CN110944787A - 利用可变光束参数控制熔池来形成制品的方法和光束系统 - Google Patents
利用可变光束参数控制熔池来形成制品的方法和光束系统 Download PDFInfo
- Publication number
- CN110944787A CN110944787A CN201880048886.3A CN201880048886A CN110944787A CN 110944787 A CN110944787 A CN 110944787A CN 201880048886 A CN201880048886 A CN 201880048886A CN 110944787 A CN110944787 A CN 110944787A
- Authority
- CN
- China
- Prior art keywords
- fiber
- length
- optical
- characteristic
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 110
- 239000000155 melt Substances 0.000 title claims abstract description 41
- 230000008859 change Effects 0.000 claims abstract description 47
- 230000004044 response Effects 0.000 claims abstract description 26
- 239000013307 optical fiber Substances 0.000 claims description 303
- 230000003287 optical effect Effects 0.000 claims description 125
- 239000000463 material Substances 0.000 claims description 81
- 230000008569 process Effects 0.000 claims description 16
- 238000003466 welding Methods 0.000 claims description 16
- 238000002844 melting Methods 0.000 claims description 15
- 230000008018 melting Effects 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000000654 additive Substances 0.000 claims description 10
- 230000000996 additive effect Effects 0.000 claims description 10
- 230000004048 modification Effects 0.000 claims description 7
- 238000012986 modification Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 6
- 230000003213 activating effect Effects 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 239000000835 fiber Substances 0.000 description 342
- 238000012545 processing Methods 0.000 description 59
- 239000011162 core material Substances 0.000 description 57
- 238000009826 distribution Methods 0.000 description 38
- 230000001902 propagating effect Effects 0.000 description 21
- 230000001143 conditioned effect Effects 0.000 description 19
- 230000003094 perturbing effect Effects 0.000 description 18
- 238000005452 bending Methods 0.000 description 16
- 238000005253 cladding Methods 0.000 description 15
- 238000013461 design Methods 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 12
- 230000000670 limiting effect Effects 0.000 description 11
- 102100022419 RPA-interacting protein Human genes 0.000 description 10
- 238000002473 ribonucleic acid immunoprecipitation Methods 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- -1 for example Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 229940104869 fluorosilicate Drugs 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000000429 assembly Methods 0.000 description 4
- 230000000712 assembly Effects 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000002310 reflectometry Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000010309 melting process Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000003698 laser cutting Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910001349 ledeburite Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000289 melt material Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012306 spectroscopic technique Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/011—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour in optical waveguides, not otherwise provided for in this subclass
- G02F1/0115—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour in optical waveguides, not otherwise provided for in this subclass in optical fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/31—Calibration of process steps or apparatus settings, e.g. before or during manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1103—Making porous workpieces or articles with particular physical characteristics
- B22F3/1109—Inhomogenous pore distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/032—Observing, e.g. monitoring, the workpiece using optical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/034—Observing the temperature of the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/0342—Observing magnetic fields related to the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/067—Dividing the beam into multiple beams, e.g. multifocusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/073—Shaping the laser spot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
- B23K26/702—Auxiliary equipment
- B23K26/704—Beam dispersers, e.g. beam wells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0927—Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0933—Systems for active beam shaping by rapid movement of an element
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0994—Fibers, light pipes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02042—Multicore optical fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/0208—Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
- G02B6/021—Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the core or cladding or coating, e.g. materials, radial refractive index profiles, cladding shape
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/023—Microstructured optical fibre having different index layers arranged around the core for guiding light by reflection, i.e. 1D crystal, e.g. omniguide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02342—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
- G02B6/02347—Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02342—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
- G02B6/02371—Cross section of longitudinal structures is non-circular
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02395—Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03605—Highest refractive index not on central axis
- G02B6/03611—Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03694—Multiple layers differing in properties other than the refractive index, e.g. attenuation, diffusion, stress properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/14—Mode converters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/262—Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4202—Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
- G02B6/4203—Optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4206—Optical features
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/0151—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/005—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
- H01S5/0085—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for modulating the output, i.e. the laser beam is modulated outside the laser cavity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/44—Radiation means characterised by the configuration of the radiation means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/49—Scanners
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12121—Laser
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/101—Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02004—Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/028—Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
- G02B6/0281—Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/028—Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
- G02B6/0288—Multimode fibre, e.g. graded index core for compensating modal dispersion
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03622—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
- G02B6/03627—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03622—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
- G02B6/03633—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03638—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03638—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
- G02B6/0365—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03688—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 5 or more layers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4296—Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Plasma & Fusion (AREA)
- Nonlinear Science (AREA)
- Automation & Control Theory (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Lasers (AREA)
- Optical Couplings Of Light Guides (AREA)
- Laser Beam Processing (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
本申请涉及一种形成制品的方法,包括:步骤(2901),用于形成熔池;步骤(2903),用于将熔池暴露于具有至少一个光束特性的光束;步骤(2905),用于在熔池中形成锁眼腔,该锁眼腔具有至少一个锁眼腔属性;以及步骤(2906),用于响应于锁眼腔属性的变化来修改至少一个光束特性。
Description
相关申请
本申请是2017年5月26日提交的国际申请PCT/US2017/034848的部分延续,该国际申请要求2016年9月29日提交的美国临时申请No.62/401,650的权益。本申请是2017年5月26日提交的美国专利申请No.15/607,411的部分延续,该美国专利申请要求2016年9月29日提交的美国临时申请No.62/401,650的权益。本申请是2017年5月26日提交的美国专利申请No.15/607,410的部分延续,该美国专利申请要求2016年9月29日提交的美国临时申请No.62/401,650的权益。本申请是2017年5月26日提交的美国专利申请No.15/607,399的部分延续,该美国专利申请要求2016年9月29日提交的美国临时申请No.62/401,650的权益。以上所有申请的全部内容通过引用结合于此。
技术领域
本文公开的技术涉及光纤激光器和光纤耦合激光器。更具体地,所公开的技术涉及用于在光纤激光器或光纤耦合激光器的输出端调整并保持经调整的光束特性(光斑尺寸、发散度轮廓、空间轮廓或光束形状等或其任意组合)的方法、设备和系统。
背景技术
高功率光纤耦合激光器的使用在各种应用中继续受到欢迎,例如,材料加工、切割、焊接和/或增材制造。这些激光器包括例如光纤激光器、圆盘激光器、二极管激光器、二极管泵浦固态激光器和灯泵浦固态激光器。在这些系统中,光功率经由光纤从激光器传送到工件。
各种光纤耦合激光器材料加工任务需要不同的光束特性(例如,空间轮廓和/或发散度轮廓)。例如,切割厚金属和焊接通常需要比切割薄金属更大的光斑尺寸。理想情况下,激光束的特性是可调整的,以实现对这些不同任务的优化加工。常规上,用户有两种选择:(1)采用具有固定光束特性的激光系统,该系统可以用于不同的任务,但对大多数任务来说不是最佳的(即,在性能和灵活性之间折衷);或者(2)购买激光系统或附件,其提供可变光束特性,但增加了显著的成本、尺寸、重量、复杂性,并且可能会导致性能下降(例如,光损耗)或可靠性下降(例如,鲁棒性降低或可运行时间缩短)。当前可用的能够改变光束特性的激光系统需要使用自由空间光学器件或其他复杂且昂贵的附加机构(例如,变焦透镜、反射镜、可平移或机动化的透镜、组合器等),以改变光束特性。没有一种解决方案能够提供所需的光束特性可调整性,从而最大限度地减少或消除对使用自由空间光学器件或其他附加部件的依赖,这些部件在成本、复杂性、性能和/或可靠性方面带来了相当大的损失。所需要的是一种用于提供变化的光束特性的光纤内装置,该装置不需要或最小化自由空间光学器件的使用,并且可以避免显著的成本、复杂性、性能折衷和/或可靠性降低。
在用高功率激光加工材料的过程中,激光束可以用来熔化聚集在“熔池”中的材料部分。由于各种因素,包括熔池的液壁随着熔池表面张力和重力而变化的不稳定性,熔池本身可能变得不稳定。熔化和再固化过程中的这种不稳定性会导致几个不利影响,这些影响限制了工艺结果、特定应用性能或最终产品的效用。例如,不利影响可以包括飞溅(即,大量材料从熔池中分离出来并沉积在材料表面上)、将环境成分引入到材料中,包括气体和/或杂质(这可导致再固化的材料中的气泡或多孔性)或者不稳定的熔化几何形状,这可导致再固化材料中的不期望的特性,例如,晶粒几何形状、晶粒尺寸、晶粒取向、微结构形态、残余应力等,并且可能影响最终焊接或增材制造的产品,包括这种产品可能遭受固化开裂。甚至最终产品的美学外观也会受到影响。这些影响中的每一个都与激光加工产品的质量和性能指标直接相关,例如,强度、延展性、韧性、疲劳性能和使用寿命。
可依赖于材料激光熔化的制造技术,例如,可用于逐层形成制品的增材制造(也称为3D打印)技术以及诸如可用于将材料(例如,不同部件)熔合在一起的激光焊接以及用于切割或分离材料的激光切割等其他技术,可导致形成不稳定的熔池,从而导致不希望的飞溅。然而,对熔池形成的具体控制(例如,实时控制)以定制材料特性是有限的。
因此,用于控制激光加工材料性能的方法,其克服了传统工艺的限制以提供改进的制品,将是本领域受欢迎的补充。
发明内容
本文至少公开了用于改变光束特性的方法、系统和设备。该方法可包括:扰动在第一长度光纤内传播的光束,以调整在第一长度光纤或第二长度光纤或其组合中的光束的一个或多个光束特性;将被扰动的光束耦合到第二长度光纤中;并且在具有一个或多个限制区域的第二长度光纤内保持经调整的一个或多个光束特性的至少一部分。该方法还可包括生成从第二长度光纤中输出的所选择的输出光束,该输出光束具有响应于对第一长度光纤的第一折射率轮廓(RIP)或第二长度光纤的第二RIP或其组合的选择而被调整的光束特性。在一些示例中,基于对第一长度光纤的一个或多个芯尺寸或第二长度光纤的一个或多个限制区域尺寸或其组合的选择来调整被扰动光束的一个或多个光束特性,以生成响应于扰动第一长度光纤的经调整的光束,该经调整的光束在第二长度光纤的输出端具有经调整的以下项:光束直径、发散度分布、光束参数积(BPP)、强度分布、亮度、M2值、数值孔径(NA)、光强度、功率密度、径向光束位置、辐射率或光斑尺寸或者其任意组合。在一些示例中,该方法包括通过弯曲第一长度光纤来改变弯曲半径或改变第一长度光纤的弯曲区域的长度或其组合以扰动光束,使得光束的一个或多个模式相对于第一长度光纤的纵轴径向地移位,其中,第二长度光纤具有限定第一限制区域和第二限制区域的RIP。在一些示例中,通过将光束限制在第二长度光纤的两个或更多个限制区域中,产生经调整的一个或多个光束特性。示例方法还可包括将被扰动光束从第一长度光纤发射到第一限制区域或第二限制区域或其组合中,使得光束的一个或多个经移位的模式选择性地耦合到并保持在第一限制区域或第二限制区域或其组合中。所公开的方法可包括通过扰动第一长度光纤或第一长度光纤中的光束或其组合来扰动光束的一个或多个光束特性,以调整在第二长度光纤的输出端的光束的至少一个光束特性。扰动第一长度光纤可包括弯曲、在特定长度上弯曲、微弯曲、施加声光激励、热扰动、拉伸或施加压电扰动或其任意组合。第二长度光纤可包括包含中心芯的第一限制区域和包含包围第一限制区域的环形芯的第二限制区域。调整光束的一个或多个光束特性可包括选择第一长度光纤的RIP,以在调整之后生成最低阶模式、一个或多个高阶模式或其组合的期望模式形状。在一些示例中,第一长度光纤具有芯,该芯具有径向地跨越芯的一些部分或全部的抛物线折射率轮廓。可以选择第一长度光纤的RIP,以增加或减小最低阶模式、较高阶模式或其组合的响应于对光束的扰动的宽度。第一长度光纤或第二长度光纤或其组合可包括至少一个发散结构,该发散结构被配置为修改光束的发散度轮廓。限制区域可以由一个或多个包层结构分隔开,并且该发散结构可设置在至少一个限制区域内,该至少一个限制区域与包层结构分隔开并且包括折射率低于与发散结构相邻的限制区域的材料。在一些示例中,第二长度光纤可以是方位上不对称的。
本文公开的设备可包括一种光束传送装置,包括:第一长度光纤,该第一长度光纤包括第一RIP,该第一RIP被形成为能够通过扰动装置修改光束的一个或多个光束特性;和第二长度光纤,该第二长度光纤具有第二RIP且耦合到第一长度光纤,该第二RIP被形成为将光束的经修改的光束特性的至少一部分限制在一个或多个限制区域内。在一些示例中,第一RIP和第二RIP不同。在一些示例中,第二长度光纤包括多个限制区域。扰动装置可耦合到第一长度光纤或与第一长度光纤成一体或其组合。第一长度光纤可以在至少径向中心部分中包括梯度折射率RIP,并且第二长度光纤具有第一限制区域和第二限制区域,第一限制区域包括中心芯,第二限制区域是环形的并且包围第一限制区域。第一限制区域和第二限制区域可由包层结构分隔开,该包层结构的折射率低于第一限制区域和第二限制区域的折射率。该包层结构可包括氟硅酸盐材料。第一长度光纤或第二长度光纤或其组合可包括至少一个发散结构,该发散结构被配置为修改光束的发散度轮廓,并且发散结构可包括折射率低于包围发散结构的第二材料的第一材料。第二长度光纤可以是方位上不对称的,并且可包括包含第一芯的第一限制区域和包含第二芯的第二限制区域。在一些示例中,第一限制区域和第二限制区域可以是同轴的。在其他示例中,第一限制区域和第二限制区域可以是不同轴的。在一些示例中,第二限制区域可以是新月形的。第一RIP在具有第一半径的第一部分中可以是抛物线形的。在一些示例中,第一RIP在具有第二半径的第二部分中可以是恒定的,其中,第二半径大于第一半径。第一RIP可以包括延伸到第一长度光纤的芯的边缘的径向梯度折射率,其中,第一RIP被形成为增加或减小光束的一个或多个模式的响应于扰动装置对光束特性的修改的宽度。第一长度光纤可具有延伸到第一半径的径向梯度折射率的芯,随后是延伸到第二半径的恒定折射率部分,其中,第二半径大于第一半径。在一些示例中,第二长度光纤包括直径在约0-100微米范围内的中心芯、包围中心芯的直径在约10-600微米范围内的第一环形芯和直径在约20-1200微米范围内的第二环形芯。扰动装置可包括弯曲组件,该弯曲组件被配置为改变弯曲半径或改变第一长度光纤的弯曲长度或其组合,以修改光束的光束特性。在一些示例中,扰动组件可包括弯曲组件、心轴、光纤中的微弯曲、声光换能器、热装置、光纤拉伸器或压电装置、或其任意组合。第一长度光纤和第二长度光纤可以是拼接在一起的独立的无源光纤。
本文公开的系统可包括一种光束传送装置,其包括:包含第一长度光纤和第二长度光纤的光纤;以及耦合到第二长度光纤的光学系统,该光学系统包括一个或多个自由空间光学器件,该自由空间光学器件被配置为接收和发送包含经修改的光束特性的光束。第一长度光纤包括第一RIP,该第一RIP被形成为能够通过扰动组件至少部分修改光束的一个或多个光束特性,该扰动组件被设置为修改一个或多个光束特性,扰动组件可以耦合到第一长度光纤或与第一长度光纤成一体或是其组合。第二长度光纤可耦合到第一长度光纤,并且可包括第二RIP,该第二RIP被形成为在一个或多个第一限制区域内保持由扰动组件修改的光束的一个或多个光束特性的至少一部分。在一些示例中,第一RIP和第二RIP不同。
光束传送系统还可包括耦合在第一加工头和光学系统之间的第一加工光纤,其中,第一加工光纤被配置为接收包含经修改的一个或多个光束特性的光束。第一加工光纤可包括第三RIP,该第三RIP被配置为在第一加工光纤的一个或多个第二限制区域内保持光束的经修改的一个或多个光束特性的至少一部分。在一个示例中,自由空间光学器件的至少一部分可被配置为进一步修改光束的经修改的一个或多个光束特性。该一个或多个光束特性可包括光束直径、发散度分布、BPP、强度分布、亮度、M2值、NA、光强度、功率密度、径向光束位置、辐射率或光斑尺寸或者其任意组合。第三RIP与第二RIP可以相同或不同。第三RIP可被配置为进一步修改光束的经修改的一个或多个光束特性。在一些示例中,一个或多个第二限制区域中的至少一个包括至少一个发散结构,该发散结构被配置为修改光束的发散度轮廓。该发散结构可包括由比第二限制区域的折射率低的材料形成的区域。
光束传送系统还可包括具有第四RIP的第二加工光纤,该第二加工光纤耦合在光学系统和第二加工头之间,其中,第二加工光纤可被配置为在第二加工光纤的一个或多个第二限制区域内接收包含经修改的一个或多个光束特性的光束。在一些示例中,第一加工光纤或第二加工光纤或其组合可被配置为进一步修改光束的经修改的一个或多个光束特性。第二加工光纤可包括至少一个发散结构,该发散结构被配置为修改光束的发散度轮廓。第二加工光纤可包括由一个或多个第二限制区域中的至少一个包围的中心芯,其中,芯和第二限制区域由包层结构分隔开,该包层结构的第一折射率低于中心芯的第二折射率和第二限制区域的第三折射率,其中,第二限制区域可包括至少一个发散结构。该至少一个发散结构可包括由比第二限制区域的折射率低的材料形成的区域。在一个示例中,第二RIP可不同于第三RIP或第四RIP或其组合。或者,第二RIP与第三RIP或第四RIP或其组合可以相同。可修改的一个或多个光束特性可包括光束直径、发散度分布、BPP、强度分布、亮度、M2值、NA、光强度、功率密度、径向光束位置、辐射率或光斑尺寸或者其任意组合。
在一些示例中,自由空间光学器件的至少一部分可被配置为进一步修改光束的经修改的一个或多个光束特性。第一加工光纤可以耦合在第一加工头和光学系统之间,其中,第一加工光纤被配置为接收包含经两次修改的一个或多个光束特性的光束。第一加工光纤可具有第三RIP,该第三RIP被配置为在第一加工光纤的一个或多个第二限制区域内保持光束的经两次修改的一个或多个光束特性的至少一部分。第三RIP可不同于第二RIP,其中,第三RIP被配置为进一步修改光束的经两次修改的一个或多个光束特性。
在一些示例中,第一加工光纤可包括发散结构,该发散结构被配置为进一步修改光束的经两次修改的一个或多个光束特性。在一些示例中,第二加工光纤可耦合在光学系统和第二加工头之间,其中,第二加工光纤被配置为接收经两次修改的一个或多个光束特性。
在一些示例中,第一加工光纤或第二加工光纤或其组合可被配置为进一步修改光束的经两次修改的一个或多个光束特性。第一加工光纤或第二加工光纤或其组合可包括至少一个发散结构,该发散结构被配置为进一步修改光束的经两次修改的一个或多个光束特性。光学系统可以是光纤-光纤耦合器、光纤-光纤开关或加工头等或其组合。
本公开还涉及一种用于形成制品的方法。该方法包括:形成熔池;将熔池暴露于包含至少一个光束特性的光束;在熔池中形成锁眼腔,该锁眼腔包括至少一个锁眼腔属性;并且响应于锁眼腔属性的变化来修改至少一个光束特性。
本公开还涉及一种用于形成制品的方法。该方法包括:形成熔池;从熔池喷射出第一数量的飞溅物;将熔池暴露于包含至少一个光束特性的光束;并且响应于第一数量的飞溅物的喷射来修改至少一个光束特性。
本公开还涉及一种光束系统。该光束系统包括:光束传送装置,其包括:第一长度光纤,其具有第一折射率轮廓(RIP);第二长度光纤,其耦合到所述第一长度光纤,并且具有第二RIP和一个或多个限制区域;以及扰动装置,其被配置为修改在第一长度光纤和第二长度光纤中的一个或多个中的或者在第一长度光纤和第二长度光纤中的光束的一个或多个光束特性,其中,第一RIP不同于第二RIP,并且第二RIP被配置为将光束的经修改的一个或多个光束特性的至少一部分限制在第二长度光纤的一个或多个限制区域内。该光束系统还包括:传感器,其响应于感测到熔池属性的特征而产生信号;以及反馈子系统,其与光束传送装置和传感器通信。反馈子系统包括:用于存储数据和指令的至少一个存储器;以及至少一个处理器,其被配置为接收信号、访问至少一个存储器并执行指令。
本文所述的方法、系统和设备提供了更少的后处理步骤或消除了后处理步骤,例如,用于增材制造的热等静压(HIP)或其他热处理(例如,硬化、固溶、沉淀硬化、回火、退火等)。
附图说明
附图中相同的附图标记表示相同的元件,这些附图包含在本说明书中并构成本说明书的一部分,并且与说明书一起解释当前公开的技术的优点和原理。在附图中,
图1示出用于提供具有可变光束特性的激光束的示例性光纤结构;
图2绘示出用于传送具有可变光束特性的光束的示例性光纤结构的截面图;
图3示出扰动用于提供具有可变光束特性的光束的光纤结构的示例方法;
图4是示出针对不同光纤弯曲半径的第一长度光纤计算的最低阶模式(LP01)的空间轮廓的曲线图;
图5示出当用于改变光束特性的光纤几乎笔直时在结点(junction)处的二维强度分布的示例;
图6示出当用于改变光束特性的光纤以所选择的半径弯曲以优先激励第二长度光纤的具体限制区域时在结点处的二维强度分布的示例;
图7-10绘示出实验结果,以示出用于改变图2所示的光束特性的光纤的各种弯曲半径的另外的输出光束;
图11-16示出用于实现光纤组件中的光束特性调整的示例性第一长度光纤的截面图;
图17-19示出用于限制光纤组件中的经调整的光束特性的示例性第二长度光纤(“限制光纤”)的截面图;
图20和21示出用于改变光纤组件中的经调整的光束的发散角并在光纤组件中限制经调整的光束的示例性第二长度光纤的截面图,该光纤组件被配置为提供可变光束特性;
图22A示出包括光纤组件的示例性激光系统,该光纤组件被配置为提供位于馈送光纤和加工头之间的可变光束特性;
图22B示出包括光纤组件的示例性激光系统,该光纤组件被配置为提供位于馈送光纤和加工头之间的可变光束特性;
图23示出包括光纤组件的示例性激光系统,该光纤组件被配置为提供位于馈送光纤和多个加工光纤之间的可变光束特性;
图24示出根据本文提供的各种示例的用于提供可变光束特性的各种扰动组件的示例;
图25示出用于调整和保持光束的经修改的特性的示例性过程;
图26-28是示出用于限制光纤组件中的经调整的光束特性的示例性第二长度光纤(“限制光纤”)的截面图;
图29A-29F是示出根据本文提供的各种示例的利用光束的方法的流程图;
图30示出了根据本文提供的各种示例的用于控制熔池的示例激光系统;
图31A示出了包含图30的激光系统的多个方面的示例激光熔化系统;
图31B是示出现场激光熔化工艺(例如在图31A中执行的)的截面图,并且示出形成第一数量的飞溅物,且图33B示出例如在修改至少一个光束特性之后形成第二数量的飞溅物;以及
图31C是示出现场激光熔化工艺(例如在图31A中执行的)的截面图,并且示出例如在修改至少一个光束特性之后形成第二数量的飞溅物。
具体实施方式
如整个本公开和权利要求中所使用的,单数形式“一”、“一个”和“该(所述)”包括复数形式,除非上下文另有明确规定。另外,术语“包含”是指“包括”。此外,术语“耦合(联接)”不排除在耦合(联接)的物项之间存在中间元件。此外,术语“修改”和“调整”可互换使用,表示“改变”。
本文描述的系统、设备和方法不应被解释为以任何方式进行限制。相反,本公开单独以及以彼此的各种组合和子组合涉及各种公开的实施例的所有新颖和非显而易见的特征和方面。所公开的系统、方法和设备不限于任何特定方面或特征或其组合,所公开的系统、方法和设备也不要求存在任何一个或多个特定的优点或解决问题。任何操作理论都是为了便于解释,但是所公开的系统、方法和设备不限于这些操作理论。
尽管为了方便呈现,以特定的顺序描述了一些公开的方法的操作,但是应该理解,这种描述方式包括重新排列,除非下面陈述的特定语言需要特定的顺序。例如,依次描述的操作在某些情况下可以重新排列或同时执行。此外,为了简单起见,附图可能没有示出所公开的系统、方法和设备可以与其他系统、方法和设备结合使用的各种方式。此外,本说明书有时使用诸如“生产”和“提供”等术语来描述所公开的方法。这些术语是所执行的实际操作的高级抽象。对应于这些术语的实际操作将根据具体的实现方式而变化,并且本领域普通技术人员容易辨别。
在一些示例中,值、过程或设备称为“最低”、“最佳”、“最小”等。应当理解,这样的描述旨在指示可以在所使用的许多功能替换中进行选择,并且这样的选择不需要比其他选择更好、更小或更优。参照指示为“上方”、“下方”、“上部”、“下部”等的方向来描述示例。这些术语用于方便描述,但并不意味着任何特定的空间方向。
定义
本文使用的词语和术语的定义:
1.术语“光束特性”表示用于描述光束的下列一个或多个术语。通常,最关注的光束特性取决于应用或光学系统的具体情况。
2.术语“光束直径”被定义为沿着轴跨过光束中心的距离,对于该轴,辐照度(强度)等于最大辐照度的1/e2。虽然本文公开的示例通常使用以方位角对称模式传播的光束,但是可以使用椭圆或其他光束形状,并且光束直径可以沿着不同的轴而不同。圆形光束的特征在于单个光束直径。其他光束形状可以沿着不同的轴具有不同的光束直径。
3.术语“光斑尺寸”是从最大辐照度的中心点到1/e2点的径向距离(半径)。
4.术语“光束发散度分布”是功率对全锥角。这个量有时称为“角度分布”或“NA分布”
5.术语激光束的“光束参数积”(BPP)定义为光束半径(在光束腰部处测量的)和光束发散度半角(在远场中测量的)的乘积。BPP的单位通常是mm-mrad。
6.“限制光纤”被定义为具有一个或多个限制区域的光纤,其中,限制区域包括被低折射率区域(包层区域)包围的高折射率区域(芯区域)。限制光纤的RIP可包括被低折射率区域(包层区域)包围的一个或多个高折射率区域(芯区域),其中,在高折射率区域中引导光。每个限制区域和每个包层区域可具有任何RIP,包括但不限于阶跃折射率和梯度折射率。限制区域可以是同心的,也可以不是同心的,并且可以是各种形状,例如,圆形、环形、多边形、弓形、椭圆形或不规则形等或者其任意组合。特定限制光纤中的限制区域可以都具有相同的形状或者可以是不同的形状。此外,限制区域可以是同轴的或者可以具有相对于彼此偏移的轴。限制区域可围绕中心轴线在纵向上具有均匀的厚度,或者厚度可以围绕中心轴线在纵向上变化。
7.术语“强度分布”是指作为沿着线(一维轮廓)或在平面(二维轮廓)上的位置的函数的光强度。线或平面通常垂直于光的传播方向。这是一种数量属性。
8.“亮度”是在给定方向上传播的光的每单位面积的发光强度的光度测量值。
9.“M2因子”(也称为“光束质量因子”或“光束传播因子”)是用于量化激光束的光束质量的无量纲参数,M2=1是衍射受限光束,较大的M2值对应于较低的光束质量。M2等于BPP除以λ/π,其中,λ是光束的波长,单位为微米(如果BPP以mm-mrad为单位表示)。
10.术语光学系统的“数值孔径”或“NA”是无量纲数,表征系统可以接受或发射的光的角度范围。
11.术语“光强度”不是官方(SI)单位,而是用来表示表面上的或穿过平面的单位面积的入射功率。
