CN101903406A - 二价双特异性抗体 - Google Patents
二价双特异性抗体 Download PDFInfo
- Publication number
- CN101903406A CN101903406A CN200880122244XA CN200880122244A CN101903406A CN 101903406 A CN101903406 A CN 101903406A CN 200880122244X A CN200880122244X A CN 200880122244XA CN 200880122244 A CN200880122244 A CN 200880122244A CN 101903406 A CN101903406 A CN 101903406A
- Authority
- CN
- China
- Prior art keywords
- antibody
- ser
- leu
- val
- heavy chain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/468—Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/22—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2863—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Physics & Mathematics (AREA)
- Mycology (AREA)
- Plant Pathology (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
本发明涉及新型结构域交换、二价、双特异性抗体,及其制备和应用。
Description
本发明涉及新型二价双特异性抗体,其制备和应用。
发明背景
改造的蛋白,诸如能够结合2种以上抗原的双或多特异性抗体是本领域中已知的。这样的多特异性结合蛋白可以利用细胞融合、化学缀合、或重组DNA技术产生。
最近已经开发了广泛多样的重组双特异性抗体形式,例如通过融合例如IgG抗体形式和单链结构域的四价双特异性抗体(参见例如Coloma,M.J.,等,Nature Biotech.(自然生物技术)15(1997)159-163;WO 2001077342;和Morrison,S.L.,Nature Biotech.(自然生物技术)25(2007)1233-1234)。
此外,开发了能够结合2种以上抗原的若干其他新型形式,其中抗体中心结构(IgA,IgD,IgE,IgG或IgM)不再保持诸如双抗体、三链抗体或四链抗体,minibodies,若干单链形式(scFv,Bis-scFv)(Holliger,P.,等,NatureBiotech(自然生物技术)23(2005)1126-1136;Fischer,N.,和Léger,O.,Pathobiology(病理学)74(2007)3-14;Shen,J.,等,Journal of ImmunologicalMethods(免疫学方法杂志)318(2007)65-74;Wu,C.,等.,Nature Biotech(自然生物技术)25(2007)1290-1297)。
所有这样的形式使用连接体将抗体中心(IgA,IgD,IgE,IgG或IgM)与其他结合蛋白(例如scFv)融合或融合例如两个Fab片段或scFv(Fischer N.,Léger O.,Pathobiology(病理学)74(2007)3-14)。虽然连接体具有改造双特异性抗体的优势是明显的,但是它们也可能引起治疗环境中的问题。实际上,这些外源肽可能引起针对连接体本身或蛋白质和连接体之间连接的免疫反应。此外,这些肽的柔软性质使得它们更加易于蛋白水解分裂,这潜在地导致弱抗体稳定性、凝聚和增高的免疫原性。另外,人们可能希望保持效应子功能,诸如例如补体依赖性细胞毒性(CDC)或抗体依赖性细胞毒性(ADCC),其通过保持与天然存在的高度相似性经由Fc受体结合来介导。
因此,理想地,人们的目标应该是开发一般结构与天然存在抗体(如IgA,IgD,IgE,IgG或IgM)非常类似的双特异性抗体,其与人序列具有最小的偏离。
在一种方法中,利用细胞杂交瘤(quadroma)技术(见Milstein,C.和A.C.Cuello,Nature(自然),305(1983)537-40)生成了与天然抗体非常类似的双特异性抗体,所述细胞杂交瘤技术基于表达具有所需的双特异性抗体特异性的鼠单克隆抗体的两种不同杂交瘤细胞系的体细胞融合。因为在产生的杂交-杂交瘤(细胞杂交瘤)细胞系中的两个不同抗体重链和轻链的随机配对,所以生成至多10种不同抗体类型,其中只有一种是所需的功能双特异性抗体。由于存在错配副产物和显著降低的产率,其意味着需要复杂的纯化程序(参见例如Morrison,S.L.,Nature Biotech(自然生物技术)25(2007)1233-1234)。一般地,如果使用重组表达技术,则相同的错配副产物问题仍存在。
用于避开错配副产物问题的方法,称为“凸起-进入-孔洞(knobs-into-holes)”,目的在于通过将突变引入CH3结构域以修饰接触界面来迫使两个不同抗体重链配对。在一条链上,大体积氨基酸被具有短侧链的氨基酸替换,以形成“孔洞”。相反地,将具有大侧链的氨基酸引入到另一个CH3结构域中,以形成“凸起”。通过共表达这两条重链(和两条相同的轻链,其必须适合于这两条重链),观察到与同型二聚体形式(‘孔洞-孔洞’或‘凸起-凸起’)相比,高产率的异二聚体形式(‘凸起-孔洞’)(Ridgway,J.B.,Presta,LG,Carter,P和WO 1996027011)。异二聚体的百分比可以通过利用噬菌体展示法重建两个CH3结构域的相互作用表面和引入二硫键来稳定该异二聚体而得到进一步增加(Merchant A.M,等.,Nature Biotech(自然生物技术)16(1998)677-681;Atwell,S.,Ridgway,J.B.,Wells,J.A.,Carter,P.,J Mol.Biol.(分子生物学杂志)270(1997)26-35)。关于凸起-进入-孔洞技术的新方法记述在例如EP 1870459A1中。尽管这种形式似乎非常吸引人,但是目前不存在描述向临床进展的数据。这种策略的一个重要制约是两个母体抗体的轻链必须相同,以防止错配和形成失活的分子。因此,该技术不适合于从针对第一和第二抗原的两种抗体容易地开发针对两种抗原的重组、二价双特异性抗体,因为这些抗体的重链和/或相同轻链必须进行优化。
Simon T.等,EMBO Journal(EMBO杂志),9(1990)1051-1056涉及单特异性抗体的结构域突变体。
发明概述
本发明涉及二价双特异性抗体,其包括:
a)特异性结合第一抗原的抗体的轻链和重链;和
b)特异性结合第二抗原的抗体的轻链和重链,其中恒定结构域CL和CH1相互替换。
本发明的另一个实施方案是用于制备按照本发明的二价双特异性抗体的方法,其包括下列步骤:
a)用以下各项转化宿主细胞,
-载体,其包括编码特异性结合第一抗原的抗体的轻链和重链的核酸分子
-载体,其包括编码特异性结合第二抗原的抗体的轻链和重链的核酸分子,其中恒定结构域CL和CH1相互替换;
b)在容许合成所述抗体分子的条件下培养所述宿主细胞;和
c)从所述培养物中回收所述抗体分子。
本发明的另一个实施方案是宿主细胞,其包括
-载体,其包括编码特异性结合第一抗原的抗体的轻链和重链的核酸分子
-载体,其包括编码特异性结合第二抗原的抗体的轻链和重链的核酸分子,其中恒定结构域CL和CH1相互替换。
本发明的另一个实施方案是按照本发明的抗体的组合物,优选药物或诊断组合物。
本发明的另一个实施方案是药物组合物,其包括按照本发明的抗体和至少一种药用赋形剂。
本发明的另一个实施方案是用于治疗需要治疗的患者的方法,其特征在于向所述患者施用治疗有效量的按照本发明的抗体。
发明详述
本发明涉及二价双特异性抗体,其包括:
a)特异性结合第一抗原的抗体的轻链和重链;和
b)特异性结合第二抗原的抗体的轻链和重链,其中恒定结构域CL和CH1相互替换。
因此,所述二价双特异性抗体,包括:
a)特异性结合第一抗原的抗体的第一轻链和第一重链;和
b)特异性结合第二抗原的抗体的第二轻链和第二重链,其中第二轻链和第二重链的恒定结构域CL和CH1相互替换。
因此,对于所述特异性结合第二抗原的抗体,以下各项适用:
在轻链中
恒定轻链结构域CL被所述抗体的恒定重链结构域CH1替换;
且在重链中
恒定轻链结构域CH1被所述抗体的恒定轻链结构域CL替换。
术语“抗体”用于本文中时,指完整的、单克隆抗体。所述完整抗体由两对“轻链”(LC)和“重链”(HC)(所述轻链(LC)/重链对在此缩写为LC/HC)组成。所述抗体的轻链和重链是由若干结构域组成的多肽。在完整抗体中,每条重链包括重链可变区(缩写为HCVR或VH)和重链恒定区。重链恒定区包括重链恒定结构域CH1、CH2和CH3(抗体类型IgA,IgD,和IgG)和任选地,重链恒定结构域CH4(抗体类型IgE和IgM)。每条轻链包括轻链可变结构域VL和轻链恒定结构域CL。一种天然存在的完整抗体,即IgG抗体的结构显示在例如图1中。可变结构域VH和VL可以进一步再分为高变区,称为互补性决定区(CDR),它们之间分布有更加保守的区域,称为构架区(FR)。每个VH和VL由三个CDR和四个FR组成,以以下顺序从氨基端向羧基端排列:FR1,CDR1,FR2,CDR2,FR3,CDR3,FR4((Janeway,C.A.,Jr.等.,(2001)Immunobiology(免疫学),第5版,加兰出版社(Garland Publishing);和Woof,J.,Burton D Nat RevImmunol(自然免疫学综述)4(2004)89-99)。两对重链和轻链(HC/LC)能够特异性结合相同抗原。因此所述完整抗体是二价、单特异性抗体。所述“抗体”包括例如小鼠抗体、人抗体、嵌合抗体、人源化抗体和遗传改造的抗体(变异或突变抗体),条件是保持它们的特有特性。特别优选人或人源化抗体,尤其作为重组人或人源化抗体。
存在5种由希腊字母表示的哺乳动物抗体重链类型:α,δ,ε,γ,和μ(Janeway,C.A.,Jr.,等.,(2001)Immunobiology(免疫学),第5版,加兰出版社(Garland Publishing))。存在的重链的类型定义抗体的类型;这些链分别存在于IgA,IgD,IgE,IgG,和IgM抗体中(Rhoades RA,Pflanzer RG(2002).Human Physiology(人体生理学),第4版,汤姆森知识(ThomsonLearning))。不同的重链在尺寸和组成上不同;α和γ含有约450个氨基酸,而μ和ε具有约550个氨基酸。
每条重链具有两种区域,即恒定区和可变区。恒定区在相同同种型的所有抗体中相同,但在不同同种型的抗体中不同。重链γ,α和δ具有由3个恒定结构域CH1、CH2和CH3(处于一条线上)组成的恒定区和用于增加柔性的铰链区(Woof,J.,Burton D Nat Rev Immunol(自然免疫学综述)4(2004)89-99);重链μ和ε具有由4个恒定结构域CH1、CH2、CH3和CH4组成的恒定区(Janeway,C.A.,Jr.,等.,(2001)Immunobiology(免疫学),第5版,加兰出版社(Garland Publishing))。重链的可变区在由不同B细胞产生的抗体中不同,但对由单个B细胞或B细胞克隆产生的所有抗体都相同。每条重链的可变区长约110个氨基酸且由单个抗体结构域组成。
在哺乳动物中,仅存在两类轻链,其称为λ和κ。轻链具有两个连续的结构域:1个恒定结构域CL和1个可变结构域VL。轻链的近似长度是211-217个氨基酸。优选地,轻链是κ轻链,且恒定结构域CL优选是Cκ。
术语“单克隆抗体”或“单克隆抗体组合物”用于本文中时,指单个氨基酸组合物的抗体分子制剂。
按照本发明的“抗体”可以是任意类型(例如IgA,IgD,IgE,IgG,和IgM,优选IgG或IgE),或亚型(例如IgG1,IgG2,IgG3,IgG4,IgA1和IgA2,优选IgG1),其中按照本发明的二价双特异性抗体所源自的两种抗体具有相同亚型(例如IgG1,IgG4等,优选IgG1)的Fc部分,优选相同同种异型的Fc部分(例如高加索人)。
“抗体的Fc部分”是技术人员公知的术语并基于抗体的木瓜蛋白酶裂解而定义。按照本发明的抗体包含如Fc部分,优选源自人来源的Fc部分和优选人恒定区的全部其他部分。抗体的Fc部分直接参与补体活化,C1q结合,C3活化和Fc受体结合。虽然抗体对补体系统的影响取决于某些条件,但是与C1q的结合由Fc部分中确定的结合位点导致。所述结合位点是现有技术中已知的且记述在例如Lukas,T.J.,等.,J.Immunol.(免疫学杂志)127(1981)2555-2560;Brunhouse,R.,和Cebra,J.J.,Mol.Immunol.(分子免疫学)16(1979)907-917;Burton,D.R.,等.,Nature 288(1980)338-344;Thommesen,J.E.,等.,Mol.Immunol.(分子免疫学)37(2000)995-1004;Idusogie,E.E.,等.,J.Immunol.(免疫学杂志)164(2000)4178-4184;Hezareh,M.,等.,J.Virol.(病毒学杂志)75(2001)12161-12168;Morgan,A.,等.,Immunology(免疫学)86(1995)319-324;和EP 0 307 434中。所述结合位点是例如L234,L235,D270,N297,E318,K320,K322,P331和P329(按照Kabat的EU目录编号,见下)。亚型IgG1,IgG2和IgG3的抗体通常显示补体活化,C1q结合和C3活化,而IgG4不活化补体系统,不结合C1q且不活化C3。优选地,Fc部分是人Fc部分。
术语“嵌合抗体”指一种抗体,其包括来自一种来源或物种的可变区,即结合区,以及源自不同来源或物种的恒定区的至少一部分,其通常通过重组DNA技术进行制备。优选包括鼠可变区和人恒定区的嵌合抗体。本发明涵盖的“嵌合抗体”的其它优选形式是那些嵌合抗体,其中恒定区已经被从初始抗体的恒定区开始进行修饰或改变以产生按照本发明的特性,特别是关于C1q结合和/或Fc受体(FcR)结合。也将这种“嵌合”抗体称作“类别转换抗体”。嵌合抗体是被表达的免疫球蛋白基因(包括编码免疫球蛋白可变区的DNA区段和编码免疫球蛋白恒定区的DNA区段)的产物。制备嵌合抗体的方法包括目前在本领域众所周知的常规重组DNA和基因转染技术。见,例如,Morrison,S.L.,等,美国国家科学院学报(Proc.Natl.Acad Sci.USA)81(1984)6851-6855;US 5,202,238和5,204,244。
术语“人源化抗体”指这样的抗体,其中的构架或“互补性决定区”(CDR)已经被修饰为包括与亲本免疫球蛋白相比特异性不同的免疫球蛋白的CDR。在一个优选实施方案中,将鼠CDR移植到人抗体的构架区以制备“人源化抗体”。见,例如,Riechmann,L.,等,自然(Nature)332(1988)323-327;和Neuberger,M.S.,等,自然(Nature)314(1985)268-270。特别优选的CDRs对应于代表识别以上指出的关于嵌合抗体的抗原的序列的那些。本发明涵盖的“人源化抗体”的其它形式是那些人源化抗体,其中恒定区已经另外被从初始抗体的恒定区开始进行修饰或改变以产生按照本发明的特性,特别是关于C1q结合和/或Fc受体(FcR)结合。
用于本文时,术语“人抗体”意欲包括具有源自人种系免疫球蛋白序列的可变区和恒定区的抗体。人抗体是现有技术中公知的(van Dijk,M.A.,和van de Winkel,J.G.,当前化学生物学观点(Curr.Opin.in ChemicalBiology)5(2001)368-374)。人抗体还可以在转基因动物(例如小鼠)中产生,所述转基因动物在免疫时能够在缺乏内源免疫球蛋白生成的条件下产生全部或部分选择的人抗体。在所述种系突变小鼠中转移人种系免疫球蛋白基因阵列将导致在抗原攻击时产生人抗体(见,例如Jakobovits,A.,等.,Proc.Natl.Acad.Sci.USA(美国国家科学院学报)90(1993)2551-2555;Jakobovits,A.,等.,Nature(自然)362(1993)255-258;Bruggemann,M.,等.,Year Immunol.(免疫学年度)7(1993)33-40)。人抗体还可以在噬菌体展示文库中产生(Hoogenboom,H.R.,和Winter,G.,J.Mol.Biol.(分子生物学杂志)227(1992)381-388;Marks,J.D.,等.,J.Mol.Biol.(分子生物学杂志)222(1991)581-597)。Cole等和Boerner等的技术也可以用于制备人单克隆抗体(Cole等.,Monoclonal antibodies and Cancer Therapy(单克隆抗体和癌症治疗),Alan R.Liss,p.77-96(1985);和Boerner,P.,等.,J.Immunol.(免疫学杂志)147(1991)86-95)。如已经对按照本发明的嵌合和人源化抗体所提及的,术语“人抗体”用于本文中时还包括这样的抗体,其在恒定区内进行修饰以产生按照本发明的特性,特别是关于C1q结合和/或Fc受体(FcR)结合,例如通过“类别转换”即改变或突变Fc部分(例如由IgG1到IgG4和/或IgG1/IgG4突变。)
用于本文时,术语“重组人抗体”意欲包括通过重组方法制备、表达、产生或分离的所有人抗体,诸如分离自宿主细胞,诸如NS0或CHO细胞的抗体或分离自人免疫球蛋白基因的转基因动物(例如小鼠)的抗体,或利用转染到宿主细胞中的重组表达载体表达的抗体。这种重组人抗体具有处于重排形式的可变区和恒定区。按照本发明的重组人抗体已经经历了体内体细胞高变。因此,重组抗体的VH和VL区域的氨基酸序列是尽管源自并涉及人种系VH和VL序列,但在体内可能不天然存在于人抗体种系所有组成成分中的序列。
“可变结构域”(轻链(VL)的可变结构域,重链(VH)的可变区)用于本文中时,表示直接参与抗体与抗原结合的每对轻链和重链对。可变人轻链和重链的结构域具有相同的一般结构且每个结构域包括4个构架(FR)区,所述构架区的序列普遍保守,其通过3个“高变区”(或互补性决定区,CDRs)相连接。构架区采用β-折叠构象且CDR可以形成连接β-折叠结构的环。每条链中的CDR通过构架区以其三维结构保持并与来自另一条链的CDR一起形成抗原结合位点。抗体重链和轻链CDR3区在按照本发明的抗体的结合特异性/亲和性方面起特别重要的作用并因此提供本发明的另一个目的。
用于本文时,术语“高变区”或“抗体的抗原结合部分”指负责抗原结合的抗体的氨基酸残基。高变区包括来自“互补性决定区”或“CDRs”的氨基酸残基。“构架”或“FR”区是除本文中定义的高变区残基之外的那些可变结构域区域。因此,抗体的轻链和重链从N端到C端包括结构域FR1,CDR1、FR2、CDR2、FR3、CDR3和FR4。各条链上的CDR通过所述构架氨基酸分开。特别地,重链的CDR3是最有助于抗原结合的区域。按照Kabat等,有免疫学意义的蛋白质序列(Sequences of Proteins ofImmunological Interest),第5版,公众健康服务,国家健康研究所(PublicHealth Service,National Institutes of Health),Bethesda,MD.(1991))的标准定义确定CDR和FR区域。
重链和轻链的“恒定结构域”不直接参与抗体与抗原的结合但是表现出多种效应子功能。根据其重链恒定区的氨基酸序列,抗体或免疫球蛋白被分为以下类型:
术语“二价双特异性抗体”用于本文中时,指如上所述的抗体,其中两对重链和轻链(HC/LC)中的每对特异性结合不同的抗原,即第一重链和第一轻链(源自针对第一抗原的抗体)特异性共同结合第一抗原,且第二重链和第二轻链(源自针对第二抗原的抗体)特异性共同结合第二抗原(如图2中所示);所述二价双特异性抗体能够同时特异性结合两种不同的抗原,且不超过两种抗原,与其相对照的是,一方面仅能够结合一种抗原的单特异性抗体和另一方面例如能够同时结合四种抗原分子的四价、四特异性抗体。
按照本发明,所需二价双特异性抗体与不需要的副产物的比率可以通过替换仅一对重链和轻链(HC/LC)中的某些结构域来提高。两对HC/LC对的第一对源自特异性结合第一抗原的抗体且保持基本不变,而两对HC/LC对的第二对源自特异性结合第二抗原的抗体并通过以下替换来改变:
-轻链:将恒定轻链结构域CL替换为所述特异性结合第二抗原的抗体的恒定重链结构域CH1,和
-重链:将恒定重链结构域CH1替换为所述特异性结合第二抗原的抗体的恒定轻链结构域CL。
因此由此生成的二价双特异性抗体是人造抗体,其包括
a)特异性结合第一抗原的抗体的轻链和重链;和
b)特异性结合第二抗原的抗体的轻链和重链;
其中所述(特异性结合第二抗原的抗体的)轻链包括恒定结构域CH1而非CL,
且
其中所述(特异性结合第二抗原的抗体的)重链包括恒定结构域CL而非CH1。
在本发明的另一方面,这样提高的所需二价双特异性抗体与不需要的副产物的比率可以通过以下两种备选方案之一进一步提高:
A)第一备选方案(见图3):
所述按照本发明的二价双特异性抗体的CH3结构域可以通过“凸起-进入-孔洞”技术改变,该技术用例如WO 96/027011,Ridgway J.B.,等.,Protein Eng(蛋白质工程)9(1996)617-621;和Merchant,A.M.,等.,NatBiotechnol(自然生物技术)16(1998)677-681中的若干实例详细记述。在该方法中,改变两个CH3结构域的相互作用表面,以增加包含这两个CH3结构域的两条重链的异二聚化。(两条重链的)两个CH3结构域之一可以是“凸起”,而另一个是“孔洞”。二硫键的引入稳定该异二聚体(Merchant,A.M,等.,Nature Biotech 16(1998)677-681;Atwell,S.,Ridgway,J.B.,Wells,J.A.,Carter,P.,J.Mol.Biol.(分子生物学杂志)270(1997)26-35)并增加产率。
因此在优选的实施方案中,二价双特异性抗体的CH3结构域通过“凸起-进入-孔洞”技术改变,在所述二价双特异性抗体中第一CH3结构域和第二CH3结构域分别在包括抗体CH3结构域之间的初始界面的界面处相接触,所述“凸起-进入-孔洞”技术包括通过将二硫键引入CH3结构域而进一步稳定化(记述在WO 96/027011,Ridgway,J.B.,等.,Protein Eng(蛋白质工程)9(1996)617-621;Merchant,A.M.,等,Nature Biotech(自然生物技术)16(1998)677-681;和Atwell,S.,Ridgway,J.B.,Wells,J.A.,Carter,P.,J.Mol.Biol.(分子生物学杂志)270(1997)26-35中)以促进二价双特异性抗体的形成。
因此,在本发明的一个方面,所述二价双特异性抗体的特征在于
一条重链的CH3结构域和另一条重链的CH3结构域分别在包括抗体CH3结构域之间的初始界面的界面处相接触;
其中改变所述界面以促进二价双特异性抗体的形成,其中所述改变的特征在于:
a)改变一条重链的CH3结构域,
由此,在与二价双特异性抗体内的另一条重链的CH3结构域的初始界面相接触的一条重链的CH3结构域的初始界面内,
氨基酸残基被替换为具有较大侧链体积的氨基酸残基,由此在一条重链的CH3结构域的界面内生成凸起,该凸起可以定位在另一条重链的CH3结构域的界面内的凹洞中
且
b)改变另一条重链的CH3结构域,
由此,在与二价双特异性抗体内的第一CH3结构域的初始界面相接触的第二CH3结构域的初始界面内,
氨基酸残基被替换为具有较小侧链体积的氨基酸残基,由此在第二CH3结构域的界面内生成凹洞,第一CH3结构域的界面内的凸起可以定位在该凹洞中。
优选地,所述具有较大侧链体积的氨基酸残基选自由精氨酸(R),苯丙氨酸(F),酪氨酸(Y),色氨酸(W)组成的组。
优选地,所述具有较小侧链体积的氨基酸残基选自由丙氨酸(A),丝氨酸(S),苏氨酸(T),缬氨酸(V)组成的组。
在本发明的一个方面中,进一步改变这两个CH3结构域,引入半胱氨酸(C)作为每个CH3结构域相应位置处的氨基酸,从而使得两个CH3结构域之间的二硫键可以形成。
在本发明的另一个优选实施方案中,通过使用关于凸起残基的残基R409D;K370E(K409D)和关于孔洞残基的D399K;E357K来改变两个CH3结构域,其记述在例如EP 1870459A1中。
或
B)第二备选方案(见图4):
通过将一个恒定重链结构域CH3替换为恒定重链结构域CH1;和另一个恒定重链结构域CH3替换为恒定轻链结构域CL。替换重链结构域CH3的恒定重链结构域CH1可以是任何Ig类型(例如IgA,IgD,IgE,IgG,和IgM),或亚型(例如,IgG1,IgG2,IgG3,IgG4,IgA1和IgA2)。替换重链结构域CH3的恒定轻链结构域CL可以是λ或κ型,优选κ型。
因此,本发明的一个优选实施方案是二价双特异性抗体,其包括:
a)特异性结合第一抗原的抗体的轻链和重链;和
b)特异性结合第二抗原的抗体的轻链和重链,其中恒定结构域CL和CH1相互替换,
且其中任选地,
c)一条重链的CH3结构域和另一条重链的CH3结构域分别在包括抗体CH3结构域之间的初始界面的界面处相接触;
其中改变所述界面以促进二价双特异性抗体的形成,其中所述改变的特征在于:
ca)改变一条重链的CH3结构域,
由此,在与二价双特异性抗体内的另一条重链的CH3结构域的初始界面相接触的一条重链的CH3结构域的初始界面内,
氨基酸残基被替换为具有较大侧链体积的氨基酸残基,由此在一条重链的CH3结构域的界面内生成凸起,该凸起可以定位在另一条重链的CH3结构域的界面内的凹洞中
且
cb)改变另一条重链的CH3结构域,
由此,在与二价双特异性抗体内的第一CH3结构域的初始界面相接触的第二CH3结构域的初始界面内,
氨基酸残基被替换为具有较小侧链体积的氨基酸残基,由此在第二CH3结构域的界面内生成凹洞,第一CH3结构域的界面内的凸起可以定位在该凹洞中;
或d)
一个恒定重链结构域CH3被恒定重链结构域CH1替换;且另一个恒定重链结构域CH3被恒定轻链结构域CL替换。
术语“抗原”或“抗原分子”用于本文中时,可交替使用并指能够被抗体特异性结合的所有分子。二价双特异性抗体特异性结合第一抗原和第二不同抗原。术语“抗原”用于本文中时,包括例如蛋白、蛋白上的不同表位(在本发明含义内作为不同抗原)和多糖。这主要包括细菌、病毒和其他微生物的部分(外壳、被膜、细胞壁、鞭毛、菌毛和毒素)。脂质和核酸仅在与蛋白和多糖结合时具有抗原性。非微生物外源(非自身)抗原可以包括花粉、蛋清和来自被移植组织和器官的或被灌输的血细胞表面上的蛋白。优选地,抗原选自由细胞因子、细胞表面蛋白、酶和受体细胞因子、细胞表面蛋白、酶和受体组成的组。
肿瘤抗原是由肿瘤细胞表面上的MHC I或MHC II分子呈递的那些抗原。这些抗原有时可以由肿瘤细胞来呈递,且从来不由正常细胞来呈递。由此,它们称为肿瘤特异性抗原(TSAs)且典型地由肿瘤特异性突变产生。更常见的是由肿瘤细胞和正常细胞呈递的抗原,且它们称为肿瘤相关抗原(TAAs)。识别这些抗原的细胞毒性T淋巴细胞可能能够在肿瘤细胞增殖或转移前破坏它们。肿瘤抗原还可以采用例如突变受体的形式存在于肿瘤表面上,在这种情形中它们应该被B细胞识别。
在一个优选的实施方案中,二价双特异性抗体特异性结合的两种不同抗原(第一和第二抗原)中的至少一种是肿瘤抗原。
在另一个优选的实施方案中,二价双特异性抗体特异性结合的两种不同抗原(第一和第二抗原)均是肿瘤抗原;在该情形中,所述第一和第二抗原还可以是相同肿瘤特异性蛋白上的两种不同表位。
在另一个优选的实施方案中,二价双特异性抗体特异性结合的两种不同抗原(第一和第二抗原)之一是肿瘤抗原且另一种是效应细胞抗原,例如T-细胞受体,CD3,CD16等。
在另一个优选的实施方案中,二价双特异性抗体特异性结合的两种不同抗原(第一和第二抗原)之一是肿瘤抗原且另一种是抗癌物质诸如毒素或激酶抑制剂。
用于本文中时,“特异性结合”或“与……特异性结合”指特异性结合抗原的抗体。优选地,特异性结合该抗原的抗体的结合亲和性是KD-值10-9mol/l以下(例如10-10mol/l),优选具有KD-值10-10mol/l以下(例如10-12mol/l)。结合亲和性使用标准结合测定,诸如表面等离振子共振技术(Biacore)来确定。
术语“表位”包括能够特异性结合抗体的任何多肽决定簇。在某些实施方案中,表位决定簇包括分子的化学活性表面分组(groupings),诸如氨基酸、糖侧链、磷酰基或磺酰基,在某些实施方案中,可以具有特定的三维结构特征,且或特定的带电特性。表位是被抗体结合的抗原区域。在某些实施方案中,当抗体在蛋白和/或大分子的复杂混合物中优选识别其靶抗原时,将该抗体称为与抗原特异性结合。
本发明的另一个实施方案是用于制备按照本发明的二价双特异性抗体的方法,其包括
a)用以下各项转化宿主细胞,
-载体,其包括编码特异性结合第一抗原的抗体的轻链和重链的核酸分子
-载体,其包括编码特异性结合第二抗原的抗体的轻链和重链的核酸分子,其中恒定结构域CL和CH1相互替换;
b)在容许合成所述抗体分子的条件下培养所述宿主细胞;和
c)从所述培养物中回收所述抗体分子。
一般,存在两种编码所述特异性结合第一抗原的抗体的轻链和重链的载体,和另外两种编码所述特异性结合第二抗原的抗体的轻链和重链的载体。两种载体之一编码各自的轻链且两种载体中的另一种编码各自的重链。然而,在用于制备按照本发明的二价双特异性抗体的另一种方法中,可以使用仅一种编码特异性结合第一抗原的抗体的轻链和重链的第一载体和仅一种编码特异性结合第二抗原的抗体的轻链和重链的第二载体来转化宿主细胞。
本发明包括用于制备所述抗体的方法,其包括在容许合成所述抗体分子的条件下培养相应的宿主细胞和从所述培养物中回收所述抗体,其例如通过表达以下各项来实现
-第一核酸序列,其编码特异性结合第一抗原的抗体的轻链;
-第二核酸序列,其编码所述特异性结合第一抗原的抗体的重链;
-第三核酸序列,其编码特异性结合第二抗原的抗体的轻链,其中恒定轻链结构域CL被替换为恒定重链结构域CH1;和
-第四核酸序列,其编码所述特异性结合第二抗原的抗体的重链,其中恒定重链结构域CH1被替换为恒定轻链结构域CL。
本发明的另一个实施方案是宿主细胞,其包括
-载体,其包括编码特异性结合第一抗原的抗体的轻链和重链的核酸分子
-载体,其包括编码特异性结合第二抗原的抗体的轻链和重链的核酸分子,其中恒定结构域CL和CH1相互替换。
本发明的另一个实施方案是宿主细胞,其包括
a)包括编码特异性结合第一抗原的抗体的轻链的核酸分子的载体和包括编码特异性结合第一抗原的抗体的重链的核酸分子的载体
b)包括编码特异性结合第二抗原的抗体的轻链的核酸分子的载体和包括编码特异性结合第二抗原的抗体的重链的核酸分子的载体,其中恒定结构域CL和CH1相互替换。
本发明的另一个实施方案是按照本发明的二价双特异性抗体的组合物,优选药物或诊断组合物。
本发明的另一个实施方案是药物组合物,其包括按照本发明的二价双特异性抗体和至少一种药用赋形剂。
本发明的另一个实施方案是用于治疗需要治疗的患者的方法,其特征在于向所述患者施用治疗有效量的按照本发明的二价双特异性抗体。
术语“核酸或核酸分子”,用于本文中时,意欲包括DNA分子和RNA分子。核酸分子可以是单链或双链,但优选是双链DNA。
用于本文中时,表述“细胞”、“细胞系”和“细胞培养物”可交替使用,且全部这些名称都包括后代。因此,词语“转化体”和“转化的细胞”包括原代受试者细胞和由其来源的培养物,而不考虑转移数。还理解所有的后代的DNA含量可能不精确一致,这归因于有意或无意的突变。包括在最初转化的细胞中筛选的具有相同功能或生物学活性的变异后代。在意指不同名称时,其将由于上下文而清楚。
术语“转化”用于本文中时,指将载体/核酸转移到宿主细胞中的过程。如果无难以克服的细胞壁屏障的细胞用作宿主细胞,则转染例如通过如Graham和van der Eh,Virology(病毒学)52(1978)546ff所述的磷酸钙沉淀法来进行。然而,还可以使用其他将DNA引入细胞的方法,诸如通过核注射或通过原生质体融合。如果使用原核细胞或包含实质细胞壁结构的细胞,例如一种转染方法是利用氯化钙的钙处理,如Cohen,F.N,等,PNAS.69(1972)7110ff所述。
利用转化重组生成抗体是现有技术公知的且记述在,例如,综述文章Makrides,S.C.,Protein Expr.Purif.(蛋白实验纯化)17(1999)183-202;Geisse,S.,等.,Protein Expr.Purif.(蛋白实验纯化)8(1996)271-282;Kaufman,R.J.,Mol.Biotechnol.(分子生物技术)16(2000)151-161;Werner,R.G.,等.,Arzneimittelforschung 48(1998)870-880中以及US 6,331,415和US 4,816,567中。
用于本文中时,“表达”指将核酸转录为mRNA的过程和/或将转录的mRNA(也称为转录物)随后翻译为肽、多肽或蛋白质的过程。转录物和被编码的多肽共称为基因产物。如果多核苷酸源自基因组DNA,则真核细胞中的表达可以包括mRNA的剪接。
