半導体層 4の表面を露出させる。
[0030] このとき、 SiOなどのマスクの平面形状に先細形状の終端部を設けることにより、そ
2
の部分における p側層 9 (p側窒化物半導体層 8、活性層 6、 n側窒化物半導体層 4") の端面テーパ角を制御する。また、これに加えて、所望の位置において SiOなどの
2 マスク自身の端面テーパ角を小さくすることによって、 p側層 9の端面におけるテーパ 角を制御しても良い。例えば、先細形状でない通常の部分においても、傾斜させた い位置における SiOマスクの端面に 30° 程度のテーパ角を設けると、 RIE等による
2
エッチングで半導体層端面は 45° 程度のテーパ角を有することになる。 SiOマスク
2 の端面テーパ角を制御するには、 SiOマスクをパターユングするためのレジストの端
2
面テーパ角を制御すればよぐレジストの端面テーパ角は焼結時の温度や現像時間 によって制御できる。即ち、レジスト焼結時の温度を高くし、現像時間を長くすると、レ ジストのテーパ角が小さくなる傾向にある。
[0031] そして、 SiOマスクを除去した後、透光性電極 10を形成し、透光性電極 10自身を
2
上記と同様の手法によってパターユングする。そして、 n側パッド電極 10、 p側パッド 電極 14を形成し、絶縁膜 16でチップ全面を覆う。そして、絶縁膜 16に開口部 16a及 び 16bを形成する。最後に、基板 2 (=ウェハ)を割断して個々の素子に分割すれば 、窒化物半導体発光素子が完成する。
[0032] 以下、本実施の形態に係る窒化物半導体発光素子について、各構成の詳細につ いて説明する。
(透光性電極 10)
透光性電極の材料としては、ニッケル (Ni)、白金(Pt)パラジウム(Pd)、ロジウム (R h)、ノレテ-ゥム(Ru)、オスミウム(Os)、イリジウム(Ir)、チタン(Ti)、ジルコニウム(Zr )、ハフニウム(Hf )、バナジウム(V)、ニオブ(Nb)、タンタル (Ta)、コバルト(Co)、鉄 (Fe)、マンガン(Mn)、モリブデン(Mo)、クロム(Cr)、タングステン(W)、ランタン(L a)、銅 (Cu)、銀 (Ag)、イットリウム (Y)よりなる群力も選択された少なくとも一種を含 む金属、合金、それらの積層構造、さらには、それらの化合物が挙げられる。金属や 合金層の場合には、薄膜で形成することにより透光性を確保することができる。また、 化合物には、導電性の酸化物、窒化物などが含まれる。導電性の金属酸化物 (酸ィ匕 物半導体)としては、亜鉛、インジウム、スズ及びマグネシウム力もなる群力 選択され る少なくとも 1種の元素を含む導電性酸ィ匕物膜が、具体的には錫をドーピングした厚 さ 5θΑ〜10 μ mの酸化インジウム(Indium Tin Oxide ;ITO)、 ΖηΟ、 In Ο、または S ηθが等が挙げられる。これらは透光性が高いため、特に好ましい。電極の形状とし
2
ては、矩形状の格子状、ストライプ状など開口部を有する形状としても良い。
[0033] (n側パッド電極 12、 p側パッド電極 14)
n側パッド電極 12には、種々の構成を用いることができ、ォーミック性、密着性、不 純物拡散の防止、ワイヤとの密着性といった事項を考慮して、適宜構成を選択すれ ばよい。例えば、 n側半導体層側から順に、 n型半導体層とのォーミック接触性と密着 性に優れた W、 Mo、 Ti等力も成る第 1層と、ワイヤとの密着性に優れた金、 Al、白金 族等力も成るノ^ド用の第 2層とを積層しても良い。例えば、 TiZAu、 TiZAlなどで ある。また、ォーミック用の第 1層とパッド用の第 2層との間に、バリア層として高融点 金属層(W、 Mo、白金族)を設けた 3層構造としても良い。例えば WZPtZAu、 Ti ZRh (第 2層 a) ZPt (第 2層 b) ZAu、等である。特に、反射性、バリア性に優れる R hをバリア層として用いると、光取り出し効率が向上して好ましい。また、 p側パッド電 極としては、半導体層側から順に、 NiZAu、 CoZAuの他、 ITOなどの導電性酸ィ匕 物、白金族元素の金属、 RhZlr、 PtZPdなどが好適に用いられる。尚、本発明の半 導体発光素子においては、 p側パッド電極は、さらに延長導電部を設けることが好ま しい。これにより、活性層全体を効率よく発光させることができ、特に本発明の半導体 発光素子をフェイスアップ実装で設けるときに効果的である。また、 p側パッド電極は 、透光性電極の上に形成しても、透光性電極に設けた開口部を通じて p側窒化物半 導体層と接触するように形成しても良 ヽ。
[0034] (n側窒化物半導体層 4、活性層 6、 p側窒化物半導体層 8)
本発明における窒化物半導体発光素子を構成する半導体積層構造の具体例とし ては、特に限定されないが、例えば次の(1)〜(5)に示すような積層構造が挙げられ る。
下記の(1)〜(5)は、いずれも成長基板上に形成され、成長基板としてはサフアイ ァが好ましい。
[0035] (1)膜厚が 200 Aの GaNよりなるバッファ層、膜厚が 4 μ mの Siドープ η型 GaNよりな る n型コンタクト層、膜厚が 30 Aのアンドープ In Ga Nよりなる単一量子井戸構造
0. 2 0. 8
の活性層、膜厚が 0. 2 μ mの Mgドープ ρ型 Al Ga Nよりなる p型クラッド層、膜厚 が 0. 5 μ mの Mgドープ ρ型 GaNよりなる ρ型コンタクト層。
[0036] (2) (a)膜厚が約 100 Αの AlGaNからなるバッファ層、
(b)膜厚 1 μ mのアンドープ GaN層、膜厚 5 μ mの Siを 4. 5 X 1018/cm3含む GaN 力 なる n側コンタクト層、 3000Aのアンドープ GaNからなる下層と、 300Aの Siを 4
. 5 X 1018/cm3含む GaN力もなる中間層と、 50Aのアンドープ GaNからなる上層と の 3層からなる n側第 1多層膜層(総膜厚: 3350 A)、
(c)アンドープ GaN力 なる窒化物半導体層を 40 Aとアンドープ In Ga Nからな
0. 1 0. 9 る窒化物半導体層を 20Aとが繰り返し交互に 10層ずつ積層され、さらにアンドープ GaNカゝらなる窒化物半導体層を 40Aの膜厚で形成された超格子構造の n側第 2多 層膜層(総膜厚: 640 A)、
(d)膜厚が 250Aのアンドープ GaN力もなる障壁層と膜厚が 30Aの
In Ga N力 なる井戸層とが繰り返し交互に 6層ずつ積層され、さらに膜厚が 25
0. 3 0. 7
OAのアンドープ GaN力 なる障壁が形成された多重量子井戸構造の活性層(総膜 厚: 193θΑ)、
(e) Mgを 5 X 1019Zcm3含む Al Ga N力もなる窒化物半導体層を 40 Aと Mg
0. 15 0. 85
を 5 X 1019Zcm3含む In Ga N力もなる窒化物半導体層を 25 Aとが繰り返し 5
0. 03 0. 97
層ずつ交互に積層されて、さらに Mgを 5 X 1019/cm3含む Al Ga Nからなる
0. 15 0. 85
窒化物半導体層を 40 Aの膜厚で形成された超格子構造の p側多層膜層(総膜厚: 3 65A)ゝ
(f)膜厚が 1200AのMgをl X 102°/cm3含む GaN力らなる p側コンタクト層。
[0037] (3) (a)膜厚が約 100オングストロームの AlGaNからなるバッファ層、(b)膜厚 1 μ m のアンドープ GaN層、膜厚 5 μ mの Siを 4. 5 X 1018/cm3含む GaNからなる n側コン タクト層、 3000Aのアンドープ GaNからなる下層と、 300Aの Siを 4. 5 X 1018/cm3 含む GaN力もなる中間層と、 50Aのアンドープ GaN力もなる上層との 3層力もなる n 側第 1多層膜層(総膜厚 3350 A)、
(c)アンドープ GaN力 なる窒化物半導体層を 40 Aとアンドープ In Ga Nからな
0. 1 0. 9 る窒化物半導体層を 20Aとが繰り返し交互に 10層ずつ積層されてさらにアンドープ GaNカゝらなる窒化物半導体層を 40Aの膜厚で形成された超格子構造の n側第 2多 層膜層(総膜厚) 640 A)、
(d)最初に膜厚が 250 Aのアンドープ GaN力もなる障壁層と続いて膜厚が 30 Aの In Ga Nからなる井戸層と膜厚が 100 Aの In Ga Nからなる第 1の障壁層と
0. 3 0. 7 0. 02 0. 98
膜厚が 150Aのアンドープ GaN力もなる第 2の障壁層が繰り返し交互に 6層ずつ積 層されて形成された多重量子井戸構造の活性層(総膜厚 1930A) (繰り返し交互に 積層する層は 3層〜 6層の範囲が好ましい)、
(e) Mgを 5 X 1019Zcm3含む Al Ga N力もなる窒化物半導体層を 40 Aと Mg
0. 15 0. 85
を 5 X 1019Zcm3含む In Ga N力もなる窒化物半導体層を 25 Aとが繰り返し 5
0. 03 0. 97
層ずつ交互に積層されてさらに Mgを 5 X 1019/cm3含む Al Ga Nからなる窒
0. 15 0. 85
化物半導体層を 40Aの膜厚で形成された超格子構造の p側多層膜層(総膜厚 365 A)ゝ
(f)膜厚が 1200AのMgをl X 102°/cm3含む GaN力もなる p側コンタクト層。さらに 、 n側に設ける 3000Aのアンドープ GaNからなる下層を、下から 1500Aのアンド一 プ GaNからなる第 1の層と 100Aの Siを 5 X 1017/cm3含む GaNからなる第 2の層と 1500Aのアンドープ GaN力もなる第 3の層と力もなる 3層構造の下層にすることで、 発光素子の駆動時間経過に伴う Vの変動を抑えることが可能となる。
f
[0038] (4) (a)バッファ層、(b)アンドープ GaN層、(c) Siを 6. O X 1018Zcm3含む GaNから なる n側コンタクト層、(d)アンドープ GaN層(以上が総膜厚 6nmの n型窒化物半導 体層)、(e) Siを 2. 0 X 1018Zcm3含む GaN障壁層と InGaN井戸層とを繰り返し 5層 ずつ交互に積層された多重量子井戸の活性層、(f)膜厚が 1300Aの Mgを 5. 0 X 1 018Zcm3含む GaN力 なる p型窒化物半導体層。さらに、透光性電極と p型窒化物 半導体層との間に InGaN層を 50Aの膜厚で有してもよい。このように 30〜: L00A、 好ましい膜厚として 50 Aの InGaN層を設ける場合、この層が正電極と接することとな り、 p側コンタクト層となりうる。
