JP2011119519A - 半導体発光素子及び半導体発光装置 - Google Patents

半導体発光素子及び半導体発光装置 Download PDF

Info

Publication number
JP2011119519A
JP2011119519A JP2009276550A JP2009276550A JP2011119519A JP 2011119519 A JP2011119519 A JP 2011119519A JP 2009276550 A JP2009276550 A JP 2009276550A JP 2009276550 A JP2009276550 A JP 2009276550A JP 2011119519 A JP2011119519 A JP 2011119519A
Authority
JP
Japan
Prior art keywords
layer
electrode
light emitting
opening
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009276550A
Other languages
English (en)
Inventor
Takehiko Okabe
健彦 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009276550A priority Critical patent/JP2011119519A/ja
Priority to PCT/JP2010/071590 priority patent/WO2011068162A1/ja
Priority to US13/513,492 priority patent/US8779441B2/en
Priority to TW099142143A priority patent/TWI528588B/zh
Publication of JP2011119519A publication Critical patent/JP2011119519A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials

Abstract

【課題】半導体発光素子のFC(フリップチップボンディング)実装技術における作業性と放熱効果を改良する。
【解決手段】基板上に形成され、第1の導電型を有する第1の半導体層、発光層及び第1の導電型とは異なる第2の導電型を有する第2の半導体層が積層された積層半導体層と、積層半導体層の第1の半導体層の表面に形成され、外部との電気的な接続に用いられる第1の開口部170aを有する第1の電極(第1電極170)と、積層半導体層の一部を切り欠くことによって露出した第2の半導体層の表面に形成され、外部との電気的な接続に用いられる第2の開口部180aを有する第2の電極(第2電極180)と、を備え、第1の開口部170aは、平面視で第1の開口部170aの第2の開口部180a側に、第2の開口部180の外縁部から略等しい間隔を保つように形成された円弧状の部分を有することを特徴とする半導体発光素子1。
【選択図】図2

