JP7258995B2 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP7258995B2
JP7258995B2 JP2021201774A JP2021201774A JP7258995B2 JP 7258995 B2 JP7258995 B2 JP 7258995B2 JP 2021201774 A JP2021201774 A JP 2021201774A JP 2021201774 A JP2021201774 A JP 2021201774A JP 7258995 B2 JP7258995 B2 JP 7258995B2
Authority
JP
Japan
Prior art keywords
layer
oxide
film
transistor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021201774A
Other languages
English (en)
Other versions
JP2022046535A (ja
Inventor
舜平 山崎
真之 坂倉
了介 渡邊
淳一郎 坂田
健吾 秋元
昭治 宮永
拓也 廣橋
英幸 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2022046535A publication Critical patent/JP2022046535A/ja
Priority to JP2023061121A priority Critical patent/JP2023090720A/ja
Application granted granted Critical
Publication of JP7258995B2 publication Critical patent/JP7258995B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Description

半導体装置、およびそれを用いた表示装置及び電子機器に関する。
近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数nm以上数百nm以下程
度)を用いて薄膜トランジスタ(TFT)を構成する技術が注目されている。薄膜トラン
ジスタはICや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置の
スイッチング素子として開発が急がれている。金属酸化物は多様に存在しさまざまな用途
に用いられている。酸化インジウムはよく知られた材料であり、液晶ディスプレイなどで
必要とされる透明電極材料として用いられている。
金属酸化物の中には半導体特性を示すものがある。半導体特性を示す金属酸化物としては
、例えば、酸化タングステン、酸化スズ、酸化インジウム、酸化亜鉛などがあり、このよ
うな半導体特性を示す金属酸化物をチャネル形成領域とする薄膜トランジスタが既に知ら
れている(特許文献1及び特許文献2)。
また、酸化物半導体を適用したTFTは、電界効果移動度が高い。そのため、当該TFT
を用いて、表示装置などの駆動回路を構成することもできる。
特開2007-123861号公報 特開2007-96055号公報
絶縁表面上に複数の異なる回路を形成する場合、例えば、画素部と駆動回路を同一基板上
に形成する場合には、画素部に用いる薄膜トランジスタは、優れたスイッチング特性、例
えばオンオフ比が大きいことが要求され、駆動回路に用いる薄膜トランジスタには動作速
度が速いことが要求される。特に、表示装置の精細度が高精細であればあるほど、表示画
像の書き込み時間が短くなるため、駆動回路に用いる薄膜トランジスタは速い動作速度と
することが好ましい。
本発明の一態様は、電気特性が良好で信頼性の高い薄膜トランジスタ及び当該薄膜トラン
ジスタをスイッチング素子として用いた表示装置を提供することを課題とする。
本発明の一態様の半導体装置は、基板上にゲート電極層と、ゲート電極層上にゲート絶縁
層と、ゲート絶縁層上に酸化物半導体層と、酸化物半導体層の一部と接する酸化物絶縁層
と、酸化物半導体層の一部と接するソース電極層及びドレイン電極層と、を有し、酸化物
半導体層において、ソース電極層と酸化物絶縁層の間の領域と、ドレイン電極層と酸化物
絶縁層の間の領域と、は、ソース電極層と重なる領域、酸化物絶縁層と重なる領域、及び
ドレイン電極層と重なる領域よりも薄い膜厚を有することを特徴とする。
また、酸化物絶縁層と接する酸化物半導体層の表層部は、結晶領域を有することを特徴と
する。
上記構成において、半導体装置に含まれるゲート電極層、ソース電極層及びドレイン電極
層は、アルミニウム、銅、モリブデン、チタン、クロム、タンタル、タングステン、ネオ
ジム、スカンジウムから選ばれた金属元素を主成分とする膜、若しくはそれらの合金膜を
組み合わせた積層膜を用いる。また、ソース電極層及びドレイン電極層は、上述した元素
を含む単層に限定されず、二層以上の積層を用いることができる。
また、酸化インジウム、酸化インジウム酸化スズ合金、酸化インジウム酸化亜鉛合金、酸
化亜鉛、酸化亜鉛アルミニウム、酸窒化亜鉛アルミニウム、または酸化亜鉛ガリウム等の
透光性を有する酸化物導電層をソース電極層、ドレイン電極層及びゲート電極層に用いる
ことで画素部の透光性を向上させ、開口率を高くすることもできる。
また、ソース電極層及びドレイン電極層を構成する上記金属元素を主成分とする膜と酸化
物半導体層のそれぞれの間に上記酸化物導電層を形成することで、接触抵抗を低減した高
速動作が可能な半導体装置を構成することもできる。
上記構成において、半導体装置は、酸化物半導体層を有し、該酸化物半導体層上に酸化物
絶縁層を有し、酸化物半導体層のチャネル形成領域上に接する酸化物絶縁層はチャネル保
護層として機能する。
また、上記構成において、半導体装置のチャネル保護層として機能する酸化物絶縁層はス
パッタ法によって形成される無機絶縁膜を用い、代表的には酸化珪素膜、窒化酸化珪素膜
、酸化アルミニウム膜、または酸化窒化アルミニウムなどを用いる。
なお、酸化物半導体層としては、InMO(ZnO)(m>0、且つ、mは整数でな
い)で表記される薄膜を形成し、その薄膜を酸化物半導体層として用いた薄膜トランジス
タを作製する。なお、Mは、Ga、Fe、Ni、Mn及びCoから選ばれた一の金属元素
または複数の金属元素を示す。例えばMとして、Gaの場合があることの他、GaとNi
またはGaとFeなど、Ga以外の上記金属元素が含まれる場合がある。また、上記酸化
物半導体において、Mとして含まれる金属元素の他に、不純物元素としてFe、Niその
他の遷移金属元素、または該遷移金属の酸化物が含まれているものがある。本明細書にお
いては、InMO(ZnO)(m>0、且つ、mは整数でない)で表記される構造の
酸化物半導体層のうち、MとしてGaを含む構造の酸化物半導体をIn-Ga-Zn-O
系酸化物半導体とよび、その薄膜をIn-Ga-Zn-O系膜とも呼ぶ。
また、酸化物半導体層に適用する金属酸化物として上記の他にも、In-Sn-O系、I
n-Sn-Zn-O系、In-Al-Zn-O系、Sn-Ga-Zn-O系、Al-Ga
-Zn-O系、Sn-Al-Zn-O系、In-Zn-O系、Sn-Zn-O系、Al-
Zn-O系、In-O系、Sn-O系、またはZn-O系の金属酸化物を適用することが
できる。また上記金属酸化物からなる酸化物半導体層に酸化珪素を含ませてもよい。
また、酸化物半導体層には、RTA法等で高温短時間の脱水または脱水素化処理をしたも
のを用いる。RTA法等による加熱工程により、酸化物半導体層の表層部は粒子サイズが
1nm以上20nm以下の所謂ナノクリスタルで構成された結晶領域を有するようになり
、その他の部分は非晶質、または、非晶質領域中に微結晶が点在した非晶質と微結晶の混
合物となる。
この様な構成をした酸化物半導体層を用いることにより、表層部からの水分の再侵入や酸
素の脱離によるN型化による電気特性の劣化を防止することができる。また、酸化物半導
体層の表層部は、バックチャネル側であり、ナノクリスタルで構成された結晶領域を有す
ることで寄生チャネルの発生を抑えることができる。
また、脱水または脱水素化後に酸化物半導体層を島状に形成する場合は、側面部には結晶
領域は形成されず、側面部を除く表層部のみに結晶領域が形成されるが、側面部の面積比
率は小さく、上記効果を妨げることはない。
また、本発明の一態様である薄膜トランジスタを用いて、駆動回路部及び画素部を同一基
板上に形成し、EL素子、液晶素子または電気泳動素子などを用いて表示装置を作製する
ことができる。
本発明の一態様である表示装置においては、画素部に複数の薄膜トランジスタを有し、画
素部においてもある薄膜トランジスタのゲート電極と他の薄膜トランジスタのソース配線
、或いはドレイン配線を接続させる箇所を有している。また、本発明の一態様である表示
装置の駆動回路においては、薄膜トランジスタのゲート電極とその薄膜トランジスタのソ
ース配線、或いはドレイン配線を接続させる箇所を有している。
また、薄膜トランジスタは静電気などにより破壊されやすいため、ゲート線またはソース
線に対して、画素部の薄膜トランジスタの保護用の保護回路を同一基板上に設けることが
好ましい。保護回路は、酸化物半導体層を用いた非線形素子を用いて構成することが好ま
しい。
なお、第1、第2として付される序数詞は便宜上用いるものであり、工程順又は積層順を
示すものではない。また、本明細書において発明を特定するための事項として固有の名称
を示すものではない。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置
全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
酸化物半導体層を用いた薄膜トランジスタにおいて、該酸化物半導体層のチャネル形成領
域の表層部に結晶領域を有する構成とすることによって、電気特性が良好で信頼性の高い
薄膜トランジスタ及び表示装置を作製することができる。
本発明の一態様を説明する断面図。 本発明の一態様を説明する断面工程図。 本発明の一態様を説明する上面図。 本発明の一態様を説明する断面図及び上面図。 本発明の一態様を説明する断面図及び上面図。 本発明の一態様を説明する断面工程図。 半導体装置のブロック図を説明する図。 信号線駆動回路の回路図およびタイミングチャート。 シフトレジスタの構成を示す回路図。 シフトレジスタの動作を説明する回路図及びタイミングチャート。 本発明の一態様を説明する平面図及び断面図。 本発明の一態様を説明する断面図。 本発明の一態様を説明する断面図。 半導体装置の画素等価回路を説明する図。 本発明の一態様を説明する断面図。 本発明の一態様を説明する平面図及び断面図。 電子ペーパーの使用形態の例を説明する図。 電子書籍の一例を示す外観図。 テレビジョン装置およびデジタルフォトフレームの例を示す外観図。 遊技機の例を示す外観図。 携帯電話機の一例を示す外観図。 本発明の一態様を説明する断面図。 酸化物半導体の結晶構造の一例を説明する図。 科学計算の概要を説明する図。 科学計算の概要を説明する図。 科学計算の結果を説明する図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定さ
れず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し
得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の
記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において
、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、
その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、薄膜トランジスタの構造について、図1を用いて説明する。
本実施の形態のチャネル保護型の薄膜トランジスタを図1に示す。
図1に示す薄膜トランジスタ470は、絶縁表面を有する基板400上にゲート電極層4
21a、ゲート絶縁層402、チャネル形成領域を含む酸化物半導体層423、ソース電
極層425a、ドレイン電極層425b、及びチャネル保護層として機能する酸化物絶縁
層426aが設けられている。
ゲート電極層421aは、アルミニウム、銅、モリブデン、チタン、クロム、タンタル、
タングステン、ネオジム、スカンジウムなどの金属材料、またはこれらの金属材料を主成
分とする合金材料、またはこれらの金属材料を成分とする窒化物を用いて、単層又は積層
で形成することができる。好ましくはアルミニウムや銅などの低抵抗金属材料での形成が
有効であるが、耐熱性や腐食性の問題から高融点金属材料と組み合わせて用いると良い。
高融点金属材料としては、モリブデン、チタン、クロム、タンタル、タングステン、ネオ
ジム、スカンジウム等を用いることができる。
また、画素部の開口率を向上させることを目的として、ゲート電極層421aに酸化イン
ジウム、酸化インジウム酸化スズ合金、酸化インジウム酸化亜鉛合金、酸化亜鉛、酸化亜
鉛アルミニウム、酸窒化亜鉛アルミニウム、または酸化亜鉛ガリウム等の透光性を有する
酸化物導電層を用いることもできる。
ゲート絶縁層402はCVD法やスパッタ法などで形成する酸化シリコン、酸化窒化シリ
コン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化タンタルなどの単層膜
または積層膜を用いることができる。
酸化物半導体層423は、In、Ga、及びZnを含むIn-Ga-Zn-O系膜を用い
、InMO(ZnO)(m>0)で表記される構造とする。なお、Mは、ガリウム(
Ga)、鉄(Fe)、ニッケル(Ni)、マンガン(Mn)及びコバルト(Co)から選
ばれた一の金属元素又は複数の金属元素を示す。例えばMとして、Gaの場合があること
の他、GaとNi又はGaとFeなど、Ga以外の上記金属元素が含まれる場合がある。
また、上記酸化物半導体において、Mとして含まれる金属元素の他に、不純物元素として
Fe、Niその他の遷移金属元素、又は該遷移金属の酸化物が含まれているものがある。
酸化物半導体層423はスパッタ法を用いて形成する。膜厚は、10nm以上300nm
以下とし、好ましくは20nm以上100nm以下とする。但し、図1に示すように、酸
化物半導体層423は、ソース電極層425aと酸化物絶縁層426aの間の第3領域4
24cと、ドレイン電極層425bと酸化物絶縁層426aの間の第4領域424dとが
、ソース電極層425aと重なる第1領域424a、酸化物絶縁層426aと重なる第5
領域424e、及びドレイン電極層425bと重なる第2領域424bよりも薄い膜厚を
有している。
酸化物半導体層423は、RTA(Rapid Thermal Anneal)法等で
高温短時間の脱水化または脱水素化処理をしたものを用いる。脱水化または脱水素化処理
は、高温の窒素、または希ガス等の不活性ガスや光を用いて500℃以上750℃以下(
若しくはガラス基板の歪点以下の温度)で1分間以上10分間以下程度、好ましくは65
0℃、3分間以上6分間以下程度のRTA処理で行うことができる。RTA法を用いれば
、短時間に脱水化または脱水素化が行えるため、ガラス基板の歪点を超える温度でも処理
することができる。
酸化物半導体層423は、成膜された段階では多くの未結合手を有する非晶質であるが、
上記脱水化または脱水素化処理の加熱工程を行うことで、近距離にある未結合手同士が結
合し合い、秩序化された非晶質構造とすることができる。また、秩序化が発展すると、非
晶質領域中に微結晶が点在した非晶質と微結晶の混合物、または全体が非晶質で形成され
るようになる。ここで、微結晶の粒子サイズは1nm以上20nm以下の所謂ナノクリス
タルであり、一般的にマイクロクリスタルと呼ばれる微結晶粒子よりも小さいサイズであ
る。
また、酸化物絶縁層426aと重なる、酸化物半導体層423の第5領域424eでは、
酸化物半導体層423の表層部は、結晶領域となり、層表面に対し垂直方向にc軸配向を
したナノクリスタルが形成されることが好ましく、この場合、c軸方向に長軸を有し、短
軸方向は1nm以上20nm以下となる。
この様な構成をした酸化物半導体層を用いることにより、チャネル形成領域の表層部はナ
ノクリスタルで構成された緻密な結晶領域が存在するため、表層部からの水分の再侵入や
酸素の脱離によるN型化による電気特性の劣化を防止することができる。また、チャネル
形成領域において酸化物半導体層の表層部は、バックチャネル側であり、N型化の防止は
寄生チャネルの抑制にも効果がある。
ここで、In-Ga-Zn-O系膜は、用いる金属酸化物ターゲットによって、成長しや
すい結晶構造が異なる。例えば、モル数比がIn:Ga:ZnO=1:1:
0.5となるIn、Ga、及びZnを含む金属酸化物ターゲットを用いてIn-Ga-Z
n-O系膜を成膜し、加熱工程を経て結晶化させた場合、In酸化物層の間にはGaとZ
nを含む1層または2層の酸化物層が混在する六方晶系層状化合物型の結晶構造となりや
すい。このとき、結晶領域の結晶構造は、InGaZnOで表される構造(図23
参照)をとりやすい。また、酸化物半導体層中の非晶質又は非晶質と微結晶とが混在して
いる領域の構造のモル数比は、In:Ga:Zn=1:1:0.5となりやすい。また、
モル数比がIn:Ga:ZnO=1:1:1となる金属酸化物ターゲットを
用いて成膜し、加熱工程を経て結晶化させた場合は、In酸化物層の間のGaとZnを含
む酸化物層は2層となりやすい。安定な結晶構造は後者のGaとZnを含む酸化物層が2
層のものであり、結晶成長も起こりやすく、モル数比がIn:Ga:ZnO
=1:1:1のターゲットを用いて成膜し、加熱工程を経て結晶化させた場合は、表層か
らゲート絶縁層界面までつながった結晶が形成されることがある。なお、モル数比は原子
数比と言い換えても良い。
本実施の形態においては、ソース電極層425a及びドレイン電極層425bは、第1の
導電層、第2の導電層、および第3の導電層からなる3層構造とする。これらの材料とし
ては、前述したゲート電極層421aと同様の材料を適宜用いることができる。
また、ゲート電極層421aと同様に前述の透光性を有する酸化物導電層をソース電極層
425a及びドレイン電極層425bに用いることで画素部の透光性を向上させ、開口率
を高くすることもできる。
また、ソース電極層425a及びドレイン電極層425bとなる前述の金属材料を主成分
とする膜と酸化物半導体層423のそれぞれの間に前述の酸化物導電層を形成し、接触抵
抗を低減させることもできる。
酸化物半導体層423上には、酸化物半導体層423の一部と接して、チャネル保護層と
して機能する酸化物絶縁層426aを有する。酸化物絶縁層にはスパッタ法を用いる無機
絶縁膜を用い、代表的には酸化珪素膜、窒化酸化珪素膜、酸化アルミニウム膜、または酸
化窒化アルミニウムなどを用いる。
また、図1ではチャネル保護層として機能する酸化物絶縁層426aと、ゲート電極層と
がゲート絶縁層402を介して重なる酸化物半導体層の第5領域424eをチャネル形成
領域と呼ぶこととする。なお、薄膜トランジスタのチャネル長Lは、ソース電極層とドレ
イン電極層との距離で定義されるが、チャネル保護型の薄膜トランジスタ470のチャネ
ル長Lは、キャリアの流れる方向と平行な方向の酸化物絶縁層426aの幅と等しい。な
お、薄膜トランジスタ470のチャネル長Lは、酸化物半導体層423と酸化物絶縁層4
26aとの界面における長さ、即ち、図1に示す断面図において酸化物絶縁層426aは
台形として示しており、その台形の底辺の長さである。
また、チャネル保護型の薄膜トランジスタにおいて、チャネル形成領域のチャネル長Lを
短くするために、酸化物絶縁層の幅を狭くして、該幅の狭い酸化物絶縁層上にソース電極
層及びドレイン電極層を設けた場合、ソース電極層とドレイン電極層とが酸化物絶縁層上
で短絡する恐れがある。この問題を解消するため、図1に示す薄膜トランジスタは、幅の
狭い酸化物絶縁層426aから端部を離してソース電極層425a及びドレイン電極層4
25bを設ける構成とする。チャネル保護型の薄膜トランジスタ470は、チャネル形成
領域のチャネル長Lを例えば、0.1μm以上2μm以下と短くするため酸化物絶縁層の
幅を狭くし、動作速度の速い薄膜トランジスタを実現することができる。
以下、図2及び図3を用いて、図1に示すチャネル保護型の薄膜トランジスタを含む表示
装置の作製工程の例を説明する。なお、図3は、表示装置の平面図であり、図2は、図3
のA1-A2及びB1-B2における断面図を示す。
まず、基板400を準備する。基板400は、バリウムホウケイ酸ガラス、アルミノホウ
ケイ酸ガラス、若しくはアルミノシリケートガラスなど、フュージョン法やフロート法で
作製される無アルカリガラス基板、セラミック基板の他、本作製工程の処理温度に耐えう
る耐熱性を有するプラスチック基板等を用いることができる。また、ステンレス合金など
の金属基板の表面に絶縁膜を設けた基板を適用しても良い。
なお、上記のガラス基板に代えて、セラミック基板、石英基板、サファイア基板などの絶
縁体でなる基板を用いても良い。他にも、結晶化ガラス基板などを用いることができる。
また基板400上に下地膜として絶縁膜を形成してもよい。下地膜としては、CVD法や
スパッタ法等を用いて、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、または
窒化酸化シリコン膜を単層、又は積層で形成すればよい。基板400としてガラス基板の
ような可動イオンを含有する基板を用いる場合、下地膜として窒化シリコン膜、窒化酸化
シリコン膜などの窒素を含有する膜を用いることで、可動イオンが酸化物半導体層や半導
体層に侵入することを防ぐことができる。
次に、ゲート電極層421aを含むゲート配線、容量配線421b、及び第1の端子42
1cを形成するための導電膜をスパッタ法や真空蒸着法で基板400全面に成膜する。次
いで、導電膜を基板400全面に形成した後、第1のフォトリソグラフィ工程を行い、レ
ジストマスクを形成し、エッチングにより不要な部分を除去して配線及び電極(ゲート電
極層421aを含むゲート配線、容量配線421b、及び第1の端子421c)を形成す
る。このとき段切れ防止のために、少なくともゲート電極層421aの端部にテーパー形
状が形成されるようにエッチングするのが好ましい。
ゲート電極層421aを含むゲート配線と容量配線421b、端子部の第1の端子421
cは、アルミニウム、銅、モリブデン、チタン、クロム、タンタル、タングステン、ネオ
ジム、スカンジウムなどの金属材料、またはこれらの金属材料を主成分とする合金材料、
またはこれらの金属材料を成分とする窒化物を用いて、単層又は積層で形成することがで
きる。好ましくはアルミニウムや銅などの低抵抗金属材料での形成が有効であるが、耐熱
性や腐食性の問題から高融点金属材料と組み合わせて用いると良い。高融点金属材料とし
ては、モリブデン、チタン、クロム、タンタル、タングステン、ネオジム、スカンジウム
等を用いることができる。
例えば、ゲート電極層421aの積層構造としては、アルミニウム上にモリブデンが積層
された二層の積層構造、または銅上にモリブデンを積層した二層構造、または銅上に窒化
チタン若しくは窒化タンタルを積層した二層構造、窒化チタンとモリブデンとを積層した
二層構造とすることが好ましい。3層の積層構造としては、アルミニウム、アルミニウム
とシリコンの合金、アルミニウムとチタンの合金またはアルミニウムとネオジムの合金を
中間層とし、タングステン、窒化タングステン、窒化チタンまたはチタンを上下層として
積層した構造とすることが好ましい。
このとき、一部の電極層や配線層に透光性を有する酸化物導電層を用いて開口率を向上さ
せることもできる。例えば、酸化物導電層には酸化インジウム、酸化インジウム酸化スズ
合金、酸化インジウム酸化亜鉛合金、酸化亜鉛、酸化亜鉛アルミニウム、酸窒化亜鉛アル
ミニウム、または酸化亜鉛ガリウム等を用いることができる。
次いで、ゲート電極層421aを覆ってゲート絶縁層402を成膜する(図2(A))。
ゲート絶縁層402はCVD法やスパッタ法などを用い、膜厚を10nm以上400nm
以下とする。
例えば、ゲート絶縁層402としてCVD法やスパッタ法により酸化シリコン膜を用い、
100nmの厚さで形成する。勿論、ゲート絶縁層402はこのような酸化シリコン膜に
限定されるものでなく、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸
化アルミニウム、酸化タンタル膜などの他の絶縁膜を用い、これらの材料から成る単層ま
たは積層構造として形成しても良い。
また、ゲート絶縁層402の形成は、高密度プラズマ装置により行う。ここでは、高密度
プラズマ装置は、1×1011/cm以上のプラズマ密度を達成できる装置を指してい
る。例えば、3kW~6kWのマイクロ波電力を印加してプラズマを発生させて、絶縁膜
の成膜を行う。
チャンバーに材料ガスとしてモノシランガス(SiH)と亜酸化窒素(NO)と希ガ
スを導入し、10Pa~30Paの圧力下で高密度プラズマを発生させてガラス等の絶縁
表面を有する基板上に絶縁膜を形成する。その後、モノシランガスの供給を停止し、大気
に曝すことなく亜酸化窒素(NO)と希ガスとを導入して絶縁膜表面にプラズマ処理を
行ってもよい。亜酸化窒素(NO)と希ガスとを導入して絶縁膜表面に行われるプラズ
マ処理は、少なくとも絶縁膜の成膜より後に行う。上記プロセス順序を経た絶縁膜は、膜
厚が薄く、例えば100nm未満であっても信頼性を確保することができる絶縁膜である
ゲート絶縁層402の形成の際、チャンバーに導入するモノシランガス(SiH)と亜
酸化窒素(NO)との流量比は、1:10から1:200の範囲とする。また、チャン
バーに導入する希ガスとしては、ヘリウム、アルゴン、クリプトン、キセノンなどを用い
ることができるが、中でも安価であるアルゴンを用いることが好ましい。
また、高密度プラズマ装置により得られた絶縁膜は、一定した厚さの膜形成ができるため
段差被覆性に優れている。また、高密度プラズマ装置により得られる絶縁膜は、薄い膜の
厚みを精密に制御することができる。
上記プロセス順序を経た絶縁膜は、従来の平行平板型のPCVD装置で得られる絶縁膜と
は大きく異なっており、同じエッチャントを用いてエッチング速度を比較した場合におい
て、平行平板型のPCVD装置で得られる絶縁膜の10%以上または20%以上遅く、高
密度プラズマ装置で得られる絶縁膜は緻密な膜と言える。
また、ゲート絶縁層402として、有機シランガスを用いたCVD法により酸化シリコン
層を形成することも可能である。有機シランガスとしては、珪酸エチル(TEOS:化学
式Si(OC)、テトラメチルシラン(TMS:化学式Si(CH)、
テトラメチルシクロテトラシロキサン(TMCTS)、オクタメチルシクロテトラシロキ
サン(OMCTS)、ヘキサメチルジシラザン(HMDS)、トリエトキシシラン(Si
H(OC)、トリスジメチルアミノシラン(SiH(N(CH)等
のシリコン含有化合物を用いることができる。
また、ゲート絶縁層402として、アルミニウム、イットリウム、又はハフニウムの酸化
物、窒化物、酸化窒化物、又は窒化酸化物の一種又はそれらの化合物を少なくとも2種以
上含む化合物を用いることもできる。
なお、本明細書において、酸化窒化物とは、その組成として、窒素原子よりも酸素原子の
数が多い物質のことを指し、窒化酸化物とは、その組成として、酸素原子より窒素原子の
数が多い物質のことを指す。例えば、酸化窒化シリコン膜とは、その組成として、窒素原
子よりも酸素原子の数が多く、ラザフォード後方散乱法(RBS:Rutherford
Backscattering Spectrometry)及び水素前方散乱法(H
FS:Hydrogen Forward Scattering)を用いて測定した場
合に、濃度範囲として酸素が50原子%以上70原子%以下、窒素が0.5原子%以上1
5原子%以下、シリコンが25原子%以上35原子%以下、水素が0.1原子%以上10
原子%以下の範囲で含まれるものをいう。また、窒化酸化シリコン膜とは、その組成とし
て、酸素原子より窒素原子の数が多く、RBS及びHFSを用いて測定した場合に、濃度
範囲として酸素が5原子%以上30原子%以下、窒素が20原子%以上55原子%以下、
シリコンが25原子%以上35原子%以下、水素が10原子%以上30原子%以下の範囲
で含まれるものをいう。但し、酸化窒化シリコンまたは窒化酸化シリコンを構成する原子
の合計を100原子%としたとき、窒素、酸素、シリコン及び水素の含有比率が上記の範
囲内に含まれるものとする。
なお、酸化物半導体層423を形成するための酸化物半導体膜を成膜する前に、アルゴン
ガスを導入してプラズマを発生させる逆スパッタを行い、ゲート絶縁層の表面に付着して
いるゴミを除去することが好ましい。逆スパッタとは、ターゲット側に電圧を印加せずに
、アルゴン雰囲気下で基板側にRF電源を用いて電圧を印加して基板近傍にプラズマを形
成して表面を改質する方法である。なお、アルゴン雰囲気に代えて窒素、ヘリウムなどを
用いてもよい。また、アルゴン雰囲気に酸素、NOなどを加えた雰囲気で行ってもよい
。また、アルゴン雰囲気にCl、CFなどを加えた雰囲気で行ってもよい。逆スパッ
タ処理後、大気に曝すことなく酸化物半導体膜を成膜することによって、ゲート絶縁層4
02と酸化物半導体層423の界面にパーティクル(ゴミ)や水分が付着するのを防ぐこ
とができる。
次いで、ゲート絶縁層402上に、膜厚5nm以上200nm以下、好ましくは10nm
以上40nm以下の酸化物半導体膜を形成する。
酸化物半導体膜は、In-Ga-Zn-O系膜、In-Sn-Zn-O系、In-Al-
Zn-O系、Sn-Ga-Zn-O系、Al-Ga-Zn-O系、Sn-Al-Zn-O
系、In-Zn-O系、Sn-Zn-O系、Al-Zn-O系、In-O系、Sn-O系
、またはZn-O系の酸化物半導体膜を用いることができる。また、酸化物半導体膜は、
希ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下、又は希ガス(代表的にはアルゴ
ン)及び酸素混合雰囲気下においてスパッタ法により形成することができる。また、スパ
ッタ法を用いる場合、SiOを2重量%以上10重量%以下含むターゲットを用いて成
膜を行い、酸化物半導体膜に結晶化を阻害するSiOx(X>0)を含ませても良い。
ここでは、In、Ga、及びZnを含む金属酸化物ターゲット(モル数比がIn
Ga:ZnO=1:1:0.5、In:Ga:ZnO=1:1:1、または、In
:Ga:ZnO=1:1:2)を用いて、基板とターゲットの間との距離を100mm、
圧力0.6Pa、直流(DC)電源0.5kW、酸素(酸素流量比率100%)雰囲気下
で成膜する。なお、パルス直流(DC)電源を用いると、成膜時に発生する粉状物質(パ
ーティクル、ゴミともいう)が軽減でき、膜厚分布も均一となるために好ましい。本実施
の形態では、酸化物半導体膜として、In-Ga-Zn-O系金属酸化物ターゲットを用
いてスパッタ法により膜厚30nmのIn-Ga-Zn-O系膜を成膜する。
スパッタ法にはスパッタ用電源に高周波電源を用いるRFスパッタ法、直流電源を用いる
DCスパッタ法、さらにパルス的にバイアスを与えるパルスDCスパッタ法がある。RF
スパッタ法は主に絶縁膜を成膜する場合に用いられ、DCスパッタ法は主に金属膜を成膜
する場合に用いられる。
また、材料の異なるターゲットを複数設置できる多元スパッタ装置もある。多元スパッタ
装置は、同一チャンバーで異なる材料膜を積層成膜することも、同一チャンバーで複数種
類の材料を同時に放電させて成膜することもできる。
