TW201834081A - 半導體裝置及其製造方法 - Google Patents

半導體裝置及其製造方法 Download PDF

Info

Publication number
TW201834081A
TW201834081A TW107119023A TW107119023A TW201834081A TW 201834081 A TW201834081 A TW 201834081A TW 107119023 A TW107119023 A TW 107119023A TW 107119023 A TW107119023 A TW 107119023A TW 201834081 A TW201834081 A TW 201834081A
Authority
TW
Taiwan
Prior art keywords
oxide semiconductor
semiconductor layer
layer
crystal oxide
thin film
Prior art date
Application number
TW107119023A
Other languages
English (en)
Other versions
TWI659474B (zh
Inventor
秋元健吾
佐佐木俊成
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW201834081A publication Critical patent/TW201834081A/zh
Application granted granted Critical
Publication of TWI659474B publication Critical patent/TWI659474B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Shift Register Type Memory (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本發明提供一種半導體裝置及其製造方法。本發明的一個目的在於改善使用氧化物半導體的薄膜電晶體的場效應遷移率。另一個目的在於即使在具有改善了場效應遷移率的薄膜電晶體中也能夠抑制在截止電流上的增加。在使用氧化物半導體層的薄膜電晶體中,藉由將具有比氧化物半導體層更高導電率和更小厚度的半導體層形成於氧化物半導體層和閘極絕緣層之間,可以改善薄膜電晶體的場效應遷移率,並且可以抑制截止電流上的增加。