[0039] (5) (a)バッファ層、(b)アンドープ GaN層、(c) Siを 1. 3 X 1019Zcm3含む GaNから なる n側コンタクト層、(d)アンドープ GaN層(以上が総膜厚 6nmの n型窒化物半導 体層)、 Siを 3. 0 X 1018Zcm3含む GaN障壁層と InGaN井戸層とを繰り返し 7層ず つ交互に積層された多重量子井戸の活性層(総膜厚: 800 A)、 (e)膜厚が 1300A 極と p型窒化物半導体層との間に InGaN層を 50Aの膜厚で有してもよい。このように 30〜: LOOA、好ましい膜厚として 50 Aの InGaN層を設ける場合、この層が正電極と 接することとなり、 p側コンタクト層となりうる。
[0040] (光変換部材)
また、本発明の半導体発光素子は、発光素子力 光の一部をそれとは異なる波長 の光に変換する光変換部材を有していてもよい。これにより、発光素子の光を変換し た発光装置を得ることができ、発光素子の発光と変換光との混色光などにより、白色 系、電球色などの発光装置を得ることができる。
[0041] 光変換部材としては、 A1を含み、かつ Y、 Lu、 Sc、 La、 Gd、 Tb、 Eu及び Smから 選択された少なくとも一つの元素と、 Ga及び Inから選択された一つの元素とを含む アルミニウム 'ガーネット系蛍光体、さらに希土類元素から選択された少なくとも一つ の元素を含有するアルミニウム 'ガーネット系蛍光体等が挙げられる。これにより、発 光素子を高出力で高発熱での使用においても、温度特性に優れ、耐久性にも優れ た発光装置を得ることができる。
[0042] 光変換部材は、(Re Rx) (Al Ga ) O (0く xく 1、 0≤y≤ 1、但し、 Reは、 Y, l-x 3 1-y y 5 12
Gd,La, Lu, Tb, Sm力 なる群より選択される少なくとも一種の元素であり、 Rは Ce 又は Ceと Prである)で表される蛍光体であってもよい。これにより上記と同様に、高出 力の発光素子において、温度特性、耐久性に優れた素子とでき、特に、活性層が In GaNである場合に、温度特性において黒体放射に沿った変化となり、白色系発光に おいて有利となる。
[0043] さらに、光変換部材は、 Nを含み、かつ Be、 Mg、 Ca、 Sr、 Ba及び Znから選択され た少なくとも一つの元素と、 C、 Si、 Ge、 Sn、 Ti、 Zr及び Hfから選択された少なくとも 一つの元素とを含み、希土類元素カゝら選択された少なくとも一つの元素で賦活され た窒化物系蛍光体であってもよい。具体的には、一般式 L Si N : Eu又
X Y (2/3X+4/3Y) はし Si O N : Eu(Lは、 Sr若しくは Ca、又は、 Sr及び Caのいずれ
X Y Z (2/3X+4/3Y- 2/3Z)
力、。)が挙げられる。これにより上記蛍光体と同様に、高出力の発光素子において、 優れた温度特性、耐久性を得ることができる。なかでも、酸化窒化珪素化合物が好ま しい。また、上述したアルミニウム 'ガーネット系蛍光体と組み合わせることで、両者の 温度特性が相互に作用して、混合色の温度変化が小さい発光装置とできる。
[0044] 実施の形態 2
本実施の形態では、実施の形態 1において、レーザスクライブを用いて基板 2の分 割を行う場合について説明する。その他の点は、実施の形態 1と同様である。
[0045] レーザスクライブとは、レーザビームによって分離溝を形成する方法である。レーザ スクライブによって分離溝を形成した後、通常のブレーキングによって基板を素子単 位に分割することができる。レーザスクライブを用いれば、従来のダイシングなどに比 ベて、深い分離溝をより狭い幅で形成することができる。従って、基板内で分割レー ンの占める面積を小さくして素子の取れ数を多くすることができる。また、分離溝を深 くすることによってブレーキング時の不良発生を抑制できる。このためレーザスクライ ブを用いた分割法は、特に小型素子の分割に適して 、る。
[0046] 本実施の形態では、実施の形態 1で説明した窒化物半導体発光素子の分割にレ ーザスクライブを用いる。これにより、素子の取れ数と歩留まりを向上すると共に、完 成した素子の素子周辺部における光取り出し効率も高めることができる。
[0047] まず、レーザスクライブを用いた基板の分割法について説明する。図 6A〜図 6Cは 、レーザスクライブによる基板の分割方法を模式的に示す断面図である。尚、図 6A 〜Cでは、図面の簡単のために電極や保護膜は省略して 、る。
[0048] まず、図 6Aに示すように、素子の形成が終了した基板 2を、半導体層 9を下側にし て粘着シート 40に固定する。そして、基板 2を研磨して薄膜ィ匕した後(例えば、 450 μ mの基板を 85 μ mまで研磨する)、基板 2の裏面力も素子の分割レーンに沿って レーザビーム 42を照射する。レーザビーム 42としては、例えば 355nmの YAGレー ザを用いることができる。レーザビーム 42のビーム径は、例えば 3〜8 111とする。
[0049] 図 6Bに示すように、レーザビーム 42の照射によって略 V字状の溝 50が基板 2に形 成される。溝 50内にはレーザビーム 42によって溶融した基板材料の再固化物 52が 付着している。この V字溝 50の拡大図を図 7に示す。図 7に示すように、 V字溝 50の 幅 Wと深さ Dの比 WZDは 0. 5以下、より好ましくは 0. 3以下であることが望ましい。 V字溝の深さ Dは、基板 2の厚さの 40〜60%に達することが好ましい。例えば、典型 的な V字溝 50の幅 Wは約 8〜 15 μ mであり、深さ Dは 40〜60 μ mである。このような V字溝 50は、例えば約 85 μ mに薄膜ィ匕した基板 2の分離溝として十分な深さを有し ている。
[0050] 次に、図 6Cに示すように、ローラブレーキング等の適当な手法を用いて基板 2をチ ップ単位に分割する。レーザスクライブによる V字溝 50は十分に深いため、チップ欠 けや割れといった割断時の不良発生を抑制できる。また、レーザスクライブによる分 離溝 50は幅が狭いため、分割レーンの幅を狭くして、素子の取れ数を増大させること 力 Sできる。尚、ブレーキングの際に、再溶融した固化物 52の大部分は脱落する。
[0051] このようにして分割された窒化物半導体発光素子は、特徴的な形状を有する。図 8 Aは、レーザスクライブとブレーキングによって形成された窒化物半導体の側面の形 状を示す模式断面図である。図 8Aに模式的に示すように、上記の方法で分割され た窒化物半導体発光素子の側面は、ブレーキングによって形成された半導体層側 領域 2aとレーザスクライブによって形成された裏面側領域 2bとに上下に分かれてい る。ブレーキングによって形成された半導体層側領域 2aは基板主面に略垂直である のに対し、レーザスクライブによって形成された裏面側領域 2bは基板主面の直交面 力も基板内側に向力つて斜めに傾斜している。その結果、図 8Aに示すように、窒化 物半導体発光素子の断面形状は、基板の裏面側半分が略台形形状となっている。
[0052] また、基板側面の裏面側領域 2bは、レーザービームによって溶融された結果表面 が変質し、表面粗さが大きくなると共に、表面近傍が変色している。この変質した裏面 側領域 2bは、矩形の窒化物半導体発光素子の 4辺全てに存在するため、そのまま 用いては光の取出し効率を低下させる。即ち、基板 2の側面力も放出される光が側面 の変質した領域 2bによって一部吸収されてしまう。また、基板 2は光の導波路を形成 するため、基板 2内を多重反射する光も変質した領域 2bによって一部吸収されてしま
[0053] そこで本実施の形態では、基板 2の裏面側力も砥粒を吹き付けるブラスト加工を行 ヽ 、基板側面の裏面側領域 2bに形成された変質部分をできるだけ除去する。ブラスト 加工は、例えば、アルミナ砲粒を用いて行うことができる。ブラスト力卩ェを行った後の 基板 2は、図 8Bに示すように、基板側面の裏面側領域 2bが丸みを帯びた形状となる 。また、ブラスト加工によって基板側面の裏面側領域 2bの表面粗さもある程度小さく なる。特に、基板裏面の端部 2cは、図 8Cに示すように、角が取れたアール形状とな つている。この端部 2cのアールが大きいほど、側面の裏面側領域 2bにおける変質層 が大きく除去されている。また、基板側面の裏面側領域 2bにおける表面粗さも変質 層の除去程度を反映して 、る。
[0054] 尚、ブラスト加工は、図 6Cに示す基板 2のブレーキング前に行っても良いし、ブレ 一キング後に行っても良い。ブレーキング前に行えば、基板 2の分離溝 50内に堆積 した再固化物 52を除去してからブレーキングを行うことができる。従って、ブレーキン グ時に再固化物 52が飛散して素子に付着するといつた不具合を防止できる。一方、 図 6Cに示すブレーキング工程の後にブラスト加工を行えば、粘着層 40をエキスパン ドすることによって素子同士の間隔を広げた状態でブラストを行うことができる。従つ て、基板側面の裏面領域 2bに形成された変質層をより効率的に除去できる。また、よ り大きな砲粒を用いてブラスト加工が行うことができる。大きな砲粒を用いれば、変質 層の除去をより良好に行うことができ、しかも短時間に力卩ェが終了する。このときの砥 粒の直径は、 10 /z m以上、より好ましくは 40 m以上であることが望ましい。また、ブ レーキング後にブラスト力卩ェを行えば、ブレーキング前に行う場合に比べて基板の割 れ等が発生しにくぐ歩留まりも向上する。尚、ブラスト加工によって光を吸収する変 質層が除去できれば良ぐ基板側面の裏面領域 2bの表面粗さが他の面 (絶えば基 板裏面)と同一になる必要はない。ブラスト加工後も、基板側面の裏面領域 2bの表 面粗さは基板裏面に比べて大きい (例えば、 1. 5倍以上)。
