JP6629187B2 - 免疫活性化抗原結合分子 - Google Patents

免疫活性化抗原結合分子 Download PDF

Info

Publication number
JP6629187B2
JP6629187B2 JP2016512734A JP2016512734A JP6629187B2 JP 6629187 B2 JP6629187 B2 JP 6629187B2 JP 2016512734 A JP2016512734 A JP 2016512734A JP 2016512734 A JP2016512734 A JP 2016512734A JP 6629187 B2 JP6629187 B2 JP 6629187B2
Authority
JP
Japan
Prior art keywords
antibody
antigen
binding
human
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016512734A
Other languages
English (en)
Other versions
JPWO2015156268A1 (ja
Inventor
智之 井川
智之 井川
太郎 宮崎
太郎 宮崎
健治 谷口
健治 谷口
奈緒香 廣庭
奈緒香 廣庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54287844&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6629187(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Publication of JPWO2015156268A1 publication Critical patent/JPWO2015156268A1/ja
Application granted granted Critical
Publication of JP6629187B2 publication Critical patent/JP6629187B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against Fc-receptors, e.g. CD16, CD32, CD64
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2875Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF/TNF superfamily, e.g. CD70, CD95L, CD153, CD154
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3023Lung
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/303Liver or Pancreas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3038Kidney, bladder
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3046Stomach, Intestines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3061Blood cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/71Decreased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Description

本発明は、二重特異性抗体を用いた新規な癌治療法に関する。
癌は全世界において死亡の主な原因の一つである。一部の癌種を除いて、その発見時においては手術不能である場合も少なくなく、さらには主たる治療法である化学療法剤を用いた治療成績も決して高いとは言えない。癌の治療を困難としている要因として、癌細胞そのものの不均一性のみならず腫瘍微小環境が大きな役割を演じていることが示唆されている(非特許文献1)。近年、切除不能な悪性黒色腫等において抑制性T細胞を減弱させる抗CTLA-4抗体によって治癒の可能性が示された(非特許文献2)。このことは、腫瘍免疫賦活が新たな癌治療戦略の基軸となり得ることを示唆している。
腫瘍免疫に重要な役割を持つT細胞の活性化は、1)腫瘍組織適合遺伝子複合体(MHC)クラスI分子により提示された抗原ペプチドに対するT細胞受容体(TCR)の結合および活性化;2)抗原提示細胞上のそのリガンドに対するT細胞表面上の共刺激分子の結合と活性化、の二つのシグナルによりなされると理解されている。さらには、T細胞表面上のCD137(4-1BB)をはじめとする腫瘍壊死因子(TNF)スーパーファミリーやTNF受容体スーパーファミリーに属する分子の活性化がT細胞活性化に重要であることも述べられている(非特許文献3)。
TNFスーパーファミリー及びTNF受容体スーパーファミリーには、CD137、CD137L、CD40、CD40L、OX40、OX40L、CD27、CD70、HVEM、LIGHT、RANK、RANKL、CD30、CD153、GITR、GITRL等といった分子が含まれる。CD137はT細胞表面のみならず樹状細胞(DC)、B細胞、NK細胞、好中球など他の免疫細胞表面にも発現していることが報告されている(非特許文献4)。
CD137アゴニスト抗体が抗腫瘍効果を示すことは既に実証されており、それが主にCD8陽性T細胞とNK細胞の活性化に依るものであることが実験的に示されている(非特許文献5)。しかしながら、臨床ならびに非臨床においてCD137アゴニスト抗体の非特異的な肝毒性による副作用が問題となっており、薬剤の開発は進んでいない(非特許文献6; 非特許文献7)。この副作用の主たる原因としては、抗体定常領域を介したFcγレセプターへの結合の関与が示唆されている(非特許文献8)。また、TNF受容体スーパーファミリーに属する受容体のアゴニスト抗体が生体内でアゴニスト活性を発揮するためにはFcγレセプター発現細胞(FcγRII発現細胞)による抗体の架橋が必要であることが報告されている(非特許文献9)。すなわち、CD137アゴニスト抗体の抗腫瘍効果の薬効と肝毒性等の副作用は共に抗体のFcγレセプターへの結合が関与していることから、抗体のFcγレセプターの結合を増強すれば薬効の向上は期待されるが肝毒性の副作用も増大し、抗体とFcγレセプターの結合を低減させれば、副作用は低減するものの薬効も低減してしまうと考えられ、これまで薬効と副作用を分離したCD137アゴニスト抗体は報告されていない。さらには、CD137アゴニスト抗体の抗腫瘍効果そのものについても決して強いものではなく、毒性の回避と同時に更なる薬効の増大が望まれている。
二重特異性抗体は少なくとも2つの結合ドメインを有するよう特徴づけられ、当業者にとって既に良く知られた分子形である。このなかで、2つの結合ドメインのうち1つが癌表面抗原に特異的に結合し、かつ第2の結合ドメインがT細胞表面抗原のCD3に結合するような分子も構築されている(非特許文献10)。この二重特異性単鎖抗体は、癌抗原依存的にT細胞を活性化し抗腫瘍効果を発揮することが示されている。
グリピカン3(GPC3)は、グリコシルホスファチジルイノシトールを介して細胞表面に結合しているヘパラン硫酸プロテオグリカンの一群、すなわちグリピカンファミリーに属するタンパク質である(非特許文献11)。グリピカンは細胞の増殖、分化、遊走に重要な役割を果たしている。GPC3は、外科的切除または生検により得られた肝細胞癌組織の70%以上に発現しており、隣接する非腫瘍性の肝臓病変や大部分の成人組織においては全く、あるいはほとんど発現していない(非特許文献12;非特許文献13)。さらには、肝細胞癌組織GPC3発現の高い患者で予後が悪いという報告もあり(非特許文献14)、GPC3は肝細胞癌に対する有望な標的分子と考えられている。
Hanahan, Cell, 2011, 144, 646-74 Prieto, Clin Cancer Res. 2012, 18, 2039-47 Summers, Nat. Rev. Immunol., 2012, 12, 339-51 Vinay, Cell Biol Int., 2009, 33, 453-65 Houot, Blood, 2009, 114, 3431-8 Ascierto, Semin Oncol., 2010, 37, 508-16 Dubrot, Cancer Immunol. Immunother., 2010, 59, 1223-33 Schabowsky, Vaccine, 2009, 28, 512-22 Li, Proc Natl Acad Sci U S A. 2013, 110(48), 19501-6 Brandl, Cancer Immunol. Immunother., 2007, 56, 1551-63 Filmus, J. Clin. Invest., 2001, 108, 497-501 Zhu-Zu-W, Gut, 2001, 48, 558-564 Yamauchi, Mod. Pathol., 2005, 18, 1591-1598 Yorita, Liver Int., 2010, 1, 120-131
本発明は上記のような情況に鑑みてなされたものであり、毒性を回避しつつ免疫細胞を活性化し優れた抗腫瘍効果を発揮するTNFスーパーファミリー又はTNF受容体スーパーファミリーに対してアゴニスト活性を有する抗原結合分子を提供すること、および、当該抗原結合分子を有効成分として含む医薬組成物、または当該医薬組成物による癌の治療方法を提供することである。
本発明者らは、TNFスーパーファミリー結合ドメインのみ又はTNF受容体スーパーファミリー結合ドメインのみを有する抗原結合分子では免疫細胞を活性化する作用がないにもかかわらず、癌特異的抗原結合ドメインとTNFスーパーファミリー結合ドメイン、或いは、癌特異的抗原結合ドメインとTNF受容体スーパーファミリー結合ドメインとを有する抗原結合分子によって、癌特異的抗原発現細胞存在下でのみTNFスーパーファミリー又はTNF受容体スーパーファミリーに属する因子に対するアゴニスト活性を発揮することで免疫細胞が活性化され、抗腫瘍活性を維持しつつ、肝毒性等の副作用を回避できることを見出した。さらに、当該抗原結合分子に、癌特異的抗原結合ドメインとT細胞受容体複合体結合ドメインを有する抗原結合分子を組み合わせて用いることで、副作用を回避しつつ、その抗腫瘍活性を高めることが可能となることを見出し、本発明を完成した。
すなわち、本発明は以下を提供するものである。
〔1〕下記のドメイン:
(1)癌特異的抗原結合ドメイン、及び
(2)腫瘍壊死因子(TNF)スーパーファミリー結合ドメイン又は腫瘍壊死因子(TNF)受容体スーパーファミリー結合ドメイン
を含む、抗原結合分子。
〔2〕FcRn結合ドメインをさらに含む、〔1〕に記載の抗原結合分子。
〔3〕FcRn結合ドメインが、Fcγ受容体に対する結合活性が低下している、抗体のFc領域である、〔2〕に記載の抗原結合分子。
〔4〕TNFスーパーファミリー結合ドメイン又はTNF受容体スーパーファミリー結合ドメインがCD137結合ドメインである、〔1〕から〔3〕のいずれかに記載の抗原結合分子。
〔5〕二重特異性抗体である、〔1〕から〔4〕のいずれかに記載の抗原結合分子。
〔6〕〔1〕から〔5〕のいずれかに記載の抗原結合分子を有効成分として含む、医薬組成物。
〔7〕細胞傷害を誘導する組成物である、〔6〕に記載の医薬組成物。
〔8〕癌治療用の組成物である、〔6〕に記載の医薬組成物。
〔9〕〔1〕から〔5〕のいずれかに記載の第1の抗原結合分子と、下記のドメイン:
(1)癌特異的抗原結合ドメイン、及び
(2)T細胞受容体複合体結合ドメイン
を含む第2の抗原結合分子とを組み合わせてなる、医薬組成物。
〔10〕第2の抗原結合分子が、FcRn結合ドメインをさらに含む抗原結合分子である、〔9〕に記載の医薬組成物。
〔11〕FcRn結合ドメインが、Fcγ受容体に対する結合活性が低下している、抗体のFc領域である、〔10〕に記載の医薬組成物。
〔12〕T細胞受容体複合体結合ドメインがT細胞受容体結合ドメインである、〔9〕から〔11〕のいずれかに記載の医薬組成物。
〔13〕T細胞受容体複合体結合ドメインがCD3結合ドメインである、〔9〕から〔11〕のいずれかに記載の医薬組成物。
〔14〕第2の抗原結合分子が二重特異性抗体である、〔9〕から〔13〕のいずれかに記載の医薬組成物。
〔15〕第1の抗原結合分子と第2の抗原結合分子が配合されている、〔9〕から〔14〕のいずれかに記載の医薬組成物。
〔16〕第1の抗原結合分子と第2の抗原結合分子が併用される、〔9〕から〔14〕のいずれかに記載の医薬組成物。
〔17〕第1の抗原結合分子と第2の抗原結合分子とが同時に投与される、〔9〕から〔14〕のいずれかに記載の医薬組成物。
〔18〕第1の抗原結合分子と第2の抗原結合分子とが別々に投与される、〔9〕から〔14〕のいずれかに記載の医薬組成物。
〔19〕細胞傷害を誘導する組成物である、〔9〕から〔18〕のいずれかに記載の医薬組成物。
〔20〕癌治療用の組成物である、〔9〕から〔18〕のいずれかに記載の医薬組成物。
〔21〕下記のドメイン:
(1)癌特異的抗原結合ドメイン、及び
(2)腫瘍壊死因子(TNF)スーパーファミリー結合ドメイン又は腫瘍壊死因子(TNF)受容体スーパーファミリー結合ドメイン
を含む第1の抗原結合分子を有効成分として含む、
下記のドメイン:
(1)癌特異的抗原結合ドメイン、及び
(2)T細胞受容体複合体結合ドメイン
を含む第2の抗原結合分子と併用するための医薬組成物。
〔22〕細胞傷害を誘導する組成物である、〔21〕に記載の医薬組成物。
〔23〕癌治療用の組成物である、〔21〕に記載の医薬組成物。
〔24〕第1の抗原結合分子及び/又は第2の抗原結合分子が、FcRn結合ドメインをさらに含む抗原結合分子である、〔21〕から〔23〕のいずれかに記載の医薬組成物。
〔25〕FcRn結合ドメインが、Fcγ受容体に対する結合活性が低下している、抗体のFc領域である、〔24〕に記載の医薬組成物。
〔26〕TNFスーパーファミリー結合ドメイン又はTNF受容体スーパーファミリー結合ドメインが、CD137結合ドメイン、またはCD40結合ドメインである、〔21〕から〔25〕のいずれかに記載の医薬組成物。
〔27〕T細胞受容体複合体結合ドメインがT細胞受容体結合ドメインである、〔21〕から〔26〕のいずれかに記載の医薬組成物。
〔28〕T細胞受容体複合体結合ドメインがCD3結合ドメインである、〔21〕から〔26〕のいずれかに記載の医薬組成物。
〔29〕第1の抗原結合分子及び/又は第2の抗原結合分子が二重特異性抗体である、〔21〕から〔28〕のいずれかに記載の医薬組成物。
〔30〕第2の抗原結合分子と同時に投与される、〔21〕から〔29〕のいずれかに記載の医薬組成物。
〔31〕第2の抗原結合分子と別々に投与される、〔21〕から〔29〕のいずれかに記載の医薬組成物。
〔32〕下記のドメイン:
(1)癌特異的抗原結合ドメイン、及び
(2)T細胞受容体複合体結合ドメイン
を含む第2の抗原結合分子を有効成分として含む、
下記のドメイン:
(1)癌特異的抗原結合ドメイン、及び
(2)腫瘍壊死因子(TNF)スーパーファミリー結合ドメイン又は腫瘍壊死因子(TNF)受容体スーパーファミリー結合ドメイン
を含む第1の抗原結合分子と併用するための医薬組成物。
〔33〕細胞傷害を誘導する組成物である、〔32〕に記載の医薬組成物。