“载体”是核酸分子,特别是自体复制的,其将插入的核酸分子转移到宿主细胞之中和/或之间。该术语包括主要功能为将DNA或RNA插入细胞(例如,染色体整合)的载体,主要功能是复制DNA或RNA的复制载体,和功能是转录和/或翻译DNA或RNA的表达载体。还包括提供多于一个上述功能的载体。
“表达载体”是多核苷酸,其在引入合适的宿主细胞后能够被转录和翻译为多肽。“表达系统”通常指包括表达载体的适当宿主细胞,所述表达载体的功能是产生所需的表达产物。
按照本发明的二价双特异性抗体优选通过重组手段生成。所述方法是本领域中普遍已知的,且包括在原核和真核细胞中的蛋白质表达及随后分离抗体多肽和通常纯化到药用纯度。为了蛋白质表达,通过标准方法将编码轻链和重链的核酸或其片段插入表达载体。表达在合适的原核或真核宿主细胞如CHO细胞,NS0细胞,SP2/0细胞,HEK293细胞,COS细胞,酵母或大肠杆菌(E.coli)细胞中进行,且从所述细胞(溶胞后的上清液或细胞)中回收抗体。二价双特异性抗体可以以完整细胞、以细胞裂解物或以部分纯化或基本纯形式存在。通过标准技术,包括碱/SDS处理,柱层析法和本领域中其他公知技术进行纯化,从而消除其他细胞成分或其他污染物,例如其他细胞核酸或蛋白。参见Ausubel,F.,等.,ed.,Current Protocolsin Molecular Biology(当前分子生物学方案),Greene Publishing and WileyInterscience(Greene出版和Wiley交叉科学),纽约(1987)。
在NS0细胞中的表达记述在,例如,Barnes,L.M.,等.,Cytotechnology(细胞技术学)32(2000)109-123;和Barnes,L.M.,等.,Biotech.Bioeng.(生物技术和生物工程)73(2001)261-270中。瞬时表达记述在,例如,Durocher,Y.,等.,Nucl.Acids.Res.(核酸研究)30(2002)E9中。可变结构域的克隆记述在Orlandi,R.,等.,Proc.Natl.Acad.Sci.USA(美国国家科学院学报)86(1989)3833-3837;Carter,P.,等.,Proc.Natl.Acad.Sci.USA 89(1992)4285-4289;和Norderhaug,L.,等.,J.Immunol.Methods(免疫学方法杂志)204(1997)77-87中。优选的瞬时表达系统(HEK 293)记述在Schlaeger,E.-J.,和Christensen,K.,Cytotechnology(细胞技术学)30(1999)71-83中和Schlaeger,E.-J.,J.Immunol.Methods(免疫学方法杂志)194(1996)191-199中。
适合于原核生物的控制序列,例如,包括启动子,任选操纵子序列,和核糖体结合位点。已知真核细胞利用启动子、增强子和聚腺苷酸化信号。
核酸在被置于与另一个核酸序列的功能关系中时,是“可操作地连接的”。例如,前序列或分泌前导序列的DNA与多肽的DNA可操作地连接,条件是其表达为参与多肽分泌的前蛋白;启动子或增强子与编码序列可操作地连接,条件是其影响序列的转录;或核糖体结合位点与编码序列可操作地连接,条件是其被定位为促进翻译。一般地,“可操作地连接的”意指被连接的DNA序列是连续的,且在分泌前导序列的情形中,是连续的且在可读框中。然而,增强子不必须是连续的。连接通过在方便的限制性位点处的连接来实现。如果所述位点不存在,则合成的寡核苷酸接合体或连接体根据常规实践使用。
通过常规免疫球蛋白纯化程序,诸如例如,蛋白A-琼脂糖,羟磷灰石层析法,凝胶电泳,透析,或亲合层析法,从培养基中适当分离二价双特异性抗体。编码单克隆抗体的DNA和RNA容易利用常规程序分离和测序。杂交瘤细胞可以起所述DNA和RNA来源的作用。一旦分离后,可以将DNA插入到表达载体中,所述表达载体随后转染到否则不产生免疫球蛋白的宿主细胞诸如HEK 293细胞,CHO细胞,或骨髓瘤细胞中,以在宿主细胞中获得重组单克隆抗体的合成。
二价双特异性抗体的氨基酸序列变体(或突变体)通过将适当的核苷酸改变引入到抗体DNA中,或通过核苷酸合成来制备。然而,这样的修饰仅能在非常有限的范围内,例如如上所述的范围内进行。另外,所述修饰不改变上述抗体特征,诸如IgG同种型和抗原结合,但可以提高重组产物的产率、蛋白稳定性或促进纯化。
提供以下实施例、序列表和附图来帮助理解本发明,本发明的真正范围在所附权利要求中描述。理解在不偏离本发明精神的条件下可以对所述程序进行改变。
序列表
SEQ ID NO:1野生型<IGF-1R>抗体重链的氨基酸序列
SEQ ID NO:2野生型<IGF-1R>抗体轻链的氨基酸序列
SEQ ID NO:3<IGF-1R>CL-CH1交换抗体的重链*(HC*)的氨基酸序列,其中重链结构域CH1被替换为轻链结构域CL。
SEQ ID NO:4<IGF-1R>CL-CH1交换抗体的轻链*(LC*)的氨基酸序列,其中轻链结构域CL被替换为重链结构域CH1。
SEQ ID NO:5 IGF-1R胞外域His-链霉亲和素结合肽-标记物(IGF-1R-His-SBP ECD)的氨基酸序列
SEQ ID NO:6野生型ANGPT2<ANGPT2>抗体重链的氨基酸序列
SEQ ID NO:7野生型ANGPT2<ANGPT2>抗体轻链的氨基酸序列
SEQ ID NO:8用于凸起-进入-孔洞技术中的具有T366W交换的CH3结构域(凸起)的氨基酸序列
SEQ ID NO:9用于凸起-进入-孔洞技术中的具有T366S,L368A,Y407V交换的CH3结构域(孔洞)的氨基酸序列
SEQ ID NO:10 IGF-1R胞外域His-链霉亲和素结合肽-标记物(IGF-1R-His-SBP ECD)的氨基酸序列
附图说明
图1 IgG,即天然存在的特异于一种具有两对重链和轻链的抗原的完整抗体的示意图,所述重链和轻链包含处于典型顺序的可变结构域和恒定结构域。
图2 二价双特异性抗体的示意图,所述二价双特异性抗体包括:a)特异性结合第一抗原的抗体的轻链和重链;和b)特异性结合第二抗原的抗体的轻链和重链,其中恒定结构域CL和CH1相互替换。
图3 二价双特异性抗体的示意图,所述二价双特异性抗体包括:a)特异性结合第一抗原的抗体的轻链和重链;和b)特异性结合第二抗原的抗体的轻链和重链,其中恒定结构域CL和CH1相互替换,且其中通过凸起-进入-孔洞技术改变两条重链的CH3结构域。
图4 二价双特异性抗体的示意图,所述二价双特异性抗体包括:a)特异性结合第一抗原的抗体的轻链和重链;和b)特异性结合第二抗原的抗体的轻链和重链,其中恒定结构域CL和CH1相互替换,且其中两条重链的恒定重链结构域CH3之一被替换为恒定重链结构域CH1,且另一个恒定重链结构域CH3被替换为恒定轻链结构域CL。
图5 <IGF-1R>CL-CH1交换抗体(具有κ恒定轻链结构域CL)的重链**<IGF-1R>HC**的蛋白序列图
图6 <IGF-1R>CL-CH1交换抗体的轻链**<IGF-1R>LC**的蛋白序列图
图7 重链**<IGF-1R>HC**表达载体pUC-HC*-IGF-1R的质粒图谱
图8 轻链**<IGF-1R>LC**表达载体pUC-LC*-IGF-1R的质粒图谱
图9 4700-Hyg-OriP表达载体的质粒图谱
图10 对于I24 IGF-1R表达细胞进行的用于检测功能性双特异性<ANGPT2-IGF-1R>CL-CH1交换抗体的存在的细胞FACSIGF-1R-ANGPT2桥连测定的测定原理
图11 示范IGF-1R ECD Biacore
图12 纯化的具有HC*和LC*的单特异性二价<IGF-1R>CL-CH1交换抗体(IgG1*)的SDS-PAGE和大小排阻层析,其是从瞬时转染HEK293-F细胞后的细胞培养物上清液中分离的。
图13 单特异性<IGF-1R>CL-CH1交换抗体和野生型<IGF-1R>抗体在基于ELISA的结合测定中与IGF-1R ECD的结合。
图14 从来自瞬时转染的HEK293-F细胞的细胞培养物上清液中纯化的<ANGPT2-IGF-1R>CL-CH1交换抗体混合物的SDS-PAGE和大小排阻层析。
图15 对于I24 IGF-1R表达细胞进行的用于检测纯化的抗体混合物中存在功能性双特异性<ANGPT2-IGF-1R>CL-CH1交换抗体的细胞FACSIGF-1R-ANGPT2桥连测定的样品A-F的结果:纯化的蛋白样品A-F:
A=未处理的I24
B=I24+2μg/mL hANGPT2+hIgG同种型
C=I24+2μg/mL hANGPT2+来自<IGF-1R>CL-CH1交换
抗体和<ANGPT2>野生型抗体的共表达的、包括双特异性
<ANGPT2-IGF-1R>CL-CH1交换抗体的混合物
D:不存在
E=I24+2μg/mL hANGPT2+<ANGPT2>野生型抗体
F=I24+2μg/mL hANGPT2+<IGF-1R>野生型抗体
实施例
材料和一般方法
关于人免疫球蛋白轻链和重链的核苷酸序列的一般信息在Kabat,E.A.,等.,有免疫学意义的蛋白质序列(Sequences of Proteins of ImmunologicalInterest),第5版,公众健康服务,国家健康研究所(Public Health Service,National Institutes of Health),Bethesda,MD.(1991))中提供。按照EU编号对抗体链的氨基酸进行编号和引用(Edelman,G.M.,等.,Proc.Natl.Acad.Sci.USA 63(1969)78-85;Kabat,E.A.,等.,有免疫学意义的蛋白质序列(Sequences of Proteins of Immunological Interest),第5版,公众健康服务,国家健康研究所(Public Health Service,National Institutes of Health),Bethesda,MD.(1991))。
重组DNA技术
使用标准方法操作DNA,如Sambrook,J.等.,Molecular cloning:Alaboratory manual(分子克隆:实验室手册);Cold Spring Harbor LaboratoryPress(冷泉港实验室出版社),Cold Spring Harbor(冷泉港),纽约,1989中所述。分子生物学试剂按照制造商说明使用。
基因合成
所需基因区段由通过化学合成制备的寡核苷酸制备。侧邻单个限制性内切酶切割位点的600-1800bp长的基因区段通过寡核苷酸的退火和连接来装配,包括PCR扩增,并随后通过所指出的限制位点例如KpnI/SacI或AscI/PacI克隆到基于pGA4的克隆载体的pPCRScript(Stratagene)中。亚克隆基因片段的DNA序列通过DNA测序验证。基因合成片段按照Geneart的给定说明书(Regensburg,德国)来订购。
DNA序列测定
DNA序列通过在MediGenomix GmbH(Martinsried,德国)或Sequiserve GmbH(Vaterstetten,德国)进行的双链测序来测定。
DNA和蛋白序列分析和序列数据管理
GCG(Genetics Computer Group(遗传学计算小组),麦迪逊,威斯康星)的软件包版本10.2和Infomax载体NT1高级组(Infomax’s Vector NT1Advance suite)版本8.0用于序列构建、作图、分析、注解和说明。
表达载体
为了表达所述抗体,应用用于基于具有CMV-内含子A启动子的cDNA组构或基于具有CMV启动子的基因组组构的(例如在HEK293 EBNA或HEK293-F)细胞中瞬时表达的表达质粒的变体。
除抗体表达盒以外,所述载体包括:
-复制起点,其容许该质粒在大肠杆菌中复制,和
-β-内酰胺酶基因,其在大肠杆菌中赋予氨苄青霉素抗性。抗体基因的转录单元由以下元件组成:
-5’末端处的独特限制位点
-来自人巨细胞病毒的立即早期增强子和启动子,
-在cDNA组构的情形中,随后是内含子A序列,
-人抗体基因的5’-非翻译区,
-免疫球蛋白重链信号序列,
-人抗体链(野生型或具有结构域交换)作为cDNA或作为具有免疫球蛋白外显子-内含子组构的基因组组构
-具有聚腺苷酸化信号序列的3’非翻译区,和
-3’末端处的独特限制位点。
如下所述的包括所述抗体链的融合基因通过PCR和/或基因合成产生并使用已知的重组方法和技术来装配,所述重组方法和技术通过在各种载体中例如利用独特限制位点来连接相应的核酸区段来实现。亚克隆的核酸序列通过DNA测序来验证。为了瞬时转染,通过来自转化的大肠杆菌培养物的质粒制备物来制备更大量的质粒(Nucleobond AX,Macherey-Nagel)。
细胞培养技术
___标准细胞培养技术如Current Protocols in Cell Biology(当前细胞生物学方案)(2000),Bonifacino,J.S.,Dasso,M.,Harford,J.B.,Lippincott-Schwartz,J.和Yamada,K.M.(编),John Wiley & Sons,Inc中所述来使用。
双特异性抗体通过在贴壁生长的HEK293-EBNA中或在悬浮生长的HEK29-F细胞中瞬时共转染各种表达质粒来表达,如下所述。
HEK293-EBNA系统中的瞬时转染
双特异性抗体通过在贴壁生长的HEK293-EBNA细胞(表达EB病毒核抗原的人胚肾细胞系293;美国典型培养物中心,保藏号ATCC #CRL-10852,Lot.959 218)中瞬时共转染各种表达质粒(例如编码重链和修饰的重链,以及相应的轻链和修饰的轻链)来表达,所述细胞是在增补了10%超低IgG FCS(胎牛血清,Gibco),2mM L-谷氨酰胺(Gibco),和250μg/ml遗传霉素(Gibco)的DMEM(Dulbecco’s改进的Eagle’s培养基(Dulbecco’s modified Eagle’s medium,Gibco))中培养的。为了转染,FuGENETM 6转染试剂(Roche Molecular Biochemicals(罗氏分子生物化学))按照FuGENETM试剂(μl)与DNA(μg)的比率为4∶1(在3∶1~6∶1的范围内)来使用。利用范围在1∶2~2∶1的摩尔比为1∶1(等摩尔)的编码(修饰的和野生型)轻链和重链的质粒,由各个质粒来分别表达蛋白。在第3天,用L-谷氨酰胺ad 4mM,葡萄糖[西格玛(Sigma)]和NAA[Gibco]饲养细胞。转染后第5-11天通过离心收获包含细胞培养物上清液的双特异性抗体并保存在-20℃。关于人免疫球蛋白在例如HEK293细胞中的重组表达的一般信息在Meissner,P.等.,Biotechnol.Bioeng.(生物技术和生物工程)75(2001)197-203中给出。
HEK293-F系统中的瞬时转染
双特异性抗体通过利用HEK293-F系统(Invitrogen)按照制造商的说明瞬时转染各种质粒(例如编码重链和修饰的重链,以及相应的轻链和修饰的轻链)来生成。简言之,用四种表达质粒和293fectin或fectin(Invitrogen)的混合物来转染在摇瓶中或在搅拌发酵器中在无血清FreeStyle 293表达培养基(Invitrogen)中悬浮生长的HEK293-F细胞(Invitrogen)。对于2L摇瓶(Corning),以1.0E*6细胞/mL的密度接种600mL HEK293-F细胞并以120rpm,8% CO2温育。第二天,用ca.42mL的混合物,以ca.1.5E*6细胞/mL的细胞密度来转染细胞,所述混合物为A)具有600μg分别编码等摩尔比的重链或修饰的重链,和相应轻链的总质粒DNA(1μg/mL)的20mLOpti-MEM(Invitrogen)和B)20ml Opti-MEM+1.2mL 293 fectin或fectin(2μl/mL)的混合物。在发酵过程中根据葡萄糖的消耗,添加葡萄糖溶液。在5-10天后收获包含分泌的抗体的上清液,并且直接由上清液纯化抗体或冷冻并保存上清液。
蛋白测定
纯化的抗体和衍生物的蛋白浓度通过利用基于氨基酸序列计算的摩尔消光系数、确定280nm处的光密度(OD)来确定,其依照Pace等,ProteinScience(蛋白质科学),1995,4,2411-1423来进行。
上清液中抗体浓度的确定
抗体和衍生物在细胞培养物上清液中的浓度通过使用蛋白质A琼脂糖-珠(Roche(罗氏))的免疫沉淀法来评估。60μL蛋白质A琼脂糖珠在TBS-NP40(50mM Tris,pH 7.5,150mM NaCl,1% Nonidet-P40)清洗三次。随后,将1-15mL细胞培养物上清液加样于在TBS-NP40中预平衡的蛋白质A琼脂糖珠。室温下温育1h后,将该珠在Ultrafree-MC-过滤柱(Amicon)上用0.5mL TBS-NP40清洗1次,用0.5mL 2x磷酸盐缓冲液(2xPBS,Roche(罗氏))清洗2次并用0.5mL 100mM Na-柠檬酸盐pH 5,0简单清洗4次。通过添加35μl NuPAGELDS样品缓冲液(Invitrogen)洗脱结合的抗体。样品的一半分别与NuPAGE样品还原剂混合或保持未还原,并在70℃加热10min。因此,将5-30μl应用于4-12% NuPAGEBis-Tris SDS-PAGE(Invitrogen)(具有MOPS缓冲液,以用于非还原的SDS-PAGE,和具有NuPAGE抗氧化运行缓冲液添加剂(Invitrogen)的MES缓冲液,以用于还原的SDS-PAGE)并用考马斯蓝染色。
抗体和衍生物在细胞培养物上清液中的浓度通过亲合HPLC层析法来定量测量。简言之,将包含结合蛋白质A的抗体和衍生物的细胞培养物上清液加样于处于200mM KH2PO4,100mM柠檬酸钠,pH 7.4中的应用生物系统(Applied Biosystems)Poros A/20柱,并在安捷伦(Agilent)HPLC 1100系统上用200mM NaCl,100mM柠檬酸,pH 2,5洗脱。洗脱的蛋白通过UV吸光度和峰面积积分来量化。纯化的标准IgG1抗体起标准物的作用。
备选地,抗体和衍生物在细胞培养物上清液中的浓度通过夹心式-IgG-ELISA来测量。简言之,StreptaWell高结合链霉亲和素(StreptaWellHigh Bind Strepatavidin)A-96孔微滴定板(Roche(罗氏))用100μL/孔生物素化的抗人IgG捕获分子F(ab’)2<h-Fcγ>BI(Dianova),以0.1μg/mL在室温下包被1h或备选地在4℃包被过夜,并随后用200μL/孔PBS,0.05%吐温(PBST,Sigma(西格玛))清洗3次。将100μL/孔包含各种抗体的细胞培养物上清液在PBS(Sigma(西格玛))中的稀释物系列加入到孔中并在微滴定板摇动器上,以室温温育1-2h。孔用200μL/孔的PBST清洗三次并且用100μl浓度为0.1μg/mL的F(ab‘)2<hFcγ>POD(Dianova)作为检测抗体,在微滴定板摇动器上,以室温检测结合的抗体1-2h。未结合的检测抗体用200μL/孔的PBST以三次洗掉,并且结合的检测抗体通过添加100μLABTS/孔来检测。在Tecan Fluor分光计上,以405nm的测量波长(参比波长492nm)来进行吸光度的测定。
蛋白质纯化
参考标准流程,从过滤的细胞培养物上清液中纯化蛋白。简言之,将抗体加样于蛋白质A琼脂糖柱(GE healthcare(GE健康护理))并用PBS清洗。在pH 2.8进行抗体洗脱,并随后立即中和样品。在PBS中或在20mM组氨酸,150mM NaCl pH 6.0中,通过大小排阻层析法(Superdex 200,GEhealthcare(GE健康护理))将聚集的蛋白质与单体抗体分开。将单体抗体级分合并,如果需要,利用例如MILLIPORE Amicon Ultra(30MWCO)离心浓缩器浓缩,在-20℃或-80℃冷冻和保存。提供部分样品进行随后的例如通过SDS-PAGE,大小排阻层析法或质谱法进行的蛋白质分析和分析表征。
SDS-PAGE
NuPAGE预制凝胶系统(Invitrogen)按照制造商的说明来使用。具体地,使用10%或4-12% NuPAGENovexBis-TRIS预制(Pre-Cast)凝胶(pH6.4)和NuPAGEMES(还原的凝胶,具有NuPAGE抗氧化运行缓冲液添加剂)或MOPS(未还原的凝胶)运行缓冲液。
分析大小排阻层析法
用于确定抗体聚集和低聚状态的大小排阻层析法是通过HPLC层析法来进行。简言之,将蛋白质A纯化抗体加样于安捷伦(Agilent)HPLC 1100系统上的300mM NaCl,50mM KH2PO4/K2HPO4,pH 7.5中的TosohTSKgel G3000SW柱或Dionex HPLC-系统上的2xPBS中的Superdex 200柱(GE healthcare(GE健康护理))。洗脱的蛋白通过UV吸光度和峰面积的积分来量化。BioRad凝胶过滤标准151-1901起标准物的作用。
质谱法
交换型抗体的总去糖基化质量通过电喷雾离子化质谱法(ESI-MS)来确定和验证。简言之,用处于100mM KH2PO4/K2HPO4,pH 7中的50mUN-糖苷酶F(PNGaseF,ProZyme)在37℃,以蛋白质浓度至多为2mg/ml来将100μg纯化的抗体去糖基化达12-24h,并随后通过Sephadex G25柱(GEhealthcare(GE健康护理))上的HPLC来脱盐。各种重链和轻链的质量在去糖基化和还原后通过ESI-MS来确定。简言之,处于115μl中的50μg抗体用60μl 1M TCEP和50μl 8M盐酸胍来温育并随后脱盐。总质量和还原的重链和轻链的质量通过在装配了NanoMate源的Q-Star Elite MS系统上进行ESI-MS来确定。
IGF-1R ECD结合ELISA
产生的抗体的结合特性在使用IGF-1R胞外结构域(ECD)的ELISA测定中评估。为了该目的,将IGF-1R的胞外结构域(残基1-462),其包括与N-端His-链霉亲和素结合肽-标记物(His-SBP)融合的α链(根据McKern等.,1997;Ward等.,2001)的人IGF-IR胞外域的天然前导序列和LI-富含半胱氨酸的-12结构域,克隆到pcDNA3载体衍生物中并在HEK293F细胞中瞬时表达。IGF-1R-His-SBP ECD的蛋白质序列在SEQ ID NO:10中给出。StreptaWell高结合链霉亲和素A-96孔微滴定板(Roche(罗氏))用100μL/孔的含有可溶性IGF-1R-ECD-SBP融合蛋白的细胞培养物上清液在4℃包被过夜并用200μL/孔的PBS,0.05%吐温(PBST,Sigma(西格玛))清洗三次。随后,将100μL/孔处于PBS(Sigma(西格玛))(包含1%BSA(级分V,Roche(罗氏))中的各种抗体的稀释物系列和作为参考的野生型<IGF-1R>抗体加入到孔中并在微滴定板摇动器上在室温下温育1-2h。对于稀释物系列,将等量的纯化的抗体应用于所述孔。该孔用200μL/孔PBST清洗三次并且结合的抗体用浓度为0.1μg/mL(1∶8000)的100μL/孔的F(ab‘)2<hFcγ>POD(Dianova)作为检测抗体在微滴定板摇动器上,以室温检测1-2h。未结合的检测抗体使用200μL/孔的PBST,洗掉三次并且结合的检测抗体通过添加100μL ABTS/孔来检测。在Tecan Fluor分光计上,以405nm的测量波长(参比波长492nm)来进行吸光度的确定。
IGF-1R ECD Biacore
产生的抗体与人IGF-1R ECD的结合也通过利用BIACORE T100仪器(GE healthcare Biosciences AB(GE健康护理生物科学AB),Uppsala,瑞典)的表面等离振子共振来研究。简言之,为了亲合测量,通过用于呈递针对Fc标记的人IGF-1R ECD抗体的胺偶联在CM5芯片上固定山羊-抗-人IgG,JIR 109-005-098抗体。结合在HBS缓冲液(HBS-P(10mM HEPES,150mM NaCl,0.005%吐温20,ph 7.4)中,25℃测量。将IGF-1R ECD(R&D系统或内部纯化的)以不同浓度加入到溶液中。缔合通过IGF-1R ECD注射80秒-3分钟来测量;解离通过用HBS缓冲液清洗芯片表面3-10分钟来测量且KD值利用1∶1朗缪尔结合模型(Langmuir binding model)来评估。由于<IGF-1R>抗体的低装载密度和捕获水平,获得单价IGF-1R ECD结合。从样品曲线中减去阴性对照数据(例如缓冲液曲线),以用于校正系统固有的基线漂移和用于噪音信号的降低。使用Biacore T100评估软件版本1.1.1来分析S曲线(sensorgrams)和用于计算亲合数据。图11显示Biacore测定概要。
实施例1:
制备、表达、纯化和表征单特异性二价<IGF-1R>抗体,其中可变结构域CL和CH1相互替换(本文中缩写为<IGF-1R>CL-CH1交换抗体)。
实施例1A
制备关于单特异性二价<IGF-1R>CL-CH1交换抗体的表达质粒
本实施例中所述的包括各种前导序列的单特异性二价<IGF-1R>CL-CH1交换抗体的重链和轻链可变结构域的序列源自如WO 2005/005635中所述的人<IGF-1R>抗体重链(SEQ ID NO:1,质粒4843-pUC-HC-IGF-1R)和轻链(SEQ ID NO:2,质粒4842-pUC-LC-IGF-1R),且重链和轻链恒定结构域源自人抗体(C-κ和IgG1)。
将编码<IGF-1R>抗体前导序列、重链可变结构域(VH)和人κ-轻链结构域(CL)的基因区段连接并与人γ1-重链恒定结构域(铰链-CH2-CH3)的Fc结构域的5’末端融合。编码通过用CL结构域交换CH1结构域(CH1-CL交换)获得的各种融合蛋白的DNA是通过基因合成产生的,并在以下表示为<IGF-1R>HC**(SEQ ID NO:3)。
<IGF-1R>抗体前导序列,轻链可变结构域(VL)和人γ1-重链恒定结构域(CH1)的基因区段作为独立的链连接。编码通过用CH1结构域交换CL结构域(CL-CH1交换)获得的各种融合蛋白的DNA是通过基因合成产生的,并在以下表示为<IGF-1R>LC**(SEQ ID NO:4)。
图5和图6显示修饰的<IGF-1R>HC**重链和修饰的<IGF-1R>LC**轻链的蛋白质序列的示意图。
以下,简要描述各种表达载体:
载体pUC-HC**-IGF-1R
载体pUC-HC**-IGF-1R是例如用于在HEK293(EBNA)细胞中瞬时表达CL-CH1交换<IGF-1R>重链HC**(cDNA组建的表达盒;具有CMV-内含子A)或用于在CHO细胞中稳定表达的表达质粒.
除<IGF-1R>HC**表达盒以外,该载体包含:
-来自载体pUC18的复制起点,其容许在大肠杆菌中复制该质粒,和
-β-内酰胺酶基因,其在大肠杆菌中赋予氨苄青霉素抗性。
<IGF-1R>HC**基因的转录单元由以下元件组成:
-5’末端处的AscI限制位点
-来自人巨细胞病毒的即时早期增强子和启动子,
-随后的内含子A序列,
-人抗体基因的5’-非翻译区,
-免疫球蛋白轻链信号序列,
-人<IGF-1R>成熟HC**链,其编码人重链可变结构域(VH)和人κ-轻链恒定结构域(CL)的融合物,其与人γ1-重链恒定结构域(铰链-CH2-CH3)的Fc结构域的5’末端融合
-具有聚腺苷酸化信号序列的3’非翻译区,和
-3’末端处的限制位点SgrAI。
重链**CL-CH1交换<IGF-1R>HC**表达载体pUC-HC**-IGF-1R的质粒图谱显示在图7中。<IGF-1R>HC**(包括信号序列)的氨基酸序列在SEQ ID NO:3中提供。
载体pUC-LC**-IGF-1R
载体pUC-LC**-IGF-1R是例如用于在HEK293(EBNA)细胞中瞬时表达CL-CH1交换<IGF-1R>轻链LC**(cDNA组建的表达盒;具有CMV-内含子A)或用于在CHO细胞中稳定表达的表达质粒.
除<IGF-1R>LC**表达盒以外,该载体包含:
-来自载体pUC18的复制起点,其容许在大肠杆菌中复制该质粒,和
-β-内酰胺酶基因,其在大肠杆菌中赋予氨苄青霉素抗性。
<IGF-1R>LC**基因的转录单元由以下元件组成:
-5’末端处的限制位点Sse8387I
-来自人巨细胞病毒的即时早期增强子和启动子,
-随后的内含子A序列,
-人抗体基因的5’-非翻译区,
-免疫球蛋白重链信号序列,
-人<IGF-1R>抗体成熟LC**链,其编码人轻链可变结构域(VL)和人γ1-重链恒定结构域(CH1)的融合物
-具有聚腺苷酸化信号序列的3’非翻译区,和
-3’末端处的限制位点SalI和FseI。
轻链**CL-CH1交换<IGF-1R>LC**表达载体pUC-LC**-IGF-1R的质粒图谱显示在图8中。<IGF-1R>LC**(包括信号序列)的氨基酸序列在SEQ ID NO:4中提供。
质粒pUC-HC**-IGF-1R和pUC-LC**-IGF-1R可以用于瞬时或稳定共转染到例如HEK293,HEK293EBNA或CHO细胞(2-载体系统)中。为了比较的原因,野生型<IGF-1R>抗体由与该实施例中所述的那些类似的质粒4842-pUC-LC-IGF-1R(SEQ ID NO:2)和4843-pUC-HC-IGF-1R(SEQ IDNO:1)瞬时表达。
为了在HEK293 EBNA细胞中获得瞬时表达的较高表达水平,可以将<IGF-1R>HC**表达盒经由AscI、SgrAI位点亚克隆和将<IGF-1R>LC**表达盒经由Sse8387I和FseI位点亚克隆到包含以下各项的4700pUC-Hyg_OriP表达载体中:
-OriP元件,和
-潮霉素抗性基因,作为可检测标记物。
可以将重链和轻链转录单元亚克隆到2个独立的4700-pUC-Hyg-OriP载体中,从而进行共转染(2-载体系统),或可以将它们克隆到一个共同的4700-pUC-Hyg-OriP载体(1-载体系统)中,从而随后用由此产生的载体进行瞬时或稳定转染。图9显示基础载体4700-pUC-OriP的质粒图谱。
实施例1B
制备单特异性二价<IGF-1R>CL-CH1交换抗体表达质粒
使用已知的重组方法和技术,通过连接相应的核酸区段来装配包括野生型<IGF-1R>抗体的交换的Fab序列的<IGF-1R>融合基因(HC**和LC**融合基因)。
编码IGF-1R HC**和LC**的核酸序列分别通过化学合成来合成并随后在Geneart(Regensburg,德国),克隆到基于pPCRScript(Stratagene)的pGA4克隆载体中。将编码IGF-1R HC*的表达盒经由PvuII和BmgBI限制位点连接到各种大肠杆菌质粒中,以生成最终载体pUC-HC**-IGF-1R;将编码各种IGF-1R LC*的表达盒经由PvuII和SalI限制位点连接到各种大肠杆菌质粒中,以生成最终载体pUC-LC**-IGF-1R。亚克隆的核酸序列通过DNA测序来验证。为了瞬时和稳定转染,通过来自转化的大肠杆菌培养物的质粒制备物来制备更大量的质粒(Nucleobond AX,Macherey-Nagel)。
实施例1C
瞬时表达单特异性二价<IGF-1R>CL-CH1交换抗体,通过质谱法纯化和证实身份
重组<IGF-1R>CL-CH1交换抗体通过在HEK293-F悬浮细胞中瞬时共转染质粒pUC-HC**-IGF-1R和pUC-LC**-IGF-1R来表达,如上所述。
以上所述,通过相应的蛋白质A亲合层析法,从过滤的细胞培养物上清液中纯化表达和分泌的单特异性二价<IGF-1R>CL-CH1交换抗体。简言之,来自瞬时转染的包含<IGF-1R>CL-CH1交换抗体的细胞培养物上清液通过离心和过滤来净化并加样于用PBS缓冲液(10mM Na2HPO4,1mMKH2PO4,137mM NaCl和2.7mM KCl,pH 7.4)平衡的蛋白质A HiTrapMabSelect Xtra柱(GE healthcare(GE健康护理))。用PBS平衡缓冲液及随后的0.1M柠檬酸钠缓冲液,pH 5.5洗出未结合的蛋白,并用PBS清洗。用100mM柠檬酸钠,pH 2,8实现抗体的洗脱,随后立即用300μl 2M TrispH 9.0/2ml级分来中和样品。在20mM组氨酸,150mM NaCl pH 6.0中,通过在HiLoad 26/60 Superdex 200制备级柱(GE healthcare(GE健康护理))上进行的大小排阻层析法将聚集的蛋白质与单体抗体分开,且随后利用MILLIPORE Amicon Ultra-15离心浓缩器浓缩单体抗体级分。在-20℃或-80℃下冷冻和保存<IGF-1R>CL-CH1交换抗体。<IGF-1R>CL-CH1交换抗体的完整性通过存在和缺乏还原剂的SDS-PAGE和随后用考马斯亮蓝染色来分析,如上所述。<IGF-1R>CL-CH1交换抗体的单体状态通过分析大小排阻层析法证实。(图12)提供表征的样品,以进行随后的蛋白质分析和功能表征。ESI质谱法验证完全去糖基化的<IGF-1R>CL-CH1交换抗体的理论分子量。
实施例1D
在IGF-1R ECD结合ELISA中和通过Biacore分析单特异性二价<IGF-1R>CL-CH1交换抗体的IGF-1R结合特性