[0055] こうして形成された窒化物半導体発光素子は、素子周辺部における光取り出し効 率も高めることができるため、 p型窒化物半導体層 8及び Z又は透光性電極 10の端 面テーパ角の制御と相俟って、発光が弱くなりやすい素子周辺部の発光強度を改善 することができる。このことを図 9を参照しながら簡単に説明する。図 9は、レーザスク ライブを用いて分割した素子の素子周辺部を模式的に示す断面図である。前述した ように、レーザスクライブによって V字状の分離溝が形成される結果、基板側面の裏 面側領域 2bは傾斜面となる。図 9に示すように、基板内を全反射する角度で進行し てきた光は、傾斜した裏面側領域 2bで反射角度が変わるため、基板力も外部に取り 出され易くなる。しかも、その多くは素子上方に向かう。従って、基板 2の側面が直交 面である場合に比べて、光の取出し効率を高め、また、素子周辺部における発光強 度を改善することができる。
[0056] 以上、図 9に示すように、基板主面に直交する断面(図 9では素子の短手方向に平行 な断面)において、 p側層 9に形成した傾斜面(=p側層の端面 7)と基板 2の側面に 形成した傾斜面(=裏面側領域 2b)とが素子外周に向かって互いに近づくように傾 斜している。換言すれば、 p側層 9の傾斜面は、基板主面に平行な断面における半 導体層の断面積が半導体の積層方向(=n側窒化物半導体層 4から p側窒化物半導 体層 9に向かう方向)に徐々に狭くなるような傾斜を有している。一方、基板 2の側面 に形成した傾斜面は、基板主面に平行な断面における基板の断面積が基板の裏面 に向かって徐々に狭くなるような傾斜を有している。これによつて、発光の弱い周辺 領域における光の取り出し効率が向上する。従って、特に小型の素子における発光 効率を高め、小型かつ高輝度の発光素子を実現できる。
[0057] 実施の形態 3
図 10は、本件発明の実施の形態 2に係る窒化物半導体発光素子を示す上面図で ある。下記に説明する点を除いては実施の形態 1と同様である。
本実施の形態では、 n側パッド電極 12がチップの隅に近 、位置に形成されており、 n側パッド電極 12の一方の側面に沿って p側層 9が延在して 、る。実施の形態 1と同 様に、 p側パッド電極 14と n側パッド電極 12の中心同士を結ぶ中心線 18と、それに 直交する n側パッド電極 12の接線 20を仮想すると、上記 p型層 9の延在部が仮想接 線 20よりも pパッド電極 14から遠い位置となる。したがって、 p型層 9の延在部は発光 強度が低くなる傾向にあり、特にその先端領域 22では発光強度の低下が顕著である 。そこで本実施の形態では、 p型層 9の延在部の先端領域 22に先細形状の終端部 9 aを設けている。また、透光性電極 10についても、同様の位置に先細形状の終端部 1 Oaを設けている。本実施の形態においても、 p側層 9と透光性電極 10に設けた先細 形状の終端部において、端面テーパ角が小さくなるため、発光強度の低下し易い先 端領域 22の光取り出し効率を高めて、素子全体の発光効率を向上すると共に、全面 に均一な発光が実現できる。 [0058] 実施の形態 4
図 11は、本発明の実施の形態 3に係る窒化物半導体発光素子を示す上面図であ る。下記に説明する点を除いては実施の形態 1と同様である。
本実施の形態に係る窒化物半導体発光素子は、図 11に示すように平行四辺形の チップ形状を有する。平行四辺形のチップ形状の場合、一方の対角線上のチップ角 部は鈍角となり、他方の対角線側はチップ角部は鋭角となる。この場合は図 11に示 すように、 p側パッド電極 14及び n側パッド電極 12を平行四辺形チップの鈍角である 角部に近づけて配置することが好ましい。このようにすれば、発光強度が低下しやす い角部の光取り出し効率を高めることができる。即ち、 p側パッド電極 14と nパッド電 極 12を直線で結ぶ電流経路力も離れた領域は基本的に電流密度が小さくなり、発 光強度が低下する傾向にあるが、そのような領域である角部 23及び 26はチップ形状 が鋭角であるため、チップに沿って p側層 9をエッチングすれば、 p側層 9に先細形状 の終端部が形成されることになる。また、透光性電極 10も p側層 9と相似形状とするた め、透光性電極 10にも先細形状の終端部が形成される。従って、発光強度が低下し 易いチップ角部 23及び 26において、端面のテーパ角を小さくして、光取り出し効率 を高めることができる。
[0059] また、本実施の形態にお!、ては、 n側パッド電極 12の両方の側面に沿って p側層 9 が延在している。実施の形態 1と同様に、 p側パッド電極 14と n側パッド電極 12の中 心同士を結ぶ中心線 18と、それに直交する n側パッド電極 12の接線 20を仮想すると 、上記両方の延在部が仮想接線 20よりも pパッド電極 14力も遠い位置となる。そこで 本実施の形態では、チップ角部に近い領域 23だけではなぐそれとは逆の領域 25 に延在して 、る p側層 9にも先細形状の終端部を形成して 、る。本実施の形態にお V、ても、発光強度が低下し易!、領域にぉ 、て端面テーパ角を小さくして光取り出し 効率を高め、素子全体の発光効率を向上すると共に、全面に均一な発光が実現でき る。
[0060] 実施の形態 5
図 12は、本発明の実施の形態 4に係る窒化物半導体発光素子を示す上面図であ る。下記に説明する点を除いて、実施の形態 3と同様である。 本実施の形態では、まず第 1に、一方のチップ角部に近い領域 23から、さらに n側 パッド電極 12に向力つて p側層 9を延ばし、その先端の領域 24に先細形状の終端部 を設ける。このようにすることによって、発光強度の低下しやすい末端部の光取り出し 効率を高めながら、透光性電極 10の形成面積を広げて、一層均一な発光が実現で きる。
[0061] また、第 2に、本実施の形態では、 p側パッド電極 14の一部をチップ角部 26に向か つて延ばし(=延長導電部)、前述の端面テーパ角制御との相乗効果によって、チッ プ角部 26の発光強度を高めている。本実施の形態においても、素子全体の発光効 率を向上すると共に、全面に均一な発光が実現できる。
[0062] 実施の形態 6
本実施の形態では、上記実施の形態 1乃至 4と異なり、 p側層 9や透光性電極 10の 平面形状は従来のまま、相対的に発光が弱くなる領域において p側層 9や透光性電 極 10の端面テーパ角を小さくように制御する。図 13A乃至 Fは、本実施の形態に係 る窒化物半導体発光素子の形状のバリエーションを示す上面図である。相対的に発 光が弱くなる領域は、 n側パッド電極と p側パッド電極の配置や、透光性電極の抵抗 値によっても変化する力 一般的に p側パッド電極と n側パッド電極を直線で結んだ 電流経路から離れるほど発光強度が低下し易い。即ち、基本的に p側パッド電極から 遠い位置ほど発光強度が低くなり易ぐその中でも n側パッド電極からも遠い位置の 発光強度が低くなり易い。
[0063] 図 13Aに示す例では、 n側パッド電極 12と p側パッド電極 14が矩形チップの対角 線上にある 2つの隅部に配置されている。この例では、 n側パッド電極 12と p側パッド 電極 14が形成されていない隅部領域 28及び 29が発光が相対的に弱くなる。そこで 、これらの領域における透光性電極 10及び Z又は P側層 9の端面テーパ角を相対的 に小さくする。次に、図 13Bに示す例では、図 13Aに示した例から p側パッド電極 14 の位置がチップの一辺に沿って辺の略中央に移動している。このため、 p側パッド電 極 14に近い方の隅部領域 28は、その対角線上にある隅部領域 29よりも相対的に発 光が強くなる。そこで、隅部領域 29における透光性電極 10及び Z又は P側層 9の端 面テーパ角を隅部領域 28に比べて小さくする。その他の点は、図 13Aの例と同様で ある。図 13Cに示す例では、矩形チップの一辺に沿った両隅部に n側パッド電極 12 と P側パッド電極 14が配置されている。この場合、パッド電極が配置された辺に対向 する辺の両隅部近傍の領域 30及び 31の発光が弱くなる傾向にある。そこで、これら の領域における透光性電極 10及び Z又は P側層 9の端面テーパ角を相対的に小さ くする。
[0064] 図 13Dに示す例では、対向する 2辺の略中央に p側パッド電極 14と n側パッド電極 12が形成されている。この例では、 n側パッド電極 12の両脇の隅部領域 32及び 33 が発光が相対的に弱くなる。そこで、これらの領域における透光性電極 10及び Z又 は P側層 9の端面テーパ角を相対的に小さくする。図 13Eに示す例は、 p側パッド電 極 14の形状を除いて図 13Dに示す例と同様である。 p側パッド電極 14の両側方から 上記領域 32及び 33に向力つて延びる延長導電部 14aを有する。延長導電部 14aに よって隅部領域 32及び 33における電流密度が向上できる。この延長導電部 14aに よる電流密度向上効果と上記テーパ角制御による光取り出し効率向上効果の相乗 効果によって領域 32及び 33における発光強度の低下を一層抑制できる。図 13Fに 示す例も、 p側パッド電極 14の形状を除いて図 13Eに示す例と同様であり、 p側パッ ド電極 14から隅部領域 28に向力つて延びる延長導電部を有する。しかしながら、こ の例では延長導電部の効果を考慮して、隅部領域 28におけるテーパ角制御は省略 している。
[0065] 実施の形態 7
図 14A及び Bは、本実施の形態に係る窒化物半導体発光素子を示す上面図及び 断面図である。本実施の形態に窒化物半導体発光素子は、窒化物半導体と異なる 異種基板を有しておらず、 n側窒化物半導体層 4、活性層 6及び p側窒化物半導体 層 8から成り、 p側窒化物半導体層の上面に透光性電極 10が形成され、さらに p側パ ッド電極 14が形成されており、 n側窒化物半導体層の下面に n側パッド電極 12が形 成されている。このような構造の窒化物半導体発光素子は、例えば、 n側窒化物半導 体の一部として GaN基板を用いることで製造できる。
[0066] この構造においても p側窒化物半導体槽 8の上面が発光観測面となるが、 n側窒化 物半導体層の裏面に n側パッド電極 12が形成されているため、 p側パッド電極 14か らの距離のみによって発光強度分布が決まる。即ち、 p側パッド電極力もの距離が遠 いほど、電流密度が低下するため、発光強度が弱くなる傾向にある。そこで本実施の 形態においては、透光性電極 10に放射状に複数の突出部 10aを形成し、各突出部 10aを先細形状とする。これにより、相対的に発光が弱くなる領域、即ち、 p側パッド 電極 14から離れた領域において端面テーパ角を小さくすることができ、当該領域に おける光取り出し効率を向上することができる。従って、チップ全体に均一で高発光 強度の窒化物半導体発光素子とすることができる。