〔34〕癌治療用の組成物である、〔32〕に記載の医薬組成物。
〔35〕第1の抗原結合分子及び/又は第2の抗原結合分子が、FcRn結合ドメインをさらに含む抗原結合分子である、〔32〕から〔34〕のいずれかに記載の医薬組成物。
〔36〕FcRn結合ドメインが、Fcγ受容体に対する結合活性が低下している、抗体のFc領域である、〔35〕に記載の医薬組成物。
〔37〕T細胞受容体複合体結合ドメインがT細胞受容体結合ドメインである、〔32〕から〔36〕のいずれかに記載の医薬組成物。
〔38〕T細胞受容体複合体結合ドメインがCD3結合ドメインである、〔32〕から〔36〕のいずれかに記載の医薬組成物。
〔39〕TNFスーパーファミリー結合ドメイン又はTNF受容体スーパーファミリー結合ドメインが、CD137結合ドメイン、またはCD40結合ドメインである、〔32〕から〔38〕のいずれかに記載の医薬組成物。
〔40〕第1の抗原結合分子及び/又は第2の抗原結合分子が二重特異性抗体である、〔32〕から〔39〕のいずれかに記載の医薬組成物。
〔41〕第1の抗原結合分子と同時に投与される、〔32〕から〔40〕のいずれかに記載の医薬組成物。
〔42〕第1の抗原結合分子と別々に投与される、〔32〕から〔40〕のいずれかに記載の医薬組成物。
〔43〕前記〔1〕〜〔5〕のいずれかに記載の抗原結合分子または前記〔6〕〜〔42〕のいずれかに記載の医薬組成物を投与する工程を含む、細胞障害を誘導する、細胞増殖を抑制する、癌細胞又は癌細胞を含む腫瘍組織に対する免疫を活性化する、または癌を治療もしくは予防する方法。
〔44〕細胞障害の誘導、細胞増殖の抑制、癌細胞又は癌細胞を含む組織に対する免疫の活性化またはがんの治療もしくは予防において使用するための前記〔1〕〜〔5〕のいずれかに記載の抗原結合分子または前記〔6〕〜〔42〕のいずれかに記載の医薬組成物。
〔45〕前記〔6〕〜〔42〕のいずれかに記載の医薬組成物の製造における、前記〔1〕〜〔5〕のいずれかに記載の抗原結合分子の使用。
〔46〕前記〔1〕〜〔5〕のいずれかに記載の抗原結合分子を使用する工程を含む、前記〔6〕〜〔42〕のいずれかに記載の医薬組成物を製造する方法。
また、本発明は、本発明の抗原結合分子または本発明の医薬組成物を治療が必要な患者に投与することを特徴とする、癌の治療又は予防方法に関する。また、本発明は、本発明の抗原結合分子を含む、本発明の方法に用いるためのキットに関する。また、本発明は、本発明の抗原結合分子の、細胞傷害を誘導するための医薬組成物(例えば癌の治療又は予防用の医薬組成物)の製造における使用に関する。また、本発明は、本発明の方法に使用するための、本発明の抗原結合分子または本発明の医薬組成物に関する。
抗マウスCD137抗体によるT細胞活性化作用をIFN-γ ELISAで評価した結果を示すグラフである。Ctrl mIgG1は陰性対照マウスIgG1抗体を示す。 様々な分子形の抗マウスCD137抗体によるT細胞活性化作用を概念的に示す図である。 抗ヒトGPC3/抗マウスCD137二重特異性抗体によるGPC3抗原依存的なT細胞活性化作用を概念的に示す図である。 抗ヒトGPC3/抗マウスCD137二重特異性抗体によるGPC3抗原依存的なT細胞活性化作用をIFN-γ ELISAで評価した結果を示すグラフである。 抗ヒトGPC3/抗マウスCD137二重特異性抗体の抗体定常領域を変えたことによるGPC3抗原依存的なT細胞活性化作用への影響をIFN-γ ELISAで評価した結果を示すグラフである。 抗ヒトGPC3/抗マウスCD137二重特異性抗体と抗ヒトGPC3/抗マウスCD3二重特異性抗体の混合物によるT細胞活性化増強作用をIFN-γ ELISAで評価した結果を示すグラフである。Ctrl hIgG1は陰性対照ヒトIgG1抗体(Alexis社)を示す。 抗ヒトGPC3/マウスCD137二重特異性抗体および抗マウスCD137抗体のCT26腫瘍マウスシンジェニックモデルでの抗腫瘍効果を示すグラフである。矢印は抗体投与時を示す。 抗ヒトGPC3/マウスCD137二重特異性抗体および抗マウスCD137抗体のCT26腫瘍マウスシンジェニックモデルでの血中アスパラギン酸アミノトランスフェラーゼ(AST)への影響を示すグラフである。 抗ヒトGPC3/マウスCD137二重特異性抗体および抗マウスCD137抗体のCT26腫瘍マウスシンジェニックモデルでの血中アラニンアミノトランスフェラーゼ(ALT)への影響を示すグラフである。 抗ヒトGPC3/マウスCD137二重特異性抗体および抗マウスCD137抗体のCT26腫瘍マウスシンジェニックモデルでの血中総ビリルビンへの影響を示すグラフである。 抗ヒトGPC3/マウスCD137二重特異性抗体および抗マウスCD137抗体のCT26腫瘍マウスシンジェニックモデルでの肝臓病理組織学的所見を示す写真である。a及びdは溶媒、b及びeは1D8-MB492、c及びfはGPC3 ERY22-3-1D8をそれぞれ投与したマウス代表例の肝臓切片をヘマトキシリン・エオジン染色した病理組織写真である。矢頭は肝細胞の変性・壊死、* は炎症所見を示す。 抗ヒトGPC3/マウスCD137二重特異性抗体および抗ヒトGPC3/マウスCD3二重特異性抗体の併用によるLLC腫瘍マウスシンジェニックモデルでの抗腫瘍効果を示すグラフである。矢印は抗体投与時を示す。 IgG1、IgG2、IgG3及びIgG4のFc領域を構成するアミノ酸残基と、kabatのEUナンバリング(本明細書においてEU INDEXとも呼ばれる)との関係を表す図である。 抗ヒトCD137抗体と断片化ヒトCD137-Fc融合タンパク質との結合を評価するためのELISAの結果を示す図である。図中の「Non」は、抗原を固相化していないウェル(Non-Coating)におけるELISA発色値を示す。 図14−1に示す各サンプルのELISA発色値を、Non-Coating(Non)におけるELISA発色値(抗原を固相化していないウェルに対する結合)で割った値(Non coatingに対する比)を示す図である。 抗ヒトCD137抗体のIFNγ誘導活性を示すグラフである。 抗ヒトCD137抗体のT細胞活性化作用と結合プロファイルを示す図である。 抗ヒトGPC3/抗マウスCD40二重特異性抗体と抗ヒトGPC3/抗マウスCD3二重特異性抗体の混合物によるT細胞活性化増強作用をIFN-γ ELISAで評価した結果を示すグラフである。Ctrl hIgG1は陰性対照ヒトIgG1抗体を示す。 抗ヒトGPC3/抗ヒトCD137二重特異性抗体GPC3 FAE-BMSのT細胞活性化作用をIFN-γ ELISAで評価した結果を示すグラフである。Ctrl hIgG1は陰性対照ヒトIgG1抗体を示す。 各種抗ヒトGPC3/抗ヒトCD137二重特異性抗体のCD137を介したアゴニスト活性をB細胞活性化IL-6の産生量で評価した結果を示すグラフである。Ctrl hIgG1は陰性対照ヒトIgG1抗体を示す。
以下の定義は、本明細書において説明する本発明の理解を容易にするために提供される。
抗原結合分子
本発明における「抗原結合分子」とは、本発明の「結合ドメイン」を含む分子であれば特に限定されず、さらに、5アミノ酸程度以上の長さを有するペプチドやタンパク質が含まれていてもよい。生物由来のペプチドやタンパク質に限定されず、例えば、人工的に設計された配列からなるポリペプチドであってもよい。また、天然ポリペプチド、あるいは合成ポリペプチド、組換えポリペプチド等のいずれであってもよい。
本発明の抗原結合分子の好ましい例として、抗体のFc領域に含まれるFcRn結合ドメインを含む抗原結合分子を挙げることができる。生体内に投与されたタンパク質の血中半減期を延ばす方法として、目的タンパク質に抗体のFcRn結合ドメインを付加し、FcRnを介したリサイクリング機能を利用する方法が良く知られている。
本発明において、「FcRn結合ドメイン」は、FcRnに対して結合活性を有するものであれば特に限定されず、例えば、FcRnを抗原とする抗体の可変領域、Fab、抗体のFc領域、これらの断片が挙げられる。本発明の好ましい態様の1つとして、抗体のFc領域、或いは、Fc領域中のFcRn結合領域を含む断片が挙げられる。ここで、「Fc領域」として、例えば、天然型IgG由来のFc領域を用いることができる。天然型IgGとは、天然に見出されるIgGと同一のアミノ酸配列を包含し、免疫グロブリンガンマ遺伝子により実質的にコードされる抗体のクラスに属するポリペプチドを意味する。例えば天然型ヒトIgGとは天然型ヒトIgG1、天然型ヒトIgG2、天然型ヒトIgG3、天然型ヒトIgG4などを意味する。天然型IgGにはそれから自然に生じる変異体等も含まれる。ヒトIgG1、ヒトIgG2、ヒトIgG3、ヒトIgG4抗体の定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されているが、本発明においてはそのいずれであっても良い。特にヒトIgG1の配列としては、EUナンバリング356〜358番目のアミノ酸配列がDELであってもEEMであってもよい。
抗体のFc領域としては、例えばIgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4、IgMタイプのFc領域が存在している。本発明の抗体のFc領域は、例えば天然型ヒトIgG抗体由来のFc領域を用いることができる。本発明のFc領域として、例えば、天然型IgGの定常領域、具体的には、天然型ヒトIgG1を起源とする定常領域(配列番号:1)、天然型ヒトIgG2を起源とする定常領域(配列番号:2)、天然型ヒトIgG3を起源とする定常領域(配列番号:3)、天然型ヒトIgG4を起源とする定常領域(配列番号:4)由来のFc領域を用いることができる。天然型IgGの定常領域にはそれから自然に生じる変異体等も含まれる。
このような抗体のFc領域は、例えばモノクローナル抗体等の抗体をペプシン等の蛋白質分解酵素にて部分消化した後に、断片をプロテインAカラム、あるいはプロテインGカラムに吸着させた後に、適切な溶出バッファー等により溶出させることにより好適に取得され得る。かかる蛋白質分解酵素としてはpH等の酵素の反応条件を適切に設定することによりモノクローナル抗体等の抗体を消化し得るものであれば特段の限定はされず、例えば、ペプシンやフィシン等を例示できる。
抗体のアイソタイプは、定常領域の構造によって決定される。IgG1、IgG2、IgG3、IgG4の各アイソタイプの定常領域は、それぞれ、Cγ1、Cγ2、Cγ3、Cγ4と呼ばれている。ヒトCγ1、Cγ2、Cγ3、Cγ4のFc領域を構成するポリペプチドのアミノ酸配列が、配列番号:5、6、7、8に例示される。各アミノ酸配列を構成するアミノ酸残基と、kabatのEUナンバリング(本明細書においてEU INDEXとも呼ばれる)との関係は図13に示されている。
Fc領域は、二本の軽鎖、ならびに、鎖間のジスルフィド結合が2つの重鎖間で形成されるようにCH1ドメインおよびCH2ドメイン間の定常領域の一部分を含む二本の重鎖を含むF(ab')2を除いた領域のことをいう。本明細書において開示される抗原結合分子を構成するFc領域は、IgG1、IgG2、IgG3、IgG4モノクローナル抗体等をペプシン等の蛋白質分解酵素にて部分消化した後に、プロテインAカラムに吸着された画分を再溶出することによって好適に取得され得る。かかる蛋白質分解酵素としてはpH等の酵素の反応条件を適切に設定することにより制限的にF(ab')2を生じるように全長抗体を消化し得るものであれば特段の限定はされず、例えば、ペプシンやフィシン等が例示できる。
本発明のFcRn結合ドメインとしては、特にFcγ受容体に対する結合活性が低下しているドメインが好ましい。ここで、Fcγ受容体(本明細書ではFcγレセプター、FcγRまたはFcgRと記載することがある)とは、IgG1、IgG2、IgG3、IgG4のFc領域に結合し得る受容体をいい、実質的にFcγレセプター遺伝子にコードされるタンパク質のファミリーのいかなるメンバーをも意味する。ヒトでは、このファミリーには、アイソフォームFcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64);アイソフォームFcγRIIa(アロタイプH131(H型)およびR131(R型)を含む)、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)およびFcγRIIcを含むFcγRII(CD32);およびアイソフォームFcγRIIIa(アロタイプV158およびF158を含む)およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)、並びにいかなる未発見のヒトFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されるものではない。FcγRは、ヒト、マウス、ラット、ウサギおよびサル由来のものが含まれるが、これらに限定されず、いかなる生物由来でもよい。マウスFcγR類には、FcγRI(CD64)、FcγRII(CD32)、FcγRIII(CD16)およびFcγRIII-2(CD16-2)、並びにいかなる未発見のマウスFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されない。こうしたFcγ受容体の好適な例としてはヒトFcγRI(CD64)、FcγRIIa(CD32)、FcγRIIb(CD32)、FcγRIIIa(CD16)及び/又はFcγRIIIb(CD16)が挙げられる。
FcγRには、ITAM(Immunoreceptor tyrosine-based activation motif)をもつ活性型レセプターとITIM(immunoreceptor tyrosine-based inhibitory motif)をもつ抑制型レセプターが存在する。FcγRはFcγRI、FcγRIIa R、FcγRIIa H、FcγRIIIa、FcγRIIIbの活性型FcγRと、FcγRIIbの抑制型FcγRに分類される。
FcγRIのポリヌクレオチド配列及びアミノ酸配列は、それぞれNM_000566.3及びNP_000557.1に、FcγRIIaのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC020823.1及びAAH20823.1に、FcγRIIbのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC146678.1及びAAI46679.1に、FcγRIIIaのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC033678.1及びAAH33678.1に、並びにFcγRIIIbのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC128562.1及びAAI28563.1に記載されている(RefSeq登録番号)。尚、FcγRIIaには、FcγRIIaの131番目のアミノ酸がヒスチジン(H型)あるいはアルギニン(R型)に置換された2種類の遺伝子多型が存在する(J. Exp. Med, 172, 19-25, 1990)。また、FcγRIIbには、FcγRIIbの232番目のアミノ酸がイソロイシン(I型)あるいはスレオニン (T型)に置換された2種類の遺伝子多型が存在する(Arthritis. Rheum. 46: 1242-1254 (2002))。また、FcγRIIIaには、FcγRIIIaの158番目のアミノ酸がバリン(V型)あるいはフェニルアラニン(F型)に置換された2種類の遺伝子多型が存在する(J. Clin. Invest. 100(5): 1059-1070 (1997))。また、FcγRIIIbには、NA1型、NA2型の2種類の遺伝子多型が存在する(J. Clin. Invest. 85: 1287-1295 (1990))。