12.术语“功率密度”是指每单位面积的光功率,尽管这也称为“光强度”。
13.术语“径向光束位置”是指在垂直于光纤轴的方向上,相对于光纤芯的中心测量的光纤中的光束的位置。
14.“辐射率”是光源(例如,激光器)的单位面积在给定方向上每单位立体角发射的辐射。辐射率可以通过改变光束强度分布和/或光束发散轮廓或分布来改变。改变激光束的功率密度(也称为辐射率轮廓)的能力意味着改变BPP的能力。
15.术语“折射率轮廓”或“RIP”是指折射率,作为沿着垂直于光纤轴的线(1D)或在垂直于光纤轴的平面(2D)中的位置的函数。许多光纤是方位对称的,在这种情况下,任何方位角的1D RIP都是相同的。
16.“阶跃折射率光纤”具有在光纤芯内平坦(折射率与位置无关)的RIP。
17.“梯度折射率光纤”具有这样的RIP,其中,折射率随着径向位置的增加(即,随着与光纤芯的中心的距离增加)而降低。
18.“抛物线折射率光纤”是梯度折射率光纤的一种特殊情况,其中,折射率随着与光纤芯的中心的距离的增加而二次方地降低。
用于改变光束特性的光纤
在本文公开了方法、系统和设备,其被配置为提供光纤,该光纤可操作以提供具有可变光束特性(VBC)的激光束,该可变光束特性可降低上述常规方法的成本、复杂性、光损耗或其他缺点。这种VBC光纤被配置为改变多种光束特性。可使用VBC光纤来控制这些光束特性,从而允许用户调整各种光束特性,以适应各种激光加工应用的特殊要求。例如,VBC光纤可用于调整:光束直径、光束发散度分布、BPP、强度分布、M2因子、NA、光强度、功率密度、径向光束位置、辐射率、光斑尺寸等,或其任意组合。
通常,所公开的技术需要将激光束耦合到光纤中,其中,可以通过多种方法中的任何一种方法扰动激光束和/或扰动第一长度光纤(例如,弯曲光纤或引入一个或多个其他扰动),并且在第二长度光纤中完全或部分地保持经调整的光束特性,来调整光纤中激光束的特性。第二长度光纤被特别配置为保持和/或进一步修改经调整的光束特性。在一些情况下,第二长度光纤通过将激光束传送到其最终用途(例如,材料加工)来保持经调整的光束特性。第一长度光纤和第二长度光纤可包括相同或不同的光纤。
所公开的技术与光纤激光器和光纤耦合激光器兼容。光纤耦合激光器通常经由具有阶跃折射率轮廓(RIP)的传送光纤传输输出,即,具有在光纤芯内的平坦或恒定的折射率。实际上,取决于光纤的设计,传送光纤的RIP可能不是完全平坦的。重要的参数是光纤的芯直径(dcore)和NA。芯直径通常在10-1000微米的范围内(尽管其他值也是可能的),NA通常在0.06-0.22的范围内(尽管其他值也是可能的)。来自激光器的传送光纤可以直接路由到加工头或工件,或者可以路由到光纤-光纤耦合器(FFC)或光纤-光纤开关(FFS),其将来自传送光纤的光学耦合到将光束传输到加工头或工件的加工光纤中。
大多数材料加工工具(特别是那些高功率(>1kW)的材料加工工具)采用多模(MM)光纤,但一些材料加工工具采用单模(SM)光纤,该单模光纤位于dcore和NA范围的低端。SM光纤的光束特性由光纤参数唯一确定。然而,来自MM光纤的光束特性可能变化(单位到单位和/或根据激光功率和时间),这取决于来自耦合到光纤中的激光源的光束特性、光纤的发射或拼接条件、光纤RIP以及光纤的静态和动态几何形状(弯曲、盘绕、运动、微弯曲等)。对于SM和MM传送光纤,光束特性对于给定的材料加工任务来说可能不是最佳的,对于一系列任务来说也不太可能是最佳的,这促使人们希望能够系统地改变光束特性,以便为特定的加工任务进行定制或优化。
在一个示例中,VBC光纤可以具有第一长度和第二长度,并且可以被配置为作为光纤内装置插置在传送光纤和加工头之间,以提供光束特性所需的可调整性。为了能够调整光束,扰动装置和/或组件设置在VBC光纤附近和/或与VBC光纤耦合,并且负责扰动第一长度的光束,使得光束的特性在第一长度光纤中改变,并且随着光束在第二长度光纤中传播,保持或进一步改变改变后的特性。扰动的光束发射到第二长度的VBC光纤中,该光纤被配置为保持经调整的光束特性。第一长度光纤和第二长度光纤可以是相同或不同的光纤和/或第二长度光纤可包括限制光纤。由第二长度的VBC光纤保持的光束特性可包括以下任一项:光束直径、光束发散度分布、BPP、强度分布、亮度、M2因子、NA、光强度、功率密度、径向光束位置、辐射率、光斑尺寸等或者其任意组合。
图1示出了示例性VBC光纤100,其用于提供具有可变光束特性的激光束,而不需要使用自由空间光学器件来改变光束特性。VBC光纤100包括第一长度光纤104和第二长度光纤108。第一长度光纤104和第二长度光纤108可以是相同或不同的光纤,并且可以具有相同或不同的RIP。第一长度光纤104和第二长度光纤108可以通过接头连接在一起。第一长度光纤104和第二长度光纤108可以以其他方式耦合,可以间隔开,或者可以经由插入部件连接,例如,另一长度光纤、自由空间光学器件、胶、折射率匹配材料等或者其任意组合。
扰动装置110设置在扰动区域106附近和/或包围扰动区域106。扰动装置110可以是装置、组件、光纤内结构和/或其他特征。扰动装置110至少扰动第一长度光纤104或第二长度光纤108或其组合中的光束102,以便调整光束102的一个或多个光束特性。响应于扰动装置110的扰动,可以在第一长度光纤104或第二长度光纤108或其组合中发生光束102的调整。扰动区域106可以在各种宽度上延伸,并且可以延伸或不延伸到第二长度光纤108的一部分中。当光束102在VBC光纤100中传播时,扰动装置110可以物理地作用在VBC光纤100上,以扰动光纤并调整光束102的特性。或者,扰动装置110可以直接作用在光束102上,以改变其光束特性。在调整之后,被扰动光束112具有与光束102不同的光束特性,其将在第二长度光纤108中完全或部分地保持。在另一示例中,扰动装置110不需要设置在接头附近。此外,根本不需要接头,例如,VBC光纤100可以是单根光纤,第一长度光纤和第二长度光纤可以间隔开或者以小间隙固定(空气间隔或填充有光学材料,例如,光学胶或折射率匹配材料)。
被扰动光束112发射到第二长度光纤108中,其中,随着被扰动光束112传播,被扰动光束112的特性很大程度上被保持或继续发展,从而在第二长度光纤108的输出端产生经调整的光束特性。在一个示例中,新的光束特性可包括经调整的强度分布。在一个示例中,改变的光束强度分布将保持在第二长度光纤108的各种结构上有界限的限制区域中。因此,可以将光束强度分布调整到针对特定激光加工任务优化的期望光束强度分布。通常,被扰动光束112的强度分布将随着其在第二长度光纤108中传播而发展,以填充限制区域,其中响应于第一长度光纤104中的条件和由扰动装置110引起的扰动,被扰动光束112发射到该限制区域中。此外,根据发射条件和光纤特性,随着光束在第二光纤中传播,角度分布可能演变。通常,光纤在很大程度上保持了输入发散度分布,但是如果输入发散度分布很窄和/或如果光纤具有扰乱发散度分布的不规则性或故意性特征,则可能加宽该分布。下文将更详细地描述第二长度光纤108的各种限制区域、扰动和光纤特征。光束102和112是概念上的抽象,旨在示出光束如何传播通过VBC光纤100,以提供可变的光束特性,并非旨在对特定光束的行为进行精确地模拟。
VBC光纤100可通过多种方法制造,包括PCVD(等离子体化学气相沉积)、OVD(外部气相沉积)、VAD(气相轴向沉积)、MOCVD(金属-有机化学气相沉积)和/或DND(直接纳米颗粒沉积)。VBC光纤100可包括多种材料。例如,VBC光纤100可包括SiO2、掺杂有GeO2的SiO2、锗硅酸盐、五氧化二磷、磷硅酸盐、Al2O3、铝硅酸盐等或其任意组合。限制区域可由掺杂氟、硼等或其任意组合的包层来限定。其他掺杂剂可以添加到活性光纤中,包括稀土离子,例如,Er3+(铒)、Yb3+(镱)、Nd3+(钕)、Tm3+(铥)、Ho3+(钬)等或其任意组合。限制区域可由折射率低于氟或硼掺杂的限制区域的包层来限定。或者,VBC光纤100可包括光子晶体光纤或微结构光纤。
VBC光纤100适用于各种光纤、光纤光学器件或光纤激光器装置中的任何一种,包括连续波和脉冲光纤激光器、圆盘激光器、固态激光器或二极管激光器(脉冲速率不受限制,除了物理限制以外)。此外,平面波导或其他类型波导(而不仅仅是光纤)中的实现方式都在所要求保护的技术范围内。
图2绘示出用于调整光束的光束特性的示例性VBC光纤200的截面图。在一个示例中,VBC光纤200可以是加工光纤,因为可以将光束传送到加工头以用于材料加工。VBC光纤200包括在结点206处拼接到第二长度光纤208的第一长度光纤204。扰动组件210设置在结点206附近。扰动组件210可以是被配置为能够调整在VBC光纤200中传播的光束202的光束特性的各种装置中的任何一种。在一个示例中,扰动组件210可以是心轴和/或另一装置,其可以提供改变接头附近的VBC光纤200的弯曲半径和/或弯曲长度的方式。将在下面参照图24讨论扰动装置的其他示例。
在一个示例中,第一长度光纤204具有抛物线折射率RIP 212,如左RIP图所示。当光纤204是笔直的或接近笔直的时,光束202的大部分强度分布集中在光纤204的中心。第二长度光纤208是具有RIP 214的限制光纤,如右RIP图所示。第二长度光纤208包括限制区域216、218和220。限制区域216是由两个环形(或环状)限制区域218和220包围的中心芯。层222和224是通常称为“包层”区域的限制区域(216、218和220)之间的由低折射率材料构成的结构屏障。在一个示例中,层222和224可包括氟硅酸盐环;在一些实施例中,氟硅酸盐包层相对较薄。也可以使用其他材料,并且要求保护的主题不限于此。
在一个示例中,当光束202沿着VBC光纤200传播时,扰动组件210可以物理地作用在光纤208和/或光束202上,以调整其光束特性并生成经调整的光束226。在当前示例中,光束202的强度分布被扰动组件210修改。在调整光束202之后,经调整的光束226的强度分布可集中在外部限制区域218和220中,其中,在中心限制区域216中强度相对较小。因为限制区域216、218和/或220中的每一个被屏障层222和224中的较低折射率材料薄层隔离,所以第二长度光纤208可以基本上保持经调整的光束226的经调整的强度分布。光束通常会在给定的限制区域内以方位角分布,但是当沿着第二长度光纤208传播时,不会在限制区域之间(显著地)过渡。因此,经调整的光束226的经调整的光束特性在很大程度上保持在隔离的限制区域216、218和/或220内。在一些情况下,可能希望在限制区域216、218和/或220之间划分光束226的功率,而不是集中在单个区域中,并且这种条件可以通过生成适当的经调整的光束226来实现。
在一个示例中,芯限制区域216和环形限制区域218和220可以由熔融石英玻璃构成,并且限定限制区域的包层222和224可以由氟硅酸盐玻璃构成。其他材料可用于形成各种限制区域(216、218和220),包括锗硅酸盐、磷硅酸盐、铝硅酸盐等或其组合,并且要求保护的主题不限于此。其他材料可用于形成屏障环(222和224),包括熔融二氧化硅、硼硅酸盐等或其组合,并且要求保护的主题不限于此。在其他实施例中,光纤或波导包括或由各种聚合物或塑料或晶体材料组成。通常,芯限制区域的折射率大于相邻屏障/包层区域的折射率。
在一些示例中,可能希望增加第二长度光纤中的限制区域的数量,以增加在光束位移上的光束控制的粒度,从而微调光束轮廓。例如,限制区域可以被配置为提供逐步的光束位移。
图3示出扰动光纤200以提供光束的可变光束特性的示例性方法。改变光纤的弯曲半径可以改变光纤内的光束的径向光束位置、发散角和/或辐射率轮廓。VBC光纤200的弯曲半径可通过使用阶梯形心轴或锥体作为扰动组件210而围绕拼接结点206从第一弯曲半径R1减小到第二弯曲半径R2。另外或替代地,心轴或锥体上的接合长度可以变化。辊250可用于横跨扰动组件210与VBC光纤200接合。在一个示例中,辊250与光纤200的接合量已经显示为将强度轮廓的分布转移到具有固定心轴半径的光纤200的外部限制区域218和220。有多种其他方法用于改变光纤200的弯曲半径,例如,使用夹持组件、挠性管等或其组合,并且要求保护的主题不限于此。在另一示例中,对于特定的弯曲半径,VBC光纤200弯曲的长度也可以以可控和可再现的方式来改变光束特性。在示例中,改变弯曲半径和/或长度(光纤以特定的弯曲半径在该长度上弯曲)也修改了光束的强度分布,使得一个或多个模式可以径向地偏离光纤芯的中心。
保持光纤在结点206上的弯曲半径,确保了经调整的光束特性(例如,光束202的径向光束位置和辐射率轮廓)在发射到第二长度光纤208之前不会返回到光束202的未扰动状态。此外,可基于VBC光纤200的弯曲半径和/或弯曲长度的减小程度来改变经调整的光束226的经调整的径向光束特性,包括位置、发散角和/或强度分布。因此,可以使用该方法获得特定的光束特性。
在当前示例中,具有第一RIP 212的第一长度光纤204在结点206处拼接到具有第二RIP 214的第二长度光纤208。然而,可以使用具有单个RIP的单根光纤,该RIP形成为能够扰动(例如,通过微弯曲)光束202的光束特性,并且还能够保持经调整的光束。这种RIP可以类似于图17、18和/或19所示的光纤中所示的RIP。
图7-10提供了VBC光纤200(如图2和3所示)的实验结果,并进一步示出当扰动组件210作用在VBC光纤200上以弯曲光纤时,对VBC光纤200的扰动的光束响应。图4-6是模拟,图7-10是实验结果,其中,来自SM 1050nm光源的光束发射到具有40微米的芯直径的输入光纤(未示出)中。输入光纤拼接到第一长度光纤204。
图4是示出不同光纤弯曲半径402的第一长度光纤204的最低阶模式(LP01)的计算轮廓的示例性图表400,其中,扰动组件210涉及弯曲VBC光纤200。随着光纤弯曲半径的减小,调整在VBC光纤200中传播的光束,使得模式径向地偏离VBC光纤200的芯的中心404(r=0微米),朝向芯/包层界面(在该示例中位于r=100微米处)。高阶模式(LPIn)也随着弯曲而偏移。因此,笔直的或接近笔直的光纤(非常大的弯曲半径),LP01的曲线406在VBC光纤200的中心404或其附近居中。在大约6cm的弯曲半径处,LP01的曲线408从VBC光纤200的中心406偏移到大约40μm的径向位置。在大约5cm的弯曲半径处,LP01的曲线410从VBC光纤200的中心404偏移到大约50μm的径向位置。在大约4cm的弯曲半径处,LP01的曲线412从VBC光纤200的中心404偏移到大约60μm的径向位置。在大约3cm的弯曲半径处,LP01的曲线414从VBC光纤200的中心404偏移到大约80μm的径向位置。在大约2.5cm的弯曲半径处,LP01的曲线416从VBC光纤200的中心406偏移到大约85μm的径向位置。注意,模式的形状保持相对恒定(直到接近芯的边缘),这是抛物线RIP的特定属性。尽管在某些情况下,该属性可能是期望的,但VBC功能不需要该属性,并且可以使用其他RIP。
在一个示例中,如果VBC光纤200被拉直,则LP01模式将移回光纤的中心。因此,第二长度光纤208的目的是将光束的经调整的强度分布“捕获”或限制在偏离VBC光纤200中心的限制区域中。光纤204和208之间的接头包括在弯曲区域中,因此移位的模式轮廓将优先发射到环形限制区域218和220中的一个中,或者分布在限制区域中。图5和6示出了这种效果。
图5示出了当VBC光纤200几乎笔直时,在第二长度光纤208内的结点206处的示例性二维强度分布。大部分LP01和LPIn在光纤208的限制区域216内。图6示出了当VBC光纤200以所选择的半径弯曲以优先激励第二长度光纤208的限制区域220(最外面的限制区域)时,在第二长度光纤208内的结点206处的二维强度分布。大部分LP01和LPIn在光纤208的限制区域220内。
在一个示例中,第二长度光纤208的限制区域216具有100微米的直径,限制区域218的直径在120微米和200微米之间,限制区域220的直径在220微米和300微米之间。限制区域216、218和220由10μm厚的氟硅酸盐环隔开,从而为限制区域提供0.22的NA。可以采用限制区域的其他的内径和外径、分隔限制区域的环的厚度、限制区域的NA值以及限制区域的数量。
再次参考图5,利用所述参数,当VBC光纤200笔直时,大约90%的功率包含在中心限制区域216内,并且大约100%的功率包含在限制区域216和218内。现在参考图6,当光纤200弯曲以优先激励第二环形限制区域220时,接近75%的功率包含在限制区域220内,超过95%的功率包含在限制区域218和220内。这些计算包括LP01和两种高阶模式,这在一些2-4kW光纤激光器中是典型的。
从图5和图6可以清楚地看出,在扰动组件210作用在VBC光纤200上以弯曲光纤的情况下,弯曲半径确定了第一长度光纤204的模态强度分布与第二长度光纤208的不同引导限制区域(216、218和220)的空间重叠。因此,改变弯曲半径可以改变第二长度光纤208的输出端的强度分布,从而改变光束的直径或光斑尺寸,并因此还改变其辐射率和BPP值。可以在全光纤结构中实现光斑尺寸的这种调整,从而不涉及自由空间光学器件,因此可以减少或消除上述自由空间光学器件的缺点。这种调整也可以通过改变弯曲半径、弯曲长度、光纤张力、温度或下面讨论的其他扰动的其他扰动组件来进行。
在典型的材料加工系统(例如,切割或焊接工具)中,加工光纤的输出由加工头在工件处或附近成像。因此,改变如图5和6所示的强度分布能够改变工件处的光束轮廓,以便根据需要调整和/或优化工艺。出于上述计算的目的,假设了两种光纤的特定RIP,但是其他RIP也是可能的,并且所要求保护的主题不限于此。
图7-10绘示出实验结果(测量的强度分布),以示出图2所示的VBC光纤200的各种弯曲半径的另外的输出光束。
在图7中,当VBC光纤200笔直时,光束几乎完全限于限制区域216。随着弯曲半径的减小,强度分布移动到更高的直径(图8-10)。图8绘示出当VBC光纤200的弯曲半径被选择为使强度分布优先向限制区域218移动时的强度分布。图9绘示出当弯曲半径进一步减小并被选择为使强度分布向外移动到限制区域220和限制区域218时的实验结果。在图10中,在最小弯曲半径时,光束几乎是“环形模式”,大部分强度在最外面的限制区域220中。
尽管在拼接结点206处从一侧激励限制区域,但是由于光束在VBC光纤200内传播时限制区域内的加扰,强度分布在方位上是几乎对称的。虽然光束在传播时通常会在方位角上加扰,但是可以包括各种结构或扰动(例如,线圈),以促进这一过程。
对于在图7-10所示的实验中使用的光纤参数,并不完全激励特定的限制区域,因为在多个限制区域中存在某种强度。该特征可以实现有利的材料加工应用,这些应用通过具有更平坦或分布的光束强度分布而被优化。在需要对给定限制区域进行更清洁的激励的应用中,可以采用不同的光纤RIP来实现这一特征。
图7-10中所示的结果与本实验中使用的特定光纤有关,并且细节将根据实现方式的细节而变化。具体而言,输出光束的空间轮廓和发散度分布及其对弯曲半径的依赖性将取决于所采用的特定RIP、拼接参数以及发射到第一光纤中的激光源的特性。
可以使用不同于图2所示的光纤参数,并且这些参数仍然在要求保护的主题的范围内。具体地,不同的RIP和芯尺寸和形状可用于促进与不同输入光束轮廓的兼容性,并实现不同的输出光束特性。除了图2所示的抛物线折射率轮廓之外,第一长度光纤的示例RIP还包括其他梯度折射率轮廓、阶跃折射率、基座设计(pedestal design)(即,随着距光纤中心距离的增加,折射率逐渐降低的嵌套芯)以及具有相同折射率值但中心芯和周围环具有不同NA值的嵌套芯的设计。除了图2所示的轮廓之外,第二长度光纤的示例RIP包括具有不同数量限制区域的限制光纤、非均匀限制区域厚度、包围限制区域的环的厚度的不同和/或非均匀的值、限制区域的不同和/或非均匀的NA值、RIP的高折射率和低折射率部分的不同折射率值、非圆形限制区域(例如,椭圆形、卵形、多边形、正方形、矩形或其组合)以及其他设计,如在图26-28中更详细讨论的。此外,本文描述的VBC光纤200和VBC光纤的其他示例不限于使用两根光纤。在一些示例中,实现方式可以包括使用一根光纤或两根以上的光纤。在某些情况下,光纤可能不是轴向均匀的;例如,可以包括光纤布拉格光栅或长周期光栅,或者直径可以沿着光纤的长度变化。此外,光纤不必是方位对称的,例如,芯可以具有正方形或多边形形状。可以使用各种光纤涂层(缓冲层),包括高折射率或折射率匹配涂层(其在玻璃-聚合物界面处剥离光)和低折射率涂层(其在玻璃-聚合物界面处通过全内反射引导光)。在一些示例中,可以在VBC光纤200上使用多个光纤涂层。
图11-16示出了用于能够响应于在第一长度光纤中传播的光束的扰动来调整VBC光纤中的光束特性的第一长度光纤的示例的截面图。可以在第一长度光纤中调整的光束特性的一些示例是:光束直径、光束发散度分布、BPP、强度分布、亮度、M2因子、NA、光强度轮廓、功率密度轮廓、径向光束位置、辐射率、光斑尺寸等或者其任意组合。在图11-16中绘示的和下面描述的第一长度光纤仅仅是示例,并没有提供可用于调整VBC光纤组件中的光束特性的第一长度光纤的多样性的详尽叙述。图11-16所示的第一长度光纤的材料、合适的RIP和其他变量的选择至少取决于期望的光束输出。各种各样的光纤变量被考虑在内,并且在所要求保护的主题的范围内。因此,所要求保护的主题不受本文提供的示例的限制。
在图11中,第一长度光纤1100包括阶跃折射率轮廓1102。图12示出了第一长度光纤1200,包括“基座RIP”(即,包括由较大阶跃折射率区域包围的阶跃折射率区域的芯)1202。图13示出了包括多基座RIP 1302的第一长度光纤1300。
图14A示出了第一长度光纤1400,包括由下掺杂区域1404包围的梯度折射率轮廓1418。光纤1400具有RIP 1402。当扰动光纤1400时,模式可能在光纤1400中径向地向外移动(例如,在光纤1400弯曲期间)。梯度折射率轮廓1418可以被设计成促进保持或甚至压缩模态形状。这种设计可以促进调整在光纤1400中传播的光束,以生成光束强度分布集中在光纤的外周(即,在光纤芯的偏离光纤轴的一部分中)的光束。如上所述,当经调整的光束耦合到具有限制区域的第二长度光纤中时,经调整的光束的强度分布可被限于最外面的限制区域中,从而提供环形强度分布。具有窄外部限制区域的光束光斑可用于实现某些材料加工动作。
图14B示出了第一长度光纤1406,包括由下掺杂区域1408包围的梯度折射率轮廓1414,类似于光纤1400。然而,光纤1406包括发散结构1410(低折射率区域),如RIP 1412所示。发散结构1410是由折射率比周围芯低的材料形成的区域。当光束发射到第一长度光纤1406中时,来自发散结构1410的折射导致光束发散度在第一长度光纤1406中增加。发散度的增加量取决于光束与发散结构1410的空间重叠量以及发散结构1410和芯材料之间的折射率差的大小。发散结构1410可以具有多种形状,这取决于输入发散度分布和期望的输出发散度分布。在一个示例中,发散结构1410具有三角形或梯度折射率形状。
图15示出了第一长度光纤1500,包括由恒定折射率区域1504包围的抛物线折射率中心区域1502,并且恒定折射率区域1504由低折射率环形层1506包围。低折射率环形层1506有助于引导光束在光纤1500中传播。当扰动传播的光束时,模式在光纤1500中径向地向外移动(例如,在光纤1500弯曲期间)。当一个或多个模式径向地向外移动时,抛物线折射率区域1502促进保持模式形状。当模式到达RIP 1510的恒定折射率区域1504时,将在低折射率环形层1506上压缩,这可能导致第二光纤中最外面的限制区域的优先激励(与图14所示的第一光纤RIP相比)。在一种实现方式中,这种光纤设计与具有中心阶跃折射率芯和单个环形芯的限制光纤一起工作。RIP的抛物线折射率部分1502与限制光纤的中心阶跃折射率芯重叠。恒定折射率部分1504与限制光纤的环形芯重叠。第一光纤的恒定折射率部分1504旨在通过弯曲而使光束更容易移动到与环形芯重叠。这种光纤设计也适用于限制光纤的其他设计。
图16示出了第一长度光纤1600,包括由较低折射率层1610、1612和1614界定的引导区域1604、1606、1608和1616,其中,较低折射率层1610、1612和1614的折射率是阶梯形的,或者更一般地,不都具有相同的值,如RIP 1602所示。当扰动组件210(见图2)作用在光纤1600上时,低折射率层可用于将光束强度限制在某些引导区域(1604、1606、1608和1616)。以这种方式,经调整的光束可以通过一系列扰动动作(例如,通过一系列弯曲半径、一系列弯曲长度、一系列微弯曲压力和/或一系列声光信号)被捕获在引导区域中,从而在光束强度分布移动到光纤1600中更远的径向位置之前,允许一定程度的扰动容限。因此,光束特性的变化可以逐步控制。可以调整引导区域1604、1606、1608和1616的径向宽度,以获得期望的环宽度,这是应用可能需要的。此外,如果需要,引导区域可以具有更厚的径向宽度,以便于捕获入射光束轮廓的更大部分。区域1606是这种设计的一个示例。
图17-21绘示出被配置为能够维持和/或限制第二长度光纤(例如,光纤208)中的经调整的光束特性的光纤的示例。这些光纤设计称为“环形限制光纤”,因为包含由环形或环状芯包围的中心芯。这些设计仅仅是示例,并不是对可用于维持和/或限制光纤内的经调整的光束特性的各种光纤RIP的详尽叙述。因此,要求保护的主题不限于本文提供的示例。此外,以上在图11-16中描述的任何第一长度光纤可以与图17-21描述的任何第二长度光纤组合。
图17示出了用于在VBC光纤组件中维持和/或限制经调整的光束特性的示例性第二长度光纤的截面图。当被扰动光束从第一长度光纤耦合到第二长度光纤1700时,第二长度光纤1700可以在一个或多个限制区域1704、1706和/或1708内保持响应于第一长度光纤中的扰动而调整的光束特性的至少一部分。光纤1700具有RIP 1702。限制区域1704、1706和/或1708中的每一个由较低折射率层1710和/或1712界定。这种设计使得第二长度光纤1700能够保持经调整的光束特性。结果,由光纤1700输出的光束将基本上保持所接收到的经调整的光束,如在第一长度光纤中修改的那样,从而给输出光束提供经调整的光束特性,这可以根据加工任务或其他应用定制。
类似地,图18绘示出示例性第二长度光纤1800的截面图,用于维持和/或限制响应于VBC光纤组件中的第一长度光纤的扰动而调整的光束特性。光纤1800具有RIP 1802。然而,限制区域1808、1810和/或1812具有与限制区域1704、1706和1708不同的厚度。限制区域1808、1810和/或1812中的每一个由较低折射率层1804和/或1806界定。改变限制区域(和/或屏障区域)的厚度能够通过选择限制经调整的光束的特定径向位置来定制或优化所限制的经调整的辐射率轮廓。
图19绘示出具有RIP 1902的示例性第二长度光纤1900的截面图,用于维持和/或限制在VBC光纤组件中被配置为提供可变光束特性的经调整的光束。在该示例中,限制区域1904、1906、1908和1910的数量和厚度不同于光纤1700和1800,并且屏障层1912、1914和1916也具有不同的厚度。此外,限制区域1904、1906、1908和1910具有不同的折射率,屏障层1912、1914和1916也具有不同的折射率。这种设计可以进一步实现针对光纤1900内的特定径向位置进行限制和/或维持经调整的光束辐射的更精细或优化的定制。当扰动光束从第一长度光纤发射到第二长度光纤1900时,光束的经修改的光束特性(具有经调整的强度分布、径向位置和/或发散角等或其组合)被第二长度光纤1900的一个或多个限制区域1904、1906、1908和/或1910限制在特定半径内。
如前所述,可以保持或调整光束的发散角,然后在第二长度光纤中保持。有多种方法可以改变光束的发散角。以下是光纤的示例,该光纤被配置为能够调整光纤组件中从第一长度光纤传播到第二长度光纤的光束的发散角,以改变光束特性。然而,这些仅仅是示例,并不是对可用于调整光束的发散度的各种方法的详尽叙述。因此,要求保护的主题不限于本文提供的示例。
图20绘示出具有RIP 2002的示例性第二长度光纤2000的截面图,用于修改、维持和/或限制响应于第一长度光纤的扰动而调整的光束特性。在这个示例中,第二长度光纤2000类似于前面描述的第二长度光纤,并且形成VBC光纤组件的一部分,以用于传送可变光束特性,如上所述。具有三个限制区域2004、2006和2008以及三个屏障层2010、2012和2016。第二长度光纤2000还具有位于限制区域2006内的发散结构2014。发散结构2014是由折射率低于周围限制区域的材料形成的区域。当光束发射到第二长度光纤2000中时,来自发散结构2014的折射导致光束的发散度在第二长度光纤2000中增加。发散度的增加量取决于光束与发散结构2014的空间重叠量以及发散结构2014和芯材料之间的折射率差的大小。通过调整在发射到第二长度光纤2000的发射点附近的光束的径向位置,发散度分布可以改变。光束的经调整的发散度在光纤2000中保持,光纤2000被配置为将经调整的光束传送到加工头、另一光学系统(例如,光纤-光纤耦合器或光纤-光纤开关)、工件等或其组合。在一个示例中,发散结构2014可相对于周围材料具有约10-5-3x10-2的折射率下降。可以在本公开的范围内使用折射率下降的其他值,并且所要求保护的主题不限于此。
图21绘示出具有RIP 2102的示例性第二长度光纤2100的截面图,用于修改、维持和/或限制响应于第一长度光纤的扰动而调整的光束特性。第二长度光纤2100形成VBC光纤组件的一部分,以用于传送具有可变特性的光束。在该示例中,具有三个限制区域2104、2106和2108以及三个屏障层2110、2112和2116。第二长度光纤2100还具有多个发散结构2114和2118。发散结构2114和2118是由梯度低折射率材料形成的区域。当光束从第一长度光纤发射到第二长度光纤2100时,来自发散结构2114和2118的折射导致光束发散度增加。发散度的增加量取决于光束与发散结构的空间重叠量以及发散结构2114和/或2118分别与限制区域2106和2104的周围芯材料之间的折射率差的大小。通过调整在发射到第二长度光纤2100的发射点附近的光束的径向位置,发散度分布可以改变。图21所示的设计允许强度分布和发散度分布通过选择特定限制区域和该限制区域内的发散度分布而稍微独立地变化(因为每个限制区域可以包括发散结构)。光束的经调整的发散度在光纤2100中保持,光纤2100被配置为将经调整的光束传送到加工头、另一光学系统或工件。形成具有梯度或非恒定折射率的发散结构2114和2118使得能够调整在光纤2100中传播的光束的发散度轮廓。在由第二光纤传送到加工头时可以保持经调整的光束特性(例如,辐射率轮廓和/或发散度轮廓)。可替代地,当第二光纤通过光纤-光纤耦合器(FFC)和/或光纤-光纤开关(FFS)路由到将光束传送到加工头或工件的加工光纤时,可以保持或进一步调整经调整的光束特性,例如,辐射率轮廓和/或发散度轮廓。
图26-28是示出了光纤和光纤RIP的示例的截面图,该光纤和光纤RIP被配置为能够维持和/或限制在方位不对称的第二长度光纤中传播的光束的经调整的光束特性,其中,响应于耦合到第二长度光纤的第一长度光纤的扰动和/或扰动装置110对光束的扰动,来调整光束特性。这些方位上非对称的设计仅仅是示例,并不是对可用于维持和/或限制方位上非对称的光纤内的经调整的光束特性的各种光纤RIP的详尽叙述。因此,要求保护的主题不限于本文提供的示例。此外,各种第一长度光纤中的任何一种(例如,类似于上述的那些)可以与任何方位上非对称的第二长度光纤(例如,类似于图26-28中描述的那些)组合。
图26示出穿过椭圆光纤2600的横截面的不同方位角处的RIP。在第一方位角2602处,光纤2600具有第一RIP 2604。在从第一方位角2602旋转45o的第二方位角2606处,光纤2600具有第二RIP 2608。在从第二方位角2606旋转另一45o的第三方位角2610处,光纤2600具有第三RIP 2612。第一RIP 2604、第二RIP 2608和第三RIP2612都不同。
图27示出穿过多芯光纤2700的横截面的不同方位角的RIP。在第一方位角2702处,光纤2700具有第一RIP 2704。在第二方位角2706处,光纤2700具有第二RIP 2708。第一RIP2704和第二RIP2708是不同的。在一个示例中,扰动装置110可以在多个平面中起作用,以便将经调整的光束发射到方位不对称的第二光纤的不同区域中。
图28示出穿过具有至少一个新月形芯的光纤2800的横截面的不同方位角处的RIP。在某些情况下,新月形的角可以是圆形、扁平的或其他形状,这可以最小化光学损失。在第一方位角2802处,光纤2800具有第一RIP 2804。在第二方位角2806处,光纤2800具有第二RIP 2808。第一RIP2804和第二RIP2808是不同的。
图22A示出包括VBC光纤组件2202的激光系统2200的示例,VBC光纤组件2202被配置为提供可变光束特性。VBC光纤组件2202包括第一长度光纤104、第二长度光纤108和扰动装置110。VBC光纤组件2202设置在馈送光纤2212(即,来自激光源的输出光纤)和VBC传送光纤2240之间。VBC传送光纤2240可包括修改、维持和/或限制经调整的光束特性的第二长度光纤108或第二长度光纤108的延伸部分。光束2210经由馈送光纤2212耦合到VBC光纤组件2202中。光纤组件2202被配置为根据上述各种示例改变光束2210的特性。光纤组件2202的输出是经调整的光束2214,其耦合到VBC传送光纤2240中。VBC传送光纤2240将经调整的光束2214传送到自由空间光学组件2208,自由空间光学组件2208然后将光束2214耦合到加工光纤2204中。经调整的光束2214随后由加工光纤2204传送到加工头2206。加工头可以包括导波光学器件(例如,光纤和光纤耦合器)、自由空间光学器件(例如,透镜、反射镜、滤光器、衍射光栅)、光束扫描组件(例如,检流计扫描仪、多边形反射镜扫描仪)或用于对光束2214进行整形并将整形后的光束传送到工件的其他扫描系统。
在激光系统2200中,组件2208的一个或多个自由空间光学器件可以设置在FFC或其他光束耦合器2216中,以对经调整的光束2214(在图22A中以不同于光束2210的虚线表示)执行各种光学操作。例如,自由空间光学组件2208可保持光束2214的经调整的光束特性。加工光纤2204可具有与VBC传送光纤2240相同的RIP。因此,经调整的光束2214的经调整的光束特性可以一直保持到加工头2206。加工光纤2204可包括类似于上述任何第二长度光纤的RIP,包括限制区域。
可替代地,如图22B所示,自由空间光学组件2208可以通过例如增加或减少光束2214的发散度和/或光斑尺寸(例如,通过放大或缩小光束2214)和/或以其他方式进一步修改经调整的光束2214,来改变光束2214的经调整的光束特性。此外,加工光纤2204可以具有与VBC传送光纤2240不同的RIP。因此,可以选择加工光纤2204的RIP,以保持由组件2208的自由空间光学器件对经调整的光束2214进行的附加调整,从而生成经两次调整的光束2224(在图22B中以不同于光束2214的虚线表示)。
图23示出了激光系统2300的示例,其包括设置在馈送光纤2312和VBC传送光纤2340之间的VBC光纤组件2302。在操作期间,光束2310经由馈送光纤2312耦合到VBC光纤组件2302中。光纤组件2302包括第一长度光纤104、第二长度光纤108和扰动装置110,并被配置为根据上述各种示例改变光束2310的特性。光纤组件2302生成由VBC传送光纤2340输出的经调整的光束2314。VBC传送光纤2340包括第二长度光纤108,用于根据上述各种示例修改、维持和/或限制光纤组件2302中的经调整的光束特性(例如,参见图17-21)。VBC传送光纤2340将经调整的光束2314耦合到光束开关(FFS)2332中,该光束开关随后将其各种输出光束耦合到多个加工光纤2304、2320和2322中的一个或多个。加工光纤2304、2320和2322将经调整的光束2314、2328和2330传送到相应的加工头2306、2324和2326。
在一个示例中,光束开关2332包括一组或多组自由空间光学器件2308、2316和2318,其被配置为执行经调整的光束2314的各种光学操作。自由空间光学器件2308、2316和2318可以保持或改变光束2314的经调整的光束特性。因此,经调整的光束2314可由自由空间光学器件保持或进一步调整。加工光纤2304、2320和2322可以具有与VBC传送光纤2340相同或不同的RIP,这取决于是否希望保持或进一步修改从自由空间光学组件2308、2316和2318传送到相应加工光纤2304、2320和2322的光束。在其他示例中,光束2310的一个或多个光束部分耦合到工件,无需调整,或者不同的光束部分耦合到相应的VBC光纤组件,使得可以提供与多个光束特性相关联的光束部分,用于同时的工件加工。或者,光束2310可以切换到一组VBC光纤组件中的一个或多个。
通过自由空间光学组件2308、2316和2318中的任一个路由经调整的光束2314,使得能够将各种附加调整的光束传送到加工头2306、2324和2326。因此,激光系统2300提供附加的自由度来改变光束的特性,并且在加工头之间切换光束(“分时共享”)和/或同时将光束传送到多个加工头(“功率共享”)。
例如,光束开关2332中的自由空间光学器件可以将经调整的光束2314引导到自由空间光学组件2316,该组件被配置为保持光束2314的经调整的特性。加工光纤2304可以具有与VBC传送光纤2340相同的RIP。因此,传送到加工头2306的光束将是所保持的经调整的光束2314。
在另一示例中,光束开关2332可以将经调整的光束2314引导到自由空间光学组件2318,该组件被配置为保持经调整的光束2314的经调整的特性。加工光纤2320可以具有不同于VBC传送光纤2340的RIP,并且可以配置在图20和21中所述的发散度改变结构,以对光束2314的发散度分布提供附加的调整。因此,传送到加工头2324的光束将是具有不同于经调整的光束2314的光束发散度轮廓的经两次调整的光束2328。
加工光纤2304、2320和/或2322可以包括类似于上述任何第二长度光纤的RIP,包括限制区域或各种其他RIP,并且要求保护的主题不限于此。
在又一示例中,自由空间光学开关2332可以将经调整的光束2314引导到自由空间光学组件2308,该组件被配置为改变经调整的光束2314的光束特性。加工光纤2322可以具有不同于VBC传送光纤2340的RIP,并且可以被配置为保持(或者可替代地进一步修改)光束2314的新的进一步调整的特性。因此,传送到加工头2326的光束将是具有不同于经调整的光束2314的光束特性(由于经调整的发散度分布和/或强度分布)的经两次调整的光束2330。
在图22A、22B和23中,FFC或FFS中的光学器件可以通过在发射到加工光纤中之前放大或缩小光束2214来调整空间轮廓和/或发散度轮廓。还可以经由其他光学变换来调整空间轮廓和/或发散度轮廓。也可以调整发射到加工光纤的发射位置。这些方法可以单独使用或组合使用。
图22A、22B和23仅仅提供了使用自由空间光学器件对光束特性的调整的组合和光纤RIP的各种组合的示例,以保持或修改经调整的光束2214和2314。上面提供的示例并非详尽的,仅用于说明目的。因此,所要求保护的主题不限于此。
图24示出了根据本文提供的各种示例的用于扰动VBC光纤200和/或在VBC光纤200中传播的光束的扰动装置、组件或方法的各种示例(为了简单起见,在本文中统称为“扰动装置110”)。扰动装置110可以是各种装置、方法和/或组件中的任何一种,其被配置为能够调整在VBC光纤200中传播的光束的光束特性。在一个示例中,扰动装置110可以是心轴2402、VBC光纤中的微弯曲2404、挠性管2406、声光换能器2408、热装置2410、压电装置2412、光栅2414、夹具2416(或其他紧固件)等或其任意组合。这些仅仅是扰动装置110的示例,并不是扰动装置110的详尽列表,所要求保护的主题不限于此。