单特异性二价<IGF-1R>CL-CH1交换抗体的结合特性在使用如上所述的IGF-1R胞外结构域(ECD)的ELISA测定中评估。为了该目的,将IGF-1R的胞外结构域(残基1-462,其包括与N-端His-链霉亲和素结合肽-标记物(His-SBP)融合的α链(根据McKern等.,1997;Ward等.,2001)的人IGF-IR胞外域的天然前导序列和LI-富含半胱氨酸的-12结构域)克隆到pcDNA3载体衍生物中并在HEK293F细胞中瞬时表达。IGF-1R-His-SBPECD的蛋白质序列在上文中给出。获得的滴定曲线显示<IGF-1R>CL-CH1交换抗体是功能性的并在该方法的误差范围内表现出与野生型<IGF-1R>抗体相当的结合特性和动力学,并因此似乎是完全功能性的(图13)。
这些发现由关于各种纯化的抗体的Biacore数据来确证,其显示单特异性二价<IGF-1R>CL-CH1交换抗体(具有KD值为3.7pM)具有与初始野生型<IGF-1R>抗体(其具有KD值为3.2pM)相当的对IGF-1R ECD的亲和性和结合动力学。
实施例1G
通过使用过表达IGF-1R的I24细胞的FACS,分析单特异性二价<IGF-1R>CL-CH1交换抗体的IGF-1R结合特性
为了验证,通过FACS研究<IGF-1R>CL-CH1交换抗体与在I24细胞(表达重组人IGF-1R的NIH3T3细胞,Roche(罗氏))表面上过表达的IGF-1R的结合活性。简言之,5x10E5 I24细胞/FACS管用纯化的<IGF-1R>CL-CH1交换抗体的稀释物和作为参考的野生型<IGF-1R>抗体来温育,并在冰上温育1h。未结合的抗体用4ml冰冷PBS(Gibco)+2%FCS(Gibco)洗去。随后,离心细胞(5min,400g)并且在避光条件下,用F(ab‘)2<hFcγ>PE缀合物(Dianova)在冰上检测结合的抗体1h。未结合的检测抗体用4ml冰冷PBS(Gibco)+2%FCS(Gibco)洗去。随后,对细胞进行离心(5min,400g),重新悬浮在300-500μL PBS中,并且在FACSCalibur或FACS Canto(BD(FL2通道,10.000个细胞/采集)上量化结合的检测抗体。在实验过程中,包括各自的同种型对照,以排除任何非特异性结合事件。<IGF-1R>CL-CH1交换抗体和野生型<IGF-1R>参考抗体与I24细胞上的IGF-1R的结合导致相当的平均荧光强度的浓度依赖性变化。
实施例2:
描述单特异性二价<ANGPT2>野生型抗体
实施例2A
制备单特异性二价<ANGPT2>野生型抗体的表达质粒
本实施例中所述的包括各种前导序列的单特异性二价ANGPT2<ANGPT2>野生型抗体的重链和轻链可变结构域的序列源自如WO2006/045049中所述的人<ANGPT2>抗体重链(SEQ ID NO:6)和轻链(SEQID NO:7),且重链和轻链恒定结构域源自人抗体(C-κ和IgG1)。
将野生型<ANGPT2>抗体克隆到与前述实施例1A中所述的载体类似的质粒SB04-pUC-HC-ANGPT2(SEQ ID NO:6)和SB06-pUC-LC-ANGPT2(SEQ ID NO:7)中。
为了比较的原因和为了共表达实验(见实施例3),由质粒SB04-pUC-HC-ANGPT2和SB06-pUC-LC-ANGPT2瞬时(共-)表达野生型<ANGPT2>抗体。
实施例2B
制备单特异性二价<ANGPT2>野生型抗体的表达质粒
编码ANGPT2>HC和LC的核酸序列分别通过化学合成来合成并随后在Geneart(Regensburg,德国),克隆到基于pPCRScript(Stratagene)的pGA4克隆载体中。将编码<ANGPT2>HC的表达盒克隆到各自的大肠杆菌质粒中,以生成最终载体SB04-pUC-HC-ANGPT2;将编码各种<ANGPT2>LC的表达盒克隆到各自的大肠杆菌质粒中,以生成最终载体SB06-pUC-LC-ANGPT2。亚克隆的核酸序列通过DNA测序来验证。为了瞬时和稳定转染,通过来自转化的大肠杆菌培养物的质粒制备物来制备更大量的质粒(Nucleobond AX,Macherey-Nagel)。
实施例3
表达双特异性二价<ANGPT2-IGF-1R>抗体,其中在特异性结合IGF-1R的重链和轻链中,恒定结构域CL和CH1相互替换(本文中缩写为<ANGPT2-IGF-1R>CL-CH1交换抗体)。
实施例3A
在HEK293 EBNA细胞中瞬间共表达和纯化<IGF-1R>CL-CH1交换抗体和<ANGPT2>野生型抗体以生成双特异性<ANGPT2-IGF-1R>CL-CH1交换抗体
为了生成通过位于一侧的<IGF-1R>CL-CH1交换抗体Fab识别IGF-1R并通过位于另一侧的<ANGPT2>野生型Fab区识别<ANGPT2>的功能性双特异性抗体,2个编码<IGF-1R>CL-CH1交换抗体(实施例1A)的表达质粒与2个编码<ANGPT2>野生型抗体的表达质粒(实施例2A)共表达。假设野生型重链HC和CL-CH1交换重链HC**统计学关联,这导致双特异性二价<IGF-1R-ANGPT2>CL-CH1交换抗体的生成。在两种抗体同等充分表达并不考虑副产物的假设下,这应该导致1∶2∶1比率的三种主要产物:A)<IGF-1R>CL-CH1交换抗体,B)双特异性<IGF-1R-ANGPT2>CL-CH1交换抗体和C)<ANGPT2>野生型抗体。可以预期若干副产物。然而,由于仅交换CL-CH1结构域,所以副产物的频率与完整Fab交换型相比应该降低。请注意,由于<ANGPT2>野生型抗体表现出比<IGF-1R>野生型和<IGF-1R>CL-CH1交换抗体更高的表达瞬时表达产率,所以<ANGPT2>野生型抗体质粒和<IGF-1R>CL-CH1交换抗体质粒的比率向着有利于表达<ANGPT2>野生型抗体的方向偏移。
为了生成主要产物A)<IGF-1R>CL-CH1交换抗体,B)双特异性<ANGPT2-IGF-1R>CL-CH1交换抗体和C)<ANGPT2>野生型抗体的混合物,在如上所述悬浮的HEK293-F细胞中共转染四种质粒pUC-HC**-IGF-1R和pUC-LC**-IGF-1R和质粒SB04-pUC-HC-ANGPT2和SB06-pUC-LC-ANGPT2。捕获的上清液包含主要产物A)<IGF-1R>CL-CH1交换抗体,B)双特异性<ANGPT2-IGF-1R>CL-CH1交换抗体和C)<ANGPT2>野生型抗体的混合物,并表示为“双特异性CL-CH1交换混合物”。包含双特异性CL-CH1交换混合物的细胞培养物上清液通过离心捕获并随后如上所述纯化。图14
该抗体混合物的完整性通过存在和缺乏还原剂的SDS-PAGE和随后用考马斯亮蓝染色来分析,如上所述。SDS-PAGE显示制备物中存在2条不同的重链和轻链,如预期地(还原的凝胶)。抗体混合物的单体状态通过分析大小排阻层析法来验证,并显示纯化的抗体种类处于单体状态。提供表征的样品,以进行随后的蛋白分析和功能表征。
实施例3B
在针对I24 IGF-1R表达细胞的细胞FACS桥连测定中检测功能性双特异性<ANGPT2-IGF-1R>CL-CH1交换抗体
为了证实来自实施例3A中所述的瞬时共表达的主要产物A)<IGF-1R>CL-CH1交换抗体,B)双特异性<ANGPT2-IGF-1R>CL-CH1交换抗体和C)<ANGPT2>野生型抗体的纯化双特异性CL-CH1交换混合物中存在功能性双特异性<ANGPT2-IGF-1R>CL-CH1交换抗体,对I24细胞(表达重组人IGF-1R的NIH3T3细胞,Roche(罗氏))进行细胞FACSIGF-1R-ANGPT2桥连测定。该测定的原理在图10中描述。纯化的抗体混合物中存在的双特异性<ANGPT2-IGF-1R>CL-CH1交换抗体能够同时结合I24细胞中的IGF-1R和结合ANGPT2;且因此将用两个对置的Fab区桥连它的两个靶抗原。
简言之,5x10E5 I24细胞/FACS管用全部纯化抗体混合物来温育,并在冰上温育1h(滴定160μg/ml混合物)。将各种纯化抗体野生型<IGF-1R>和<ANGPT2>应用于I24细胞,作为对照。未结合的抗体用4ml冰冷PBS(Gibco)+2%FCS(Gibco)洗去,离心细胞(5min,400g)并且用50μl 2μg/mL人ANGPT2(R&D Systems(R&D系统))在冰上检测结合的双特异性抗体1h。随后,用4ml冰冷PBS(Gibco)+2%FCS(Gibco)一次或两次洗去未结合的ANGPT2,离心细胞(5min,400g)并且用50μl 5μg/mL<ANGPT2>mIgG1-生物素抗体(BAM0981,R&D Systems(R&D系统))在冰上检测结合的ANGPT2达45分钟;备选地,用50μl 5μg/mL mIgG1-生物素-同种型对照(R&D Systems(R&D系统))温育细胞。未结合的检测抗体用4ml冰冷PBS(Gibco)+2%FCS(Gibco)洗去,离心细胞(5min,400g)并且在避光条件下,用50μl 1∶400链霉亲和素-PE缀合物(Invitrogen/Zymed)在冰上检测结合的检测抗体达45分钟。未结合的链霉亲和素-PE缀合物用4ml冰冷PBS(Gibco)+2%FCS(Gibco)洗去。随后,对细胞进行离心(5min,400g),重新悬浮在300-500μL PBS中,并且在FACSCalibur(BD(FL2通道,10.000细胞/采集)上量化结合的链霉亲和素-PE缀合物。在实验过程中,包括各自的同种型对照,以排除任何非特异性结合事件。另外,包括纯化的单特异性二价IgG1抗体<IGF-1R>和<ANGPT2>作为对照。
图15中的结果显示使用来自交换型抗体(<IGF-1R>CL-CH1交换抗体)与野生型抗体(<ANGPT2>野生型抗体)的共表达的纯化抗体交换型混合物(<ANGPT2-IGF-1R>CL-CH1交换抗体)温育导致荧光的显著偏移,这说明存在能够同时结合I24细胞中的IGF-1R和结合ANGPT2的功能性双特异性<ANGPT2-IGF-1R>CL-CH1交换抗体;并由此使用两个对置的Fab区桥连它的两种靶抗原。与此相反,各自的<IGF-1R>和<Ang-2>对照抗体在FACS桥连测定中不引起荧光的偏移。
总之,这些数据显示:通过共表达可以生成各自的野生型和交换型质粒功能性双特异性抗体。通过例如使用凸起-进入-孔洞技术以及二硫键稳定化来迫使野生型和修饰的交换型重链的正确异二聚化(见实施例4),可以提高正确的双特异性抗体的产率。
实施例4
表达具有修饰的CH3结构域(凸起-进入-孔洞)的二价双特异性<ANGPT2-IGF-1R>CL-CH1交换抗体
为了进一步提高双特异性<ANGPT2-IGF-1R>CL-CH1交换抗体的产率,将凸起-进入-孔洞技术应用于<IGF-1R>CL-CH1交换和野生型<ANGPT2>抗体的共表达,以获得同质的和功能性的双特异性抗体制剂。为了该目的,<IGF-1R>CL-CH1交换抗体的重链*HC*中的CH3结构域被替换为具有T366W交换的SEQ ID NO:8的CH3结构域(凸起)且野生型<ANGPT2>抗体的重链中的CH3结构域被替换为具有T366S,L368A,Y407V交换的SEQ ID NO:9的CH3结构域(孔洞),或反之亦然。另外,可以包括二硫键以增加稳定性和产率以及另外的残基形成离子桥并增加异二聚化产率(EP 1870459A1)。
由此生成的具有修饰的CH3结构域(凸起-进入-孔洞)的二价双特异性ANGPT2-IGF-1R>CL-CH1交换抗体的瞬时共表达和纯化如实施例3中所述进行。
应该注意到异二聚化的优化可以例如如下来实现:通过使用不同的凸起-进入-孔洞技术,诸如将另外的二硫键引入CH3结构域中,例如将Y349C引入“凸起链”和将D356C引入“孔洞链”,和/或组合以如EP 1870459A1所述的对凸起残基使用残基R409D;K370E(K409D)和对孔洞残基使用D399K;E357K。
与实施例4类似的,可以制备具有修饰的CH3结构域(凸起-进入-孔洞)的其他二价双特异性CH1-CL交换抗体,其针对ANGPT2和另一种靶抗原(使用上述ANGPT2重链和轻链和针对所述另一种靶标的抗体的CH1-CL交换重链和轻链**HC**和LC**,由此两条重链均通过“凸起-进入-孔洞”修饰),或针对IGF-1R和另一种靶标(利用针对所述另一种靶标的抗体的重链和轻链和上述CH1-CL交换重链和轻链**HC**和LC**,由此两条重链均通过“凸起-进入-孔洞”修饰)。
序列表
<110>霍夫曼-拉罗奇有限公司
<120>二价双特异性抗体
<130>24679 EP
<150>EP 07024865
<151>2007-12-21
<160>10
<170>PatentIn version 3.2
<210>1
<211>467
<212>PRT
<213>人工的
<220>
<223>野生型<IGF-1R>抗体重链的氨基酸序列
<400>1
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
1 5 10 15
Val Gln Cys Gln Val Glu Leu Val Glu Ser Gly Gly Gly Val Val Gln
20 25 30
Pro Gly Arg Ser Gln Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45
Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60
Glu Trp Val Ala Ile Ile Trp Phe Asp Gly Ser Ser Thr Tyr Tyr Ala
65 70 75 80
Asp Ser Val Arg Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
85 90 95
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
100 105 110
Tyr Phe Cys Ala Arg Glu Leu Gly Arg Arg Tyr Phe Asp Leu Trp Gly
115 120 125
Arg Gly Thr Leu Val Ser Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
130 135 140
Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala
145 150 155 160
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
165 170 175
Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
180 185 190
Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
195 200 205
Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
210 215 220
Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys
225 230 235 240
Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
245 250 255
Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
260 265 270
Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
275 280 285
Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
290 295 300
His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
305 310 315 320
Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
325 330 335
Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro A la Pro Ile
340 345 350
Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
355 360 365
Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser
370 375 380
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
385 390 395 400
Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
405 410 415
Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
420 425 430
Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
435 440 445
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
450 455 460
Pro Gly Lys
465
<210>2
<211>235
<212>PRT
<213>人工的
<220>
<223>野生型<IGF-1R>抗体轻链的氨基酸序列
<400>2
Met Glu Ala Pro Ala Gln Leu Leu Phe Leu Leu Leu Leu Trp Leu Pro
1 5 10 15
Asp Thr Thr Gly Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser
20 25 30
Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser
35 40 45
Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro
50 55 60
Arg Leu Leu Ile Tyr Asp Ala Ser Lys Arg Ala Thr Gly Ile Pro Ala
65 70 75 80
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
85 90 95
Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Ser
100 105 110
Lys Trp Pro Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ser Lys
115 120 125
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
130 135 140
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
145 150 155 160
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn A la Leu Gln
165 170 175
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
180 185 190
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
195 200 205
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
210 215 220
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235
<210>3
<211>471
<212>PRT
<213>人工的
<220>
<223><IGF-1R>CL-CH1交换抗体的重链**(HC**)的氨基酸序列,
其中重链结构域CH1被替换为轻链结构域CL
<400>3
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
1 5 10 15
Val Gln Cys Gln Val Glu Leu Val Glu Ser Gly Gly Gly Val Val Gln
20 25 30
Pro Gly Arg Ser Gln Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45
Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60
Glu Trp Val Ala Ile Ile Trp Phe Asp Gly Ser Ser Thr Tyr Tyr Ala
65 70 75 80
Asp Ser Val Arg Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
85 90 95
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
100 105 110
Tyr Phe Cys Ala Arg Glu Leu Gly Arg Arg Tyr Phe Asp Leu Trp Gly
115 120 125
Arg Gly Thr Leu Val Ser Val Ser Ser Ala Ser Val Ala Ala Pro Ser
130 135 140
Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala
145 150 155 160
Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val
165 170 175
Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser
180 185 190
Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr
195 200 205
Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys
210 215 220
Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn
225 230 235 240
Arg Gly Glu Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro A la Pro
245 250 255
Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys
260 265 270
Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val
275 280 285
Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp
290 295 300
Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr
305 310 315 320
Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp
325 330 335
Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu
340 345 350
Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg
355 360 365
Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys
370 375 380
Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp
385 390 395 400
Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys
405 410 415
Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser
420 425 430
Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser
435 440 445
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser
450 455 460
Leu Ser Leu Ser Pro Gly Lys
465 470
<210>4
<211>233
<212>PRT
<213>人工的
<220>
<223><IGF-1R>CL-CH1交换抗体的轻链**(LC**)的氨基酸序列,
其中轻链结构域CL被替换为重链结构域CH1。
<400>4
Met Glu Ala Pro Ala Gln Leu Leu Phe Leu Leu Leu Leu Trp Leu Pro
1 5 10 15
Asp Thr Thr Gly Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser
20 25 30
Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser
35 40 45
Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro
50 55 60
Arg Leu Leu Ile Tyr Asp Ala Ser Lys Arg Ala Thr Gly Ile Pro Ala
65 70 75 80
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
85 90 95
Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Ser
100 105 110
Lys Trp Pro Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ser Lys
115 120 125
Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser
130 135 140
Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys
145 150 155 160
Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly A la Leu
165 170 175
Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu
180 185 190
Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr
195 200 205
Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val
210 215 220
Asp Lys Lys Val Glu Pro Lys Ser Cys
225 230
<210>5
<211>557
<212>PRT
<213>人工的
<220>
<223>IGF-1R胞外域His-链霉亲和素结合肽-标记物(IGF-1R-His-SBP ECD)的氨基酸序列
<400>5
Met Lys Ser Gly Ser Gly Gly Gly Ser Pro Thr Ser Leu Trp Gly Leu
1 5 10 15
Leu Phe Leu Ser Ala Ala Leu Ser Leu Trp Pro Thr Ser Gly Glu Ile
20 25 30
Cys Gly Pro Gly Ile Asp Ile Arg Asn Asp Tyr Gln Gln Leu Lys Arg
35 40 45
Leu Glu Asn Cys Thr Val Ile Glu Gly Tyr Leu His Ile Leu Leu Ile
50 55 60
Ser Lys Ala Glu Asp Tyr Arg Ser Tyr Arg Phe Pro Lys Leu Thr Val
65 70 75 80
Ile Thr Glu Tyr Leu Leu Leu Phe Arg Val Ala Gly Leu Glu Ser Leu
85 90 95
Gly Asp Leu Phe Pro Asn Leu Thr Val Ile Arg Gly Trp Lys Leu Phe
100 105 110
Tyr Asn Tyr Ala Leu Val Ile Phe Glu Met Thr Asn Leu Lys Asp Ile
115 120 125
Gly Leu Tyr Asn Leu Arg Asn Ile Thr Arg Gly Ala Ile Arg Ile Glu
130 135 140
Lys Asn Ala Asp Leu Cys Tyr Leu Ser Thr Val Asp Trp Ser Leu Ile
145 150 155 160
Leu Asp Ala Val Ser Asn Asn Tyr Ile Val Gly Asn Lys Pro Pro Lys
165 170 175
Glu Cys Gly Asp Leu Cys Pro Gly Thr Met Glu Glu Lys Pro Met Cys
180 185 190
Glu Lys Thr Thr Ile Asn Asn Glu Tyr Asn Tyr Arg Cys Trp Thr Thr
195 200 205
Asn Arg Cys Gln Lys Met Cys Pro Ser Thr Cys Gly Lys Arg Ala Cys
210 215 220
Thr Glu Asn Asn Glu Cys Cys His Pro Glu Cys Leu Gly Ser Cys Ser
225 230 235 240
Ala Pro Asp Asn Asp Thr Ala Cys Val Ala Cys Arg His Tyr Tyr Tyr
245 250 255
Ala Gly Val Cys Val Pro Ala Cys Pro Pro Asn Thr Tyr Arg Phe Glu
260 265 270
Gly Trp Arg Cys Val Asp Arg Asp Phe Cys Ala Asn Ile Leu Ser Ala
275 280 285
Glu Ser Ser Asp Ser Glu Gly Phe Val Ile His Asp Gly Glu Cys Met
290 295 300
Gln Glu Cys Pro Ser Gly Phe Ile Arg Asn Gly Ser Gln Ser Met Tyr
305 310 315 320
Cys Ile Pro Cys Glu Gly Pro Cys Pro Lys Val Cys Glu Glu Glu Lys
325 330 335
Lys Thr Lys Thr Ile Asp Ser Val Thr Ser Ala Gln Met Leu Gln Gly
340 345 350
Cys Thr Ile Phe Lys Gly Asn Leu Leu Ile Asn Ile Arg Arg Gly Asn
355 360 365
Asn Ile Ala Ser Glu Leu Glu Asn Phe Met Gly Leu Ile Glu Val Val
370 375 380
Thr Gly Tyr Val Lys Ile Arg His Ser His Ala Leu Val Ser Leu Ser
385 390 395 400
Phe Leu Lys Asn Leu Arg Leu Ile Leu Gly Glu Glu Gln Leu Glu Gly
405 410 415
Asn Tyr Ser Phe Tyr Val Leu Asp Asn Gln Asn Leu Gln Gln Leu Trp
420 425 430
Asp Trp Asp His Arg Asn Leu Thr Ile Lys Ala Gly Lys Met Tyr Phe
435 440 445
Ala Phe Asn Pro Lys Leu Cys Val Ser Glu Ile Tyr Arg Met Glu Glu
450 455 460
Val Thr Gly Thr Lys Gly Arg Gln Ser Lys Gly Asp Ile Asn Thr Arg
465 470 475 480
Asn Asn Gly Glu Arg Ala Ser Cys Glu Ser Asp Val Ala Ala Ala Leu
485 490 495
Glu Val Leu Phe Gln Gly Pro Gly Thr His His His His His His Ser