Fcγ受容体に対する結合活性が低下しているかどうかは、FACS、ELISAフォーマット、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法等、周知の方法によって確認することができる(Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010)。
ALPHAスクリーンは、ドナーとアクセプターの2つのビーズを使用するALPHAテクノロジーによって下記の原理に基づいて実施される。ドナービーズに結合した分子が、アクセプタービーズに結合した分子と生物学的に相互作用し、2つのビーズが近接した状態の時にのみ、発光シグナルを検出される。レーザーによって励起されたドナービーズ内のフォトセンシタイザーは、周辺の酸素を励起状態の一重項酸素に変換する。一重項酸素はドナービーズ周辺に拡散し、近接しているアクセプタービーズに到達するとビーズ内の化学発光反応を引き起こし、最終的に光が放出される。ドナービーズに結合した分子とアクセプタービーズに結合した分子が相互作用しないときは、ドナービーズの産生する一重項酸素がアクセプタービーズに到達しないため、化学発光反応は起きない。
例えば、抗原結合分子がFcRn結合ドメインとして抗体のFc領域を含む場合、野生型Fc領域を有する抗原結合分子と、Fcγ受容体に対する結合を変化させるためのアミノ酸変異が加えられた変異Fc領域を有する抗原結合分子を準備し、ドナービーズにビオチン標識された抗原結合分子を結合させ、アクセプタービーズにはグルタチオンSトランスフェラーゼ(GST)でタグ化されたFcγ受容体を結合させる。変異Fc領域を有する抗原結合分子の存在下では、野生型Fc領域を有する抗原結合分子とFcγ受容体とは相互作用し520-620 nmのシグナルを生ずる。変異Fc領域を有する抗原結合分子をタグ化しない場合、野生型Fc領域を有する抗原結合分子とFcγ受容体間の相互作用と競合する。競合の結果表れる蛍光の減少を定量することによって相対的な結合親和性が決定され得る。抗原結合分子をSulfo-NHS-ビオチン等を用いてビオチン化することは公知である。Fcγ受容体をGSTでタグ化する方法としては、Fcγ受容体をコードするポリヌクレオチドとGSTをコードするポリヌクレオチドをインフレームで融合した融合遺伝子を発現可能なベクターを保持した細胞等において発現し、グルタチオンカラムを用いて精製する方法等が適宜採用され得る。得られたシグナルは例えばGRAPHPAD PRISM(GraphPad社、San Diego)等のソフトウェアを用いて非線形回帰解析を利用する一部位競合(one-site competition)モデルに適合させることにより好適に解析される。
相互作用を観察する物質の一方(リガンド)をセンサーチップの金薄膜上に固定し、センサーチップの裏側から金薄膜とガラスの境界面で全反射するように光を当てると、反射光の一部に反射強度が低下した部分(SPRシグナル)が形成される。相互作用を観察する物質の他方(アナライト)をセンサーチップの表面に流しリガンドとアナライトが結合すると、固定化されているリガンド分子の質量が増加し、センサーチップ表面の溶媒の屈折率が変化する。この屈折率の変化により、SPRシグナルの位置がシフトする(逆に結合が解離するとシグナルの位置は戻る)。Biacoreシステムは上記のシフトする量、すなわちセンサーチップ表面での質量変化を縦軸にとり、質量の時間変化を測定データとして表示する(センサーグラム)。センサーグラムのカーブからカイネティクス:結合速度定数(ka)と解離速度定数(kd)が、当該定数の比からアフィニティー(KD)が求められる。BIACORE法では阻害測定法も好適に用いられる。阻害測定法の例はProc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010において記載されている。
本明細書において、「Fcγ受容体に対する結合活性が低下している」とは、例えば、上記の解析方法に基づいて、対照とするFc領域を有する抗原結合分子の結合活性に比較して、被験抗原結合分子の結合活性が、50%以下、好ましくは45%以下、40%以下、35%以下、30%以下、20%以下、15%以下、特に好ましくは10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下、1%以下の結合活性を示すことをいう。
対照とする抗原結合分子としては、例えば、IgG1、IgG2、IgG3又はIgG4モノクローナル抗体のFc領域を含むドメインを有する抗原結合分子が適宜使用され得る。当該Fc領域の構造は、配列番号:1(RefSeq登録番号AAC82527.1のN末にA付加)、配列番号:2(RefSeq登録番号AAB59393.1のN末にA付加)、配列番号:3(RefSeq登録番号CAA27268.1のN末にA付加)、配列番号:4(RefSeq登録番号AAB59394.1のN末にA付加)に記載されている。また、ある特定のアイソタイプの抗体のFc領域の変異体を有する抗原結合分子を被験物質として使用する場合には、当該特定のアイソタイプの抗体のFc領域を有する抗原結合分子を対照として用いることによって、当該変異体が有する変異によるFcγ受容体への結合活性に対する効果が検証される。上記のようにして、Fcγ受容体に対する結合活性が低下していることが検証されたFc領域の変異体を有する抗原結合分子が適宜作製される。
このような変異体の例としては、EUナンバリングに従って特定されるアミノ酸である231A-238Sの欠失(WO 2009/011941)、C226S、C229S、P238S、(C220S)(J.Rheumatol (2007) 34, 11)、C226S、C229S(Hum.Antibod.Hybridomas (1990) 1(1), 47-54)、C226S、C229S、E233P、L234V、L235A(Blood (2007) 109, 1185-1192)等の変異体が公知である。
すなわち、特定のアイソタイプの抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかのアミノ酸:220位、226位、229位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、264位、265位、266位、267位、269位、270位、295位、296位、297位、298位、299位、300位、325位、327位、328位、329位、330位、331位、332位が置換されているFc領域を有する抗原結合分子が好適に挙げられる。Fc領域の起源である抗体のアイソタイプとしては特に限定されず、IgG1、IgG2、IgG3又はIgG4モノクローナル抗体を起源とするFc領域が適宜利用され得るが、天然型ヒトIgG1抗体を起源とするFc領域が好適に利用される。
例えば、IgG1抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかの置換(数字がEUナンバリングに従って特定されるアミノ酸残基の位置、数字の前に位置する一文字のアミノ酸記号が置換前のアミノ酸残基、数字の後に位置する一文字のアミノ酸記号が置換前のアミノ酸残基をそれぞれ表す):
(a)L234F、L235E、P331S、
(b)C226S、C229S、P238S、
(c)C226S、C229S、
(d)C226S、C229S、E233P、L234V、L235A
が施されているFc領域、又は、231位から238位のアミノ酸配列が欠失したFc領域を有する抗原結合分子も適宜使用され得る。
また、IgG2抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかの置換(数字がEUナンバリングに従って特定されるアミノ酸残基の位置、数字の前に位置する一文字のアミノ酸記号が置換前のアミノ酸残基、数字の後に位置する一文字のアミノ酸記号が置換前のアミノ酸残基をそれぞれ表す):
(e)H268Q、V309L、A330S、P331S
(f)V234A
(g)G237A
(h)V234A、G237A
(i)A235E、G237A
(j)V234A、A235E、G237A
が施されているFc領域を有する抗原結合分子も適宜使用され得る。
また、IgG3抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかの置換(数字がEUナンバリングに従って特定されるアミノ酸残基の位置、数字の前に位置する一文字のアミノ酸記号が置換前のアミノ酸残基、数字の後に位置する一文字のアミノ酸記号が置換前のアミノ酸残基をそれぞれ表す):
(k)F241A
(l)D265A
(m)V264A
が施されているFc領域を有する抗原結合分子も適宜使用され得る。
また、IgG4抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかの置換(数字がEUナンバリングに従って特定されるアミノ酸残基の位置、数字の前に位置する一文字のアミノ酸記号が置換前のアミノ酸残基、数字の後に位置する一文字のアミノ酸記号が置換前のアミノ酸残基をそれぞれ表す):
(n)L235A、G237A、E318A
(o)L235E
(p)F234A、L235A
が施されているFc領域を有する抗原結合分子も適宜使用され得る。
その他の好ましい例として、天然型ヒトIgG1抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかのアミノ酸:233位、234位、235位、236位、237位、327位、330位、331位が、対応するIgG2またはIgG4においてそのEUナンバリングが対応するアミノ酸に置換されているFc領域を有する抗原結合分子が挙げられる。
その他の好ましい例として、天然型ヒトIgG1抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれか一つ又はそれ以上のアミノ酸:234位、235位、297位が他のアミノ酸によって置換されているFc領域を有する抗原結合分子が好適に挙げられる。置換後に存在するアミノ酸の種類は特に限定されないが、234位、235位、297位のいずれか一つ又はそれ以上のアミノ酸がアラニンに置換されているFc領域を有する抗原結合分子が特に好ましい。
その他の好ましい例として、IgG1抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される265位のアミノ酸が他のアミノ酸によって置換されているFc領域を有する抗原結合分子が好適に挙げられる。置換後に存在するアミノ酸の種類は特に限定されないが、265位のアミノ酸がアラニンに置換されているFc領域を有する抗原結合分子が特に好ましい。
本発明の抗原結合分子に含まれる「癌特異的抗原結合ドメイン」、「腫瘍壊死因子(TNF)スーパーファミリー結合ドメイン」、「腫瘍壊死因子(TNF)受容体スーパーファミリー結合ドメイン」及び「T細胞受容体複合体結合ドメイン」(以下、これら4つの結合ドメインをまとめて抗原結合ドメインという)は、それぞれの抗原である、癌特異的抗原、TNFスーパーファミリーに属する因子、TNF受容体スーパーファミリーに属する因子、又は、T細胞受容体複合体の一部または全部に特異的に結合する領域を意味し、例えば、抗体の抗原結合領域を含む領域が結合ドメインとして挙げられる。抗原の分子量が大きい場合、抗体の抗原結合領域は抗原の特定部分にのみ結合することができる。当該特定部分はエピトープと呼ばれる。抗原結合ドメインは一または複数の抗体の可変ドメインより提供され得る。好ましくは、抗原結合ドメインは抗体軽鎖可変領域(VL)と抗体重鎖可変領域(VH)とを含む。こうした抗原結合ドメインの例としては、「scFv(single chain Fv)」、「単鎖抗体(single chain antibody)」、「Fv」、「scFv2(single chain Fv 2)」、「Fab」または「F(ab')2」等が好適に挙げられる。
ここで、「癌特異的抗原」とは、癌細胞と健常細胞を区別することを可能とする、癌細胞が発現する抗原を意味し、例えば、細胞の悪性化に伴って発現する抗原、細胞が、がん化した際に細胞表面やタンパク質分子上に現れる異常な糖鎖が含まれる。具体的には、例えば、ALK受容体(プレイオトロフィン受容体)、プレイオトロフィン、KS 1/4膵臓癌抗原、卵巣癌抗原(CA125)、前立腺酸リン酸、前立腺特異的抗原(PSA)、メラノーマ関連抗原p97、メラノーマ抗原gp75、高分子量メラノーマ抗原(HMW-MAA)、前立腺特異的膜抗原、癌性胚抗原(CEA)、多型上皮ムチン抗原、ヒト乳脂肪球抗原、CEA、TAG-72、CO17-1A、GICA 19-9、CTA-1およびLEAなどの結腸直腸腫瘍関連抗原、バーキットリンパ腫抗原-38.13、CD19、ヒトBリンパ腫抗原-CD20、CD33、ガングリオシドGD2、ガングリオシドGD3、ガングリオシドGM2およびガングリオシドGM3などのメラノーマ特異的抗原、腫瘍特異的移植型細胞表面抗原(TSTA)、T抗原、DNA腫瘍ウイルスおよびRNA腫瘍ウイルスのエンベロープ抗原などのウイルスにより誘導される腫瘍抗原、結腸のCEA、5T4癌胎児トロホブラスト糖タンパク質および膀胱腫瘍癌胎児抗原などの癌胎児抗原α-フェトプロテイン、ヒト肺癌抗原L6およびL20などの分化抗原、線維肉腫の抗原、ヒト白血病T細胞抗原-Gp37、新生糖タンパク質、スフィンゴ脂質、EGFR(上皮増殖因子受容体)などの乳癌抗原、NY-BR-16、NY-BR-16およびHER2抗原(p185HER2)、多型上皮ムチン(PEM)、悪性ヒトリンパ球抗原-APO-1、胎児赤血球に認められるI抗原などの分化抗原、成人赤血球に認められる初期内胚葉I抗原、移植前の胚、胃癌に認められるI(Ma)、乳腺上皮に認められるM18、M39、骨髄細胞に認められるSSEA-1、VEP8、VEP9、Myl、VIM-D5、結腸直腸癌に認められるD156-22、TRA-1-85(血液群H)、精巣および卵巣癌に認められるSCP-1、結腸癌に認められるC14、肺癌に認められるF3、胃癌に認められるAH6、Yハプテン、胚性癌細胞に認められるLey、TL5(血液群A)、A431細胞に認められるEGF受容体、膵臓癌に認められるE1シリーズ(血液群B)、胚性癌細胞に認められるFC10.2、胃癌抗原、腺癌に認められるCO-514(血液群Lea)、腺癌に認められるNS-10、CO-43(血液群Leb)、A431細胞のEGF受容体に認められるG49、結腸癌に認められるMH2(血液群ALeb/Ley)、結腸癌に認められる19.9、胃癌ムチン、骨髄細胞に認められるT5A7、メラノーマに認められるR24、胚性癌細胞に認められる4.2、GD3、D1.1、OFA-1、GM2、OFA-2、GD2、およびM1:22:25:8ならびに4〜8細胞段階の胚に認められるSSEA-3およびSSEA-4、皮下T細胞リンパ腫抗原、MART-1抗原、シアリルTn(STn)抗原、結腸癌抗原NY-CO-45、肺癌抗原NY-LU-12変異体A、腺癌抗原ART1、腫瘍随伴性関連脳-精巣癌抗原(癌神経抗原MA2、腫瘍随伴性神経抗原)、神経癌腹部抗原2(NOVA2)、血液細胞癌抗原遺伝子520、腫瘍関連抗原CO-029、腫瘍関連抗原MAGE-C1(癌/精巣抗原CT7)、MAGE-B1(MAGE-XP抗原)、MAGE-B2(DAM6)、MAGE-2、MAGE-4a、MAGE-4bおよびMAGE-X2、癌-精巣抗原(NY-EOS-1)、YKL-40および上記ポリペプチドのいずれかの断片またはこれらに対して修飾された構造等(前記の修飾リン酸基や糖鎖等)、EpCAM、EREG、CA19-9、CA15-3、シリアルSSEA-1(SLX)、HER2、PSMA、CEA、CLEC12A等が挙げられる。本発明の癌特異的抗原結合ドメインの対象となる癌特異的抗原としては、特に、細胞表面に発現するものが好ましく、そのような癌特異的抗原としては、例えば、CD19、CD20、EGFR、HER2、EpCAM、EREGがあげられる。
