WO2021125162A1 - ビーム品質制御装置、及びこれを用いるレーザ装置 - Google Patents
ビーム品質制御装置、及びこれを用いるレーザ装置 Download PDFInfo
- Publication number
- WO2021125162A1 WO2021125162A1 PCT/JP2020/046734 JP2020046734W WO2021125162A1 WO 2021125162 A1 WO2021125162 A1 WO 2021125162A1 JP 2020046734 W JP2020046734 W JP 2020046734W WO 2021125162 A1 WO2021125162 A1 WO 2021125162A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- beam quality
- light
- temperature
- stress
- Prior art date
Links
- 238000003908 quality control method Methods 0.000 title claims abstract description 227
- 239000013307 optical fiber Substances 0.000 claims abstract description 405
- 230000002093 peripheral effect Effects 0.000 claims abstract description 66
- 238000009826 distribution Methods 0.000 claims abstract description 47
- 230000003321 amplification Effects 0.000 claims description 137
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 137
- 230000005284 excitation Effects 0.000 claims description 66
- 239000011347 resin Substances 0.000 claims description 32
- 229920005989 resin Polymers 0.000 claims description 32
- 238000003860 storage Methods 0.000 claims description 24
- 230000008602 contraction Effects 0.000 claims description 18
- 239000012530 fluid Substances 0.000 claims description 17
- 238000005253 cladding Methods 0.000 abstract description 11
- 239000011247 coating layer Substances 0.000 description 85
- 241000269800 Percidae Species 0.000 description 54
- 239000000835 fiber Substances 0.000 description 20
- 230000001902 propagating effect Effects 0.000 description 20
- 239000011521 glass Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 230000007613 environmental effect Effects 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000005281 excited state Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/0675—Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/0014—Monitoring arrangements not otherwise provided for
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06791—Fibre ring lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10069—Memorized or pre-programmed characteristics, e.g. look-up table [LUT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/1067—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using pressure or deformation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2383—Parallel arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0626—Energy control of the laser beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08018—Mode suppression
- H01S3/08022—Longitudinal modes
- H01S3/08027—Longitudinal modes by a filter, e.g. a Fabry-Perot filter is used for wavelength setting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08018—Mode suppression
- H01S3/0804—Transverse or lateral modes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08018—Mode suppression
- H01S3/0804—Transverse or lateral modes
- H01S3/08045—Single-mode emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094049—Guiding of the pump light
- H01S3/094053—Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/09408—Pump redundancy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1618—Solid materials characterised by an active (lasing) ion rare earth ytterbium
Definitions
- the present invention relates to a beam quality control device and a laser device using the same.
- Laser devices are used in various fields such as laser processing fields and medical fields because they have excellent light-collecting properties, high power density, and can obtain light that becomes a small beam spot.
- a laser processing machine used in the laser processing field will be described.
- the laser machine when a laser machine cuts an object with a laser beam which is an emitted light, the laser machine increases the power density of the laser light and increases the spot diameter of the laser light in order to improve the cutting accuracy. It is preferable to make it small and irradiate a narrow range of the object with a laser beam.
- the laser processing machine when a laser processing machine welds an object with a laser beam, the laser processing machine reduces the density of the laser and reduces the spot diameter of the laser light in order to improve the uniformity of welding. It is preferable to increase the size and irradiate a wide range of the object with the laser beam.
- changing the beam quality of the laser beam can be mentioned as one of the means for changing the diameter of the beam spot according to the processing application.
- Patent Document 1 and Patent Document 2 disclose a laser device that changes the beam quality.
- a wedge-shaped glass member is inserted and removed between an optical fiber on the upstream side that emits laser light and an optical fiber on the downstream side that has a plurality of optical waveguide layers.
- a lens that deflects the laser beam is arranged between the optical fiber on the upstream side and the optical fiber on the downstream side.
- the upstream optical fiber and the downstream optical fiber are optically coupled in space. Further, the incident position of the laser beam incident on the downstream optical fiber may change depending on the glass member or the lens, and the mode of the light propagating on the downstream optical fiber may change. That is, the beam quality of the laser light propagating in the optical fiber on the downstream side can change.
- the mode of light is controlled in space.
- a slight change in the position or orientation of the glass member or lens causes a large change in the position where the laser beam is incident on the optical fiber on the downstream side.
- Such a slight change in the position or orientation of the glass member or lens can easily occur due to vibration, a change in environmental temperature, or the like. Therefore, the beam quality of the light propagating in the optical fiber on the downstream side tends to change significantly unintentionally due to vibration, a change in the environmental temperature, or the like. Therefore, it is difficult for the laser devices described in Patent Document 1 and Patent Document 2 to obtain light having a desired beam quality.
- an object of the present invention is to provide a beam quality control device capable of obtaining light of a desired beam quality, and a laser device using the same.
- an optical fiber having a core and a clad surrounding the outer peripheral surface of the core is in surface contact with at least a part of the outer peripheral surface of the optical fiber, and the heat is different from the coefficient of thermal expansion of the clad.
- a stress applying unit having an expansion coefficient and a temperature control unit for controlling the temperature of the stress applying unit are provided.
- the distribution of the external force applied to the clad by the stress applying unit is the circumference of the clad. It is characterized in that it contracts or expands due to a change in temperature by the temperature control unit so as to be non-uniform in the direction.
- the stress applying unit contracts or expands.
- the stress applying portion contracts or expands, the external force applied to the clad by the stress applying portion changes non-uniformly in the circumferential direction of the clad.
- the distribution of stress applied to the core becomes non-uniform in the circumferential direction of the core, the distribution of the refractive index of the core changes, and the mode of light propagating through the core can change.
- the stress applied to the core is controlled by the temperature, so that light of a desired beam quality can be obtained.
- the beam quality control device since the beam quality is controlled in the optical fiber, the glass member and the lens are arranged in the space even if the vibration or the change in the environmental temperature occurs as described above. Unintentional changes in beam quality can be suppressed as compared to the case where the beam quality is controlled by. Therefore, the beam quality control device can obtain light of a desired beam quality.
- the stress applying unit is arranged on the main surface and is thermally connected to the stress applying unit and the temperature control unit, and between the temperature control unit and the stress applying unit. It is preferable to further include a plate-shaped heat conductive member that conducts heat.
- the heat of the temperature control unit When the temperature control unit generates heat, the heat of the temperature control unit is easily conducted over the entire heat conductive member in the plane direction of the heat conductive member, and the heat is easily transferred from the heat conductive member to the stress applying portion on the main surface of the heat conductive member. It can be easily conducted. Further, when the temperature control unit absorbs heat, the heat of the stress applying unit can be easily conducted over the entire heat conductive member in the plane direction of the heat conductive member, and can be easily conducted from the stress applying unit to the heat conductive member. As a result, the temperature of the stress-applied portion is likely to change, and the magnitude of stress in the stress-applied portion is likely to change depending on the temperature of the stress-applied portion. Therefore, according to this beam quality control device, the magnitude of the stress of the stress applying portion can be easily changed as compared with the case where the heat conductive member is not arranged.
- the temperature control unit has a Perche element that is thermally connected to the heat conductive member.
- the temperature of one surface of the Perche element rises and the temperature of the other surface falls.
- the heat conductive member is arranged on one surface, heat is transferred from one surface to the stress applying portion via the heat conductive member, and the temperature of the stress applying portion is raised by the Perche element.
- the temperature of one surface decreases and the temperature of the other surface increases.
- the heat conductive member is arranged on one surface, heat is transferred from the stress applying portion to the Pelche element via the heat conductive member, and the temperature of the stress applying portion is lowered by the Pelche element.
- the temperature of the stress applying portion changes depending on the direction of the current flowing in the Pelche element, and the magnitude of the stress of the stress applying portion can be controlled by the temperature of the stress applying portion. Therefore, according to this beam quality control device, the magnitude of stress in the stress applying portion can be controlled by the Perche element.
- the temperature control unit includes a heat pump and a flow path unit through which a fluid whose temperature is changed by the heat pump flows, penetrates the heat conductive member, and changes the temperature of the stress applying unit by the fluid. Is preferable.
- the heat pump controls the temperature of the fluid
- the temperature of the stress applying portion changes depending on the fluid via the heat conductive member, and the magnitude of the stress of the stress applying portion can be controlled by the temperature of the stress applying portion. Therefore, according to this beam quality control device, the magnitude of stress in the stress applying portion can be controlled by the fluid flowing through the flow path portion.
- the stress applying portion may be made of a resin having a non-uniform thickness between a contact surface that comes into surface contact with the outer peripheral surface of the optical fiber and an outer peripheral surface of the stress applying portion that is away from the contact surface. preferable.
- the resin shrinks to apply tensile stress to the clad
- the resin is used. Is preferably expanded to apply compressive stress to the clad.
- the temperature control unit can control the shrinkage or expansion of the resin by controlling the temperature of the resin, and can control the stress by the shrinkage or expansion of the resin.
- the beam quality control device further includes a frame member that surrounds at least a part of the stress applying portion, and the coefficient of thermal expansion of the frame member is smaller than the coefficient of thermal expansion of the stress applying portion.
- the stress applying portion when the stress applying portion expands, the spread toward the frame member is suppressed by the frame member, so that the clad can be pressed with a stronger external force toward the clad as compared with the case where the frame member is not arranged.
- the stress applying portion can apply a large compressive stress to the clad as compared with the case where the frame member is not arranged.
- the frame member is preferably made of metal.
- the stress applying portion includes a plate member and a pair of wall members erected on the plate member and sandwiching the optical fiber, and the plate member contracts in the alignment direction of the pair of wall portions.
- the pair of wall members expand and apply compressive stress to the clad by contraction of the plate member, and release the compressive stress by expansion of the plate member.
- the pair of wall members can apply compressive stress, which is stress, to the clad from both sides in the radial direction of the clad by shrinkage, and release the compressive stress by expansion.
- compressive stress which is stress
- the distribution of stress applied to the core becomes non-uniform in the circumferential direction of the core, and the mode of light propagating through the core may change. Therefore, even in this beam quality control device, light of a desired beam quality can be obtained.
- the laser device of the present invention includes any of the beam quality control devices described above and a light source that emits light, and it is preferable that the light propagates to the core of the optical fiber.
- the laser device can irradiate the object with beam quality light controlled by the beam quality control device. Further, as described above, in this beam quality control device, light of a desired beam quality can be obtained even if vibration or a change in environmental temperature occurs. Therefore, light of the desired beam quality can illuminate the object.
- the laser device of the present invention includes any of the beam quality control devices described above and an excitation light source that emits excitation light, and the optical fiber is amplified by an active element excited by the excitation light. It is preferable that the light to be produced propagates.
- Examples of the laser device having the above configuration include a resonator type laser device and an MO-PA (Master Oscillator Power Amplifier) type laser device.
- the laser device can irradiate the object with beam quality light controlled by the beam quality control device.
- this beam quality control device light of a desired beam quality can be obtained even if vibration or a change in environmental temperature occurs. Therefore, light of the desired beam quality can illuminate the object.
- the laser device is provided on one side of the amplification optical fiber to which the active element is added and the amplification optical fiber, and emits light having at least a part of the wavelength of the light amplified by the active element.
- the beam quality control device further includes an exit portion that emits light transmitted through the second FBG toward the object, and the beam quality control device is the second FBG from a connection point of the optical fiber for amplification and the optical fiber provided with the second FBG. It may be arranged between the farthest portion of the above and the exit portion.
- the beam quality control device can easily bring the beam quality of the light emitted from the emitting portion closer to the desired beam quality as compared with the case where the beam quality control device is arranged other than between the second FBG and the emitting portion.
- the laser device may further include a resonator in which the light amplified by the active element excited by the excitation light resonates, and the beam quality control device may be arranged inside the resonator. ..
- the beam quality control device is arranged inside the resonator, and the light reciprocates inside the resonator.
- the light propagates through the core each time it reciprocates inside the cavity, and the mode of light in the optical fiber can change each time it reciprocates, resulting in light of the desired beam quality.
- the beam quality can be significantly changed as compared with the case where the beam quality control apparatus is arranged outside the resonator, and light of a desired beam quality can be obtained.
- the resonance shaker is provided on one side of an amplification optical fiber to which the active element is added and an amplification optical fiber, and is a light having a wavelength of at least a part of the light amplified by the active element.
- the beam quality control device is arranged between the connection point of the optical fiber for amplification and the optical fiber provided with the first FBG and the portion of the first FBG farthest from the connection point. Is preferable.
- the power density of light between the connection point and the part of the first FBG farthest from the connection point is lower than the power density at the other part between the first FBG and the second FBG. Therefore, when the beam quality control device is arranged between the connection point and the relevant portion, heat generation in the optical fiber of the beam quality control device can be suppressed as compared with the case where the beam quality control device is arranged in the other portion. Therefore, damage to the beam quality control device can be suppressed.
- the resonator is provided on one side of the amplification optical fiber to which the active element is added and the amplification optical fiber, and emits light having at least a part of the wavelength of the light amplified by the active element.
- the amplification optical fiber may be the optical fiber in the beam quality control device.
- the resonator is provided on one side of the amplification optical fiber to which the active element is added and the amplification optical fiber, and emits light having at least a part of the wavelength of the light amplified by the active element.
- the beam quality control device may be arranged between a connection point of the optical fiber for amplification and the optical fiber provided with the second FBG and a portion of the second FBG farthest from the connection point. preferable.
- the power density of light between the connection point and the part of the second FBG farthest from the connection point is higher than the power density of light at other parts between the first FBG and the second FBG. Therefore, when the beam quality control device is arranged between the connection point and the relevant portion, the beam quality may change more significantly than when the beam quality control device is arranged in the other portion, and the light emitted from the exit portion. It can be easier to bring the beam quality of the above to the desired beam quality.
- the first FBG may be provided on the optical fiber in the beam quality control device.
- the second FBG may be provided on the optical fiber in the beam quality control device.
- the laser device further includes a storage unit that stores information on the beam quality of the light emitted from the laser device, and the temperature control unit stores the temperature of the stress applying unit in the storage unit. It is preferable to control the temperature based on information.
- the temperature control unit controls the temperature of the stress application unit based on the information stored in the storage unit, and when the temperature of the stress application unit becomes the temperature based on this information, the laser
- the beam quality of the light emitted from the device 1 can be the beam quality stored in the storage unit.
- the beam-quality light stored in the storage unit can illuminate the object.
- the present invention it is possible to provide a beam quality control device capable of obtaining light of a desired beam quality, and a laser device using the beam quality control device.
- the optical fiber for amplification is an optical fiber of a beam quality control apparatus. It is a figure which shows the laser apparatus in 5th Embodiment. It is a figure which shows the laser apparatus in 6th Embodiment. It is a figure which shows the laser apparatus in 7th Embodiment.
- FIG. 1 is a diagram showing a laser device 1 according to the present invention.
- the laser apparatus 1 of the present embodiment includes a plurality of light sources 2, an optical fiber 21 that propagates light emitted from each light source 2, and a delivery optical fiber that is incident with light from the optical fiber 21.
- the main configuration includes a beam quality control device 70 including a combiner 25, an optical fiber 50 into which light from the delivery optical fiber 10 is incident, and an emission unit 60 provided at an end portion of the optical fiber 50.
- FIG. 2 is a diagram showing each light source 2 in the laser device 1.
- each of the light sources 2 of the present embodiment is provided with an excitation light source 40 that emits excitation light and an active element that is excited by the excitation light when the excitation light emitted from the excitation light source 40 is incident.
- the amplification optical fiber 30 is provided as a main configuration. Further, each of the light sources 2 is for injecting excitation light into the optical fiber 31 connected to one end of the amplification optical fiber 30, the first FBG (Fibber Bragg Gratings) 33 provided in the optical fiber 31, and the optical fiber 31.
- FBG Fiber Bragg Gratings
- the combiner 35, the optical fiber 32 connected to the other end of the amplification optical fiber 30, and the second FBG 34 provided in the optical fiber 32 are further provided as the main configurations.
- a Fabry-Perot type resonator 200 is configured from the amplification optical fiber 30, the first FBG 33, and the second FBG 34. Therefore, the light source 2 of the present embodiment is a resonator type fiber laser device.
- the excitation light source 40 is composed of a plurality of laser diodes 41.
- the excitation light source 40 emits excitation light having a wavelength that excites the active element added to the amplification optical fiber 30.
- Each laser diode 41 of the excitation light source 40 is connected to the excitation light optical fiber 45.
- the light emitted from the laser diode 41 propagates through the excitation light optical fiber 45 optically connected to each laser diode 41.
- Examples of the excitation light optical fiber 45 include a multimode fiber. In this case, the excitation light propagates through the excitation light optical fiber 45 as multimode light.
- the wavelength of the excitation light is, for example, 915 nm.
- the amplification optical fiber 30 surrounds the core and the outer peripheral surface of the core over the entire circumference, and surrounds the inner clad that adheres to the outer peripheral surface of the core without gaps and the outer peripheral surface of the inner clad over the entire circumference, and the inner clad. It has an outer clad that covers the outer peripheral surface of the outer clad without a gap, and a coating layer that surrounds the outer peripheral surface of the outer clad over the entire circumference and adheres to the outer peripheral surface of the inner clad without a gap.
- the core of the amplification optical fiber 30 is made of quartz to which ytterbium (Yb) is added as an active element, and an element such as germanium that increases the refractive index is added as needed.
- Yb ytterbium
- a rare earth element other than ytterbium may be added as an active element according to the wavelength of the amplified light.
- rare earth elements include thulium (Tm), cerium (Ce), neodymium (Nd), europium (Eu), erbium (Er) and the like.
- the active element bismuth (Bi) and the like can be mentioned in addition to the rare earth element.
- pure quartz to which no dopant is added can be mentioned.
- An element that lowers the refractive index such as fluorine (F) and boron (B), may be added to the inner clad.
- a material constituting the outer clad of the amplification optical fiber 30 for example, a resin having a refractive index lower than that of the inner clad can be mentioned.
- a material constituting the coating layer of the amplification optical fiber 30, for example, a resin different from the resin constituting the outer clad can be mentioned.
- the amplification optical fiber 30 is a single-mode fiber, but the core diameter is the same as that of the multimode fiber so that high-power signal light can propagate through the core of the amplification optical fiber 30. It may be configured to propagate the light of the mode. Further, the amplification optical fiber 30 may be a multimode fiber.
- the optical fiber 31 has the same configuration as the amplification optical fiber 30 except that no active element is added to the core.
- the optical fiber 31 is connected to one end of the amplification optical fiber 30. Therefore, the core of the amplification optical fiber 30 and the core of the optical fiber 31 are optically coupled, and the inner clad of the amplification optical fiber 30 and the inner clad of the optical fiber 31 are optically coupled.
- the first FBG 33 is provided in the core of the optical fiber 31 connected to one side of the amplification optical fiber 30.
- the first FBG 33 is configured by repeating a portion where the refractive index increases at regular intervals along the longitudinal direction of the optical fiber 31. By adjusting this period, the first FBG 33 reflects light in a predetermined wavelength band among the light emitted by the active element of the excited optical fiber 30 for amplification.
- the core of the optical fiber 45 for excitation light is connected to the inner cladding of the optical fiber 31.
- the excitation optical fiber 45 connected to the excitation light source 40 and the inner clad of the amplification optical fiber 30 are optically coupled via the inner clad of the optical fiber 31.
- the optical fiber 36 is connected to the optical fiber 31.
- the optical fiber 36 is, for example, an optical fiber having a core having the same diameter as the core of the optical fiber 31.
- One end of the optical fiber 36 is connected to the optical fiber 31, and the core of the optical fiber 36 and the core of the optical fiber 31 are optically coupled.
- a heat conversion unit E is connected to the side opposite to the combiner 35 side of the optical fiber 36.
- the optical fiber 32 has a core similar to the core of the amplification optical fiber 30 except that no active element is added, a clad having the same configuration as the inner clad of the amplification optical fiber 30, and an amplification optical fiber 30. It has a coating layer having a structure similar to that of the coating layer of.
- the clad of the optical fiber 32 surrounds the outer peripheral surface of the core of the optical fiber 32 over the entire circumference, and is in close contact with the outer peripheral surface of the core without a gap.
- the coating layer of the optical fiber 32 surrounds the outer peripheral surface of the clad of the optical fiber 32 over the entire circumference, and is in close contact with the outer peripheral surface of the clad without a gap.
- the optical fiber 32 is connected to the other end of the amplification optical fiber 30, and the core of the amplification optical fiber 30 and the core of the optical fiber 32 are optically coupled.
- the second FBG 34 is provided in the core of the optical fiber 32 connected to the other side of the amplification optical fiber 30.
- the second FBG 34 is configured by repeating a portion where the refractive index increases at regular intervals along the longitudinal direction of the optical fiber 32. With this configuration, the second FBG 34 reflects light having at least a part of the wavelength of the light reflected by the first FBG 33 with a reflectance lower than that of the first FBG 33.
- the optical fiber 21 shown in FIG. 1 is connected to the side opposite to the amplification optical fiber 30 side of the optical fiber 32, and the optical fiber 32 and the optical fiber 21 constitute one optical fiber. By extending the optical fiber 32, a part of the optical fiber 32 may be the optical fiber 21.
- the core of each optical fiber 21 is optically coupled to the core of the delivery optical fiber 10 by a combiner 25.
- the delivery optical fiber 10 is, for example, a multimode fiber in which multimode light propagates.
- the combiner 25 is, for example, a bridge fiber processed into a tapered shape.
- the core of each optical fiber 21 is connected to the end face on the large diameter side of the bridge fiber which is the combiner 25, and the core of the delivery optical fiber 10 is connected to the end face on the small diameter side of the bridge fiber which is the combiner 25. Will be done. In this way, the core of each optical fiber 21 and the core of the delivery optical fiber 10 are optically coupled via the combiner 25.
- the combiner 25 is not limited to the above-mentioned bridge fiber as long as the core of each optical fiber 21 and the core of the delivery optical fiber 10 are optically coupled.
- the core of each optical fiber 21 can be used. It may be directly connected to the core of the delivery optical fiber 10.
- the optical fiber 50 of the beam quality control device 70 is connected to the side opposite to the combiner 25 side of the delivery optical fiber 10, and one optical fiber is formed by the delivery optical fiber 10 and the optical fiber 50.
- a part of the delivery optical fiber 10 may be an optical fiber 50.
- the configuration of the delivery optical fiber 10 is the same as the configuration of the optical fiber 50 described later.
- Light amplified by an active element excited by excitation light propagates from the first FBG 33 to the optical fiber 31, the amplification optical fiber 30, the optical fibers 32, 21, the delivery optical fiber 10, and the optical fiber 50 in the exit portion 60. To do.
- the emitting unit 60 emits the light propagated from the optical fiber 50 to an object or the like.
- the emitting portion 60 is, for example, a glass rod having a diameter larger than the diameter of the core 51 described later of the optical fiber 50.
- the emitting portion 60 may be an end portion of the optical fiber 50, or may be an optical component such as a lens attached to the end portion of the optical fiber 50.
- the resonator 200 is composed of the amplification optical fiber 30, the first FBG33, and the second FBG34. Therefore, the beam quality control device 70 of the present embodiment including the optical fiber 50 is arranged outside the resonator 200.
- An example is shown in which the beam quality control device 70 of the present embodiment is arranged between the connection point of the delivery optical fiber 10 and the optical fiber 50 and the emission unit 60.
- FIG. 3 is a diagram showing a beam quality control device 70.
- the optical fiber 50 of the beam quality control device 70 surrounds the core 51 through which light propagates, the outer peripheral surface of the core 51 over the entire circumference, and the clad 53 that adheres to the outer peripheral surface of the core 51 without gaps, and the outer circumference of the clad 53. It has a coating layer 55 that surrounds the surface over the entire circumference and is in close contact with the outer peripheral surface of the clad 53 without gaps.
- glass is used for the core 51 and the clad 53
- resin is used for the coating layer 55.
- the core 51 has the same configuration as the core of the amplification optical fiber 30 except that no active element is added.
- the clad 53 has the same configuration as the inner clad of the amplification optical fiber 30.
- the coating layer 55 has the same configuration as the coating layer of the amplification optical fiber 30.
- the beam quality control device 70 includes a stress applying unit 80, a temperature control unit 90, a heat conductive member 111, an input unit 113, and a storage unit 115.
- the stress applying portion 80 of the present embodiment is made of, for example, a moisture-curable resin.
- This resin is, for example, a silicone-based resin.
- the heat conductive member 111 is made of, for example, a metal plate member such as copper or aluminum nitride.
- the stress applying portion 80 surrounds the outer peripheral surface of the coating layer 55 over the entire circumference, is in close contact with the outer peripheral surface of the coating layer 55 without gaps, and makes surface contact with the outer peripheral surface. Therefore, the outer peripheral surface of the optical fiber 50 is embedded in the stress applying portion 80.
- the stress applying portion 80 may be in surface contact with at least a part of the outer peripheral surface of the optical fiber 50.
- the thickness of the stress applying portion 80 between the contact surface of the stress applying portion 80 that is in surface contact with the outer peripheral surface of the coating layer 55 and the outer peripheral surface of the stress applying portion 80 that is away from the contact surface is non-uniform. ..
- the distance between the outer peripheral surface of the clad 53 and the outer peripheral surface of the stress applying portion 80 in the radial direction of the optical fiber 50 is not constant but non-uniform.
- the stress applying portion 80 has a semi-elliptical shape and is longer in the plane direction of the heat conductive member 111 than in the thickness direction of the heat conductive member 111.
- the length of the stress applying portion 80 in the plane direction of the heat conductive member 111 is sufficiently longer than the diameter of the optical fiber 50, and the length of the stress applying portion 80 in the thickness direction of the heat conductive member 111 is larger than the diameter of the optical fiber 50. Very long.
- the stress applying portion 80 is arranged on the main surface of the heat conductive member 111 together with the optical fiber 50, and fixes the optical fiber 50 to the heat conductive member 111.
- the stress applying portion 80 surrounds the optical fiber 50 in a part of the total length of the optical fiber 50.
- the temperature control unit 90 includes a temperature control main body unit 91, a power supply 93, and a Perche element 95.
- the temperature control main body 91 for example, an integrated circuit such as a microcontroller, an IC (Integrated Circuit), an LSI (Large-scale Integrated Circuit), an ASIC (Application Specific Integrated Circuit), or an NC (Numerical Control) device can be used. it can. Further, when the NC device is used, the temperature control unit 90 may use a machine learning device or may not use a machine learning device.
- a microcontroller an integrated circuit
- an IC Integrated Circuit
- LSI Large-scale Integrated Circuit
- ASIC Application Specific Integrated Circuit
- NC Genetic Control
- the purpose of the laser device 1 equipped with the beam quality control device 70 is input to the temperature control main body 91 from the input unit 113.
- the temperature control main body 91 accesses the storage unit 115 and reads out the temperature of the stress applying unit 80 according to the application of the laser device 1 from the table stored in the storage unit 115.
