WO1998029399A1 - Sels d'anions pentacycliques ou derives de tetrazapentalene, et leurs utilisations comme materiaux a conduction ionique - Google Patents
Sels d'anions pentacycliques ou derives de tetrazapentalene, et leurs utilisations comme materiaux a conduction ionique Download PDFInfo
- Publication number
- WO1998029399A1 WO1998029399A1 PCT/CA1997/001009 CA9701009W WO9829399A1 WO 1998029399 A1 WO1998029399 A1 WO 1998029399A1 CA 9701009 W CA9701009 W CA 9701009W WO 9829399 A1 WO9829399 A1 WO 9829399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- cation
- radicals
- compound according
- substituents
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 *[n](nc1C(F)(F)F)nc1C#N Chemical compound *[n](nc1C(F)(F)F)nc1C#N 0.000 description 3
- CBCCTQFXNLIHKM-UHFFFAOYSA-N Cc1n[n](CI)nc1C#N Chemical compound Cc1n[n](CI)nc1C#N CBCCTQFXNLIHKM-UHFFFAOYSA-N 0.000 description 1
- CDHYYLWGYBMOMS-UHFFFAOYSA-N N#CC(C(C#N)=N1)=NC1Cl Chemical compound N#CC(C(C#N)=N1)=NC1Cl CDHYYLWGYBMOMS-UHFFFAOYSA-N 0.000 description 1
- BIPUTVVJTJSRFR-NSCUHMNNSA-N NNN/C=C(\CC(F)(F)F)/C(F)(F)F Chemical compound NNN/C=C(\CC(F)(F)F)/C(F)(F)F BIPUTVVJTJSRFR-NSCUHMNNSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0215—Sulfur-containing compounds
- B01J31/0222—Sulfur-containing compounds comprising sulfonyl groups
- B01J31/0224—Sulfur-containing compounds comprising sulfonyl groups being perfluorinated, i.e. comprising at least one perfluorinated moiety as substructure in case of polyfunctional compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0215—Sulfur-containing compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0215—Sulfur-containing compounds
- B01J31/0222—Sulfur-containing compounds comprising sulfonyl groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0215—Sulfur-containing compounds
- B01J31/0225—Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0215—Sulfur-containing compounds
- B01J31/0225—Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts
- B01J31/0227—Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts being perfluorinated, i.e. comprising at least one perfluorinated moiety as substructure in case of polyfunctional compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0239—Quaternary ammonium compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0245—Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
- B01J31/0247—Imides, amides or imidates (R-C=NR(OR))
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0245—Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
- B01J31/0251—Guanidides (R2N-C(=NR)-NR2)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0252—Nitrogen containing compounds with a metal-nitrogen link, e.g. metal amides, metal guanidides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0255—Phosphorus containing compounds
- B01J31/0267—Phosphines or phosphonium compounds, i.e. phosphorus bonded to at least one carbon atom, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, the other atoms bonded to phosphorus being either carbon or hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0271—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0277—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
- B01J31/0278—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
- B01J31/0281—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0277—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
- B01J31/0287—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing atoms other than nitrogen as cationic centre
- B01J31/0288—Phosphorus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0277—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
- B01J31/0287—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing atoms other than nitrogen as cationic centre
- B01J31/0289—Sulfur
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/04—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
- B01J31/068—Polyalkylene glycols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/12—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
- B01J31/123—Organometallic polymers, e.g. comprising C-Si bonds in the main chain or in subunits grafted to the main chain
- B01J31/124—Silicones or siloxanes or comprising such units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1805—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
- B01J31/181—Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
- B01J31/1815—Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B37/00—Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
- C07B37/02—Addition
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B37/00—Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
- C07B37/10—Cyclisation
- C07B37/12—Diels-Alder reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/01—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
- C07C255/10—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and halogen atoms, or nitro or nitroso groups, bound to the same acyclic carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/01—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
- C07C255/17—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and doubly-bound oxygen atoms bound to the same acyclic carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/01—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
- C07C255/24—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton
- C07C255/27—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton containing cyano groups, amino groups and doubly-bound oxygen atoms bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/45—Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings
- C07C255/46—Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of non-condensed rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/63—Carboxylic acid nitriles containing cyano groups and nitrogen atoms further bound to other hetero atoms, other than oxygen atoms of nitro or nitroso groups, bound to the same carbon skeleton
- C07C255/65—Carboxylic acid nitriles containing cyano groups and nitrogen atoms further bound to other hetero atoms, other than oxygen atoms of nitro or nitroso groups, bound to the same carbon skeleton with the nitrogen atoms further bound to nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C257/00—Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines
- C07C257/10—Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines
- C07C257/14—Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines having carbon atoms of amidino groups bound to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/01—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
- C07C311/02—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C311/03—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/01—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
- C07C311/02—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C311/03—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C311/04—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic carbon atoms to acyclic carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/01—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
- C07C311/02—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C311/09—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton the carbon skeleton being further substituted by at least two halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/48—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/02—Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms
- C07C317/04—Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/02—Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms
- C07C317/08—Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms of an acyclic unsaturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/14—Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/16—Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C317/22—Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/24—Sulfones; Sulfoxides having sulfone or sulfoxide groups and doubly-bound oxygen atoms bound to the same carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/26—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
- C07C317/32—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C317/34—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same non-condensed ring or of a condensed ring system containing that ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/44—Sulfones; Sulfoxides having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/45—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
- C07C45/46—Friedel-Crafts reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/67—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
- C07C45/68—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
- C07C45/69—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by addition to carbon-to-carbon double or triple bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/44—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
- C07D207/444—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
- C07D207/448—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
- C07D207/452—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide with hydrocarbon radicals, substituted by hetero atoms, directly attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/72—Nitrogen atoms
- C07D213/76—Nitrogen atoms to which a second hetero atom is attached
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D219/00—Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
- C07D219/04—Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
- C07D219/08—Nitrogen atoms
- C07D219/10—Nitrogen atoms attached in position 9
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/14—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D231/18—One oxygen or sulfur atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/66—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D233/90—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/28—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D239/46—Two or more oxygen, sulphur or nitrogen atoms
- C07D239/60—Three or more oxygen or sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D241/00—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
- C07D241/36—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
- C07D241/38—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
- C07D241/40—Benzopyrazines
- C07D241/42—Benzopyrazines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/04—1,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/08—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
- C07D249/10—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/08—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
- C07D249/10—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D249/12—Oxygen or sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D251/00—Heterocyclic compounds containing 1,3,5-triazine rings
- C07D251/02—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
- C07D251/12—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D251/26—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
- C07D251/40—Nitrogen atoms
- C07D251/54—Three nitrogen atoms
- C07D251/70—Other substituted melamines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/64—Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/68—Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
- C07D277/82—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/01—Five-membered rings
- C07D285/02—Thiadiazoles; Hydrogenated thiadiazoles
- C07D285/04—Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
- C07D285/12—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles
- C07D285/125—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/01—Five-membered rings
- C07D285/02—Thiadiazoles; Hydrogenated thiadiazoles
- C07D285/04—Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
- C07D285/12—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles
- C07D285/125—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
- C07D285/135—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/15—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/15—Six-membered rings
- C07D285/16—Thiadiazines; Hydrogenated thiadiazines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/34—Compounds containing oxirane rings with hydrocarbon radicals, substituted by sulphur, selenium or tellurium atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/38—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/54—Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/56—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/64—Sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/42—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms in positions 2 and 4
- C07D311/44—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms in positions 2 and 4 with one hydrogen atom in position 3
- C07D311/46—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms in positions 2 and 4 with one hydrogen atom in position 3 unsubstituted in the carbocyclic ring
- C07D311/52—Enol-esters or -ethers, or sulfur analogues thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/58—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/78—Ring systems having three or more relevant rings
- C07D311/80—Dibenzopyrans; Hydrogenated dibenzopyrans
- C07D311/82—Xanthenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D319/00—Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D319/04—1,3-Dioxanes; Hydrogenated 1,3-dioxanes
- C07D319/06—1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/06—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
- C07D333/14—Radicals substituted by singly bound hetero atoms other than halogen
- C07D333/16—Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/06—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
- C07D333/24—Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/06—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/10—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F17/00—Metallocenes
- C07F17/02—Metallocenes of metals of Groups 8, 9 or 10 of the Periodic Table
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/04—Azo-compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/334—Polymers modified by chemical after-treatment with organic compounds containing sulfur
- C08G65/3344—Polymers modified by chemical after-treatment with organic compounds containing sulfur containing oxygen in addition to sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B69/00—Dyes not provided for by a single group of this subclass
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B69/00—Dyes not provided for by a single group of this subclass
- C09B69/02—Dyestuff salts, e.g. salts of acid dyes with basic dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B69/00—Dyes not provided for by a single group of this subclass
- C09B69/10—Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/124—Intrinsically conductive polymers
- H01B1/128—Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/02—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/62—Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/166—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/181—Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/182—Cells with non-aqueous electrolyte with solid electrolyte with halogenide as solid electrolyte
- H01M6/183—Cells with non-aqueous electrolyte with solid electrolyte with halogenide as solid electrolyte with fluoride as solid electrolyte
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/10—Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
- B01J2231/12—Olefin polymerisation or copolymerisation
- B01J2231/122—Cationic (co)polymerisation, e.g. single-site or Ziegler-Natta type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/10—Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
- B01J2231/14—Other (co) polymerisation, e.g. of lactides or epoxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
- B01J2231/32—Addition reactions to C=C or C-C triple bonds
- B01J2231/324—Cyclisations via conversion of C-C multiple to single or less multiple bonds, e.g. cycloadditions
- B01J2231/326—Diels-Alder or other [4+2] cycloadditions, e.g. hetero-analogues
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
- B01J2231/34—Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
- B01J2231/341—1,2-additions, e.g. aldol or Knoevenagel condensations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
- B01J2231/34—Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
- B01J2231/348—1,4-additions, e.g. conjugate additions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/40—Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
- B01J2231/42—Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
- B01J2231/4205—C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/50—Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
- B01J2231/54—Metathesis reactions, e.g. olefin metathesis
- B01J2231/543—Metathesis reactions, e.g. olefin metathesis alkene metathesis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/30—Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
- B01J2531/35—Scandium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/824—Palladium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/06—Systems containing only non-condensed rings with a five-membered ring
- C07C2601/10—Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2602/00—Systems containing two condensed rings
- C07C2602/36—Systems containing two condensed rings the rings having more than two atoms in common
- C07C2602/42—Systems containing two condensed rings the rings having more than two atoms in common the bicyclo ring system containing seven carbon atoms
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/1514—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
- G02F1/1523—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
- G02F1/1525—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/1514—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
- G02F1/1516—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
- G02F2001/1518—Ferrocene compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/164—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/168—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/1053—Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
- Y10S430/1055—Radiation sensitive composition or product or process of making
- Y10S430/127—Spectral sensitizer containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
Definitions
- the present invention relates to ionic compounds in which the anionic charge is carried by a pentacyclic nucleus or derived from tetrazapentalene, and their uses.
- Non-nucleophilic or weakly basic anions are of increasing importance in all applications of chemistry for stabilizing or activating various cationic charges such as those of dyes or of intermediate species in polymerizations. They also act as intermediaries for various reactions in organic chemistry.
- electrochemistry there is an increasing use of media other than water for applications such as primary or secondary generators, supercapacitors, light modulation systems.
- the derivatives of coordination anions, of the BF 4 " , PF 6 ⁇ , AsF 6 ⁇ type, are mainly known, but these have limited stability due to the dissociation equilibrium releasing the fluoride anion and the acid of Lewis corresponding, both causing parasitic reactions and presenting a certain toxicity.
- the anion perchlorate C10 4 " is thermally unstable and dangerous.
- the inventors have found that, surprisingly, the properties of compounds derived from cyclopentadiene are considerably modified when a ring carbon is replaced by an element more electronegative than carbon, or when an electronegative substituent is attached to a carbon atom of the cycle.
- these compounds give easily soluble and strongly dissociated salts, including in organic media which are less polar than water.
- These salts have interesting properties for many applications and their preparation calls for materials which are easier to access. It is in particular possible to obtain stable anionic heterocycles incorporating lower or even zero amounts of fluorine, or from easily accessible fluorinated compounds.
- substitution possibilities linked to the chemistry of the compounds derived from the pentagonal rings of the invention therefore also makes it possible to introduce ionic groups into various molecules.
- the present invention therefore relates to a family of ionic compounds having good solubility and good dissociation, without the need to resort to complex modifications of the starting molecule.
- the precursors of the molecules of the invention are generally easily accessible.
- An ionic compound of the present invention comprises at least one anionic part associated with at least one cationic part M in sufficient number to ensure the electronic neutrality of the assembly, characterized in that M is a hydroxonium, a nitrosonium NO + , an ammonium -NH 4 + , a metal cation having the valence m, an organic cation having the valence m or an organometallic cation having the valence m, and in that the anionic part is pentacyclic or derived from tetrazapentalene and corresponds to one of the formulas following:
- Q 'and Q "independently of one another represent a perhaloalkyl or perhaloalkenyl radical in C ⁇ -C 8 , an aryl or alkylaryl radical in C 6 -C ⁇ 2 optionally halogenated, each one being able to contain substituents oxa, thia, aza;
- Q s is a radical chosen from: a) alkyl or alkenyl radicals, aryl, arylalkyl, alkylaryl or alkenylaryl radicals, alicyclic or heterocyclic radicals, including polycyclic radicals, said radicals being optionally halogenated or perhalogenated and / or optionally carrying at least one ether, thioether, amino, imine, amide, carboxyl, carbonyl, isocyanate, isothiocyanate, hydroxy functional group; b) monocyclic, polycyclic or condensed aromatic radicals in which the aromatic rings and / or at least one substituent d '
- the cation can be a metal cation chosen from alkali metal cations, alkaline earth metal cations, transition metal cations, trivalent metal cations, rare earth cations.
- a metal cation chosen from alkali metal cations, alkaline earth metal cations, transition metal cations, trivalent metal cations, rare earth cations.
- the cation can also be an organometallic cation, in particular a metallocenium.
- organometallic cation in particular a metallocenium.
- organometallic cation can be part of a polymer chain.
- the compounds of the invention have an organic cation chosen from the group consisting of the cations R 3 0 + (oxonium), NR 4 + (ammonium), RC (NHR 2 ) 2 + (amidinium ), C (NHR 2 ) 3 + (guanidinium), C 5 R 6 N + (pyridinium), C 3 R 5 N 2 + (imidazolium), C 3 R 7 N 2 + (imidazolinium), C 2 R 4 N 3 + (triazolium), SR 3 + (sulfonium), PR 4 + (phosphonium), IR 2 + (iodonium), (C 6 R 5 ) 3 C + (carbonium).
- radicals R can all be identical. But a cation can also contain radicals R different from each other.
- a radical R can be an H or else it is chosen from the following radicals: alkyl, alkenyl, oxaalkyl, oxaalkenyl, azaalkyl, azaalkenyl, thiaalkyl, thia-alkenyl, silaalkyl, silaalkenyl, aryl, arylalkyl, alkyl-aryl, alkenyl radicals -aryles, dialkylamino and dialkylazo; cyclic or heterocyclic radicals optionally comprising at least one side chain comprising heteroatoms such as nitrogen, oxygen, sulfur; - cyclic or heterocyclic radicals optionally comprising heteroatoms in the aromatic nucleus; groups comprising several aromatic or heterocyclic rings, condensed or not, optionally containing at least one nitrogen, oxygen, sulfur or phosphorus atom.
- an onium cation carries at least two radicals R different from H, these radicals can together form an aromatic ring or not, possibly including the center carrying the cationic charge.
- the cationic part of a compound of the invention can be either in the form of an independent cationic group which is linked to the anionic part only by the ionic bond between the positive charge of the cation and the negative charge of the pentacyclic anionic part or derivative of tetrazapentalene.
- the cationic part can be part of a repeating unit of a polymer.
- An onium cation can also be part of a substituent Y, Y c or Q s carried by the pentacyclic anion center or derived from tetrazapentalene.
- a compound of the invention constitutes a zwitterion.
- the cation of a compound of the invention is an onium cation, it can be chosen so as to introduce into the compound substituents making it possible to confer on said compound specific properties.
- the cation M + can be a cationic heterocycle of aromatic character, comprising at least one alkyl nitrogen atom in the ring.
- an imidazolium, a triazolium, a pyridinium, a 4-dimethylamino-pyridinium said cations optionally carrying a substituent on the carbon atoms of the ring.
- these cations those which give an ionic compound according to the invention whose melting point is less than 150 ° C. are particularly preferred.
- a particularly preferred proton-conducting material comprises a compound according to the invention in which the cation is formed by the addition of a proton on the nitrogen of an imidazoline, an imidazole or a triazole, as well as the nitrogenous base. corresponding in a proportion of 0.5 to 10 in molar ratio.
- the cation is a cation diaryliodonium, a dialkylaryliodonium cation, a triarylsulfonium cation, a trialkylaryl sulfonium cation, or a substituted or unsubstituted phenacyl-dialkyl sulfonium cation.
- the above-mentioned cations can be part of a polymer chain.
- the cation M of a compound of the invention can incorporate a group 2, 2 '[Azobis (2-2' - imidazolinio-2-yl) propane] + or 2, 2 '- Azobis (2-amidiniopropane) 2+ .
- the compound of the invention is then capable of liberating, under the action of heat or ionizing radiation, radicals which make it possible to initiate polymerization reactions, crosslinking or, in general, reactions chemicals involving free radicals.
- these compounds are easily soluble in polymeric and monomeric organic solvents even of low polarity, unlike derivatives of Cl " type anions usually associated with this type of compound.