Description

本発明は、半導体発光素子及び半導体発光装置に関する。
近年、短波長光発光素子用の半導体材料として、GaN系化合物半導体が注目を集めている。GaN系化合物半導体は、サファイア単結晶を始めとして、種々の酸化物やIII−V族化合物を基板として、その上に有機金属気相化学反応法(MOCVD法)や分子線エピタキシー法(MBE法)等によって形成される。
GaN系化合物半導体を用いた半導体発光素子では、基板上にn型半導体層、発光層、p型半導体層からなる発光ダイオード(LED)構造を有する積層半導体層を形成し、最上部のp型半導体層に透光性の電極(透明電極)を形成し、この透明電極を介して発光を取り出している。このような半導体発光素子においては、発光強度にむらが生じないように電流分布を均一にすることが必要である。
例えば、特許文献1には、基板上面に順次形成された、第1導電型窒化ガリウム系化合物半導体層、窒化ガリウム系化合物半導体から成る発光層及び第2導電型窒化ガリウム系化合物半導体層を有する直方体状の半導体層と、第1導電型窒化ガリウム系化合物半導体層の表面に形成された第1導電型電極と、第2導電型窒化ガリウム系化合物半導体層の表面に形成された第2導電型電極とを有する発光素子であって、第1導電型電極及び第2導電型電極は、平面視で一方の電極が他方の電極を取り囲む多角形の環状に形成されているとともに、多角形の環状の角部の内縁が曲線状に形成され、電流密度及び電流分布の偏りを低減した半導体発光素子が記載されている。
特開2009−054688号公報
ところで、半導体発光素子は、通常、透明電極上に、Au(金)のボンディングワイヤと接続する部分にAuまたはAuを含む合金からなるボンディングパッドを形成している。近年、発光波長に対して透明な基板上に形成された半導体発光素子を裏返して回路基板(サブマウント)またはパッケージに搭載するFC(フリップチップボンディング)実装技術が開発されている。これによれば、電極が形成されていない基板側から光を取り出すことにより、電極による遮光を回避できるので、光取り出し効率が向上する。また、半導体発光素子と回路基板(サブマウント)とは、半導体発光素子の電極と、回路基板(サブマウント)の配線のパッドとを、Au等で形成されたバンプにより接続するため、ボンディングワイヤで接続する方法に比べ、半導体発光素子の実装に必要な回路基板(サブマウント)上の面積が小さくなり高密度に実装できるとともに、接続の信頼性も高い。
しかし、ボンディングパッドの面積が過度に小さいと、半導体発光素子を回路基板(サブマウント)またはパッケージに搭載する際の作業性が低下するとともに、発光層が発光することに伴う発熱を十分に放熱することが出来ないという問題がある。
本発明の目的は、半導体発光素子のFC(フリップチップ)実装技術における作業性と放熱効果を改良することを目的とする。
本発明によれば、以下(1)〜(8)にかかる半導体発光素子及び半導体発光装置が提供される。
(1)基板上に、第1の導電型を有する第1の半導体層、発光層及び第1の導電型とは異なる第2の導電型を有する第2の半導体層が積層された積層半導体層と、積層半導体層の第1の半導体層の表面に形成され、外部との電気的な接続に用いられる第1の開口部を有する第1の電極と、積層半導体層の一部を切り欠くことによって露出した第2の半導体層の表面に形成され、外部との電気的な接続に用いられる第2の開口部を有する第2の電極と、を備え、第1の開口部は、平面視で第1の開口部の第2の開口部側に、第2の開口部の外縁部から略等しい間隔を保つように形成された円弧状の部分を有することを特徴とする半導体発光素子。
(2)基板の平面形状は長方形または正方形であり、第1の開口部の円弧状の部分は、第2の開口部の外縁部から、基板の短辺の少なくとも10%に相当する長さの間隔を保つように形成されることを特徴とする(1)に記載の半導体発光素子。
(3)第1の開口部の面積は、第1の電極の表面積の少なくとも30%を有することを特徴とする(1)又は(2)に記載の半導体発光素子。
(4)第2の電極は、平面視で、基板の外周縁に沿うように分岐した少なくとも1つの枝部を有することを特徴とする(1)乃至(3)のいずれかに記載の半導体発光素子。
(5)第2の電極は、積層半導体層の一部を、平面視で、基板の対角線の方向に切り欠くことによって露出した第2の半導体層の表面に形成された少なくとも1つの枝部を有することを特徴とする(1)乃至(4)いずれかに記載の半導体発光素子。
(6)積層半導体層は、III族窒化物半導体から構成されることを特徴とする(1)乃至(5)いずれかに記載の半導体発光素子。
(7)第1の電極の第1の開口部に形成され、導電性を有し第1の電極と外部との電気的な接続に用いられる第1の接続子と、第2の電極の第2の開口部に形成され、導電性を有し第2の電極と外部との電気的な接続に用いられる第2の接続子と、を備えることを特徴とする(1)乃至(6)いずれかに記載の半導体発光素子。
(8)第1の導電型を有する第1の半導体層、発光層、第1の導電型とは異なる第2の導電型を有する第2の半導体層が順に積層された積層半導体層と、積層半導体層の第1の半導体層の表面に形成され、外部との電気的な接続に用いられる第1の開口部を有する第1の電極と、積層半導体層の一部を切り欠くことによって露出した第2の半導体層の表面に形成され、外部との電気的な接続に用いられる第2の開口部を有する第2の電極と、を備え、第1の開口部は、平面視で第1の開口部の第2の開口部側に、第2の開口部の外縁部から略等しい間隔を保つように円弧状に形成された部分を有する半導体発光素子と、半導体発光素子の第1の電極及び第2の電極を備える側と対向するように配置され、第1の電極及び第2の電極と接続子により接続された一対の配線を備える回路基板と、を有することを特徴とする半導体発光装置。
本発明によれば、半導体発光素子のFC(フリップチップ)実装技術における作業性と放熱効果を改良することができる。
第1の実施の形態が適用される半導体発光素子の断面模式図の一例を示す図である。 図1に示す半導体発光素子を図1に示すII方向からみた平面模式図の一例を示す図である。 半導体発光素子を構成する積層半導体の断面模式図の一例を示す図である。 第1電極の断面模式図の一例を示す図である。 第2電極の断面模式図の一例を示す図である。 第2の実施の形態が適用される半導体発光素子の断面模式図の一例を示す図である。 図6に示した半導体発光素子の平面模式図の一例を示す図である。 第3の実施の形態が適用される半導体発光素子の平面模式図の一例を示す図である。 第4の実施の形態が適用される半導体発光素子の平面模式図の一例を示す図である。 第5の実施の形態が適用される半導体発光素子の平面模式図の一例を示す図である。 第6の実施の形態が適用される半導体発光素子の平面模式図の一例を示す図である。 第7〜9の実施の形態が適用される半導体発光素子の平面模式図の一例を示す図である。 本実施の形態が適用される半導体発光装置の断面模式図の一例を示す図である。
以下、本発明の実施の形態について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することが出来る。また、使用する図面は、本実施の形態を説明するための一例であり、実際の大きさを表すものではない。
<半導体発光素子>
図1は、第1の実施の形態が適用される半導体発光素子の断面模式図の一例を示す図である。また、図2は、図1に示す半導体発光素子を図1に示すII方向からみた平面模式図の一例を示す図である。図3は、半導体発光素子を構成する積層半導体の断面模式図の一例を示す図である。
図1に示すように、半導体発光素子1は、基板110と、基板110上に積層される中間層120と、中間層120上に積層される下地層130とを備える。また、半導体発光素子1は、下地層130上に積層されるn型半導体層140と、n型半導体層140上に積層される発光層150と、発光層150上に積層されるp型半導体層160とを備える。なお、以下の説明においては、必要に応じて、これらn型半導体層140、発光層150およびp型半導体層160を、まとめて積層半導体層100と呼ぶ。
さらに、半導体発光素子1は、p型半導体層160の上面160cに形成される第1電極170と、積層されたp型半導体層160、発光層150およびn型半導体層140の一部を切り欠くことによって露出したn型半導体層140の半導体層露出面140cに形成される第2電極180とを備える。
さらにまた、半導体発光素子1は、第1電極170および第2電極180と、p型半導体層160、発光層150およびn型半導体層140の一部(半導体層露出面140cよりも発光層150側)に積層される保護層190をさらに備える。ただし、保護層190は、p型半導体層160、発光層150およびn型半導体層140の一部(半導体層露出面140cよりも発光層150側)の側壁面の全域を覆うように形成される。
一方、第1電極170に対しては、図1において上方側となる面の一部を露出させ、後述するように、バンプ(第1の接続子)20により外部との電気的な接続に用いられる第1の開口部170aが形成されている。また、同様に、第2電極180に対しては、図1において上方側となる面の一部を露出させ、後述するように、バンプ(第2の接続子)20により外部との電気的な接続に用いられる第2の開口部180aが形成されている。図1に示すように、第1の開口部170aは、第2の開口部180aの外縁部から一定の長さの間隔Rを保つように形成されている。第1の開口部170a及び第2の開口部180aについては後述する。
このように、本実施の形態の半導体発光素子1は、基板110とは反対側となる一方の面側に第1電極170および第2電極180が形成された構造を有している。この半導体発光素子1においては、第1電極170を正極、第2電極180を負極とし、両者を介して積層半導体層100(より具体的にはp型半導体層160、発光層150およびn型半導体層140)に電流を流すことで、発光層150が発光するようになっている。
次に、図2に示すように、平面視したとき、第1電極170は、第2電極180を形成するためにエッチング等の手段により一部が除去された部分を除き、p型半導体層160の上面160cの略全面を覆うように形成されている。第1電極170の上面には、第1電極170を露出させ、外部との電気的な接続に用いられる第1の開口部170aが形成されている。第1の開口部170aは、第1電極170の図2における略右半分の部分を露出させる。そして、第1の開口部170aは、第2電極180側が円弧状に切り取られたような平面形状を有している。
一方、第2電極180は、平面形状が正方形の基板110の一片に近接した部分の略中央部に形成されている。上述したように、第2電極180は、露出した半導体層露出面140c上に形成され、さらに、第2電極180の上面には、外部との電気的な接続に用いられる第2の開口部180aが形成されている。