[0067] 実施の形態 8.
図 15A及び Bは、実施の形態 8に係る窒化物半導体発光素子を示す上面図及び断 面図である。尚、図 15Bでは、図面の簡単のために絶縁保護膜 16は省略している。 本実施の形態では、 p側層 9と素子外周と間の領域に半導体層の突起群 54を形成 することによって、素子周辺部における光取出し効率を一層高める。その他の点は、 実施の形態 1と同様である。尚、以下では、窒化物半導体発光素子を電極形成面側 からみて、透光性電極 10を有する部分の p側層 9を第 1の領域、第 1の領域と素子外 周に囲まれた領域を第 2の領域と称する。図 15Aに示すように、第 1の領域は、第 2 の領域に囲まれている。また、第 2の領域は素子の外周に囲まれている。
[0068] 図 15A及び図 15Bに示すように、 n側窒化物半導体層 4の,露出した第 2の領域に 、複数の凸部(ディンプル) 54を形成している。この複数の凸部 54は、後述するように 、光の取出し効率を高める作用を有する。 n側窒化物半導体層 4'の露出した第 2の 領域は、 n側パッド電極 12の形成面 (n側コンタクト層の表面)になると同時に、素子 分割の際に分割レーンとなる部分でもある。この第 2の領域に凸部 54を形成すること には種々の利点がある。まず、第 2の領域における n側窒化物半導体層 4'の露出ェ 程と同時に凸部 54の形成を行えば、工程を増加させることなく凸部 54を形成できる。 また、凸部 54を形成するための特別の領域を設ける場合に比べて、素子の小型化 ができる。さらに、素子周辺の第 2の領域は直接発光する部分ではないため発光強 度が低いが、凸部 54を形成することによって第 2の領域力もの光取り出し効率を改善 し、観測面側の全域に渡って発光の均一性を向上できる。
[0069] 第 2の領域に凸部 54を設けることによって、発光観測面側への光の取り出し効率を 例えば 10〜20パーセント向上させることができる。その理由は必ずしも明らかではな いが、以下のように考えられる。
1. n側層 4 (特に n側コンタクト層)内を導波する光が、 n側層 4から凸部 54の内部に 取り込まれ、凸部 54の頂部又はその途中部分力 光が観測面側に取り出される。
2.活性層 6の端面力も側方に出射された光が、複数の凸部 54により反射散乱され 観測面側へ取り出される。
3. n側層 4 (特に n側コンタクト層)内を導波する光が、凸部 54の根本 (n側層 4と凸部 54の接続部分)付近にて凸部 54の側面で乱反射され、観測面側へ光が取り出され る。
[0070] 尚、第 2の領域の割合は、素子が小型になる程大きくなる。即ち、基板側から分離溝 を形成して素子分割を行う際に、電流が通過して発光する領域である第 1の領域(= P側層 9)に分離溝が達すると、素子が劣化して発光効率が低下してしまう。このため 、基板裏面に形成する分離溝が第 1の領域に達しない程度に第 1の領域を素子外周 から離して形成する必要がある。このため、特に素子のサイズが小さい場合は、素子 面積に対して第 2の領域が占める割合が大きくなる。従って、特に小型の素子におい て、第 2の領域に凸部 54を形成することが有効である。
[0071] また、図 15A及び Bに示す窒化物半導体発光素子は DH構造 (ダブルへテロ構造) であるので、活性層 6の部分が発光部となる。そこで図 15Bに示すように、第 2の領域 に設けられた各凸部 54は、素子断面において、活性層 6よりも高くすることが好まし い。また、凸部 54の間の底部は、活性層 6よりも低くすることが好ましい。より具体的 には、凸部 54は、少なくとも活性層 6とそれに隣接する n側窒化物半導体層 4' 'との 界面より高ければよいが、活性層 6とそれに隣接する p側窒化物半導体層 8との界面 より高いことがより好ましい。また、凸部 54同士の間の底部は、少なくとも活性層 6とそ れに隣接する p側窒化物半導体層 8との界面より低ければよいが、活性層 6とそれに 隣接する n側窒化物半導体層 4' 'との界面より低いことがより好ましい。これによつて 、活性層 6からの発光の取出し効率を効果的に高めることができる。
[0072] さらに、凸部 54は、 p側層 9と実質的に同じ高さにすることが好ましい。これによつて 、透光性電極 10が形成された第 1の領域の半導体層 9に遮られることなぐ凸部 54 の頂部から観測面側に効果的に光を取り出すことができる。さらには、凸部 54を p側 コンタクト層 8よりも高ぐより好ましくは透光性電極 10よりも高くすることにより、一層効 果的に光を取り出すことができる。
[0073] さらに、上記効果は、半導体積層方向、つまり n側層 4から p側層 8に向かって、凸 部 54の断面形状の幅が徐々に細くなるようにすることで、より大きなものとなる。すな わち、凸部 54の側面を傾斜させることにより、活性層 6からの光を凸部 54の側面で高 効率で反射させることができる。また、 n側層 4を導波した光を高効率で散乱させるこ とができる。従って、観測面側への光取り出しを効果的に行うことができる。凸部 54の 側面の傾斜角は、 30° 〜80° が好ましぐ 40° 〜70° 力 り好ましい。ここで凸部 54の側面の傾斜角とは、凸部 54の断面における底辺側の内角を指す。
[0074] 凸部 54の断面形状は、三角形、半楕円、台形等の種々の形状が可能である。また、 凸部 54の平面形状も、円形、三角形等、種々の形状が可能である。特に、凸部 54の 断面形状が徐々に先細りとなる形状であり、平面形状が円形であることが好ましい。 このように構成することにより、光の指向性制御がより容易になると共に、全体としてよ り均一な光取り出しが可能となる。 p側コンタクト層 8側力も光を取り出す場合 (p側コン タ外層を観測面とする場合)にも、観測面側力も見た凸部の平面形状が点ではなく 、一定の面積をもつことが好ましいと考えられる。
また、凸部 54の上面が一定の面積を持つ平面である場合、凸部 54の上面の略中央 部に凹みをつけても良い。これにより、 n側層 4内を導波してきた光が凸部 54の内部 に侵入した際に、凸部 54の上面に形成された凹みによって観測面側に光が出射さ れやすくなる。
[0075] 凸部 54は、第 1の領域力も素子外周に向力つて 2列以上、好ましくは 3列以上配列 されていることが望ましい。また、第 1の領域から素子外周に向かって基板主面に平 行な方向に見たときに、異なる列の凸部 54同士が部分的に重なるように凸部 54が配 列されていることが好ましい。これにより、第 1の領域から出射した光が高い確率で凸 部 54で反射、散乱されることになり、光取出し効率が高くなる。
[0076] 本実施の形態における凸部 54は、 n側窒化物半導体層 4' 'を露出する際に、同時に 形成することが好ましい。例えば、 p側コンタクト層 8を積層した後に、後に透光性電 極 10を設ける p側層 9の部分 (第 1の領域)および凸部 54を形成すべき部位 (第 2の 領域の一部分)をレジスト膜で覆い、 n側窒化物半導体層 4' 'が露出するまでエッチ ングを行う。これにより、 n側パッド電極 12を形成するための露出面と凸部 54を同時 形成できる。尚、マスクとしてレジスト膜に代えて、 SiO等の絶縁膜を用いてもよい。
2
[0077] このように形成された凸部 54は、第 1の領域における半導体積層構造と同じ積層構 造を備える。し力しながら、第 1の領域に含まれる活性層 6は発光層として機能するが 、第 2の領域の凸部に含まれる活性層 6は発光層として機能しない。これは、第 1の領 域力 ¾側パッド電極 14を有するのに対して、第 2の領域(凸部)には p側パッド電極 14 が形成されていないことによる。すなわち、第 1の領域の活性層 6は通電によりキヤリ ァ (正孔及び電子)が供給され得るのに対し、第 2の領域に設けられた凸部の活性層 には通電によりキャリアは供給されない。従って、本実施の形態の凸部 54は、それ自 体で発光しうるものではない。よって、素子を分割する際に凸部 54の一部が破断して も発光効率の低下はほとんどな 、。
[0078] 本実施の形態における凸部 54は、横方向(窒化物半導体発光素子の側面方向) に出射する光を減少させ、上方向 (観測面側)への出射光を増加させる。特に、サイ ズの小さい素子の場合は、第 2の領域の占める割合が大きいので、発光強度の強い 領域が少なくなつてしまう。この第 2の領域に凸部 54を形成することで、発光強度の 比較的強 、領域を増やすことができる。
[0079] また、本実施の形態における素子の分割は、実施の形態 2で説明したレーザスクラ イブによって行うことが好ましい。レーザスクライブによって素子分割を行えば、基板 側面の裏面側領域 2bを斜めに傾斜させて、基板端面における光の取り出し効率を 向上することができる。従って、本実施の形態における凸部 54と基板側面に形成し た傾斜面(=裏面側領域 2b)とが協働して光を上方に向かわせ、暗くなり易い素子の 周辺部における光取り出し効率を高めることができる。
[0080] 実施の形態 9
図 16は、本実施の形態に係る窒化物半導体発光素子を示す上面図である。本実 施の形態では、実施の形態 8において、 n側パッド電極 12を囲む部分の p側層 9に複 数の突出部 9aを設けている。この突出部 9aの形成により、電流が通過して発光する 領域を有する第 1の領域を増やしている。さらに、各突出部 9aを先細形状としている ため、突出部 9aの端面で光を乱反射させることができ、光取り出し効率が向上する。 さらに、各突出部 9aの終端部の端面におけるテーパ角が小さくなり、当該領域からの 光取り出し効率が向上する。
実施例 1