心轴2402可用于通过提供VBC光纤200可弯曲的形式来扰动VBC光纤200。如上所述,减小VBC光纤200的弯曲半径,会径向地向外移动光束的强度分布。在一些示例中,心轴2402可以是阶梯形或圆锥形的,以提供离散的弯曲半径水平。可替代地,心轴2402可以包括没有阶梯的锥形,以提供连续的弯曲半径,从而更精确地控制弯曲半径。心轴2402的曲率半径可以是恒定的(例如,圆柱形)或非恒定的(例如,椭圆形)。类似地,挠性管2406、夹具2416(或其他种类的紧固件)或辊250可用于引导和控制VBC光纤200围绕心轴2402的弯曲。此外,改变光纤以特定弯曲半径弯曲的长度,也可以修改光束的强度分布。VBC光纤200和心轴2402可被配置为可预测地改变第一光纤内的强度分布(例如,与光纤弯曲的长度和/或弯曲半径成比例)。辊250可以沿着平台2434上的轨道2442上下移动,以改变VBC光纤200的弯曲半径。
在具有或没有心轴2402的情况下,夹具2416(或其他紧固件)可用于引导和控制VBC光纤200的弯曲。夹具2416可以沿着轨道2442或平台2446上下移动。夹具2416也可以旋转,以改变VBC光纤200的弯曲半径、张力或方向。控制器2448可以控制夹具2416的移动。
在另一示例中,扰动装置110可以是挠性管2406,并且在具有或没有心轴2402的情况下,可以引导VBC光纤200弯曲。挠性管2406可以包围VBC光纤200。管2406可以由多种材料制成,并且可以使用由控制器2444控制的压电换能器来操纵。在另一示例中,夹具或其他紧固件可用于移动挠性管2406。
VBC光纤中的微弯曲2404是由光纤上的侧向机械应力引起的局部扰动。微弯曲可引起模式耦合和/或从光纤内的一个限制区域过渡到另一限制区域,从而导致在VBC光纤200中传播的光束的不同光束特性。机械应力可由控制器2440控制的致动器2436施加。然而,这仅仅是在光纤200中引起机械应力的方法的一个示例,所要求保护的主题不限于此。
声光换能器(AOT)2408可用于使用声波诱发在VBC光纤中传播的光束的扰动。扰动是由声波的振荡机械压力修改光纤的折射率引起的。声波的周期和强度与声波的频率和振幅相关,从而允许对声波扰动进行动态控制。因此,包括AOT 2408的扰动装置110可以被配置为改变在光纤中传播的光束的光束特性。在一个示例中,压电换能器2418可以产生声波,并且可以由控制器或驱动器2420控制。可以调制AOT 2408中诱发的声波,以实时改变和/或控制VBC光纤200中光束的光束特性。然而,这仅仅是用于创建和控制AOT 2408的方法的示例,并且所要求保护的主题不限于此。
热装置2410可用于使用热量诱发在VBC光纤中传播的光束的扰动。扰动是通过修改热量诱发的光纤的RIP引起的。扰动可以通过控制传送到光纤的热量和施加热量的长度来动态控制。因此,包括热装置2410的扰动装置110可以被配置为改变一系列的光束特性。热装置2410可由控制器2450控制。
压电换能器2412可用于使用压电作用诱发在VBC光纤中传播的光束的扰动。扰动是通过修改由连接到光纤的压电材料诱发的光纤的RIP引起的。裸光纤周围的护套形式的压电材料可以对光纤施加张力或压缩,从而经由所产生的密度变化来修改其折射率。扰动可以通过控制压电装置2412的电压来动态控制。因此,包括压电换能器2412的扰动装置110可以被配置为在特定范围内改变光束特性。
在一个示例中,压电换能器2412可以被配置为根据多种因素在多个方向(例如,轴向、径向和/或横向)上移动VBC光纤200,这些因素包括压电换能器2412如何连接到VBC光纤200、压电材料的极化方向、施加的电压等。另外,使用压电换能器2412可以弯曲VBC光纤200。例如,驱动具有包括相对电极的多个区段的一段长度的压电材料可导致压电换能器2412在侧向方向上弯曲。由电极2424施加到压电换能器2412的电压可以由控制器2422控制,以控制VBC光纤200的位移。可以调制位移,以实时改变和/或控制VBC光纤200中光束的光束特性。然而,这仅仅是使用压电换能器2412控制VBC光纤200的位移的方法的示例,并且所要求保护的主题不限于此。
光栅2414可用于诱发在VBC光纤200中传播的光束的扰动。光栅2414可以通过将折射率的周期性变化记入芯内来写入光纤中。光栅2414(例如,光纤布拉格光栅)可以作为滤光器或反射器来操作。长周期光栅可以诱发在同向传播光纤模式之间的过渡。因此,可以使用长周期光栅来调整由一个或多个模式组成的光束的辐射率、强度轮廓和/或发散度轮廓,以将一个或多个原始模式耦合到具有不同辐射率和/或发散度轮廓的一个或多个不同模式。通过改变折射率光栅的周期或振幅来实现调整。例如,改变光纤布拉格光栅的温度、弯曲半径和/或长度(例如,拉伸)等方法可以用于这种调整。具有光栅2414的VBC光纤200可以联接到工作台2426。工作台2426可以被配置为执行多种功能中的任何一种,并且可以由控制器2428控制。例如,工作台2426可以用紧固件2430联接到VBC光纤200,并且可以被配置为使用紧固件2430来拉伸和/或弯曲VBC光纤200,以发挥杠杆作用。工作台2426可以具有嵌入式热装置,并且可以改变VBC光纤200的温度。
图25示出了在不使用自由空间光学器件来调整光束特性的情况下,用于调整和/或保持光纤内的光束特性的示例过程2500。在方框2502中,扰动第一长度光纤和/或光束,以调整一个或多个光束特性。过程2500移动到方框2504,其中,将光束发射到第二长度光纤中。过程2500移动到方框2506,其中,具有经调整的光束特性的光束在第二长度光纤中传播。过程2500移动到方框2508,其中,在第二长度光纤的一个或多个限制区域内保持光束的一个或多个光束特性的至少一部分。第一长度光纤和第二长度光纤可以由相同的光纤组成,或者可以是不同的光纤。
传统的激光熔化方法可能受到对目标材料造成的不利影响。然而,根据本文所述的各种方法,通过控制在激光加工期间用光束熔化目标材料而形成的熔池(本文也称为“焊池”)和/或熔池中的锁眼腔,包括由于熔池中的不稳定性而产生的飞溅物的数量,包括飞溅物喷射的方向、飞溅物行进的距离、单个飞溅液滴的大小、飞溅物行进的速度或其组合,有可能减轻这种影响并提高最终产品的质量或性能。如果需要的话,锁眼腔的这种控制可以通过闭环控制来实现,闭环控制包括锁眼腔属性的实时监测(例如,通过感测表示锁眼属性的特征)和一个或多个光束特性的自动调整,以保持和/或改变锁眼腔的至少一个属性,从而保持或改变由于将材料暴露于光束而形成的飞溅物的数量。或者,可以例如通过传感器来确定在至少一个光束特性中的第一光束特性时产生的一定数量的飞溅物的第一特性,并且可以修改至少一个光束特性,以便产生更多或更少数量的飞溅物。
本公开的实施例涉及一种用于形成制品的方法,例如,激光熔化方法。在如图29A中的流程图2900所示的这种方法的实施方式中,该方法包括在框2901中形成熔池,在框2903处将熔池暴露于包含至少一个光束特性的光束,并且在框2905处,在熔池中形成锁眼腔。锁眼腔的形成可以包括蒸发熔池的至少一部分。锁眼腔可以包含至少一个锁眼腔属性。该至少一个锁眼腔属性可以确定熔池的稳定性,例如,形成的飞溅物的数量。该方法还包括在框2906处响应于至少一个锁眼腔属性的变化来修改至少一个光束特性,使得在一个示例中,修改至少一个光束特性可以导致锁眼腔至少部分塌陷,直至完全塌陷。
在一个实施方式中,例如,如图29B中的流程图2900’所示,形成制品的方法还可包括在框2907处在光束传送装置中产生光束,并且在框2909处将光束发射到第一长度光纤中。在此处,光束传送装置包括具有第一折射率轮廓(RIP)的第一长度光纤和具有第二RIP并耦合到第一长度光纤的第二长度光纤以及如上所述的扰动装置。例如,扰动装置可以包括弯曲组件,该弯曲组件被配置为改变第一长度光纤的弯曲半径或改变第一长度光纤的弯曲长度或其组合,以改变光束的光束特性。在一些示例中,扰动组件可包括弯曲组件、心轴、光纤中的微弯曲、声光换能器、热装置、光纤拉伸器或压电装置或者其任意组合。因此,在一个实施方式中,光束传送装置包括具有第一RIP的第一长度光纤和具有第二RIP并耦合到第一长度光纤的第二长度光纤以及被配置为改变第一长度光纤的弯曲半径的扰动装置。该方法还可包括在框2911处将光束耦合到第二长度光纤中。
如图29C所示,可以通过在框2913处激活扰动装置,以修改在第一长度光纤中、在第二长度光纤中或在第一长度光纤和第二长度光纤中(即,在第一长度光纤和第二长度光纤中的一个或多个中)的光束的一个或多个光束特性,并且在框2915处中将光束的经修改的一个或多个光束特性的至少一部分限制在第二长度光纤的一个或多个限制区域内,来执行框2906处修改至少一个光束特性的步骤。
在这个示例中,可以使用任何上述技术来修改光束的特性,以提供适于保持或改变材料属性的光束。从光纤发射用于曝光材料的光束,例如,本文公开的任何光纤激光器。可以在将材料暴露于光束之前或期间调整激光束的一个或多个光束特性。如本文所述,在光束被从光纤发射出之前进行光束的调整,例如,通过扰动耦合到第二光纤的第一光纤,或者通过本公开中阐述的任何其他技术。例如,调整一个或多个光束特性可包括调整光束直径、发散度分布、光束参数积(BPP)、强度分布、亮度、M2值、数值孔径(NA)、光强度、功率密度、径向光束位置、辐射率或光斑尺寸或者其任意组合中的一个或多个。在一个实施例中,在不使用自由空间光学器件的情况下调整一个或多个光束特性,如本文所述。
在一个示例中,调整一个或多个光束特性包括调整光束的光束参数乘积。在又一示例中,调整一个或多个光束特性包括调整光束的光斑尺寸、BPP和/或发散度轮廓。改变至少一个光束特性可以产生许多不同的光束轮廓,这些光束轮廓适合于形成和控制/调整锁眼腔,例如,至少一个锁眼腔属性,并且可以通过例如减少或消除飞溅物的数量来稳定熔池。
在一个示例中,根据本文所述的方法或通过本文所述的系统进行激光熔化的材料可以包括金属;金属合金;合金体系,其包括但不限于铝、镍、钴、钛和铁中的一种或多种,包括钢(例如,不锈钢,例如,SS 304)和黄铜;聚合物(例如,热塑性塑料);及其任意组合。可以以块状固体(例如,金属片或棒)、多个固体颗粒(例如,金属粉末)、相似或不同材料的组合(例如,其中基质材料与填料和/或添加剂具有不同熔化温度的金属复合材料或其他复合材料)或其任意组合的形式,来提供材料。
在一个示例中,至少一个材料属性可以包括至少一个体积特性、至少一个光学特性、至少一个形态特性、至少一个组成特性或其组合。至少一个体积特性可以包括材料的形式,包括其体积、密度、表面积、形状(例如,横截面形状)、结构(例如,晶体或非晶体)或其任意组合。至少一个光学特性可以包括颜色、光学对比度(即色差)、表面反射率或其组合。至少一个形态特性可以包括材料的结构特征,包括其微结构、纳米结构和晶体结构(例如,晶体取向),包括诸如凝固方向、晶粒结构特性等特征,该晶粒结构特性可以包括晶粒尺寸和晶粒取向中的至少一个;或者其组合。在金属的情况下,例如,合金体系,包括铁-碳形成的合金体系,材料属性可包括一种或多种微观结构,其包括球晶、珠光体、贝氏体、莱氏体或马氏体。至少一个组成特性可以包括材料的组成成分,其可以通过其化学式表示,其化学成分的列表包括其分配(例如,体积%和/或重量%)或者其任意组合。
图30示出了当暴露于光束系统3000产生的光束3006时具有第一材料属性3004的材料3002。光束系统3000包括光束传送装置3001、响应于特征3018产生信号的传感器3003;以及与光束传送装置3001和传感器3003通信的反馈子系统3005。在此处,光束传送装置3001包括具有第一折射率轮廓(RIP)的第一长度光纤和具有第二RIP并耦合到第一长度光纤的第二长度光纤,以及被配置为改变第一长度光纤的弯曲半径的扰动装置,此处未示出,但都如上所述。反馈子系统3005包括被配置为存储数据和/或指令的存储器3007以及被配置为访问数据并执行存储在存储器3007中的指令的至少一个处理器3009。
光束传送装置3001可以引导光束3006以行进速度(例如,如向左的箭头所示)行进,并且具有至少一个光束特性,例如,被选择以引起材料3002熔化的至少一个光束特性。当光束3006根据行进速度和至少一个光束特性行进时,材料3002的至少一部分熔化,从稍微邻近光束3006前部的熔化前沿3008开始,延伸穿过熔池3010,并终止于再固化前沿3014(熔池开始冷却,材料再固化)。部分熔融材料可能蒸发,导致熔池处的蒸气压增加,并在熔池内形成锁眼腔3012。该腔也称为锁眼腔3012,为激光更深地穿透金属提供了路径,从而熔化更多的材料,并进而提供能量,以在材料中形成更深的锁眼。这对于某些工艺可能是有利的,例如,激光切割。随着熔池3010冷却,材料3002在再固化前沿3014处再固化,并且材料可以包括第二材料属性3016。
在一个示例中,熔池3010可以由熔化前沿3008和再固化前沿3014在几何和体积上限定。熔池3010可以包括至少一个熔池属性。该至少一个熔池属性可以是熔池的任何特征或特性,包括任何可检测或可量化的属性。该至少一个熔池属性可以是至少一个热力学特性、至少一个电磁特性、至少一个光学特性、至少一个体积特性或其任意组合。至少一个热力学特性可包括熔池的温度、穿过熔池的温度梯度、熔池的两个或多个位置之间的温差(例如,邻近熔化前沿的熔池的温度和邻近再固化前沿的温度)。附加的热力学特性包括熔池的热量输入和/或冷却速率。至少一个电磁特性可包括热辐射(例如,白炽光)。至少一个光学特性可包括光学透明度、表面反射率或其任意组合。至少一个体积特性可包括熔池的形式,包括其体积、其表面积、形状/几何形状(例如,横截面形状和/或纵横比)、表面轮廓(即,由熔池边缘限定的熔池液体区域的范围)、密度、粘度或其任意组合。至少一个熔池特性可以在其任何单个实例中或者根据其时间演变(即流体动力学)来指定。
在一个示例中,至少一个锁眼腔属性可以是锁眼腔的任何特征或特性,包括任何可检测或可量化的属性。该至少一个锁眼属性可以是锁眼腔的至少一个位置特性、至少一个几何特性、至少一个光学特性或其任意组合。至少一个位置特性可包括在熔池中相对于熔化前沿和/或再固化前沿的位置,例如,与熔化前沿和/或再固化前沿中的任一个或两个的距离。至少一个几何特性可以包括锁眼腔的尺寸,包括锁眼腔的体积、锁眼腔的从熔池表面延伸到材料中的深度、锁眼腔上部的直径和/或表面积、和/或锁眼腔的形状(例如,横截面形状、深度和/或纵横比),包括其倾斜角。至少一个光学特性可以是锁眼腔的侧壁的反射率,例如,针对提供给锁眼腔的电磁能量的波长范围的反射率。
继续参考图30,可以实时确定至少一个锁眼腔属性。例如,一个或多个传感器3003(每个传感器能够感测指示锁眼腔属性的至少一个特征)可以用于产生对应于至少一个锁眼腔属性的信号。这些信号可以传送到反馈子系统,以确定锁眼腔属性的变化和/或变化率是可接受的还是不可接受的,例如,相对于与锁眼腔属性、材料属性(例如,基于锁眼属性和/或材料属性形成的飞溅物的数量)以及锁眼腔属性和材料属性之间的关系对应的已知或存储的信息。例如,对于给定的材料,可以例如在查找表(例如,数据库)中存储对应于至少一个锁眼腔属性的值(其确定当锁眼腔变化时可能形成的飞溅物的数量),以用于与对应于实时锁眼腔属性的信号进行比较。
在一个实施方式中,至少一个熔池属性和/或至少一个锁眼腔属性可以包括对应于熔池属性和/或锁眼腔属性的特质的特征3018。特征3018可以由传感器3003感测。传感器3003可以包括:相机,例如,数码相机、红外相机等;激光测距仪;声学传感器;高温计;或者其任意组合中的至少一个。在一个实施方式中,传感器3003包括数码相机和高温计。可以根据光谱技术来测量特征3018,例如,经由羽流监测(即,作为给定波长上的浓度强度进行测量的汽化金属颗粒的光谱监测)。
或者,代替传感器3003或除了传感器3003之外,特征3018可以是可由激光系统测量的过程光。例如,在背向反射传感器作为传感器3003的情况下,特征3018可以包括背向反射的激光。在一个示例中,背向反射传感器可以与光束系统的激光加工头同轴或离轴结合。
至少一个传感器3003产生至少一个信号3018’,该信号可以传送到反馈子系统3005。处理器3009可以执行指令(例如,计算机软件),以将至少一个信号3018’与表示至少一个锁眼腔属性的可比值相关联。然后,可比值可以与存储值进行比较,该存储值例如来自存储在查找表(例如,数据库)中的值构成的库,该查找表可以存储在存储器3007中,其中,存储值对应于锁眼腔的预定的、经验的或模型化的至少一个属性,该至少一个属性与锁眼腔移动、改变形状和/或部分塌陷直至完全塌陷时可能产生的飞溅物的数量相关。为了改变激光熔化过程中产生的飞溅物的数量,必须监测并且可能需要改变确定形成这种数量的飞溅物的锁眼腔的特定特征。因此,反馈子系统3005可以不时地确定实时感测的特征保持不变或者偏离预定/已知/存储的特征(例如,超出特定的容差范围),在这种情况下,反馈子系统3005可以生成信号,该信号作为调整一个或多个光束特性的指令传送到光束传送装置3001。换言之,指令可以包括:从存储器存储的数据中检索存储值,该存储值对应于锁眼腔的已知属性;将传感器产生的信号转换成对应于锁眼腔的特征值;计算存储值和特征值之间的差值;并且例如根据本文描述的方法,当差值大于预定阈值时,修改至少一个光束特性。例如,指令可以包括:从存储器存储的数据中检索存储值,该存储值对应于已知数量的飞溅物(例如,对于给定的材料类型和/或给定的激光特性,飞溅物的预期最小数量、飞溅物的预期最大数量、预期飞溅液滴尺寸和/或形状、或其组合);将传感器产生的信号转换成对应于锁眼腔的特征值;计算存储值和特征值之间的差值;并且例如根据本文描述的方法,当差值大于预定阈值时,修改至少一个光束特性。
修改至少一个光束特性可以导致锁眼腔3012改变,例如,至少一个锁眼腔属性改变。因此,在一个实施方式中,修改至少一个光束特性,包括调整光束直径、发散度分布、光束参数乘积(BPP)、强度分布、亮度、M2值、数值孔径(NA)、光强度、功率密度、径向光束位置、辐射率或光斑尺寸或其任意组合中的一个或多个。例如,第一组光束特性(例如,第一发散度分布和/或强度分布)可以用于形成包括第一锁眼腔属性的锁眼腔;并且第二组光束特性(例如,第二发散度分布和/或强度分布)可用于形成包括第二锁眼腔属性的锁眼腔,其中,第一组激光束特性不同于第二组激光束特性,并且第一锁眼腔属性不同于第二锁眼腔属性。
在一个实施例中,可以在形成熔池之前或期间,包括在形成锁眼腔之前或期间,进行光束的一个或多个光束特性的调整。修改至少一个或多个光束特性可以包括扰动在第一长度光纤内传播的光束,以调整第一长度光纤或第二长度光纤或其组合中的激光束的一个或多个光束特性。如本文所述,被扰动光束耦合到第二长度光纤中。一个或多个经调整的光束特性的至少一部分被保持在第二长度光纤内。第一长度光纤和第二长度光纤具有不同的折射率轮廓(RIP)。因此,反馈子系统3005生成的调整一个或多个光束特性的指令可以包括激活光束扰动的信号。
可以通过至少部分基于由传感器3003感测的熔池3010的属性实时更新至少一个光束特性来控制锁眼腔。例如,对锁眼的监测可以包括监测锁眼的属性。因此,系统3000可以控制形成所产生的飞溅物,使得第一数量的飞溅物(例如,在调整至少一个光束特性之前)不同于第二数量的飞溅物(例如,在修改至少一个光束特性之后)。
改变至少一个光束特性可以导致控制和/或调整形成熔池和/或锁眼腔时产生的飞溅物的数量的能力。同时,控制和/或调整熔池和/或锁眼腔的能力用于维持或改变飞溅物的数量,例如,从第一数量的飞溅物变为第二数量的飞溅物。即,控制至少一个熔池属性和/或至少一个锁眼腔属性(或其中的一个或两者的变化)确定了控制对形成的飞溅物的数量所做出的变化,例如,从第一数量的飞溅物到第二数量的飞溅物的变化。
在一些情况下,通过修改至少一个光束特性,光束可以具有至少两个不同的光束特性,例如,一个接另一个。在一个示例中,调整至少一个光束特性,包括在至少两个不同的光束特性之间切换。这可以进行一次、多次和在重复或不重复多个光束特性中的一个的情况下在多个光束特性之间进行。注意,可以在一定范围的数值内连续进行至少一个光束特性的修改。替代地或另外,可以通过在包括多个预设的值(即,“预设值”)的多个离散值上振荡来进行至少一个光束特性的修改。例如,可以经由经验确定的数值来识别至少一个光束特性,这些数值可以在制造工艺开始之前收集或者在制造工艺中实时收集。如果需要,至少一个光束特性可以在2个或更多预设值之间改变,包括3个或更多预设值(即,由使用计算机控制界面的操作员选择)。该至少一个光束特性可以在大于约0Hz至约10kHz的频率下改变,包括从大于约0Hz至约5kHz,包括在从大于约0Hz至约1kHz的范围内或从约1kHz至约5kHz的范围内。
如图29D的流程图2900”所示,流程图2900、2900’中所示的方法因此还可包括在框2917处响应于与锁眼腔属性的特质对应的所感测的状态(例如,特征3018)生成信号;以及在框2919处,将信号(例如,3018’)提供给与传感器(例如,3003)和光束传送装置(例如,3001)通信的处理器(例如,3009)。
该至少一个锁眼腔属性可以至少部分地确定形成的飞溅物的数量。因此,如图29E所示,流程图2900所描述的方法还可以包括例如在框2906处修改至少一个光束特性之前,在框2905’处形成第一数量的飞溅物。该方法还可以包括例如在修改至少一个光束特性之后,在框2906’处形成第二数量的飞溅物。在一个示例中,第二数量的飞溅物不同于第一数量的飞溅物,并且可以少于或多于第一数量的飞溅物。
如图29F中的流程图2900”’所示,流程图2900、2900’和2900”所示的方法因此还可包括在框2917’处响应于与第一数量的飞溅物的特质对应的所感测的状态生成信号(例如,特征3018);并且在框2919处,将信号(例如,3018’)提供给与传感器(例如,3003)和光束传送装置(例如,3001)通信的处理器(例如,3009)。
总之,可以通过修改至少一个光束特性来控制形成在熔池中的锁眼腔,使得由不稳定熔池导致的第二数量的飞溅物(即,锁眼腔的至少一个属性的不希望的变化)与第一数量的飞溅物足够不同。在一个示例中,第一数量的飞溅物包括第一飞溅物体积,第二数量的飞溅物包括第二飞溅物体积。在一个示例中,第二数量的飞溅物包括比第一数量的飞溅物中的更小或更大的飞溅液滴。在一个示例中,第二数量的飞溅物包括沉积在离熔体预定距离内的表面上的第二飞溅物体积。
本文描述的任何过程(包括流程图2900、2900’和2900”中所表示的)可以根据增材制造工艺、激光焊接工艺或这两者来实现。在这种增材制造工艺中,可以通过本文所述的任何增材制造系统来控制(即,保持或调整)一个或多个光束特性,例如,在形成一个或多个构建层以形成制品的过程中。可受益于本文所述的系统和方法的使用的增材制造工艺的示例包括定向能量沉积(DED),包括激光能量定向沉积、粉末进料、直接金属激光烧结(DMLS)、激光粉末层等。作为示例,激光焊接系统(例如,图33A所示的激光焊接系统3100)可以用于实施激光焊接工艺。
激光焊接系统3100包括具有如上所述特征的光束传送装置3001。光束传送装置3001可以与激光焊接头3101结合使用或者可以包含激光焊接头3101。光束传送装置3001向原材料给料3020提供光束3006。沉积到表面3102的原材料给料3020的数量可以由激光焊接头3101控制。在此处,原材料给料3020用实心线示出,但是其他实施方式不限于此,并且原材料给料可以具有任何合适的形式。原材料给料3020包括第一材料属性3004,例如,如上所述的材料属性,例如,包括晶粒生长方向的第一晶粒结构。当给料3020暴露于光束3006时,可以加热并熔化。一定体积的熔化的给料形成熔池3010。
在一个示例中,给料3020可以沉积,以便将表面3302和3302’连接(焊接)在一起,这可以根据预定的图案进行。因此,给料3020暴露于光束3006,并被熔化以形成熔池3010。表面3302和3302’中的一些材料也可以熔化并添加到熔池中。熔池随着焊缝3322冷却并固化。激光焊接头3301可以在表面3302和/或3302’上进行多个道次,每个道次具有相同或不同的行进速度,并且可以在先前的焊缝上形成新的焊缝,以便连接两个或更多个表面。在单个道次中,熔池的形成可沿着或围绕焊缝长度(包括在焊缝长度的一定距离内)导致产生第一和第二数量的飞溅物。在后续焊缝的形成过程中,与在同一焊缝的不同部分处形成的数量相比,或者与沿先前形成的焊缝的任何部分形成的数量相比,可以形成相同或不同数量的飞溅物。
在一个实施方式中,可以如图33B所示形成第一数量的飞溅物3104。可以在修改光束3106的至少一个光束特性之前形成第一数量的飞溅物3104。在一种实施方式中,可以形成不同于第一数量的飞溅物3104的第二数量的飞溅物3104’,如图33C所示。可以在修改光束3106的至少一个光束特性之后形成第二数量的飞溅物3104’。
如上面在图29F中所述,可以响应于与第一数量的飞溅物的特质对应的所感测的状态来生成信号。例如,至少一个传感器3003产生至少一个信号3018’,该信号可以传送到反馈子系统3005。处理器3009可以执行指令(例如,计算机软件),以将至少一个信号3018’与表示所感测的飞溅物的数量的特征值相关联。然后,可以将特征值与存储值进行比较,该存储值例如来自存储在存储器3007中的数据库中的值构成的库,其中,存储值对应于对于给定材料和/或至少一个光束特性来说可产生的一定数量的飞溅物的预定的、经验的或模型化的至少一个特质。为了改变激光熔化过程中产生的飞溅物的数量,必须监测并且可能需要改变决定形成这种数量的飞溅物的锁眼腔的特定特征。因此,反馈子系统3005可以不时地确定所生成的飞溅物的数量的实时感测到的特征保持不变或者已经偏离预定/已知/存储的特征(例如,超过特定的容差范围),在这种情况下,反馈子系统3005可以生成信号,该信号作为调整一个或多个光束特性的指令传送到光束传送装置3001。修改至少一个光束特性可以导致改变锁眼腔3012,例如,至少一个锁眼腔属性改变,和/或对于生成的第二数量的飞溅物来说改变飞溅物的数量。
可受益于本文所述系统和方法的使用的激光焊接制造工艺的示例包括那些能够经由激光熔化产生各种焊缝的工艺,包括对接接头、搭接接头、角接接头、端接接头、斜接接头等。
采用本公开的方法的一个优点在于,通过提供光束来熔化材料、监测或感测熔化过程的特征(包括锁眼腔的形成)并且如本文所述调整光束特性,可以以相对有效的方式控制焊缝质量。
已经描述和示出了当前公开技术的示例的一般原理和具体原理,应该清楚的是,在不脱离这些原理的情况下,可以在设置和细节上修改这些示例。我们要求保护落入以下权利要求的精神和范围内的所有修改和变化。
Claims (31)
1.一种用于形成制品的方法,包括:
形成熔池;
将所述熔池暴露于包含至少一个光束特性的光束;
在所述熔池中形成锁眼腔,所述锁眼腔包括至少一个锁眼腔属性;并且
响应于所述锁眼腔属性的变化来修改所述至少一个光束特性。
2.根据权利要求1所述的方法,其中,在形成所述熔池之后并且在修改所述至少一个光束特性之前,从所述熔池喷射出第一数量的飞溅物,并且
在修改所述至少一个光束特性之后,从所述熔池中喷射出第二数量的飞溅物。
3.根据权利要求1所述的方法,其中,所述至少一个光束特性的修改导致所述锁眼腔至少部分塌陷。
4.根据权利要求1所述的方法,其中,通过修改所述至少一个光束特性,所述光束包括至少两个不同的光束特性。
5.根据权利要求4所述的方法,其中,所述至少一个光束特性的修改包括在所述至少两个不同的光束特性之间切换。
6.根据权利要求5所述的方法,其中,以在从大于约0Hz到约1000Hz的范围内的频率执行在所述至少两个不同的光束特性之间的切换。
7.根据权利要求1所述的方法,其中,所述方法还包括:
在光束传送装置中产生所述光束,所述光束传送装置包括具有第一折射率轮廓(RIP)的第一长度光纤和具有第二RIP并耦合到所述第一长度光纤的第二长度光纤,以及被配置为改变所述第一长度光纤的弯曲半径的扰动装置;
将所述光束发射到所述第一长度光纤中;并且
将所述光束耦合到所述第二长度光纤中,
其中,修改所述至少一个光束特性包括
激活所述扰动装置,以修改在所述第一长度光纤和所述第二长度光纤中的一个或多个中的所述光束的一个或多个光束特性,并且
将所述光束的经修改的一个或多个光束特性的至少一部分限制在所述第二长度光纤的一个或多个限制区域内,
其中,所述第一RIP不同于所述第二RIP。
8.根据权利要求7所述的方法,其中,激活所述扰动装置致使在所述第一长度光纤和所述第二长度光纤中的一个或多个中的所述光束的一个或多个光束特性以在从大于约0Hz至约1000Hz范围内的频率在多个其他光束特性中的至少两个之间振荡。
9.根据权利要求1所述的方法,其中,所述至少一个锁眼腔属性至少部分地确定形成一定数量的飞溅物。
10.根据权利要求1所述的方法,其中,所述方法还包括在修改所述至少一个光束特性之前形成第一数量的飞溅物,并且在修改所述至少一个光束特性之后形成第二数量的飞溅物。
11.根据权利要求10所述的方法,其中,所述第二数量的飞溅物不同于所述第一数量的飞溅物。
12.根据权利要求11所述的方法,其中,所述第二数量的飞溅物少于所述第一数量的飞溅物。
13.根据权利要求11所述的方法,其中,所述方法还包括确定所述第一数量的飞溅物的第一特质并且确定所述第二数量的飞溅物的第二特质。
14.根据权利要求1所述的方法,其中,所述至少一个锁眼腔属性包括所述锁眼腔的横截面积。
15.根据权利要求1所述的方法,其中,在一定范围的数值内连续执行所述至少一个光束特性的修改。
16.根据权利要求1所述的方法,其中,通过在多个离散的数值之间振荡来执行所述至少一个光束特性的修改。
17.根据权利要求1所述的方法,其中,所述至少一个光束特性包括光束参数乘积(BPP)。
18.根据权利要求1所述的方法,其中,所述至少一个锁眼腔属性包括可检测特征。
19.根据权利要求18所述的方法,其中,所述方法还包括向传感器提供所述至少一个锁眼腔属性的可检测特征,所述传感器被配置为响应于感测到锁眼腔属性的特征而产生信号。
20.根据权利要求19所述的方法,其中,所述方法还包括向处理器提供所述信号,其中,所述处理器与所述传感器和光束传送装置通信,其中,所述处理器被配置为访问存储数据和指令的存储器,并且所述处理器被配置为执行所述指令,其中,所述指令包括:
从所述存储器存储的数据中检索存储值,所述存储值对应于锁眼腔特性的已知属性;
将所述传感器产生的所述信号转换成对应于所述锁眼腔特性的特征值;
计算所述存储值和所述特征值之间的差值;并且
当所述差值大于预定阈值时,修改所述至少一个光束特性,
其中,修改所述至少一个光束特性包括
激活所述扰动装置,以修改在所述第一长度光纤和所述第二长度光纤中的一个或多个中的所述光束的一个或多个光束特性,并且
将所述光束的经修改的一个或多个光束特性的至少一部分限制在所述第二长度光纤的一个或多个限制区域内。
21.根据权利要求20所述的方法,其中,所述可检测特征包括第一飞溅物体积。
22.根据权利要求1所述的方法,其中,所述方法还包括将所述熔池的至少一部分沉积在构建层上。
23.权利要求1的方法,其中,形成所述熔池包括增材制造工艺中的步骤。
24.根据权利要求1所述的方法,其中,所述方法还包括将所述熔池的至少一部分形成为焊缝。
25.权利要求1的方法,其中,形成所述熔池包括激光焊接工艺中的步骤。
26.一种用于在材料的激光熔化期间改变飞溅物的数量的方法,包括:
形成熔池;
从所述熔池喷射出第一数量的飞溅物;
将所述熔池暴露于包含至少一个光束特性的光束;并且
响应于所述第一数量的飞溅物的喷射来修改所述至少一个光束特性。
27.根据权利要求26所述的方法,其中,所述方法还包括在修改所述至少一个光束特性之后,从所述熔池喷射出第二数量的飞溅物,其中,所述第二数量的飞溅物少于所述第一数量的飞溅物。
28.一种光束系统,包括:
光束传送装置,所述光束传送装置包括
第一长度光纤,所述第一长度光纤具有第一折射率轮廓(RIP),
第二长度光纤,所述第二长度光纤耦合到所述第一长度光纤,并且具有第二RIP和一个或多个限制区域,以及
扰动装置,所述扰动装置被配置为修改在所述第一长度光纤和所述第二长度光纤中的一个或多个中的光束的一个或多个光束特性,其中,所述第一RIP不同于所述第二RIP,并且所述第二RIP被配置为将所述光束的经修改的一个或多个光束特性的至少一部分限制在所述第二长度光纤的一个或多个限制区域内;以及
传感器,所述传感器响应于感测到锁眼腔属性的特征而产生信号;以及
反馈子系统,所述反馈子系统与所述光束传送装置和所述传感器通信,
其中,所述反馈子系统包括:
用于存储数据和指令的至少一个存储器;以及
至少一个处理器,所述至少一个处理器被配置为接收所述信号、访问所述至少一个存储器并执行所述指令。
29.根据权利要求28所述的光束系统,其中,所述指令包括:
从所述存储器中检索存储值,所述存储值对应于已知的锁眼腔属性;
将所述传感器产生的所述信号转换成对应于所述锁眼腔属性的特征值;
计算所述存储值和所述特征值之间的差值;并且
当所述差值大于预定阈值时,修改至少一个光束特性,
其中,修改所述至少一个光束特性包括
激活所述扰动装置,以修改在所述第一长度光纤和所述第二长度光纤中的一个或多个中的所述光束的一个或多个光束特性,并且
将所述光束的经修改的一个或多个光束特性的至少一部分限制在所述第二长度光纤的一个或多个限制区域内。
30.根据权利要求28所述的系统,其中,所述系统包括增材制造系统。
31.根据权利要求28所述的系统,其中,所述系统包括激光焊接系统。
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662401650P | 2016-09-29 | 2016-09-29 | |
US15/607,410 US10663767B2 (en) | 2016-09-29 | 2017-05-26 | Adjustable beam characteristics |
US15/607,399 | 2017-05-26 | ||
US15/607,411 | 2017-05-26 | ||
US15/607,411 US10295845B2 (en) | 2016-09-29 | 2017-05-26 | Adjustable beam characteristics |
US15/607,399 US10423015B2 (en) | 2016-09-29 | 2017-05-26 | Adjustable beam characteristics |
PCT/US2017/034848 WO2018063452A1 (en) | 2016-09-29 | 2017-05-26 | Adjustable beam characteristics |
USPCT/US2017/034848 | 2017-05-26 | ||
PCT/US2018/016305 WO2018217247A1 (en) | 2016-09-29 | 2018-01-31 | Method of and optical beam system for forming an article with use of variable beam parameters to control a melt pool |
US15/607,410 | 2018-02-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110944787A true CN110944787A (zh) | 2020-03-31 |
CN110944787B CN110944787B (zh) | 2021-09-14 |
Family
ID=59054235
Family Applications (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780060512.9A Active CN109791252B (zh) | 2016-09-29 | 2017-05-26 | 可调整的光束特性 |
CN201880048886.3A Active CN110944787B (zh) | 2016-09-29 | 2018-01-31 | 利用可变光束参数控制熔池来形成制品的方法和光束系统 |
CN201880048577.6A Active CN110959232B (zh) | 2016-09-29 | 2018-03-16 | 基于光纤的光学调制器 |
CN201880047649.5A Active CN110914728B (zh) | 2016-09-29 | 2018-03-28 | 用于改变光束特性的光纤耦合装置 |
CN201880047412.7A Active CN110892304B (zh) | 2016-09-29 | 2018-03-28 | 通过快速扰动可变光束特性光纤产生暂时的视在强度分布 |
CN201880047650.8A Active CN110914725B (zh) | 2016-09-29 | 2018-03-28 | 光纤弯曲机构 |
CN202111497013.0A Pending CN114185176A (zh) | 2016-09-29 | 2018-03-28 | 产生可选强度轮廓的光纤光束传送装置 |
CN201880047410.8A Active CN110915078B (zh) | 2016-09-29 | 2018-03-28 | 用于修改光束特性的系统和方法 |
CN201880047416.5A Active CN110892593B (zh) | 2016-09-29 | 2018-03-28 | 产生可选强度轮廓的光纤光束传送装置 |
CN201880047422.0A Active CN110914015B (zh) | 2016-09-29 | 2018-03-28 | 使用光束进行材料加工的方法和系统 |
CN202310066799.3A Pending CN115963601A (zh) | 2016-09-29 | 2018-03-28 | 光纤弯曲机构 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780060512.9A Active CN109791252B (zh) | 2016-09-29 | 2017-05-26 | 可调整的光束特性 |
Family Applications After (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880048577.6A Active CN110959232B (zh) | 2016-09-29 | 2018-03-16 | 基于光纤的光学调制器 |
CN201880047649.5A Active CN110914728B (zh) | 2016-09-29 | 2018-03-28 | 用于改变光束特性的光纤耦合装置 |
CN201880047412.7A Active CN110892304B (zh) | 2016-09-29 | 2018-03-28 | 通过快速扰动可变光束特性光纤产生暂时的视在强度分布 |
CN201880047650.8A Active CN110914725B (zh) | 2016-09-29 | 2018-03-28 | 光纤弯曲机构 |
CN202111497013.0A Pending CN114185176A (zh) | 2016-09-29 | 2018-03-28 | 产生可选强度轮廓的光纤光束传送装置 |
CN201880047410.8A Active CN110915078B (zh) | 2016-09-29 | 2018-03-28 | 用于修改光束特性的系统和方法 |
CN201880047416.5A Active CN110892593B (zh) | 2016-09-29 | 2018-03-28 | 产生可选强度轮廓的光纤光束传送装置 |
CN201880047422.0A Active CN110914015B (zh) | 2016-09-29 | 2018-03-28 | 使用光束进行材料加工的方法和系统 |
CN202310066799.3A Pending CN115963601A (zh) | 2016-09-29 | 2018-03-28 | 光纤弯曲机构 |
Country Status (7)