- the voltage of the power supply 93 is controlled by the temperature control main body 91 so that the temperature of the stress applying unit 80 becomes the temperature read from the table.
- the power supply 93 applies a voltage to the Pelche element 95.
- the temperature of one surface of the perche element 95 When a current flows through the perche element 95 in a predetermined direction by applying a voltage, the temperature of one surface of the perche element 95, which will be described later, rises and the temperature of the other surface falls. Further, when the voltage is switched and the current flows in the direction opposite to the above, the temperature of one surface of the perche element 95 decreases and the temperature of the other surface increases. The temperature of one surface and the other surface of the Perche element 95 changes depending on the magnitude of the current flowing through the Perche element 95. By changing the magnitude of the current, the degree of change in the temperature of the Pelche element 95 changes. When the magnitude of the electric current is constant, the temperature of the perche element 95 becomes constant. When no current flows, the Pelche element 95 does not generate heat or endothermic.
- a heat conductive member 111 is arranged on one surface of the Perche element 95. As described above, when a current flows through the perche element 95 in a predetermined direction, the temperature of one surface of the perche element 95 rises. In this case, the heat of the Perche element 95 is transferred to the stress applying portion 80 via the heat conductive member 111, and the temperature of the stress applying portion 80 is raised by the Perche element 95. Further, as described above, when the current flows in the direction opposite to the above, the temperature of one surface of the Pelche element 95 on which the heat conductive member 111 is arranged drops. In this case, the heat of the stress applying portion 80 is transferred from the stress applying portion 80 to the Perche element 95 via the heat conductive member 111, and the temperature of the stress applying portion 80 is lowered by the Perche element.
- a stress applying portion 80 is arranged on one surface of the main surface of the heat conductive member 111, and the other surface of the main surface of the heat conductive member 111 is placed on the Perche element 95.
- the heat conductive member 111 is thermally connected to the stress applying portion 80 and the Pelche element 95, and conducts heat between the Pelche element 95 and the stress applying portion 80.
- the heat conductive member 111 conducts the heat generated from the Perche element 95 to the stress applying portion 80.
- the heat conductive member 111 conducts the heat of the stress applying portion 80 to the Perche element 95.
- the coefficient of thermal expansion of the heat conductive member 111 is larger than the coefficient of thermal expansion of the clad 53 and the coefficient of thermal expansion of the stress applying portion 80, and smaller than the coefficient of thermal expansion of the coating layer 55.
- the input unit 113 is operated by an operator who operates the laser device 1.
- the input unit 113 inputs the application of the laser device 1 such as cutting or welding to the temperature control main body unit 91.
- the input unit 113 is a general input device, and is, for example, a pointing device such as a keyboard or a mouse, a button switch, a dial, or the like.
- the input unit 113 may select and input one application from a plurality of applications displayed on the display unit while the operator visually observes a display unit such as a monitor (not shown).
- the input unit 113 may be used by the operator to input various commands for operating the laser device 1.
- the storage unit 115 stores a table showing the relationship between the use of the laser device 1 and the temperature of the stress applying unit 80 corresponding to the use.
- the storage unit 115 is, for example, a memory.
- the coefficient of thermal expansion of the stress applying portion 80 is different from the coefficient of thermal expansion of the clad 53.
- the coefficient of thermal expansion of the stress applying portion 80 will be described as being larger than the coefficient of thermal expansion of the clad 53.
- the coefficient of thermal expansion of the stress applying portion 80 and the coefficient of thermal expansion of the clad 53 are made smaller than the coefficient of thermal expansion of the coating layer 55.
- the stress applying portion 80 When the temperature of the stress applying portion 80 is at a predetermined temperature, the stress applying portion 80 is not contracted or expanded, and stress such as tensile stress or compressive stress is applied to the clad 53 via the coating layer 55. It is in a state where it is not. Further, similarly to the stress applying portion 80, the coating layer 55 is not contracted or expanded under a certain predetermined temperature, and is in a state in which stress such as tensile stress or compressive stress is not applied to the clad 53. .. In such a case, the distribution of the external force applied to the clad 53 by the stress applying portion 80 and the coating layer 55 is in a uniform state in the circumferential direction of the clad 53.
- the predetermined temperature is, for example, the temperature at which the moisture-curable resin, which is the stress-applying portion 80, is cured.
- the heat of the stress applying portion 80 is conducted to the Perche element 95 via the heat conductive member 111.
- the temperature of the stress applying portion 80 drops below the predetermined temperature, and the stress applying portion 80 contracts as compared with the predetermined temperature.
- the outer peripheral surface of the stress applying portion 80 and the inner peripheral surface of the stress applying portion 80 approach each other so that the thickness of the stress applying portion 80 becomes thin.
- the heat of the coating layer 55 is conducted to the Perche element 95 via the stress applying portion 80 and the heat conductive member 111, and the temperature of the coating layer 55 drops below a predetermined temperature. Therefore, the coating layer 55 also shrinks as compared with the predetermined temperature, like the stress applying portion 80.
- the stress applying portion 80 contracts more than the clad 53. Then, as shown in FIG. 4, the stress applying portion 80 can pull the clad 53 on the inner peripheral surface of the stress applying portion 80 via the coating layer 55 to apply tensile stress to the clad 53.
- the coating layer 55 contracts more than the stress applying portion 80 and the clad 53. ..
- the outer peripheral surface of the coating layer 55 is suppressed from shrinking toward the clad 53 by the shrinkage on the inner peripheral surface of the stress applying portion 80. Therefore, the coating layer 55 can pull the clad 53 with a stronger force as compared with the case where the stress applying portion 80 is not arranged.
- the coating layer 55 can apply a large tensile stress to the clad 53 as compared with the case where the stress applying portion 80 is not arranged.
- the heat of the Perche element 95 is conducted to the stress applying portion 80 via the heat conductive member 111.
- the temperature of the stress applying portion 80 rises above a predetermined temperature, and the stress applying portion 80 expands as compared with the predetermined temperature.
- the outer peripheral surface of the stress applying portion 80 and the inner peripheral surface of the stress applying portion 80 are separated from each other so that the thickness of the stress applying portion 80 becomes thicker.
- the heat of the Perche element 95 is also conducted to the coating layer 55 via the heat conductive member 111 and the stress applying portion 80, and the temperature of the coating layer 55 rises above a predetermined temperature. Therefore, the coating layer 55 also expands as compared with the predetermined temperature, like the stress applying portion 80.
- the stress applying portion 80 expands more than the clad 53. Then, as shown in FIG. 5, the stress applying portion 80 can press the clad 53 on the inner peripheral surface of the stress applying portion 80 via the coating layer 55 to apply compressive stress to the clad 53.
- the coating layer 55 expands more than the stress applying portion 80 and the clad 53. To do. In this case, the outer peripheral surface of the coating layer 55 is suppressed from expanding toward the stress applying portion 80 by the expansion on the inner peripheral surface of the stress applying portion 80. Therefore, the coating layer 55 can press the clad 53 with a stronger force than when the stress applying portion 80 is not arranged. As a result, the coating layer 55 can apply a large compressive stress to the clad 53 as compared with the case where the stress applying portion 80 is not arranged.
- the stress applying portion 80 can contract or expand depending on the temperature of the stress applying portion 80, apply a tensile stress which is a stress due to the contraction to the clad 53, and apply a compressive stress which is a stress to the clad 53 due to the expansion.
- the coating layer 55 may contract or expand depending on the temperature of the coating layer 55, apply a tensile stress which is a stress due to the contraction to the clad 53, and apply a compressive stress which is a stress due to the expansion to the clad 53.
- the degree of contraction of the stress applying portion 80 increases as the temperature of the stress applying portion 80 becomes lower than a predetermined temperature. Therefore, the magnitude of the tensile stress of the stress applying portion 80 becomes larger as the temperature of the stress applying portion 80 becomes lower than the predetermined temperature. Further, the degree of expansion of the stress applying portion 80 becomes larger as the temperature of the stress applying portion 80 becomes higher than a predetermined temperature. Therefore, the magnitude of the compressive stress of the stress applying portion 80 becomes larger as the temperature of the stress applying portion 80 becomes higher than a predetermined temperature. Similarly, the magnitude of the tensile stress of the coating layer 55 increases as the temperature of the coating layer 55 becomes lower than a predetermined temperature. Further, the magnitude of the compressive stress of the coating layer 55 increases as the temperature of the coating layer 55 becomes higher than a predetermined temperature.
- the external force applied to the clad 53 by the stress applying portion 80 and the coating layer 55 changes, and the distribution of the external force in the clad 53 is in the circumferential direction of the clad 53. It becomes non-uniform.
- the distribution of stress applied to the core 51 becomes non-uniform in the circumferential direction of the core 51, the distribution of the refractive index of the core 51 changes, and the mode of light propagating through the core 51 can change.
- the stress applied to the core 51 is controlled by the temperature, the beam quality is controlled in the optical fiber 50 by this control, and light of a desired beam quality can be obtained.
- FIG. 6 is a diagram showing an example of the relationship between the temperature of the stress applying portion 80 of the present embodiment and the amount of change in beam quality.
- the graph shown by the solid line in FIG. 6 will be described.
- the above-mentioned predetermined temperature is set to, for example, 25 ° C. Therefore, in this case, the distribution of the external force is in a uniform state in the circumferential direction of the clad 53, and the amount of change in the beam quality is zero.
- the temperature of the stress applying portion 80 and the amount of change in beam quality in this case will be described below.
- the amount of change in beam quality due to the tensile stress of the stress applying portion 80 is 0.003
- the temperature of the stress applying portion 80 is 15 ° C.
- the larger tension of the stress applying portion 80 is obtained.
- the amount of change in beam quality due to stress is 0.015.
- the temperature of the stress applying unit 80 is 30 ° C.
- the amount of change in beam quality due to the compressive stress of the stress applying unit 80 is 0.007, and when the temperature of the stress applying unit 80 is 35 ° C.
- the amount of change in beam quality is 0.025 due to a large compressive stress
- the amount of change in beam quality is 0.047 due to the largest compressive stress in the stress applying section 80 when the temperature of the stress applying section 80 is 40 ° C. can get.
- the graph shown by the dotted line in FIG. 6 will be described.
- the above-mentioned predetermined temperature is set to, for example, 35 ° C. Therefore, in this case, the distribution of the external force is in a uniform state in the circumferential direction of the clad 53, and the amount of change in the beam quality is zero.
- the temperature of the stress applying portion 80 and the amount of change in beam quality in this case will be described below.
- the amount of change in beam quality due to the tensile stress of the stress applying portion 80 is 0.003
- the temperature of the stress applying portion 80 is 25 ° C.
- the larger tension of the stress applying portion 80 is obtained.
- the amount of change in beam quality due to stress is 0.015.
- the temperature of the stress applying portion 80 is 40 ° C.
- the amount of change in beam quality due to the compressive stress of the stress applying portion 80 is 0.007, and when the temperature of the stress applying portion 80 is 45 ° C.
- the amount of change in beam quality is 0.025 due to a large compressive stress
- the amount of change in beam quality is 0.047 due to the largest compressive stress in the stress applying section 80 when the temperature of the stress applying section 80 is 50 ° C. can get.
- the compressive stress becomes larger and the distribution of the refractive index of the core 51 changes, so that the amount of change in the beam quality can become larger. That is, the magnitude of stress is controlled by the temperature of the stress applying unit 80, and the amount of change in beam quality can increase as the temperature of the stress applying unit 80 deviates from a predetermined temperature. In this way, the stress applied to the core 51 is controlled by the temperature of the stress applying portion 80, and the beam quality is controlled in the optical fiber 50 by this control, and light of a desired beam quality can be obtained.
- the stress applying portion 80 contracts and the tensile stress
- the stress applying portion 80 expands and applies compressive stress. Therefore, regardless of the value of the predetermined temperature, when the temperature of the stress applying portion 80 changes with respect to the predetermined temperature, the stress applying portion 80 contracts or expands. As a result, it can be seen that the beam quality changes because the distribution of the refractive index of the core 51 changes.
- the temperature of the stress applying portion 80 and the temperature of the coating layer 55 are predetermined temperatures, and the stress applying portion 80 and the coating layer 55 are not contracted or expanded and are tensioned. A state in which stress such as stress or compressive stress is not applied to the clad 53 will be described. Therefore, the distribution of the external force applied to the clad 53 by the stress applying portion 80 and the coating layer 55 is uniform in the circumferential direction of the clad 53.
- the operator who operates the laser device 1 inputs the application of the laser device 1 such as cutting or welding to the input unit 113.
- the input unit 113 inputs this application to the temperature control unit 90.
- the temperature control main body 91 accesses the storage unit 115 and reads out the temperature of the stress applying unit 80 according to the application from the table stored in the storage unit 115.
- the temperature control main body 91 controls the voltage of the power supply 93 so that the temperature of the stress applying unit 80 becomes the temperature read from the table.
- the power supply 93 applies a voltage to the perche element 95, the temperature of one surface of the perche element 95 rises or falls, and the temperature of the other surface of the perche element 95 falls or rises in the opposite direction to the one surface.
- the stress applying portion 80 and the temperature of the coating layer 55 When the temperature of the stress applying portion 80 and the temperature of the coating layer 55 become lower than a predetermined temperature due to the temperature drop of one surface of the Perche element 95, the stress applying portion 80 and the coating layer 55 pull the clad 53 by shrinkage. A tensile stress is applied to the clad 53.
- the stress applying portion 80 and the coating layer 55 apply tensile stress, which is a stress, to the clad 53 due to shrinkage, and compressive stress, which is a stress due to expansion, to the clad 53.
- the lower the temperature of the stress applying portion 80 and the temperature of the coating layer 55 than a predetermined temperature the greater the tensile stress. Further, the higher the temperature of the stress applying portion 80 and the temperature of the coating layer 55 than the predetermined temperature, the larger the compressive stress becomes.
- the temperature of the stress applying portion 80 and the temperature of the coating layer 55 are controlled according to the application of the laser device 1.
- the magnitude of the stress of the stress applying portion 80 and the magnitude of the stress of the coating layer 55 are controlled by the temperature of the stress applying portion 80 and the temperature of the coating layer 55.
- the magnitude of the stress applied to the clad 53 may change.
- the external force applied to the clad 53 by the stress applying portion 80 and the coating layer 55 changes, and the distribution of the external force may become non-uniform in the circumferential direction of the clad 53.
- the distribution of stress applied to the core 51 becomes non-uniform in the circumferential direction of the core 51, the distribution of the refractive index of the core 51 changes, and the mode of light propagating through the core 51 can change.
- the degree of change in the light mode varies depending on the application of the laser device 1.
- excitation light is emitted from each laser diode 41 of the excitation light source 40.
- the excitation light emitted from the excitation light source 40 enters the inner cladding of the amplification optical fiber 30 via the excitation light optical fiber 45 and the optical fiber 31.
- the excitation light incident on the inner clad of the amplification optical fiber 30 mainly propagates through the inner clad and excites the active element added to the core when passing through the core of the amplification optical fiber 30.
- the activated element in the excited state emits spontaneously emitted light, light of a part of the naturally emitted light is reflected by the first FBG33, and of the reflected light, the light of the wavelength reflected by the second FBG34 is the first.
- the light reciprocates between the first FBG 33 and the second FBG 34, that is, inside the resonator 200, and the light is amplified by stimulated emission when propagating through the core of the amplification optical fiber 30, and a laser oscillation state is generated.
- the wavelength of light at this time is, for example, 1070 nm.
- some of the amplified light passes through the second FBG 34 and is emitted from the optical fiber 32. This light enters the core of the delivery optical fiber 10 from the optical fiber 21 via the combiner 25.
- the delivery optical fiber 10 is a multimode fiber
- the light incident on the core of the delivery optical fiber 10 propagates through the core in the multimode. Then, the light propagating in the core propagates from the delivery optical fiber 10 to the optical fiber 50.
- the light amplified by the active element excited by the excitation light propagates from the first FBG 33 to the optical fiber 31, the amplification optical fiber 30, the optical fibers 32, 21, the delivery optical fiber 10, and the optical fiber 50. ..
- the distribution of the refractive index of the core 51 of the optical fiber 50 is changed by the beam quality control device 70 according to the application of the laser device 1 such as cutting or cutting, and the number of light modes in the optical fiber 50 is changed according to the application. doing. Therefore, for example, depending on the application, the single-mode light is changed to the multi-mode light, the number of modes of the multi-mode light is reduced, or the multi-mode light is changed to the single-mode light. Therefore, the light has a desired beam quality depending on the application. Then, the light is emitted from the emitting unit 60 and irradiates the object or the like with the desired beam quality according to the application.
- the power of light propagating through the cores of the optical fibers 32, 21, 50 and the delivery optical fiber 10 is, for example, 1 kW or more.
- the beam quality control device 70 of the present embodiment surface-contacts the optical fiber 50 having the core 51 and the clad 53 surrounding the outer peripheral surface of the core 51 with at least a part of the outer peripheral surface of the optical fiber 50. It includes a stress applying unit 80 having a coefficient of thermal expansion different from the coefficient of thermal expansion of the clad 53, and a temperature control unit 90 for controlling the temperature of the stress applying unit 80.
- the stress applying unit 80 contracts or contracts due to a change in the temperature of the stress applying unit 80 by the temperature control unit 90 so that the distribution of the external force applied to the clad 53 by the stress applying unit 80 becomes non-uniform in the circumferential direction of the clad 53. Inflate.
- the stress applying unit 80 contracts or expands.
- the stress applying portion 80 contracts or expands, the external force applied to the clad 53 by the stress applying portion 80 changes non-uniformly in the circumferential direction of the clad 53.
- the distribution of stress applied to the core 51 becomes non-uniform in the circumferential direction of the core 51, the distribution of the refractive index of the core 51 changes, and the mode of light propagating through the core 51 may change. ..
- the coating layer 55 is arranged, and the distribution of the refractive index of the core 51 can be further changed by the coating layer 55, and the mode of light propagating through the core 51 can be changed. ..
- the stress applied to the core 51 is controlled by the temperature, so that light having a desired beam quality can be obtained.
- the beam quality control device 70 of the present embodiment since the beam quality is controlled in the optical fiber 50, even if vibration or a change in environmental temperature occurs as described above, a glass member or a lens is placed in the space. Unintentional changes in beam quality can be suppressed as compared to the case where the placement controls the beam quality. Therefore, in the beam quality control device 70 of the present embodiment, light of a desired beam quality can be obtained.
- the stress applying unit 80 is arranged on the main surface and is thermally connected to the stress applying unit 80 and the temperature control unit 90, and the temperature control unit 90 and the stress applying unit 80 are connected.
- a plate-shaped heat conductive member 111 that conducts heat between the two is further provided.
- the heat of the temperature control unit 90 is easily conducted over the entire heat conductive member 111 in the plane direction of the heat conductive member 111, and the main surface of the heat conductive member 111 to the heat conductive member 111. It may be easily conducted to the upper stress applying portion 80. Further, when the temperature control unit 90 absorbs heat, the heat of the stress applying unit 80 is easily conducted over the entire heat conductive member 111 in the plane direction of the heat conductive member 111, and the heat is easily conducted from the stress applying unit 80 to the heat conductive member 111. It can be easily conducted.
- the temperature of the stress applying portion 80 is likely to change, and the magnitude of the stress of the stress applying portion 80 is likely to change depending on the temperature of the stress applying portion 80. Therefore, according to the beam quality control device 70, the magnitude of the stress of the stress applying portion 80 can be easily changed as compared with the case where the heat conductive member 111 is not arranged.
- the temperature control unit 90 has a Perche element 95 that is thermally connected to the heat conductive member 111.
- the temperature of one surface of the perche element 95 rises and the temperature of the other surface falls.
- the heat conductive member 111 is arranged on one surface, heat is transferred from one surface to the stress applying portion 80 via the heat conductive member 111, and the temperature of the stress applying portion 80 is determined by the Pelche element 95.
- the temperature of one surface decreases and the temperature of the other surface increases.
- the heat conductive member 111 when the heat conductive member 111 is arranged on one surface, heat is transferred from the stress applying portion 80 to the Perche element 95 via the heat conducting member 111, and the temperature of the stress applying portion 80 is caused by the Perche element 95. Descend.
- the temperature of the stress applying unit 80 changes depending on the direction of the current flowing through the perche element 95, and the magnitude of the stress of the stress applying unit 80 can be controlled by the temperature of the stress applying unit 80. Therefore, according to the beam quality control device 70, the magnitude of the stress of the stress applying portion 80 can be controlled by the Perche element 95.
- the stress applying portion 80 has a thickness between the contact surface that comes into surface contact with the outer peripheral surface of the optical fiber 50 and the outer peripheral surface of the stress applying portion 80 that is separated from the contact surface. Consists of non-uniform resin.
- the resin when the temperature of the resin is lower than the predetermined temperature, the resin shrinks to apply tensile stress to the clad 53, and the temperature of the resin becomes higher than the predetermined temperature. When high, the resin expands to apply compressive stress to the clad 53.
- the temperature control unit 90 can control the shrinkage or expansion of the resin by controlling the temperature of the resin, and can control the stress by the shrinkage or expansion of the resin.
- the laser device 1 of the present embodiment includes a beam quality control device 70 and a light source 2 that emits light. Light propagates to the core 51 of the optical fiber 50 of the beam quality control device 70.
- the laser device 1 can irradiate the object with beam quality light controlled by the beam quality control device 70. Further, as described above, in this beam quality control device 70, light of a desired beam quality can be obtained even if vibration, a change in environmental temperature, or the like occurs. Therefore, light of the desired beam quality can illuminate the object.
- the laser device 1 of the present embodiment includes a beam quality control device 70 and an excitation light source 40 that emits excitation light. Light amplified by the active element excited by the excitation light propagates to the optical fiber 50 of the beam quality control device 70.
- the laser device 1 can irradiate the object with beam quality light controlled by the beam quality control device 70. Further, as described above, in this beam quality control device 70, light of a desired beam quality can be obtained even if vibration, a change in environmental temperature, or the like occurs. Therefore, light of the desired beam quality can illuminate the object.
- the laser apparatus 1 of the present embodiment is provided on one side of the amplification optical fiber 30 to which the active element is added and the amplification optical fiber 30, and has a wavelength of at least a part of the light amplified by the active element.
- It further includes an exit unit 60 that emits light transmitted through the 2FBG 34 toward the object.
- the beam quality control device 70 is arranged between the farthest portion of the second FBG from the connection point of the amplification optical fiber 30 and the optical fiber 32 and the exit portion 60.
- the beam quality control device 70 has a desired beam quality of the beam quality of the light emitted from the emitting unit 60 as compared with the case where the beam quality control device 70 is arranged other than between the farthest portion and the emitting unit 60. Can be easier to approach.
- the laser device 1 of the present embodiment further includes an input unit 113 for inputting the application of the laser device 1 to the temperature control unit 90, and a storage unit 115 for storing the temperature of the stress applying unit according to the application.
- the temperature control unit 90 controls the temperature of the stress application unit 80 to the temperature of the stress application unit 80 read from the storage unit 115.
- the object since the degree of change in the light mode of the laser device 1 changes according to the application of the laser device 1, the object can be irradiated with light of beam quality suitable for each application.
- the processing performance such as the processing speed and the processing quality of the laser device 1 can be improved as compared with the case where the object is not irradiated with the light of the beam quality suitable for each application.
- FIG. 7 is a diagram showing a beam quality control device 70 according to this embodiment.
- the beam quality control device 70 of the present embodiment is different in that the configuration of the temperature control unit 90 is different from the configuration of the temperature control unit 90 of the first embodiment, and the beam quality control device 70 further includes a frame member 117. It is different from the beam quality control device 70 of the first embodiment.
- the temperature control unit 90 of the present embodiment includes a temperature control main body unit 91, a heat pump 97, and a flow path unit 99.
- the heat pump 97 cools or heats the fluid flowing through the flow path portion 99 under the control of the temperature control main body portion 91.
- the temperature of the heat pump 97 is controlled by the temperature control main body 91.
- the flow path portion 99 penetrates the heat conductive member 111 and is arranged directly below the optical fiber 50.
- the flow path portion 99 is thermally connected to the heat conductive member 111.
- the flow path portion 99 is, for example, a pipe such as a pipe.
- a fluid flows through the flow path portion 99, and this fluid is, for example, a liquid.
- the flow path portion 99 extends to the outside of the heat conductive member 111, and is thermally connected to the heat pump 97 outside the heat conductive member 111. The temperature of the fluid changes due to the heat from the heat pump 97.
- the flow path portion 99 is not necessarily arranged directly under the optical fiber 50, but may be arranged so as to be thermally connected to the heat conductive member 111.
- the frame member 117 is made of, for example, metal.
- the frame member 117 is placed on the heat conductive member 111 and is thermally connected to the heat conductive member 111.
- the cross section of the frame member 117 is concave, and the stress applying portion 80 and the optical fiber 50 are arranged inside the concave frame member 117.
- the stress applying portion 80 that surrounds the optical fiber 50 over the entire circumference is in contact with the inner peripheral surface of the frame member 117 and is thermally connected to the frame member 117.
- the frame member 117 surrounds the stress applying portion 80, which is a resin.
- the frame member 117 may surround at least a part of the stress applying portion 80.
- the height of the inner side surface of the concave cross section of the frame member 117 is longer than the diameter of the optical fiber 50.
- the frame member 117 fixes the stress applying portion 80 to the optical fiber 50.
- the coefficient of thermal expansion of the frame member 117 is smaller than the coefficient of thermal expansion of the stress applying portion 80. Further, when the stress applying portion 80 expands, the frame member 117 suppresses the spread of the stress applying portion 80 toward the frame member 117.
- the beam quality control device 70 of the present embodiment in the temperature control unit 90, a fluid whose temperature is changed by the heat pump 97 and the heat pump 97 flows, penetrates the heat conductive member 111, and changes the temperature of the stress applying unit 80 by the fluid. It has a flow path portion 99 for causing the flow. Further, in the beam quality control device 70 of the present embodiment, the stress applying portion 80 is thermally connected to the flow path portion 99 via the frame member 117 and the heat conductive member 111.
- the heat pump 97 controls the temperature of the fluid by cooling or heating
- the temperature of the stress applying portion 80 changes depending on the fluid via the heat conductive member 111, and the magnitude of the stress of the stress applying portion 80 depends on the temperature of the stress applying portion 80. Can be controlled. Therefore, according to the beam quality control device 70, the magnitude of stress in the stress applying portion can be controlled by the fluid flowing through the flow path portion 99.
- the beam quality control device 70 of the present embodiment further includes a frame member 117 that surrounds at least a part of the stress applying portion 80, and the coefficient of thermal expansion of the frame member 117 is smaller than the coefficient of thermal expansion of the stress applying portion 80. Has been done.