尚、図2では、第1電極170及び第2電極180の表面を覆う保護層190を省略している。
図2に示すように、第1電極170を露出させる第1の開口部170aと第2電極を第2の開口部180aとは、第1の開口部170aの第2の開口部180a側の外縁端部と第2の開口部180aの第1の開口部170a側の外縁端部とが、一定の間隔Rを保つように配置されている。本実施の形態では、平面視で第1の開口部170aの第2の開口部180a側は、半円形状に形成された第2の開口部180aの第1の開口部170a側の形状に倣い、第2の開口部180aの外縁部から略等しい間隔Rを保つように円弧状に形成されている。
第2の開口部180aの外縁部から第1の開口部170aの外縁端部迄の間隔Rは特に限定されないが、本実施の形態では、平面形状が正方形である基板110の一辺の、少なくとも10%に相当する長さを保つように形成されている。また、間隔Rは平面形状が長方形である基板110の実施形態では、短辺の少なくとも10%に相当する長さを保つように形成されている。第2の開口部180aの外縁部から間隔Rを保ちつつ第1の開口部170aを形成することにより、半導体発光素子のFC(フリップチップ)実装技術における作業性が改善される。本実施の形態では、間隔Rが過度に短いと、フリップチップの実装時にP極、N極が短絡しやすくなる。また、間隔Rが過度に大きいと、回路基板との接触面積が減少し放熱が不十分となり、特性が劣化する傾向がある。
また、本実施の形態では、平面視で第1の開口部170aの表面積が第1電極170の表面積に対する割合は、第1の電極170の表面積の少なくとも20%を有するように形成され、好ましくは、少なくとも30%を有するように形成されている。
次に、半導体発光素子1の各層について説明する。
<基板>
基板110としては、III族窒化物半導体結晶が表面にエピタキシャル成長される基板であれば、特に限定されず、各種の基板を選択して用いることができる。ただし、本実施の形態の半導体発光素子1は、後述するように、基板110側から光を取り出すようにフリップチップ実装されることから、発光層150から出射される光に対する光透過性を有していることが好ましい。したがって、例えば、サファイア、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム、酸化マグネシウムアルミニウム、酸化ガリウム、酸化インジウム、酸化リチウムガリウム、酸化リチウムアルミニウム、酸化ネオジウムガリウム、酸化ランタンストロンチウムアルミニウムタンタル、酸化ストロンチウムチタン、酸化チタン等からなる基板110を用いることができる。
また、上記材料の中でも、特に、C面を主面とするサファイアを基板110として用いることが好ましい。サファイアを基板110として用いる場合は、サファイアのC面上に中間層120(バッファ層)を形成するとよい。
<積層半導体層>
III族窒化物半導体層の一例としての積層半導体層100は、例えば、III族窒化物半導体からなる層であって、図1に示すように、基板110上に、n型半導体層140、発光層150およびp型半導体層160の各層が、この順で積層されて構成されている。また、図3に示すように、n型半導体層140、発光層150及びp型半導体層160の各層は、それぞれ、複数の半導体層から構成してもよい。さらにまた、積層半導体層100は、さらに下地層130、中間層120を含めて呼んでもよい。ここで、n型半導体層140は、電子をキャリアとする第1の導電型にて電気伝導を行うものであり、p型半導体層160は、正孔をキャリアとする第2の導電型にて電気伝導を行うものである。
なお、積層半導体層100は、MOCVD法で形成すると結晶性の良いものが得られるが、スパッタ法によっても条件を最適化することで、MOCVD法よりも優れた結晶性を有する半導体層を形成できる。以下、順次説明する。
<中間層>
中間層120は、多結晶のAlGa1−xN(0≦x≦1)からなるものが好ましく、単結晶のAlGa1−xN(0≦x≦1)のものがより好ましい。
中間層120は、上述のように、例えば、多結晶のAlGa1−xN(0≦x≦1)からなる厚さ0.01〜0.5μmのものとすることができる。中間層120の厚みが0.01μm未満であると、中間層120により基板110と下地層130との格子定数の違いを緩和する効果が十分に得られない場合がある。また、中間層120の厚みが0.5μmを超えると、中間層120としての機能には変化が無いのにも関わらず、中間層120の成膜処理時間が長くなり、生産性が低下する虞がある。
中間層120は、基板110と下地層130との格子定数の違いを緩和し、基板110の(0001)面(C面)上にC軸配向した単結晶層の形成を容易にする働きがある。したがって、中間層120の上を介して、より一層結晶性の良い下地層130が積層できる。なお、本発明においては、中間層120を形成することが好ましいが、行なわなくても良い。
また、中間層120は、III族窒化物半導体からなる六方晶系の結晶構造を持つものであってもよい。また、中間層120をなすIII族窒化物半導体の結晶は、単結晶構造を有するものが好ましく用いられる。III族窒化物半導体の結晶は、成長条件を制御することにより、上方向だけでなく、面内方向にも成長して単結晶構造を形成する。このため、中間層120の成膜条件を制御することにより、単結晶構造のIII族窒化物半導体の結晶からなる中間層120とすることができる。このような単結晶構造を有する中間層120を基板110上に成膜した場合、中間層120のバッファ機能が有効に作用するため、その上に成膜されたIII族窒化物半導体は良好な配向性及び結晶性を有する結晶膜となる。
<下地層>
下地層130としては、AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)を用いることができるが、AlGa1−xN(0≦x<1)を用いると結晶性の良い下地層130を形成できるため好ましい。
下地層130の膜厚は0.1μm以上が好ましく、より好ましくは0.5μm以上であり、1μm以上が最も好ましい。この膜厚以上にした方が結晶性の良好なAlGa1−xN層が得られやすい。また、下地層130の膜厚は、生産コストの点で好ましくは10μm以下がよい。
下地層130の結晶性を良くするためには、下地層130は不純物をドーピングしない方が望ましい。しかし、p型あるいはn型の導電性が必要な場合は、アクセプター不純物あるいはドナー不純物を添加することができる。
<n型半導体層>
図3に示すように、例えば、電子をキャリアとする第1の導電型を有する第1の半導体層の一例としてのn型半導体層140は、nコンタクト層140aとnクラッド層140bとから構成されるのが好ましい。なお、nコンタクト層140aはnクラッド層140bを兼ねることも可能である。また、前述の下地層130をn型半導体層140に含めてもよい。
nコンタクト層140aは、第2電極180を設けるための層である。nコンタクト層140aとしては、AlGa1−xN層(0≦x<1、好ましくは0≦x≦0.5、さらに好ましくは0≦x≦0.1)から構成されることが好ましい。
また、nコンタクト層140aにはn型不純物がドープされていることが好ましく、n型不純物を1×1017〜1×1020/cm、好ましくは1×1018〜1×1019/cmの濃度で含有すると、第2電極180との良好なオーミック接触を維持できる点で好ましい。n型不純物としては、特に限定されないが、例えば、Si、GeおよびSn等が挙げられ、好ましくはSiおよびGeが挙げられる。
nコンタクト層140aの膜厚は、0.5μm〜5μmに設定することが好ましく、1μm〜3μmの範囲に設定することがより好ましい。nコンタクト層140aの膜厚が上記範囲にあると、半導体の結晶性が良好に維持される。
nコンタクト層140aと発光層150との間には、nクラッド層140bを設けることが好ましい。nクラッド層140bは、発光層150へのキャリアの注入とキャリアの閉じ込めとを行なう層である。nクラッド層140bはAlGaN、GaN、GaInNなどで形成することが可能である。また、これらの構造のヘテロ接合や複数回積層した超格子構造としてもよい。nクラッド層140bをGaInNで形成する場合には、発光層150のGaInNのバンドギャップよりも大きくすることが望ましい。
nクラッド層140bの膜厚は、特に限定されないが、好ましくは0.005〜0.5μmであり、より好ましくは0.005〜0.1μmである。nクラッド層140bのn型ドープ濃度は1×1017〜1×1020/cmが好ましく、より好ましくは1×1018〜1×1019/cmである。ドープ濃度がこの範囲であると、良好な結晶性の維持および発光素子の動作電圧低減の点で好ましい。
なお、nクラッド層140bを、超格子構造を含む層とする場合には、詳細な図示を省略するが、100オングストローム以下の膜厚を有したIII族窒化物半導体からなるn側第1層と、n側第1層と組成が異なるとともに100オングストローム以下の膜厚を有したIII族窒化物半導体からなるn側第2層とが積層された構造を含むものであっても良い。
また、nクラッド層140bは、n側第1層とn側第2層とが交互に繰返し積層された構造を含んだものであってもよく、GaInNとGaNとの交互構造又は組成の異なるGaInN同士の交互構造であることが好ましい。
<発光層>
n型半導体層140の上に積層される発光層150としては、単一量子井戸構造あるいは多重量子井戸構造などを採用することができる。
図3に示すような、量子井戸構造の井戸層150bとしては、Ga1−yInN(0<y<0.4)からなるIII族窒化物半導体層が通常用いられる。井戸層150bの膜厚としては、量子効果の得られる程度の膜厚、例えば1〜10nmとすることができ、好ましくは2〜6nmとすると発光出力の点で好ましい。
また、多重量子井戸構造の発光層150の場合は、上記Ga1−yInNを井戸層150bとし、井戸層150bよりバンドギャップエネルギーが大きいAlGa1−zN(0≦z<0.3)を障壁層150aとする。井戸層150bおよび障壁層150aには、設計により不純物をドープしてもしなくてもよい。
なお、本実施の形態では、発光層150が、青色光(発光波長λ=400nm〜465nm程度)を出力するようになっている。
<p型半導体層>
図3に示すように、例えば、正孔をキャリアとする第2の導電型を有する第2の半導体層の一例としてのp型半導体層160は、通常、pクラッド層160aおよびpコンタクト層160bから構成される。また、pコンタクト層160bがpクラッド層160aを兼ねることも可能である。