また、チャンバー内部に磁石機構を備えたマグネトロンスパッタ法を用いるスパッタ装置
や、グロー放電を使わずマイクロ波を用いて発生させたプラズマを用いるECRスパッタ
法を用いるスパッタ装置がある。
また、スパッタ法を用いる成膜方法として、成膜中にターゲット物質とスパッタガス成分
とを化学反応させてそれらの化合物薄膜を形成するリアクティブスパッタ法や、成膜中に
基板にも電圧をかけるバイアススパッタ法もある。
次に、第2のフォトリソグラフィ工程を行い、レジストマスクを形成し、In-Ga-Z
n-O系膜をエッチングする。エッチングには、クエン酸やシュウ酸などの有機酸をエッ
チング液として用いることができる。ここでは、ITO07N(関東化学社製)を用いた
ウェットエッチングにより、不要な部分を除去してIn-Ga-Zn-O系膜を島状にし
、酸化物半導体層423を形成する。酸化物半導体層423の端部をテーパー状にエッチ
ングすることで、段差形状による配線の段切れを防ぐことができる。なお、ここでのエッ
チングは、ウェットエッチングに限定されずドライエッチングを用いてもよい。
次いで、酸化物半導体層の脱水化または脱水素化を行う。この脱水化または脱水素化を行
う第1の加熱処理は、高温の窒素、または希ガス等の不活性ガスや光を用いて500℃以
上750℃以下(若しくはガラス基板の歪点以下の温度)で1分間以上10分間以下程度
、好ましくは650℃、3分間以上6分間以下程度のRTA処理で行うことができる。R
TA法を用いれば、短時間に脱水化または脱水素化が行えるため、ガラス基板の歪点を超
える温度でも処理することができる。なお、加熱処理は、このタイミングに限らず、フォ
トリソグラフィ工程や成膜工程の前後などで複数回行っても良い。
ここで、酸化物半導体層423の表層部は第1の加熱処理によって結晶化し、ナノクリス
タルで構成された結晶領域106を有するようになる。また、酸化物半導体層423のそ
の他の領域は、非晶質、または非晶質領域中に微結晶が点在した非晶質と微結晶の混合物
となる。なお、結晶領域106は酸化物半導体層423の一部であり、以降、酸化物半導
体層423の表記には、結晶領域106は含まれるものとする。
なお、本明細書では、窒素、または希ガス等の不活性気体雰囲気下での加熱処理を脱水化
または脱水素化のための加熱処理と呼ぶ。本明細書では、この加熱処理によってHOま
たはHとして脱離させていることのみを脱水化または脱水素化と呼んでいるわけではな
く、H、OHなどを脱離することを含めて脱水化または脱水素化と便宜上呼ぶこととする
酸化物半導体層に対して脱水化または脱水素化を行う加熱温度Tから温度を下げる際、脱
水化または脱水素化を行った同じ炉を用いて大気に触れさせないことで、水または水素を
再び混入させないことが重要である。脱水化または脱水素化を行い、酸化物半導体層を低
抵抗化、即ちN型化(N、Nなど)させた後、高抵抗化させてI型とした酸化物半導
体層を用いて薄膜トランジスタを作製すると、薄膜トランジスタのしきい値電圧値をプラ
スとすることができ、所謂ノーマリーオフ特性のスイッチング素子を実現できる。薄膜ト
ランジスタのゲート電圧が0Vにできるだけ近い正のしきい値電圧でチャネルが形成され
ることが表示装置には望ましい。なお、薄膜トランジスタのしきい値電圧値がマイナスで
あると、ゲート電圧が0Vでもソース電極とドレイン電極の間に電流が流れる、所謂ノー
マリーオン特性となりやすい。アクティブマトリクス型の表示装置においては、回路を構
成する薄膜トランジスタの電気特性が重要であり、この電気特性が表示装置の性能を左右
する。特に、薄膜トランジスタの電気特性のうち、しきい値電圧(Vth)が重要である
。電界効果移動度が高くともしきい値電圧値が高い、或いはしきい値電圧値がマイナスで
あると、回路として制御することが困難である。しきい値電圧値が高く、しきい値電圧の
絶対値が大きい薄膜トランジスタの場合には、駆動電圧が低い状態ではTFTとしてのス
イッチング機能を果たすことができず、負荷となる恐れがある。nチャネル型の薄膜トラ
ンジスタの場合、ゲート電圧として正の電圧を印加してはじめてチャネルが形成されて、
ドレイン電流が流れ出すトランジスタが望ましい。駆動電圧を高くしないとチャネルが形
成されないトランジスタや、負の電圧状態でもチャネルが形成されてドレイン電流が流れ
るトランジスタは、回路に用いる薄膜トランジスタとしては不向きである。
また、加熱温度Tから下げるガス雰囲気は、加熱温度Tまで昇温したガス雰囲気と異なる
ガス雰囲気に切り替えてもよい。例えば、脱水化または脱水素化を行った同じ炉で大気に
触れさせることなく、炉の中を高純度の酸素ガスまたはNOガス、超乾燥エア(露点が
-40℃以下、好ましくは-60℃以下)で満たして冷却を行う。
なお、第1の加熱処理においては、雰囲気中に、水、水素などが含まれないことが好まし
い。または、加熱処理装置に導入する不活性ガスの純度を、6N(99.9999%)以
上、好ましくは7N(99.99999%)以上、(即ち不純物濃度を1ppm以下、好
ましくは0.1ppm以下)とすることが好ましい。
上記、不活性気体雰囲気下での加熱処理を行った場合、酸化物半導体層は加熱処理により
酸素欠乏型となって低抵抗化、即ちN型化(N化など)する。その後、酸化物半導体層
に接する酸化物絶縁層の形成を行うことにより酸化物半導体層を酸素過剰な状態とするこ
とで高抵抗化、即ちI型化させているとも言える。これにより、電気特性が良好で信頼性
のよい薄膜トランジスタを作製することができる。
また、第1の加熱処理の条件、または酸化物半導体層の材料によっては、酸化物半導体層
の一部が結晶化することがある。第1の加熱処理後は、酸素欠乏型となって低抵抗化した
酸化物半導体層423となる。第1の加熱処理後は、成膜直後の酸化物半導体膜よりもキ
ャリア濃度が高まり、好ましくは1×1018/cm以上のキャリア濃度を有するよう
になる。
また、酸化物半導体層の第1の加熱処理は、島状の酸化物半導体層に加工する前の酸化物
半導体膜に行うこともできる。その場合には、第1の加熱処理後に、加熱装置から基板を
取り出し、第2のフォトリソグラフィ工程を行う。この場合は、酸化物半導体層423の
側部には結晶領域は形成されず、側部を除く上層部のみに結晶領域106は形成される。
次いで、第3のフォトリソグラフィ工程を行い、レジストマスクを形成し、エッチングに
より不要な部分を除去してゲート電極層421aと同じ材料の配線や電極層に達するコン
タクトホールを形成する(図2(B))。このコンタクトホールは後に形成する導電膜と
直接接続するために設ける。例えば、駆動回路部において、ゲート電極層とソース電極層
或いはドレイン電極層と直接接する薄膜トランジスタや、端子部のゲート配線と電気的に
接続する端子を形成する場合にコンタクトホールを形成する。
次いで、酸化物半導体層423及びゲート絶縁層402上に、スパッタ法で酸化物絶縁膜
を形成した後、第4のフォトリソグラフィ工程によりレジストマスクを形成し、選択的に
エッチングを行って酸化物絶縁層426a、426b、426c、426dを形成し、そ
の後レジストマスクを除去する(図2(C))。この段階で、酸化物半導体層は、酸化物
絶縁層426aと接する領域が形成され、この領域のうち、ゲート電極層とゲート絶縁層
を介して重なり、且つ酸化物絶縁層426aと重なる領域がチャネル形成領域となる。ま
た、第4のフォトリソグラフィ工程により第1の端子421cに達するコンタクトホール
の形成も行う。
酸化物絶縁膜は、少なくとも1nm以上の膜厚とし、スパッタリング法など、酸化物絶縁
膜に水、水素等の不純物を混入させない方法を適宜用いて形成することができる。本実施
の形態では、酸化物絶縁膜として酸化珪素膜をスパッタリング法を用いて成膜する。成膜
時の基板温度は、室温以上300℃以下とすればよく、本実施の形態では100℃とする
。酸化珪素膜のスパッタリング法による成膜は、希ガス(代表的にはアルゴン)雰囲気下
、酸素雰囲気下、または希ガス(代表的にはアルゴン)及び酸素混合雰囲気下において行
うことができる。また、ターゲットとして酸化珪素ターゲットまたは珪素ターゲットを用
いることができる。例えば、珪素ターゲットを用いて、酸素、及び希ガス雰囲気下でスパ
ッタリング法により酸化珪素膜を形成することができる。低抵抗化した酸化物半導体層に
接して形成する酸化物絶縁膜は、水や、水素イオンや、OHなどの不純物を含まず、こ
れらが外部から侵入することをブロックする無機絶縁膜を用い、代表的には酸化珪素膜、
窒化酸化珪素膜、酸化アルミニウム膜、または酸化窒化アルミニウム膜などを用いる。
本実施の形態では、純度が6Nであり、柱状多結晶Bドープの珪素ターゲット(抵抗値0
.01Ωcm)を用い、基板とターゲットの間との距離(T-S間距離)を89mm、圧
力0.4Pa、直流(DC)電源6kW、酸素(酸素流量比率100%)雰囲気下でパル
スDCスパッタ法により成膜する。膜厚は300nmとする。
次に、酸化物半導体層423上に金属材料からなる導電膜をスパッタ法や真空蒸着法で成
膜する。導電膜の材料としては、前述したゲート電極層421aと同様の材料を用いるこ
とができる。
本実施の形態では、第1乃至第3の導電膜を積層させた導電膜を形成するものとする。例
えば、第1の導電膜及び第3の導電膜として耐熱性導電性材料であるチタンを用い、第2
の導電膜としてネオジムを含むアルミニウム合金を用いる。このような構成にすることで
、アルミニウムの低抵抗性を活かしつつ、ヒロックの発生を低減することができる。なお
、本実施の形態では第1乃至第3の導電膜からなる3層構造としたが、これに限られるこ
とはなく、単層構造としてもよいし、2層構造としてもよいし、4層以上の構造としても
よい。例えば、チタン膜の単層構造としてもよいし、シリコンを含むアルミニウム膜の単
層構造としてもよい。
なお、ナノクリスタルで構成された緻密な結晶領域106を表層部に有する酸化物半導体
層層上に接して導電膜を成膜する際に、成膜工程の熱や成膜による結晶領域へのダメージ
によって、酸化物半導体層の結晶領域106が非晶質化されることがある。しかしながら
、本実施の形態で示す薄膜トランジスタの作製方法においては、酸化物半導体層のチャネ
ル形成領域となる領域に接して、チャネル保護層として機能する酸化物絶縁層426aが
設けられているため、導電膜を成膜した場合においても、酸化物半導体層の少なくともチ
ャネル形成領域(第5領域)においては、表層部に結晶領域106を有する構造とするこ
とができる。
次に、第5のフォトリソグラフィ工程を行い、レジストマスクを形成し、エッチングによ
り不要な部分を除去してソース電極層425a、ドレイン電極層425b、及び接続電極
429を形成する。この際のエッチング方法としてウェットエッチングまたはドライエッ
チングを用いる。例えば、第1の導電膜及び第3の導電膜にチタンを、第2の導電膜にネ
オジムを含むアルミニウム合金を用いる場合には、過酸化水素水又は加熱塩酸をエッチャ
ントに用いてウェットエッチングすることができる。
このエッチング工程において、酸化物半導体層423の一部がエッチングされ、ソース電
極層425aと酸化物絶縁層426aの間の第3領域424cと、ドレイン電極層425
bと酸化物絶縁層426aの間の第4領域424dとが、ソース電極層425aと重なる
第1領域424a、酸化物絶縁層426aと重なる第5領域424e、及びドレイン電極
層425bと重なる第2領域424bよりも膜厚の薄い領域となる(図2(D))。なお
、酸化物半導体層423の第5領域424eは、酸化物絶縁層426aによってエッチン
グされることなく保護されるため、少なくともチャネル形成領域の表層部にはナノクリス
タルで構成された緻密な結晶領域が存在する。チャネル形成領域において酸化物半導体層
の表層部は、バックチャネル側であり、この結晶領域によって、寄生チャネルを抑制する
ことができる。
また、この第5のフォトリソグラフィ工程において、接続電極429は、ゲート絶縁層に
形成されたコンタクトホールを介して端子部の第1の端子421cと直接接続される。な
お、ここでは図示しないが、上述した工程と同じ工程を経て駆動回路の薄膜トランジスタ
のソース配線あるいはドレイン配線とゲート電極が直接接続される。
次いで、薄膜トランジスタ470を覆う酸化物絶縁層428を形成する(図2(E))。
酸化物絶縁層428はスパッタ法などを用いて得られる酸化シリコン膜、酸化窒化シリコ
ン膜、酸化アルミニウム膜、酸化タンタル膜などの酸化物絶縁層を用いることができる。
酸化物絶縁層は、スパッタリング法など、酸化物絶縁層に水、水素等の不純物を混入させ
ない方法を適宜用いて形成することができる。本実施の形態では、酸化物絶縁層として酸
化珪素膜をスパッタリング法を用いて成膜する。成膜時の基板温度は、室温以上300℃
以下とすればよく、本実施の形態では100℃とする。ここで、成膜時に水、水素等の不
純物を混入させない方法として、成膜前に減圧下で150℃以上350℃以下の温度で2
分間以上10分間以下のプリベークを行い、大気に触れることなく酸化物絶縁層を形成す
ることが望ましい。酸化珪素膜のスパッタリング法による成膜は、希ガス(代表的にはア
ルゴン)雰囲気下、酸素雰囲気下、または希ガス(代表的にはアルゴン)及び酸素混合雰
囲気下において行うことができる。また、ターゲットとして酸化珪素ターゲットまたは珪
素ターゲットを用いることができる。例えば、珪素ターゲットを用いて、酸素、及び希ガ
ス雰囲気下でスパッタリング法により酸化珪素膜を形成することができる。低抵抗化した
酸化物半導体層に接して形成する酸化物絶縁層は、水や、水素イオンや、OHなどの不
純物を含まず、これらが外部から侵入することをブロックする無機絶縁膜が好ましい。
本実施の形態では、純度が6Nであり、柱状多結晶Bドープの珪素ターゲット(抵抗値0
.01Ωcm)を用い、基板とターゲットの間との距離(T-S間距離)を89mm、圧
力0.4Pa、直流(DC)電源6kW、酸素(酸素流量比率100%)雰囲気下でパル
スDCスパッタ法により成膜する。膜厚は300nmとする。
次いで、不活性ガス雰囲気下、または窒素ガス雰囲気下で第2の加熱処理(好ましくは2
00℃以上400℃以下、例えば250℃以上350℃以下)を行う。例えば、窒素雰囲
気下で250℃、1時間の第2の加熱処理を行う。または、第1の加熱処理と同様に高温
短時間のRTA処理を行っても良い。第2の加熱処理を行うと、酸化物絶縁層と、該酸化
物絶縁層と重なる酸化物半導体層とが接した状態で加熱される。なお、第2の加熱処理を
行うと、第1の加熱処理で低抵抗化された酸化物半導体層423が酸素過剰な状態となり
、高抵抗化(I型化)することができる。
本実施の形態では、酸化珪素膜成膜後に第2の加熱処理を行ったが、加熱処理のタイミン
グは酸化珪素膜成膜以降であれば問題なく、酸化珪素膜成膜直後に限定されるものではな
い。
また、ソース電極層425a及びドレイン電極層425bに耐熱性のある材料を用いる場
合には、第2の加熱処理のタイミングで、第1の加熱処理条件を用いた工程を行うことが
できる。この場合、加熱処理は酸化珪素膜成膜後の1回のみとすることも可能である。
次に、第6のフォトリソグラフィ工程を行い、レジストマスクを形成し、酸化物絶縁層4
28のエッチングによりドレイン電極層425bに達するコンタクトホールを形成する。
また、ここでのエッチングにより接続電極429に達するコンタクトホールも形成する。
次いで、レジストマスクを除去した後、透明導電膜を成膜する。透明導電膜の材料として
は、酸化インジウム(In)や酸化インジウム酸化スズ合金(In―SnO
、ITOと略記する)などをスパッタ法や真空蒸着法などを用いて形成する。このよう
な材料のエッチング処理は塩酸系の溶液により行う。ただし、特にITOのエッチングは
残渣が発生しやすいので、エッチング加工性を改善するために酸化インジウム酸化亜鉛合
金(In―ZnO)を用いても良い。
次に、第7のフォトリソグラフィ工程を行い、レジストマスクを形成し、エッチングによ
り不要な部分を除去して画素電極層110を形成する。
また、この第7のフォトリソグラフィ工程において、容量部におけるゲート絶縁層402
酸化物絶縁層426b及び酸化物絶縁層428を誘電体として、容量配線421bと画素
電極層110とで保持容量が形成される。
また、この第7のフォトリソグラフィ工程において、第1の端子421cをレジストマス
クで覆い端子部に形成された透明導電膜128を残す。透明導電膜128はFPCとの接
続に用いられる電極または配線となる。第1の端子421cと直接接続された接続電極4
29上に形成された透明導電膜128は、ゲート配線の入力端子として機能する接続用の
端子電極となる。また、図示しないが、ソース配線の入力端子として機能する接続用の端
子電極も同時に形成される。
また、図4(A1)、図4(A2)は、この段階でのゲート配線端子部の断面図及び平面
図をそれぞれ図示している。図4(A1)は図4(A2)中のC1-C2線に沿った断面
図に相当する。図4(A1)において、酸化物絶縁層428上に形成される透明導電膜4
15は、入力端子として機能する接続用の端子電極である。また、図4(A1)において
、端子部では、ゲート配線と同じ材料で形成される第1の端子411と、ソース配線と同
じ材料で形成される接続電極412とがゲート絶縁層402を介して重なり直接接して導
通させている。また、接続電極412と透明導電膜415が酸化物絶縁層428に設けら
れたコンタクトホールを介して直接接して導通させている。
また、図4(B1)、及び図4(B2)は、ソース配線端子部の断面図及び平面図をそれ
ぞれ図示している。また、図4(B1)は図4(B2)中のC3-C4線に沿った断面図
に相当する。図4(B1)において、酸化物絶縁層428上に形成される透明導電膜41
8は、入力端子として機能する接続用の端子電極である。また、図4(B1)において、
端子部では、ゲート配線と同じ材料で形成される電極416が、ソース配線と電気的に接
続される第2の端子414の下方にゲート絶縁層402を介して重なる。電極416は第
2の端子414とは電気的に接続しておらず、電極416を第2の端子414と異なる電
位、例えばフローティング、GND、0Vなどに設定すれば、ノイズ対策のための容量ま
たは静電気対策のための容量を形成することができる。また、第2の端子414は、酸化
物絶縁層428を介して透明導電膜418と電気的に接続している。
ゲート配線、ソース配線、及び容量配線は画素密度に応じて複数本設けられるものである
。また、端子部においては、ゲート配線と同電位の第1の端子、ソース配線と同電位の第
2の端子、容量配線と同電位の第3の端子などが複数並べられて配置される。それぞれの
端子の数は、それぞれ任意な数で設ければ良いものとし、実施者が適宜決定すれば良い。
こうして7回のフォトリソグラフィ工程により、7枚のフォトマスクを使用して、チャネ
ル保護型の薄膜トランジスタ470及び保持容量部を完成させることができる。そして、
これらを個々の画素に対応してマトリクス状に配置し画素部を構成することにより、アク
ティブマトリクス型の表示装置を作製するための一方の基板とすることができる。本明細
書では便宜上このような基板をアクティブマトリクス基板と呼ぶ。
アクティブマトリクス型の液晶表示装置を作製する場合には、アクティブマトリクス基板
と、対向電極が設けられた対向基板との間に液晶層を設け、アクティブマトリクス基板と
対向基板とを固定する。なお、対向基板に設けられた対向電極と電気的に接続する共通電
極をアクティブマトリクス基板上に設け、共通電極と電気的に接続する第4の端子を端子
部に設ける。この第4の端子は、共通電極を固定電位、例えばGND、0Vなどに設定す
るための端子である。
また、本実施の形態は、図3の画素構成に限定されない。例えば、容量配線を設けず、画
素電極を隣り合う画素のゲート配線と保護絶縁膜及びゲート絶縁層を介して重ねて保持容
量を形成してもよい。この場合、容量配線及び容量配線と接続する第3の端子は省略する
ことができる。
また、図5に示すように、チャネル保護層として機能する酸化物絶縁層456a上に、ソ
ース電極層425a及びドレイン電極層425bが重なる構成としても良い。この場合、
ソース電極層425a及びドレイン電極層425bのパターニングの際に酸化物半導体層
がエッチングされないため、酸化物半導体層において膜厚の薄い領域が形成されない。す
なわち、それぞれ同じ膜厚を有する、ソース電極層425aと重なる第1領域424aと
、ドレイン電極層425bと重なる第2領域424bと、チャネル形成領域となる第5領
域424eと、を有する酸化物半導体層となる。
また、図22(A)に示すように、酸化物半導体層の第5領域424eにおける、非晶質
または非晶質と微結晶の混合物である領域の膜厚が、第3領域424c及び第4領域42
4dの膜厚よりも厚い(すなわち、第5領域424eにおける結晶領域と、非晶質または
非晶質と微結晶の混合物である領域と、の界面が、第3領域424c及び第4領域424
dの最表面よりも上方に存在する)構成を有する薄膜トランジスタ490としてもよい。
このような構成の薄膜トランジスタ490は、例えば、第1の加熱処理において、加熱温
度または加熱時間を調整することにより、酸化物半導体層の結晶領域を極浅く作製するこ
とで、得ることができる。図22(A)に示す薄膜トランジスタ490の構成とすること
で、オフ電流を低減することができる。
なお、図22(A)に示すチャネル保護型の薄膜トランジスタ490のチャネル長Lは、
キャリアの流れる方向と平行な方向の酸化物絶縁層426aの幅と等しい。また、図22
(A)に示す薄膜トランジスタ490において、酸化物半導体層の第3領域のチャネル長
方向の幅L3と、第4領域のチャネル長方向の幅L4とは、必ずしも同一ではないが、第
3領域のチャネル長方向の幅L3と第4領域のチャネル長方向の幅L4の合計の値は、一
定の値となる。
また、図22(B)に示すように、酸化物半導体層の第1領域乃至第5領域424a~4
24eにおいて、表層部に結晶領域を有する薄膜トランジスタ430としてもよい。図2
2(B)に示す薄膜トランジスタ430の構成とすることで、オン電流を増加させること
ができる。
また、同一基板上に、薄膜トランジスタ430、450、470または490等の異なる
構成を有する薄膜トランジスタを形成しても良い。なお、画素部と駆動回路を同一基板上
に形成する場合には、画素部に用いる薄膜トランジスタは優れたスイッチング特性が要求
され、駆動回路に用いる薄膜トランジスタは動作速度が速いことが好ましい。例えば、図
22(C)に示すように、駆動回路部には薄膜トランジスタ430を配置し、画素部には
薄膜トランジスタ490を配置してもよい。駆動回路部に配置された薄膜トランジスタ4
30はオン電流を増加させることができるため、大きな電流駆動能力を要求する用途に適
しており、画素部に配置された薄膜トランジスタ490は、オフ電流を低減することがで
きるため、画素部のスイッチング素子として用いた場合、コントラストを向上させること
ができる。または、図22(D)に示すように、駆動回路部に薄膜トランジスタ450を
配置し、画素部にオフ電流の低い薄膜トランジスタ470を配置してもよい。また、図示
しないが、駆動回路部に薄膜トランジスタ430を配置し、画素部には薄膜トランジスタ
470を配置しても良いし、駆動回路部に薄膜トランジスタ450を配置し、画素部には
薄膜トランジスタ490を配置しても良い。
なお、本実施の形態で示す薄膜トランジスタ430、450、470及び490において
、ゲート絶縁層402と接する酸化物半導体層423の界面は、非晶質または非晶質と微
結晶の混合物であり、且つ、少なくとも酸化物絶縁層426aと接する表層部は結晶領域
を有する。
アクティブマトリクス型の液晶表示装置においては、マトリクス状に配置された画素電極
を駆動することによって、画面上に表示パターンが形成される。詳しくは選択された画素
電極と該画素電極に対応する対向電極との間に電圧が印加されることによって、画素電極
と対向電極との間に配置された液晶層の光学変調が行われ、この光学変調が表示パターン
として観察者に認識される。
液晶表示装置の動画表示において、液晶分子自体の応答が遅いため、残像が生じる、また
は動画のぼけが生じるという問題がある。液晶表示装置の動画特性を改善するため、全面
黒表示を1フレームおきに行う、所謂、黒挿入と呼ばれる駆動技術がある。
また、垂直同期周波数を通常の1.5倍好ましくは2倍以上にすることで応答速度を改善
するとともに各フレーム内の分割された複数フィールド毎に書き込む階調を選択する、所
謂、倍速駆動と呼ばれる駆動技術もある。
また、液晶表示装置の動画特性を改善するため、バックライトとして複数のLED(発光
ダイオード)光源または複数のEL光源などを用いて面光源を構成し、面光源を構成して
いる各光源を独立して1フレーム期間内で間欠点灯駆動する駆動技術もある。面光源とし
て、3種類以上のLEDを用いてもよいし、白色発光のLEDを用いてもよい。独立して
複数のLEDを制御できるため、液晶層の光学変調の切り替えタイミングに合わせてLE
Dの発光タイミングを同期させることもできる。この駆動技術は、LEDを部分的に消灯
することができるため、特に一画面を占める黒い表示領域の割合が多い映像表示の場合に
は、消費電力の低減効果が図れる。
これらの駆動技術を組み合わせることによって、液晶表示装置の動画特性などの表示特性
を従来よりも改善することができる。
本実施の形態で得られるnチャネル型のトランジスタは、In-Ga-Zn-O系膜をチ
ャネル形成領域に用いており、良好な動特性を有するため、これらの駆動技術を組み合わ
せることができる。
また、発光表示装置を作製する場合、有機発光素子の一方の電極(カソードとも呼ぶ)は
、低電源電位、例えばGND、0Vなどに設定するため、端子部に、カソードを低電源電
位、例えばGND、0Vなどに設定するための第4の端子が設けられる。また、発光表示
装置を作製する場合には、ソース配線、及びゲート配線に加えて電源供給線を設ける。従
って、端子部には、電源供給線と電気的に接続する第5の端子を設ける。
以上の工程により、電気特性が良好で信頼性の高い薄膜トランジスタ及び該薄膜トランジ
スタを用いた表示装置を提供することができる。
本実施の形態で示す薄膜トランジスタは、酸化物半導体層を用いた薄膜トランジスタであ
って、該酸化物半導体層の少なくともチャネル形成領域の表層部は結晶領域を有し、その
他の部分は非晶質または非晶質と微結晶の混合物である構成とすることができ、寄生チャ
ネルの発生を抑制可能な薄膜トランジスタとすることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができることとする。
(実施の形態2)
本実施の形態では、実施の形態1と異なる表示装置の作製工程の例を図6を用いて説明す
る。なお、本実施の形態において、実施の形態1と同一部分または同様な機能を有する部
分、及び工程は、実施の形態1と同様に行うことができ、繰り返しの説明は省略する。
まず、絶縁表面を有する基板400上に、ゲート電極層421aを含むゲート配線、容量
配線421b、及び第1の端子421cを形成するための導電膜をスパッタ法や真空蒸着
法で全面に成膜する。次いで、導電膜を基板400全面に形成した後、第1のフォトリソ
グラフィ工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去して
配線及び電極(ゲート電極層421aを含むゲート配線、容量配線421b、及び第1の
端子421c)を形成する。
次いで、ゲート電極層421a、容量配線421b、及び第1の端子421c上にゲート
絶縁層402を形成し、ゲート絶縁層402上に、膜厚5nm以上200nm以下、好ま
しくは10nm以上40nm以下の酸化物半導体膜103を形成する。なお、ここまでの
工程は実施の形態1と同様に行うことができる。
次いで、酸化物半導体膜103上に、スパッタ法で酸化物絶縁膜105を形成した後、第
2のフォトリソグラフィ工程によりレジストマスクを形成し、選択的にエッチングを行っ
て第1の端子421cに達するコンタクトホールの形成を行う(図6(A))。酸化物絶
縁膜105は、実施の形態1で示した酸化物絶縁層426aとなる酸化物絶縁膜と同様に
成膜することが可能である。
次いで、酸化物半導体膜103の脱水化または脱水素化を行う。この脱水化または脱水素
化を行う第1の加熱処理は、高温の窒素、または希ガス等の不活性ガスや光を用いて50
0℃以上750℃以下(若しくはガラス基板の歪点以下の温度)で1分間以上10分間以
下程度、好ましくは650℃、3分間以上6分間以下程度のRTA処理で行うことができ
る。RTA処理を用いれば、短時間に脱水化または脱水素化が行えるため、ガラス基板の
歪点を超える温度でも処理することができる。なお、加熱処理は、このタイミングに限ら
ず、フォトリソグラフィ工程や成膜工程の前後などで複数回行っても良い。
ここで、酸化物半導体膜103の表層部は第1の加熱処理によって結晶化し、ナノクリス
タルで構成された緻密な結晶領域106を有するようになる。また、酸化物半導体膜10
3のその他の領域は、非晶質、または非晶質領域中に微結晶が点在した非晶質と微結晶の
混合物となる。なお、結晶領域106は酸化物半導体膜103の一部であり、以降、酸化
物半導体膜103の表記には、結晶領域106は含まれるものとする。
酸化物半導体膜に対して脱水化または脱水素化を行う加熱温度Tから温度を下げる際、脱
水化または脱水素化を行った同じ炉を用いて大気に触れさせないことで、水または水素を
再び混入させないことが重要である。また、加熱温度Tから下げるガス雰囲気は、加熱温
度Tまで昇温したガス雰囲気と異なるガス雰囲気に切り替えてもよい。例えば、脱水化ま
たは脱水素化を行った同じ炉で大気に触れさせることなく、炉の中を高純度の酸素ガスま
たはNOガス、超乾燥エア(露点が-40℃以下、好ましくは-60℃以下)で満たし
て冷却を行う。
なお、第1の加熱処理においては、雰囲気中に、水、水素などが含まれないことが好まし
い。または、加熱処理装置に導入する不活性ガスの純度を、6N(99.9999%)以
上、好ましくは7N(99.99999%)以上、(即ち不純物濃度を1ppm以下、好
ましくは0.1ppm以下)とすることが好ましい。
第1の加熱処理後は、酸素欠乏型となって低抵抗化した酸化物半導体膜103となる。第
1の加熱処理後は、成膜直後の酸化物半導体膜よりもキャリア濃度が高まり、好ましくは
1×1018/cm以上のキャリア濃度を有するようになる。
次いで、第3のフォトリソグラフィ工程によりレジストマスクを形成し、選択的にエッチ
ングを行って酸化物絶縁層426a、426b、426c、426dを形成し、その後レ
ジストマスクを除去する(図6(B))。ここで、酸化物絶縁層426aは、薄膜トラン
ジスタのチャネル保護層として機能する。また、酸化物半導体膜103において、酸化物
絶縁層426aと重なる領域が後にチャネル形成領域となる領域である。
次に、酸化物半導体膜103、及び酸化物絶縁層426a、426b、426c、426
d上に金属材料からなる導電膜をスパッタ法や真空蒸着法で成膜する。導電膜の材料とし
ては、ゲート電極層421aと同様の材料を用いることができる。
本実施の形態では、第1乃至第3の導電膜を積層させた導電膜を形成するものとする。例
えば、第1の導電膜及び第3の導電膜として耐熱性導電性材料であるチタンを用い、第2
の導電膜としてネオジムを含むアルミニウム合金を用いる。このような構成にすることで
、アルミニウムの低抵抗性を活かしつつ、ヒロックの発生を低減することができる。なお
、本実施の形態では第1乃至第3の導電膜からなる3層構造としたが、これに限られるこ
とはなく、単層構造としてもよいし、2層構造としてもよいし、4層以上の構造としても
よい。例えば、チタン膜の単層構造としてもよいし、シリコンを含むアルミニウム膜の単
層構造としてもよい。