また、「TNFスーパーファミリー」又は「TNF受容体スーパーファミリー」に属する因子としては、様々な免疫細胞の活性化に寄与する、3量体構造を有するリガンドと当該リガンドが結合する3量体構造のレセプターが知られている(Nat. Rev. Immunol., 2012, 12, 339-51)。TNFスーパーファミリー又はTNF受容体スーパーファミリーに属する因子としては、例えば、CD137、CD137L、CD40、CD40L、OX40、OX40L、CD27、CD70、HVEM、LIGHT、RANK、RANKL、CD30、CD153、GITR、GITRLが挙げられる。好ましい因子としては、例えばCD137、CD40が挙げられる。さらに好ましい因子としては、例えばCD137が挙げられる。
また、「T細胞受容体複合体」は、T細胞受容体自身でもよいし、T細胞受容体とともにT細胞受容体複合体を構成するアダプター分子でもよい。アダプター分子として好適なものはCD3である。
T細胞受容体としては、可変領域でもよいし、定常領域でもよいが、好ましいT細胞受容体結合ドメインが結合するエピトープは定常領域に存在するエピトープである。定常領域の配列として、例えばRefSeq登録番号CAA26636.1のT細胞受容体α鎖(配列番号:9)、RefSeq登録番号C25777のT細胞受容体β鎖(配列番号:10)、RefSeq登録番号A26659のT細胞受容体γ1鎖(配列番号:11)、RefSeq登録番号AAB63312.1のT細胞受容体γ2鎖(配列番号:12)、RefSeq登録番号AAA61033.1のT細胞受容体δ鎖(配列番号:13)の配列を挙げることができる。
本発明において、T細胞受容体複合体結合ドメインとして「CD3結合ドメイン」を用いる場合、CD3結合ドメインは一または複数の抗体の可変ドメインより提供され得る。好ましくは、CD3結合ドメインはCD3抗体の軽鎖可変領域(VL)とCD3抗体の重鎖可変領域(VH)とを含む。こうしたCD3結合ドメインの例としては、「scFv(single chain Fv)」、「単鎖抗体(single chain antibody)」、「Fv」、「scFv2(single chain Fv 2)」、「Fab」または「F(ab')2」等が好適に挙げられる。
本発明に係るCD3結合ドメインは、ヒトCD3を構成するγ鎖、δ鎖又はε鎖配列に存在するエピトープであればいずれのエピトープに結合するものでもあり得る。本発明において、好ましくはヒトCD3複合体のε鎖の細胞外領域に存在するエピトープに結合するCD3抗体の軽鎖可変領域(VL)とCD3抗体の重鎖可変領域(VH)とを含むCD3結合ドメインが好適に用いられる。こうしたCD3結合ドメインとしては、OKT3抗体(Proc. Natl. Acad. Sci. USA (1980) 77, 4914-4917)や種々の公知のCD3抗体の軽鎖可変領域(VL)とCD3抗体の重鎖可変領域(VH)とを含むCD3結合ドメインが好適に用いられる。また、ヒトCD3を構成するγ鎖、δ鎖又はε鎖を前記の方法によって所望の動物に免疫することによって取得された所望の性質を有するCD3抗体を起源とするCD3結合ドメインが適宜使用され得る。CD3結合ドメインの起源となるCD3抗体は下記のとおり適宜ヒト化された抗体やヒト抗体が適宜用いられる。CD3を構成するγ鎖、δ鎖又はε鎖の構造は、そのポリヌクレオチド配列が、配列番号:14(NM_000073.2)、16(NM_000732.4)及び18(NM_000733.3)に、そのポリペプチド配列が、配列番号:15(NP_000064.1)、17(NP_000723.1)及び19(NP_000724.1)に記載されている(カッコ内はRefSeq登録番号を示す)。
また、本発明の「抗原結合分子」の好ましい態様の1つとして、本発明の抗体の可変領域を含む、抗体を挙げることができる。
本発明で提供される抗体の例として以下の[1]から[9]の抗体を挙げることができる。
[1] 重鎖可変領域として配列番号66に記載のアミノ酸配列、及び軽鎖可変領域として配列番号85に記載のアミノ酸配列を有する抗体;
[2] 重鎖可変領域として配列番号67に記載のアミノ酸配列、及び軽鎖可変領域として配列番号86に記載のアミノ酸配列を有する抗体;
[3] 重鎖可変領域として配列番号70に記載のアミノ酸配列、及び軽鎖可変領域として配列番号89に記載のアミノ酸配列を有する抗体;
[4] 重鎖可変領域として配列番号76に記載のアミノ酸配列、及び軽鎖可変領域として配列番号95に記載のアミノ酸配列を有する抗体;
[5] 重鎖可変領域として配列番号77に記載のアミノ酸配列、及び軽鎖可変領域として配列番号96に記載のアミノ酸配列を有する抗体;
[6] 重鎖可変領域として配列番号78に記載のアミノ酸配列、及び軽鎖可変領域として配列番号97に記載のアミノ酸配列を有する抗体;
[7] [1]〜[6]いずれかに記載の抗体であって、重鎖定常領域として配列番号99に記載のアミノ酸配列、及び軽鎖定常領域として配列番号59に記載のアミノ酸配列又は配列番号60に記載のアミノ酸配列を有する抗体;
[8] [1]〜[7]いずれかに記載の抗体と同等の活性を有する抗体;
[9] [1]〜[7]いずれかに記載の抗体が結合するエピトープと同じエピトープに結合する抗体。
上記[8]に記載の抗体において、「同等の活性」とは、CD137へのアゴニスト活性が上記[1]〜[7]いずれかに記載の抗体の結合活性の70%以上、好ましくは80%以上、より好ましくは90%以上であること、をいう。
また本発明は、上記[9]に記載の、本発明で開示された抗CD137抗体が結合するエピトープと同じエピトープに結合する抗体もまた提供する。このような抗体は、例えば、以下の方法により得ることができる。
被験抗体が、ある抗体とエピトープを共有することは、両者の同じエピトープに対する競合によって確認することができる。抗体間の競合は、交叉ブロッキングアッセイなどによって検出される。例えば競合ELISAアッセイは、好ましい交叉ブロッキングアッセイである。具体的には、交叉ブロッキングアッセイにおいては、マイクロタイタープレートのウェル上にコートしたCD137タンパク質を、候補の競合抗体の存在下、または非存在下でプレインキュベートした後に、本発明の抗CD137抗体が添加される。ウェル中のCD137タンパク質に結合した本発明の抗CD137抗体の量は、同じエピトープへの結合に対して競合する候補競合抗体(被験抗体)の結合能に間接的に相関している。すなわち同一エピトープに対する被験抗体の親和性が大きくなればなる程、本発明の抗CD137抗体のCD137タンパク質をコートしたウェルへの結合量は低下し、被験抗体のCD137タンパク質をコートしたウェルへの結合量は増加する。
ウェルに結合した抗体量は、予め抗体を標識しておくことによって、容易に測定することができる。たとえば、ビオチン標識された抗体は、アビジンペルオキシダーゼコンジュゲートと適切な基質を使用することにより測定できる。ペルオキシダーゼなどの酵素標識を利用した交叉ブロッキングアッセイを、特に競合ELISAアッセイと言う。抗体は、検出あるいは測定が可能な他の標識物質で標識することができる。具体的には、放射標識あるいは蛍光標識などが公知である。
更に被験抗体が本発明の抗CD137抗体と異なる種に由来する定常領域を有する場合には、ウェルに結合した抗体の量を、その抗体の定常領域を認識する標識抗体によって測定することもできる。あるいは同種由来の抗体であっても、クラスが相違する場合には、各クラスを識別する抗体によって、ウェルに結合した抗体の量を測定することができる。
候補の競合抗体非存在下で実施されるコントロール試験において得られる結合活性と比較して、候補抗体が、少なくとも20%、好ましくは少なくとも20〜50%、さらに好ましくは少なくとも50%、抗CD137抗体の結合をブロックできるならば、該候補競合抗体は本発明の抗CD137抗体と実質的に同じエピトープに結合するか、又は同じエピトープへの結合に対して競合する抗体である。
上記[1]から[7]いずれかに記載の抗体が結合するエピトープと同じエピトープに結合する抗体の好ましい例として、例えば、CD137タンパク質中のSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECDCTPGFHCLGAGCSMCEQDCKQGQELTKKGCの配列(配列番号113)を有する領域を認識する抗体を挙げることができる。
さらには、CD137タンパク質中のDCTPGFHCLGAGCSMCEQDCKQGQELTKKGCの配列(配列番号108)を有する領域を認識する抗体を挙げることができる。
上述した抗ヒトCD137抗体を癌特異的抗原抗体(例えば、抗ヒトGPC3抗体)との二重特異性抗体へ改変し、癌特異的抗原依存的CD137アゴニスト能を評価することで、所望の抗腫瘍効果を発揮する抗癌抗原/抗ヒトCD137二重特異性抗体を提供することができる。
本発明の非限定の一態様として、癌特異的抗原結合ドメイン、及びヒトCD137結合ドメインを含む、二重特異性抗体を提供する。
本発明で提供される二重特異性抗体の例として以下の[i]から[iv]の抗体を挙げることができる。
[i] ヒトCD137結合ドメインとして、配列番号122に記載のアミノ酸配列(重鎖可変領域)、及び配列番号123に記載のアミノ酸配列(軽鎖可変領域)を有する二重特異性抗体;
[ii] ヒトCD137結合ドメインとして、配列番号124に記載のアミノ酸配列(重鎖可変領域)、及び配列番号82に記載のアミノ酸配列(軽鎖可変領域)を有する二重特異性抗体;
[iii] ヒトCD137結合ドメインとして、配列番号125に記載のアミノ酸配列(重鎖可変領域)、及び配列番号84に記載のアミノ酸配列(軽鎖可変領域)を有する二重特異性抗体;
[iv] [i]〜[iii]いずれかに記載の二重特異性抗体が結合するエピトープと同じエピトープに結合する抗体。
癌特異的抗原結合ドメインに含まれる重鎖可変領域及び軽鎖可変領域は、標的とする癌抗原に応じて、当業者が該癌抗原に結合する重鎖可変領域配列及び軽鎖可変領域配列を適宜選択することができる。
また本発明は、上記[iv]に記載の、本発明で開示された抗癌特異的抗原/抗ヒトCD137二重特異性抗体が結合するエピトープと同じエピトープに結合する二重特異性抗体もまた提供する。このような抗体は、例えば、以下の方法により得ることができる。
被験抗体が、ある抗体とエピトープを共有することは、両者の同じエピトープに対する競合によって確認することができる。抗体間の競合は、交叉ブロッキングアッセイなどによって検出される。例えば競合ELISAアッセイは、好ましい交叉ブロッキングアッセイである。具体的には、交叉ブロッキングアッセイにおいては、マイクロタイタープレートのウェル上にコートしたCD137タンパク質を、候補の競合抗体の存在下、または非存在下でプレインキュベートした後に、本発明の抗CD137抗体が添加される。ウェル中のCD137タンパク質に結合した本発明の抗CD137抗体の量は、同じエピトープへの結合に対して競合する候補競合抗体(被験抗体)の結合能に間接的に相関している。すなわち同一エピトープに対する被験抗体の親和性が大きくなればなる程、本発明の抗CD137抗体のCD137タンパク質をコートしたウェルへの結合量は低下し、被験抗体のCD137タンパク質をコートしたウェルへの結合量は増加する。
ウェルに結合した抗体量は、予め抗体を標識しておくことによって、容易に測定することができる。たとえば、ビオチン標識された抗体は、アビジンペルオキシダーゼコンジュゲートと適切な基質を使用することにより測定できる。ペルオキシダーゼなどの酵素標識を利用した交叉ブロッキングアッセイを、特に競合ELISAアッセイと言う。抗体は、検出あるいは測定が可能な他の標識物質で標識することができる。具体的には、放射標識あるいは蛍光標識などが公知である。
更に被験抗体が本発明の抗CD137抗体と異なる種に由来する定常領域を有する場合には、ウェルに結合した抗体の量を、その抗体の定常領域を認識する標識抗体によって測定することもできる。あるいは同種由来の抗体であっても、クラスが相違する場合には、各クラスを識別する抗体によって、ウェルに結合した抗体の量を測定することができる。
候補の競合抗体非存在下で実施されるコントロール試験において得られる結合活性と比較して、候補抗体が、少なくとも20%、好ましくは少なくとも20〜50%、さらに好ましくは少なくとも50%、抗CD137抗体の結合をブロックできるならば、該候補競合抗体は本発明の抗CD137抗体と実質的に同じエピトープに結合するか、又は同じエピトープへの結合に対して競合する抗体である。
別の一態様として、被験抗体が、別の抗体との結合に関して競合するかまたは交差競合する能力は、当該技術分野に知られる標準的結合アッセイ、例えばBIAcore分析、またはフローサイト メトリー等を用いて、当業者が適宜決定可能である。
また、エピトープの空間コンホメーションを決定する方法としては、例えば、X線結晶学および二次元核磁気共鳴が含まれる(Methods in Molecular Biology, G.E. Morris監修, Vol. 66, Epitope Mapping Protocols(1996)を参照)。
上記[i]から[iii]いずれかに記載の二重特異性抗体が結合するヒトCD137エピトープと同じエピトープに結合する二重特異性抗体の好ましい例として、例えば、ヒトCD137タンパク質中のSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECDCTPGFHCLGAGCSMCEQDCKQGQELTKKGCの配列(配列番号113)を有する領域、DCTPGFHCLGAGCSMCEQDCKQGQELTKKGCの配列(配列番号108)を有する領域、LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECの配列(配列番号111)を有する領域、又はLQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCの配列(配列番号106)を有する領域を認識する二重特異性抗体を挙げることができる。
さらに好ましくは、例えば、ヒトCD137タンパク質中のLQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECの配列(配列番号111)を有する領域、又はLQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCの配列(配列番号106)を有する領域を認識する二重特異性抗体を挙げることができる。
本発明の非限定の一態様として、癌特異的抗原結合ドメイン、及びヒトCD40結合ドメインを含む、二重特異性抗体を提供する。
癌特異的抗原結合ドメインに含まれる重鎖可変領域及び軽鎖可変領域は、標的とする癌抗原に応じて、当業者が該癌抗原に結合する重鎖可変領域配列及び軽鎖可変領域配列を適宜選択することができる。
抗体の結合活性