pクラッド層160aは、発光層150へのキャリアの閉じ込めとキャリアの注入とを行なう層である。pクラッド層160aとしては、発光層150のバンドギャップエネルギーより大きくなる組成であり、発光層150へのキャリアの閉じ込めができるものであれば特に限定されないが、好ましくは、AlGa1−xN(0<x≦0.4)のものが挙げられる。
pクラッド層160aが、このようなAlGaNからなると、発光層150へのキャリアの閉じ込めの点で好ましい。pクラッド層160aの膜厚は、特に限定されないが、好ましくは1〜400nmであり、より好ましくは5〜100nmである。
pクラッド層160aのp型ドープ濃度は、1×1018〜1×1021/cmが好ましく、より好ましくは1×1019〜1×1020/cmである。p型ドープ濃度が上記範囲であると、結晶性を低下させることなく良好なp型結晶が得られる。
また、pクラッド層160aは、複数回積層した超格子構造としてもよく、AlGaNとAlGaNとの交互構造又はAlGaNとGaNとの交互構造であることが好ましい。
pコンタクト層160bは、第1電極170を設けるための層である。pコンタクト層160bは、AlGa1−xN(0≦x≦0.4)であることが好ましい。Al組成が上記範囲であると、良好な結晶性の維持および第1電極170との良好なオーミック接触の維持が可能となる点で好ましい。
p型不純物(ドーパント)を1×1018〜1×1021/cmの濃度、好ましくは5×1019〜5×1020/cmの濃度で含有していると、良好なオーミック接触の維持、クラック発生の防止、良好な結晶性の維持の点で好ましい。p型不純物としては、特に限定されないが、例えば好ましくはMgが挙げられる。
pコンタクト層160bの膜厚は、特に限定されないが、10nm〜500nmが好ましく、より好ましくは50nm〜200nmである。pコンタクト層160bの膜厚がこの範囲であると、発光出力の点で好ましい。
<第1電極>
次に、第1電極170の構成について説明する。図4は、第1電極170の断面模式図の一例を示す図である。
第1の電極としての第1電極170は、p型半導体層160の上面160c上に積層される第1導電層171と、この第1導電層171上に積層される金属反射層172と、金属反射層172上に積層される第1ボンディング層173と、上述した第1ボンディング層173の露出部位である第1の開口部170aを除いて第1ボンディング層173を覆うように設けられ、第1ボンディング層173と反対側の面には保護層190が積層される第1密着層174とを有している。
<第1導電層>
図4に示すように、第1導電層171は、第2電極180を形成するために、エッチング等の手段によって一部が除去されたp型半導体層160の上面160cの周縁部を除くほぼ全面を覆うように形成されている。そして、第1導電層171の中央部は一定の膜厚を有し上面160cに対しほぼ平坦に形成される一方、第1導電層171の端部側は膜厚が漸次薄くなることでp型半導体層160の上面160cに対し傾斜して形成されている。ただし、第1導電層171は、このような形状に限定されるわけでなく、隙間を開けて格子状や樹形状に形成してもよく、また、矩形状の断面を有していてもよい。
第1導電層171は、p型半導体層160とオーミックコンタクトがとれ、しかもp型半導体層160との接触抵抗が小さいものを用いることが好ましい。また、この半導体発光素子1では、発光層150からの光を、金属反射層172を介して基板110側に取り出すことから、第1導電層171は光透過性に優れたものを用いることが好ましい。さらにまた、p型半導体層160の全面に渡って均一に電流を拡散させるために、第1導電層171は優れた導電性を有し、且つ、抵抗分布が少ないものを用いることが好ましい。また、本実施の形態では、第1導電層171の厚さが5nm(50Å)に設定されている。なお、第1導電層171の厚さは2nm〜18nmの範囲より選択することができる。ここで、第1導電層171の厚さが2nmよりも薄いと、p型半導体層160とオーミックコンタクトが取れにくい場合があり、また、第1導電層171の厚さが18nmよりも厚いと、発光層150からの発光及び金属反射層172からの反射光の光透過性の点で好ましくない場合がある。
第1導電層171の一例としては透明導電層が挙げられる。例えば、本実施の形態では、第1導電層171として、酸化物の導電性材料であって、発光層150から出射される波長の光に対する光透過性のよいものが用いられる。特に、Inを含む酸化物の一部は、他の透明導電膜と比較して光透過性および導電性の両者がともに優れている点で好ましい。Inを含む導電性の酸化物としては、例えばITO(酸化インジウム錫(In−SnO))、IZO(酸化インジウム亜鉛(In−ZnO))、IGO(酸化インジウムガリウム(In−Ga))、ICO(酸化インジウムセリウム(In−CeO))等が挙げられる。なお、これらの中に、例えばフッ素などのドーパントが添加されていてもかまわない。また、例えばInを含まない酸化物、例えばキャリアをドープしたSnO、ZnO、TiO等の導電性材料を用いてもよい。
これらの材料を、この技術分野でよく知られた慣用の手段で設けることによって、第1導電層171を形成できる。また、第1導電層171を形成した後に、第1導電層171の透明化と更なる低抵抗化とを目的とした熱アニールを施す場合もある。
本実施の形態において、第1導電層171は、結晶化された構造のものを使用してよく、特に六方晶構造又はビックスバイト構造を有するIn結晶を含む透光性材料(例えば、ITOやIZO等)を好ましく使用することができる。
例えば、六方晶構造のIn結晶を含むIZOを第1導電層171として使用する場合、エッチング性に優れたアモルファスのIZO膜を用いて特定形状に加工することができ、さらにその後、熱処理等によりアモルファス状態から結晶を含む構造に転移させることで、アモルファスのIZO膜よりも透光性の優れた電極に加工することができる。
また、第1導電層171に用いるIZO膜としては、比抵抗が最も低くなる組成を使用することが好ましい。
例えば、IZO中のZnO濃度は1〜20質量%であることが好ましく、5〜15質量%の範囲であることが更に好ましく、10質量%であると特に好ましい。
第1導電層171に用いるIZO膜の熱処理は、Oを含まない雰囲気で行なうことが望ましく、Oを含まない雰囲気としては、N雰囲気などの不活性ガス雰囲気や、またはNなどの不活性ガスとHとの混合ガス雰囲気などを挙げることができ、N雰囲気、またはNとHとの混合ガス雰囲気とすることが望ましい。なお、IZO膜の熱処理をN雰囲気、またはNとHとの混合ガス雰囲気中で行なうと、例えば、IZO膜を六方晶構造のIn結晶を含む膜に結晶化させるとともに、IZO膜のシート抵抗を効果的に減少させることが可能である。
また、IZO膜の熱処理温度は、500℃〜1000℃が好ましい。500℃未満の温度で熱処理を行なった場合、IZO膜を十分に結晶化できない恐れが生じ、IZO膜の光透過率が十分に高いものとならない場合がある。1000℃を超える温度で熱処理を行なった場合には、IZO膜は結晶化されているが、IZO膜の光透過率が十分に高いものとならない場合がある。また、1000℃を超える温度で熱処理を行なった場合、IZO膜の下にある半導体層を劣化させる恐れもある。
アモルファス状態のIZO膜を結晶化させる場合、成膜条件や熱処理条件などが異なるとIZO膜中の結晶構造が異なる。しかし、本発明の実施形態においては、他の層との接着性の点において、第1導電層171は材料に限定されないが結晶性の材料の方が好ましく、特に結晶性IZOの場合にはビックスバイト結晶構造のIn結晶を含むIZOであってもよく、六方晶構造のIn結晶を含むIZOであってもよい。特に六方晶構造のIn結晶を含むIZOがよい。
特に、前述のように、熱処理によって結晶化したIZO膜は、アモルファス状態のIZO膜に比べて、p型半導体層160との密着性が良いため、本発明の実施形態において有効である。また、熱処理によって結晶化したIZO膜は、アモルファス状態のIZO膜に比べて、抵抗値が低下することから、半導体発光素子1を構成した際に、順方向電圧Vを低減できる点でも好ましい。
<金属反射層>
図4に示すように、金属反射層172は、第1導電層171の全域を覆うように形成されている。そして、金属反射層172の中央部は一定の膜厚を有しほぼ平坦に形成される一方、反射層172の端部側は膜厚が漸次薄くなることでp型半導体層160の上面160cに対し傾斜して形成されている。また、金属反射層172は、第1導電層171上に形成され、p型半導体層160上には形成されないようになっている。すなわち、p型半導体層160と金属反射層172とが直接接触しないように構成されている。
金属反射層172はAg(銀)で構成されている。金属反射層172として銀を用いているのは、発光層150から出射される青色〜緑色の領域の波長の光に対して、高い光反射性を有しているためである。また、後述するように、金属反射層172は、第1導電層171を介してp型半導体層160に給電を行う機能も有していることから、その抵抗値が低く、しかも第1導電層171との接触抵抗を低く抑える必要があるためである。そして、本実施の形態では、金属反射層172の厚さが100nm(1000Å)に設定されている。この金属反射層172の厚さは、好ましくは50nm以上の範囲より選択することができる。ここで、金属反射層172の厚さが50nmよりも薄いと、発光層150からの光の反射性能が低下する点で好ましくない場合がある。
なお、本実施の形態では、金属反射層172としてAg単体を用いているが、Agを含む合金を使用するようにしてもかまわない。
<第1ボンディング層>
図4に示すように、金属反射層172の上面および側面には、金属反射層172を覆うように第1ボンディング層173が積層されている。第1ボンディング層173は、金属反射層172の全域を覆うように形成されている。そして、第1ボンディング層173の中央部は一定の膜厚を有し且つほぼ平坦に形成される一方、第1ボンディング層173の端部側は膜厚が漸次薄くなることでp型半導体層160の上面160cに対し傾斜して形成されている。
外部との電気的な接続に用いられる接続層としての第1ボンディング層173は、最も内側すなわち金属反射層172等と接するように少なくとも1層以上の金属層を備える。また、最も外側となる最表層の金属層には一般にAu(金)が用いられる。本実施の形態では、第1ボンディング層173としてAu(金)の単層膜を用いているが、例えば、金属反射層172に接して形成される第1層としてのNi(ニッケル)層と、このNi層の外側に形成される第2層としてのPt(白金)層と、このPt層の外側であって最も外側に形成される第3層としてのAu(金)層とを有する構造を採用するようにしてもよい。そして、第1ボンディング層173の全体の厚さは、フリップチップ実装する際のパッド電極としての機能を有する厚さがあれば、厚さに制限なく使用することができるが、好ましくは50nm(500Å)〜8,000nm(80,000Å)に設定されている。