Country | Link |
---|---|
US (9) | US10423015B2 (zh) |
EP (14) | EP3519871A1 (zh) |
JP (5) | JP7186695B2 (zh) |
KR (1) | KR102498030B1 (zh) |
CN (11) | CN109791252B (zh) |
TW (1) | TWI695196B (zh) |
WO (27) | WO2018063452A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108931535A (zh) * | 2018-09-11 | 2018-12-04 | 大连理工大学 | 一种激光增材制造气孔缺陷在线监测方法 |
CN113478082A (zh) * | 2021-07-15 | 2021-10-08 | 南京航空航天大学 | 一种用于蒙皮-桁条的柔性激光焊接方法及装置 |
CN113857492A (zh) * | 2021-10-09 | 2021-12-31 | 华中科技大学鄂州工业技术研究院 | 一种自扰动激光增材制造方法 |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6349410B2 (ja) | 2014-02-26 | 2018-06-27 | ビエン チャン, | 可変ビームパラメータ積を有するマルチビームレーザ配列のためのシステムおよび方法 |
US10069271B2 (en) | 2014-06-02 | 2018-09-04 | Nlight, Inc. | Scalable high power fiber laser |
US10618131B2 (en) | 2014-06-05 | 2020-04-14 | Nlight, Inc. | Laser patterning skew correction |
US9837783B2 (en) | 2015-01-26 | 2017-12-05 | Nlight, Inc. | High-power, single-mode fiber sources |
US10050404B2 (en) | 2015-03-26 | 2018-08-14 | Nlight, Inc. | Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss |
US10768433B2 (en) | 2015-09-24 | 2020-09-08 | Nlight, Inc. | Beam parameter product (bpp) control by varying fiber-to-fiber angle |
US10434600B2 (en) | 2015-11-23 | 2019-10-08 | Nlight, Inc. | Fine-scale temporal control for laser material processing |
US11179807B2 (en) | 2015-11-23 | 2021-11-23 | Nlight, Inc. | Fine-scale temporal control for laser material processing |
US10690928B2 (en) * | 2016-09-29 | 2020-06-23 | Nlight, Inc. | Methods of and systems for heat deposition in additive manufacturing |
US10673199B2 (en) | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Fiber-based saturable absorber |
US10730785B2 (en) * | 2016-09-29 | 2020-08-04 | Nlight, Inc. | Optical fiber bending mechanisms |
US10663742B2 (en) * | 2016-09-29 | 2020-05-26 | Nlight, Inc. | Method and system for cutting a material using a laser having adjustable beam characteristics |
US10673198B2 (en) | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Fiber-coupled laser with time varying beam characteristics |
US10673197B2 (en) | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Fiber-based optical modulator |
US10423015B2 (en) * | 2016-09-29 | 2019-09-24 | Nlight, Inc. | Adjustable beam characteristics |
CN108081605B (zh) * | 2016-11-22 | 2021-09-21 | 通用电气公司 | 激光能量管理装置和方法,增材制造系统 |
US10690855B2 (en) | 2016-11-22 | 2020-06-23 | Lumentum Operations Llc | Tapered non-concentric core fibers |
US10656334B2 (en) | 2016-11-22 | 2020-05-19 | Lumentum Operations Llc | Rotary optical beam generator |
US11347069B2 (en) | 2016-11-22 | 2022-05-31 | Lumentum Operations Llc | Rotary optical beam generator |
US10429584B2 (en) | 2016-11-22 | 2019-10-01 | Lumentum Operations Llc | Rotary optical beam generator |
US11173548B2 (en) | 2017-04-04 | 2021-11-16 | Nlight, Inc. | Optical fiducial generation for galvanometric scanner calibration |
EP3431262A1 (en) * | 2017-07-21 | 2019-01-23 | CL Schutzrechtsverwaltungs GmbH | Plant for additively manufacturing of three-dimensional objects |
JP6674422B2 (ja) * | 2017-09-14 | 2020-04-01 | フタバ産業株式会社 | レーザ溶接装置、及び、部材の製造方法 |
US10830943B2 (en) * | 2017-10-31 | 2020-11-10 | Corning Incorporated | Optical fibers and optical systems comprising the same |
EP3521483A1 (en) * | 2018-02-06 | 2019-08-07 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Lift deposition apparatus and method |
US12054415B2 (en) * | 2018-03-29 | 2024-08-06 | Corning Incorporated | Methods for laser processing rough transparent workpieces using pulsed laser beam focal lines and a fluid film |
JP6534470B1 (ja) * | 2018-03-30 | 2019-06-26 | 株式会社フジクラ | 照射装置、金属造形装置、金属造形システム、照射方法、及び金属造形物の製造方法 |
US11426818B2 (en) | 2018-08-10 | 2022-08-30 | The Research Foundation for the State University | Additive manufacturing processes and additively manufactured products |
DE112019004246T5 (de) | 2018-11-12 | 2021-05-27 | Panasonic Intellectual Property Management Co., Ltd. | Optische faserstrukturen und verfahren zur strahlformung |
JP7487197B2 (ja) * | 2018-12-03 | 2024-05-20 | アイピージー フォトニクス コーポレーション | 制御可能な出力ビーム強度プロファイルを有する超高ファイバレーザシステム |
CN111323924B (zh) * | 2018-12-14 | 2024-10-01 | 上海飞博激光科技股份有限公司 | 一种多锥非对称光束整形器件 |
CN115718372A (zh) * | 2018-12-20 | 2023-02-28 | 江苏睿赛光电科技有限公司 | 实现平顶光束的侧泵信号合束器及其制备方法 |
WO2020139704A1 (en) * | 2018-12-28 | 2020-07-02 | Nlight, Inc. | Optical fiber devices and methods for suppressing stimulated raman scattering (srs) |
CN113508322B (zh) * | 2019-01-29 | 2023-07-25 | 裵锡晚 | 光纤维加工装置 |
US11839914B1 (en) * | 2019-01-31 | 2023-12-12 | Freeform Future Corp. | Process monitoring and feedback for metal additive manufacturing using powder-bed fusion |
CN109802287B (zh) * | 2019-03-20 | 2020-02-07 | 中国人民解放军国防科技大学 | 一种基于透镜组合的三维自冷却激光光镊装置和方法 |
CN109946786A (zh) * | 2019-03-25 | 2019-06-28 | 北京大学口腔医学院 | 一种可控自变形光纤的多功能激光手术刀和激光加工设备 |
WO2020198553A1 (en) * | 2019-03-28 | 2020-10-01 | Panasonic intellectual property Management co., Ltd | Material processing utilizing high-frequency beam shaping |
WO2020217204A1 (en) * | 2019-04-26 | 2020-10-29 | Junora Ltd | Systems and methods for additive manufacturing of recyclable sputtering targets |
US10935720B2 (en) * | 2019-04-29 | 2021-03-02 | Ii-Vi Delaware, Inc. | Laser beam product parameter adjustments |
JP2020190689A (ja) * | 2019-05-23 | 2020-11-26 | 三菱重工業株式会社 | 伝送ファイバ、レーザ加工装置及びレーザ伝送方法 |
DE102019116798A1 (de) * | 2019-06-21 | 2020-12-24 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren zum Bearbeiten mindestens eines Werkstücks |
CN114222944A (zh) * | 2019-06-24 | 2022-03-22 | 恩耐公司 | 用于增材制造或其他工业激光处理应用的在功能上被均匀化的强度分布 |
US11005227B2 (en) | 2019-09-05 | 2021-05-11 | Nufern | Multi-wavelength adjustable-radial-mode fiber laser |
JP7090056B2 (ja) * | 2019-09-06 | 2022-06-23 | 株式会社フジクラ | 光ファイバ、レーザ生成装置、レーザ加工装置、及び光ファイバの製造方法 |
CN110488503B (zh) * | 2019-09-24 | 2024-02-27 | 上海飞博激光科技股份有限公司 | 一种光束能量分布可调的点环形激光输出结构 |
JP7257540B2 (ja) * | 2019-09-30 | 2023-04-13 | 株式会社フジクラ | 光コンバイナ及びレーザ装置 |
JP2021086838A (ja) * | 2019-11-25 | 2021-06-03 | 株式会社フジクラ | レーザ装置 |
WO2021125162A1 (ja) * | 2019-12-17 | 2021-06-24 | 株式会社フジクラ | ビーム品質制御装置、及びこれを用いるレーザ装置 |
JP2021096370A (ja) * | 2019-12-17 | 2021-06-24 | 株式会社フジクラ | ビーム品質制御装置、及びこれを用いるレーザ装置 |
US11340467B2 (en) * | 2020-02-18 | 2022-05-24 | Lumentum Operations Llc | Optical fiber for generating rotary optical beams |
JP7547060B2 (ja) * | 2020-03-18 | 2024-09-09 | 株式会社ディスコ | 検査装置および検査方法 |
JP2021188070A (ja) * | 2020-05-27 | 2021-12-13 | 三菱重工業株式会社 | 積層造形方法及び積層造形装置 |
JP7441129B2 (ja) * | 2020-06-25 | 2024-02-29 | 株式会社フジクラ | ファイバレーザ装置 |
US20220009036A1 (en) * | 2020-07-07 | 2022-01-13 | Panasonic Intellectual Property Management Co. Ltd | Laser systems and techniques for workpiece processing utilizing optical fibers and multiple beams |
US20230275389A1 (en) * | 2020-07-14 | 2023-08-31 | Nlight, Inc. | Single mode beam |
CN112379539B (zh) * | 2020-11-18 | 2024-06-11 | 联合微电子中心有限责任公司 | 一种硅基微环调制器及其调制方法 |
US11592612B2 (en) * | 2020-12-30 | 2023-02-28 | Lumentum Operations Llc | In-fiber offset to annulus converter |
CN113050289B (zh) * | 2021-03-04 | 2022-04-08 | 武汉光迅科技股份有限公司 | 全光整形器、全光整形器的参数确定方法及装置 |
CN113116516B (zh) * | 2021-04-01 | 2024-09-03 | 广东迪光医学科技有限公司 | 激光耦合装置 |
CN113305450A (zh) * | 2021-06-09 | 2021-08-27 | 广东宏石激光技术股份有限公司 | 一种加工质量可调的激光加工装置及其加工方法 |
EP4406077A1 (en) * | 2021-09-21 | 2024-07-31 | NLIGHT, Inc. | Acoustically controlled laser system |
US11693176B2 (en) * | 2021-09-30 | 2023-07-04 | Lumentum Operations Llc | In-fiber beam scanning |
WO2023056435A1 (en) * | 2021-10-01 | 2023-04-06 | Nlight, Inc. | Selectable gaussian and ring beam characteristics |
CN113665101A (zh) * | 2021-10-21 | 2021-11-19 | 广东职业技术学院 | 一种fdm打印方法及fdm打印机 |
EP4437375A1 (en) | 2021-11-24 | 2024-10-02 | NLIGHT, Inc. | All-fiber laser beam tuning by adjustment of angular intensity distribution |
CN113889830B (zh) * | 2021-12-03 | 2022-02-25 | 武汉锐科光纤激光技术股份有限公司 | 光束的生成方法、设备和装置、存储介质及电子装置 |
WO2023196381A1 (en) * | 2022-04-05 | 2023-10-12 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Graded index structure for optical components with reduced polarization aberrations |
WO2024003551A1 (en) | 2022-06-29 | 2024-01-04 | Trumpf Laser Uk Limited | Apparatus for laser processing a material |
US20240035967A1 (en) * | 2022-07-29 | 2024-02-01 | Applied Materials, Inc. | Time delay integration acquisition for spatial genomics imaging |
WO2024031069A1 (en) * | 2022-08-04 | 2024-02-08 | Applied Materials, Inc. | High-throughput spatial imaging system for biological samples |
WO2024171713A1 (ja) * | 2023-02-16 | 2024-08-22 | ソニーグループ株式会社 | 調整方法、光モジュールおよび測定装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101934432A (zh) * | 2010-09-14 | 2011-01-05 | 哈尔滨工业大学 | 激光与电阻点焊的同轴复合焊接方法 |
CN102149508A (zh) * | 2008-09-12 | 2011-08-10 | 法国液体空气焊接公司 | 利用通过衍射光学部件修改激光束品质因子的装置的激光切割方法和设备 |
CN102941412A (zh) * | 2012-10-15 | 2013-02-27 | 华中科技大学 | 一种激光焊接焊缝孔洞控制方法及装置 |
CN104136952A (zh) * | 2011-12-09 | 2014-11-05 | Jds尤尼弗思公司 | 改变激光束的光束参数积 |
WO2015189883A1 (ja) * | 2014-06-09 | 2015-12-17 | 株式会社日立製作所 | レーザ溶接方法 |
CN106458697A (zh) * | 2014-01-30 | 2017-02-22 | 恩耐公司 | 旋转的圆形芯部光纤 |
Family Cites Families (576)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2192171A (en) | 1938-06-06 | 1940-03-05 | Adirondack Foundries And Steel | Car truck |
US3388461A (en) | 1965-01-26 | 1968-06-18 | Sperry Rand Corp | Precision electrical component adjustment method |
GB1502127A (en) | 1975-01-27 | 1978-02-22 | Xerox Corp | Geometrical transformations in optics |
US4315666A (en) | 1979-03-19 | 1982-02-16 | Hicks Jr John W | Coupled communications fibers |
US4266851A (en) * | 1979-11-06 | 1981-05-12 | International Telephone And Telegraph Corporation | Coupler for a concentric core optical fiber |
US4252403A (en) * | 1979-11-06 | 1981-02-24 | International Telephone And Telegraph Corporation | Coupler for a graded index fiber |
DE3036618A1 (de) * | 1980-09-29 | 1982-05-19 | Siemens AG, 1000 Berlin und 8000 München | Steuerelement zum steuern einer lichtuebertragung zwischen lichtwellenleitern |
US4475789A (en) | 1981-11-09 | 1984-10-09 | Canadian Patents & Development Limited | Optical fiber power tap |
US4475027A (en) | 1981-11-17 | 1984-10-02 | Allied Corporation | Optical beam homogenizer |
JPS5974854U (ja) | 1982-11-08 | 1984-05-21 | 石川島播磨重工業株式会社 | 遠心分離機 |
DE3410913A1 (de) | 1984-03-24 | 1985-10-03 | Trumpf GmbH & Co, 7257 Ditzingen | Werkzeugmaschine zur mechanischen und laserstrahl-bearbeitung eines werkstuecks |
US4713518A (en) | 1984-06-08 | 1987-12-15 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device manufacturing methods |
JPS6046892A (ja) * | 1984-07-19 | 1985-03-13 | Toshiba Corp | レ−ザ−光照射方法 |
US4614868A (en) | 1984-10-12 | 1986-09-30 | Caterpillar Industrial Inc. | Fiber optic seam tracking apparatus |
US4768854A (en) * | 1985-07-11 | 1988-09-06 | Raychem Corp. | Optical fiber distribution network including nondestructive taps and method using same |
FR2597971B1 (fr) * | 1986-04-24 | 1990-10-19 | Photonetics | Capteur a fibre optique |
US4953947A (en) * | 1986-08-08 | 1990-09-04 | Corning Incorporated | Dispersion transformer having multichannel fiber |
US4863538A (en) | 1986-10-17 | 1989-09-05 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
RU2021881C1 (ru) | 1986-10-17 | 1994-10-30 | Борд оф Риджентс, Дзе Юниверсити оф Тексас Систем | Способ изготовления детали и устройство для его осуществления |
US4770492A (en) * | 1986-10-28 | 1988-09-13 | Spectran Corporation | Pressure or strain sensitive optical fiber |
US4915468A (en) * | 1987-02-20 | 1990-04-10 | The Board Of Trustees Of The Leland Stanford Junior University | Apparatus using two-mode optical waveguide with non-circular core |
JP2580148B2 (ja) * | 1987-03-05 | 1997-02-12 | 株式会社トプコン | 光ミキサ− |
JPH07113922B2 (ja) | 1987-04-14 | 1995-12-06 | 富士通株式会社 | 機械翻訳装置 |
US5073048A (en) * | 1987-07-06 | 1991-12-17 | Asahi Kogaku Kogyo K.K. | Optical fiber bundle |
US5008555A (en) | 1988-04-08 | 1991-04-16 | Eaton Leonard Technologies, Inc. | Optical probe with overlapping detection fields |
US5082349A (en) | 1988-04-25 | 1992-01-21 | The Board Of Trustees Of The Leland Stanford Junior University | Bi-domain two-mode single crystal fiber devices |
DE3833992A1 (de) | 1988-10-06 | 1990-04-12 | Messerschmitt Boelkow Blohm | Bestrahlungseinrichtung |
JPH0748330B2 (ja) | 1989-02-21 | 1995-05-24 | 帝国通信工業株式会社 | フレキシブル基板内蔵の電子部品樹脂モールドケース及びその製造方法 |
US5153773A (en) | 1989-06-08 | 1992-10-06 | Canon Kabushiki Kaisha | Illumination device including amplitude-division and beam movements |
US4998797A (en) | 1989-08-14 | 1991-03-12 | Ciba-Geigy Corporation | Optical waveguide plug connection |
US5129014A (en) | 1989-12-08 | 1992-07-07 | Xerox Corporation | Image registration |
JPH03216287A (ja) * | 1990-01-19 | 1991-09-24 | Fanuc Ltd | レーザ切断加工方法 |
US5231464A (en) * | 1990-03-26 | 1993-07-27 | Research Development Corporation Of Japan | Highly directional optical system and optical sectional image forming apparatus employing the same |
RU2008742C1 (ru) | 1991-03-04 | 1994-02-28 | Рыков Вениамин Васильевич | Способ легирования полупроводников |
GB9106874D0 (en) | 1991-04-02 | 1991-05-22 | Lumonics Ltd | Optical fibre assembly for a laser system |
US6569382B1 (en) | 1991-11-07 | 2003-05-27 | Nanogen, Inc. | Methods apparatus for the electronic, homogeneous assembly and fabrication of devices |
US5252991A (en) | 1991-12-17 | 1993-10-12 | Hewlett-Packard Company | Media edge sensor utilizing a laser beam scanner |
DE4200587C1 (en) * | 1992-01-11 | 1993-04-01 | Schott Glaswerke, 6500 Mainz, De | Light wave applicator for cutting and coagulating biological tissue - applies laser beam via flexible optical fibre having non-constant refractive index profile along its cross=section |
US5475415A (en) | 1992-06-03 | 1995-12-12 | Eastman Kodak Company | Optical head and printing system forming interleaved output laser light beams |
JP2962937B2 (ja) | 1992-07-14 | 1999-10-12 | キヤノン株式会社 | 文字処理装置及び方法 |
US5295211A (en) * | 1993-01-07 | 1994-03-15 | Corning Incorporated | Fiber amplifier coupler |
JP3175994B2 (ja) | 1993-04-15 | 2001-06-11 | 松下電工株式会社 | レーザ照射方法及びレーザ照射装置、並びに立体回路の形成方法、表面処理方法、粉末付着方法 |
JP3346617B2 (ja) * | 1993-10-19 | 2002-11-18 | オリンパス光学工業株式会社 | イメージファイバー |
RU2111520C1 (ru) | 1993-07-21 | 1998-05-20 | Фирма "Самсунг Электроникс Ко., Лтд." | Оптический процессор с бустерным выходом |
US5427733A (en) | 1993-10-20 | 1995-06-27 | United Technologies Corporation | Method for performing temperature-controlled laser sintering |
US5393482A (en) | 1993-10-20 | 1995-02-28 | United Technologies Corporation | Method for performing multiple beam laser sintering employing focussed and defocussed laser beams |
GB9403122D0 (en) | 1994-02-18 | 1994-04-06 | Univ Southampton | Acousto-optic device |
JP3531199B2 (ja) | 1994-02-22 | 2004-05-24 | 三菱電機株式会社 | 光伝送装置 |
US5656186A (en) | 1994-04-08 | 1997-08-12 | The Regents Of The University Of Michigan | Method for controlling configuration of laser induced breakdown and ablation |
US5523543A (en) | 1994-09-09 | 1996-06-04 | Litel Instruments | Laser ablation control system and method |
US5509597A (en) | 1994-10-17 | 1996-04-23 | Panasonic Technologies, Inc. | Apparatus and method for automatic monitoring and control of a soldering process |
DE4437284A1 (de) | 1994-10-18 | 1996-04-25 | Eos Electro Optical Syst | Verfahren zum Kalibrieren einer Steuerung zur Ablenkung eines Laserstrahls |
US5566196A (en) * | 1994-10-27 | 1996-10-15 | Sdl, Inc. | Multiple core fiber laser and optical amplifier |
JPH08150485A (ja) | 1994-11-28 | 1996-06-11 | Komatsu Ltd | レーザマーキング装置 |
US5642198A (en) | 1995-04-03 | 1997-06-24 | Long; William R. | Method of inspecting moving material |
US5903696A (en) | 1995-04-21 | 1999-05-11 | Ceramoptec Industries Inc | Multimode optical waveguides, waveguide components and sensors |
JP3050102B2 (ja) | 1995-09-29 | 2000-06-12 | 富士ゼロックス株式会社 | 光ビーム焦点位置検出装置、光ビーム照射装置、および光ビーム記録装置 |
US5748824A (en) | 1995-11-17 | 1998-05-05 | Corning Incorporated | Positive dispersion optical waveguide |
US5932119A (en) | 1996-01-05 | 1999-08-03 | Lazare Kaplan International, Inc. | Laser marking system |
US5719386A (en) | 1996-02-07 | 1998-02-17 | Umax Data Systems, Inc. | High efficiency multi-image scan method |
US5909306A (en) | 1996-02-23 | 1999-06-01 | President And Fellows Of Harvard College | Solid-state spectrally-pure linearly-polarized pulsed fiber amplifier laser system useful for ultraviolet radiation generation |
US5745284A (en) | 1996-02-23 | 1998-04-28 | President And Fellows Of Harvard College | Solid-state laser source of tunable narrow-bandwidth ultraviolet radiation |
JP3369404B2 (ja) * | 1996-06-14 | 2003-01-20 | 三菱電機株式会社 | 光トリガサイリスタ |
US5761234A (en) | 1996-07-09 | 1998-06-02 | Sdl, Inc. | High power, reliable optical fiber pumping system with high redundancy for use in lightwave communication systems |
US5837962A (en) | 1996-07-15 | 1998-11-17 | Overbeck; James W. | Faster laser marker employing acousto-optic deflection |
US5864430A (en) | 1996-09-10 | 1999-01-26 | Sandia Corporation | Gaussian beam profile shaping apparatus, method therefor and evaluation thereof |
UA47454C2 (uk) | 1996-12-20 | 2002-07-15 | Научний Центр Волоконной Оптікі Прі Інстітутє Общєй Фізікі Россійской Акадєміі Наук | Волоконний конвертор діаметра поля моди, спосіб локальної зміни показника заломлення оптичних хвильоводів та спосіб виготовлення заготівок для оптичних хвильоводів |