[0081] 図 1及び図 2に示す構造の窒化物半導体発光素子を作製する。具体的には、サファ ィァ基板 2の上に、(a)AlGaNよりなるバッファ層(図示せず)、(b)ノンドープ GaN層 (図示せず)、(c) n側窒化物半導体層 4として、 Siドープ GaNよりなる n側コンタクト層 、及び GaN層(40A)と InGaN層 (20A)とを交互に 10回積層させた超格子の n側ク ラッド層、 (d) GaN層(250 A)と InGaN層(30 A)とが交互に 3〜6回積層された多 重量子井戸構造の活性層 6、(e) p側窒化物半導体層 8として、 Mgドープ GaN層(4 OA)と Mgドープ InGaN層(25 A)とが交互に 2回積層された超格子の p側クラッド層 、及び Mgドープ GaNよりなる p側コンタクト層、をこの順に積層する。
[0082] 一部の領域にお 1、て、 p側窒化物半導体層 8、活性層 6及び n側窒化物半導体層 の一部 4' ' (=p側層 9)を除去して n側窒化物半導体層 4'の表面が露出させる。この ときに接線 20よりも p側パッド電極 14から離れた領域の p側層 9の端面テーパ角が小 さくなるようにエッチングする。そして露出した n側層 4'上に n側パッド電極 12を形成 する。そして、 p側窒化物半導体層 8上のほぼ全面に、 ITO力もなる透光性電極 10を 形成し、この透光性電極 10の一部の上に p側パッド電極 14を形成する。このとき、接 線 20よりも p側パッド電極 14力も離れた領域の透光性電極 10の端面テーパ角が小 さくなるようにエッチングする
[0083] 以下、より詳細に説明する。
<半導体層の形成 >
まず、直径 2インチ、 C面を主面とするサファイア基板を MOVPE反応容器内にセッ トし、温度を 500°Cにしてトリメチルガリウム (TMG)、トリメチルアルミニウム (TMA)、 アンモニア(NH )を用い、 Al Ga Nよりなるバッファ層を ΙΟθΑの膜厚で成長させ
3 0.1 0.9
る。バッファ層形成後、温度を 1050°Cにして、 TMG、アンモニアを用い、アンドープ GaN層を 1. 5 /z mの膜厚で成長させる。この層は、素子構造を形成する各層の成長 において下地層(成長基板)として作用する。
[0084] 次に、下地層の上に、 n側窒化物半導体層 4として、 TMG、アンモニア、不純物ガ スとしてシランガスを用い、 1050°Cで Siを 1 X 1018/cm3ドープさせた GaNからなる n側コンタクト層を 2. 165 /z mの膜厚で成長させる。温度を 800°Cにして、原料ガス にトリメチルインジウムを断続的に流しながら、 GaN層(40A)と InGaN層(20A)とを 交互に 10回積層させた超格子の n型クラッド層 5を 640Aの膜厚で成長させる。さら に、 GaN層(250A)と InGaN層(30A)とを交互に 3〜6回積層させた多重量子井 戸構造の活性層 6を成長させる。
[0085] p側窒化物半導体層 8として、 Mgドープ Al Ga N層(40 A)と Mgドープ InGaN
0.1 0.9
層(20 A)とを交互に 10回積層させた超格子の p型クラッド層を 0. 2 m成長させる o最後に、 900。Cで、水素雰囲気下、 TMGを 4cc、アンモニア 3. 0リットル、キャリア ガスとして水素ガスを 2. 5リットル導入し、 p型クラッド層の上に Mgを 1. 5 X 102Vc m3ドープした p型 GaNからなる p側コンタクト層を 0. 5 mの膜厚で成長させる。その 後、得られたウェハを反応容器内で、窒素雰囲気中、 600°Cにてァニールし、 p型ク ラッド層及び P側コンタクト層をさらに低抵抗化する。
[0086] <エッチング >
ァニール後、ウェハを反応容器力 取り出し、最上層の p側コンタクト層の表面に所 定の形状のマスクを形成して、 p側層 9の p側パッド電極 14力も離れた位置に先細形 状 (WZLは約 1. 2)の終端部 9aを形成する。その終端部 9aが他の終端部よりもテー パ角が小さくなるように、 p側層 9をエッチングし、 n側コンタクト層の一部を露出させる 。このとき先細形状の終端部 9aにおける端面テーパ角は約 27° となる。
[0087] く p電極及び n電極の形成〉
マスクを除去した後、スパッタ装置にウェハを設置し、 In Oと SnOとの焼結体から
2 3 2
なる酸ィ匕物ターゲットをスパッタ装置内に設置する。スパッタ装置によって、酸素ガス 雰囲気中、スパッタガスとしてアルゴンガスと酸素との混合ガス(20 : 1)で、例えば、 R Fパワー 10W/cm2で 20分間スパッタリングし、引き続き、 RFパワーを 2W/cm2に 変更して 20分間スパッタリングすることにより、 ITOよりなる透光性電極 10を、膜厚 50 00 Aで形成する。透光性電極 10を形成後、上記と同様に透光性電極 10上に、 p側 ノッド電極 14力も離れた位置に先細形状 (WZLは約 0. 86)の終端部を有するマス クを設け、そのマスクの上力もエッチングする。このとき先細形状の終端部 10aにおけ る端面テーパ角は約 60° となる。
[0088] 次いで、透光性電極 10上に、レジストにより所定のパターンを有するマスクを形成し 、その上に W層、 Pt層および Au層をこの順に積層し、リフトオフにより、ボンディング 用の P側パッド電極 14を総膜厚 1 μ mで形成する。その後、 n型コンタクト層の上に、 !¾7? 7八11からなる11側パッド電極12を7000 の膜厚で形成する。次いで、 Ύ二 ール装置にて 400〜600°C程度で熱処理を施す。
[0089] 得られたウェハを所定の箇所で分割することにより、窒化物半導体発光素子 1を得 ることができる。以上のようにして形成した窒化物半導体発光素子は、 p側パッド電極 と n側パッド電極に挟まれた領域にぉ 、て発光強度が最も強くなる。この発光強度が 最も強い領域における P側層 9及び透光性電極 10の端面テーパ角に比べて、 p側層 9及び透光性電極 10に形成された先細形状の終端部 9a及び 10aの端面テーパ角 力 、さくしているので、この端面から上方向に向力 光を増加させることができ、発光 均一性が向上する。また、光取り出し効率も向上する。
実施例 2
[0090] 実施例 1にお 、て、透光性電極のエッチング条件 (エッチング液、ガス等)を変える ことにより、 p側パッド電極と n側パッド電極に挟まれた領域における透光性電極 10の 端面テーパ角が 110° とする。その他の点は実施例 1と同様である。実施例 1に比べ て、 P側パッド電極と n側パッド電極に挟まれた領域における透光性電極 10の端面へ の発光の集中が緩和される。
比較例 1
[0091] 実施例 1において、 p側層 9と透光性電極 10のエッチング速度を大きくして p側層 9及 び透光性電極 10の端面のテーパ角を全周に渡って略同一の 90° とする。その他の 点は、実施例 1と同様にして窒化物半導体発光素子を作成する。実施例 1に比べて 、 P側パッド電極力 離れた領域における発光強度が低下する。
実施例 3
[0092] p側層 9をエッチングするマスク形成の際に、図 16に示すように、 n電極 14を囲む部 分に複数の半円状の突出部 9bが形成されると同時に、 p側層 9と素子外周の間 (第 2 の領域)に複数の円形の凸部 54が形成されるようにマスクを残す。凸部 54は、直径 5 /z mの円形とし、凸部 54の中心同士の間隔を 7 mで配列する。また、凸部 54は、 素子の外周に沿って 2列又は 3列の凸部 54が配列し、偶数列の凸部 54と奇数列の 凸部 54の位置は互いに半周期ずれるようにする。その他の点は、実施例 1と同様に して窒化物半導体発光素子を作製する。また、半円状の突出部 9bや円形凸部 54の 端面テーパ角は 75° となる。
[0093] この実施例の窒化物半導体発光素子では、凸部 54と半円状の突出部 9bにより光取 出し効率が実施例 1よりも向上する。また、半円状の突出部 9bを設ける結果、 n側パ ッド電極 12と p側層 9との間隔が素子外周と p側層 9 ( =第 1の領域)との間隔よりも狭 くなるため、電流が通過して発光する第 1の領域の面積が増加し、発光効率が向上 する。
実施例 4
[0094] 実施例 1の窒化物半導体発光素子において、素子の分割をレーザスクライブを用い て行う。その他の点は、実施例 1と同様である。
まず、実施例 1と同様にして窒化物半導体発光素子を形成した後、サファイア基板 2 を裏面力も研磨した厚さ 85 mにする。次に、サファイア基板 2を裏面が上面になる ように粘着シート 40に固定する。そして、波長 355nm、ビーム径 5 μ mの YAGレー ザビームをサファイア基板 2の裏面上で走査させ、表面での幅が約 10 μ m、深さが 約 47 /z mの分離溝を形成する。次に、サファイア基板 2の裏面力もブラスト加工を行 い、分離溝内に付着した溶融再固化物を除去する。ブラスト加工には、直径が約 4 mの Al Oを用いる。そしてサファイア基板 2の裏面からローラブレーキングを行い、
2 3
個々のチップに分割する。チップサイズは、短手方向に 150 /z mで、長手方向に 25 O /z mとなるようにする。
[0095] このようにして形成した窒化物半導体発光素子は、図 9に示すように、サファイア基板 の側面の裏面側約 47 mの領域が斜めに傾斜している。その傾斜角(傾斜面 2bが 基板主面の直交面に対してなす角)は約 6° となる。この側面の傾斜の効果により、 素子周辺部における光の取出し効率が高まる。 実施例 5
実施例 4において、ブラスト力卩ェをローラブレーキングの後に行う他は、実施例 4と 同様にして窒化物半導体発光素子を作製する。
実施例 4においてレーザスクライブを行い、さらにローラブレーキングを行った後、粘 着シート 40をエキスパンドして素子同士の間隔を広げる。そして、サファイア基板 2の 裏面からブラスト加工を行う。ブラスト用の砲粒には直径 40 mの Al Oを用いる。ブ
2 3 ラスト力卩ェの砲粒が実施例 4に比べて大き 、ため、より短時間でブラスト加工を終える ことができる。このようにして得られた窒化物半導体発光素子は、サファイア基板 2の 側面の裏面側 2bの変質層が実施例 4よりも良好に除去されている。また、実施例 4と 同様に、サファイア基板 2の側面の裏面側 2bが斜めに傾斜しており、素子周辺部に おける光の取出し効率が向上する。尚、サファイア基板 2の側面の裏面側領域 2bに おける表面粗さは約 1. l /z mであり、サファイア基板 2の裏面の表面粗さ(約 0. 5 μ m)の 2倍であった。