Description

半導體裝置及其製造方法
本發明係有關使用氧化物半導體的半導體裝置、使用所述半導體裝置的顯示裝置、及其製造方法。
近些年來,以液晶顯示器為代表的液晶顯示裝置逐漸普及。作為液晶顯示器,經常使用配置有像素的主動矩陣液晶顯示裝置,每個像素都包括薄膜電晶體(TFT)。在包含於主動矩陣液晶顯示裝置中的薄膜電晶體中,非晶矽或多晶矽被用作為主動層。雖然使用非晶矽的薄膜電晶體具有低場效應遷移率,但是它易於被形成於大尺寸基板諸如大的玻璃基板的上方。另一方面,雖然使用多晶矽的薄膜電晶體具有高場效應遷移率,但是使用多晶矽在大尺寸基板諸如大的玻璃基板的上方形成薄膜電晶體要耗費大量時間,這是因為需要晶化過程,諸如鐳射退火。
鑒於上述問題,使用氧化物半導體而非上述矽材料製造薄膜電晶體並且應用於電子裝置或光學裝置的技術已受到關注。例如,專利文獻1和專利文獻2揭示了使用氧化 鋅或In-Ga-Zn-O類氧化物半導體作為氧化物半導體薄膜來製造薄膜電晶體並且將此類電晶體用作為影像顯示裝置的切換元件等的技術。
[引用文獻列表] [專利文獻]
[專利文獻1]日本特開2007-123861
[專利文獻2]日本特開2007-96055
在通道形成區中使用氧化物半導體的薄膜電晶體的場效應遷移率大約為使用非晶矽的薄膜電晶體的場效應遷移率的10到100倍。氧化物半導體膜可以在300℃或更低溫度下藉由濺射法等方法形成。其製造程序比使用多晶矽的薄膜電晶體更容易。因而,即使在使用大尺寸基板的情況中,顯示裝置的像素部分和週邊驅動電路也可以被形成於相同基板之上。
在主動矩陣液晶顯示裝置中,因為在短暫的閘極切換期間中電壓被施加於液晶層並且電被儲存於儲存電容器中,所以需要大驅動電流。特別地,在具有大螢幕的液晶顯示裝置或者高清晰度液晶顯示裝置中,需要大驅動電流。因此,用作為切換元件的薄膜電晶體較佳具有高場效應遷移率。
然而,使用氧化物半導體的薄膜電晶體的場效應遷移率低於使用多晶矽的薄膜電晶體,這種使用多晶矽的薄膜 電晶體通常被用於液晶顯示裝置的驅動電路。
本發明的實施例的目的是改善使用氧化物半導體的薄膜電晶體的場效應遷移率。本發明的實施例的另一個目的在於抑制具有改善了的場效應遷移率的薄膜電晶體在截止電流上的增加。本發明的實施例的又一個目的在於提供包括使用氧化物半導體的薄膜電晶體的顯示裝置。
根據本發明的實施例,在薄膜電晶體的形成中,使用氧化物半導體層,並在氧化物半導體層和閘極絕緣層之間形成具有比氧化物半導體層更高的導電率和更小的厚度的半導體層。
本發明的一個實施例是一種半導體裝置,包括:閘極電極層;位於閘極電極層上方的閘極絕緣層;位於閘極絕緣層上方的半導體層;位於半導體層上方的氧化物半導體層;和位於氧化物半導體層上方的源極電極層和汲極電極層,其中氧化物半導體層為包含銦、鎵、和鋅的氧化物半導體層;半導體層的厚度小於氧化物半導體層的厚度;半導體層的導電率高於氧化物半導體層的導電率;並且氧化物半導體層與源極電極層和汲極電極層電氣連接。
本發明的另一個實施例是一種半導體裝置,包括:閘極電極層;位於閘極電極層上方的閘極絕緣層;位於閘極絕緣層上方的半導體層;位於半導體層上方的氧化物半導體層;位於氧化物半導體層上方的具有n型導電性的緩衝 層;和位於緩衝層上方的源極電極層和汲極電極層,其中氧化物半導體層和緩衝層為氧化物半導體層,其每個都包含銦、鎵、和鋅;緩衝層的載子濃度高於氧化物半導體層的載子濃度;半導體層的厚度小於氧化物半導體層的厚度;半導體層的導電率高於氧化物半導體層的導電率;緩衝層的導電率高於半導體層的導電率;並且氧化物半導體層與源極電極層和汲極電極層經由緩衝層電連接。
注意,半導體層較佳為包含銦、鎵、和鋅的氧化物半導體層。半導體層的導電率較佳高於1.0×10-3S/cm。氧化物半導體層較佳具有位於源極電極層和汲極電極層之間並且厚度小於與源極電極層和汲極電極層重疊的區域的厚度的區域。緩衝層的載子濃度較佳為1×1018/cm3或更高,而氧化物半導體層的載子濃度較佳低於1×1017/cm3
本發明的另一個實施例是一種用以製造半導體裝置的方法,包括以下步驟:在基板上方形成閘極電極層;在閘極電極層上方形成閘極絕緣層;在閘極絕緣層上方藉由濺射法形成包含銦、鎵、和鋅的第一氧化物半導體膜;藉由濺射法在第一氧化物半導體膜上方形成包含銦、鎵、和鋅的第二氧化物半導體膜;蝕刻第一氧化物半導體膜和第二氧化物半導體膜以形成半導體層和島狀的第二氧化物半導體膜;在半導體層和島狀的第二氧化物半導體膜上方形成導電層;以及蝕刻島狀的第二氧化物半導體膜和導電層以形成氧化物半導體層以及源極電極層和汲極電極層,其中,使用於形成第一氧化物半導體膜的膜形成氣體中氧氣 流量的比例低於用以形成第二氧化物半導體膜的膜形成氣體中氧氣流量的比例。
注意,用於形成第一氧化物半導體膜的膜形成氣體中氧氣流量的比例較佳低於10體積%,而用於形成第二氧化物半導體膜的膜形成氣體中氧氣流量的比例較佳為10體積%或更高。另外,較佳在氬氣氛圍中形成第一氧化物半導體膜,而較佳在氬氣和氧氣的氛圍中形成第二氧化物半導體膜。此外,較佳地,在氧化物半導體層中,在源極電極層和汲極電極層之間配置厚度小於與源極電極層和汲極電極層重疊的區域的厚度的區域。
作為本說明書中所用的氧化物半導體,形成包括組成化學式用InMO3(ZnO)m(m>0)表示的材料的薄膜,並製造包括所述薄膜的薄膜電晶體。注意,M表示選自鎵(Ga)、鐵(Fe)、鎳(Ni)、錳(Mn)、和鈷(Co)中的一種或多種金屬元素。除了只包括Ga作為M的情況外,還有作為M包含Ga和除Ga外的上述金屬元素的情況,例如,Ga和Ni或Ga和Fe。另外,在氧化物半導體中,有些情況下,除了所包含的作為M的元素外,作為雜質元素,還包含諸如Fe或Ni的過渡金屬元素或者過渡金屬元素的氧化物。在本說明書中,這種薄膜也被稱為“In-Ga-Zn-O類非單晶膜”。
利用X光繞射(XRD)在In-Ga-Zn-O類非單晶膜中觀察到非晶結構。注意,在利用濺射法形成膜之後,在200℃到500℃下、較佳在300℃到400℃下,對所檢驗的 樣品的In-Ga-Zn-O類非單晶膜進行10分鐘到100分鐘的熱處理。另外,可以製造具有諸如在±20V閘極電壓下大於或等於109的通/斷比和大於或等於10的遷移率的電特性的薄膜電晶體。
注意,本說明書中的序數諸如“第一”和“第二”是為了方便而使用,並不代表步驟順序和層的層疊順序。另外,本說明書中的序數不代表限定本發明的特定名稱。
注意,本說明書中的半導體裝置表示可以藉由使用半導體特性來操作的所有裝置,電子光學裝置、半導體電路、和電子裝置都包括在所述半導體裝置中。
根據本發明的實施例,在使用氧化物半導體層的薄膜電晶體中,在氧化物半導體層和閘極絕緣層之間形成比氧化物半導體層具有更高導電率和更小厚度的半導體層,由此可以改善薄膜電晶體的場效應遷移率。另外,即使在具有改善了的場效應遷移率的薄膜電晶體中也可以抑制截止電流上的增加。
本發明的另一個實施例藉由將薄膜電晶體用以顯示裝置的像素部分和驅動電路部分,可以提供具有高的電特性和高的可靠性的顯示裝置。
100‧‧‧基板
101‧‧‧閘極電極層
102‧‧‧閘極絕緣層
103‧‧‧氧化物半導體層
105a‧‧‧源極電極層
105b‧‧‧汲極電極層
106‧‧‧半導體層
112a‧‧‧第一導電層
113a‧‧‧第二導電層
114a‧‧‧第三導電層
112b‧‧‧第一導電層
113b‧‧‧第二導電層
114b‧‧‧第三導電層
108‧‧‧電容器佈線
121‧‧‧第一端子
111‧‧‧氧化物半導體膜
112‧‧‧第一導電層
113‧‧‧第二導電層
114‧‧‧第三導電層
120‧‧‧連接電極
122‧‧‧第二端子
125‧‧‧接觸孔
127‧‧‧接觸孔
126‧‧‧接觸孔
128‧‧‧透明導電層
129‧‧‧透明導電層
131‧‧‧抗蝕劑遮罩
170‧‧‧薄膜電晶體
110‧‧‧像素電極層
154‧‧‧保護絕緣層
155‧‧‧透明導電層
153‧‧‧連接端子
151‧‧‧第一端子
107‧‧‧保護絕緣層
152‧‧‧閘極絕緣層
156‧‧‧電極
150‧‧‧第二端子
301a‧‧‧緩衝層
301b‧‧‧緩衝層
5300‧‧‧基板
5301‧‧‧像素部分
5302‧‧‧掃描線驅動電路
5303‧‧‧信號線驅動電路
5601‧‧‧驅動IC
5602_1到5602_M‧‧‧開關組
5603a‧‧‧第一薄膜電晶體
5603b‧‧‧第二薄膜電晶體
5603c‧‧‧第三薄膜電晶體
5611‧‧‧第一佈線
5612‧‧‧第二佈線
5613‧‧‧第三佈線
5621_1到5621_M‧‧‧佈線
5803a,5803b,5803c‧‧‧時序
5701_1到5701_n‧‧‧正反器
5711‧‧‧第一佈線
5712‧‧‧第二佈線
5713‧‧‧第三佈線
5714‧‧‧第四佈線
5715‧‧‧第五佈線
5716‧‧‧第六佈線
5717_1,5717_2,5717_3‧‧‧第七佈線
5571‧‧‧第一薄膜電晶體
5572‧‧‧第二薄膜電晶體
5573‧‧‧第三薄膜電晶體
5574‧‧‧第四薄膜電晶體
5575‧‧‧第五薄膜電晶體
5576‧‧‧第六薄膜電晶體
5577‧‧‧第七薄膜電晶體
5578‧‧‧第八薄膜電晶體
5501‧‧‧第一佈線
5502‧‧‧第二佈線
5503‧‧‧第三佈線
5504‧‧‧第四佈線
5505‧‧‧第五佈線
5506‧‧‧第六佈線
5400‧‧‧基板
5401‧‧‧像素部分
5402‧‧‧第一掃描線驅動電路
5403‧‧‧信號線驅動電路
5404‧‧‧第二掃描線驅動電路
4001‧‧‧第一基板
4002‧‧‧像素部分
4003‧‧‧信號線驅動電路
4004‧‧‧掃描線驅動電路
4005‧‧‧密封劑
4006‧‧‧第二基板
4008‧‧‧液晶層
4010‧‧‧薄膜電晶體
4011‧‧‧薄膜電晶體
4013‧‧‧液晶元件
4020‧‧‧絕緣層
4021‧‧‧絕緣層
4030‧‧‧像素電極層
4031‧‧‧對置電極層
4032‧‧‧絕緣層
4033‧‧‧絕緣層
4035‧‧‧柱狀間隔件
4015‧‧‧連接端子電極
4018‧‧‧可撓性印刷電路(FPC)
4016‧‧‧端子電極
4019‧‧‧各向異性導電膜
2600‧‧‧TFT基板
2601‧‧‧對置基板
2602‧‧‧密封劑
2603‧‧‧像素部分
2604‧‧‧顯示元件
2605‧‧‧著色層
2606‧‧‧偏振片
2607‧‧‧偏振片
2608‧‧‧佈線電路部分
2609‧‧‧可撓性線路板
2610‧‧‧冷陰極管
2611‧‧‧反射板
2612‧‧‧電路基板
2613‧‧‧擴散板
580‧‧‧基板
581‧‧‧薄膜電晶體
583‧‧‧絕緣層
584‧‧‧絕緣層
585‧‧‧絕緣層
587‧‧‧第一電極層
588‧‧‧第二電極層
589‧‧‧球形顆粒
590a‧‧‧黑色區域
590b‧‧‧白色區域
594‧‧‧空腔
596‧‧‧基板
595‧‧‧填充物
6400‧‧‧基板
6401‧‧‧切換電晶體
6402‧‧‧驅動電晶體
6403‧‧‧電容器
6404‧‧‧發光元件
6405‧‧‧信號線
6406‧‧‧掃描線
6407‧‧‧電源線
6408‧‧‧共用電極
7001‧‧‧驅動TFT
7002‧‧‧發光元件
7003‧‧‧陰極
7004‧‧‧發光層
7005‧‧‧陽極
7011‧‧‧驅動TFT
7012‧‧‧發光元件
7013‧‧‧陰極
7014‧‧‧發光層
7015‧‧‧陽極
7016‧‧‧遮光膜
7017‧‧‧透光導電薄膜
7021‧‧‧驅動TFT
7022‧‧‧發光元件
7023‧‧‧陰極
7024‧‧‧發光層
7025‧‧‧陽極
7027‧‧‧透光導電薄膜
4501‧‧‧第一基板
4502‧‧‧像素部分
4503a,4503b‧‧‧信號線驅動電路
4504a,4504b‧‧‧掃描線驅動電路
4505‧‧‧密封劑
4506‧‧‧第二基板
4507‧‧‧填充物
4509‧‧‧薄膜電晶體
4510‧‧‧薄膜電晶體
4511‧‧‧發光元件
4512‧‧‧電致發光層
4513‧‧‧第二電極層
4517‧‧‧第一電極層
4520‧‧‧分隔壁
4515‧‧‧連接端子電極
4516‧‧‧端子電極
4518a,4518b‧‧‧可撓性印刷電路(FPC)
4519‧‧‧各向異性導電膜
2631‧‧‧海報
2632‧‧‧廣告
2700‧‧‧電子書閱讀器
2701‧‧‧殼體
2703‧‧‧殼體
2711‧‧‧鉸鏈
2705‧‧‧顯示部分
2707‧‧‧顯示部分
2721‧‧‧電源開關
2723‧‧‧操作鍵
2724‧‧‧揚聲器
9600‧‧‧電視機
9601‧‧‧殼體
9603‧‧‧顯示部分
9605‧‧‧機座
9607‧‧‧顯示部分
9609‧‧‧操作鍵
9610‧‧‧遙控器
9700‧‧‧數位相框
9701‧‧‧殼體
9703‧‧‧顯示部分
9881‧‧‧殼體
9882‧‧‧顯示部分
9883‧‧‧顯示部分
9884‧‧‧揚聲器部分
9885‧‧‧操作鍵
9886‧‧‧記錄媒體插入部分
9887‧‧‧連接端子
9888‧‧‧感測器
9889‧‧‧麥克風
9890‧‧‧LED燈
9891‧‧‧殼體
9893‧‧‧連結部分
9900‧‧‧拉霸機
9901‧‧‧殼體
9903‧‧‧顯示部分
1000‧‧‧移動式電話手機
1001‧‧‧殼體
1002‧‧‧顯示部分
1003‧‧‧操作按鈕
1004‧‧‧外部連接部分
1005‧‧‧揚聲器
1006‧‧‧麥克風
9400‧‧‧通信裝置
9401‧‧‧殼體
9402‧‧‧操作按鈕
9403‧‧‧外部輸入端子
9404‧‧‧麥克風
9405‧‧‧揚聲器
9406‧‧‧發光部分
9410‧‧‧顯示裝置
9411‧‧‧殼體
9412‧‧‧顯示部分
9413‧‧‧操作按鈕
圖1A和1B為依據本發明的實施例的半導體裝置的示意圖。
圖2A到2C為依據本發明的實施例的用以製造半導 體裝置的方法的示意圖。
圖3A到3C為依據本發明的實施例的用以製造半導體裝置的方法的示意圖。
圖4為依據本發明的實施例的用以製造半導體裝置的方法的示意圖。
圖5為依據本發明的實施例的用以製造半導體裝置的方法的示意圖。
圖6為依據本發明的實施例的用以製造半導體裝置的方法的示意圖。
圖7為依據本發明的實施例的用以製造半導體裝置的方法的示意圖。
圖8A-1到8B-2為依據本發明的實施例的半導體裝置的示意圖。
圖9為依據本發明的實施例的半導體裝置的示意圖。
圖10為依據本發明的實施例的半導體裝置的示意圖。
圖11A到11C為依據本發明的實施例的用以製造半導體裝置的方法的示意圖。
圖12為顯示氧化物半導體層的導電率的測量結果的圖。
圖13為依據本發明的實施例的半導體裝置的示意圖。
圖14A和14B分別為例舉半導體裝置的方塊圖。
圖15為例舉信號線驅動電路的結構的示意圖。
圖16為例舉信號線驅動電路的結構的時序圖。
圖17為例舉信號線驅動電路的結構的時序圖。
圖18為例舉移位暫存器的結構的示意圖。
圖19為例舉圖18所述的正反器的連接結構的示意圖。
圖20為依據本發明的實施例的半導體裝置的像素等效電路。
圖21A到21C分別為依據本發明實施例的半導體裝置的示意圖。
圖22A-1到22B為依據本發明的實施例的半導體裝置的示意圖。
圖23為依據本發明的實施例的半導體裝置的示意圖。
圖24A和24B為依據本發明的實施例的半導體裝置示意圖。
圖25A和25B分別為電子紙使用方式的示例。
圖26為電子書閱讀器的示例的外觀圖。
圖27A為電視裝置的示例的外觀圖,而圖27B為數位相框的示例的外觀圖。
圖28A和28B分別為遊戲機的示例的外觀圖。
圖29A和29B分別為手機的示例的示意圖。
下面結合附圖說明本發明的實施例和實例。然而,本 發明不限於下列說明;本領域技術人員易於理解的是,所述的方式和細節可以在不偏離本發明的精神和範圍的前提下進行各種改變。因此,本發明不應被理解成受到實施模式和實施例的下列說明的限制。注意,在用於解釋實施模式和實施例的所有附圖中,相同的部分或者具有相似功能的部分被相同的附圖標記標注,並且只說明一遍。
[實施例1]
本實施例中,結合圖1A和1B說明薄膜電晶體的結構。
本實施例的具有底閘極結構的薄膜電晶體如圖1A和1B所示。圖1A為剖面圖,而圖1B為俯視圖。圖1A為沿圖1B的A1-A2線截取的剖面圖。
在圖1A和1B所示的薄膜電晶體中,閘極電極層101配置於基板100上方;閘極絕緣層102配置於閘極電極層101上方;半導體層106配置於閘極絕緣層102上方;氧化物半導體層103配置於半導體層106上方;並且源極電極層和汲極電極層105a和105b配置於氧化物半導體層103上方。
閘極電極層101可以使用如下材料形成為具有單層結構或疊層結構:諸如鋁、銅、鉬、鈦、鉻、鉭、鎢、釹、或鈧的金屬材料;包含任意這些材料作為主要成分的合金材料;或者包含任意這些材料的氮化物。閘極電極層101可以較佳使用低電阻導電材料諸如鋁或銅來形成;然而, 低電阻導電材料具有耐熱性差和易於被腐蝕的缺點。因而,低電阻導電材料較佳與耐熱導電材料結合使用。作為耐熱導電材料,使用鉬、鈦、鉻、鉭、鎢、釹、或鈧等。
例如,作為閘極電極層101的疊層結構,較佳在鋁層上方層疊鉬層的雙層結構、在銅層上方層疊鉬層的雙層結構、在銅層上方層疊氮化鈦層或氮化鉭層上方的雙層結構、或者層疊了氮化鈦層和鉬層的雙層結構。替代地,較佳使用層疊了鎢層或氮化鎢層、鋁-矽合金層或鋁-鈦合金層、和氮化鈦層或鈦層的三層結構。
使用包含In、Ga、和Zn且包括組成化學式用InMO3(ZnO)m(m>0)表示的In-Ga-Zn-O類非單晶膜形成氧化物半導體層103。注意,M表示選自鎵(Ga)、鐵(Fe)、鎳(Ni)、錳(Mn)、和鈷(Co)中的一種或多種金屬元素。除了只包含Ga作為M的情況外,還有作為M包含Ga和除Ga外的上述其他金屬元素,例如,Ga和Ni或Ga和Fe。另外,在氧化物半導體中,有些情況下,除所含的作為M的元素外,作為雜質元素,還包含諸如Fe或Ni的過渡金屬元素或過渡金屬元素的氧化物。
氧化物半導體層103的厚度被設定為10nm到300nm,較佳為20nm到100nm。氧化物半導體層103具有在源極電極層和汲極電極層105a和105b之間且厚度小於與源極電極層和汲極電極層105a和105b重疊的區域的厚度的區域。
氧化物半導體層103的導電率較佳為1.0×10-3S/cm 或更低。另外,氧化物半導體層103的導電率較佳為1.0×10-11S/cm或更高。氧化物半導體層103的載子濃度範圍較佳低於1×1017/cm3(更佳地,1×1011/cm3或更高)。當氧化物半導體層103的載子濃度範圍超過上述範圍時,薄膜電晶體有成為常通(normally-on)的風險。
半導體層106的導電率高於氧化物半導體層103的導電率,而半導體層106的厚度小於氧化物半導體層103的厚度。半導體層106的導電率較佳高於1.0×10-3S/cm。半導體層106的厚度被設定為大於或等於1nm且小於或等於50nm,較佳地,大於或等於5nm且小於或等於10nm。此處,因為半導體層106的厚度小於氧化物半導體層103的厚度,所以當薄膜電晶體關斷時汲極極電流主要流經氧化物半導體層103的被蝕刻部分,因而,截止電流不會流經具有高導電率的半導體層106,由此抑制了截止電流上的增加。
在本實施例中,In-Ga-Zn-O類非單晶膜被用作為半導體層106。在In-Ga-Zn-O類非單晶膜被用作為半導體層106的情況中,In-Ga-Zn-O類非單晶膜中包括至少一種非晶成分,且在有些情況中,半導體層106的非晶結構中包括晶粒(奈米晶體)。半導體層106中的晶粒(奈米晶體)的每個的直徑都為1nm到10nm,通常約為2nm到4nm。然而,半導體層106不限於In-Ga-Zn-O類非單晶膜。可以使用不包括In-Ga-Zn-O類非單晶膜的半導體,諸如氧化物半導體、單晶半導體、多晶半導體、微晶半導 體、非晶半導體、或化合物半導體,只要它滿足上述條件即可。當In-Ga-Zn-O類非單晶膜被用作為半導體層106時,氧化物半導體層103和半導體層106可以被連續地形成;因此,可以改善製造薄膜電晶體的效率和生產率。
在In-Ga-Zn-O類非單晶膜被用作為半導體層106的情況中,使用於藉由濺射法形成半導體層106的整個膜形成氣體中氧氣流量的比例低於用以藉由濺射法形成氧化物半導體層103的整個膜形成氣體中氧氣流量的比例。因此,可以使如此形成的半導體層106的導電率高於如此形成的氧化物半導體層103的導電率。半導體層106較佳在整個膜形成氣體中氧氣流量的比例低於10體積%的條件下形成。氧化物半導體層103較佳在整個膜形成氣體中氧氣流量的比例為10體積%或更高的條件下形成。另外,半導體層106可以在不含氧氣的稀有氣體諸如氬氣的氛圍中形成。
藉由將半導體層106和氧化物半導體層103的疊層結構用於薄膜電晶體的主動層,當薄膜電晶體開啟時,汲極極電流主要流經具有高導電率的半導體層106,並且可以增加場效應遷移率。另外,當薄膜電晶體關斷時,汲極極電流主要流經氧化物半導體層103的被蝕刻部分,因而,可以防止截止電流流經具有高導電率的半導體層106,由此可以抑制截止電流上的增加。
源極或汲極電極層105a具有由第一導電層112a、第二導電層113a、和第三導電層114a組成的三層結構,而 源極電極或汲極電極層105b具有由第一導電層112b、第二導電層113b、和第三導電層114b組成的三層結構。第一導電層112a和112b、第二導電層113a和113b、以及第三導電層114a和114b中的每一個都可以使用以下材料來形成:金屬材料,諸如鋁、銅、鉬、鈦、鉻、鉭、鎢、釹、或鈧;包含任意這些材料作為主要成分的合金材料;或者包含任意這些材料的氮化物。第一導電層112a和112b、第二導電層113a和113b、以及第三導電層114a和114b中的每一個都可以較佳使用低電阻導電材料諸如鋁或銅來形成;然而,低電阻導電材料具有耐熱性低和易於被腐蝕的缺點。因而,低電阻導電材料較佳與耐熱導電材料結合使用。作為耐熱導電材料,使用鉬、鈦、鉻、鉭、鎢、釹、或鈧等。
例如,較佳地,使用作為耐熱導電材料的鈦來形成第一導電層112a和112b和第三導電層114a和114b,而使用具有低耐熱性的含釹的鋁合金來形成第二導電層113a和113b。藉由此類結構,利用了鋁的低電阻特性並可以減少小丘的產生。注意,在本實施例中,源極或汲極電極層105a被形成為具有由第一導電層112a、第二導電層113a、和第三導電層114a組成的三層結構,而源極或汲極電極層105b被形成為具有由第一導電層112b、第二導電層113b、和第三導電層114b組成的三層結構;然而,源極和汲極電極層105a和105b不限於此結構。因而,源極和汲極電極層105a和105b可以具有單層結構、雙層結 構、或者四層或更多層的疊層結構。
利用此類結構,在氧化物半導體層和閘極絕緣層之間形成具有比氧化物半導體層更高導電率和更小厚度的半導體層,因而,當薄膜電晶體開啟時可以改善薄膜電晶體的場效應遷移率。另外,即使在具有改善了的場效應遷移率的薄膜電晶體中也可以抑制截止電流上的增加。
注意,本實施例所述的結構可以適當地與其他實施例中的任意結構進行組合。
[實施例2]
在本實施例中,結合圖2A到2C、圖3A到3C、圖4、圖5、圖6、圖7、圖8A-1到8B-2、和圖9說明包括實施例1所述的薄膜電晶體的顯示裝置的製造過程。圖2A到2C和圖3A到3C為剖面圖,而圖4、圖5、圖6、和圖7為俯視圖。圖4、圖5、圖6、和圖7每一個中的A1-A2線和B1-B2線分別對應於圖2A到2C和圖3A到3C每一個剖面圖中的A1-A2線和B1-B2線。
首先,製備基板100。作為基板100,可以使用下列任意基板:利用熔融法(fusion method)或浮法(float method)由鋇硼矽酸鹽玻璃、鋁硼矽酸鹽玻璃、和鋁矽酸鹽玻璃等玻璃製成的非鹼性玻璃基板;陶瓷基板;以及具有足以承受本製造程序的製程溫度的耐熱性的塑膠基板等。替代地,只要在表面之上配置有絕緣膜,則也可以使用金屬基板諸如不銹鋼合金基板。基板100可以具有如下 尺寸:320mm×400mm、370mm×470mm、550mm×650mm、600mm×720mm、680mm×880mm、730mm×920mm、1000mm×1200mm、1100mm×1250mm、1150mm×1300mm、1500mm×1800mm、1900mm×2200mm、2160mm×2460mm、2400mm×2800mm、或2850mm×3050mm等。
另外,作為基底膜(base film)的絕緣膜可以被形成於基板100上方。基底膜可以被形成為具有藉由CVD法、或濺射法等方法由氧化矽膜、氮化矽膜、氧氮化矽膜、和氮氧化矽膜製成的單層結構或疊層結構。在使用基板100作為包含移動離子的基板諸如玻璃基板的情況中,含氮的膜諸如氮化矽膜或者氮氧化矽膜被用作為基底膜,由此可以防止移動離子進入氧化物半導體層或半導體層。
接下來,藉由濺射法或真空蒸鍍法在基板100的整個區域的上方形成用於形成包括閘極電極層101、電容器佈線108、和第一端子121的閘極佈線的導電膜。接下來,在基板100的整個區域的上方形成了導電膜後,執行第一微影步驟。形成抗蝕劑遮罩,並藉由蝕刻去除不需要的部分以形成佈線和電極(包括閘極電極層101、電容器佈線108、和第一端子121的閘極佈線)。此時,較佳執行蝕刻使得閘極電極層101的至少一個端部成錐形以防止連接斷開。此階段的剖面圖如圖2A所示。此階段的俯視圖對應於圖4。
可以使用以下材料將包括閘極電極層101、電容器佈 線108、和端子部分中的第一端子121的閘極佈線形成為具有單層結構或疊層結構:金屬材料,諸如鋁、銅、鉬、鈦、鉻、鉭、鎢、釹、或鈧;包含任意這些材料作為主要成分的合金材料;或者包含任意這些材料的氮化物。可以較佳使用低電阻導電材料諸如鋁或銅形成包括閘極電極層101、電容器佈線108、和端子部分中的第一端子121的閘極佈線;然而,低電阻導電材料具有耐熱性低和易於被腐蝕的缺點。因而,低電阻導電材料較佳與耐熱導電材料結合使用。作為耐熱導電材料,使用鉬、鈦、鉻、鉭、鎢、釹、或鈧等。
例如,作為閘極電極層101的疊層結構,較佳在鋁層上方層疊鉬層的雙層結構、在銅層上方層疊鉬層的雙層結構、在銅層上方層疊氮化鈦層或氮化鉭層上方的雙層結構、或者層疊了氮化鈦層和鉬層的雙層結構。替代地,較佳使用層疊了鎢層或氮化鎢層、鋁-矽合金層或鋁-鈦合金層、和氮化鈦層或鈦層的三層結構。
接下來,閘極絕緣層102被形成於閘極電極層101的整個區域的上方。閘極絕緣層102藉由CVD法、或濺射法等形成為50nm到250nm的厚度。
例如,藉由CVD法或濺射法使用厚度100nm的氧化矽膜形成閘極絕緣層102。不用說,閘極絕緣層102不限於此類氧化矽膜。可以使用其他的絕緣膜諸如氧氮化矽膜、氮氧化矽膜、氮化矽膜、氧化鋁膜、或氧化鉭膜將閘極絕緣層102形成為具有單層結構或疊層結構。
替代地,可以藉由使用有機矽烷氣體的CVD法由氧化矽層形成閘極絕緣層102。作為有機矽烷氣體,可以使用含矽的化合物諸如四乙氧基矽烷(TEOS)(化學式:Si(OC2H5)4)、四甲基矽烷(TMS)(化學式:Si(CH3)4)、四甲基環四矽氧烷(TMCTS)、八甲基環四矽氧烷(OMCTS)、六甲基二矽氮烷(HMDS)、三乙氧基矽烷(SiH(OC2H5)3)、或者三(二甲氨基)矽烷(SiH(N(CH3)2)3)。
另外,替代地,閘極絕緣層102可以使用鋁、釔、或鉿的氧化物、氮化物、氧氮化物、或者氮氧化物中的一種;或者包括至少兩種或更多種上述化合物的化合物。