抗体の抗原結合活性の測定には公知の手段を使用することができる(Antibodies A Laboratory Manual.Ed Harlow,David Lane,Cold Spring Harbor Laboratory,1988)。例えば、ELISA(酵素結合免疫吸着検定法)、EIA(酵素免疫測定法)、RIA(放射免疫測定法)、FACS、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法あるいは蛍光免疫法などを用いることができる。更に、細胞に発現する抗原に対する抗体の結合活性を測定する手法としては、例えば、前記Antibodies A Laboratory Manual中の359-420ページに記載されている方法が挙げられる。
また、緩衝液等に懸濁した細胞の表面上に発現している抗原と当該抗原に対する抗体との結合を測定する方法として、特にフローサイトメーターを使用した方法を好適に用いることが出来る。使用するフローサイトメーターとしては例えば、FACSCantoTM II,FACSAriaTM,FACSArrayTM,FACSVantageTM SE,FACSCaliburTM (以上、BD Biosciences社)や、EPICS ALTRA HyPerSort,Cytomics FC 500,EPICS XL-MCL ADC EPICS XL ADC,Cell Lab Quanta / Cell Lab Quanta SC(以上、Beckman Coulter社)などを挙げることができる。
被験CD137抗体の抗原に対する結合活性の好適な測定方法の一例として、CD137を発現する細胞と反応させた被験抗体を認識するFITC標識した二次抗体で染色後、FACSCalibur(BD社)により測定を行い、その蛍光強度をCELL QUEST Software(BD社)を用いて解析する方法を挙げることができる。
抗体
本明細書において、抗体とは、天然のものであるかまたは部分的もしくは完全合成により製造された免疫グロブリンをいう。抗体はそれが天然に存在する血漿や血清等の天然資源や抗体を産生するハイブリドーマ細胞の培養上清から単離され得るし、または遺伝子組換え等の手法を用いることによって部分的にもしくは完全に合成され得る。抗体の例としては免疫グロブリンのアイソタイプおよびそれらのアイソタイプのサブクラスが好適に挙げられる。ヒトの免疫グロブリンとして、IgG1、IgG2、IgG3、IgG4、IgA1、IgA2、IgD、IgE、IgMの9種類のクラス(アイソタイプ)が知られている。本発明の抗体には、これらのアイソタイプのうちIgG1、IgG2、IgG3、IgG4が含まれ得る。
所望の結合活性を有する抗体を作製する方法は当業者において公知であり、ポリクローナルまたはモノクローナル抗体として取得され得る。本発明の抗体としては、哺乳動物由来のモノクローナル抗体が好適に作製され得る。哺乳動物由来のモノクローナル抗体には、ハイブリドーマにより産生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主細胞によって産生されるもの等が含まれる。
抗体取得のために免疫される哺乳動物としては、特定の動物に限定されるものではないが、ハイブリドーマ作製のための細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましい。一般的にはげっ歯類の動物、例えば、マウス、ラット、ハムスター、あるいはウサギ、サル等が好適に使用される。
公知の方法にしたがって上記の動物が感作抗原により免疫される。例えば、一般的な方法として、感作抗原が哺乳動物の腹腔内または皮下に注射によって投与されることにより免疫が実施される。具体的には、PBS(Phosphate-Buffered Saline)や生理食塩水等で適当な希釈倍率で希釈された感作抗原が、所望により通常のアジュバント、例えばフロイント完全アジュバントと混合され、乳化された後に、該感作抗原が哺乳動物に4から21日毎に数回投与される。また、感作抗原の免疫時には適当な担体が使用され得る。特に分子量の小さい部分ペプチドが感作抗原として用いられる場合には、アルブミン、キーホールリンペットヘモシアニン等の担体タンパク質と結合した該感作抗原ペプチドを免疫することが望ましい場合もある。
また、所望の抗体を産生するハイブリドーマは、DNA免疫を使用し、以下のようにしても作製され得る。DNA免疫とは、免疫動物中で抗原タンパク質をコードする遺伝子が発現され得るような態様で構築されたベクターDNAが投与された当該免疫動物中で、感作抗原が当該免疫動物の生体内で発現されることによって、免疫刺激が与えられる免疫方法である。蛋白質抗原が免疫動物に投与される一般的な免疫方法と比べて、DNA免疫には、次のような優位性が期待される。
−膜蛋白質の構造を維持して免疫刺激が与えられ得る
−免疫抗原を精製する必要が無い
DNA免疫によって本発明のモノクローナル抗体を得るために、まず、抗原タンパク質を発現するDNAが免疫動物に投与される。抗原タンパク質をコードするDNAは、PCRなどの公知の方法によって合成され得る。得られたDNAが適当な発現ベクターに挿入され、免疫動物に投与される。発現ベクターとしては、たとえばpcDNA3.1などの市販の発現ベクターが好適に利用され得る。ベクターを生体に投与する方法として、一般的に用いられている方法が利用され得る。たとえば、発現ベクターが吸着した金粒子が、gene gunで免疫動物個体の細胞内に導入されることによってDNA免疫が行われる。
このように哺乳動物が免疫され、血清中における抗原に結合する抗体力価の上昇が確認された後に、哺乳動物から免疫細胞が採取され、細胞融合に供される。好ましい免疫細胞としては、特に脾細胞が使用され得る。
前記免疫細胞と融合される細胞として、哺乳動物のミエローマ細胞が用いられる。ミエローマ細胞は、スクリーニングのための適当な選択マーカーを備えていることが好ましい。選択マーカーとは、特定の培養条件の下で生存できる(あるいはできない)形質を指す。選択マーカーには、ヒポキサンチン−グアニン−ホスホリボシルトランスフェラーゼ欠損(以下HGPRT欠損と省略する)、あるいはチミジンキナーゼ欠損(以下TK欠損と省略する)などが公知である。HGPRTやTKの欠損を有する細胞は、ヒポキサンチン−アミノプテリン−チミジン感受性(以下HAT感受性と省略する)を有する。HAT感受性の細胞はHAT選択培地中でDNA合成を行うことができず死滅するが、正常な細胞と融合すると正常細胞のサルベージ回路を利用してDNAの合成を継続することができるためHAT選択培地中でも増殖するようになる。
HGPRT欠損やTK欠損の細胞は、それぞれ6チオグアニン、8アザグアニン(以下8AGと省略する)、あるいは5'ブロモデオキシウリジンを含む培地で選択され得る。これらのピリミジンアナログをDNA中に取り込む正常な細胞は死滅する。他方、これらのピリミジンアナログを取り込めないこれらの酵素を欠損した細胞は、選択培地の中で生存することができる。この他G418耐性と呼ばれる選択マーカーは、ネオマイシン耐性遺伝子によって2-デオキシストレプタミン系抗生物質(ゲンタマイシン類似体)に対する耐性を与える。細胞融合に好適な種々のミエローマ細胞が公知である。
このようなミエローマ細胞として、例えば、P3(P3x63Ag8.653)(J. Immunol.(1979)123 (4), 1548-1550)、P3x63Ag8U.1(Current Topics in Microbiology and Immunology(1978)81, 1-7)、NS-1(C. Eur. J. Immunol.(1976)6 (7), 511-519)、MPC-11(Cell(1976)8 (3), 405-415)、SP2/0(Nature(1978)276 (5685), 269-270)、FO(J. Immunol. Methods(1980)35 (1-2), 1-21)、S194/5.XX0.BU.1(J. Exp. Med.(1978)148 (1), 313-323)、R210(Nature(1979)277 (5692), 131-133)等が好適に使用され得る。
基本的には公知の方法、たとえば、ケーラーとミルステインらの方法(Methods Enzymol.(1981)73, 3-46)等に準じて、前記免疫細胞とミエローマ細胞との細胞融合が行われる。
より具体的には、例えば細胞融合促進剤の存在下で通常の栄養培養液中で、前記細胞融合が実施され得る。融合促進剤としては、例えばポリエチレングリコール(PEG)、センダイウイルス(HVJ)等が使用され、更に融合効率を高めるために所望によりジメチルスルホキシド等の補助剤が添加されて使用される。
免疫細胞とミエローマ細胞との使用割合は任意に設定され得る。例えば、ミエローマ細胞に対して免疫細胞を1から10倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640培養液、MEM培養液、その他、この種の細胞培養に用いられる通常の培養液が使用され、さらに、牛胎児血清(FCS)等の血清補液が好適に添加され得る。
細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混合し、予め37℃程度に加温されたPEG溶液(例えば平均分子量1000から6000程度)が通常30から60%(w/v)の濃度で添加される。混合液が緩やかに混合されることによって所望の融合細胞(ハイブリドーマ)が形成される。次いで、上記に挙げた適当な培養液が逐次添加され、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等が除去され得る。
このようにして得られたハイブリドーマは、通常の選択培養液、例えばHAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択され得る。所望のハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間(通常、係る十分な時間は数日から数週間である)上記HAT培養液を用いた培養が継続され得る。次いで、通常の限界希釈法によって、所望の抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングが実施される。
このようにして得られたハイブリドーマは、細胞融合に用いられたミエローマが有する選択マーカーに応じた選択培養液を利用することによって選択され得る。例えばHGPRTやTKの欠損を有する細胞は、HAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択され得る。すなわち、HAT感受性のミエローマ細胞を細胞融合に用いた場合、HAT培養液中で、正常細胞との細胞融合に成功した細胞が選択的に増殖し得る。所望のハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間、上記HAT培養液を用いた培養が継続される。具体的には、一般に、数日から数週間の培養によって、所望のハイブリドーマが選択され得る。次いで、通常の限界希釈法によって、所望の抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングが実施され得る。
所望の抗体のスクリーニングおよび単一クローニングが、公知の抗原抗体反応に基づくスクリーニング方法によって好適に実施され得る。所望の抗体は、例えば、FACS(fluorescence activated cell sorting)によってスクリーニングされ得る。FACSは、蛍光抗体と接触させた細胞をレーザー光で解析し、個々の細胞が発する蛍光を測定することによって細胞表面への抗体の結合を測定することを可能にするシステムである。
FACSによって本発明のモノクローナル抗体を産生するハイブリドーマをスクリーニングするためには、まず産生される抗体が結合する抗原を発現する細胞を調製する。スクリーニングのための好ましい細胞は、当該抗原を強制発現させた哺乳動物細胞である。宿主細胞として使用した形質転換されていない哺乳動物細胞を対照として用いることによって、細胞表面の抗原に対する抗体の結合活性が選択的に検出され得る。すなわち、宿主細胞に結合せず、抗原を強制発現させた細胞に結合する抗体を産生するハイブリドーマを選択することによって、所望のモノクローナル抗体を産生するハイブリドーマが取得され得る。
あるいは対象となる抗原を発現した細胞を固定化し、当該抗原発現細胞に対する抗体の結合活性がELISAの原理に基づいて評価され得る。たとえば、ELISAプレートのウェルに抗原発現細胞が固定化される。ハイブリドーマの培養上清をウェル内の固定化細胞に接触させ、固定化細胞に結合する抗体が検出される。モノクローナル抗体がマウス由来の場合、細胞に結合した抗体は、抗マウスイムノグロブリン抗体によって検出され得る。これらのスクリーニングによって選択された、抗原に対する結合能を有する所望の抗体を産生するハイブリドーマは、限界希釈法等によりクローニングされ得る。
このようにして作製されるモノクローナル抗体を産生するハイブリドーマは通常の培養液中で継代培養され得る。また、該ハイブリドーマは液体窒素中で長期にわたって保存され得る。
当該ハイブリドーマを通常の方法に従い培養し、その培養上清から所望のモノクローナル抗体が取得され得る。あるいはハイブリドーマをこれと適合性がある哺乳動物に投与して増殖せしめ、その腹水からモノクローナル抗体が取得され得る。前者の方法は、高純度の抗体を得るのに好適なものである。
当該ハイブリドーマ等の抗体産生細胞からクローニングされる抗体遺伝子によってコードされる抗体も好適に利用され得る。クローニングした抗体遺伝子を適当なベクターに組み込んで宿主に導入することによって、当該遺伝子によってコードされる抗体が発現する。抗体遺伝子の単離と、ベクターへの導入、そして宿主細胞の形質転換のための方法は例えば、Vandammeらによって既に確立されている(Eur.J. Biochem.(1990)192 (3), 767-775)。下記に述べるように組換え抗体の製造方法もまた公知である。
抗体の可変領域(V領域)をコードするcDNAを取得するためには、通常、まずハイブリドーマから全RNAが抽出される。細胞からmRNAを抽出するための方法として、たとえば次のような方法を利用することができる。
−グアニジン超遠心法(Biochemistry (1979) 18 (24), 5294-5299)
−AGPC法(Anal. Biochem. (1987) 162 (1), 156-159)
抽出されたmRNAは、例えばmRNA Purification Kit (GEヘルスケアバイオサイエンス製)等を使用して精製され得る。あるいは、QuickPrep mRNA Purification Kit (GEヘルスケアバイオサイエンス製)などのように、細胞から直接全mRNAを抽出するためのキットも市販されている。このようなキットを用いて、ハイブリドーマからmRNAが取得され得る。得られたmRNAから逆転写酵素を用いて抗体V領域をコードするcDNAが合成され得る。cDNAは、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit(生化学工業社製)等によって合成され得る。また、cDNAの合成および増幅のために、SMART RACE cDNA 増幅キット(Clontech製)およびPCRを用いた5'-RACE法(Proc. Natl. Acad. Sci. USA (1988) 85 (23), 8998-9002、Nucleic Acids Res. (1989) 17 (8), 2919-2932)が適宜利用され得る。更にこうしたcDNAの合成の過程においてcDNAの両末端に後述する適切な制限酵素サイトが導入され得る。