Claims

請求の範囲
[1] 基板と、
前記基板上に形成された n側窒化物半導体層及び p側窒化物半導体層と、 前記 P側窒化物半導体層の上に形成された透光性電極と、
前記 P側窒化物半導体層の上に形成された、外部回路と接続するための p側パッド 電極と、
前記 n側窒化物半導体層と外部回路と接続するための n側パッド電極と、を備えた 窒化物半導体発光素子であって、
前記透光性電極及び Z又は前記 P側窒化物半導体層の端面が有するテーパ角を 位置によって異ならしめたことを特徴とする窒化物半導体発光素子。
[2] 発光強度の最も弱!ヽ領域における前記テーパ角を、発光強度の最も強!、領域に 比べて小さくしたことを特徴とする請求項 1に記載の窒化物半導体発光素子。
[3] 前記テーパ角を、前記発光の最も強い領域では 70度よりも大きくし、前記発光の最 も弱い領域では 70度以下にしたことを特徴とする請求項 2に記載の窒化物半導体発 光素子。
[4] 前記テーパ角を、前記 p側パッド電極力も最も離れた位置において 70度以下にし たことを特徴とする請求項 1乃至 3のいずれ力 1項に記載の窒化物半導体発光素子
[5] 基板上面から見て、前記透光性電極及び Z又は前記 P側窒化物半導体層が、相 対的に発光の弱 、領域にぉ 、て先細形状の終端部を有しており、
前記終端部における前記テーパ角が、発光の最も強い領域における前記テーパ 角よりも小さなことを特徴とする請求項 1乃至 4のいずれか 1項に記載の窒化物半導 体発光素子。
[6] 基板の短手方向にぉ 、て、前記 p側パッド電極が接続されて 、る p側窒化物半導 体層の幅を X、前記 p側パッド電極の最大幅を Rとして、 X< 2Rの関係を充足するこ
P P
とを特徴とする請求項 1乃至 5のいずれかに記載の窒化物半導体発光素子。
[7] 前記基板の側面は、半導体層側の領域が基板主面に直交しており、裏面側の領 域が基板主面の直交面に対して傾斜していることを特徴とする請求項 1乃至 6のいず れかに記載の窒化物半導体発光素子。
[8] 前記透光性電極と素子外周との間において、窒化物半導体力 成る複数の凸部を 形成したことを特徴とする請求項 7に記載の窒化物半導体発光素子。
[9] 前記半導体層側の領域の表面粗さが、前記基板裏面側の領域よりも小さ!ヽことを 特徴とする請求項 7に記載の窒化物半導体発光素子。
[10] 基板と、
前記基板上に形成された n側窒化物半導体層、活性層及び p側窒化物半導体層と 前記 P側窒化物半導体層上に形成された透光性電極と、
前記 P側窒化物半導体層上に形成された、外部回路と接続するための p側パッド電 極と、
前記 P側窒化物半導体層と前記活性層の一部を除去して露出した前記 n側窒化物 半導体層上に形成された、外部回路と接続するための n側パッド電極と、
を備えた窒化物半導体発光素子であって、
発光強度の最も弱!、領域にお!、て前記 p側窒化物半導体層及び前記活性層の端 面が有するテーパ角を、発光強度の最も強い領域に比べて小さくしたことを特徴とす る窒化物半導体発光素子。
[11] 発光強度の最も弱い領域における前記テーパ角を、発光強度の最も強い領域に 比べて小さくしたことを特徴とする請求項 10に記載の窒化物半導体発光素子。
[12] 基板上面から見て、前記 p側窒化物半導体層及び前記活性層が、相対的に発光 の弱 、領域にぉ 、て先細形状の終端部を有し、
前記終端部における前記テーパ角が、発光の最も強い領域に比べて小さなことを 特徴とする請求項 10又は 11に記載の窒化物半導体発光素子。
[13] 基板上面から見て、前記 n側パッド電極と前記 p側パッド電極の中心同士を結ぶ中 心線と、その中心線に直交する前記 n側パッド電極の接線とを仮想して、
前記 P側窒化物半導体層及び前記活性層は、前記接線よりも前記 p側パッド電極 から遠 ヽ領域に先細形状の終端部を有し、
前記先細形状の終端部において前記 P側窒化物半導体層の端面が有するテーパ 角力 発光の最も強 、領域に比べて小さなことを特徴とする請求項 10乃至 12の ヽ ずれか 1項に記載の窒化物半導体発光素子。
[14] 前記先細形状の終端部におけるテーパ角が、 70度以下であることを特徴とする請 求項 13に記載の窒化物半導体発光素子。
[15] 基板の短手方向にぉ 、て、前記 p側パッド電極が接続されて 、る p側窒化物半導 体層の幅を X、前記 ρ側パッド電極の最大幅を Rと、前記 n側パッド電極の最大幅を R
P
して、 Xく 2Rかつ Xく 2Rの関係を充足することを特徴とする請求項 10乃至 14の いずれかに記載の窒化物半導体発光素子。
[16] 前記基板の側面は、半導体層側の領域が基板主面に直交しており、基板裏面側 の領域が基板主面の直交面に対して傾斜していることを特徴とする請求項 10乃至 1
5の 、ずれかに記載の窒化物半導体発光素子。
[17] 前記透光性電極と素子外周との間において、窒化物半導体から成る複数の凸部を 形成したことを特徴とする請求項 16に記載の窒化物半導体発光素子。
[18] 前記半導体層側の領域の表面粗さが、前記基板裏面側の領域よりも小さいことを 特徴とする請求項 16又は 17に記載の窒化物半導体発光素子。
[19] n側窒化物半導体層と、
前記 n側窒化物半導体層の上に形成された活性層と、
前記活性層の上に形成された P側窒化物半導体層と、
前記 P側窒化物半導体層の上面に形成された透光性電極及び P側パッド電極と、 前記 n側窒化物半導体層の下面に形成された、外部回路と接続するための n側パ ッド電極と、を備えた窒化物半導体発光素子であって、
発光強度の最も弱 、領域にぉ 、て前記透光性電極の端面が有するテーパ角を、 発光強度の最も強い領域に比べて小さくしたことを特徴とする窒化物半導体発光素 子。
[20] 基板上面から見て、前記透光性電極が、相対的に発光の弱い領域において先細 形状の終端部を有することを特徴とする請求項 19に記載の窒化物半導体発光素子
[21] (a)基板上に n側窒化物半導体層、活性層及び p側窒化物半導体層を積層するェ 程と、
(b)前記 p側窒化物半導体層、前記活性層及び前記 n側窒化物半導体層の一部を 除去して、前記 n側窒化物半導体層の表面を露出させる工程と、
(c)前記 p側窒化物半導体層の上に透光性電極及び p側パッド電極を形成する工程 と、
(d)前記露出した n側窒化物半導体層の上に n側パッド電極を形成する工程と、を備 えた窒化物半導体発光素子の製造方法であって、
前記工程 (b)において、前記 p側窒化物半導体層及び前記活性層の端面が有す るテーパ角が素子内の位置によって異なるようにすることを特徴とする窒化物半導体 発光素子の製造方法。
[22] 前記工程 (d)の後、さらに、
(e)前記基板の裏面力 素子の割断線に沿ってレーザを照射する工程と、
(f)前記基板を素子ごとに分割する工程、
を備えたことを特徴とする請求項 21に記載の窒化物半導体発光素子の製造方法。
[23] 前記工程 (f)の後に、
(g)前記基板裏面をブラスト加工する工程を備えたことを特徴とする請求項 21又は 2 2に記載の窒化物半導体発光素子の製造方法。
PCT/JP2005/006174 2004-03-31 2005-03-30 窒化物半導体発光素子 WO2005096399A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020067020371A KR101119727B1 (ko) 2004-03-31 2005-03-30 질화물 반도체 발광 소자
EP05721672.3A EP1746664B1 (en) 2004-03-31 2005-03-30 Nitride semiconductor light emitting element
JP2006511771A JP4320676B2 (ja) 2004-03-31 2005-03-30 窒化物半導体発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004107412 2004-03-31
JP2004-107412 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005096399A1 true WO2005096399A1 (ja) 2005-10-13

Family

ID=35064087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006174 WO2005096399A1 (ja) 2004-03-31 2005-03-30 窒化物半導体発光素子

Country Status (7)

Country Link
US (2) US7358544B2 (ja)
EP (1) EP1746664B1 (ja)
JP (2) JP4320676B2 (ja)
KR (1) KR101119727B1 (ja)
CN (2) CN101587932B (ja)
TW (1) TWI385815B (ja)
WO (1) WO2005096399A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109822A (ja) * 2005-10-12 2007-04-26 Nichia Chem Ind Ltd 半導体素子の製造方法、及びそれにより得られる半導体素子
JP2007258445A (ja) * 2006-03-23 2007-10-04 Showa Denko Kk 窒化ガリウム系化合物半導体発光素子の製造方法、窒化ガリウム系化合物半導体発光素子及びそれを用いたランプ
JP2007335529A (ja) * 2006-06-13 2007-12-27 Showa Denko Kk 窒化ガリウム系化合物半導体発光素子
JP2008010840A (ja) * 2006-05-29 2008-01-17 Nichia Chem Ind Ltd 窒化物半導体発光素子
JP2008227018A (ja) * 2007-03-09 2008-09-25 Nichia Chem Ind Ltd 半導体発光素子及びその製造方法
JP2008244414A (ja) * 2007-02-27 2008-10-09 Opnext Japan Inc 半導体光装置
JP2009059970A (ja) * 2007-08-31 2009-03-19 Seiwa Electric Mfg Co Ltd 半導体発光素子及び半導体発光素子の製造方法
JP2009531851A (ja) * 2006-03-28 2009-09-03 ソウル オプト デバイス カンパニー リミテッド ツェナーダイオードを備える発光素子及びその製造方法
JP2010080542A (ja) * 2008-09-24 2010-04-08 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子、およびその製造方法
JP2010529658A (ja) * 2007-05-30 2010-08-26 バーティクル,インク 発光ダイオードおよびその製造方法
JP2010283399A (ja) * 2010-09-24 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> 発光ダイオード
WO2011111642A1 (ja) * 2010-03-08 2011-09-15 日亜化学工業株式会社 半導体発光素子及びその製造方法
JP2013051260A (ja) * 2011-08-30 2013-03-14 Toyoda Gosei Co Ltd 半導体発光チップの製造方法および半導体発光チップ
JP2014033090A (ja) * 2012-08-03 2014-02-20 Stanley Electric Co Ltd 半導体発光装置
JP5556657B2 (ja) * 2008-05-14 2014-07-23 豊田合成株式会社 Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ
JP2015167263A (ja) * 2009-06-03 2015-09-24 日亜化学工業株式会社 半導体レーザ素子
JP2019050312A (ja) * 2017-09-11 2019-03-28 豊田合成株式会社 発光素子の製造方法
JP2020064967A (ja) * 2018-10-17 2020-04-23 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
JP6861900B1 (ja) * 2019-09-27 2021-04-21 三菱電機株式会社 光半導体装置の製造方法