なお、ナノクリスタルで構成された緻密な結晶領域106を表層部に有する酸化物半導体
層層上に接して導電膜を成膜する際に、成膜時の熱や成膜による結晶領域へのダメージに
よって、酸化物半導体層の結晶領域106が非晶質化されることがある。しかしながら、
本実施の形態で示す薄膜トランジスタの作製方法においては、酸化物半導体層のチャネル
形成領域となる領域に接して、チャネル保護層として機能する酸化物絶縁層426aが設
けられているため、導電膜を成膜した場合においても、酸化物半導体層の少なくともチャ
ネル形成領域においては、表層部に結晶領域106を有する構造とすることができる。
次に、第4のフォトリソグラフィ工程を行い、レジストマスク480a及び480bを形
成し、エッチングにより不要な部分を除去して導電層425及び接続電極429を形成す
る(図6(C))。この際のエッチング方法としてウェットエッチングまたはドライエッ
チングを用いる。例えば、第1の導電膜及び第3の導電膜にチタンを、第2の導電膜にネ
オジムを含むアルミニウム合金を用いる場合には、過酸化水素水又は加熱塩酸をエッチャ
ントに用いてウェットエッチングすることができる。
また、この第4のフォトリソグラフィ工程において、接続電極429は、ゲート絶縁層に
形成されたコンタクトホールを介して端子部の第1の端子421cと直接接続される。な
お、ここでは図示しないが、上述した工程と同じ工程を経て駆動回路の薄膜トランジスタ
のソース配線あるいはドレイン配線とゲート電極が直接接続される。
本実施の形態におけるレジストマスク480aは凹部又は凸部を有するレジストマスクで
ある。換言すると、厚さの異なる複数の領域(ここでは、2つの領域)からなるレジスト
マスクともいうことができる。レジストマスク480aにおいて、厚い領域をレジストマ
スクの凸部と呼び、薄い領域をレジストマスクの凹部と呼ぶこととする。
レジストマスク480aにおいて、後にソース電極層及びドレイン電極層が形成される部
分には凸部が形成され、後の島状の酸化物半導体層の周縁部分には凹部が形成される。
本実施の形態で示すレジストマスクは、多階調マスクを用いることで形成することができ
る。多階調マスクとは、多段階の光量で露光を行うことが可能なマスクであり、代表的に
は、露光領域、半露光領域及び未露光領域の3段階の光量で露光を行うものをいう。多階
調マスクを用いることで、一度の露光及び現像工程によって、複数(代表的には2種類)
の厚さを有するレジストマスクを形成することができる。そのため、多階調マスクを用い
ることで、フォトマスクの枚数を削減することができる。
多階調マスクを用いて露光して現像を行うことで、厚さの異なる領域を有するレジストマ
スク480a及び480bを形成することができる。ただし、これに限定されず、多階調
マスクを用いることなくレジストマスクを形成してもよい。
レジストマスク480a及び480bを用いて、導電層425及び接続電極429を形成
した後、レジストマスク480a及び480bを後退(縮小)させることで、レジストマ
スク482a、482b及び482cを形成する。レジストマスクを後退(縮小)させる
には、酸素プラズマによるアッシング等を行えばよい。レジストマスクの後退(縮小)に
よって、レジストマスク480aにおける凹部が消失してレジストマスク482a及びレ
ジストマスク482bへ分割される。また、レジストマスク482aとレジストマスク4
82bに挟まれた領域の電極層425が露出する(図示なし)。
次いで、レジストマスク482a、482b及び482cを用いて、露出した導電層42
5及び接続電極429の一部と、をエッチングすることにより、ソース電極425a、ド
レイン電極425b及び島状の酸化物半導体層423を形成する(図6(D))。
このエッチング工程において、酸化物半導体膜103の一部がエッチングされ、ソース電
極層425aと酸化物絶縁層426aの間の第3領域424cと、ドレイン電極層425
bと酸化物絶縁層426aの間の第4領域424dとが、ソース電極層425aと重なる
第1領域424a、ドレイン電極層425bと重なる第2領域424b及び酸化物絶縁層
426aと重なる第5領域424eよりも膜厚の薄い領域となる。なお、酸化物半導体層
423の第5領域424eは、酸化物絶縁層426aによって、エッチングされることな
く保護されるため、少なくともチャネル形成領域の表層部にはナノクリスタルで構成され
た緻密な結晶領域が存在する。チャネル形成領域において酸化物半導体層の表層部は、バ
ックチャネル側であり、この結晶領域によって、寄生チャネルを抑制することができる。
なお、第1領域424aと第2領域424bとは、チャネル形成領域である第5領域42
4eと同じ膜厚を有している。
次いで、薄膜トランジスタ410を覆う酸化物絶縁層428を形成する(図6(E))。
酸化物絶縁層428はスパッタ法などを用いて得られる酸化シリコン膜、酸化窒化シリコ
ン膜、酸化アルミニウム膜、酸化タンタル膜などの酸化物絶縁層を用いることができる。
次いで、不活性ガス雰囲気下、または窒素ガス雰囲気下で第2の加熱処理(好ましくは2
00℃以上400℃以下、例えば250℃以上350℃以下)を行う。例えば、窒素雰囲
気下で250℃、1時間の第2の加熱処理を行う。または、第1の加熱処理と同様に高温
短時間のRTA処理を行っても良い。第2の加熱処理を行うと、酸化物絶縁層と、該酸化
物絶縁層と重なる酸化物半導体層とが接した状態で加熱される。なお、第2の加熱処理を
行うと、第1の加熱処理で低抵抗化された酸化物半導体層423が酸素過剰な状態となり
、高抵抗化(I型化)することができる。
本実施の形態では、酸化珪素膜成膜後に第2の加熱処理を行ったが、加熱処理のタイミン
グは酸化珪素膜成膜以降であれば問題なく、酸化珪素膜成膜直後に限定されるものではな
い。
また、ソース電極層425a及びドレイン電極層425bに耐熱性のある材料を用いる場
合には、第2の加熱処理のタイミングで、第1の加熱処理条件を用いた工程を行うことが
できる。この場合、加熱処理は酸化珪素膜成膜後の1回のみとすることも可能である。
なお、酸化物絶縁層428上に、保護絶縁層を形成しても良い。保護絶縁層としては、例
えばRFスパッタ法を用いて窒化珪素膜を形成することができる。保護絶縁層は、水や、
水素イオンや、OHなどの不純物を含まず、これらが外部から侵入することをブロック
する無機絶縁膜を用い、窒化珪素膜、窒化アルミニウム膜、窒化酸化珪素膜、酸化窒化ア
ルミニウム膜などを用いる。また、保護絶縁層は、酸化物絶縁層428と連続的に成膜す
ることも可能である。
次に、第5のフォトリソグラフィ工程を行い、レジストマスクを形成し、酸化物絶縁層4
28のエッチングによりドレイン電極層425bに達するコンタクトホールを形成する。
また、ここでのエッチングにより接続電極429に達するコンタクトホールも形成する。
次いで、レジストマスクを除去した後、透明導電膜を成膜する。透明導電膜の材料として
は、酸化インジウム(In)や酸化インジウム酸化スズ合金(In―SnO
、ITOと略記する)などをスパッタ法や真空蒸着法などを用いて形成する。このよう
な材料のエッチング処理は塩酸系の溶液により行う。ただし、特にITOのエッチングは
残渣が発生しやすいので、エッチング加工性を改善するために酸化インジウム酸化亜鉛合
金(In―ZnO)を用いても良い。
次に、第6のフォトリソグラフィ工程を行い、レジストマスクを形成し、エッチングによ
り不要な部分を除去して画素電極層110を形成する。
また、この第6のフォトリソグラフィ工程において、容量部におけるゲート絶縁層402
、酸化物半導体層、酸化物絶縁層426b及び酸化物絶縁層428を誘電体として、容量
配線421bと画素電極層110とで保持容量が形成される。
また、この第6のフォトリソグラフィ工程において、第1の端子421cをレジストマス
クで覆い端子部に形成された透明導電膜128を残す。透明導電膜128はFPCとの接
続に用いられる電極または配線となる。第1の端子421cと直接接続された接続電極4
29上に形成された透明導電膜128は、ゲート配線の入力端子として機能する接続用の
端子電極となる。また、図示しないが、ソース配線の入力端子として機能する接続用の端
子電極も同時に形成される。
こうして6回のフォトリソグラフィ工程により、6枚のフォトマスクを使用して、チャネ
ル保護型の薄膜トランジスタ410及び保持容量部を完成させることができる。
本実施の形態で示す薄膜トランジスタは、酸化物半導体層を用いた薄膜トランジスタであ
って、該酸化物半導体層のチャネル形成領域の表層部は結晶領域を有し、その他の部分は
非晶質または非晶質と微結晶の混合物である構成とすることができる。この構成を有する
ことによって、寄生チャネルの発生を抑制することができるため、電気特性が良好で信頼
性の高い薄膜トランジスタ及び表示装置を作製することができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができることとする。
(実施の形態3)
本実施の形態では、同一基板上に少なくとも駆動回路の一部と、画素部に配置する薄膜ト
ランジスタを作製する例について以下に説明する。
画素部に配置する薄膜トランジスタは、実施の形態1または実施の形態2に従って形成す
る。また、実施の形態1または実施の形態2に示す薄膜トランジスタはnチャネル型TF
Tであるため、駆動回路のうち、nチャネル型TFTで構成することができる駆動回路の
一部を画素部の薄膜トランジスタと同一基板上に形成する。
アクティブマトリクス型表示装置のブロック図の一例を図7(A)に示す。表示装置の基
板5300上には、画素部5301、第1の走査線駆動回路5302、第2の走査線駆動
回路5303、信号線駆動回路5304を有する。画素部5301には、複数の信号線が
信号線駆動回路5304から延伸して配置され、複数の走査線が第1の走査線駆動回路5
302、及び第2の走査線駆動回路5303から延伸して配置されている。なお走査線と
信号線との交差領域には、各々、表示素子を有する画素がマトリクス状に配置されている
。また、表示装置の基板5300はFPC(Flexible Printed Cir
cuit)等の接続部を介して、タイミング制御回路5305(コントローラ、制御IC
ともいう)に接続されている。
図7(A)では、第1の走査線駆動回路5302、第2の走査線駆動回路5303、信号
線駆動回路5304は、画素部5301と同じ基板5300上に形成される。そのため、
外部に設ける駆動回路等の部品の数が減るので、コストの低減を図ることができる。また
、基板5300外部に駆動回路を設けた場合の配線を延伸させることによる接続部での接
続数を減らすことができ、信頼性の向上、又は歩留まりの向上を図ることができる。
なお、タイミング制御回路5305は、第1の走査線駆動回路5302に対し、一例とし
て、第1の走査線駆動回路用スタート信号(GSP1)、走査線駆動回路用クロック信号
(GCK1)を供給する。また、タイミング制御回路5305は、第2の走査線駆動回路
5303に対し、一例として、第2の走査線駆動回路用スタート信号(GSP2)(スタ
ートパルスともいう)、走査線駆動回路用クロック信号(GCK2)を供給する。信号線
駆動回路5304に、信号線駆動回路用スタート信号(SSP)、信号線駆動回路用クロ
ック信号(SCK)、ビデオ信号用データ(DATA)(単にビデオ信号ともいう)、ラ
ッチ信号(LAT)を供給するものとする。なお各クロック信号は、周期のずれた複数の
クロック信号でもよいし、クロック信号を反転させた信号(CKB)とともに供給される
ものであってもよい。なお、第1の走査線駆動回路5302と第2の走査線駆動回路53
03との一方を省略することが可能である。
図7(B)では、駆動周波数が低い回路(例えば、第1の走査線駆動回路5302、第2
の走査線駆動回路5303)を画素部5301と同じ基板5300に形成し、信号線駆動
回路5304を画素部5301とは別の基板に形成する構成について示している。当該構
成により、単結晶半導体を用いたトランジスタと比較すると電界効果移動度が小さい薄膜
トランジスタによって、基板5300に形成する駆動回路を構成することができる。した
がって、表示装置の大型化、工程数の削減、コストの低減、又は歩留まりの向上などを図
ることができる。
また、実施の形態1または実施の形態2に示す薄膜トランジスタは、nチャネル型TFT
である。図8(A)、図8(B)ではnチャネル型TFTで構成する信号線駆動回路の構
成、動作について一例を示し説明する。
信号線駆動回路は、シフトレジスタ5601、及びスイッチング回路5602を有する。
スイッチング回路5602は、スイッチング回路5602_1~5602_N(Nは自然
数)という複数の回路を有する。スイッチング回路5602_1~5602_Nは、各々
、薄膜トランジスタ5603_1~5603_k(kは自然数)という複数のトランジス
タを有する。薄膜トランジスタ5603_1~5603_kは、Nチャネル型TFTであ
る例を説明する。
信号線駆動回路の接続関係について、スイッチング回路5602_1を例にして説明する
。薄膜トランジスタ5603_1~5603_kの第1端子は、各々、配線5604_1
~5604_kと接続される。薄膜トランジスタ5603_1~5603_kの第2端子
は、各々、信号線S1~Skと接続される。薄膜トランジスタ5603_1~5603_
kのゲートは、配線5605_1と接続される。
シフトレジスタ5601は、配線5605_1~5605_Nに順番にHレベル(H信号
、高電源電位レベル、ともいう)の信号を出力し、スイッチング回路5602_1~56
02_Nを順番に選択する機能を有する。
スイッチング回路5602_1は、配線5604_1~5604_kと信号線S1~Sk
との導通状態(第1端子と第2端子との間の導通)に制御する機能、即ち配線5604_
1~5604_kの電位を信号線S1~Skに供給するか否かを制御する機能を有する。
このように、スイッチング回路5602_1は、セレクタとしての機能を有する。また薄
膜トランジスタ5603_1~5603_kは、各々、配線5604_1~5604_k
と信号線S1~Skとの導通状態を制御する機能、即ち配線5604_1~5604_k
の電位を信号線S1~Skに供給する機能を有する。このように、薄膜トランジスタ56
03_1~5603_kは、各々、スイッチとしての機能を有する。
なお、配線5604_1~5604_kには、各々、ビデオ信号用データ(DATA)が
入力される。ビデオ信号用データ(DATA)は、画像情報又は画像信号に応じたアナロ
グ信号である場合が多い。
次に、図8(A)の信号線駆動回路の動作について、図8(B)のタイミングチャートを
参照して説明する。図8(B)には、信号Sout_1~Sout_N、及び信号Vda
ta_1~Vdata_kの一例を示す。信号Sout_1~Sout_Nは、各々、シ
フトレジスタ5601の出力信号の一例であり、信号Vdata_1~Vdata_kは
、各々、配線5604_1~5604_kに入力される信号の一例である。なお、信号線
駆動回路の1動作期間は、表示装置における1ゲート選択期間に対応する。1ゲート選択
期間は、一例として、期間T1~期間TNに分割される。期間T1~TNは、各々、選択
された行に属する画素にビデオ信号用データ(DATA)を書き込むための期間である。
期間T1~期間TNにおいて、シフトレジスタ5601は、Hレベルの信号を配線560
5_1~5605_Nに順番に出力する。例えば、期間T1において、シフトレジスタ5
601は、ハイレベルの信号を配線5605_1に出力する。すると、薄膜トランジスタ
5603_1~5603_kはオンになるので、配線5604_1~5604_kと、信
号線S1~Skとが導通状態になる。このとき、配線5604_1~5604_kには、
Data(S1)~Data(Sk)が入力される。Data(S1)~Data(Sk
)は、各々、薄膜トランジスタ5603_1~5603_kを介して、選択される行に属
する画素のうち、1列目~k列目の画素に書き込まれる。こうして、期間T1~TNにお
いて、選択された行に属する画素に、k列ずつ順番にビデオ信号用データ(DATA)が
書き込まれる。
以上のように、ビデオ信号用データ(DATA)が複数の列ずつ画素に書き込まれること
によって、ビデオ信号用データ(DATA)の数、又は配線の数を減らすことができる。
よって、外部回路との接続数を減らすことができる。また、ビデオ信号が複数の列ずつ画
素に書き込まれることによって、書き込み時間を長くすることができ、ビデオ信号の書き
込み不足を防止することができる。
なお、シフトレジスタ5601及びスイッチング回路5602としては、実施の形態1ま
たは実施の形態2に示す薄膜トランジスタで構成される回路を用いることが可能である。
この場合、シフトレジスタ5601が有する全てのトランジスタの極性をNチャネル型、
又はPチャネル型のいずれかの極性のみで構成することができる。
なお、走査線駆動回路の構成について説明する。走査線駆動回路は、シフトレジスタを有
している。また場合によってはレベルシフタやバッファ等を有していても良い。走査線駆
動回路において、シフトレジスタにクロック信号(CLK)及びスタートパルス信号(S
P)が入力されることによって、選択信号が生成される。生成された選択信号はバッファ
において緩衝増幅され、対応する走査線に供給される。走査線には、1ライン分の画素の
トランジスタのゲート電極が接続されている。そして、1ライン分の画素のトランジスタ
を一斉にONにしなくてはならないので、バッファは大きな電流を流すことが可能なもの
が用いられる。
走査線駆動回路及び/または信号線駆動回路の一部に用いるシフトレジスタの一形態につ
いて図9及び図10を用いて説明する。
シフトレジスタは、第1のパルス出力回路10_1乃至第Nのパルス出力回路10_N(
Nは3以上の自然数)を有している(図9(A)参照)。図9(A)に示すシフトレジス
タの第1のパルス出力回路10_1乃至第Nのパルス出力回路10_Nには、第1の配線
11より第1のクロック信号CK1、第2の配線12より第2のクロック信号CK2、第
3の配線13より第3のクロック信号CK3、第4の配線14より第4のクロック信号C
K4が供給される。また第1のパルス出力回路10_1では、第5の配線15からのスタ
ートパルスSP1(第1のスタートパルス)が入力される。また2段目以降の第nのパル
ス出力回路10_n(nは、2以上N以下の自然数)では、一段前段のパルス出力回路か
らの信号(前段信号OUT(n-1)という)(nは2以上の自然数)が入力される。ま
た第1のパルス出力回路10_1では、2段後段の第3のパルス出力回路10_3からの
信号が入力される。同様に、2段目以降の第nのパルス出力回路10_nでは、2段後段
の第(n+2)のパルス出力回路10_(n+2)からの信号(後段信号OUT(n+2
)という)が入力される。従って、各段のパルス出力回路からは、後段及び/または二つ
前段のパルス出力回路に入力するための第1の出力信号(OUT(1)(SR)~OUT
(N)(SR))、別の配線等に電気的に接続される第2の出力信号(OUT(1)~O
UT(N))が出力される。なお、図9(A)に示すように、シフトレジスタの最終段の
2つの段には、後段信号OUT(n+2)が入力されないが、一例としては、別途第6の
配線16より第2のスタートパルスSP2、第7の配線17より第3のスタートパルスS
P3をそれぞれ入力する構成とすればよい。または、別途シフトレジスタの内部で生成さ
れた信号であってもよい。例えば、画素部へのパルス出力に寄与しない第(n+1)のパ
ルス出力回路10(n+1)、第(n+2)のパルス出力回路10(n+2)を設け(ダ
ミー段ともいう)、当該ダミー段より第2のスタートパルス(SP2)及び第3のスター
トパルス(SP3)に相当する信号を生成する構成としてもよい。
なお、クロック信号(CK)は、一定の間隔でHレベルとLレベル(L信号、低電源電位
レベル、ともいう)を繰り返す信号である。ここで、第1のクロック信号(CK1)~第
4のクロック信号(CK4)は、順に1/4周期分遅延している。本実施の形態では、第
1のクロック信号(CK1)~第4のクロック信号(CK4)を利用して、パルス出力回
路の駆動の制御等を行う。なお、クロック信号は、入力される駆動回路に応じて、GCK
、SCKということもあるが、ここではCKとして説明を行う。
第1の入力端子21、第2の入力端子22及び第3の入力端子23は、第1の配線11
~第4の配線14のいずれかと電気的に接続されている。例えば、図9(A)において、
第1のパルス出力回路10_1は、第1の入力端子21が第1の配線11と電気的に接続
され、第2の入力端子22が第2の配線12と電気的に接続され、第3の入力端子23が
第3の配線13と電気的に接続されている。また、第2のパルス出力回路10_2は、第
1の入力端子21が第2の配線12と電気的に接続され、第2の入力端子22が第3の配
線13と電気的に接続され、第3の入力端子23が第4の配線14と電気的に接続されて
いる。
第1のパルス出力回路10_1~第Nのパルス出力回路10_Nの各々は、第1の入力端
子21、第2の入力端子22、第3の入力端子23、第4の入力端子24、第5の入力端
子25、第1の出力端子26、第2の出力端子27を有しているとする(図9(B)参照
)。第1のパルス出力回路10_1において、第1の入力端子21に第1のクロック信号
CK1が入力され、第2の入力端子22に第2のクロック信号CK2が入力され、第3の
入力端子23に第3のクロック信号CK3が入力され、第4の入力端子24にスタートパ
ルスが入力され、第5の入力端子25に後段信号OUT(3)が入力され、第1の出力端
子26より第1の出力信号OUT(1)(SR)が出力され、第2の出力端子27より第
2の出力信号OUT(1)が出力されていることとなる。
次に、図9(B)に示したパルス出力回路の具体的な回路構成の一例について、図9(C
)で説明する。
図9(C)に示したパルス出力回路は、第1のトランジスタ31~第11のトランジスタ
41を有している。また、上述した第1の入力端子21~第5の入力端子25、及び第1
の出力端子26、第2の出力端子27に加え、第1の高電源電位VDDが供給される電源
線51、第2の高電源電位VCCが供給される電源線52、低電源電位VSSが供給され
る電源線53から、第1のトランジスタ31~第11のトランジスタ41に信号、または
電源電位が供給される。ここで図9(C)における各電源線の電源電位の大小関係は、第
1の電源電位VDDは第2の電源電位VCC以上の電位として、第2の電源電位VCCは
第3の電源電位VSSより大きい電位とする。なお、第1のクロック信号(CK1)~第
4のクロック信号(CK4)は、一定の間隔でHレベルとLレベルを繰り返す信号である
が、HレベルのときVDD、LレベルのときVSSであるとする。なお電源線51の電位
VDDを、電源線52の電位VCCより高くすることにより、動作に影響を与えることな
く、トランジスタのゲート電極に印加される電位を低く抑えることができ、トランジスタ
のしきい値のシフトを低減し、劣化を抑制することができる。
図9(C)において、第1のトランジスタ31は、第1端子が電源線51に電気的に接
続され、第2端子が第9のトランジスタ39の第1端子に電気的に接続され、ゲート電極
が第4の入力端子24に電気的に接続されている。第2のトランジスタ32は、第1端子
が電源線53に電気的に接続され、第2端子が第9のトランジスタ39の第1端子に電気
的に接続され、ゲート電極が第4のトランジスタ34のゲート電極に電気的に接続されて
いる。第3のトランジスタ33は、第1端子が第1の入力端子21に電気的に接続され、
第2端子が第1の出力端子26に電気的に接続されている。第4のトランジスタ34は、
第1端子が電源線53に電気的に接続され、第2端子が第1の出力端子26に電気的に接
続されている。第5のトランジスタ35は、第1端子が電源線53に電気的に接続され、
第2端子が第2のトランジスタ32のゲート電極及び第4のトランジスタ34のゲート電
極に電気的に接続され、ゲート電極が第4の入力端子24に電気的に接続されている。第
6のトランジスタ36は、第1端子が電源線52に電気的に接続され、第2端子が第2の
トランジスタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的に接続
され、ゲート電極が第5の入力端子25に電気的に接続されている。第7のトランジスタ
37は、第1端子が電源線52に電気的に接続され、第2端子が第8のトランジスタ38
の第2端子に電気的に接続され、ゲート電極が第3の入力端子23に電気的に接続されて
いる。第8のトランジスタ38は、第1端子が第2のトランジスタ32のゲート電極及び
第4のトランジスタ34のゲート電極に電気的に接続され、ゲート電極が第2の入力端子
22に電気的に接続されている。第9のトランジスタ39は、第1端子が第1のトランジ
スタ31の第2端子及び第2のトランジスタ32の第2端子に電気的に接続され、第2端
子が第3のトランジスタ33のゲート電極及び第10のトランジスタ40のゲート電極に
電気的に接続され、ゲート電極が電源線52に電気的に接続されている。第10のトラン
ジスタ40は、第1端子が第1の入力端子21に電気的に接続され、第2端子が第2の出
力端子27に電気的に接続され、ゲート電極が第9のトランジスタ39の第2端子に電気
的に接続されている。第11のトランジスタ41は、第1端子が電源線53に電気的に接
続され、第2端子が第2の出力端子27に電気的に接続され、ゲート電極が第2のトラン
ジスタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的に接続されて
いる。
図9(C)において、第3のトランジスタ33のゲート電極、第10のトランジスタ4
0のゲート電極、及び第9のトランジスタ39の第2端子の接続箇所をノードAとする。
また、第2のトランジスタ32のゲート電極、第4のトランジスタ34のゲート電極、第
5のトランジスタ35の第2端子、第6のトランジスタ36の第2端子、第8のトランジ
スタ38の第1端子、及び第11のトランジスタ41のゲート電極の接続箇所をノードB
とする(図10(A)参照)。
なお、薄膜トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの
端子を有する素子であり、ドレイン領域とソース領域の間にチャネル領域を有しており、
ドレイン領域とチャネル領域とソース領域とを介して電流を流すことが出来る。ここで、
ソースとドレインとは、薄膜トランジスタの構造や動作条件等によって変わるため、いず
れがソースまたはドレインであるかを限定することが困難である。そこで、ソース及びド
レインとして機能する領域を、ソースもしくはドレインと呼ばない場合がある。その場合
、一例としては、それぞれを第1端子、第2端子と表記する場合がある。
ここで、図10(A)に示したパルス出力回路を複数具備するシフトレジスタのタイミン
グチャートについて図10(B)に示す。なおシフトレジスタが走査線駆動回路である場
合、図10(B)中の期間61は垂直帰線期間であり、期間62はゲート選択期間に相当
する。
なお、図10(A)に示すように、ゲートに第2の電源電位VCCが印加される第9のト
ランジスタ39を設けておくことにより、ブートストラップ動作の前後において、以下の
ような利点がある。
ゲート電極に第2の電位VCCが印加される第9のトランジスタ39がない場合、ブート
ストラップ動作によりノードAの電位が上昇すると、第1のトランジスタ31の第2端子
であるソースの電位が上昇していき、第1の電源電位VDDより大きくなる。そして、第
1のトランジスタ31のソースが第1端子側、即ち電源線51側に切り替わる。そのため
、第1のトランジスタ31においては、ゲートとソースの間、ゲートとドレインの間とも
に、大きなバイアス電圧が印加されるために大きなストレスがかかり、トランジスタの劣
化の要因となりうる。そこで、ゲート電極に第2の電源電位VCCが印加される第9のト
ランジスタ39を設けておくことにより、ブートストラップ動作によりノードAの電位は
上昇するものの、第1のトランジスタ31の第2端子の電位の上昇を生じないようにする
ことができる。つまり、第9のトランジスタ39を設けることにより、第1のトランジス
タ31のゲートとソースの間に印加される負のバイアス電圧の値を小さくすることができ
る。よって、本実施の形態の回路構成とすることにより、第1のトランジスタ31のゲー
トとソースの間に印加される負のバイアス電圧も小さくできるため、ストレスによる第1
のトランジスタ31の劣化を抑制することができる。
なお、第9のトランジスタ39を設ける箇所については、第1のトランジスタ31の第2
端子と第3のトランジスタ33のゲートとの間に第1端子と第2端子を介して接続される
ように設ける構成であればよい。なお、本実施形態でのパルス出力回路を複数具備するシ
フトレジスタの場合、走査線駆動回路より段数の多い信号線駆動回路では、第9のトラン
ジスタ39を省略してもよく、トランジスタ数を削減する利点がある。
なお第1のトランジスタ31乃至第11のトランジスタ41の半導体層として、酸化物半
導体を用いることにより、薄膜トランジスタのオフ電流を低減すると共に、オン電流及び
電界効果移動度を高めることが出来ると共に、劣化の度合いを低減することが出来るため
、回路内の誤動作を低減することができる。また酸化物半導体を用いたトランジスタ、ア
モルファスシリコンを用いたトランジスタに比べ、ゲート電極に高電位が印加されること
によるトランジスタの劣化の程度が小さい。そのため、第2の電源電位VCCを供給する
電源線に、第1の電源電位VDDを供給しても同様の動作が得られ、且つ回路間を引き回
す電源線の数を低減することができるため、回路の小型化を図ることが出来る。
なお、第7のトランジスタ37のゲート電極に第3の入力端子23によって供給されるク
ロック信号、第8のトランジスタ38のゲート電極に第2の入力端子22によって供給さ
れるクロック信号は、第7のトランジスタのゲート電極に第2の入力端子22によって供
給されるクロック信号、第8のゲート電極に第3の入力端子23によって供給されるクロ
ック信号となるように、結線関係を入れ替えても同様の作用を奏する。このとき、図10
(A)に示すシフトレジスタにおいて、第7のトランジスタ37及び第8のトランジスタ
38が共にオンの状態から、第7のトランジスタ37がオフ、第8のトランジスタ38が
オンの状態、次いで第7のトランジスタ37がオフ、第8のトランジスタ38がオフの状
態とすることによって、第2の入力端子22及び第3の入力端子23の電位が低下するこ
とで生じる、ノードBの電位の低下が第7のトランジスタ37のゲート電極の電位の低下
、及び第8のトランジスタ38のゲート電極の電位の低下に起因して2回生じることとな
る。一方、図10(A)に示すシフトレジスタにおいて、第7のトランジスタ37及び第
8のトランジスタ38が共にオンの状態から、第7のトランジスタ37がオン、第8のト
ランジスタ38がオフの状態、次いで、第7のトランジスタ37がオフ、第8のトランジ
スタ38がオフの状態とすることによって、第2の入力端子22及び第3の入力端子23
の電位が低下することで生じるノードBの電位の低下を、第8のトランジスタ38のゲー
ト電極の電位の低下による一回に低減することができる。そのため、第7のトランジスタ
37のゲート電極に第3の入力端子23からクロック信号が供給され、第8のトランジス
タ38のゲート電極に第2の入力端子22からクロック信号が供給される結線関係とする
ことが好適である。なぜなら、ノードBの電位の変動回数が低減され、また、ノイズを低
減することが出来るためである。
このように、第1の出力端子26及び第2の出力端子27の電位をLレベルに保持する