得られたPCR産物から目的とするcDNA断片が精製され、次いでベクターDNAと連結される。このように組換えベクターが作製され、大腸菌等に導入されコロニーが選択された後に、該コロニーを形成した大腸菌から所望の組換えベクターが調製され得る。そして、該組換えベクターが目的とするcDNAの塩基配列を有しているか否かについて、公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法等により確認される。
可変領域をコードする遺伝子を取得するためには、可変領域遺伝子増幅用のプライマーを使った5'-RACE法を利用するのが簡便である。まずハイブリドーマ細胞より抽出されたRNAを鋳型としてcDNAが合成され、5'-RACE cDNAライブラリーが得られる。5'-RACE cDNAライブラリーの合成にはSMART RACE cDNA 増幅キットなど市販のキットが適宜用いられる。
得られた5'-RACE cDNAライブラリーを鋳型として、PCR法によって抗体遺伝子が増幅される。公知の抗体遺伝子配列をもとにマウス抗体遺伝子増幅用のプライマーがデザインされ得る。これらのプライマーは、イムノグロブリンのサブクラスごとに異なる塩基配列である。したがって、サブクラスは予めIso Stripマウスモノクローナル抗体アイソタイピングキット(ロシュ・ダイアグノスティックス)などの市販キットを用いて決定しておくことが望ましい。
具体的には、たとえばマウスIgGをコードする遺伝子の取得を目的とするときには、重鎖としてγ1、γ2a、γ2b、γ3、軽鎖としてκ鎖とλ鎖をコードする遺伝子の増幅が可能なプライマーが利用され得る。IgGの可変領域遺伝子を増幅するためには、一般に3'側のプライマーには可変領域に近い定常領域に相当する部分にアニールするプライマーが利用される。一方5'側のプライマーには、5' RACE cDNAライブラリー作製キットに付属するプライマーが利用される。
こうして増幅されたPCR産物を利用して、重鎖と軽鎖の組み合せからなるイムノグロブリンが再構成され得る。再構成されたイムノグロブリンの、抗原に対する結合活性を指標として、所望の抗体がスクリーニングされ得る。たとえば次のようにしてスクリーニングされ得る;
(1)ハイブリドーマから得られたcDNAによってコードされるV領域を含む抗体を所望の抗原発現細胞に接触させる工程、
(2)該抗原発現細胞と抗体との結合を検出する工程、および
(3)該抗原発現細胞に結合する抗体を選択する工程。
抗体と該抗原発現細胞との結合を検出する方法は公知である。具体的には、先に述べたFACSなどの手法によって、抗体と該抗原発現細胞との結合が検出され得る。抗体の結合活性を評価するために該抗原発現細胞の固定標本が適宜利用され得る。
結合活性を指標とする抗体のスクリーニング方法として、ファージベクターを利用したパニング法も好適に用いられる。ポリクローナルな抗体発現細胞群より抗体遺伝子を重鎖と軽鎖のサブクラスのライブラリーとして取得した場合には、ファージベクターを利用したスクリーニング方法が有利である。重鎖と軽鎖の可変領域をコードする遺伝子は、適当なリンカー配列で連結することによってシングルチェインFv(scFv)を形成することができる。scFvをコードする遺伝子をファージベクターに挿入することにより、scFvを表面に発現するファージが取得され得る。このファージと所望の抗原との接触の後に、抗原に結合したファージを回収することによって、目的の結合活性を有するscFvをコードするDNAが回収され得る。この操作を必要に応じて繰り返すことにより、所望の結合活性を有するscFvが濃縮され得る。
目的とする抗体のV領域をコードするcDNAが得られた後に、当該cDNAの両末端に挿入した制限酵素サイトを認識する制限酵素によって該cDNAが消化される。好ましい制限酵素は、抗体遺伝子を構成する塩基配列に出現する頻度が低い塩基配列を認識して消化する。更に1コピーの消化断片をベクターに正しい方向で挿入するためには、付着末端を与える制限酵素の挿入が好ましい。上記のようにして消化された抗体のV領域をコードするcDNAを適当な発現ベクターに挿入することによって、抗体発現ベクターが取得され得る。このとき、抗体定常領域(C領域)をコードする遺伝子と、前記V領域をコードする遺伝子とがインフレームで融合されれば、キメラ抗体が取得される。ここで、キメラ抗体とは、定常領域と可変領域の由来が異なることをいう。したがって、マウス−ヒトなどの異種キメラ抗体に加え、ヒト−ヒト同種キメラ抗体も、本発明におけるキメラ抗体に含まれる。予め定常領域を有する発現ベクターに、前記V領域遺伝子を挿入することによって、キメラ抗体発現ベクターが構築され得る。具体的には、たとえば、所望の抗体定常領域(C領域)をコードするDNAを保持した発現ベクターの5'側に、前記V領域遺伝子を消化する制限酵素の制限酵素認識配列が適宜配置され得る。同じ組み合わせの制限酵素で消化された両者がインフレームで融合されることによって、キメラ抗体発現ベクターが構築される。
モノクローナル抗体の製造には、抗体遺伝子が発現制御領域による制御の下で発現するように発現ベクターに組み込まれる。抗体を発現するための発現制御領域とは、例えば、エンハンサーやプロモーターを含む。また、発現した抗体が細胞外に分泌されるように、適切なシグナル配列がアミノ末端に付加され得る。発現されたポリペプチドから、シグナル配列がそのカルボキシル末端部分から切断され、抗体が細胞外に分泌され得る。次いで、この発現ベクターによって適当な宿主細胞が形質転換されることによって、抗体をコードするDNAを発現する組換え細胞が取得され得る。
抗体遺伝子の発現のために、抗体重鎖(H鎖)および軽鎖(L鎖)をコードするDNAは、それぞれ別の発現ベクターに組み込まれる。H鎖とL鎖が組み込まれたベクターによって、同じ宿主細胞に同時に形質転換(co-transfect)されることによって、H鎖とL鎖を備えた抗体分子が発現され得る。あるいはH鎖およびL鎖をコードするDNAが単一の発現ベクターに組み込まれることによって宿主細胞が形質転換され得る(国際公開WO 94/11523を参照のこと)。
単離された抗体遺伝子を適当な宿主に導入することによって抗体を作製するための宿主細胞と発現ベクターの多くの組み合わせが公知である。これらの発現系は、いずれも本発明の癌特異的抗原結合ドメイン、腫瘍壊死因子受容体スーパーファミリー(TNFRSF)やT細胞受容体複合体結合ドメインを単離するのに応用され得る。
真核細胞が宿主細胞として使用される場合、動物細胞、植物細胞、あるいは真菌細胞が適宜使用され得る。具体的には、動物細胞としては、次のような細胞が例示され得る。
(1)哺乳類細胞、:CHO、COS、ミエローマ、BHK(baby hamster kidney)、Hela、Veroなど
(2)両生類細胞:アフリカツメガエル卵母細胞など
(3)昆虫細胞:sf9、sf21、Tn5など
あるいは植物細胞としては、ニコティアナ・タバカム(Nicotiana tabacum)などのニコティアナ(Nicotiana)属由来の細胞による抗体遺伝子の発現系が公知である。植物細胞の形質転換には、カルス培養した細胞が適宜利用され得る。
更に真菌細胞としては、次のような細胞を利用することができる。
−酵母:サッカロミセス・セレビシエ(Saccharomyces serevisiae)などのサッカロミセス(Saccharomyces)属、メタノール資化酵母(Pichia pastoris)などのPichia属
−糸状菌:アスペスギルス・ニガー(Aspergillus niger)などのアスペルギルス(Aspergillus)属
また、原核細胞を利用した抗体遺伝子の発現系も公知である。たとえば、細菌細胞を用いる場合、大腸菌(E. coli)、枯草菌などの細菌細胞が適宜利用され得る。これらの細胞中に、目的とする抗体遺伝子を含む発現ベクターが形質転換によって導入される。形質転換された細胞をin vitroで培養することにより、当該形質転換細胞の培養物から所望の抗体が取得され得る。
組換え抗体の産生には、上記宿主細胞に加えて、トランスジェニック動物も利用され得る。すなわち所望の抗体をコードする遺伝子が導入された動物から、当該抗体を得ることができる。例えば、抗体遺伝子は、乳汁中に固有に産生されるタンパク質をコードする遺伝子の内部にインフレームで挿入することによって融合遺伝子として構築され得る。乳汁中に分泌されるタンパク質として、たとえば、ヤギβカゼインなどを利用され得る。抗体遺伝子が挿入された融合遺伝子を含むDNA断片はヤギの胚へ注入され、当該注入された胚が雌のヤギへ導入される。胚を受容したヤギから生まれるトランスジェニックヤギ(またはその子孫)が産生する乳汁からは、所望の抗体が乳汁タンパク質との融合タンパク質として取得され得る。また、トランスジェニックヤギから産生される所望の抗体を含む乳汁量を増加させるために、ホルモンがトランスジェニックヤギに対して投与され得る(Bio/Technology (1994), 12 (7), 699-702)。
本明細書において記載される抗原結合分子がヒトに投与される場合、例えば、当該分子における各種結合ドメインとして、抗体の可変領域を含むドメインを用いる場合は、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体由来の抗原結合ドメインが適宜採用され得る。遺伝子組換え型抗体には、例えば、ヒト化(Humanized)抗体等が含まれる。これらの改変抗体は、公知の方法を用いて適宜製造される。
本明細書において記載される抗原結合分子における各種結合ドメインを作製するために用いられる抗体の可変領域は、通常、4つのフレームワーク領域(FR)にはさまれた3つの相補性決定領域(complementarity-determining region ; CDR)で構成されている。CDRは、実質的に、抗体の結合特異性を決定している領域である。CDRのアミノ酸配列は多様性に富む。一方FRを構成するアミノ酸配列は、異なる結合特異性を有する抗体の間でも、高い同一性を示すことが多い。そのため、一般に、CDRの移植によって、ある抗体の結合特異性を、他の抗体に移植することができるとされている。
ヒト化抗体は、再構成(reshaped)ヒト抗体とも称される。具体的には、ヒト以外の動物、たとえばマウス抗体のCDRをヒト抗体に移植したヒト化抗体などが公知である。ヒト化抗体を得るための一般的な遺伝子組換え手法も知られている。具体的には、マウスの抗体のCDRをヒトのFRに移植するための方法として、たとえばOverlap Extension PCRが公知である。Overlap Extension PCRにおいては、ヒト抗体のFRを合成するためのプライマーに、移植すべきマウス抗体のCDRをコードする塩基配列が付加される。プライマーは4つのFRのそれぞれについて用意される。一般に、マウスCDRのヒトFRへの移植においては、マウスのFRと同一性の高いヒトFRを選択するのが、CDRの機能の維持において有利であるとされている。すなわち、一般に、移植すべきマウスCDRに隣接しているFRのアミノ酸配列と同一性の高いアミノ酸配列からなるヒトFRを利用するのが好ましい。
また連結される塩基配列は、互いにインフレームで接続されるようにデザインされる。それぞれのプライマーによってヒトFRが個別に合成される。その結果、各FRにマウスCDRをコードするDNAが付加された産物が得られる。各産物のマウスCDRをコードする塩基配列は、互いにオーバーラップするようにデザインされている。続いて、ヒト抗体遺伝子を鋳型として合成された産物のオーバーラップしたCDR部分を互いにアニールさせて相補鎖合成反応が行われる。この反応によって、ヒトFRがマウスCDRの配列を介して連結される。
最終的に3つのCDRと4つのFRが連結されたV領域遺伝子は、その5'末端と3'末端にアニールし適当な制限酵素認識配列を付加されたプライマーによってその全長が増幅される。上記のように得られたDNAとヒト抗体C領域をコードするDNAとをインフレームで融合するように発現ベクター中に挿入することによって、ヒト型抗体発現用ベクターが作製できる。該組込みベクターを宿主に導入して組換え細胞を樹立した後に、該組換え細胞を培養し、該ヒト化抗体をコードするDNAを発現させることによって、該ヒト化抗体が該培養細胞の培養物中に産生される(欧州特許公開EP 239400、国際公開WO1996/002576参照)。
上記のように作製したヒト化抗体の抗原への結合活性を定性的又は定量的に測定し、評価することによって、CDRを介して連結されたときに該CDRが良好な抗原結合部位を形成するようなヒト抗体のFRが好適に選択できる。必要に応じ、再構成ヒト抗体のCDRが適切な抗原結合部位を形成するようにFRのアミノ酸残基を置換することもできる。たとえば、マウスCDRのヒトFRへの移植に用いたPCR法を応用して、FRにアミノ酸配列の変異を導入することができる。具体的には、FRにアニーリングするプライマーに部分的な塩基配列の変異を導入することができる。このようなプライマーによって合成されたFRには、塩基配列の変異が導入される。アミノ酸を置換した変異型抗体の抗原への結合活性を上記の方法で測定し評価することによって所望の性質を有する変異FR配列が選択され得る(Sato, K.et al., Cancer Res, 1993, 53, 851-856)。
また、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物(国際公開WO1993/012227、WO1992/003918、WO1994/002602、WO1994/025585、WO1996/034096、WO1996/033735参照)を免疫動物とし、DNA免疫により所望のヒト抗体が取得され得る。
さらに、ヒト抗体ライブラリーを用いて、パンニングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体のV領域が一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現される。抗原に結合するscFvを発現するファージが選択され得る。選択されたファージの遺伝子を解析することにより、抗原に結合するヒト抗体のV領域をコードするDNA配列が決定できる。抗原に結合するscFvのDNA配列を決定した後、当該V領域配列を所望のヒト抗体C領域の配列とインフレームで融合させた後に適当な発現ベクターに挿入することによって発現ベクターが作製され得る。当該発現ベクターを上記に挙げたような好適な発現細胞中に導入し、該ヒト抗体をコードする遺伝子を発現させることにより当該ヒト抗体が取得される。これらの方法は既に公知である(国際公開WO1992/001047、WO1992/020791、WO1993/006213、WO1993/011236、WO1993/019172、WO1995/001438、WO1995/015388参照)。