US5986807A (en) | 1997-01-13 | 1999-11-16 | Xerox Corporation | Single binary optical element beam homogenizer |
EP1595855A3 (en) | 1997-02-14 | 2005-11-30 | Nippon Telegraph and Telephone Corporation | Tellurite glass, optical amplifier, and light source |
JPH10282450A (ja) * | 1997-04-02 | 1998-10-23 | Nippon Steel Corp | バイナリーオプティクス及びそれを用いたレーザ加工装置 |
TW434193B (en) * | 1997-05-01 | 2001-05-16 | Sumitomo Electric Industries | Method of producing optical fiber grating |
JPH10321502A (ja) | 1997-05-16 | 1998-12-04 | Nikon Corp | 荷電粒子線投影方法 |
DE19723269A1 (de) | 1997-06-03 | 1998-12-10 | Heidelberger Druckmasch Ag | Festkörperlaser mit einer oder mehreren Pumplichtquellen |
US6266462B1 (en) * | 1998-02-12 | 2001-07-24 | Ultraband Fiber Optics | Acousto-optic filter |
JPH11780A (ja) | 1997-06-10 | 1999-01-06 | Ishikawajima Harima Heavy Ind Co Ltd | レーザ・ウォータジェット複合切断装置 |
EP1970756A3 (en) | 1997-06-18 | 2014-08-27 | Nippon Telegraph and Telephone Corporation | Optical pulse source and applications |
US5818630A (en) | 1997-06-25 | 1998-10-06 | Imra America, Inc. | Single-mode amplifiers and compressors based on multi-mode fibers |
US6477301B1 (en) * | 1997-06-26 | 2002-11-05 | Scientific-Atlanta, Inc. | Micro-optic coupler incorporating a tapered fiber |
DE19746171C2 (de) | 1997-10-18 | 2001-05-17 | Deutsche Telekom Ag | Vorrichtung zum Auskoppeln von Signalen aus einem Lichtwellenleiter |
DE19782307T1 (de) | 1997-12-26 | 2001-02-01 | Mitsubishi Electric Corp | Laserbearbeitungsgerät |
JP3966978B2 (ja) * | 1998-02-10 | 2007-08-29 | 株式会社フジクラ | 光フィルタおよび光通信システム |
EP1060423B1 (en) * | 1998-03-04 | 2010-06-02 | JDS Uniphase Corporation | Optical couplers for multimode fibers |
US6180912B1 (en) * | 1998-03-31 | 2001-01-30 | Matsushita Electric Industrial Co., Ltd. | Fan-out beams for repairing an open defect |
JP3396422B2 (ja) | 1998-04-01 | 2003-04-14 | 日本電信電話株式会社 | 光ファイバの接続方法ならびに接続装置 |
JP3389101B2 (ja) | 1998-06-03 | 2003-03-24 | 日本電信電話株式会社 | 光ファイバ接続部および該光ファイバ接続部を用いた光増幅器 |
CA2242139A1 (en) * | 1998-06-29 | 1999-12-29 | Automated Welding Systems Incorporated | Method of laser welding tailored blanks |
US6490376B1 (en) | 1998-09-17 | 2002-12-03 | Metrologic Instruments, Inc. | Skew processing of raster scan images |
US6275630B1 (en) | 1998-11-17 | 2001-08-14 | Bayspec, Inc. | Compact double-pass wavelength multiplexer-demultiplexer |
US6310995B1 (en) | 1998-11-25 | 2001-10-30 | University Of Maryland | Resonantly coupled waveguides using a taper |
CA2353466A1 (en) | 1998-12-02 | 2000-06-08 | Edward F. Murphy | A detachable plug-in pump card assembly |
CA2292974A1 (en) * | 1998-12-22 | 2000-06-22 | The Board Of Trustees Of The Leland Stanford Junior University | Tunable, mechanically induced long-period fiber grating with enhanced polarizing characteristics |
FR2787986B1 (fr) | 1998-12-31 | 2001-03-02 | Maurice Granger | Dispositif de commande de sortie de lame de coupe d'un tambour dans un appareil distributeur de materiau d'essuyage |
US6192171B1 (en) * | 1999-02-26 | 2001-02-20 | Albert Goodman | Dynamic fiber optic switch with artificial muscle |
US6483973B1 (en) | 1999-04-09 | 2002-11-19 | Fitel Usa Corp. | Cladding member for optical fibers and optical fibers formed with the cladding member |
TW482705B (en) | 1999-05-28 | 2002-04-11 | Electro Scient Ind Inc | Beam shaping and projection imaging with solid state UV Gaussian beam to form blind vias |
US6304704B1 (en) | 1999-07-27 | 2001-10-16 | Lucent Technologies Inc. | Mode mixing buffered optical fiber apparatus and method for making |
US6839163B1 (en) | 1999-09-01 | 2005-01-04 | Avanex Corporation | Apparatus and method for making an optical fiber amplifier |
NO994363L (no) * | 1999-09-09 | 2001-03-12 | Optomed As | Fiberoptisk probe for temperaturmÕlinger i biologiske media |
TW440728B (en) * | 1999-11-04 | 2001-06-16 | Ind Tech Res Inst | A tunable fiber grating |
US6362004B1 (en) | 1999-11-09 | 2002-03-26 | Packard Biochip Technologies, Llc | Apparatus and method for using fiducial marks on a microarray substrate |
JP3521326B2 (ja) * | 1999-12-07 | 2004-04-19 | 株式会社日立製作所 | 光ファイバ、光受信装置及び光伝送装置 |
US7068900B2 (en) * | 1999-12-24 | 2006-06-27 | Croteau Andre | Multi-clad doped optical fiber |
CA2293132C (en) | 1999-12-24 | 2007-03-06 | Jocelyn Lauzon | Triple-clad rare-earth doped optical fiber and applications |
US6600149B2 (en) | 1999-12-27 | 2003-07-29 | Whitten L. Schulz | Fiber grating environmental sensing system |
US6330382B1 (en) | 2000-01-19 | 2001-12-11 | Corning Incorporated | Mode conditioning for multimode fiber systems |
US7098084B2 (en) | 2000-03-08 | 2006-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US6496301B1 (en) | 2000-03-10 | 2002-12-17 | The United States Of America As Represented By The Secretary Of The Navy | Helical fiber amplifier |
WO2001074529A2 (en) | 2000-03-30 | 2001-10-11 | Electro Scientific Industries, Inc. | Laser system and method for single pass micromachining of multilayer workpieces |
US6947802B2 (en) * | 2000-04-10 | 2005-09-20 | Hypertherm, Inc. | Centralized control architecture for a laser materials processing system |
US6559585B2 (en) | 2000-05-26 | 2003-05-06 | Kabushiki Kaisha Toshiba | Color cathode ray tube |
JP4619507B2 (ja) * | 2000-09-26 | 2011-01-26 | 浜松ホトニクス株式会社 | 光ファイバ結合装置、波長可変器、圧力センサ、加速度センサ及び光学装置 |
US6477307B1 (en) | 2000-10-23 | 2002-11-05 | Nufern | Cladding-pumped optical fiber and methods for fabricating |
DE10196861D2 (de) * | 2000-12-15 | 2003-10-30 | Lzh Laserzentrum Hannover Ev | Verfahren zum Durchtrennen von Bauteilen aus Glas, Keramik, Glaskeramik oder dergleichen durch Erzeugung eines thermischen Spannungsrisses an dem Bauteil entlang einer Trennzone |
US7193771B1 (en) | 2001-01-04 | 2007-03-20 | Lockheed Martin Coherent Technologies, Inc. | Power scalable optical systems for generating, transporting, and delivering high power, high quality laser beams |
US6621044B2 (en) | 2001-01-18 | 2003-09-16 | Anvik Corporation | Dual-beam materials-processing system |
JP2002214460A (ja) | 2001-01-19 | 2002-07-31 | Japan Aviation Electronics Industry Ltd | 光導波路デバイスおよびその製造方法 |
WO2002059663A1 (en) | 2001-01-25 | 2002-08-01 | Omniguide Communications | Photonic crystal optical waveguides having tailored dispersion profiles |
CN1268950C (zh) * | 2001-01-25 | 2006-08-09 | 全波导通信公司 | 具有大芯半径的低损耗光子晶体波导 |
US6360042B1 (en) * | 2001-01-31 | 2002-03-19 | Pin Long | Tunable optical fiber gratings device |
WO2002061467A2 (en) | 2001-01-31 | 2002-08-08 | Omniguide Communications | Electromagnetic mode conversion in photonic crystal multimode waveguides |
US6711918B1 (en) | 2001-02-06 | 2004-03-30 | Sandia National Laboratories | Method of bundling rods so as to form an optical fiber preform |
US20020110328A1 (en) | 2001-02-14 | 2002-08-15 | Bischel William K. | Multi-channel laser pump source for optical amplifiers |
US6542665B2 (en) * | 2001-02-17 | 2003-04-01 | Lucent Technologies Inc. | GRIN fiber lenses |
US6426840B1 (en) | 2001-02-23 | 2002-07-30 | 3D Systems, Inc. | Electronic spot light control |
US6724528B2 (en) | 2001-02-27 | 2004-04-20 | The United States Of America As Represented By The Secretary Of The Navy | Polarization-maintaining optical fiber amplifier employing externally applied stress-induced birefringence |
JP3399434B2 (ja) | 2001-03-02 | 2003-04-21 | オムロン株式会社 | 高分子成形材のメッキ形成方法と回路形成部品とこの回路形成部品の製造方法 |
EP1238745A3 (en) | 2001-03-07 | 2004-06-30 | Nec Corporation | Galvanometer controller and laser machining apparatus |
US6777645B2 (en) * | 2001-03-29 | 2004-08-17 | Gsi Lumonics Corporation | High-speed, precision, laser-based method and system for processing material of one or more targets within a field |
US20020168139A1 (en) | 2001-03-30 | 2002-11-14 | Clarkson William Andrew | Optical fiber terminations, optical couplers and optical coupling methods |
ATE418743T1 (de) | 2001-03-30 | 2009-01-15 | Ocg Technology Licensing Llc | Ringkernfaser |
US6556340B1 (en) | 2001-04-06 | 2003-04-29 | Onetta, Inc. | Optical amplifiers and upgrade modules |
WO2002084350A1 (en) | 2001-04-11 | 2002-10-24 | Crystal Fibre A/S | Dual core photonic crystal fibers (pcf) with special dispersion properties |
CN1539090A (zh) | 2001-04-12 | 2004-10-20 | �ź㴫 | 高折射率差纤维波导及其应用 |
US7009140B2 (en) | 2001-04-18 | 2006-03-07 | Cymer, Inc. | Laser thin film poly-silicon annealing optical system |
US6597829B2 (en) | 2001-04-27 | 2003-07-22 | Robert H. Cormack | 1xN optical fiber switch |
EP1260841B1 (en) | 2001-05-19 | 2007-07-11 | Lucent Technologies Inc. | GRIN fiber lenses |
US6831934B2 (en) * | 2001-05-29 | 2004-12-14 | Apollo Instruments, Inc. | Cladding pumped fiber laser |
US6973247B2 (en) * | 2001-07-02 | 2005-12-06 | Acreo Ab | Method and device for controlling the refractive index in an optical fiber |
ATE373249T1 (de) * | 2001-07-12 | 2007-09-15 | Ocg Technology Licensing Llc | Optische faser |
WO2003008943A1 (en) | 2001-07-19 | 2003-01-30 | Tufts University | Optical array device and methods of use thereof for screening, analysis and manipulation of particles |
US6987569B2 (en) | 2001-08-23 | 2006-01-17 | Zygo Corporation | Dynamic interferometer controlling direction of input beam |
KR100439088B1 (ko) | 2001-09-14 | 2004-07-05 | 한국과학기술원 | 상호 자기 정렬된 다수의 식각 홈을 가지는 광결합 모듈및 그 제작방법 |
NL1019004C2 (nl) * | 2001-09-20 | 2003-03-26 | Draka Fibre Technology Bv | Multimodevezel voorzien van een brekingsindexprofiel. |
US6866429B2 (en) | 2001-09-26 | 2005-03-15 | Np Photonics, Inc. | Method of angle fusion splicing silica fiber with low-temperature non-silica fiber |
JP2003129862A (ja) | 2001-10-23 | 2003-05-08 | Toshiba Corp | タービン翼の製造方法 |
US6825974B2 (en) | 2001-11-06 | 2004-11-30 | Sandia National Laboratories | Linearly polarized fiber amplifier |
US20040097103A1 (en) | 2001-11-12 | 2004-05-20 | Yutaka Imai | Laser annealing device and thin-film transistor manufacturing method |
WO2003044914A1 (en) | 2001-11-16 | 2003-05-30 | Optical Power Systems Inc. | Multi-wavelength raman fiber laser |
WO2003044915A1 (en) * | 2001-11-19 | 2003-05-30 | Chiral Photonics, Inc. | Chiral fiber laser apparatus and method |
US6819815B1 (en) | 2001-12-12 | 2004-11-16 | Calient Networks | Method and apparatus for indirect adjustment of optical switch reflectors |
JP2003200286A (ja) | 2001-12-28 | 2003-07-15 | Fujitsu Ltd | レーザマイクロスポット溶接装置 |
EP1340583A1 (en) | 2002-02-20 | 2003-09-03 | ALSTOM (Switzerland) Ltd | Method of controlled remelting of or laser metal forming on the surface of an article |
US6768577B2 (en) | 2002-03-15 | 2004-07-27 | Fitel Usa Corp. | Tunable multimode laser diode module, tunable multimode wavelength division multiplex raman pump, and amplifier, and a system, method, and computer program product for controlling tunable multimode laser diodes, raman pumps, and raman amplifiers |
US7116887B2 (en) | 2002-03-19 | 2006-10-03 | Nufern | Optical fiber |
US6700161B2 (en) | 2002-05-16 | 2004-03-02 | International Business Machines Corporation | Variable resistor structure and method for forming and programming a variable resistor for electronic circuits |
US7119351B2 (en) | 2002-05-17 | 2006-10-10 | Gsi Group Corporation | Method and system for machine vision-based feature detection and mark verification in a workpiece or wafer marking system |
JP2004055366A (ja) | 2002-07-22 | 2004-02-19 | Japan Storage Battery Co Ltd | コードレスランプ |
US7231063B2 (en) | 2002-08-09 | 2007-06-12 | Intersense, Inc. | Fiducial detection system |
US6816662B2 (en) | 2002-09-19 | 2004-11-09 | 3M Innovative Properties Company | Article for cleaving and polishing optical fiber ends |
ITMI20022328A1 (it) | 2002-10-31 | 2004-05-01 | Carlo Nobili S P A Rubinetterie | Cartuccia di miscelazione per rubinetti miscelatori monoleva |
US6768750B2 (en) | 2002-11-12 | 2004-07-27 | Corning Incorporated | Multi-spectral line Raman laser |
DE10352590A1 (de) | 2002-11-12 | 2004-05-27 | Toptica Photonics Ag | Verfahren zum Herstellen einer optischen Faser mit einer Auskoppelstelle für Streulicht, Verwendung einer optischen Faser und Vorrichtung zum Überwachen von in einer optischen Faser geführter Lichtleistung |
CA2504951A1 (en) | 2002-11-22 | 2004-06-10 | Omniguide Communications Inc. | Dielectric waveguide and method of making the same |
US20060067632A1 (en) * | 2002-11-23 | 2006-03-30 | Crystal Fibre A/S | Splicing and connectorization of photonic crystal fibres |
JP4112355B2 (ja) * | 2002-12-11 | 2008-07-02 | 日立造船株式会社 | ビーム成形方法及び装置 |
JP2006510490A (ja) * | 2002-12-20 | 2006-03-30 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | レーザースポット溶接の方法および装置 |
US7099535B2 (en) * | 2002-12-31 | 2006-08-29 | Corning Incorporated | Small mode-field fiber lens |
JP4505190B2 (ja) | 2003-03-27 | 2010-07-21 | 新日本製鐵株式会社 | レーザ切断装置 |
KR100488461B1 (ko) | 2003-03-27 | 2005-05-11 | 엘지전자 주식회사 | 레이저 표시장치 |
DE20320269U1 (de) | 2003-03-28 | 2004-04-15 | Raylase Ag | Optisches System zur variablen Fokussierung eines Lichtstrahls |
US6963062B2 (en) | 2003-04-07 | 2005-11-08 | Eksigent Technologies, Llc | Method for multiplexed optical detection including a multimode optical fiber in which propagation modes are coupled |
US7050660B2 (en) | 2003-04-07 | 2006-05-23 | Eksigent Technologies Llc | Microfluidic detection device having reduced dispersion and method for making same |
KR100733258B1 (ko) | 2003-04-17 | 2007-06-27 | 니혼 덴산 산쿄 가부시키가이샤 | 렌즈 구동장치,박형 카메라 및 카메라 부착 휴대 전화기 |
DE10321102A1 (de) | 2003-05-09 | 2004-12-02 | Hentze-Lissotschenko Patentverwaltungs Gmbh & Co.Kg | Aufteilungsvorrichtung für Lichtstrahlen |
US6801550B1 (en) | 2003-05-30 | 2004-10-05 | Bae Systems Information And Electronic Systems Integration Inc. | Multiple emitter side pumping method and apparatus for fiber lasers |
DE602004031941D1 (de) | 2003-05-30 | 2011-05-05 | Olympus Co | Messvorrichtung umfassend eine lichtaufnahmeeinheit |
US20050041697A1 (en) | 2003-06-12 | 2005-02-24 | Martin Seifert | Portable laser |
US6970624B2 (en) | 2003-06-13 | 2005-11-29 | Furukawa Electric North America | Cladding pumped optical fiber gain devices |
US7170913B2 (en) | 2003-06-19 | 2007-01-30 | Multiwave Photonics, Sa | Laser source with configurable output beam characteristics |
GB0314817D0 (en) * | 2003-06-25 | 2003-07-30 | Southampton Photonics Ltd | Apparatus for providing optical radiation |
JP2005046247A (ja) | 2003-07-31 | 2005-02-24 | Topcon Corp | レーザ手術装置 |
JP2005070608A (ja) | 2003-08-27 | 2005-03-17 | Mitsubishi Cable Ind Ltd | ダブルクラッドファイバとマルチモードファイバの接続構造及びその接続方法 |
US7151787B2 (en) | 2003-09-10 | 2006-12-19 | Sandia National Laboratories | Backscatter absorption gas imaging systems and light sources therefore |
US7016573B2 (en) | 2003-11-13 | 2006-03-21 | Imra America, Inc. | Optical fiber pump multiplexer |
CA2549172C (en) | 2003-12-04 | 2011-02-01 | Philip Rogers | Very high power pulsed fiber laser |
GB0328370D0 (en) | 2003-12-05 | 2004-01-14 | Southampton Photonics Ltd | Apparatus for providing optical radiation |
JP2005203430A (ja) | 2004-01-13 | 2005-07-28 | Mitsubishi Cable Ind Ltd | 光ファイバレーザ及びそれを用いたレーザ光生成方法 |
JP4555582B2 (ja) | 2004-02-03 | 2010-10-06 | Hoya株式会社 | レンズ移動機構 |
US7527977B1 (en) | 2004-03-22 | 2009-05-05 | Sandia Corporation | Protein detection system |
US7349123B2 (en) | 2004-03-24 | 2008-03-25 | Lexmark International, Inc. | Algorithms and methods for determining laser beam process direction position errors from data stored on a printhead |
US7486705B2 (en) * | 2004-03-31 | 2009-02-03 | Imra America, Inc. | Femtosecond laser processing system with process parameters, controls and feedback |
US7804864B2 (en) | 2004-03-31 | 2010-09-28 | Imra America, Inc. | High power short pulse fiber laser |
US7167622B2 (en) | 2004-04-08 | 2007-01-23 | Omniguide, Inc. | Photonic crystal fibers and medical systems including photonic crystal fibers |
US7231122B2 (en) | 2004-04-08 | 2007-06-12 | Omniguide, Inc. | Photonic crystal waveguides and systems using such waveguides |
JP4544904B2 (ja) | 2004-04-28 | 2010-09-15 | オリンパス株式会社 | 光学系 |
US7317857B2 (en) | 2004-05-03 | 2008-01-08 | Nufem | Optical fiber for delivering optical energy to or from a work object |
EP1771927A1 (en) * | 2004-06-01 | 2007-04-11 | Trumpf Photonics, Inc. | Optimum matching of the output of a two-dimensional laser array stack to an optical fiber |
CN1584644A (zh) | 2004-06-02 | 2005-02-23 | 中国科学院上海光学精密机械研究所 | 光束整形光纤 |
CN1249470C (zh) * | 2004-07-01 | 2006-04-05 | 上海交通大学 | 无源全光纤可调光分路器 |
US7146073B2 (en) | 2004-07-19 | 2006-12-05 | Quantronix Corporation | Fiber delivery system with enhanced passive fiber protection and active monitoring |
US20060024001A1 (en) | 2004-07-28 | 2006-02-02 | Kyocera Corporation | Optical fiber connected body with mutually coaxial and inclined cores, optical connector for forming the same, and mode conditioner and optical transmitter using the same |
JP4344663B2 (ja) * | 2004-07-28 | 2009-10-14 | 京セラ株式会社 | 光コネクタ |
JP4519560B2 (ja) | 2004-07-30 | 2010-08-04 | 株式会社メディアプラス | 積層造形方法 |
JP4293098B2 (ja) | 2004-09-15 | 2009-07-08 | セイコーエプソン株式会社 | レーザー加工方法、レーザー加工装置、電子機器 |
US8834457B2 (en) | 2004-09-22 | 2014-09-16 | Cao Group, Inc. | Modular surgical laser systems |
JP2006098085A (ja) | 2004-09-28 | 2006-04-13 | Toyota Motor Corp | 肉盛層の組織予測方法 |
JP4599553B2 (ja) | 2004-10-01 | 2010-12-15 | 国立大学法人北海道大学 | レーザ加工方法および装置 |