期間に、ノードBに定期的にHレベルの信号が供給される構成とすることにより、パルス
出力回路の誤動作を抑制することができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができることとする。
(実施の形態4)
実施の形態1及び2に示す薄膜トランジスタを作製し、該薄膜トランジスタを画素部、さ
らには駆動回路に用いて表示機能を有する半導体装置(表示装置ともいう)を作製するこ
とができる。また、実施の形態1及び2に示す薄膜トランジスタを有する駆動回路の一部
または全体を、画素部と同じ基板上に一体形成し、システムオンパネルを形成することが
できる。
表示装置は表示素子を含む。表示素子としては液晶素子(液晶表示素子ともいう)、発光
素子(発光表示素子ともいう)を用いることができる。発光素子は、電流または電圧によ
って輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electr
o Luminescence)素子、有機EL素子等が含まれる。また、電子インクな
ど、電気的作用によりコントラストが変化する表示媒体も適用することができる。
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラ
を含むIC等を実装した状態にあるモジュールとを含む。さらに、該表示装置を作製する
過程における、表示素子が完成する前の一形態に相当する素子基板に関し、該素子基板は
、電流を表示素子に供給するための手段を複数の各画素に備える。素子基板は、具体的に
は、表示素子の画素電極のみが形成された状態であっても良いし、画素電極となる導電膜
を成膜した後であって、エッチングして画素電極を形成する前の状態であっても良いし、
あらゆる形態があてはまる。
なお、本明細書中における表示装置とは、画像表示デバイス、表示デバイス、もしくは光
源(照明装置含む)を指す。また、コネクター、例えばFPC(Flexible pr
inted circuit)もしくはTAB(Tape Automated Bon
ding)テープもしくはTCP(Tape Carrier Package)が取り
付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュ
ール、または表示素子にCOG(Chip On Glass)方式によりIC(集積回
路)が直接実装されたモジュールも全て表示装置に含むものとする。
本実施の形態では、半導体装置の一形態に相当する液晶表示パネルの外観及び断面につい
て、図11を用いて説明する。図11は、第1の基板4001上に形成された実施の形態
1及び2で示したIn-Ga-Zn-O系膜を酸化物半導体層として含む信頼性の高い薄
膜トランジスタ4010、4011、及び液晶素子4013を、第2の基板4006との
間にシール材4005によって封止した、パネルの上面図であり、図11(B)は、図1
1(A1)(A2)のM-Nにおける断面図に相当する。
第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲む
ようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回
路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査
線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006
とによって、液晶層4008と共に封止されている。また第1の基板4001上のシール
材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に単結晶
半導体膜又は多結晶半導体膜で形成された信号線駆動回路4003が実装されている。
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG方法、
ワイヤボンディング方法、或いはTAB方法などを用いることができる。図11(A1)
は、COG方法により信号線駆動回路4003を実装する例であり、図11(A2)は、
TAB方法により信号線駆動回路4003を実装する例である。
また第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は、
薄膜トランジスタを複数有しており、図11(B)では、画素部4002に含まれる薄膜
トランジスタ4010と、走査線駆動回路4004に含まれる薄膜トランジスタ4011
とを例示している。薄膜トランジスタ4010、4011上には絶縁層4020、402
1が設けられている。
薄膜トランジスタ4010、4011は、In-Ga-Zn-O系膜を酸化物半導体層と
して含む信頼性の高い実施の形態1及び2に示す薄膜トランジスタを適用することができ
る。本実施の形態において、薄膜トランジスタ4010、4011はnチャネル型薄膜ト
ランジスタである。
また、液晶素子4013が有する画素電極層4030は、薄膜トランジスタ4010と電
気的に接続されている。そして液晶素子4013の対向電極層4031は第2の基板40
06上に形成されている。画素電極層4030と対向電極層4031と液晶層4008と
が重なっている部分が、液晶素子4013に相当する。なお、画素電極層4030、対向
電極層4031はそれぞれ配向膜として機能する絶縁層4032、4033が設けられ、
絶縁層4032、4033を介して液晶層4008を挟持している。なお、図示はしてい
ないが、カラーフィルタは第1の基板4001または第2の基板4006のどちら側に設
けても良い。
なお、第1の基板4001、第2の基板4006としては、ガラス、金属(代表的にはス
テンレス)、セラミックス、プラスチックを用いることができる。プラスチックとしては
、FRP(Fiberglass-Reinforced Plastics)板、PV
F(ポリビニルフルオライド)フィルム、ポリエステルフィルム、またはアクリル樹脂フ
ィルムを用いることができる。また、アルミニウムホイルをPVFフィルムやポリエステ
ルフィルムで挟んだ構造のシートを用いることもできる。
また4035は絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、
画素電極層4030と対向電極層4031との間の距離(セルギャップ)を制御するため
に設けられている。なお球状のスペーサを用いていても良い。また、対向電極層4031
は、薄膜トランジスタ4010と同一基板上に設けられる共通電位線と電気的に接続され
る。共通接続部を用いて、一対の基板間に配置される導電性粒子を介して対向電極層40
31と共通電位線とを電気的に接続することができる。なお、導電性粒子はシール材40
05に含有させる。
また、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つで
あり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直
前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善
するために5重量%以上のカイラル剤を混合させた液晶組成物を用いて液晶層4008に
用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が10μse
c.以上100μsec.以下と短く、光学的等方性であるため配向処理が不要であり、
視野角依存性が小さい。
なお本実施の形態は透過型液晶表示装置の例であるが、本発明は反射型液晶表示装置でも
半透過型液晶表示装置でも適用できる。
また、本実施の形態の液晶表示装置では、基板の外側(視認側)に偏光板を設け、内側に
着色層、表示素子に用いる電極層という順に設ける例を示すが、偏光板は基板の内側に設
けてもよい。また、偏光板と着色層の積層構造も本実施の形態に限定されず、偏光板及び
着色層の材料や作製工程条件によって適宜設定すればよい。また、ブラックマトリクスと
して機能する遮光膜を設けてもよい。
また、本実施の形態では、薄膜トランジスタ起因の表面凹凸を低減するため、及び薄膜ト
ランジスタの信頼性を向上させるため、実施の形態1または2で得られた薄膜トランジス
タを保護膜や平坦化絶縁膜として機能する絶縁層(絶縁層4020、絶縁層4021)で
覆う構成となっている。なお、保護膜は、大気中に浮遊する有機物や金属物、水蒸気など
の汚染不純物の侵入を防ぐためのものであり、緻密な膜が好ましい。保護膜は、スパッタ
法を用いて、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン
膜、酸化アルミニウム膜、窒化アルミニウム膜、酸化窒化アルミニウム膜、又は窒化酸化
アルミニウム膜の単層、又は積層で形成すればよい。本実施の形態では保護膜をスパッタ
法で形成する例を示すが、特に限定されず種々の方法で形成すればよい。
ここでは、保護膜として積層構造の絶縁層4020を形成する。ここでは、絶縁層402
0の一層目として、スパッタ法を用いて酸化シリコン膜を形成する。保護膜として酸化シ
リコン膜を用いると、ソース電極層及びドレイン電極層として用いるアルミニウム膜のヒ
ロック防止に効果がある。
また、保護膜の二層目として絶縁層を形成する。ここでは、絶縁層4020の二層目とし
て、スパッタ法を用いて窒化シリコン膜を形成する。保護膜として窒化シリコン膜を用い
ると、ナトリウム等の可動イオンが半導体領域中に侵入して、TFTの電気特性を変化さ
せることを抑制することができる。
また、保護膜を形成した後に、酸化物半導体層のアニール(300℃以上400℃以下)
を行ってもよい。
また、平坦化絶縁膜として絶縁層4021を形成する。絶縁層4021としては、アクリ
ル、ポリイミド、ベンゾシクロブテン、ポリアミド、エポキシ等の、耐熱性を有する有機
材料を用いることができる。また上記有機材料の他に、低誘電率材料(low-k材料)
、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いる
ことができる。なお、これらの材料で形成される絶縁膜を複数積層させることで、絶縁層
4021を形成してもよい。
なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi-O-S
i結合を含む樹脂に相当する。シロキサン系樹脂は置換基としては有機基(例えばアルキ
ル基やアリール基)やフルオロ基を用いても良い。また、有機基はフルオロ基を有してい
ても良い。
絶縁層4021の形成法は、特に限定されず、その材料に応じて、スパッタ法、SOG法
、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン
印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイ
フコーター等を用いることができる。絶縁層4021を材料液を用いて形成する場合、ベ
ークする工程で同時に、酸化物半導体層のアニール(300℃以上400℃以下)を行っ
てもよい。絶縁層4021の焼成工程と酸化物半導体層のアニールを兼ねることで効率よ
く半導体装置を作製することが可能となる。
画素電極層4030、対向電極層4031は、酸化タングステンを含むインジウム酸化物
、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、
酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、
インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する
導電性材料を用いることができる。
また、画素電極層4030、対向電極層4031として、導電性高分子(導電性ポリマー
ともいう)を含む導電性組成物を用いて形成することができる。導電性組成物を用いて形
成した画素電極は、シート抵抗が10000Ω/□以下、波長550nmにおける透光率
が70%以上であることが好ましい。また、導電性組成物に含まれる導電性高分子の抵抗
率が0.1Ω・cm以下であることが好ましい。
導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例え
ば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンま
たはその誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
また別途形成された信号線駆動回路4003と、走査線駆動回路4004または画素部4
002に与えられる各種信号及び電位は、FPC4018から供給されている。
本実施の形態では、接続端子電極4015が、液晶素子4013が有する画素電極層40
30と同じ導電膜から形成され、端子電極4016は、薄膜トランジスタ4010、40
11のソース電極層及びドレイン電極層と同じ導電膜で形成されている。
接続端子電極4015は、FPC4018が有する端子と、異方性導電膜4019を介し
て電気的に接続されている。
また図11においては、信号線駆動回路4003を別途形成し、第1の基板4001に実
装している例を示しているが、本実施の形態はこの構成に限定されない。走査線駆動回路
を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部の
みを別途形成して実装しても良い。
図12は、実施の形態1及び2に示すTFTを適用して作製されるTFT基板2600を
用いて半導体装置として液晶表示モジュールを構成する一例を示している。
図12は液晶表示モジュールの一例であり、TFT基板2600と対向基板2601がシ
ール材2602により固着され、その間にTFT等を含む画素部2603、液晶層を含む
表示素子2604、着色層2605が設けられ表示領域を形成している。着色層2605
はカラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑、青の各色に対応し
た着色層が各画素に対応して設けられている。TFT基板2600と対向基板2601の
外側には偏光板2606、偏光板2607、拡散板2613が配設されている。光源は冷
陰極管2610と反射板2611により構成され、回路基板2612は、フレキシブル配
線基板2609によりTFT基板2600の配線回路部2608と接続され、コントロー
ル回路や電源回路などの外部回路が組みこまれている。また偏光板と、液晶層との間に位
相差板を有した状態で積層してもよい。
液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(I
n-Plane-Switching)モード、FFS(Fringe Field S
witching)モード、MVA(Multi-domain Vertical A
lignment)モード、PVA(Patterned Vertical Alig
nment)モード、ASM(Axially Symmetric aligned
Micro-cell)モード、OCB(Optical Compensated B
irefringence)モード、FLC(Ferroelectric Liqui
d Crystal)モード、AFLC(AntiFerroelectric Liq
uid Crystal)モードなどを用いることができる。
以上の工程により、半導体装置として信頼性の高い液晶表示パネルを作製することができ
る。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができることとする。
(実施の形態5)
本実施の形態では、実施の形態1または2に示す薄膜トランジスタを適用した半導体装置
として電子ペーパーの例を示す。
図13は、半導体装置の例としてアクティブマトリクス型の電子ペーパーを示す。半導体
装置に用いられる薄膜トランジスタ581としては、実施の形態1及び2で示す薄膜トラ
ンジスタを適用することができる。
図13の電子ペーパーは、ツイストボール表示方式を用いた表示装置の例である。ツイス
トボール表示方式とは、白と黒に塗り分けられた球形粒子を、表示素子に用いる電極層で
ある第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の電極層に電位
差を生じさせての球形粒子の向きを制御することにより、表示を行う方法である。
基板580と基板596との間に封止される薄膜トランジスタ581はボトムゲート構造
の薄膜トランジスタであり、ソース電極層又はドレイン電極層によって第1の電極層58
7と、絶縁層584、585に形成する開口で接しており電気的に接続している。第1の
電極層587と第2の電極層588との間には黒色領域590a及び白色領域590bを
有し、周りに液体で満たされているキャビティ594を含む球形粒子589が設けられて
おり、球形粒子589の周囲は樹脂等の充填材595で充填されている(図13参照)。
本実施の形態においては、第1の電極層587が画素電極に相当し、第2の電極層588
が共通電極に相当する。第2の電極層588は、薄膜トランジスタ581と同一基板上に
設けられる共通電位線と電気的に接続される。実施の形態1及び2に示すいずれか一の共
通接続部を用いて、一対の基板間に配置される導電性粒子を介して第2の電極層588と
共通電位線とを電気的に接続することができる。
また、ツイストボールの代わりに、電気泳動素子を用いることも可能である。透明な液体
と、正に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直径10μm以上2
00μm以下程度のマイクロカプセルを用いる。第1の電極層と第2の電極層との間に設
けられるマイクロカプセルは、第1の電極層と第2の電極層によって、電場が与えられる
と、白い微粒子と、黒い微粒子が逆の方向に移動し、白または黒を表示することができる
。この原理を応用した表示素子が電気泳動表示素子であり、一般的に電子ペーパーとよば
れている。電気泳動表示素子は、液晶表示素子に比べて反射率が高いため、補助ライトは
不要であり、また消費電力が小さく、薄暗い場所でも表示部を認識することが可能である
。また、表示部に電源が供給されない場合であっても、一度表示した像を保持することが
可能であるため、電波発信源から表示機能付き半導体装置(単に表示装置、又は表示装置
を具備する半導体装置ともいう)を遠ざけた場合であっても、表示された像を保存してお
くことが可能となる。
以上により、半導体装置として信頼性の高い電子ペーパーとすることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができることとする。
(実施の形態6)
本実施の形態では、実施の形態1または2に示す薄膜トランジスタを適用した半導体装置
として発光表示装置の例を示す。表示装置の有する表示素子としては、ここではエレクト
ロルミネッセンスを利用する発光素子を用いて示す。エレクトロルミネッセンスを利用す
る発光素子は、発光材料が有機化合物であるか、無機化合物であるかによって区別され、
一般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。
有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子および正孔
がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャ
リア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成
し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このよう
な発光素子は、電流励起型の発光素子と呼ばれる。
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分
類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有
するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー-ア
クセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、
さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利
用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明す
る。
図14は、本発明を適用した半導体装置の例としてデジタル時間階調駆動を適用可能な画
素構成の一例を示す図である。
デジタル時間階調駆動を適用可能な画素の構成及び画素の動作について説明する。ここで
は、実施の形態1及び2で示した、酸化物半導体層(In-Ga-Zn-O系膜)をチャ
ネル形成領域に用いるnチャネル型のトランジスタを、1つの画素に2つ用いる例を示す
画素6400は、スイッチング用トランジスタ6401、駆動用トランジスタ6402、
発光素子6404及び容量素子6403を有している。スイッチング用トランジスタ64
01はゲートが走査線6406に接続され、第1電極(ソース電極及びドレイン電極の一
方)が信号線6405に接続され、第2電極(ソース電極及びドレイン電極の他方)が駆
動用トランジスタ6402のゲートに接続されている。駆動用トランジスタ6402は、
ゲートが容量素子6403を介して電源線6407に接続され、第1電極が電源線640
7に接続され、第2電極が発光素子6404の第1電極(画素電極)に接続されている。
発光素子6404の第2電極は共通電極6408に相当する。共通電極6408は、同一
基板上に形成される共通電位線と電気的に接続される。その接続部分を共通接続部とすれ
ばよい。
なお、発光素子6404の第2電極(共通電極6408)には低電源電位が設定されてい
る。なお、低電源電位とは、電源線6407に設定される高電源電位を基準にして低電源
電位<高電源電位を満たす電位であり、低電源電位としては例えばGND、0Vなどが設
定されていても良い。この高電源電位と低電源電位との電位差を発光素子6404に印加
して、発光素子6404に電流を流して発光素子6404を発光させるため、高電源電位
と低電源電位との電位差が発光素子6404の順方向しきい値電圧以上となるようにそれ
ぞれの電位を設定する。
なお、容量素子6403は駆動用トランジスタ6402のゲート容量を代用して省略する
ことも可能である。駆動用トランジスタ6402のゲート容量については、チャネル領域
とゲート電極との間で容量が形成されていてもよい。
ここで、電圧入力電圧駆動方式の場合には、駆動用トランジスタ6402のゲートには、
駆動用トランジスタ6402が十分にオンするか、オフするかの二つの状態となるような
ビデオ信号を入力する。つまり、駆動用トランジスタ6402は線形領域で動作させる。
駆動用トランジスタ6402は線形領域で動作させるため、電源線6407の電圧よりも
高い電圧を駆動用トランジスタ6402のゲートにかける。なお、信号線6405には、
(電源線電圧+駆動用トランジスタ6402のVth)以上の電圧をかける。
また、デジタル時間階調駆動に代えて、アナログ階調駆動を行う場合も信号の入力を異な
らせることで、図14と同じ画素構成を用いることができる。
アナログ階調駆動を行う場合、駆動用トランジスタ6402のゲートに発光素子6404
の順方向電圧+駆動用トランジスタ6402のVth以上の電圧をかける。発光素子64
04の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なくとも順方向し
きい値電圧を含む。なお、駆動用トランジスタ6402が飽和領域で動作するようなビデ
オ信号を入力することで、発光素子6404に電流を流すことができる。駆動用トランジ
スタ6402を飽和領域で動作させるため、電源線6407の電位は、駆動用トランジス
タ6402のゲート電位よりも高くする。ビデオ信号をアナログとすることで、発光素子
6404にビデオ信号に応じた電流を流し、アナログ階調駆動を行うことができる。
なお、図14に示す画素構成は、これに限定されない。例えば、図14に示す画素に新た
にスイッチ、抵抗素子、容量素子、トランジスタ又は論理回路などを追加してもよい。
次に、発光素子の構成について、図15を用いて説明する。ここでは、駆動用TFTがn
型の場合を例に挙げて、画素の断面構造について説明する。図15(A)(B)(C)の
半導体装置に用いられる駆動用TFTであるTFT7001、7011、7021は、実
施の形態1及び2で示す薄膜トランジスタと同様に作製でき、In-Ga-Zn-O系膜
を酸化物半導体層として含む信頼性の高い薄膜トランジスタである。
発光素子は発光を取り出すために少なくとも陽極又は陰極の一方が透明であればよい。そ
して、基板上に薄膜トランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取
り出す上面射出や、基板側の面から発光を取り出す下面射出や、基板側及び基板とは反対
側の面から発光を取り出す両面射出構造の発光素子があり、本発明の画素構成はどの射出
構造の発光素子にも適用することができる。
下面射出構造の発光素子について図15(A)を用いて説明する。
駆動用TFT7011がn型で、発光素子7012から発せられる光が第1の電極701
3側に射出する場合の、画素の断面図を示す。図15(A)では、駆動用TFT7011
のドレイン電極層と電気的に接続された透光性を有する導電膜7017上に、発光素子7
012の第1の電極7013が形成されており、第1の電極7013上にEL層7014
、第2の電極7015が順に積層されている。
透光性を有する導電膜7017としては、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物、酸化ケ
イ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いることができる。
また、発光素子の第1の電極7013は様々な材料を用いることができる。例えば、第1
の電極7013を陰極として用いる場合には、仕事関数が小さい材料、具体的には、例え
ば、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およ
びこれらを含む合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等
が好ましい。図15(A)では、第1の電極7013の膜厚は、光を透過する程度(好ま
しくは、5nm~30nm程度)とする。例えば20nmの膜厚を有するアルミニウム膜
を、第1の電極7013として用いる。
なお、透光性を有する導電膜とアルミニウム膜を積層成膜した後、選択的にエッチングし
て透光性を有する導電膜7017と第1の電極7013を形成してもよく、この場合、同
じマスクを用いてエッチングすることができるため、好ましい。
また、第1の電極7013の周縁部は、隔壁7019で覆う。隔壁7019は、ポリイミ
ド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキ
サンを用いて形成する。隔壁7019は、特に感光性の樹脂材料を用い、第1の電極70
13上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面と
なるように形成することが好ましい。隔壁7019として感光性の樹脂材料を用いる場合
、レジストマスクを形成する工程を省略することができる。
また、第1の電極7013及び隔壁7019上に形成するEL層7014は、少なくとも
発光層を含めば良く、単数の層で構成されていても、複数の層が積層されるように構成さ
れていてもどちらでも良い。EL層7014が複数の層で構成されている場合、陰極とし
て機能する第1の電極7013上に電子注入層、電子輸送層、発光層、ホール輸送層、ホ
ール注入層の順に積層する。なおこれらの層を全て設ける必要はない。
また、上記積層順に限定されず、第1の電極7013を陽極として機能させ、第1の電極
7013上にホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層
してもよい。ただし、消費電力を比較する場合、第1の電極7013を陰極として機能さ
せ、第1の電極7013上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注
入層の順に積層するほうが、駆動回路部の電圧上昇を抑制でき、消費電力を少なくできる
ため好ましい。
また、EL層7014上に形成する第2の電極7015としては、様々な材料を用いるこ
とができる。例えば、第2の電極7015を陽極として用いる場合、仕事関数が大きい材
料、例えば、ZrN、Ti、W、Ni、Pt、Cr等や、ITO、IZO、ZnOなどの
透明導電性材料が好ましい。また、第2の電極7015上に遮蔽膜7016、例えば光を
遮光する金属、光を反射する金属等を用いる。本実施の形態では、第2の電極7015と
してITO膜を用い、遮蔽膜7016としてTi膜を用いる。
第1の電極7013及び第2の電極7015で、発光層を含むEL層7014を挟んでい
る領域が発光素子7012に相当する。図15(A)に示した素子構造の場合、発光素子
7012から発せられる光は、矢印で示すように第1の電極7013側に射出する。
なお、図15(A)において、発光素子7012から発せられる光は、カラーフィルタ層
7033を通過し、絶縁層7032、酸化物絶縁層7031、ゲート絶縁層7060、及
び基板7010を通過して射出させる。
カラーフィルタ層7033はインクジェット法などの液滴吐出法や、印刷法、フォトリソ
グラフィ技術を用いたエッチング方法などでそれぞれ形成する。
また、カラーフィルタ層7033はオーバーコート層7034で覆われ、さらに保護絶縁
層7035によって覆う。なお、図15(A)ではオーバーコート層7034は薄い膜厚
で図示したが、オーバーコート層7034は、アクリル樹脂などの樹脂材料を用い、カラ
ーフィルタ層7033に起因する凹凸を平坦化する機能を有している。
また、保護絶縁層7035及び絶縁層7032に形成され、且つ、接続電極層7030に
達するコンタクトホールは、隔壁7019と重なる位置に配置する。
次に、両面射出構造の発光素子について、図15(B)を用いて説明する。
図15(B)では、駆動用TFT7021のドレイン電極層と電気的に接続された透光性
を有する導電膜7027上に、発光素子7022の第1の電極7023が形成されており
、第1の電極7023上にEL層7024、第2の電極7025が順に積層されている。
透光性を有する導電膜7027としては、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物、酸化ケ
イ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いることができる。
また、第1の電極7023は様々な材料を用いることができる。例えば、第1の電極70
23を陰極として用いる場合、仕事関数が小さい材料、具体的には、例えば、LiやCs
等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む
合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好ましい。本
実施の形態では、第1の電極7023を陰極として用い、その膜厚は、光を透過する程度
(好ましくは、5nm~30nm程度)とする。例えば20nmの膜厚を有するアルミニ
ウム膜を、陰極として用いる。
なお、透光性を有する導電膜とアルミニウム膜を積層成膜した後、選択的にエッチングし