500 505 510
Gly Asp Glu Lys Thr Thr Gly Trp Arg Gly Gly His Val Val Glu Gly
515 520 525
Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg Leu Glu His His Pro
530 535 540
Gln Gly Gln Arg Glu Pro Ser Gly Gly Cys Lys Leu Gly
545 550 555
<210>6
<211>471
<212>PRT
<213>人工的
<220>
<223>野生型血管生成素-2<ANGPT2>抗体重链的氨基酸序列
<400>6
Met Glu Leu Gly Leu Ser Trp Val Phe Leu Val Ala Ile Leu Glu Gly
1 5 10 15
Val Gln Cys Glu Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln
20 25 30
Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45
Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60
Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala
65 70 75 80
Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
85 90 95
Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
100 105 110
Tyr Tyr Cys Ala Arg Asp Leu Leu Asp Tyr Asp Ile Leu Thr Gly Tyr
115 120 125
Gly Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr
130 135 140
Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser
145 150 155 160
Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu
165 170 175
Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His
180 185 190
Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser
195 200 205
Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys
210 215 220
Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu
225 230 235 240
Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro
245 250 255
Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys
260 265 270
Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val
275 280 285
Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp
290 295 300
Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr
305 310 315 320
Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp
325 330 335
Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu
340 345 350
Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg
355 360 365
Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys
370 375 380
Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp
385 390 395 400
Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys
405 410 415
Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser
420 425 430
Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser
435 440 445
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser
450 455 460
Leu Ser Leu Ser Pro Gly Lys
465 470
<210>7
<211>219
<212>PRT
<213>人工的
<220>
<223>野生型血管生成素-2<ANGPT2>抗体轻链的氨基酸序列
<400>7
Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
20 25 30
Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45
Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro
50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Gly
85 90 95
Thr His Trp Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
100 105 110
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
115 120 125
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
130 135 140
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn A la Leu Gln
145 150 155 160
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
165 170 175
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
180 185 190
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
195 200 205
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
210 215
<210>8
<211>107
<212>PRT
<213>人工的
<220>
<223>用于凸起-进入-孔洞技术中的具有T366W交换的CH3结构域(凸起)的氨基酸序列
<400>8
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu
1 5 10 15
Glu Met Thr Lys Asn Gln Val Ser Leu Trp Cys Leu Val Lys Gly Phe
20 25 30
Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
35 40 45
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
50 55 60
Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly
65 70 75 80
Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
85 90 95
Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
100 105
<210>9
<211>107
<212>PRT
<213>人工的
<220>
<223>用于凸起-进入-孔洞技术中的具有T366W交换的CH3结构域(凸起)
的氨基酸序列
<400>9
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
1 5 10 15
Glu Leu Thr Lys Asn Gln Val Ser Leu Ser Cys Ala Val Lys Gly Phe
20 25 30
Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
35 40 45
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
50 55 60
Phe Leu Val Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly
65 70 75 80
Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
85 90 95
Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
100 105
<210>10
<211>557
<212>PRT
<213>人工的
<220>
<223>IGF-1R胞外域His-链霉亲和素结合肽-标记物(IGF-1R-His-SBP ECD)
的氨基酸序列
<400>10
Met Lys Ser Gly Ser Gly Gly Gly Ser Pro Thr Ser Leu Trp Gly Leu
1 5 10 15
Leu Phe Leu Ser Ala Ala Leu Ser Leu Trp Pro Thr Ser Gly Glu Ile
20 25 30
Cys Gly Pro Gly Ile Asp Ile Arg Asn Asp Tyr Gln Gln Leu Lys Arg
35 40 45
Leu Glu Asn Cys Thr Val Ile Glu Gly Tyr Leu His Ile Leu Leu Ile
50 55 60
Ser Lys Ala Glu Asp Tyr Arg Ser Tyr Arg Phe Pro Lys Leu Thr Val
65 70 75 80
Ile Thr Glu Tyr Leu Leu Leu Phe Arg Val Ala Gly Leu Glu Ser Leu
85 90 95
Gly Asp Leu Phe Pro Asn Leu Thr Val Ile Arg Gly Trp Lys Leu Phe
100 105 110
Tyr Asn Tyr Ala Leu Val Ile Phe Glu Met Thr Asn Leu Lys Asp Ile
115 120 125
Gly Leu Tyr Asn Leu Arg Asn Ile Thr Arg Gly A la Ile Arg Ile Glu
130 135 140
Lys Asn Ala Asp Leu Cys Tyr Leu Ser Thr Val Asp Trp Ser Leu Ile
145 150 155 160
Leu Asp Ala Val Ser Asn Asn Tyr Ile Val Gly Asn Lys Pro Pro Lys
165 170 175
Glu Cys Gly Asp Leu Cys Pro Gly Thr Met Glu Glu Lys Pro Met Cys
180 185 190
Glu Lys Thr Thr Ile Asn Asn Glu Tyr Asn Tyr Arg Cys Trp Thr Thr
195 200 205
Asn Arg Cys Gln Lys Met Cys Pro Ser Thr Cys Gly Lys Arg Ala Cys
210 215 220
Thr Glu Asn Asn Glu Cys Cys His Pro Glu Cys Leu Gly Ser Cys Ser
225 230 235 240
Ala Pro Asp Asn Asp Thr Ala Cys Val Ala Cys Arg His Tyr Tyr Tyr
245 250 255
Ala Gly Val Cys Val Pro Ala Cys Pro Pro Asn Thr Tyr Arg Phe Glu
260 265 270
Gly Trp Arg Cys Val Asp Arg Asp Phe Cys Ala Asn Ile Leu Ser Ala
275 280 285
Glu Ser Ser Asp Ser Glu Gly Phe Val Ile His Asp Gly Glu Cys Met
290 295 300
Gln Glu Cys Pro Ser Gly Phe Ile Arg Asn Gly Ser Gln Ser Met Tyr
305 310 315 320
Cys Ile Pro Cys Glu Gly Pro Cys Pro Lys Val Cys Glu Glu Glu Lys
325 330 335
Lys Thr Lys Thr Ile Asp Ser Val Thr Ser Ala Gln Met Leu Gln Gly
340 345 350
Cys Thr Ile Phe Lys Gly Asn Leu Leu Ile Asn Ile Arg Arg Gly Asn
355 360 365
Asn Ile Ala Ser Glu Leu Glu Asn Phe Met Gly Leu Ile Glu Val Val
370 375 380
Thr Gly Tyr Val Lys Ile Arg His Ser His Ala Leu Val Ser Leu Ser
385 390 395 400
Phe Leu Lys Asn Leu Arg Leu Ile Leu Gly Glu Glu Gln Leu Glu Gly
405 410 415
Asn Tyr Ser Phe Tyr Val Leu Asp Asn Gln Asn Leu Gln Gln Leu Trp
420 425 430
Asp Trp Asp His Arg Asn Leu Thr Ile Lys Ala Gly Lys Met Tyr Phe
435 440 445
Ala Phe Asn Pro Lys Leu Cys Val Ser Glu Ile Tyr Arg Met Glu Glu
450 455 460
Val Thr Gly Thr Lys Gly Arg Gln Ser Lys Gly Asp Ile Asn Thr Arg
465 470 475 480
Asn Asn Gly Glu Arg Ala Ser Cys Glu Ser Asp Val Ala Ala Ala Leu
485 490 495
Glu Val Leu Phe Gln Gly Pro Gly Thr His His His His His His Ser
500 505 510
Gly Asp Glu Lys Thr Thr Gly Trp Arg Gly Gly His Val Val Glu Gly
515 520 525
Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg Leu Glu His His Pro
530 535 540
Gln Gly Gln Arg Glu Pro Ser Gly Gly Cys Lys Leu Gly
545 550 555
Claims (10)
1.二价双特异性抗体,其包括:
a)特异性结合第一抗原的抗体的轻链和重链;和
b)特异性结合第二抗原的抗体的轻链和重链,其中恒定结构域CL和CH1相互替换。
2.按照权利要求1的抗体,其特征在于
一条重链的CH3结构域和另一条重链的CH3结构域在包括抗体CH3结构域之间的初始界面的界面处相接触;
其中所述界面被改变为促进形成所述二价双特异性抗体,其中所述改变的特征在于:
a)改变一条重链的CH3结构域,
由此,在与二价双特异性抗体内的另一条重链的CH3结构域的初始界面相接触的一条重链的CH3结构域的初始界面内,
氨基酸残基被替换为具有较大侧链体积的氨基酸残基,由此在一条重链的CH3结构域的界面内生成凸起,所述凸起可以定位在另一条重链的CH3结构域的界面内的凹洞中
且
b)改变另一条重链的CH3结构域,
由此,在与二价双特异性抗体内的第一CH3结构域的初始界面相接触的第二CH3结构域的初始界面内,
氨基酸残基被替换为具有较小侧链体积的氨基酸残基,由此在第二CH3结构域的界面内生成凹洞,在所述凹洞中可以定位第一CH3结构域的界面内的凸起。
3.按照权利要求2的抗体,其特征在于
所述具有较大侧链体积的氨基酸残基选自由精氨酸(R),苯丙氨酸(F),酪氨酸(Y),色氨酸(W)组成的组。
4.按照权利要求2或3中任一项的抗体,其特征在于
所述具有较小侧链体积的氨基酸残基选自由丙氨酸(A),丝氨酸(S),苏氨酸(T),缬氨酸(V)组成的组。
5.按照权利要求2-4中任一项的抗体,其特征在于
通过将半胱氨酸(C)作为氨基酸引入到每个CH3结构域的相应位置处来进一步改变两个CH3结构域。
6.按照权利要求1的抗体,其特征在于
两条重链的恒定重链结构域CH3之一被替换为恒定重链结构域CH1;且另一个恒定重链结构域CH3被替换为恒定轻链结构域CL。
7.用于制备按照权利要求1的二价双特异性抗体的方法,其包括下列步骤:
a)用以下各项转化宿主细胞,
-载体,其包括编码特异性结合第一抗原的抗体的轻链和重链的核酸分子,和
-载体,其包括编码特异性结合第二抗原的抗体的轻链和重链的核酸分子,其中恒定结构域CL和CH1相互替换;
b)在容许合成所述抗体分子的条件下培养所述宿主细胞;和
c)从所述培养物中回收所述抗体分子。
8.宿主细胞,其包括
-载体,其包括编码特异性结合第一抗原的抗体的轻链和重链的核酸分子,
-载体,其包括编码特异性结合第二抗原的抗体的轻链和重链的核酸分子,其中恒定结构域CL和CH1相互替换。
9.按照权利要求1-6的二价双特异性抗体的组合物,优选药物或诊断组合物。
10.药物组合物,其包括按照权利要求1-6的二价双特异性抗体和至少一种药用赋形剂。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07024865 | 2007-12-21 | ||
EP07024865.3 | 2007-12-21 | ||
PCT/EP2008/010704 WO2009080253A1 (en) | 2007-12-21 | 2008-12-16 | Bivalent, bispecific antibodies |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101903406A true CN101903406A (zh) | 2010-12-01 |
CN101903406B CN101903406B (zh) | 2013-01-02 |
Family
ID=39682659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200880122244XA Active CN101903406B (zh) | 2007-12-21 | 2008-12-16 | 二价双特异性抗体 |
Country Status (30)
Country | Link |
---|---|
US (1) | US8242247B2 (zh) |
EP (1) | EP2225280B1 (zh) |
JP (1) | JP5281098B2 (zh) |
KR (2) | KR20130016397A (zh) |
CN (1) | CN101903406B (zh) |
AR (2) | AR069775A1 (zh) |
AU (1) | AU2008340694B2 (zh) |
BR (1) | BRPI0821777B8 (zh) |
CA (1) | CA2709430C (zh) |
CL (1) | CL2008003778A1 (zh) |
CO (1) | CO6280543A2 (zh) |
CR (1) | CR11465A (zh) |
CY (1) | CY1115275T1 (zh) |
DK (1) | DK2225280T3 (zh) |
EC (1) | ECSP10010297A (zh) |
ES (1) | ES2471266T3 (zh) |
HK (1) | HK1145845A1 (zh) |
HR (1) | HRP20140727T1 (zh) |
IL (1) | IL206108A (zh) |
MA (1) | MA31925B1 (zh) |
MY (1) | MY160736A (zh) |
NZ (1) | NZ585774A (zh) |
PE (1) | PE20091169A1 (zh) |
PL (1) | PL2225280T3 (zh) |
PT (1) | PT2225280E (zh) |
SI (1) | SI2225280T1 (zh) |
TW (1) | TWI359028B (zh) |
UA (1) | UA100874C2 (zh) |
WO (1) | WO2009080253A1 (zh) |
ZA (1) | ZA201004300B (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103748114A (zh) * | 2011-08-23 | 2014-04-23 | 罗切格利卡特公司 | T细胞活化性双特异性抗原结合分子 |
CN103764681A (zh) * | 2011-08-23 | 2014-04-30 | 罗切格利卡特公司 | 双特异性抗原结合分子 |
CN103781801A (zh) * | 2011-08-23 | 2014-05-07 | 罗切格利卡特公司 | 包含两个Fab片段的无Fc的抗体及使用方法 |
CN104379604A (zh) * | 2012-05-24 | 2015-02-25 | 弗·哈夫曼-拉罗切有限公司 | 多特异性抗体 |
CN104704004A (zh) * | 2012-10-08 | 2015-06-10 | 罗切格利卡特公司 | 包含两个Fab片段的无Fc的抗体及使用方法 |
CN104797599A (zh) * | 2012-11-05 | 2015-07-22 | 全药工业株式会社 | 抗体或抗体组合物的制备方法 |
CN104936985A (zh) * | 2013-02-26 | 2015-09-23 | 罗切格利卡特公司 | 双特异性t细胞活化性抗原结合分子 |
CN105121630A (zh) * | 2012-10-03 | 2015-12-02 | 酵活有限公司 | 定量重链和轻链多肽对的方法 |
CN105143270A (zh) * | 2013-02-26 | 2015-12-09 | 罗切格利卡特公司 | 双特异性t细胞活化抗原结合分子 |
CN106164095A (zh) * | 2014-04-02 | 2016-11-23 | 豪夫迈·罗氏有限公司 | 多特异性抗体 |
CN106461680A (zh) * | 2014-05-14 | 2017-02-22 | Ucb生物制药私人有限公司 | 用于测定抗体特异性的方法 |
Families Citing this family (450)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SI1523496T1 (sl) | 2002-07-18 | 2011-11-30 | Merus B V | Rekombinantno proizvajanje zmesi protiteles |
USRE47770E1 (en) | 2002-07-18 | 2019-12-17 | Merus N.V. | Recombinant production of mixtures of antibodies |
DK2009101T3 (en) | 2006-03-31 | 2018-01-15 | Chugai Pharmaceutical Co Ltd | Antibody modification method for purification of a bispecific antibody |
US9266967B2 (en) | 2007-12-21 | 2016-02-23 | Hoffmann-La Roche, Inc. | Bivalent, bispecific antibodies |
US20090162359A1 (en) | 2007-12-21 | 2009-06-25 | Christian Klein | Bivalent, bispecific antibodies |
US8268314B2 (en) | 2008-10-08 | 2012-09-18 | Hoffmann-La Roche Inc. | Bispecific anti-VEGF/anti-ANG-2 antibodies |
SG175004A1 (en) * | 2009-04-02 | 2011-11-28 | Roche Glycart Ag | Multispecific antibodies comprising full length antibodies and single chain fab fragments |
JP5612663B2 (ja) | 2009-04-07 | 2014-10-22 | ロシュ グリクアート アクチェンゲゼルシャフト | 二重特異性抗ErbB−1/抗c−Met抗体 |
WO2010115589A1 (en) | 2009-04-07 | 2010-10-14 | Roche Glycart Ag | Trivalent, bispecific antibodies |
CA2757531A1 (en) | 2009-04-07 | 2010-10-14 | Roche Glycart Ag | Bispecific anti-erbb-3/anti-c-met antibodies |
PE20120540A1 (es) * | 2009-05-27 | 2012-05-09 | Hoffmann La Roche | Anticuerpos triespecificos o tetraespecificos |
US9676845B2 (en) | 2009-06-16 | 2017-06-13 | Hoffmann-La Roche, Inc. | Bispecific antigen binding proteins |
US8703132B2 (en) * | 2009-06-18 | 2014-04-22 | Hoffmann-La Roche, Inc. | Bispecific, tetravalent antigen binding proteins |
RU2573915C2 (ru) | 2009-09-16 | 2016-01-27 | Дженентек, Инк. | Содержащие суперспираль и/или привязку белковые комплексы и их применение |
PL2519543T3 (pl) * | 2009-12-29 | 2016-12-30 | Białka wiążące heterodimery i ich zastosowania | |
KR101762467B1 (ko) | 2010-01-29 | 2017-07-27 | 도레이 카부시키가이샤 | 폴리락트산계 수지 시트 |
AR080793A1 (es) * | 2010-03-26 | 2012-05-09 | Roche Glycart Ag | Anticuerpos biespecificos |
AR080794A1 (es) * | 2010-03-26 | 2012-05-09 | Hoffmann La Roche | Anticuerpos bivalentes biespecificos anti- vegf/ anti-ang-2 |
CN103154027B (zh) | 2010-04-09 | 2016-06-29 | 重症监护诊断股份有限公司 | 可溶性人st-2抗体和分析法 |
WO2011147834A1 (en) | 2010-05-26 | 2011-12-01 | Roche Glycart Ag | Antibodies against cd19 and uses thereof |
RU2577986C2 (ru) | 2010-06-18 | 2016-03-20 | Дженентек, Инк. | Антитела против axl и способы их применения |
WO2012010549A1 (en) | 2010-07-19 | 2012-01-26 | F. Hoffmann-La Roche Ag | Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy |
KR20130091745A (ko) | 2010-07-19 | 2013-08-19 | 에프. 호프만-라 로슈 아게 | 항암요법에 반응할 가능성이 증가된 환자를 확인하는 방법 |
WO2012010582A1 (en) | 2010-07-21 | 2012-01-26 | Roche Glycart Ag | Anti-cxcr5 antibodies and methods of use |
CN103209709A (zh) | 2010-08-05 | 2013-07-17 | 弗·哈夫曼-拉罗切有限公司 | 抗mhc抗体抗病毒性细胞因子融合蛋白 |
MX338953B (es) | 2010-08-16 | 2016-05-06 | Novimmune Sa | Metodos para la generacion de anticuerpos multiespecificos y multivalentes. |
CA2807278A1 (en) | 2010-08-24 | 2012-03-01 | F. Hoffmann - La Roche Ag | Bispecific antibodies comprising a disulfide stabilized - fv fragment |
DK2635607T3 (da) | 2010-11-05 | 2019-11-18 | Zymeworks Inc | Stabilt heterodimert antistofdesign med mutationer i fc-domænet |
TW202323302A (zh) | 2010-11-30 | 2023-06-16 | 日商中外製藥股份有限公司 | 細胞傷害誘導治療劑 |
EP2655413B1 (en) | 2010-12-23 | 2019-01-16 | F.Hoffmann-La Roche Ag | Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery |
RU2607038C2 (ru) * | 2011-02-28 | 2017-01-10 | Ф. Хоффманн-Ля Рош Аг | Антигенсвязывающие белки |
CA2824824A1 (en) * | 2011-02-28 | 2012-09-07 | F. Hoffmann-La Roche Ag | Monovalent antigen binding proteins |
US9624291B2 (en) | 2011-03-17 | 2017-04-18 | Ramot At Tel-Aviv University Ltd. | Bi- and monospecific, asymmetric antibodies and methods of generating the same |
CN103502273A (zh) | 2011-04-20 | 2014-01-08 | 罗氏格黎卡特股份公司 | 用于pH依赖性通过血脑屏障的方法和构建体 |