注意,在本說明書中,氧氮化物是指包含的氧原子多於氮原子的物質,而氮氧化物是指包含的氮原子多於氧原子的物質。例如,“氧氮化矽膜”是指這樣的膜:其包含的氧原子多於氮原子,且當用RBS(盧瑟福背散射能譜分析法)和HFS(氫正向散射(hydrogen forward scattering)法)測量時,氧、氮、矽、和氫的濃度範圍分別為50原子%到70原子%、0.5原子%到15原子%、25原子%到35原子%、和0.1原子%到10原子%。此外,“氮氧化矽膜”是指這樣的膜:其包含的氮原子多於氧原子,且當用RBS和HFS測量時,氧、氮、矽、和氫的濃度範圍分別為5原子%到30原子%、20原子%到55原子%、25原子%到35原子%、和10原子%到30原子%。注意氮、氧、矽、和氫的百分比落在上述給定範圍之內,其中氧氮 化矽或氮氧化矽中所包含的原子總數被定義為100原子%。
注意,在用於形成氧化物半導體層103和半導體層106的氧化物半導體膜被形成之前,較佳執行藉由引入氬氣產生電漿的反向濺射,由此去除附著到閘極絕緣層102表面的灰塵。反向濺射是指這樣的方法,其中,在氬氣氛圍中使用RF電源對基板側施加電壓以對表面進行修改,而不向靶材側施加電壓。注意,替代氬氣氛圍,可以使用氮氣氛圍、或氦氣氛圍等。替代地,可以使用添加了氧、氫、或N2O等的氬氣氛圍。另外,替代地,可以使用添加了Cl2、或CF4等的氬氣氛圍。在反向濺射之後,第一氧化物半導體膜被形成而不被暴露於空氣,由此可以防止灰塵或濕氣附著到閘極絕緣層102和半導體層106之間的介面。
接下來,在閘極絕緣層102上方,藉由濺射法在稀有氣體諸如氬氣和氧氣的氛圍中形成用於形成半導體層106的第一氧化物半導體膜(本實施例中的第一In-Ga-Zn-O類非單晶膜)。注意,氧氣不是必須的。作為具體條件,使用直徑為8英寸的包含In、Ga、和Zn(In2O3:Ga2O3:ZnO=1:1:1)的氧化物半導體靶材,基板和靶材之間的距離被設定為170nm,Ar對O2的流量比為50對1(sccm),並且在0.4Pa的壓力下,用0.5kW的直流(DC)電源,在室溫下,藉由濺射法進行膜形成。另外,作為靶材,可以在直徑為8英寸的包含In2O3的盤上 放置粒料態(pellet state)的Ga2O3和ZnO。
儘管有意使用了In2O3:Ga2O3:ZnO=1:1:1的靶材,但是可以形成膜之後立即形成包含1nm到10nm大小的晶粒In-Ga-Zn-O類非單晶膜。注意,可以說,藉由適當調整靶材中的組成比、膜形成壓力(0.1Pa到2.0Pa)、功率(250W到3000W:8英寸)、溫度(室溫到100℃)、或反應濺射膜形成條件等,可以對晶粒是否存在或者晶粒的密度進行調整,並且可以在1nm到10nm的範圍內調整直徑尺寸。第一In-Ga-Zn-O類非單晶膜的厚度被設為1nm到50nm,較佳為5nm到10nm。不用說,當膜包括晶粒時,晶粒的尺寸不會超過膜厚度。另外,脈衝直流(DC)電源是較佳的,因為可以減少灰塵並且使厚度分佈均勻化。
藉由將In-Ga-Zn-O類非單晶膜用作為半導體層106,可以連續形成第一氧化物半導體膜和第二氧化物半導體薄。因此,可以改善製造顯示裝置的效率和生產率。注意,儘管本實施例中半導體層106使用In-Ga-Zn-O類非單晶膜形成,但是半導體層106不限於此;因而,不包括In-Ga-Zn-O類非單晶膜的半導體諸如氧化物半導體、單晶半導體、多晶半導體、微晶半導體、非晶半導體、或化合物半導體可以被用作為半導體層106。
接下來,在諸如氬氣的稀有氣體和氧氣的氛圍中藉由不被暴露於空氣的濺射法形成用於形成氧化物半導體層103的第二氧化物半導體膜(本實施例中的第二In-Ga-Zn- O類非單晶膜)。作為具體條件,使用直徑為8英寸的包含In、Ga、和Zn(In2O3:Ga2O3:ZnO=1:1:1)的氧化物半導體靶材,基板和靶材之間的距離被設定為170nm,Ar對O2的流量比為50對5(sccm),並且在0.4Pa的壓力下,用0.5kW的直流(DC)電源,在室溫下,藉由濺射法執行膜形成。另外,作為靶材,可以在直徑為8英寸的包含In2O3的盤上放置粒料態的Ga2O3和ZnO。注意,脈衝直流(DC)電源是較佳的,因為可以減少灰塵並且使厚度分佈均勻化。第二In-Ga-Zn-O類非單晶膜的厚度被設為10nm到300nm,較佳為20nm到100nm。
使用於藉由濺射法形成第一In-Ga-Zn-O類非單晶膜的整個膜形成氣體中氧氣流量的比例低於用以藉由濺射法形成第二In-Ga-Zn-O類非單晶膜的整個膜形成氣體中氧氣流量的比例。因此,可以使如此形成的第一In-Ga-Zn-O類非單晶膜的導電率高於如此形成的第二In-Ga-Zn-O類非單晶膜的導電率。作為用於第一In-Ga-Zn-O類非單晶膜的膜形成條件,整個膜形成氣體中的氧氣流量比例較佳低於10體積%。另外,作為用於第一In-Ga-Zn-O類非單晶膜的膜形成條件,整個膜形成氣體中的氧氣流量的比例較佳為10體積%或更高。另外,可以在不含氧氣的稀有氣體諸如氬氣的氛圍中形成第一In-Ga-Zn-O類非單晶膜。
用於形成第二In-Ga-Zn-O類非單晶膜的處理室(chamber)可以與執行反應濺射的處理室相同或不同。
濺射法的示例包括:使用高頻電源作為濺射電源的RF濺射法、DC濺射法、和施加脈衝形式的偏壓的脈衝DC濺射法。RF濺射法主要用於形成絕緣膜的情況,而DC濺射法主要用於形成金屬膜的情況。
另外,還有多靶材濺射裝置(multi-source sputtering apparatus),其中可以設置由不同材料製成的多個靶材。利用多靶材濺射裝置,可以在同一個處理室中層疊不同材料的膜,或者可以藉由放電在同一個處理室中同時形成多種材料的膜。
另外,還有在處理室內配置有磁體系統並被用於磁控管濺射法的濺射裝置;或者用於藉由使用微波而不使用輝光放電來產生電漿的ECR濺射法的濺射裝置。
另外,作為利用濺射法的膜形成方法,還有在膜形成期間靶材物質和濺射氣體成分相互化學反應形成化合物的膜的反應濺射法,和在膜形成期間還在基板基板上施加電壓的偏壓濺射法。
接下來,執行第二微影步驟。形成抗蝕劑遮罩,並蝕刻第一In-Ga-Zn-O類非單晶膜和第二In-Ga-Zn-O類非單晶膜。在第一In-Ga-Zn-O類非單晶膜和第二In-Ga-Zn-O類非單晶膜的蝕刻中,可以使用有機酸諸如檸檬酸或者草酸作為蝕刻劑。此處,藉由使用ITO07N(由關東化學株式會社製造)的濕式蝕刻來蝕刻第一In-Ga-Zn-O類非單晶膜和第二In-Ga-Zn-O類非單晶膜以去除不需要的部分。這樣,第一In-Ga-Zn-O類非單晶膜和第二In-Ga-Zn- O類非單晶膜被處理成島狀,由此形成由第一In-Ga-Zn-O類非單晶膜形成的半導體層106和本身是第二In-Ga-Zn-O類非單晶膜的氧化物半導體膜111。半導體層106和氧化物半導體膜111被蝕刻以具有錐形邊沿,由此可以防止由臺階形狀引起的佈線斷開。注意此處的蝕刻不限於濕式蝕刻,而可以使用乾式蝕刻。此階段的剖面圖如圖2B所示。注意,此階段的俯視圖對應於圖5。
接下來,執行第三微影步驟。形成抗蝕劑遮罩,並藉由蝕刻去除不需要的部分以形成到由與閘極電極層101相同材料形成的達佈線或者電極層的接觸孔。配置該接觸孔用於與稍後形成的導電膜直接接觸。例如,當形成閘極電極層與驅動電路中的源極或汲極電極層直接接觸的薄膜電晶體時,或者當形成與端子部分的閘極佈線電連接的端子時,形成接觸孔。
接下來,藉由濺射法或真空蒸鍍法使用金屬材料在半導體層106和氧化物半導體膜111上方形成第一導電層112、第二導電層113、和第三導電層114。此階段的剖面圖如圖2C所示。
第一導電層112、第二導電層113、和第三導電層114的每一個都可以使用以下材料形成:金屬材料,諸如鋁、銅、鉬、鈦、鉻、鉭、鎢、釹、或鈧;包含任意這些材料作為主要成分的合金材料;或者包含任意這些材料的氮化物。第一導電層112、第二導電層113、以及第三導電層114中的每一個都可以較佳使用低電阻導電材料諸如 鋁或銅來形成;然而,低電阻導電材料具有耐熱性低和易於被腐蝕的缺點。因而,低電阻導電材料較佳與耐熱導電材料結合使用。作為耐熱導電材料,使用鉬、鈦、鉻、鉭、鎢、釹、或鈧等。
此處,使用作為耐熱導電材料的鈦來形成第一導電層112和第三導電層114,而使用具有低耐熱性的包含釹的鋁合金來形成第二導電層113。藉由此類結構,利用了鋁的低電阻特性並且可以減少小丘的產生。注意,在本實施例中,採用由第一導電層112、第二導電層113、和第三導電層114組成的三層結構;然而,本發明的實施例不限於此結構。因而,可以採用單層結構、雙層結構、或者四層或更多層的疊層結構。例如,可以採用鈦膜的單層結構或者包含矽的鋁膜的單層結構。
接下來,執行第四微影步驟。形成抗蝕劑遮罩131,並利用蝕刻去除不需要的部分,由此形成源極和汲極電極層105a和105b、氧化物半導體層103、和連接電極120。此時,使用濕式蝕刻或乾式蝕刻作為蝕刻方法。例如,在使用鈦形成第一導電層112和第三導電層114而使用包含釹的鋁合金形成第二導電層113的情況中,可以藉由使用過氧化氫溶液或加熱的鹽酸作為蝕刻劑執行濕式蝕刻。在本蝕刻步驟中,在氧化物半導體薄膜111中要暴露的區域也被部分地蝕刻;從而,氧化物半導體層103具有在源極電極層和汲極電極層105a和105b之間並且其厚度小於與源極電極層和汲極電極層105a和105b重疊的區域 的厚度的區域。因此,薄膜電晶體的通道形成區與氧化物半導體層103的小厚度區域重疊。
在圖3A中,第一導電層112、第二導電層113、第三導電層114、和氧化物半導體膜111可以藉由使用過氧化氫溶液或加熱的鹽酸作為蝕刻劑的蝕刻法來同時蝕刻;因此,源極和汲極電極層105a和105b的端部與氧化物半導體層103的端部對準,並且可以形成連續結構。另外,濕式蝕刻允許對層進行各向異性蝕刻,使得源極和汲極電極層105a和105b的端部從抗蝕劑遮罩131凹陷下去。經過上述步驟,可以製造薄膜電晶體170,其中氧化物半導體層103和半導體層106用作為通道形成區。此階段的剖面圖如圖3A所示。注意,此階段的俯視圖對應於圖6。
此處,較佳地,在200℃到600℃下、典型地在250℃到500℃下執行熱處理。此處,在350℃下在氮氣氛圍中進行1小時熱處理。藉由該熱處理,在In-Ga-Zn-O類非單晶膜中發生原子水平上的重新排列。因為利用該熱處理可以釋放會禁止載子移動的應變能,所以該熱處理(包括光退火)是重要的。注意,上述熱處理的時機上沒有特定限制,只要熱處理在第二In-Ga-Zn-O類非單晶膜成之後執行即可,例如,熱處理可以在像素電極形成之後執行。
另外,氧化物半導體層103的暴露的通道形成區可以受到氧自由基處理(oxygen radical treatment)。藉由執行氧自由基處理,薄膜電晶體可以是常斷的(normally-off)。另外,自由基處理可以修復因蝕刻而對氧化物半 導體層103造成的損害。較佳在O2或N2O氛圍中、以及較佳在含氧的N2氛圍、含氧的He氛圍、或含氧的Ar氣氛中執行自由基處理。替代地,自由基處理可以在添加了Cl2和/或CF4的上述氛圍下執行。注意自由基處理被較佳不施加偏壓來執行。
在第四微影步驟中,由與源極和汲極電極層105a和105b相同的材料製成的第二端子122也被保留在端子部分中。注意,第二端子122電連接到源極佈線(包括源極和汲極電極層105a和105b的源極佈線)。
在端子部分中,連接電極120經由形成於閘極絕緣層102中的接觸孔直接連接到第一端子121。注意,儘管此處沒有說明,但是驅動電路的薄膜電晶體的源極或汲極佈線經由與上述步驟相同的步驟直接連接到閘極電極。
另外,藉由使用利用多色調遮罩(multi-tone mask)形成的具有多種厚度(通常為兩種不同厚度)的區域的抗蝕劑遮罩,可以減少抗蝕劑遮罩的數量,從而簡化製程並降低成本。
接下來,去除抗蝕劑遮罩131,並形成保護絕緣層107以覆蓋薄膜電晶體170。對於保護絕緣層107,可以使用藉由濺射法等得到的氮化矽膜、氧化矽膜、氧氮化矽膜、氧化鋁膜、或氧化鉭膜等。
接下來,執行第五微影步驟。形成抗蝕劑遮罩,並蝕刻保護絕緣層107以形成到達汲極電極層105b的接觸孔125。另外,藉由此處的蝕刻,形成到達第二端子122的 接觸孔127和到達連接電極120的接觸孔126。此階段的剖面圖如圖3B所示。
然後,在去除了抗蝕劑遮罩之後,形成透明導電膜。透明導電膜是藉由濺射法、或真空蒸發法等,使用氧化銦(In2O3)、或氧化銦和氧化錫的合金(In2O3-SnO2,在下文中縮寫為ITO)等形成的。用基於鹽酸的溶液進行對此類材料的蝕刻處理。替代地,因為--尤其是在ITO的蝕刻中--容易產生殘留物,所以可以使用氧化銦和氧化鋅的合金(In2O3-ZnO2)以改善蝕刻的可處理性。
接下來,執行第六微影步驟。形成抗蝕劑遮罩,並且利用蝕刻去除不需要的部分以形成像素電極層110。
在第六微影步驟中,利用電容器佈線108和像素電極層110形成儲存電容器,其中電容器部分中的閘極絕緣層102和保護絕緣層107被用作為電介質。
另外,在第六微影步驟中,第一端子和第二端子被抗蝕劑遮罩覆蓋,且透明導電膜128和129被留在端子部分中。透明導電膜128和129用作為用以與FPC連接的電極或佈線。形成在與第一端子121直接相連的連接電極120上方的透明導電膜128用作為連接端子電極,該連接端子電極用做為閘極佈線的輸入端子。形成於第二端子122上方的透明導電膜129用作為連接端子電極,該連接端子電極用做為源極佈線的輸入端子。
然後,去除抗蝕劑遮罩。此階段的剖面圖如圖3C所示。注意,此階段的俯視圖對應於圖7。
另外,圖8A-1和圖8B-1分別為此階段的閘極佈線端子部分的剖面圖和俯視圖。圖8A-1為沿圖8B-1的C1-C2線截取的剖面圖。在圖8A-1中,形成於保護絕緣膜154上方的透明導電膜155是用做為輸入端子的連接端子電極。此外,在圖8A-1中,在端子部分中,由與閘極佈線相同材料形成的第一端子151和由與源極佈線相同材料形成的連接電極153以夾著閘極絕緣層152的方式相互重疊,並且被電連接起來。另外,連接電極153和透明導電膜155經由配置於保護絕緣膜154中的接觸孔相互直接接觸以在它們之間形成導電。
另外,圖8B-1和8B-2分別為源極佈線端子部分的剖面圖和俯視圖。圖8B-1為沿圖8B-2的D1-D2線截取的剖面圖。在圖8B-1中,形成於保護絕緣膜154上方的透明導電膜155是用做為輸入端子的連接端子電極。此外,在圖8B-1中,在端子部分中,由與閘極佈線相同材料形成的電極156位於第二端子150下方並隔著閘極絕緣層152與電連接到源極佈線的第二端子150重疊。電極156不被電連接到第二端子150。當電極156被設置為例如浮置、GND、或0V使得電極156的電勢不同於第二端子150時,可以形成用於防止雜訊或靜電的電容器。另外,第二端子150夾著保護絕緣薄膜154電連接到透明導電膜155。
根據像素密度配置多個閘極佈線、源極佈線、和電容器佈線。還是在端子部分中,與閘極佈線處於相同電位的 第一端子、與源極佈線處於相同電位的第二端子、和與電容器佈線處於相同電位的第三端子等每種都被設置多個。每種端子的數量上沒有特定限制,端子數量可以由實施人員適當地確定。
藉由所述六個微影步驟,使用六個微影遮罩,可以實現包括作為底閘極n通道薄膜電晶體的薄膜電晶體170的像素薄膜電晶體部分,並且可以實現儲存電容器。將它們與各個像素相對應地排列成矩陣從而形成像素部分,其可以被用作為用以製造主動矩陣顯示器的基板的其中一個。在本說明書中,為了方便,將此類基板稱為主動矩陣基板。
當製造主動矩陣液晶顯示裝置時,主動矩陣基板與配置有對置電極的對置基板夾著液晶層而被相互接合(bonding)。注意,在主動矩陣基板上方設置與對置基板上的對置電極電連接的共用電極,並且在端子部分配置與共用電極電連接的第四端子。配置所述第四端子以將共用電極固定到預定電位諸如GND或0V。
另外,本實施例不限於圖7的像素結構,與圖7不同的俯視圖的示例如圖9所示。圖9表示的示例中,沒有配置電容器佈線,而用相互重疊的像素電極和相鄰像素的閘極佈線隔著保護絕緣膜和閘極絕緣層形成儲存電容器。在該情況中,可以省略電容器佈線和連接到電容器佈線的第三端子。注意,在圖9中,與圖7相同的部分被用相同的附圖標記標注。
在主動矩陣液晶顯示裝置中,藉由驅動排列成矩陣的像素電極,將顯示圖案形成於螢幕上。特別地,在所選的像素電極和對應的像素電極的對置電極之間施加電壓,來對被置於像素電極和對置電極之間的液晶層進行光學調變。該光學調變被觀視者識別成顯示圖案。
液晶顯示裝置的問題在於,當顯示移動影像時,會發生影像殘留(image sticking)或者移動影像變得模糊,這是因為液晶分子自身的反應速度低。作為改善液晶顯示裝置的移動影像特性的技術,有被稱為黑色插入技術(black insertion)的驅動技術,其中每隔一框顯示一幅全黑影像。
此外,另一種驅動技術被稱為雙倍框率驅動。在雙倍框率驅動中,正常的垂直同步頻率被設為1.5倍或更多或者2.0倍或更多,由此改善移動影像特性。
另外,作為用於改善液晶顯示裝置的移動影像特性的技術,還有另一種驅動技術,其中,作為背光,使用包括多個LED(發光二極體)光源或者多個EL光源的表面光源,並且表面光源中所包括的每個光源都被單獨驅動以在一個框期間中進行間斷性發光(intermittent lightning)。作為表面光源,可以使用三種或更多種LED,或者可以使用發白光的LED。因為多個LED可以被單獨控制,所以LED發光的定時可以與液晶層的光學調變的定時同步地切換。在該驅動技術中,LED的一部分可以被關斷。因此,尤其是在顯示一個螢幕中黑色影像面積的比例高的影像的 情況中,可以以低功耗驅動液晶顯示裝置。
當組合任意這些驅動技術時,液晶顯示裝置可以具有比習知液晶顯示裝置更好的顯示特性,諸如移動影像特性。
本實施例中所得到的n通道電晶體包括作為通道形成區的In-Ga-Zn-O類非單晶膜並且具有優良的動態特性;因而,它可以與這些驅動技術相組合。
在製造發光顯示裝置的情況中,有機發光元件的一個電極(也被稱為陰極)被設定為低電源電位諸如GND或0V;因而,用於將陰極設定為低電源電位諸如GND或0V的第四端子被配置於端子部分中。另外,在製造發光顯示裝置的情況中,除了源極佈線和閘極佈線之外,還配置電源線。因此,電連接到電源線的第五端子被配置於端子部分中。
如上所述,在使用氧化物半導體層的薄膜電晶體中,在氧化物半導體層和閘極絕緣層之間形成比氧化物半導體層具有更高導電率和更小厚度的半導體層,由此可以改善薄膜電晶體的場效應遷移率。另外,即使在具有改善場效應遷移率的薄膜電晶體中也可以抑制截止電流的增加。
藉由將薄膜電晶體用以顯示裝置的像素部分和驅動電路部分,可以提供具有高的電特性和高的可靠性的顯示裝置。
注意,本實施例中所述結構可以適當地與其他實施例中任意所述結構進行組合。
[實施例3]
本實施例中,結合圖10說明與實施例1所述的薄膜電晶體的結構不同的薄膜電晶體的結構。
本實施例的具有底閘極結構薄膜電晶體如圖10所示。在圖10中所示的薄膜電晶體中,閘極電極層101配置於基板100上方;閘極絕緣層102配置於閘極電極層101上方;半導體層106配置於閘極絕緣層102上方;氧化物半導體層103配置於半導體層106上方;緩衝層310a和301b配置於氧化物半導體層103上方;並且源極和汲極電極層105a和105b配置於緩衝層301a和301b上方。源極或汲極電極層105a具有由第一導電層112a、第二導電層113a、和第三導電層114a組成的三層結構,而源極或汲極電極層105b具有由第一導電層112b、第二導電層113b、和第三導電層114b組成的三層結構。亦即,圖10所示的薄膜電晶體具有緩衝層301a和301b被配置於實施例1中的圖1A和1B所示的薄膜電晶體中的氧化物半導體層103與源極和汲極電極層105a和105b之間的結構。
以類似於氧化物半導體層103形成的方式,使用包含In、Ga、和Zn的In-Ga-Zn-O類非單晶膜形成用作為源極和汲極區的緩衝層301a和301b。注意,緩衝層301a和301b具有n型導電性和比氧化物半導體層103更高的導電率。緩衝層301a和301b的導電率大約等於或高於半導 體層106的導電率。另外,緩衝層301a和301b為In-Ga-Zn-O類非單晶膜並且包括至少一種非晶成分。另外,有些情況中,緩衝層301a和301b包括晶粒(奈米晶體)。晶粒(奈米晶體)的每個的直徑都為1nm到10nm,典型地約為2nm到4nm。
用於緩衝層301a和301b的In-Ga-Zn-O類非單晶膜過濺射法形成。作為特定條件,使用直徑為8英寸的包含In、Ga、和Zn(In2O3:Ga2O3:ZnO=1:1:1)的氧化物半導體靶材,基板和靶材之間的距離被設定為170nm,Ar對O2的流量比為50對1(sccm),並在利用濺射法在0.4Pa的壓力下,用0.5kW的直流(DC)電源,在室溫下,執行膜形成。
注意,形成用於緩衝層301a和301b的In-Ga-Zn-O類非單晶膜的條件不同於形成用於氧化物半導體層或半導體層的In-Ga-Zn-O類非單晶膜的條件。例如,使用於形成緩衝層301a和301b所用的In-Ga-Zn-O類非單晶膜的膜形成氣體中氧氣流量的比例低於用於形成氧化物半導體層所用的In-Ga-Zn-O類非單晶膜的膜形成氣體中氧氣流量的比例。另外,使用於形成緩衝層301a和301b所用的In-Ga-Zn-O類非單晶膜的膜形成氣體中氧氣流量的比例大約等於或低於用於形成半導體層所用的In-Ga-Zn-O類非單晶膜的膜形成氣體中氧氣流量的比例。另外,緩衝層301a和301b所用的In-Ga-Zn-O類非單晶膜被形成於不含氧氣的稀有氣體諸如氬氣的氛圍中。
用於緩衝層301a和301b的In-Ga-Zn-O類非單晶膜的厚度被設為5nm到20nm。不用說,當薄膜包括晶粒時,晶粒的大小不會超過膜厚度。在本實施例中,用於緩衝層301a和301b的In-Ga-Zn-O類非單晶膜的厚度被設為5nm。
緩衝層301a和301b可以包含賦予n型導電性的雜質元素。作為雜質元素的示例,例如可以使用錳、鋁、鈦、鐵、錫、鈣、鍺、鈧、釔、鋯、鉿、硼、鉈、或鉛。在緩衝層中包含錳、鋁、或鈦等的情況中,有阻擋氧等的效應,使得氧化物半導體層的氧濃度可以在膜形成之後藉由熱處理等保持在最優的範圍內。
緩衝層的載子濃度較佳為1×1018/cm3或更高(且1×1022/cm3或更低)。
如上所述,在氧化物半導體層和半導體層與源極和汲極電極層之間配置緩衝層301a和301b可以比形成肖特基結更能改善熱穩定性,由此可以使薄膜電晶體的操作特性穩定。另外,因為導電率高,所以即使當施加高的汲極極電壓時也可以確保良好的遷移率。
注意,作為用於本實施例的薄膜電晶體的非緩衝層301a和301b的結構和材料,請參考實施例1。
本實施例的薄膜電晶體的製造程序幾乎與實施例2所述的薄膜電晶體的製造過程相似。首先,藉由實施例2所述的方法,執行直到形成用於形成氧化物半導體層103的第二氧化物半導體膜的步驟。接著上述步驟,使用上述方 法,藉由濺射形成用於形成緩衝層301a和301b的氧化物半導體膜。接下來,藉由第二微影步驟,以類似於形成半導體層106和氧化物半導體膜111的方法,將用於形成緩衝層301a和301b的氧化物半導體膜蝕刻成島狀,由此形成氧化物半導體膜302(見圖11A)。然後,藉由實施例2所述的方法,執行直到形成第一導電層112、第二導電層113、和第三導電層114的步驟(見圖11B)。接下來,藉由第四微影步驟,以類似於形成源極和汲極電極層105a和105b以及氧化物半導體層103的方法,蝕刻氧化物半導體膜302以形成緩衝層301a和301b(見圖11C)。後續步驟與實施例2的類似。
注意,本實施例中所述結構可以適當地與其他實施例中任意所述結構進行組合。
[實施例4]
在本實施例中,將在下文中說明這樣的示例,其中在作為半導體裝置的一個示例的顯示裝置中,至少驅動電路的一部分和設置於像素部分中的薄膜電晶體被形成於相同的基板上方。
配置於像素部分中的薄膜電晶體是根據實施例2形成的。另外,實施例2所述的薄膜電晶體為n通道TFT,因而,驅動電路中可以包括n通道TFTs的部分驅動電路被形成於與像素部分的薄膜電晶體相同的基板的上方。
圖14A為作為顯示裝置的示例的主動矩陣液晶顯示裝 置的方塊圖的示例。圖14A所示的顯示裝置在基板5300上方包括:包括多個像素的像素部分5301,每個像素都配置有顯示元件;選擇像素的掃描線驅動電路5302;和控制輸入到所選像素的視頻信號的信號線驅動電路5303。
像素部分5301由從信號線驅動電路5303沿行方向延伸的多個信號線S1到Sm(未顯示出)連接到信號線驅動電路5303,並且由從掃描線驅動電路5302沿列方向延伸的多個掃描線G1到Gn(未顯示出)連接到掃描線驅動電路5302。像素部分5301包括排列成矩陣的多個像素(未顯示)以與信號線S1到Sm和掃描線G1到Gn相對應。每個像素被連接到信號線Sj(信號線S1到Sm的其中一個)和掃描線Gj(掃描線G1到Gn的其中一個)。
另外,實施例1到3的每一個中所述的薄膜電晶體為n通道TFT,並且結合圖15說明包括n通道TFT的信號線驅動電路。
圖15所示的信號線驅動電路包括驅動IC 5601、開關組5602_1到5602_M、第一佈線5611、第二佈線5612、第三佈線5613、和佈線5621_1到5621_M。開關組5602_1到5602_M的每一個都包括第一薄膜電晶體5603a、第二薄膜電晶體5603b、和第三薄膜電晶體5603c。
驅動IC 5601被連接到第一佈線5611、第二佈線5612、第三佈線5613、和佈線5621_1到5621_M。開關 組5602_1到5602_M的每一個都被連接到第一佈線5611、第二佈線5612、和第三佈線5613,並且佈線5621_1到5621_M分別被連接到開關組5602_1到5602_M。佈線5621_1到5621_M的每一個都藉由第一薄膜電晶體5603a、第二薄膜電晶體5603b、和第三薄膜電晶體5603c被連接到三根信號線(信號線Sm-2、信號線Sm-1、和信號線Sm(m=3M))。例如,第J行的佈線5621_J(佈線5621_1到5621_M的其中一個)藉由開關組5602_J所包括的第一薄膜電晶體5603a、第二薄膜電晶體5603b、和第三薄膜電晶體5603c被連接到信號線Sj-2、信號線Sj-1、和信號線Sj(j=3J)。
信號被輸入到第一佈線5611、第二佈線5612、和第三佈線5613的每一個。
注意,驅動IC 5601較佳使用單晶半導體形成。開關組5602_1到5602_M被較佳地形成於與像素部分相同的基板的上方。因此,驅動IC 5601和開關組5602_1到5602_M被較佳地經由FPC等連接起來。替代地,驅動IC 5601可以藉由諸如接合法的方法將單晶半導體層配置於與像素部分相同的基板上方來形成。
接下來,結合圖16的時序圖說明圖15所示的信號線驅動電路的操作。圖16的時序圖表示了選中第i列的掃描線Gi的情況。第i列的掃描線Gi的選擇期間被劃分成第一子選擇期間T1、第二子選擇期間T2、和第三子選擇期間T3。另外,即使當另一行的掃描線被選中時,圖15 中的信號線驅動電路也如圖16所示那樣操作。
注意,圖16中的時序圖表示了第J行中的佈線5621_J分別藉由第一薄膜電晶體5603a、第二薄膜電晶體5603b、和第三薄膜電晶體5603c被連接到信號線Sj-2、信號線Sj-1、和信號線Sj的情況。
圖16的時序圖表示了第i行的掃描線Gi被選中的定時、第一薄膜電晶體5603a的開/關定時5703a、第二薄膜電晶體5603b的開/關定時5703b、第三薄膜電晶體5603c的開/關定時5703c、和輸入到第J行的佈線5621_J的信號5721_J。
在第一子選擇期間T1、第二子選擇期間T2、和第三子選擇期間T3,不同的視頻信號被輸入到佈線5621_1到5621_M。例如,在第一子選擇期間T1輸入到佈線5621_J的視頻信號被輸入到信號線Sj-2,在第二子選擇期間T2輸入到佈線5621_J的視頻信號被輸入到信號線Sj-1,而在第三子選擇期間T3輸入到佈線5621_J的視頻信號被輸入到信號線Sj。另外,在第一子選擇期間T1、第二子選擇期間T2、和第三子選擇期間T3,輸入到佈線5621_J的視頻信號被分別用Data_j-2、Data_j-1、和Data_j標注。
如圖16所示,在第一子選擇期間T1,第一薄膜電晶體5603a開啟,而第二薄膜電晶體5603b和第三薄膜電晶體5603c關斷。此時,輸入到佈線5621_J的Data_j-2經由第一薄膜電晶體5603a被輸入到信號線Sj-2。在第二子選擇期間T2,第二薄膜電晶體5603b開啟,而第一薄膜 電晶體5603a和第三薄膜電晶體5603c關斷。此時,輸入到佈線5621_J的Data_j-1經由第二薄膜電晶體5603b輸入到信號線Sj-1。在第三子選擇期間T3,第三薄膜電晶體5603c開啟,而第一薄膜電晶體5603a和第二薄膜電晶體5603b關斷。此時,輸入到佈線5621_J的Data_j經由第三薄膜電晶體5603c輸入到信號線Sj。
如上所述,在圖15的信號線驅動電路中,藉由將閘極選擇期間一分為三,能夠在一個閘極選擇期間將視頻信號從一根佈線5621輸入到三根信號線。因此,在圖15的信號線驅動電路中,配置有驅動IC 5601的基板和配置有像素部分的基板之間的連接的數量可以約為信號線的數量的1/3。藉由將連接數量減少到信號線數量的約1/3,從而可以改善圖15的信號線驅動電路的可靠性、成品率等。
注意,在薄膜電晶體的配置、數量、以及驅動方法等方面沒有特定限制,只要如圖15所示那樣將一個閘極選擇期間劃分為多個子選擇期間並且在相應的子選擇期間將視頻信號從一根佈線輸入到多個信號線即可。
例如,當視頻信號在三個或更多子選擇期間的每個期間被從一根佈線輸入到三根或更多信號線中的每一根時,只需要增加薄膜電晶體和用於控制薄膜電晶體的佈線。注意,當一個閘極選擇期間被劃分為四個或更多子選擇期間時,一個子選擇期間變短。因此,一個閘極選擇期間較佳被劃分為兩個或三個子選擇期間。
又例如,如圖17的時序圖所示,一個閘極選擇期間 可以被劃分成預充電期間Tp、第一子選擇期間T1、第二子選擇期間T2、和第三子選擇期間T3。圖17所示的時序圖表示了第i行的掃描線Gi被選中的定時、第一薄膜電晶體5603a的開/關定時5803a、第二薄膜電晶體5603b的開/關定時5803b、第三薄膜電晶體5603c的開/關定時5803c、和輸入到第J行的佈線5621_J的信號5821_J。如圖17所示,第一薄膜電晶體5603a、第二薄膜電晶體5603b、和第三薄膜電晶體5603c在預充電期間Tp開啟。此時,輸入到佈線5621_J的預充電壓Vp分別經由第一薄膜電晶體5603a、第二薄膜電晶體5603b、和第三薄膜電晶體5603c被連接到信號線Sj-2、信號線Sj-1、和信號線Sj。在第一子選擇期間T1,第一薄膜電晶體5603a開啟,而第二薄膜電晶體5603b和第三薄膜電晶體5603c關斷。此時,輸入到佈線5621_J的Data_j-2經由第一薄膜電晶體5603a輸入到信號線Sj-2。在第二子選擇期間T2,第二薄膜電晶體5603b開啟,而第一薄膜電晶體5603a和第三薄膜電晶體5603c關斷。此時,輸入到佈線5621_J的Data_j-1經由第二薄膜電晶體5603b輸入到信號線Sj-1。在第三子選擇期間T3,第三薄膜電晶體5603c開啟,而第一薄膜電晶體5603a和第二薄膜電晶體5603b關斷。此時,輸入到佈線5621_J的Data_j經由第三薄膜電晶體5603c輸入到信號線Sj。
如上所述,在圖15中的應用了圖17的時序圖的信號線驅動電路中,視頻信號可以被高速寫入到像素,這是因 為可以藉由在子選擇期間之前提供預充電選擇期間而對信號線預充電。注意,圖17中與圖16相似的部分被用相同的附圖標記標注,並省略了對相似部分和具有相似功能的部分的詳細說明。
進而,說明掃描線驅動電路的結構。掃描線驅動電路包括移位暫存器和緩衝器。另外,在有些情況中,掃描線驅動電路可以包括位準偏移器。在掃描線驅動電路中,當時鐘信號(CLK)和啟動脈衝信號(SP)被輸入到移位暫存器中時,產生選擇信號。所產生的選擇信號被緩衝器緩衝和放大,並且所得的信號被提供給相應的掃描線。一行像素中的電晶體的閘極電極被連接到掃描線。另外,因為一行像素中的電晶體的閘極電極必須被同時開啟,所以使用可以提供大電流的緩衝器。
結合圖18和圖19說明用於部分掃描線驅動電路的移位暫存器的一種實施模式。
圖18表示了移位暫存器的電路結構。圖18所示的移位暫存器包括多個正反器,亦即正反器5701_1到5701_n。移位暫存器藉由輸入第一時鐘信號、第二時鐘信號、啟動脈衝信號、和重定信號來操作。
下面說明圖18所示的移位暫存器的連接關係。第一級的正反器5701_1連接到第一佈線5711、第二佈線5712、第四佈線5714、第五佈線5717、第七佈線5717_1、和第七佈線5717_2。第二級的正反器5701_2連接到第三佈線5713、第四佈線5714、第五佈線5715、第 七佈線5717_1、5717_2、和第七佈線5717_3。
以相似方式,第i級的正反器5701_i(正反器5701_1到正反器5701_n中的某一個)連接到第二佈線5712和第三佈線5713的其中一個、第四佈線5714、第五佈線5715、第七佈線5717_i-1、第七佈線5717_i、和第七佈線5717_i+1。此處,當“i”為奇數時,第i級的正反器5701_i連接到第二佈線5712;當“i”為偶數時,第i級的正反器5701_i連接到第三佈線5713。
第n級的正反器5701_n連接到第二佈線5712和第三佈線5713的其中一個、第四佈線5714、第五佈線5715、第七佈線5717_n-1、第七佈線5717_n、和第六佈線5716。
注意,第一佈線5711、第二佈線5712、第三佈線5713、和第六佈線5716可以分別被稱為第一信號線、第二信號線、第三信號線、和第四信號線。第四佈線5714和第五佈線5715可以分別被稱為第一電源線和第二電源線。
接下來,圖19表示了圖18所示的正反器的細節。圖19所示的正反器包括第一薄膜電晶體5571、第二薄膜電晶體5572、第三薄膜電晶體5573、第四薄膜電晶體5574、第五薄膜電晶體5575、第六薄膜電晶體5576、第七薄膜電晶體5577、和第八薄膜電晶體5578。第一薄膜電晶體5571、第二薄膜電晶體5572、第三薄膜電晶體5573、第四薄膜電晶體5574、第五薄膜電晶體5575、第 六薄膜電晶體5576、第七薄膜電晶體5577、和第八薄膜電晶體5578的每一個都是n通道電晶體並當閘極-源極電壓(Vgs)超過閾值電壓(Vth)時開啟。
另外,圖19所示的正反器包括第一佈線5501、第二佈線5502、第三佈線5503、第四佈線5504、第五佈線5505、和第六佈線5506。
注意,雖然此處所有的薄膜電晶體都為增強型n通道電晶體;但本發明並不限於此。例如,驅動電路可以使用空乏型n通道電晶體來操作。
接下來,在下文說明圖18所示的正反器的連接。
第一薄膜電晶體5571的第一電極(源極電極和汲極電極的其中一個)被連接到第四佈線5504。第一薄膜電晶體5571的第二電極(源極電極和汲極電極的另一個)被連接到第三佈線5503。
第二薄膜電晶體5572的第一電極被連接到第六佈線5506。第二薄膜電晶體5572的第二電極被連接到第三佈線5503。
第三薄膜電晶體5573的第一電極被連接到第五佈線5505。第三薄膜電晶體5573的第二電極被連接到第二薄膜電晶體5572的閘極電極。第三薄膜電晶體5573的閘極電極被連接到第五佈線5505。
第四薄膜電晶體5574的第一電極被連接到第六佈線5506。第四薄膜電晶體5574的第二電極被連接到第二薄膜電晶體5572的閘極電極。第四薄膜電晶體5574的閘極 電極被連接到第一薄膜電晶體5571的閘極電極。
第五薄膜電晶體5575的第一電極被連接到第五佈線5505。第五薄膜電晶體5575的第二電極被連接到第一薄膜電晶體5571的閘極電極。第五薄膜電晶體5575的閘極電極被連接到第一佈線5501。
第六薄膜電晶體5576的第一電極被連接到第六佈線5506。第六薄膜電晶體5576的第二電極被連接到第一薄膜電晶體5571的閘極電極。第六薄膜電晶體5576的閘極電極被連接到第二薄膜電晶體5572的閘極電極。
第七薄膜電晶體5577的第一電極被連接到第六佈線5506。第七薄膜電晶體5577的第二電極被連接到第一薄膜電晶體5571的閘極電極。第七薄膜電晶體5577的閘極電極被連接到第二佈線5502。第八薄膜電晶體5578的第一電極被連接到第六佈線5506。第八薄膜電晶體5578的第二電極被連接到第二薄膜電晶體5572的閘極電極。第八薄膜電晶體5578的閘極電極被連接到第一佈線5501。
注意,第一薄膜電晶體5571的閘極電極、第四薄膜電晶體5574的閘極電極、第五薄膜電晶體5575的第二電極、第六薄膜電晶體5576的第二電極、和第七薄膜電晶體5577的第二電極所連接的點被稱為節點5543。第二薄膜電晶體5572的閘極電極、第三薄膜電晶體5573的第二電極、第四薄膜電晶體5574的第二電極、第六薄膜電晶體5576的閘極電極、和第八薄膜電晶體5578的第二電極所連接的點被稱為節點5544。
注意,第一佈線5501、第二佈線5502、第三佈線5503、和第四佈線5504可以分別被稱為第一信號線、第二信號線、第三信號線、和第四信號線。第五信號線5505和第六信號線5506可以分別被稱為第一電源線和第二電源線。
在第i級的正反器5701_i中,圖19中的第一佈線5501被連接到圖18中的第七佈線5717_i-1。圖19中的第二佈線5502被連接到圖18中的第七佈線5717_i+1。圖19中的第三佈線5503被連接到圖18中的第七佈線5717_i。圖19中的第六佈線5506被連接到第五佈線5715。
如果“i”為奇數,那麽圖19中的第四佈線5504被連接到圖18中的第二佈線5712;如果“i”為偶數,那麽圖19中的第四佈線5504被連接到圖18中的第三佈線5713。另外,圖19中的第五佈線5505被連接到圖18中的第四佈線5714。
注意,在第一級的正反器5701_1中,圖19中的第一佈線5501被連接到圖18中的第一佈線5711。另外,在第n級的正反器5701_n中,圖19中的第二佈線5502被連接到圖18中的第六佈線5716。
另外,信號線驅動電路和掃描線驅動電路可以只使用實施例1到3中的任一個所述的n通道TFT形成。實施例1到3中的任一個所述的n通道TFT具有高遷移率,從而可以提高驅動電路的驅動頻率。另外,藉由使用In- Ga-Zn-O類非單晶膜的源極或汲極區,可以降低寄生電容;因而,實施例1到3中的任一個所述的n通道TFT具有高的頻率特性(稱為f特性)。例如,用實施例1到3中的任一個所述的n通道TFT形成的掃描線驅動電路可以高速操作,從而可以提高框頻並實現插入全黑影像(black image)等。
另外,當增加掃描線驅動電路中電晶體的通道寬度或者配置多個掃描線驅動電路時,例如,可以實現更高的框頻。當配置多個掃描線驅動電路時,用於驅動偶數行掃描線的掃描線驅動電路被配置於一側上,而用於驅動奇數行掃描線的掃描線驅動電路被配置於對置的一側上;因而,可以實現框頻上的增加。另外,將多個掃描線驅動電路用於將信號輸出到同一條掃描線在增大顯示裝置尺寸方面是有利的。
另外,當製造作為顯示裝置的示例的主動矩陣發光顯示裝置時,在至少一個像素中設置多個薄膜電晶體,因而較佳設置多個掃描線驅動電路。圖14B為主動矩陣發光顯示裝置的示例的方塊圖。
圖14B中所示的發光顯示裝置在基板5400上方包括:像素部分5401,其包括每個都配置有顯示元件的多個像素;選擇像素的第一掃描線驅動電路5402和第二掃描線驅動電路5404;和控制輸入到所選像素的視頻信號的信號線驅動電路5403。
當輸入到圖14B所示的發光顯示裝置的像素的視頻信 號為數位信號時,藉由切換電晶體的導通/關斷來使像素處於發光態或非發光態。因而,可以使用面積比率灰度驅動法(area ratio grayscale method)或者時間比率灰度驅動法(time ratio grayscale method)來顯示灰度。面積比率灰度驅動法是指這樣的驅動方法:利用該方法,一個像素被劃分成多個子像素並且相應的子像素基於視頻信號被單獨驅動從而顯示灰度。此外,時間比率灰度驅動法是指這樣的驅動方法:利用該方法,對像素處於發光態的期間進行控制從而顯示灰度。
由於發光元件的反應速度高於液晶元件等,所以發光元件比液晶顯示元件更適合於時間比率灰度驅動法。特別地,在用時間灰度法顯示的情況中,一個框期間被劃分成多個子框期間。然後,根據視頻信號,像素中的發光元件在相應的子框期間被設為處於發光態或非發光態。藉由將一個框劃分成多個子框,可以使用視頻信號來控制在一個框期間中像素發光的時間總長度,從而顯示灰度。
在圖14B所示的發光顯示裝置中,在兩個切換TFT被設置於一個像素中的情況下,第一掃描線驅動電路5402產生輸入到用作為切換TFT的其中一個的閘極佈線的第一掃描線上的信號,而第二掃描線驅動電路5404產生輸入到用作為切換TFT中的另一個的閘極佈線的第二掃描線上的信號;然而,一個掃描線驅動電路可以產生輸入到第一掃描線的信號和輸入到第二掃描線的信號全部兩個信號。另外,例如,存在這樣的可能性,亦即:根據在 一個像素中所包括的切換TFT的數量,在每個像素中配置用以控制切換元件的操作的多個掃描線。在該情況下,一個掃描線驅動電路可以產生輸入到所述多個掃描線的所有信號,或者多個掃描線驅動電路可以產生輸入到所述多個掃描線的信號。
另外,還是在發光顯示裝置中,可以包括驅動電路中的n通道TFT的驅動電路的一部分可以形成在與像素部分的薄膜電晶體相同的基板上方。替代地,信號線驅動電路和掃描線驅動電路可以只使用實施例2中所述的n通道TFT形成。
另外,上述驅動電路可以被用於使用電連接到切換元件的元件來驅動電子墨水的電子紙,而不只限於應用於液晶顯示裝置或發光顯示裝置。電子紙也被稱為電泳顯示裝置(電泳顯示器),其優點在於其可讀性水平與普通紙相當,電子紙相比於其他顯示裝置具有更低的功耗,並且可以被製造得更薄更輕。
電泳顯示器可以具有各種實施例。電泳顯示器包含分散於溶劑或溶質中的多個微囊,每個微囊包括帶正電的第一顆粒和帶負電的第二顆粒。藉由對微囊施加電場,使微囊中的顆粒沿相反的方向移動並且只有聚集於一側上的顆粒的色彩可以被呈現出來。注意,第一顆粒和第二顆粒的每個都包括色素(pigment)並且沒電場就不會移動。另外,第一顆粒和第二顆粒的色彩(所述色彩包括無色或無色素)彼此不同。
這樣,電泳顯示器是利用所謂的電泳效應從而將具有高介電常數的物質移動到高電場區域的顯示器。
將上述微囊分散遍佈在溶劑中的溶液被稱為電子墨水。該電子墨水可以被印刷在玻璃、塑膠、布、或紙等的表面上。另外,藉由使用濾色片(color filter)或具有色素的顆粒,還能夠實現彩色顯示。
另外,如果多個上述的微囊以被夾在兩個電極之間的方式被適當地配置於主動矩陣基板之上,就可以實現主動矩陣顯示裝置,並可以藉由將電場施加到微囊來進行顯示。例如,可以使用利用實施例2的薄膜電晶體所得到的主動矩陣基板。
注意,微囊中的第一顆粒和第二顆粒可以每個都由選自導電材料、絕緣材料、半導體材料、磁性材料、液晶材料、鐵電材料、電致發光材料、電致變色材料、或磁泳材料中的單一材料構成,或者由任意這些材料的複合材料構成。
經過上述步驟,可以製造高可靠性的顯示裝置作為半導體裝置。
本實施例所述的結構可以適當地與其他實施例中的任意所述結構進行組合。
[實施例5]
製造實施例1到3的任一個所述的薄膜電晶體,並且可以使用用於像素部分和驅動電路的薄膜電晶體來製造具 有顯示功能的半導體裝置(也被稱為顯示裝置)。本實施例中,製造了薄膜電晶體,並且可以使用用於像素部分和驅動電路的薄膜電晶體來製造具有顯示功能的半導體裝置(也被稱為顯示裝置)。另外,驅動電路的一部分或全部可以使用實施例1到3的任一個所述的薄膜電晶體而被形成於與像素部分相同的基板之上,由此可以得到系統面板(system-on-panel)。
顯示裝置包括顯示元件。作為顯示元件,可以使用液晶元件(也被稱為液晶顯示元件)或者發光元件(也被稱為發光顯示元件)。發光元件的類別中包括亮度受電流或電壓控制的元件,並且具體地,包括無機電致發光(EL)元件、有機EL元件等。另外,可以使用對比度被電效應改變的顯示介質,諸如電子墨水。
另外,顯示裝置包括其中密封了顯示元件的面板,在面板上安裝了包括控制器等IC的模組。本發明的本實施例涉及包括與在顯示裝置製造過程中完成顯示元件之前的元件基板的一個實施例,且元件基板配置有用於向多個像素的每一個中的顯示元件供應電流的單元。具體地,元件基板可以處於以下狀態:只提供了顯示元件的像素電極的狀態;在形成了要成為像素電極的導電膜後且在導電膜被蝕刻以形成像素電極之前的狀態;或者其他任意狀態。
注意,本說明書中的顯示裝置是指影像顯示裝置、顯示裝置、或者光源(包括發光裝置)。另外,顯示裝置在其類別中包括任意下列模組:附著有諸如可撓性印刷電路 (FPC)、捲帶式自動接合(TAB)帶、或者帶載封裝(TCP)的連接器的模組;具有在端部配置有印刷線路板的TAB帶或者TCP的模組;和具有利用玻璃上晶片接合(COG)法直接安裝在顯示元件上的積體電路(IC)的模組。
在本實施例中,結合圖22A-1到22B說明作為半導體裝置的一個實施例的液晶顯示面板的外觀和剖面。圖22A-1和22A-2為面板的俯視圖,其中用密封劑4005將每個都包括實施例1到3的任一個所述的In-Ga-Zn-O類非單晶膜作為氧化物半導體層的高可靠性的薄膜電晶體4010和4011、和液晶元件4013密封於第一基板4001和第二基板4006之間。圖22B為沿圖22A-1和22A-2的M-N線截取的剖面圖。
提供密封劑4005以包圍配置在第一基板4001上的像素部分4002和掃描線驅動電路4004。第二基板4006配置在像素部分4002和掃描線驅動電路4004上方。因此,利用第一基板4001、密封劑4005、和第二基板4006,將像素部分4002和掃描線驅動電路4004與液晶4008一起密封起來。使用單晶半導體膜或者多晶半導體膜形成在單獨製備的基板之上的掃描線驅動電路4003被安裝在第一基板4001上方的由密封劑4005所包圍的區域以外的區域中。
注意,單獨形成的驅動電路的連接方法不受特定限制,可以使用COG法、打線接合法、或TAB法等。圖 22A-1表示了利用COG法安裝信號線驅動電路4003的示例,圖22A-2表示了利用TAB法安裝信號線驅動電路4003的示例。
配置在第一基板4001上方的像素部分4002和掃描線驅動電路4004包括多個薄膜電晶體。圖22B表示了像素部分4002中所包括的薄膜電晶體4010和掃描線驅動電路4004中所包括的薄膜電晶體4011。絕緣層4020和4021被配置於薄膜電晶體4010和4011上方。
薄膜電晶體4010和4011每個都可以應用實施例1到3的任一個所述的包括In-Ga-Zn-O類非單晶膜作為半導體層的高可靠性的薄膜電晶體。在本實施例中,薄膜電晶體4010和4011為n通道薄膜電晶體。
液晶元件4013所包括的像素電極層4030電連接到薄膜電晶體4010。液晶元件4013的對置電極層4031形成於第二基板4006上。像素電極層4030、對置電極層4031、和液晶層4008相互重疊的部分對應於液晶元件4013。注意,像素電極層4030和對置電極層4031分別配置有每個都用做為配向膜的絕緣層4032和絕緣層4033,液晶層4008隔著絕緣層4032和4033夾在像素電極層4030和對置電極層4031之間。
注意,第一基板4001和第二基板4006可以使用玻璃、金屬(典型為不銹鋼)、陶瓷、或塑膠形成。作為塑膠的示例,可以使用纖維玻璃強化塑膠(FRP)板、聚氟乙烯(PVF)膜、聚酯膜、或丙烯酸樹脂膜。另外,可以 使用具有將鋁箔夾在PVF膜或聚酯膜之間的結構的薄片。
附圖標記4035表示柱狀間隔件,它是藉由選擇性地蝕刻絕緣膜而得到的,用於控制像素電極層4030和對置電極層4031之間的距離(單元間隙)。另外,也可以使用球形間隔件。另外,對置電極層4031被電連接到設置在與薄膜電晶體4010相同的基板上方的共用電位線。利用共用連接部分,藉由配置在該一對基板之間的導電顆粒,將對置電極層4031連接到共用電位線。注意,導電顆粒包含在密封劑4005中。
替代地,可以使用無需配向膜的藍相液晶。藍相是液晶相中的一種,它是在膽甾相液晶的溫度增加時,恰好在膽甾相變成各向同性相之前產生的。因為藍相只產生於窄溫度範圍內,所以將混合有5wt%或更多的手性劑的液晶合成物用於液晶層4008以改善溫度範圍。包括藍相液晶和手性劑的液晶合成物具有這樣的特徵,亦即反應速度短到10μs到100μs,所以因液晶合成物具有光學各向同性而無需配向程序,且視角依賴性小。
注意,本實施例的說明了透射型液晶顯示裝置的示例;然而,它也可以應用於反射式液晶顯示裝置和半透射式液晶顯示裝置。
本實施例中,說明了這樣的液晶顯示裝置的示例,其中將偏振片配置在比基板更靠外側的位置(觀視者側),且用以顯示元件的色彩層和電極層配置在比基板更靠內側 的位置;然而,偏振片可以被配置在比基板更靠內側的位置。偏振片和色彩層的疊層結構不限於本實施例,而可以根據偏振片和著色層的材料或製造步驟的條件適當設定。另外,可以配置用做為黑色矩陣(black matrix)的遮光膜。
在本實施例中,為了減小薄膜電晶體表面的變動性並提高薄膜電晶體的可靠性,使用用做為保護層的絕緣層和平坦化絕緣膜(絕緣層4020和4021)覆蓋由實施例1到3得到的薄膜電晶體。注意,配置保護膜以防止諸如有機物質、金屬、或空氣中飄浮的濕氣等污染物雜質的進入,且該保護膜較佳為緻密膜(dense film)。保護膜可以利用濺射法由使用氧化矽膜、氮化矽膜、氧氮化矽膜、氮氧化矽膜、氧化鋁膜、氮化鋁膜、氧氮化鋁膜、和/或氮氧化鋁膜構成的單層或疊層形成。雖然在本實施例中,保護膜由濺射法形成;但本實施例不特定受此限制。保護膜可以利用各種方法形成。
此處,形成具有疊層結構的絕緣層4020作為保護膜。此處,利用濺射法形成氧化矽膜作為絕緣層4020的第一層,並利用濺射法形成氧化矽膜。使用氧化矽膜作為保護膜具有防止用作為源極和汲極電極層的鋁膜的小丘(hillock)的效果。
作為保護膜的第二層,形成絕緣層。在本實施例中,作為絕緣層4020的第二層,利用濺射法形成氮化矽膜。使用氮化矽膜作為保護膜可以防止鈉等移動離子進入半導 體區,從而可以抑制TFT的電特性上的變化。
在形成保護膜後,氧化物半導體層可以被退火(在300℃到400℃下)。
形成絕緣層4021用作為平坦化絕緣膜。作為絕緣層4021,可以使用耐熱的有機材料,諸如聚醯亞胺、丙烯酸、苯並環丁烯、聚醯胺、或環氧樹脂。除了這種有機材料之外,還可以使用低介電常數材料(低k材料)、矽氧烷類樹脂、PSG(磷矽酸鹽玻璃)、或BPSG(硼磷矽酸鹽玻璃)等。注意,可以藉由層疊由這些材料形成的多個絕緣膜形成絕緣層4021。
注意,矽氧烷類樹脂是由作為原材料的矽氧烷類材料形成並具有Si-O-Si鍵的樹脂。矽氧烷類樹脂可以包括有機基團(例如烷基或芳基)或氟基團作為取代基。另外,有機基團可以包括氟基團。
在絕緣層4021的形成方法上沒有特定限制,根據材料可以採用下列方法:濺射法、SOG法、旋塗法、浸漬法、噴塗法、液滴釋放法(例如噴墨法、絲網印刷法、或膠印法等)、刮刀法、輥式塗敷器(roll coater)、簾式塗敷器(curtain coater)、以及刮刀式塗敷器(knife coater)等方法。當使用材料溶液形成絕緣層4021時,可以在絕緣層4021的烘焙步驟的同時將半導體層退火(在300℃到400℃下)。絕緣層4021的烘焙步驟也用作為半導體層的退火步驟,從而可以有效地製造顯示裝置。
像素電極層4030和對置電極層4031可以使用透光導 電材料諸如含氧化鎢的氧化銦、含氧化鎢的氧化銦鋅、含氧化鈦的氧化銦、含氧化鈦的氧化銦錫、氧化銦錫(以下稱為ITO)、氧化銦鋅、或添加了氧化矽的氧化銦錫等材料來形成。
可以將包含導電高分子(也稱為導電聚合物)的導電合成物用於形成像素電極層4030和對置電極層4031。由導電合成物形成的像素電極較佳具有小於或等於10000歐姆/方塊的薄片電阻以及在550nm波長處大於或等於70%的透光率。另外,導電合成物中所包含的導電高分子的電阻率較佳小於或等於0.1Ω.cm。
作為導電高分子,可以使用所謂的π電子共軛導電聚合物。作為其示例,可以給出聚苯胺或其衍生物、聚吡咯(polypyrrole)或其衍生物、聚噻吩或其衍生物、以及它們中的兩種或更多種的共聚物等。
另外,從FPC 4018將各種信號和電位供應到單獨形成的信號線驅動電路4003、掃描線驅動電路4004、或者像素部分4002。
在本實施例中,使用與液晶元件4013中所包括的像素電極層4030相同的導電膜形成連接端子電極4015,並使用與薄膜電晶體4010和4011的源極和汲極電極層相同的導電膜形成端子電極4016。
連接端子電極4015經由各向異性導電膜4019電連接到FPC 4018中所包括的端子。
圖22A-1到22B表示了信號線驅動電路4003被單獨 形成和安裝於第一基板4001上的示例;然而,本實施例不限於此結構。掃描線驅動電路可以被單獨形成然後安裝,或者只有信號線驅動電路的一部分或掃描線驅動電路的一部分可以被單獨形成然後安裝。
圖23表示了藉由使用應用實施例1到3中任意所述的TFT製造的TFT基板2600來形成液晶顯示模組作為半導體裝置的示例。
圖23表示了液晶顯示模組的示例,其中TFT基板2600和對置基板2601由密封劑2602相互固定,並且在基板之間配置包括TFT等的像素部分2603、包括液晶層的顯示元件2604、色彩層2605、和偏振片2606以形成顯示區域。需要色彩層2605以進行彩色顯示。在RGB系統的情況中,為相應的像素提供對應於紅、綠、和藍色的色彩層。偏振片2606和2607以及擴散板2613被配置在TFT基板2600和對置基板2601的外側。光源包括冷陰極管2610和反射板2611,而電路基板2612經由可撓性線路板2609被連接到TFT基板2600的佈線電路部分2608並且包括外部電路諸如控制電路或者電源極電路。偏振片和液晶層可以夾著延遲板(retardation plate)被層疊起來。
對於液晶顯示模組,可以使用TN(扭轉向列相)模式、IPS(平面內切換)模式、邊緣電場切換(FFS)模式、多象限垂直配向(MVA)模式、圖案化垂直配向(PVA)模式、軸對稱排列微胞(ASM)模式、光學補償 雙折射(OCB)模式、鐵電液晶(FLC)模式、或反鐵電液晶(AFLC)模式等。
經過上述製程,可以製造高可靠性的顯示裝置作為半導體裝置。
注意,本實施例所述的結構可以適當地與其他實施例中的任意結構進行組合。
[實施例6]
本實施例中,說明電子紙的示例作為應用了實施例1到3中任意所述的薄膜電晶體的半導體裝置。
圖13表示了主動矩陣電子紙作為半導體裝置的示例。用於半導體裝置的薄膜電晶體581可以按與實施例1到3中任意所述的薄膜電晶體相似的方式製造。
圖13中的電子紙是使用扭轉球顯示系統(twisting ball display system)的顯示裝置的示例。扭轉球顯示系統是指這樣的方法,其中每個都著色成黑色和白色的球形顆粒被排列在顯示元件的第一電極層和第二電極層之間,並在第一電極層和第二電極層之間產生電位差以控制球形顆粒的配向,從而進行顯示。