- At least one of the substituents Q s or Q is chosen from the alkyl, alkenyl, oxaalkyl, oxaalkenyl, azaalkyl, aza-alkenyl, thiaalkyl or thiaalkenyl radicals having from 1 to 24 carbon atoms , or from aryl, arylalkyl, alkylaryl or alkenylaryl radicals having from 5 to 24 carbon atoms, or from alkyl or alkenyl radicals having from 1 to 12 carbon atoms and optionally comprising at least one heteroatom 0, N or S in the chain main or in a side chain, and / or optionally carrying a hydroxy group, a carbonyl group, an amino group, a carboxyl group.
- Q s or Q can also be part of a poly (oxyalkylene) radical or of a polystyrene radical.
- Another category of compounds according to the invention comprises compounds in which one of the substituents Y, Y c or Q s has at least one anionic ionophore group and / or at least one cationic ionophore group.
- the anionic group may for example be a carboxylate function (-C0 2 ⁇ ) ⁇ a sulfonate functional group (-S0 3 ⁇ ), a sulfonimide function (-S0 2 NS0 2 -) or a sulfonamide function (-S0 2 N-).
- the cationic ionophore group can for example be an iodonium, sulfonium, oxonium, ammonium, amidinium, guanidinium, pyridinium, imidazolium, imidazolinium, triazolium, phosphonium or carbonium group.
- the cationic ionophore group can fully or partially play the role of the cation M.
- the compounds of the The invention are reactive compounds which can be subjected to polymerizations, crosslinks or condensations, possibly with other monomers. They can also be used to fix ionophoric groups on polymers carrying the appropriate reactive function.
- At least one of the substituents Y, Y c or Q s can be a mesomorphic group or a chromophore group or a self-doping electronic conductive polymer or a hydrolysable alkoxysilane.
- a substituent Y, Y c or Q s may contain a group capable of trapping free radicals, for example a hindered phenol or a quinone.
- a substituent Y, Y c or Q s can also comprise a dissociating dipole, for example an amide function, a sulfonamide function or a nitrile function
- a substituent Y, Y c or Q s can also contain a redox couple, for example a disulfide group, a thioamide group, a ferrocene group, a phenothiazine group, a bis (dialkylaminoaryl) group, a nitroxide group or an imide group aromatic.
- a substituent Y, Y c or Q s can also include an optically active group or a complexing ligand.
- Another category of compounds includes those compounds in which Y or Y c represents an amino acid, or an optically or biologically active polypeptide.
- the substituents Y or Y c of a compound of the invention are different from a perfluoroalkylsulfonyl group when M is a metal cation.
- one of the substituents Y, Y c or Q s may be a radical having a valence v greater than two, comprising at each of its free ends an anionic pentacyclic group.
- One of the substituents Y, Y c or Q s can also represent a repeating unit of a polymer chain.
- the compound of the invention is then in the form of a polymer in which at least a portion of the repeating units carry a side group to which is attached a pentacyclic anionic group or derivative of tetrazapentalene.
- Y or Y c can also be a radical C n F 2n + ⁇ CH 2 -, n being a number integer from 1 to 8, or among heterocycles, in particular those derived from pyridine, pyrazine, pyrimidine, oxadiazole, thiadiazole, fluorinated or not.
- the ionic compounds of the present invention comprise at least one ionophore group to which are attached substituents which can be very varied. Given the large choice possible for the substituents, the compounds of the invention make it possible to induce ionic conduction properties in most organic, liquid or polymeric media having even a low polarity. Applications are important in the 1 field of electrochemistry, in particular energy storage in primary or secondary generators, in supercapacitors, in fuel cells and in light emitting diodes. The compatibility of the ionic compounds of the invention with polymers or organic liquids makes it possible to induce marked antistatic properties, even when the content of ionic compound is extremely low.
- the compounds of the invention which are polymers, as well as the polymer compounds obtained from compounds of the invention having the property of polymerizing or of copolymerizing, have the properties listed above with the advantage of have a stationary anionic charge. This is why another object of the present invention consists of an ionically conductive material consisting of an ionic compound of the present invention in solution in a solvent.
- the ionic compound used for the preparation of an ionically conductive material is chosen from compounds whose cation is ammonium, or a cation derived from a metal, in particular lithium or potassium , zinc, calcium, rare earth metals, or an organic cation, such as a substituted ammonium, an idazolium, a triazolium, a pyridinium, a 4-dimethylamino-pyridinium, said cations optionally carrying a substituent on the ring carbon atoms.
- the ionically conductive material thus obtained has high conductivity and solubility in solvents, due to the weak interactions between the positive charge and the negative charge.
- the properties of the ionically conductive material can also be adapted by the choice of the substituents Y, Y c or Q on the one hand, Q s on the other hand.
- the ionically conductive material readily forms polymers or copolymers which are polyelectrolytes, either intrinsic when the polymer carries solvating groups, either by addition of a polar solvent of liquid or polymer type, or by mixing with such a solvent.
- These products have a conductivity only due to cations, which is a very useful property in applications of the electrochemical generator type. In low molar fraction in a copolymer, they induce stable antistatic properties which are not very dependent on humidity and promote the fixation of cationic dyes, this property being useful for textile fibers and dye lasers.
- a substituent Q or Q s which is a self-doping electronic conductive polymer, improves the stability of the ionically conductive material with respect to external agents.
- the conductivity is stable over time even at high temperatures. In contact with metals, these materials give very low interface resistances and in particular protect ferrous metals or aluminum from corrosion.
- the ionically conductive material can form stable polymers by simple hydrolysis-condensation mechanism in the presence of water, thus making it possible to treat the surfaces of oxides, silica, silicates, in particular glass, to induce surface conduction properties, antistatic properties, or to promote the adhesion of polar polymers.
- the ion-conducting material When a substituent Y, Y c or Q s is a group comprising a free radical trap such as a hindered phenol, or a quinone, the ion-conducting material has the following advantages and properties: it acts as an antioxidant not exhibiting volatility and compatible with polar monomers and polymers, to which it also confers antistatic properties.
- a substituent Y, Y c or Q s comprises a dissociating dipole such as an amide, a sulfonamide or a nitrile
- the ion-conducting material has improved conductivity in mediums of low and medium polarity, in particular in polymers solvents, which makes it possible to minimize or even eliminate the addition of solvents or volatile plasticizers.
- a substituent Y, Y G or Q s which contains a redox couple such as a disulfide, a thioamide, a ferrocene, a phenothiazine, a bis (dialkylaminoaryl) group, a nitroxide, an aromatic imide, allows to induce in the ion-conducting material redox shuttle properties useful as a protective element and charge equalization of electrochemical generators, in photoelectrochemical systems, in particular of conversion of light into electricity, in modulation systems electrochromic type light.
- a redox couple such as a disulfide, a thioamide, a ferrocene, a phenothiazine, a bis (dialkylaminoaryl) group, a nitroxide, an aromatic imide
- the heteroatoms N and S are selectively complexing for the cations of the transition metals, Zn and Pb.
- a substituent Q or Q s alkyl or alkenyl further carries a hydroxy group, a carbonyl group, an amino group, a carboxyl group, an isocyanate group or a thioisocyanate group
- the ionic compound of the invention can give, by polycondensation, a polymer or a copolymer and the ionically conductive material which contains such a polymer or copolymer has polyelectrolyte properties.
- the ion-conducting material contains a compound of the invention in which a substituent Y, Y c or Q s represents a repeating unit of a polymer chain
- the material constitutes a polyelectrolyte.
- An ionically conductive material which contains such a compound is therefore particularly suitable as an electrolyte for a fuel cell.
- An ionically conductive material of the present invention comprises an ionic compound of the invention in solution in a solvent.
- the solvent can be an aprotic liquid solvent, a polar polymer or a mixture thereof.
- the aprotic liquid solvent is chosen, for example, from linear ethers and cyclic ethers, esters, nitriles, nitro derivatives, aids, sulfones, sulfolanes, alkyl sulfamides and partially halogenated hydrocarbons.
- Particularly preferred solvents are diethyl ether, dimethoxyethane, glyme, tetrahydrofuran, dioxane, dimethyltetrahydrofuran, methyl or ethyl formate, propylene or ethylene carbonate, alkyl carbonates (in particular alkyl dimethyl carbonate, diethyl carbonate and methylpropyl carbonate), butyrolactones, acetonitrile, benzonitrile, nitromethane, nitro-benzene, dimethylformamide, diethylformamide, N-methylpyrrolidone, dimethylsulfone, tetramethylene sulfone and tetraalkylsulfonamides having 5 to 10 carbon atoms.
- the polar polymer can be chosen from solvating polymers, crosslinked or not, bearing or not grafted ionic groups.
- a solvating polymer is a polymer which comprises solvating units containing at least one heteroatom chosen from sulfur, oxygen, nitrogen and fluorine.
- solvating polymers mention may be made of polyethers of linear, comb or block structure, which may or may not form a network, based on poly (ethylene oxide), or the copolymers containing the ethylene oxide unit. or propylene oxide or allylglycidylether, polyphosphazenes, crosslinked networks based on polyethylene glycol crosslinked by isocyanates or networks obtained by polycondensation and carrying groups which allow the incorporation of crosslinkable groups. Mention may also be made of block copolymers in which certain blocks carry functions which have redox properties. Of course, the above list is not exhaustive, and all polymers having solvating properties can be used.
- An ion-conducting material of the present invention can simultaneously comprise an aprotic liquid solvent chosen from the aprotic liquid solvents mentioned above and a polar polymer solvent comprising units containing at least one heteroatom chosen from sulfur, nitrogen, oxygen and fluorine. It can comprise from 2 to 98% of liquid solvent.
- a polar polymer mention may be made of polymers which mainly contain units derived from acrylonitrile, vinylidene fluoride, N-vinylpyrrolidone or methyl methacrylate.
- the proportion of aprotic liquid in the solvent can vary from 2% (corresponding to a plasticized solvent) to 98% (corresponding to a gelled solvent).
- An ion-conducting material of the present invention can also contain a salt conventionally used in the prior art for the preparation of an ion-conducting material.
- a salt which can be used in admixture with an ionic compound according to the invention, very particularly preferred is a salt chosen from perfluoroalkanesulfonates, bis (perfluoroalkylsulfonyl) imides, bis (perfluoroalkylsulfonyl) methanes and tris (perfluoroalkylsulfonyl) ) methane.
- an ion-conducting material of the invention may also contain the additives conventionally used in this type of material, and in particular mineral or organic fillers in the form of powder or fibers.
- An ionically conductive material of the invention can be used as an electrolyte in an electrochemical generator.
- Another subject of the present invention is therefore an electrochemical generator comprising a negative electrode and a positive electrode separated by an electrolyte, characterized in that the electrolyte is an ionically conductive material as defined above.
- such a generator comprises a negative electrode constituted by metallic lithium, or by one of its alloys, optionally in the form of a nanometric dispersion in lithium oxide, or by a double lithium nitride and a transition metal, or by a low potential oxide having the general formula Li 1 + y + x / 3 Ti 2 _ x / 3 ⁇ 4 (O ⁇ x ⁇ l, O ⁇ y ⁇ l), or by carbon and carbon products from the pyrolysis of organic materials.
- the collector of the positive electrode is preferably made of aluminum.
- An ionically conductive material of the present invention can also be used in a supercapacitor.
- Another object of the present invention is therefore a supercapacitor using at least one carbon electrode with a high specific surface, or an electrode containing a redox polymer, in which the electrolyte is an ionically conductive material as defined above.
- An ionically conductive material of the present invention can also be used for the p or n doping of an electronically conductive polymer and this use constitutes another object of the present invention.
- an ionically conductive material of the present invention can be used as an electrolyte in an electrochromic device.
- Another object of the present invention is an electrochromic device in which the electrolyte is an ionically conductive material according to the invention.
- the present invention therefore also relates to the use of ionic compounds as photoinitiators sources of Brnsted acids catalysts for polymerization or crosslinking of monomers or prepolymers capable of reacting cationically, or as catalysts for the modification of polymers.
- the process for the polymerization or crosslinking of monomers or prepolymers capable of reacting cationically is characterized in that a compound of the invention is used as photoinitiator as an acid source catalyzing the polymerization reaction.
- a compound of the invention is used as photoinitiator as an acid source catalyzing the polymerization reaction.
- substituents Y, Y c or Q s is carried out so as to increase the solubility of said compound in the solvents used for the reaction of the monomers or prepolymers, and according to the properties desired for the final polymer.
- substituents Y, Y c or Q s is carried out so as to increase the solubility of said compound in the solvents used for the reaction of the monomers or prepolymers, and according to the properties desired for the final polymer.
- the choice of unsubstituted alkyl radicals gives solubility in slightly polar media.
- radicals comprising an oxa group or a sulfone will give solubility in polar media.
- the radicals including a sulfur oxide group, a sulfone group, a phosphine oxide group, a phosphonate group, obtained respectively by addition of oxygen to the sulfur or phosphorus atoms, can confer on the polymer obtained properties improved with regard to adhesion, shine, resistance to oxidation or to UV.
- the monomers and prepolymers which can be polymerized or crosslinked using the photoinitiators of the present invention are those which can undergo cationic polymerization.
- monomers which comprise a cyclic ether function, a cyclic thioether function or a cyclic amine function, vinyl compounds (more particularly vinyl ethers), oxazolines, lactones and lactams.
- ethylene oxide propylene oxide, oxetane, epichlorohydrin, tetrahydrofuran, styrene oxide, cyclohexene oxide, vinylcyclohexene oxide, glycidol, butylene oxide, octylene oxide, glycidyl ethers and esters (e.g.
- glycidyl methacrylate or acrylate phenyl glycidyl ether, diglycidyl ether of bisphenol A or its fluorinated derivatives
- cyclic acetals having 4 to 15 carbon atoms for example dioxolane, 1,3-dioxane, 1,3-dioxepane
- spiro-bicyclo dioxolanes for example dioxolane, 1,3-dioxane, 1,3-dioxepane
- vinyl ethers constitute a very important family of monomers sensitive in cationic polymerization.
- vinyl compounds mention may be made, for example, of 1, 1-dialkylethylenes (for example isobutene), vinyl aromatic monomers (for example styrene, ⁇ -alkylstyrenes, in particular ⁇ -methylstyrene, 4- vinylanisole, acenaphthene), N-vinylic compounds (for example N-vinylpyrolidone or N-vinyl sulfonamides).
- 1, 1-dialkylethylenes for example isobutene
- vinyl aromatic monomers for example styrene, ⁇ -alkylstyrenes, in particular ⁇ -methylstyrene, 4- vinylanisole, acenaphthene
- N-vinylic compounds for example N-vinylpyrolidone or N-vinyl sulfonamides.
- epoxy groups are carried by an aliphatic chain, an aromatic chain or a heterocyclic chain
- glycidic ethers of bisphenol A ethoxylated with 3 to 15 units of ethylene oxide siloxanes having lateral groups of the epoxycyclohexene-ethyl type obtained by hydrosilylation of dialkyl, alkylaryl or diaryl siloxane copolymers with methyl hydrogenosiloxane in the presence of vinylcyclohexene oxide, the condensation products of the sol-gel type obtained with starting from triethoxy or trimethoxy silapropylcyclohexene oxide, the urethanes incorporating the reaction products of butanediol monovinylether and an alcohol of functionality greater than or equal to 2 on an aliphatic or aromatic di or tri isocyanate.
- the polymerization process according to the invention consists in mixing at least one monomer or prepolymer capable of polymerizing cationically and at least one ionic compound of the invention, and in subjecting the mixture obtained to a actinic radiation or ⁇ radiation.
- the reaction mixture is subjected to radiation after having been formed in the form of a thin layer having a thickness less than 5 mm, preferably in the form of a thin film having a thickness less than or equal to 500 ⁇ m.
- the reaction time depends on the thickness of the sample and the power of the source at the active wavelength ⁇ . It is defined by the speed of travel in front of the source, which is between 300 / min and 1 cm / min. Layers of final material having a thickness greater than 5 mm can be obtained by repeating several times the operation of spreading a layer and treating it with radiation.
- the amount of photoinitiator used is between 0.01 and 15% by weight relative to the weight of monomer or prepolymer, preferably between 0.1 and 5% by weight.
- An ionic compound of the present invention can be used as photoinitiator in the absence of solvent, in particular when it is desired to polymerize liquid monomers in which the ionic compound used as photoinitiator is soluble or easily dispersible. This form of use is particularly interesting, because it eliminates the problems associated with solvents (toxicity, flammability).
- An ionic compound of the present invention can also be used as a photoinitiator in the form of a homogeneous solution in a solvent inert towards the polymerization, ready to use and easily dispersible, in particular in the case where the medium to be polymerized or crosslinked has a high viscosity.
- a solvent inert solvent mention may be made of volatile solvents, such as acetone, methyl ethyl ketone and acetonitrile. These solvents will simply serve to dilute the products to be polymerized or crosslinked (to make them less viscous, especially when it is a prepolymer). They will be removed after polymerization or crosslinking by drying. Mention may also be made of non-volatile solvents.
- a non-volatile solvent also serves to dilute the products which it is desired to polymerize or crosslink, and to dissolve the compound of the invention used as a photoinitiator, but it will remain in the material formed and it thus acts as a plasticizer.
- a plasticizer for example, mention may be made of propylene carbonate, ⁇ -butyrolactone, ether-esters of mono-, di-, tri-ethylene or propylene glycols, ether-alcohols of mono-, di-, tri- ethylene or propylene glycols, plasticizers such as esters of phthalic acid or citric acid.
- a reactive compound with respect to polymerization is used as solvent or diluent, which is a compound of low molecular mass and of low viscosity which will play both role of polymerizable monomer and the role of solvent or diluent for more viscous monomers or prepolymers used together.
- solvent or diluent a compound of low molecular mass and of low viscosity which will play both role of polymerizable monomer and the role of solvent or diluent for more viscous monomers or prepolymers used together.
- a reactive solvent can be chosen from vinyl mono- and diethers of mono-, di-, tri-, tetraethylene and propylene glycols, N-methylpyrolidone, 2-propenyl ether of propylene carbonate sold for example under the name PEPC by the company ISP, New Jersey, United States.