EP1815501A1 (en) | 2004-11-05 | 2007-08-08 | Koninklijke Philips Electronics N.V. | Method for patterning an organic material to concurrently form an insulator and a semiconductor and device formed thereby |
JP2006171348A (ja) | 2004-12-15 | 2006-06-29 | Nippon Steel Corp | 半導体レーザ装置 |
EP1677131B1 (en) * | 2004-12-30 | 2011-10-05 | Proximion Fiber Systems AB | Optical coupler with fibre Bragg grating and Fabry Perot cavity and method of using it |
JP4328724B2 (ja) | 2005-01-17 | 2009-09-09 | 富士通株式会社 | 光波形測定装置および光波形測定方法 |
US7622710B2 (en) | 2005-03-18 | 2009-11-24 | Danmarks Tekniske Universitet | Optical manipulation system using a plurality of optical traps |
US7587110B2 (en) | 2005-03-22 | 2009-09-08 | Panasonic Corporation | Multicore optical fiber with integral diffractive elements machined by ultrafast laser direct writing |
US8395084B2 (en) | 2005-05-02 | 2013-03-12 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus and laser irradiation method |
US7569331B2 (en) | 2005-06-01 | 2009-08-04 | Hewlett-Packard Development Company, L.P. | Conductive patterning |
US7643707B2 (en) | 2005-07-11 | 2010-01-05 | Mitsubishi Electric Corporation | Lighting apparatus |
JPWO2007013608A1 (ja) | 2005-07-28 | 2009-02-12 | パナソニック株式会社 | レーザ光源およびディスプレイ装置 |
US7391561B2 (en) * | 2005-07-29 | 2008-06-24 | Aculight Corporation | Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method |
US7674719B2 (en) | 2005-08-01 | 2010-03-09 | Panasonic Corporation | Via hole machining for microwave monolithic integrated circuits |
US7218440B2 (en) * | 2005-08-25 | 2007-05-15 | Northrop Grumman Corporation | Photonic bandgap fiber for generating near-diffraction-limited optical beam comprising multiple coaxial wavelengths |
JP4533824B2 (ja) | 2005-08-30 | 2010-09-01 | 株式会社日立製作所 | 画像入力装置及び校正方法 |
US9138913B2 (en) | 2005-09-08 | 2015-09-22 | Imra America, Inc. | Transparent material processing with an ultrashort pulse laser |
DE102006042280A1 (de) | 2005-09-08 | 2007-06-06 | IMRA America, Inc., Ann Arbor | Bearbeitung von transparentem Material mit einem Ultrakurzpuls-Laser |
EP1767743A1 (de) | 2005-09-26 | 2007-03-28 | Siemens Aktiengesellschaft | Verfahren zum Herstellen eines zu beschichtenden Gasturbinen-Bauteils mit freigelegten Öffnungen, Vorrichtung zur Durchführung des Verfahrens und beschichtbare Turbinenschaufel mit Filmkühlöffnungen |
US20070075060A1 (en) | 2005-09-30 | 2007-04-05 | Shedlov Matthew S | Method of manufacturing a medical device from a workpiece using a pulsed beam of radiation or particles having an adjustable pulse frequency |
US7928409B2 (en) | 2005-10-11 | 2011-04-19 | The United States Of America As Represented By The Secretary Of Commerce | Real-time, active picometer-scale alignment, stabilization, and registration in one or more dimensions |
US7463805B2 (en) | 2005-10-20 | 2008-12-09 | Corning Incorporated | High numerical aperture optical fiber |
US7551813B2 (en) * | 2005-11-03 | 2009-06-23 | Gennadii Ivtsenkov | Simplified fiber-optic switch for all-optical fiber-optic lines |
US7099533B1 (en) | 2005-11-08 | 2006-08-29 | Chenard Francois | Fiber optic infrared laser beam delivery system |
US8071912B2 (en) | 2005-11-16 | 2011-12-06 | Technolines, Lp | Engineered wood fiber product substrates and their formation by laser processing |
US8728387B2 (en) | 2005-12-06 | 2014-05-20 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US20070140634A1 (en) * | 2005-12-16 | 2007-06-21 | Robert Scott Windeler | Gain-producing, large-mode-area, multimode, hybrid optical fibers and devices using same |
US7920767B2 (en) * | 2005-12-27 | 2011-04-05 | Ofs Fitel, Llc | Suppression of higher-order modes by resonant coupling in bend-compensated optical fibers |
US7783149B2 (en) * | 2005-12-27 | 2010-08-24 | Furukawa Electric North America, Inc. | Large-mode-area optical fibers with reduced bend distortion |
US7764854B2 (en) | 2005-12-27 | 2010-07-27 | Ofs Fitel Llc | Optical fiber with specialized index profile to compensate for bend-induced distortions |
JP2007190560A (ja) * | 2006-01-17 | 2007-08-02 | Miyachi Technos Corp | レーザ加工装置 |
JP2007190566A (ja) * | 2006-01-17 | 2007-08-02 | Miyachi Technos Corp | ファイバレーザ加工装置 |
CA2533674A1 (en) | 2006-01-23 | 2007-07-23 | Itf Technologies Optiques Inc./Itf Optical Technologies Inc. | Optical fiber component package for high power dissipation |
KR20080091455A (ko) | 2006-01-23 | 2008-10-13 | 히타치케미컬 리서치센터 인코포레이티드 | 이온성 고분자 장치 및 그 제조방법 |
FR2897007B1 (fr) | 2006-02-03 | 2008-04-11 | Air Liquide | Procede de coupage avec un laser a fibre avec controle des parametres du faisceau |
US7537395B2 (en) * | 2006-03-03 | 2009-05-26 | Lockheed Martin Corporation | Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method |
US7835608B2 (en) * | 2006-03-21 | 2010-11-16 | Lockheed Martin Corporation | Method and apparatus for optical delivery fiber having cladding with absorbing regions |
US7628865B2 (en) * | 2006-04-28 | 2009-12-08 | Asml Netherlands B.V. | Methods to clean a surface, a device manufacturing method, a cleaning assembly, cleaning apparatus, and lithographic apparatus |
JP5089950B2 (ja) | 2006-05-30 | 2012-12-05 | 株式会社フジクラ | マルチポートカプラ、光増幅器及びファイバレーザ |
WO2007148127A2 (en) | 2006-06-23 | 2007-12-27 | Gsi Group Limited | Fibre laser system |
WO2008003138A1 (en) | 2006-07-07 | 2008-01-10 | The University Of Sydney | Tunable optical supercontinuum enhancement |
US7257293B1 (en) * | 2006-07-14 | 2007-08-14 | Furukawa Electric North America, Inc. | Fiber structure with improved bend resistance |
US7880961B1 (en) | 2006-08-22 | 2011-02-01 | Sandia Corporation | Optical amplifier exhibiting net phase-mismatch selected to at least partially reduce gain-induced phase-matching during operation and method of operation |
US7674999B2 (en) | 2006-08-23 | 2010-03-09 | Applied Materials, Inc. | Fast axis beam profile shaping by collimation lenslets for high power laser diode based annealing system |
JP2008068270A (ja) | 2006-09-12 | 2008-03-27 | Disco Abrasive Syst Ltd | レーザー加工装置 |
WO2008052155A2 (en) | 2006-10-26 | 2008-05-02 | Cornell Research Foundation, Inc. | System for producing optical pulses of a desired wavelength using cherenkov radiation |
JPWO2008053915A1 (ja) | 2006-11-02 | 2010-02-25 | ナブテスコ株式会社 | スキャナ光学システム、レーザ加工装置、及び、スキャナ光学装置 |
RU68715U1 (ru) | 2006-11-20 | 2007-11-27 | Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный университет" (ГОУ ВПО КубГУ) | Интегрально-оптический делитель излучения |
GB0623835D0 (en) | 2006-11-29 | 2007-01-10 | Cascade Technologies Ltd | Multi mode fibre perturber |
KR100872281B1 (ko) | 2006-12-15 | 2008-12-05 | 삼성전기주식회사 | 나노와이어 구조체를 이용한 반도체 발광소자 및 그제조방법 |
US7526166B2 (en) | 2007-01-31 | 2009-04-28 | Corning Incorporated | High numerical aperture fiber |
ITMI20070150A1 (it) | 2007-01-31 | 2008-08-01 | Univ Pavia | Metodo e dispositivo ottico per la manipolazione di una particella |
DE502007000241D1 (de) | 2007-03-30 | 2009-01-02 | Innolas Gmbh | System und zugehöriges Verfahren zum Korrigieren einer Laserstrahlablenkeinheit |
JP4674696B2 (ja) | 2007-04-03 | 2011-04-20 | 日本特殊陶業株式会社 | スパークプラグの製造方法 |
DE112008000872T5 (de) | 2007-04-04 | 2010-01-28 | Mitsubishi Electric Corp. | Vorrichtung und Verfahren zur Laserbearbeitung |
US8198565B2 (en) * | 2007-04-11 | 2012-06-12 | Chrysler Group Llc | Laser-welding apparatus and method |
JPWO2008133242A1 (ja) | 2007-04-25 | 2010-07-29 | 株式会社フジクラ | 希土類添加コア光ファイバ |
JP5489392B2 (ja) | 2007-05-09 | 2014-05-14 | オリンパス株式会社 | 光学系評価装置、光学系評価方法および光学系評価プログラム |
JP5124225B2 (ja) | 2007-05-15 | 2013-01-23 | 株式会社フジクラ | 光ファイバ融着接続構造 |
US8404160B2 (en) | 2007-05-18 | 2013-03-26 | Applied Nanotech Holdings, Inc. | Metallic ink |
JP4297952B2 (ja) | 2007-05-28 | 2009-07-15 | 三菱電機株式会社 | レーザ加工装置 |
CN101071926A (zh) * | 2007-05-30 | 2007-11-14 | 天津大学 | 主动调q全光纤激光器 |
DE102007063066A1 (de) | 2007-05-31 | 2008-12-24 | Lpi Light Power Instruments Gmbh | Verfahren und Vorrichtung zur Charakterisierung einer Probe mit zwei oder mehr optischen Fallen |
WO2009009888A1 (en) | 2007-07-16 | 2009-01-22 | Coractive High-Tech Inc. | Light emitting devices with phosphosilicate glass |
JP5469064B2 (ja) | 2007-07-20 | 2014-04-09 | コーニング インコーポレイテッド | 大モード面積光ファイバ |
US7924500B1 (en) | 2007-07-21 | 2011-04-12 | Lockheed Martin Corporation | Micro-structured fiber profiles for mitigation of bend-loss and/or mode distortion in LMA fiber amplifiers, including dual-core embodiments |
US7876495B1 (en) | 2007-07-31 | 2011-01-25 | Lockheed Martin Corporation | Apparatus and method for compensating for and using mode-profile distortions caused by bending optical fibers |
JP2009032910A (ja) | 2007-07-27 | 2009-02-12 | Hitachi Cable Ltd | 光ファイバレーザ用光ファイバ及びその製造方法、並びに光ファイバレーザ |
KR100906287B1 (ko) * | 2007-08-22 | 2009-07-06 | 광주과학기술원 | 측면 조영이 가능한 광섬유 프로브 및 광섬유 프로브 제조방법 |
EP2185344B1 (en) | 2007-08-23 | 2018-06-13 | 3D Systems, Inc. | Automatic geometric calibration using laser scanning reflectometry |
US8027557B2 (en) | 2007-09-24 | 2011-09-27 | Nufern | Optical fiber laser, and components for an optical fiber laser, having reduced susceptibility to catastrophic failure under high power operation |
JP5090121B2 (ja) | 2007-10-01 | 2012-12-05 | オリンパス株式会社 | 調整装置、レーザ加工装置、調整方法、および調整プログラム |
US7593435B2 (en) | 2007-10-09 | 2009-09-22 | Ipg Photonics Corporation | Powerful fiber laser system |
JP5519517B2 (ja) | 2007-10-23 | 2014-06-11 | コーニンクレッカ フィリップス エヌ ヴェ | 照明のための装置、方法及びシステム |
DE102007052657B4 (de) | 2007-11-05 | 2010-03-11 | Raylase Ag | Linsenvorrichtung mit einer verschiebbaren Linse und Laserscannersystem |
TWI352215B (en) | 2007-11-21 | 2011-11-11 | Ind Tech Res Inst | Beam shaping module |
RU2365476C1 (ru) | 2007-11-26 | 2009-08-27 | Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" | Устройство многопозиционной лазерной обработки |
JP5201975B2 (ja) | 2007-12-14 | 2013-06-05 | 株式会社キーエンス | レーザ加工装置、レーザ加工方法 |
US7957438B2 (en) | 2007-12-17 | 2011-06-07 | Jds Uniphase Corporation | Method and device for monitoring light |
BY12235C1 (zh) | 2007-12-18 | 2009-08-30 | ||
US7778498B2 (en) | 2008-02-12 | 2010-08-17 | Ofs Fitel Llc | Systems and techniques for generating cylindrical vector beams |
US7982161B2 (en) | 2008-03-24 | 2011-07-19 | Electro Scientific Industries, Inc. | Method and apparatus for laser drilling holes with tailored laser pulses |
JP2009248157A (ja) | 2008-04-08 | 2009-10-29 | Miyachi Technos Corp | レーザ加工方法及びレーザ加工装置 |
US8238639B2 (en) | 2008-04-09 | 2012-08-07 | Cognex Corporation | Method and system for dynamic feature detection |
JP2011134736A (ja) * | 2008-11-13 | 2011-07-07 | Panasonic Corp | パルスファイバレーザ装置、及び、画像表示装置、加工装置 |
US20090314752A1 (en) | 2008-05-14 | 2009-12-24 | Applied Materials, Inc. | In-situ monitoring for laser ablation |
US8135275B2 (en) | 2008-05-29 | 2012-03-13 | Heismann Fred L | Measuring chromatic dispersion in an optical wavelength channel of an optical fiber link |
GB2460648A (en) | 2008-06-03 | 2009-12-09 | M Solv Ltd | Method and apparatus for laser focal spot size control |
JP2010015135A (ja) | 2008-06-03 | 2010-01-21 | Hitachi Cable Ltd | 光ファイバ固定溝付き光導波路基板およびその製造方法、その製造方法に用いる型、ならびに、その光導波路基板を含む光電気混載モジュール |
TWI374398B (en) | 2008-06-16 | 2012-10-11 | Univ Nat Cheng Kung | Method and apparatus for forming 3-d image |
US8861910B2 (en) | 2008-06-20 | 2014-10-14 | The General Hospital Corporation | Fused fiber optic coupler arrangement and method for use thereof |
CN102124383B (zh) | 2008-06-25 | 2013-10-16 | 科拉克蒂夫高科技公司 | 用于光纤部件的高功率运行的能量消散封装 |
US8139951B2 (en) | 2008-06-26 | 2012-03-20 | Igor Samartsev | Fiber-optic long-haul transmission system |
IT1391337B1 (it) | 2008-08-07 | 2011-12-05 | Univ Roma | Sistema integrato di localizzazione radioelettrica basato su forma d'onda rumorose |
WO2010016136A1 (ja) | 2008-08-07 | 2010-02-11 | 富士通株式会社 | フィルム基材の加工方法及びフィルム基材の加工装置 |
US9285541B2 (en) * | 2008-08-21 | 2016-03-15 | Nlight Photonics Corporation | UV-green converting fiber laser using active tapers |
US8873134B2 (en) | 2008-08-21 | 2014-10-28 | Nlight Photonics Corporation | Hybrid laser amplifier system including active taper |
US8711471B2 (en) * | 2008-08-21 | 2014-04-29 | Nlight Photonics Corporation | High power fiber amplifier with stable output |
US9158070B2 (en) | 2008-08-21 | 2015-10-13 | Nlight Photonics Corporation | Active tapers with reduced nonlinearity |
KR20100045675A (ko) | 2008-10-24 | 2010-05-04 | 삼성전자주식회사 | 표시 장치 |
JP5301955B2 (ja) * | 2008-11-13 | 2013-09-25 | オリンパス株式会社 | 欠陥修正装置 |
KR20110089356A (ko) | 2008-11-19 | 2011-08-05 | 어플라이드 머티어리얼스, 인코포레이티드 | 레이저-스크라이빙 도구 구조 |
CN102292187B (zh) | 2008-11-21 | 2015-12-09 | 普雷茨特两合公司 | 用于监控要在工件上实施的激光加工过程的方法和装置以及具有这种装置的激光加工头 |
US8270786B2 (en) | 2008-11-21 | 2012-09-18 | Ofs Fitel, Llc | Optical fiber mode couplers |
US8317413B2 (en) | 2008-11-25 | 2012-11-27 | Gooch and Hoosego PLC | Packaging for fused fiber devices for high power applications |
CN101435918B (zh) | 2008-11-26 | 2010-04-14 | 北京交通大学 | 一种激光二极管列阵/面阵的尾纤耦合输出装置 |
US7839901B2 (en) | 2008-12-03 | 2010-11-23 | Ipg Photonics Corporation | High power fiber laser system with cladding light stripper |
KR100982308B1 (ko) * | 2008-12-12 | 2010-09-15 | 삼성모바일디스플레이주식회사 | 레이저 시스템 |
WO2010087391A1 (ja) | 2009-02-02 | 2010-08-05 | 三鷹光器株式会社 | 非接触表面形状測定方法およびその装置 |
US8526110B1 (en) | 2009-02-17 | 2013-09-03 | Lockheed Martin Corporation | Spectral-beam combining for high-power fiber-ring-laser systems |
CN102414621B (zh) | 2009-03-06 | 2014-12-10 | 麦克罗尼克迈达塔有限责任公司 | 扫掠期间剂量可变的转子光学部件成像方法及系统 |
US8275007B2 (en) | 2009-05-04 | 2012-09-25 | Ipg Photonics Corporation | Pulsed laser system with optimally configured saturable absorber |
CN102549377A (zh) | 2009-05-21 | 2012-07-04 | 三星重工业株式会社 | 平板扫描模块,平板扫描系统,用于测量平板扫描模块对准误差的夹具,和利用该夹具测量平板扫描模块对准误差的方法 |
TWI523720B (zh) | 2009-05-28 | 2016-03-01 | 伊雷克托科學工業股份有限公司 | 應用於雷射處理工件中的特徵的聲光偏轉器及相關雷射處理方法 |
DE102009026526A1 (de) | 2009-05-28 | 2010-12-02 | Robert Bosch Gmbh | Lasereinrichtung |
US8340485B2 (en) * | 2009-05-29 | 2012-12-25 | Corning Cable Systems Llc | Laser-shaped optical fibers along with optical assemblies and methods therefor |
US8622625B2 (en) | 2009-05-29 | 2014-01-07 | Corning Incorporated | Fiber end face void closing method, a connectorized optical fiber assembly, and method of forming same |
JP5136521B2 (ja) | 2009-06-29 | 2013-02-06 | 株式会社日立プラントテクノロジー | レーザ狭開先溶接装置および溶接方法 |
DE102009027348A1 (de) * | 2009-06-30 | 2011-01-05 | Trumpf Laser Gmbh + Co. Kg | Optische Strahlweiche |
JP5345459B2 (ja) * | 2009-07-14 | 2013-11-20 | 日本電信電話株式会社 | ローカル信号光入出力方法及びローカル信号光入出力装置 |
US8593725B2 (en) | 2009-08-04 | 2013-11-26 | Jds Uniphase Corporation | Pulsed optical source |
US8184363B2 (en) * | 2009-08-07 | 2012-05-22 | Northrop Grumman Systems Corporation | All-fiber integrated high power coherent beam combination |
US20110080476A1 (en) | 2009-10-02 | 2011-04-07 | Lasx Industries, Inc. | High Performance Vision System for Part Registration |
US8755649B2 (en) | 2009-10-19 | 2014-06-17 | Lockheed Martin Corporation | In-line forward/backward fiber-optic signal analyzer |
CN101733561B (zh) | 2009-11-04 | 2012-04-11 | 中国科学院长春光学精密机械与物理研究所 | 激光修调薄膜电阻中快速精确调整焦面的方法 |
CN102136669A (zh) | 2009-12-08 | 2011-07-27 | 韩国电子通信研究院 | 双包层光纤装置 |
US8251475B2 (en) | 2009-12-14 | 2012-08-28 | Eastman Kodak Company | Position detection with two-dimensional sensor in printer |
JP5095865B2 (ja) | 2009-12-21 | 2012-12-12 | シャープ株式会社 | アクティブマトリクス基板及びそれを備えた表示パネル、並びにアクティブマトリクス基板の製造方法 |
JP5729298B2 (ja) | 2009-12-28 | 2015-06-03 | 東レ株式会社 | 導電積層体およびそれを用いてなるタッチパネル |
MX2012009047A (es) | 2010-02-04 | 2012-11-12 | Echelon Laser Systems Lp | Sistema y metodo de grabado por laser. |
US8452145B2 (en) | 2010-02-24 | 2013-05-28 | Corning Incorporated | Triple-clad optical fibers and devices with triple-clad optical fibers |
EP2412298B1 (en) * | 2010-03-03 | 2014-11-26 | Toyo Seikan Group Holdings, Ltd. | Laterally emitting device and method of manufacturing same |
US20110305256A1 (en) | 2010-03-05 | 2011-12-15 | TeraDiode, Inc. | Wavelength beam combining based laser pumps |
GB201004544D0 (en) | 2010-03-18 | 2010-05-05 | J P Imaging Ltd | Improvements in or relating to printing |
TWI549900B (zh) | 2010-03-23 | 2016-09-21 | 坎畢歐科技公司 | 奈米結構透明導體之圖案化蝕刻 |
CN102844942B (zh) | 2010-03-30 | 2015-06-10 | 株式会社藤仓 | 光强度监控电路以及光纤激光器系统 |
JP2011215286A (ja) | 2010-03-31 | 2011-10-27 | Brother Industries Ltd | 走査光学装置 |
KR20110109771A (ko) | 2010-03-31 | 2011-10-06 | 광주과학기술원 | Ito필름 패터닝 방법, 가요성 표시장치 제조 방법 및 가요성 표시장치 |
US8243764B2 (en) * | 2010-04-01 | 2012-08-14 | Tucker Derek A | Frequency conversion of a laser beam using a partially phase-mismatched nonlinear crystal |
JP2011221191A (ja) * | 2010-04-07 | 2011-11-04 | Sumitomo Electric Ind Ltd | ビーム均一化装置および光加工装置 |
DE102010003750A1 (de) * | 2010-04-08 | 2011-10-13 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren und Anordnung zum Verändern der Strahlprofilcharakteristik eines Laserstrahls mittels einer Mehrfachclad-Faser |
FI20100144A0 (fi) * | 2010-04-09 | 2010-04-09 | Salcomp Oyj | Järjestely ja menetelmä kapasitiivisen virran vähentämiseksi |
DE112011101288T5 (de) | 2010-04-12 | 2013-02-07 | Lockheed Martin Corporation | Strahldiagnostik- und Rückkopplungssystem sowie Verfahren für spektralstrahlkombinierteLaser |
JP2011237782A (ja) * | 2010-04-13 | 2011-11-24 | Sumitomo Electric Ind Ltd | 光分岐素子及びそれを含む光通信システム |
CN102792219B (zh) | 2010-04-16 | 2014-12-03 | 夏普株式会社 | 显示装置 |
WO2011146407A2 (en) | 2010-05-16 | 2011-11-24 | Fianium, Inc. | Tunable pulse width laser |