- the stress applying portion 80 expands, the spread toward the frame member 117 is suppressed by the frame member 117, so that the clad 53 is pressed toward the clad 53 with a stronger external force than when the frame member 117 is not arranged. Can be pressed. As a result, the stress applying portion 80 can apply a large compressive stress to the clad 53 as compared with the case where the frame member 117 is not arranged.
- the frame member 117 is made of metal.
- the stress of the stress applying portion 80 can change faster than in the case where the frame member 117 is not arranged.
- the heat of the fluid is also conducted to the frame member 117 via the heat conductive member 111.
- the coefficient of thermal expansion of the frame member 117 is lower than the coefficient of thermal expansion of the stress applying portion 80. Therefore, the contraction or expansion of the frame member 117 due to heat has almost no effect on the contraction or expansion of the stress applying portion 80.
- FIG. 8 is a diagram showing a beam quality control device 70 according to this embodiment.
- the configuration of the stress applying unit 80 is different from the configuration of the stress applying unit 80 of the first embodiment.
- the stress applying portion 80 of the present embodiment has a plate member 81 and a pair of wall members 83 erected on the plate member 81.
- the plate member 81 is made of, for example, a metal such as copper.
- the plate member 81 is mounted on the perche element 95 and is thermally connected to the perche element 95.
- the plate member 81 contracts or expands in the alignment direction of the pair of wall members 83 due to the heat conducted from the Pelche element 95.
- the coefficient of thermal expansion of the plate member 81 is made larger than the coefficient of thermal expansion of the clad 53.
- the plate member 81 may be the heat conductive member 111 of the first embodiment.
- the wall member 83 is made of, for example, metal.
- the wall member 83 is fixed to the plate member 81.
- the pair of wall members 83 sandwich the optical fiber 50 in the radial direction and are in contact with the optical fiber 50.
- the plate member 81 When the temperature of the plate member 81 is at a predetermined temperature, the plate member 81 is not contracted or expanded, and the wall member 83 merely sandwiches the optical fiber 50 and is in contact with the optical fiber 50. .. Therefore, the plate member 81 is in a state in which stress such as compressive stress is not applied to the clad 53 via the wall member 83. In such a case, the distribution of the external force applied to the clad 53 by the stress applying portion 80 is in a uniform state in the circumferential direction of the clad 53.
- the heat of the plate member 81 is conducted to the Perche element 95 via the heat conductive member 111.
- the temperature of the plate member 81 drops below the predetermined temperature, and the plate member 81 contracts as compared with the predetermined temperature.
- the coefficient of thermal expansion of the plate member 81 is larger than the coefficient of thermal expansion of the clad 53, the plate member 81 contracts more than the clad 53.
- the plate member 81 contracts in the direction in which the pair of wall members 83 are arranged.
- the pair of wall members 83 approach each other. Then, the pair of wall members 83 can press the clad 53 from both sides in the radial direction of the clad 53 to apply compressive stress to the clad 53.
- the heat of the Perche element 95 is conducted to the plate member 81 via the heat conductive member 111.
- the temperature of the plate member 81 rises above the temperature at the time of contraction, and the plate member 81 expands as compared with the time of contraction.
- the coefficient of thermal expansion of the plate member 81 is larger than the coefficient of thermal expansion of the clad 53, the plate member 81 expands more than the clad 53.
- the plate member 81 expands in the direction in which the pair of wall members 83 are arranged.
- the pair of wall members 83 are separated from each other. Then, the pair of wall members 83 can release the application of compressive stress at the time of contraction.
- the pair of wall members 83 can apply compressive stress, which is stress, to the clad 53 from both sides in the radial direction of the clad 53 by shrinkage, and release the compressive stress by expansion.
- compressive stress which is stress
- the distribution of stress applied to the core 51 becomes non-uniform in the circumferential direction of the core 51, and the mode of light propagating through the core 51 may change.
- light of a desired beam quality can be obtained.
- FIG. 9 is a diagram showing a light source 2 in the laser device 1 according to the present embodiment.
- FIG. 10 is a diagram showing a beam quality control device for the light source of FIG. 9.
- the position of the beam quality control device 70 and the configuration of the beam quality control device 70 are different from those of the first embodiment.
- the beam quality control device 70 of the present embodiment is arranged inside the resonator 200 in each light source 2.
- the resonator 200 is composed of an amplification optical fiber 30, a first FBG 33, and a second FBG 34.
- the beam quality control device 70 is arranged between the connection point of the amplification optical fiber 30 and the optical fiber 32 and the portion of the second FBG 34 farthest from the connection point.
- the second FBG 34 has a configuration in which a high refractive index portion having a refractive index higher than that of the core of the optical fiber 32 and a low refractive index portion having a refractive index equivalent to that of the core of the optical fiber 32 are alternately repeated. ..
- the most distant portion is the high refractive index portion of the second FBG34, which is the farthest from the connection point.
- the beam quality control device 70 of the present embodiment has an optical fiber 32 as shown in FIG. 10 instead of the optical fiber 50 shown in FIG. 3 and the like.
- the core 32a of the optical fiber 32 has the same configuration as the core 51 of the optical fiber 50
- the clad 32b of the optical fiber 32 has the same configuration as the clad 53 of the optical fiber 50
- the coating layer 32c of the optical fiber 32 has the same configuration as the optical fiber. It has the same configuration as the coating layer 55 of 50.
- the beam quality control device 70 of the present embodiment like the beam quality control device 70 of the first embodiment, includes a stress applying unit 80, a temperature control unit 90, a heat conductive member 111, an input unit 113, and the like. It has a storage unit 115.
- the temperature control main body 91 and the power supply 93 of the temperature control unit 90, the input unit 113, and the storage unit 115 may be shared by the beam quality control device 70 in each light source 2.
- the stress applying portion 80 of the present embodiment is the outer peripheral surface of the coating layer 32c of the optical fiber 32. Is in close contact with the outer peripheral surface of the coating layer 32c without a gap, and is in surface contact with the outer peripheral surface.
- the stress applying portion 80 surrounding the optical fiber 32 has the same configuration as the stress applying portion 80 of the first embodiment surrounding the optical fiber 50.
- the optical fiber 32 of the beam quality control device 70 of the present embodiment is provided with a second FBG 34.
- the stress applying portion 80 is arranged between the connection point of the amplification optical fiber 30 and the optical fiber 32 and the portion of the second FBG 34 farthest from the connection point.
- the stress applying portion 80 of the present embodiment may contract or expand depending on the temperature of the stress applying portion 80, apply a tensile stress which is a stress due to the contraction to the clad 32b, and apply a compressive stress which is a stress to the clad 32b due to the expansion. .. Further, the coating layer 32c of the optical fiber 32 can contract or expand depending on the temperature of the coating layer 32c, apply a tensile stress which is a stress due to the contraction to the clad 32b, and apply a compressive stress which is a stress to the clad 32b by the expansion. ..
- the magnitude of stress such as the above compressive stress and tensile stress changes depending on the temperature of the stress applying portion 80 and the coating layer 32c.
- the external force applied to the clad 32b by the stress applying portion 80 and the coating layer 32c changes, and the distribution of the external force in the clad 32b becomes non-uniform in the circumferential direction of the clad 32b.
- the distribution of stress applied to the core 32a becomes non-uniform in the circumferential direction of the core 32a, the distribution of the refractive index of the core 32a changes, and the mode of light propagating through the core 32a can change.
- FIG. 11 is a diagram showing an example of the relationship between the temperature of the stress applying portion 80 of the present embodiment and the amount of change in beam quality.
- a predetermined temperature is set to, for example, 25 ° C. Therefore, in this case, the distribution of the external force is in a uniform state in the circumferential direction of the clad 32b, and the amount of change in the beam quality is 0.
- the temperature of the stress applying portion 80 and the amount of change in beam quality in this case will be described below.
- the amount of change in beam quality due to the tensile stress of the stress applying portion 80 is 0.013, and when the temperature of the stress applying portion 80 is 20 ° C., the larger tension of the stress applying portion 80 The result is that the amount of change in beam quality due to stress is 0.039. Further, when the temperature of the stress applying unit 80 is 27 ° C., the amount of change in beam quality due to the compressive stress of the stress applying unit 80 is 0.015, and when the temperature of the stress applying unit 80 is 30 ° C. The result is that the amount of change in beam quality is 0.040 due to the large compressive stress.
- a predetermined temperature is set to, for example, 35 ° C. Therefore, in this case, the distribution of the external force is in a uniform state in the circumferential direction of the clad 32b, and the amount of change in the beam quality is 0.
- the temperature of the stress applying portion 80 and the amount of change in beam quality in this case will be described below.
- the amount of change in beam quality due to the tensile stress of the stress applying portion 80 is 0.013, and when the temperature of the stress applying portion 80 is 31 ° C, the larger tension of the stress applying portion 80. The result is that the amount of change in beam quality due to stress is 0.039. Further, when the temperature of the stress applying unit 80 is 37 ° C., the amount of change in beam quality due to the compressive stress of the stress applying unit 80 is 0.015, and when the temperature of the stress applying unit 80 is 40 ° C. The result is that the amount of change in beam quality is 0.040 due to the large compressive stress.
- the magnitude of the stress applied to the core 32a is controlled by the temperature of the stress applying unit 80, and the temperature of the stress applying unit 80 is a predetermined temperature, as in the case described with reference to FIG. 6 in the first embodiment.
- the amount of change in beam quality can increase as the distance from the distance increases. Further, when the stress applied to the core 32a is controlled as described above, the beam quality is controlled in the optical fiber 32, and light having a desired beam quality can be obtained.
- the temperature of the stress applying unit 80 is predetermined regardless of the predetermined temperature.
- the stress applying portion 80 contracts or expands.
- the distribution of the refractive index of the core 32a changes, and the mode of the light propagating through the core 32a changes, so that the beam quality changes.
- the graph in the present embodiment shown by the solid line in FIG. 11 and the graph in the first embodiment shown by the solid line in FIG. 6 are compared. Comparing the two graphs, the graph of FIG. 11 is steeper than the graph of FIG. Therefore, when the temperature of the stress applying unit 80 changes at the same temperature in each of the present embodiment and the first embodiment with respect to a predetermined temperature, the amount of change in the beam quality in the present embodiment is the same as the beam quality in the first embodiment. It can be seen that it is larger than the amount of change.
- the beam quality control device 70 of the present embodiment is arranged inside the resonator 200 even if the temperature change is the same as that of the beam quality control device 70 of the first embodiment, the beam quality control device 70 of the first embodiment It can be seen that a change in beam quality greater than 70 can be obtained.
- the beam quality control device 70 of the present embodiment since the beam quality control device 70 of the present embodiment is arranged inside the resonator 200, the beam quality control device of the first embodiment causes a temperature change smaller than that of the beam quality control device 70 of the first embodiment. It can be seen that the same amount of change in beam quality as 70 can be obtained. Further, regarding the dotted line graphs of FIGS. 11 and 6, similarly to the solid line graphs of FIGS.
- the beam quality control device 70 of the present embodiment is the same as the beam quality control device 70 of the first embodiment. It can be seen that even with the same temperature change, a larger amount of change in beam quality than that of the beam quality control device 70 of the first embodiment can be obtained.
- the beam quality control device 70 of the present embodiment the beam quality is significantly changed as compared with the beam quality control device 70 of the first embodiment even if the temperature change is the same as that of the beam quality control device 70 of the first embodiment. obtain. Further, in the beam quality control device 70 of the present embodiment, when the light of the same beam quality as that of the beam quality control device 70 of the first embodiment is obtained, the temperature change is smaller than that of the beam quality control device 70 of the first embodiment. Light with the desired beam quality can be obtained in a short time.
- the magnitude of the stress applied to the clad 32b may change.
- the external force applied to the clad 32b by the stress applying portion 80 and the coating layer 32c changes, and the distribution of the external force may become non-uniform in the circumferential direction of the clad 32b.
- the distribution of stress applied to the core 32a becomes non-uniform in the circumferential direction of the core 32a, the distribution of the refractive index of the core 32a changes, and the mode of light propagating through the core 32a can change.
- the degree of light mode varies depending on the application of the laser device 1.
- the excitation light emitted from the excitation light source 40 enters the inner cladding of the amplification optical fiber 30 via the excitation light optical fiber 45 and the optical fiber 31.
- This excitation light mainly propagates through the inner cladding and excites the active element added to the core when passing through the core of the amplification optical fiber 30.
- the activated element in the excited state emits spontaneously emitted light, light of a part of the naturally emitted light is reflected by the first FBG33, and of the reflected light, the light of the wavelength reflected by the second FBG34 is the first. It is reflected by 2FBG34. Therefore, the light reciprocates between the first FBG 33 and the second FBG 34, that is, inside the resonator 200.
- the stress applying portion 80 of the present embodiment is arranged inside the resonator 200 between the connection point of the amplification optical fiber 30 and the optical fiber 32 and the portion of the second FBG 34 farthest from the connection point. Further, the distribution of the refractive index of the core 32a is changed by the beam quality control device 70 according to the application of the laser device 1 such as cutting or cutting. Therefore, each time the light reciprocates inside the resonator 200, it propagates through the core 32a, and each time the light reciprocates, the number of modes of light in the optical fiber 32 changes depending on the application.
- the single-mode light is changed to the multi-mode light, the number of modes of the multi-mode light is reduced, or the multi-mode light is changed to the single-mode light.
- the beam quality of the light of the present embodiment can be significantly changed as compared with the case where the beam quality control device 70 is arranged outside the resonator 200, and light of a desired beam quality according to the application can be obtained. .. Further, the beam quality control device 70 controls the beam quality each time the light reciprocates inside the resonator 200.
- the light passes through the second FBG 34 and propagates through the optical fiber 32, the optical fiber 21, the combiner 25, and the core of the delivery optical fiber 10 in a state of having the desired beam quality according to the application, and emits the light.
- the object or the like is irradiated from 60.
- the laser device 1 of the present embodiment further includes a resonator 200 in which the light amplified by the active element excited by the excitation light resonates, and the beam quality control device 70 is arranged inside the resonator 200.
- the beam quality control device 70 In such a laser device 1, light propagates through the core 32a of the beam quality control device 70 each time it reciprocates inside the resonator 200, and the mode of light can change in the optical fiber 32 each time it reciprocates, which is desired. Beam quality light is obtained. Further, according to the laser device 1 of the present embodiment, the beam quality can be significantly changed as compared with the case where the beam quality control device 70 is arranged outside the resonator 200, and light of a desired beam quality can be obtained. .. Further, in the laser device 1, when the state of the optical fiber changes according to the application of the laser device 1, the degree of change in the light mode changes according to the application of the laser device 1. Therefore, a desired beam according to the application. You get quality light.
- the degree of change in the mode of light when the light passes through the beam quality control device 70 once is compared with the case where the beam quality control device is arranged outside the cavity 200. Even if it is small, the amount of change in the beam quality of the light emitted from the laser device 1 is the same as the amount of change in the beam quality when the beam quality control device is arranged outside the cavity 200 due to the reciprocation of the light. Can be. Therefore, when the beam quality of the light emitted from the laser device 1 is changed from a predetermined state to another state, the amount of change in the refractive index distribution of the core 32a of the laser device 1 of the present embodiment is the beam quality control device.
- the time for changing the refractive index distribution of the core 32a can be shortened as compared with the case where the beam quality control device is arranged outside the resonator 200, and the light can be shortened. Can change to the desired beam quality light in a short time.
- the amount of change in beam quality obtained by the beam quality control device 70 arranged inside the resonator 200 is to be obtained by the beam quality control device arranged outside the resonator 200
- the number of beam quality control devices arranged outside the resonator 200 is increased as compared with the beam quality control device 70 arranged inside the resonator 200, or the optical fiber in which the stress applying portion is arranged is arranged.
- the length will be longer. Therefore, when the beam quality control device 70 is arranged outside the resonator 200, there is a concern that the beam quality control device 70 may become large in size or cost high.
- the beam quality control device 70 of the present embodiment is arranged inside the resonator 200, it is possible to suppress an increase in size and cost of the beam quality control device 70. Therefore, the size and cost of the laser device 1 as a whole can be suppressed.
- the stress applied to the core 32a is controlled by the temperature, so that light having a desired beam quality can be obtained.
- the beam quality control device 70 of the present embodiment since the beam quality is controlled in the optical fiber 32, the glass member and the lens are arranged in the space even if vibration or a change in the environmental temperature occurs. Unintended changes in beam quality can be suppressed as compared to the case where beam quality is controlled by. Therefore, in the beam quality control device 70 of the present embodiment, light of a desired beam quality can be obtained.
- the resonator 200 is provided on one side of the amplification optical fiber 30 to which the active element is added and the amplification optical fiber 30, and at least the light amplified by the active element is provided.
- the first FBG 33 that reflects light of a part of the wavelength and the light of at least a part of the wavelengths of the light that is provided on the other side of the amplification optical fiber 30 and reflected by the first FBG 33 is reflected with a lower reflectance than that of the first FBG 33. It has a second FBG34 and.
- the beam quality control device 70 is arranged between the connection point of the amplification optical fiber 30 and the optical fiber 32 and the portion of the second FBG 34 farthest from the connection point.
- the power density of light between the connection point and the part of the second FBG34 farthest from the connection point is higher than the power density of light at other parts between the first FBG and the second FBG. Therefore, when the beam quality control device 70 is arranged between the connection point and the relevant portion, the beam quality changes more significantly than when the beam quality control device 70 is arranged at another portion between the first FBG and the second FBG. This can make it easier to bring the beam quality of the light emitted from the exit unit 60 closer to the desired beam quality. Further, the beam quality control device 70 can easily bring light having a high power density closer to a desired beam quality as compared with the case where the beam quality control device 70 is arranged in another portion, and the beam quality of the light emitted from the exit unit 60 is desired. It can be easier to approach the beam quality.
- the stress applying portion 80 surrounds the outer peripheral surface of the coating layer 32c of the optical fiber 32 in the portion where the second FBG 34 is located over the entire circumference, and is in close contact with the outer peripheral surface of the coating layer 32c without a gap. You may make surface contact with the surface.
- the beam quality control device 70 is the farthest from the connection point of the amplification optical fiber 30 and the optical fiber 31 and the connection point of the first FBG 33. It may be placed between the parts and the parts.
- the optical fiber 31 is an optical fiber of the beam quality control device 70, and the optical fiber 31 is provided with a first FBG 33.
- the stress applying portion 80 is arranged between the connection point and the portion of the first FBG 33 farthest from the connection point. In FIG. 12, the stress applying portion 80 is omitted for the sake of easy viewing.
- the coefficient of thermal expansion of the inner clad of the optical fiber 31 in the modified example is the same as the coefficient of thermal expansion of the clad 53 of the first embodiment, and the coefficient of thermal expansion of the coating layer of the optical fiber 31 in the modified example is the same as the coefficient of thermal expansion of the coating layer 55 of the first embodiment. It is the same as the coefficient of thermal expansion of.
- the coefficient of thermal expansion of the outer clad of the optical fiber 31 in the modified example is made smaller than the coefficient of thermal expansion of the inner clad of the optical fiber 31 in the modified example and the coating layer of the optical fiber 31 in the modified example.
- the contraction or expansion of the outer clad has little effect on the contraction or expansion of the inner clad, and has little effect on the contraction or expansion of the stress applying portion 80.
- the first FBG 33 has a configuration in which a high refractive index portion having a refractive index higher than that of the core surrounded by the clad of the optical fiber 31 and a low refractive index portion having a refractive index equivalent to that of the core are alternately repeated. ..
- the most distant portion is the high refractive index portion of the first FBG33 farthest from the connection point.
- the power density of light between the connection point and the portion of the first FBG 33 farthest from the connection point is lower than the power density at the other portion between the first FBG and the second FBG. Therefore, when the beam quality control device 70 is arranged between the connection point and the relevant portion, the beam quality control device 70 of the beam quality control device 70 is compared with the case where the beam quality control device 70 is arranged at another portion between the first FBG and the second FBG. Heat generation in the optical fiber 31 can be suppressed. Therefore, damage to the beam quality control device 70 can be suppressed.
- the stress applying portion 80 surrounds the outer peripheral surface of the coating layer of the optical fiber 31 in the portion where the first FBG 33 is located over the entire circumference, and is in close contact with the outer peripheral surface of the coating layer without a gap. Face contact may be performed.
- the amplification optical fiber 30 may be the optical fiber of the beam quality control device 70.
- the stress applying portion 80 in the stress applying portion 80 is arranged between the winding portion of the amplification optical fiber 30 and the connection point between the amplification optical fiber 30 and the optical fiber 31.
- the stress applying portion 80 is omitted for the sake of easy viewing.
- the stress applying portion 80 may be arranged in the winding portion of the amplification optical fiber 30.
- the stress applying portion 80 may be arranged between the winding portion of the amplification optical fiber 30 and the connection point between the amplification optical fiber 30 and the optical fiber 32.
- the coefficient of thermal expansion of the inner clad of the amplification optical fiber 30 in the modified example is the same as the coefficient of thermal expansion of the clad 53 of the first embodiment, and the coefficient of thermal expansion of the coating layer of the amplification optical fiber 30 in the modified example is the same as that of the first embodiment. It is the same as the coefficient of thermal expansion of the coating layer 55 of. Further, the coefficient of thermal expansion of the outer clad of the amplification optical fiber 30 in the modified example is made smaller than the coefficient of thermal expansion of the inner clad of the amplification optical fiber 30 in the modified example and the coating layer of the amplification optical fiber 30 in the modified example. ..
- the contraction or expansion of the outer clad has little effect on the contraction or expansion of the inner clad, and has little effect on the contraction or expansion of the stress applying portion 80.
- FIG. 14 is a diagram showing the laser device 1 of the present embodiment.
- the laser device 1 of the present embodiment includes a light source 2, an optical fiber 50 connected to the light source 2, and an emission unit 60 connected to the optical fiber 50.
- the light source 2 includes an excitation light source 40, an optical fiber 45 for excitation light connected to the excitation light source 40, and a resonator 200 connected to the optical fiber 45 for excitation light and the optical fiber 50.
- the light source 2 of the present embodiment is different from the Fabry-Perot type resonator 200 of the first embodiment in that the resonator 200 is a ring type.
- the resonator 200 of the present embodiment includes an optical fiber 31, an optical fiber 30 for amplification, a beam quality control device 70 having the same configuration as the beam quality control device 70 of the fourth embodiment, a combiner 121, and an optical isolator 123. , A bandpass filter 125 and an output coupler 127.
- One end of the optical fiber 31 is connected to one end of the amplification optical fiber 30.
- the other end of the amplification optical fiber 30 is connected to one end of the optical fiber 32, and the other end of the optical fiber 32 is connected to the incident end of the optical isolator 123.
- the exit end of the optical isolator 123 is connected to one end of an optical fiber 32 different from the above-mentioned optical fiber 32, and the other end of the optical fiber 32 is connected to the incident end of the bandpass filter 125.
- the exit end of the bandpass filter 125 is connected to one end of an optical fiber 32 further different from the above-mentioned optical fiber 32, and the other end of the optical fiber 32 is the other end of the optical fiber 31 connected to the amplification optical fiber 30.
- a ring-shaped resonator is configured, and the beam quality control device 70 is arranged inside the ring-shaped resonator 200.
- a stress applying portion 80 of the beam quality control device 70 is arranged on the optical fiber 32 having one end connected to the optical fiber 31 and the other end connected to the exit end of the bandpass filter 125. In FIG. 14, the stress applying portion 80 is omitted for the sake of easy viewing.
- the core of the optical fiber 45 for excitation light is connected to the inner cladding of the optical fiber 31.
- the excitation optical fiber 45 and the inner clad of the amplification optical fiber 30 are optically coupled via the inner clad of the optical fiber 31.
- the core 32a of the optical fiber 32 in the beam quality control device 70 is connected to the core of the optical fiber 31. In FIG. 14, the core 32a is not shown.
- the optical isolator 123 suppresses the return of light from the bandpass filter 125 side to the amplification optical fiber 30 side via the optical isolator 123.
- the bandpass filter 125 limits the band of the wavelength of the light passing through the bandpass filter 125.
- the bandpass filter 125 for example, light having a wavelength different from the wavelength of the light emitted from the emitting unit 60 is limited.
- the wavelength of the light emitted from the emitting unit 60 is, for example, 1070 nm.
- the core of the optical fiber 50 is optically connected to the core 32a of the optical fiber 32 connected to the exit end of the bandpass filter 125. Therefore, a part of the light from the bandpass filter 125 propagates to the core of the optical fiber 50, and the other part of the light propagates to the core 32a of the optical fiber 32 in the beam quality control device 70.
- the excitation light emitted from the excitation light source 40 enters the inner clad of the amplification optical fiber 30 via the core of the excitation light optical fiber 45 and the inner clad of the optical fiber 31.
- the excitation light incident on the inner clad of the amplification optical fiber 30 mainly propagates through the inner clad and excites the active element added to the core when passing through the core of the amplification optical fiber 30.
- the excited active element emits spontaneously emitted light, and light of a part of the wavelengths of the naturally emitted light enters the core 32a of the optical fiber 32 and passes through the optical isolator 123 and the bandpass filter 125. Propagates to the output coupler 127.
- the return of light from the bandpass filter 125 side to the amplification optical fiber 30 side via the optical isolator 123 is suppressed.
- the bandpass filter 125 the band of the wavelength of the light passing through the bandpass filter 125 is limited. A part of the band-limited light propagates from the output coupler 127 to the beam quality controller 70. Then, the light propagates from the core 32a of the optical fiber 32 of the beam quality control device 70 to the core of the optical fiber 31 and goes around the inside of the resonator 200.
- the active element of the amplification optical fiber 30 causes stimulated emission due to the band-limited light by the bandpass filter 125. Light is amplified in a predetermined wavelength band by this stimulated emission, and the amplified light propagates through the optical fiber 32.
- the stress applying unit 80 changes the state of the optical fiber 32.
- the distribution of the refractive index of the core 32a of the optical fiber 32 changes depending on the application of the laser device 1 such as cutting or cutting.
- the number of modes of light in the core 32a changes depending on the application. Therefore, for example, depending on the application, the single-mode light is changed to the multi-mode light, the number of modes of the multi-mode light is reduced, or the multi-mode light is changed to the single-mode light.
- the beam quality of light changes significantly as compared with the case where the beam quality control device 70 is arranged outside the resonator 200, light having a desired beam quality according to the application can be obtained. Then, a part of the light is incident on the core of the optical fiber 50 from the output coupler 127 with the desired beam quality according to the application, propagates through the core of the optical fiber 50, and is an object or the like from the exit 60. Is irradiated to. Also, the other part of the light goes around the inside of the resonator 200.
- the laser device 1 the light goes around the inside of the resonator 200, and the stress applying portion 80 changes the state of the optical fiber 32. Therefore, when the light propagates in the core 32a of the optical fiber 32 every time the light goes around the inside of the resonator 200, the mode of the light can be changed in the core 32a, and the light of a desired beam quality can be obtained. Therefore, in the laser device 1 of the present embodiment, since the light propagates through the core 32a every time the light goes around the inside of the resonator 200, the beam quality is as compared with the case where the beam quality control device is arranged outside the resonator 200. Can vary more significantly, resulting in the desired beam quality of light for the application.
- the light of the desired beam quality can be obtained in a short time in the same manner as the light of the desired beam quality can be obtained in a short time in the fourth embodiment. Further, also in the laser apparatus 1 of the present embodiment, as in the case of the laser apparatus 1 of the fourth embodiment, the increase in size and cost can be suppressed.
- the amplification optical fiber 30 of the beam quality control device 70 is wound and arranged, when the amplification optical fiber having the same length as the wound amplification optical fiber 30 is linearly arranged.
- the laser device 1 can be downsized as compared with the above.
- FIG. 15 is a diagram showing the laser device 1 of the present embodiment.
- the laser device 1 of the present embodiment includes a light source 2, an optical fiber 50, and an emission unit 60.
- the light source 2 of the present embodiment is different from the light source 2 composed of the fiber laser apparatus of the fourth embodiment in that it is composed of a solid-state laser apparatus.
- the light source 2 includes an excitation light source 40, a total reflection mirror 141, a condenser lens 143, an amplification medium 145, a collimating lens 147, a condenser lens 149, a beam quality control device 70, a collimating lens 151, and the like.
- a partial reflection mirror 153 and a condenser lens 155 are mainly provided.
- the total reflection mirror 141 the excitation light emitted from the excitation light source 40 is transmitted. Further, the total internal reflection mirror totally reflects the light in a predetermined wavelength band among the naturally emitted light emitted by the active element of the amplification medium 145 excited by the excitation light.
- the condensing lens 143 condenses the excitation light transmitted through the total reflection mirror 141 on the amplification medium 145.
- the amplification medium 145 is a glass rod, and the material of the glass rod is Nd: YAG.
- the excitation light from the excitation light source 40 excites the active element added to the amplification medium 145.
- the excited active element emits spontaneously emitted light, and a part of the naturally emitted light having a certain wavelength propagates to the collimating lens 147, and another part of the light emits the condensing lens 143. It propagates to the total reflection mirror 141 via.
- the collimating lens 147 converts the light emitted from the amplification medium 145 into parallel light.
- the condensing lens 149 condenses the light converted into parallel light by the collimating lens 147 onto the core 32a of the optical fiber 32 of the beam quality control device 70.
- the beam quality control device 70 of the present embodiment has the same configuration as the beam quality control device 70 of the fourth embodiment.
- the collimating lens 151 converts the light emitted from the beam quality control device 70 into parallel light.
- the partial reflection mirror 153 reflects a part of the light converted into parallel light by the collimating lens 151 to the collimating lens 151. Further, the partial reflection mirror 153 reflects light having at least a part of the wavelength of the light reflected by the total reflection mirror 141 with a lower reflectance than that of the total reflection mirror 141. The other part of the light passes through the partially reflective mirror 153.
- the condensing lens 155 condenses the light transmitted through the partial reflection mirror 153 on the optical fiber 50.
- the Fabry-Perot type cavity 200 is configured from the total reflection mirror 141, the amplification medium 145, and the partial reflection mirror 153, and the beam quality control device 70 is the Fabry-Perot type cavity 200. It is located inside the.
- the excitation light emitted from the excitation light source 40 passes through the total reflection mirror 141 and is focused on the amplification medium 145 by the condenser lens 143.
- the excitation light excites the active element added to the amplification medium 145.
- the activated element in the excited state emits spontaneously emitted light, and light of a part of the wavelengths of the naturally emitted light is emitted from the amplification medium 145. Part of the light propagates to the collimating lens 147 and another part of the light propagates to the condenser lens 143.
- the light propagating to the collimating lens 147 is converted into parallel light by the collimating lens 147.
- the light, which is parallel light is focused on the core 32a of the optical fiber 32 of the beam quality control device 70 by the condenser lens 149.
- the light is emitted from the core 32a toward the collimating lens 151, and is converted into parallel light by the collimating lens 151.
- Light having a wavelength of a part of the parallel light is reflected by the partial reflection mirror 153 on the collimating lens 151.
- the reflected light is collected by the collimating lens 151 on the core 32a of the optical fiber 32 of the beam quality control device 70.
- the light is emitted from the core 32a toward the condenser lens 149, converted into parallel light by the condenser lens 149, and condensed on the amplification medium 145 by the collimating lens 147.
- the light passes through the amplification medium 145 and propagates to the condenser lens 143.
- the light propagating from the amplification medium 145 to the condenser lens 143 is converted into parallel light by the condenser lens 143 and propagates to the total reflection mirror 141.
- Light of a part of the wavelength of the propagating light is totally reflected by the total reflection mirror 141 and propagates toward the partial reflection mirror 153 again as described above.
- the light reciprocates between the total reflection mirror 141 and the partial reflection mirror 153, that is, inside the resonator 200. Therefore, light is amplified by stimulated emission in the amplification medium 145, and a laser oscillation state is generated.
- a part of the light passes through the partial reflection mirror 153 and is incident on the core of the optical fiber 50 by the condenser lens 155.
- the light propagates through the core of the optical fiber 50 and is irradiated to an object or the like from the exit portion 60.
- the beam quality control device 70 is arranged between the total reflection mirror 141 and the partial reflection mirror 153, and the distribution of the refractive index of the core 32a of the optical fiber 32 is cut or cut by the beam quality control device 70. It changes according to the application. Therefore, when the light propagates in the core 32a every time the light reciprocates inside the resonator 200, the number of modes of light in the core 32a changes depending on the application. Therefore, for example, depending on the application, the single-mode light is changed to the multi-mode light, the number of modes of the multi-mode light is reduced, or the multi-mode light is changed to the single-mode light. Since the beam quality of light changes significantly as compared with the case where the beam quality control device 70 is arranged outside the resonator 200, light having a desired beam quality according to the application can be obtained.
- the laser device 1 of the present embodiment even if the light source 2 is composed of the solid-state laser device, the light reciprocates inside the resonator 200, so that the beam quality control device 70 is arranged outside the resonator 200. Compared to, the beam quality can vary more and the desired beam quality of light is obtained. Further, according to the laser apparatus 1 of the present embodiment, the light of the desired beam quality can be obtained in a short time in the same manner as the light of the desired beam quality can be obtained in a short time in the fourth embodiment. Further, also in the laser apparatus 1 of the present embodiment, as in the case of the laser apparatus 1 of the fourth embodiment, the increase in size and cost can be suppressed.
- FIG. 16 is a diagram showing the laser device 1 of the present embodiment.
- the laser device 1 of the present embodiment includes a light source 2, a reflection mirror 157, and an emission unit 60.
- the light source 2 of the present embodiment is different from the light source 2 composed of the solid-state laser apparatus of the sixth embodiment in that it is composed of a gas laser apparatus.
- the light source 2 is different from that of the sixth embodiment in that the excitation light source 40 emits the excitation light to the amplification medium 145 and the configuration of the amplification medium 145 is different from that of the sixth embodiment.
- the amplification medium 145 of the present embodiment is a glass tube in which a gas such as CO 2 is sealed.
- a gas such as CO 2
- the gas in the excited state emits spontaneous emission light, and light of a part of the wavelengths of the spontaneous emission light is emitted.
- the light reciprocates between the total reflection mirror 141 and the partial reflection mirror 153, that is, inside the resonator 200. Therefore, light is amplified by stimulated emission in the amplification medium 145, and a laser oscillation state is generated. Then, a part of the light passes through the partial reflection mirror 153 and is focused on the reflection mirror 157 by the condenser lens 155. The light is reflected by the reflecting mirror 157 to the emitting unit 60, and is irradiated to the object or the like from the emitting unit 60.
- the beam quality control device 70 of the present embodiment is arranged between the total reflection mirror 141 and the partial reflection mirror 153, and the distribution of the refractive index of the core 32a of the optical fiber 32 is cut or cut by the beam quality control device 70. It changes according to the application of the laser device 1. Therefore, when the light propagates in the core 32a every time the light reciprocates inside the resonator 200, the number of modes of light in the core 32a changes depending on the application. Therefore, for example, depending on the application, the single-mode light is changed to the multi-mode light, the number of modes of the multi-mode light is reduced, or the multi-mode light is changed to the single-mode light. Since the beam quality of light changes significantly as compared with the case where the beam quality control device 70 is arranged outside the resonator 200, light having a desired beam quality according to the application can be obtained.
- the laser device 1 of the present embodiment even if the light source 2 is composed of a gas laser device, the light reciprocates inside the resonator 200, so that the beam quality control device 70 is arranged outside the resonator 200. Compared to, the beam quality can vary more and the desired beam quality of light is obtained. Further, according to the laser apparatus 1 of the present embodiment, the light of the desired beam quality can be obtained in a short time in the same manner as the light of the desired beam quality can be obtained in a short time in the fourth embodiment. Further, also in the laser apparatus 1 of the present embodiment, as in the case of the laser apparatus 1 of the fourth embodiment, the increase in size and cost can be suppressed.
- the stress applying portion 80 may be in surface contact with at least a part of the outer peripheral surfaces of the coating layers 32c and 55.
- the coating layer 55 may not be arranged on the clad 53, and the optical fiber 50 may have only the core 51 and the clad 53.
- the stress applying portion 80 may be in surface contact with at least a part of the outer peripheral surface of the clad 53. Further, the stress applying portion 80 can be contracted or expanded even if the coating layer 55 is not arranged. As a result, even if the coating layer 55 is not arranged, the external force applied to the clad 53 by the stress applying portion 80 changes non-uniformly in the circumferential direction of the clad 53.
- the beam quality control device 70 since the beam quality is controlled in the optical fiber 50, the beam quality is controlled by arranging the lens in the space even if vibration or a change in the environmental temperature occurs. Unintentional changes in beam quality can be suppressed as compared to the case. Therefore, in this beam quality control device 70, light of a desired beam quality can be obtained.
- the beam quality control device 70 of the first embodiment has been described, but in the beam quality control device 70 of the fourth embodiment, as described above, the optical fiber 32 has the same configuration as the optical fiber 50 and is optical.
- the stress applying portion 80 surrounding the fiber 32 has the same configuration as the stress applying portion 80 of the first embodiment surrounding the optical fiber 50. Therefore, the optical fiber 32 may have only the core 32a and the clad 32b. In this case, the stress applying portion 80 may be in surface contact with at least a part of the outer peripheral surface of the clad 32b. Even in this case, the beam quality control device 70 can obtain light of a desired beam quality.
- the stress applying portion 80 may surround the outer peripheral surface of the optical fibers 32, 50 over the entire length of the optical fibers 32, 50.
- the stress applying portion 80 surrounds the outer peripheral surface of at least a part of the outer peripheral surfaces of the optical fibers 32 and 50 in the longitudinal direction over the entire circumference, and closely adheres to the outer peripheral surface of the part without a gap. Therefore, the outer peripheral surface of the part may be in surface contact with the outer peripheral surface.
- the stress applying portion 80 may be arranged on at least a part of the outer peripheral surface of the part. When the stress applying portion 80 surrounds the optical fiber 32, 50 in a part of the total length of the optical fiber 32, 50, a plurality of stress applying portions 80 may be arranged apart from each other.
- the temperature control main body 91 may directly input the temperature value of the stress applying unit 80 according to the application of the laser device 1 from the input unit 113.
- the temperature control unit 90 may have a temperature measurement unit that measures the temperature of the stress application unit 80.
- the temperature control main body 91 may further control the voltage of the power supply 93 based on the temperature of the stress applying unit 80 measured by the temperature measuring unit.
- the temperature measured by the temperature measuring unit is fed back to the temperature control main unit 91, and the feedback is repeated so that the temperature of the stress applying unit 80 is set to the target temperature according to the application of the laser device 1.
- the temperature of the imparting unit 80 is controlled. Examples of the control method of the stress applying unit 80 include ON-OFF control, PWM control, and PID control.
- the temperature control unit 90 may change the temperature of the stress applying unit 80 without generating heat or absorbing heat by itself. Such a temperature control unit 90 may change the temperature of the stress application unit 80 by, for example, irradiating the stress application unit 80 with infrared rays, ultrasonic waves, or the like.
- the heat conductive member 111 does not have to be limited to a plate shape as long as it can conduct heat.
- the coefficient of thermal expansion of the stress applying portion 80 may be smaller than the coefficient of thermal expansion of the claddings 32b and 53.
- the stress applying portion 80 shrinks smaller than the clads 32b and 53.
- the stress applying portion 80 passes through the coating layers 32c and 55 on the inner peripheral surface of the stress applying portion 80 as compared with the case where the coefficient of thermal expansion of the stress applying portion 80 is larger than the coefficient of thermal expansion of the clads 32b and 53.
- the clad 32b, 53 can be pulled small to apply a small tensile stress to the clad 32b, 53. Further, in this case, the stress applying portion 80 expands smaller than the clads 32b and 53.
- the stress applying portion 80 is subjected to the clad 32b via the coating layer 55 on the inner peripheral surface of the stress applying portion 80 as compared with the case where the thermal expansion coefficient of the stress applying portion 80 is larger than the thermal expansion coefficient of the clads 32b and 53.
- 53 can be pressed small to apply a small compressive stress to the cladding 32b, 53.
- a heater may be used instead of the perche element 95.
- the beam quality control device 70 of the first, second, and third embodiments may be arranged outside the resonator 200, and may be arranged, for example, on the delivery optical fiber 10.
- the number of light sources 2 is not particularly limited, and at least one may be provided. Further, the beam quality control device 70 of the 4-7th embodiment may be arranged inside the resonator 200 of any of the plurality of light sources 2.
- the beam quality control device 70 of the second and third embodiments may be arranged between the farthest portion of the second FBG from the connection point of the amplification optical fiber 30 and the optical fiber 32 and the exit portion 60. ..
- the frame member 117 of the second embodiment may be incorporated in the beam quality control device 70 of the first and fourth embodiments.
- the perche element 95 of the first 3-7th embodiment is not arranged, the flow path portion 99 of the second embodiment is incorporated in the heat conductive member 111 of the first 3-7th embodiment, and the heat pump 97 is the first. It may be incorporated instead of the power source 93 of 1,3-7 embodiments.
- the heat conductive member 111 having the flow path portion 99 of the second embodiment may be arranged instead of the Perche element 95 of the first embodiment, or the flow path portion. 99 may be arranged on the plate member 81.
- the wall member 83 may be fixed to the optical fiber 50.
- the plate member 81 expands and the pair of wall members 83 separate from each other.
- the pair of wall members 83 can pull the clad 53 fixed to the wall member 83 from both sides and apply tensile stress to the clad 53.
- the light source 2 has been described with an example of being a resonator type fiber laser device, but the light source 2 may be another fiber laser device.
- the light source 2 is a MO-PA (Master Oscillator Power Amplifier) type fiber laser device having a seed light source or a DDL (Direct Diode Laser) type laser device. May be good.
- the beam quality control device 70 may be arranged between the seed light source and the emission unit.
- the beam quality control device 70 when the beam quality control device 70 is arranged between the amplification optical fiber that amplifies the light emitted from the seed light source and the exit portion, the beam quality control device 70 is between the seed light source and the amplification optical fiber.
- the beam quality control device 70 can easily bring the light having a high power density closer to the desired beam quality, and can easily bring the beam quality of the light emitted from the light source 60 closer to the desired beam quality, as compared with the case where the beam quality control device 70 is arranged in. Can be.
- the light source 2 shown in FIG. 1 may be a laser diode, and the beam quality control device 70 may be arranged between the light source 2 and the emission unit 60.
- the amplification optical fiber 30 and the optical fiber 31 have been described as a double clad fiber having an inner clad and an outer clad, but the present invention is not limited thereto.
- the inner clad is divided into two layers, and the amplification optical fiber 30 and the optical fiber 31 may be a triple clad fiber having three layers of two layers of inner clad and outer clad.
- the refractive index of the inner first clad may be lower than the refractive index of the outer second clad.
- the refractive index of the second clad may be lower than the refractive index of the outer clad.
- the optical fiber in the beam quality control device 70 of the fifth embodiment may be an amplification optical fiber 30.
- the configuration of the beam quality control device 70 arranged inside the resonator 20 is the same as the configuration of the beam quality control device 70 of the second embodiment or the configuration of the beam quality control device 70 of the third embodiment. There may be.
- the beam quality control device 70 may be arranged both inside the resonator 20 and outside the resonator 20.
- the storage unit 115 may store the relationship between the information on the beam quality of the light emitted from the laser device 1 and the temperature of the stress applying unit 80.
- the information is, for example, an index showing how small the beam waist diameter can be, and is indicated by a beam parameter product (BPP).
- BPP [mm ⁇ rad] is represented by r 0 ⁇ ⁇ or M 2 (M square) ⁇ ⁇ / ⁇ .
- r 0 is the beam waist radius
- ⁇ is the full width at half maximum of the beam divergence angle.
- ⁇ is the wavelength of light ( ⁇ m).
- the temperature control unit 90 reads out the temperature in the relationship stored in the storage unit 115, and controls the temperature of the stress applying unit 80 to the read out temperature. Therefore, the temperature control unit 90 controls the temperature of the stress applying unit 80 to a temperature based on the information stored in the storage unit 115.
- the temperature control unit 90 controls the temperature of the stress application unit 80 based on the information stored in the storage unit 115, and the temperature of the stress application unit 80 is based on this information.
- the beam quality of the light emitted from the laser device 1 can be the beam quality stored in the storage unit 115.
- the beam-quality light stored in the storage unit 115 is emitted, and the light can irradiate the object.
- a beam quality control device capable of obtaining light of a desired beam quality and a laser device using the same are provided, and can be used in various industries such as a laser processing field and a medical field.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Lasers (AREA)
Abstract
ビーム品質制御装置(70)は、コア(51)及びクラッド(53)を有する光ファイバ(50)と、光ファイバ(50)の外周面の少なくとも一部に面接触し、クラッド(53)の熱膨張係数とは異なる熱膨張係数を有する応力付与部(80)と、応力付与部(80)の温度を制御する温度制御部(90)と、を備える。応力付与部(80)は、応力付与部(80)がクラッド(53)に付与する外力の分布がクラッド(53)の周方向において不均一となるように、温度制御部(90)による温度の変化によって収縮または膨張する。
Description
本発明は、ビーム品質制御装置、及びこれを用いるレーザ装置に関する。
レーザ装置は、集光性に優れ、パワー密度が高く、小さなビームスポットとなる光が得られることから、レーザ加工分野、医療分野等の様々な分野で用いられている。以下に、レーザ装置の一例として、レーザ加工分野に用いられるレーザ加工機について説明する。
例えば、レーザ加工機が対象物を出射光であるレーザ光によって切断する場合には、当該レーザ加工機は、切断の精度を高めるために、レーザ光のパワー密度を上げ、レーザ光のスポット径を小さくし、対象物の狭い範囲にレーザ光を照射することが好ましい。
これに対して、例えば、レーザ加工機が対象物をレーザ光によって溶接する場合には、当該レーザ加工機は、溶接の均一性を高めるために、レーザの密度を下げ、レーザ光のスポット径を大きくし、対象物の広い範囲にレーザ光を照射することが好ましい。
このようなレーザ加工においては、加工の用途に応じてビームスポットの径を変える手段の1つとして、レーザ光のビーム品質を変更することが挙げられる。
例えば、特許文献1及び特許文献2には、ビーム品質を変更するレーザ装置が開示されている。特許文献1では、レーザ光を出射する上流側の光ファイバと複数の光導波層を有する下流側の光ファイバとの間において楔状のガラス部材が抜き差しされる。また、特許文献2では、上流側の光ファイバと下流側の光ファイバとの間にレーザ光を偏向するレンズが配置されている。特許文献1及び特許文献2では、上流側の光ファイバと下流側の光ファイバとは、空間内において光学的に結合されている。また、ガラス部材またはレンズによって、下流側の光ファイバに入射するレーザ光の入射位置が変わり、下流側の光ファイバを伝搬する光のモード等が変化し得る。つまり、下流側の光ファイバを伝搬するレーザ光のビーム品質が変化し得る。
特許文献1及び特許文献2に記載のレーザ装置では、空間内で光のモードが制御される。この場合、ガラス部材やレンズの位置や向きの僅かな変化によって、下流側の光ファイバにレーザ光が入射する位置が大きく変化してしまう。このようなガラス部材やレンズの位置や向きの僅かな変化は、振動や環境温度の変化等により容易に起こり得る。従って、振動や環境温度の変化等により、下流側の光ファイバを伝搬する光のビーム品質が意図せずに大きく変化してしまう傾向がある。このため、特許文献1及び特許文献2に記載のレーザ装置は、所望のビーム品質の光を得難い。
そこで、本発明は、所望のビーム品質の光を得ることができるビーム品質制御装置、及びこれを用いるレーザ装置を提供することを目的とする。
本発明のビーム品質制御装置は、コア及び前記コアの外周面を囲うクラッドを有する光ファイバと、前記光ファイバの外周面の少なくとも一部に面接触し、前記クラッドの熱膨張係数とは異なる熱膨張係数を有する応力付与部と、前記応力付与部の温度を制御する温度制御部と、を備え、前記応力付与部は、当該応力付与部が前記クラッドに付与する外力の分布が前記クラッドの周方向において不均一となるように、前記温度制御部による前記温度の変化によって収縮または膨張することを特徴とする。
このようなビーム品質制御装置では、応力付与部の温度が温度制御部によって変化すると、応力付与部は収縮または膨張する。応力付与部が収縮または膨張すると、応力付与部がクラッドに付与する外力がクラッドの周方向において不均一に変化する。当該外力が不均一に変化すると、コアにかかる応力の分布がコアの周方向において不均一となり、コアの屈折率の分布が変化し、コアを伝搬する光のモードが変化し得る。このように、ビーム品質制御装置では、コアにかかる応力が温度で制御されることで、所望のビーム品質の光が得られる。また、上記のビーム品質制御装置では、光ファイバ内でビーム品質が制御されるため、上記のように振動や環境温度の変化等が生じても、空間内にガラス部材やレンズが配置されることでビーム品質が制御される場合と比べて、ビーム品質の意図しない変化が抑制され得る。従って、ビーム品質制御装置では、所望のビーム品質の光が得られる。
また、前記ビーム品質制御装置は、主面上に前記応力付与部が配置され、前記応力付与部及び前記温度制御部に熱的に接続され、前記温度制御部と前記応力付与部との間において熱を伝導する板状の熱伝導部材をさらに備えることが好ましい。
温度制御部が発熱する場合、温度制御部の熱は、熱伝導部材の平面方向において熱伝導部材全体に渡って伝導され易くなり、熱伝導部材から熱伝導部材の主面上の応力付与部に伝導され易くなり得る。また、温度制御部が吸熱する場合、応力付与部の熱は、熱伝導部材の平面方向において熱伝導部材全体に渡って伝導され易くなり、応力付与部から熱伝導部材に伝導され易くなり得る。これにより、応力付与部の温度は変化し易くなり、応力付与部の応力の大きさは応力付与部の温度によって変化し易くなり得る。従って、このビーム品質制御装置によれば、熱伝導部材が配置されていない場合に比べて、応力付与部の応力の大きさが変化し易くなり得る。
また、前記温度制御部は、前記熱伝導部材と熱的に接続されるペルチェ素子を有することが好ましい。
一般的に、ペルチェ素子において電流が所定の方向に流れると、ペルチェ素子の一方の面の温度は上昇し、他方の面の温度は下降する。この場合において、熱伝導部材が一方の面に配置されると、熱は一方の面から熱伝導部材を介して応力付与部に伝達され、応力付与部の温度はペルチェ素子によって上昇する。また、電流が上記とは逆の方向に流れると、一方の面の温度は下降し、他方の面の温度は上昇する。この場合において、熱伝導部材が一方の面に配置されると、熱は応力付与部から熱伝導部材を介してペルチェ素子に伝達され、応力付与部の温度はペルチェ素子によって下降する。このように、応力付与部の温度はペルチェ素子において流れる電流の向きによって変化し、応力付与部の応力の大きさは応力付与部の温度によって制御され得る。従って、このビーム品質制御装置によれば、ペルチェ素子によって応力付与部の応力の大きさが制御され得る。
また、前記温度制御部は、ヒートポンプと、前記ヒートポンプによって温度が変化する流体が流れ、前記熱伝導部材を貫通し、前記流体によって前記応力付与部の前記温度を変化させる流路部と、を有することが好ましい。
この場合、ヒートポンプが流体の温度を制御すると、応力付与部の温度は熱伝導部材を介して流体によって変化し、応力付与部の応力の大きさは応力付与部の温度によって制御され得る。従って、このビーム品質制御装置によれば、流路部を流れる流体によって応力付与部の応力の大きさが制御され得る。
また、前記応力付与部は、前記光ファイバの前記外周面に面接触する接触面と前記接触面から離れている前記応力付与部の外周面との間の厚みが不均一な樹脂から成ることが好ましい。
この場合、樹脂の温度が変化することで、クラッドに付与される外力の大きさにばらつきが生じ、コアにかかる応力の分布はコアの周方向において不均一となり得る。
また、前記樹脂の温度が所定の温度よりも低い場合に、前記樹脂は、収縮して前記クラッドに引張応力を付与し、前記樹脂の前記温度が前記所定の温度よりも高い場合に、前記樹脂は、膨張して前記クラッドに圧縮応力を付与することが好ましい。
この場合、温度制御部は、樹脂の温度を制御することによって樹脂の収縮または膨張を制御し得、樹脂の収縮または膨張によって応力を制御し得る。
また、ビーム品質制御装置は、前記応力付与部の少なくとも一部を囲う枠部材をさらに備え、前記枠部材の熱膨張係数は、前記応力付与部の熱膨張係数よりも小さいことが好ましい。
この場合、応力付与部は、膨張すると枠部材に向かう広がりを枠部材によって抑制されるため、枠部材が配置されていない場合に比べてクラッドに向かって強い外力でクラッドを押圧し得る。これにより応力付与部は、枠部材が配置されていない場合に比べて、大きい圧縮応力をクラッドに付与し得る。
また、前記枠部材は、金属から成ることが好ましい。
一般的に、熱は、金属を伝導し易いため、枠部材を介して応力付与部に伝導され易くなり得る。従って、このビーム品質制御装置によれば、枠部材が配置されていない場合に比べて、応力付与部の応力が早く変化し得る。
また、前記応力付与部は、板部材と、前記板部材に立設され、前記光ファイバを挟み込む一対の壁部材と、を有し、前記板部材は、前記一対の壁部の並び方向において収縮または膨張し、前記一対の壁部材は、前記板部材の収縮によって前記クラッドに圧縮応力を付与し、前記板部材の膨張によって前記圧縮応力の付与を解放することが好ましい。
この場合、一対の壁部材は、収縮によってクラッドにクラッドの径方向における両側から応力である圧縮応力を付与し、膨張によって圧縮応力の付与を解放し得る。これにより、コアにかかる応力の分布はコアの周方向において不均一となり、コアを伝搬する光のモードが変化し得る。従って、このビーム品質制御装置においても、所望のビーム品質の光が得られる。
また、本発明のレーザ装置は、上記に記載のいずれかのビーム品質制御装置と、光を出射する光源と、を備え、前記光ファイバの前記コアには、前記光が伝搬することが好ましい。
この場合、レーザ装置は、ビーム品質制御装置によって制御されたビーム品質の光を対象物に照射し得る。また、上記のように、このビーム品質制御装置では、振動や環境温度の変化等が生じても、所望のビーム品質の光が得られる。従って、所望のビーム品質の光が対象物を照射し得る。
また、本発明のレーザ装置は、上記に記載のいずれかのビーム品質制御装置と、励起光を出射する励起光源とを備え、前記光ファイバには、前記励起光により励起される活性元素により増幅される光が伝搬することが好ましい。
上記の構成を備えるレーザ装置としては、例えば、共振器型のレーザ装置やMO-PA(Master Oscillator Power Amplifier)型のレーザ装置を挙げられる。この場合、当該レーザ装置は、ビーム品質制御装置によって制御されたビーム品質の光を対象物に照射し得る。また、上記のように、このビーム品質制御装置では、振動や環境温度の変化等が生じても、所望のビーム品質の光が得られる。従って、所望のビーム品質の光が対象物を照射し得る。
また、前記レーザ装置は、前記活性元素が添加される増幅用光ファイバと、前記増幅用光ファイバの一方側に設けられ、前記活性元素により増幅される前記光の少なくとも一部の波長の光を反射する第1FBGと、前記増幅用光ファイバの他方側に設けられ、前記第1FBGが反射する光のうち少なくとも一部の波長の光を前記第1FBGより低い反射率で反射する第2FBGと、前記第2FBGを透過する光を対象物に向けて出射する出射部と、をさらに備え、前記ビーム品質制御装置は、前記増幅用光ファイバ及び前記第2FBGが設けられる光ファイバの接続点から前記第2FBGのうちの最も離れた部位と前記出射部との間に配置されてもよい。
このような構成によって、ビーム品質制御装置は、第2FBGと出射部との間以外に配置される場合に比べて、出射部から出射する光のビーム品質を所望のビーム品質に近づけ易くなり得る。
或いは、前記レーザ装置は、前記励起光により励起される前記活性元素により増幅される前記光が共振する共振器をさらに備え、前記ビーム品質制御装置は、前記共振器の内部に配置されてもよい。
このようなレーザ装置では、ビーム品質制御装置は当該共振器の内部に配置されており、光は共振器の内部を往復する。この場合、光は共振器の内部を往復する度にコアを伝搬し、往復する度に光ファイバにおいて光のモードが変化し得、所望のビーム品質の光が得られる。また、本発明のレーザ装置によれば、ビーム品質制御装置が共振器の外部に配置される場合と比べて、ビーム品質が大きく変化し得、所望のビーム品質の光が得られる。
また、前記共振振器は、前記活性元素が添加される増幅用光ファイバと、前記増幅用光ファイバの一方側に設けられ、前記活性元素により増幅される前記光の少なくとも一部の波長の光を反射する第1FBGと、前記増幅用光ファイバの他方側に設けられ、前記第1FBGが反射する光のうち少なくとも一部の波長の光を前記第1FBGより低い反射率で反射する第2FBGと、を備え、前記ビーム品質制御装置は、前記増幅用光ファイバ及び前記第1FBGが設けられる光ファイバの接続点と前記第1FBGのうちの前記接続点から最も離れた部位との間に配置されることが好ましい。
接続点と第1FBGのうちの接続点から最も離れた部位との間における光のパワー密度は、第1FBGと第2FBGとの間における他の部位におけるパワー密度よりも低い。従って、ビーム品質制御装置は、接続点と当該部位との間に配置される場合、上記他の部位に配置される場合に比べて、ビーム品質制御装置の光ファイバでの発熱が抑制され得る。このため、ビーム品質制御装置の損傷が抑制され得る。
或いは、前記共振器は、前記活性元素が添加される増幅用光ファイバと、前記増幅用光ファイバの一方側に設けられ、前記活性元素により増幅される前記光の少なくとも一部の波長の光を反射する第1FBGと、前記増幅用光ファイバの他方側に設けられ、前記第1FBGが反射する光のうち少なくとも一部の波長の光を前記第1FBGより低い反射率で反射する第2FBGと、を備え、前記増幅用光ファイバは、前記ビーム品質制御装置における前記光ファイバであってもよい。
或いは、前記共振器は、前記活性元素が添加される増幅用光ファイバと、前記増幅用光ファイバの一方側に設けられ、前記活性元素により増幅される前記光の少なくとも一部の波長の光を反射する第1FBGと、前記増幅用光ファイバの他方側に設けられ、前記第1FBGが反射する光のうち少なくとも一部の波長の光を前記第1FBGより低い反射率で反射する第2FBGと、を備え、前記ビーム品質制御装置は、前記増幅用光ファイバ及び前記第2FBGが設けられる光ファイバの接続点と前記第2FBGのうちの前記接続点から最も離れた部位との間に配置されることが好ましい。
接続点と第2FBGのうちの接続点から最も離れた部位との間における光のパワー密度は、第1FBGと第2FBGとの間における他の部位における光のパワー密度よりも高い。従って、ビーム品質制御装置は、接続点と当該部位との間に配置される場合、上記他の部位に配置される場合に比べて、ビーム品質がより大きく変化し得、出射部から出射する光のビーム品質を所望のビーム品質に近づけ易くなり得る。
或いは、前記第1FBGは、前記ビーム品質制御装置における前記光ファイバに設けられてもよい。
或いは、前記第2FBGは、前記ビーム品質制御装置における前記光ファイバに設けられてもよい。
また、前記レーザ装置は、前記レーザ装置から出射する光のビーム品質に関する情報を記憶する記憶部をさらに備え、前記温度制御部は、前記応力付与部の前記温度を前記記憶部に記憶された前記情報に基づく温度に制御することが好ましい。
上記の構成によって、レーザ装置では、温度制御部は記憶部に記憶された情報に基づいて応力付与部の温度を制御しており、応力付与部の温度がこの情報に基づいた温度となると、レーザ装置1から出射する光のビーム品質は、記憶部に記憶されたビーム品質となり得る。これにより、記憶部に記憶されたビーム品質の光が対象物を照射し得る。
以上のように、本発明によれば、所望のビーム品質の光を得ることができるビーム品質制御装置、及びこれを用いるレーザ装置を提供することができる。
以下、本発明に係るレーザ装置の好適な実施形態について図面を参照しながら詳細に説明する。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができる。また、本発明は、以下に例示する各実施形態における構成要素を適宜組み合わせてもよい。なお、理解の容易のため、それぞれの図において一部が誇張して記載される場合等がある。
(第1実施形態)
図1は、本発明にかかるレーザ装置1を示す図である。図1に示すように、本実施形態のレーザ装置1は、複数の光源2と、それぞれの光源2から出射する光を伝搬する光ファイバ21と、光ファイバ21からの光が入射するデリバリ光ファイバ10と、コンバイナ25と、デリバリ光ファイバ10からの光が入射する光ファイバ50を備えるビーム品質制御装置70と、光ファイバ50の端部に設けられる出射部60とを主な構成として備える。
図1は、本発明にかかるレーザ装置1を示す図である。図1に示すように、本実施形態のレーザ装置1は、複数の光源2と、それぞれの光源2から出射する光を伝搬する光ファイバ21と、光ファイバ21からの光が入射するデリバリ光ファイバ10と、コンバイナ25と、デリバリ光ファイバ10からの光が入射する光ファイバ50を備えるビーム品質制御装置70と、光ファイバ50の端部に設けられる出射部60とを主な構成として備える。
図2は、レーザ装置1におけるそれぞれの光源2を示す図である。図2に示すように、本実施形態のそれぞれの光源2は、励起光を出射する励起光源40と、励起光源40から出射する励起光が入射し、励起光により励起される活性元素が添加される増幅用光ファイバ30と、を主な構成として備える。また、それぞれの光源2は、増幅用光ファイバ30の一端に接続される光ファイバ31と、光ファイバ31に設けられる第1FBG(Fibber Bragg Gratings)33と、光ファイバ31に励起光を入射するためのコンバイナ35と、増幅用光ファイバ30の他端に接続される光ファイバ32と、光ファイバ32に設けられる第2FBG34と、を主な構成としてさらに備える。本実施形態の光源2では、増幅用光ファイバ30、第1FBG33、及び第2FBG34からファブリ・ペロー(Fabry-Perot)型の共振器200が構成されている。従って、本実施形態の光源2は、共振器型のファイバレーザ装置とされる。
励起光源40は、複数のレーザダイオード41から構成される。励起光源40は、増幅用光ファイバ30に添加される活性元素を励起する波長の励起光を出射する。励起光源40のそれぞれのレーザダイオード41は、励起光用光ファイバ45に接続される。レーザダイオード41から出射する光は、それぞれのレーザダイオード41に光学的に接続される励起光用光ファイバ45を伝搬する。励起光用光ファイバ45としては、例えば、マルチモードファイバを挙げることができ、この場合、励起光は励起光用光ファイバ45をマルチモード光として伝搬する。励起光の波長は、例えば915nmとされる。
増幅用光ファイバ30は、コアと、コアの外周面を全周に渡って囲い、コアの外周面に隙間なく密着する内側クラッドと、内側クラッドの外周面を全周に渡って囲い、内側クラッドの外周面に隙間なく密着する被覆する外側クラッドと、外側クラッドの外周面を全周に渡って囲い、内側クラッドの外周面に隙間なく密着する被覆層とを有する。増幅用光ファイバ30のコアは活性元素としてイッテルビウム(Yb)が添加された石英から成り、必要に応じて屈折率を上昇させるゲルマニウム等の元素が添加されている。なお、本実施形態の増幅用光ファイバ30の構成とは異なるが、増幅する光の波長に合わせて、活性元素としてイッテルビウム以外の希土類元素が添加されても良い。このような希土類元素としては、ツリウム(Tm)、セリウム(Ce)、ネオジム(Nd)、ユーロピウム(Eu)、エルビウム(Er)等が挙げられる。さらに活性元素として、希土類元素の他に、ビスマス(Bi)等が挙げられる。また、増幅用光ファイバ30の内側クラッドを構成する材料としては、例えば、何らドーパントが添加されていない純粋石英が挙げられる。なお、内側クラッドに例えばフッ素(F)、ボロン(B)等の屈折率を低下させる元素が添加されてもよい。また、増幅用光ファイバ30の外側クラッドを構成する材料としては、例えば、内側クラッドより屈折率の低い樹脂が挙げられる。また、増幅用光ファイバ30の被覆層を構成する材料としては、例えば、外側クラッドを構成する樹脂とは異なる樹脂が挙げられる。増幅用光ファイバ30は、シングルモードファイバとされるが、パワーの大きな信号光が増幅用光ファイバ30のコアを伝搬可能なように、コアの直径がマルチモードファイバと同様とされつつも、シングルモードの光を伝搬する構成とされても良い。また、増幅用光ファイバ30は、マルチモードファイバとされても良い。
光ファイバ31は、コアに活性元素が添加されていない点を除き増幅用光ファイバ30と同じ構成とされる。光ファイバ31は、増幅用光ファイバ30の一端に接続されている。従って、増幅用光ファイバ30のコアと光ファイバ31のコアとが光学的に結合し、増幅用光ファイバ30の内側クラッドと光ファイバ31の内側クラッドとが光学的に結合している。
第1FBG33は、増幅用光ファイバ30の一方側に接続される光ファイバ31のコアに設けられている。第1FBG33は、光ファイバ31の長手方向に沿って一定の周期で屈折率が高くなる部分が繰り返されることで構成されている。この周期が調整されることにより、第1FBG33は、励起状態とされた増幅用光ファイバ30の活性元素が放出する光のうち所定の波長帯域の光を反射する。
また、コンバイナ35において、光ファイバ31の内側クラッドに励起光用光ファイバ45のコアが接続されている。こうして、励起光源40と接続される励起光用光ファイバ45と増幅用光ファイバ30の内側クラッドとは、光ファイバ31の内側クラッドを介して、光学的に結合される。
また、コンバイナ35において、光ファイバ31に光ファイバ36が接続されている。光ファイバ36は、例えば、光ファイバ31のコアと同じ直径のコアを有する光ファイバとされる。光ファイバ36の一端は光ファイバ31に接続されており、光ファイバ36のコアと光ファイバ31のコアとが光学的に結合している。また、光ファイバ36のコンバイナ35側と反対側には熱変換部Eが接続されている。
光ファイバ32は、活性元素が添加されていないことを除いて増幅用光ファイバ30のコアと同様のコアと、増幅用光ファイバ30の内側クラッドと同様の構成のクラッドと、増幅用光ファイバ30の被覆層と同様の構成の被覆層とを有する。光ファイバ32のクラッドは、光ファイバ32のコアの外周面を全周に渡って囲い、コアの外周面に隙間なく密着している。光ファイバ32の被覆層は、光ファイバ32のクラッドの外周面を全周に渡って囲い、クラッドの外周面に隙間なく密着している。光ファイバ32は、増幅用光ファイバ30の他端に接続されており、増幅用光ファイバ30のコアと光ファイバ32のコアとが光学的に結合している。
第2FBG34は、増幅用光ファイバ30の他方側に接続される光ファイバ32のコアに設けられている。第2FBG34は、光ファイバ32の長手方向に沿って一定の周期で屈折率が高くなる部分が繰り返されることで構成されている。この構成により、第2FBG34は、第1FBG33が反射する光の少なくとも一部の波長の光を第1FBG33よりも低い反射率で反射する。
また、光ファイバ32の増幅用光ファイバ30側と反対側には、図1に示す光ファイバ21が接続されており、光ファイバ32と光ファイバ21とで1つの光ファイバが構成されている。なお、光ファイバ32が延長されることにより、光ファイバ32の一部が光ファイバ21とされても良い。
それぞれの光ファイバ21のコアは、デリバリ光ファイバ10のコアとコンバイナ25により光学的に結合されている。デリバリ光ファイバ10は、例えばマルチモードの光が伝搬するマルチモードファイバとされる。コンバイナ25は、例えば、テーパ状に加工されたブリッジファイバとされる。この場合、それぞれの光ファイバ21のコアは、コンバイナ25であるブリッジファイバの大口径側の端面に接続され、デリバリ光ファイバ10のコアは、コンバイナ25であるブリッジファイバの小口径側の端面に接続される。こうして、コンバイナ25を介して、それぞれの光ファイバ21のコアとデリバリ光ファイバ10のコアとが光学的に結合される。なお、コンバイナ25は、それぞれの光ファイバ21のコアとデリバリ光ファイバ10のコアとを光学的に結合させるものであれば、上記のブリッジファイバに限らず、例えば、それぞれの光ファイバ21のコアがデリバリ光ファイバ10のコアに直接接続されてもよい。
デリバリ光ファイバ10のコンバイナ25側と反対側には、ビーム品質制御装置70の光ファイバ50が接続されており、デリバリ光ファイバ10と光ファイバ50とで1つの光ファイバが形成されている。なお、デリバリ光ファイバ10が延長されることにより、デリバリ光ファイバ10の一部が光ファイバ50とされても良い。デリバリ光ファイバ10の構成は、後述する光ファイバ50の構成と同様とされる。第1FBG33から出射部60における光ファイバ31と増幅用光ファイバ30と光ファイバ32,21とデリバリ光ファイバ10と光ファイバ50とには、励起光により励起される活性元素により増幅される光が伝搬する。
出射部60は、光ファイバ50から伝搬された光を対象物等に出射する。出射部60は、例えば、光ファイバ50の後述するコア51の直径よりも大きな直径を有するガラスロッドとされる。なお、出射部60は、光ファイバ50の端部とされてもよいし、光ファイバ50の端部に取り付けられたレンズなどの光学部品とされてもよい。
ところで、上記したように、共振器200は、増幅用光ファイバ30、第1FBG33、及び第2FBG34から構成されている。従って、光ファイバ50を備える本実施形態のビーム品質制御装置70は、共振器200の外部に配置されていることになる。本実施形態のビーム品質制御装置70は、デリバリ光ファイバ10及び光ファイバ50の接続点と出射部60との間に配置されている例が示されている。
次に、図3を用いて、ビーム品質制御装置70の構成について説明する。図3は、ビーム品質制御装置70を示す図である。
ビーム品質制御装置70の光ファイバ50は、光が伝搬するコア51と、コア51の外周面を全周に渡って囲い、コア51の外周面に隙間なく密着するクラッド53と、クラッド53の外周面を全周に渡って囲い、クラッド53の外周面に隙間なく密着する被覆層55とを有する。例えば、コア51及びクラッド53にはガラスが用いられ、被覆層55には樹脂が用いられる。例えば、コア51は、活性元素が添加されていない点を除き増幅用光ファイバ30のコアと同じ構成とされる。例えば、クラッド53は、増幅用光ファイバ30の内側クラッドと同じ構成とされる。例えば、被覆層55は、増幅用光ファイバ30の被覆層と同じ構成とされる。
また、ビーム品質制御装置70は、応力付与部80と、温度制御部90と、熱伝導部材111と、入力部113と、記憶部115とを有する。
本実施形態の応力付与部80は、例えば、湿気硬化型の樹脂から成る。この樹脂は、例えば、シリコーン系の樹脂である。また、熱伝導部材111は、例えば、銅、窒化アルミニウムなどの金属の板部材から成る。
応力付与部80は、被覆層55の外周面を全周に渡って囲い、被覆層55の外周面に隙間なく密着しており、当該外周面に面接触する。従って、光ファイバ50の外周面は、応力付与部80に埋設されている。なお、応力付与部80は、光ファイバ50の外周面の少なくとも一部に面接触していればよい。被覆層55の外周面に面接触する応力付与部80の接触面と当該接触面から離れている応力付与部80の外周面との間における応力付与部80の厚みは、不均一となっている。従って、光ファイバ50の径方向におけるクラッド53の外周面と応力付与部80の外周面との間の距離は、一定ではなく、不均一とされている。例えば、応力付与部80は、半楕円形状となっており、熱伝導部材111の厚み方向よりも熱伝導部材111の平面方向において長い。熱伝導部材111の平面方向における応力付与部80の長さは光ファイバ50の直径よりも十分に長く、熱伝導部材111の厚み方向における応力付与部80の長さは光ファイバ50の直径よりも微小に長い。応力付与部80は、光ファイバ50と共に熱伝導部材111の主面に配置されており、光ファイバ50を熱伝導部材111に固定する。例えば、応力付与部80は、光ファイバ50の全長の一部分において光ファイバ50を囲っている。
温度制御部90は、温度制御本体部91と、電源93と、ペルチェ素子95とを有する。
温度制御本体部91には、例えば、マイクロコントローラ、IC(Integrated Circuit)、LSI(Large-scale Integrated Circuit)、ASIC(Application Specific Integrated Circuit)などの集積回路やNC(Numerical Control)装置を用いることができる。また、温度制御部90は、NC装置を用いた場合、機械学習器を用いたものであってもよく、機械学習器を用いないものであってもよい。
温度制御本体部91には、ビーム品質制御装置70を搭載するレーザ装置1の用途が入力部113から入力される。この場合、温度制御本体部91は、記憶部115にアクセスし、記憶部115に記憶されるテーブルからレーザ装置1の用途に応じた応力付与部80の温度を読み出す。
電源93は、応力付与部80の温度がテーブルから読み出された温度となるように、温度制御本体部91によって電圧を制御される。電源93は、電圧をペルチェ素子95に印加する。
電圧の印加によって、ペルチェ素子95に電流が所定の方向に流れると、ペルチェ素子95の後述する一方の面の温度は上昇し、他方の面の温度は下降する。また、電圧が切り替わり、電流が上記とは逆の方向に流れると、ペルチェ素子95の一方の面の温度は下降し、他方の面の温度は上昇する。ペルチェ素子95の一方の面及び他方の面の温度は、ペルチェ素子95に流れる電流の大きさによって変化する。電流の大きさが変えられることで、ペルチェ素子95の温度の変化の度合いが変化する。電流の大きさが一定だと、ペルチェ素子95の温度は一定となる。電流が流れない場合は、ペルチェ素子95は発熱及び吸熱しない。
ペルチェ素子95の一方の面には、熱伝導部材111が配置されている。上記したように、ペルチェ素子95に電流が所定の方向に流れると、ペルチェ素子95の一方の面の温度は上昇する。この場合、ペルチェ素子95の熱は熱伝導部材111を介して応力付与部80に伝達され、応力付与部80の温度はペルチェ素子95によって上昇する。また、上記したように、電流が上記とは逆の方向に流れると、熱伝導部材111が配置されるペルチェ素子95の一方の面の温度は下降する。この場合、応力付与部80の熱は応力付与部80から熱伝導部材111を介してペルチェ素子95に伝達され、応力付与部80の温度はペルチェ素子によって下降する。
熱伝導部材111の主面のうちの一方の面には応力付与部80が配置されており、熱伝導部材111の主面のうちの他方の面はペルチェ素子95に載置されている。熱伝導部材111は、応力付与部80とペルチェ素子95とに熱的に接続されており、ペルチェ素子95と応力付与部80との間において熱を伝導する。ペルチェ素子95の一方の面の温度が上昇し、他方の面の温度が下降する場合、熱伝導部材111は、ペルチェ素子95から発生した熱を応力付与部80に伝導する。ペルチェ素子95の一方の面の温度が下降し、他方の面の温度が上昇する場合、熱伝導部材111は、応力付与部80の熱をペルチェ素子95に伝導する。
熱伝導部材111の熱膨張係数は、クラッド53の熱膨張係数及び応力付与部80の熱膨張係数よりも大きくされ、被覆層55の熱膨張係数よりも小さくされている。
入力部113は、レーザ装置1を操作する操作者によって操作される。入力部113は、例えば、切削または溶接といったレーザ装置1の用途を温度制御本体部91に入力する。入力部113は、一般的な入力用の機器であり、例えば、キーボード、マウス等のポインティングデバイス、ボタンスイッチ、ダイヤル等である。入力部113は、操作者が図示しないモニタ等の表示部を目視した状態で表示部に表示される複数の用途から1つのある用途を選択及び入力してもよい。入力部113は、操作者がレーザ装置1を動作させるための各種指令を入力するために用いられてもよい。
記憶部115は、レーザ装置1の用途と用途に対応する応力付与部80の温度との関係を示すテーブルを記憶している。記憶部115は、例えば、メモリである。
次に、応力付与部80による光ファイバ50への応力の付与について説明する。
応力付与部80の熱膨張係数は、クラッド53の熱膨張係数とは異なる。以下では、応力付与部80の熱膨張係数は、クラッド53の熱膨張係数よりも大きいものとして説明する。また、応力付与部80の熱膨張係数及びクラッド53の熱膨張係数は、被覆層55の熱膨張係数よりも小さくされている。
応力付与部80の温度がある所定の温度となっている状態では、応力付与部80は、収縮及び膨張しておらず、引張応力または圧縮応力といった応力を被覆層55を介してクラッド53に付していない状態となっている。また、被覆層55も、応力付与部80と同様に、ある所定の温度下では、収縮及び膨張しておらず、引張応力または圧縮応力といった応力をクラッド53に付していない状態となっている。このような場合、応力付与部80及び被覆層55がクラッド53に付与する外力の分布は、クラッド53の周方向において均一な状態となっている。所定の温度とは、例えば、応力付与部80である湿気硬化型の樹脂が硬化するときの温度である。
例えば、ペルチェ素子95の一方の面の温度が下降し、ペルチェ素子95の他方の面の温度が上昇すると、応力付与部80の熱は熱伝導部材111を介してペルチェ素子95に伝導される。これにより、応力付与部80の温度は所定の温度よりも下降し、応力付与部80は、所定の温度時に比べて収縮する。このとき、応力付与部80の厚みが薄くなるように、応力付与部80の外周面及び応力付与部80の内周面は互いに向かって近づく。また、被覆層55の熱は応力付与部80と熱伝導部材111とを介してペルチェ素子95に伝導され、被覆層55の温度は所定の温度よりも下降する。このため、被覆層55も、応力付与部80と同様に、所定の温度時に比べて収縮する。
上記のように応力付与部80の熱膨張係数がクラッド53の熱膨張係数よりも大きいため、応力付与部80は、クラッド53よりも大きく収縮する。そして、図4に示すように、応力付与部80は、応力付与部80の内周面において被覆層55を介してクラッド53を引っ張り、クラッド53に引張応力を付与し得る。
また、上記のように被覆層55の熱膨張係数が応力付与部80の熱膨張係数及びクラッド53の熱膨張係数よりも大きいため、被覆層55は応力付与部80及びクラッド53よりも大きく収縮する。この場合、被覆層55の外周面は、クラッド53に向かう収縮を応力付与部80の内周面における収縮によって抑制される。このため、応力付与部80が配置されていない場合に比べて、被覆層55は、クラッド53を強い力で引っ張りし得る。これにより被覆層55は、応力付与部80が配置されていない場合に比べて、大きい引張応力をクラッド53に付与し得る。
また、例えば、ペルチェ素子95の一方の面の温度が上昇し、ペルチェ素子95の他方の面の温度が下降すると、ペルチェ素子95の熱は熱伝導部材111を介して応力付与部80に伝導される。これにより応力付与部80の温度は所定の温度よりも上昇し、応力付与部80は、所定の温度時に比べて膨張する。このとき、応力付与部80の厚みが厚くなるように、応力付与部80の外周面及び応力付与部80の内周面は互いから遠ざかる。また、ペルチェ素子95の熱は熱伝導部材111及び応力付与部80を介して被覆層55にも伝導され、被覆層55の温度は所定の温度よりも上昇する。このため、被覆層55も、応力付与部80と同様に、所定の温度時に比べて膨張する。
上記のように応力付与部80の熱膨張係数がクラッド53の熱膨張係数よりも大きいため、応力付与部80は、クラッド53よりも大きく膨張する。そして、図5に示すように、応力付与部80は、応力付与部80の内周面において被覆層55を介してクラッド53を押圧し、クラッド53に圧縮応力を付与し得る。
また、上記のように被覆層55の熱膨張係数が応力付与部80の熱膨張係数及びクラッド53の熱膨張係数よりも大きいため、被覆層55は、応力付与部80及びクラッド53よりも大きく膨張する。この場合、被覆層55の外周面は、応力付与部80に向かう膨張を応力付与部80の内周面における膨張によって抑制される。このため、応力付与部80が配置されていない場合に比べて、被覆層55は、クラッド53を強い力で押圧し得る。これにより被覆層55は、応力付与部80が配置されていない場合に比べて、大きい圧縮応力をクラッド53に付与し得る。
このように応力付与部80は、応力付与部80の温度によって収縮または膨張し、収縮によって応力である引張応力をクラッド53に付与し、膨張によって応力である圧縮応力をクラッド53に付与し得る。また、被覆層55は、被覆層55の温度によって収縮または膨張し、収縮によって応力である引張応力をクラッド53に付与し、膨張によって応力である圧縮応力をクラッド53に付与し得る。
応力付与部80の収縮の程度は、応力付与部80の温度が所定の温度よりも低くなればなるほど、大きくなる。このため、応力付与部80の引張応力の大きさは、応力付与部80の温度が所定の温度よりも低くなればなるほど、大きくなる。また、応力付与部80の膨張の程度は、応力付与部80の温度が所定の温度よりも高くなればなるほど、大きくなる。このため、応力付与部80の圧縮応力の大きさは、応力付与部80の温度が所定の温度よりも高くなればなるほど、大きくなる。同様に、被覆層55の引張応力の大きさは、被覆層55の温度が所定の温度よりも低くなればなるほど、大きくなる。また、被覆層55の圧縮応力の大きさは、被覆層55の温度が所定の温度よりも高くなればなるほど、大きくなる。
上記のように圧縮応力及び引張応力といった応力の大きさが変化すると、応力付与部80及び被覆層55がクラッド53に付与する外力が変化し、クラッド53における外力の分布はクラッド53の周方向において不均一となる。これによりコア51にかかる応力の分布がコア51の周方向において不均一となり、コア51の屈折率の分布が変化し、コア51を伝搬する光のモードが変化し得る。このように、コア51にかかる応力が温度で制御されると、この制御によって光ファイバ50内でビーム品質が制御され、所望のビーム品質の光が得られる。
次に、図6を用いて、温度制御部90によって制御される本実施形態の応力付与部80の温度と、ビーム品質の変化量との関係の例について説明する。図6は、本実施形態の応力付与部80の温度とビーム品質の変化量との関係の例を示す図である。
ここで、図6にて実線で示すグラフについて説明する。このグラフでは、上記した所定の温度を例えば25℃としている。従って、この場合では、外力の分布はクラッド53の周方向において均一な状態となっており、ビーム品質の変化量は0である。この場合における、応力付与部80の温度とビーム品質の変化量とについて、以下に説明する。
応力付与部80の温度が20℃の場合では応力付与部80の引張応力によってビーム品質の変化量は0.003、応力付与部80の温度が15℃の場合では応力付与部80のより大きな引張応力によってビーム品質の変化量は0.015、となる結果が得られる。また、応力付与部80の温度が30℃の場合では応力付与部80の圧縮応力によってビーム品質の変化量は0.007、応力付与部80の温度が35℃の場合では応力付与部80のより大きな圧縮応力によってビーム品質の変化量は0.025、応力付与部80の温度が40℃の場合では応力付与部80の最も大きな圧縮応力によってビーム品質の変化量は0.047、となる結果が得られる。
次に、図6にて点線で示すグラフについて説明する。このグラフでは、上記した所定の温度を例えば35℃としている。従って、この場合では、外力の分布はクラッド53の周方向において均一な状態となっており、ビーム品質の変化量は0である。この場合における、応力付与部80の温度とビーム品質の変化量とについて、以下に説明する。
応力付与部80の温度が30℃の場合では応力付与部80の引張応力によってビーム品質の変化量は0.003、応力付与部80の温度が25℃の場合では応力付与部80のより大きな引張応力によってビーム品質の変化量は0.015、となる結果が得られる。また、応力付与部80の温度が40℃の場合では応力付与部80の圧縮応力によってビーム品質の変化量は0.007、応力付与部80の温度が45℃の場合では応力付与部80のより大きな圧縮応力によってビーム品質の変化量は0.025、応力付与部80の温度が50℃の場合では応力付与部80の最も大きな圧縮応力によってビーム品質の変化量は0.047、となる結果が得られる。
上記した結果から、応力付与部80の温度が所定の温度よりも低くなればなるほど、引張応力が大きくなり、コア51の屈折率の分布が変化するため、ビーム品質の変化量は大きくなり得る。また、応力付与部80の温度が所定の温度よりも高くなればなるほど、圧縮応力が大きくなり、コア51の屈折率の分布が変化するため、ビーム品質の変化量は大きくなり得る。つまり、応力の大きさは応力付与部80の温度によって制御され、応力付与部80の温度が所定の温度から離れるほどビーム品質の変化量は大きくなり得る。このように、コア51にかかる応力は応力付与部80の温度で制御され、この制御によって光ファイバ50内でビーム品質が制御され、所望のビーム品質の光が得られる。
また、例えば、図6にて実線で示すグラフにおいて、所定の温度を例えば30℃としても、応力付与部80の温度がこの所定の温度よりも低くなると、応力付与部80は収縮して引張応力を付与し、応力付与部80の温度がこの所定の温度よりも高くなると、応力付与部80は膨張して圧縮応力を付与することになる。従って、所定の温度がどのような値であっても、応力付与部80の温度が所定の温度に対して変化すると、応力付与部80が収縮または膨張する。これにより、コア51の屈折率の分布が変化するため、ビーム品質が変化することがわかる。
次に、本実施形態のレーザ装置1の動作について説明する。
レーザ装置1の動作開始の段階において、応力付与部80の温度及び被覆層55の温度は所定の温度となっており、応力付与部80及び被覆層55は、収縮及び膨張しておらず、引張応力または圧縮応力といった応力をクラッド53に付していない状態として説明する。このため、応力付与部80及び被覆層55がクラッド53に付与する外力の分布は、クラッド53の周方向において均一な状態となっている。
レーザ装置1を操作する操作者は、切削または溶接といったレーザ装置1の用途を入力部113に入力する。入力部113は、この用途を温度制御部90に入力する。温度制御本体部91は、記憶部115にアクセスし、記憶部115に記憶されるテーブルから用途に応じた応力付与部80の温度を読み出す。温度制御本体部91は、応力付与部80の温度がテーブルから読み出された温度となるように、電源93の電圧を制御する。電源93は電圧をペルチェ素子95に印加し、ペルチェ素子95の一方の面の温度は上昇または下降し、ペルチェ素子95の他方の面の温度は一方の面とは逆に下降または上昇する。
応力付与部80の温度と被覆層55の温度とがペルチェ素子95の一方の面の温度下降によって所定の温度よりも低くなると、応力付与部80及び被覆層55は、収縮によってクラッド53を引っ張り、クラッド53に引張応力を付与する。
応力付与部80の温度と被覆層55の温度とがペルチェ素子95の一方の面の温度上昇によって所定の温度よりも高くなると、応力付与部80及び被覆層55は、膨張によってクラッド53を押圧し、クラッド53に圧縮応力を付与する。
応力付与部80及び被覆層55は、収縮によって応力である引張応力をクラッド53に付与し、膨張によって応力である圧縮応力をクラッド53に付与する。応力付与部80の温度及び被覆層55の温度が所定の温度よりも低くなればなるほど、引張応力は大きくなる。また、応力付与部80の温度及び被覆層55の温度が所定の温度よりも高くなればなるほど、圧縮応力は大きくなる。応力付与部80の温度及び被覆層55の温度は、レーザ装置1の用途に応じて制御される。応力付与部80の温度及び被覆層55の温度によって、応力付与部80の応力の大きさ及び被覆層55の応力の大きさが制御される。
本実施形態のレーザ装置1では、応力付与部80の温度及び被覆層55の温度が変化すると、クラッド53に付与される応力の大きさが変化し得る。当該応力の大きさが変化すると、応力付与部80及び被覆層55がクラッド53に付与する外力が変化し、外力の分布はクラッド53の周方向において不均一となり得る。これにより、コア51にかかる応力の分布がコア51の周方向において不均一となり、コア51の屈折率の分布が変化し、コア51を伝搬する光のモードが変化し得る。光のモードの変化の度合いは、レーザ装置1の用途に応じて変化する。
次に、それぞれの光源2において、励起光源40のそれぞれのレーザダイオード41から励起光が出射する。励起光源40から出射した励起光は、励起光用光ファイバ45、光ファイバ31を介して、増幅用光ファイバ30の内側クラッドに入射する。増幅用光ファイバ30の内側クラッドに入射した励起光は主にこの内側クラッドを伝搬して、増幅用光ファイバ30のコアを通過する際にコアに添加されている活性元素を励起する。励起状態とされた活性元素は自然放出光を放出し、この自然放出光のうち一部の波長の光が第1FBG33により反射され、反射された光のうち第2FBG34が反射する波長の光が第2FBG34で反射される。このため、第1FBG33と第2FBG34との間、すなわち共振器200の内部を光が往復し、増幅用光ファイバ30のコアを伝搬するときの誘導放出により光が増幅され、レーザ発振状態が生じる。このときの光の波長は、例えば1070nmとされる。そして、増幅された光のうち一部の光は、第2FBG34を透過して光ファイバ32から出射する。この光は、光ファイバ21からコンバイナ25を介してデリバリ光ファイバ10のコアに入射する。
デリバリ光ファイバ10がマルチモードファイバであれば、デリバリ光ファイバ10のコアに入射した光は、コアをマルチモードで伝搬する。そして、コアを伝搬する光は、デリバリ光ファイバ10から光ファイバ50に伝搬する。このように、励起光により励起される活性元素により増幅される光は、第1FBG33から光ファイバ31と増幅用光ファイバ30と光ファイバ32,21とデリバリ光ファイバ10と光ファイバ50とを伝搬する。
光ファイバ50のコア51の屈折率の分布はビーム品質制御装置70によって切断または切削といったレーザ装置1の用途に応じて変化しており、光ファイバ50において光のモードの数は用途に応じて変化している。従って、例えば、用途に応じて、シングルモードの光がマルチモードの光に変化したり、マルチモードの光のモード数が減ったり、マルチモードの光がシングルモードの光に変化する。このため、光は、用途に応じた所望のビーム品質を備える。そして、光は、用途に応じた所望のビーム品質を備えた状態で、出射部60から出射されて対象物等に照射される。なお、光ファイバ32,21,50及びデリバリ光ファイバ10それぞれのコアを伝搬する光のパワーは、例えば、1kW以上とされる。
以上のように、本実施形態のビーム品質制御装置70は、コア51及びコア51の外周面を囲うクラッド53を有する光ファイバ50と、光ファイバ50の外周面の少なくとも一部に面接触し、クラッド53の熱膨張係数とは異なる熱膨張係数を有する応力付与部80と、応力付与部80の温度を制御する温度制御部90と、を備える。応力付与部80は、当該応力付与部80がクラッド53に付与する外力の分布がクラッド53の周方向において不均一となるように、温度制御部90による応力付与部80の温度の変化によって収縮または膨張する。
本実施形態のビーム品質制御装置70では、応力付与部80の温度が温度制御部90によって変化すると、応力付与部80は収縮または膨張する。応力付与部80が収縮または膨張すると、応力付与部80がクラッド53に付与する外力がクラッド53の周方向において不均一に変化する。当該外力が不均一に変化すると、コア51にかかる応力の分布がコア51の周方向において不均一となり、コア51の屈折率の分布が変化し、コア51を伝搬する光のモードが変化し得る。また、本実施形態のビーム品質制御装置70では、被覆層55が配置されており、被覆層55によってコア51の屈折率の分布がさらに変化し、コア51を伝搬する光のモードが変化し得る。このように、本実施形態のビーム品質制御装置70では、コア51にかかる応力が温度で制御されることで、所望のビーム品質の光が得られる。また、本実施形態のビーム品質制御装置70では、光ファイバ50内でビーム品質が制御されるため、上記のように振動や環境温度の変化等が生じても、空間内にガラス部材やレンズが配置されることでビーム品質が制御される場合と比べて、ビーム品質の意図しない変化が抑制され得る。従って、本実施形態のビーム品質制御装置70では、所望のビーム品質の光が得られる。
また、本実施形態のビーム品質制御装置70は、主面上に応力付与部80が配置され、応力付与部80及び温度制御部90に熱的に接続され、温度制御部90と応力付与部80との間において熱を伝導する板状の熱伝導部材111をさらに備える。
温度制御部90が発熱する場合、温度制御部90の熱は、熱伝導部材111の平面方向において熱伝導部材111全体に渡って伝導され易くなり、熱伝導部材111から熱伝導部材111の主面上の応力付与部80に伝導され易くなり得る。また、温度制御部90が吸熱する場合、応力付与部80の熱は、熱伝導部材111の平面方向において熱伝導部材111全体に渡って伝導され易くなり、応力付与部80から熱伝導部材111に伝導され易くなり得る。これにより、応力付与部80の温度は変化し易くなり、応力付与部80の応力の大きさは応力付与部80の温度によって変化し易くなり得る。従って、このビーム品質制御装置70によれば、熱伝導部材111が配置されていない場合に比べて、応力付与部80の応力の大きさが変化し易くなり得る。
また、本実施形態のビーム品質制御装置70では、温度制御部90は、熱伝導部材111と熱的に接続されるペルチェ素子95を有する。
一般的に、ペルチェ素子95において電流が所定の方向に流れると、ペルチェ素子95の一方の面の温度は上昇し、他方の面の温度は下降する。この場合において、熱伝導部材111が一方の面に配置されると、熱は一方の面から熱伝導部材111を介して応力付与部80に伝達され、応力付与部80の温度はペルチェ素子95によって上昇する。また、電流が上記とは逆の方向に流れると、一方の面の温度は下降し、他方の面の温度は上昇する。この場合において、熱伝導部材111が一方の面に配置されると、熱は応力付与部80から熱伝導部材111を介してペルチェ素子95に伝達され、応力付与部80の温度はペルチェ素子95によって下降する。このように、応力付与部80の温度はペルチェ素子95において流れる電流の向きによって変化し、応力付与部80の応力の大きさは応力付与部80の温度によって制御され得る。従って、このビーム品質制御装置70によれば、ペルチェ素子95によって応力付与部80の応力の大きさが制御され得る。
また、本実施形態のビーム品質制御装置70では、応力付与部80は、光ファイバ50の外周面に面接触する接触面と接触面から離れている応力付与部80の外周面との間の厚みが不均一な樹脂から成る。
この場合、樹脂の温度が変化することで、クラッド53に付与される外力の大きさにばらつきが生じ、コア51にかかる応力の分布はコア51の周方向において不均一となり得る。
また、本実施形態のビーム品質制御装置70では、樹脂の温度が所定の温度よりも低い場合に、樹脂は、収縮してクラッド53に引張応力を付与し、樹脂の温度が所定の温度よりも高い場合に、樹脂は、膨張してクラッド53に圧縮応力を付与する。
この場合、温度制御部90は、樹脂の温度を制御することによって樹脂の収縮または膨張を制御し得、樹脂の収縮または膨張によって応力を制御し得る。
本実施形態のレーザ装置1は、ビーム品質制御装置70と、光を出射する光源2と、を備える。ビーム品質制御装置70の光ファイバ50のコア51には、光が伝搬する。
この場合、レーザ装置1は、ビーム品質制御装置70によって制御されたビーム品質の光を対象物に照射し得る。また、上記のように、このビーム品質制御装置70では、振動や環境温度の変化等が生じても、所望のビーム品質の光が得られる。従って、所望のビーム品質の光が対象物を照射し得る。
また、本実施形態のレーザ装置1は、ビーム品質制御装置70と、励起光を出射する励起光源40と、を備える。ビーム品質制御装置70の光ファイバ50には、励起光により励起される活性元素により増幅される光が伝搬する。
この場合、レーザ装置1は、ビーム品質制御装置70によって制御されたビーム品質の光を対象物に照射し得る。また、上記のように、このビーム品質制御装置70では、振動や環境温度の変化等が生じても、所望のビーム品質の光が得られる。従って、所望のビーム品質の光が対象物を照射し得る。
また、本実施形態のレーザ装置1は、活性元素が添加される増幅用光ファイバ30と、増幅用光ファイバ30の一方側に設けられ、活性元素により増幅される光の少なくとも一部の波長の光を反射する第1FBG33と、増幅用光ファイバ30の他方側に設けられ、第1FBG33が反射する光のうち少なくとも一部の波長の光を第1FBG33より低い反射率で反射する第2FBG34と、第2FBG34を透過する光を対象物に向けて出射する出射部60と、をさらに備える。ビーム品質制御装置70は、増幅用光ファイバ30及び光ファイバ32の接続点から第2FBGのうちの最も離れた部位と出射部60との間に配置されている。
このような構成によって、ビーム品質制御装置70は、上記最も離れた部位と出射部60との間以外に配置される場合に比べて、出射部60から出射する光のビーム品質を所望のビーム品質に近づけ易くなり得る。
また、本実施形態のレーザ装置1は、レーザ装置1の用途を温度制御部90に入力する入力部113と、用途に応じた応力付与部の温度を記憶する記憶部115と、をさらに備え、温度制御部90は、入力部113から用途を入力される場合、応力付与部80の温度を記憶部115から読み出した応力付与部80の温度に制御する。
この場合、レーザ装置1は、光のモードの変化の度合いがレーザ装置1の用途に応じて変化するため、各用途に適したビーム品質の光を対象物に照射し得る。これにより、各用途に適したビーム品質の光が対象物に照射されない場合に比べて、レーザ装置1の加工速度や加工品質等の加工性能が向上し得る。
(第2実施形態)
次に、本発明の第2実施形態について図7を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
次に、本発明の第2実施形態について図7を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図7は、本実施形態にかかるビーム品質制御装置70を示す図である。本実施形態のビーム品質制御装置70は、温度制御部90の構成が第1実施形態の温度制御部90の構成とは異なると共に、ビーム品質制御装置70が枠部材117をさらに備える点において、第1実施形態のビーム品質制御装置70とは異なる。
本実施形態の温度制御部90は、温度制御本体部91と、ヒートポンプ97と、流路部99とを有する。
ヒートポンプ97は、温度制御本体部91の制御によって、流路部99を流れる流体を冷却または加熱する。ヒートポンプ97の温度は、温度制御本体部91によって制御される。
流路部99は、熱伝導部材111を貫通しており、光ファイバ50の直下に配置されている。流路部99は、熱伝導部材111に熱的に接続されている。流路部99は、例えば、パイプなどの管である。流路部99には流体が流れており、この流体は例えば液体である。流路部99は、熱伝導部材111の外部に延びており、熱伝導部材111の外部においてヒートポンプ97に熱的に接続されている。流体の温度は、ヒートポンプ97からの熱によって変化する。流路部99は、光ファイバ50の直下に必ずしも配置されていることはなく、熱伝導部材111に熱的に接続されるように配置されていればよい。
また、本実施形態のビーム品質制御装置70では、枠部材117は、例えば、金属から成る。枠部材117は、熱伝導部材111に載置されており、熱伝導部材111に熱的に接続されている。
枠部材117の断面は凹状となっており、応力付与部80及び光ファイバ50は凹状の枠部材117の内部に配置されている。光ファイバ50を全周に渡って囲う応力付与部80は、枠部材117の内周面に接触しており、枠部材117に熱的に接続されている。枠部材117は、樹脂である応力付与部80を囲う。枠部材117は、応力付与部80の少なくとも一部を囲っていればよい。枠部材117の凹状の断面における内側側面の高さは、光ファイバ50の直径よりも長くされている。枠部材117は、応力付与部80を光ファイバ50に固定する。枠部材117の熱膨張係数は、応力付与部80の熱膨張係数よりも小さくされている。また、応力付与部80が膨張する場合、枠部材117は枠部材117に向かう応力付与部80の広がりを抑制している。
本実施形態のビーム品質制御装置70では、温度制御部90は、ヒートポンプ97と、ヒートポンプ97によって温度が変化する流体が流れ、熱伝導部材111を貫通し、流体によって応力付与部80の温度を変化させる流路部99とを有する。また、本実施形態のビーム品質制御装置70では、応力付与部80は、枠部材117と熱伝導部材111とを介して流路部99に熱的に接続されている。ヒートポンプ97が冷却または加熱によって流体の温度を制御すると、応力付与部80の温度は熱伝導部材111を介して流体によって変化し、応力付与部80の応力の大きさは応力付与部80の温度によって制御され得る。従って、このビーム品質制御装置70によれば、流路部99を流れる流体によっても応力付与部の応力の大きさが制御され得る。
また、本実施形態のビーム品質制御装置70は、応力付与部80の少なくとも一部を囲う枠部材117をさらに備え、枠部材117の熱膨張係数は、応力付与部80の熱膨張係数よりも小さくされている。
この場合、応力付与部80は、膨張すると枠部材117に向かう広がりを枠部材117によって抑制されるため、枠部材117が配置されていない場合に比べてクラッド53に向かって強い外力でクラッド53を押圧し得る。これにより応力付与部80は、枠部材117が配置されていない場合に比べて、大きい圧縮応力をクラッド53に付与し得る。
また、本実施形態のビーム品質制御装置70では、枠部材117は、金属から成る。
一般的に、熱は、金属を伝導し易いため、枠部材117を介して応力付与部80に伝導され易くなり得る。従って、本実施形態のビーム品質制御装置70によれば、枠部材117が配置されていない場合に比べて、応力付与部80の応力が早く変化し得る。
なお、流体の熱は、熱伝導部材111を介して枠部材117にも伝導される。枠部材117の熱膨張係数は、応力付与部80の熱膨張係数よりも低くされている。このため、熱による枠部材117の収縮または膨張は、応力付与部80の収縮または膨張にほとんど影響を与えない。
(第3実施形態)
次に、本発明の第3実施形態について図8を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
次に、本発明の第3実施形態について図8を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図8は、本実施形態にかかるビーム品質制御装置70を示す図である。本実施形態のビーム品質制御装置70では、応力付与部80の構成が第1実施形態の応力付与部80の構成とは異なる。
本実施形態の応力付与部80は、板部材81と、板部材81に立設される一対の壁部材83とを有する。
板部材81は、例えば、銅などの金属から成る。板部材81は、ペルチェ素子95に載置されており、ペルチェ素子95に熱的に接続されている。板部材81は、ペルチェ素子95から伝導される熱によって、一対の壁部材83の並び方向において収縮または膨張する。板部材81の熱膨張係数は、クラッド53の熱膨張係数よりも大きくされている。板部材81は、第1実施形態の熱伝導部材111であってもよい。
壁部材83は、例えば、金属から成る。壁部材83は、板部材81に固定されている。一対の壁部材83は、光ファイバ50を径方向において挟み込んでおり、光ファイバ50に接触している。
板部材81の温度がある所定の温度となっている状態では、板部材81は収縮及び膨張しておらず、壁部材83は光ファイバ50を挟み込んで光ファイバ50に接触しているのみである。従って、板部材81は、圧縮応力といった応力を壁部材83介してクラッド53に付していない状態となっている。このような場合、応力付与部80がクラッド53に付与する外力の分布は、クラッド53の周方向において均一な状態となっている。
例えば、温度制御部90のペルチェ素子95の一方の面の温度が下降し、他方の面の温度が上昇すると、板部材81の熱は熱伝導部材111を介してペルチェ素子95に伝導される。これにより、板部材81の温度は所定の温度よりも下降し、板部材81は、所定の温度時に比べて収縮する。また、板部材81の熱膨張係数がクラッド53の熱膨張係数よりも大きいため、板部材81はクラッド53よりも大きく収縮する。このとき、板部材81は、一対の壁部材83の並び方向において収縮する。これにより、一対の壁部材83は、互いに向かって近づく。そして、一対の壁部材83は、クラッド53の径方向における両側からクラッド53を押圧し、クラッド53に圧縮応力を付与し得る。
例えば、温度制御部90のペルチェ素子95の一方の面の温度が上昇し、他方の面の温度が下降すると、ペルチェ素子95の熱は熱伝導部材111を介して板部材81に伝導される。これにより板部材81の温度は収縮時の温度よりも上昇し、板部材81は収縮時に比べて膨張する。また、板部材81の熱膨張係数がクラッド53の熱膨張係数よりも大きいため、板部材81はクラッド53よりも大きく膨張する。このとき、板部材81は、一対の壁部材83の並び方向において膨張する。これにより、一対の壁部材83は、互いに向かって離れる。そして、一対の壁部材83は、収縮時における圧縮応力の付与を解放し得る。
このように一対の壁部材83は、収縮によってクラッド53にクラッド53の径方向における両側から応力である圧縮応力を付与し、膨張によって圧縮応力の付与を解放し得る。これにより、コア51にかかる応力の分布はコア51の周方向において不均一となり、コア51を伝搬する光のモードが変化し得る。このように、本実施形態のビーム品質制御装置70においても、所望のビーム品質の光が得られる。
(第4実施形態)
次に、本発明の第4実施形態について図9及び図10を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
次に、本発明の第4実施形態について図9及び図10を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図9は、本実施形態にかかるレーザ装置1における光源2を示す図である。また、図10は、図9の光源におけるビーム品質制御装置を示す図である。本実施形態のレーザ装置1では、ビーム品質制御装置70の位置及びビーム品質制御装置70の構成が第1実施形態のそれとは異なる。
本実施形態のビーム品質制御装置70は、それぞれの光源2における共振器200の内部に配置されている。上記したように、共振器200は、増幅用光ファイバ30、第1FBG33、及び第2FBG34から構成されている。本実施形態の光源2では、ビーム品質制御装置70が増幅用光ファイバ30及び光ファイバ32の接続点と第2FBG34のうちの接続点から最も離れた部位との間に配置される例が示されている。第2FBG34は、光ファイバ32のコアの屈折率よりも高い屈折率の高屈折率部と光ファイバ32のコアの屈折率と同等の屈折率の低屈折率部とが交互に繰り返される構成である。上記の最も離れた部位は、第2FBG34のうち接続点から最も離れた高屈折率部である。
本実施形態のビーム品質制御装置70は、図3等に示す光ファイバ50の代わりに、図10に示すように光ファイバ32を有する例が示されている。例えば、光ファイバ32のコア32aは光ファイバ50のコア51と同じ構成とされ、光ファイバ32のクラッド32bは光ファイバ50のクラッド53と同じ構成とされ、光ファイバ32の被覆層32cは光ファイバ50の被覆層55と同じ構成とされる。
また、本実施形態のビーム品質制御装置70は、第1実施形態のビーム品質制御装置70と同様に、応力付与部80と、温度制御部90と、熱伝導部材111と、入力部113と、記憶部115とを有する。ただし、温度制御部90の温度制御本体部91及び電源93と、入力部113と、記憶部115とは、それぞれの光源2におけるビーム品質制御装置70で共有されてもよい。
本実施形態のビーム品質制御装置70は上記のように光ファイバ50の代わりに光ファイバ32を有しているため、本実施形態の応力付与部80は、光ファイバ32の被覆層32cの外周面を全周に渡って囲い、被覆層32cの外周面に隙間なく密着しており、当該外周面に面接触する。上記のように光ファイバ32を囲う応力付与部80は、光ファイバ50を囲う第1実施形態の応力付与部80と同じ構成とされる。また、本実施形態のビーム品質制御装置70の光ファイバ32には、第2FBG34が設けられている。応力付与部80は、増幅用光ファイバ30及び光ファイバ32の接続点と第2FBG34のうちの接続点から最も離れた部位との間に配置されている。
本実施形態の応力付与部80は、応力付与部80の温度によって収縮または膨張し、収縮によって応力である引張応力をクラッド32bに付与し、膨張によって応力である圧縮応力をクラッド32bに付与し得る。また、光ファイバ32の被覆層32cは、被覆層32cの温度によって収縮または膨張し、収縮によって応力である引張応力をクラッド32bに付与し、膨張によって応力である圧縮応力をクラッド32bに付与し得る。
上記の圧縮応力及び引張応力といった応力の大きさは、応力付与部80及び被覆層32cの温度によって変化する。応力の大きさが変化すると、応力付与部80及び被覆層32cがクラッド32bに付与する外力が変化し、クラッド32bにおける外力の分布がクラッド32bの周方向において不均一となる。これによりコア32aにかかる応力の分布がコア32aの周方向において不均一となり、コア32aの屈折率の分布が変化し、コア32aを伝搬する光のモードが変化し得る。
次に図11を用いて、温度制御部90によって制御される本実施形態の応力付与部80の温度と、ビーム品質の変化量との関係の例について説明する。図11は、本実施形態の応力付与部80の温度とビーム品質の変化量との関係の例を示す図である。
ここで、図11にて実線で示すグラフについて説明する。このグラフでは、所定の温度を例えば25℃としている。従って、この場合では、外力の分布はクラッド32bの周方向において均一な状態となっており、ビーム品質の変化量は0である。この場合における、応力付与部80の温度とビーム品質の変化量とについて、以下に説明する。
応力付与部80の温度が22℃の場合では応力付与部80の引張応力によってビーム品質の変化量は0.013、応力付与部80の温度が20℃の場合では応力付与部80のより大きな引張応力によってビーム品質の変化量は0.039、となる結果が得られる。また、応力付与部80の温度が27℃の場合では応力付与部80の圧縮応力によってビーム品質の変化量は0.015、応力付与部80の温度が30℃の場合では応力付与部80のより大きな圧縮応力によってビーム品質の変化量は0.040、となる結果が得られる。
次に、図11にて点線で示すグラフについて説明する。このグラフでは、所定の温度を例えば35℃としている。従って、この場合では、外力の分布はクラッド32bの周方向において均一な状態となっており、ビーム品質の変化量は0である。この場合における、応力付与部80の温度とビーム品質の変化量とについて、以下に説明する。
応力付与部80の温度が32℃の場合では応力付与部80の引張応力によってビーム品質の変化量は0.013、応力付与部80の温度が31℃の場合では応力付与部80のより大きな引張応力によってビーム品質の変化量は0.039、となる結果が得られる。また、応力付与部80の温度が37℃の場合では応力付与部80の圧縮応力によってビーム品質の変化量は0.015、応力付与部80の温度が40℃の場合では応力付与部80のより大きな圧縮応力によってビーム品質の変化量は0.040、となる結果が得られる。
上記した結果から、実施形態1において図6を用いて説明した場合と同様に、コア32aにかかる応力の大きさは応力付与部80の温度によって制御され、応力付与部80の温度が所定の温度から離れるほどビーム品質の変化量は大きくなり得る。また、コア32aにかかる応力が上記のように制御されると、光ファイバ32内でビーム品質が制御され、所望のビーム品質の光が得られる。
また、実施形態1において図6を用いて説明した場合と同様に、本実施形態の応力付与部80においても、所定の温度がどのような値であっても、応力付与部80の温度が所定の温度に対して変化すると、応力付与部80が収縮または膨張する。これにより、コア32aの屈折率の分布が変化し、コア32aを伝搬する光のモードが変化するため、ビーム品質が変化することがわかる。
次に、図11にて実線で示す本実施形態におけるグラフと図6にて実線で示す実施形態1におけるグラフとを比較する。2つのグラフを比較すると、図11のグラフは、図6のグラフよりも急峻となっている。このため、応力付与部80の温度が所定の温度に対して本実施形態と実施形態1とのそれぞれにおいて同じ温度で変化すると、本実施形態におけるビーム品質の変化量は実施形態1におけるビーム品質の変化量よりも大きくなることがわかる。つまり、本実施形態のビーム品質制御装置70は、実施形態1のビーム品質制御装置70と同じ温度変化であっても、共振器200の内部に配置されるため、実施形態1のビーム品質制御装置70よりも大きいビーム品質の変化量を得られることがわかる。別言すると、本実施形態のビーム品質制御装置70は、共振器200の内部に配置されるため、実施形態1のビーム品質制御装置70よりも少ない温度変化によって、実施形態1のビーム品質制御装置70と同じビーム品質の変化量を得られることがわかる。また、図11及び図6それぞれの点線のグラフについても、図11及び図6それぞれの実線のグラフと同様に、本実施形態のビーム品質制御装置70は、実施形態1のビーム品質制御装置70と同じ温度変化であっても、実施形態1のビーム品質制御装置70よりも大きいビーム品質の変化量を得られることがわかる。
これにより、本実施形態のビーム品質制御装置70では、実施形態1のビーム品質制御装置70と同じ温度変化であっても、実施形態1のビーム品質制御装置70よりも、ビーム品質が大きく変化し得る。また、本実施形態のビーム品質制御装置70では、実施形態1のビーム品質制御装置70と同じビーム品質の光を得る場合、実施形態1のビーム品質制御装置70よりも温度変化が少なくなるため、短時間で所望のビーム品質の光が得られる。
次に、本実施形態のレーザ装置1の動作について説明する。
応力付与部80の温度及び被覆層32cの温度が所定の温度から変化すると、クラッド32bに付与される応力の大きさが変化し得る。クラッド32bに付与される応力の大きさが変化すると、応力付与部80及び被覆層32cがクラッド32bに付与する外力が変化し、外力の分布はクラッド32bの周方向において不均一となり得る。これにより、コア32aにかかる応力の分布がコア32aの周方向において不均一となり、コア32aの屈折率の分布が変化し、コア32aを伝搬する光のモードが変化し得る。光のモードの度合いは、レーザ装置1の用途に応じて変化する。上記のようにコア32aの屈折率の分布が変化すると、レーザ装置1は以下のように動作する。
励起光源40から出射した励起光は、励起光用光ファイバ45、及び光ファイバ31を介して、増幅用光ファイバ30の内側クラッドに入射する。この励起光は主にこの内側クラッドを伝搬して、増幅用光ファイバ30のコアを通過する際にコアに添加されている活性元素を励起する。励起状態とされた活性元素は自然放出光を放出し、この自然放出光のうち一部の波長の光が第1FBG33により反射され、反射された光のうち第2FBG34が反射する波長の光が第2FBG34で反射される。このため、第1FBG33と第2FBG34との間、すなわち共振器200の内部を光が往復する。
本実施形態の応力付与部80は、共振器200の内部において増幅用光ファイバ30及び光ファイバ32の接続点と第2FBG34のうちの接続点から最も離れた部位との間に配置されている。また、コア32aの屈折率の分布は、ビーム品質制御装置70によって切断または切削といったレーザ装置1の用途に応じて変化している。このため、光が共振器200の内部を往復する度にコア32aを伝搬し、往復する度に光ファイバ32において光のモードの数は用途に応じて変化する。従って、例えば、用途に応じて、シングルモードの光がマルチモードの光に変化したり、マルチモードの光のモード数が減ったり、マルチモードの光がシングルモードの光に変化する。また、本実施形態の光のビーム品質は、ビーム品質制御装置70が共振器200の外部に配置される場合に比べて、大きく変化し得、用途に応じた所望のビーム品質の光が得られる。また、光が共振器200の内部を往復する度にビーム品質制御装置70はビーム品質を制御する。そして、光は、用途に応じた所望のビーム品質を備えた状態で、第2FBG34を透過して光ファイバ32と光ファイバ21とコンバイナ25とデリバリ光ファイバ10のコアとを伝搬して、出射部60から対象物等に照射される。
ところで、特許文献1及び特許文献2のレーザ装置では、光は上流側の光ファイバと下流側の光ファイバとの間を往復するものではなく、ビーム品質はガラス部材やレンズの位置や向きによって一回のみ制御される。一回の制御では、所望のビーム品質の光を得難いという懸念がある。
そこで、本実施形態のレーザ装置1は励起光により励起される活性元素により増幅される光が共振する共振器200をさらに備え、ビーム品質制御装置70は共振器200の内部に配置される。
このようなレーザ装置1では、光は共振器200の内部を往復する度にビーム品質制御装置70のコア32aを伝搬し、往復する度に光ファイバ32において光のモードが変化し得、所望のビーム品質の光が得られる。また、本実施形態のレーザ装置1によれば、ビーム品質制御装置70が共振器200の外部に配置される場合と比べて、ビーム品質が大きく変化し得、所望のビーム品質の光が得られる。また、レーザ装置1では、光ファイバの状態がレーザ装置1の用途に応じて変化すると、光のモードの変化の度合いがレーザ装置1の用途に応じて変化するため、用途に応じた所望のビーム品質の光が得られる。
また、本実施形態のレーザ装置1では、光がビーム品質制御装置70を一回通過する際における光のモードの変化の度合いがビーム品質制御装置が共振器200の外部に配置される場合と比べて小さくても、レーザ装置1から出射される光のビーム品質の変化量は、光の往復によって、ビーム品質制御装置が共振器200の外部に配置される場合におけるビーム品質の変化量と同じになり得る。従って、レーザ装置1から出射される光のビーム品質を所定の状態から別の状態に変化させる場合、本実施形態のレーザ装置1のコア32aの屈折率の分布の変化量は、ビーム品質制御装置が共振器200の外部に配置される場合のコア32aの屈折率の分布の変化量よりも小さくて済む。これにより、本実施形態のレーザ装置1によれば、ビーム品質制御装置が共振器200の外部に配置される場合と比べて、コア32aの屈折率の分布の変化の時間が短くなり得、光は短時間で所望のビーム品質の光に変化し得る。
次に、共振器200の内部に配置されるビーム品質制御装置70によって得られるビーム品質の変化量を、共振器200の外部に配置されるビーム品質制御装置によって得ようとする場合について説明する。この場合、共振器200の内部に配置されるビーム品質制御装置70に比べて、共振器200の外部に配置されるビーム品質制御装置の数が増えたり、応力付与部が配置される光ファイバの長さが長くなる等の懸念がある。このため、ビーム品質制御装置70が共振器200の外部に配置される場合、ビーム品質制御装置70は大型化や高コスト化等となる懸念がある。しかしながら、本実施形態のビーム品質制御装置70は共振器200の内部に配置されるため、ビーム品質制御装置70の大型化や高コスト化等が抑制される。従って、レーザ装置1全体も、大型化や高コスト化等が抑制される。
また、本実施形態のレーザ装置1では、コア32aにかかる応力が温度で制御されることで、所望のビーム品質の光が得られる。また、本実施形態のビーム品質制御装置70では、光ファイバ32内でビーム品質が制御されるため、振動や環境温度の変化等が生じても、空間内にガラス部材やレンズが配置されることによってビーム品質が制御される場合と比べて、ビーム品質の意図しない変化が抑制され得る。従って、本実施形態のビーム品質制御装置70では、所望のビーム品質の光が得られる。
また、本実施形態のレーザ装置1では、共振器200は、活性元素が添加される増幅用光ファイバ30と、増幅用光ファイバ30の一方側に設けられ、活性元素により増幅される光の少なくとも一部の波長の光を反射する第1FBG33と、増幅用光ファイバ30の他方側に設けられ、第1FBG33が反射する光のうち少なくとも一部の波長の光を第1FBG33より低い反射率で反射する第2FBG34と、を有する。また、ビーム品質制御装置70は、増幅用光ファイバ30及び光ファイバ32の接続点と第2FBG34のうちの当該接続点から最も離れた部位との間に配置される。
接続点と第2FBG34のうちの接続点から最も離れた部位との間における光のパワー密度は、第1FBGと第2FBGとの間における他の部位における光のパワー密度よりも高い。従って、ビーム品質制御装置70は、接続点と当該部位との間に配置される場合、第1FBGと第2FBGとの間における他の部位に配置される場合に比べて、ビーム品質がより大きく変化し得、出射部60から出射する光のビーム品質を所望のビーム品質により近づけ易くなり得る。また、ビーム品質制御装置70は、他の部位に配置される場合に比べて、パワー密度が高い光を所望のビーム品質に近づけ易くなり得、出射部60から出射する光のビーム品質を所望のビーム品質に近づけ易くなり得る。
なお、応力付与部80は、第2FBG34が位置する部分における光ファイバ32の被覆層32cの外周面を全周に渡って囲い、当該被覆層32cの外周面に隙間なく密着しており、当該外周面に面接触してもよい。
なお、本実施形態の変形例の光源2では、図12に示すように、ビーム品質制御装置70は、増幅用光ファイバ30及び光ファイバ31の接続点と第1FBG33のうちの接続点から最も離れた部位との間に配置されてもよい。光ファイバ31はビーム品質制御装置70の光ファイバであり、光ファイバ31には第1FBG33が設けられている。また、応力付与部80は上記接続点と第1FBG33のうちの接続点から最も離れた部位との間に配置されている。図12では、図示の見やすさのため、応力付与部80を省略している。変形例における光ファイバ31の内側クラッドの熱膨張係数は実施形態1のクラッド53の熱膨張係数と同じとされ、変形例における光ファイバ31の被覆層の熱膨張係数は実施形態1の被覆層55の熱膨張係数と同じとされる。また、変形例における光ファイバ31の外側クラッドの熱膨張係数は変形例における光ファイバ31の内側クラッドの熱膨張係数及び変形例における光ファイバ31の被覆層よりも小さくされる。この外側クラッドの収縮または膨張は、内側クラッドの収縮または膨張にほとんど影響を与えず、応力付与部80の収縮または膨張にほとんど影響を与えない。
第1FBG33は、光ファイバ31のクラッドで囲まれるコアの屈折率よりも高い屈折率の高屈折率部とコアの屈折率と同等の屈折率の低屈折率部とが交互に繰り返される構成である。上記の最も離れた部位は、第1FBG33のうち接続点から最も離れた高屈折率部である。
上記接続点と第1FBG33のうちの接続点から最も離れた部位との間における光のパワー密度は、第1FBGと第2FBGとの間における他の部位におけるパワー密度よりも低い。従って、ビーム品質制御装置70は、接続点と当該部位との間に配置される場合、第1FBGと第2FBGとの間における他の部位に配置される場合に比べて、ビーム品質制御装置70の光ファイバ31での発熱が抑制され得る。このため、ビーム品質制御装置70の損傷が抑制され得る。
なお、応力付与部80は、第1FBG33が位置する部分における光ファイバ31の被覆層の外周面を全周に渡って囲い、当該被覆層の外周面に隙間なく密着しており、当該外周面に面接触してもよい。
或いは、本実施形態の別の変形例の光源2では、図13に示すように、増幅用光ファイバ30は、ビーム品質制御装置70の光ファイバであってもよい。応力付与部80における応力付与部80は、増幅用光ファイバ30の巻回部と、増幅用光ファイバ30及び光ファイバ31の接続点との間に配置されている。図13では、図示の見やすさのため、応力付与部80を省略している。なお、応力付与部80は、増幅用光ファイバ30の巻回部に配置されてもよい。或いは、応力付与部80は、増幅用光ファイバ30の巻回部と、増幅用光ファイバ30及び光ファイバ32の接続点との間に配置されてもよい。変形例における増幅用光ファイバ30の内側クラッドの熱膨張係数は実施形態1のクラッド53の熱膨張係数と同じとされ、変形例における増幅用光ファイバ30の被覆層の熱膨張係数は実施形態1の被覆層55の熱膨張係数と同じとされる。また、変形例における増幅用光ファイバ30の外側クラッドの熱膨張係数は変形例における増幅用光ファイバ30の内側クラッドの熱膨張係数及び変形例における増幅用光ファイバ30の被覆層よりも小さくされる。この外側クラッドの収縮または膨張は、内側クラッドの収縮または膨張にほとんど影響を与えず、応力付与部80の収縮または膨張にほとんど影響を与えない。
(第5実施形態)
次に、本発明の第5実施形態について図14を参照して詳細に説明する。なお、第4実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
次に、本発明の第5実施形態について図14を参照して詳細に説明する。なお、第4実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図14は、本実施形態のレーザ装置1を示す図である。本実施形態のレーザ装置1は、光源2と、光源2に接続される光ファイバ50と、光ファイバ50に接続される出射部60とを備える。
光源2は、励起光源40と、励起光源40と接続される励起光用光ファイバ45と、励起光用光ファイバ45及び光ファイバ50と接続される共振器200とを備える。本実施形態の光源2では、共振器200が、リング型となっている点において、第1実施形態のファブリ・ペロー型の共振器200と異なる。
本実施形態の共振器200は、光ファイバ31と、増幅用光ファイバ30と、第4実施形態のビーム品質制御装置70と同じ構成のビーム品質制御装置70と、コンバイナ121と、光アイソレータ123と、バンドパスフィルタ125と、出力カプラ127と、を備える。
光ファイバ31の一端は、増幅用光ファイバ30の一端に接続される。増幅用光ファイバ30の他端は光ファイバ32の一端に接続され、当該光ファイバ32の他端は光アイソレータ123の入射端に接続される。光アイソレータ123の出射端は上記した光ファイバ32とは別の光ファイバ32の一端に接続され、当該光ファイバ32の他端はバンドパスフィルタ125の入射端に接続される。バンドパスフィルタ125の出射端は上記した光ファイバ32とはさらに別の光ファイバ32の一端に接続され、当該光ファイバ32の他端は増幅用光ファイバ30に接続される光ファイバ31の他端に接続される。こうして、図14に示すようにリング型の共振器が構成され、ビーム品質制御装置70はリング型の共振器200の内部に配置されている。一端が光ファイバ31に接続されると共に他端がバンドパスフィルタ125の出射端に接続される光ファイバ32には、ビーム品質制御装置70の応力付与部80が配置される。図14では、図示の見やすさのため、応力付与部80を省略している。
コンバイナ121において、光ファイバ31の内側クラッドに励起光用光ファイバ45のコアが接続されている。これにより、励起光用光ファイバ45と増幅用光ファイバ30の内側クラッドとは、光ファイバ31の内側クラッドを介して、光学的に結合される。また、コンバイナ121において、光ファイバ31のコアには、ビーム品質制御装置70における光ファイバ32のコア32aが接続されている。図14では、コア32aは不図示である。
光アイソレータ123は、バンドパスフィルタ125側から光アイソレータ123を介して増幅用光ファイバ30側への光の戻りを抑制する。
バンドパスフィルタ125は、バンドパスフィルタ125を通過する光の波長の帯域を制限する。バンドパスフィルタ125では、例えば、出射部60から出射される光の波長とは異なる波長の光が制限される。出射部60から出射される光の波長は、例えば1070nmとされる。
出力カプラ127では、光ファイバ50のコアがバンドパスフィルタ125の出射端に接続される光ファイバ32のコア32aに光学的に接続されている。このため、バンドパスフィルタ125からの光の一部は光ファイバ50のコアに伝搬し、光の他の一部はビーム品質制御装置70における光ファイバ32のコア32aに伝搬する。
次に、レーザ装置1の動作について説明する。
励起光源40から出射される励起光は、励起光用光ファイバ45のコア及び光ファイバ31の内側クラッドを介して増幅用光ファイバ30の内側クラッドに入射する。増幅用光ファイバ30の内側クラッドに入射した励起光は主にこの内側クラッドを伝搬して、増幅用光ファイバ30のコアを通過する際にコアに添加されている活性元素を励起する。励起状態とされた活性元素は自然放出光を放出し、この自然放出光のうち一部の波長の光は、光ファイバ32のコア32aに入射し、光アイソレータ123とバンドパスフィルタ125とを介して出力カプラ127に伝搬する。光アイソレータ123において、バンドパスフィルタ125側から光アイソレータ123を介して増幅用光ファイバ30側への光の戻りが抑制される。また、バンドパスフィルタ125において、バンドパスフィルタ125を通過する光の波長の帯域は、制限される。帯域制限された光の一部は、出力カプラ127からビーム品質制御装置70に伝搬する。そして光は、ビーム品質制御装置70の光ファイバ32のコア32aから光ファイバ31のコアに伝搬し、共振器200の内部を回る。光が共振器200の内部を回ると、バンドパスフィルタ125で帯域制限された光により、増幅用光ファイバ30の活性元素は誘導放出を起こす。この誘導放出により光が所定の波長帯域で増幅され、増幅された光が光ファイバ32を伝搬する。
ビーム品質制御装置70において、応力付与部80は光ファイバ32の状態を変化させる。これにより、光ファイバ32のコア32aの屈折率の分布は、切断または切削といったレーザ装置1の用途に応じて変化する。共振器200の内部を回る光がビーム品質制御装置70の光ファイバ32のコア32aを伝搬する度に、コア32aにおいて光のモードの数は用途に応じて変化する。従って、例えば、用途に応じて、シングルモードの光がマルチモードの光に変化したり、マルチモードの光のモード数が減ったり、マルチモードの光がシングルモードの光に変化する。光のビーム品質はビーム品質制御装置70が共振器200の外部に配置される場合に比べて大きく変化するため、用途に応じた所望のビーム品質の光が得られる。そして、光の一部は、用途に応じた所望のビーム品質を備えた状態で出力カプラ127から光ファイバ50のコアに入射され、光ファイバ50のコアを伝搬し、出射部60から対象物等に照射される。また、光の他の一部は、共振器200の内部を回る。
上記したように、レーザ装置1では、光は共振器200の内部を回り、応力付与部80は光ファイバ32の状態を変化させる。このため、光が共振器200の内部を回る度に光ファイバ32のコア32aを伝搬すると、コア32aにおいて、光のモードが変化し得、所望のビーム品質の光が得られる。従って、本実施形態のレーザ装置1では、光が共振器200の内部を回る度にコア32aを伝搬するため、ビーム品質制御装置が共振器200の外部に配置される場合と比べて、ビーム品質がより大きく変化し得、用途に応じた所望のビーム品質の光が得られる。
また、本実施形態のレーザ装置1によれば、第4実施形態において短時間で所望のビーム品質の光を得ることと同様に、短時間で所望のビーム品質の光が得られる。また、本実施形態のレーザ装置1においても、第4実施形態のレーザ装置1と同様にして、大型化や高コスト化等が抑制される。
また、ビーム品質制御装置70の増幅用光ファイバ30は巻回して配置されるため、巻回している増幅用光ファイバ30と同じ長さを有する増幅用光ファイバが直線状に配置されている場合に比べて、レーザ装置1が小型化され得る。
(第6実施形態)
次に、本発明の第6実施形態について図15を参照して詳細に説明する。なお、第4実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
次に、本発明の第6実施形態について図15を参照して詳細に説明する。なお、第4実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図15は、本実施形態のレーザ装置1を示す図である。本実施形態のレーザ装置1は、光源2と、光ファイバ50と、出射部60とを備える。
本実施形態の光源2は、固体レーザ装置から成る点において、第4実施形態のファイバレーザ装置から成る光源2と異なる。
光源2は、励起光源40と、全反射ミラー141と、集光レンズ143と、増幅用媒体145と、コリメートレンズ147と、集光レンズ149と、ビーム品質制御装置70と、コリメートレンズ151と、部分反射ミラー153と、集光レンズ155とを主な構成として備える。
全反射ミラー141では、励起光源40から出射される励起光が透過する。また、全反射ミラーは、励起光によって励起状態とされた増幅用媒体145の活性元素が放出する自然放出光のうち所定の波長帯域の光を全反射する。
集光レンズ143は、全反射ミラー141を透過した励起光を増幅用媒体145に集光する。
例えば、増幅用媒体145はガラスロッドであり、ガラスロッドの材料はNd:YAGである。励起光源40からの励起光は、増幅用媒体145に添加される活性元素を励起する。励起状態とされた活性元素は自然放出光を放出し、この自然放出光のうち一部の波長の光の一部はコリメートレンズ147に伝搬し、光の別の一部は集光レンズ143を介して全反射ミラー141に伝搬する。
コリメートレンズ147は、増幅用媒体145から出射された光を平行光に変換する。
集光レンズ149は、コリメートレンズ147によって平行光に変換された光をビーム品質制御装置70の光ファイバ32のコア32aに集光する。
本実施形態のビーム品質制御装置70は、第4実施形態のビーム品質制御装置70と同じ構成である。
コリメートレンズ151は、ビーム品質制御装置70から出射される光を平行光に変換する。
部分反射ミラー153は、コリメートレンズ151によって平行光に変換された光の一部をコリメートレンズ151に反射する。また、部分反射ミラー153は、全反射ミラー141が反射する光の少なくとも一部の波長の光を全反射ミラー141よりも低い反射率で反射する。光の他の一部は、部分反射ミラー153を透過する。
集光レンズ155は、部分反射ミラー153を透過した光を光ファイバ50に集光する。
本実施形態の光源2では、全反射ミラー141と増幅用媒体145と部分反射ミラー153とからファブリ・ペロー型の共振器200が構成され、ビーム品質制御装置70はファブリ・ペロー型の共振器200の内部に配置されている。
次に、本実施形態のレーザ装置1の動作について説明する。
励起光源40から出射される励起光は、全反射ミラー141を透過し、集光レンズ143によって増幅用媒体145に集光される。励起光は、増幅用媒体145に添加される活性元素を励起する。励起状態とされた活性元素は自然放出光を放出し、この自然放出光のうち一部の波長の光が増幅用媒体145から出射される。光の一部はコリメートレンズ147に伝搬し、光の別の一部は集光レンズ143に伝搬する。
コリメートレンズ147に伝搬する光は、コリメートレンズ147によって平行光に変換される。平行光である光は、集光レンズ149によってビーム品質制御装置70の光ファイバ32のコア32aに集光される。光は、コア32aからコリメートレンズ151に向かって出射され、コリメートレンズ151によって平行光に変換される。平行光である光のうちの一部の波長の光が部分反射ミラー153によってコリメートレンズ151に反射される。
反射された光は、コリメートレンズ151によってビーム品質制御装置70の光ファイバ32のコア32aに集光される。光は、コア32aから集光レンズ149に向かって出射され、集光レンズ149によって平行光に変換され、コリメートレンズ147によって増幅用媒体145に集光される。光は、増幅用媒体145を通過して集光レンズ143に伝搬する。
増幅用媒体145から集光レンズ143に伝搬する光は、集光レンズ143によって平行光に変換され、全反射ミラー141に伝搬する。伝搬する光のうち一部の波長の光が、全反射ミラー141によって全反射され、上記したように、再び部分反射ミラー153に向かって伝搬する。そして、光は、全反射ミラー141と部分反射ミラー153との間、すなわち共振器200の内部を往復する。このため、増幅用媒体145において誘導放出により光が増幅され、レーザ発振状態が生じる。そして、光の一部は、部分反射ミラー153を透過して集光レンズ155によって光ファイバ50のコアに入射される。光は、光ファイバ50のコアを伝搬し、出射部60から対象物等に照射される。
ビーム品質制御装置70は全反射ミラー141と部分反射ミラー153との間に配置されており、光ファイバ32のコア32aの屈折率の分布はビーム品質制御装置70によって切断または切削といったレーザ装置1の用途に応じて変化している。このため、光が共振器200の内部を往復する度にコア32aを伝搬すると、コア32aにおいて光のモードの数は用途に応じて変化する。従って、例えば、用途に応じて、シングルモードの光がマルチモードの光に変化したり、マルチモードの光のモード数が減ったり、マルチモードの光がシングルモードの光に変化する。光のビーム品質はビーム品質制御装置70が共振器200の外部に配置される場合に比べて大きく変化するため、用途に応じた所望のビーム品質の光が得られる。
従って、本実施形態のレーザ装置1では、光源2が固体レーザ装置から成っても、光が共振器200の内部を往復するため、ビーム品質制御装置70が共振器200の外部に配置される場合と比べて、ビーム品質がより大きく変化し得、所望のビーム品質の光が得られる。また、本実施形態のレーザ装置1によれば、第4実施形態において短時間で所望のビーム品質の光を得ることと同様に、短時間で所望のビーム品質の光が得られる。また、本実施形態のレーザ装置1においても、第4実施形態のレーザ装置1と同様にして、大型化や高コスト化等が抑制される。
(第7実施形態)
次に、本発明の第7実施形態について図16を参照して詳細に説明する。なお、第6実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
次に、本発明の第7実施形態について図16を参照して詳細に説明する。なお、第6実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図16は、本実施形態のレーザ装置1を示す図である。本実施形態のレーザ装置1は、光源2と、反射ミラー157と、出射部60とを備える。
本実施形態の光源2は、気体レーザ装置から成る点において、第6実施形態の固体レーザ装置から成る光源2と異なる。
光源2は、励起光源40が励起光を増幅用媒体145に出射する点と、増幅用媒体145の構成とが、第6実施形態のそれとは異なる。
本実施形態の増幅用媒体145は、例えばCO2などのガスが封止されるガラス管である。増幅用媒体145では、励起光がガスを照射すると、励起状態とされたガスは自然放出光を放出し、この自然放出光のうち一部の波長の光が出射される。光は、全反射ミラー141と部分反射ミラー153との間、すなわち共振器200の内部を往復する。このため、増幅用媒体145において誘導放出により光が増幅され、レーザ発振状態が生じる。そして、光の一部は、部分反射ミラー153を透過して集光レンズ155によって反射ミラー157に集光される。光は、反射ミラー157によって出射部60に反射され、出射部60から対象物等に照射される。
本実施形態のビーム品質制御装置70は全反射ミラー141と部分反射ミラー153との間に配置されており、光ファイバ32のコア32aの屈折率の分布はビーム品質制御装置70によって切断または切削といったレーザ装置1の用途に応じて変化している。このため、光が共振器200の内部を往復する度にコア32aを伝搬すると、コア32aにおいて光のモードの数は用途に応じて変化する。従って、例えば、用途に応じて、シングルモードの光がマルチモードの光に変化したり、マルチモードの光のモード数が減ったり、マルチモードの光がシングルモードの光に変化する。光のビーム品質はビーム品質制御装置70が共振器200の外部に配置される場合に比べて大きく変化するため、用途に応じた所望のビーム品質の光が得られる。
従って、本実施形態のレーザ装置1では、光源2が気体レーザ装置から成っても、光が共振器200の内部を往復するため、ビーム品質制御装置70が共振器200の外部に配置される場合と比べて、ビーム品質がより大きく変化し得、所望のビーム品質の光が得られる。また、本実施形態のレーザ装置1によれば、第4実施形態において短時間で所望のビーム品質の光を得ることと同様に、短時間で所望のビーム品質の光が得られる。また、本実施形態のレーザ装置1においても、第4実施形態のレーザ装置1と同様にして、大型化や高コスト化等が抑制される。
以上、本発明について、上記各実施形態を例に説明したが、本発明はこれらに限定されるものではなく、適宜変更することが可能である。
応力付与部80は、被覆層32c,55の外周面の少なくとも一部に面接触していればよい。
また、第1実施形態のビーム品質制御装置70において、被覆層55がクラッド53に配置されておらず、光ファイバ50はコア51及びクラッド53のみを有してもよい。この場合、応力付与部80は、クラッド53の外周面の少なくとも一部に面接触していればよい。また、被覆層55が配置されてなくても、応力付与部80は収縮または膨張し得る。これにより、被覆層55が配置されていなくても、応力付与部80がクラッド53に付与する外力はクラッド53の周方向において不均一に変化する。当該外力が不均一に変化すると、コア51にかかる応力の分布がコア51の周方向において不均一となり、コア51の屈折率の分布が変化し、コア51を伝搬する光のモードが変化し得る。また、ビーム品質制御装置70では、光ファイバ50内でビーム品質が制御されるため、振動や環境温度の変化等が生じても、空間内にレンズが配置されることでビーム品質が制御される場合と比べて、ビーム品質の意図しない変化が抑制され得る。従って、このビーム品質制御装置70では、所望のビーム品質の光が得られる。ここでは第1実施形態のビーム品質制御装置70を用いて説明したが、第4実施形態のビーム品質制御装置70において、上記したように、光ファイバ32は光ファイバ50と同じ構成とされ、光ファイバ32を囲う応力付与部80は光ファイバ50を囲う第1実施形態の応力付与部80と同じ構成とされる。従って、光ファイバ32はコア32a及びクラッド32bのみを有してもよい。この場合、応力付与部80は、クラッド32bの外周面の少なくとも一部に面接触していればよい。この場合にであっても、このビーム品質制御装置70では、所望のビーム品質の光が得られる。
例えば、応力付与部80は、光ファイバ32,50の全長に渡って光ファイバ32,50の外周面を囲っていてもよい。或いは、応力付与部80は、光ファイバ32,50の長手方向における少なくとも一部の外周面において、当該一部の外周面を全周に渡って囲い、当該一部の外周面に隙間なく密着して、当該一部の外周面に面接触してもよい。なお、応力付与部80は、当該一部の外周面の少なくとも一部に配置されてもよい。応力付与部80が光ファイバ32,50の全長の一部分において光ファイバ32,50を囲っている場合、複数の応力付与部80が互いに離れて配置されてもよい。
温度制御本体部91は、レーザ装置1の用途に応じた応力付与部80の温度の値を入力部113から直接入力されてもよい。
温度制御部90は、応力付与部80の温度を計測する温度計測部を有してもよい。この場合、温度制御本体部91は、温度計測部によって計測された応力付与部80の温度を基に電源93の電圧をさらに制御してもよい。温度計測部によって計測された温度が温度制御本体部91にフィードバックされ、フィードバックが繰り返されることで、応力付与部80の温度がレーザ装置1の用途に応じた目標温度に設定されるように、応力付与部80の温度は制御される。応力付与部80の制御方法には、例えば、ON-OFF制御、PWM制御、PID制御などが挙げられる。
温度制御部90は、自身が発熱または吸熱せずに、応力付与部80の温度を変化させてもよい。このような温度制御部90は、例えば、赤外線及び超音波等を応力付与部80に照射することで、応力付与部80の温度を変化させてもよい。
熱伝導部材111は、熱を伝導できれば板状に限定される必要はない。
ビーム品質制御装置70では、応力付与部80の熱膨張係数がクラッド32b,53の熱膨張係数よりも小さくてもよい。この場合、応力付与部80は、クラッド32b,53よりも小さく収縮する。そして、応力付与部80は、応力付与部80の熱膨張係数がクラッド32b,53の熱膨張係数よりも大きい場合に比べて、応力付与部80の内周面において被覆層32c,55を介してクラッド32b,53を小さく引っ張り、クラッド32b,53に小さな引張応力を付与し得る。また、この場合、応力付与部80は、クラッド32b,53よりも小さく膨張する。そして、応力付与部80は、応力付与部80の熱膨張係数がクラッド32b,53の熱膨張係数よりも大きい場合に比べて、応力付与部80の内周面において被覆層55を介してクラッド32b,53を小さく押圧し、クラッド32b,53に小さな圧縮応力を付与し得る。
第1,3-7実施形態のビーム品質制御装置70では、ペルチェ素子95の代わりに、ヒータが用いられてもよい。
第1,2,3実施形態のビーム品質制御装置70は、共振器200の外部に配置されていればよく、例えば、デリバリ光ファイバ10に配置されてもよい。
第1-7実施形態のレーザ装置では、光源2の数は特に限定されず、少なくとも1つ備えられていればよい。また、第4-7実施形態のビーム品質制御装置70は、複数の光源2のうちのいずれかの共振器200の内部に配置されてもよい。
第2,3実施形態のビーム品質制御装置70は、増幅用光ファイバ30及び光ファイバ32の接続点から第2FBGのうちの最も離れた部位と出射部60との間に配置されていればよい。
第2実施形態の枠部材117は、第1,4-7実施形態のビーム品質制御装置70に組み込まれてもよい。
第1,3-7実施形態のペルチェ素子95が配置されておらず、第2実施形態の流路部99が第1,3-7実施形態の熱伝導部材111に組み込まれ、ヒートポンプ97が第1,3-7実施形態の電源93の代わりに組み込まれてもよい。
第3実施形態のビーム品質制御装置70では、第1実施形態のペルチェ素子95の代わりに、第2実施形態の流路部99を有する熱伝導部材111が配置されてもよいし、流路部99が板部材81に配置されてもよい。
第3実施形態のビーム品質制御装置70では、壁部材83は、光ファイバ50に固定されてもよい。この場合、ペルチェ素子95の一方の面の温度が上昇し、他方の面の温度が下降すると、板部材81は膨張し、一対の壁部材83は互いに向かって離れる。これにより、一対の壁部材83は、壁部材83に固定されているクラッド53を両側から引っ張り、クラッド53に引張応力を付与し得る。
また、上記実施形態のレーザ装置1では、光源2が共振器型のファイバレーザ装置である例を挙げて説明したが、光源2は、他のファイバレーザ装置であってもよい。光源2が他のファイバレーザ装置とされる場合、光源2は、種光源を有するMO-PA(Master Oscillator Power Amplifier)型のファイバレーザ装置や、DDL(Direct Diode Laser)型のレーザ装置であってもよい。光源2がMO-PA型のファイバレーザ装置である場合、ビーム品質制御装置70は、種光源と出射部との間に配置されればよい。ただし、種光源から出射される光を増幅する増幅用光ファイバと出射部との間にビーム品質制御装置70が配置される場合、ビーム品質制御装置70が種光源と増幅用光ファイバとの間に配置される場合に比べて、ビーム品質制御装置70は、パワー密度の高い光を所望のビーム品質に近づけ易くなり得、出射部60から出射する光のビーム品質を所望のビーム品質により近づけ易くなり得る。DDL型のレーザ装置の場合、図1に示す光源2がレーザダイオードであってもよく、光源2と、出射部60との間にビーム品質制御装置70が配置されればよい。
増幅用光ファイバ30や光ファイバ31は、内側クラッドと外側クラッドとを有するダブルクラッドファイバで説明したが、これに限定されない。例えば、内側クラッドが2層に分かれており、増幅用光ファイバ30や光ファイバ31は、2層の内側クラッド及び外側クラッドの3層のクラッドを有するトリプルクラッドファイバであってもよい。この場合、2層の内側クラッドにおいて、例えば、内側の第1クラッドの屈折率は外側の第2クラッドの屈折率よりも低くされてもよい。また、第2クラッドの屈折率は、外側クラッドの屈折率よりも低くされてもよい。
第5実施形態のビーム品質制御装置70における光ファイバは、増幅用光ファイバ30であってもよい。
また、共振器20の内部に配置されているビーム品質制御装置70の構成は、第2実施形態のビーム品質制御装置70の構成、または第3実施形態のビーム品質制御装置70の構成と同じであってもよい。第5,6,7実施形態のレーザ装置では、第4実施形態のビーム品質制御装置70が用いられる必要はなく、第2,3実施形態のいずれかのビーム品質制御装置70が用いられてもよい。レーザ装置1では、ビーム品質制御装置70は、共振器20の内部及び共振器20の外部の両方に配置されてもよい。
記憶部115は、レーザ装置1から出射する光のビーム品質に関する情報と応力付与部80の温度との関係を記憶してもよい。情報は、例えば、ビームウェスト径をどれだけ小さくできるかを示す指標であり、ビームパラメータ積(BPP:Beam Parameter Products)で示される。BPP[mm・rad]は、r0×θ、またはM2(エムスクエア)×λ/πで表される。r0はビームウェスト半径であり、θはビームの発散角の半値全幅である。また、λは、光の波長(μm)である。ビーム品質が良い場合にはBPPの値は小さくなる。温度制御部90は、記憶部115に記憶されている当該関係における温度を読み出し、応力付与部80の温度を読み出した温度に制御する。従って、温度制御部90は、応力付与部80の温度を記憶部115に記憶された情報に基づく温度に制御している。
上記の構成によって、レーザ装置1では、温度制御部90は記憶部115に記憶された情報に基づいて応力付与部80の温度を制御しており、応力付与部80の温度がこの情報に基づいた温度となると、レーザ装置1から出射する光のビーム品質は、記憶部115に記憶されたビーム品質となり得る。これにより、記憶部115に記憶されたビーム品質の光が出射され、当該光が対象物を照射し得る。
本発明によれば、所望のビーム品質の光を得ることができるビーム品質制御装置、及びこれを用いるレーザ装置が提供され、レーザ加工分野、医療分野等の様々な産業において利用可能である。
Claims (15)
- コア及び前記コアの外周面を囲うクラッドを有する光ファイバと、
前記光ファイバの外周面の少なくとも一部に面接触し、前記クラッドの熱膨張係数とは異なる熱膨張係数を有する応力付与部と、
前記応力付与部の温度を制御する温度制御部と、
を備え、
前記応力付与部は、当該応力付与部が前記クラッドに付与する外力の分布が前記クラッドの周方向において不均一となるように、前記温度制御部による前記温度の変化によって収縮または膨張する
ことを特徴とするビーム品質制御装置。 - 主面上に前記応力付与部が配置されて、前記応力付与部及び前記温度制御部に熱的に接続され、前記温度制御部と前記応力付与部との間において熱を伝導する板状の熱伝導部材をさらに備える
ことを特徴とする請求項1に記載のビーム品質制御装置。 - 前記温度制御部は、
ヒートポンプと、
前記ヒートポンプによって温度が変化する流体が流れ、前記熱伝導部材を貫通し、前記流体によって前記応力付与部の前記温度を変化させる流路部と、
を有する
ことを特徴とする請求項2に記載のビーム品質制御装置。 - 前記応力付与部は、前記光ファイバの前記外周面に面接触する接触面と前記接触面から離れている前記応力付与部の外周面との間の厚みが不均一な樹脂から成る
ことを特徴とする請求項1から3のいずれか1項に記載のビーム品質制御装置。 - 前記樹脂の温度が所定の温度よりも低い場合に、前記樹脂は、収縮して前記クラッドに引張応力を付与し、
前記樹脂の前記温度が前記所定の温度よりも高い場合に、前記樹脂は、膨張して前記クラッドに圧縮応力を付与する
ことを特徴とする請求項4に記載のビーム品質制御装置。 - 前記応力付与部の少なくとも一部を囲う枠部材をさらに備え、
前記枠部材の熱膨張係数は、前記応力付与部の熱膨張係数よりも小さい
ことを特徴とする請求項1から5のいずれか1項に記載のビーム品質制御装置。 - 前記応力付与部は、
板部材と、
前記板部材に立設され、前記光ファイバを挟み込む一対の壁部材と、
を有し、
前記板部材は、前記一対の壁部の並び方向において収縮または膨張し、
前記一対の壁部材は、前記板部材の収縮によって前記クラッドに圧縮応力を付与し、前記板部材の膨張によって前記圧縮応力の付与を解放する
ことを特徴とする請求項1から6のいずれか1項に記載のビーム品質制御装置。 - 請求項1から7のいずれか1項に記載のビーム品質制御装置と、
光を出射する光源と、
を備え、
前記コアには、前記光が伝搬する
ことを特徴とするレーザ装置。 - 請求項1から7のいずれか1項に記載のビーム品質制御装置と、
励起光を出射する励起光源と、
を備え、
前記光ファイバには、前記励起光により励起される活性元素により増幅される光が伝搬する
ことを特徴とするレーザ装置。 - 前記活性元素が添加される増幅用光ファイバと、
前記増幅用光ファイバの一方側に設けられ、前記活性元素により増幅される前記光の少なくとも一部の波長の光を反射する第1FBGと、
前記増幅用光ファイバの他方側に設けられ、前記第1FBGが反射する光のうち少なくとも一部の波長の光を前記第1FBGより低い反射率で反射する第2FBGと、
前記第2FBGを透過する光を対象物に向けて出射する出射部と、
をさらに備え、
前記ビーム品質制御装置は、前記増幅用光ファイバ及び前記第2FBGが設けられる光ファイバの接続点から前記第2FBGのうちの最も離れた部位と前記出射部との間に配置される
ことを特徴とする請求項9に記載のレーザ装置。 - 前記励起光により励起される前記活性元素により増幅される前記光が共振する共振器をさらに備え、
前記ビーム品質制御装置は、前記共振器の内部に配置される
ことを特徴とする請求項9に記載のレーザ装置。 - 前記共振器は、
前記活性元素が添加される増幅用光ファイバと、
前記増幅用光ファイバの一方側に設けられ、前記活性元素により増幅される前記光の少なくとも一部の波長の光を反射する第1FBGと、
前記増幅用光ファイバの他方側に設けられ、前記第1FBGが反射する光のうち少なくとも一部の波長の光を前記第1FBGより低い反射率で反射する第2FBGと、
を備え、
前記ビーム品質制御装置は、前記増幅用光ファイバ及び前記第1FBGが設けられる光ファイバの接続点と前記第1FBGのうちの前記接続点から最も離れた部位との間に配置される
ことを特徴とする請求項11に記載のレーザ装置。 - 前記共振器は、
前記活性元素が添加される増幅用光ファイバと、
前記増幅用光ファイバの一方側に設けられ、前記活性元素により増幅される前記光の少なくとも一部の波長の光を反射する第1FBGと、
前記増幅用光ファイバの他方側に設けられ、前記第1FBGが反射する光のうち少なくとも一部の波長の光を前記第1FBGより低い反射率で反射する第2FBGと、
を備え、
前記増幅用光ファイバは、前記ビーム品質制御装置における前記光ファイバである
ことを特徴とする請求項11に記載のレーザ装置。 - 前記共振器は、
前記活性元素が添加される増幅用光ファイバと、
前記増幅用光ファイバの一方側に設けられ、前記活性元素により増幅される前記光の少なくとも一部の波長の光を反射する第1FBGと、
前記増幅用光ファイバの他方側に設けられ、前記第1FBGが反射する光のうち少なくとも一部の波長の光を前記第1FBGより低い反射率で反射する第2FBGと、
を備え、
前記ビーム品質制御装置は、前記増幅用光ファイバ及び前記第2FBGが設けられる光ファイバの接続点と前記第2FBGのうちの前記接続点から最も離れた部位との間に配置される
ことを特徴とする請求項11に記載のレーザ装置。 - 前記レーザ装置から出射する光のビーム品質に関する情報を記憶する記憶部をさらに備え、
前記温度制御部は、前記応力付与部の前記温度を前記記憶部に記憶された前記情報に基づく温度に制御する
ことを特徴とする請求項8から14のいずれか1項に記載のレーザ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/632,414 US20220302666A1 (en) | 2019-12-17 | 2020-12-15 | Beam quality control device and laser device using same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019227692A JP2021096371A (ja) | 2019-12-17 | 2019-12-17 | レーザ装置 |
JP2019-227691 | 2019-12-17 | ||
JP2019227691A JP2021096370A (ja) | 2019-12-17 | 2019-12-17 | ビーム品質制御装置、及びこれを用いるレーザ装置 |
JP2019-227692 | 2019-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021125162A1 true WO2021125162A1 (ja) | 2021-06-24 |
Family
ID=76476616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/046734 WO2021125162A1 (ja) | 2019-12-17 | 2020-12-15 | ビーム品質制御装置、及びこれを用いるレーザ装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20220302666A1 (ja) |
WO (1) | WO2021125162A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6282341B1 (en) * | 1998-12-22 | 2001-08-28 | The Board Of Trustees Of The Leland Stanford Junior University | Tunable, mechanically induced long-period fiber grating with enhanced polarizing characteristics |
JP2006078649A (ja) * | 2004-09-08 | 2006-03-23 | Fujikura Ltd | 特性可変ファイバグレーティング |
JP2008145807A (ja) * | 2006-12-12 | 2008-06-26 | Oki Electric Ind Co Ltd | ファイバブラッググレーティング装置 |
WO2011124671A1 (de) * | 2010-04-08 | 2011-10-13 | Trumpf Laser Und Systemtechnik Gmbh | Verfahren und anordnung zum erzeugen eines laserstrahls mit unterschiedlicher strahlprofilcharakteristik mittels einer mehrfachclad-faser |
WO2012165389A1 (ja) * | 2011-05-31 | 2012-12-06 | 古河電気工業株式会社 | レーザ装置および加工装置 |
JP2015500571A (ja) * | 2011-12-09 | 2015-01-05 | ジェイディーエス ユニフェイズ コーポレーションJDS Uniphase Corporation | レーザービームのビームパラメータ積を変動させること |
JP2016517636A (ja) * | 2013-03-21 | 2016-06-16 | レーザーライン ゲゼルシャフト フュア エントヴィックルング ウント フェアトリープ フォン ディオーデンラーザン ミット ベシュレンクテル ハフツングLaserline Gesellschaft fuer Entwicklung und Vertrieb von Diodenlasern mbH | レーザ装置 |
WO2018217300A1 (en) * | 2016-09-29 | 2018-11-29 | Nlight, Inc. | Fiber-couple device for varying beam characteristics |
CN209709373U (zh) * | 2019-05-09 | 2019-11-29 | 中国人民解放军国防科技大学 | 基于纤芯包层尺寸连续渐变纺锤形增益光纤的激光振荡器 |
-
2020
- 2020-12-15 WO PCT/JP2020/046734 patent/WO2021125162A1/ja active Application Filing
- 2020-12-15 US US17/632,414 patent/US20220302666A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6282341B1 (en) * | 1998-12-22 | 2001-08-28 | The Board Of Trustees Of The Leland Stanford Junior University | Tunable, mechanically induced long-period fiber grating with enhanced polarizing characteristics |
JP2006078649A (ja) * | 2004-09-08 | 2006-03-23 | Fujikura Ltd | 特性可変ファイバグレーティング |
JP2008145807A (ja) * | 2006-12-12 | 2008-06-26 | Oki Electric Ind Co Ltd | ファイバブラッググレーティング装置 |
WO2011124671A1 (de) * | 2010-04-08 | 2011-10-13 | Trumpf Laser Und Systemtechnik Gmbh | Verfahren und anordnung zum erzeugen eines laserstrahls mit unterschiedlicher strahlprofilcharakteristik mittels einer mehrfachclad-faser |
WO2012165389A1 (ja) * | 2011-05-31 | 2012-12-06 | 古河電気工業株式会社 | レーザ装置および加工装置 |
JP2015500571A (ja) * | 2011-12-09 | 2015-01-05 | ジェイディーエス ユニフェイズ コーポレーションJDS Uniphase Corporation | レーザービームのビームパラメータ積を変動させること |
JP2016517636A (ja) * | 2013-03-21 | 2016-06-16 | レーザーライン ゲゼルシャフト フュア エントヴィックルング ウント フェアトリープ フォン ディオーデンラーザン ミット ベシュレンクテル ハフツングLaserline Gesellschaft fuer Entwicklung und Vertrieb von Diodenlasern mbH | レーザ装置 |
WO2018217300A1 (en) * | 2016-09-29 | 2018-11-29 | Nlight, Inc. | Fiber-couple device for varying beam characteristics |
CN209709373U (zh) * | 2019-05-09 | 2019-11-29 | 中国人民解放军国防科技大学 | 基于纤芯包层尺寸连续渐变纺锤形增益光纤的激光振荡器 |
Also Published As
Publication number | Publication date |
---|---|
US20220302666A1 (en) | 2022-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10418774B2 (en) | Spectrally multiplexing diode pump modules to improve brightness | |
JP5680170B1 (ja) | ファイバレーザ装置 | |
US7440176B2 (en) | Bi-directionally pumped optical fiber lasers and amplifiers | |
US7283293B2 (en) | High efficiency optical amplifying fiber | |
JP2005303166A (ja) | 光ファイバ端面構造、光ファイバレーザ及びレーザ加工装置 | |
US7430225B2 (en) | Fiber laser beam processing apparatus | |
US8665514B2 (en) | Multi-core optical amplification fiber wound with decreasing radius of curvature | |
WO2009095023A2 (en) | System, device and method for stabilizing the optical output power of an optical system | |
JP6980482B2 (ja) | 光検出装置及びレーザ装置 | |
WO2021125162A1 (ja) | ビーム品質制御装置、及びこれを用いるレーザ装置 | |
JP2012209510A (ja) | 光ファイバレーザ光源 | |
JP2015149369A (ja) | ファイバレーザ装置 | |
JP2009543366A (ja) | 光ファイバパワーレーザ装置 | |
WO2006098313A1 (ja) | 光増幅器およびレーザ装置 | |
JP2021096371A (ja) | レーザ装置 | |
JP2021096370A (ja) | ビーム品質制御装置、及びこれを用いるレーザ装置 | |
WO2002095885A1 (fr) | Laser a fibre optique | |
JP7337726B2 (ja) | パルスレーザ光生成伝送装置およびレーザ加工装置 | |
JPWO2007116563A1 (ja) | 光源 | |
JP5641496B2 (ja) | レーザ装置 | |
WO2019176572A1 (ja) | レーザ発振器、レーザ加工装置、光ファイバー、光ファイバーの製造方法、及び、光ファイバーの製造装置 | |
JP4470480B2 (ja) | 波長変換レーザ装置 | |
JP2001015835A (ja) | レーザ光発生装置及び光アンプ | |
JP2001015834A (ja) | レーザ光発生装置の製造方法、及び光アンプの製造方法 | |
WO2020241398A1 (ja) | 光ファイバ、及びレーザ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20901710 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20901710 Country of ref document: EP Kind code of ref document: A1 |