ファージディスプレイ法以外にも、ヒト抗体ライブラリを用いて、パンニングによりヒト抗体を取得する技術として、無細胞翻訳系を使用する技術、細胞またはウイルス表面に抗原結合分子を提示する技術、エマルジョンを使用する技術等が知られている。例えば、無細胞翻訳系を使用する技術としては、終止コドンの除去等によりリボゾームを介してmRNAと翻訳されたタンパク質の複合体を形成させるリボゾームディスプレイ法、ピューロマイシン等の化合物を用いて遺伝子配列と翻訳されたタンパク質を共有結合させるcDNAディスプレイ法、mRNAディスプレイ法や、核酸に対する結合タンパク質を用いて遺伝子と翻訳されたタンパク質の複合体を形成させるCISディスプレイ法等が使用され得る。また、細胞またはウイルス表面に抗原結合分子を提示する技術としては、ファージディスプレイ法以外にも、E. coliディスプレイ法、グラム陽性菌ディスプレイ法、酵母ディスプレイ法、哺乳類細胞ディスプレイ法、ウイルスディスプレイ法等が使用され得る。エマルジョンを使用する技術としては、エマルジョン中に遺伝子及び翻訳関連分子を内包させることによる、インビトロウイルスディスプレイ法等が使用され得る。これらの方法は既に公知である(Nat Biotechnol. 2000 Dec;18(12):1287-92、Nucleic Acids Res. 2006;34(19):e127、Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2806-10、Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9193-8、Protein Eng Des Sel. 2008 Apr;21(4):247-55、Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10701-5、MAbs. 2010 Sep-Oct;2(5):508-18、Methods Mol Biol. 2012;911:183-98)。
本発明において「特異的」とは、特異的に結合する分子の一方の分子がその一または複数の結合する相手方の分子以外の分子に対しては何ら有意な結合を示さない状態をいう。また、抗原結合ドメインが、ある抗原中に含まれる複数のエピトープのうち特定のエピトープに対して特異的である場合にも用いられる。また、抗原結合ドメインが結合するエピトープが複数の異なる抗原に含まれる場合には、当該抗原結合ドメインを有する抗原結合分子は当該エピトープを含む様々な抗原と結合することができる。
また、抗原中に存在する抗原決定基を意味する「エピトープ」は、本明細書において開示される抗原結合分子中の各種結合ドメインが結合する抗原上の部位を意味する。よって、例えば、エピトープは、その構造によって定義され得る。また、当該エピトープを認識する抗原結合分子中の抗原に対する結合活性によっても当該エピトープが定義され得る。抗原がペプチド又はポリペプチドである場合には、エピトープを構成するアミノ酸残基によってエピトープを特定することも可能である。また、エピトープが糖鎖である場合には、特定の糖鎖構造によってエピトープを特定することも可能である。
直線状エピトープは、アミノ酸一次配列が認識されたエピトープを含むエピトープである。直線状エピトープは、典型的には、少なくとも3つ、および最も普通には少なくとも5つ、例えば約8〜約10個、6〜20個のアミノ酸が固有の配列において含まれる。
立体構造エピトープは、直線状エピトープとは対照的に、エピトープを含むアミノ酸の一次配列が、認識されたエピトープの単一の規定成分ではないエピトープ(例えば、アミノ酸の一次配列が、必ずしもエピトープを規定する抗体により認識されないエピトープ)である。立体構造エピトープは、直線状エピトープに対して増大した数のアミノ酸を包含するかもしれない。立体構造エピトープの認識に関して、抗体は、ペプチドまたはタンパク質の三次元構造を認識する。例えば、タンパク質分子が折り畳まれて三次元構造を形成する場合には、立体構造エピトープを形成するあるアミノ酸および/またはポリペプチド主鎖は、並列となり、抗体がエピトープを認識するのを可能にする。エピトープの立体構造を決定する方法には、例えばX線結晶学、二次元核磁気共鳴分光学並びに部位特異的なスピン標識および電磁常磁性共鳴分光学が含まれるが、これらには限定されない。例えば、Epitope Mapping Protocols in Methods in Molecular Biology (1996)、第66巻、Morris(編)を参照。
下記に被験抗原結合分子による癌特異的抗原中のエピトープへの結合の確認方法が例示されるが、他の結合ドメインの対象抗原中のエピトープへの結合の確認方法も下記の例示に準じて適宜実施され得る。
例えば、癌特異的抗原に対する抗原結合ドメインを含む被験抗原結合分子が、該抗原分子中に存在する線状エピトープを認識することは、たとえば次のようにして確認することができる。上記の目的のために例えば癌特異的抗原の細胞外ドメインを構成するアミノ酸配列からなる線状のペプチドが合成される。当該ペプチドは、化学的に合成され得る。あるいは、癌特異的抗原のcDNA中の、細胞外ドメインに相当するアミノ酸配列をコードする領域を利用して、遺伝子工学的手法により得られる。次に、細胞外ドメインを構成するアミノ酸配列からなる線状ペプチドと、癌特異的抗原に対する抗原結合ドメインを含む被験抗原結合分子との結合活性が評価される。たとえば、固定化された線状ペプチドを抗原とするELISAによって、当該ペプチドに対する当該抗原結合分子の結合活性が評価され得る。あるいは、癌特異的抗原を発現する細胞に対する当該抗原結合分子の結合における、線状ペプチドによる阻害のレベルに基づいて、線状ペプチドに対する結合活性が明らかにされ得る。これらの試験によって、線状ペプチドに対する当該抗原結合分子の結合活性が明らかにされ得る。
上記抗原に対する抗原結合ドメインを含む被験抗原結合分子が立体構造エピトープを認識することは、次のようにして確認され得る。例えば、癌特異的抗原に対する抗原結合ドメインを含む抗原結合分子が癌特異的抗原発現細胞に接触した際に当該細胞に強く結合する一方で、当該抗原結合分子が固定化された癌特異的抗原の細胞外ドメインを構成するアミノ酸配列からなる線状ペプチドに対して実質的に結合しないとき等が挙げられる。ここで、実質的に結合しないとは、抗原発現細胞に対する結合活性の80%以下、通常50%以下、好ましくは30%以下、特に好ましくは15%以下の結合活性をいう。
抗原結合ドメインを含む被験抗原結合分子の抗原発現細胞に対する結合活性を測定する方法としては、例えば、Antibodies A Laboratory Manual記載の方法(Ed Harlow, David Lane, Cold Spring Harbor Laboratory (1988) 359-420)が挙げられる。即ち、抗原発現細胞を抗原とするELISAやFACS(fluorescence activated cell sorting)の原理によって評価され得る。
ELISAフォーマットにおいて、抗原結合ドメインを含む被験抗原結合分子の抗原発現細胞に対する結合活性は、酵素反応によって生成するシグナルレベルを比較することによって定量的に評価される。すなわち、抗原発現細胞を固定化したELISAプレートに被験抗原結合分子を加え、該細胞に結合した被験抗原結合分子が、被験抗原結合分子を認識する酵素標識抗体を利用して検出される。あるいはFACSにおいては、被験抗原結合分子の希釈系列を作製し、抗原発現細胞に対する抗体結合力価(titer)を決定することにより、抗原発現細胞に対する被験抗原結合分子の結合活性が比較され得る。
緩衝液等に懸濁した細胞表面上に発現している抗原に対する被験抗原結合分子の結合は、フローサイトメーターによって検出することができる。フローサイトメーターとしては、例えば、次のような装置が知られている。
FACSCantoTM II
FACSAriaTM
FACSArrayTM
FACSVantageTM SE
FACSCaliburTM (いずれもBD Biosciences社の商品名)
EPICS ALTRA HyPerSort
Cytomics FC 500
EPICS XL-MCL ADC EPICS XL ADC
Cell Lab Quanta / Cell Lab Quanta SC(いずれもBeckman Coulter社の商品名)
例えば、上述の抗原結合ドメインを含む被験抗原結合分子の抗原に対する結合活性の好適な測定方法の一例として、次の方法が挙げられる。まず、抗原を発現する細胞と反応させた被験抗原結合分子を認識するFITC標識した二次抗体で染色する。被験抗原結合分子を適宜好適な緩衝液によって希釈することによって、当該抗原結合分子が所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用され得る。次に、FACSCalibur(BD社)により蛍光強度と細胞数が測定される。当該細胞に対する抗体の結合量は、CELL QUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、被験抗原結合分子の結合量によって表される被験抗原結合分子の結合活性が測定され得る。
本発明の抗原結合ドメインを含む被験抗原結合分が、ある抗原結合分子とエピトープを共有することは、両者の同じエピトープに対する競合によって確認され得る。抗原結合分子間の競合は、交叉ブロッキングアッセイなどによって検出される。例えば競合ELISAアッセイは、好ましい交叉ブロッキングアッセイである。
具体的には、交叉ブロッキングアッセイにおいては、マイクロタイタープレートのウェル上にコートした抗原が、候補となる競合抗原結合分子の存在下、または非存在下でプレインキュベートされた後に、被験抗原結合分子が添加される。ウェル中の抗原に結合した被験抗原結合分子の量は、同じエピトープへの結合に対して競合する候補となる競合抗原結合分子の結合能に間接的に相関している。すなわち同一エピトープに対する競合抗原結合分子の親和性が大きくなればなる程、被験抗原結合分子の抗原をコートしたウェルへの結合活性は低下する。
抗原を介してウェルに結合した被験抗原結合分の量は、予め抗原結合分子を標識しておくことによって、容易に測定され得る。たとえば、ビオチン標識された抗原結合分子は、アビジンペルオキシダーゼコンジュゲートと適切な基質を使用することにより測定される。ペルオキシダーゼなどの酵素標識を利用した交叉ブロッキングアッセイは、特に競合ELISAアッセイといわれる。抗原結合分子は、検出あるいは測定が可能な他の標識物質で標識され得る。具体的には、放射標識あるいは蛍光標識などが公知である。
候補の競合抗原結合分子の非存在下で実施されるコントロール試験において得られる結合活性と比較して、競合抗原結合分子が、抗原結合ドメインを含む被験抗原結合分子の結合を少なくとも20%、好ましくは少なくとも20−50%、さらに好ましくは少なくとも50%ブロックできるならば、当該被験抗原結合分子は競合抗原結合分子と実質的に同じエピトープに結合するか、又は同じエピトープへの結合に対して競合する抗原結合分子である。
本発明の抗原結合ドメインを含む被験抗原結合分子が結合するエピトープの構造が同定されている場合には、被験抗原結合分子と対照抗原結合分とがエピトープを共有することは、当該エピトープを構成するペプチドにアミノ酸変異を導入したペプチドに対する両者の抗原結合分子の結合活性を比較することによって評価され得る。
こうした結合活性を測定する方法としては、例えば、前記のELISAフォーマットにおいて変異を導入した線状のペプチドに対する被験抗原結合分子及び対照抗原結合分子の結合活性を比較することによって測定され得る。ELISA以外の方法としては、カラムに結合した当該変異ペプチドに対する結合活性を、当該カラムに被験抗原結合分子と対照抗原結合分子を流下させた後に溶出液中に溶出される抗原結合分子を定量することによっても測定され得る。変異ペプチドを例えばGSTとの融合ペプチドとしてカラムに吸着させる方法は公知である。
また、同定されたエピトープが立体エピトープの場合には、被験抗原結合分子と対照抗原結合分子とがエピトープを共有することは、次の方法で評価され得る。まず、抗原結合ドメインの対象となっている抗原を発現する細胞とエピトープに変異が導入された抗原を発現する細胞が調製される。これらの細胞がPBS等の適切な緩衝液に懸濁された細胞懸濁液に対して被験抗原結合分子と対照抗原結合分子が添加される。次いで、適宜緩衝液で洗浄された細胞懸濁液に対して、被験抗原結合分子と対照抗原結合分子を認識することができるFITC標識された抗体が添加される。標識抗体によって染色された細胞の蛍光強度と細胞数がFACSCalibur(BD社)によって測定される。被験抗原結合分子と対照抗原結合分子の濃度は好適な緩衝液によって適宜希釈することによって所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用される。当該細胞に対する標識抗体の結合量は、CELL QUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、標識抗体の結合量によって表される被験抗原結合分子と対照抗原結合分子の結合活性を測定することができる。
また、本発明の「抗原結合分子」は、単一のポリペプチド鎖内に、本発明の「抗体の可変領域」を形成する重鎖および軽鎖の両方を含むが、定常領域を欠いている抗体断片であってもよい。そのような抗体断片としては、例えば、ダイアボディ(diabody;Db)、scFv、単鎖抗体、sc(Fv)2、sc(Fab')2であってもよい。
Dbは、2本のポリペプチド鎖から構成されるダイマー(Holliger P et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993)、EP404,097号、W093/11161号等)であり、各々のポリペプチド鎖は、同じ鎖中でL鎖可変領域(VL)及びH鎖可変領域(VH)が、互いに結合できない位に短い、例えば、5残基程度のリンカーにより結合されている。
同一ポリペプチド鎖上にコードされるVLとVHとは、その間のリンカーが短いため単鎖可変領域フラグメントを形成することが出来ず、二量体化することにより、2つの抗原結合部位を形成する。
また、本明細書において、「scFv」、「単鎖抗体」、または「sc(Fv)2」という用語は、単一のポリペプチド鎖内に、重鎖および軽鎖の両方に由来する可変領域を含むが、定常領域を欠いている抗体断片を意味する。一般に、単鎖抗体は、抗原結合を可能にすると思われる所望の構造を形成するのを可能にする、VHドメインとVLドメインの間のポリペプチドリンカーをさらに含む。単鎖抗体は、The Pharmacology of Monoclonal Antibodies, 113巻, Rosenburg、及び、Moore編, Springer-Verlag, New York, 269〜315(1994)においてPluckthunによって詳細に考察されている。同様に、国際特許出願公開WO1988/001649および米国特許第4,946,778号および同第5,260,203号を参照。特定の態様において、単鎖抗体はまた、二重特異性であるか、かつ/またはヒト化され得る。
scFvはFvを構成するVHとVLとがペプチドリンカーによって連結された抗原結合ドメインである(Proc. Natl. Acad. Sci. U.S.A. (1988) 85 (16), 5879-5883)。当該ペプチドリンカーによってVHとVLとが近接した状態に保持され得る。
sc(Fv)2は二つのVLと二つのVHの4つの可変領域がペプチドリンカー等のリンカーによって連結され一本鎖を構成する単鎖抗体である(J Immunol. Methods (1999) 231 (1-2), 177-189)。この二つのVHとVLは異なるモノクローナル抗体から由来することもあり得る。例えば、Journal of Immunology (1994) 152 (11), 5368-5374に開示されるような同一抗原中に存在する二種類のエピトープを認識する二重特異性(bispecific sc(Fv)2)も好適に挙げられる。sc(Fv)2は、当業者に公知の方法によって作製され得る。例えば、scFvをペプチドリンカー等のリンカーで結ぶことによって作製され得る。