CN201684018U (zh) * | 2010-05-26 | 2010-12-29 | 赵明 | 可控弯曲角度的医疗激光光纤套管 |
WO2011148429A1 (ja) | 2010-05-28 | 2011-12-01 | 信越ポリマー株式会社 | 透明導電膜及びこれを用いた導電性基板 |
US20110297229A1 (en) | 2010-06-02 | 2011-12-08 | University Of Delaware | Integrated concentrating photovoltaics |
US9052521B2 (en) | 2010-06-07 | 2015-06-09 | Prysm, Inc. | Optical component calibration system for laser-based display device |
US8254417B2 (en) | 2010-06-14 | 2012-08-28 | Ipg Photonics Corporation | Fiber laser system with controllably alignable optical components thereof |
CN101907742B (zh) * | 2010-06-21 | 2012-07-11 | 哈尔滨工程大学 | 基于多芯保偏光纤的阵列式光镊及其制备方法 |
EP2586108B1 (en) | 2010-06-28 | 2015-01-21 | Megaopto Co., Ltd. | Laser apparatus |
US8027555B1 (en) | 2010-06-30 | 2011-09-27 | Jds Uniphase Corporation | Scalable cladding mode stripper device |
US8509577B2 (en) * | 2010-07-02 | 2013-08-13 | St. Jude Medical, Inc. | Fiberoptic device with long focal length gradient-index or grin fiber lens |
DE102011078927B4 (de) | 2010-07-12 | 2019-01-31 | Carl Zeiss Sms Ltd. | Verfahren zum Korrigieren von Fehlern einer photolithographischen Maske |
EP2598942A4 (en) | 2010-07-30 | 2014-07-23 | Univ Leland Stanford Junior | CONDUCTIVE FILMS |
CN201783759U (zh) | 2010-08-24 | 2011-04-06 | 上海市激光技术研究所 | 光纤激光或碟片激光动态聚焦扫描点轨迹加工系统 |
US8740432B2 (en) | 2010-08-25 | 2014-06-03 | Colorado State University Research Foundation | Transmission of laser pulses with high output beam quality using step-index fibers having large cladding |
KR101405414B1 (ko) | 2010-08-26 | 2014-06-11 | 한국전자통신연구원 | 광섬유 커플러, 그의 제조방법 및 능동 광모듈 |
JP5694711B2 (ja) | 2010-09-09 | 2015-04-01 | 株式会社アマダミヤチ | Mopa方式ファイバレーザ加工装置及び励起用レーザダイオード電源装置 |
US8433161B2 (en) | 2010-09-21 | 2013-04-30 | Textron Systems Corporation | All glass fiber laser cladding mode stripper |
US8554037B2 (en) | 2010-09-30 | 2013-10-08 | Raydiance, Inc. | Hybrid waveguide device in powerful laser systems |
JP2012096286A (ja) | 2010-10-07 | 2012-05-24 | Sumitomo Heavy Ind Ltd | レーザ照射装置、レーザ照射方法、及び絶縁膜形成装置 |
AU2011314185B2 (en) | 2010-10-14 | 2014-10-02 | Fibersonics Inc. | Interferometer systems |
FI125306B (fi) | 2010-10-21 | 2015-08-31 | Rofin Sinar Laser Gmbh | Paketoitu kuituoptinen komponentti ja menetelmä sen valmistamiseksi |
JP4667535B1 (ja) | 2010-11-02 | 2011-04-13 | 株式会社フジクラ | 増幅用光ファイバ、及び、それを用いた光ファイバ増幅器及び共振器 |
WO2012075509A2 (en) | 2010-12-03 | 2012-06-07 | Ofs Fitel, Llc | Large-mode-area optical fibers with bend compensation |
US9507084B2 (en) * | 2010-12-03 | 2016-11-29 | Ofs Fitel, Llc | Single-mode, bend-compensated, large-mode-area optical fibers designed to accomodate simplified fabrication and tighter bends |
US9375974B2 (en) | 2010-12-09 | 2016-06-28 | Edison Welding Institute, Inc. | Polygonal laser scanner and imaging system for coating removal |
US20120148823A1 (en) | 2010-12-13 | 2012-06-14 | Innovation & Infinity Global Corp. | Transparent conductive structure and method of making the same |
US20120156458A1 (en) | 2010-12-16 | 2012-06-21 | Innovation & Infinity Global Corp. | Diffusion barrier structure, transparent conductive structure and method for making the same |
EP2656137B1 (en) * | 2010-12-21 | 2015-09-16 | OFS Fitel, LLC | Multicore collimator |
US8835804B2 (en) * | 2011-01-04 | 2014-09-16 | Nlight Photonics Corporation | Beam homogenizer |
US10095016B2 (en) | 2011-01-04 | 2018-10-09 | Nlight, Inc. | High power laser system |
JP5713688B2 (ja) | 2011-01-12 | 2015-05-07 | 株式会社キーエンス | レーザー加工システム及びレーザー加工装置 |
KR101180289B1 (ko) * | 2011-01-13 | 2012-09-07 | 연세대학교 산학협력단 | 하이브리드 광결정광섬유 및 이의 제조방법. |
CN102176104B (zh) | 2011-01-18 | 2013-02-27 | 南京大学 | 可调谐时域双光脉冲发生方法与发生器 |
TW201237478A (en) * | 2011-01-24 | 2012-09-16 | Miyachi Corp | Optical fiber and laser machining apparatus therewith |
RU2553796C2 (ru) | 2011-01-28 | 2015-06-20 | Аркам Аб | Способ изготовления трехмерного тела |
DE102011003686A1 (de) | 2011-02-07 | 2012-08-09 | Trumpf Laser- Und Systemtechnik Gmbh | Laserbearbeitungsvorrichtung |
US9014220B2 (en) | 2011-03-10 | 2015-04-21 | Coherent, Inc. | High-power CW fiber-laser |
US8903211B2 (en) | 2011-03-16 | 2014-12-02 | Ofs Fitel, Llc | Pump-combining systems and techniques for multicore fiber transmissions |
WO2012141847A1 (en) | 2011-04-15 | 2012-10-18 | Bae Systems Information And Electronic Systems Integration Inc. | Integrated parameter monitoring in a fiber laser/amplifier |
GB2490143B (en) | 2011-04-20 | 2013-03-13 | Rolls Royce Plc | Method of manufacturing a component |
GB2490354A (en) | 2011-04-28 | 2012-10-31 | Univ Southampton | Laser with axially-symmetric beam profile |
DE102011075213B4 (de) * | 2011-05-04 | 2013-02-21 | Trumpf Laser Gmbh + Co. Kg | Laserbearbeitungssystem mit einem in seiner Brillanz einstellbaren Bearbeitungslaserstrahl |
US8974900B2 (en) | 2011-05-23 | 2015-03-10 | Carestream Health, Inc. | Transparent conductive film with hardcoat layer |
US9175183B2 (en) | 2011-05-23 | 2015-11-03 | Carestream Health, Inc. | Transparent conductive films, methods, and articles |
WO2012165389A1 (ja) | 2011-05-31 | 2012-12-06 | 古河電気工業株式会社 | レーザ装置および加工装置 |
US9170367B2 (en) * | 2011-06-16 | 2015-10-27 | Lawrence Livermore National Security, Llc | Waveguides having patterned, flattened modes |
JP5688333B2 (ja) | 2011-06-23 | 2015-03-25 | 富士フイルム株式会社 | ポリマーフィルム、位相差フィルム、偏光板、液晶表示装置、Rth発現剤及びメロシアニン系化合物 |
JP5621930B2 (ja) | 2011-06-29 | 2014-11-12 | パナソニック株式会社 | ファイバレーザ |
US20130005139A1 (en) | 2011-06-30 | 2013-01-03 | Guardian Industries Corp. | Techniques for manufacturing planar patterned transparent contact and/or electronic devices including same |
US8537871B2 (en) | 2011-07-11 | 2013-09-17 | Nlight Photonics Corporation | Fiber cladding light stripper |
US8804233B2 (en) * | 2011-08-09 | 2014-08-12 | Ofs Fitel, Llc | Fiber assembly for all-fiber delivery of high energy femtosecond pulses |
US8774236B2 (en) | 2011-08-17 | 2014-07-08 | Veralas, Inc. | Ultraviolet fiber laser system |
JP5993456B2 (ja) * | 2011-08-22 | 2016-09-14 | コーニング インコーポレイテッド | 制御された屈折率摂動を有する光ファイバーの製造方法 |
FR2980277B1 (fr) | 2011-09-20 | 2013-10-11 | Commissariat Energie Atomique | Fibre optique microstructuree a grand coeur et a mode fondamental aplati, et procede de conception de celle ci, application a la microfabrication par laser |
JP5385356B2 (ja) | 2011-10-21 | 2014-01-08 | 株式会社片岡製作所 | レーザ加工機 |
EP2587564A1 (en) | 2011-10-27 | 2013-05-01 | Merck Patent GmbH | Selective etching of a matrix comprising silver nanowires or carbon nanotubes |
DE102011085840B3 (de) | 2011-11-07 | 2013-03-28 | Trumpf Laser Gmbh + Co. Kg | Vorrichtung zum Einstellen eines Strahlprofils, Laserbearbeitungsmaschine und Verfahren zur Herstellung der Vorrichtung |
DE102011119319A1 (de) | 2011-11-24 | 2013-05-29 | Slm Solutions Gmbh | Optische Bestrahlungsvorrichtung für eine Anlage zur Herstellung von dreidimensionalen Werkstücken durch Bestrahlen von Pulverschichten eines Rohstoffpulvers mit Laserstrahlung |
RU2572900C1 (ru) | 2011-11-29 | 2016-01-20 | Конинклейке Филипс Н.В. | Волновод |
WO2013114376A1 (en) * | 2012-01-31 | 2013-08-08 | Asymmetric Medical Ltd. | Configuring optical fibers to emit radiation by bending |
US9339890B2 (en) | 2011-12-13 | 2016-05-17 | Hypertherm, Inc. | Optimization and control of beam quality for material processing |
US9322989B2 (en) | 2011-12-14 | 2016-04-26 | Ofs Fitel, Llc | Optical fiber with distributed bend compensated filtering |
US9158066B2 (en) * | 2011-12-14 | 2015-10-13 | Ofs Fitel, Llc | Bend compensated filter fiber |
JP6279484B2 (ja) | 2011-12-19 | 2018-02-14 | アイピージー フォトニクス コーポレーション | 980nm高出力シングルモードファイバポンプレーザシステム |
CN104094362B (zh) | 2011-12-21 | 2017-01-18 | 3M创新有限公司 | 基于银纳米线的透明导电涂层的激光图案化 |
US9911550B2 (en) | 2012-03-05 | 2018-03-06 | Apple Inc. | Touch sensitive device with multiple ablation fluence values |
JP5216151B1 (ja) | 2012-03-15 | 2013-06-19 | 株式会社フジクラ | 光ファイバコンバイナ、及び、それを用いたレーザ装置 |
CN102621628A (zh) | 2012-03-22 | 2012-08-01 | 华中科技大学 | 一种环形掺杂层光纤、其制备方法及包含该光纤的激光器 |
US9200899B2 (en) | 2012-03-22 | 2015-12-01 | Virtek Vision International, Inc. | Laser projection system and method |
WO2013145840A1 (ja) | 2012-03-28 | 2013-10-03 | 株式会社フジクラ | ファイバ光学系、及び、その製造方法 |
US8983259B2 (en) * | 2012-05-04 | 2015-03-17 | Raytheon Company | Multi-function beam delivery fibers and related system and method |
US9904002B2 (en) | 2012-05-11 | 2018-02-27 | Empire Technology Development Llc | Transparent illumination panels |
US8947768B2 (en) | 2012-05-14 | 2015-02-03 | Jds Uniphase Corporation | Master oscillator—power amplifier systems |
RU2528287C2 (ru) | 2012-05-15 | 2014-09-10 | Открытое Акционерное Общество "Научно-Исследовательский Институт Технического Стекла" | Способ лазерной резки хрупких неметаллических материалов и устройство для его осуществления |
IL220027A (en) * | 2012-05-28 | 2017-01-31 | Rafael Advanced Defense Systems Ltd | A method for improving clarity and maneuvering modes of action in multi-action fiber optics |
US9484706B1 (en) | 2012-06-12 | 2016-11-01 | Nlight, Inc. | Tapered core fiber manufacturing methods |
US8953914B2 (en) | 2012-06-26 | 2015-02-10 | Corning Incorporated | Light diffusing fibers with integrated mode shaping lenses |
US8754829B2 (en) | 2012-08-04 | 2014-06-17 | Paul Lapstun | Scanning light field camera and display |
US8849078B2 (en) | 2012-09-24 | 2014-09-30 | Ipg Photonics Corporation | High power laser system with multiport circulator |
WO2014059331A1 (en) | 2012-10-12 | 2014-04-17 | Thorlabs, Inc. | Compact, low dispersion, and low aberration adaptive optics scanning system |
DE102012219074A1 (de) | 2012-10-19 | 2014-04-24 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Laserschneidmaschine und Verfahren zum Schneiden von Werkstücken unterschiedlicher Dicke |
JP6342912B2 (ja) | 2012-11-08 | 2018-06-13 | ディーディーエム システムズ, インコーポレイテッド | 金属構成要素の加法的製造および修復 |
ITVR20120231A1 (it) | 2012-11-20 | 2014-05-21 | Sisma Spa | Macchina per produrre oggetti tridimensionali a partire da materiali in polvere |
JP5974854B2 (ja) * | 2012-11-26 | 2016-08-23 | 富士通株式会社 | はんだ接合装置及びはんだ接合方法 |
US10314745B2 (en) | 2012-11-30 | 2019-06-11 | Amo Development, Llc | Automatic centration of a surgical pattern on the apex of a curved patient interface |
FI125512B (en) | 2012-12-11 | 2015-11-13 | Rofin Sinar Laser Gmbh | Fiber optic mode mixer and method of manufacture thereof |
CN103056513B (zh) | 2012-12-14 | 2014-12-10 | 武汉锐科光纤激光器技术有限责任公司 | 一种激光加工系统 |
US8948218B2 (en) | 2012-12-19 | 2015-02-03 | Ipg Photonics Corporation | High power fiber laser system with distributive mode absorber |
EP2938498B1 (en) | 2012-12-28 | 2020-07-08 | Shenzhen Pu Ying Innovation Technology Corporation Limited | Multi-purpose printer |
GB2511923B (en) | 2013-01-28 | 2018-10-03 | Lumentum Operations Llc | A cladding light stripper and method of manufacturing |
KR101974163B1 (ko) | 2013-02-21 | 2019-09-02 | 엔라이트 인크. | 비침습적 레이저 패터닝 |
US9842665B2 (en) | 2013-02-21 | 2017-12-12 | Nlight, Inc. | Optimization of high resolution digitally encoded laser scanners for fine feature marking |
CN105026971B (zh) | 2013-02-28 | 2019-02-19 | Ipg光子公司 | 低模式大功率光纤合束器 |
SI2972528T1 (en) * | 2013-03-15 | 2018-03-30 | Nlight, Inc. | Wrapped non-circular and non-elastic fibers and devices that they use |
US20140265049A1 (en) | 2013-03-15 | 2014-09-18 | Matterfab Corp. | Cartridge for an additive manufacturing apparatus and method |
CA2906400C (en) | 2013-03-15 | 2019-03-26 | Rolls-Royce Corporation | Repair of gas turbine engine components |
CN103173760A (zh) | 2013-03-18 | 2013-06-26 | 张翀昊 | 利用第二道激光束提高3d打印金属件的致密性的方法 |
DE102013205029A1 (de) | 2013-03-21 | 2014-09-25 | Siemens Aktiengesellschaft | Verfahren zum Laserschmelzen mit mindestens einem Arbeitslaserstrahl |
EP2784045A1 (en) | 2013-03-29 | 2014-10-01 | Osseomatrix | Selective laser sintering/melting process |
US8988669B2 (en) | 2013-04-23 | 2015-03-24 | Jds Uniphase Corporation | Power monitor for optical fiber using background scattering |
EP2988904B1 (en) | 2013-04-26 | 2023-08-23 | Raytheon Technologies Corporation | Selective laser melting system |
CA2910559C (en) | 2013-04-29 | 2021-06-01 | Mark S. Zediker | Devices, systems, and methods for three-dimensional printing |
WO2014180870A1 (en) | 2013-05-06 | 2014-11-13 | Vrije Universiteit Brussel | Effective structural health monitoring |
TWI543830B (zh) | 2013-05-10 | 2016-08-01 | 財團法人工業技術研究院 | 視覺誤差校正方法 |
US9496683B1 (en) * | 2013-05-17 | 2016-11-15 | Nlight, Inc. | Wavelength locking multi-mode diode lasers with core FBG |
JP5914411B2 (ja) | 2013-05-17 | 2016-05-11 | 日本電信電話株式会社 | 光ファイバ側方入出射装置および方法 |
CN103293594A (zh) | 2013-06-28 | 2013-09-11 | 中国科学院西安光学精密机械研究所 | 大模场石英传能光纤 |
DE102013215362B4 (de) | 2013-08-05 | 2015-09-03 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Verfahren, Computerprogrammprodukt und Vorrichtung zum Bestimmen einer Einschweißtiefe beim Laserschweißen |
US9128259B2 (en) | 2013-08-16 | 2015-09-08 | Coherent, Inc. | Fiber-coupled laser with adjustable beam-parameter-product |
DE102013217598A1 (de) | 2013-09-04 | 2015-03-05 | MTU Aero Engines AG | Vorrichtung zur Laser-Materialbearbeitung |
GB201317974D0 (en) | 2013-09-19 | 2013-11-27 | Materialise Nv | System and method for calibrating a laser scanning system |
US20150096963A1 (en) | 2013-10-04 | 2015-04-09 | Gerald J. Bruck | Laser cladding with programmed beam size adjustment |
CN103490273A (zh) | 2013-10-10 | 2014-01-01 | 武汉锐科光纤激光器技术有限责任公司 | 一种高功率光纤传输系统 |
US9442246B2 (en) | 2013-10-14 | 2016-09-13 | Futurewei Technologies, Inc. | System and method for optical fiber |
CN103521920B (zh) | 2013-10-16 | 2015-09-30 | 江苏大学 | 一种无需吹送辅助气体的激光加工装置及方法 |
DE102013017792A1 (de) | 2013-10-28 | 2015-04-30 | Cl Schutzrechtsverwaltungs Gmbh | Verfahren zum Herstellen eines dreidimensionalen Bauteils |
CN103606803A (zh) | 2013-11-07 | 2014-02-26 | 北京工业大学 | 一种用于高功率光纤激光器的光纤包层光剥离器 |
US9214781B2 (en) | 2013-11-21 | 2015-12-15 | Lockheed Martin Corporation | Fiber amplifier system for suppression of modal instabilities and method |
US10328685B2 (en) | 2013-12-16 | 2019-06-25 | General Electric Company | Diode laser fiber array for powder bed fabrication or repair |
US10532556B2 (en) | 2013-12-16 | 2020-01-14 | General Electric Company | Control of solidification in laser powder bed fusion additive manufacturing using a diode laser fiber array |
DE102013226298A1 (de) | 2013-12-17 | 2015-06-18 | MTU Aero Engines AG | Belichtung bei generativer Fertigung |
EP2893994B1 (en) | 2014-01-14 | 2020-07-15 | General Electric Technology GmbH | Method for manufacturing a metallic or ceramic component by selective laser melting additive manufacturing |
JP6349410B2 (ja) * | 2014-02-26 | 2018-06-27 | ビエン チャン, | 可変ビームパラメータ積を有するマルチビームレーザ配列のためのシステムおよび方法 |
US9435964B2 (en) | 2014-02-26 | 2016-09-06 | TeraDiode, Inc. | Systems and methods for laser systems with variable beam parameter product |
US9366887B2 (en) | 2014-02-26 | 2016-06-14 | TeraDiode, Inc. | Systems and methods for laser systems with variable beam parameter product utilizing thermo-optic effects |
DE102014203711A1 (de) | 2014-02-28 | 2015-09-03 | MTU Aero Engines AG | Erzeugung von Druckeigenspannungen bei generativer Fertigung |
US10343237B2 (en) | 2014-02-28 | 2019-07-09 | Ipg Photonics Corporation | System and method for laser beveling and/or polishing |
EP2921285B1 (en) | 2014-03-21 | 2018-05-02 | British Telecommunications public limited company | Printed apparatus comprising a 3D printed thermionic device and method and apparatus for its manufacture |
WO2015146591A1 (ja) | 2014-03-27 | 2015-10-01 | プライムアースEvエナジー 株式会社 | レーザ溶接装置、レーザ溶接方法及び電池ケース |
JP6359316B2 (ja) * | 2014-03-31 | 2018-07-18 | 三菱重工業株式会社 | 三次元積層装置及び三次元積層方法 |
JP6254036B2 (ja) | 2014-03-31 | 2017-12-27 | 三菱重工業株式会社 | 三次元積層装置及び三次元積層方法 |
US20150283613A1 (en) | 2014-04-02 | 2015-10-08 | Arcam Ab | Method for fusing a workpiece |
JP2015206993A (ja) | 2014-04-09 | 2015-11-19 | 住友電気工業株式会社 | グレーティング製造装置およびグレーティング製造方法 |
WO2015173026A2 (en) * | 2014-05-14 | 2015-11-19 | Koninklijke Philips N.V. | A light emitting device |
US20160016369A1 (en) | 2014-05-21 | 2016-01-21 | University Of South Carolina | Novel Additive Manufacturing-Based Electric Poling Process of PVDF Polymer for Piezoelectric Device Applications |
US10069271B2 (en) | 2014-06-02 | 2018-09-04 | Nlight, Inc. | Scalable high power fiber laser |
US10618131B2 (en) | 2014-06-05 | 2020-04-14 | Nlight, Inc. | Laser patterning skew correction |
US9397466B2 (en) | 2014-07-11 | 2016-07-19 | Nlight, Inc. | High power chirally coupled core optical amplification systems and methods |
CN105720463B (zh) | 2014-08-01 | 2021-05-14 | 恩耐公司 | 光纤和光纤传输的激光器中的背向反射保护与监控 |
EP3183108B1 (en) | 2014-08-20 | 2020-12-09 | Etxe-Tar, S.A. | Method and system for additive manufacturing using a light beam |
JP6640094B2 (ja) * | 2014-08-28 | 2020-02-05 | 古河電気工業株式会社 | レーザ光照射装置 |
TWI526797B (zh) | 2014-09-02 | 2016-03-21 | 三緯國際立體列印科技股份有限公司 | 立體列印裝置的校正裝置以及校正方法 |
US9638867B2 (en) | 2014-10-06 | 2017-05-02 | Corning Incorporated | Skew managed multi-core optical fiber interconnects |
WO2016058624A1 (de) * | 2014-10-13 | 2016-04-21 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Optische anordnung mit einer kopplungseinrichtung und faserlaseranordnung sowie verfahren zum bearbeiten eines werkstücks unter verwendung einer solchenoptischen anordnung |
US9634462B2 (en) | 2014-10-15 | 2017-04-25 | Nlight, Inc. | Slanted FBG for SRS suppression |