て透光性を有する導電膜7027と第1の電極7023を形成してもよく、この場合、同
じマスクを用いてエッチングすることができ、好ましい。
また、第1の電極7023の周縁部は、隔壁7029で覆う。隔壁7029は、ポリイミ
ド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキ
サンを用いて形成する。隔壁7029は、特に感光性の樹脂材料を用い、第1の電極70
23上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面と
なるように形成することが好ましい。隔壁7029として感光性の樹脂材料を用いる場合
、レジストマスクを形成する工程を省略することができる。
また、第1の電極7023及び隔壁7029上に形成するEL層7024は、少なくとも
発光層を含めば良く、単数の層で構成されていても、複数の層が積層されるように構成さ
れていてもどちらでも良い。EL層7024が複数の層で構成されている場合、陰極とし
て機能する第1の電極7023上に電子注入層、電子輸送層、発光層、ホール輸送層、ホ
ール注入層の順に積層する。なおこれらの層を全て設ける必要はない。
また、上記積層順に限定されず、第1の電極7023を陽極として用い、陽極上にホール
注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層してもよい。ただし
、消費電力を比較する場合、第1の電極7023を陰極として用い、陰極上に電子注入層
、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層するほうが消費電力が少
ないため好ましい。
また、EL層7024上に形成する第2の電極7025としては、様々な材料を用いるこ
とができる。例えば、第2の電極7025を陽極として用いる場合、仕事関数が大きい材
料、例えば、ITO、IZO、ZnOなどの透明導電性材料を好ましく用いることができ
る。本実施の形態では、第2の電極7025を陽極として用い、酸化珪素を含むITO膜
を形成する。
第1の電極7023及び第2の電極7025で、発光層を含むEL層7024を挟んでい
る領域が発光素子7022に相当する。図15(B)に示した素子構造の場合、発光素子
7022から発せられる光は、矢印で示すように第2の電極7025側と第1の電極70
23側の両方に射出する。
なお、図15(B)において、発光素子7022から第1の電極7023側に発せられる
一方の光は、カラーフィルタ層7043を通過し、絶縁層7042、酸化物絶縁層704
1、ゲート絶縁層7070、及び基板7020を通過して射出させる。
カラーフィルタ層7043はインクジェット法などの液滴吐出法や、印刷法、フォトリソ
グラフィ技術を用いたエッチング方法などでそれぞれ形成する。
また、カラーフィルタ層7043はオーバーコート層7044で覆われ、さらに保護絶縁
層7045によって覆う。
また、保護絶縁層7045及び絶縁層7042に形成され、且つ、接続電極層7040に
達するコンタクトホールは、隔壁7029と重なる位置に配置する。
ただし、両面射出構造の発光素子を用い、どちらの表示面もフルカラー表示とする場合、
第2の電極7025側からの光はカラーフィルタ層7043を通過しないため、別途カラ
ーフィルタ層を備えた封止基板を第2の電極7025上方に設けることが好ましい。
次に、上面射出構造の発光素子について、図15(C)を用いて説明する。
図15(C)に、駆動用TFTであるTFT7001がn型で、発光素子7002から発
せられる光が第2の電極7005側に抜ける場合の、画素の断面図を示す。図15(C)
では、駆動用のTFT7001のドレイン電極層と電気的に接続された発光素子7002
の第1の電極7003が形成されており、第1の電極7003上にEL層7004、第2
の電極7005が順に積層されている。
また、第1の電極7003は様々な材料を用いることができる。例えば、第1の電極70
03を陰極として用いる場合、仕事関数が小さい材料、具体的には、例えば、LiやCs
等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む
合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好ましい。
また、第1の電極7003及び隔壁7009上に形成するEL層7004は、少なくとも
発光層を含めば良く、単数の層で構成されていても、複数の層が積層されるように構成さ
れていてもどちらでも良い。EL層7004が複数の層で構成されている場合、陰極とし
て用いる第1の電極7003上に電子注入層、電子輸送層、発光層、ホール輸送層、ホー
ル注入層の順に積層する。なおこれらの層を全て設ける必要はない。
また、上記積層順に限定されず、陽極として用いる第1の電極7003上にホール注入層
、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層してもよい。
図15(C)ではTi膜、アルミニウム膜、Ti膜の順に積層した積層膜上に、ホール注
入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層し、その上にMg:A
g合金薄膜とITO膜との積層を形成する。
ただし、TFT7001がn型の場合、第1の電極7003上に電子注入層、電子輸送層
、発光層、ホール輸送層、ホール注入層の順に積層するほうが、駆動回路における電圧上
昇を抑制することができ、消費電力を少なくできるため好ましい。
第2の電極7005は透光性を有する導電性材料を用いて形成し、例えば酸化タングステ
ンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタン
を含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物、
インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する
導電膜を用いても良い。
第1の電極7003及び第2の電極7005で発光層を含むEL層7004を挟んでいる
領域が発光素子7002に相当する。図15(C)に示した素子構造の場合、発光素子7
002から発せられる光は、矢印で示すように第2の電極7005側に射出する。
また、図15(C)において、TFT7001のドレイン電極層は、酸化物絶縁層705
1、保護絶縁層7052及び絶縁層7055に設けられたコンタクトホールを介して第1
の電極7003と電気的に接続する。平坦化絶縁層7053は、ポリイミド、アクリル、
ベンゾシクロブテン、ポリアミド、エポキシ等の樹脂材料を用いることができる。また上
記樹脂材料の他に、低誘電率材料(low-k材料)、シロキサン系樹脂、PSG(リン
ガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの材料
で形成される絶縁膜を複数積層させることで、平坦化絶縁層7053を形成してもよい。
平坦化絶縁層7053の形成法は、特に限定されず、その材料に応じて、スパッタ法、S
OG法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スク
リーン印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター
、ナイフコーター等を用いることができる。
また、第1の電極7003と、隣り合う画素の第1の電極7003とを絶縁するために隔
壁7009を設ける。隔壁7009は、ポリイミド、アクリル、ポリアミド、エポキシ等
の有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。隔壁7009は
、特に感光性の樹脂材料を用い、第1の電極7003上に開口部を形成し、その開口部の
側壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。隔
壁7009として感光性の樹脂材料を用いる場合、レジストマスクを形成する工程を省略
することができる。
また、図15(C)の構造においては、フルカラー表示を行う場合、例えば発光素子70
02として緑色発光素子とし、隣り合う一方の発光素子を赤色発光素子とし、もう一方の
発光素子を青色発光素子とする。また、3種類の発光素子だけでなく白色素子を加えた4
種類の発光素子でフルカラー表示ができる発光表示装置を作製してもよい。
また、図15(C)の構造においては、配置する複数の発光素子を全て白色発光素子とし
て、発光素子7002上方にカラーフィルタなどを有する封止基板を配置する構成とし、
フルカラー表示ができる発光表示装置を作製してもよい。白色などの単色の発光を示す材
料を形成し、カラーフィルタや色変換層を組み合わせることによりフルカラー表示を行う
ことができる。
もちろん単色発光の表示を行ってもよい。例えば、白色発光を用いて照明装置を形成して
もよいし、単色発光を用いてエリアカラータイプの発光装置を形成してもよい。
また、必要があれば、円偏光板などの偏光フィルムなどの光学フィルムを設けてもよい。
なお、ここでは、発光素子として有機EL素子について述べたが、発光素子として無機E
L素子を設けることも可能である。
なお、発光素子の駆動を制御する薄膜トランジスタ(駆動用TFT)と発光素子が電気的
に接続されている例を示したが、駆動用TFTと発光素子との間に電流制御用TFTが接
続されている構成であってもよい。
なお本実施の形態で示す半導体装置は、図15に示した構成に限定されるものではなく、
本発明の技術的思想に基づく各種の変形が可能である。
次に、実施の形態1または2に示す薄膜トランジスタを適用した半導体装置の一形態に相
当する発光表示パネル(発光パネルともいう)の外観及び断面について、図16を用いて
説明する。図16(A)は、第1の基板上に形成された薄膜トランジスタ及び発光素子を
、第2の基板との間にシール材によって封止した、パネルの上面図であり、図16(B)
は、図16(A)のH-Iにおける断面図に相当する。
第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、450
3b、及び走査線駆動回路4504a、4504bを囲むようにして、シール材4505
が設けられている。また画素部4502、信号線駆動回路4503a、4503b、及び
走査線駆動回路4504a、4504bの上に第2の基板4506が設けられている。よ
って画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路45
04a、4504bは、第1の基板4501とシール材4505と第2の基板4506と
によって、充填材4507と共に密封されている。このように外気に曝されないように気
密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィル
ム等)やカバー材でパッケージング(封入)することが好ましい。
また第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4
503b、及び走査線駆動回路4504a、4504bは、薄膜トランジスタを複数有し
ており、図16(B)では、画素部4502に含まれる薄膜トランジスタ4510と、信
号線駆動回路4503aに含まれる薄膜トランジスタ4509とを例示している。
薄膜トランジスタ4509、4510は、In-Ga-Zn-O系膜を酸化物半導体層と
して含む信頼性の高い実施の形態1及び2に示す薄膜トランジスタを適用することができ
る。本実施の形態において、薄膜トランジスタ4509、4510はnチャネル型薄膜ト
ランジスタである。
絶縁層4544上において駆動回路用の薄膜トランジスタ4509の酸化物半導体層のチ
ャネル形成領域と重なる位置に導電層4540が設けられている。導電層4540を酸化
物半導体層のチャネル形成領域と重なる位置に設けることによって、BT試験前後におけ
る薄膜トランジスタ4509のしきい値電圧の変化量を低減することができる。また、導
電層4540は、電位が薄膜トランジスタ4509のゲート電極層と同じでもよいし、異
なっていても良く、第2のゲート電極層として機能させることもできる。また、導電層4
540の電位がGND、0V、或いはフローティング状態であってもよい。
また4511は発光素子に相当し、発光素子4511が有する画素電極である第1の電極
層4517は、薄膜トランジスタ4510のソース電極層またはドレイン電極層と電気的
に接続されている。なお発光素子4511の構成は、第1の電極層4517、電界発光層
4512、第2の電極層4513の積層構造であるが、本実施の形態に示した構成に限定
されない。発光素子4511から取り出す光の方向などに合わせて、発光素子4511の
構成は適宜変えることができる。
隔壁4520は、有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。
特に感光性の材料を用い、第1の電極層4517上に開口部を形成し、その開口部の側壁
が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
電界発光層4512は、単数の層で構成されていても、複数の層が積層されるように構成
されていてもどちらでも良い。
発光素子4511に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極層
4513及び隔壁4520上に保護膜を形成してもよい。保護膜としては、窒化シリコン
膜、窒化酸化シリコン膜、DLC膜等を形成することができる。
また、信号線駆動回路4503a、4503b、走査線駆動回路4504a、4504b
、または画素部4502に与えられる各種信号及び電位は、FPC4518a、4518
bから供給されている。
本実施の形態では、接続端子電極4515が、発光素子4511が有する第1の電極層4
517と同じ導電膜から形成され、端子電極4516は、薄膜トランジスタ4509、4
510が有するソース電極層及びドレイン電極層と同じ導電膜から形成されている。
接続端子電極4515は、FPC4518aが有する端子と、異方性導電膜4519を介
して電気的に接続されている。
発光素子4511からの光の取り出し方向に位置する第2の基板は透光性でなければなら
ない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまたはアクリル
フィルムのような透光性を有する材料を用いる。
また、充填材4507としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹
脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、
ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEV
A(エチレンビニルアセテート)を用いることができる。本実施の形態は充填材として窒
素を用いた。
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、
位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよ
い。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により
反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは
、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜によって形成された駆動回
路で実装されていてもよい。また、信号線駆動回路のみ、或いは一部、又は走査線駆動回
路のみ、或いは一部のみを別途形成して実装しても良く、本実施の形態は図16の構成に
限定されない。
以上の工程により、半導体装置として信頼性の高い発光表示装置(表示パネル)を作製す
ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができることとする。
(実施の形態7)
実施の形態1または2に示す薄膜トランジスタを適用した半導体装置は、電子ペーパーと
して適用することができる。電子ペーパーは、情報を表示するものであればあらゆる分野
の電子機器に用いることが可能である。例えば、電子ペーパーを用いて、電子書籍(電子
ブック)、ポスター、電車などの乗り物の車内広告、クレジットカード等の各種カードに
おける表示等に適用することができる。電子機器の一例を図17、図18に示す。
図17(A)は、電子ペーパーで作られたポスター2631を示している。広告媒体が紙
の印刷物である場合には、広告の交換は人手によって行われるが、電子ペーパーを用いれ
ば短時間で広告の表示を変えることができる。また、表示も崩れることなく安定した画像
が得られる。なお、ポスターは無線で情報を送受信できる構成としてもよい。
また、図17(B)は、電車などの乗り物の車内広告2632を示している。広告媒体が
紙の印刷物である場合には、広告の交換は人手によって行われるが、電子ペーパーを用い
れば人手を多くかけることなく短時間で広告の表示を変えることができる。また表示も崩
れることなく安定した画像が得られる。なお、車内広告は無線で情報を送受信できる構成
としてもよい。
また、図18は、電子書籍の一例を示している。例えば、電子書籍2700は、筐体27
01および筐体2703の2つの筐体で構成されている。筐体2701および筐体270
3は、軸部2711により一体とされており、該軸部2711を軸として開閉動作を行う
ことができる。このような構成により、紙の書籍のような動作を行うことが可能となる。
筐体2701には表示部2705が組み込まれ、筐体2703には表示部2707が組み
込まれている。表示部2705および表示部2707は、続き画面を表示する構成として
もよいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とするこ
とで、例えば右側の表示部(図18では表示部2705)に文章を表示し、左側の表示部
(図18では表示部2707)に画像を表示することができる。
また、図18では、筐体2701に操作部などを備えた例を示している。例えば、筐体2
701において、電源2721、操作キー2723、スピーカ2725などを備えている
。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同一面にキー
ボードやポインティングディバイスなどを備える構成としてもよい。また、筐体の裏面や
側面に、外部接続用端子(イヤホン端子、USB端子、またはACアダプタおよびUSB
ケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成
としてもよい。さらに、電子書籍2700は、電子辞書としての機能を持たせた構成とし
てもよい。
また、電子書籍2700は、無線で情報を送受信できる構成としてもよい。無線により、
電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすること
も可能である。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができることとする。
(実施の形態8)
実施の形態1または2に示す薄膜トランジスタを用いた半導体装置は、さまざまな電子機
器(遊技機も含む)に適用することができる。電子機器としては、例えば、テレビジョン
装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デ
ジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話
、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機
などの大型ゲーム機などが挙げられる。
図19(A)は、テレビジョン装置の一例を示している。テレビジョン装置9600は、
筐体9601に表示部9603が組み込まれている。表示部9603により、映像を表示
することが可能である。また、ここでは、スタンド9605により筐体9601を支持し
た構成を示している。
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリモ
コン操作機9610により行うことができる。リモコン操作機9610が備える操作キー
9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示され
る映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作機
9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機に
より一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線に
よる通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向
(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図19(B)は、デジタルフォトフレームの一例を示している。例えば、デジタルフォト
フレーム9700は、筐体9701に表示部9703が組み込まれている。表示部970
3は、各種画像を表示することが可能であり、例えばデジタルカメラなどで撮影した画像
データを表示させることで、通常の写真立てと同様に機能させることができる。
なお、デジタルフォトフレーム9700は、操作部、外部接続用端子(USB端子、US
Bケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構
成とする。これらの構成は、表示部と同一面に組み込まれていてもよいが、側面や裏面に
備えるとデザイン性が向上するため好ましい。例えば、デジタルフォトフレームの記録媒
体挿入部に、デジタルカメラで撮影した画像データを記憶したメモリを挿入して画像デー
タを取り込み、取り込んだ画像データを表示部9703に表示させることができる。
また、デジタルフォトフレーム9700は、無線で情報を送受信できる構成としてもよい
。無線により、所望の画像データを取り込み、表示させる構成とすることもできる。
図20(A)は携帯型遊技機であり、筐体9881と筐体9891の2つの筐体で構成さ
れており、連結部9893により、開閉可能に連結されている。筐体9881には表示部
9882が組み込まれ、筐体9891には表示部9883が組み込まれている。また、図
20(A)に示す携帯型遊技機は、その他、スピーカ部9884、記録媒体挿入部988
6、LEDランプ9890、入力手段(操作キー9885、接続端子9887、センサ9
888(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、
化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振
動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9889)等を備え
ている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも本発明に
係る半導体装置を備えた構成であればよく、その他付属設備が適宜設けられた構成とする
ことができる。図20(A)に示す携帯型遊技機は、記録媒体に記録されているプログラ
ム又はデータを読み出して表示部に表示する機能や、他の携帯型遊技機と無線通信を行っ
て情報を共有する機能を有する。なお、図20(A)に示す携帯型遊技機が有する機能は
これに限定されず、様々な機能を有することができる。
図20(B)は大型遊技機であるスロットマシンの一例を示している。スロットマシン9
900は、筐体9901に表示部9903が組み込まれている。また、スロットマシン9
900は、その他、スタートレバーやストップスイッチなどの操作手段、コイン投入口、
スピーカなどを備えている。もちろん、スロットマシン9900の構成は上述のものに限
定されず、少なくとも本発明に係る半導体装置を備えた構成であればよく、その他付属設
備が適宜設けられた構成とすることができる。
図21(A)は、携帯電話機の一例を示している。携帯電話機1000は、筐体1001
に組み込まれた表示部1002の他、操作ボタン1003、外部接続ポート1004、ス
ピーカ1005、マイク1006などを備えている。
図21(A)に示す携帯電話機1000は、表示部1002を指などで触れることで、情
報を入力ことができる。また、電話を掛ける、或いはメールを打つなどの操作は、表示部
1002を指などで触れることにより行うことができる。
表示部1002の画面は主として3つのモードがある。第1は、画像の表示を主とする表
示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示
モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部1002を文字の入力を
主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合
、表示部1002の画面のほとんどにキーボードまたは番号ボタンを表示させることが好
ましい。
また、携帯電話機1000内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを
有する検出装置を設けることで、携帯電話機1000の向き(縦か横か)を判断して、表
示部1002の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部1002を触れること、又は筐体1001の操作
ボタン1003の操作により行われる。また、表示部1002に表示される画像の種類に
よって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画の
データであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部1002の光センサで検出される信号を検知し、表示
部1002のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モード
から表示モードに切り替えるように制御してもよい。
表示部1002は、イメージセンサとして機能させることもできる。例えば、表示部10
02に掌や指を触れることで、掌紋、指紋等を撮像することで、本人認証を行うことがで
きる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシ
ング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
図21(B)も携帯電話機の一例である。図21(B)の携帯電話機は、筐体9411に
、表示部9412、及び操作ボタン9413を含む表示装置9410と、筐体9401に
操作ボタン9402、外部入力端子9403、マイク9404、スピーカ9405、及び
着信時に発光する発光部9406を含む通信装置9400とを有しており、表示機能を有
する表示装置9410は電話機能を有する通信装置9400と矢印の2方向に脱着可能で
ある。よって、表示装置9410と通信装置9400の短軸同士を取り付けることも、表
示装置9410と通信装置9400の長軸同士を取り付けることもできる。また、表示機
能のみを必要とする場合、通信装置9400より表示装置9410を取り外し、表示装置
9410を単独で用いることもできる。通信装置9400と表示装置9410とは無線通
信又は有線通信により画像又は入力情報を授受することができ、それぞれ充電可能なバッ
テリーを有する。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができることとする。
(実施の形態9)
本実施の形態では、酸化物半導体層と金属層(導電層)または酸化物絶縁層の接触によっ
て酸素が移動する現象について、酸化物半導体層が非晶質の場合と結晶の場合との違いの
科学計算結果を説明する。
図24は、本発明の一態様である薄膜トランジスタの構造において、酸化物半導体層とソ
ース電極層及びドレイン電極層となる金属層及び酸化物絶縁層が接触した状態の模式図で
ある。図の矢印方向は、それぞれが接触した状態もしくは、加熱した状態でのそれぞれ酸
素の移動方向を示している。
I型の酸化物半導体層は、酸素欠損を起こすとN型の導電性を示すようになり、逆に酸素
欠損でN型となっている酸化物半導体層は、酸素を過剰に供給されることでI型となる。
実際のデバイスプロセスではこの効果を利用し、ソース電極層及びドレイン電極層となる
金属層と接する酸化物半導体層は、金属側に酸素が引っ張られ、その接した領域の一部(
膜厚が薄い場合は膜厚方向全体)が酸素欠損を起こしてN型化し、金属層と良好な接触を
得ることができる。また、酸化物絶縁層と接する酸化物半導体層は、酸化物絶縁層から酸
化物半導体層に酸素が供給され、その接した領域の一部が(膜厚が薄い場合は膜厚方向全
体)が酸素過剰となってI型化し、薄膜トランジスタのチャネル形成領域として機能する
ようになる。
本発明の一態様では、酸化物半導体層とソース電極層及びドレイン電極層となる金属層及
び酸化物絶縁層が接触する領域には、結晶領域が形成されており、非晶質の状態と、結晶
領域とでの、酸素の移動形態の違いの有無を科学計算によって確かめた。
科学計算に用いたモデルは、In-Ga-Zn-O系の非晶質及び結晶構造で、直方体の
長手方向片側の領域から酸素を10%欠損させたものを用いた(図25参照。)計算内容
は、650℃の加速条件下で10nsec.後の酸素の分布を比較するものである。それ
ぞれの条件を表1、表2に示す。
Figure 0007258995000001
Figure 0007258995000002
図26(A)に非晶質を用いた場合の酸素の分布、図26(B)に結晶を用いた場合の酸
素の分布を示す。点線が初期(Initial)、実線が結果(10nsec.後)であ
る。分布の変化から、非晶質、結晶を問わず酸素が移動していることがわかる。
酸素欠損有りの領域で、計算前後での酸素原子の増加率は、非晶質で15.9%、結晶で
11.3%であった。つまり、非晶質の方が結晶よりも酸素が動きやすく、酸素欠損を埋
めやすいという結果となった。すなわち、結晶内では非晶質よりも比較的酸素は動きにく
いことになる。
従って、本発明の一態様における酸化物半導体層に結晶領域を有する構造においても、酸
化物半導体層が非晶質の場合と同様に酸素の移動が起こることが確認された。また、結晶
内では非晶質よりも比較的酸素は動きにくいことから、酸化物半導体層からの酸素の脱離
を抑える効果があることが確認できた。
400 基板
402 ゲート絶縁層
410 薄膜トランジスタ
411 端子
412 接続電極
414 端子
415 透明導電膜
416 電極
418 透明導電膜
421a ゲート電極層
421b 容量配線
421c 端子
423 酸化物半導体層
424a 第1領域
424b 第2領域
424c 第3領域
424d 第4領域
424e 第5領域
425a ソース電極層
425b ドレイン電極層
426a 酸化物絶縁層
426b 酸化物絶縁層
428 酸化物絶縁層
429 接続電極
430 薄膜トランジスタ
450 薄膜トランジスタ
456a 酸化物絶縁層
470 薄膜トランジスタ
480a レジストマスク
480b レジストマスク
482a レジストマスク
482b レジストマスク
482c レジストマスク
490 薄膜トランジスタ