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4292925B2 (ja) * 2003-09-16 2009-07-08 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子の製造方法
JP2006150385A (ja) * 2004-11-26 2006-06-15 Canon Inc レーザ割断方法
KR100748247B1 (ko) * 2005-07-06 2007-08-09 삼성전기주식회사 질화물계 반도체 발광다이오드 및 그 제조방법
JP2007110090A (ja) * 2005-09-13 2007-04-26 Sony Corp GaN系半導体発光素子、発光装置、画像表示装置、面状光源装置、及び、液晶表示装置組立体
KR100665284B1 (ko) * 2005-11-07 2007-01-09 삼성전기주식회사 반도체 발광 소자
JP2007317686A (ja) * 2006-05-23 2007-12-06 Seiko Epson Corp 光素子チップ、並びに、光モジュールおよびその製造方法
US7518139B2 (en) * 2006-10-31 2009-04-14 Lehigh University Gallium nitride-based device and method
US8030641B2 (en) * 2006-12-19 2011-10-04 Lehigh University Graded in content gallium nitride-based device and method
WO2008133756A1 (en) * 2006-12-24 2008-11-06 Lehigh University Efficient light extraction method and device
US8659005B2 (en) * 2006-12-24 2014-02-25 Lehigh University Staggered composition quantum well method and device
KR20090022700A (ko) * 2007-08-31 2009-03-04 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP5333226B2 (ja) * 2007-09-26 2013-11-06 日亜化学工業株式会社 発光素子及びそれを用いた発光装置
KR100941616B1 (ko) * 2008-05-15 2010-02-11 주식회사 에피밸리 반도체 발광소자
TWI437731B (zh) * 2009-03-06 2014-05-11 Advanced Optoelectronic Tech 一種具有提升光取出率之半導體光電元件及其製造方法
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
JP2011119519A (ja) * 2009-12-04 2011-06-16 Showa Denko Kk 半導体発光素子及び半導体発光装置
KR101654340B1 (ko) * 2009-12-28 2016-09-06 서울바이오시스 주식회사 발광 다이오드
KR101163861B1 (ko) 2010-03-22 2012-07-09 엘지이노텍 주식회사 발광소자, 전극 구조 및 발광 소자 패키지
US8283652B2 (en) 2010-07-28 2012-10-09 SemiLEDs Optoelectronics Co., Ltd. Vertical light emitting diode (VLED) die having electrode frame and method of fabrication
US8723160B2 (en) 2010-07-28 2014-05-13 SemiLEDs Optoelectronics Co., Ltd. Light emitting diode (LED) die having peripheral electrode frame and method of fabrication
CN103069586B (zh) * 2010-08-06 2016-03-30 日亚化学工业株式会社 发光元件的制造方法
JP2012227234A (ja) * 2011-04-18 2012-11-15 Nichia Chem Ind Ltd 発光装置及び発光装置の製造方法
JP2012231087A (ja) * 2011-04-27 2012-11-22 Mitsubishi Chemicals Corp 窒化物系ledの製造方法
JP5716524B2 (ja) * 2011-05-06 2015-05-13 日亜化学工業株式会社 発光素子の製造方法
TWI512807B (zh) * 2011-06-09 2015-12-11 Epistar Corp 半導體元件結構與其分離方法
JP5731344B2 (ja) 2011-09-28 2015-06-10 浜松ホトニクス株式会社 放射線検出器
CN103066177A (zh) * 2011-10-19 2013-04-24 展晶科技(深圳)有限公司 发光二极管晶粒
CN103840054A (zh) * 2012-11-20 2014-06-04 展晶科技(深圳)有限公司 发光二极管芯片
US11233029B2 (en) 2013-04-10 2022-01-25 Mitsubishi Electric Corporation Semiconductor device having a device fixed on a substrate with an adhesive
DE102013104351B4 (de) * 2013-04-29 2022-01-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterschichtenfolge und Verfahren zum Betreiben eines optoelektronischen Halbleiterchips
JP6136701B2 (ja) * 2013-07-24 2017-05-31 日亜化学工業株式会社 発光装置
JP2016062986A (ja) * 2014-09-16 2016-04-25 株式会社東芝 半導体装置と半導体装置の製造方法
KR102256591B1 (ko) * 2014-10-31 2021-05-27 서울바이오시스 주식회사 고효율 발광 장치
DE102015111493B4 (de) * 2015-07-15 2021-09-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Bauelement mit verbesserten Auskoppeleigenschaften
DE102015117662B4 (de) 2015-10-16 2021-07-22 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
CN105206729A (zh) * 2015-10-30 2015-12-30 厦门乾照光电股份有限公司 一种提升取光效率的GaN-LED芯片
US9530934B1 (en) * 2015-12-22 2016-12-27 Epistar Corporation Light-emitting device
US10199542B2 (en) 2015-12-22 2019-02-05 Epistar Corporation Light-emitting device
JP6936574B2 (ja) * 2016-12-07 2021-09-15 日機装株式会社 光半導体装置
US10505072B2 (en) * 2016-12-16 2019-12-10 Nichia Corporation Method for manufacturing light emitting element
EP3422827B1 (en) * 2017-06-30 2024-04-24 LG Display Co., Ltd. Display device and method for fabricating the same
TWI672466B (zh) * 2018-04-11 2019-09-21 台灣愛司帝科技股份有限公司 微型發光二極體顯示器及其製作方法
KR102565148B1 (ko) * 2018-06-27 2023-08-18 서울바이오시스 주식회사 플립칩형 발광 다이오드 칩 및 그것을 포함하는 발광 장치
CN113690349B (zh) * 2021-06-30 2024-03-29 华灿光电(浙江)有限公司 防断裂发光二极管芯片及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214749A (ja) * 1998-01-29 1999-08-06 Sanyo Electric Co Ltd 半導体発光装置
JP2002353504A (ja) * 2001-05-09 2002-12-06 Lumileds Lighting Us Llc メサ上に高反射誘電被覆が施された半導体ledフリップチップ
WO2003007390A1 (fr) * 2001-07-12 2003-01-23 Nichia Corporation Dispositif semi-conducteur

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388632A (ja) 1986-09-30 1988-04-19 Nec Corp 印字デ−タ変換方法
EP0405757A3 (en) * 1989-06-27 1991-01-30 Hewlett-Packard Company High efficiency light-emitting diode
JP2697572B2 (ja) 1993-09-21 1998-01-14 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
JP2803742B2 (ja) 1993-04-28 1998-09-24 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子及びその電極形成方法
JP2770717B2 (ja) 1993-09-21 1998-07-02 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
JP2770720B2 (ja) 1993-10-08 1998-07-02 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
JP2748818B2 (ja) 1993-05-31 1998-05-13 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
JP2783349B2 (ja) 1993-07-28 1998-08-06 日亜化学工業株式会社 n型窒化ガリウム系化合物半導体層の電極及びその形成方法
JP3154364B2 (ja) 1994-01-28 2001-04-09 日亜化学工業株式会社 n型窒化ガリウム系化合物半導体層の電極及びその形成方法
DE69433926T2 (de) 1993-04-28 2005-07-21 Nichia Corp., Anan Halbleitervorrichtung aus einer galliumnitridartigen III-V-Halbleiterverbindung
JPH07111339A (ja) 1993-10-12 1995-04-25 Sumitomo Electric Ind Ltd 面発光型半導体発光装置
JP3180871B2 (ja) 1994-01-28 2001-06-25 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子およびその電極形成方法
JP3529950B2 (ja) 1996-07-12 2004-05-24 豊田合成株式会社 3族窒化物半導体のドライエッチング方法及び素子
JP3504079B2 (ja) * 1996-08-31 2004-03-08 株式会社東芝 半導体発光ダイオード素子の製造方法
US6020602A (en) * 1996-09-10 2000-02-01 Kabushiki Kaisha Toshba GaN based optoelectronic device and method for manufacturing the same
JP3361964B2 (ja) 1996-09-10 2003-01-07 株式会社東芝 半導体発光素子およびその製造方法
JPH1093136A (ja) * 1996-09-11 1998-04-10 Sanken Electric Co Ltd 半導体発光素子
JPH1098211A (ja) 1996-09-19 1998-04-14 Toyoda Gosei Co Ltd 発光素子
JP3412433B2 (ja) * 1996-12-05 2003-06-03 豊田合成株式会社 3族窒化物半導体発光素子
JP3602929B2 (ja) 1996-12-11 2004-12-15 豊田合成株式会社 3族窒化物半導体発光素子
JP3211870B2 (ja) 1996-12-19 2001-09-25 日亜化学工業株式会社 発光素子及びそれを用いた発光ダイオード
JP3787206B2 (ja) 1997-01-24 2006-06-21 ローム株式会社 半導体発光素子
JPH10209507A (ja) 1997-01-24 1998-08-07 Rohm Co Ltd 半導体発光素子
JPH10209498A (ja) 1997-01-24 1998-08-07 Rohm Co Ltd 半導体発光素子
US6107644A (en) * 1997-01-24 2000-08-22 Rohm Co., Ltd. Semiconductor light emitting device
JP3787207B2 (ja) 1997-01-24 2006-06-21 ローム株式会社 半導体発光素子
JPH10209494A (ja) 1997-01-24 1998-08-07 Rohm Co Ltd 半導体発光素子
JP3974676B2 (ja) 1997-01-24 2007-09-12 ローム株式会社 半導体発光素子の製法
JPH10247747A (ja) 1997-03-05 1998-09-14 Toshiba Corp 半導体発光素子およびその製造方法
TW369730B (en) * 1997-03-19 1999-09-11 Sharp Kk Semiconductor luminescence element
JP3691207B2 (ja) 1997-03-28 2005-09-07 ローム株式会社 半導体発光素子
JP3230572B2 (ja) 1997-05-19 2001-11-19 日亜化学工業株式会社 窒化物系化合物半導体素子の製造方法及び半導体発光素子
US6229160B1 (en) 1997-06-03 2001-05-08 Lumileds Lighting, U.S., Llc Light extraction from a semiconductor light-emitting device via chip shaping
US6784463B2 (en) 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices
JP3449201B2 (ja) * 1997-11-28 2003-09-22 日亜化学工業株式会社 窒化物半導体素子の製造方法
JP4183299B2 (ja) * 1998-03-25 2008-11-19 株式会社東芝 窒化ガリウム系化合物半導体発光素子
JP3540605B2 (ja) * 1998-05-15 2004-07-07 三洋電機株式会社 発光素子
JPH11340576A (ja) * 1998-05-28 1999-12-10 Sumitomo Electric Ind Ltd 窒化ガリウム系半導体デバイス
JP2001284290A (ja) 2000-03-31 2001-10-12 Toyoda Gosei Co Ltd 半導体ウエハーのチップ分割方法
TW200529308A (en) 2000-03-31 2005-09-01 Toyoda Gosei Kk Method for dicing semiconductor wafer into chips
DE10031821B4 (de) * 2000-06-30 2006-06-14 Osram Opto Semiconductors Gmbh LED mit Auskoppelstruktur
EP1334523A2 (en) * 2000-10-20 2003-08-13 Emcore Corporation IMPROVED LIGHT EXTRACTION EFFICIENCY OF GaN BASED LEDs
US6946788B2 (en) 2001-05-29 2005-09-20 Toyoda Gosei Co., Ltd. Light-emitting element
JP3852000B2 (ja) * 2001-09-28 2006-11-29 豊田合成株式会社 発光素子
JP4055503B2 (ja) * 2001-07-24 2008-03-05 日亜化学工業株式会社 半導体発光素子
JP2003069077A (ja) * 2001-08-17 2003-03-07 ▲燦▼圓光電股▲分▼有限公司 窒化ガリウム系発光ダイオードの製造方法
JP4089194B2 (ja) 2001-09-28 2008-05-28 日亜化学工業株式会社 窒化物半導体発光ダイオード
JP2004006662A (ja) 2002-03-28 2004-01-08 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体素子
JP2004056088A (ja) 2002-05-31 2004-02-19 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
WO2004013916A1 (ja) 2002-08-01 2004-02-12 Nichia Corporation 半導体発光素子及びその製造方法並びにそれを用いた発光装置
JP3912219B2 (ja) * 2002-08-01 2007-05-09 日亜化学工業株式会社 窒化物半導体発光素子
TWI292961B (en) * 2002-09-05 2008-01-21 Nichia Corp Semiconductor device and an optical device using the semiconductor device
TWI228323B (en) * 2002-09-06 2005-02-21 Sony Corp Semiconductor light emitting device and its manufacturing method, integrated semiconductor light emitting device and manufacturing method thereof, image display device and its manufacturing method, illumination device and manufacturing method thereof
TW200414556A (en) * 2003-01-17 2004-08-01 Epitech Corp Ltd Light emitting diode having distributed electrodes
EP1515368B1 (en) * 2003-09-05 2019-12-25 Nichia Corporation Light equipment
JP2005101212A (ja) * 2003-09-24 2005-04-14 Toyoda Gosei Co Ltd 半導体発光素子
US7652299B2 (en) * 2005-02-14 2010-01-26 Showa Denko K.K. Nitride semiconductor light-emitting device and method for fabrication thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214749A (ja) * 1998-01-29 1999-08-06 Sanyo Electric Co Ltd 半導体発光装置
JP2002353504A (ja) * 2001-05-09 2002-12-06 Lumileds Lighting Us Llc メサ上に高反射誘電被覆が施された半導体ledフリップチップ
WO2003007390A1 (fr) * 2001-07-12 2003-01-23 Nichia Corporation Dispositif semi-conducteur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1746664A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109822A (ja) * 2005-10-12 2007-04-26 Nichia Chem Ind Ltd 半導体素子の製造方法、及びそれにより得られる半導体素子
JP2007258445A (ja) * 2006-03-23 2007-10-04 Showa Denko Kk 窒化ガリウム系化合物半導体発光素子の製造方法、窒化ガリウム系化合物半導体発光素子及びそれを用いたランプ
JP2009531851A (ja) * 2006-03-28 2009-09-03 ソウル オプト デバイス カンパニー リミテッド ツェナーダイオードを備える発光素子及びその製造方法
JP2008010840A (ja) * 2006-05-29 2008-01-17 Nichia Chem Ind Ltd 窒化物半導体発光素子
JP2007335529A (ja) * 2006-06-13 2007-12-27 Showa Denko Kk 窒化ガリウム系化合物半導体発光素子
US8188495B2 (en) 2006-06-13 2012-05-29 Showa Denko K.K. Gallium nitride-based compound semiconductor light emitting device
JP2008244414A (ja) * 2007-02-27 2008-10-09 Opnext Japan Inc 半導体光装置
JP2008227018A (ja) * 2007-03-09 2008-09-25 Nichia Chem Ind Ltd 半導体発光素子及びその製造方法
JP2010529658A (ja) * 2007-05-30 2010-08-26 バーティクル,インク 発光ダイオードおよびその製造方法
JP2009059970A (ja) * 2007-08-31 2009-03-19 Seiwa Electric Mfg Co Ltd 半導体発光素子及び半導体発光素子の製造方法
JP5556657B2 (ja) * 2008-05-14 2014-07-23 豊田合成株式会社 Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ
US8927348B2 (en) 2008-05-14 2015-01-06 Toyoda Gosei Co., Ltd. Method of manufacturing group-III nitride semiconductor light-emitting device, and group-III nitride semiconductor light-emitting device, and lamp
US8323994B2 (en) 2008-09-24 2012-12-04 Toyoda Gosei Co., Ltd. Group III nitride semiconductor light-emitting device and method for producing the same
JP2010080542A (ja) * 2008-09-24 2010-04-08 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子、およびその製造方法
JP2015167263A (ja) * 2009-06-03 2015-09-24 日亜化学工業株式会社 半導体レーザ素子
JPWO2011111642A1 (ja) * 2010-03-08 2013-06-27 日亜化学工業株式会社 半導体発光素子及びその製造方法
US8698188B2 (en) 2010-03-08 2014-04-15 Nichia Corporation Semiconductor light emitting device and method for producing the same
WO2011111642A1 (ja) * 2010-03-08 2011-09-15 日亜化学工業株式会社 半導体発光素子及びその製造方法
JP2010283399A (ja) * 2010-09-24 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> 発光ダイオード
JP2013051260A (ja) * 2011-08-30 2013-03-14 Toyoda Gosei Co Ltd 半導体発光チップの製造方法および半導体発光チップ
JP2014033090A (ja) * 2012-08-03 2014-02-20 Stanley Electric Co Ltd 半導体発光装置
JP2019050312A (ja) * 2017-09-11 2019-03-28 豊田合成株式会社 発光素子の製造方法
JP2020064967A (ja) * 2018-10-17 2020-04-23 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
JP7146562B2 (ja) 2018-10-17 2022-10-04 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
JP6861900B1 (ja) * 2019-09-27 2021-04-21 三菱電機株式会社 光半導体装置の製造方法

Also Published As

Publication number Publication date
EP1746664A1 (en) 2007-01-24
CN101587932B (zh) 2011-06-01
EP1746664B1 (en) 2017-05-17
US7358544B2 (en) 2008-04-15
KR101119727B1 (ko) 2012-03-23
US20060017061A1 (en) 2006-01-26
TWI385815B (zh) 2013-02-11
TW200605394A (en) 2006-02-01
JP4320687B2 (ja) 2009-08-26
CN1938869A (zh) 2007-03-28
EP1746664A4 (en) 2013-01-30
CN100524855C (zh) 2009-08-05
JPWO2005096399A1 (ja) 2008-02-21
JP4320676B2 (ja) 2009-08-26
KR20070011350A (ko) 2007-01-24
US20080290365A1 (en) 2008-11-27
US7791098B2 (en) 2010-09-07
JP2008235940A (ja) 2008-10-02
CN101587932A (zh) 2009-11-25

Similar Documents

Publication Publication Date Title
WO2005096399A1 (ja) 窒化物半導体発光素子
JP6683003B2 (ja) 半導体素子、半導体装置及び半導体素子の製造方法
KR100895452B1 (ko) 반도체 발광소자용 양전극
JP4977957B2 (ja) 半導体発光素子
JP5052636B2 (ja) 半導体発光素子
KR100952552B1 (ko) 요철형성 기판을 갖춘 반도체 발광 다이오드 및 그 제조방법
JP5030398B2 (ja) 窒化ガリウム系化合物半導体発光素子
JP5191837B2 (ja) 半導体発光素子及び半導体発光装置
JP5334601B2 (ja) 半導体発光ダイオード素子及び半導体発光装置
JP4572597B2 (ja) 窒化物半導体素子
JP5174067B2 (ja) 半導体発光素子
WO2005018008A1 (ja) 半導体素子
JP2010056322A (ja) 半導体発光素子及びその製造方法
JP3921989B2 (ja) 半導体発光素子
CN1983614A (zh) 半导体发光装置
US20210217931A1 (en) Contact structures for light emitting diode chips
JP5961359B2 (ja) 発光ダイオード及びその製造方法
JP2004247635A (ja) 半導体発光素子
JP2007073789A (ja) 半導体発光素子用電極
JP5319820B2 (ja) 半導体発光ダイオード素子及び半導体発光装置
TW202209705A (zh) 半導體發光元件以及半導體發光元件的製造方法
JP2003258306A (ja) 半導体発光素子
JP5372220B2 (ja) 半導体発光素子及び半導体発光装置
KR20100061134A (ko) 질화물 반도체 발광소자의 제조방법 및 이 방법에 의해 제조된 질화물 반도체 발광소자

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511771

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580009774.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067020371

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

REEP Request for entry into the european phase

Ref document number: 2005721672

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005721672

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067020371

Country of ref document: KR

Ref document number: 2005721672

Country of ref document: EP