JP5919356B2 (ja) * | 2014-10-15 | 2016-05-18 | 株式会社アマダホールディングス | レーザ光による板金の加工方法及びこれを実行するレーザ加工装置 |
EP3210063A4 (en) * | 2014-10-23 | 2018-06-20 | Coractive High-Tech Inc. | Optical fiber assembly with beam shaping component |
US9778433B2 (en) * | 2014-10-27 | 2017-10-03 | Commscope Technologies Llc | Splice module for fiber blade |
US10112262B2 (en) | 2014-10-28 | 2018-10-30 | General Electric Company | System and methods for real-time enhancement of build parameters of a component |
TWM504425U (zh) * | 2014-11-14 | 2015-07-01 | Wistron Neweb Corp | 具有定位層之金屬圖案結構 |
CN110757796B (zh) | 2014-11-24 | 2022-10-11 | 添加剂工业有限公司 | 用于通过增材制造生产物品的设备和方法 |
CN104475970B (zh) | 2014-12-01 | 2016-06-29 | 大族激光科技产业集团股份有限公司 | 一种激光设备及激光扫描振镜阵列的校正方法 |
US10048661B2 (en) | 2014-12-17 | 2018-08-14 | General Electric Company | Visualization of additive manufacturing process data |
US9397464B2 (en) * | 2014-12-19 | 2016-07-19 | Lumentum Operations Llc | Fiber laser assembly and method of generating light |
TWI564099B (zh) | 2014-12-24 | 2017-01-01 | 財團法人工業技術研究院 | 複合光束產生裝置及其用於粉體熔融或燒結的方法 |
US20160187646A1 (en) | 2014-12-29 | 2016-06-30 | Jonathan S. Ehrmann | High-speed optical scanning systems and methods |
EP3045300A1 (en) | 2015-01-15 | 2016-07-20 | Airbus Operations GmbH | Stiffening component and method for manufacturing a stiffening component |
US9837783B2 (en) | 2015-01-26 | 2017-12-05 | Nlight, Inc. | High-power, single-mode fiber sources |
CN104570363B (zh) * | 2015-02-03 | 2018-06-01 | 大族激光科技产业集团股份有限公司 | 一种高斯激光束整形方法和装置及精密激光微孔加工装置 |
DE102015103127A1 (de) | 2015-03-04 | 2016-09-08 | Trumpf Laser- Und Systemtechnik Gmbh | Bestrahlungssystem für eine Vorrichtung zur generativen Fertigung |
CN104759623B (zh) | 2015-03-10 | 2017-06-23 | 清华大学 | 利用电子束‑激光复合扫描的增材制造装置 |
EP3067132A1 (en) | 2015-03-11 | 2016-09-14 | SLM Solutions Group AG | Method and apparatus for producing a three-dimensional work piece with thermal focus shift compensation of the laser |
EP3153273A4 (en) | 2015-03-23 | 2018-05-23 | Technology Research Association for Future Additive Manufacturing | Laser heating control mechanism, laser heating control method, laser heating control program, and three-dimensional molding device |
US10050404B2 (en) * | 2015-03-26 | 2018-08-14 | Nlight, Inc. | Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss |
US9325151B1 (en) * | 2015-03-27 | 2016-04-26 | Ofs Fitel, Llc | Systems and techniques for compensation for the thermo-optic effect in active optical fibers |
GB201505458D0 (en) | 2015-03-30 | 2015-05-13 | Renishaw Plc | Additive manufacturing apparatus and methods |
US9667025B2 (en) | 2015-04-06 | 2017-05-30 | Bae Systems Information And Electronic Systems Integration Inc. | System and method for increasing power emitted from a fiber laser |
RU2611738C2 (ru) | 2015-04-08 | 2017-02-28 | Иван Владимирович Мазилин | Способ нанесения и лазерной обработки теплозащитного покрытия (варианты) |
US11022760B2 (en) | 2015-04-29 | 2021-06-01 | Nlight, Inc. | Portable industrial fiber optic inspection scope |
US10246742B2 (en) | 2015-05-20 | 2019-04-02 | Quantum-Si Incorporated | Pulsed laser and bioanalytic system |
EP3308202B2 (en) * | 2015-06-09 | 2024-10-16 | Corelase OY | Laser processing apparatus and method and an optical component therefor |
GB201510220D0 (en) | 2015-06-11 | 2015-07-29 | Renishaw Plc | Additive manufacturing apparatus and method |
US9804326B2 (en) * | 2015-06-23 | 2017-10-31 | Corning Incorporated | Optical fiber for multimode and single-mode transmission |
CN104979748B (zh) | 2015-06-26 | 2018-04-27 | 吉林大学 | 飞秒激光扫描功率调控装置和方法、飞秒激光加工系统 |
US10520671B2 (en) | 2015-07-08 | 2019-12-31 | Nlight, Inc. | Fiber with depressed central index for increased beam parameter product |
CN104999670B (zh) | 2015-08-25 | 2017-05-10 | 长春理工大学 | 一种多光束激光干涉跨尺度3d打印系统及方法 |
CN107924985B (zh) | 2015-08-31 | 2022-01-18 | 皇家飞利浦有限公司 | 基于电活性聚合物的致动器和传感器设备 |
CN105290610A (zh) | 2015-09-11 | 2016-02-03 | 深圳市生生电子设备有限公司 | 一种激光雕刻机光路对焦装置 |
US10768433B2 (en) * | 2015-09-24 | 2020-09-08 | Nlight, Inc. | Beam parameter product (bpp) control by varying fiber-to-fiber angle |
US10207489B2 (en) | 2015-09-30 | 2019-02-19 | Sigma Labs, Inc. | Systems and methods for additive manufacturing operations |
US10843266B2 (en) | 2015-10-30 | 2020-11-24 | Seurat Technologies, Inc. | Chamber systems for additive manufacturing |
US9917410B2 (en) | 2015-12-04 | 2018-03-13 | Nlight, Inc. | Optical mode filter employing radially asymmetric fiber |
CN105383060B (zh) | 2015-12-07 | 2017-10-17 | 济南鲁洋科技有限公司 | 一种3d打印供料、助熔及助晶整平一体化装置 |
US10295820B2 (en) | 2016-01-19 | 2019-05-21 | Nlight, Inc. | Method of processing calibration data in 3D laser scanner systems |
WO2017136831A1 (en) | 2016-02-05 | 2017-08-10 | Nufern | Mode mixing optical fibers and methods and systems using the same |
DE102016001355B4 (de) | 2016-02-08 | 2022-03-24 | Primes GmbH Meßtechnik für die Produktion mit Laserstrahlung | Verfahren und Vorrichtung zur Analyse von Laserstrahlen in Anlagen für generative Fertigung |
WO2017161334A1 (en) | 2016-03-18 | 2017-09-21 | Nlight, Inc. | Spectrally multiplexing diode pump modules to improve brightness |
JP6114431B1 (ja) | 2016-04-01 | 2017-04-12 | 株式会社アマダホールディングス | レーザ加工機 |
DE112017001892B4 (de) | 2016-04-06 | 2024-07-18 | Panasonic Corporation of North America (n.d.Ges.d. Staates Delaware) | Lasersystem mit optischen Faserstrukturen und Verfahren zum Variieren von Laserstrahlprofilen |
US10114172B2 (en) | 2016-06-20 | 2018-10-30 | Ofs Fitel, Llc | Multimode beam combiner |
CN106180712A (zh) | 2016-07-19 | 2016-12-07 | 梁春永 | 一种双光源金属粉末三维打印系统及打印方法 |
CN206010148U (zh) | 2016-07-21 | 2017-03-15 | 成都福誉科技有限公司 | 一种均匀控制激光功率的系统 |
US10214833B1 (en) | 2016-07-22 | 2019-02-26 | National Technology & Engineering Solutions Of Sandia, Llc | Additive manufacturing of crystalline materials |
EP3493941A1 (en) * | 2016-08-04 | 2019-06-12 | SPI Lasers UK Limited | Apparatus and method for laser processing a material |
DE202016004237U1 (de) | 2016-08-17 | 2016-08-23 | Kredig GmbH | Positioniereinrichtung |
CN106312567B (zh) | 2016-08-26 | 2019-04-12 | 长春理工大学 | 具有激光焦点自动跟随的激光辅助正交微切削装置及方法 |
US10673197B2 (en) * | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Fiber-based optical modulator |
US10673199B2 (en) * | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Fiber-based saturable absorber |
US10684487B2 (en) * | 2016-09-29 | 2020-06-16 | Nlight, Inc. | Frequency-converted optical beams having adjustable beam characteristics |
US10673198B2 (en) * | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Fiber-coupled laser with time varying beam characteristics |
US20180217412A1 (en) * | 2016-09-29 | 2018-08-02 | Nlight, Inc. | Multi-wavelength fiber laser |
US10730785B2 (en) | 2016-09-29 | 2020-08-04 | Nlight, Inc. | Optical fiber bending mechanisms |
US10732439B2 (en) | 2016-09-29 | 2020-08-04 | Nlight, Inc. | Fiber-coupled device for varying beam characteristics |
US10668537B2 (en) * | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Systems for and methods of temperature control in additive manufacturing |
US10690928B2 (en) * | 2016-09-29 | 2020-06-23 | Nlight, Inc. | Methods of and systems for heat deposition in additive manufacturing |
US10663768B2 (en) * | 2016-09-29 | 2020-05-26 | Nlight, Inc. | Fiber optical beam delivery device producing selectable intensity profiles |
US10646963B2 (en) * | 2016-09-29 | 2020-05-12 | Nlight, Inc. | Use of variable beam parameters to control a melt pool |
US10668567B2 (en) * | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Multi-operation laser tooling for deposition and material processing operations |
US10649241B2 (en) * | 2016-09-29 | 2020-05-12 | Nlight, Inc. | Multi-function semiconductor and electronics processing |
US10656427B2 (en) * | 2016-09-29 | 2020-05-19 | Nlight, Inc. | Multicore fiber-coupled optical probing techniques |
US10663742B2 (en) * | 2016-09-29 | 2020-05-26 | Nlight, Inc. | Method and system for cutting a material using a laser having adjustable beam characteristics |
US10670872B2 (en) * | 2016-09-29 | 2020-06-02 | Nlight, Inc. | All-fiber optical beam switch |
US10705348B2 (en) * | 2016-09-29 | 2020-07-07 | Nlight, Inc. | Optical power density control in fiber-coupled laser |
US10682726B2 (en) * | 2016-09-29 | 2020-06-16 | Nlight, Inc. | Beam modification structures and methods of modifying optical beam characteristics using the beam modification structures |
US20180281108A1 (en) * | 2016-09-29 | 2018-10-04 | Nlight, Inc. | Dynamic aspect ratio rectangular laser beams |
US10663769B2 (en) * | 2016-09-29 | 2020-05-26 | Nlight, Inc. | Systems and methods for modifying beam characteristics |
US10668535B2 (en) * | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Method of forming three-dimensional objects |
US10677984B2 (en) * | 2016-09-29 | 2020-06-09 | Nlight, Inc. | Production of temporally apparent intensity distribution by rapid perturbation of variable beam characteristics optical fiber |
US10661391B2 (en) * | 2016-09-29 | 2020-05-26 | Nlight, Inc. | Method of forming pores in three-dimensional objects |
US10656440B2 (en) * | 2016-09-29 | 2020-05-19 | Nlight, Inc. | Fiber optical beam delivery device producing output exhibiting intensity distribution profile having non-zero ellipticity |
US10423015B2 (en) * | 2016-09-29 | 2019-09-24 | Nlight, Inc. | Adjustable beam characteristics |
US10751834B2 (en) * | 2016-09-29 | 2020-08-25 | Nlight, Inc. | Optical beam delivery device formed of optical fibers configured for beam divergence or mode coupling control |
US10739621B2 (en) * | 2016-09-29 | 2020-08-11 | Nlight, Inc. | Methods of and systems for materials processing using optical beams |
US10661342B2 (en) * | 2016-09-29 | 2020-05-26 | Nlight, Inc. | Additive manufacturing systems and methods for the same |
DE102016222186B3 (de) | 2016-11-11 | 2018-04-12 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren zum Kalibrieren zweier Scannereinrichtungen jeweils zur Positionierung eines Laserstrahls in einem Bearbeitungsfeld und Bearbeitungsmaschine zum Herstellen von dreidimensionalen Bauteilen durch Bestrahlen von Pulverschichten |
DE102017219559A1 (de) | 2017-11-03 | 2019-05-09 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren zur Vermessung eines Basiselements einer Bauzylinder-Anordnung, mit Ablenkung eines Messlaserstrahls durch eine Scanner-Optik |
-
2017
- 2017-05-26 US US15/607,399 patent/US10423015B2/en active Active
- 2017-05-26 US US15/607,410 patent/US10663767B2/en active Active
- 2017-05-26 JP JP2019517064A patent/JP7186695B2/ja active Active
- 2017-05-26 US US15/607,411 patent/US10295845B2/en active Active
- 2017-05-26 CN CN201780060512.9A patent/CN109791252B/zh active Active
- 2017-05-26 WO PCT/US2017/034848 patent/WO2018063452A1/en unknown
- 2017-05-26 EP EP17729637.3A patent/EP3519871A1/en active Pending
- 2017-05-26 KR KR1020197011680A patent/KR102498030B1/ko active IP Right Grant
- 2017-09-29 TW TW106133704A patent/TWI695196B/zh not_active IP Right Cessation
-
2018
- 2018-01-29 WO PCT/US2018/015710 patent/WO2018217242A1/en active Application Filing
- 2018-01-29 WO PCT/US2018/015768 patent/WO2018217243A1/en active Application Filing
- 2018-01-30 WO PCT/US2018/015895 patent/WO2018217245A1/en active Application Filing
- 2018-01-30 US US15/883,480 patent/US10877220B2/en active Active
- 2018-01-31 EP EP22183134.0A patent/EP4151338A1/en active Pending
- 2018-01-31 US US15/885,563 patent/US10656330B2/en active Active
- 2018-01-31 EP EP18703678.5A patent/EP3630407B1/en active Active
- 2018-01-31 CN CN201880048886.3A patent/CN110944787B/zh active Active
- 2018-01-31 WO PCT/US2018/016305 patent/WO2018217247A1/en active Application Filing
- 2018-01-31 WO PCT/US2018/016288 patent/WO2018217246A1/en active Application Filing
- 2018-03-16 EP EP18805152.8A patent/EP3631917A4/en active Pending
- 2018-03-16 WO PCT/US2018/023012 patent/WO2018217279A1/en unknown
- 2018-03-16 WO PCT/US2018/023009 patent/WO2018217278A1/en active Application Filing
- 2018-03-16 CN CN201880048577.6A patent/CN110959232B/zh active Active
- 2018-03-23 WO PCT/US2018/023963 patent/WO2018217283A1/en active Application Filing
- 2018-03-23 WO PCT/US2018/023944 patent/WO2018217282A1/en active Application Filing
- 2018-03-25 WO PCT/US2018/024227 patent/WO2018217285A1/en active Application Filing
- 2018-03-25 EP EP18805019.9A patent/EP3631544A4/en active Pending
- 2018-03-27 WO PCT/US2018/024510 patent/WO2018217290A1/en active Application Filing
- 2018-03-27 WO PCT/US2018/024641 patent/WO2018217293A1/en active Application Filing
- 2018-03-28 EP EP18806154.3A patent/EP3631543B1/en active Active
- 2018-03-28 WO PCT/US2018/024904 patent/WO2018217298A1/en unknown
- 2018-03-28 EP EP18805628.7A patent/EP3631919B1/en active Active
- 2018-03-28 JP JP2019565363A patent/JP7167066B2/ja active Active
- 2018-03-28 JP JP2019565416A patent/JP7431582B2/ja active Active
- 2018-03-28 EP EP18804952.2A patent/EP3630410A4/en active Pending
- 2018-03-28 WO PCT/US2018/024971 patent/WO2018217307A1/en active Application Filing
- 2018-03-28 WO PCT/US2018/024907 patent/WO2018217299A1/en active Application Filing
- 2018-03-28 WO PCT/US2018/024955 patent/WO2018217304A1/en unknown
- 2018-03-28 WO PCT/US2018/024958 patent/WO2018217305A1/en active Application Filing
- 2018-03-28 CN CN201880047649.5A patent/CN110914728B/zh active Active
- 2018-03-28 WO PCT/US2018/024974 patent/WO2018217308A1/en active Application Filing
- 2018-03-28 WO PCT/US2018/024954 patent/WO2018217303A1/en unknown
- 2018-03-28 EP EP18805726.9A patent/EP3630456A4/en active Pending
- 2018-03-28 CN CN201880047412.7A patent/CN110892304B/zh active Active
- 2018-03-28 WO PCT/US2018/024889 patent/WO2018217296A1/en unknown
- 2018-03-28 WO PCT/US2018/024944 patent/WO2018217301A1/en unknown
- 2018-03-28 WO PCT/US2018/024908 patent/WO2018217300A1/en unknown
- 2018-03-28 JP JP2019565390A patent/JP7481846B2/ja active Active
- 2018-03-28 EP EP18805491.0A patent/EP3631576B1/en active Active
- 2018-03-28 CN CN201880047650.8A patent/CN110914725B/zh active Active
- 2018-03-28 WO PCT/US2018/024959 patent/WO2018217306A1/en unknown
- 2018-03-28 EP EP18805369.8A patent/EP3631915A4/en active Pending
- 2018-03-28 JP JP2019565380A patent/JP7295037B2/ja active Active
- 2018-03-28 CN CN202111497013.0A patent/CN114185176A/zh active Pending
- 2018-03-28 CN CN201880047410.8A patent/CN110915078B/zh active Active
- 2018-03-28 EP EP18806895.1A patent/EP3631547A4/en active Pending
- 2018-03-28 EP EP18805725.1A patent/EP3631916A4/en active Pending
- 2018-03-28 EP EP18806084.2A patent/EP3631546A4/en active Pending
- 2018-03-28 CN CN201880047416.5A patent/CN110892593B/zh active Active
- 2018-03-28 CN CN201880047422.0A patent/CN110914015B/zh active Active
- 2018-03-28 WO PCT/US2018/024899 patent/WO2018217297A1/en unknown
- 2018-03-28 WO PCT/US2018/024976 patent/WO2018217309A1/en active Application Filing
- 2018-03-28 WO PCT/US2018/024953 patent/WO2018217302A1/en active Application Filing
- 2018-03-28 CN CN202310066799.3A patent/CN115963601A/zh active Pending
-
2019
- 2019-05-02 US US16/402,147 patent/US10732440B2/en active Active
-
2020
- 2020-07-06 US US16/921,531 patent/US11886052B2/en active Active
- 2020-12-18 US US17/127,746 patent/US20210286200A1/en not_active Abandoned
-
2022
- 2022-06-30 US US17/854,933 patent/US11886053B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102149508A (zh) * | 2008-09-12 | 2011-08-10 | 法国液体空气焊接公司 | 利用通过衍射光学部件修改激光束品质因子的装置的激光切割方法和设备 |
CN101934432A (zh) * | 2010-09-14 | 2011-01-05 | 哈尔滨工业大学 | 激光与电阻点焊的同轴复合焊接方法 |
CN104136952A (zh) * | 2011-12-09 | 2014-11-05 | Jds尤尼弗思公司 | 改变激光束的光束参数积 |
CN102941412A (zh) * | 2012-10-15 | 2013-02-27 | 华中科技大学 | 一种激光焊接焊缝孔洞控制方法及装置 |
CN106458697A (zh) * | 2014-01-30 | 2017-02-22 | 恩耐公司 | 旋转的圆形芯部光纤 |
WO2015189883A1 (ja) * | 2014-06-09 | 2015-12-17 | 株式会社日立製作所 | レーザ溶接方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108931535A (zh) * | 2018-09-11 | 2018-12-04 | 大连理工大学 | 一种激光增材制造气孔缺陷在线监测方法 |
CN108931535B (zh) * | 2018-09-11 | 2021-01-05 | 大连理工大学 | 一种激光增材制造气孔缺陷在线监测方法 |
CN113478082A (zh) * | 2021-07-15 | 2021-10-08 | 南京航空航天大学 | 一种用于蒙皮-桁条的柔性激光焊接方法及装置 |
CN113857492A (zh) * | 2021-10-09 | 2021-12-31 | 华中科技大学鄂州工业技术研究院 | 一种自扰动激光增材制造方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110944787B (zh) | 利用可变光束参数控制熔池来形成制品的方法和光束系统 | |
US10646963B2 (en) | Use of variable beam parameters to control a melt pool | |
US10663742B2 (en) | Method and system for cutting a material using a laser having adjustable beam characteristics | |
US10705348B2 (en) | Optical power density control in fiber-coupled laser | |
US10661391B2 (en) | Method of forming pores in three-dimensional objects | |
US10690928B2 (en) | Methods of and systems for heat deposition in additive manufacturing | |
US20180281108A1 (en) | Dynamic aspect ratio rectangular laser beams | |
US10739621B2 (en) | Methods of and systems for materials processing using optical beams | |
US10677984B2 (en) | Production of temporally apparent intensity distribution by rapid perturbation of variable beam characteristics optical fiber | |
US10668567B2 (en) | Multi-operation laser tooling for deposition and material processing operations | |
WO2018217277A1 (en) | Methods of and systems for heat deposition in additive manufacturing | |
WO2018217292A1 (en) | Method and system for cutting a material using a laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |