WO2019176572A1 - レーザ発振器、レーザ加工装置、光ファイバー、光ファイバーの製造方法、及び、光ファイバーの製造装置 - Google Patents

レーザ発振器、レーザ加工装置、光ファイバー、光ファイバーの製造方法、及び、光ファイバーの製造装置 Download PDF

Info

Publication number
WO2019176572A1
WO2019176572A1 PCT/JP2019/007952 JP2019007952W WO2019176572A1 WO 2019176572 A1 WO2019176572 A1 WO 2019176572A1 JP 2019007952 W JP2019007952 W JP 2019007952W WO 2019176572 A1 WO2019176572 A1 WO 2019176572A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
core
optical fiber
light
region
Prior art date
Application number
PCT/JP2019/007952
Other languages
English (en)
French (fr)
Inventor
聡史 服部
政直 村上
クリスチャン シェーファー
茂樹 時田
日和 上原
啓 松隈
Original Assignee
三星ダイヤモンド工業株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社, 国立大学法人大阪大学 filed Critical 三星ダイヤモンド工業株式会社
Priority to JP2020505763A priority Critical patent/JPWO2019176572A1/ja
Priority to CN201980018091.2A priority patent/CN111837297A/zh
Publication of WO2019176572A1 publication Critical patent/WO2019176572A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Definitions

  • the present invention relates to a laser oscillator, a laser processing apparatus including the laser oscillator, an optical fiber used in the laser oscillator, a method for manufacturing the optical fiber, and an apparatus for manufacturing the optical fiber.
  • a plurality of regions having a refractive index higher (or lower) than the refractive index of the core inside the core are formed at predetermined intervals.
  • the plurality of refractive index modulation regions function as a diffraction grating for the light. Therefore, an optical fiber in which a plurality of refractive index modulation regions as described above is formed is referred to as “fiber Bragg grating (FBG)”.
  • light having a wavelength determined by the refractive index of the optical fiber and the predetermined interval is extracted as reflected light.
  • a plurality of refractive index modulation regions are formed at the predetermined intervals near the both ends of an optical fiber in which rare earth or the like is added to the core, and appropriate excitation light is introduced into the optical fiber, the light propagates in the core of the optical fiber.
  • light having a wavelength determined by the predetermined interval can be amplified by reciprocating in the optical fiber. That is, laser oscillation can be realized in the optical fiber.
  • Patent Document 1 discloses a technique for forming a refractive index modulation region in a core layer by irradiating a core layer of an optical fiber with a pulse laser beam to cause a chemical reaction in the core layer.
  • the optical fiber is moved by the grating period, and the core layer is irradiated with pulsed laser light again, thereby allowing a plurality of refractive index modulations to be spaced by the grating period.
  • An area is formed.
  • the light forming the refractive index modulation region is irradiated in a state in which the core is focused from a direction perpendicular to the length direction of the core.
  • the light is irradiated only in a focused state inside the core, the light is irradiated only to a very limited area inside the core. Only regions can be formed.
  • the area of the refractive index modulation region is small, the interaction with the light propagating through the core is also small, and it is difficult to obtain a high light reflectance unless the number of layers of the refractive index modulation region is increased.
  • the method of forming a large number of refractive index modulation regions along the length direction mainly has the following two problems.
  • the second problem is that when a large number of refractive index modulation regions are formed along the length direction, a stable and good fiber Bragg grating cannot be obtained due to distortion of the structure of the optical fiber.
  • An object of the present invention is to obtain high light reflection while reducing the number of refractive index modulation regions formed in an optical fiber having a fiber Bragg grating.
  • a laser oscillator includes an excitation light source, an optical fiber, and a grating region.
  • the excitation light source outputs excitation light.
  • the optical fiber has a core that propagates laser light generated by excitation light in the length direction and outputs the laser light from the exit.
  • the grating region is a region in which a plurality of refractive index modulation regions are formed with a first interval in the length direction of the core. That is, the grating region is a fiber Bragg grating.
  • the refractive index modulation region has a refractive index different from that of the core.
  • the cross-sectional area of the refractive index modulation region in the direction perpendicular to the length direction of the core is 16% or more of the cross-sectional area of the core in the direction perpendicular to the length direction.
  • the cross-sectional area perpendicular to the core length direction of the refractive index modulation region formed in the grating region inside the core is 16% or more of the cross-sectional area perpendicular to the core length direction. .
  • the formation length of the grating region can be shortened by having a high reflectance even if the number of refractive index modulation regions is small. As a result, it is possible to realize a high-quality grating region (fiber Bragg grating) that is not easily affected by variations in the quality of the optical fiber in the length direction.
  • the grating region may have a first grating region and a second grating region.
  • the second grating region is formed at a second interval in the length direction of the core from the first grating region. This enables laser oscillation of the laser light within the optical fiber without providing a reflector or the like at the end of the core.
  • the formation length in the length direction of either one of the first grating region and the second grating region may be shorter than the other formation length. Accordingly, the reflectance of either the first grating region or the second grating region can be reduced, and the laser beam can be efficiently extracted from the side where the grating region having a low reflectance is formed.
  • the optical fiber may be a fluoride fiber doped with rare earth elements.
  • the laser oscillator can output laser light having a mid-infrared wavelength.
  • the rare earth element doped in the optical fiber may be erbium.
  • the laser oscillator can oscillate laser light having a wavelength in the mid-infrared region.
  • a laser processing apparatus is an apparatus that performs processing by irradiating a workpiece with laser light output from the laser oscillator.
  • An optical fiber includes a core and a grating region.
  • the grating region is a region in which a plurality of refractive index modulation regions having a refractive index different from the refractive index of the core are formed with a first interval in the length direction of the core.
  • the cross-sectional area of the refractive index modulation region in the direction perpendicular to the length direction of the core is 16% or more of the cross-sectional area of the core in the direction perpendicular to the length direction.
  • the optical fiber has a high reflectance while reducing the number of formed refractive index modulation regions since the cross sectional area of the refractive index modulation region is 16% or more of the cross sectional area of the core.
  • the formation length of the grating region can be shortened by having a high reflectance even if the number of refractive index modulation regions is small. As a result, it is possible to realize an optical fiber having a high-quality grating region (fiber Bragg grating) that is not easily affected by variations in quality in the length direction.
  • the grating region of the optical fiber may include a first grating region and a second grating region formed at a second interval from the first grating region in the length direction of the core. This enables laser oscillation of the laser light within the optical fiber without providing a reflector or the like at the end of the core.
  • an optical fiber manufacturing method includes a grating region in which a plurality of refractive index modulation regions having a refractive index different from a refractive index of a core are formed at a first interval in the length direction of the core.
  • An optical fiber manufacturing method comprising: The optical fiber manufacturing method includes the following steps. A step of irradiating the inside of the core with reaction light that changes the refractive index of the core. A step of forming a refractive index modulation region by moving the reaction light in a direction perpendicular to the length direction of the core while the reaction light is irradiated inside the core.
  • the reaction light that changes the refractive index of the core is irradiated inside the core, the reaction light is moved in a direction perpendicular to the length direction of the core, and the core A refractive index modulation region having a refractive index different from the refractive index is formed.
  • a refractive index modulation region having a large cross-sectional area can be formed, and the refractive index modulation per one refractive index modulation region can be increased.
  • the manufacturing time of an optical fiber having a grating region can be shortened. Furthermore, by forming the refractive index modulation region while scanning the reaction light, the size of the refractive index modulation per one refractive index modulation region can be adjusted by adjusting the size of the cross-sectional area of the refractive index modulation region, In addition, the distance between the two refractive index modulation regions can be adjusted. As a result, a grating region having various characteristics can be realized.
  • a manufacturing apparatus provides an optical fiber including a grating region in which a plurality of refractive index modulation regions having a refractive index different from the refractive index of the core are formed at a first interval in the length direction of the core. It is a manufacturing device.
  • This manufacturing apparatus includes a reaction light source and a moving table.
  • the reaction light source irradiates the core with reaction light that changes the refractive index of the core.
  • the moving table moves the reaction light in a direction perpendicular to the length direction of the core in a state where the reaction light is irradiated inside the core.
  • the reaction light is moved in a direction perpendicular to the length direction of the core in a state where the reaction light for changing the refractive index of the core is irradiated inside the core.
  • a refractive index modulation region having a refractive index different from the refractive index of the core can be formed inside the core with a large cross-sectional area.
  • a grating region fiber Bragg grating
  • the manufacturing time of an optical fiber having a grating region can be shortened. Furthermore, by forming the refractive index modulation region while scanning the reaction light, the size of the refractive index modulation per one refractive index modulation region can be adjusted by adjusting the size of the cross-sectional area of the refractive index modulation region, In addition, the distance between the two refractive index modulation regions can be adjusted. As a result, a grating region having various characteristics can be realized.
  • the manufacturing apparatus may further include a lens that connects the focus of the reaction light to the inside of the core. Thereby, a refractive index modulation region can be formed in a predetermined region inside the core.
  • the manufacturing apparatus may further include an evaluation apparatus.
  • the evaluation device evaluates the optical fiber forming the grating region based on the intensity of the reflected light generated by the excitation light incident on the grating region being reflected by the grating region. Thereby, the characteristics of the formed grating region can be evaluated while forming the grating region in the optical fiber.
  • the figure which shows the structure of a laser processing apparatus The figure which shows the structure of a laser oscillator. The figure which shows the structure of an optical fiber.
  • the flowchart which shows the formation method of a refractive index modulation area
  • FIG. 2 is an optical microscope image of a grating region formed in Example 1.
  • FIG. 4 is an optical microscope image of a grating region formed in Example 2.
  • FIG. 1 is a diagram showing a configuration of a laser processing apparatus.
  • the laser processing apparatus 100 is an apparatus for processing the workpiece W using the laser beam L1.
  • the laser processing apparatus 100 includes a laser oscillator 1.
  • the laser oscillator 1 performs processing on the workpiece W such as irradiating the workpiece W with the laser light L1 to cut the workpiece W.
  • the configuration of the laser oscillator 1 will be described in detail later.
  • Examples of the workpiece W that can be processed by the laser light L1 emitted from the laser oscillator 1 include a glass substrate.
  • the laser processing apparatus 100 includes a workpiece mounting table 3.
  • the workpiece mounting table 3 is disposed under the laser oscillator 1 and mounts a workpiece W to be processed using the laser light L1.
  • the laser oscillator 1 is installed above the workpiece mounting table 3 and irradiates the workpiece W with the laser light L ⁇ b> 1 vertically from above to below.
  • the present invention is not limited to this, and the relationship between the arrangement positions of the laser oscillator 1 and the workpiece mounting table 3 may be adjusted so that the laser beam L1 can be irradiated to the workpiece W at an arbitrary angle.
  • an optical element such as a lens and / or a mirror may be disposed on the optical path of the laser beam L1 from the laser oscillator 1 to adjust the condensed / diffusion irradiation and / or the irradiation angle.
  • FIG. 2 is a diagram showing the configuration of the laser oscillator.
  • the laser oscillator 1 according to this embodiment is a fiber laser that uses an optical fiber 15 as a laser medium and a resonator.
  • the laser oscillator 1 has an excitation light source 11.
  • the excitation light source 11 outputs excitation light L ⁇ b> 2 that is incident on the clad 153 of the optical fiber 15.
  • the excitation light L2 incident on the clad 153 passes through the core 151, so that the excitation light L2 is absorbed in the core 151.
  • the emission is amplified inside the core 151 by stimulated emission, and further, the inside of the optical fiber 15 is repeatedly reflected by the mirrors at both ends, leading to laser oscillation.
  • the wavelength of light generated by the laser oscillation is determined by the element doped in the core 151.
  • the core 151 of the optical fiber 15 is made of a fluoride-based glass doped with a rare earth element and emits mid-infrared light (wavelength: 2.8 ⁇ m). . Therefore, as the excitation light L2, for example, light having a wavelength of 976 nm can be used. Further, as the excitation light source 11 that can output the excitation light L2, for example, a semiconductor laser that outputs light having the above-described wavelength can be used.
  • the laser oscillator 1 has a light introducing portion 13.
  • the light introducing unit 13 introduces the excitation light L ⁇ b> 2 output from the excitation light source 11 into the clad 153 of the optical fiber 15.
  • the light introduction unit 13 includes an excitation light waveguide fiber 131 and an introduction lens 133.
  • the excitation light waveguide fiber 131 is, for example, an optical fiber that guides the excitation light L ⁇ b> 2 output from the excitation light source 11 to the introduction lens 133.
  • the introduction lens 133 is disposed in the vicinity of the entrance I, which is one end of the optical fiber 15, and introduces the excitation light L ⁇ b> 2 guided by the excitation light waveguide fiber 131 into the cladding 153.
  • the laser oscillator 1 has an optical fiber 15.
  • the optical fiber 15 functions as a laser medium and a resonator in the laser oscillator 1 of the present embodiment, and amplifies the laser light L1 generated by the irradiation of the excitation light L2 to cause laser oscillation. Details of the configuration of the optical fiber 15 will be described in detail later.
  • the laser oscillator 1 has a collimator 17.
  • the collimator 17 is a lens that makes the laser beam L1 emitted from the exit O of the optical fiber 15 a parallel beam.
  • FIG. 3 is a diagram showing a configuration of the optical fiber.
  • the optical fiber 15 has a core 151.
  • the core 151 is excited by the excitation light L ⁇ b> 2 introduced from the light introducing unit 13, and generates laser light L ⁇ b> 1 having a wavelength determined by the material doped in the core 151. That is, the core 151 functions as a laser medium of the laser oscillator 1.
  • the core 151 is a fluoride fiber doped with a rare earth element.
  • ZBLAN glass doped with erbium (Er) as a rare earth element.
  • ZBLAN glass is glass mainly composed of zirconium (Zr), barium (Ba), lanthanum (La), aluminum (Al), and sodium (Na).
  • the core 151 is excited by the excitation light L2, so that the laser light L1 having a mid-infrared wavelength (specifically, around 2.8 ⁇ m) is obtained. Can be generated.
  • the optical fiber 15 has a clad 153.
  • the clad 153 is a layer having a refractive index smaller than the refractive index of the core 151 formed so as to cover the core 151 on the outer periphery of the core 151.
  • the laser light L1 generated in the core 151 is totally reflected and / or refracted at the interface between the core 151 and the clad 153, and can propagate along the length direction of the core 151.
  • the laser beam L1 propagated in the length direction of the core 151 is output from the exit O of the optical fiber 15.
  • the clad 153 may have a plurality of layers in the radial direction of the optical fiber 15.
  • the refractive index of the layer inside the optical fiber 15 is made higher than the refractive index of the layer outside.
  • the excitation light L2 incident on the clad 153 can be totally reflected at the interface between the inner layer and the outer layer.
  • the excitation light L2 can pass through the core 151 a plurality of times.
  • the optical fiber 15 has a grating region 155.
  • the grating region 155 is a region that reflects a part of the laser light L1 propagated through the core 151.
  • the grating region 155 includes a first grating region 155a and a second grating region 155b.
  • the first grating region 155a is formed inside the core 151 in the vicinity of the entrance I of the excitation light L2 of the optical fiber 15. As shown in FIG. 3, the first grating region 155a includes a plurality of refractive index modulation regions HR formed with a first interval D1.
  • the refractive index modulation region HR is a region having a refractive index different from the refractive index of the core 151. That is, in the first grating region 155a, locations where the refractive index is relatively high and locations where the refractive index is relatively low are alternately arranged.
  • the reflected light from a certain refractive index modulation region HR in the grating region 155 and the reflected light from an adjacent refractive index modulation region HR arranged with a first interval D1 are in the same place and in phase These two reflected lights increase their intensities by interference. Such intensification of the intensity of the reflected light occurs in the grating region 155, resulting in light reflection.
  • the refractive index modulation region HR of the present embodiment irradiates the reaction light L3 in a direction parallel to the cross section of the core 151 (Y direction and Z direction) in a state where the reaction light L3 is irradiated inside the core 151. It is formed while moving.
  • the refractive index modulation region HR of the present embodiment has a cross-sectional area of 16% or more of the cross-sectional area of the core 151.
  • each refractive index modulation region HR of the first grating region 155a has a higher reflectance than the conventional refractive index modulation region.
  • the conventional grating region fiber Bragg grating
  • the first grating region 155a having the above-described configuration is a part of the laser light L1 having a specific wavelength that satisfies the conditions of Bragg reflection by the refractive index modulation region HR among the laser light L1 propagating through the core 151 in the entrance I direction. Further, it can be reflected more strongly toward the outlet O of the core 151. That is, the laser beam L1 that can be particularly strongly reflected by the first grating region 155a has a wavelength represented by an expression of 2 * n * d1 (n: refractive index of the core 151, d1: magnitude of the first interval D1). Have.
  • the second grating region 155b is formed inside the core 151 in the vicinity of the exit O of the laser light L1 of the optical fiber 15. That is, the second grating region 155b is formed from the first grating region 155a in the length direction of the core 151 with a second interval D2. As shown in FIG. 3, the second grating region 155b includes a plurality of refractive index modulation regions HR formed with a first interval D1 in the same manner as the first grating region 155a.
  • the second grating region 155b is a laser having a wavelength determined by the first interval D1 in the laser light L1 propagating through the core 151 in the direction of the exit O on the same principle as the reflection principle in the first grating region 155a. A part of the light L 1 can be reflected toward the entrance I of the core 151. Of the laser light L1 propagating in the direction of the exit O, the laser light L1 that has passed through the second grating region 155b is output from the exit O. In order to output more laser light L1 from the exit O, the reflectance of the laser light L1 in the second grating region 155b is preferably smaller than the reflectance in the first grating region 155a. Specifically, the formation length of the second grating region 155b is preferably shorter than the formation length of the first grating region 155a.
  • the core 151 of the optical fiber 15 has the first grating region 155a on the entrance I side of the excitation light L2 and the second grating region 155b on the exit O side of the laser light L1, so that a specific wavelength is obtained.
  • the laser beam L1 can be amplified between the first grating region 155a and the second grating region 155b. That is, laser oscillation of the laser beam L1 can be realized in the core 151 without disposing a mirror or the like at any end of the optical fiber 15.
  • the laser oscillator 1 including the optical fiber 15 of the present embodiment can reduce loss. As a result, it is possible to efficiently output the laser beam L1 having a greater intensity.
  • FIG. 4 is a view showing an apparatus for forming a refractive index modulation region.
  • the forming apparatus 200 includes a reaction light source 201.
  • the reaction light source 201 is a light source that outputs the reaction light L3.
  • the reaction light L3 causes a chemical reaction at a portion of the core 151 where the reaction light L3 is irradiated, and makes the refractive index of the portion different from the refractive index of the core 151.
  • a light source capable of generating femtosecond short pulse laser light (pulse width: 400 fs (femtosecond), wavelength: 515 nm) as the reaction light L3 can be used. Further, the output intensity of the reaction light L3 is adjusted within a range of 0.01 ⁇ J to 1 ⁇ J, for example.
  • the output intensity of the reaction light L3 is appropriately adjusted according to the type of the optical fiber 15 that forms the refractive index modulation region HR.
  • the refractive index modulation region HR having a refractive index higher than the refractive index of the core 151 can be formed.
  • the forming apparatus 200 includes a moving table 203.
  • the movable table 203 has the optical fiber 15 that forms the refractive index modulation region HR placed thereon.
  • the moving table 203 is in the X-axis direction (in FIG. 4, the length direction of the optical fiber 15) and / or in the Y-axis direction (in FIG. 4, the XY plane).
  • the optical fiber 15 can be moved in a direction perpendicular to the length direction of the optical fiber 15. Further, the moving table 203 can also move in the Z-axis direction perpendicular to the XY plane.
  • the moving table 203 moves with high accuracy in the X-axis direction, the Y-axis direction, and / or the Z-axis direction.
  • a moving table 203 for example, a moving table (stage) using a piezoelectric element or the like as a drive source can be used.
  • the forming apparatus 200 includes an objective lens 205.
  • the objective lens 205 is a lens that links the focal point of the reaction light L3 propagated from the reaction light source 201 into the core 151 via an optical path changing member 207 (for example, a prism mirror).
  • the reaction light L3 focused on the inside of the core 151 by the objective lens 205 has sufficient intensity to promote a chemical reaction that changes the refractive index of the core 151 in the vicinity of the focus. That is, a reaction that changes the refractive index of the core 151 occurs in a minute region near the focus of the reaction light L3 inside the core 151.
  • the objective lens 205 may be movable in the Z-axis direction of FIG.
  • the objective lens 205 instead of the movable table 203 being movable in the Z-axis direction, only the objective lens 205 may be movable in the Z-axis direction, or both the movable table 203 and the objective lens 205 are moved in the Z-axis direction. It may be possible. Since the movable table 203 and / or the objective lens 205 is movable in the Z-axis direction, the objective lens 205 focuses the reaction light L3 at an arbitrary position in the Z-axis direction in FIG. be able to. As a result, the refractive index at an arbitrary position in the Z-axis direction inside the core 151 can be made different.
  • the objective lens 205 similarly to the moving table 203, it is preferable that the objective lens 205 also accurately focuses the reaction light L3 at an arbitrary position inside the core 151 of the optical fiber 15 placed on the moving table 203. . Therefore, the movement of the objective lens 205 in the Z-axis direction is preferably performed using, for example, a piezo element as a drive source.
  • the forming apparatus 200 includes a camera (not shown) on the optical path changing member 207. With this camera, a processing mark formed by the reaction light L3 can be observed through the objective lens 205. As a result, the reaction light L3 can be irradiated to an appropriate position of the core 151.
  • the forming apparatus 200 includes a control unit 209 that controls the reaction light source 201, the moving table 203, and the objective lens 205.
  • the control unit 209 includes, for example, a CPU, a RAM, a ROM, a storage device (SSD, hard disk, etc.), a computer system including various interfaces, a controller for the reaction light source 201, and a controller for the moving table 203.
  • the controller of the reaction light source 201 and the controller of the moving table 203 may be controlled by executing a program (the program is stored in a storage device of the computer system) in the computer system of the control unit 209. Good.
  • the forming apparatus 200 includes a white light source (not shown) that introduces white light into the core 151 from one side of the optical fiber 15. By introducing white light into the core 151, the reflection or transmission spectrum of the optical fiber 15 can be observed. As a result, it is possible to check the quality of the formed grating region 155 during manufacture by the forming apparatus 200, and it is possible to reduce the manufacturing time and stabilize the quality of the grating region 155.
  • the formed grating region 155 may be evaluated by measuring a laser oscillation output generated by introducing the excitation light L2 into the clad 153. Specifically, the evaluation of the grating region 155 using the excitation light L ⁇ b> 2 can be performed by introducing an evaluation device 300 to be described later into the forming device 200.
  • the forming apparatus 200 moves the focal position of the reaction light L3 by using the moving table 203 and / or the objective lens 205, so that an arbitrary position inside the core 151 of the optical fiber 15 can be obtained.
  • the refractive index can be varied.
  • an arbitrary form of the refractive index modulation region HR can be formed inside the core 151.
  • FIG. 5 is a flowchart showing a method for forming a refractive index modulation region.
  • the forming apparatus 200 performs the method of forming the refractive index modulation region HR according to the present embodiment will be described as an example.
  • the optical fiber 15 that forms the refractive index modulation region HR is placed on the moving table 203 of the forming apparatus 200.
  • the moving table 203 After placing the optical fiber 15 on the moving table 203, the moving table 203 is moved so that the reaction light L3 reaches a predetermined position in the core 151 (a predetermined position in the grating region 155). -Adjust the position in the Y plane. Further, the position of the objective lens 205 in the Z-axis direction is adjusted so that the focal point of the reaction light L3 is focused inside the core 151.
  • the reaction light L3 is generated from the reaction light source 201, and the reaction light L3 is irradiated into the core 151 (step S1).
  • a chemical reaction occurs in the vicinity of the focal position of the reaction light L3, that is, in the core 151 portion irradiated with the reaction light L3 of a predetermined amount or more.
  • the refractive index in the vicinity is different from the refractive index of the other region of the core 151 (in this embodiment, the refractive index is higher than that of the other region of the core 151).
  • FIG. 6A is a diagram illustrating an example of a refractive index modulation region formed in the vicinity of one focal position. In this way, a small refractive index modulation region HR is formed in the vicinity of the focal position of the reaction light L3.
  • the refractive index modulation region HR formed in the vicinity of one focal position occupies a small area with respect to the cross-sectional area of the surface perpendicular to the length direction of the core 151. Even if the laser beam L1 propagates to the portion where the refractive index modulation region HR having such a small cross-sectional area is formed, the laser beam L1 is hardly reflected by the refractive index modulation region HR.
  • the refractive index modulation region HR occupying a larger area with respect to the cross-sectional area of the surface perpendicular to the length direction of the core 151 is formed inside the core 151.
  • the reaction light L3 is moved in a direction perpendicular to the length direction of the core 151 in a state where the reaction light L3 is irradiated to the inside of the core 151 (in this embodiment, in the YZ plane).
  • the refractive index modulation region HR is formed (step S2).
  • the optical fiber 15 is moved at a predetermined speed in the Y-axis direction by the moving base 203 while generating short pulses of the reaction light L3 at predetermined intervals and irradiating the inside of the core 151.
  • the generation interval of the short pulses of the reaction light L3 and the moving speed of the optical fiber 15 are such that a part of the irradiation region of the reaction light L3 for one pulse is a part of the irradiation region of the reaction light L3 for another pulse. Adjusted to overlap. Thereby, as the optical fiber 15 moves, the area of the refractive index modulation region HR formed inside the core 151 can be increased.
  • FIG. 6B is a diagram illustrating an example of a refractive index modulation region formed when reaction light is moved in one direction.
  • FIG. 6C is a diagram illustrating another example of the refractive index modulation region formed when the reaction light is moved in one direction.
  • the movement of the focal position of the reaction light L3 in the Y-axis direction and the movement of the focal position of the reaction light L3 in the Z-axis direction can be combined.
  • the focus position of the reaction light L3 is slightly moved in the Z-axis direction.
  • the reaction light L3 is repeatedly moved in the direction opposite to the first movement in the Y-axis direction from the other end of the core 151 toward the other end.
  • a planar refractive index modulation region HR occupying a large area in the cross section of the core 151 can be formed.
  • FIG. 6D is a diagram illustrating an example of a refractive index modulation region formed when reaction light is moved in two directions.
  • the moving direction of the reaction light L3 in the Z-axis direction is a direction in which the condensed reaction light L3 is not irradiated to the portion where the refractive index modulation region HR has already been formed.
  • the moving direction in the Z-axis direction of the focal position of the reaction light L3 is the installation direction of the reaction light source 201 (upward in FIG. 6D).
  • the movement range of the reaction light L3 in the Y-axis direction and the movement of the reaction light L3 in the Z-axis direction are combined, and further, the movement range of the reaction light L3 in the Y-axis direction and the movement range of the Z-axis direction. And can be adjusted. Thereby, in the cross section of the core 151, the refractive index modulation region HR having an arbitrary cross sectional shape and cross sectional area can be formed.
  • the focus position of the reaction light L3 is moved inside the core 151, and after forming one refractive index modulation region HR, it is determined whether or not to continue forming the refractive index modulation region HR.
  • whether or not to continue the formation of the refractive index modulation region HR is determined depending on whether or not the number of formation of the refractive index modulation region HR is a predetermined number.
  • the magnitude of the laser oscillation output generated in the optical fiber 15 in which the grating region 155 is formed may be a criterion for determining whether or not to continue the formation of the refractive index modulation region HR.
  • the reflection spectrum of the grating region 155 may be used as a criterion for determining whether or not to continue the formation of the refractive index modulation region HR. For example, whether or not to continue the formation of the refractive index modulation region HR may be determined based on whether or not the intensity of light having a specific wavelength reflected by the grating region 155 has reached a desired level.
  • the spectral shape of the light (the peak wavelength of the light, the half width of the spectrum, the presence / absence of a side lobe, etc.) may be used as a criterion.
  • step S3 If it is determined that the formation of the refractive index modulation region HR is not to be continued based on the above determination criteria (“No” in step S3), the formation process of the refractive index modulation region HR is terminated.
  • Step S3 when it is determined that the formation of the refractive index modulation region HR is to be continued (in the case of “Yes” in Step S3), the irradiation of the reaction light L3 is stopped (Step S4), and then the optical fiber 15 is moved to the first interval by the moving table 203. Move in the length direction (X-axis direction) by D1 (step S5).
  • the above steps S1 to S3 are executed at the position in the length direction to form the refractive index modulation region HR.
  • a plurality of refractive index modulation regions HR can be formed in the grating region 155 by spacing the adjacent refractive index modulation regions HR by the first interval D1.
  • the grating region 155 actually formed by executing the above steps S1 to S5 in the forming apparatus 200 will be described.
  • First, conditions for forming the grating region 155 will be described.
  • As the optical fiber 15 forming the grating region 155 a core made of ZBLAN glass doped with erbium in the core 151 (the diameter of the core 151: 28 ⁇ m) was used.
  • the refractive index modulation region HR was formed using reaction light L3 having a pulse width of 400 fs and a wavelength of 515 nm.
  • the intensity of the reaction light L3 was adjusted in the vicinity of 0.5 ⁇ J while confirming the irradiation trace by the reaction light L3.
  • the moving distance of the reaction light L3 in the length direction of the optical fiber 15, that is, the interval (first interval D1) between the refractive index modulation regions HR adjacent to each other was set to 970 nm.
  • the scanning range of the reaction light L3 in the cross section in the direction perpendicular to the length direction of the core 151 (YZ plane) is a range of 10 ⁇ m ⁇ 10 ⁇ m centered on the center of the core 151 (referred to as Example 1). ), And a range of 28 ⁇ m ⁇ 28 ⁇ m (referred to as Example 2) was selected.
  • the refractive index modulation region HR was formed without scanning the reaction light L3.
  • FIGS. 7A to 7C optical microscope images of the grating region 155 formed in the optical fiber 15 when the refractive index modulation region HR is formed under the above conditions are shown in FIGS. 7A to 7C.
  • 7A is an optical microscope image of the grating region formed in Example 1.
  • FIG. 7B is an optical microscope image of the grating region formed in Example 2.
  • FIG. 7C is an optical microscope image of the grating region formed in the comparative example.
  • the scanning range of the reaction light L3 corresponds to the size of the formed refractive index modulation region HR.
  • the size of the refractive index modulation region HR in the comparative example was about 0.7 ⁇ m ⁇ 2 ⁇ m.
  • the refractive index modulation region HR having a large cross-sectional area can be formed by scanning the reaction light L3 in a direction parallel to the cross section of the core 151. Further, the refractive index modulation region HR having an arbitrary cross-sectional area can be formed by appropriately adjusting the scanning range of the reaction light L3.
  • FIG. 8 is a diagram illustrating a configuration of the evaluation apparatus.
  • the evaluation apparatus 300 is incorporated in the forming apparatus 200 described with reference to FIG. 8 is incorporated in the forming apparatus 200 described with reference to FIG.
  • the evaluation apparatus 300 irradiates the excitation light L2 to the clad 153 while forming the grating region 155 by the forming apparatus 200, and measures the intensity of the reflected light L1 ′ reflected by the grating region 155, thereby laser oscillation.
  • the performance of the optical fiber 15 as a medium can be evaluated.
  • the evaluation apparatus 300 includes an excitation light source 301.
  • the excitation light source 301 outputs excitation light L2.
  • the excitation light source 301 for example, the same light source as the excitation light source 11 used in the laser oscillator 1 can be used.
  • the evaluation apparatus 300 includes an excitation light waveguide fiber 303.
  • the excitation light waveguide fiber 303 is an optical fiber that guides the excitation light L ⁇ b> 2 output from the excitation light source 301 to the introduction unit 305.
  • the introducing portion 305 is disposed in the vicinity of the other end opposite to the one end where the grating region 155 of the optical fiber 15 is formed, and introduces the excitation light L2 into the clad 153 from the other end.
  • the introduction unit 305 includes a mirror 305a.
  • the mirror 305 a guides the reflected light L ⁇ b> 1 ′ reflected by the grating region 155 to the light measurement unit 307 described later.
  • the mirror 305a is disposed on the optical path of the excitation light L2.
  • the mirror 305a is a mirror that transmits the excitation light L2 and reflects the laser oscillation output. Specifically, for example, a half mirror, a dichroic mirror, or the like can be used as the mirror 305a.
  • Evaluation device 300 includes a light measurement unit 307.
  • the light measurement unit 307 measures the intensity of the reflected light L1 'reflected by the grating region 155 and guided by the mirror 305a.
  • a sensor such as a photodiode that can measure the intensity of light, or a heat collecting power meter can be used.
  • FIG. 9 shows the results of evaluating the relationship between the length of the grating region 155 and the intensity of the reflected light L1 ′ (wavelength: 2.8 ⁇ m).
  • the evaluation results shown in FIG. 9 are obtained by making the excitation light L2 incident on the clad 153 while forming the refractive index modulation region HR shown in the first, second, and comparative examples with the forming apparatus 200.
  • the reflected light L1 ′ reflected by the grating region 155 thus obtained was obtained by measuring with the light measuring unit 307.
  • the reflected light L1 ′ having a size that can be measured by the light measurement unit 307 cannot be obtained.
  • the light measurement unit 307 reflects the reflected light L1 ′ even if the length of the grating region 155 is smaller than the threshold value.
  • the above results show that the refractive index modulation region HR (Examples 1 and 2) formed by scanning the reaction light L3 has a larger reflection than the case where the reaction light L3 is formed without scanning (Comparative Example).
  • the grating region 155 including the refractive index modulation region HR formed by scanning the reaction light L3 is sufficiently reflected even if the formation length thereof is short, that is, the number of formation of the refractive index modulation region HR is small. It has shown that it has a rate.
  • FIG. 10 shows the result of evaluating the relationship between the intensity of the excitation light L2 and the intensity of the reflected light L1 ′ for the above-described Example 1, Example 2, and Comparative Example.
  • the evaluation results shown in FIG. 10 show that the reflected light L1 ′ is changed while the intensity of the excitation light L2 is changed after the grating region 155 shown in the above-described Example 1, Example 2, and Comparative Example is formed by a predetermined length. It was obtained by measuring the strength. In order to obtain a significant measurement result, the formation length of the grating region 155 in Comparative Example 1 is longer than the formation length of the grating region 155 in Examples 1 and 2.
  • the slope of the graph shown in FIG. 10 represents the intensity (difference) of the reflected light L1 ′ as an output with respect to the intensity (difference) of the excitation light L2 input to the optical fiber 15, so that the optical fiber 15 is used as a laser medium and a resonator. This corresponds to the laser efficiency (also called slope efficiency) when used.
  • the laser efficiencies (slope efficiencies) of the optical fibers 15 of Example 1, Example 2, and Comparative Example calculated from the evaluation results shown in FIG. 10 were 12%, 16%, and 1.5%, respectively.
  • the laser efficiency can be improved to about 10 times compared with the conventional forming method by forming the refractive index modulation region HR by scanning the reaction light L3 in the cross-sectional direction of the core 151. Is shown. That is, the optical fiber 15 having the grating region 155 including the refractive index modulation region HR formed by scanning the reaction light L3 is better as a laser medium.
  • the method of forming the refractive index modulation region HR according to the present embodiment Compared with this method, there are the following advantages.
  • the reaction light L3 is scanned in the cross section of the core 151 to change one refractive index.
  • the manufacturing time of the optical fiber 15 having the grating region 155 can be shortened.
  • the grating region 155 since the formation length of the grating region 155 can be shortened, the grating region 155 with stable quality can be formed. This is because, when the formation length of the grating region 155 is increased, the characteristics of the grating region 155 vary depending on the position in the length direction due to the influence of the distortion of the structure of the optical fiber 15 (twist, deviation of the position of the core 151, etc.). Because there is.
  • the adjacent refractive index modulation regions HR are the length of the core 151 compared to the conventional method.
  • the refractive index modulation region HR having a large cross-sectional area can be formed without overlapping in the direction and without damaging the optical fiber 15.
  • the cross-sectional area of the refractive index modulation region HR can be increased by increasing the intensity of the reaction light L3.
  • the refractive index modulation region HR also increases in the length direction of the optical fiber 15.
  • the adjacent refractive index modulation regions HR may overlap in the length direction of the core 151.
  • the optical fiber 15 may be greatly damaged.
  • the method of forming the refractive index modulation region HR by scanning the reaction light L3 can form the refractive index modulation region HR having a large cross-sectional area without increasing the intensity of the reaction light L3. Therefore, even if the reaction light L3 is scanned in the cross-sectional direction of the core 151 to increase the cross-sectional area of the refractive index modulation region HR, adjacent refractive index modulation regions HR do not overlap in the length direction of the core 151. . Further, since it is not necessary to increase the intensity of the reaction light L3, the refractive index modulation region HR having a large cross-sectional area can be formed without damaging the optical fiber 15.
  • the refractive index modulation by the conventional method is performed.
  • the refractive index modulation region HR having a greater reflectance than the region HR can be formed. Further, in the method of the present embodiment in which the refractive index modulation region HR is formed by scanning the reaction light L3, particularly when the grating region 155 (fiber Bragg grating) is formed in the optical fiber 15 having the core 151 having a diameter of 3 ⁇ m or more. Is advantageous.
  • the refractive index modulation region HR formed by scanning the reaction light L3 has a large reflectance
  • the application of the optical fiber 15 there are the following advantages.
  • the ratio of the cross-sectional area of the refractive index modulation region HR to the cross-sectional area of the core 151 is preferably 20% or more, and more preferably 50% or more. More preferred is 100%.
  • the method for forming the refractive index modulation region HR can realize the grating region 155 having various characteristics.
  • the side lobe of the laser beam generated in the fiber Bragg grating can be reduced, and the spectral width of the laser beam can be reduced.
  • the occurrence of side peaks can be suppressed. That is, an ideal laser beam having strong directivity and excellent spectral characteristics can be output.
  • the fiber Bragg grating of the present embodiment can be used for applications other than the laser oscillation medium by scanning the reaction light L3 in the cross-sectional direction of the core 151 and forming the refractive index modulation region HR having a high reflectance.
  • it can also be used. Specifically, for example, it can be applied to fiber sensors and fiber chirp pulse compression.
  • the grating region 155 that can be applied to a pulse stretcher and a chirp pulse can be formed by changing the first distance D1 between the refractive index modulation regions HR adjacent to each other stepwise in the length direction of the optical fiber 15.
  • the first embodiment has the following configurations and functions in common.
  • the laser oscillator 1 (an example of a laser oscillator) includes an excitation light source 11 (an example of an excitation light source), an optical fiber 15 (an example of an optical fiber), and a grating region 155 (an example of a grating region).
  • the excitation light source 11 outputs excitation light L2 (an example of excitation light).
  • the optical fiber 15 has a core 151 (an example of a core) that propagates a laser beam L1 (an example of a laser beam) generated by the excitation light L2 in the length direction and outputs the laser light L1 from an outlet O (an example of an outlet).
  • the grating region 155 is a region in which a plurality of refractive index modulation regions HR (an example of a refractive index modulation region) are formed with a first interval D1 (an example of a first interval) in the length direction of the core 151.
  • the refractive index modulation region HR has a refractive index different from that of the core 151.
  • the cross-sectional area of the refractive index modulation region HR in the direction perpendicular to the length direction of the core 151 is 16% or more of the cross-sectional area of the core 151 in the direction perpendicular to the length direction.
  • the cross-sectional area of the refractive index modulation region HR formed in the grating region 155 inside the core 151 is 16% or more of the cross-sectional area of the core 151.
  • the laser beam L1 generated by the excitation light L2 can have a high reflectance.
  • the laser oscillator 1 can realize strong laser oscillation with respect to the laser light L1 having a specific wavelength determined by the first interval D1. That is, the laser oscillator 1 can fix the specific wavelength and cause laser oscillation, and can output the laser beam L1 having high intensity.
  • the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention.
  • a plurality of embodiments and modifications described in this specification can be arbitrarily combined as necessary.
  • the material of the optical fiber 15 and the first interval D1 between the refractive index modulation regions HR adjacent to each other can be appropriately changed according to the wavelength of the laser light L1 that is desired to be output from the laser oscillator 1.
  • the conditions for forming the refractive index modulation region HR (for example, the wavelength of the reaction light L3, the irradiation time, the intensity, etc.) can be appropriately changed according to the optical characteristics of the material of the optical fiber 15.
  • the movement of the focal position of the reaction light L3 is realized by the movement of the moving table 203 and the objective lens 205.
  • the present invention is not limited to this, and the movement of the focal position of the reaction light L3 can also be realized by moving the reaction light source 201 that outputs the reaction light L3 with respect to the optical fiber 15.
  • the method of forming the refractive index modulation region HR by scanning the reaction light L3 can be applied to other than the fluoride fiber as long as the refractive index modulation can be induced by the reaction light L3.
  • the present invention can be applied to various optical waveguides as well as optical fibers.
  • the present invention can be widely applied to a laser oscillator using an optical fiber as a laser medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Laser Beam Processing (AREA)

Abstract

光ファイバーを用いたレーザ発振器において、強いレーザ発振を実現する。レーザ発振器1は、励起光源11と、光ファイバー15と、グレーティング領域155と、を備える。励起光源11は、励起光L2を出力する。光ファイバー15は、励起光L2により発生したレーザ光L1を長さ方向に伝搬させて、出口Oから出力するコア151を有する。グレーティング領域155は、複数の屈折率変調領域HRがコア151の長さ方向に第1間隔D1を空けて形成された領域である。屈折率変調領域HRは、コア151の屈折率とは異なる屈折率を有する。コア151の長さ方向とは垂直な方向における屈折率変調領域HRの断面積は、長さ方向とは垂直な方向におけるコア151の断面積の16%以上である。

Description

レーザ発振器、レーザ加工装置、光ファイバー、光ファイバーの製造方法、及び、光ファイバーの製造装置
 本発明は、レーザ発振器、当該レーザ発振器を備えるレーザ加工装置、当該レーザ発振器に使用される光ファイバー、当該光ファイバーの製造方法、及び、当該光ファイバーの製造装置に関する。
 従来、光を長さ方向に伝搬させるコアを有する光ファイバーにおいて、当該コアの内部にコアの屈折率よりも高い(又は低い)屈折率を有する複数の領域(屈折率変調領域と呼ぶことにする)が所定の間隔を空けて形成されたものが知られている。コア内部に光が伝搬するとき、この複数の屈折率変調領域は当該光に対して回折格子として働く。従って、上記のような複数の屈折率変調領域が形成された光ファイバーは、「ファイバーブラッググレーティング(Fiber Bragg Grating、FBG)」と呼ばれる。
 複数の屈折率変調領域を所定の間隔を空けて形成した光ファイバーに光を伝搬させると、当該光のうち、光ファイバーの屈折率と上記所定の間隔にて決まる波長を有する光を反射光として取り出すことができる。また、例えば、コアに希土類などを添加した光ファイバーの両端近傍に上記所定の間隔で複数の屈折率変調領域を形成し、当該光ファバーに適切な励起光を導入すると、光ファイバーのコア内を伝搬した発光のうち、上記所定の間隔にて決まる波長を有する光を光ファイバー内で往復させて増幅できる。すなわち、レーザ発振を光ファイバー内にて実現できる。
 特許文献1には、光ファイバーのコア層にパルスレーザ光を照射して当該コア層において化学反応を起こさせることにより、コア層内に屈折率変調領域を形成する技術が開示されている。特許文献1では、1つの屈折率変調領域を形成した後、光ファイバーをグレーティング周期分だけ移動させ、コア層に再度パルスレーザ光を照射することにより、グレーティング周期だけ間隔を空けて複数の屈折率変調領域を形成している。
特許第3426154号公報
 特許文献1などに開示された従来の屈折率変調領域の形成方法では、屈折率変調領域を形成する光を、コアの長さ方向とは垂直な方向からコア内部に焦点を結んだ状態で照射していた。コア内部に焦点を結んだ状態で当該光を照射するだけだと、コア内部のごく限られた領域にしか当該光が照射されないので、コアの断面に対して小さな割合の面積を有する屈折率変調領域しか形成できない。
 屈折率変調領域の面積が小さいと、コアを伝搬する光との相互作用も小さくなり、屈折率変調領域の層数を増やさなければ高い光反射率を得ることが難しかった。
 屈折率変調領域の面積が小さくコア内を伝搬する光を十分に反射できないため、従来の方法にて形成した屈折率変調領域を有する光ファイバーをレーザ発振器の媒体として用いた場合、光ファイバー内においてレーザ光を十分に増幅できず、レーザ発振を得られなかった。実際、従来の方法を用いて希土類元素をドープした光ファイバーに屈折率変調領域を形成し、当該光ファイバーをレーザ発振器に適用した場合、十分な強度のレーザ光を出力できなかった。 
 コア内部で発生したレーザ光を十分に反射させるために、光ファイバーの長さ方向に多数の屈折率変調領域を形成することが考えられる。しかしながら、多数の屈折率変調領域を長さ方向に沿って形成する方法には、主に、以下の2つの問題点がある。
 1つ目は、多数の屈折率変調領域を長さ方向に沿って形成するには、(i)レーザ照射、(ii)照射停止、(iii)レーザ光源又は光ファイバーを長さ方向に移動、(iv)再度レーザ照射、とのプロセスを多数回繰り返す必要があり、レーザ光を十分に増幅できるファイバーブラッググレーティングの製造に時間がかかるという問題点である。
 2つ目は、多数の屈折率変調領域を長さ方向に沿って形成すると、光ファイバーの構造のゆがみにより、安定した良好なファイバーブラッググレーティングを得られないという問題点である。
 本発明の目的は、ファイバーブラッググレーティングを有する光ファイバーにおいて、屈折率変調領域の形成数を少なくしつつ、高い光反射を得ることにある。
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
 本発明の一見地に係るレーザ発振器は、励起光源と、光ファイバーと、グレーティング領域と、を備える。励起光源は、励起光を出力する。光ファイバーは、励起光により発生したレーザ光を長さ方向に伝搬させて出口から出力するコアを有する。グレーティング領域は、複数の屈折率変調領域がコアの長さ方向に第1間隔を空けて形成された領域である。すなわち、グレーティング領域がファイバーブラッググレーティングとなる。屈折率変調領域は、コアの屈折率とは異なる屈折率を有する。
 上記のレーザ発振器において、コアの長さ方向とは垂直な方向における屈折率変調領域の断面積は、長さ方向とは垂直な方向におけるコアの断面積の16%以上である。
 上記のレーザ発振器において、コア内部のグレーティング領域に形成された屈折率変調領域のコアの長さ方向に垂直な断面積が、コアの長さ方向に垂直な断面積の16%以上となっている。これにより、屈折率変調領域の形成数が少なくても、励起光により発生したレーザ光に対して高い反射率を有するグレーティング領域を形成できる。
 その結果、上記のレーザ発振器においては、第1間隔で決まる特定波長のレーザ光に対して強いレーザ発振を実現できる。つまり、上記のレーザ発振器は、特定の波長に固定してレーザ発振をさせることができ、強度が大きなレーザ光を出力できる。
 また、屈折率変調領域の形成数が少なくても高い反射率を有することにより、グレーティング領域の形成長さを短くできる。その結果、光ファイバーの長さ方向の品質のバラツキの影響を受けにくい、高品質のグレーティング領域(ファイバーブラッググレーティング)を実現できる。
 グレーティング領域は、第1グレーティング領域と、第2グレーティング領域と、を有してもよい。第2グレーティング領域は、第1グレーティング領域からコアの長さ方向に第2間隔を空けて形成される。これにより、コアの端部において反射板などを設けることなく、光ファイバー内でレーザ光のレーザ発振が可能となる。
 第1グレーティング領域及び第2グレーティング領域のいずれか一方のコアの長さ方向の形成長さは、他方の形成長さよりも短くてもよい。
 これにより、第1グレーティング領域及び第2グレーティング領域のいずれか一方の反射率を小さくして、反射率の小さなグレーティング領域が形成された側から効率よくレーザ光を取り出すことができる。
 光ファイバーは、希土類元素をドープしたフッ化物ファイバーであってもよい。これにより、レーザ発振器は、中赤外波長を有するレーザ光を出力できる。
 光ファイバーにドープされる希土類元素はエルビウムであってもよい。これにより、レーザ発振器は、中赤外領域の波長を有するレーザ光を発振できる。
 本発明の他の見地に係るレーザ加工装置は、上記のレーザ発振器から出力されるレーザ光を、ワークに照射して加工を行う装置である。
 本発明のさらなる他の見地に係る光ファイバーは、コアと、グレーティング領域と、を備える。グレーティング領域は、コアの屈折率とは異なる屈折率を有する複数の屈折率変調領域が、コアの長さ方向に第1間隔を空けて形成された領域である。また、上記の光ファイバーにおいて、コアの長さ方向とは垂直な方向の屈折率変調領域の断面積は、当該長さ方向とは垂直な方向のコアの断面積の16%以上である。
 これにより、上記の光ファイバーは、屈折率変調領域の断面積がコアの断面積の16%以上であるので、屈折率変調領域の形成数を少なくしつつ高い反射率を有する。
 また、屈折率変調領域の形成数が少なくても高い反射率を有することにより、グレーティング領域の形成長さを短くできる。その結果、長さ方向の品質のバラツキの影響を受けにくい、高品質のグレーティング領域(ファイバーブラッググレーティング)を有する光ファイバーを実現できる。
 光ファイバーのグレーティング領域は、第1グレーティング領域と、第1グレーティング領域からコアの長さ方向に第2間隔を空けて形成された第2グレーティング領域と、を有してもよい。
 これにより、コアの端部において反射板などを設けることなく、光ファイバー内でレーザ光のレーザ発振が可能となる。
 本発明のさらなる他の見地に係る光ファイバーの製造方法は、コアの屈折率とは異なる屈折率を有する複数の屈折率変調領域がコアの長さ方向に第1間隔を空けて形成されたグレーティング領域を備える光ファイバーの製造方法である。光ファイバーの製造方法は、以下のステップを含む。
 ◎コアの屈折率を変化させる反応光をコア内部に照射するステップ。
 ◎反応光をコア内部に照射した状態で、反応光をコアの長さ方向とは垂直な方向に移動させて屈折率変調領域を形成するステップ。
 上記の光ファイバーの製造方法では、コアの屈折率を変化させる反応光をコア内部に照射した状態で、当該反応光をコアの長さ方向とは垂直な方向に移動させて、コア内部にコアの屈折率とは異なる屈折率を有する屈折率変調領域を形成している。
 これにより、断面積が大きな屈折率変調領域を形成して、1つの屈折率変調領域当たりの屈折率変調を大きくできる。その結果、屈折率変調領域の形成数を少なくしつつ、高い反射率を有するグレーティング領域(ファイバーブラッググレーティング)を実現できる。
 また、屈折率変調領域の形成数を少なくできることにより、グレーティング領域を有する光ファイバーの製造時間を短縮できる。
 さらに、反応光を走査しながら屈折率変調領域を形成することで、屈折率変調領域の断面積の大きさを調整して1つの屈折率変調領域当たりの屈折率変調の大きさを調整でき、また、2つの屈折率変調領域間の距離を調整できる。その結果、様々な特性を有するグレーティング領域を実現できる。
 本発明のさらなる見地に係る製造装置は、コアの屈折率とは異なる屈折率を有する複数の屈折率変調領域がコアの長さ方向に第1間隔を空けて形成されたグレーティング領域を備える光ファイバーの製造装置である。この製造装置は、反応光源と、移動台と、を備える。
 反応光源は、コアの屈折率を変化させる反応光をコア内部に照射する。移動台は、反応光をコア内部に照射した状態で、反応光をコアの長さ方向とは垂直な方向に移動させる。
 上記の光ファイバーの製造装置では、コアの屈折率を変化させる反応光をコア内部に照射した状態で、当該反応光をコアの長さ方向とは垂直な方向に移動させる。これにより、コア内部にコアの屈折率とは異なる屈折率を有する屈折率変調領域を断面積が大きな状態で形成できる。その結果、1つの屈折率変調領域当たりの屈折率変調を大きして、屈折率変調領域の形成数を少なくしつつ、高い反射率を有するグレーティング領域(ファイバーブラッググレーティング)を実現できる。
 また、屈折率変調領域の形成数を少なくできることにより、グレーティング領域を有する光ファイバーの製造時間を短縮できる。
 さらに、反応光を走査しながら屈折率変調領域を形成することで、屈折率変調領域の断面積の大きさを調整して1つの屈折率変調領域当たりの屈折率変調の大きさを調整でき、また、2つの屈折率変調領域間の距離を調整できる。その結果、様々な特性を有するグレーティング領域を実現できる。
 上記の製造装置は、反応光の焦点をコア内部に結ぶレンズをさらに備えてもよい。これにより、コア内部の所定領域に屈折率変調領域を形成できる。
 上記の製造装置は、評価装置をさらに備えてもよい。評価装置は、グレーティング領域に向けて入射した励起光がグレーティング領域にて反射されることで発生する反射光の強度に基づいて、グレーティング領域を形成中の光ファイバーを評価する。
 これにより、光ファイバーにグレーティング領域を形成しつつ、形成されたグレーティング領域の特性を評価できる。
 屈折率変調領域の形成数を少なくしつつ、高い光反射を有するファイバーブラッググレーティングを有する光ファイバーを実現できる。
レーザ加工装置の構成を示す図。 レーザ発振器の構成を示す図。 光ファイバーの構成を示す図。 屈折率変調領域の形成装置を示す図。 屈折率変調領域の形成方法を示すフローチャート。 1つの焦点位置の近傍に形成された屈折率変調領域の一例を示す図。 反応光を一方向に移動させた際に形成される屈折率変調領域の一例を示す図。 反応光を一方向に移動させた際に形成される屈折率変調領域の他の例を示す図。 反応光を二方向に移動させた際に形成される屈折率変調領域の一例を示す図。 実施例1にて形成されたグレーティング領域の光学顕微鏡像。 実施例2にて形成されたグレーティング領域の光学顕微鏡像。 比較例にて形成されたグレーティング領域の光学顕微鏡像。 評価装置の構成を示す図。 グレーティング領域の長さと反射光の強度との関係の測定結果。 励起光の強度と反射光の強度との関係の測定結果。
1.第1実施形態
(1)レーザ加工装置
 以下、第1実施形態に係るレーザ加工装置100について説明する。まず、レーザ加工装置100の構成について、図1を用いて説明する。図1は、レーザ加工装置の構成を示す図である。レーザ加工装置100は、レーザ光L1を用いてワークWを加工するための装置である。
 レーザ加工装置100は、レーザ発振器1を備える。レーザ発振器1は、ワークWにレーザ光L1を照射して、ワークWを切断するなどの、ワークWに対する加工を行う。レーザ発振器1の構成については、後ほど詳しく説明する。
 レーザ発振器1から照射するレーザ光L1により加工できるワークWとしては、例えば、ガラス基板などがある。
 レーザ加工装置100は、ワーク載置台3を備える。ワーク載置台3は、レーザ発振器1の下に配置され、レーザ光L1を用いて加工するワークWを載置する。
 図1に示す例では、レーザ発振器1はワーク載置台3の上方に設置され、ワークWに対して上方から下方に垂直にレーザ光L1を照射している。しかし、これに限られず、レーザ光L1をワークWに対して任意の角度で照射できるよう、レーザ発振器1とワーク載置台3の配置位置の関係を調整してもよい。
 また、レーザ発振器1からのレーザ光L1の光路上にレンズ及び/又はミラーなどの光学素子を配置して、集光・拡散照射及び/又は照射角度を調整してもよい。
(2)レーザ発振器
 次に、上記のレーザ加工装置100に備わるレーザ発振器1の構成について、図2を用いて説明する。図2は、レーザ発振器の構成を示す図である。図2に示すように、本実施形態に係るレーザ発振器1は、光ファイバー15をレーザ媒体及び共振器として用いる、ファイバーレーザである。
 具体的には、レーザ発振器1は、励起光源11を有する。励起光源11は、光ファイバー15のクラッド153に入射する励起光L2を出力する。クラッド153に入射された励起光L2がコア151を通過することで、コア151内で励起光L2が吸収される。その後、誘導放出により、コア151内部にて発光が増幅され、さらに光ファイバー15内部を両端のミラーにより反射を繰り返すことにより、レーザ発振に至る。当該レーザ発振により生じる光の波長は、コア151にドープされた元素により定まる。
 後述するように、本実施形態において、光ファイバー15のコア151は、フッ化物系のガラスに希土類元素がドープされたものであり、中赤外光(波長:2.8μm)を発光するものである。従って、励起光L2としては、例えば、波長が976nmである光を用いることができる。また、上記の励起光L2を出力できる励起光源11としては、例えば、上記の波長を有する光を出力する半導体レーザを用いることができる。
 レーザ発振器1は、光導入部13を有する。光導入部13は、励起光源11から出力した励起光L2を光ファイバー15のクラッド153に導入する。具体的には、光導入部13は、励起光導波ファイバー131と、導入レンズ133と、を有する。
 励起光導波ファイバー131は、励起光源11から出力した励起光L2を導入レンズ133に導波する、例えば光ファイバーである。導入レンズ133は、光ファイバー15の一端である入口Iの近傍に配置され、励起光導波ファイバー131により導波された励起光L2を、クラッド153に導入する。
 レーザ発振器1は、光ファイバー15を有する。光ファイバー15は、本実施形態のレーザ発振器1において、レーザ媒体及び共振器として機能し、励起光L2の照射により発生したレーザ光L1を増幅させてレーザ発振させる。光ファイバー15の構成の詳細については、後ほど詳しく説明する。
 レーザ発振器1は、コリメータ17を有する。コリメータ17は、光ファイバー15の出口Oから出射したレーザ光L1を平行光線とするレンズである。
(3)光ファイバー
 以下、レーザ発振器1のレーザ媒体及び共振器として機能する、本実施形態の光ファイバー15の構成について、図3を用いて説明する。図3は、光ファイバーの構成を示す図である。
 光ファイバー15は、コア151を有する。コア151は、光導入部13から導入した励起光L2により励起され、コア151にドープされた物質により決まる波長のレーザ光L1を発生する。すなわち、コア151は、レーザ発振器1のレーザ媒体として機能する。本実施形態において、コア151は、希土類元素をドープしたフッ化物ファイバーである。具体的には、希土類元素としてエルビウム(Er)をドープしたZBLANガラスである。ZBLANガラスは、ジルコニウム(Zr)、バリウム(Ba)、ランタン(La)、アルミニウム(Al)、ナトリウム(Na)を主成分とするガラスある。
 エルビウムをドープしたZBLANガラスをコア151の材料として用いることにより、コア151は、励起光L2により励起されることで、中赤外の波長(具体的には、2.8μm近辺)のレーザ光L1を発生できる。
 光ファイバー15は、クラッド153を有する。クラッド153は、コア151の外周においてコア151を覆うように形成された、コア151の屈折率よりも小さな屈折率を有する層である。クラッド153を有することにより、コア151において発生したレーザ光L1は、コア151とクラッド153との界面で全反射及び/又は屈折され、コア151の長さ方向に沿って伝搬できる。
 コア151の長さ方向に伝搬されたレーザ光L1は、光ファイバー15の出口Oから出力される。
 他の実施形態において、クラッド153は、光ファイバー15の径方向において複数の層を有してもよい。この場合、光ファイバー15の内側にある層の屈折率を、外側にある層の屈折率よりも高くする。
 これにより、クラッド153に入射した励起光L2を、内側の層と外側の層との界面において全反射できる。その結果、励起光L2は、コア151を複数回通過できる。
 光ファイバー15は、グレーティング領域155を有する。グレーティング領域155は、コア151を伝搬したレーザ光L1の一部を反射する領域である。本実施形態において、グレーティング領域155は、第1グレーティング領域155aと、第2グレーティング領域155bと、を有する。
 第1グレーティング領域155aは、光ファイバー15の励起光L2の入口Iの近傍のコア151内部に形成される。図3に示すように、第1グレーティング領域155aは、第1間隔D1を空けて形成された複数の屈折率変調領域HRを含む。屈折率変調領域HRは、コア151の屈折率とは異なる屈折率を有する領域である。すなわち、第1グレーティング領域155aにおいては、屈折率が相対的に高い箇所と相対的に低い箇所が交互に配置される。
 グレーティング領域155内のある屈折率変調領域HRからの反射光と、第1間隔D1を空けて配置された隣接する屈折率変調領域HRからの反射光とが同一箇所で同位相となっていれば、これら2つの反射光は、干渉により互いにその強度を強めることとなる。このような反射光の強度の強め合いがグレーティング領域155内で発生し、結果的に光反射が起こる。
 後述するように、本実施形態の屈折率変調領域HRは、反応光L3をコア151内部に照射した状態で、コア151の断面と平行な方向(Y方向及びZ方向)に当該反応光L3を移動させながら形成されている。その結果、コア151の長さ方向に垂直な方向の断面積で比較すると、本実施形態の屈折率変調領域HRは、コア151の断面積の16%以上の断面積を有している。これにより、第1グレーティング領域155aの各屈折率変調領域HRは、従来の屈折率変調領域と比較して反射率が高くなる。
 その結果、第1グレーティング領域155aは、従来のグレーティング領域(ファイバーブラッググレーティング)よりも長さが短くても、特定波長のレーザ光L1を強く反射できる。
 上記の構成を有する第1グレーティング領域155aは、コア151を入口I方向に伝搬してきたレーザ光L1のうち、屈折率変調領域HRによるブラッグ反射の条件を満たす特定波長のレーザ光L1の一部を、コア151の出口Oに向けてより強く反射できる。すなわち、第1グレーティング領域155aで特に強く反射できるレーザ光L1は、2*n*d1(n:コア151の屈折率、d1:第1間隔D1の大きさ)との式で表される波長を有している。
 第2グレーティング領域155bは、光ファイバー15のレーザ光L1の出口Oの近傍のコア151内部に形成される。すなわち、第2グレーティング領域155bは、第1グレーティング領域155aから、コア151の長さ方向に、第2間隔D2を空けて形成される。図3に示すように、第2グレーティング領域155bは、第1グレーティング領域155aと同様に、第1間隔D1を空けて形成された複数の屈折率変調領域HRを含む。
 従って、第2グレーティング領域155bは、第1グレーティング領域155aにおける反射原理と同様の原理にて、コア151を出口O方向に伝搬してきたレーザ光L1のうち、第1間隔D1にて決まる波長のレーザ光L1の一部を、コア151の入口Iに向けて反射できる。出口O方向に伝搬してきたレーザ光L1のうち、第2グレーティング領域155bを通過したレーザ光L1が、出口Oから出力される。
 なお、より多くのレーザ光L1を出口Oから出力するため、第2グレーティング領域155bにおけるレーザ光L1の反射率は、第1グレーティング領域155aにおける反射率よりも小さいことが好ましい。具体的には、第2グレーティング領域155bの形成長さは、第1グレーティング領域155aの形成長さよりも短いことが好ましい。
 光ファイバー15のコア151が、上記のように、励起光L2の入口I側に第1グレーティング領域155aを有し、レーザ光L1の出口O側に第2グレーティング領域155bを有することで、特定波長を有するレーザ光L1を、第1グレーティング領域155aと第2グレーティング領域155bとの間で増幅できる。すなわち、光ファイバー15のいずれかの端部にミラーなどを配置することなく、コア151内でレーザ光L1のレーザ発振を実現できる。
 また、十分な強度のレーザ発振を実現するために光ファイバー15の端部近傍にミラーなどを配置する必要がないので、本実施形態の光ファイバー15を備えるレーザ発振器1は、損失を少なくできる。その結果、より大きな強度のレーザ光L1を効率よく出力できる。
(4)光ファイバーの製造方法
(4-1)屈折率変調領域の形成装置
 以下、本実施形態に係る光ファイバー15の製造方法(屈折率変調領域HRの形成方法)について説明する。まず、本実施形態に係る光ファイバー15に屈折率変調領域HRを形成する形成装置200(製造装置の一例)の構成について、図4を用いて説明する。図4は、屈折率変調領域の形成装置を示す図である。
 形成装置200は、反応光源201を備える。反応光源201は、反応光L3を出力する光源である。反応光L3は、コア151の当該反応光L3が照射された箇所において化学反応を起こさせて、当該箇所の屈折率を、コア151の屈折率と異ならせる。反応光源201としては、例えば、フェムト秒の短パルスレーザ光(パルス幅:400fs(フェムト秒)、波長:515nm)を反応光L3として発生できる光源を用いることができる。また、反応光L3の出力強度は、例えば、0.01μJ~1μJの範囲にて調整される。反応光L3の出力強度は、屈折率変調領域HRを形成する光ファイバー15の種類などに従って適宜調整される。
 上記の反応光L3を用いることで、本実施形態では、コア151の屈折率よりも高い屈折率を有する屈折率変調領域HRを形成できる。
 形成装置200は、移動台203を備える。図4に示すように、移動台203は、その上部に、屈折率変調領域HRを形成する光ファイバー15を載置する。移動台203は、平面内(X-Y平面内)にてX軸方向(図4においては、光ファイバー15の長さ方向)及び/又はY軸方向(図4においては、X-Y平面内で光ファイバー15の長さ方向とは垂直な方向)に移動可能である。また、移動台203は、X-Y平面に垂直なZ軸方向にも移動可能である。
 光ファイバー15のコア151内部の正確な位置に屈折率変調領域HRを形成するため、移動台203は、X軸方向、Y軸方向、及び/又はZ軸方向に、高精度に移動する。このような移動台203としては、例えば、ピエゾ素子などを駆動源とした移動台(ステージ)を用いることができる。
 形成装置200は、対物レンズ205を備える。対物レンズ205は、光路変更部材207(例えば、プリズムミラー)を介して、反応光源201から伝搬された反応光L3の焦点をコア151内に結ぶレンズである。対物レンズ205によりコア151内部に焦点を結んだ反応光L3は、当該焦点の近傍において、コア151の屈折率を異ならせる化学反応を促進する十分な強度を有する。すなわち、コア151内部の反応光L3が焦点を結んだ近傍の微小な領域において、コア151の屈折率を異ならせる反応が起こる。
 他の実施形態において、対物レンズ205は、図4のZ軸方向に移動可能であってもよい。この場合、移動台203がZ軸方向に移動可能となる代わりに対物レンズ205のみがZ軸方向に移動可能となってもよいし、移動台203及び対物レンズ205の両方がZ軸方向に移動可能となってもよい。
 移動台203及び/又は対物レンズ205がZ軸方向に移動可能であることにより、対物レンズ205は、コア151内部において、図4のZ軸方向の任意の位置に、反応光L3の焦点を結ぶことができる。その結果、コア151内部のZ軸方向の任意の位置の屈折率を異ならせることができる。
 上記の場合には、移動台203と同様、対物レンズ205も、移動台203に載置された光ファイバー15のコア151内部の任意の位置に、精度よく、反応光L3の焦点を結ぶことが好ましい。従って、対物レンズ205のZ軸方向の移動も、例えば、ピエゾ素子を駆動源とすることが好ましい。
 また、形成装置200は、光路変更部材207の上部に図示しないカメラを備える。このカメラにより、対物レンズ205を介して、反応光L3により形成された加工痕を観察することができる。その結果、コア151の適切な位置に反応光L3を照射できる。
 形成装置200は、上記の反応光源201、移動台203、及び対物レンズ205を制御する制御部209を備える。制御部209は、例えば、CPU、RAM、ROM、記憶装置(SSD、ハードディスクなど)、各種インターフェースを備えたコンピュータシステムと、反応光源201のコントローラと、移動台203のコントローラと、により構成される。
 なお、反応光源201のコントローラ、及び、移動台203のコントローラは、制御部209のコンピュータシステムにおいてプログラム(当該プログラムは、コンピュータシステムの記憶装置に記憶されている)を実行することにより制御されてもよい。
 また、形成装置200は、光ファイバー15の片側からコア151に白色光を導入する白色光源(図示せず)を備える。白色光をコア151に導入することにより、光ファイバー15の反射あるいは透過スペクトルの観察が可能となる。その結果、形成装置200による製造中に、形成されたグレーティング領域155の品質を確認することが可能となり、製造時間の短縮とともに、グレーティング領域155の品質を安定化させることができる。
 また、他の実施形態において、クラッド153に励起光L2を導入することにより発生したレーザ発振出力を測定することで、形成されたグレーティング領域155の評価を行ってもよい。
 具体的には、形成装置200に、後述する評価装置300を導入することにより、励起光L2を用いたグレーティング領域155の評価を実行できる。
 上記の構成を有することにより、本実施形態に係る形成装置200は、移動台203及び/又は対物レンズ205により反応光L3の焦点位置を移動させて、光ファイバー15のコア151内部の任意の位置の屈折率を異ならせることができる。その結果、コア151内部に任意の形態の屈折率変調領域HRを形成できる。
(4-2)屈折率変調領域の形成方法
 以下、本実施形態に係る屈折率変調領域HRの形成方法を、図5を用いて説明する。図5は、屈折率変調領域の形成方法を示すフローチャートである。以下では、上記の形成装置200により本実施形態に係る屈折率変調領域HRの形成方法を実行する場合を例にとって説明する。
 まず、屈折率変調領域HRを形成する光ファイバー15を、形成装置200の移動台203に載置する。光ファイバー15を移動台203に載置後、移動台203を移動させることにより、コア151内部の所定の位置(グレーティング領域155内の所定の位置)に反応光L3が到達するよう、光ファイバー15のX-Y平面における位置を調整する。
 また、反応光L3の焦点がコア151内部に結ばれるよう、対物レンズ205のZ軸方向における位置を調整する。
 次に、反応光源201から反応光L3を発生させて、当該反応光L3をコア151内部に照射する(ステップS1)。これにより、図6Aに示すように、反応光L3の焦点位置の近傍、すなわち、所定量以上の光量の反応光L3が照射されたコア151部分において化学反応が起こり、コア151の当該焦点位置の近傍の屈折率が、コア151の他の領域の屈折率とは異なるものとなる(本実施形態では、コア151の他の領域よりも屈折率が高くなる)。図6Aは、1つの焦点位置の近傍に形成された屈折率変調領域の一例を示す図である。このようにして、反応光L3の焦点位置の近傍に小さな屈折率変調領域HRが形成される。
 しかしながら、図6Aに示すように、1つの焦点位置の近傍に形成された屈折率変調領域HRは、コア151の長さ方向に垂直な面の断面積に対してわずかな面積しか占めていない。
 このような断面積の小さな屈折率変調領域HRが形成された部分にレーザ光L1が伝搬しても、当該レーザ光L1は、この屈折率変調領域HRではほとんど反射されない。
 従って、本実施形態においては、コア151の長さ方向に垂直な面の断面積に対して、より大きな面積を占める屈折率変調領域HRをコア151内部に形成する。具体的には、反応光L3をコア151内部に照射した状態で、当該反応光L3をコア151の長さ方向とは垂直な方向に移動させて(本実施形態では、Y-Z平面内にて移動)、屈折率変調領域HRを形成する(ステップS2)。
 具体的には、反応光L3の短パルスを所定の間隔で発生させコア151内部に照射しつつ、移動台203により光ファイバー15をY軸方向に所定の速度にて移動させる。
 反応光L3の短パルスの発生間隔、及び、光ファイバー15の移動速度は、1パルス分の反応光L3の照射領域の一部が、他の1パルス分の反応光L3の照射領域の一部と重複するよう調整される。
 これにより、光ファイバー15の移動に従って、コア151内部に形成される屈折率変調領域HRの面積を増大できる。例えば、コア151のY軸方向の一端から他端に反応光L3を移動させると、図6Bに示すように、Y軸方向に長い長方形を有する屈折率変調領域HRを形成できる。図6Bは、反応光を一方向に移動させた際に形成される屈折率変調領域の一例を示す図である。
 また、反応光L3の短パルスを所定の間隔で発生させコア151内部に照射しつつ、反応光L3の焦点位置を所定の速度にてZ軸方向に移動させることで、図6Cに示すように、Z軸方向に長い屈折率変調領域HRを形成できる。なお、図6Cに示す屈折率変調領域HRは、コア151のZ軸方向の一端から他端に反応光L3の焦点位置を移動させることで形成される。図6Cは、反応光を一方向に移動させた際に形成される屈折率変調領域の他の例を示す図である。
 さらに、上記のY軸方向の反応光L3の焦点位置の移動と、Z軸方向の反応光L3の焦点位置の移動と、を組み合わせることができる。例えば、図6Dに示すように、コア151の一端から他端に向けてY軸方向に反応光L3の焦点位置を移動後、反応光L3の焦点位置をわずかにZ軸方向に移動させ、さらに反応光L3をコア151の他端から一端に向けて最初のY軸方向の移動とは逆方向に反応光L3を移動させることを繰り返す。これにより、図6Dに示すように、コア151の断面において大きな面積を占める平面状の屈折率変調領域HRを形成できる。図6Dは、反応光を二方向に移動させた際に形成される屈折率変調領域の一例を示す図である。
 なお、反応光L3のZ軸方向の移動方向は、既に屈折率変調領域HRが形成された箇所に、集光された反応光L3が照射されない方向とする。本実施形態では、反応光L3の焦点位置のZ軸方向の移動方向を、反応光源201の設置方向(図6Dでは上方向)とする。これにより、既に形成された屈折率変調領域HRに、集光された反応光L3が再度照射されることを回避できる。
 上記のように、Y軸方向の反応光L3の移動と、Z軸方向の反応光L3の移動と、を組み合わせて、さらに、反応光L3のY軸方向の移動範囲とZ軸方向の移動範囲とを調整することもできる。これにより、コア151の断面において、任意の断面形状及び断面積を有する屈折率変調領域HRを形成できる。
 上記のようにしてコア151内部にて反応光L3の焦点位置を移動して、1つの屈折率変調領域HRを形成後、さらに屈折率変調領域HRの形成を継続するか否かを判断する。本実施形態では、屈折率変調領域HRの形成を継続するか否かは、屈折率変調領域HRの形成数が予め決められた数となったか否かにより決定する。
 他の実施形態において、グレーティング領域155が形成された光ファイバー15にて発生するレーザ発振出力の大きさを、屈折率変調領域HRの形成を継続するか否かの判断基準としてもよい。
 さらに他の実施形態において、グレーティング領域155の反射スペクトルを、屈折率変調領域HRの形成を継続するか否かの判断基準としてもよい。例えば、グレーティング領域155にて反射された特定の波長を有する光の強度が所望の大きさとなったか否かを、屈折率変調領域HRの形成を継続するか否かの判断基準としてもよい。その他、当該光のスペクトル形状(当該光のピーク波長、スペクトルの半値幅、サイドローブの有無など)を判断基準としてもよい。
 上記の判断基準に基づいて、屈折率変調領域HRの形成を継続しないと決定した場合(ステップS3において「No」の場合)、屈折率変調領域HRの形成プロセスを終了する。
 一方、屈折率変調領域HRの形成を継続すると決定した場合(ステップS3において「Yes」の場合)、反応光L3の照射を停止後(ステップS4)、移動台203により、光ファイバー15を第1間隔D1だけ長さ方向(X軸方向)に移動させる(ステップS5)。
 光ファイバー15を第1間隔D1だけ長さ方向に移動後、当該長さ方向の位置にて、上記のステップS1~S3を実行し、屈折率変調領域HRを形成する。
 上記のステップS1~S5を繰り返し実行することにより、グレーティング領域155において、互いに隣接する屈折率変調領域HRの間隔を第1間隔D1だけ空けて、複数の屈折率変調領域HRを形成できる。
 以下、上記のステップS1~S5を形成装置200にて実行することにより実際に形成されたグレーティング領域155について説明する。まず、グレーティング領域155の形成条件について説明する。
 グレーティング領域155を形成する光ファイバー15として、コア151にエルビウムをドープしたZBLANガラス製のものを用いた(コア151の直径:28μm)。
 屈折率変調領域HRは、パルス幅が400fs、波長が515nmである反応光L3を用いて形成した。反応光L3の強度は、反応光L3による照射痕を確認しながら0.5μJ付近にて調整した。
 また、光ファイバー15の長さ方向における反応光L3の移動距離、すなわち、互いに隣接する屈折率変調領域HRの間隔(第1間隔D1)を970nmとした。
 また、コア151の長さ方向とは垂直な方向(Y-Z平面)の断面における反応光L3の走査範囲としては、コア151の中心を中心とした10μm×10μmの範囲(実施例1とする)、28μm×28μmの範囲(実施例2とする)を選択した。また、比較例として、反応光L3の走査をすることなく屈折率変調領域HRの形成を行った。
 次に、上記の条件にて屈折率変調領域HRを形成したときの、光ファイバー15に形成されたグレーティング領域155の光学顕微鏡像を、図7A~図7Cに示す。図7Aは、実施例1にて形成されたグレーティング領域の光学顕微鏡像である。図7Bは、実施例2にて形成されたグレーティング領域の光学顕微鏡像である。図7Cは、比較例にて形成されたグレーティング領域の光学顕微鏡像である。
 これらの図に示すように、反応光L3の走査範囲と、形成される屈折率変調領域HRのサイズは対応していることが分かる。なお、比較例における屈折率変調領域HRのサイズは、約0.7μm×2μmであった。
 このように、屈折率変調領域HRを形成する際に反応光L3をコア151の断面と平行な方向に走査することにより、断面積の大きな屈折率変調領域HRを形成できる。また、反応光L3の走査範囲を適宜調整することで、任意の断面積を有する屈折率変調領域HRを形成できる。
(5)光ファイバーの評価
(5-1)評価装置
 本実施形態においては、形成装置200にて光ファイバー15にグレーティング領域155を形成中に、光ファイバー15のレーザ媒体及び共振器としての評価を行った。以下、光ファイバー15の評価実験及び評価結果について説明する。
 まず、本実施形態に係る光ファイバー15を評価するための評価装置300について、図8を用いて説明する。図8は、評価装置の構成を示す図である。
 図8に示す本実施形態に係る評価装置300は、図4を用いて説明した形成装置200に組み込まれている。この評価装置300は、形成装置200にてグレーティング領域155を形成しながら励起光L2をクラッド153に入射し、グレーティング領域155にて反射された反射光L1’の強度を測定することで、レーザ発振媒体としての光ファイバー15の性能を評価できる。
 具体的には、評価装置300は、励起光源301を備える。励起光源301は、励起光L2を出力する。励起光源301としては、例えば、レーザ発振器1にて使用されている励起光源11と同一の光源を用いることができる。
 評価装置300は、励起光導波ファイバー303を備える。励起光導波ファイバー303は、励起光源301から出力した励起光L2を、導入部305に導波する光ファイバーである。導入部305は、光ファイバー15のグレーティング領域155が形成されている一端とは反対側の他端近傍に配置され、励起光L2を当該他端からクラッド153に導入する。
 図8に示すように、導入部305は、ミラー305aを有する。ミラー305aは、グレーティング領域155にて反射された反射光L1’を、後述する光測定部307に導く。図8に示すように、ミラー305aは、励起光L2の光路上に配置されている。ミラー305aは、励起光L2を透過して、レーザ発振出力を反射するミラーである。具体的には、例えば、ハーフミラー、ダイクロイックミラーなどをミラー305aとして使用できる。
 評価装置300は、光測定部307を備える。光測定部307は、グレーティング領域155にて反射され、ミラー305aにより導かれた反射光L1’の強度を測定する。光測定部307としては、例えば、フォトダイオードなどの光の強度を測定できるセンサ、集熱式のパワーメータを用いることができる。
(5-2)評価結果
 以下、本実施形態の屈折率変調領域HRの形成方法を用いて作製したグレーティング領域155を有する光ファイバー15の評価結果について説明する。
 本実施形態においては、グレーティング領域155の形成長さと反射光L1’の強度との関係と、励起光L2の強度と反射光L1’の強度との関係と、を用いてグレーティング領域155を有する光ファイバー15の評価を行った。
 まず、グレーティング領域155の長さと、反射光L1’(波長:2.8μm)の強度との関係を評価した結果を図9に示す。
 図9に示す評価結果は、上記の実施例1、実施例2、及び比較例にて示した屈折率変調領域HRを形成装置200により形成しながら、励起光L2をクラッド153に入射し、形成されたグレーティング領域155により反射された反射光L1’を光測定部307により測定することで得た。
 図9に示すように、比較例においては、グレーティング領域155の長さをある閾値以上にしないと、光測定部307にて測定可能な程度の大きさの反射光L1’を得られなかった。
 その一方、反応光L3を走査して屈折率変調領域HRを形成した実施例1及び2においては、グレーティング領域155の長さが上記閾値よりも小さくても、光測定部307により反射光L1’が測定された。
 上記の結果は、反応光L3を走査して形成された屈折率変調領域HR(実施例1及び2)は、反応光L3を走査することなく形成した場合(比較例)と比較して大きな反射率を有することを示している。また、反応光L3を走査して形成された屈折率変調領域HRを含むグレーティング領域155は、その形成長さが短くても、すなわち、屈折率変調領域HRの形成数が少なくても十分な反射率を有することを示している。
 次に、上記の実施例1、実施例2、及び比較例について、励起光L2の強度と反射光L1’の強度との関係を評価した結果を図10に示す。
 図10に示す評価結果は、上記の実施例1、実施例2、及び比較例にて示したグレーティング領域155を所定の長さだけ形成後に、励起光L2の強度を変化させながら反射光L1’の強度を測定することにより得た。なお、有意な測定結果を得るために、比較例1におけるグレーティング領域155の形成長さは、実施例1及び2におけるグレーティング領域155の形成長さよりも長くしている。
 図10に示すグラフの傾きは、光ファイバー15に入力した励起光L2の強度(の差分)に対する出力としての反射光L1’の強度(の差分)を表すので、光ファイバー15をレーザ媒体及び共振器として用いた場合のレーザ効率(スロープ効率とも呼ばれる)に対応する。
 図10に示す評価結果から算出した、実施例1、実施例2、及び比較例の光ファイバー15のレーザ効率(スロープ効率)は、それぞれ、12%、16%、及び1.5%であった。
 上記の結果は、反応光L3をコア151の断面方向に走査させて屈折率変調領域HRを形成することにより、従来の形成方法と比較して、レーザ効率を10倍程度まで改善できていることを示している。すなわち、反応光L3を走査して形成した屈折率変調領域HRを含むグレーティング領域155を有する光ファイバー15の方が、レーザ媒体として優れていることを示している。
(5-3)評価結果のまとめ
(5-3-1)本実施形態の製造方法の観点からの有利点
 上記の評価結果から、本実施形態に係る屈折率変調領域HRの形成方法は、従来の方法と比較して、以下のような有利点がある。
 まず、屈折率変調領域HRの形成数を少なくできることにより、グレーティング領域155を有する光ファイバー15の製造時間を短縮できる。なぜなら、反応光L3をコア151の断面内で走査する時間と、反応光L3を光ファイバー15の長さ方向に第1間隔D1だけ移動させる時間とを比較すると、前者の時間の方がはるかに短いからである。
 すなわち、十分な反射率を得るために反応光L3を光ファイバー15の長さ方向に沿って移動させる回数を増加させる代わりに、反応光L3をコア151の断面内で走査して1つの屈折率変調領域HRあたりの屈折率を大きくし、反応光L3を長さ方向に移動させる回数を減少することで、グレーティング領域155を有する光ファイバー15の製造時間を短縮できる。
 また、グレーティング領域155の形成長さを短くできることにより、品質の安定したグレーティング領域155を形成できる。なぜなら、グレーティング領域155の形成長さが長くなると、光ファイバー15の構造のゆがみ(捻れ、コア151の位置の偏りなど)の影響を受けて、グレーティング領域155の特性が長さ方向の位置によって異なることがあるからである。
 さらに、反応光L3をコア151の断面方向に沿って走査して屈折率変調領域HRを形成する方法は、従来の方法と比較して、隣接する屈折率変調領域HR同士がコア151の長さ方向において重複することを回避し、かつ、光ファイバー15に大きなダメージを与えることなく、大きな断面積を有する屈折率変調領域HRを形成できる。
 従来の方法においては、例えば反応光L3の強度を大きくすることで、屈折率変調領域HRの断面積を大きくできる可能性がある。しかしながら、反応光L3の強度を大きくすると、光ファイバー15の長さ方向にも屈折率変調領域HRが大きくなる。このため、反応光L3の強度を大きくして、隣接する屈折率変調領域HRの間隔を1μm程度と小さくすると、隣接する屈折率変調領域HR同士がコア151の長さ方向において重複することがある。
 また、過剰に強い反応光L3を光ファイバー15に照射すると、光ファイバー15に大きなダメージが生じることがある。
 このように、隣接する屈折率変調領域HR同士の重複を回避する必要があるとの観点と、光ファイバー15に大きなダメージを与えないとの観点から、反応光L3を走査しない従来の方法にて形成できる屈折率変調領域HRの断面積の大きさには限界がある。
 その一方、反応光L3を走査して屈折率変調領域HRを形成する方法は、反応光L3の強度を大きくすることなく大きな断面積を有する屈折率変調領域HRを形成できる。そのため、反応光L3をコア151の断面方向に走査して屈折率変調領域HRの断面積を大きくしても、隣接する屈折率変調領域HR同士がコア151の長さ方向において重複することがない。また、反応光L3の強度を大きくする必要がないため、光ファイバー15に大きなダメージを与えることなく、大きな断面積を有する屈折率変調領域HRを形成できる。
 光ファイバー15に照射できる反応光L3の強度などに基づいて算出される反応光L3の照射痕の大きさの限界値を考慮すると、反応光L3を2μm以上走査すれば、従来の方法による屈折率変調領域HRよりも大きな反射率を有する屈折率変調領域HRを形成できる。
 また、反応光L3を走査して屈折率変調領域HRを形成する本実施形態の方法は、特に、コア151の径が3μm以上である光ファイバー15にグレーティング領域155(ファイバーブラッググレーティング)を形成する場合に有利である。
(5-3-2)本実施形態の応用面の観点からの有利点
 また、反応光L3を走査して形成された屈折率変調領域HRが大きな反射率を有することにより、光ファイバー15の応用面の観点からは以下のような有利点がある。
 まず、コア151の断面積に対する屈折率変調領域HRの断面積の割合が大きくなるほど、測定される反射光L1’が大きくなる傾向も見られている。十分に大きな反射率を有するグレーティング領域155を形成する観点からは、コア151の断面積に対する屈折率変調領域HRの断面積の割合は、少なくとも16%以上であればよい。
 反射率を大きくしレーザ効率をより高くするとの観点からは、コア151の断面積に対する屈折率変調領域HRの断面積の割合は、20%以上とすることが好ましく、50%以上とすることがより好ましく、100%とすることが最も好ましい。
 また、反応光L3をコア151の断面方向に走査して屈折率変調領域HRを形成することにより、屈折率変調領域HR単位で精度よく屈折率を制御できる。その結果、第1実施形態に係る屈折率変調領域HRの形成方法は、様々な特性を有するグレーティング領域155を実現できる。
 グレーティング領域155内で屈折率変調領域HRの屈折率を制御することで、例えば、ファイバーブラッググレーティング内にて発生するレーザ光のサイドローブを減少し、レーザ光のスペクトル幅を小さくできる。さらに、サイドピークの発生を抑制できる。すなわち、指向性が強く、かつ、スペクトル特性に優れた理想的なレーザ光を出力できる。
 さらに、反応光L3をコア151の断面方向に走査して、反射率の大きな屈折率変調領域HRを形成することができることにより、本実施形態のファイバーブラッググレーティングは、レーザ発振の媒体以外の用途にも使用できる。具体的には、例えば、ファイバーセンサ、ファイバーチャープパルス圧縮に対して応用できる。
 また、互いに隣接する屈折率変調領域HRの第1間隔D1を光ファイバー15の長さ方向にて段階的に変更することにより、パルスストレッチャー、チャープパルスに応用できるグレーティング領域155を形成できる。
2.実施形態の共通事項
 上記第1実施形態は、下記の構成及び機能を共通に有している。
 レーザ発振器1(レーザ発振器の一例)は、励起光源11(励起光源の一例)と、光ファイバー15(光ファイバーの一例)と、グレーティング領域155(グレーティング領域の一例)と、を備える。励起光源11は、励起光L2(励起光の一例)を出力する。光ファイバー15は、励起光L2により発生したレーザ光L1(レーザ光の一例)を長さ方向に伝搬させて、出口O(出口の一例)から出力するコア151(コアの一例)を有する。グレーティング領域155は、複数の屈折率変調領域HR(屈折率変調領域の一例)がコア151の長さ方向に第1間隔D1(第1間隔の一例)を空けて形成された領域である。屈折率変調領域HRは、コア151とは異なる屈折率を有する。
 レーザ発振器1において、コア151の長さ方向とは垂直な方向における屈折率変調領域HRの断面積は、長さ方向とは垂直な方向におけるコア151の断面積の16%以上である。
 レーザ発振器1において、コア151内部のグレーティング領域155に形成された屈折率変調領域HRの断面積が、コア151の断面積の16%以上となっている。これにより、グレーティング領域155の屈折率変調領域HRの形成数が少なくても、励起光L2により発生したレーザ光L1に対して高い反射率を有するものとできる。
 その結果、レーザ発振器1においては、第1間隔D1で決まる特定波長のレーザ光L1に対して強いレーザ発振を実現できる。つまり、レーザ発振器1は、特定の波長に固定してレーザ発振をさせることができ、強度が大きなレーザ光L1を出力できる。
3.他の実施形態
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
 例えば、レーザ発振器1にて出力したいレーザ光L1の波長に応じて、光ファイバー15の材料、及び、互いに隣接する屈折率変調領域HR間の第1間隔D1を、適宜変更できる。また、光ファイバー15の材料の光学的特性などに応じて、屈折率変調領域HRの形成条件(例えば、反応光L3の波長、照射時間、強度など)を適宜変更できる。
 (A)上記の第1実施形態において屈折率変調領域HRを形成する際、反応光L3の焦点位置の移動は、移動台203及び対物レンズ205の移動により実現されていた。しかし、これに限られず、反応光L3を出力する反応光源201を光ファイバー15に対して移動させることによっても、反応光L3の焦点位置の移動を実現できる。
 (B)反応光L3を走査して屈折率変調領域HRを形成する方法は、例えば、反応光L3により屈折率変調を誘起できるものであれば、フッ化物ファイバー以外にも適用できる。例えば、光ファイバーに限らず様々な光導波路へも応用できる。
 本発明は、光ファイバーをレーザ媒体とするレーザ発振器に広く適用できる。
100 レーザ加工装置
W     ワーク
1     レーザ発振器
11   光源
13   光導入部
131 励起光導波ファイバー
133 導入レンズ
15   光ファイバー
151 コア
I     入口
O     出口
153 クラッド
155 グレーティング領域
155a      第1グレーティング領域
155b      第2グレーティング領域
D1   第1間隔
D2   第2間隔
HR   屈折率変調領域
17   コリメータ
3     ワーク載置台
200 形成装置
201 反応光源
203 移動台
205 対物レンズ
207 光路変更部材
209 制御部
300 評価装置
301 励起光源
303 励起光導波ファイバー
305 導入部
305a      ミラー
307 光測定部
L1   レーザ光
L1'  反射光
L2   励起光
L3   反応光

Claims (12)

  1.  励起光を出力する励起光源と、
     前記励起光により発生したレーザ光を長さ方向に伝搬させて出口から出力するコアを有する光ファイバーと、
     前記コアの屈折率とは異なる屈折率を有する複数の屈折率変調領域が、前記コアの長さ方向に第1間隔を空けて形成されたグレーティング領域と、
     を備え、
     前記長さ方向とは垂直な方向の前記屈折率変調領域の断面積は、前記長さ方向とは垂直な方向の前記コアの断面積の16%以上である、
     レーザ発振器。
  2.  前記グレーティング領域は、第1グレーティング領域と、前記第1グレーティング領域から前記コアの長さ方向に第2間隔を空けて形成された第2グレーティング領域と、を有する、請求項1に記載のレーザ発振器。
  3.  前記第1グレーティング領域及び前記第2グレーティング領域のいずれか一方の前記長さ方向の形成長さは、他方の形成長さよりも短い、請求項2に記載のレーザ発振器。
  4.  前記光ファイバーは、希土類元素をドープしたフッ化物ファイバーである、請求項1~3のいずれかに記載のレーザ発振器。
  5.  前記希土類元素はエルビウムである、請求項4に記載のレーザ発振器。
  6.  請求項1~5のいずれかに記載のレーザ発振器から出力されるレーザ光をワークに照射して加工を行うレーザ加工装置。
  7.  コアと、
     前記コアの屈折率とは異なる屈折率を有する複数の屈折率変調領域が、前記コアの長さ方向に第1間隔を空けて形成されたグレーティング領域と、
     を備え、
     前記長さ方向とは垂直な方向の前記屈折率変調領域の断面積は、前記長さ方向とは垂直な方向の前記コアの断面積の16%以上である、
     光ファイバー。
  8.  前記グレーティング領域は、第1グレーティング領域と、前記第1グレーティング領域から前記コアの長さ方向に第2間隔を空けて形成された第2グレーティング領域と、を有する、請求項7に記載の光ファイバー。
  9.  コアの屈折率とは異なる屈折率を有する複数の屈折率変調領域が前記コアの長さ方向に第1間隔を空けて形成されたグレーティング領域を備える光ファイバーの製造方法であって、
     前記コアの屈折率を変化させる反応光を前記コア内部に照射するステップと、
     前記反応光を前記コア内部に照射した状態で、前記反応光を前記コアの長さ方向とは垂直な方向に移動させて前記屈折率変調領域を形成するステップと、
     を含む、光ファイバーの製造方法。
  10.  コアの屈折率とは異なる屈折率を有する複数の屈折率変調領域が前記コアの長さ方向に第1間隔を空けて形成されたグレーティング領域を備える光ファイバーの製造装置であって、
     前記コアの屈折率を変化させる反応光を前記コア内部に照射する反応光源と、
     前記反応光を前記コア内部に照射した状態で、前記反応光を前記コアの長さ方向とは垂直な方向に移動させる移動台と、
     を備える、
     製造装置。
  11.  前記反応光の焦点を前記コア内部に結ぶレンズをさらに備える、請求項10に記載の製造装置。
  12.  前記グレーティング領域に向けて入射した励起光が前記グレーティング領域にて反射されることで発生する反射光の強度に基づいて、前記グレーティング領域を形成中の前記光ファイバーを評価する評価装置をさらに備える、請求項10又は11に記載の製造装置。
PCT/JP2019/007952 2018-03-13 2019-02-28 レーザ発振器、レーザ加工装置、光ファイバー、光ファイバーの製造方法、及び、光ファイバーの製造装置 WO2019176572A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020505763A JPWO2019176572A1 (ja) 2018-03-13 2019-02-28 レーザ発振器、レーザ加工装置、光ファイバー、光ファイバーの製造方法、及び、光ファイバーの製造装置
CN201980018091.2A CN111837297A (zh) 2018-03-13 2019-02-28 激光振荡器、激光加工装置、光纤、光纤制造方法及光纤制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-045281 2018-03-13
JP2018045281 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019176572A1 true WO2019176572A1 (ja) 2019-09-19

Family

ID=67906661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007952 WO2019176572A1 (ja) 2018-03-13 2019-02-28 レーザ発振器、レーザ加工装置、光ファイバー、光ファイバーの製造方法、及び、光ファイバーの製造装置

Country Status (3)

Country Link
JP (1) JPWO2019176572A1 (ja)
CN (1) CN111837297A (ja)
WO (1) WO2019176572A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115327694A (zh) * 2022-03-31 2022-11-11 西北工业大学 一种用于多芯光纤布拉格光栅激光直写的夹持装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426154B2 (ja) * 1999-02-26 2003-07-14 科学技術振興事業団 グレーティング付き光導波路の製造方法
CN106291802A (zh) * 2016-09-18 2017-01-04 西安交通大学 一种基于飞秒激光直写制备相移光纤布拉格光栅的方法
JP2017181777A (ja) * 2016-03-30 2017-10-05 株式会社豊田中央研究所 透明光学材料の改質方法、光デバイス、光デバイスの製造方法、及び光デバイスの製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426154B2 (ja) * 1999-02-26 2003-07-14 科学技術振興事業団 グレーティング付き光導波路の製造方法
JP2017181777A (ja) * 2016-03-30 2017-10-05 株式会社豊田中央研究所 透明光学材料の改質方法、光デバイス、光デバイスの製造方法、及び光デバイスの製造装置
CN106291802A (zh) * 2016-09-18 2017-01-04 西安交通大学 一种基于飞秒激光直写制备相移光纤布拉格光栅的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115327694A (zh) * 2022-03-31 2022-11-11 西北工业大学 一种用于多芯光纤布拉格光栅激光直写的夹持装置
CN115327694B (zh) * 2022-03-31 2024-03-15 西北工业大学 一种用于多芯光纤布拉格光栅激光直写的夹持装置

Also Published As

Publication number Publication date
CN111837297A (zh) 2020-10-27
JPWO2019176572A1 (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
US7532791B2 (en) Ultrafast laser machining system and method for forming diffractive structures in optical fibers
JP5496370B2 (ja) 光ファイバ、及びそれを備えたレーザ加工装置
US7283293B2 (en) High efficiency optical amplifying fiber
US7903695B2 (en) Optical fiber laser and exciting method using same
EP1703601A1 (en) Fiber laser oscillator
JP2010167433A (ja) レーザ照射装置およびレーザ加工装置
WO2019176572A1 (ja) レーザ発振器、レーザ加工装置、光ファイバー、光ファイバーの製造方法、及び、光ファイバーの製造装置
US9001850B2 (en) Excitation unit for a fiber laser
JP4544014B2 (ja) レーザ装置およびファイバカップリングモジュール
JPWO2006098313A1 (ja) 光増幅器およびレーザ装置
WO2020003893A1 (ja) 光ファイバーの製造方法、及び、光ファイバー
US10693273B2 (en) Reflector, fiber cavity, and fiber laser
CN107851953B (zh) 平面波导型激光装置
WO2007116563A1 (ja) 光源
JPWO2016031895A1 (ja) レーザ光照射装置
JP4850591B2 (ja) 光結合装置および固体レーザ装置およびファイバレーザ装置
JP3975217B2 (ja) グレーティングの作製方法
KR20160065129A (ko) 레이저 장치
JP2005284033A (ja) ビーム整形装置及びレーザ発振装置及びレーザ加工装置
JP2019175897A (ja) レーザ媒質の選別方法及び照射位置検出装置
JP2005200277A (ja) 光ファイバの製造方法
JP4439653B2 (ja) 固体レーザ装置およびそれを用いたレーザ加工装置
JP2009187970A (ja) ファイバレーザ装置、レーザ加工方法及び電子デバイス
JP6360862B2 (ja) ファイバチャープドグレーティング素子及びファイバレーザ
JP2018022786A (ja) レーザ加工機用レーザ発振器におけるダメージ検出装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768582

Country of ref document: EP

Kind code of ref document: A1