被密封於基板580和基板596之間的薄膜電晶體581為具有底閘極結構的薄膜電晶體,其源極或汲極電極層經由形成於絕緣層583、584、和585中的接觸孔而電連接到第一電極層587。在第一電極層587和第二電極層588之間,配置每個都具有黑色區域590a、白色區域590b、 以及圍繞這些區域的由液體填充的空腔594的球形顆粒589。圍繞球形顆粒589的空間由填充物595諸如樹脂所填充(見圖13)。在本實施例中,第一電極層587對應於像素電極,第二電極層588對應於共用電極。第二電極層588電連接到配置於與薄膜電晶體581相同的基板之上的共用電位線。利用共用連接部分,第二電極層588藉由設置在該一對基板之間的導電顆粒而與共用電位線電連接。
另外,作為扭轉球的替代,也可以使用電泳元件。使用直徑為約10μm到200μm的微囊,其中密封了透明液體、帶正電的白色微粒、和帶負電的黑色微粒。在配置於第一電極層和第二電極層之間的微囊中,當利用第一電極層和第二電極層施加電場時,白色微粒和黑色微粒朝相互相反的一側移動,從而顯示白色或黑色。使用該原理的顯示元件為電泳顯示元件並且通常被稱為電子紙。電泳顯示元件的反射率高於液晶顯示裝置,因而,不需要輔助光,功耗低,並且在暗處也可以識別顯示部分。另外,即使在不向顯示部分供電時,影像一旦已經被顯示就能被保持。因此,即使具有顯示功能的半導體裝置(其可以被簡稱為顯示裝置或配置有顯示裝置的半導體裝置)遠離電波源,所顯示的影像也可以被儲存。
經過上述製程,可以製造高可靠性的顯示裝置作為半導體裝置。
注意,本實施例所述的結構可以適當地與其他實施例 中的任意結構進行組合。
[實施例7]
在本實施例中,作為應用了實施例1到3中所述的任意的薄膜電晶體的半導體裝置的示例說明了發光顯示裝置。作為顯示裝置中所包括的顯示元件,此處說明利用電致發光的發光元件。根據發光材料是有機化合物還是無機化合物對利用電致發光的發光元件進行分類。通常,前者被稱為有機EL元件,而後者被稱為無機EL元件。
在有機EL元件中,藉由對發光元件施加電壓,電子和電洞被分別從一對電極注入到包含發光有機化合物的層中,從而使電流流動。載子(電子和電洞)複合,從而激發發光有機化合物。發光有機化合物從激發態返回到基態,由此發光。由於這種機制,該發光元件被稱為電流激發發光元件。
無機EL元件根據它們的元件結構被劃分成分散型無機EL元件和薄膜型無機EL元件。分散型無機EL元件具有發光層,其中發光材料的顆粒被分散在黏合劑中,並且它的發光機制為利用施體能級和受體能級的施體-受體複合型發光。薄膜型無機EL元件具有這樣的結構:在電介質層之間夾著發光層,並進一步被夾在電極之間;它的發光機制為利用金屬離子的內層電子躍遷的局部型(localized type)發光。注意,此處使用有機EL元件作為發光元件進行說明。
圖20表示了可以採用數位時間灰度驅動(digital time grayscale driving)的像素結構的示例,作為應用了本發明的實例的半導體裝置的示例。
下面說明可以採用數位時間灰度驅動的像素的結構和操作。此處,一個像素包括每個都包括氧化物半導體層(In-Ga-Zn-O類非單晶膜)作為通道形成區且每個都如實施例1到3的任一個所述的兩個n通道電晶體。
像素6400包括切換電晶體6401、驅動電晶體6402、發光元件6404、和電容器6403。切換電晶體6401的閘極被連接到掃描線6406,切換電晶體6401的第一電極(源極電極和汲極電極的其中一個)被連接到信號線6405,而切換電晶體6401的第二電極(源極電極和汲極電極中的另一個)被連接到驅動電晶體6402的閘極。驅動電晶體6402的閘極經由電容器6403而被連接到電源線6407,驅動電晶體6402的第一電極被連接到電源線6407,而驅動電晶體6402的第二電極被連接到發光元件6404的第一電極(像素電極)。發光元件6404的第二電極對應於共用電極6408。共用電極6408電連接到形成於相同基板之上的共用電位線,使用連接部分作為共用連接部分可以獲得具有如圖1A、圖2A、或圖3A所示的結構。
發光元件6404的第二電極(共用電極6408)被設為低電源電位。注意,所述低電源電位為關於對電源線6407所設的高電源電位滿足低電源電位<高電源電位的電 位。作為低電源電位,例如,可以採用GND、或0V等。高電源電位和低電源電位之間的電位差被施加到發光元件6404並且電流被供應到發光元件6404,使得發光元件6404發光。此處,為了讓發光元件6404發光,每個電位都被設定為使得高電源電位和低電源電位之間的電位差為正向閾值電壓或更高。
注意,驅動電晶體6402的閘極電容器可以被用於代替電容器6403,從而可以省略電容器6403。驅動電晶體6402的閘極電容器可以被形成於通道區和閘極電極之間。
在電壓輸入電壓驅動法的情況下,視頻信號被輸入到驅動電晶體6402的閘極使得驅動電晶體6402處於充分地導通和關斷這兩個狀態中的某一個狀態。亦即,驅動電晶體6402操作在線性區。因為驅動電晶體6402操作在線性區,所以比電源線6407的電壓更高的電壓被施加到驅動電晶體6402的閘極。注意,比(電源線的電壓+驅動電晶體6402的Vth)更高或相等的電壓被施加到信號線6405。
在進行類比灰度驅動而非數位時間灰度驅動的情況下,藉由改變信號輸入可以使用如圖20所示那樣的相同像素結構。
在進行類比灰度驅動的情況中,比(發光元件6404的正向電壓+驅動電晶體的Vth)更高或相等的電壓被施加到驅動電晶體6402的閘極。發光元件6404的正向電壓 表示要獲得所需亮度時的電壓,並且至少包括正向閾值電壓。輸入使驅動電晶體6402操作在飽和區的視頻信號,使得電流可以被供應到發光元件6404。為了讓驅動電晶體6402操作在飽和區,電源線6407的電位被設得高於驅動電晶體6402的閘極電位。當使用類比視頻信號時,可以將符合視頻信號的電流供應到發光元件6404並進行類比灰度驅動。
注意,像素結構並不限於圖20中所示。例如,可以對圖20所示的像素添加開關、電阻器、電容器、電晶體、或邏輯電路等。
接下來,結合圖21A到21C說明發光元件的結構。用n通道驅動TFT作為示例說明像素的剖面結構。用於圖21A到21C所示的半導體裝置的驅動TFT 7001、7011、和7021可以按與實施例1到3的任一個所述的薄膜電晶體相似的方式製造,並且是每個都包括In-Ga-Zn-O類非單晶膜作為半導體層的高可靠性的薄膜電晶體。
為了提取從發光元件發出的光,陽極和陰極中的至少一個需要透光。薄膜電晶體和發光元件被形成於基板上方。發光元件可以具有:頂部發光結構,其中經由與基板相對置的表面提取發光;底部發光結構,其中經由基板側上的表面提取發光;或者雙發光結構,其中經由與基板相對置的表面和基板側上的表面提取發光。本發明實施例的像素結構可以被應用於具有任意這些發光結構的發光元件。
結合圖21A說明具有頂部發光結構的發光元件。
圖21A為像素的剖面圖,是驅動TFT 7001為n通道TFT並且光從發光元件7002發射到陽極7005側的情況。在圖21A中,發光元件7002的陰極7003電連接到驅動TFT 7001,且發光層7004和陽極7005按此順序層疊於陰極7003上方。陰極7003可以使用各種導電材料形成,只要它們具有低功函數並且反射光即可。例如,較佳使用Ca、Al、MgAg、或AlLi等。發光層7004可以使用單層或層疊的多層來形成。當使用多層形成發光層7004時,藉由將電子注入層、電子傳輸層、發光層、電洞傳輸層、和電洞注入層按此順序層疊於陰極7003上方來形成發光層7004。不需要形成所有這些層。陽極7005使用透光導電材料諸如含氧化鎢的氧化銦、含氧化鎢的氧化銦鋅、含氧化鈦的氧化銦、含氧化鈦的氧化銦錫、氧化銦錫(以下稱為ITO)、氧化銦鋅、或添加了氧化矽的氧化銦錫的膜來形成。
發光元件7002對應於在陰極7003和陽極7005之間夾著發光層7004的區域。在圖21A所示像素的情況中,光如箭頭所示那樣從發光元件7002發射到陽極7005側。
接下來,結合圖21B說明具有底部發光結構的發光元件。圖21B為像素的剖面圖,是驅動TFT 7011為n通道TFT並且光從發光元件7012發射到陰極7013側的情況。在圖21B中,發光元件7012的陰極7013形成在電連接到驅動TFT 7011的透光導電膜7017的上方,而發光層 7014和陽極7015按此順序層疊於陰極7013上方。當陽極7015具有透光特性時,可以形成用於反射或阻擋光的遮光膜7016以覆蓋陽極7015。對於陰極7013,如圖21A的情況那樣可以使用各種材料,只要它們是具有低功函數的導電材料即可。陰極7013被形成為可以透光的厚度(較佳地,為約5nm到30nm)。例如,可以將厚度為20nm的鋁膜用作為陰極7013。以與圖21A的情況相似的方式,發光層7014可以使用單層或層疊的多層來形成。陽極7015不需要透光,但可以使用如圖21A的情況那樣的透光導電材料來形成。作為遮光膜7016,例如可以使用反射光的金屬等;然而,並不限於金屬膜。例如,也可以使用添加了黑色素的樹脂等。
發光元件7012對應於發光層7014被夾在陰極7013和陽極7015之間的區域。在圖21B所示像素的情況中,光如箭頭所示那樣從發光元件7012發射到陰極7013側。
接下來,結合圖21C說明具有雙發光結構的發光元件。在圖21C中,發光元件7022的陰極7023形成於電連接到驅動TFT 7021的透光導電薄膜7027上方,而發光層7024和陽極7025按此順序層疊於陰極7023上方。如圖21A的情況那樣,陰極7023可以使用各種材料來形成,只要它們是具有低功函數的導電材料即可。陰極7023被形成為可以透光的厚度。例如,可以將厚度為20nm的鋁膜用作為陰極7023。與圖21A的情況相似,發光層7024可以使用單層或層疊的多層來形成。陽極7025可以使用 如圖21A的情況那樣的透光導電材料來形成。
發光元件7022對應於陰極7023、發光層7024、和陽極7025相互重疊的區域。在圖21C所示像素的情況中,光如箭頭所示那樣從發光元件7022發射到陽極7025側和陰極7023側。
注意,雖然此處以有機EL元件作為發光元件進行了說明,但是也可以設置無機EL元件作為發光元件。
在本實施例中,說明了控制發光元件的驅動的薄膜電晶體(驅動TFT)電連接到發光元件的示例;然而,可以採用用於電流控制的TFT連接在驅動TFT和發光元件之間的結構。
本實施例所述的半導體裝置不限於圖21A到21C所示的結構,而可以基於根據本發明所述技術的精神作出各種方式的修改。
下面,結合圖24A到24B說明作為應用了實施例1到3中任意所述的薄膜電晶體的的半導體裝置的一個實施模式的發光顯示面板(也被稱為發光面板)的外觀和剖面。圖24A為面板的俯視圖,其中用密封劑將形成在第一基板4051上方的和發光元件密封於第一基板和第二基板之間。圖24B為沿圖24A的H-I線截取的剖面圖。
提供密封劑4505以包圍配置於第一基板4501上方的像素部分4502、信號線驅動電路4503a和4503b、和掃描線驅動電路4504a和4504b。另外,第二基板4506配置於像素部分4502、信號線驅動電路4503a和4503b、和掃 描線驅動電路4504a和4504b上方。因此,利用第一基板4501、密封劑4505、和第二基板4506,將像素部分4502、信號線驅動電路4503a和4503b、和掃描線驅動電路4504a和4504b與填充物4507一起密封起來。較佳地,用具有高氣密性和低脫氣性的保護膜(諸如層壓膜(laminate film)或紫外線固化樹脂膜)或者覆蓋材料來封裝(密封)面板,如上所述,使得面板不被暴露於外部空氣。
形成於第一基板4501上方的像素部分4502、信號線驅動電路4503a和4503b、和掃描線驅動電路4504a和4504b的每個都包括多個薄膜電晶體,且像素部分4502所包括的薄膜電晶體4510和信號線驅動電路4503a所包括的薄膜電晶體4509如圖24B的示例所示。
可以使用實施例1到3的任一個所述包括In-Ga-Zn-O類非單晶膜作為半導體層的高可靠性的薄膜電晶體作為薄膜電晶體4509和4510。在本實施例中,薄膜電晶體4509和4510為n通道薄膜電晶體。
另外,附圖標記4511表示發光元件。作為發光元件4511所包括的像素電極的第一電極層4517電連接到薄膜電晶體4510的源極電極層或汲極電極層。注意,發光元件4511的結構為第一電極層4517、電致發光層4512、和第二電極層4513的疊層結構,但是本發明不限於本實施例所述。發光元件4511的結構可以根據從發光元件4511提取光的方向等來適當改變。
使用有機樹脂膜、無機絕緣膜、或有機聚矽氧烷形成分隔壁(partition wall)4520。特別較佳的是,分隔壁4520使用感光材料形成並且以使開口的側壁形成為具有連續曲率的傾斜表面的方式在第一電極層4517的上方形成開口。
電致發光層4512可以被形成為具有單層或層疊的多層。
保護膜可以在第二電極層4513和分隔壁4520上方形成保護膜以防止氧、氫、濕氣、或二氧化碳等進入發光元件4511。作為保護膜,可以使用氮化矽膜、氮氧化矽膜、或DLC膜等。
另外,將各種信號和電位從FPC 4018a和4518b供應到信號線驅動電路4503a和4503b、掃描線驅動電路4504a和4504b、或者像素部分4502。
在本實施例中,使用與發光元件4511所包括的第一電極層4517相同的導電膜形成連接端子電極4515,而使用與薄膜電晶體4509和4510所包括的源極和汲極電極層相同的導電膜形成端子電極4516。
連接端子電極4515經由各向異性導電膜4519電連接到FPC 4518a所包括的端子。
位於從發光元件4511中提取光的方向上的第二基板4506需要具有透光特性。在該情況中,使用透光材料,諸如玻璃板、塑膠板、聚酯膜、或丙烯酸膜。
作為填充物4507,除了惰性氣體諸如氮或氬之外, 還可以使用紫外線固化樹脂或熱固性樹脂。例如,可以使用PVC(聚氯乙烯)、丙烯酸、聚醯亞胺、環氧樹脂、矽酮樹脂、PVB(聚乙烯醇縮丁醛)、或者EVA(乙烯一醋酸乙烯)。本實施例中,氮被用於填充物4507。
另外,如果需要的話,可以適當地在發光元件的發光表面上配置光學膜,諸如偏振片、圓偏振片(包括橢圓偏振片)、延遲板(四分之一波板或半波板)、或者濾色片。另外,偏振片或者圓偏振片可以被配置有抗反射膜。例如,可以進行抗眩光處理,據此可以使反射光被表面上的凸起和凹陷所散射,以減少眩光。
信號線驅動電路4503a和4503b以及掃描線驅動電路4504a和4504b可以被配置為使用單晶半導體膜或者多晶半導體膜形成在單獨製備的基板上方的驅動電路。另外,可以只單獨形成和安裝信號線驅動電路或者其一部分、或者掃描線驅動電路或者其一部分。本實施例不限於圖24A和24B中所示的結構。
經過上述製程,可以製造高可靠性的發光顯示裝置(顯示面板)作為半導體裝置。
本實施例中所述結構可以適當地與其他實施例中的任意所述結構進行組合。
[實施例8]
採用實施例1到3的任一個所述的薄膜電晶體的半導體裝置可以應用於電子紙。電子紙可以用於各個領域的電 子裝置,只要它們能顯示資料即可。例如,根據本發明所述的電子紙可以應用於電子書(e-book)閱讀器、海報、諸如火車等交通工具中的廣告、諸如信用卡的各種卡的顯示器等等。電子裝置的示例如圖25A和25B以及圖26所示。
圖25A表示了使用電子紙形成的海報2631。在廣告媒體為印刷紙製品的情況下,廣告由人工來更換;但是,藉由使用電子紙,廣告的顯示可以在短時間內改變。另外,影像可以被穩定顯示而不會失真。注意,海報可以被構造成無線地發送和接收資料。
圖25B表示了諸如火車的交通工具中的廣告2632。在廣告媒體為印刷紙製品的情況下,廣告由人力替換;然而,藉由使用電子紙,廣告顯示可以在短時間內改變而無需大量人力。另外,影像可以被穩定顯示而不會失真。注意,交通工具中的廣告可以被構造成無線發送和接收資料。
圖26表示了電子書閱讀器2700的示例。例如,電子書閱讀器2700包括兩個殼體,殼體2701和殼體2703。殼體2701和殼體2703用鉸鏈2711組合起來,從而可以以鉸鏈2711為軸而打開和關閉電子書閱讀器2700。利用這樣的結構,電子書閱讀器2700可以像紙質書那樣操作。
顯示部分2705和顯示部分2707分別被包含在殼體2701和殼體2703中。顯示部分2705和顯示部分2707可 以被構造為顯示一幅影像或不同的影像。在顯示部分2705和顯示部分2707顯示不同的影像的情況中,例如,右側的顯示部分(圖26中的顯示部分2705)可以顯示文本而左側的顯示部分(圖26中的顯示部分2707)可以顯示影像。
圖26表示了殼體2701配置有操作部分等的示例。例如,殼體2701係配置有電源開關2721、操作鍵2723、以及揚聲器2725等。可以利用操作鍵2723來換頁。注意,在配置了顯示部分的殼體的表面上,可以配置鍵盤、或指向裝置等。另外,外部連接端子(諸如耳機端子、USB端子、或可以連接到諸如AC適配器和USB電纜等各種電纜的端子)、或記錄媒體插入部分等可以被配置於殼體的背面或側面。另外,電子書閱讀器2700可以具有電子詞典的功能。
電子書閱讀器2700可以被構造成無線地發送和接收資料。可以採用從電子書伺服器上無線地購買和下載所需書籍資料等的結構。
注意,本實施例所述的結構可以適當地與其他實施例中的任一個結構進行組合。
[實施例9]
使用實施例1到3的任一個所述的薄膜電晶體的半導體裝置可以被應用於各種電子裝置(包括遊戲機)。電子裝置的示例包括電視機(也被稱為電視或電視接收機)、 電腦的顯示器等、諸如數位相機或數位攝像機的相機、數位相框、移動式電話手機(也被稱為移動式電話或移動式電話裝置)、攜帶型遊戲機、攜帶型資訊終端、音頻再生裝置(audio reproducing device)、和大型遊戲機諸如小鋼珠遊戲機(pachinko machine)等。
圖27A表示了電視機9600的示例。在電視機9600中,顯示部分9603被包含在殼體9601中。顯示部分9603可以顯示影像。另外,此處,殼體9601由機座9605支撐。
電視機9600可以用殼體9601的或遙控器9610的操作開關操作。頻道和音量可以用遙控器9610的操作鍵9609控制,從而可以控制顯示部分9603上顯示的影像。另外,遙控器9610可以配置有顯示部分9607,用於顯示從遙控器9610輸出的資料。
注意,電視機9600配置有接收器、以及數據機等。可以利用接收器來接收通常的電視廣播。另外,當藉由數據機將電視機9600有線或無線地連接到通信網路時,可以進行單向的(從發射器到接收器)或者雙向的(發射器和接收器之間或接收器之間)資料通信。
圖27B表示了數位相框9700的示例。例如,在數位相框9700中,顯示部分9703包含在殼體9701中。顯示部分9703可以顯示各種影像。例如,顯示部分9703可以顯示由數位相機等拍攝的影像資料,其功能就像普通相框那樣。
注意,數位相框9700配置有操作部分、外部連接端子(USB端子、可以連接到諸如USB電纜等電纜的端子)、或記錄媒體插入部分等。儘管這些部件可以配置於配置有顯示部分的表面上,但是從數位相框9700的設計上考慮,較佳將它們配置側面或背面。例如,儲存由數位相機拍攝的影像資料的記憶體被插入到數位相框的記錄媒體插入部分中,由此可以傳輸影像資料然後顯示在顯示部分9703上。
數位相框9700可以被構造成無線地發送和接收資料。可以採用無線地傳輸所需的影像資料以進行顯示的結構。
圖28A為攜帶型遊戲機並且包括兩個殼體,亦即由連結部分9893連接起來的殼體9881和殼體9891,使得攜帶型遊戲機可以被打開或折疊。顯示部分9882包含在殼體9881中,而顯示部分9883包含在殼體9891中。另外,圖28A所示的攜帶型遊戲機配置有揚聲器部分9884、記錄媒體插入部分9886、LED燈9890、輸入單元(操作鍵9885、連接端子9887、以及感測器9888(其具有測量力、位移、位置、速度、加速度、角速度、轉數、距離、光、液體、磁力、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電功率、輻射線、流量、濕度、傾斜度、震動、氣味、或紅外線的功能)、和麥克風9889)等。不用說,攜帶型遊戲機的結構不限於以上所述結構。攜帶型遊戲機可以具有適當地配置了額外的附屬裝 置的結構,只要至少配置了本發明所述的半導體裝置即可。圖28A所示的攜帶型遊戲機具有閱讀儲存於儲存媒體中的程式或資料以將其顯示在顯示部分上的功能、和藉由無線通信與另一個攜帶型遊戲機共用資訊的功能。注意,圖28A所示的攜帶型遊戲機的功能不限於以上所述的那些功能,並且攜帶型遊戲機可以具有各種功能。
圖28B表示了作為大型遊戲機的拉霸機9900的示例。在拉霸機9900中,顯示部分9903包含在殼體9901中。另外,拉霸機9900配置有操作裝置諸如啟動桿和停止開關、投幣口、揚聲器等。不用說,拉霸機9900的結構不限於以上所述結構。拉霸機可以具有適當地配置了額外的附屬裝置的結構,只要至少配置了本發明所述的半導體裝置即可。
圖29A表示了移動式電話手機1000的示例。移動式電話手機1000配置有包含在殼體1001中的顯示部分1002、操作按鈕1003、外部連接埠1004、揚聲器1005、以及麥克風1006等。
當圖29A所示的移動式電話手機1000的顯示部分1002被手指等觸摸時,資料可以被輸入到移動式電話手機1000中。另外,可以藉由用手指等觸摸顯示部分1002來執行諸如打電話和發送文字資訊的操作。
顯示部分1002主要有三個螢幕模式。第一模式為顯示模式,主要用於顯示影像。第二模式為輸入模式,主要用於輸入資料例如文本。第三模式為顯示並輸入模式,其 為兩種模式的組合,亦即,顯示模式和輸入模式的組合。
例如,在打電話或發送文字資訊的情況中,為顯示部分1002選擇主要用於輸入文本的文本輸入模式,從而可以輸入螢幕上顯示的字元。在該情況中,較佳在顯示部分1002的整個螢幕區域上顯示鍵盤或數字按鈕。
當在移動式電話手機1000內部配置包括諸如陀螺儀或者加速度感測器的用以檢測傾斜度的感測器的檢測裝置時,可以藉由判斷移動式電話手機1000的方向(移動式電話手機1000是否為了風景模式或人像模式而被水平放置或垂直放置)自動改變顯示部分1002的螢幕上的顯示。
藉由觸碰顯示部分1002或使用殼體1001的操作按鈕1003改變螢幕模式。替代地,可以根據顯示部分1002上顯示的影像類型改變螢幕模式。例如,當顯示部分顯示的影像信號為移動影像資料時,螢幕模式被改變到顯示模式。當信號為一種文本資料時,螢幕模式被改變到輸入模式。
另外,在輸入模式中,當有一段時間沒有執行藉由觸摸顯示部分1002的輸入,並檢測到由顯示部分1002中的光學感測器檢測的信號時,螢幕模式可以被控制以從輸入模式改變到顯示模式。
顯示部分1002可以用作為影像感測器。例如,當用手掌或指紋觸摸顯示部分1002時,掌紋、或指紋等的影像資料被獲取,由此可以進行身份識別。另外,藉由在顯 示部分中提供背光或發出近紅外光的感光源,可以獲取指靜脈、或掌靜脈等的影像資料。
圖29B表示了移動式電話的另一個示例。圖29B中的移動式電話包括顯示裝置9410和通信裝置9400。顯示裝置9410包含在包括顯示部分9412和操作按鈕9413的殼體9411中。通信裝置9400包含在包括操作按鈕9402、外部輸入端子9403、麥克風9404、揚聲器9405、和當接收到來電時發光的發光部分9406的殼體9401中。具有顯示功能的顯示裝置9410可以在箭頭所示的兩個方向上從通信裝置9400上分離。因此,顯示裝置9410和通信裝置9400可以沿其短邊或長邊彼此附著。另外,當只需要顯示功能時,可以將通信裝置9400從顯示裝置9410上分離而單獨使用顯示裝置9410。可以藉由無線通信或有線通信在每個都具有可充電電池的通信裝置9400和顯示裝置9410之間發送和接收影像或輸入資訊。
注意,本實施例所述的結構可以適當地與其他實施例的任一個結構進行組合。
[實例1]
本實例中,說明在膜形成期間測量的氧化物半導體膜的導電率關於氧氣流量的比例的相關性的結果。
本實例中,利用濺射法形成In-Ga-Zn-O類非單晶膜,並測量In-Ga-Zn-O類非單晶膜的導電率。樣品是在氧氣流量的比例在樣品間從0體積%改變到100體積%的 條件下形成的;並且測量了藉由在樣品間改變氧氣流量的比例所形成的每個In-Ga-Zn-O類非單晶膜的導電率。注意,導電率是使用半導體參數分析儀HP4155C(安捷倫技術有限公司製造)測量的。
In-Ga-Zn-O類非單晶膜是使用直徑為8英寸的盤狀的氧化物半導體靶材,藉由濺射法形成的;其中,作為靶材,In2O3、Ga2O3、ZnO按In2O3:Ga2O3:ZnO=1:1:1(In:Ga:Zn=1:1:0.5)的比例混合。作為其他膜形成條件,基板和靶材之間的距離設為170mm;膜形成氣體的壓力設為0.4Pa;直流(DC)電源設為0.5kW;且膜形成溫度設為室溫。
作為膜形成氣體,使用氬氣和氧氣。在氬氣和氧氣中的氧氣流量的比例在樣品間從0體積%改變到100體積%的條件下執行膜形成:測量了每個In-Ga-Zn-O類非單晶膜的導電率。這樣,為了對每個In-Ga-Zn-O類非單晶膜在原子水平上執行重新排列,在形成了每個In-Ga-Zn-O類非單晶膜後,對每個In-Ga-Zn-O類非單晶膜在氮氣氛圍中在350℃下進行1小時的熱處理。
圖12表示了藉由在樣品間改變氧氣的流量比例所形成的每個In-Ga-Zn-O類非單晶膜的各個導電率。在圖12中,橫軸表示在氬氣的流量和氧氣的流量中氧氣流量的比例(體積%),而縱軸表示In-Ga-Zn-O類非單晶膜的導電率(S/cm)。表1為與圖12對應的表格,表示了氬氣的流量(sccm)、氧氣的流量(sccm)、氧氣流量的比例 (體積%)、和每個In-Ga-Zn-O類非單晶膜的導電率(S/cm)。
從圖12和表1中的結果可知,當氧氣流量的比例從0體積%到11.1體積%時,導電率顯著減小;當氧氣的流量比例從11.1體積%到40體積%時,導電率從約1.0×10-5S/cm到1.0×10-4S/cm;並且當氧氣流量的比例為40體積%或更高時,導電率逐漸減小。注意,當氧氣流量的比例從60體積%到70體積%時,導電率上的降低比較大。此處,在氧氣流量的比例為0體積%的條件下,亦即,在只使用氬氣作為膜形成氣體的條件下,導電率的最大值為6.44S/cm。在氧氣流量比例為100體積%的條件下,亦即,在只使用氧氣作為膜形成氣體的條件下,導電率的最小值為4.19×10-11S/cm。
對於形成具有更高導電率的半導體層和具有更低導電率的氧化物半導體層而言,以約10體積%為界限,氧氣流量的條件彼此不同,在該處,在圖12中,導電率的梯度變化曲線是陡峭的,由此可以使半導體層和氧化物半導體層之間在導電率之差變大。因此,當形成具有高導電率的半導體層所用的In-Ga-Zn-O類非單晶膜時,氧氣流量比例較佳設為低於10體積%,亦即,導電率較佳高於1.0×10-3S/cm。另外,當形成具有低導電率的氧化物半導體層所用的In-Ga-Zn-O類非單晶膜時,氧氣流量比例較佳設為10體積%或更高,亦即,導電率較佳為1.0×10-3S/cm或更低。
替代地,界限可以設在圖12的圖中的氧氣流量的比例的約70體積%,在該處,導電率上的降低比較大。在該情況中,當形成具有高導電率的半導體層所用的In-Ga-Zn-O類非單晶膜時,氧氣流量比例較佳設為低於70體積%,亦即,導電率較佳高於1.0×10-8S/cm。另外,當形成具有低導電率的氧化物半導體層所用的In-Ga-Zn-O類非單晶膜時,氧氣流量比例較佳設為70體積%或更高,亦即,導電率較佳為1.0×10-8S/cm或更低。
本申請案是基於2008年10月31日向日本專利局提交的第2008-281174號日本專利申請,其整體內容都藉由引用並入本文中。

Claims (9)

  1. 一種半導體裝置,包括:閘極電極;在該閘極電極上的閘極絕緣膜;在該閘極電極上的包含銦及鋅的第一非單晶氧化物半導體層,該閘極絕緣膜夾於該閘極電極與該第一非單晶氧化物半導體層之間;在該第一非單晶氧化物半導體層上的包含銦及鋅的第二非單晶氧化物半導體層,該第二非單晶氧化物半導體層具有比該第一非單晶氧化物半導體層低的導電率;在該第二非單晶氧化物半導體層上且與該第二非單晶氧化物半導體層電接觸的源極電極;在該第二非單晶氧化物半導體層上且與該第二非單晶氧化物半導體層電接觸的汲極電極;以及在該第二非單晶氧化物半導體層、該源極電極及該汲極電極上的包含矽及氧的第一絕緣膜,其中該第一絕緣膜與位於該源極電極及該汲極電極之間的該第二非單晶氧化物半導體層的上表面接觸,其中該第一非單晶氧化物半導體層薄於該第二非單晶氧化物半導體層,並且其中該第一非單晶氧化物半導體層包含結晶。
  2. 一種半導體裝置,包括:閘極電極;在該閘極電極上的閘極絕緣膜; 在該閘極電極上的包含銦及鋅的第一非單晶氧化物半導體層,該閘極絕緣膜夾於該閘極電極與該第一非單晶氧化物半導體層之間;在該第一非單晶氧化物半導體層上的包含銦及鋅的第二非單晶氧化物半導體層,該第二非單晶氧化物半導體層具有比該第一非單晶氧化物半導體層低的導電率;在該第二非單晶氧化物半導體層上且與該第二非單晶氧化物半導體層電接觸的源極電極;在該第二非單晶氧化物半導體層上且與該第二非單晶氧化物半導體層電接觸的汲極電極;以及在該第二非單晶氧化物半導體層、該源極電極及該汲極電極上的包含矽及氧的第一絕緣膜,其中部分的位於該源極電極及該汲極電極之間的該第二非單晶氧化物半導體層被蝕刻,以使位於該源極電極及該汲極電極之間的該第二非單晶氧化物半導體層的部分薄於在該源極電極及該汲極電極下的該第二非單晶氧化物半導體層的部分,其中該第一絕緣膜與位於該源極電極及該汲極電極之間的該第二非單晶氧化物半導體層的上表面接觸,其中該第一非單晶氧化物半導體層薄於該第二非單晶氧化物半導體層,並且其中該第一非單晶氧化物半導體層包含結晶。
  3. 一種半導體裝置,包括:閘極電極; 在該閘極電極上的閘極絕緣膜;在該閘極電極上的包含銦及鋅的第一非單晶氧化物半導體層,該閘極絕緣膜夾於該閘極電極與該第一非單晶氧化物半導體層之間;在該第一非單晶氧化物半導體層上的包含銦及鋅的第二非單晶氧化物半導體層,該第二非單晶氧化物半導體層具有比該第一非單晶氧化物半導體層低的導電率;在該第二非單晶氧化物半導體層上且藉由第一n型導電性區與該第二非單晶氧化物半導體層電接觸的源極電極;在該第二非單晶氧化物半導體層上且藉由第二n型導電性區與該第二非單晶氧化物半導體層電接觸的汲極電極;以及在該第二非單晶氧化物半導體層、該源極電極及該汲極電極上的包含矽及氧的第一絕緣膜,其中部分的位於該源極電極及該汲極電極之間的該第二非單晶氧化物半導體層被蝕刻,以使位於該源極電極及該汲極電極之間的該第二非單晶氧化物半導體層的部分薄於在該源極電極及該汲極電極下的該第二非單晶氧化物半導體層的部分,其中該第一絕緣膜與位於該源極電極及該汲極電極之間的該第二非單晶氧化物半導體層的上表面接觸,其中各該第一n型導電性區及該第二n型導電性區包括,包含銦的氧化物半導體材料,並且 其中該第一非單晶氧化物半導體層包含結晶。
  4. 如申請專利範圍第1至3項中之任一項的半導體裝置,其中該第一非單晶氧化物半導體層的該結晶的晶粒尺寸不大於10nm。
  5. 如申請專利範圍第1至3項中之任一項的半導體裝置,其中該第一非單晶氧化物半導體層更包含鎵,並且其中該第二非單晶氧化物半導體層更包含鎵。
  6. 如申請專利範圍第1至3項中之任一項的半導體裝置,其中各該源極電極及該汲極電極包含第一鈦層、在該第一鈦層上的導電層及在該導電層上的第二鈦層。
  7. 如申請專利範圍第1至3項中之任一項的半導體裝置,其中該第一非單晶氧化物半導體層薄於該第二非單晶氧化物半導體層。
  8. 如申請專利範圍第1至3項中之任一項的半導體裝置,其中該第一非單晶氧化物半導體層具有高於1×10 -3S/cm的導電率。
  9. 如申請專利範圍第1至3項中之任一項的半導體裝置,其中該第二非單晶氧化物半導體層具有低於1×10 17/cm 3的載子濃度。
TW107119023A 2008-10-31 2009-10-20 半導體裝置及其製造方法 TWI659474B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-281174 2008-10-31
JP2008281174 2008-10-31