- the radiation can be chosen from ultraviolet radiation, visible radiation, X-rays, ⁇ rays and ⁇ radiation.
- ultraviolet light it may be advantageous to add to the photoinitiators of the invention photosensitizers intended to allow efficient photolysis with wavelengths less energetic than those corresponding to the maximum of absorption of the photoinitiator, such as those emitted by industrial devices, ( ⁇ ⁇ 300 nm for mercury vapor lamps in particular).
- Such additives are known, and by way of nonlimiting examples, mention may be made of anthracene, diphenyl-9, 10-anthracene, perylene, phenothiazine, tetracene, xanthone, thioxanthone, 1 acetophenone, benzophenone, 1, 3, 5-triaryl-2-pyrazolines and their derivatives, in particular the derivatives of substitution on the aromatic rings by alkyl, oxa— or aza — alkyl radicals allowing among other things to change the wavelength absorption.
- Isopropylthioxantone is an example of a preferred photosensitizer when an iodonium salt according to the invention is used as the photoinitiator.
- ultraviolet radiation is particularly preferred.
- photoinitiators are generally directly sensitive to UV rays and photosensitizers are more effective the smaller the energy difference ( ⁇ ).
- the ionic compounds of the invention can also be used in combination with initiators of the radical type generated thermally or by the action of actinic radiation. It is thus possible to polymerize or crosslink mixtures of monomers or prepolymers containing functions whose polymerization modes are different, for example monomers or prepolymers polymerizing by the radical route and monomers or prepolymers polymerizing by the cationic route. This possibility is particularly advantageous for creating interpenetrating networks having physical properties different from those which would be obtained by simple mixing of the polymers derived from the corresponding monomers.
- the vinyl ethers are not or are not very active by radical initiation.
- a radical initiator such as the esters or the amides of fumaric acid, of maleic acid, of acrylic or methacrylic acid, of itaconic acid, of acrylonitrile, methacrylonitrile, maleimide and its derivatives, form in the presence of ethers electron-rich vinyl, charge transfer complexes yielding 1: 1 alternating polymers by radical initiation.
- An initial excess of vinyl monomers relative to this stoichiometry makes it possible to preserve polymerizable functions by pure cationic initiation.
- examples include initiators the following commercial products: Irgacure ® 184, Irgacure ® 651, Irgacure 261®, Quantacure DMB®, Quantacure ITX®.
- a mixture of a heat-dissociable radical initiator and a cationic photoinitiator according to the invention makes it possible to carry out sequential polymerizations or cross-linkings, first under the action of heat, then under the action of a actinic radiation.
- a radical initiator and a cationic photoinitiator according to the invention are chosen, the first being photosensitive at longer wavelengths than that triggering the photoinitiator according to the invention, a crosslinking is obtained by two controllable stages.
- the radical initiators can for example be Irgacure® 651 making it possible to initiate radical polymerizations at wavelengths of 365 nm.
- the invention also relates to the use of the ionic compounds of the invention for the chemical amplification reactions of photoresists for microlithography. During such use, a film of a material comprising a polymer and an ionic compound of the invention is subjected to irradiation.
- the irradiation causes the formation of the acid by replacing the cation M with a proton, which catalyzes the decomposition or transformation of the polymer.
- the monomers formed or the transformed polymer are eliminated and an image of the unexposed parts remains.
- a compound of the invention which is in the form of a polymer essentially consisting of styrenyl repeating units carrying a pentacyclic anionic group or derived from tetrazapentalene.
- polymers containing ester units or aryl ether units of tertioalkyl for example poly (phthalaldehydes), polymers of bisphenol A and of a diacid, polytertiobutoxycarbonyl oxystyrene, polytertiobutoxy- ⁇ -methyl styrene, polyditertio-butyl fumarate-co-allyltrimethylsilane and polyacrylates of a tertiary alcohol, in particular the tertiary butyl polyacrylate.
- polymers containing ester units or aryl ether units of tertioalkyl for example poly (phthalaldehydes), polymers of bisphenol A and of a diacid, polytertiobutoxycarbonyl oxystyrene, polytertiobutoxy- ⁇ -methyl styrene, polyditertio-butyl fumarate-co-allyltrimethylsilane and polyacrylates of a ter
- the ionic compounds of the present invention which exhibit high thermal stability, offer many advantages over the salts known from the prior art. They have in particular priming and propagation speeds comparable to or greater than those obtained using coordination anions of the PF 6 ⁇ , AsF 6 ⁇ and especially SbF 6 ⁇ type .
- the ion pairs exhibit a very strong dissociation, which allows the expression of the intrinsic catalytic properties of the cation M m + , whose active orbitals are easily exposed to the reaction substrates, this in various backgrounds. Most of the important reactions of organic chemistry can thus be carried out under non-restrictive conditions, with excellent yields and the ease of separating the catalyst from the reaction medium.
- the demonstration of asymmetric induction by the use of an ionic compound according to the invention which carry a chiral group is particularly important because of its generality and its ease of implementation.
- Another subject of the present invention is therefore the use of the compounds of the invention as catalysts in the reactions of
- the ionic compounds of the invention preferred for use as a catalyst for the above reactions are those in which the cation is chosen from lithium, magnesium, copper, zinc, tin, trivalent metals, including rare earths, platinoids, and their organo-metallic couples, in particular the metallocenes.
- the compounds of the invention can also be used as solvent for carrying out chemical, photochemical, electrochemical, photoelectrochemical reactions.
- ionic compounds are preferred in which the cation is an imidazolium, a triazolium, a pyridinium or a 4-dimethylamino-pyridinium, said cation optionally carrying a substituent on the carbon atoms of the ring.
- the compounds being used in their liquid form very particularly preferred are those which have a melting point of less than 150 ° C., more particularly less than 100 ° C.
- the inventors have also found that the anionic charge carried by the pentacyclic group or derivative of tetrazapentalene exerts a stabilizing effect on electronic conductors of the conjugated polymer type, and that the use of a compound in which one of the substituents Y, Y c or Q s included a long alkyl chain made it possible to make these polymers soluble in the usual organic solvents even in the doped state.
- the grafting of these charges onto the polymer itself gives polymers whose overall charge is cationic, soluble in organic solvents and having, in addition to their stability, anticorrosion properties with respect to metals, aluminum and ferrous metals.
- the present invention also relates to electronically conductive materials comprising an ionic compound of the present invention in which the cationic part is a polycation constituted by a conjugated polymer doped "p".
- the preferred ionic compounds for this application are those in which one of the substituents Q or Q s contains at least one alkyl chain having from 6 to 20 carbon atoms. Mention may also be made of the compounds in which Y or Y c represents an aromatic ring carrying an alkyl radical.
- Cationic type dyes are used more and more frequently as sensitizers for photographic films, for the optical storage of information (optical disks accessible for writing), for lasers.
- the tendency of these conjugated molecules to pile up when they are in solid phases limits their use, due to variations in optical properties compared to the isolated molecule.
- the use of ionic compounds of the invention for the manufacture of cationic dyes whose counter ions, possibly attached to this same molecule, correspond to the functionalities of the invention makes it possible to reduce the phenomena of aggregation, including in matrices solid polymers and stabilize these dyes.
- Another subject of the present invention is a cationic dye composition, characterized in that it contains an ionic compound according to the invention.
- the ionic compounds which are particularly preferred for this application are those in which the negative charge (s) of the pentacyclic anionic group or derivative of tetrazapentalene are either fixed to the molecule dye, or they constitute the counterion of the positive charges of the dye.
- the compounds of the present invention can be obtained by conventional synthetic methods known to those skilled in the art. Among these methods, some consist in building the cycle, others consist in modifying existing cycles.
- the corresponding potassium salt was prepared by reacting 2-amino-5-trifluoromethyl-1, 3, 4-triazole with potassium carbonate K 2 C0 3 in water (20% in excess). After evaporation of the water and drying, the product obtained was taken up in acetonitrile, then the excess carbonate was removed by filtration. After evaporation of the acetonitrile and drying, the potassium salt of 2-amino-5-trifluoromethyl-1,3,4-triazole was obtained quantitatively.
- the corresponding potassium salt was prepared by treating 2-cyano-5-trifluoromethyl-1, 3, 4-triazole according to a process analogous to that described above for obtaining the potassium salt of 2-amino -5-trifluoromethyl-
- the sodium and lithium salts were obtained by a similar process, replacing potassium carbonate with sodium carbonate and lithium carbonate respectively. These salts are soluble in most of the usual organic solvents (tetrahydrofuran, acetonitrile, dimethylformamide, ethyl acetate, glymes, ...) and in aprotic solvating polymers such as poly (ethylene oxide). In the latter solvent at an O / Li concentration of 14/1, the lithium salt has an ionic conductivity greater than 10 -4 S. cm -1 at a temperature of 60 ° C.
- Example 2 By a process analogous to that described in Example 1, but replacing the trifluoroacetic acid with 5-ene-2, 2-difluoroheptanoic acid, 2- (4-ene-1, 1) was prepared. -difluorobutyl) -5-cyano- 1, 3, 4-triazole with a purity, determined by proton and fluorine NMR, greater than 99%.
- the potassium, sodium and lithium salts were obtained by treating the triazole with the corresponding carbonates.
- the lithium salt was obtained by ion exchange in THF with lithium chloride.
- the acid was obtained by extraction with ether from an aqueous solution of the potassium salt acidified with hydrochloric acid.
- the scandium salt was prepared by treating 10 mmol of said acid, dissolved in 10 ml of water, with 1.67 mmol of scandium acetate. After stirring overnight, the water was evaporated and the lanthanum salt of this compound was recovered quantitatively after drying.
- the corresponding acid was obtained by extraction with ether from an acidified aqueous solution of the potassium salt.
- the lithium salt was obtained by treating this acid with lithium carbonate Li 2 CO 3 .
- Example 5 11.81 g (100 mmol) of 4, 5-dicyanoimidazole was reacted with 5.3 g in 50 ml of water.
- the lithium salt was obtained by ion exchange in THF with lithium chloride.
- the lithium salt was obtained by treating the potassium salt in anhydrous tetrahydrofuran with the stoichiometric amount of anhydrous lithium chloride, filtration of the reaction medium, evaporation of the solvent and drying under vacuum.
- this polysel is soluble in most of the usual organic solvents (tetrahydrofuran, acetonitrile, dimethylformamide, ethyl acetate, glymes, etc.) and in aprotic solvating polymers.
- the acids were obtained by ether extraction of aqueous solutions of the potassium salts acidified with hydrochloric acid.
- This salt has marked surfactant properties, including in solvents and aprotic solvating polymers.
- Example 9 In 10 ml of THF, 324 mg of 4- (dimethylamino) azobenzene-4 '-sulfonyl chloride (1 mmol) and 290 mg of the potassium salt of 2,5-trifluoromethyl-3, 4- were reacted. dicyano-cyclopentadiene (1 mmol) in the presence of 500 ⁇ l of triethylamine. After 24 hours with stirring, the potassium chloride precipitate was removed and, after evaporation, the triethylammonium salt was obtained which was suspended in 5 ml of water containing in solution 350 mg of tetrabutylammonium bromide. The mixture was stirred for 24 hours. An orange-colored powder was obtained with a purity, characterized by proton and carbon NMR, greater than 98%. This powder is soluble in most organic solvents and corresponds to the following formula.
- the compound can be used as a pH indicator in a non-aqueous medium (yellow-orange - red-purple transition in the pH zone 1-4).
- a crystalline solid was obtained which is soluble in particular in acetone, acetonitrile, ethyl acetate, tetrahydrofuran.
- This compound can be used as a radical initiator to initiate polymerization or crosslinking reactions from 60 ° C.
- Example 12 200 ml of anhydrous acetonitrile and 13 g (200 mmol) of sodium azide NaN 3 were introduced into a Parr chemical reactor. After closing, the reactor was purged with nitrogen, then 25 g (154 mmol, sold by Aldrich) of hexafluorobutyne CF 3 C ⁇ CF 3 were introduced . After 24 hours with stirring, the reaction medium was filtered and the solvent evaporated. The residue was taken up in 154 ml (154 mmol) of a 1 M solution of hydrochloric acid, then extracted with two fractions of 50 ml of ether.
- the lithium salt was obtained by treating the acid with lithium carbonate in water.
- a molar mixture of three 1,2,3-triazole for a triazolium salt was ground in a mortar placed in a glove box. We got a liquid in the mortar.
- This molten salt has a high proton conductivity greater than 10 ⁇ 3 S. cm “1 at 30 ° C. It can be used to prepare a polymer electrolyte, proton conductor anhydrous, by adding poly (ethylene oxide), preferably of high mass or which can be subsequently crosslinked, to the molten salt without this adversely affecting the conductivity.
- polymer electrolytes are particularly advantageous for the production of light modulation systems such as electrochromic glazing including electrochromic dye systems.
- a polymer electrolyte consisting of 80% by weight of said molten salt and 20% by weight of polyethylene oxide of mass 5.10 was used to prepare an optically transparent membrane in the visible and having good mechanical strength.
- An electrochromic system was then produced in a glove box using this membrane enclosed between a first electrode constituted by the deposition on a glass plate of a layer of hydrogenated iridium oxide H x lr0 2 and of an under layer conductive tin oxide, and a second electrode consisting of a layer of tungsten trioxide W0 3 and a conductive underlay of tin oxide.
- This electrochromic allowed a variation of the optical absorption between 80% (discolored state) and 30% (colored state) and good performances in cycling (more than 20,000 cycles).
- the potassium salt was obtained by treating the lithium salt in the minimum amount of water with potassium fluoride KF. After filtration, evaporation and drying, the potassium salt was recovered quantitatively.
- This salt is useful as a surfactant.
- the surface tension is lowered to less than 25 mN / m.
- the scandium salt was prepared by treating 10 mmol of this compound, dissolved in 10 ml of water, with 1.67 mmol of scandium acetate. After stirring overnight, the water was evaporated and the scandium salt was recovered quantitatively after drying. NN 1/3 Sc 3+ F 3 C— ⁇ ⁇ ⁇ -CF,
- the reaction medium was then heated at 60 ° C for 48 hours under argon to copolymerize acrylonitrile with the styrene derivative. After cooling, the solution was concentrated, then the polymer recovered by reprecipitation in ether. After filtration and drying, the following polymer was obtained:
- This polymer is useful for gelled polymer electrolytes with fixed anions. It forms a matrix in the form of a gel and behaves like a polyelectrolyte.
- An electrochemical generator was assembled by superimposing the following layers: a stainless steel current collector having a thickness of 2 mm; - A composite anode consisting of carbon coke (80% by volume) mixed with said copolymer as a binder (20% by volume); said gelled copolymer as an electrolyte; a composite cathode constituted by carbon black (6% by volume), LiCo0 2 (75% by volume) and said gelled copolymer (20% by volume); a current collector similar to the aforementioned collector.
- This generator made it possible to carry out 1000 charge / discharge cycles between 3 and 4.2 V while retaining a capacity greater than 80% of the capacity in the first cycle, when cycling at 25 ° C. It has very good performance during power calls due to the use of fixed anions. The use of fixed anions has also made it possible to improve the evolution of the interface resistance.
- This copolymer in the form of an alkali metal or ammonium salt, has antistatic properties and can therefore advantageously replace the homopolymers of acrylonitrile which are hitherto widely used in the form of fiber for textiles, but which do not have no antistatic properties.
- the spinning of this copolymer is easier than that of the unmodified PAN.
- This copolymer has very good interactions with cationic dyes such as methylene blue, which makes it a material of interest for colored textile fibers.
- the color stability is significantly improved compared to the conventional copolymer of acrylonitrile and methallylsulfonate.
- Example 21 To 3.4 g (10 mmol) of 2-t-butyl-5-heptafluoropropyl-3, 4-dicyano-cyclopentadiene, obtained in Example 7, and 821 mg (5 mmol) of 1.1 , 3, 3-tetramethoxypropane in 10 ml of water with stirring, two drops of concentrated sulfuric acid were added. After 4 hours with stirring, 600 mg of anhydrous lithium carbonate Li 2 C0 3 were added , then after 15 min, 3.22 g (10 mmol) of tetrabutyl bromide ammonium (C 4 H) 4 NBr. By extraction with dichloromethane, the following compound was recovered:
- This anionic dye of the cyanine family, absorbing in the visible, is soluble in weakly polar solvents like dichloromethane or methylene chloride as well as in weakly polar polymer matrices like polymethyl methacrylate. The little aggregation of the molecules of this anionic dye between them, avoids the phenomenon of widening of the optical absorption bands of this dye.
- This salt is an excellent surfactant. At a concentration as low as 0.1 g / l in water, the surface tension is lowered to a value below 20 mN / m.
- the polyaniline doped with di-2-ethylhexylamino-sulfonyl-4,5-dicyanoimidazole was recovered. In this form, it is soluble in toluene and a film could be produced from this solution.
- the polyaniline thus doped is an electronic conductive polymer which has a conductivity, measured by the four-point method, of 5 S / cm, stable in a humid environment.
- a film was also produced from this solution on a polypropylene (PP) support treated with the Corona effect. After drying under vacuum at 60 ° C for 48 hours, a conductive and adherent deposit of polyaniline with a thickness less than one micron was obtained.
- This type of treatment on plastics is particularly advantageous for the production of flexible electrical contactors or electromagnetic protection systems.
- this electronic conductive polymer is a good inhibitor of corrosion of ferrous metals and aluminum in an acid or chloride medium.
- This polymer is soluble in most organic solvents, including at contents> 2% in oils or silicone materials, thus giving them antistatic properties.
- This salt makes it possible to initiate, under the effect of actinic radiation (light, ⁇ rays, electron beams), the cationic crosslinking of electron-rich monomers (vinyl ethers, alkyl vinyl ethers, ). It is soluble in most common organic solvents (tetrahydrofuran, acetonitrile, dimethylformamide, ethyl acetate, glymes, ...) and in aprotic solvating polymers such as polyethylene oxide. It is also more than 10% by weight soluble in reactive solvents such as triethyleneglycol divinyl ether.
- the membrane thus obtained was used as an electrolyte in a hydrogen / methanol fuel cell test cell with a polymer electrolyte. We obtained a lifetime of this membrane greater than 1000 hours, with a lower permeability to methanol than that obtained by using a Nafion® 117 membrane.
- This molten salt has a conductivity of 4.3.10 " S “ .cm " and a freezing point below -10 ° C. Its wide range of redox stability makes it an electrolyte particularly interesting for electrochemical generators such as lithium batteries , supercapacitors, light modulation systems, photovoltaic cells.
- An electrochemical photovoltaic cell similar in principle to that described in European patent EP 613466 has been produced. For this, a system composed of two separate electrodes has been assembled. by an empty space with a thickness of 30 ⁇ m.
- the first electrode was coated with a nanoparticulate layer of titanium dioxide Ti0 2 0.25 ⁇ m thick on which the cis-dithiocyanato-bis- (2 , 2 '-bipyridyl- 4,4' -dicarboxylate ruthenium II) as a sensitizer.
- the space between the electrodes was filled with an electrolyte composed of the molten salt in which av was dissolved 10% by weight of methylhexyl imidazolium iodide and 10 mmol of iodine.
- This liquid salt can also be used as an electrolyte in electrochemical supercapacitors using activated carbon electrodes or composite electrodes obtained from metal fibers and carbon fibers treated in a reducing atmosphere.
- Example 32 Following a process similar to that described in Example 4, the potassium salt of 2- ((1R) - (-) -10-camphorsulfonyl-4, 5-dicyanoimidazole was obtained, by substituting perfluorobutane fluoride - sulfonyl with (1R) - (-) -10-camphor-sulfonyl chloride (sold by Aldrich).
- the corresponding lithium salt was obtained by ion exchange (metathesis) in tetrahydrofuran with lithium chloride.
- the scandium salts were obtained by treating the potassium salt with a stoichiometric amount of scandium tetrafluoroborate Sc (BF 4 ) 3 in acetonitrile. After filtration to remove the precipitate of potassium tetrafluoroborate KBF 4 and evaporation of the solvent, the following compound was recovered quantitatively:
- This salt was used as a catalyst for a Diels Aider reaction, namely a reaction of methylvinylketone with cyclopentadiene.
- the lithium salt of 4, 5-trifluoromethyl- 1, 2, 3-triazole, obtained in Example 12 was tested in electrochemical cells of lithium-polymer technology.
- O / Li 25/1 in the electrolyte and in the cathode.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Secondary Cells (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Conductive Materials (AREA)
- Plural Heterocyclic Compounds (AREA)
- Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Pyrane Compounds (AREA)
- Primary Cells (AREA)
- Epoxy Compounds (AREA)
- Pyrrole Compounds (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerization Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
- Heterocyclic Compounds Containing Sulfur Atoms (AREA)
- Silicon Polymers (AREA)
- Pyridine Compounds (AREA)
- Polymerisation Methods In General (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP52951498A JP4124487B2 (ja) | 1996-12-30 | 1997-12-30 | 五員環アニオン塩又はテトラアザペンタレン誘導体と、イオン伝導性物質としてのそれらの使用 |
| CA2248246A CA2248246C (fr) | 1996-12-30 | 1997-12-30 | Sels d'anions pentacycliques ou derives de tetrazapentalene, et leurs utilisations comme materiaux a conduction ionique |
| US09/125,799 US6395367B1 (en) | 1996-12-30 | 1997-12-30 | Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials |
| US10/926,283 US7906235B2 (en) | 1996-12-30 | 2004-08-25 | Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA2,194,127 | 1996-12-30 | ||
| CA002194127A CA2194127A1 (fr) | 1996-12-30 | 1996-12-30 | Anions delocalises utiles en tant que solutes electrolytiques |
| CA002199231A CA2199231A1 (fr) | 1997-03-05 | 1997-03-05 | Nouveaux materiaux ioniques |
| CA2,199,231 | 1997-03-05 |
Related Child Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/125,799 A-371-Of-International US6395367B1 (en) | 1996-12-30 | 1997-12-30 | Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials |
| US09/125,799 Continuation US6395367B1 (en) | 1996-12-30 | 1997-12-30 | Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials |
| US10/107,742 Division US6835495B2 (en) | 1996-12-30 | 2002-03-27 | Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1998029399A1 true WO1998029399A1 (fr) | 1998-07-09 |
Family
ID=25678955
Family Applications (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CA1997/001009 Ceased WO1998029399A1 (fr) | 1996-12-30 | 1997-12-30 | Sels d'anions pentacycliques ou derives de tetrazapentalene, et leurs utilisations comme materiaux a conduction ionique |
| PCT/CA1997/001012 Ceased WO1998029877A1 (fr) | 1996-12-30 | 1997-12-30 | Conducteurs protoniques sous forme liquide |
| PCT/CA1997/001013 Ceased WO1998029388A1 (fr) | 1996-12-30 | 1997-12-30 | Sels d'amides perfluores, et leurs utilisations comme materiaux a conduction ionique |
| PCT/CA1997/001011 Ceased WO1998029396A1 (fr) | 1996-12-30 | 1997-12-30 | Sels d'anions heterocycliques aromatiques, et leurs utilisations comme materiaux a conduction ionique |
| PCT/CA1997/001008 Ceased WO1998029358A2 (fr) | 1996-12-30 | 1997-12-30 | Materiaux carbones modifies en surface |
| PCT/CA1997/001010 Ceased WO1998029389A1 (fr) | 1996-12-30 | 1997-12-30 | Sels d'anions derives du malononitrile, et leurs utilisations comme materiaux a conduction ionique |
Family Applications After (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CA1997/001012 Ceased WO1998029877A1 (fr) | 1996-12-30 | 1997-12-30 | Conducteurs protoniques sous forme liquide |
| PCT/CA1997/001013 Ceased WO1998029388A1 (fr) | 1996-12-30 | 1997-12-30 | Sels d'amides perfluores, et leurs utilisations comme materiaux a conduction ionique |
| PCT/CA1997/001011 Ceased WO1998029396A1 (fr) | 1996-12-30 | 1997-12-30 | Sels d'anions heterocycliques aromatiques, et leurs utilisations comme materiaux a conduction ionique |
| PCT/CA1997/001008 Ceased WO1998029358A2 (fr) | 1996-12-30 | 1997-12-30 | Materiaux carbones modifies en surface |
| PCT/CA1997/001010 Ceased WO1998029389A1 (fr) | 1996-12-30 | 1997-12-30 | Sels d'anions derives du malononitrile, et leurs utilisations comme materiaux a conduction ionique |
Country Status (6)
| Country | Link |
|---|---|
| US (16) | US6333425B1 (enExample) |
| EP (9) | EP0850932B1 (enExample) |
| JP (14) | JP4070244B2 (enExample) |
| CA (9) | CA2248246C (enExample) |
| DE (6) | DE69721748T2 (enExample) |
| WO (6) | WO1998029399A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20200056869A (ko) * | 2018-11-15 | 2020-05-25 | 삼성전자주식회사 | 헤테로고리 방향족 구조의 음이온을 포함하는 금속염 및 그 제조방법, 그리고 상기 금속염을 포함하는 전해질 및 전기화학소자 |
Families Citing this family (327)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5962546A (en) * | 1996-03-26 | 1999-10-05 | 3M Innovative Properties Company | Cationically polymerizable compositions capable of being coated by electrostatic assistance |
| EP0850932B1 (fr) * | 1996-12-30 | 2009-07-22 | Centre National De La Recherche Scientifique (Cnrs) | Sels d'anions hétérocycliques, et leurs utilisations comme matéreiaux à conductin ionique |
| DE69841891D1 (de) * | 1997-07-25 | 2010-10-21 | Inst Of Organic Chemistry | Verwendung von ionenischen Verbindungen mit einer delokalisierten anionischen Ladung als Katalysatoren |
| JP4657390B2 (ja) * | 1997-07-25 | 2011-03-23 | アセップ・インク | ペルフルオロビニルイオン化合物および重合体型のイオン電導体の成分、選択膜の成分または触媒の成分としてのそれらの使用 |
| CA2215849A1 (en) | 1997-09-11 | 1999-03-11 | Christophe Michot | New solvent and electrolytic composition with high conductivity and wide stability range |
| WO1999028292A1 (fr) * | 1997-12-01 | 1999-06-10 | Acep Inc. | Sels de sulfones perfluores, et leurs utilisations comme materiaux a conduction ionique |
| GB9726008D0 (en) * | 1997-12-10 | 1998-02-04 | Secr Defence | Eletrolyte |
| CA2321695A1 (en) | 1998-03-03 | 1999-09-10 | Mark Gerrit Roelofs | Substantially fluorinated ionomers |
| US6063522A (en) * | 1998-03-24 | 2000-05-16 | 3M Innovative Properties Company | Electrolytes containing mixed fluorochemical/hydrocarbon imide and methide salts |
| FR2781932B1 (fr) * | 1998-07-10 | 2000-09-01 | Giat Ind Sa | Electrolyte solide polymere et ses procedes de preparation |
| US6294289B1 (en) | 1998-08-25 | 2001-09-25 | 3M Innovative Properties Company | Cyano-substituted methide and amide salts |
| US6350545B2 (en) | 1998-08-25 | 2002-02-26 | 3M Innovative Properties Company | Sulfonylimide compounds |
| DE19858925A1 (de) * | 1998-12-19 | 2000-06-21 | Aventis Res & Tech Gmbh & Co | Elektrolytsystem für Lithiumbatterien und dessen Verwendung sowie Verfahren zur Erhöhung der Sicherheit von Lithiumbatterien |
| ATE332567T1 (de) * | 1999-03-01 | 2006-07-15 | Fuji Photo Film Co Ltd | Photoelektrochemische zelle mit einem elektrolyten aus flüssigkristallverbindungen |
| JP3724252B2 (ja) * | 1999-04-19 | 2005-12-07 | ダイソー株式会社 | 架橋高分子固体電解質及びその用途 |
| US6372820B1 (en) * | 1999-05-06 | 2002-04-16 | Cabot Corporation | Polymerized modified particles and methods of making the same |
| US6593690B1 (en) * | 1999-09-03 | 2003-07-15 | 3M Innovative Properties Company | Large area organic electronic devices having conducting polymer buffer layers and methods of making same |
| DE60040372D1 (de) * | 1999-09-24 | 2008-11-13 | Toshiba Kawasaki Kk | Elektrolyt-Zusammensetzung, Sonnenzelle, die solche Elektrolyt-Zusammensetzung anwendet, und Herstellungsverfahren der Sonnenzelle |
| US6765115B1 (en) * | 1999-11-23 | 2004-07-20 | E.I. Du Pont De Nemours And Company | Method for preparing dimetal sulfonyl amide salts |
| EP1232143B1 (en) * | 1999-11-23 | 2005-08-17 | E.I. Du Pont De Nemours And Company | Method for preparing dimetal sulfonyl amide salts |
| US6632564B1 (en) * | 1999-11-29 | 2003-10-14 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous electrolyte and non-aqueous electrolyte cell |
| US6759477B2 (en) | 1999-12-02 | 2004-07-06 | E. I. Du Pont De Nemours And Company | Method for preparing imides from sulfonyl fluorides |
| US6692658B2 (en) * | 1999-12-17 | 2004-02-17 | Canon Kabushiki Kaisha | Electrolyte and secondary cell |
| US6852809B2 (en) * | 1999-12-27 | 2005-02-08 | Sumitomo Chemical Company, Limited | Catalyst component for addition polymerization, catalyst for addition polymerization, and process for producing addition polymer |
| AU2000253140A1 (en) * | 2000-01-11 | 2001-07-24 | 3M Innovative Properties Company | Perfluoroalkanesulfonate salts in electrochemical systems |
| WO2001053368A1 (en) | 2000-01-19 | 2001-07-26 | E.I. Dupont De Nemours And Company | Process for making graft copolymers |
| US6522522B2 (en) * | 2000-02-01 | 2003-02-18 | Cabot Corporation | Capacitors and supercapacitors containing modified carbon products |
| DE10004928A1 (de) * | 2000-02-04 | 2001-08-09 | Solvay Fluor & Derivate | Verwendung von Amidinen |
| WO2001074831A1 (en) * | 2000-03-31 | 2001-10-11 | Polimeri Europa S.P.A. | Complex polymerization catalysts for the homopolymerization of ethylene and for the copolymerization of ethylene |
| US7220914B2 (en) * | 2003-12-01 | 2007-05-22 | Konarka Technologies, Inc. | Zwitterionic compounds and photovoltaic cells containing same |
| JP4682395B2 (ja) * | 2000-04-28 | 2011-05-11 | 日産自動車株式会社 | 非水電池 |
| DE10023744A1 (de) * | 2000-05-15 | 2001-12-13 | Bayer Ag | Elektrochrome Anzeigevorrichtung mit hoher Kantenschärfe |
| US6647166B2 (en) | 2000-08-17 | 2003-11-11 | The Regents Of The University Of California | Electrochromic materials, devices and process of making |
| JP4799776B2 (ja) * | 2000-08-22 | 2011-10-26 | 富士フイルム株式会社 | 電解質組成物及びそれを用いた電気化学電池 |
| JP2002134113A (ja) * | 2000-10-30 | 2002-05-10 | Matsushita Electric Ind Co Ltd | 非水系二次電池 |
| US6841303B2 (en) * | 2001-01-17 | 2005-01-11 | Skc Co., Ltd. | High ionic conductivity gel polymer electrolyte for rechargeable polymer batteries |
| US7253289B2 (en) * | 2001-01-22 | 2007-08-07 | Covalent Associates, Inc. | One-step process for the preparation of halide-free hydrophobic salts |
| EP1370508A2 (en) * | 2001-03-12 | 2003-12-17 | The Queen's University of Belfast | Process catalysed by fluoroalkysulfonated compounds, preferably bis-triflimide compounds |
| JP3969077B2 (ja) * | 2001-04-04 | 2007-08-29 | 住友化学株式会社 | 高分子電解質及びその製造方法 |
| US20030054172A1 (en) * | 2001-05-10 | 2003-03-20 | 3M Innovative Properties Company | Polyoxyalkylene ammonium salts and their use as antistatic agents |
| JP4752135B2 (ja) * | 2001-05-25 | 2011-08-17 | 株式会社Gsユアサ | リチウム電池 |
| JP4222466B2 (ja) * | 2001-06-14 | 2009-02-12 | 富士フイルム株式会社 | 電荷輸送材料、それを用いた光電変換素子及び光電池、並びにピリジン化合物 |
| EP1402319B1 (en) * | 2001-06-22 | 2008-08-27 | Agfa-Gevaert | Material having a conductive pattern; and a material and method for making a conductive pattern |
| US6746751B2 (en) | 2001-06-22 | 2004-06-08 | Agfa-Gevaert | Material having a conductive pattern and a material and method for making a conductive pattern |
| US6545109B2 (en) | 2001-06-29 | 2003-04-08 | 3M Innovative Properties Company | Imide salts as emulsifiers for the polymerization of fluoroolefins |
| KR100908941B1 (ko) * | 2001-08-02 | 2009-07-22 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 광학적으로 투명한 대전방지 감압성 접착제 |
| JP4036279B2 (ja) * | 2001-10-09 | 2008-01-23 | よこはまティーエルオー株式会社 | プロトン伝導体及びこれを用いた燃料電池 |
| US7241535B2 (en) * | 2001-10-15 | 2007-07-10 | Samsung Sdi Co., Ltd. | Electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same |
| JP4004769B2 (ja) * | 2001-10-17 | 2007-11-07 | Necトーキン株式会社 | 電解液、並びにこれを用いた電気化学セル |
| DE10155281A1 (de) * | 2001-11-08 | 2003-06-05 | Solvent Innovation Gmbh | Verfahren zur Entfernung polarisierbarer Verunreinigungen aus Kohlenwasserstoffen und Kohlenwasserstoffgemischen durch Extraktion mit ionischen Flüssigkeiten |
| US7303852B2 (en) * | 2001-12-27 | 2007-12-04 | Shin-Etsu Chemical Co., Ltd. | Photoacid generating compounds, chemically amplified positive resist materials, and pattern forming method |
| WO2003065536A2 (en) * | 2002-01-25 | 2003-08-07 | Engen Group, Inc. | Polymer-modified electrode for energy storage devices and electrochemical supercapacitor based on said polymer-modified electrode |
| US20030153094A1 (en) * | 2002-02-13 | 2003-08-14 | Board Of Trustees Of Michigan State University | Conductimetric biosensor device, method and system |
| AU2003224809A1 (en) * | 2002-03-27 | 2003-10-13 | Avery Dennison Corporation | Switchable electro-optical laminates |
| CA2424561A1 (en) | 2002-04-02 | 2003-10-02 | Nippon Shokubai Co., Ltd. | Material for electrolytic solutions and use thereof |
| US6803152B2 (en) * | 2002-04-19 | 2004-10-12 | Ener1 Battery Company | Nonaqueous electrolytes based on organosilicon ammonium derivatives for high-energy power sources |
| US7709158B1 (en) | 2002-05-09 | 2010-05-04 | Electrochem Solutions, Inc. | Guanidine derivatives as cations for ambient temperature molten sales in electrochemical power sources |
| CA2428420A1 (en) * | 2002-05-09 | 2003-11-09 | Wilson Greatbatch Technologies, Inc. | Guanidine derivatives as cations for ambient temperature molten salts in electrochemical power sources |
| US7042615B2 (en) | 2002-05-17 | 2006-05-09 | The Regents Of The University Of California | Electrochromic devices based on lithium insertion |
| US7241334B2 (en) * | 2002-05-23 | 2007-07-10 | Columbian Chemicals Company | Sulfonated carbonaceous materials |
| US7175930B2 (en) * | 2002-05-23 | 2007-02-13 | Columbian Chemicals Company | Conducting polymer-grafted carbon material for fuel cell applications |
| US7390441B2 (en) * | 2002-05-23 | 2008-06-24 | Columbian Chemicals Company | Sulfonated conducting polymer-grafted carbon material for fuel cell applications |
| US7459103B2 (en) * | 2002-05-23 | 2008-12-02 | Columbian Chemicals Company | Conducting polymer-grafted carbon material for fuel cell applications |
| KR20050014828A (ko) * | 2002-05-23 | 2005-02-07 | 콜롬비안케미컬스컴파니 | 연료 전지 용도를 위한 술폰화된 전도성중합체-그라프트된 탄소 물질 |
| JP2004031423A (ja) * | 2002-06-21 | 2004-01-29 | Nissan Diesel Motor Co Ltd | グローブボックス装置 |
| WO2004001877A2 (en) * | 2002-06-21 | 2003-12-31 | The Regents Of The University Of California | Electrolytes for electrooptic devices comprising ionic liquids |
| US7763186B2 (en) * | 2002-06-21 | 2010-07-27 | Los Alamos National Security, Llc | Preparation and purification of ionic liquids and precursors |
| KR100463181B1 (ko) * | 2002-07-12 | 2004-12-23 | 삼성에스디아이 주식회사 | 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지 |
| US20040038127A1 (en) * | 2002-08-20 | 2004-02-26 | Schlaikjer Carl Roger | Small cation/delocalizing anion as an ambient temperature molten salt in electrochemical power sources |
| JP2004082365A (ja) * | 2002-08-23 | 2004-03-18 | Fuji Photo Film Co Ltd | 感熱記録材料 |
| KR101021749B1 (ko) | 2002-09-24 | 2011-03-15 | 이 아이 듀폰 디 네모아 앤드 캄파니 | 전기 전도 유기 중합체/나노입자 복합체 및 이들의 이용방법 |
| US7317047B2 (en) | 2002-09-24 | 2008-01-08 | E.I. Du Pont De Nemours And Company | Electrically conducting organic polymer/nanoparticle composites and methods for use thereof |
| DE60322923D1 (de) | 2002-09-24 | 2008-09-25 | Du Pont | Wasserdispergierbare polythiophene hergestellt untäuren |
| CA2499364A1 (en) | 2002-09-24 | 2004-04-08 | E. I. Du Pont De Nemours And Company | Water dispersible polyanilines made with polymeric acid colloids for electronics applications |
| EP1406336A1 (en) * | 2002-10-01 | 2004-04-07 | Xoliox SA | Electrolyte composition having improved aluminium anticorrosive properties |
| TWI331626B (en) * | 2002-11-22 | 2010-10-11 | Japan Carlit Co Ltd | Near-infrared absorptive dye and near-infrared blocking filter |
| US8124869B2 (en) * | 2003-01-15 | 2012-02-28 | Nippon Shokubai Co., Ltd. | Dye-sensitized type solar cell |
| US20040149472A1 (en) * | 2003-02-03 | 2004-08-05 | Warner Benjamin P. | Radiofrequency attenuator and method |
| JP2004265638A (ja) * | 2003-02-25 | 2004-09-24 | Ebara Corp | 混合伝導カーボンおよび電極 |
| US7390438B2 (en) | 2003-04-22 | 2008-06-24 | E.I. Du Pont De Nemours And Company | Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids |
| US7312100B2 (en) * | 2003-05-27 | 2007-12-25 | The North Carolina State University | In situ patterning of electrolyte for molecular information storage devices |
| US7659026B2 (en) * | 2003-06-27 | 2010-02-09 | E.I. Du Pont De Nemours And Company | Fluorinated sulfonamide compounds and polymer electrolyte membranes prepared therefrom for use in electrochemical cells |
| US20070102674A1 (en) * | 2003-07-11 | 2007-05-10 | Ube Industries, Ltd. | Acid-base mixture and ion conductor comprising the same |
| US7001936B2 (en) * | 2003-07-16 | 2006-02-21 | Lexmark International, Inc. | Pigmented inkjet ink |
| JP4916882B2 (ja) * | 2003-09-30 | 2012-04-18 | ハネウェル・インターナショナル・インコーポレーテッド | 指示薬を伴う電解液 |
| US7074491B2 (en) * | 2003-11-04 | 2006-07-11 | Dionex Corporation | Polar silanes for binding to substrates and use of the bound substrates |
| US10297827B2 (en) | 2004-01-06 | 2019-05-21 | Sion Power Corporation | Electrochemical cell, components thereof, and methods of making and using same |
| US7358012B2 (en) | 2004-01-06 | 2008-04-15 | Sion Power Corporation | Electrolytes for lithium sulfur cells |
| US8828610B2 (en) * | 2004-01-06 | 2014-09-09 | Sion Power Corporation | Electrolytes for lithium sulfur cells |
| US10629947B2 (en) | 2008-08-05 | 2020-04-21 | Sion Power Corporation | Electrochemical cell |
| TWI302760B (en) * | 2004-01-15 | 2008-11-01 | Lg Chemical Ltd | Electrochemical device comprising aliphatic nitrile compound |
| JP4433165B2 (ja) | 2004-02-16 | 2010-03-17 | ソニー株式会社 | カチオン伝導体およびこれを用いた電気化学デバイス |
| JP4507629B2 (ja) * | 2004-02-20 | 2010-07-21 | 東洋インキ製造株式会社 | 樹脂グラフトカーボンブラック組成物 |
| US7566385B2 (en) * | 2004-02-23 | 2009-07-28 | E. I. Du Pont De Nemours And Company | Apparatus adapted for membrane-mediated electropolishing |
| US7351358B2 (en) | 2004-03-17 | 2008-04-01 | E.I. Du Pont De Nemours And Company | Water dispersible polypyrroles made with polymeric acid colloids for electronics applications |
| US7785740B2 (en) * | 2004-04-09 | 2010-08-31 | Air Products And Chemicals, Inc. | Overcharge protection for electrochemical cells |
| US8147962B2 (en) | 2004-04-13 | 2012-04-03 | E. I. Du Pont De Nemours And Company | Conductive polymer composites |
| EP2565886A1 (en) | 2004-05-10 | 2013-03-06 | Nippon Shokubai Co., Ltd. | Material for electrolytic solution, ionic material-containing composition and use thereof |
| US7960057B2 (en) * | 2004-05-17 | 2011-06-14 | Toyota Motor Engineering & Manufacturing North America, Inc. | Battery with molten salt electrolyte and phosphorus-containing cathode |
| US20050287441A1 (en) * | 2004-06-23 | 2005-12-29 | Stefano Passerini | Lithium polymer electrolyte batteries and methods of making |
| JP2006008454A (ja) * | 2004-06-25 | 2006-01-12 | Fuji Xerox Co Ltd | 炭素微粒子構造体とその製造方法、およびこれを製造するための炭素微粒子転写体と炭素微粒子構造体製造用溶液、並びに炭素微粒子構造体を用いた炭素微粒子構造体電子素子とその製造方法、そして集積回路 |
| JP4731132B2 (ja) * | 2004-06-29 | 2011-07-20 | 株式会社Adeka | 非水電解液及び該電解液を用いた非水電解液二次電池 |
| JP4412598B2 (ja) * | 2004-07-20 | 2010-02-10 | 第一工業製薬株式会社 | イオンポリマーゲル電解質およびその前駆体組成物 |
| AU2004240178A1 (en) * | 2004-08-20 | 2006-03-09 | Commonwealth Scientific And Industrial Research Organisation | Zwitterionic additives for electrochemical devices |
| EP1634867A1 (de) * | 2004-08-25 | 2006-03-15 | Lonza AG | Tricyanomethansalze organischer Kationen |
| EP1796193B1 (en) * | 2004-09-03 | 2011-12-14 | Nissan Motor Co., Ltd. | Proton conductor and fuel cell using the same |
| KR100663032B1 (ko) * | 2004-09-21 | 2006-12-28 | 주식회사 엘지화학 | 공융혼합물을 포함하는 전해질 및 이를 이용한 전기 변색소자 |
| US20060068987A1 (en) * | 2004-09-24 | 2006-03-30 | Srinivas Bollepalli | Carbon supported catalyst having reduced water retention |
| JP4709518B2 (ja) * | 2004-09-29 | 2011-06-22 | 株式会社東芝 | プロトン伝導膜及び燃料電池 |
| WO2006063441A1 (en) * | 2004-12-13 | 2006-06-22 | Transfert Plus, S.E.C. | Compositions, redox couples and uses thereof |
| FR2879458B1 (fr) * | 2004-12-21 | 2007-07-20 | Centre Nat Rech Scient Cnrse | Sulfamides et sulfinimides fluores |
| KR20070104389A (ko) | 2005-01-10 | 2007-10-25 | 애버리 데니슨 코포레이션 | 제거 가능한 커얼 라벨들 |
| KR100616666B1 (ko) | 2005-01-27 | 2006-08-28 | 삼성전기주식회사 | 카본나노튜브에 구아니딘기를 형성하는 방법,구아니딘기가 형성된 카본나노튜브를 기판에 부착하는방법 및 이에 따라 제조된 카본나노튜브 및 기판 |
| JP2006257288A (ja) * | 2005-03-17 | 2006-09-28 | Kaneka Corp | 金属表面コーティング用組成物、導電性高分子の製造方法、金属表面のコーティング方法、ならびに電解コンデンサおよびその製造方法 |
| WO2006088033A1 (ja) * | 2005-02-17 | 2006-08-24 | Kaneka Corporation | 金属表面コーティング用組成物、導電性高分子の製造方法、金属表面のコーティング方法、ならびに電解コンデンサおよびその製造方法 |
| JP4856883B2 (ja) * | 2005-03-03 | 2012-01-18 | 富士フイルム株式会社 | 機能性素子、エレクトロクロミック素子、光学デバイス及び撮影ユニット |
| DE102005013790B4 (de) * | 2005-03-24 | 2007-03-29 | Polymaterials Ag | Polymerelektrolyt, Verwendung des Polymerelektrolyten und elektrochemische Vorrichtung, die den Polymerelektrolyten umfasst |
| CA2506104A1 (en) | 2005-05-06 | 2006-11-06 | Michel Gauthier | Surface modified redox compounds and composite electrode obtain from them |
| US7619803B2 (en) * | 2005-05-31 | 2009-11-17 | Konica Minolta Holdings, Inc. | Electrochromic display element and full-color electrochromic display element |
| US7579184B2 (en) * | 2005-06-02 | 2009-08-25 | Board Of Trustees Of Michigan State University | Methods to increase dynamic range and improve quantitative analysis in rapid biosensors |
| CN101595532B (zh) | 2005-06-28 | 2013-07-31 | E.I.内穆尔杜邦公司 | 缓冲组合物 |
| CN101208369B (zh) * | 2005-06-28 | 2013-03-27 | E.I.内穆尔杜邦公司 | 高功函数透明导体 |
| JP2009504790A (ja) * | 2005-08-22 | 2009-02-05 | トランスファート プラス エスイーシー | スルホニルイミド及びその誘導体を調製するための方法 |
| WO2007049922A1 (en) | 2005-10-27 | 2007-05-03 | Lg Chem, Ltd. | Secondary battery comprising eutectic mixture and preparation method thereof |
| WO2007055392A1 (en) * | 2005-11-11 | 2007-05-18 | Nippon Shokubai Co., Ltd. | Ionic compound |
| WO2007068822A2 (fr) * | 2005-12-12 | 2007-06-21 | Phostech Lithium Inc. | Sels de sulfonyl-1, 2, 4-triazole |
| US7901660B2 (en) * | 2005-12-29 | 2011-03-08 | The Board Of Trustees Of The University Of Illinois | Quaternary oxides and catalysts containing quaternary oxides |
| US7521394B2 (en) * | 2005-12-29 | 2009-04-21 | The Board Of Trustees Of The University Of Illinois | Nanoparticles containing titanium oxide |
| US8216680B2 (en) * | 2006-02-03 | 2012-07-10 | E I Du Pont De Nemours And Company | Transparent composite conductors having high work function |
| JP4682057B2 (ja) * | 2006-02-20 | 2011-05-11 | 富士フイルム株式会社 | 感光性組成物、該感光性組成物を用いたパターン形成方法及び該感光性組成物に用いられる化合物 |
| US20090045373A1 (en) * | 2006-03-10 | 2009-02-19 | Amer Hammami | Compounds, ionic liquids, molten salts and uses thereof |
| WO2007107356A1 (en) * | 2006-03-21 | 2007-09-27 | Novaled Ag | Method for preparing doped organic semiconductor materials and formulation utilized therein |
| DE112007000789B4 (de) * | 2006-03-30 | 2012-03-15 | Novaled Ag | Verwendung von Bora-tetraazepentalenen |
| WO2007142731A2 (en) | 2006-04-04 | 2007-12-13 | The Regents Of The University Of California | High elastic modulus polymer electrolytes |
| US8268197B2 (en) * | 2006-04-04 | 2012-09-18 | Seeo, Inc. | Solid electrolyte material manufacturable by polymer processing methods |
| US7696122B2 (en) * | 2006-07-05 | 2010-04-13 | Cabot Corporation | Electrocatalyst inks for fuel cell applications |
| US20080214814A1 (en) * | 2006-07-18 | 2008-09-04 | Zaiwei Li | Stable ionic liquid complexes and methods for determining stability thereof |
| WO2008013095A1 (en) | 2006-07-27 | 2008-01-31 | Nichicon Corporation | Ionic compound |
| EP1903029A1 (de) * | 2006-08-16 | 2008-03-26 | Lonza Ag | Verfahren zur Herstellung von Alkali- oder Erdalkalimetalltricyanomethaniden |
| EP2056380B1 (en) * | 2006-08-17 | 2018-02-28 | Mitsubishi Chemical Corporation | Negative electrode active material for lithium ion secondary battery, process for producing the same, and negative electrode for lithium ion secondary battery and lithium ion secondary battery both employing the same. |
| US7820323B1 (en) | 2006-09-07 | 2010-10-26 | The United States Of America As Represented By The Secretary Of The Army | Metal borate synthesis process |
| US7833660B1 (en) | 2006-09-07 | 2010-11-16 | The United States Of America As Represented By The Secretary Of The Army | Fluorohaloborate salts, synthesis and use thereof |
| EP2094799B1 (en) | 2006-11-02 | 2013-08-28 | Avery Dennison Corporation | Emulsion adhesive for washable film |
| JP5003685B2 (ja) * | 2006-11-08 | 2012-08-15 | コニカミノルタホールディングス株式会社 | 表示素子 |
| US7864397B2 (en) * | 2006-12-04 | 2011-01-04 | 3M Innovative Properties Company | Curable electrolyte |
| US8043418B2 (en) * | 2006-12-08 | 2011-10-25 | General Electric Company | Gas separator apparatus |
| KR100767427B1 (ko) * | 2006-12-21 | 2007-10-17 | 제일모직주식회사 | 리튬 2차전지용 비수성 전해액 및 이를 포함하는 리튬2차전지 |
| US20080191172A1 (en) | 2006-12-29 | 2008-08-14 | Che-Hsiung Hsu | High work-function and high conductivity compositions of electrically conducting polymers |
| JP5110625B2 (ja) * | 2007-02-02 | 2012-12-26 | パナソニック株式会社 | 蓄電デバイス |
| US7820347B1 (en) * | 2007-02-06 | 2010-10-26 | The United States Of America As Represented By The Secretary Of The Air Force | Conversion of salt halides to nitrate salts |
| KR20090109570A (ko) * | 2007-02-06 | 2009-10-20 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 신규한 결합제를 포함하는 전극과, 그의 제조 방법 및 사용 방법 |
| US7875388B2 (en) | 2007-02-06 | 2011-01-25 | 3M Innovative Properties Company | Electrodes including polyacrylate binders and methods of making and using the same |
| US8540899B2 (en) | 2007-02-07 | 2013-09-24 | Esionic Es, Inc. | Liquid composite compositions using non-volatile liquids and nanoparticles and uses thereof |
| US8012277B2 (en) * | 2007-04-13 | 2011-09-06 | Alliant Techsystems Inc. | Ionic liquid and a method of synthesizing an ionic liquid |
| EP2139971A4 (en) * | 2007-04-13 | 2011-09-21 | 3M Innovative Properties Co | ANTISTATIC TRANSPARENT SELF-ADHESIVE ADHESIVE |
| JP2008266155A (ja) * | 2007-04-17 | 2008-11-06 | Asahi Kasei Corp | スルホンイミドリチウム塩の製造方法 |
| EP2148904B1 (en) * | 2007-04-24 | 2012-06-06 | Sun Chemical Corporation | Pigments for non-aqueous inks and coatings |
| US8241526B2 (en) * | 2007-05-18 | 2012-08-14 | E I Du Pont De Nemours And Company | Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives |
| US8287810B2 (en) * | 2007-06-20 | 2012-10-16 | Board Of Trustees Of Michigan State University | Electrically-active ferromagnetic particle conductimetric biosensor test kit |
| KR101451802B1 (ko) * | 2007-07-31 | 2014-10-16 | 삼성에스디아이 주식회사 | 글리시딜 에테르계 화합물을 채용한 유기전해액 및 리튬전지 |
| KR20100057065A (ko) * | 2007-08-16 | 2010-05-28 | 론자 리미티드 | 알칼리 금속 및 알칼리 토금속 트리시아노메타니드의 제조 및 정제방법 |
| JP4936069B2 (ja) * | 2007-10-31 | 2012-05-23 | 株式会社デンソー | モータ制御装置 |
| US20090122389A1 (en) | 2007-11-14 | 2009-05-14 | E Ink Corporation | Electro-optic assemblies, and adhesives and binders for use therein |
| US20090181441A1 (en) * | 2007-11-27 | 2009-07-16 | Board Of Trustees Of Michigan State University | Porous silicon-polymer composites for biosensor applications |
| EP2219260B1 (en) * | 2007-11-30 | 2015-11-04 | Fujikura, Ltd. | Electrolytic composition and photoelectric conversion element using the same |
| FR2925181B1 (fr) * | 2007-12-12 | 2010-09-10 | Hydro Quebec | Lentille optique electrochrome |
| EP2243806B1 (en) * | 2007-12-27 | 2012-03-28 | Tokai Carbon Co., Ltd. | Method of producing an aqueous dispersion of surface-treated carbon black |
| EP2240973B1 (en) * | 2008-01-08 | 2018-03-28 | Sion Power Corporation | Porous electrodes and associated methods |
| CN101939869B (zh) * | 2008-01-16 | 2015-09-23 | 西奥公司 | 用于电池的凝胶聚合物电解质 |
| KR101013328B1 (ko) * | 2008-01-18 | 2011-02-09 | 주식회사 엘지화학 | 공융혼합물을 포함하는 전해질 및 이를 구비한전기화학소자 |
| US8034485B2 (en) | 2008-05-29 | 2011-10-11 | 3M Innovative Properties Company | Metal oxide negative electrodes for lithium-ion electrochemical cells and batteries |
| US9782949B2 (en) | 2008-05-30 | 2017-10-10 | Corning Incorporated | Glass laminated articles and layered articles |
| JP5471036B2 (ja) * | 2008-06-05 | 2014-04-16 | ソニー株式会社 | マグネシウムイオン含有非水電解液及びこれを用いた電気化学デバイス |
| US7715082B2 (en) * | 2008-06-30 | 2010-05-11 | Soladigm, Inc. | Electrochromic devices based on lithium insertion |
| JP2010047751A (ja) * | 2008-07-24 | 2010-03-04 | Sumitomo Chemical Co Ltd | イオン交換ポリマー |
| FR2935382B1 (fr) | 2008-08-29 | 2010-10-08 | Centre Nat Rech Scient | Sel d'anion pentacylique et son utilisation comme electrolyte |
| JP4444355B2 (ja) * | 2008-09-03 | 2010-03-31 | 株式会社東芝 | 燃料電池 |
| US7951525B2 (en) * | 2008-09-08 | 2011-05-31 | International Business Machines Corporation | Low outgassing photoresist compositions |
| US8129448B2 (en) * | 2008-12-18 | 2012-03-06 | Cabot Corporation | Method of preparing polymer modified pigments |
| US20100193449A1 (en) * | 2009-02-02 | 2010-08-05 | Jian-Ku Shang | Materials and methods for removing arsenic from water |
| US8945426B2 (en) | 2009-03-12 | 2015-02-03 | E I Du Pont De Nemours And Company | Electrically conductive polymer compositions for coating applications |
| WO2010117771A1 (en) | 2009-03-30 | 2010-10-14 | Avery Dennison Corporation | Removable adhesive label containing inherently shrinkable polymeric film |
| PL2415042T3 (pl) | 2009-03-30 | 2017-08-31 | Avery Dennison Corporation | Usuwalna etykieta przylepna zawierająca warstwę folii polimerowej mającej powinowactwo do wody |
| CN106652770A (zh) | 2009-03-30 | 2017-05-10 | 艾利丹尼森公司 | 含有高拉伸模量高分子膜层的可移除粘合标签 |
| US9664974B2 (en) | 2009-03-31 | 2017-05-30 | View, Inc. | Fabrication of low defectivity electrochromic devices |
| FR2944149B1 (fr) * | 2009-04-06 | 2011-04-29 | Centre Nat Rech Scient | Electrode composite. |
| WO2010123962A2 (en) | 2009-04-21 | 2010-10-28 | E. I. Du Pont De Nemours And Company | Electrically conductive polymer compositions and films made therefrom |
| EP2421919A4 (en) | 2009-04-24 | 2014-01-22 | Du Pont | ELECTRICALLY CONDUCTIVE POLYMER COMPOSITIONS AND FILMS MANUFACTURED THEREFROM |
| JP5645459B2 (ja) * | 2009-07-10 | 2014-12-24 | 富士フイルム株式会社 | 感活性光線性または感放射線性樹脂組成物およびこれを用いたパターン形成方法 |
| WO2011031297A2 (en) | 2009-08-28 | 2011-03-17 | Sion Power Corporation | Electrochemical cells comprising porous structures comprising sulfur |
| EP2314572A1 (de) | 2009-10-20 | 2011-04-27 | Philipps-Universität Marburg | Lithiumsalze von Pentafluorphenylamid-Anionen, ihre Herstellung und ihre Verwendung |
| US9951008B2 (en) | 2009-11-03 | 2018-04-24 | University Of Notre Dame Du Lac | Ionic liquids comprising heteraromatic anions |
| TW201117245A (en) * | 2009-11-11 | 2011-05-16 | Taiwan Textile Res Inst | Water-based electrolyte for electric double layer capacitor and electric double layer capacitor having the same |
| JP5629510B2 (ja) * | 2009-11-30 | 2014-11-19 | 大日本印刷株式会社 | トリアリールメタン系染料 |
| KR101311933B1 (ko) * | 2009-12-29 | 2013-09-27 | 제일모직주식회사 | 전도성 고분자 중합체, 전도성 고분자 조성물, 전도성 고분자 조성물막 및 이를 이용한 유기광전소자 |
| US8730649B2 (en) | 2010-03-12 | 2014-05-20 | Taiwan Textile Research Institute | Aqueous electrolyte solution for electric double-layer capacitor and electric double-layer capacitor having the same |
| JP2011198508A (ja) * | 2010-03-17 | 2011-10-06 | Sony Corp | リチウム二次電池、リチウム二次電池用電解液、電動工具、電気自動車および電力貯蔵システム |
| KR101346977B1 (ko) | 2010-06-04 | 2014-01-02 | 주식회사 엘지화학 | 하이드로포르밀화 반응 부산물 제거용 장치 및 방법 |
| EP2609647B1 (en) | 2010-08-24 | 2017-03-15 | Sion Power Corporation | Electrolyte materials for use in electrochemical cells |
| JP5398801B2 (ja) * | 2010-10-29 | 2014-01-29 | 旭化成株式会社 | 高分子電解質 |
| US8828346B2 (en) | 2011-03-08 | 2014-09-09 | Trinapco, Inc. | Method of making fluorosulfonylamine |
| JP5673258B2 (ja) * | 2011-03-17 | 2015-02-18 | 大日本印刷株式会社 | カラーフィルター用着色組成物及びそれを用いたカラーフィルター、並びに表示装置 |
| US8859297B2 (en) | 2011-05-23 | 2014-10-14 | Board Of Trustees Of Michigan State University | Detection of conductive polymer-labeled analytes |
| US8735002B2 (en) | 2011-09-07 | 2014-05-27 | Sion Power Corporation | Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound |
| WO2012174393A1 (en) | 2011-06-17 | 2012-12-20 | Sion Power Corporation | Plating technique for electrode |
| JP6060478B2 (ja) * | 2011-08-03 | 2017-01-18 | 住友化学株式会社 | 化合物及びその製造方法 |
| JP5268123B2 (ja) * | 2011-08-26 | 2013-08-21 | 株式会社 東北テクノアーチ | リチウム電池 |
| US10739337B2 (en) | 2011-08-30 | 2020-08-11 | Board Of Trustees Of Michigan State University | Extraction and detection of pathogens using carbohydrate-functionalized biosensors |
| JP2013053208A (ja) * | 2011-09-02 | 2013-03-21 | Dic Corp | 活性エネルギー線硬化型インクジェット記録用インク組成物及び画像形成方法 |
| FR2979630B1 (fr) * | 2011-09-05 | 2013-10-04 | Univ Provence Aix Marseille 1 | Copolymeres a blocs dont un polyanionique base sur un monomere anion de type tfsili comme electrolyte de batterie. |
| US9660294B2 (en) | 2011-09-13 | 2017-05-23 | Wildcat Discovery Technologies, Inc. | Electrolyte materials for batteries and methods for use |
| US20140340729A1 (en) * | 2011-09-16 | 2014-11-20 | National Institute Of Advanced Industrial Science And Technology | Reflective dimming electrochromic element with non-water based hydrogen ion conductive electrolyte layer inserted therein, and dimming element using the same |
| EP2760074B1 (en) * | 2011-09-19 | 2017-11-15 | LG Chem, Ltd. | Cable-type secondary cell |
| JP6118805B2 (ja) | 2011-10-13 | 2017-04-19 | シオン・パワー・コーポレーション | 電極構造およびその製造方法 |
| DE102011055028A1 (de) * | 2011-11-04 | 2013-05-08 | Jacobs University Bremen Ggmbh | Elektrolyt-Zusatz für Lithium-basierte Energiespeicher |
| JP5871209B2 (ja) * | 2011-11-15 | 2016-03-01 | 国立大学法人山形大学 | ビススルホンイミド構造を持つポリマー及びこれを含む電極ならびに電池 |
| WO2013072470A1 (en) * | 2011-11-17 | 2013-05-23 | Jonsson Erlendur | Anions and derived salts with high dissociation in non-protogenic solvents |
| JP2013114934A (ja) * | 2011-11-29 | 2013-06-10 | Nippon Synthetic Chem Ind Co Ltd:The | 金属塩、電極保護膜形成剤、それを用いた二次電池用電解質、及び二次電池 |
| KR20190075162A (ko) * | 2011-11-30 | 2019-06-28 | 솔베이(소시에떼아노님) | 멜드럼산의 플루오르화 유도체, 그 제조 방법, 및 용매 첨가제로서의 그의 용도 |
| WO2013090209A1 (en) | 2011-12-12 | 2013-06-20 | View, Inc. | Thin-film devices and fabrication |
| TWI447993B (zh) * | 2011-12-30 | 2014-08-01 | Ind Tech Res Inst | 負極材料與負極極板 |
| DE102012201942B8 (de) * | 2012-02-09 | 2015-02-26 | Ewe-Forschungszentrum Für Energietechnologie E. V. | Verwendung eines aktivierten kohlenstoffhaltigen Materials, Verfahren zur Herstellung einer kohlenstoffhaltigen Elektrode, kohlestoffhaltige Elektrode, deren Verwendung sowie Vanadium-Redox-Flow-Zelle |
| WO2013123131A1 (en) | 2012-02-14 | 2013-08-22 | Sion Power Corporation | Electrode structure for electrochemical cell |
| DE102012102162A1 (de) * | 2012-03-14 | 2013-09-19 | Westfälische Wilhelms-Universität Münster Körperschaft des öffentlichen Rechts | Ionenleitende polymere Verbindung für elektrochemische Zellen |
| WO2013148242A1 (en) * | 2012-03-28 | 2013-10-03 | Cabot Corporation | Oxidized carbon blacks treated with polyetheramines and coating compositions comprising same |
| WO2013142994A1 (en) * | 2012-03-30 | 2013-10-03 | Valorisation-Recherche, Limited Partnership | Redox-active ionic liquids |
| CA2776178A1 (en) | 2012-04-05 | 2013-10-05 | Hydro-Quebec | Ionic compounds |
| JP5660112B2 (ja) * | 2012-04-27 | 2015-01-28 | 株式会社豊田自動織機 | リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
| CN104918913B (zh) | 2012-11-16 | 2018-02-09 | 特里纳普克公司 | 四丁铵双(氟磺酰基)酰亚胺及相关盐的合成 |
| JP6268833B2 (ja) * | 2012-12-17 | 2018-01-31 | 株式会社豊田中央研究所 | 非水電解液二次電池及び非水電解液二次電池の製造方法 |
| US9577289B2 (en) | 2012-12-17 | 2017-02-21 | Sion Power Corporation | Lithium-ion electrochemical cell, components thereof, and methods of making and using same |
| JP6389468B2 (ja) | 2012-12-19 | 2018-09-12 | シオン・パワー・コーポレーション | 電極構造体およびその製造方法 |
| EP2936607B1 (en) | 2012-12-20 | 2017-02-22 | Solvay SA | Salts of n-containing heterocyclic anions as components in electrolytes |
| CN102993196B (zh) * | 2012-12-20 | 2015-01-28 | 北京科技大学 | 三唑类衍生物、其制备方法及其纳米粒子和纳米粒子的应用 |
| US12261284B2 (en) | 2013-03-15 | 2025-03-25 | Sion Power Corporation | Protective structures for electrodes |
| JP6201363B2 (ja) * | 2013-03-25 | 2017-09-27 | 三菱ケミカル株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
| WO2015029248A1 (ja) * | 2013-09-02 | 2015-03-05 | 株式会社日立製作所 | 負極活物質被覆材並びにこれを用いた負極材料、負極、リチウムイオン二次電池及び電池システム並びにモノマー及びその合成方法 |
| JP6162084B2 (ja) * | 2013-09-06 | 2017-07-12 | 富士フイルム株式会社 | 着色組成物、硬化膜、カラーフィルタ、カラーフィルタの製造方法、固体撮像素子、画像表示装置、ポリマー、キサンテン色素 |
| WO2015048765A1 (en) | 2013-09-30 | 2015-04-02 | University Of Notre Dame Du Lac | Compounds, complexes, compositions, methods and systems for heating and cooling |
| FR3011683A1 (fr) * | 2013-10-03 | 2015-04-10 | Arkema France | Sel d'anion pentacyclique : composition pour batteries |
| FR3012462B1 (fr) * | 2013-10-31 | 2016-01-01 | Arkema France | Compositions stables de poly (3,4-ethylenedioxythiophene) et de stabilisants anioniques a acidite limitee |
| WO2015069799A1 (en) | 2013-11-05 | 2015-05-14 | University Of Notre Dame Du Lac | Carbon dioxide capture using phase change ionic liquids |
| CN106256034B (zh) | 2014-05-01 | 2019-04-23 | 锡安能量公司 | 电极制造方法及相关制品 |
| KR102398943B1 (ko) | 2014-05-12 | 2022-05-16 | 조나 레디 | 란타나이드 및 악티나이드 전기화학 |
| US10601031B2 (en) | 2014-06-06 | 2020-03-24 | Robert Bosch Gmbh | Polymer electrolyte for a lithium sulfur cell |
| JP6541508B2 (ja) * | 2014-08-25 | 2019-07-10 | 住友化学株式会社 | 塩、樹脂、レジスト組成物及びレジストパターンの製造方法 |
| CN104600357B (zh) * | 2014-12-08 | 2017-05-31 | 上海大学 | 聚合物复合材料固态电解质及其制备方法 |
| US10068715B2 (en) | 2014-12-12 | 2018-09-04 | Corning Incorporated | Activated carbon and electric double layer capacitor thereof |
| US10826113B2 (en) * | 2015-04-13 | 2020-11-03 | Global Graphene Group, Inc. | Zinc ion-exchanging energy storage device |
| JP6658204B2 (ja) * | 2015-04-28 | 2020-03-04 | 信越化学工業株式会社 | 光酸発生剤、レジスト組成物及びパターン形成方法 |
| DE102015210388A1 (de) * | 2015-06-05 | 2016-12-08 | Siemens Aktiengesellschaft | Organische Heterozyklische Alkalimetallsalze als n-Dotierstoffe in der Organischen Elektronik |
| EP3113275B1 (de) * | 2015-06-29 | 2021-06-09 | VARTA Micro Innovation GmbH | Sekundäre magnesiumbatterie und elektrolytsystem sowie elektrode für eine sekundäre magnesiumbatterie |
| US20180198167A1 (en) * | 2015-07-15 | 2018-07-12 | The Trustees Of Boston University | Ionic liquid electrolytes and electrochemical devices comprising same |
| JP2017066377A (ja) * | 2015-09-29 | 2017-04-06 | Jsr株式会社 | 着色組成物、着色硬化膜、並びに表示素子及び固体撮像素子 |
| US10847790B2 (en) | 2015-11-17 | 2020-11-24 | Nexeon Limited | Functionalised electrochemically active material and method of functionalisation |
| GB2544495B (en) | 2015-11-17 | 2018-12-05 | Nexeon Ltd | Surface modified electrochemically active material |
| KR102056591B1 (ko) * | 2015-12-07 | 2019-12-17 | 주식회사 엘지화학 | 점착제 조성물 |
| TWI619699B (zh) * | 2015-12-31 | 2018-04-01 | Rohm And Haas Electronic Materials Llc | 光酸產生劑 |
| TWI662364B (zh) | 2015-12-31 | 2019-06-11 | Rohm And Haas Electronic Materials Llc | 光致抗蝕劑組合物、包含光致抗蝕劑組合物的經塗佈基板及形成電子裝置的方法 |
| JP6946294B2 (ja) * | 2016-07-26 | 2021-10-06 | 東ソー・ファインケム株式会社 | ハロゲン化物が低減された重合性官能基を有するスルホンイミドの有機溶剤溶液 |
| JP6853636B2 (ja) * | 2016-09-08 | 2021-03-31 | 三菱マテリアル電子化成株式会社 | ペルフルオロアルキルスルホンアミドの製造方法 |
| JP6744848B2 (ja) * | 2016-09-13 | 2020-08-19 | 信越化学工業株式会社 | 粘着剤組成物、生体電極、及び生体電極の製造方法 |
| JP6761384B2 (ja) * | 2016-09-29 | 2020-09-23 | 信越化学工業株式会社 | 粘着剤組成物、生体電極、及び生体電極の製造方法 |
| JP6761386B2 (ja) * | 2016-09-29 | 2020-09-23 | 信越化学工業株式会社 | 粘着剤組成物、生体電極、生体電極の製造方法、及び塩 |
| KR102141267B1 (ko) * | 2016-11-04 | 2020-08-04 | 주식회사 엘지화학 | 방향족 고리를 포함하는 화합물 및 이를 포함하는 중합체 |
| JP6919993B2 (ja) | 2017-01-06 | 2021-08-18 | 信越化学工業株式会社 | 生体電極組成物、生体電極及び生体電極の製造方法 |
| JP6966310B2 (ja) * | 2017-02-06 | 2021-11-10 | 信越化学工業株式会社 | 生体電極組成物、生体電極、生体電極の製造方法、及び高分子化合物 |
| JP6892376B2 (ja) | 2017-02-14 | 2021-06-23 | 信越化学工業株式会社 | 生体電極組成物、生体電極、生体電極の製造方法、及び高分子化合物 |
| JP6661212B2 (ja) * | 2017-02-22 | 2020-03-11 | 信越化学工業株式会社 | 導電性ポリマー複合体及び基板 |
| JP6765988B2 (ja) * | 2017-02-22 | 2020-10-07 | 信越化学工業株式会社 | 導電性ポリマー用高分子化合物及びその製造方法 |
| CA3057377A1 (en) * | 2017-03-27 | 2018-10-04 | Hydro-Quebec | Salts for use in electrolyte compositions or as electrode additives |
| ES2693587A1 (es) * | 2017-06-09 | 2018-12-12 | Universidad Carlos Iii De Madrid | Sales a base de aniones orgánicos de sulfonamidas y sus usos |
| JP7160350B2 (ja) * | 2017-07-06 | 2022-10-25 | 公立大学法人大阪 | 生体組織透明化法及びその試薬 |
| CN110892320B (zh) * | 2017-08-08 | 2022-05-10 | 金泰克斯公司 | 具有透明离子交换膜的电光装置 |
| US10232360B1 (en) | 2017-09-12 | 2019-03-19 | Chevron Phillips Chemical Company, Lp | Use of organic dopants to enhance acetylene hydrogenation catalysts |
| US10245583B1 (en) * | 2017-09-12 | 2019-04-02 | Chevron Phillips Chemical Company, Lp | Use of charge-containing molecules linked with covalent bonds to enhance acetylene hydrogenation catalysts |
| JP6845191B2 (ja) * | 2017-10-19 | 2021-03-17 | 信越化学工業株式会社 | 生体電極組成物、生体電極、及び生体電極の製造方法 |
| JP6920000B2 (ja) * | 2017-10-26 | 2021-08-18 | 信越化学工業株式会社 | 生体電極組成物、生体電極、及び生体電極の製造方法 |
| KR102228070B1 (ko) | 2017-11-01 | 2021-03-12 | 주식회사 엘지화학 | 화학 증폭형 포토레지스트 조성물 및 이를 이용한 포토레지스트 필름 |
| JP6850279B2 (ja) * | 2017-11-21 | 2021-03-31 | 信越化学工業株式会社 | 生体電極組成物、生体電極、及び生体電極の製造方法 |
| CN107706463B (zh) * | 2017-11-23 | 2018-11-06 | 林宝领 | 一种锂电池的亚硝基接枝碳酸酯电解液及制备方法 |
| CN109851704B (zh) * | 2017-11-30 | 2020-06-19 | 比亚迪股份有限公司 | 聚合物隔膜及其制备方法和应用及锂电池 |
| CN109851703B (zh) * | 2017-11-30 | 2020-10-23 | 比亚迪股份有限公司 | 适用于粘结剂的偏二氟乙烯类共聚物及其制备方法和应用 |
| CN109860471B (zh) * | 2017-11-30 | 2020-12-25 | 比亚迪股份有限公司 | 聚合物隔膜及其制备方法和应用及锂电池 |
| CN109935902B (zh) * | 2017-12-19 | 2021-10-19 | 成都大超科技有限公司 | 固态电解质及其锂电池电芯、锂电池 |
| JP6839125B2 (ja) * | 2018-04-02 | 2021-03-03 | 信越化学工業株式会社 | 生体電極組成物、生体電極、及び生体電極の製造方法 |
| JP7080732B2 (ja) * | 2018-06-01 | 2022-06-06 | 三菱マテリアル電子化成株式会社 | 含フッ素スルホニルイミド塩基含有シリコーン化合物とそれを含有する導電性シリコーン組成物 |
| US11394056B2 (en) * | 2018-06-08 | 2022-07-19 | Solid State Battery Incorporated | Composite solid polymer electrolytes for energy storage devices |
| JP7111653B2 (ja) * | 2018-06-25 | 2022-08-02 | 信越化学工業株式会社 | 生体電極組成物、生体電極、及び生体電極の製造方法 |
| JP7099990B2 (ja) * | 2018-06-26 | 2022-07-12 | 信越化学工業株式会社 | 生体電極組成物、生体電極、及び生体電極の製造方法 |
| CN116347227A (zh) | 2018-07-20 | 2023-06-27 | 株式会社尼康 | 相机机身、相机附件、相机系统及通信方法 |
| EP3605700A1 (en) | 2018-07-31 | 2020-02-05 | Solvay Sa | New components for electrolyte compositions |
| WO2020025502A1 (en) | 2018-07-31 | 2020-02-06 | Solvay Sa | New components for electrolyte compositions |
| EP3604276A1 (en) | 2018-07-31 | 2020-02-05 | Solvay Sa | New components for electrolyte compositions |
| EP3605698A1 (en) | 2018-07-31 | 2020-02-05 | Solvay Sa | New components for electrolyte compositions |
| WO2020025499A1 (en) | 2018-07-31 | 2020-02-06 | Solvay Sa | New components for electrolyte compositions |
| WO2020025501A1 (en) | 2018-07-31 | 2020-02-06 | Solvay Sa | New components for electrolyte compositions |
| EP3605699A1 (en) | 2018-07-31 | 2020-02-05 | Solvay Sa | New components for electrolyte compositions |
| JP6966396B2 (ja) | 2018-08-23 | 2021-11-17 | 信越化学工業株式会社 | 生体電極組成物、生体電極、及び生体電極の製造方法 |
| CN109776709B (zh) * | 2018-12-25 | 2021-09-07 | 广东工业大学 | 一种聚对苯乙烯磺酰(三氟甲基磺酰)亚胺锂-聚碳酸亚乙烯基酯共聚物及其应用 |
| HUE061769T2 (hu) | 2019-01-17 | 2023-08-28 | Lg Energy Solution Ltd | Elektrolit lítium szekunder akkumulátorhoz és az azt tartalmazó lítium szekunder akkumulátor |
| JP7237606B2 (ja) * | 2019-01-25 | 2023-03-13 | 国立大学法人東京農工大学 | 4-スチレン誘導体を重合したポリマー並びに、これを用いたマグネシウム二次電池用バインダーもしくはコート剤、及びマグネシウム二次電池 |
| EP3705035A1 (en) * | 2019-03-07 | 2020-09-09 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO | Manufacturing of skin-compatible electrodes |
| DE102019208914A1 (de) * | 2019-06-19 | 2020-12-24 | Robert Bosch Gmbh | Salz mit Anion mit unfluorierter Dialkylamid-Sulfonyl- und/oder -Sulfoximid-Gruppe und mit Perfluoralkyl-Sulfonyl-Gruppe |
| CN110305172B (zh) * | 2019-06-26 | 2020-09-01 | 武汉大学 | 一种钴膦酸盐及其制备方法和作为宽温域质子传导材料的应用 |
| CN110368899A (zh) * | 2019-07-16 | 2019-10-25 | 邱越 | 一种活性炭复合材料及其制备方法和应用 |
| CN110721745B (zh) * | 2019-09-25 | 2020-09-08 | 中山大学 | 一种抗中毒的水溶性过氧化物分解催化剂及其制备方法和应用 |
| KR102735774B1 (ko) * | 2019-12-05 | 2024-11-29 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 |
| US12077646B2 (en) | 2020-01-21 | 2024-09-03 | Quantum MicroMaterials, Inc. | Coating substrate by polymerization of amine compound and apparatus having polymer coated substrate |
| KR20210094491A (ko) * | 2020-01-21 | 2021-07-29 | 하이드로메이트 코팅스, 인크. | 비닐 아미노 비방향족고리 화합물로 표면개질된 기질 및 그의 표면개질 방법 |
| US20210240047A1 (en) * | 2020-02-05 | 2021-08-05 | Gentex Corporation | Electrochromic compounds |
| CN111477962B (zh) * | 2020-05-29 | 2021-07-20 | 珠海市赛纬电子材料股份有限公司 | 一种锂离子电池非水电解液及含该非水电解液的锂离子电池 |
| CN111883836A (zh) * | 2020-07-24 | 2020-11-03 | 香河昆仑化学制品有限公司 | 一种锂离子电池非水电解液和锂离子电池 |
| CN111883834B (zh) * | 2020-07-24 | 2022-12-13 | 香河昆仑新能源材料股份有限公司 | 一种非水锂离子电池电解液添加剂、包含其的电解液以及锂离子电池 |
| CN111934015B (zh) * | 2020-08-28 | 2022-08-19 | 珠海市赛纬电子材料股份有限公司 | 一种锂离子电池非水电解液及含该非水电解液的锂离子电池 |
| CN116783734A (zh) * | 2020-12-29 | 2023-09-19 | 川崎摩托株式会社 | 质子传导型二次电池用正极活性物质材料及具备该正极活性物质材料的质子传导型二次电池 |
| JP2024516719A (ja) | 2021-05-12 | 2024-04-16 | リトロニック バッテリーテクノロジー ゲーエムベーハー | ジェミナルジニトリル添加剤を含む一次アルカリ金属電池 |
| CN117337506A (zh) * | 2021-05-17 | 2024-01-02 | 中央硝子株式会社 | 非水系电解液和使用其的非水系电解液二次电池 |
| WO2023090665A1 (ko) * | 2021-11-16 | 2023-05-25 | 주식회사 엘지에너지솔루션 | 신규한 비수계 전해액용 첨가제 및 이를 포함하는 리튬 이차전지 |
| CN115286587B (zh) * | 2022-07-06 | 2024-02-23 | 珠海中科先进技术研究院有限公司 | 一种高离域的碱金属化合物及其制备方法和应用 |
| CN120129968A (zh) | 2022-11-29 | 2025-06-10 | 利特罗尼克电池技术有限公司 | 具有氰基环烷烃添加剂的一次碱金属单元电池 |
| WO2025019663A2 (en) * | 2023-07-18 | 2025-01-23 | Massachusetts Institute Of Technology | Fluorinated sulfonamide-based electrolytes for non-lithium batteries thereof |
| WO2025057907A1 (ja) * | 2023-09-12 | 2025-03-20 | 住友化学株式会社 | 電解質組成物、及び電池 |
| WO2025057818A1 (ja) * | 2023-09-12 | 2025-03-20 | 住友化学株式会社 | 電解質組成物及び電池 |
| WO2025094896A1 (ja) * | 2023-10-31 | 2025-05-08 | 住友化学株式会社 | 電池 |
| FR3155529A1 (fr) | 2023-11-16 | 2025-05-23 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procédé de synthèse de sels comportant un anion organique utiles comme matériaux conducteurs ioniques |
| WO2025197682A1 (ja) * | 2024-03-18 | 2025-09-25 | 住友化学株式会社 | 電池 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3054800A (en) * | 1949-09-17 | 1962-09-18 | Harry P Burchfield | 3, 5-dinitro-1, 2, 4-triazoles and process for preparing same |
| CH484920A (de) * | 1966-05-13 | 1970-03-13 | Sandoz Ag | Verfahren zur Herstellung von Aminsalzen von 1,2,4-Triazolen |
| WO1988003331A1 (fr) * | 1986-10-30 | 1988-05-05 | Centre National De La Recherche Scientifique (Cnrs | Nouveau materiau a conduction ionique constitue par un sel en solution dans un electrolyte liquide |
| WO1992002966A1 (en) * | 1990-08-01 | 1992-02-20 | Covalent Associates Incorporated | Methide salts, formulations, electrolytes and batteries formed therefrom |
| US5538812A (en) * | 1994-02-04 | 1996-07-23 | Moltech Corporation | Electrolyte materials containing highly dissociated metal ion salts |
Family Cites Families (63)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2959475A (en) * | 1957-02-19 | 1960-11-08 | Du Pont | Method for the control of weeds |
| FR2097745A5 (en) * | 1970-04-13 | 1972-03-03 | Minnesota Mining & Mfg | Fluoroalkyl sulphonamido-diaryl-(thio)-ethers and derivs - herbicides antiinflamma |
| NL174644C (nl) * | 1970-04-13 | 1984-07-16 | Minnesota Mining & Mfg | Werkwijze ter bereiding van een herbicide verbinding; tevens werkwijze voor de bereiding van een preparaat met herbicide werking. |
| BE791595A (fr) | 1971-11-18 | 1973-05-17 | Omf California Inc | Electrolyte pour accumulateur |
| JPS5148516B2 (enExample) * | 1973-02-07 | 1976-12-21 | ||
| DD118433A1 (enExample) * | 1975-03-17 | 1976-03-05 | ||
| US4226873A (en) * | 1977-02-23 | 1980-10-07 | Gulf Oil Corporation | 5-Substituted-3-fluorosulfonyl-4H-1,2,4-triazoles and use as insecticides and miticides |
| JPS53117094A (en) * | 1977-03-23 | 1978-10-13 | Mitsubishi Gas Chem Co Inc | Preparation of composition and high polymer |
| US4105525A (en) * | 1978-01-23 | 1978-08-08 | Orion Research Incorporated | Internal standard electrolyte for ammonia sensor |
| EP0010396A1 (en) * | 1978-10-24 | 1980-04-30 | Fbc Limited | Fungicidal and herbicidal compositions, certain cyanomethane and cyanoethene derivatives being active agents thereof, the preparation of these derivatives and methods for combating fungi and weeds |
| FR2527602A1 (fr) * | 1982-06-01 | 1983-12-02 | Anvar | Bis perhalogenoacyl- ou sulfonyl- imidures de metaux alcalins, leurs solutions solides avec des matieres plastiques et leur application a la constitution d'elements conducteurs pour des generateurs electrochimiques |
| DE3230923A1 (de) * | 1982-08-20 | 1984-02-23 | Basf Ag, 6700 Ludwigshafen | Thiadiazinone, verfahren zu ihrer herstellung und diese enthaltende fungizide |
| JPS6020950A (ja) * | 1983-07-13 | 1985-02-02 | Nippon Zeon Co Ltd | 硬質用塩化ビニル樹脂組成物 |
| US5232940A (en) * | 1985-12-20 | 1993-08-03 | Hatton Leslie R | Derivatives of N-phenylpyrazoles |
| US4664761A (en) * | 1985-12-27 | 1987-05-12 | Uop Inc. | Electrochemical method and apparatus using proton-conducting polymers |
| US4664757A (en) * | 1985-12-27 | 1987-05-12 | Uop Inc. | Method and apparatus for gas detection using proton-conducting polymers |
| JPH0654686B2 (ja) * | 1986-01-14 | 1994-07-20 | 三洋電機株式会社 | 二次電池 |
| JPS62219908A (ja) * | 1986-03-20 | 1987-09-28 | 日本ケミコン株式会社 | 電解コンデンサ用電解液 |
| US4714569A (en) * | 1986-07-22 | 1987-12-22 | Toska Co., Ltd. | Process for preparing conductive coating composition |
| FR2606216A1 (fr) * | 1986-10-30 | 1988-05-06 | Elf Aquitaine | Materiau a conduction ionique |
| US4910113A (en) * | 1986-11-10 | 1990-03-20 | Nippon Shokubai Kagaku Kogyo Kabushiki Kaisha | Colored microfine globular particles, method for production thereof and uses thereof |
| US4966954A (en) * | 1987-03-04 | 1990-10-30 | Rensselaer Polytechnic Institute | Production and processing of thermally stable polyenaminonitriles and polyaminoquinolines therefrom |
| US4882244A (en) * | 1987-04-02 | 1989-11-21 | The University Of Michigan-Ann Arbor | Battery containing a metal anode and an electrolyte providing high rates of metal electrolysis at near ambient temperatures |
| US4835074A (en) * | 1987-09-25 | 1989-05-30 | The Electrosynthesis Company, Inc. | Modified carbons and electrochemical cells containing the same |
| JPH01152165A (ja) * | 1987-12-09 | 1989-06-14 | Nippon Shokubai Kagaku Kogyo Co Ltd | 表面処理されたカーボンブラツクの製造方法 |
| JP2724377B2 (ja) * | 1988-05-12 | 1998-03-09 | 汪芳 白井 | イオン伝導性組成物 |
| FR2645533B1 (fr) | 1989-04-06 | 1991-07-12 | Centre Nat Rech Scient | Procede de synthese de sulfonylimidures |
| NL9001075A (enExample) * | 1990-05-04 | 1991-12-02 | Duphar Int Res | |
| IT1246357B (it) * | 1990-07-12 | 1994-11-17 | Ausimont Spa | Processo per la preparazione di composti perfluoroalcossisolfonici |
| US5281261A (en) * | 1990-08-31 | 1994-01-25 | Xerox Corporation | Ink compositions containing modified pigment particles |
| FR2673769B1 (fr) * | 1991-03-07 | 1993-06-18 | Centre Nat Rech Scient | Materiaux polymeriques a conduction ionique. |
| EP0532408A1 (fr) * | 1991-09-13 | 1993-03-17 | Saint-Gobain Vitrage International | Polymère conducteur protonique, application en tant qu'électrolyte dans des dispositifs électrochimiques |
| FR2683524A1 (fr) * | 1991-11-08 | 1993-05-14 | Centre Nat Rech Scient | Derives des bis(perfluorosulfonyl)methanes, leur procede de preparation, et leurs utilisations . |
| FR2687671B1 (fr) * | 1992-02-21 | 1994-05-20 | Centre Nal Recherc Scientifique | Monomeres derives de sultones perhalogenees et polymeres obtenus a partir de ces monomeres. |
| JP2845389B2 (ja) * | 1992-03-10 | 1999-01-13 | 大日精化工業株式会社 | 熱転写記録用着色組成物 |
| DE4217366A1 (de) | 1992-05-26 | 1993-12-02 | Bayer Ag | Imide und deren Salze sowie deren Verwendung |
| US5354784A (en) * | 1992-08-10 | 1994-10-11 | Arakawa Kagaku Kogyo Kabushiki Kaisha | Cyclopentadienyliron complex salt, process for preparing the same and photopolymerizable composition containing the same |
| US5518841A (en) * | 1993-02-12 | 1996-05-21 | Matsushita Electric Industrial Co., Ltd. | Composite cathode |
| WO1995026056A1 (fr) * | 1994-03-21 | 1995-09-28 | Centre National De La Recherche Scientifique | Materiau a conduction ionique presentant de bonnes proprietes anti-corrosion |
| JP3499916B2 (ja) | 1994-05-30 | 2004-02-23 | 三洋電機株式会社 | 高分子固体電解質電池とその製造方法 |
| FR2723098B1 (fr) * | 1994-07-28 | 1996-10-04 | Centre Nat Rech Scient | Materiau macromoleculaire comportant des substituants ioniques et son utilisation dans les systemes electrochimiques |
| JP3117369B2 (ja) * | 1994-09-12 | 2000-12-11 | セントラル硝子株式会社 | スルホンイミドの製造方法 |
| US5525436A (en) * | 1994-11-01 | 1996-06-11 | Case Western Reserve University | Proton conducting polymers used as membranes |
| WO1996024929A1 (en) | 1995-02-08 | 1996-08-15 | Minnesota Mining And Manufacturing Company | Reduced solvent antistatic hard coat |
| US5609990A (en) | 1995-02-08 | 1997-03-11 | Imation Corp. | Optical recording disk having a sealcoat layer |
| US5514493A (en) * | 1995-03-06 | 1996-05-07 | Minnesota Mining And Manufacturing Company | Perfluoroalkylsulfonates, sulfonimides, and sulfonyl methides, and electrolytes containing them |
| US5874616A (en) | 1995-03-06 | 1999-02-23 | Minnesota Mining And Manufacturing Company | Preparation of bis (fluoroalkylenesulfonyl) imides and (fluoroalkysulfony) (fluorosulfonyl) imides |
| US5748439A (en) * | 1995-06-06 | 1998-05-05 | Telectronics Pacing Systems, Inc. | Capacitors having high strength electrolytic capacitor separators |
| JPH0912920A (ja) * | 1995-06-28 | 1997-01-14 | Nippon Oil Co Ltd | 炭素材料の製造方法 |
| US5831108A (en) * | 1995-08-03 | 1998-11-03 | California Institute Of Technology | High metathesis activity ruthenium and osmium metal carbene complexes |
| US5691081A (en) | 1995-09-21 | 1997-11-25 | Minnesota Mining And Manufacturing Company | Battery containing bis(perfluoroalkylsulfonyl)imide and cyclic perfluoroalkylene disulfonylimide salts |
| US5795496A (en) * | 1995-11-22 | 1998-08-18 | California Institute Of Technology | Polymer material for electrolytic membranes in fuel cells |
| FR2742437B1 (fr) * | 1995-12-14 | 1998-01-09 | Electricite De France | Bis(phenylsulfonyl)imidures, leur procede de preparation et materiaux a conduction ionique les comprenant |
| US5962546A (en) | 1996-03-26 | 1999-10-05 | 3M Innovative Properties Company | Cationically polymerizable compositions capable of being coated by electrostatic assistance |
| WO1997035929A1 (en) | 1996-03-26 | 1997-10-02 | Minnesota Mining And Manufacturing Company | Cationically polymerizable compositions capable of being applied by electrostatic assistance |
| US5817376A (en) | 1996-03-26 | 1998-10-06 | Minnesota Mining And Manufacturing Company | Free-radically polymerizable compositions capable of being coated by electrostatic assistance |
| US5688613A (en) * | 1996-04-08 | 1997-11-18 | Motorola, Inc. | Electrochemical cell having a polymer electrolyte |
| DE19632285A1 (de) * | 1996-08-09 | 1998-02-19 | Hoechst Ag | Protonenleiter mit einer Temperaturbeständigkeit in einem weiten Bereich und guten Protonenleitfähigkeiten |
| EP0850932B1 (fr) * | 1996-12-30 | 2009-07-22 | Centre National De La Recherche Scientifique (Cnrs) | Sels d'anions hétérocycliques, et leurs utilisations comme matéreiaux à conductin ionique |
| US6063522A (en) | 1998-03-24 | 2000-05-16 | 3M Innovative Properties Company | Electrolytes containing mixed fluorochemical/hydrocarbon imide and methide salts |
| US5874606A (en) | 1998-03-31 | 1999-02-23 | Occidental Chemical Corporation | Process for making o-arylbenzonitriles |
| US6294289B1 (en) * | 1998-08-25 | 2001-09-25 | 3M Innovative Properties Company | Cyano-substituted methide and amide salts |
| US6350545B2 (en) | 1998-08-25 | 2002-02-26 | 3M Innovative Properties Company | Sulfonylimide compounds |
-
1997
- 1997-12-30 EP EP19970403190 patent/EP0850932B1/fr not_active Expired - Lifetime
- 1997-12-30 WO PCT/CA1997/001009 patent/WO1998029399A1/fr not_active Ceased
- 1997-12-30 CA CA2248246A patent/CA2248246C/fr not_active Expired - Lifetime
- 1997-12-30 CA CA2248242A patent/CA2248242C/fr not_active Expired - Lifetime
- 1997-12-30 EP EP19970403189 patent/EP0850921B1/fr not_active Expired - Lifetime
- 1997-12-30 CA CA2704986A patent/CA2704986C/fr not_active Expired - Lifetime
- 1997-12-30 DE DE69721748T patent/DE69721748T2/de not_active Expired - Lifetime
- 1997-12-30 CA CA2805188A patent/CA2805188C/fr not_active Expired - Lifetime
- 1997-12-30 US US09/101,810 patent/US6333425B1/en not_active Expired - Lifetime
- 1997-12-30 WO PCT/CA1997/001012 patent/WO1998029877A1/fr not_active Ceased
- 1997-12-30 JP JP52951398A patent/JP4070244B2/ja not_active Expired - Lifetime
- 1997-12-30 JP JP52951598A patent/JP2000508677A/ja active Pending
- 1997-12-30 CA CA002248304A patent/CA2248304C/fr not_active Expired - Lifetime
- 1997-12-30 JP JP52951898A patent/JP4823401B2/ja not_active Expired - Lifetime
- 1997-12-30 WO PCT/CA1997/001013 patent/WO1998029388A1/fr not_active Ceased
- 1997-12-30 EP EP20090166055 patent/EP2380882B1/fr not_active Expired - Lifetime
- 1997-12-30 CA CA2248244A patent/CA2248244C/fr not_active Expired - Lifetime
- 1997-12-30 US US09/125,799 patent/US6395367B1/en not_active Expired - Lifetime
- 1997-12-30 DE DE1997636994 patent/DE69736994T2/de not_active Expired - Lifetime
- 1997-12-30 JP JP52951698A patent/JP4683675B2/ja not_active Expired - Lifetime
- 1997-12-30 JP JP52951798A patent/JP4361137B2/ja not_active Expired - Lifetime
- 1997-12-30 WO PCT/CA1997/001011 patent/WO1998029396A1/fr not_active Ceased
- 1997-12-30 DE DE69715361T patent/DE69715361T2/de not_active Expired - Lifetime
- 1997-12-30 DE DE69715799T patent/DE69715799T2/de not_active Expired - Lifetime
- 1997-12-30 JP JP52951498A patent/JP4124487B2/ja not_active Expired - Lifetime
- 1997-12-30 EP EP03292436.7A patent/EP1391952A3/fr not_active Withdrawn
- 1997-12-30 EP EP19970403188 patent/EP0850933A1/fr not_active Withdrawn
- 1997-12-30 EP EP20010129670 patent/EP1201650B1/fr not_active Expired - Lifetime
- 1997-12-30 US US09/125,798 patent/US6228942B1/en not_active Expired - Lifetime
- 1997-12-30 WO PCT/CA1997/001008 patent/WO1998029358A2/fr not_active Ceased
- 1997-12-30 EP EP97951051A patent/EP0889863B1/fr not_active Expired - Lifetime
- 1997-12-30 WO PCT/CA1997/001010 patent/WO1998029389A1/fr not_active Ceased
- 1997-12-30 CA CA002244979A patent/CA2244979C/fr not_active Expired - Lifetime
- 1997-12-30 CA CA2683826A patent/CA2683826C/fr not_active Expired - Lifetime
- 1997-12-30 EP EP19970403187 patent/EP0850920B1/fr not_active Expired - Lifetime
- 1997-12-30 DE DE69739501T patent/DE69739501D1/de not_active Expired - Lifetime
- 1997-12-30 US US09/125,792 patent/US6120696A/en not_active Expired - Lifetime
- 1997-12-30 CA CA2248303A patent/CA2248303C/fr not_active Expired - Lifetime
- 1997-12-30 US US09/125,797 patent/US6319428B1/en not_active Expired - Lifetime
- 1997-12-30 EP EP97951052A patent/EP0890176B1/fr not_active Expired - Lifetime
- 1997-12-30 DE DE69705301T patent/DE69705301T2/de not_active Expired - Lifetime
- 1997-12-30 US US09/101,811 patent/US6171522B1/en not_active Expired - Lifetime
-
2000
- 2000-06-30 US US09/609,362 patent/US6365068B1/en not_active Expired - Lifetime
- 2000-08-09 US US09/638,793 patent/US6576159B1/en not_active Expired - Lifetime
-
2001
- 2001-04-06 US US09/826,941 patent/US6506517B2/en not_active Expired - Lifetime
- 2001-05-16 US US09/858,439 patent/US20020009650A1/en not_active Abandoned
-
2002
- 2002-03-27 US US10/107,742 patent/US6835495B2/en not_active Expired - Lifetime
- 2002-09-24 US US10/253,970 patent/US20030066988A1/en not_active Abandoned
- 2002-09-24 US US10/253,035 patent/US20030052310A1/en not_active Abandoned
-
2004
- 2004-02-27 US US10/789,453 patent/US20050074668A1/en not_active Abandoned
- 2004-08-25 US US10/926,283 patent/US7906235B2/en not_active Expired - Fee Related
-
2007
- 2007-07-25 JP JP2007193021A patent/JP2008007781A/ja active Pending
- 2007-10-05 US US11/867,898 patent/US20240253023A1/en not_active Abandoned
-
2008
- 2008-05-30 JP JP2008143090A patent/JP2009004374A/ja active Pending
-
2009
- 2009-01-21 JP JP2009010733A patent/JP4927108B2/ja not_active Expired - Lifetime
- 2009-05-18 JP JP2009120239A patent/JP5629061B2/ja not_active Expired - Lifetime
-
2010
- 2010-01-15 JP JP2010006864A patent/JP5209649B2/ja not_active Expired - Lifetime
-
2013
- 2013-02-22 JP JP2013033109A patent/JP2013173740A/ja active Pending
-
2014
- 2014-01-08 JP JP2014001687A patent/JP2014169271A/ja not_active Withdrawn
-
2015
- 2015-12-01 JP JP2015234934A patent/JP2016104739A/ja active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3054800A (en) * | 1949-09-17 | 1962-09-18 | Harry P Burchfield | 3, 5-dinitro-1, 2, 4-triazoles and process for preparing same |
| CH484920A (de) * | 1966-05-13 | 1970-03-13 | Sandoz Ag | Verfahren zur Herstellung von Aminsalzen von 1,2,4-Triazolen |
| WO1988003331A1 (fr) * | 1986-10-30 | 1988-05-05 | Centre National De La Recherche Scientifique (Cnrs | Nouveau materiau a conduction ionique constitue par un sel en solution dans un electrolyte liquide |
| WO1992002966A1 (en) * | 1990-08-01 | 1992-02-20 | Covalent Associates Incorporated | Methide salts, formulations, electrolytes and batteries formed therefrom |
| US5538812A (en) * | 1994-02-04 | 1996-07-23 | Moltech Corporation | Electrolyte materials containing highly dissociated metal ion salts |
Non-Patent Citations (12)
| Title |
|---|
| CHEM. HETEROCYCL. COMPD. (ENGL. TRANSL.), vol. 22, no. 7, 1986, pages 745 - 8 * |
| D.W. WILEY ET AL.: "Hydrogen cyanide chemistry. 6. Cyanogen condensation with cyanide, C7N7-", JOURNAL OF ORGANIC CHEMISTRY, vol. 41, no. 11, 28 May 1976 (1976-05-28), WASHINGTON, DC, US, pages 1889 - 95, XP002061203 * |
| DATABASE CROSSFIRE Beilstein Informationssysteme GmbH, Frankfurt DE; XP002061205 * |
| G. PAPROTT ET AL.: "Reaktionen des 1,2,3,4,5-Pentafluorcyclopentadiens", CHEMISCHE BERICHTE, vol. 121, no. 4, April 1988 (1988-04-01), WEINHEIM, DE, pages 727 - 33, XP002061195 * |
| K. HARTKE ET AL.: "Hochsubstituierte Cyclopentadiene mit Arylthio- und Arylsulfonyl-Gruppen", LIEBIGS ANNALEN DER CHEMIE, no. 3, March 1991 (1991-03-01), WEINHEIM, DE, pages 243 - 51, XP002061201 * |
| K. HARTKE ET AL.: "Hochsubstituierte Cyclopentadiene mit Methylthio- und Methylsulfonyl-Gruppen", LIEBIGS ANNALEN DER CHEMIE, no. 4, April 1992 (1992-04-01), WEINHEIM, DE, pages 413 - 4, XP002061202 * |
| M.M. ABDUL-GHANI ET AL.: "Unsaturated nitrogen compounds containing fluorine. Part 16. The synthesis of 3,5-bis(trifluoromethyl)-1H-1,2,4-triazole and some 4-substituted derivatives from 2,5-dichloro-1,1,1,6,6,6-hexafluoro- 3,4-diazahexa-2,4-diene", JOURNAL OF FLUORINE CHEMISTRY, vol. 72, no. 1, May 1995 (1995-05-01), LAUSANNE, CH, pages 95 - 106, XP002061200 * |
| M.M. ABDUL-GHANI ET AL.: "Unsaturated nitrogen compounds containing fluorine. Part 17. The reactions of 3,5-bis(trifluoromethyl)-1H-1,2,4-triazole with alkynes, alkenes and diazomethane, and of sodium 3,5-bis(trifluoromethyl)-1,2,4-triazolide with halogen compounds", JOURNAL OF FLUORINE CHEMISTRY, vol. 72, no. 1, May 1995 (1995-05-01), LAUSANNE, CH, pages 135 - 45, XP002061199 * |
| O.W. WEBSTER: "Diazotetracyanocyclopentadiene", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 88, no. 17, 5 September 1966 (1966-09-05), WASHINGTON, DC, US, pages 4055 - 60, XP002061198 * |
| R.D. CHAMBERS ET AL.: "A direct route to fluorinated cyclopentadienyl anions", JOURNAL OF THE CHEMICAL SOCIETY, CHEMICAL COMMUNICATIONS, no. 16, 15 August 1990 (1990-08-15), LONDON, GB, pages 1128 - 9, XP002061197 * |
| R.D. CHAMBERS ET AL.: "Direct synthesis of pentakis(trifluoromethyl)cyclopenta- dienide salts and related dienes", JOURNAL OF THE CHEMICAL SOCIETY, CHEMICAL COMMUNICATIONS, no. 8, 21 April 1995 (1995-04-21), LONDON, GB, pages 841 - 2, XP002061196 * |
| W.J. MIDDLETON ET AL.: "Novel synthesis of a dihydrotetrazapentalene from trifluoroacetonitrile and sodium cyanide", JOURNAL OF ORGANIC CHEMISTRY, vol. 35, no. 11, November 1970 (1970-11-01), WASHINGTON, DC, US, pages 3985 - 7, XP002061204 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20200056869A (ko) * | 2018-11-15 | 2020-05-25 | 삼성전자주식회사 | 헤테로고리 방향족 구조의 음이온을 포함하는 금속염 및 그 제조방법, 그리고 상기 금속염을 포함하는 전해질 및 전기화학소자 |
| EP3657590A1 (en) * | 2018-11-15 | 2020-05-27 | Samsung Electronics Co., Ltd. | Metallic salt containing anion having heterocyclic aromatic structure, method of preparing the same, as well as electrolyte and electrochemical device each including the metallic salt |
| US11643398B2 (en) | 2018-11-15 | 2023-05-09 | Samsung Electronics Co., Ltd. | Metallic salt containing anion having heterocyclic aromatic structure, method of preparing the metallic salt, and electrolyte and electrochemical device each including the metallic salt |
| KR102650658B1 (ko) * | 2018-11-15 | 2024-03-25 | 삼성전자주식회사 | 헤테로고리 방향족 구조의 음이온을 포함하는 금속염 및 그 제조방법, 그리고 상기 금속염을 포함하는 전해질 및 전기화학소자 |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2248246C (fr) | Sels d'anions pentacycliques ou derives de tetrazapentalene, et leurs utilisations comme materiaux a conduction ionique | |
| EP0968181B1 (fr) | Sels de sulfones perfluores, et leurs utilisations comme materiaux a conduction ionique | |
| EP1388546A2 (fr) | Utilisation des composés ioniques ayant une charge anionique délocalisée comme composants de catalyseur | |
| WO2007068822A2 (fr) | Sels de sulfonyl-1, 2, 4-triazole |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
| ENP | Entry into the national phase |
Ref document number: 2248246 Country of ref document: CA Kind code of ref document: A Ref document number: 2248246 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 09125799 Country of ref document: US |