RU2013158627A (ru) | 2011-06-15 | 2015-07-20 | Ф. Хоффманн-Ля Рош Аг | Антитела к рецептору человеческого эритропоэтина и способы их применения |
US20130011394A1 (en) | 2011-06-22 | 2013-01-10 | Hoffmann-La Roche Inc. | Complexes comprising mhc class i fusion polypeptides and antigen-specific antibodies and methods of use |
WO2013026837A1 (en) * | 2011-08-23 | 2013-02-28 | Roche Glycart Ag | Bispecific t cell activating antigen binding molecules |
WO2013026839A1 (en) * | 2011-08-23 | 2013-02-28 | Roche Glycart Ag | Bispecific antibodies specific for t-cell activating antigens and a tumor antigen and methods of use |
BR112014006537A2 (pt) | 2011-09-23 | 2017-11-28 | Roche Glycart Ag | anticorpos biespecíficos, formulação farmacêutica, usos de um anticorpo biespecífico, método de tratamento, ácido nucleico, vetores de expressão, célula hospedeira e método para a produção de um anticorpo biespecífico |
KR102168733B1 (ko) | 2011-10-31 | 2020-10-23 | 추가이 세이야쿠 가부시키가이샤 | 중쇄와 경쇄의 회합이 제어된 항원 결합 분자 |
HRP20211773T1 (hr) | 2011-11-04 | 2022-03-04 | Zymeworks Inc. | Stabilna heterodimerni dizajn antitijela s mutacijama u fc domeni |
BR112014011535A2 (pt) | 2011-12-19 | 2017-05-09 | Hoffmann La Roche | método para a determinação in vitro e imunológica de presença da presença e/ou da quantidade de um parceiro de ligação, método in vitro e utilização de um anticorpo |
JP2015502165A (ja) | 2011-12-22 | 2015-01-22 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 発現ベクター構成、新規の産生細胞生成法、およびポリペプチドの組換え産生のためのそれらの使用 |
CA2854249C (en) | 2011-12-22 | 2022-05-03 | F. Hoffmann-La Roche Ag | Expression vector element combinations, novel production cell generation methods and their use for the recombinant production of polypeptides |
BR112014013035A2 (pt) | 2011-12-22 | 2018-10-09 | Hoffmann La Roche | métodos de seleção de células, conjuntos de expressão bicistrônica, células eucarióticas, vetores lentivirais, uso de vetor lentiviral, bibliotecas de ventores lentivirais e de células eucarióticas, métodos de seleção de células, fluxos de trabalho e uso de célula |
WO2013113663A1 (en) | 2012-02-01 | 2013-08-08 | F. Hoffmann-La Roche Ag | Method for the detection of a binding partner of a multispecific binder |
KR102091297B1 (ko) | 2012-02-03 | 2020-03-20 | 에프. 호프만-라 로슈 아게 | 항원-형질감염된 t 세포와 함께 사용되는 이중특이적 항체 분자 및 의약에서의 이들의 용도 |
JP6486686B2 (ja) | 2012-02-10 | 2019-03-20 | ジェネンテック, インコーポレイテッド | 単鎖抗体及び他のヘテロ多量体 |
MX360352B (es) | 2012-02-15 | 2018-10-30 | Hoffmann La Roche | Cromatografia de afinidad basada en receptores fc. |
US20150110788A1 (en) * | 2012-03-06 | 2015-04-23 | Galaxy Biotech, Llc | Bispecific antibodies with an fgf2 binding domain |
WO2013150043A1 (en) | 2012-04-05 | 2013-10-10 | F. Hoffmann-La Roche Ag | Bispecific antibodies against human tweak and human il17 and uses thereof |
EA035344B1 (ru) | 2012-04-20 | 2020-05-29 | Мерюс Н.В. | Способ получения двух антител из одной клетки-хозяина |
US9062120B2 (en) | 2012-05-02 | 2015-06-23 | Janssen Biotech, Inc. | Binding proteins having tethered light chains |
WO2014004586A1 (en) | 2012-06-25 | 2014-01-03 | Zymeworks Inc. | Process and methods for efficient manufacturing of highly pure asymmetric antibodies in mammalian cells |
CA2871882A1 (en) | 2012-06-27 | 2014-01-03 | F. Hoffmann-La Roche Ag | Method for making antibody fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof |
CN104395339A (zh) | 2012-06-27 | 2015-03-04 | 弗·哈夫曼-拉罗切有限公司 | 用于选择并产生含有至少两种不同结合实体的定制高度选择性和多特异性靶向实体的方法及其用途 |
CN107973856B (zh) | 2012-07-04 | 2021-11-23 | 弗·哈夫曼-拉罗切有限公司 | 共价连接的抗原-抗体缀合物 |
RU2017128512A (ru) | 2012-07-04 | 2019-02-15 | Ф. Хоффманн-Ля Рош Аг | Антитела к теофиллину и способы их применения |
CN104411725B (zh) | 2012-07-04 | 2018-09-28 | 弗·哈夫曼-拉罗切有限公司 | 抗生物素抗体及使用方法 |
RS62509B1 (sr) | 2012-07-13 | 2021-11-30 | Roche Glycart Ag | Bispecifična anti-vegf/anti-ang-2 antitela i njihova upotreba u lečenju očnih vaskularnih bolesti |
WO2014009474A1 (en) | 2012-07-13 | 2014-01-16 | F. Hoffmann-La Roche Ag | Method for the detection of a multispecific binder |
KR20150052085A (ko) | 2012-09-14 | 2015-05-13 | 에프. 호프만-라 로슈 아게 | 2개 이상의 상이한 단위를 포함하는 분자의 제조 및 선별 방법, 및 이의 용도 |
BR112015006824A2 (pt) | 2012-09-27 | 2017-07-04 | Merus B V | anticorpo igg biespecífico, método para produzir um anticorpo igg biespecífico, anticorpo, composição farmacêutica e uso de um anticorpo igg biespecífico |
ES2773107T3 (es) | 2012-10-05 | 2020-07-09 | Kyowa Kirin Co Ltd | Composición de proteína heterodimérica |
SG11201502538TA (en) | 2012-11-08 | 2015-05-28 | Hoffmann La Roche | Her3 antigen binding proteins binding to the beta-hairpin of her3 |
KR101522954B1 (ko) | 2012-11-27 | 2015-05-27 | 아주대학교산학협력단 | 항체 중쇄불변부위의 이종이중체 고효율 형성을 유도하는 ch3 도메인 변이체 쌍, 이의 제조방법, 및 용도 |
BR112015012385A2 (pt) * | 2012-11-28 | 2019-08-27 | Zymeworks Inc | constructo de polipeptídeo de ligação de antígeno isolado, polinucleotídeo isolado ou conjunto de polinucleotídeos isolados, vetor ou conjunto de vetores, célula isolada, composição farmacêutica, uso do constructo, método para tratar um sujeito tendo uma doença ou distúrbio ou câncer ou doença vascular, método para inibir, reduzir ou bloquear um sinal dentro de uma célula, método para obter o constructo, método para preparar o constructo, meio de armazenamento legível por computador, método implementado por computador e método para produzir um constructo de polipeptídeo de ligação de antígeno bi-específico |
US9914785B2 (en) * | 2012-11-28 | 2018-03-13 | Zymeworks Inc. | Engineered immunoglobulin heavy chain-light chain pairs and uses thereof |
WO2014116846A2 (en) * | 2013-01-23 | 2014-07-31 | Abbvie, Inc. | Methods and compositions for modulating an immune response |
KR102282761B1 (ko) | 2013-02-26 | 2021-07-30 | 로슈 글리카트 아게 | 이중특이적 t 세포 활성화 항원 결합 분자 |
UA118028C2 (uk) | 2013-04-03 | 2018-11-12 | Рош Глікарт Аг | Біспецифічне антитіло, специфічне щодо fap і dr5, антитіло, специфічне щодо dr5, і спосіб їх застосування |
JP6618893B2 (ja) | 2013-04-29 | 2019-12-11 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Fc受容体結合が変更された非対称抗体および使用方法 |
BR112015027385A2 (pt) | 2013-04-29 | 2017-08-29 | Hoffmann La Roche | Anticorpos modificados de ligação ao fcrn humano e métodos de uso |
CN105164158A (zh) | 2013-04-29 | 2015-12-16 | 豪夫迈·罗氏有限公司 | 消除对FcRn-结合的抗-IGF-1R抗体及其在血管性眼病治疗中的用途 |
EP3027649B1 (en) | 2013-08-01 | 2020-04-01 | F.Hoffmann-La Roche Ag | Tnfa-il-17 bispecific antibodies |
WO2015025054A1 (en) | 2013-08-22 | 2015-02-26 | Medizinische Universität Wien | Dye-specific antibodies for prestained molecular weight markers and methods producing the same |
CA2925256C (en) | 2013-09-27 | 2023-08-15 | Chugai Seiyaku Kabushiki Kaisha | Method for producing polypeptide heteromultimer |
EP3055329B1 (en) * | 2013-10-11 | 2018-06-13 | F. Hoffmann-La Roche AG | Multispecific domain exchanged common variable light chain antibodies |
RU2697098C1 (ru) | 2013-11-21 | 2019-08-12 | Ф.Хоффманн-Ля Рош Аг | Антитела к альфа-синуклеину и способы применения |
CA2931356A1 (en) | 2013-11-27 | 2015-06-04 | Zymeworks Inc. | Bispecific antigen-binding constructs targeting her2 |
ES2778498T3 (es) | 2013-12-20 | 2020-08-10 | Hoffmann La Roche | Anticuerpos anti-tau(pS422) humanizados y procedimientos de uso |
WO2015091738A1 (en) | 2013-12-20 | 2015-06-25 | F. Hoffmann-La Roche Ag | Bispecific her2 antibodies and methods of use |
EP4071177A1 (en) | 2013-12-30 | 2022-10-12 | Epimab Biotherapeutics, Inc. | Fabs-in-tandem immunoglobulin and uses thereof |
PL3089996T3 (pl) | 2014-01-03 | 2021-12-13 | F. Hoffmann-La Roche Ag | Dwuswoiste przeciwciała przeciw haptenowi/przeciw receptorowi występującemu w barierze krew-mózg, ich kompleksy i ich zastosowanie jako przenośniki wahadłowe występujące w barierze krew-mózg |
EP3089759B1 (en) | 2014-01-03 | 2018-12-05 | F. Hoffmann-La Roche AG | Covalently linked polypeptide toxin-antibody conjugates |
RU2694981C2 (ru) | 2014-01-03 | 2019-07-18 | Ф. Хоффманн-Ля Рош Аг | Ковалентно связанные конъюгаты хеликар-антитело против хеликара и их применения |
CA2932547C (en) | 2014-01-06 | 2023-05-23 | F. Hoffmann-La Roche Ag | Monovalent blood brain barrier shuttle modules |
CN110981957A (zh) | 2014-01-15 | 2020-04-10 | 豪夫迈·罗氏有限公司 | 具有改善的蛋白A结合作用的Fc区变体 |
RU2727639C2 (ru) | 2014-01-15 | 2020-07-22 | Ф.Хоффманн-Ля Рош Аг | Варианты fc-области с модифицированной способностью связываться с fcrn и с сохраненной способностью связываться с белком а |
JOP20200094A1 (ar) | 2014-01-24 | 2017-06-16 | Dana Farber Cancer Inst Inc | جزيئات جسم مضاد لـ pd-1 واستخداماتها |
JOP20200096A1 (ar) | 2014-01-31 | 2017-06-16 | Children’S Medical Center Corp | جزيئات جسم مضاد لـ tim-3 واستخداماتها |
SG11201607109QA (en) | 2014-02-28 | 2016-09-29 | Merus Nv | Antibodies that bind egfr and erbb3 |
SI3110849T1 (sl) | 2014-02-28 | 2021-01-29 | Merus N.V. | Protitelo, ki veže ERBB-2 in ERBB-3 |
SI3116909T1 (sl) | 2014-03-14 | 2020-03-31 | Novartis Ag | Molekule protiteles na LAG-3 in njih uporaba |
JP2017513818A (ja) | 2014-03-15 | 2017-06-01 | ノバルティス アーゲー | キメラ抗原受容体を使用する癌の処置 |
JP6666262B2 (ja) | 2014-04-02 | 2020-03-13 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 多重特異性抗体の軽鎖誤対合を検出するための方法 |
JP6629187B2 (ja) | 2014-04-07 | 2020-01-15 | 中外製薬株式会社 | 免疫活性化抗原結合分子 |
EA201692287A1 (ru) | 2014-05-13 | 2017-06-30 | Чугаи Сеияку Кабушики Каиша | Антигенсвязывающая молекула, перенаправляющая т-клетки на клетки, обладающие иммуносупрессорной функцией |
WO2015181805A1 (en) | 2014-05-28 | 2015-12-03 | Zymeworks Inc. | Modified antigen binding polypeptide constructs and uses thereof |
AR100978A1 (es) | 2014-06-26 | 2016-11-16 | Hoffmann La Roche | LANZADERAS CEREBRALES DE ANTICUERPO HUMANIZADO ANTI-Tau(pS422) Y USOS DE LAS MISMAS |
RU2705299C2 (ru) | 2014-06-26 | 2019-11-06 | Ф. Хоффманн-Ля Рош Аг | Антитела против 5-бром-2'-дезоксиуридина и способы применения |
TW201623329A (zh) | 2014-06-30 | 2016-07-01 | 亞佛瑞司股份有限公司 | 針對骨調素截斷變異體的疫苗及單株抗體暨其用途 |
CA2954687A1 (en) | 2014-07-10 | 2016-01-14 | Affiris Ag | Substances and methods for the use in prevention and/or treatment in huntington's disease |
EP3193915A1 (en) | 2014-07-21 | 2017-07-26 | Novartis AG | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
WO2016014553A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
MX2017001011A (es) | 2014-07-21 | 2018-05-28 | Novartis Ag | Tratamiento de cancer de usando un receptor quimerico de antigeno anti-bcma. |
CA2955154C (en) | 2014-07-21 | 2023-10-31 | Novartis Ag | Treatment of cancer using a cd33 chimeric antigen receptor |
US20170209492A1 (en) | 2014-07-31 | 2017-07-27 | Novartis Ag | Subset-optimized chimeric antigen receptor-containing t-cells |
EP2982692A1 (en) | 2014-08-04 | 2016-02-10 | EngMab AG | Bispecific antibodies against CD3epsilon and BCMA |
KR102317315B1 (ko) | 2014-08-04 | 2021-10-27 | 에프. 호프만-라 로슈 아게 | 이중특이적 t 세포 활성화 항원 결합 분자 |
EP3180359A1 (en) | 2014-08-14 | 2017-06-21 | Novartis AG | Treatment of cancer using gfr alpha-4 chimeric antigen receptor |
ES2791248T3 (es) | 2014-08-19 | 2020-11-03 | Novartis Ag | Receptor antigénico quimérico (CAR) anti-CD123 para su uso en el tratamiento del cáncer |
AU2015317608B2 (en) | 2014-09-17 | 2021-03-11 | Novartis Ag | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
MA40764A (fr) | 2014-09-26 | 2017-08-01 | Chugai Pharmaceutical Co Ltd | Agent thérapeutique induisant une cytotoxicité |
EP3204415B1 (en) | 2014-10-09 | 2020-06-17 | EngMab Sàrl | Bispecific antibodies against cd3epsilon and ror1 |
PE20171067A1 (es) | 2014-10-14 | 2017-07-24 | Novartis Ag | Moleculas de anticuerpo que se unen a pd-l1 y usos de las mismas |
BR112017006178A2 (pt) | 2014-11-06 | 2018-05-02 | F. Hoffmann-La Roche Ag | região fc, anticorpos, formulação farmacêutica e usos dos anticorpos |
JP6576456B2 (ja) | 2014-11-06 | 2019-09-18 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 修飾されたFcRn結合特性およびプロテインA結合特性を有するFc領域変種 |
CN113372434B (zh) | 2014-11-14 | 2024-06-04 | 豪夫迈·罗氏有限公司 | 包含tnf家族配体三聚体的抗原结合分子 |
EP3023437A1 (en) | 2014-11-20 | 2016-05-25 | EngMab AG | Bispecific antibodies against CD3epsilon and BCMA |
EP3789402B1 (en) | 2014-11-20 | 2022-07-13 | F. Hoffmann-La Roche AG | Combination therapy of t cell activating bispecific antigen binding molecules and pd-1 axis binding antagonists |
SI3221357T1 (sl) | 2014-11-20 | 2020-09-30 | F. Hoffmann-La Roche Ag | Pogoste lahke verige in načini uporabe |
EP3227341A1 (en) | 2014-12-02 | 2017-10-11 | CeMM - Forschungszentrum für Molekulare Medizin GmbH | Anti-mutant calreticulin antibodies and their use in the diagnosis and therapy of myeloid malignancies |
JP6721590B2 (ja) | 2014-12-03 | 2020-07-15 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 多重特異性抗体 |
US20180334490A1 (en) | 2014-12-03 | 2018-11-22 | Qilong H. Wu | Methods for b cell preconditioning in car therapy |
CA2966551A1 (en) | 2014-12-18 | 2016-06-23 | F. Hoffmann-La Roche Ag | Assay and method for determining cdc eliciting antibodies |
RU2752918C2 (ru) | 2015-04-08 | 2021-08-11 | Новартис Аг | Cd20 терапия, cd22 терапия и комбинированная терапия клетками, экспрессирующими химерный антигенный рецептор (car) k cd19 |
EP3286211A1 (en) | 2015-04-23 | 2018-02-28 | Novartis AG | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
AU2016252773B2 (en) | 2015-04-24 | 2022-06-02 | Genentech, Inc. | Multispecific antigen-binding proteins |
CN107847568B (zh) | 2015-06-16 | 2022-12-20 | 豪夫迈·罗氏有限公司 | 抗cll-1抗体和使用方法 |
AR105026A1 (es) | 2015-06-16 | 2017-08-30 | Genentech Inc | ANTICUERPOS MADURADOS POR AFINIDAD Y HUMANIZADOS PARA FcRH5 Y MÉTODOS PARA SU USO |
CN107849145B (zh) | 2015-06-16 | 2021-10-26 | 基因泰克公司 | 抗cd3抗体及其使用方法 |
JP2018524312A (ja) | 2015-06-17 | 2018-08-30 | ジェネンテック, インコーポレイテッド | 抗her2抗体及び使用方法 |
JP6619460B2 (ja) | 2015-06-24 | 2019-12-11 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | ヒト化抗タウ(pS422)抗体及び使用法 |
ME03772B (me) | 2015-07-10 | 2021-04-20 | Genmab As | Konjugati antitijela specifičnog za axl i lijeka za liječenje kancera |
AU2016293942B2 (en) | 2015-07-10 | 2022-06-16 | Merus N.V. | Human CD3 binding antibody |
EP3878465A1 (en) | 2015-07-29 | 2021-09-15 | Novartis AG | Combination therapies comprising antibody molecules to tim-3 |
JP6878405B2 (ja) | 2015-07-29 | 2021-05-26 | ノバルティス アーゲー | Pd−1に対する抗体分子を含む組み合わせ治療 |
EP3317301B1 (en) | 2015-07-29 | 2021-04-07 | Novartis AG | Combination therapies comprising antibody molecules to lag-3 |
CN113912724A (zh) | 2015-09-25 | 2022-01-11 | 豪夫迈·罗氏有限公司 | 抗tigit抗体和使用方法 |