Claims (2)

  1. 第1のゲート電極層と、
    前記第1のゲート電極層上に第1のゲート絶縁層と、
    前記第1のゲート絶縁層上に第1の酸化物半導体層と、
    前記第1の酸化物半導体層の一部と接する第1の酸化物絶縁層と、
    前記第1の酸化物半導体層の一部と接する第1のソース電極層及び第1のドレイン電極層と、を有する第1のトランジスタを有する画素部と、
    第2の酸化物半導体層と、
    前記第2の酸化物半導体層の一部と接する第2の酸化物絶縁層と、
    前記第2の酸化物半導体層の一部と接する第2のソース電極層及び第2のドレイン電極層と、を有する第2のトランジスタを有する駆動回路と、
    を有し、
    前記第1の酸化物半導体層において、前記第1のソース電極層に接する領域と前記第1の酸化物絶縁層に接する領域との間に位置し、前記第1の酸化物絶縁層に接していない領域、及び前記第1のドレイン電極層に接する領域と前記第1の酸化物絶縁層に接する領域との間に位置し、前記第1の酸化物絶縁層に接していない領域は、前記第1のソース電極層と重なる領域、前記第1の酸化物絶縁層と重なる領域、及び前記第1のドレイン電極層と重なる領域よりも薄い膜厚を有し、
    前記第2の酸化物半導体層において、前記第2のソース電極層に接する領域と前記第2の酸化物絶縁層に接する領域との間に位置し、前記第2の酸化物絶縁層に接していない領域、及び前記第2のドレイン電極層に接する領域と前記第2の酸化物絶縁層に接する領域との間に位置し、前記第2の酸化物絶縁層に接していない領域は、前記第2のソース電極層と重なる領域、前記第2の酸化物絶縁層と重なる領域、及び前記第2のドレイン電極層と重なる領域よりも薄い膜厚を有する表示装置。
  2. 請求項1において、
    前記第1の酸化物半導体層及び前記第2の酸化物半導体層は、In、Ga及びZnを含む表示装置。
JP2021201774A 2009-10-08 2021-12-13 表示装置 Active JP7258995B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023061121A JP2023090720A (ja) 2009-10-08 2023-04-05 表示装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009234413 2009-10-08
JP2009234413 2009-10-08
JP2020080441A JP6994537B2 (ja) 2009-10-08 2020-04-30 表示装置、及びテレビジョン装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020080441A Division JP6994537B2 (ja) 2009-10-08 2020-04-30 表示装置、及びテレビジョン装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023061121A Division JP2023090720A (ja) 2009-10-08 2023-04-05 表示装置

Publications (2)

Publication Number Publication Date
JP2022046535A JP2022046535A (ja) 2022-03-23
JP7258995B2 true JP7258995B2 (ja) 2023-04-17

Family

ID=43854114

Family Applications (11)

Application Number Title Priority Date Filing Date
JP2010227794A Active JP5634203B2 (ja) 2009-10-08 2010-10-07 半導体装置
JP2013010779A Active JP5383935B2 (ja) 2009-10-08 2013-01-24 半導体装置の作製方法
JP2013097380A Active JP5336674B2 (ja) 2009-10-08 2013-05-07 半導体装置
JP2013206247A Active JP5775129B2 (ja) 2009-10-08 2013-10-01 半導体装置の作製方法
JP2015133407A Active JP5993988B2 (ja) 2009-10-08 2015-07-02 半導体装置の作製方法
JP2016161653A Active JP6145205B2 (ja) 2009-10-08 2016-08-22 半導体装置の作製方法
JP2017095176A Expired - Fee Related JP6526738B2 (ja) 2009-10-08 2017-05-12 液晶表示装置の作製方法
JP2019088167A Active JP6700457B2 (ja) 2009-10-08 2019-05-08 半導体装置
JP2020080441A Active JP6994537B2 (ja) 2009-10-08 2020-04-30 表示装置、及びテレビジョン装置
JP2021201774A Active JP7258995B2 (ja) 2009-10-08 2021-12-13 表示装置
JP2023061121A Pending JP2023090720A (ja) 2009-10-08 2023-04-05 表示装置

Family Applications Before (9)

Application Number Title Priority Date Filing Date
JP2010227794A Active JP5634203B2 (ja) 2009-10-08 2010-10-07 半導体装置
JP2013010779A Active JP5383935B2 (ja) 2009-10-08 2013-01-24 半導体装置の作製方法
JP2013097380A Active JP5336674B2 (ja) 2009-10-08 2013-05-07 半導体装置
JP2013206247A Active JP5775129B2 (ja) 2009-10-08 2013-10-01 半導体装置の作製方法
JP2015133407A Active JP5993988B2 (ja) 2009-10-08 2015-07-02 半導体装置の作製方法
JP2016161653A Active JP6145205B2 (ja) 2009-10-08 2016-08-22 半導体装置の作製方法
JP2017095176A Expired - Fee Related JP6526738B2 (ja) 2009-10-08 2017-05-12 液晶表示装置の作製方法
JP2019088167A Active JP6700457B2 (ja) 2009-10-08 2019-05-08 半導体装置
JP2020080441A Active JP6994537B2 (ja) 2009-10-08 2020-04-30 表示装置、及びテレビジョン装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023061121A Pending JP2023090720A (ja) 2009-10-08 2023-04-05 表示装置

Country Status (6)

Country Link
US (3) US8309961B2 (ja)
JP (11) JP5634203B2 (ja)
KR (8) KR102246127B1 (ja)
CN (2) CN102648524B (ja)
TW (3) TWI605598B (ja)
WO (1) WO2011043203A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274639B2 (ja) 2016-11-30 2023-05-16 日本製紙株式会社 難燃材料