なお、第1ボンディング層173を複数の金属層で構成する場合において、金属反射層172と接する第1層を構成する材料としては、上述したNi(ニッケル)の他、Ta(タンタル)、Ti(チタン)、NiTi(ニッケルチタン)合金、およびこれらの窒化物を使用することができる。
<第1密着層>
図4に示すように、第1ボンディング層173の上面および側面には、第1ボンディング層173を覆うように第1密着層174が積層されている。第1密着層174は第1ボンディング層173の露出部位を除く領域を覆うように形成されている。そして、第1密着層174の中央部は一定の膜厚を有し且つほぼ平坦に形成される一方、第1密着層174の端部側はp型半導体層160の上面160cに対し傾斜して形成されている。この第1密着層174の側面側の端部は、p型半導体層160の上面160cと接するように設けられている。
密着層の一例としての第1密着層174は、Au(金)で構成された第1ボンディング層173と保護層190との物理的な密着性を向上させるために設けられている。本実施の形態において、第1密着層174は、Ta(タンタル)で形成されている。ただし、第1密着層174として、Ta(タンタル)以外に、例えばTi(チタン)やNi(ニッケル)を用いることも可能である。
<第2電極>
続いて、第2電極180の構成について詳細に説明する。図5は、第2電極180の断面模式図の一例を示す図である。
第2の電極としての第2電極180は、n型半導体層140の半導体層露出面140c上に積層される第2導電層181と、第2導電層181上に積層される第2ボンディング層182と、上述した第2ボンディング層182の露出部位である第2の開口部180aを除いて第2ボンディング層182を覆うように設けられ、第2ボンディング層182と反対側の面には保護層190が積層される第2密着層183とを有している。
<第2導電層>
図5に示すように、n型半導体層140の上には第2導電層181が積層されている。前述したように平面視で第2導電層181(図2参照)の片側は、半円形状の外形を有している。そして、第2導電層181の中央部は一定の膜厚を有し半導体層露出面140c(図1参照)に対しほぼ平坦に形成される一方、第2導電層181の端部側は膜厚が漸次薄くなることでn型半導体層140の半導体層露出面140c(図1参照)に対し傾斜して形成されている。ただし、第2導電層181は、このような形状に限定されるわけでなく、隙間を開けて格子状や樹形状に形成してもよく、また、矩形状の断面を有していてもよく、さらに円形状以外の外形を有していてもよい。
第2導電層181は、n型半導体層140とオーミックコンタクトがとれ、しかもn型半導体層140との接触抵抗が小さいものを用いることが好ましい。
本実施の形態では、第2導電層181として、Al(アルミニウム)を用いている。第2導電層181を構成するAl(アルミニウム)は、上述した第1電極170の金属反射層172を構成するAg(銀)と同様、発光層150から出射される青色〜緑色の領域の波長の光に対して、高い光反射性を有しており、こちらも金属反射層として機能するようになっている。
<第2ボンディング層>
図5に示すように、第2導電層181の上には第2ボンディング層182が積層されている。第2ボンディング層182は、第2導電層181の全域を覆うように形成されている。そして、第2ボンディング層182の中央部は一定の膜厚を有しほぼ平坦に形成される一方、第2ボンディング層182の端部側は膜厚が漸次薄くなることでn型半導体層140の半導体層露出面140c(図1参照)に対し傾斜して形成されている。
第2ボンディング層182は、上述した第1電極170の第1ボンディング層173と同様、最も内側、すなわち、第2導電層181と接するように少なくとも1層以上の金属層を備える。また、最も外側となる最表層の金属層には一般にAu(金)が用いられる。本実施の形態では、第2ボンディング層182が第1ボンディング層173と同じAu(金)の単層膜で構成されている。また、第2ボンディング層182の全体の厚さも、好ましくは50nm(500Å)〜8000nm(80,000Å)に設定されている。なお、第2ボンディング層182を複数の金属層の積層構造とすることもできる。
<第2密着層>
図5に示すように、第2ボンディング層182の上には第2密着層183が積層されている。第2密着層183は第2ボンディング層182の露出部位を除く領域を覆うように形成されている。そして、第2密着層183の中央部は一定の膜厚を有し且つほぼ平坦に形成される一方、第2密着層183の端部側はn型半導体層140の半導体層露出面140c(図1参照)に対し傾斜して形成されている。この第2密着層183の側面側の端部は、n型半導体層140の半導体層露出面140c(図1参照)と接するように設けられている。
第2密着層183は、上述した第1電極170の第1密着層174と同様に、Au(金)で構成された第2ボンディング層182と保護層190との物理的な密着性を向上させるために設けられている。本実施の形態において、第2密着層183は、第1密着層174と同じくTa(タンタル)で形成されている。ただし、第1密着層174として、Ta(タンタル)以外に、例えば、Ti(チタン)やNi(ニッケル)を用いることも可能である。
<保護層>
図5に示すように、SiO等のシリコン酸化物からなる保護層190は、第1電極170の一部および第2電極180の一部を除いて、これら第1電極170および第2電極180を覆い、且つ、p型半導体層160、発光層150およびn型半導体層140の一部(半導体層露出面140cよりも発光層150側(図1参照))を覆うように積層されている。保護層190は、外部から水等が発光層150、第1電極170および第2電極180に浸入するのを抑制する保護層としての機能と、発光層150から出射された光のうち、直接基板110側に向かわず、しかも、第1電極170の金属反射層172や第2電極180の第2導電層181で反射されなかった光を基板110側に向けて反射する補助反射層としての機能とを有している。
<第2の実施の形態>
図6は、第2の実施の形態が適用される半導体発光素子2の断面模式図の一例を示す図である。また、図7は、図6に示した半導体発光素子2の平面模式図の一例を示す図である。図1及び図2に示した半導体発光素子1と同様な構成については同じ符号を使用し、その説明を省略する。
図6に示すように、半導体発光素子2は、基板110と、基板110上に積層される中間層120、下地層130、積層半導体層100(n型半導体層140、発光層150、p型半導体層160)とを備える。さらに、半導体発光素子2は、第1電極170、第2電極180を備える。また、第1電極170に対しては第1の開口部170a、第2電極180に対しては第2の開口部180aが形成されている。第1の開口部170aは、第2の開口部180aの外縁部から一定の長さの間隔Rを保つように形成されている。
さらに、半導体発光素子2は、平面視で積層半導体層100の周囲を所定の幅で切り欠くことによって露出したn型半導体層140の半導体層露出面140dに、第2電極180の枝部180bが形成されている。
また、半導体発光素子2の第1電極170、第2電極180及び枝部180bと、p型半導体層160、発光層150およびn型半導体層140の一部(半導体層露出面140cよりも発光層150側)と、p型半導体層160、発光層150およびn型半導体層140の一部(半導体層露出面140cよりも発光層150側)の側壁面の全域は、保護層190により覆われている。
次に、図7に示すように、前述の図2に示した半導体発光素子1と同様に、第1電極170を露出させる第1の開口部170aと第2電極を露出させる第2の開口部180aは、第1の開口部170aの第2の開口部180a側の外縁端部と第2の開口部180aの第1の開口部170a側の外縁端部とが、一定の間隔Rを保つように配置されている。本実施の形態では、平面視で第1の開口部170aの第2の開口部180a側は、半円形状に形成された第2の開口部180aの第1の開口部170a側の形状に倣い、第2の開口部180aの外縁部から略等しい間隔Rを保つように円弧状に形成されている。尚、図7では、第1電極170、第2電極180及び枝部180bの表面を覆う保護層190を省略している。
さらに、図7に示すように、半導体発光素子2において、平面視したとき、第2の電極180は、p型半導体層160の上面160cの略全面を覆うように形成されている第1電極170の周囲を囲むように、すなわち、平面視で、基板110の外周縁に沿うように分岐した枝部180bを有している。
このように、第2電極180の枝部180bが、第1電極170の周囲を囲むように形成されていることにより、半導体発光素子2の電流密度や電流分布の偏りが低減し、発光強度にむらが生じないようになる。
<第3の実施の形態>
図8は、第3の実施の形態が適用される半導体発光素子3の平面模式図の一例を示す図である。図8に示すように、半導体発光素子3では、平面視で第2電極180は、正方形の隅部(図8では、左下の角部)に配置されている。
一方、平面視したとき、第1電極170は、第2電極180及び第2の電極180から分岐した枝部180bを形成するためにエッチング等の手段により除去された正方形の隅部(図8では、左下の角部)を除き、p型半導体層160の上面160c(図1参照)の略全面を覆うように形成されている。第1電極170の上面には、第1電極170を露出させ、外部との電気的な接続に用いられる第1の開口部170aが形成されている。第1の開口部170aは、第1電極170の図8における略右半分及び上半分の部分を露出させる。そして、第1の開口部170aは、第2電極180側が円弧状に切り取られたような平面形状を有している。
このように、半導体発光素子3では、平面視で第2電極180を、正方形の隅部に配置することにより、第1電極170の面積を大きくするとともに、第1の開口部170aの面積も大きくすることができる。
さらに、図7に示した半導体発光素子2と同様に、平面視したとき、第2の電極180は、第1電極170の周囲を囲むように、すなわち、平面視で、基板110の外周縁に沿うように分岐した枝部180bを有している。
<第4の実施の形態>