MA43053A (fr) | 2015-09-30 | 2018-08-08 | Janssen Biotech Inc | Anticorps antagonistes se liant spécifiquement au cd40 humain et procédés d'utilisation |
AR106188A1 (es) | 2015-10-01 | 2017-12-20 | Hoffmann La Roche | Anticuerpos anti-cd19 humano humanizados y métodos de utilización |
US20180282410A1 (en) | 2015-10-02 | 2018-10-04 | Hoffmann-La Roche Inc. | Anti-cd3xrob04 bispecific t cell activating antigen binding molecules |
EP3150636A1 (en) | 2015-10-02 | 2017-04-05 | F. Hoffmann-La Roche AG | Tetravalent multispecific antibodies |
JP2018533930A (ja) | 2015-10-02 | 2018-11-22 | エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト | 二重特異性t細胞活性化抗原結合分子 |
WO2017055392A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xcd44v6 bispecific t cell activating antigen binding molecules |
WO2017055393A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xtim-3 bispecific t cell activating antigen binding molecules |
JP7044700B2 (ja) | 2015-10-02 | 2022-03-30 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | 二重特異性抗ceaxcd3 t細胞活性化抗原結合分子 |
EP3150637A1 (en) | 2015-10-02 | 2017-04-05 | F. Hoffmann-La Roche AG | Multispecific antibodies |
WO2017055399A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Cellular based fret assay for the determination of simultaneous binding |
EP3913000A1 (en) | 2015-10-02 | 2021-11-24 | F. Hoffmann-La Roche AG | Bispecific anti-cd19xcd3 t cell activating antigen binding molecules |
PL3356404T3 (pl) | 2015-10-02 | 2022-01-03 | F. Hoffmann-La Roche Ag | Przeciwciała anty-pd1 i sposoby ich stosowania |
AR106365A1 (es) | 2015-10-02 | 2018-01-10 | Hoffmann La Roche | Moléculas biespecíficas de unión a antígeno activadoras de células t |
WO2017055385A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xgd2 bispecific t cell activating antigen binding molecules |
JP6932693B2 (ja) | 2015-10-08 | 2021-09-08 | ザイムワークス,インコーポレイテッド | カッパ及びラムダ軽鎖を含む抗原結合ポリペプチド構築物及びその使用 |
PL3365373T3 (pl) | 2015-10-23 | 2021-08-23 | Merus N.V. | Molekuły wiążące, które hamują wzrost nowotworu |
MX2018005036A (es) | 2015-10-29 | 2018-08-01 | Hoffmann La Roche | Anticuerpos y metodos de uso de anti-regiones de fragmentos cristalizables (fc) variantes. |
EP3184547A1 (en) | 2015-10-29 | 2017-06-28 | F. Hoffmann-La Roche AG | Anti-tpbg antibodies and methods of use |
CA3003033A1 (en) | 2015-10-30 | 2017-05-04 | Galaxy Biotech, Llc | Highly potent antibodies binding to death receptor 4 and death receptor 5 |
CR20180234A (es) | 2015-11-03 | 2018-09-11 | Janssen Biotech Inc | Anticuerpos que se unen especificamente a pd-1 y sus usos |
CN118725134A (zh) * | 2015-11-08 | 2024-10-01 | 豪夫迈·罗氏有限公司 | 筛选多特异性抗体的方法 |
WO2017086419A1 (ja) | 2015-11-18 | 2017-05-26 | 中外製薬株式会社 | 液性免疫応答の増強方法 |
EP3378487B1 (en) | 2015-11-18 | 2022-03-16 | Chugai Seiyaku Kabushiki Kaisha | Combination therapy using t cell redirection antigen binding molecule against cell having immunosuppressing function |
EP3178848A1 (en) | 2015-12-09 | 2017-06-14 | F. Hoffmann-La Roche AG | Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies |
IL313608A (en) | 2015-12-09 | 2024-08-01 | Hoffmann La Roche | Antibody against CD20 type II to reduce the formation of antibodies against drugs |
JP2019503349A (ja) | 2015-12-17 | 2019-02-07 | ノバルティス アーゲー | Pd−1に対する抗体分子およびその使用 |
CA3007421A1 (en) | 2015-12-17 | 2017-06-22 | Novartis Ag | Combination of c-met inhibitor with antibody molecule to pd-1 and uses thereof |
EP3398965A4 (en) | 2015-12-28 | 2019-09-18 | Chugai Seiyaku Kabushiki Kaisha | METHOD FOR PROMOTING THE EFFICACY OF PURIFYING A POLYPEPTIDE CONTAINING AN FC REGION |
MX2018008347A (es) | 2016-01-08 | 2018-12-06 | Hoffmann La Roche | Metodos de tratamiento de canceres positivos para ace utilizando antagonistas de union a eje pd-1 y anticuerpos biespecificos anti-ace/anti-cd3. |
WO2017125897A1 (en) | 2016-01-21 | 2017-07-27 | Novartis Ag | Multispecific molecules targeting cll-1 |
TWI738713B (zh) | 2016-02-06 | 2021-09-11 | 開曼群島商岸邁生物科技有限公司 | Fabs串聯免疫球蛋白及其用途 |
EP3423482A1 (en) | 2016-03-04 | 2019-01-09 | Novartis AG | Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore |
US11072666B2 (en) | 2016-03-14 | 2021-07-27 | Chugai Seiyaku Kabushiki Kaisha | Cell injury inducing therapeutic drug for use in cancer therapy |
LT3433280T (lt) | 2016-03-22 | 2023-07-10 | F. Hoffmann-La Roche Ag | Proteazės aktyvuojamos t ląstelei bispecifinės molekulės |
US11549099B2 (en) | 2016-03-23 | 2023-01-10 | Novartis Ag | Cell secreted minibodies and uses thereof |
MX2018012615A (es) | 2016-04-15 | 2019-05-30 | Novartis Ag | Composiciones y metodos para la expresion selectiva de proteinas. |
WO2017191101A1 (en) | 2016-05-02 | 2017-11-09 | F. Hoffmann-La Roche Ag | The contorsbody - a single chain target binder |
JP7359547B2 (ja) | 2016-05-17 | 2023-10-11 | ジェネンテック, インコーポレイテッド | 免疫療法における診断及び使用のための間質遺伝子シグネチャー |
EP3252078A1 (en) | 2016-06-02 | 2017-12-06 | F. Hoffmann-La Roche AG | Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer |
BR112019022558A2 (pt) | 2016-06-02 | 2020-05-19 | Hoffmann La Roche | anticorpos, métodos para tratar ou retardar a progressão de uma doença proliferativa e para tratar ou retardar a progressão do câncer em um indivíduo, composições farmacêuticas, kit, usos de uma combinação de um anticorpo anti-cd20 e de um anticorpo e invenção |
US20210177896A1 (en) | 2016-06-02 | 2021-06-17 | Novartis Ag | Therapeutic regimens for chimeric antigen receptor (car)- expressing cells |
MX2018015173A (es) | 2016-06-17 | 2019-07-04 | Genentech Inc | Purificacion de anticuerpos multiespecificos. |
WO2018007314A1 (en) | 2016-07-04 | 2018-01-11 | F. Hoffmann-La Roche Ag | Novel antibody format |
AU2017297603A1 (en) | 2016-07-14 | 2019-02-14 | Fred Hutchinson Cancer Research Center | Multiple bi-specific binding domain constructs with different epitope binding to treat cancer |
AU2017295886C1 (en) | 2016-07-15 | 2024-05-16 | Novartis Ag | Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor |
SG11201900677SA (en) | 2016-07-28 | 2019-02-27 | Novartis Ag | Combination therapies of chimeric antigen receptors adn pd-1 inhibitors |
CN110267677A (zh) | 2016-08-01 | 2019-09-20 | 诺华股份有限公司 | 使用与原m2巨噬细胞分子抑制剂组合的嵌合抗原受体治疗癌症 |
CA3033665A1 (en) | 2016-08-12 | 2018-02-15 | Janssen Biotech, Inc. | Fc engineered anti-tnfr superfamily member antibodies having enhanced agonistic activity and methods of using them |
SG11201900746RA (en) | 2016-08-12 | 2019-02-27 | Janssen Biotech Inc | Engineered antibodies and other fc-domain containing molecules with enhanced agonism and effector functions |
CN109689682B (zh) | 2016-09-19 | 2022-11-29 | 豪夫迈·罗氏有限公司 | 基于补体因子的亲和层析 |
EP3519437B1 (en) | 2016-09-30 | 2021-09-08 | F. Hoffmann-La Roche AG | Bispecific antibodies against p95her2 |
WO2018060035A1 (en) | 2016-09-30 | 2018-04-05 | F. Hoffmann-La Roche Ag | Spr-based dual-binding assay for the functional analysis of multispecific molecules |
TW202340473A (zh) | 2016-10-07 | 2023-10-16 | 瑞士商諾華公司 | 利用嵌合抗原受體之癌症治療 |
CN118359705A (zh) | 2016-10-19 | 2024-07-19 | 英温拉公司 | 抗体构建体 |
US11466094B2 (en) | 2016-11-15 | 2022-10-11 | Genentech, Inc. | Dosing for treatment with anti-CD20/anti-CD3 bispecific antibodies |
TW201829463A (zh) | 2016-11-18 | 2018-08-16 | 瑞士商赫孚孟拉羅股份公司 | 抗hla-g抗體及其用途 |
CA3044574A1 (en) | 2016-11-23 | 2018-05-31 | Bioverativ Therapeutics Inc. | Bispecific antibodies binding to coagulation factor ix and coagulation factor x |
WO2018114754A1 (en) | 2016-12-19 | 2018-06-28 | F. Hoffmann-La Roche Ag | Combination therapy with targeted 4-1bb (cd137) agonists |
ES2847973T3 (es) | 2016-12-20 | 2021-08-04 | Hoffmann La Roche | Politerapia de anticuerpos biespecíficos anti-CD20/anti-CD3 y agonistas de 4-1BB (CD137) |
CN110100007B (zh) | 2016-12-21 | 2024-05-28 | 豪夫迈·罗氏有限公司 | 用于体外糖工程化抗体的酶的再使用 |
AU2017384276B9 (en) | 2016-12-21 | 2020-11-26 | F. Hoffmann-La Roche Ag | In vitro glycoengineering of antibodies |
MX2019006123A (es) | 2016-12-21 | 2019-08-12 | Hoffmann La Roche | Metodo para glicomanipulacion in vitro de anticuerpos. |
ES2912408T3 (es) | 2017-01-26 | 2022-05-25 | Novartis Ag | Composiciones de CD28 y métodos para terapia con receptores quiméricos para antígenos |
WO2018160731A1 (en) | 2017-02-28 | 2018-09-07 | Novartis Ag | Shp inhibitor compositions and uses for chimeric antigen receptor therapy |
MA48723A (fr) | 2017-03-10 | 2020-04-08 | Hoffmann La Roche | Procédé de production d'anticorps multispécifiques |
RU2019133199A (ru) | 2017-03-27 | 2021-04-28 | Ф. Хоффманн-Ля Рош Аг | Улучшенные форматы антигенсвязывающего рецептора |
CN110650752A (zh) | 2017-03-31 | 2020-01-03 | 美勒斯公司 | 用于治疗具有NRG1融合基因的细胞的ErbB-2和ErbB3结合双特异性抗体 |
WO2018178396A1 (en) | 2017-03-31 | 2018-10-04 | Genmab Holding B.V. | Bispecific anti-cd37 antibodies, monoclonal anti-cd37 antibodies and methods of use thereof |
WO2018184966A1 (en) | 2017-04-03 | 2018-10-11 | F. Hoffmann-La Roche Ag | Antibodies binding to steap-1 |
WO2018184965A1 (en) | 2017-04-03 | 2018-10-11 | F. Hoffmann-La Roche Ag | Immunoconjugates of il-2 with an anti-pd-1 and tim-3 bispecific antibody |
KR102294136B1 (ko) | 2017-04-05 | 2021-08-26 | 에프. 호프만-라 로슈 아게 | 항-lag3 항체 |
CA3052532A1 (en) | 2017-04-05 | 2018-10-11 | F. Hoffmann-La Roche Ag | Bispecific antibodies specifically binding to pd1 and lag3 |
EP3615068A1 (en) | 2017-04-28 | 2020-03-04 | Novartis AG | Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor |
US20200055948A1 (en) | 2017-04-28 | 2020-02-20 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
WO2018210898A1 (en) | 2017-05-18 | 2018-11-22 | F. Hoffmann-La Roche Ag | Reduction of application-related side reaction of a therapeutic antibody |
CN111032085A (zh) * | 2017-06-05 | 2020-04-17 | 昆士兰医学研究所理事会 | 用于癌症治疗或预防的免疫检查点分子拮抗剂和rank-l(nf-kb配体)拮抗剂的组合或其双特异性结合分子及其用途 |
KR102692379B1 (ko) | 2017-06-05 | 2024-08-05 | 얀센 바이오테크 인코포레이티드 | Pd-1과 특이적으로 결합하는 항체 및 사용 방법 |
WO2018224609A1 (en) | 2017-06-07 | 2018-12-13 | Genmab B.V. | Therapeutic antibodies based on mutated igg hexamers |
MA49457A (fr) | 2017-06-22 | 2020-04-29 | Novartis Ag | Molécules d'anticorps se liant à cd73 et leurs utilisations |
WO2019006007A1 (en) | 2017-06-27 | 2019-01-03 | Novartis Ag | POSOLOGICAL REGIMES FOR ANTI-TIM3 ANTIBODIES AND USES THEREOF |
CN111278858B (zh) | 2017-07-11 | 2024-07-23 | 指南针制药有限责任公司 | 结合人cd137的激动剂抗体及其用途 |
AU2018302283A1 (en) | 2017-07-20 | 2020-02-06 | Novartis Ag | Dosage regimens of anti-LAG-3 antibodies and uses thereof |
BR112020002695A2 (pt) | 2017-08-09 | 2020-08-25 | Merus N.V. | anticorpos que se ligam à egfr e cmet |
BR112020005737A2 (pt) | 2017-09-22 | 2020-11-17 | F. Hoffmann-La Roche Ag | anticorpo recombinante multivalente e uso do mesmo, kit e método para detectar um antígeno |
EP3697441B1 (en) | 2017-10-20 | 2023-06-07 | F. Hoffmann-La Roche AG | Method for generating multispecific antibodies from monospecific antibodies |
BR112020007736A2 (pt) | 2017-10-30 | 2020-10-20 | F. Hoffmann-La Roche Ag | composição e método de tratamento |
WO2019089798A1 (en) | 2017-10-31 | 2019-05-09 | Novartis Ag | Anti-car compositions and methods |
US11718679B2 (en) | 2017-10-31 | 2023-08-08 | Compass Therapeutics Llc | CD137 antibodies and PD-1 antagonists and uses thereof |
TW201930353A (zh) | 2017-11-01 | 2019-08-01 | 瑞士商赫孚孟拉羅股份公司 | 使用經靶向之ox40促效劑的組合療法 |
KR20200089286A (ko) | 2017-11-16 | 2020-07-24 | 노파르티스 아게 | 조합 요법 |
US11851497B2 (en) | 2017-11-20 | 2023-12-26 | Compass Therapeutics Llc | CD137 antibodies and tumor antigen-targeting antibodies and uses thereof |
MX2020004921A (es) | 2017-11-29 | 2020-08-27 | Hoffmann La Roche | Ensayo de anticuerpo antifarmaco con supresion de interferencia del objetivo. |
SG11202005632SA (en) | 2017-12-21 | 2020-07-29 | Hoffmann La Roche | Antibodies binding to hla-a2/wt1 |
WO2019122054A1 (en) | 2017-12-22 | 2019-06-27 | F. Hoffmann-La Roche Ag | Depletion of light chain mispaired antibody variants by hydrophobic interaction chromatography |
CN111511400A (zh) | 2017-12-29 | 2020-08-07 | 豪夫迈·罗氏有限公司 | 抗vegf抗体及其使用方法 |
BR112020013325A2 (pt) | 2018-01-12 | 2020-12-01 | Genzyme Corporation | métodos para quantificação de polipeptídeos |
EP3740505A1 (en) | 2018-01-16 | 2020-11-25 | Lakepharma Inc. | Bispecific antibody that binds cd3 and another target |
WO2019152660A1 (en) | 2018-01-31 | 2019-08-08 | Novartis Ag | Combination therapy using a chimeric antigen receptor |
JP2021511793A (ja) | 2018-01-31 | 2021-05-13 | エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト | Lag3に結合する抗原結合部位を含む二重特異性抗体 |
CN111630063A (zh) | 2018-01-31 | 2020-09-04 | 豪夫迈·罗氏有限公司 | 稳定化的免疫球蛋白结构域 |
WO2019154776A1 (en) | 2018-02-06 | 2019-08-15 | F. Hoffmann-La Roche Ag | Treatment of ophthalmologic diseases |
MX2020008289A (es) | 2018-02-08 | 2020-09-25 | Genentech Inc | Moleculas biespecificas de union al antigeno y metodos de uso. |
TWI829667B (zh) | 2018-02-09 | 2024-01-21 | 瑞士商赫孚孟拉羅股份公司 | 結合gprc5d之抗體 |
TWI841551B (zh) | 2018-03-13 | 2024-05-11 | 瑞士商赫孚孟拉羅股份公司 | 使用靶向4-1bb (cd137)之促效劑的組合療法 |
BR112020015568A2 (pt) | 2018-03-13 | 2020-12-29 | F. Hoffmann-La Roche Ag | Agonista de 4-1bb (cd137), produto farmacêutico, composição farmacêutica, uso de uma combinação de um agonista de 4-1bb e método para tratar ou retardar a progressão do câncer |
WO2019183406A1 (en) * | 2018-03-21 | 2019-09-26 | Invenra Inc. | Multispecific antibody purification with ch1 resin |
JP2021519073A (ja) | 2018-03-29 | 2021-08-10 | ジェネンテック, インコーポレイテッド | 哺乳動物細胞におけるラクトジェニック活性の制御 |
WO2019192432A1 (zh) | 2018-04-02 | 2019-10-10 | 上海博威生物医药有限公司 | 结合淋巴细胞活化基因-3(lag-3)的抗体及其用途 |
US20210147547A1 (en) | 2018-04-13 | 2021-05-20 | Novartis Ag | Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof |
AR115052A1 (es) | 2018-04-18 | 2020-11-25 | Hoffmann La Roche | Anticuerpos multiespecíficos y utilización de los mismos |
AR114789A1 (es) | 2018-04-18 | 2020-10-14 | Hoffmann La Roche | Anticuerpos anti-hla-g y uso de los mismos |
EP3784351A1 (en) | 2018-04-27 | 2021-03-03 | Novartis AG | Car t cell therapies with enhanced efficacy |
WO2019210848A1 (en) | 2018-05-03 | 2019-11-07 | Shanghai Epimab Biotherapeutics Co., Ltd. | High affinity antibodies to pd-1 and lag-3 and bispecific binding proteins made therefrom |
CA3097512A1 (en) | 2018-05-18 | 2019-11-21 | F. Hoffmann-La Roche Ag | Targeted intracellular delivery of large nucleic acids |
WO2019226617A1 (en) | 2018-05-21 | 2019-11-28 | Compass Therapeutics Llc | Compositions and methods for enhancing the killing of target cells by nk cells |
WO2019226658A1 (en) | 2018-05-21 | 2019-11-28 | Compass Therapeutics Llc | Multispecific antigen-binding compositions and methods of use |