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719493B (zh) 2008-10-08 2014-05-14 株式会社半导体能源研究所 显示装置
JP5361651B2 (ja) 2008-10-22 2013-12-04 株式会社半導体エネルギー研究所 半導体装置の作製方法
US8741702B2 (en) 2008-10-24 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5616012B2 (ja) * 2008-10-24 2014-10-29 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR101667909B1 (ko) 2008-10-24 2016-10-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치의 제조방법
EP2180518B1 (en) 2008-10-24 2018-04-25 Semiconductor Energy Laboratory Co, Ltd. Method for manufacturing semiconductor device
CN101762922B (zh) * 2008-12-24 2012-05-30 京东方科技集团股份有限公司 触摸式电子纸及其制造方法
JP5663214B2 (ja) * 2009-07-03 2015-02-04 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2011010541A1 (en) 2009-07-18 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
EP3540772A1 (en) 2009-09-16 2019-09-18 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
KR20210048590A (ko) 2009-09-16 2021-05-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR102321565B1 (ko) 2009-09-24 2021-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
KR101877149B1 (ko) 2009-10-08 2018-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체층, 반도체 장치 및 그 제조 방법
KR102246127B1 (ko) * 2009-10-08 2021-04-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101820972B1 (ko) 2009-10-09 2018-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
KR101779349B1 (ko) * 2009-10-14 2017-09-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
KR101943293B1 (ko) * 2009-10-16 2019-01-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 표시 장치 및 전자 장치
KR102462145B1 (ko) 2009-10-16 2022-11-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치 및 이를 구비한 전자 장치
CN102687400B (zh) 2009-10-30 2016-08-24 株式会社半导体能源研究所 逻辑电路和半导体装置
KR102128972B1 (ko) 2009-11-06 2020-07-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
KR101763126B1 (ko) 2009-11-06 2017-07-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
KR101895561B1 (ko) 2009-11-13 2018-09-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
KR101802406B1 (ko) 2009-11-27 2017-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작방법
CN102648525B (zh) 2009-12-04 2016-05-04 株式会社半导体能源研究所 显示装置
WO2011068033A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20110093113A (ko) * 2010-02-11 2011-08-18 삼성전자주식회사 박막 트랜지스터 기판 및 이의 제조 방법
US8552425B2 (en) 2010-06-18 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8664097B2 (en) 2010-09-13 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
KR101640293B1 (ko) * 2010-10-07 2016-07-15 샤프 가부시키가이샤 반도체 장치, 표시 장치, 및 반도체 장치 및 표시 장치의 제조 방법
US8569754B2 (en) * 2010-11-05 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN103339715B (zh) 2010-12-03 2016-01-13 株式会社半导体能源研究所 氧化物半导体膜以及半导体装置
JP5731369B2 (ja) 2010-12-28 2015-06-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5975635B2 (ja) 2010-12-28 2016-08-23 株式会社半導体エネルギー研究所 半導体装置
TWI602249B (zh) * 2011-03-11 2017-10-11 半導體能源研究所股份有限公司 半導體裝置的製造方法
TWI521612B (zh) * 2011-03-11 2016-02-11 半導體能源研究所股份有限公司 半導體裝置的製造方法
US9331206B2 (en) * 2011-04-22 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US8709922B2 (en) * 2011-05-06 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6109489B2 (ja) * 2011-05-13 2017-04-05 株式会社半導体エネルギー研究所 El表示装置
KR101952570B1 (ko) * 2011-05-13 2019-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
JP6110075B2 (ja) * 2011-05-13 2017-04-05 株式会社半導体エネルギー研究所 表示装置
JP6009226B2 (ja) * 2011-06-10 2016-10-19 株式会社半導体エネルギー研究所 半導体装置の作製方法
US9166055B2 (en) * 2011-06-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8952377B2 (en) 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8716073B2 (en) * 2011-07-22 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Method for processing oxide semiconductor film and method for manufacturing semiconductor device
US9012993B2 (en) 2011-07-22 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI605590B (zh) 2011-09-29 2017-11-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
KR102304125B1 (ko) 2011-09-29 2021-09-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20140074384A (ko) 2011-10-14 2014-06-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20130040706A (ko) 2011-10-14 2013-04-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
JP6076038B2 (ja) * 2011-11-11 2017-02-08 株式会社半導体エネルギー研究所 表示装置の作製方法
JP6026433B2 (ja) * 2012-01-11 2016-11-16 シャープ株式会社 半導体装置、表示装置、ならびに半導体装置の製造方法
JP6220526B2 (ja) 2012-02-29 2017-10-25 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR101879831B1 (ko) * 2012-03-21 2018-07-20 삼성디스플레이 주식회사 플렉시블 표시 장치, 유기 발광 표시 장치 및 플렉시블 표시 장치용 원장 기판
KR20230004930A (ko) 2012-04-13 2023-01-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP5991668B2 (ja) * 2012-08-23 2016-09-14 株式会社ジャパンディスプレイ 表示装置及びその製造方法
TWI681233B (zh) 2012-10-12 2020-01-01 日商半導體能源研究所股份有限公司 液晶顯示裝置、觸控面板及液晶顯示裝置的製造方法
JP6351947B2 (ja) 2012-10-12 2018-07-04 株式会社半導体エネルギー研究所 液晶表示装置の作製方法
KR102072340B1 (ko) 2012-11-08 2020-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 금속 산화물 막 및 금속 산화물 막의 형성 방법
JP6285150B2 (ja) * 2012-11-16 2018-02-28 株式会社半導体エネルギー研究所 半導体装置
TWI600157B (zh) 2012-11-16 2017-09-21 半導體能源研究所股份有限公司 半導體裝置
TWI538220B (zh) * 2012-11-21 2016-06-11 元太科技工業股份有限公司 薄膜電晶體與其製造方法
KR102370239B1 (ko) 2012-12-28 2022-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI614813B (zh) * 2013-01-21 2018-02-11 半導體能源研究所股份有限公司 半導體裝置的製造方法
US9153650B2 (en) 2013-03-19 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor
US10304859B2 (en) 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
KR102108121B1 (ko) 2013-06-10 2020-05-08 삼성디스플레이 주식회사 박막 트랜지스터 기판
TWI652822B (zh) 2013-06-19 2019-03-01 日商半導體能源研究所股份有限公司 氧化物半導體膜及其形成方法
TWI608523B (zh) 2013-07-19 2017-12-11 半導體能源研究所股份有限公司 Oxide semiconductor film, method of manufacturing oxide semiconductor film, and semiconductor device
TWM471031U (zh) * 2013-08-13 2014-01-21 Chunghwa Picture Tubes Ltd 氧化物半導體薄膜電晶體基板
JP2015179247A (ja) * 2013-10-22 2015-10-08 株式会社半導体エネルギー研究所 表示装置
JP2015149467A (ja) * 2014-01-10 2015-08-20 株式会社Joled 薄膜トランジスタ基板の製造方法
US9929044B2 (en) 2014-01-30 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
KR102172972B1 (ko) 2014-02-26 2020-11-03 삼성디스플레이 주식회사 박막 트랜지스터 및 그의 제조방법
WO2015132697A1 (en) 2014-03-07 2015-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102156588B1 (ko) * 2014-06-10 2020-09-16 엘지디스플레이 주식회사 플렉서블 표시장치 및 그 제조방법
KR20160086487A (ko) * 2015-01-09 2016-07-20 삼성디스플레이 주식회사 플렉서블 터치 패널 및 플렉서블 표시 장치
JP2016224297A (ja) * 2015-06-01 2016-12-28 株式会社ジャパンディスプレイ 表示装置
CN105206567B (zh) * 2015-10-10 2018-04-10 深圳市华星光电技术有限公司 一种阵列基板及其制作方法
US9892821B2 (en) * 2016-01-04 2018-02-13 Samsung Electronics Co., Ltd. Electrical conductors and electronic devices including the same
WO2017158967A1 (ja) 2016-03-18 2017-09-21 三菱電機株式会社 薄膜トランジスタ、薄膜トランジスタ基板、液晶表示装置および薄膜トランジスタの製造方法
CN105870057B (zh) * 2016-04-28 2019-06-07 京东方科技集团股份有限公司 一种阵列基板、其制作方法和显示装置
KR102550604B1 (ko) * 2016-08-03 2023-07-05 삼성디스플레이 주식회사 반도체장치 및 그 제조방법
JP6816994B2 (ja) * 2016-08-24 2021-01-20 株式会社ジャパンディスプレイ 有機el表示装置
KR20180065162A (ko) * 2016-12-07 2018-06-18 서울바이오시스 주식회사 디스플레이 장치 및 그의 전극 연결 방법
KR102000829B1 (ko) * 2017-09-07 2019-07-16 한양대학교 산학협력단 고유전체 절연 박막을 포함하는 박막 트랜지스터 및 이의 제조 방법
KR102650216B1 (ko) * 2018-03-09 2024-03-21 삼성전자주식회사 산화물층의 형성 방법 및 반도체 소자의 제조 방법
JP2020027862A (ja) * 2018-08-10 2020-02-20 株式会社ジャパンディスプレイ 表示装置及びその製造方法
US20220131010A1 (en) * 2019-02-22 2022-04-28 Semiconductor Energy Laboratory Co., Ltd. Metal oxide and transistor including the metal oxide
CN113782573B (zh) * 2019-04-11 2024-04-05 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN110797395A (zh) * 2019-09-18 2020-02-14 华南理工大学 掺杂型金属氧化物半导体及薄膜晶体管与应用
CN110767745A (zh) * 2019-09-18 2020-02-07 华南理工大学 复合金属氧化物半导体及薄膜晶体管与应用
CN110728254B (zh) * 2019-10-22 2022-03-01 武汉华星光电半导体显示技术有限公司 光学指纹识别电路及显示装置
CN111180523A (zh) * 2019-12-31 2020-05-19 成都中电熊猫显示科技有限公司 薄膜晶体管、阵列基板以及液晶显示面板
CN114038759B (zh) * 2021-09-30 2022-09-27 惠科股份有限公司 氧化物薄膜晶体管的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123861A (ja) 2005-09-29 2007-05-17 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP4299571B2 (ja) 2003-04-14 2009-07-22 富士通株式会社 マルチキャストによる放送システム
JP6333946B2 (ja) 2014-02-20 2018-05-30 富士フイルム株式会社 感光性樹脂組成物、硬化物及びその製造方法、樹脂パターン製造方法、硬化膜、液晶表示装置、有機el表示装置、赤外線カットフィルター、並びに、固体撮像装置

Family Cites Families (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JP2659976B2 (ja) * 1988-01-19 1997-09-30 株式会社東芝 薄膜トランジスタとその製造方法
JPH04299571A (ja) * 1991-03-28 1992-10-22 Nec Corp 薄膜トランジスタ
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JPH06333946A (ja) * 1993-05-21 1994-12-02 Toshiba Corp 薄膜トランジスタ及びその製造方法
JPH0897427A (ja) * 1994-07-27 1996-04-12 Sharp Corp 薄膜半導体素子および薄膜トランジスタ並びにその製造方法
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
DE69635107D1 (de) 1995-08-03 2005-09-29 Koninkl Philips Electronics Nv Halbleiteranordnung mit einem transparenten schaltungselement
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4103968B2 (ja) 1996-09-18 2008-06-18 株式会社半導体エネルギー研究所 絶縁ゲイト型半導体装置
JP4053102B2 (ja) * 1996-09-18 2008-02-27 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP3599972B2 (ja) * 1997-09-30 2004-12-08 三洋電機株式会社 薄膜トランジスタの製造方法
JP3169881B2 (ja) * 1998-02-16 2001-05-28 鹿児島日本電気株式会社 薄膜トランジスタ
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
KR100412619B1 (ko) * 2001-12-27 2003-12-31 엘지.필립스 엘시디 주식회사 액정표시장치용 어레이 기판의 제조 방법
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
JP4167565B2 (ja) 2003-07-31 2008-10-15 株式会社東芝 部分soi基板の製造方法
KR101034181B1 (ko) * 2003-08-21 2011-05-12 엘지디스플레이 주식회사 액정표시장치용 어레이기판 제조방법
CN102856390B (zh) 2004-03-12 2015-11-25 独立行政法人科学技术振兴机构 包含薄膜晶体管的lcd或有机el显示器的转换组件
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
CN100481327C (zh) * 2004-04-28 2009-04-22 汉阳大学校产学协力团 柔性光电设备及其制造方法
US7491590B2 (en) 2004-05-28 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film transistor in display device
US7211825B2 (en) * 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
CN101032027B (zh) * 2004-09-02 2010-10-13 卡西欧计算机株式会社 薄膜晶体管及其制造方法
JP2006100760A (ja) * 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
JP2006120382A (ja) 2004-10-20 2006-05-11 Seiko Epson Corp 有機el装置の製造装置及び方法、並びに電気光学装置及び電子機器
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
BRPI0517560B8 (pt) 2004-11-10 2018-12-11 Canon Kk transistor de efeito de campo
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
EP1812969B1 (en) 2004-11-10 2015-05-06 Canon Kabushiki Kaisha Field effect transistor comprising an amorphous oxide
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI472037B (zh) 2005-01-28 2015-02-01 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US20060219274A1 (en) 2005-03-29 2006-10-05 Dainippon Screen Mfg. Co., Ltd. Substrate processing apparatus
JP4667256B2 (ja) 2005-03-29 2011-04-06 大日本スクリーン製造株式会社 基板処理装置
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4870403B2 (ja) * 2005-09-02 2012-02-08 財団法人高知県産業振興センター 薄膜トランジスタの製法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
EP1770788A3 (en) 2005-09-29 2011-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101112655B1 (ko) 2005-11-15 2012-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액티브 매트릭스 디스플레이 장치 및 텔레비전 수신기
JP5376750B2 (ja) * 2005-11-18 2013-12-25 出光興産株式会社 半導体薄膜、及びその製造方法、並びに薄膜トランジスタ、アクティブマトリックス駆動表示パネル
US7998372B2 (en) 2005-11-18 2011-08-16 Idemitsu Kosan Co., Ltd. Semiconductor thin film, method for manufacturing the same, thin film transistor, and active-matrix-driven display panel
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
KR20080108223A (ko) * 2006-01-31 2008-12-12 이데미쓰 고산 가부시키가이샤 Tft 기판, 반사형 tft 기판 및 이들의 제조 방법
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) * 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP5015473B2 (ja) * 2006-02-15 2012-08-29 財団法人高知県産業振興センター 薄膜トランジスタアレイ及びその製法
JP5369367B2 (ja) 2006-03-28 2013-12-18 凸版印刷株式会社 薄膜トランジスタおよびその製造方法
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
KR101206033B1 (ko) 2006-04-18 2012-11-28 삼성전자주식회사 ZnO 반도체 박막의 제조방법 및 이를 이용한박막트랜지스터 및 그 제조방법
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
TWI298536B (en) * 2006-05-29 2008-07-01 Au Optronics Corp Pixel structure and fabricating method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
US8013331B2 (en) 2006-06-19 2011-09-06 Panasonic Corporation Thin film transistor, method of manufacturing the same, and electronic device using the same
JP5328083B2 (ja) 2006-08-01 2013-10-30 キヤノン株式会社 酸化物のエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7767595B2 (en) * 2006-10-26 2010-08-03 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
CN100514610C (zh) 2006-10-27 2009-07-15 中华映管股份有限公司 薄膜晶体管阵列基板及其制作方法
KR101425635B1 (ko) * 2006-11-29 2014-08-06 삼성디스플레이 주식회사 산화물 박막 트랜지스터 기판의 제조 방법 및 산화물 박막트랜지스터 기판
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
WO2008069255A1 (en) 2006-12-05 2008-06-12 Canon Kabushiki Kaisha Method for manufacturing thin film transistor using oxide semiconductor and display apparatus
US8143115B2 (en) 2006-12-05 2012-03-27 Canon Kabushiki Kaisha Method for manufacturing thin film transistor using oxide semiconductor and display apparatus
JP5305630B2 (ja) 2006-12-05 2013-10-02 キヤノン株式会社 ボトムゲート型薄膜トランジスタの製造方法及び表示装置の製造方法
JP5401758B2 (ja) 2006-12-12 2014-01-29 サンケン電気株式会社 半導体装置及びその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR101410926B1 (ko) * 2007-02-16 2014-06-24 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
JP2008235871A (ja) 2007-02-20 2008-10-02 Canon Inc 薄膜トランジスタの形成方法及び表示装置
US8436349B2 (en) 2007-02-20 2013-05-07 Canon Kabushiki Kaisha Thin-film transistor fabrication process and display device
JP5196870B2 (ja) 2007-05-23 2013-05-15 キヤノン株式会社 酸化物半導体を用いた電子素子及びその製造方法
WO2008105347A1 (en) 2007-02-20 2008-09-04 Canon Kabushiki Kaisha Thin-film transistor fabrication process and display device
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
JP2008276212A (ja) * 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置
WO2008126879A1 (en) 2007-04-09 2008-10-23 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
JP5197058B2 (ja) 2007-04-09 2013-05-15 キヤノン株式会社 発光装置とその作製方法
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
US7935964B2 (en) 2007-06-19 2011-05-03 Samsung Electronics Co., Ltd. Oxide semiconductors and thin film transistors comprising the same
US7682882B2 (en) * 2007-06-20 2010-03-23 Samsung Electronics Co., Ltd. Method of manufacturing ZnO-based thin film transistor
KR101402189B1 (ko) 2007-06-22 2014-06-02 삼성전자주식회사 Zn 산화물계 박막 트랜지스터 및 Zn 산화물의 식각용액
US8566502B2 (en) 2008-05-29 2013-10-22 Vmware, Inc. Offloading storage operations to storage hardware using a switch
KR20090002841A (ko) 2007-07-04 2009-01-09 삼성전자주식회사 산화물 반도체, 이를 포함하는 박막 트랜지스터 및 그 제조방법
US7633089B2 (en) 2007-07-26 2009-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device provided with the same
JPWO2009034953A1 (ja) 2007-09-10 2010-12-24 出光興産株式会社 薄膜トランジスタ
JP5354999B2 (ja) 2007-09-26 2013-11-27 キヤノン株式会社 電界効果型トランジスタの製造方法
JP2009099847A (ja) 2007-10-18 2009-05-07 Canon Inc 薄膜トランジスタとその製造方法及び表示装置
JP5377940B2 (ja) 2007-12-03 2013-12-25 株式会社半導体エネルギー研究所 半導体装置
JP5213422B2 (ja) 2007-12-04 2013-06-19 キヤノン株式会社 絶縁層を有する酸化物半導体素子およびそれを用いた表示装置
US8384077B2 (en) 2007-12-13 2013-02-26 Idemitsu Kosan Co., Ltd Field effect transistor using oxide semicondutor and method for manufacturing the same
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
KR100961182B1 (ko) * 2007-12-17 2010-06-09 한국전자통신연구원 투명 전자 소자 및 그 제조 방법
WO2009093625A1 (ja) * 2008-01-23 2009-07-30 Idemitsu Kosan Co., Ltd. 電界効果型トランジスタ及びその製造方法、それを用いた表示装置、並びに半導体装置
KR101461127B1 (ko) 2008-05-13 2014-11-14 삼성디스플레이 주식회사 반도체 장치 및 이의 제조 방법
US9082857B2 (en) 2008-09-01 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
KR101657957B1 (ko) 2008-09-12 2016-09-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
WO2010029865A1 (en) 2008-09-12 2010-03-18 Semiconductor Energy Laboratory Co., Ltd. Display device
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
KR101889287B1 (ko) 2008-09-19 2018-08-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
CN103545342B (zh) 2008-09-19 2018-01-26 株式会社半导体能源研究所 半导体装置
KR101961632B1 (ko) 2008-10-03 2019-03-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치
EP2172977A1 (en) 2008-10-03 2010-04-07 Semiconductor Energy Laboratory Co., Ltd. Display device
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5361651B2 (ja) 2008-10-22 2013-12-04 株式会社半導体エネルギー研究所 半導体装置の作製方法
EP2180518B1 (en) 2008-10-24 2018-04-25 Semiconductor Energy Laboratory Co, Ltd. Method for manufacturing semiconductor device
JP5616012B2 (ja) 2008-10-24 2014-10-29 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR101667909B1 (ko) 2008-10-24 2016-10-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치의 제조방법
WO2010047288A1 (en) 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductordevice
US8741702B2 (en) 2008-10-24 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101659703B1 (ko) 2008-11-07 2016-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP5564331B2 (ja) 2009-05-29 2014-07-30 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2011027664A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
KR20210048590A (ko) 2009-09-16 2021-05-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
EP3540772A1 (en) 2009-09-16 2019-09-18 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
KR102246127B1 (ko) * 2009-10-08 2021-04-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
CN102687400B (zh) 2009-10-30 2016-08-24 株式会社半导体能源研究所 逻辑电路和半导体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299571B2 (ja) 2003-04-14 2009-07-22 富士通株式会社 マルチキャストによる放送システム
JP2007123861A (ja) 2005-09-29 2007-05-17 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP6333946B2 (ja) 2014-02-20 2018-05-30 富士フイルム株式会社 感光性樹脂組成物、硬化物及びその製造方法、樹脂パターン製造方法、硬化膜、液晶表示装置、有機el表示装置、赤外線カットフィルター、並びに、固体撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274639B2 (ja) 2016-11-30 2023-05-16 日本製紙株式会社 難燃材料

Also Published As

Publication number Publication date
TWI512999B (zh) 2015-12-11
JP5383935B2 (ja) 2014-01-08
CN102648524A (zh) 2012-08-22
JP5775129B2 (ja) 2015-09-09
JP2017152736A (ja) 2017-08-31
US20110084266A1 (en) 2011-04-14
JP2011100997A (ja) 2011-05-19
JP2013201440A (ja) 2013-10-03
JP5336674B2 (ja) 2013-11-06
JP2022046535A (ja) 2022-03-23
JP6526738B2 (ja) 2019-06-05
TW201601324A (zh) 2016-01-01
KR20190071837A (ko) 2019-06-24
KR101969253B1 (ko) 2019-04-15
TW201131780A (en) 2011-09-16
JP2019169723A (ja) 2019-10-03
TWI605598B (zh) 2017-11-11
KR20170090511A (ko) 2017-08-07
TWI557924B (zh) 2016-11-11
US10115831B2 (en) 2018-10-30
KR102596694B1 (ko) 2023-11-01
KR102399469B1 (ko) 2022-05-19
KR102246127B1 (ko) 2021-04-29
JP6700457B2 (ja) 2020-05-27
US8309961B2 (en) 2012-11-13
CN102648524B (zh) 2015-09-23
KR20180077321A (ko) 2018-07-06
US20160336456A1 (en) 2016-11-17
CN105185837A (zh) 2015-12-23
TW201642480A (zh) 2016-12-01
KR101763959B1 (ko) 2017-08-14
JP2014053621A (ja) 2014-03-20
JP2020145447A (ja) 2020-09-10
JP2013131765A (ja) 2013-07-04
CN105185837B (zh) 2018-08-03
JP2017017328A (ja) 2017-01-19
JP5993988B2 (ja) 2016-09-21
KR101991006B1 (ko) 2019-06-20
US20130075723A1 (en) 2013-03-28
JP6994537B2 (ja) 2022-01-14
US9406808B2 (en) 2016-08-02
KR102108943B1 (ko) 2020-05-12
KR20200051060A (ko) 2020-05-12
JP2023090720A (ja) 2023-06-29
KR20210048594A (ko) 2021-05-03
JP6145205B2 (ja) 2017-06-07
KR20230154098A (ko) 2023-11-07
JP2015222821A (ja) 2015-12-10
WO2011043203A1 (en) 2011-04-14
JP5634203B2 (ja) 2014-12-03
KR20220070050A (ko) 2022-05-27
KR20120091061A (ko) 2012-08-17

Similar Documents

Publication Publication Date Title
JP7258995B2 (ja) 表示装置
JP7401492B2 (ja) 表示装置
JP5734338B2 (ja) 半導体装置の作製方法
JP5683179B2 (ja) 表示装置の作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

R150 Certificate of patent or registration of utility model

Ref document number: 7258995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150