図9は、第4の実施の形態が適用される半導体発光素子4の平面模式図の一例を示す図である。図9に示すように、半導体発光素子4では、図8に示した半導体発光素子3と同様に、平面視で第2電極180が、正方形の隅部(図8では、左下の角部)に配置されている。また、平面視したとき、第1電極170は、第2電極180及び第2の電極180から分岐した枝部180cを形成するために除去され部分を除き、p型半導体層160の上面160c(図6参照)の略全面を覆うように形成されている。第1電極170の上面には、第1電極170を露出させた第1の開口部170aが形成されている。第1の開口部170aは、第1電極170の図9における略右半分及び上半分の部分を露出させる。そして、第1の開口部170aは、第2電極180側が円弧状に切り取られたような平面形状を有している。
さらに、半導体発光素子4は、平面視したとき、第2の電極180は、略四角形の形状を有する第1電極170の2辺の周囲に沿うように分岐した枝部180cを有している。すなわち、分岐した枝部180cは、第1電極170の外周縁を囲まずに、前述した半導体発光素子3(図8参照)における第2の電極180から分岐した枝部180bと比較して、略半分の長さを有している。
<第5の実施の形態>
図10は、第5の実施の形態が適用される半導体発光素子5の平面模式図の一例を示す図である。図10に示すように、半導体発光素子4では、図8に示した半導体発光素子3と同様に、平面視で第2電極180が、正方形の隅部に配置され、平面視したとき第2の電極180は、第1電極170の周囲を囲むように分岐した枝部180bを有している。
さらに、第2の電極180は、積層半導体層100の一部を、平面視で、正方形の基板110の対角線方向に切り欠くことによって露出した半導体層露出面140cの表面に形成された第2の枝部180dを有している。
また、平面視したとき、第1電極170は、第2電極180を形成するために除去された部分と、第2電極180の枝部180b及び第2の枝部180dを除き、p型半導体層160の上面160c(図6参照)の略全面を覆うように形成されている。第1電極170の上面には、第1電極170を露出させた第1の開口部170aが形成されている。第1の開口部170aは、第1電極170の図10における略右半分及び上半分の部分を露出させる。そして、第1の開口部170aは、第2電極180側が円弧状に切り取られたような平面形状を有している。
<第6の実施の形態>
図11は、第6の実施の形態が適用される半導体発光素子6の平面模式図の一例を示す図である。図11に示すように、半導体発光素子4では、図10に示した半導体発光素子5と同様に、平面視で第2電極180が、正方形の隅部に配置され、平面視したとき第2の電極180は、第1電極170の周囲を囲むように分岐した枝部180bを有している。そして、第2の電極180は、積層半導体層100の一部を、平面視で、正方形の基板110の対角線方向に切り欠くことによって露出した半導体層露出面140cの表面に形成された第2の枝部180eを有している。
さらに、図11に示すように、第2の枝部180eは、図10に示した半導体発光素子5の場合と比較して、積層半導体層100の一部を対角線方向にさらに長く切り欠いて形成されている。このため、第1電極170の第1の開口部170aは、第2電極180側の円弧状の一部分に第2の枝部180eの先端が食い込むように、矩形状に形成された部分を有している。
<半導体発光素子1の使用方法>
次に、図1に示す半導体発光素子1の使用方法について説明する。
図13は、図1に示す半導体発光素子1を配線基板10Bに実装した発光装置の構成の一例を示す図である。
配線基板10Bの一方の面には、正電極11と負電極12とが形成されている。
そして、配線基板10Bに対し、図1に示す半導体発光素子1の上下を反転させた状態で、正電極11には第1電極170(具体的には第1ボンディング層173)を、また、負電極12には第2電極180(具体的には第2ボンディング層182)を、それぞれバンプ(はんだ)20を用いて電気的に接続すると共に機械的に固定している。このような配線基板10Bに対する半導体発光素子1の接続手法は、一般にフリップチップ接続と呼ばれるものである。フリップチップ接続においては、配線基板10Bからみて、半導体発光素子1の基板110が発光層150よりも遠い位置に置かれる。
次に、図13に示す発光装置の発光動作について説明する。尚、第1電極170については、図4を参照する。
配線基板10Bの正電極11および負電極12を介して、半導体発光素子1に正電極11から負電極12に向かう電流を流すと、半導体発光素子1では、第1電極170からp型半導体層160、発光層150およびn型半導体層140を介して第2電極180に向かう電流が流れ、発光層150は四方に向けて青色光を出力する。このとき、第1電極170では、第1ボンディング層173、金属反射層172および第1導電層171を介して電流が流れ(以上、図4参照)、p型半導体層160には、上面160cの面上において均一化された状態の電流が供給される。
発光層150から出力される光のうち基板110側に向かう光は、n型半導体層140、下地層130、中間層120および基板110を透過し、半導体発光素子1の外部に出射される。
また、発光層150から出射される光のうち第1電極170側に向かう光は、p型半導体層160および第1導電層171を介して金属反射層172に到達し、金属反射層172で反射される。そして、金属反射層172で反射した光は、第1導電層171、p型半導体層160、発光層150、n型半導体層140、下地層130、中間層120および基板110を透過し、半導体発光素子1の外部に出射される。
一方、発光層150から出射される光のうち側方に向かう光は、例えば発光層150を介して保護層190に到達し、保護層190で反射される。そして、保護層190で反射した光は、半導体発光素子1内を進行し、直接あるいは金属反射層172や保護層190等で反射した後、半導体発光素子1の外部に出射される。
ここで、発光層150から直接基板110に向かう光の一部、発光層150から金属反射層172を介して基板110に向かう光の一部、そして、発光層150から保護層190を介して基板に110に向かう光の一部は、例えば基板110と外部との境界において反射され、半導体発光素子1内へと戻ってくる。このようにして半導体発光素子1内に戻ってきた光は、第1電極170に設けられた金属反射層172、第2電極180に設けられた第2導電層181、そして保護層190によって反射され、再び基板110側へと向かう。このように、本実施の形態では、半導体発光素子1に金属反射層172および保護層190を設け、発光層150から基板110とは反対側に出射された光をこれら金属反射層172および保護層190によって反射させることで、半導体発光素子1からの光の取り出し効率を高めている。
以下、実施例に基づき本発明を更に詳細に説明する。但し、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
<接合部温度(ジャンクション温度)の測定>
半導体発光素子のジャンクション温度は、サファイアで作製したサブマウント上にFC素子を実装し、環境温度を変化させてVf(1μA)を測定する。Vfは環境温度上昇に伴って単調に減少する。この関係をプロットし、温度とVfの変化の関係が得られる。電流印加時のジャンクション温度は電流印加前のVf(1μA)を測定し、十分電流印加を行い、素子の温度が一定になったときのVf(1μA)を測定する。印加前後のVf(1μA)の変化量から温度上昇の変化量をもとめる。これに環境温度を足し、ジャンクション温度を得る。
(実施例1〜9、比較例1)
前述した第1の実施の形態(図2参照)〜第6の実施の形態(図11参照)で説明した6種類の半導体発光素子を、それぞれ、窒化アルミニウム(AlN)製のサブマウント基板上に実装した。
さらに、図12(a)〜図12(c)に示すように、第3の実施の形態(図8参照)、第5の実施の形態(図10参照)及び第6の実施の形態(図11参照)で説明した半導体発光素子において、第2電極の枝部を有しない構造の3種類の半導体発光素子を形成した。これらをそれぞれ、第7の実施の形態(図12(a)参照)、第8の実施の形態(図12(b)参照)及び第9の実施の形態(図12(c)参照)と呼ぶ。これらの3種の実施の形態の半導体発光素子を、同様に、窒化アルミニウム(AlN)製のサブマウント基板上に実装した。尚、図12(a)〜図12(c)に示す3種類の半導体発光素子は、第1の実施の形態(図2参照)と同様な構成について同じ符号を用いた。
次に、これら9種類の半導体発光素子について、表1に示す3種類の電流値(20mA,80mA,150mA)における順方向電圧(Vf:単位V)と発光量(Po:単位mW)を測定し、各条件におけるジャンクション温度(単位:℃)を測定した。また、比較として、図12(d)に示すように、従来の半導体発光素子を窒化アルミニウム(AlN)製のサブマウント基板上に実装したものについて、同様な測定を行った。結果を表1に示す。
Figure 2011119519
表1に示す結果から、9種類の実施の形態(第1の実施の形態〜第9の実施の形態)の半導体発光素子は、従来の半導体発光素子(比較例)と比べ、接合部温度(ジャンクション温度)が低いことが分かる(実施例1〜実施例9/比較例(105℃))。これは、従来の半導体発光素子(比較例)と比べ、第1電極170を露出させる第1の開口部170aが大きいことにより、放熱性が高められたと考えられる。
また、9種類の実施の形態(第1の実施の形態〜第9の実施の形態)の半導体発光素子の間では、第2電極の枝部を有することにより、Vf(順方向電圧)及びジャンクション温度が低下し、電力効率が良好である傾向が見られた。
例えば、第2電極の枝部を有しない第1の実施形態(図2:ジャンクション温度96℃(実施例1))と第2電極の枝部を有する第2の実施形態(図7:ジャンクション温度89℃(実施例2))との比較、第2電極の枝部を有しない第7の実施形態(図12(a):ジャンクション温度95℃(実施例7))と第2電極の枝部を有する第3の実施形態(図8:ジャンクション温度89℃(実施例3))との比較、第2電極の枝部を有しない第8の実施形態(図12(b):ジャンクション温度92℃(実施例8))と第2電極の枝部を有する第5の実施形態(図10:ジャンクション温度91℃(実施例5))との比較等である。
1,2,3,4,5,6,7,8,9,10…半導体発光素子、10B…配線基板、20…バンプ(はんだ)、100…積層半導体層、110…基板、120…中間層、130…下地層、140…n型半導体層、140c…半導体層露出面、150…発光層、160…p型半導体層、160c…上面、170…第1電極、170a…第1の開口部、171…第1導電層、172…金属反射層、173…第1ボンディング層、174…第1密着層、180…第2電極、180a…第2の開口部、180b…枝部、180c…第2の枝部、181…第2導電層、182…第2ボンディング層、183…第2密着層、190…保護層