EA202092839A1 (ru) | 2018-05-24 | 2021-02-12 | Янссен Байотек, Инк. | Агенты, связывающиеся с psma, и виды их применения |
AU2019274652A1 (en) | 2018-05-24 | 2020-11-26 | Janssen Biotech, Inc. | Monospecific and multispecific anti-TMEFF2 antibodies and there uses |
PE20210132A1 (es) | 2018-05-24 | 2021-01-19 | Janssen Biotech Inc | Anticuerpos anti-cd3 y usos de estos |
US20210213063A1 (en) | 2018-05-25 | 2021-07-15 | Novartis Ag | Combination therapy with chimeric antigen receptor (car) therapies |
WO2019232244A2 (en) | 2018-05-31 | 2019-12-05 | Novartis Ag | Antibody molecules to cd73 and uses thereof |
CN112243444A (zh) | 2018-06-08 | 2021-01-19 | 豪夫迈·罗氏有限公司 | 具有减少的翻译后修饰的肽接头 |
SG11202011830SA (en) | 2018-06-13 | 2020-12-30 | Novartis Ag | Bcma chimeric antigen receptors and uses thereof |
JP7472119B2 (ja) | 2018-06-19 | 2024-04-22 | アターガ,エルエルシー | 補体第5成分に対する抗体分子およびその使用 |
AR116109A1 (es) | 2018-07-10 | 2021-03-31 | Novartis Ag | Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos |
WO2020021465A1 (en) | 2018-07-25 | 2020-01-30 | Advanced Accelerator Applications (Italy) S.R.L. | Method of treatment of neuroendocrine tumors |
BR112021001201A2 (pt) | 2018-07-25 | 2021-04-27 | Innovent Biologics (Suzhou) Co., Ltd. | anticorpo anti-tigit e uso do mesmo |
US20200047085A1 (en) | 2018-08-09 | 2020-02-13 | Regeneron Pharmaceuticals, Inc. | Methods for assessing binding affinity of an antibody variant to the neonatal fc receptor |
JP7522106B2 (ja) | 2018-10-04 | 2024-07-24 | ジェンマブ ホールディング ビー.ブイ. | 二重特異性抗cd37抗体を含む医薬組成物 |
JP7208380B2 (ja) | 2018-10-26 | 2023-01-18 | エフ.ホフマン-ラ ロシュ アーゲー | リコンビナーゼ媒介性カセット交換を使用した多重特異性抗体スクリーニング法 |
WO2020089051A1 (en) | 2018-10-29 | 2020-05-07 | F. Hoffmann-La Roche Ag | Antibody formulation |
MX2021005085A (es) | 2018-11-06 | 2021-11-04 | Genmab As | Formulacion de anticuerpo. |
BR112021008795A2 (pt) | 2018-11-13 | 2021-08-31 | Compass Therapeutics Llc | Construtos de ligação multiespecíficos contra moléculas de ponto de verificação e seus usos |
WO2020115283A1 (en) | 2018-12-07 | 2020-06-11 | Baxalta GmbH | Bispecific antibodies binding factor ixa and factor x |
WO2020114614A1 (en) | 2018-12-07 | 2020-06-11 | Baxalta GmbH | Proteinaceous molecules binding factor ixa and factor x |
WO2020115281A1 (en) | 2018-12-07 | 2020-06-11 | Baxalta GmbH | Proteinaceous molecules binding factor ixa and factor x |
WO2020114615A1 (en) | 2018-12-07 | 2020-06-11 | Baxalta GmbH | Bispecific antibodies binding factor ixa and factor x |
CA3123356A1 (en) | 2018-12-20 | 2020-06-25 | Novartis Ag | Combinations of a hdm2-p53 interaction inhibitor and a bcl2 inhibitor and their use for treating cancer |
JP2022514315A (ja) | 2018-12-20 | 2022-02-10 | ノバルティス アーゲー | 3-(1-オキソイソインドリン-2-イル)ピペリジン-2,6-ジオン誘導体を含む投与計画及び薬剤組み合わせ |
EP3897847A1 (en) | 2018-12-21 | 2021-10-27 | F. Hoffmann-La Roche AG | Antibodies binding to cd3 |
BR112021012022A2 (pt) | 2018-12-21 | 2021-11-03 | Hoffmann La Roche | Anticorpo que se liga ao vegf e à il-1beta e métodos de uso |
WO2020136060A1 (en) | 2018-12-28 | 2020-07-02 | F. Hoffmann-La Roche Ag | A peptide-mhc-i-antibody fusion protein for therapeutic use in a patient with amplified immune response |
EP3903102B1 (en) | 2018-12-30 | 2023-04-12 | F. Hoffmann-La Roche AG | Ph-gradient spr-based binding assay |
US10871640B2 (en) | 2019-02-15 | 2020-12-22 | Perkinelmer Cellular Technologies Germany Gmbh | Methods and systems for automated imaging of three-dimensional objects |
JP7483732B2 (ja) | 2019-02-15 | 2024-05-15 | ノバルティス アーゲー | 3-(1-オキソ-5-(ピペリジン-4-イル)イソインドリン-2-イル)ピペリジン-2,6-ジオン誘導体及びその使用 |
JP7488826B2 (ja) | 2019-02-15 | 2024-05-22 | ノバルティス アーゲー | 置換3-(1-オキソイソインドリン-2-イル)ピペリジン-2,6-ジオン誘導体及びその使用 |
WO2020172553A1 (en) | 2019-02-22 | 2020-08-27 | Novartis Ag | Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors |
WO2020174370A2 (en) | 2019-02-26 | 2020-09-03 | Janssen Biotech, Inc. | Combination therapies and patient stratification with bispecific anti-egfr/c-met antibodies |
SG11202109424RA (en) | 2019-03-14 | 2021-09-29 | Genentech Inc | Treatment of cancer with her2xcd3 bispecific antibodies in combination with anti-her2 mab |
CN113677701A (zh) | 2019-03-29 | 2021-11-19 | 豪夫迈·罗氏有限公司 | 产生亲合结合多特异性抗体的方法 |
WO2020205523A1 (en) | 2019-03-29 | 2020-10-08 | Atarga, Llc | Anti fgf23 antibody |
JP7249432B2 (ja) | 2019-03-29 | 2023-03-30 | エフ. ホフマン-ラ ロシュ アーゲー | 多価分子の機能分析のための、sprをベースとする結合アッセイ |
AU2020267504A1 (en) | 2019-05-08 | 2021-12-02 | Janssen Biotech, Inc. | Materials and methods for modulating T cell mediated immunity |
CA3134016A1 (en) | 2019-05-09 | 2020-11-12 | Genentech, Inc. | Methods of making antibodies |
MA55884A (fr) | 2019-05-09 | 2022-03-16 | Merus Nv | Domaines variants pour la multimérisation de protéines et leur séparation |
EP3969907A1 (en) | 2019-05-13 | 2022-03-23 | F. Hoffmann-La Roche AG | Interference-suppressed pharmacokinetic immunoassay |
WO2020230091A1 (en) | 2019-05-14 | 2020-11-19 | Janssen Biotech, Inc. | Combination therapies with bispecific anti-egfr/c-met antibodies and third generation egfr tyrosine kinase inhibitors |
EP3986924A1 (en) | 2019-06-19 | 2022-04-27 | F. Hoffmann-La Roche AG | Method for the generation of a multivalent, multispecific antibody expressing cell by targeted integration of multiple expression cassettes in a defined organization |
BR112021025401A2 (pt) | 2019-06-19 | 2022-02-01 | Hoffmann La Roche | Métodos para produzir um anticorpo trivalente, ácido desoxirribonucleico, uso de um ácido desoxirribonucleico, célula de mamífero recombinante, composição e método para produzir uma célula de mamífero recombinante |
BR112021025500A2 (pt) | 2019-06-19 | 2022-02-01 | Hoffmann La Roche | Métodos para produzir um anticorpo multivalente biespecífico e para produzir uma célula de mamífero recombinante, ácido desoxirribonucleico, uso de um ácido desoxirribonucleico, célula de mamífero recombinante e composição |
AU2020294879A1 (en) | 2019-06-19 | 2021-12-16 | F. Hoffmann-La Roche Ag | Method for the generation of a bivalent, bispecific antibody expressing cell by targeted integration of multiple expression cassettes in a defined organization |
CN114080451B (zh) | 2019-06-19 | 2024-03-22 | 豪夫迈·罗氏有限公司 | 通过使用Cre mRNA进行的靶向整合来产生蛋白质表达细胞的方法 |
MX2021015823A (es) | 2019-06-26 | 2022-02-03 | Hoffmann La Roche | Lineas celulares de mamifero con inactivacion del gen sirtuina-1 (sirt-1). |
AR119393A1 (es) | 2019-07-15 | 2021-12-15 | Hoffmann La Roche | Anticuerpos que se unen a nkg2d |
CN114174338A (zh) | 2019-07-31 | 2022-03-11 | 豪夫迈·罗氏有限公司 | 与gprc5d结合的抗体 |
PE20220394A1 (es) | 2019-07-31 | 2022-03-18 | Hoffmann La Roche | Anticuerpos que se fijan a gprc5d |
JP2022549087A (ja) | 2019-09-18 | 2022-11-24 | ジェネンテック, インコーポレイテッド | 抗klk7抗体、抗klk5抗体、多重特異性抗klk5/klk7抗体および使用方法 |
AU2020370832A1 (en) | 2019-10-21 | 2022-05-19 | Novartis Ag | TIM-3 inhibitors and uses thereof |
IL292347A (en) | 2019-10-21 | 2022-06-01 | Novartis Ag | Combination treatments with ventoclax and tim-3 inhibitors |
MX2022005317A (es) | 2019-11-15 | 2022-05-26 | Hoffmann La Roche | Prevencion de formacion de particulas visibles en soluciones acuosas de proteina. |
BR112022010206A2 (pt) | 2019-11-26 | 2022-11-29 | Novartis Ag | Receptores de antígeno quiméricos e usos dos mesmos |
BR112022011323A2 (pt) * | 2019-12-10 | 2022-08-23 | Abl Bio Inc | Anticorpo biespecífico anti-antígeno de maturação de célula b (bcma)/anti-4-1bb ou um fragmento de ligação ao antígeno do mesmo, e composição farmacêutica para prevenção ou tratamento de uma doença relacionada ao bcma, 4-1bb ou ambos |
CN114867494B9 (zh) | 2019-12-13 | 2024-01-12 | 基因泰克公司 | 抗ly6g6d抗体及使用方法 |
KR20220113791A (ko) | 2019-12-18 | 2022-08-16 | 에프. 호프만-라 로슈 아게 | 이중특이적 항-ccl2 항체 |
AU2020406085A1 (en) | 2019-12-18 | 2022-05-26 | F. Hoffmann-La Roche Ag | Antibodies binding to HLA-A2/MAGE-A4 |
CA3165399A1 (en) | 2019-12-20 | 2021-06-24 | Novartis Ag | Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases |
CN115515678A (zh) | 2019-12-23 | 2022-12-23 | 基因泰克公司 | 载脂蛋白l1特异性抗体及其使用方法 |
EP4085251B1 (en) | 2020-01-02 | 2024-07-31 | F. Hoffmann-La Roche AG | Method for determining the amount of a therapeutic antibody in the brain |
IL294545A (en) | 2020-01-15 | 2022-09-01 | Hoffmann La Roche | Methods for reducing contamination from recombinant protein production processes |
CN115298322A (zh) | 2020-01-17 | 2022-11-04 | 贝克顿迪金森公司 | 用于单细胞分泌组学的方法和组合物 |
US20230058489A1 (en) | 2020-01-17 | 2023-02-23 | Novartis Ag | Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia |
JP2023515211A (ja) | 2020-02-27 | 2023-04-12 | ノバルティス アーゲー | キメラ抗原受容体発現細胞を作製する方法 |
TW202200209A (zh) | 2020-02-28 | 2022-01-01 | 美商健臻公司 | 用於優化之藥物接合之經修飾的結合多肽 |
CA3174103A1 (en) | 2020-03-06 | 2021-09-10 | Go Therapeutics, Inc. | Anti-glyco-cd44 antibodies and their uses |
CN115315512A (zh) | 2020-03-26 | 2022-11-08 | 基因泰克公司 | 具有降低的宿主细胞蛋白质的经修饰的哺乳动物细胞 |
EP4126940A1 (en) | 2020-03-30 | 2023-02-08 | F. Hoffmann-La Roche AG | Antibody that binds to vegf and pdgf-b and methods of use |
JP2023520249A (ja) | 2020-05-15 | 2023-05-16 | エフ. ホフマン-ラ ロシュ アーゲー | 非経口タンパク質溶液中の可視粒子形成の防止方法 |
EP4153130A1 (en) | 2020-05-19 | 2023-03-29 | F. Hoffmann-La Roche AG | The use of chelators for the prevention of visible particle formation in parenteral protein solutions |
AR122132A1 (es) | 2020-05-21 | 2022-08-17 | Merus Nv | Métodos y medios para producción de moléculas tipo ig |
IL298302A (en) | 2020-06-08 | 2023-01-01 | Hoffmann La Roche | Antibodies against hbv and methods of use |
IL298923A (en) | 2020-06-16 | 2023-02-01 | Hoffmann La Roche | A method for determining the free antigen of an antibody in a sample |
CR20220637A (es) | 2020-06-19 | 2023-01-31 | Hoffmann La Roche | Anticuerpos que se unen a cd3 y cd19 |
WO2021255146A1 (en) | 2020-06-19 | 2021-12-23 | F. Hoffmann-La Roche Ag | Antibodies binding to cd3 and cea |
CA3176579A1 (en) | 2020-06-19 | 2021-12-23 | F. Hoffmann-La Roche Ag | Antibodies binding to cd3 |
KR20230025673A (ko) | 2020-06-19 | 2023-02-22 | 에프. 호프만-라 로슈 아게 | CD3 및 FolR1에 결합하는 항체 |
US20230321067A1 (en) | 2020-06-23 | 2023-10-12 | Novartis Ag | Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives |
EP4172192A1 (en) | 2020-06-24 | 2023-05-03 | Genentech, Inc. | Apoptosis resistant cell lines |
EP4178529A1 (en) | 2020-07-07 | 2023-05-17 | F. Hoffmann-La Roche AG | Alternative surfactants as stabilizers for therapeutic protein formulations |
AU2021308712A1 (en) | 2020-07-16 | 2023-02-02 | Novartis Ag | Anti-betacellulin antibodies, fragments thereof, and multi-specific binding molecules |
MX2023000617A (es) | 2020-07-17 | 2023-02-13 | Genentech Inc | Anticuerpos anti-notch2 y metodos de uso. |
KR20230066552A (ko) | 2020-07-24 | 2023-05-16 | 에프. 호프만-라 로슈 아게 | 항체-다량체-융합체의 발현 방법 |
WO2022026592A2 (en) | 2020-07-28 | 2022-02-03 | Celltas Bio, Inc. | Antibody molecules to coronavirus and uses thereof |
JP2023536164A (ja) | 2020-08-03 | 2023-08-23 | ノバルティス アーゲー | ヘテロアリール置換3-(1-オキソイソインドリン-2-イル)ピペリジン-2,6-ジオン誘導体及びその使用 |
JP2023539201A (ja) | 2020-08-28 | 2023-09-13 | ジェネンテック, インコーポレイテッド | 宿主細胞タンパク質のCRISPR/Cas9マルチプレックスノックアウト |
WO2022043557A1 (en) | 2020-08-31 | 2022-03-03 | Advanced Accelerator Applications International Sa | Method of treating psma-expressing cancers |
US20230338587A1 (en) | 2020-08-31 | 2023-10-26 | Advanced Accelerator Applications International Sa | Method of treating psma-expressing cancers |
PE20230986A1 (es) | 2020-09-04 | 2023-06-21 | Hoffmann La Roche | Anticuerpo que se une a vegf-a y ang2, y metodos de uso |
IL301258A (en) | 2020-09-21 | 2023-05-01 | Genentech Inc | Purification of multispecific antibodies |
KR20230068415A (ko) | 2020-09-24 | 2023-05-17 | 에프. 호프만-라 로슈 아게 | 유전자 녹아웃을 갖는 포유류 세포주 |
IL301547A (en) | 2020-10-05 | 2023-05-01 | Genentech Inc | Dosage for treatment with bispecific anti-FCRH5/anti-CD3 antibodies |
WO2022086957A1 (en) | 2020-10-20 | 2022-04-28 | Genentech, Inc. | Peg-conjugated anti-mertk antibodies and methods of use |
CA3199767A1 (en) | 2020-10-28 | 2022-05-05 | Janssen Biotech, Inc. | Compositions and methods for modulating delta gamma chain mediated immunity |
JP2023547499A (ja) | 2020-11-06 | 2023-11-10 | ノバルティス アーゲー | 抗体Fc変異体 |
US20240033358A1 (en) | 2020-11-13 | 2024-02-01 | Novartis Ag | Combination therapies with chimeric antigen receptor (car)-expressing cells |
JP2023553157A (ja) | 2020-12-10 | 2023-12-20 | ユーティレックス カンパニー リミテッド | 抗-pd-1抗体およびその用途 |
JP7326584B2 (ja) | 2020-12-17 | 2023-08-15 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | 抗hla-g抗体及びその使用 |
WO2022136140A1 (en) | 2020-12-22 | 2022-06-30 | F. Hoffmann-La Roche Ag | Oligonucleotides targeting xbp1 |
US20240043540A1 (en) | 2020-12-23 | 2024-02-08 | Innovent Biologics (Singapore) Pte. Ltd. | Anti-b7-h3 antibody and uses thereof |
CN114716548A (zh) | 2021-01-05 | 2022-07-08 | (株)爱恩德生物 | 抗-fgfr3抗体及其用途 |
EP4274658A1 (en) | 2021-01-06 | 2023-11-15 | F. Hoffmann-La Roche AG | Combination therapy employing a pd1-lag3 bispecific antibody and a cd20 t cell bispecific antibody |
PE20240761A1 (es) | 2021-01-28 | 2024-04-17 | Janssen Biotech Inc | Proteinas de union a psma y usos de estas |
EP4284510A1 (en) | 2021-01-29 | 2023-12-06 | Novartis AG | Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof |
EP4288458A1 (en) | 2021-02-03 | 2023-12-13 | Genentech, Inc. | Multispecific binding protein degrader platform and methods of use |
MX2023009100A (es) | 2021-02-03 | 2023-09-25 | Mozart Therapeutics Inc | Agentes aglutinantes y métodos para usar los mismos. |
CN116848142A (zh) | 2021-02-04 | 2023-10-03 | 信达生物制药(苏州)有限公司 | 抗tnfr2抗体及其用途 |
JP2024512240A (ja) | 2021-02-18 | 2024-03-19 | エフ. ホフマン-ラ ロシュ アーゲー | 複雑な多段階の抗体相互作用を解明するための方法 |
EP4301782A1 (en) | 2021-03-05 | 2024-01-10 | Go Therapeutics, Inc. | Anti-glyco-cd44 antibodies and their uses |
AU2022233518A1 (en) | 2021-03-09 | 2023-10-26 | Janssen Biotech, Inc. | Treatment of cancers lacking egfr-activating mutations |
CN117062839A (zh) | 2021-03-12 | 2023-11-14 | 基因泰克公司 | 抗klk7抗体、抗klk5抗体、多特异性抗klk5/klk7抗体和使用方法 |
TW202304979A (zh) | 2021-04-07 | 2023-02-01 | 瑞士商諾華公司 | 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途 |
EP4320444A1 (en) | 2021-04-09 | 2024-02-14 | F. Hoffmann-La Roche AG | Process for selecting cell clones expressing a heterologous polypeptide |
CA3215049A1 (en) | 2021-04-10 | 2022-10-13 | Baiteng ZHAO | Folr1 binding agents, conjugates thereof and methods of using the same |
IL307501A (en) | 2021-04-19 | 2023-12-01 | Hoffmann La Roche | Modified mammalian cells |