Publications (2)

Publication Number Publication Date
TW201834081A true TW201834081A (zh) 2018-09-16
TWI659474B TWI659474B (zh) 2019-05-11

Family

ID=42130300

Family Applications (7)

Application Number Title Priority Date Filing Date
TW098135429A TWI501401B (zh) 2008-10-31 2009-10-20 半導體裝置及其製造方法
TW104121677A TWI567829B (zh) 2008-10-31 2009-10-20 半導體裝置及其製造方法
TW105133713A TWI606520B (zh) 2008-10-31 2009-10-20 半導體裝置及其製造方法
TW106114517A TWI633605B (zh) 2008-10-31 2009-10-20 半導體裝置及其製造方法
TW101149756A TWI496295B (zh) 2008-10-31 2009-10-20 半導體裝置及其製造方法
TW107119023A TWI659474B (zh) 2008-10-31 2009-10-20 半導體裝置及其製造方法
TW101149755A TWI478356B (zh) 2008-10-31 2009-10-20 半導體裝置及其製造方法

Family Applications Before (5)

Application Number Title Priority Date Filing Date
TW098135429A TWI501401B (zh) 2008-10-31 2009-10-20 半導體裝置及其製造方法
TW104121677A TWI567829B (zh) 2008-10-31 2009-10-20 半導體裝置及其製造方法
TW105133713A TWI606520B (zh) 2008-10-31 2009-10-20 半導體裝置及其製造方法
TW106114517A TWI633605B (zh) 2008-10-31 2009-10-20 半導體裝置及其製造方法
TW101149756A TWI496295B (zh) 2008-10-31 2009-10-20 半導體裝置及其製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW101149755A TWI478356B (zh) 2008-10-31 2009-10-20 半導體裝置及其製造方法

Country Status (5)

Country Link
US (9) US8426868B2 (zh)
JP (9) JP5514511B2 (zh)
KR (14) KR101645194B1 (zh)
CN (2) CN103107201B (zh)
TW (7) TWI501401B (zh)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627071B2 (ja) * 2008-09-01 2014-11-19 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI501401B (zh) * 2008-10-31 2015-09-21 Semiconductor Energy Lab 半導體裝置及其製造方法
TWI656645B (zh) 2008-11-13 2019-04-11 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
TWI506795B (zh) 2008-11-28 2015-11-01 Semiconductor Energy Lab 半導體裝置和其製造方法
US8441007B2 (en) 2008-12-25 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
TWI482226B (zh) * 2008-12-26 2015-04-21 Semiconductor Energy Lab 具有包含氧化物半導體層之電晶體的主動矩陣顯示裝置
JP5504008B2 (ja) 2009-03-06 2014-05-28 株式会社半導体エネルギー研究所 半導体装置
WO2011001881A1 (en) 2009-06-30 2011-01-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR102378013B1 (ko) * 2009-11-06 2022-03-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
KR102068463B1 (ko) 2009-11-28 2020-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 적층 산화물 재료, 반도체 장치 및 반도체 장치의 제작 방법
KR101714831B1 (ko) 2009-11-28 2017-03-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011065210A1 (en) * 2009-11-28 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
WO2011074379A1 (en) * 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and driving method thereof
CN109390215B (zh) 2009-12-28 2023-08-15 株式会社半导体能源研究所 制造半导体装置的方法
KR20190093706A (ko) * 2010-01-24 2019-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치와 이의 제조 방법
WO2011108346A1 (en) * 2010-03-05 2011-09-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of oxide semiconductor film and manufacturing method of transistor
DE112011101260T5 (de) * 2010-04-09 2013-05-02 Semiconductor Energy Laboratory Co., Ltd. Flüssigkristall-Anzeigevorrichtung und Verfahren zum Ansteuern derselben
WO2011125454A1 (en) 2010-04-09 2011-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8629438B2 (en) 2010-05-21 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102615409B1 (ko) * 2010-05-21 2023-12-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 펄스 출력 회로, 시프트 레지스터, 및 표시 장치
US9209314B2 (en) 2010-06-16 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor
US8766252B2 (en) * 2010-07-02 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor
WO2012008080A1 (ja) * 2010-07-14 2012-01-19 シャープ株式会社 薄膜トランジスタ基板
TWI615920B (zh) * 2010-08-06 2018-02-21 半導體能源研究所股份有限公司 半導體裝置及其製造方法
US8883555B2 (en) 2010-08-25 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Electronic device, manufacturing method of electronic device, and sputtering target
US8685787B2 (en) * 2010-08-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP5969745B2 (ja) * 2010-09-10 2016-08-17 株式会社半導体エネルギー研究所 半導体装置
US8592879B2 (en) * 2010-09-13 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8816722B2 (en) * 2010-09-13 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Current detection circuit
US8871565B2 (en) 2010-09-13 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101932576B1 (ko) 2010-09-13 2018-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US8803143B2 (en) * 2010-10-20 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor including buffer layers with high resistivity
US8569754B2 (en) 2010-11-05 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101820372B1 (ko) 2010-11-09 2018-01-22 삼성디스플레이 주식회사 표시 기판, 표시 장치 및 이의 제조 방법
TWI562379B (en) 2010-11-30 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
KR102424181B1 (ko) 2010-12-17 2022-07-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 재료 및 반도체 장치
KR20190039345A (ko) 2011-06-17 2019-04-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그의 제조 방법
US8796683B2 (en) 2011-12-23 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9553201B2 (en) 2012-04-02 2017-01-24 Samsung Display Co., Ltd. Thin film transistor, thin film transistor array panel, and manufacturing method of thin film transistor
WO2013154195A1 (en) 2012-04-13 2013-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8860022B2 (en) 2012-04-27 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
CN102709326B (zh) * 2012-04-28 2018-04-17 北京京东方光电科技有限公司 薄膜晶体管及其制造方法、阵列基板和显示装置
KR102295737B1 (ko) 2012-05-10 2021-09-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 디바이스
KR102113160B1 (ko) * 2012-06-15 2020-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9059219B2 (en) 2012-06-27 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US20140027762A1 (en) * 2012-07-27 2014-01-30 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device
JP6134598B2 (ja) 2012-08-02 2017-05-24 株式会社半導体エネルギー研究所 半導体装置
CN103594521B (zh) * 2012-08-17 2017-03-01 瀚宇彩晶股份有限公司 半导体元件
KR102102589B1 (ko) 2012-10-17 2020-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 프로그램 가능한 논리 장치
WO2014061535A1 (en) * 2012-10-17 2014-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9287411B2 (en) 2012-10-24 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI782259B (zh) 2012-10-24 2022-11-01 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
CN102891183B (zh) * 2012-10-25 2015-09-30 深圳市华星光电技术有限公司 薄膜晶体管及主动矩阵式平面显示装置
TWI661553B (zh) * 2012-11-16 2019-06-01 日商半導體能源研究所股份有限公司 半導體裝置
JP6320009B2 (ja) * 2012-12-03 2018-05-09 株式会社半導体エネルギー研究所 半導体装置及びその作製方法
JP2014135478A (ja) 2012-12-03 2014-07-24 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
TWI614813B (zh) 2013-01-21 2018-02-11 半導體能源研究所股份有限公司 半導體裝置的製造方法
JP6236792B2 (ja) * 2013-02-07 2017-11-29 凸版印刷株式会社 薄膜トランジスタとその製造方法及び画像表示装置
US9231111B2 (en) 2013-02-13 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9368636B2 (en) * 2013-04-01 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device comprising a plurality of oxide semiconductor layers
CN103346089B (zh) * 2013-06-13 2016-10-26 北京大学深圳研究生院 一种自对准双层沟道金属氧化物薄膜晶体管及其制作方法
JP6426379B2 (ja) * 2013-06-19 2018-11-21 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2015035506A (ja) * 2013-08-09 2015-02-19 株式会社東芝 半導体装置
US9276128B2 (en) * 2013-10-22 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and etchant used for the same
TWI663726B (zh) 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. 半導體裝置、模組及電子裝置
CN112038410A (zh) * 2014-07-15 2020-12-04 株式会社半导体能源研究所 半导体装置及其制造方法以及包括半导体装置的显示装置
KR20160017795A (ko) 2014-08-05 2016-02-17 삼성디스플레이 주식회사 박막 트랜지스터 기판, 이의 제조 방법, 및 박막 트랜지스터 기판을 포함하는 표시 장치
JP2016111677A (ja) * 2014-09-26 2016-06-20 株式会社半導体エネルギー研究所 半導体装置、無線センサ、及び電子機器
US20160155803A1 (en) * 2014-11-28 2016-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device, Method for Manufacturing the Semiconductor Device, and Display Device Including the Semiconductor Device
KR102260886B1 (ko) * 2014-12-10 2021-06-07 삼성디스플레이 주식회사 박막 트랜지스터
JP2016146422A (ja) * 2015-02-09 2016-08-12 株式会社ジャパンディスプレイ 表示装置
US10439068B2 (en) 2015-02-12 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US10147823B2 (en) * 2015-03-19 2018-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20160114511A (ko) 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
US9806200B2 (en) 2015-03-27 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10714633B2 (en) 2015-12-15 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
CN105576038A (zh) * 2016-01-12 2016-05-11 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、显示基板和显示装置
US9806179B2 (en) * 2016-01-14 2017-10-31 Hon Hai Precision Industry Co., Ltd. Method for fabricating conducting structure and thin film transistor array panel
JP6747247B2 (ja) * 2016-01-29 2020-08-26 日立金属株式会社 半導体装置および半導体装置の製造方法
KR20180123028A (ko) 2016-03-11 2018-11-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장비, 상기 반도체 장치의 제작 방법, 및 상기 반도체 장치를 포함하는 표시 장치
US20170301699A1 (en) * 2016-04-13 2017-10-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
KR20170126398A (ko) 2016-05-09 2017-11-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 상기 반도체 장치를 갖는 표시 장치
TWI737665B (zh) 2016-07-01 2021-09-01 日商半導體能源硏究所股份有限公司 半導體裝置以及半導體裝置的製造方法
TWI754542B (zh) 2016-07-11 2022-02-01 日商半導體能源研究所股份有限公司 濺射靶材及金屬氧化物
TWI811761B (zh) 2016-07-11 2023-08-11 日商半導體能源研究所股份有限公司 金屬氧化物及半導體裝置
JP2019075928A (ja) * 2017-10-18 2019-05-16 シャープ株式会社 太陽電池モジュールおよび太陽光発電システム
JP2019109429A (ja) * 2017-12-20 2019-07-04 株式会社ジャパンディスプレイ 表示装置
WO2019150224A1 (ja) * 2018-02-01 2019-08-08 株式会社半導体エネルギー研究所 表示装置および電子機器
US11387330B2 (en) 2018-03-12 2022-07-12 Semiconductor Energy Laboratory Co., Ltd. Metal oxide and transistor including metal oxide

Family Cites Families (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160170A (ja) * 1984-01-31 1985-08-21 Seiko Instr & Electronics Ltd 薄膜トランジスタ
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JP2585118B2 (ja) 1990-02-06 1997-02-26 株式会社半導体エネルギー研究所 薄膜トランジスタの作製方法
DE69107101T2 (de) 1990-02-06 1995-05-24 Semiconductor Energy Lab Verfahren zum Herstellen eines Oxydfilms.
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3184853B2 (ja) 1993-06-24 2001-07-09 株式会社日立製作所 液晶表示装置
JPH0745833A (ja) * 1993-07-26 1995-02-14 Nec Corp 電界効果薄膜型トランジスタ素子の製造方法
US5648293A (en) 1993-07-22 1997-07-15 Nec Corporation Method of growing an amorphous silicon film
JPH08236775A (ja) 1995-03-01 1996-09-13 Toshiba Corp 薄膜トランジスタおよびその製造方法
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
EP0820644B1 (en) 1995-08-03 2005-08-24 Koninklijke Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP2762968B2 (ja) * 1995-09-28 1998-06-11 日本電気株式会社 電界効果型薄膜トランジスタの製造方法
US5847410A (en) 1995-11-24 1998-12-08 Semiconductor Energy Laboratory Co. Semiconductor electro-optical device
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
KR100269518B1 (ko) * 1997-12-29 2000-10-16 구본준 박막트랜지스터 제조방법
JPH11338439A (ja) 1998-03-27 1999-12-10 Semiconductor Energy Lab Co Ltd 半導体表示装置の駆動回路および半導体表示装置
JP2000002892A (ja) 1998-04-17 2000-01-07 Toshiba Corp 液晶表示装置、マトリクスアレイ基板およびその製造方法
KR100320661B1 (ko) 1998-04-17 2002-01-17 니시무로 타이죠 액정표시장치, 매트릭스 어레이기판 및 그 제조방법
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000124456A (ja) 1998-10-12 2000-04-28 Shoka Kagi Kofun Yugenkoshi 高エネルギーギャップオフセット層構造を有するtft素子
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4118484B2 (ja) 2000-03-06 2008-07-16 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2002016679A1 (fr) * 2000-08-18 2002-02-28 Tohoku Techno Arch Co., Ltd. Matiere semi-conductrice polycristalline
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
TW577176B (en) 2003-03-31 2004-02-21 Ind Tech Res Inst Structure of thin-film transistor, and the manufacturing method thereof
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
TWI399580B (zh) 2003-07-14 2013-06-21 Semiconductor Energy Lab 半導體裝置及顯示裝置
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
JP2005140984A (ja) 2003-11-06 2005-06-02 Seiko Epson Corp プロジェクタ
JP2005203656A (ja) * 2004-01-19 2005-07-28 Ulvac Japan Ltd 薄膜トランジスタ及び薄膜トランジスタの製造方法
CN1998087B (zh) * 2004-03-12 2014-12-31 独立行政法人科学技术振兴机构 非晶形氧化物和薄膜晶体管
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
MY148646A (en) * 2004-05-10 2013-05-15 Abgenomics Cooperatief Ua Anti-psgl-1 antibodies
WO2005115060A1 (en) * 2004-05-21 2005-12-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
JP4700317B2 (ja) 2004-09-30 2011-06-15 株式会社半導体エネルギー研究所 表示装置の作製方法
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
KR100911698B1 (ko) 2004-11-10 2009-08-10 캐논 가부시끼가이샤 비정질 산화물을 사용한 전계 효과 트랜지스터
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
JP5118810B2 (ja) * 2004-11-10 2013-01-16 キヤノン株式会社 電界効果型トランジスタ
EP2453480A2 (en) 2004-11-10 2012-05-16 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
RU2358354C2 (ru) * 2004-11-10 2009-06-10 Кэнон Кабусики Кайся Светоизлучающее устройство
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
JP5138163B2 (ja) 2004-11-10 2013-02-06 キヤノン株式会社 電界効果型トランジスタ
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI481024B (zh) 2005-01-28 2015-04-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI472037B (zh) 2005-01-28 2015-02-01 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
JP4772395B2 (ja) 2005-06-24 2011-09-14 三菱電機株式会社 電気光学表示装置およびその製造方法
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
KR100851131B1 (ko) 2005-08-17 2008-08-08 가부시키가이샤 고베 세이코쇼 소스/드레인 전극, 박막 트랜지스터 기판, 그의 제조방법,및 표시 디바이스
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4732080B2 (ja) 2005-09-06 2011-07-27 キヤノン株式会社 発光素子
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4981282B2 (ja) * 2005-09-06 2012-07-18 キヤノン株式会社 薄膜トランジスタの製造方法
KR100729043B1 (ko) 2005-09-14 2007-06-14 삼성에스디아이 주식회사 투명 박막 트랜지스터 및 그의 제조방법
KR100786498B1 (ko) * 2005-09-27 2007-12-17 삼성에스디아이 주식회사 투명박막 트랜지스터 및 그 제조방법
EP1998374A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
CN101283388B (zh) 2005-10-05 2011-04-13 出光兴产株式会社 Tft基板及tft基板的制造方法
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
CN101667544B (zh) 2005-11-15 2012-09-05 株式会社半导体能源研究所 半导体器件及其制造方法
JP5250929B2 (ja) * 2005-11-30 2013-07-31 凸版印刷株式会社 トランジスタおよびその製造方法
JP5244295B2 (ja) * 2005-12-21 2013-07-24 出光興産株式会社 Tft基板及びtft基板の製造方法
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP4867630B2 (ja) * 2006-02-16 2012-02-01 セイコーエプソン株式会社 金属粉末製造装置および金属粉末
JP5110803B2 (ja) 2006-03-17 2012-12-26 キヤノン株式会社 酸化物膜をチャネルに用いた電界効果型トランジスタ及びその製造方法
JP5196813B2 (ja) 2006-03-20 2013-05-15 キヤノン株式会社 アモルファス酸化物膜をゲート絶縁層に用いた電界効果型トランジスタ
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
US8900970B2 (en) 2006-04-28 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device using a flexible substrate
JP5364242B2 (ja) * 2006-04-28 2013-12-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5105044B2 (ja) 2006-05-09 2012-12-19 株式会社ブリヂストン 酸化物トランジスタ及びその製造方法
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP5127183B2 (ja) 2006-08-23 2013-01-23 キヤノン株式会社 アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
KR100829570B1 (ko) 2006-10-20 2008-05-14 삼성전자주식회사 크로스 포인트 메모리용 박막 트랜지스터 및 그 제조 방법
TWI442368B (zh) 2006-10-26 2014-06-21 Semiconductor Energy Lab 電子裝置,顯示裝置,和半導體裝置,以及其驅動方法
JP2008134625A (ja) 2006-10-26 2008-06-12 Semiconductor Energy Lab Co Ltd 半導体装置、表示装置及び電子機器
KR101425635B1 (ko) * 2006-11-29 2014-08-06 삼성디스플레이 주식회사 산화물 박막 트랜지스터 기판의 제조 방법 및 산화물 박막트랜지스터 기판
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140984A (ja) * 2006-12-01 2008-06-19 Sharp Corp 半導体素子、半導体素子の製造方法、及び表示装置
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
EP1950804A2 (en) 2007-01-26 2008-07-30 Samsung Electronics Co., Ltd. Display device and manufacturing method of the same
KR20080070313A (ko) 2007-01-26 2008-07-30 삼성전자주식회사 표시 장치와 그 제조방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR101312259B1 (ko) 2007-02-09 2013-09-25 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
JP5415001B2 (ja) 2007-02-22 2014-02-12 株式会社半導体エネルギー研究所 半導体装置
JP5121254B2 (ja) 2007-02-28 2013-01-16 キヤノン株式会社 薄膜トランジスタおよび表示装置
KR100858088B1 (ko) * 2007-02-28 2008-09-10 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
JP5244331B2 (ja) * 2007-03-26 2013-07-24 出光興産株式会社 非晶質酸化物半導体薄膜、その製造方法、薄膜トランジスタの製造方法、電界効果型トランジスタ、発光装置、表示装置及びスパッタリングターゲット
JP5465825B2 (ja) * 2007-03-26 2014-04-09 出光興産株式会社 半導体装置、半導体装置の製造方法及び表示装置
JP4727684B2 (ja) * 2007-03-27 2011-07-20 富士フイルム株式会社 薄膜電界効果型トランジスタおよびそれを用いた表示装置
JP2008276211A (ja) 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置およびパターニング方法
JP2008276212A (ja) * 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5339772B2 (ja) * 2007-06-11 2013-11-13 富士フイルム株式会社 電子ディスプレイ
TWI453915B (zh) 2007-09-10 2014-09-21 Idemitsu Kosan Co Thin film transistor
CN100530607C (zh) * 2007-12-11 2009-08-19 西安交通大学 一种ZnO基透明薄膜晶体管阵列的制备方法
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
JP4555358B2 (ja) 2008-03-24 2010-09-29 富士フイルム株式会社 薄膜電界効果型トランジスタおよび表示装置
KR100941850B1 (ko) 2008-04-03 2010-02-11 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
KR20090124527A (ko) 2008-05-30 2009-12-03 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
KR100963026B1 (ko) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
KR100963027B1 (ko) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
TWI570937B (zh) 2008-07-31 2017-02-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
JP5345456B2 (ja) 2008-08-14 2013-11-20 富士フイルム株式会社 薄膜電界効果型トランジスタ
CN103545342B (zh) * 2008-09-19 2018-01-26 株式会社半导体能源研究所 半导体装置
TWI501401B (zh) 2008-10-31 2015-09-21 Semiconductor Energy Lab 半導體裝置及其製造方法
TWI656645B (zh) 2008-11-13 2019-04-11 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
TWI506795B (zh) * 2008-11-28 2015-11-01 Semiconductor Energy Lab 半導體裝置和其製造方法
KR101343570B1 (ko) * 2008-12-18 2013-12-20 한국전자통신연구원 보론이 도핑된 산화물 반도체 박막을 적용한 박막 트랜지스터 및 그의 제조방법
KR101648927B1 (ko) * 2009-01-16 2016-08-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US8492756B2 (en) * 2009-01-23 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8704216B2 (en) 2009-02-27 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8450144B2 (en) * 2009-03-26 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2011054812A (ja) * 2009-09-03 2011-03-17 Hitachi Ltd 薄膜トランジスタおよびその製造方法
EP2428994A1 (en) * 2010-09-10 2012-03-14 Applied Materials, Inc. Method and system for depositing a thin-film transistor
JP2013149953A (ja) * 2011-12-20 2013-08-01 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法

Also Published As

Publication number Publication date
KR20180095789A (ko) 2018-08-28
JP6552573B2 (ja) 2019-07-31
JP7451640B2 (ja) 2024-03-18
TW201705307A (zh) 2017-02-01
TW201314915A (zh) 2013-04-01
TWI496295B (zh) 2015-08-11
KR20140135925A (ko) 2014-11-27
CN101728435A (zh) 2010-06-09
KR102293971B1 (ko) 2021-08-27
US20170207349A1 (en) 2017-07-20
JP2017135391A (ja) 2017-08-03
JP2010135766A (ja) 2010-06-17
JP6227703B2 (ja) 2017-11-08
KR20100048925A (ko) 2010-05-11
JP2018022920A (ja) 2018-02-08
TW201314916A (zh) 2013-04-01
US9842942B2 (en) 2017-12-12
KR20210105860A (ko) 2021-08-27
KR20170121139A (ko) 2017-11-01
JP2022179547A (ja) 2022-12-02
US20130087785A1 (en) 2013-04-11
JP2017098584A (ja) 2017-06-01
KR101615877B1 (ko) 2016-04-27
JP5514511B2 (ja) 2014-06-04
US9349874B2 (en) 2016-05-24
KR102367525B1 (ko) 2022-02-25
JP2021100144A (ja) 2021-07-01
CN101728435B (zh) 2014-06-25
US20160247930A1 (en) 2016-08-25
JP6220999B2 (ja) 2017-10-25
KR101793000B1 (ko) 2017-11-02
US8759167B2 (en) 2014-06-24
US20180197994A1 (en) 2018-07-12
TWI478356B (zh) 2015-03-21
KR102615835B1 (ko) 2023-12-21
US9911860B2 (en) 2018-03-06
TWI567829B (zh) 2017-01-21
US8426868B2 (en) 2013-04-23
JP2016149572A (ja) 2016-08-18
TW201539582A (zh) 2015-10-16
JP6856711B2 (ja) 2021-04-07
TWI501401B (zh) 2015-09-21
KR20180043778A (ko) 2018-04-30
US10269978B2 (en) 2019-04-23
TWI659474B (zh) 2019-05-11
US11107928B2 (en) 2021-08-31
KR101425848B1 (ko) 2014-07-31
TW201730984A (zh) 2017-09-01
TWI606520B (zh) 2017-11-21
TWI633605B (zh) 2018-08-21
KR20220025785A (ko) 2022-03-03
KR101891958B1 (ko) 2018-08-28
KR101645194B1 (ko) 2016-08-03
KR20200123763A (ko) 2020-10-30
KR20220098104A (ko) 2022-07-11
KR101493304B1 (ko) 2015-02-13
US20130089950A1 (en) 2013-04-11
US20140246673A1 (en) 2014-09-04
US20100109003A1 (en) 2010-05-06
KR20190100135A (ko) 2019-08-28
US8633492B2 (en) 2014-01-21
KR102069162B1 (ko) 2020-01-22
JP6181333B2 (ja) 2017-08-16
KR101852561B1 (ko) 2018-04-27
KR20160094912A (ko) 2016-08-10
JP2014168073A (ja) 2014-09-11
KR102015265B1 (ko) 2019-08-28
KR102171572B1 (ko) 2020-10-29
US20210359134A1 (en) 2021-11-18
KR20130006725A (ko) 2013-01-17
TW201034199A (en) 2010-09-16
JP2019176181A (ja) 2019-10-10
KR20130006724A (ko) 2013-01-17
KR20200007067A (ko) 2020-01-21
US20190245094A1 (en) 2019-08-08
KR102416662B1 (ko) 2022-07-05
CN103107201B (zh) 2016-12-07
CN103107201A (zh) 2013-05-15
US11594643B2 (en) 2023-02-28

Similar Documents

Publication Publication Date Title
KR102367525B1 (ko) 반도체 장치 및 그 제작 방법
JP6360874B2 (ja) 半導体装置
US9419113B2 (en) Semiconductor device and manufacturing method thereof
JP6050876B2 (ja) 半導体装置の作製方法
TWI656645B (zh) 半導體裝置及其製造方法
US8338226B2 (en) Method for manufacturing semiconductor device