Claims (8)

  1. 基板上に、第1の導電型を有する第1の半導体層、発光層及び当該第1の導電型とは異なる第2の導電型を有する第2の半導体層が積層された積層半導体層と、
    前記積層半導体層の前記第1の半導体層の表面に形成され、外部との電気的な接続に用いられる第1の開口部を有する第1の電極と、
    前記積層半導体層の一部を切り欠くことによって露出した前記第2の半導体層の表面に形成され、外部との電気的な接続に用いられる第2の開口部を有する第2の電極と、を備え、
    前記第1の開口部は、平面視で当該第1の開口部の前記第2の開口部側に、当該第2の開口部の外縁部から略等しい間隔を保つように形成された円弧状の部分を有する
    ことを特徴とする半導体発光素子。
  2. 前記基板の平面形状は長方形または正方形であり、
    前記第1の開口部の前記円弧状の部分は、前記第2の開口部の外縁部から、前記基板の短辺の少なくとも10%に相当する長さの間隔を保つように形成されることを特徴とする請求項1に記載の半導体発光素子。
  3. 前記第1の開口部の面積は、前記第1の電極の表面積の少なくとも30%を有することを特徴とする請求項1又は2に記載の半導体発光素子。
  4. 前記第2の電極は、平面視で、前記基板の外周縁に沿うように分岐した少なくとも1つの枝部を有することを特徴とする請求項1乃至3のいずれか1項に記載の半導体発光素子。
  5. 前記第2の電極は、前記積層半導体層の一部を、平面視で、前記基板の対角線の方向に切り欠くことによって露出した前記第2の半導体層の表面に形成された少なくとも1つの枝部を有することを特徴とする請求項1乃至4のいずれか1項に記載の半導体発光素子。
  6. 前記積層半導体層は、III族窒化物半導体から構成されることを特徴とする請求項1乃至5のいずれか1項に記載の半導体発光素子。
  7. 前記第1の電極の前記第1の開口部に形成され、導電性を有し前記第1の電極と外部との電気的な接続に用いられる第1の接続子と、前記第2の電極の前記第2の開口部に形成され、導電性を有し前記第2の電極と外部との電気的な接続に用いられる第2の接続子と、を備えることを特徴とする請求項1乃至6のいずれか1項に記載の半導体発光素子。
  8. 第1の導電型を有する第1の半導体層、発光層、当該第1の導電型とは異なる第2の導電型を有する第2の半導体層が順に積層された積層半導体層と、当該積層半導体層の当該第1の半導体層の表面に形成され、外部との電気的な接続に用いられる第1の開口部を有する第1の電極と、当該積層半導体層の一部を切り欠くことによって露出した当該第2の半導体層の表面に形成され、外部との電気的な接続に用いられる第2の開口部を有する第2の電極と、を備え、当該第1の開口部は、平面視で当該第1の開口部の当該第2の開口部側に、当該第2の開口部の外縁部から略等しい間隔を保つように円弧状に形成された部分を有する半導体発光素子と、
    前記半導体発光素子の前記第1の電極及び前記第2の電極を備える側と対向するように配置され、当該第1の電極及び当該第2の電極と接続子により接続された一対の配線を備える回路基板と、
    を有することを特徴とする半導体発光装置。
JP2009276550A 2009-12-04 2009-12-04 半導体発光素子及び半導体発光装置 Pending JP2011119519A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009276550A JP2011119519A (ja) 2009-12-04 2009-12-04 半導体発光素子及び半導体発光装置
PCT/JP2010/071590 WO2011068162A1 (ja) 2009-12-04 2010-12-02 半導体発光素子及び半導体発光装置
US13/513,492 US8779441B2 (en) 2009-12-04 2010-12-02 Semiconductor light emitting element with first and second electrode openings arranged at a constant distance
TW099142143A TWI528588B (zh) 2009-12-04 2010-12-03 半導體發光元件及半導體發光裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009276550A JP2011119519A (ja) 2009-12-04 2009-12-04 半導体発光素子及び半導体発光装置

Publications (1)

Publication Number Publication Date
JP2011119519A true JP2011119519A (ja) 2011-06-16

Family

ID=44115008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009276550A Pending JP2011119519A (ja) 2009-12-04 2009-12-04 半導体発光素子及び半導体発光装置

Country Status (4)

Country Link
US (1) US8779441B2 (ja)
JP (1) JP2011119519A (ja)
TW (1) TWI528588B (ja)
WO (1) WO2011068162A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213467A (ja) * 2015-05-11 2016-12-15 エルジー イノテック カンパニー リミテッド 発光素子および発光素子パッケージ

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM436224U (ja) * 2011-10-28 2012-08-21 Rgb Consulting Co Ltd
JP5857786B2 (ja) * 2012-02-21 2016-02-10 日亜化学工業株式会社 半導体発光素子の製造方法
TWI473298B (zh) * 2012-04-20 2015-02-11 Genesis Photonics Inc 半導體發光元件及覆晶式封裝元件
TWI572068B (zh) * 2012-12-07 2017-02-21 晶元光電股份有限公司 發光元件
TWI602326B (zh) * 2012-12-07 2017-10-11 晶元光電股份有限公司 發光元件
US9583538B2 (en) * 2013-02-28 2017-02-28 Kabushiki Kaisha Toshiba Semiconductor memory device having crossing interconnects separated by stacked films
US10014442B2 (en) * 2013-04-22 2018-07-03 Korea Polytechnic University Industry Academic Cooperation Foundation Method for manufacturing vertical type light emitting diode, vertical type light emitting diode, method for manufacturing ultraviolet ray light emitting diode, and ultraviolet ray light emitting diode
US10304998B2 (en) * 2013-09-27 2019-05-28 Seoul Viosys Co., Ltd. Light emitting diode chip and light emitting device having the same
KR102100937B1 (ko) * 2013-09-30 2020-04-16 서울바이오시스 주식회사 함몰 돌기 패턴을 구비하는 발광다이오드 칩
TWI552378B (zh) * 2014-03-07 2016-10-01 隆達電子股份有限公司 發光二極體晶片
US9543488B2 (en) 2014-06-23 2017-01-10 Seoul Viosys Co., Ltd. Light emitting device
KR102282141B1 (ko) * 2014-09-02 2021-07-28 삼성전자주식회사 반도체 발광소자
TWD177216S (zh) * 2015-02-05 2016-07-21 榮創能源科技股份有限公司 發光二極體封裝
AU2016337355B2 (en) 2015-10-12 2019-09-26 Dow Agrosciences Llc WupA nucleic acid molecules that confer resistance to coleopteran and hemipteran pests
AU2016371636A1 (en) 2015-12-18 2018-06-21 Dow Agrosciences Llc Ribosomal protein L40 (RPL40) nucleic acid molecules that confer resistance to coleopteran and hemipteran pests
WO2017135763A1 (ko) * 2016-02-05 2017-08-10 엘지이노텍 주식회사 발광소자 및 이를 포함하는 발광소자 패키지
CN108807256B (zh) * 2017-05-03 2021-09-21 群创光电股份有限公司 显示设备
US10446716B2 (en) * 2017-05-03 2019-10-15 Innolux Corporation Display devices
JP6912962B2 (ja) 2017-07-26 2021-08-04 旭化成株式会社 窒化物半導体発光素子、紫外線発光モジュール
TWI634673B (zh) * 2017-08-09 2018-09-01 國立交通大學 覆晶式發光二極體元件及其製造方法
TWI644420B (zh) * 2017-11-08 2018-12-11 友達光電股份有限公司 元件基板及其製造方法
WO2020054592A1 (ja) * 2018-09-13 2020-03-19 パナソニックIpマネジメント株式会社 半導体発光素子及び半導体発光装置
KR20210091895A (ko) 2020-01-15 2021-07-23 삼성전자주식회사 발광 소자
CN113851566B (zh) * 2021-12-01 2022-02-11 山西中科潞安紫外光电科技有限公司 一种深紫外led倒装芯片及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209499A (ja) * 1997-01-24 1998-08-07 Rohm Co Ltd 半導体発光素子
JPH10275934A (ja) * 1997-03-28 1998-10-13 Rohm Co Ltd 半導体発光素子
JP2000216439A (ja) * 1999-01-22 2000-08-04 Sanyo Electric Co Ltd チップ型発光素子およびその製造方法
JP2001345480A (ja) * 2000-03-31 2001-12-14 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子
JP2006245232A (ja) * 2005-03-02 2006-09-14 Nichia Chem Ind Ltd 半導体発光素子
JP2009049266A (ja) * 2007-08-22 2009-03-05 Toshiba Corp 半導体発光素子及び半導体発光装置
JP2009253012A (ja) * 2008-04-07 2009-10-29 Panasonic Corp 半導体発光素子およびそれを用いた半導体発光装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2697572B2 (ja) 1993-09-21 1998-01-14 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
EP0622858B2 (en) * 1993-04-28 2004-09-29 Nichia Corporation Gallium nitride-based III-V group compound semiconductor device and method of producing the same
US6107644A (en) * 1997-01-24 2000-08-22 Rohm Co., Ltd. Semiconductor light emitting device
US6091083A (en) * 1997-06-02 2000-07-18 Sharp Kabushiki Kaisha Gallium nitride type compound semiconductor light-emitting device having buffer layer with non-flat surface
JP4352473B2 (ja) * 1998-06-26 2009-10-28 ソニー株式会社 半導体装置の製造方法
US6603152B2 (en) * 2000-09-04 2003-08-05 Samsung Electro-Mechanics Co., Ltd. Blue light emitting diode with electrode structure for distributing a current density
JP4055503B2 (ja) * 2001-07-24 2008-03-05 日亜化学工業株式会社 半導体発光素子
JP4045767B2 (ja) * 2001-09-28 2008-02-13 日亜化学工業株式会社 半導体発光装置
JP2003133590A (ja) 2001-10-25 2003-05-09 Sharp Corp 窒化ガリウム系化合物半導体発光素子及びその製造方法
KR100975521B1 (ko) 2003-10-04 2010-08-12 삼성전자주식회사 발광 소자 조립체
JP4320676B2 (ja) * 2004-03-31 2009-08-26 日亜化学工業株式会社 窒化物半導体発光素子
JP2008041866A (ja) 2006-08-04 2008-02-21 Nichia Chem Ind Ltd 窒化物半導体素子
US7439548B2 (en) 2006-08-11 2008-10-21 Bridgelux, Inc Surface mountable chip
JP2009054688A (ja) 2007-08-24 2009-03-12 Kyocera Corp 発光素子
JP2009277882A (ja) 2008-05-14 2009-11-26 Showa Denko Kk Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209499A (ja) * 1997-01-24 1998-08-07 Rohm Co Ltd 半導体発光素子
JPH10275934A (ja) * 1997-03-28 1998-10-13 Rohm Co Ltd 半導体発光素子
JP2000216439A (ja) * 1999-01-22 2000-08-04 Sanyo Electric Co Ltd チップ型発光素子およびその製造方法
JP2001345480A (ja) * 2000-03-31 2001-12-14 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子
JP2006245232A (ja) * 2005-03-02 2006-09-14 Nichia Chem Ind Ltd 半導体発光素子
JP2009049266A (ja) * 2007-08-22 2009-03-05 Toshiba Corp 半導体発光素子及び半導体発光装置
JP2009253012A (ja) * 2008-04-07 2009-10-29 Panasonic Corp 半導体発光素子およびそれを用いた半導体発光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213467A (ja) * 2015-05-11 2016-12-15 エルジー イノテック カンパニー リミテッド 発光素子および発光素子パッケージ

Also Published As

Publication number Publication date
TW201131815A (en) 2011-09-16
US8779441B2 (en) 2014-07-15
TWI528588B (zh) 2016-04-01
WO2011068162A1 (ja) 2011-06-09
US20120241760A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
WO2011068162A1 (ja) 半導体発光素子及び半導体発光装置
US8492785B2 (en) Semiconductor light-emitting element and semiconductor light-emitting device
JP5332882B2 (ja) 半導体発光素子
JP5522032B2 (ja) 半導体発光素子及びその製造方法
WO2011071100A1 (ja) 半導体発光素子、半導体発光素子を用いた発光装置および電子機器
JP5526712B2 (ja) 半導体発光素子
WO2011018942A1 (ja) 半導体発光素子、半導体発光装置、半導体発光素子の製造方法、半導体発光装置の製造方法、半導体発光装置を用いた照明装置および電子機器
JPWO2006082687A1 (ja) GaN系発光ダイオードおよび発光装置
US9293657B2 (en) Semiconductor light emitting device
JP2008218440A (ja) GaN系LED素子および発光装置
JP2011066073A (ja) 半導体発光素子
JP5608589B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP2011035324A (ja) 半導体発光素子、ランプ、電子機器および機械装置
JP5434288B2 (ja) 半導体発光素子、半導体発光素子の製造方法、半導体発光素子を備えたランプ、照明装置および電子機器
JP5353809B2 (ja) 半導体発光素子及び発光装置
JP4868821B2 (ja) 窒化ガリウム系化合物半導体及び発光素子
JP2011034989A (ja) 半導体発光素子、その製造方法、ランプ、電子機器及び機械装置
JP5708285B2 (ja) 半導体発光素子及び半導体発光装置
JP2012064759A (ja) 半導体発光装置、半導体発光装置の製造方法
JP5630276B2 (ja) 半導体発光素子、半導体発光装置
JP2012253074A (ja) 窒化物系発光ダイオード素子
JP2008226866A (ja) GaN系LED素子および発光装置
JP2007201046A (ja) 化合物半導体及び発光素子
JP2012089801A (ja) 半導体発光素子およびその製造方法、および実装基板
JP2014041999A (ja) 半導体発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121005

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218