EP4326768A1 (en) | 2021-04-23 | 2024-02-28 | Profoundbio Us Co. | Anti-cd70 antibodies, conjugates thereof and methods of using the same |
MX2023012699A (es) | 2021-04-30 | 2023-11-21 | Hoffmann La Roche | Dosificacion para el tratamiento con anticuerpo biespecifico anti-cd20/anti-cd3. |
WO2022228705A1 (en) | 2021-04-30 | 2022-11-03 | F. Hoffmann-La Roche Ag | Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate |
AR125874A1 (es) | 2021-05-18 | 2023-08-23 | Novartis Ag | Terapias de combinación |
TW202309094A (zh) | 2021-05-18 | 2023-03-01 | 美商健生生物科技公司 | 用於識別癌症患者以進行組合治療之方法 |
EP4341385A1 (en) | 2021-05-21 | 2024-03-27 | Genentech, Inc. | Modified cells for the production of a recombinant product of interest |
CA3216005A1 (en) | 2021-05-27 | 2022-12-01 | Jochen Beninga | Fc variant with enhanced affinity to fc receptors and improved thermal stability |
CN113278071B (zh) | 2021-05-27 | 2021-12-21 | 江苏荃信生物医药股份有限公司 | 抗人干扰素α受体1单克隆抗体及其应用 |
US20240294673A1 (en) * | 2021-05-28 | 2024-09-05 | Julius-Maximilians-Universitaet Wuerzburg | Recombinant proteinaceous binding molecules |
KR20240021859A (ko) | 2021-06-18 | 2024-02-19 | 에프. 호프만-라 로슈 아게 | 이중특이적 항-ccl2 항체 |
TW202309078A (zh) | 2021-07-02 | 2023-03-01 | 美商建南德克公司 | 治療癌症之方法及組成物 |
JP2024529339A (ja) | 2021-07-13 | 2024-08-06 | ジェネンテック, インコーポレイテッド | サイトカイン放出症候群を予測する多変量モデル |
AU2022315528A1 (en) | 2021-07-22 | 2023-10-19 | F. Hoffmann-La Roche Ag | Heterodimeric fc domain antibodies |
MX2024001214A (es) | 2021-07-28 | 2024-02-12 | Hoffmann La Roche | Metodos y composiciones para tratar cancer. |
EP4380980A1 (en) | 2021-08-03 | 2024-06-12 | F. Hoffmann-La Roche AG | Bispecific antibodies and methods of use |
AU2022324456A1 (en) | 2021-08-05 | 2024-02-15 | Go Therapeutics, Inc. | Anti-glyco-muc4 antibodies and their uses |
CA3230934A1 (en) | 2021-09-03 | 2023-03-09 | Go Therapeutics, Inc. | Anti-glyco-cmet antibodies and their uses |
JP2024534910A (ja) | 2021-09-03 | 2024-09-26 | ジーオー セラピューティクス,インコーポレイテッド | 抗グリコlamp1抗体およびその使用 |
CN113683694B (zh) | 2021-09-03 | 2022-05-13 | 江苏荃信生物医药股份有限公司 | 一种抗人tslp单克隆抗体及其应用 |
CN113603775B (zh) | 2021-09-03 | 2022-05-20 | 江苏荃信生物医药股份有限公司 | 抗人白介素-33单克隆抗体及其应用 |
EP4148067A1 (en) | 2021-09-08 | 2023-03-15 | F. Hoffmann-La Roche AG | Method for the expression of an antibody-multimer-fusion |
EP4405396A2 (en) | 2021-09-20 | 2024-07-31 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of her2 positive cancer |
WO2023076876A1 (en) | 2021-10-26 | 2023-05-04 | Mozart Therapeutics, Inc. | Modulation of immune responses to viral vectors |
WO2023092004A1 (en) | 2021-11-17 | 2023-05-25 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of tau-related disorders |
WO2023094282A1 (en) | 2021-11-25 | 2023-06-01 | F. Hoffmann-La Roche Ag | Quantification of low amounts of antibody sideproducts |
US20230183360A1 (en) | 2021-12-09 | 2023-06-15 | Janssen Biotech, Inc. | Use of Amivantamab to Treat Colorectal Cancer |
AR127887A1 (es) | 2021-12-10 | 2024-03-06 | Hoffmann La Roche | Anticuerpos que se unen a cd3 y plap |
EP4416301A1 (en) | 2021-12-21 | 2024-08-21 | F. Hoffmann-La Roche AG | Method for the determination of hydrolytic activity |
WO2023129974A1 (en) | 2021-12-29 | 2023-07-06 | Bristol-Myers Squibb Company | Generation of landing pad cell lines |
TW202340251A (zh) | 2022-01-19 | 2023-10-16 | 美商建南德克公司 | 抗notch2抗體及結合物及其使用方法 |
TW202342057A (zh) | 2022-02-07 | 2023-11-01 | 美商健生生物科技公司 | 用於減少用egfr/met雙特異性抗體治療之患者的輸注相關反應之方法 |
TW202342548A (zh) | 2022-02-07 | 2023-11-01 | 美商威特拉公司 | 抗獨特型(anti-idiotype)抗體分子及其用途 |
US20230414750A1 (en) | 2022-03-23 | 2023-12-28 | Hoffmann-La Roche Inc. | Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy |
WO2023192850A1 (en) | 2022-03-29 | 2023-10-05 | Ngm Biopharmaceuticals, Inc. | Ilt3 and cd3 binding agents and methods of use thereof |
WO2023191816A1 (en) | 2022-04-01 | 2023-10-05 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
AU2023251832A1 (en) | 2022-04-13 | 2024-10-17 | F. Hoffmann-La Roche Ag | Pharmaceutical compositions of anti-cd20/anti-cd3 bispecific antibodies and methods of use |
WO2023201299A1 (en) | 2022-04-13 | 2023-10-19 | Genentech, Inc. | Pharmaceutical compositions of therapeutic proteins and methods of use |
WO2023202967A1 (en) | 2022-04-19 | 2023-10-26 | F. Hoffmann-La Roche Ag | Improved production cells |
WO2023219613A1 (en) | 2022-05-11 | 2023-11-16 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
AR129268A1 (es) | 2022-05-11 | 2024-08-07 | Hoffmann La Roche | Anticuerpo que se une a vegf-a e il6 y métodos de uso |
WO2023220695A2 (en) | 2022-05-13 | 2023-11-16 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of her2 positive cancer |
WO2023218431A1 (en) | 2022-05-13 | 2023-11-16 | BioNTech SE | Rna compositions targeting hiv |
WO2023227790A1 (en) | 2022-05-27 | 2023-11-30 | Sanofi | Natural killer (nk) cell engagers binding to nkp46 and bcma variants with fc-engineering |
WO2023232961A1 (en) | 2022-06-03 | 2023-12-07 | F. Hoffmann-La Roche Ag | Improved production cells |
WO2024003837A1 (en) | 2022-06-30 | 2024-01-04 | Janssen Biotech, Inc. | Use of anti-egfr/anti-met antibody to treat gastric or esophageal cancer |
TW202417042A (zh) | 2022-07-13 | 2024-05-01 | 美商建南德克公司 | 用抗fcrh5/抗cd3雙特異性抗體進行治療之給藥 |
WO2024020432A1 (en) | 2022-07-19 | 2024-01-25 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
TW202417504A (zh) | 2022-07-22 | 2024-05-01 | 美商建南德克公司 | 抗steap1抗原結合分子及其用途 |
WO2024028386A1 (en) | 2022-08-02 | 2024-02-08 | Ose Immunotherapeutics | Multifunctional molecule directed against cd28 |
WO2024030956A2 (en) | 2022-08-03 | 2024-02-08 | Mozart Therapeutics, Inc. | Cd39-specific binding agents and methods of using the same |
WO2024030976A2 (en) | 2022-08-03 | 2024-02-08 | Voyager Therapeutics, Inc. | Compositions and methods for crossing the blood brain barrier |
WO2024079074A1 (en) | 2022-10-10 | 2024-04-18 | Universite D'aix Marseille | ANTI-sCD146 ANTIBODIES AND USES THEREOF |
WO2024079015A1 (en) | 2022-10-10 | 2024-04-18 | F. Hoffmann-La Roche Ag | Combination therapy of a gprc5d tcb and imids |
TW202423970A (zh) | 2022-10-10 | 2024-06-16 | 瑞士商赫孚孟拉羅股份公司 | Gprc5d tcb及cd38抗體之組合療法 |
TW202423969A (zh) | 2022-10-10 | 2024-06-16 | 瑞士商赫孚孟拉羅股份公司 | Gprc5d tcb及蛋白酶體抑制劑之組合療法 |
WO2024079069A1 (en) | 2022-10-12 | 2024-04-18 | F. Hoffmann-La Roche Ag | Method for classifying cells |
TW202426505A (zh) | 2022-10-25 | 2024-07-01 | 美商建南德克公司 | 癌症之治療及診斷方法 |
WO2024089551A1 (en) | 2022-10-25 | 2024-05-02 | Janssen Biotech, Inc. | Msln and cd3 binding agents and methods of use thereof |
WO2024089609A1 (en) | 2022-10-25 | 2024-05-02 | Ablynx N.V. | Glycoengineered fc variant polypeptides with enhanced effector function |
WO2024094741A1 (en) | 2022-11-03 | 2024-05-10 | F. Hoffmann-La Roche Ag | Combination therapy with anti-cd19/anti-cd28 bispecific antibody |
WO2024110426A1 (en) | 2022-11-23 | 2024-05-30 | F. Hoffmann-La Roche Ag | Method for increasing recombinant protein expression |
WO2024129594A1 (en) | 2022-12-12 | 2024-06-20 | Genentech, Inc. | Optimizing polypeptide sialic acid content |
WO2024133825A1 (en) | 2022-12-22 | 2024-06-27 | Anaveon AG | Anti-pd-1 antibody antigen-binding domain and immunoconjugate |
EP4431525A1 (en) | 2023-03-16 | 2024-09-18 | Anaveon AG | Il-2 fusion protein |
WO2024141955A1 (en) | 2022-12-28 | 2024-07-04 | BioNTech SE | Rna compositions targeting hiv |
WO2024155807A1 (en) | 2023-01-18 | 2024-07-25 | Genentech, Inc. | Multispecific antibodies and uses thereof |
WO2024156672A1 (en) | 2023-01-25 | 2024-08-02 | F. Hoffmann-La Roche Ag | Antibodies binding to csf1r and cd3 |
WO2024163009A1 (en) | 2023-01-31 | 2024-08-08 | Genentech, Inc. | Methods and compositions for treating urothelial bladder cancer |
WO2024163494A1 (en) | 2023-01-31 | 2024-08-08 | F. Hoffmann-La Roche Ag | Methods and compositions for treating non-small cell lung cancer and triple-negative breast cancer |
WO2024168061A2 (en) | 2023-02-07 | 2024-08-15 | Ayan Therapeutics Inc. | Antibody molecules binding to sars-cov-2 |
WO2024184287A1 (en) | 2023-03-06 | 2024-09-12 | F. Hoffmann-La Roche Ag | Combination therapy of an anti-egfrviii/anti-cd3 antibody and an tumor-targeted 4-1bb agonist |
WO2024191785A1 (en) | 2023-03-10 | 2024-09-19 | Genentech, Inc. | Fusions with proteases and uses thereof |
WO2024188965A1 (en) | 2023-03-13 | 2024-09-19 | F. Hoffmann-La Roche Ag | Combination therapy employing a pd1-lag3 bispecific antibody and an hla-g t cell bispecific antibody |
WO2024189544A1 (en) | 2023-03-13 | 2024-09-19 | Janssen Biotech, Inc. | Combination therapies with bi-specific anti-egfr/c-met antibodies and anti-pd-1 antibodies |
WO2024200823A1 (en) | 2023-03-30 | 2024-10-03 | Ose Immunotherapeutics | Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell enhancing molecule and use thereof |
WO2024200826A1 (en) | 2023-03-30 | 2024-10-03 | Ose Immunotherapeutics | Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell inhibiting molecule and use thereof |
US20240327522A1 (en) | 2023-03-31 | 2024-10-03 | Genentech, Inc. | Anti-alpha v beta 8 integrin antibodies and methods of use |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7018809B1 (en) | 1991-09-19 | 2006-03-28 | Genentech, Inc. | Expression of functional antibody fragments |
UA40577C2 (uk) * | 1993-08-02 | 2001-08-15 | Мерк Патент Гмбх | Біспецифічна молекула, що використовується для лізису пухлинних клітин, спосіб її одержання, моноклональне антитіло (варіанти), фармацевтичний препарат, фармацевтичний набір (варіанти), спосіб видалення пухлинних клітин |
US5731168A (en) | 1995-03-01 | 1998-03-24 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
PT1049787E (pt) | 1998-01-23 | 2005-04-29 | Vlaams Interuniv Inst Biotech | Derivados de anticorpos multipropositos |
AU2004242614B2 (en) * | 2003-05-30 | 2011-09-22 | Merus N.V. | Fab library for the preparation of anti vegf and anti rabies virus fabs |
AU2006218876A1 (en) | 2005-02-28 | 2006-09-08 | Centocor, Inc. | Heterodimeric protein binding compositions |
EP1870459B1 (en) | 2005-03-31 | 2016-06-29 | Chugai Seiyaku Kabushiki Kaisha | Methods for producing polypeptides by regulating polypeptide association |
US20090162359A1 (en) * | 2007-12-21 | 2009-06-25 | Christian Klein | Bivalent, bispecific antibodies |
US8227577B2 (en) * | 2007-12-21 | 2012-07-24 | Hoffman-La Roche Inc. | Bivalent, bispecific antibodies |
-
2008
- 2008-12-11 US US12/332,514 patent/US8242247B2/en active Active
- 2008-12-16 UA UAA201008706A patent/UA100874C2/ru unknown
- 2008-12-16 AU AU2008340694A patent/AU2008340694B2/en active Active
- 2008-12-16 DK DK08864822.5T patent/DK2225280T3/da active
- 2008-12-16 MY MYPI2010002913A patent/MY160736A/en unknown
- 2008-12-16 CN CN200880122244XA patent/CN101903406B/zh active Active
- 2008-12-16 KR KR1020127034098A patent/KR20130016397A/ko not_active Application Discontinuation
- 2008-12-16 BR BRPI0821777A patent/BRPI0821777B8/pt active IP Right Grant
- 2008-12-16 NZ NZ585774A patent/NZ585774A/en unknown
- 2008-12-16 ES ES08864822.5T patent/ES2471266T3/es active Active
- 2008-12-16 CA CA2709430A patent/CA2709430C/en active Active
- 2008-12-16 SI SI200831227T patent/SI2225280T1/sl unknown
- 2008-12-16 JP JP2010538442A patent/JP5281098B2/ja active Active
- 2008-12-16 EP EP08864822.5A patent/EP2225280B1/en active Active
- 2008-12-16 WO PCT/EP2008/010704 patent/WO2009080253A1/en active Application Filing
- 2008-12-16 PL PL08864822T patent/PL2225280T3/pl unknown
- 2008-12-16 PT PT88648225T patent/PT2225280E/pt unknown
- 2008-12-16 KR KR1020107013761A patent/KR101265855B1/ko active IP Right Grant
- 2008-12-17 PE PE2008002106A patent/PE20091169A1/es active IP Right Grant
- 2008-12-17 TW TW097149215A patent/TWI359028B/zh active
- 2008-12-17 AR ARP080105486A patent/AR069775A1/es active IP Right Grant
- 2008-12-17 CL CL2008003778A patent/CL2008003778A1/es unknown
-
2010
- 2010-05-27 CR CR11465A patent/CR11465A/es unknown
- 2010-05-31 CO CO10065320A patent/CO6280543A2/es active IP Right Grant
- 2010-05-31 IL IL206108A patent/IL206108A/en active IP Right Grant
- 2010-06-17 ZA ZA2010/04300A patent/ZA201004300B/en unknown
- 2010-06-17 MA MA32930A patent/MA31925B1/fr unknown
- 2010-06-21 EC EC2010010297A patent/ECSP10010297A/es unknown
-
2011
- 2011-01-05 HK HK11100048.9A patent/HK1145845A1/xx unknown
-
2014
- 2014-07-16 CY CY20141100533T patent/CY1115275T1/el unknown
- 2014-07-28 HR HRP20140727AT patent/HRP20140727T1/hr unknown
-
2020
- 2020-02-17 AR ARP200100430A patent/AR118118A2/es unknown
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103764681A (zh) * | 2011-08-23 | 2014-04-30 | 罗切格利卡特公司 | 双特异性抗原结合分子 |
CN103781801A (zh) * | 2011-08-23 | 2014-05-07 | 罗切格利卡特公司 | 包含两个Fab片段的无Fc的抗体及使用方法 |
CN103748114A (zh) * | 2011-08-23 | 2014-04-23 | 罗切格利卡特公司 | T细胞活化性双特异性抗原结合分子 |
CN103748114B (zh) * | 2011-08-23 | 2017-07-21 | 罗切格利卡特公司 | T细胞活化性双特异性抗原结合分子 |
CN104379604A (zh) * | 2012-05-24 | 2015-02-25 | 弗·哈夫曼-拉罗切有限公司 | 多特异性抗体 |
CN105121630A (zh) * | 2012-10-03 | 2015-12-02 | 酵活有限公司 | 定量重链和轻链多肽对的方法 |
CN105121630B (zh) * | 2012-10-03 | 2018-09-25 | 酵活有限公司 | 定量重链和轻链多肽对的方法 |
CN104704004A (zh) * | 2012-10-08 | 2015-06-10 | 罗切格利卡特公司 | 包含两个Fab片段的无Fc的抗体及使用方法 |
CN104704004B (zh) * | 2012-10-08 | 2019-12-31 | 罗切格利卡特公司 | 包含两个Fab片段的无Fc的抗体及使用方法 |
CN104797599A (zh) * | 2012-11-05 | 2015-07-22 | 全药工业株式会社 | 抗体或抗体组合物的制备方法 |
CN110669136A (zh) * | 2012-11-05 | 2020-01-10 | 全药工业株式会社 | 抗体或抗体组合物的制备方法 |
CN105143270A (zh) * | 2013-02-26 | 2015-12-09 | 罗切格利卡特公司 | 双特异性t细胞活化抗原结合分子 |
CN104936985A (zh) * | 2013-02-26 | 2015-09-23 | 罗切格利卡特公司 | 双特异性t细胞活化性抗原结合分子 |
CN105143270B (zh) * | 2013-02-26 | 2019-11-12 | 罗切格利卡特公司 | 双特异性t细胞活化抗原结合分子 |
CN110845618A (zh) * | 2013-02-26 | 2020-02-28 | 罗切格利卡特公司 | 双特异性t细胞活化抗原结合分子 |
US11459404B2 (en) | 2013-02-26 | 2022-10-04 | Roche Glycart Ag | Bispecific T cell activating antigen binding molecules |
CN106164095A (zh) * | 2014-04-02 | 2016-11-23 | 豪夫迈·罗氏有限公司 | 多特异性抗体 |
CN106164095B (zh) * | 2014-04-02 | 2021-07-27 | 豪夫迈·罗氏有限公司 | 多特异性抗体 |
CN106461680A (zh) * | 2014-05-14 | 2017-02-22 | Ucb生物制药私人有限公司 | 用于测定抗体特异性的方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101903406B (zh) | 二价双特异性抗体 | |
CN101903404B (zh) | 二价双特异性抗体 | |
CN101896504B (zh) | 二价双特异性抗体 | |
KR101266659B1 (ko) | 2가, 이중특이적 항체 | |
RU2575066C2 (ru) | Двухвалентные биспецифические антитела |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1145845 Country of ref document: HK |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1145845 Country of ref document: HK |