本明細書におけるsc(Fv)2を構成する抗原結合ドメインの構成としては、二つのVH及び二つのVLが、一本鎖ポリペプチドのN末端側を基点としてVH、VL、VH、VL([VH]リンカー[VL]リンカー[VH]リンカー[VL])の順に並んでいることを特徴とする抗体が挙げられるが、二つのVHと2つのVLの順序は特に上記の構成に限定されず、どのような順序で並べられていてもよい。例えば以下のような、順序の構成も挙げることができる。
[VL]リンカー[VH]リンカー[VH]リンカー[VL]
[VH]リンカー[VL]リンカー[VL]リンカー[VH]
[VH]リンカー[VH]リンカー[VL]リンカー[VL]
[VL]リンカー[VL]リンカー[VH]リンカー[VH]
[VL]リンカー[VH]リンカー[VL]リンカー[VH]
sc(Fv)2の分子形態についてはWO2006/132352においても詳細に記載されており、当業者であればこれらの記載に基づいて、本明細書で開示される抗原結合分子の作製のために適宜所望のsc(Fv)2を作製することが可能である。
ここで、Fv(variable fragment)は、抗体の軽鎖可変領域(VL(light chain variable region))と抗体の重鎖可変領域(VH(heavy chain variable region))とのペアからなる抗体由来の抗原結合ドメインの最小単位を意味する。1988年にSkerraとPluckthunは、バクテリアのシグナル配列の下流に抗体の遺伝子を挿入し大腸菌中で当該遺伝子の発現を誘導することによって、均一でかつ活性を保持した状態で大腸菌のペリプラズム画分から調製されることを見出した(Science (1988) 240 (4855), 1038-1041)。ペリプラズム画分から調製されたFvは、抗原に対する結合を有する態様でVHとVLが会合していた。
また本発明の抗原結合分子は、PEG等のキャリアー高分子や抗がん剤等の有機化合物をコンジュゲートしてもよい。また糖鎖付加配列を挿入し、糖鎖が所望の効果を得ることを目的として好適に付加され得る。
抗体の可変領域を結合するリンカーとしては、遺伝子工学により導入し得る任意のペプチドリンカー、又は合成化合物リンカー(例えば、Protein Engineering, 9 (3), 299-305, 1996参照)に開示されるリンカー等を用いることができるが、本発明においてはペプチドリンカーが好ましい。ペプチドリンカーの長さは特に限定されず、目的に応じて当業者が適宜選択することが可能であるが、好ましい長さは5アミノ酸以上(上限は特に限定されないが、通常、30アミノ酸以下、好ましくは20アミノ酸以下)であり、特に好ましくは15アミノ酸である。sc(Fv)2に3つのペプチドリンカーが含まれる場合には、全て同じ長さのペプチドリンカーを用いてもよいし、異なる長さのペプチドリンカーを用いてもよい。
例えば、ペプチドリンカーの場合:
Ser
Gly・Ser
Gly・Gly・Ser
Ser・Gly・Gly
Gly・Gly・Gly・Ser(配列番号:20)
Ser・Gly・Gly・Gly(配列番号:21)
Gly・Gly・Gly・Gly・Ser(配列番号:22)
Ser・Gly・Gly・Gly・Gly(配列番号:23)
Gly・Gly・Gly・Gly・Gly・Ser(配列番号:24)
Ser・Gly・Gly・Gly・Gly・Gly(配列番号:25)
Gly・Gly・Gly・Gly・Gly・Gly・Ser(配列番号:26)
Ser・Gly・Gly・Gly・Gly・Gly・Gly(配列番号:27)
(Gly・Gly・Gly・Gly・Ser(配列番号:22))n
(Ser・Gly・Gly・Gly・Gly(配列番号:23))n
[nは1以上の整数である]等を挙げることができる。但し、ペプチドリンカーの長さや配列は目的に応じて当業者が適宜選択することができる。
合成化学物リンカー(化学架橋剤)は、ペプチドの架橋に通常用いられている架橋剤、例えばN-ヒドロキシスクシンイミド(NHS)、ジスクシンイミジルスベレート(DSS)、ビス(スルホスクシンイミジル)スベレート(BS3)、ジチオビス(スクシンイミジルプロピオネート)(DSP)、ジチオビス(スルホスクシンイミジルプロピオネート)(DTSSP)、エチレングリコールビス(スクシンイミジルスクシネート)(EGS)、エチレングリコールビス(スルホスクシンイミジルスクシネート)(スルホ−EGS)、ジスクシンイミジル酒石酸塩(DST)、ジスルホスクシンイミジル酒石酸塩(スルホ−DST)、ビス[2-(スクシンイミドオキシカルボニルオキシ)エチル]スルホン(BSOCOES)、ビス[2-(スルホスクシンイミドオキシカルボニルオキシ)エチル]スルホン(スルホ-BSOCOES)などであり、これらの架橋剤は市販されている。
4つの抗体可変領域を結合する場合には、通常、3つのリンカーが必要となるが、全て同じリンカーを用いてもよいし、異なるリンカーを用いてもよい。
また、「Fab」は、一本の軽鎖、ならびに一本の重鎖のCH1領域および可変領域から構成される。Fab分子の重鎖は、別の重鎖分子とのジスルフィド結合を形成できない。
「F(ab')2」及び「Fab'」とは、イムノグロブリン(モノクローナル抗体)をタンパク質分解酵素であるペプシンあるいはパパイン等で処理することにより製造され、ヒンジ領域中の2本のH鎖間に存在するジスルフィド結合の前後で消化されて生成される抗体フラグメントを意味する。例えば、IgGをパパインで処理することにより、ヒンジ領域中の2本のH鎖間に存在するジスルフィド結合の上流で切断されてVL(L鎖可変領域)とCL(L鎖定常領域)からなるL鎖、及びVH(H鎖可変領域)とCHγ1(H鎖定常領域中のγ1領域)とからなるH鎖フラグメントがC末端領域でジスルフィド結合により結合した相同な2つの抗体フラグメントが製造され得る。これら2つの相同な抗体フラグメントはそれぞれFab'といわれる。
「F(ab')2」は、二本の軽鎖、ならびに、鎖間のジスルフィド結合が2つの重鎖間で形成されるようにCH1ドメインおよびCH2ドメインの一部分の定常領域を含む二本の重鎖を含む。本明細書において開示される抗原結合分子を構成するF(ab')2は、所望の抗原結合ドメインを有する全長モノクローナル抗体等をペプシン等の蛋白質分解酵素にて部分消化した後に、Fc断片をプロテインAカラムに吸着させて除去することにより、好適に取得され得る。かかる蛋白質分解酵素としてはpH等の酵素の反応条件を適切に設定することにより制限的にF(ab')2を生じるように全長抗体を消化し得るものであれば特段の限定はされず、例えば、ペプシンやフィシン等が例示できる。
本発明の「抗原結合分子」の好ましい態様の1つとして、多重特異性抗体を挙げることができる。多重特異性抗体のFc領域として、Fcγ受容体に対する結合活性が低下しているFc領域を用いる場合、多重特異性抗体を起源とするFc領域も適宜使用される。本発明の多重特異性抗体としては、特に二重特異性抗体が好ましい。
多重特異性抗体の会合化には、抗体H鎖の第二の定常領域(CH2)又はH鎖の第三の定常領域(CH3)の界面に電荷的な反発を導入して目的としないH鎖同士の会合を抑制する技術を適用することができる(WO2006/106905)。
CH2又はCH3の界面に電荷的な反発を導入して意図しないH鎖同士の会合を抑制させる技術において、H鎖の他の定常領域の界面で接触するアミノ酸残基としては、例えばCH3領域におけるEUナンバリング356番目の残基、EUナンバリング439番目の残基、EUナンバリング357番目の残基、EUナンバリング370番目の残基、EUナンバリング399番目の残基、EUナンバリング409番目の残基に相対する領域を挙げることができる。
より具体的には、例えば、2種のH鎖CH3領域を含む抗体においては、第1のH鎖CH3領域における以下の(1)〜(3)に示すアミノ酸残基の組から選択される1組ないし3組のアミノ酸残基が同種の電荷を有する抗体とすることができる; (1)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング356位および439位のアミノ酸残基、 (2)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング357位および370位のアミノ酸残基、 (3)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング399位および409位のアミノ酸残基。
更に、上記第1のH鎖CH3領域とは異なる第2のH鎖CH3領域における前記(1)〜(3)に示すアミノ酸残基の組から選択されるアミノ酸残基の組であって、前記第1のH鎖CH3領域において同種の電荷を有する前記(1)〜(3)に示すアミノ酸残基の組に対応する1組ないし3組のアミノ酸残基が、前記第1のH鎖CH3領域における対応するアミノ酸残基とは反対の電荷を有する抗体とすることができる。
上記(1)〜(3)に記載のそれぞれのアミノ酸残基は、会合した際に互いに接近している。当業者であれば、所望のH鎖CH3領域またはH鎖定常領域について、市販のソフトウェアを用いたホモロジーモデリング等により、上記(1)〜(3)に記載のアミノ酸残基に対応する部位を見出すことができ、適宜、該部位のアミノ酸残基を改変に供することが可能である。
上記抗体において、「電荷を有するアミノ酸残基」は、例えば、以下の(a)または(b)のいずれかの群に含まれるアミノ酸残基から選択されることが好ましい;
(a)グルタミン酸(E)、アスパラギン酸(D)、
(b)リジン(K)、アルギニン(R)、ヒスチジン(H)。
上記抗体において、「同種の電荷を有する」とは、例えば、2つ以上のアミノ酸残基のいずれもが、上記(a)または(b)のいずれか1の群に含まれるアミノ酸残基を有することを意味する。「反対の電荷を有する」とは、例えば、2つ以上のアミノ酸残基のなかの少なくとも1つのアミノ酸残基が、上記(a)または(b)のいずれか1の群に含まれるアミノ酸残基を有する場合に、残りのアミノ酸残基が異なる群に含まれるアミノ酸残基を有することを意味する。
好ましい態様において上記抗体は、第1のH鎖CH3領域と第2のH鎖CH3領域がジスルフィド結合により架橋されていてもよい。
本発明において改変に供するアミノ酸残基としては、上述した抗体の可変領域または抗体の定常領域のアミノ酸残基に限られない。当業者であれば、ポリペプチド変異体または異種多量体について、市販のソフトウェアを用いたホモロジーモデリング等により、界面を形成するアミノ酸残基を見出すことができ、会合を制御するように、該部位のアミノ酸残基を改変に供することが可能である。
また、本発明の多重特異性抗体の会合化には更に他の公知技術を用いることもできる。抗体の一方のH鎖の可変領域に存在するアミノ酸側鎖をより大きい側鎖(knob; 突起)に置換し、もう一方のH鎖の相対する可変領域に存在するアミノ酸側鎖をより小さい側鎖(hole; 空隙)に置換することによって、突起が空隙に配置され得るようにすることで効率的にFc領域を有する異なるアミノ酸を有するポリペプチド同士の会合化を起こすことができる(WO1996/027011、Ridgway JB et al., Protein Engineering (1996) 9, 617-621、Merchant AM et al. Nature Biotechnology (1998) 16, 677-681、US20130336973)。
これに加えて、本発明の多重特異性抗体の形成には更に他の公知技術を用いることもできる。抗体の一方のH鎖のCH3の一部をその部分に対応するIgA由来の配列にし、もう一方のH鎖のCH3の相補的な部分にその部分に対応するIgA由来の配列を導入したstrand-exchange engineered domain CH3を用いることで、異なる配列を有するポリペプチドの会合化をCH3の相補的な会合化によって効率的に引き起こすことができる (Protein Engineering Design & Selection, 23; 195-202, 2010)。この公知技術を使っても効率的に目的の多重特異性抗体の形成させることができる。
他にも多重特異性抗体の形成には、WO2011/028952やWO2014/018572やNat Biotechnol. 2014 Feb;32(2):191-8.に記載の抗体のCH1とCLの会合化、VH、VLの会合化を利用した抗体作製技術、WO2008/119353やWO2011/131746に記載の別々に調製したモノクローナル抗体同士を使用して二重特異性抗体を作製する技術(Fab Arm Exchange)、WO2012/058768やWO2013/063702に記載の抗体重鎖のCH3間の会合を制御する技術、WO2012/023053に記載の二種類の軽鎖と一種類の重鎖とから構成される二重特異性抗体を作製する技術、Christophら(Nature Biotechnology Vol. 31, p 753-758 (2013))に記載の1本のH鎖と1本のL鎖からなる抗体の片鎖をそれぞれ発現する2つのバクテリア細胞株を利用した二重特異性抗体を作製する技術等を用いることもできる。
多重特異性抗体の形成の一態様としては、上述したように、二種類のモノクローナル抗体を還元剤存在下で混合し、コアヒンジのdisulfide結合を開裂させたのちに、再会合させてヘテロ二量化した二重特異性抗体を得る方法が挙げられるが(FAE)、CH3領域の相互作用界面に静電相互作用(WO2006/106905)を導入することにより、再会合時にさらに効率的にヘテロ二量化を誘起することができる(WO2015/046467)。天然型IgGを用いたFAEでは再会合がランダムに起こるため理論上50%の効率でしか二重特異性抗体が得られないが、当該方法では高収率で二重特異性抗体を製造することができる。
また、効率的に目的の多重特異性抗体を形成させることができない場合であっても、産生された抗体の中から目的の多重特異性抗体を分離、精製することによっても、本発明の多重特異性抗体を得ることが可能である。例えば、2種類のH鎖の可変領域にアミノ酸置換を導入し等電点の差を付与することで、2種類のホモ体と目的のヘテロ抗体をイオン交換クロマトグラフィーで精製可能にする方法が報告されている(WO2007114325)。また、ヘテロ体を精製する方法として、これまでに、プロテインAに結合するマウスIgG2aのH鎖とプロテインAに結合しないラットIgG2bのH鎖からなるヘテロ二量化抗体をプロテインAを用いて精製する方法が報告されている(WO98050431、WO95033844)。更に、IgGとProteinAの結合部位であるEUナンバリング435番目および436番目のアミノ酸残基を、Tyr、HisなどのProteinAへの結合力の異なるアミノ酸に置換したH鎖を用いることで、各H鎖とProtein Aとの相互作用を変化させ、Protein Aカラムを用いることで、ヘテロ二量化抗体のみを効率的に精製することもできる。
また、異なる複数のH鎖に結合能を与え得る共通のL鎖を取得し、多重特異性抗体の共通L鎖として用いてもよい。このような共通L鎖と異なる複数のH鎖遺伝子を細胞に導入することによってIgGを発現させることで効率の良い多重特異性IgGの発現が可能となる(Nature Biotechnology (1998) 16, 677-681)。共通H鎖を選択する際に、任意の異なるH鎖に対応し高い結合能を示す共通L鎖を選択する方法も利用することができる(WO2004/065611)。
また、本発明のFc領域として、Fc領域のC末端のヘテロジェニティーが改善されたFc領域が適宜使用され得る。より具体的には、IgG1、IgG2、IgG3又はIgG4を起源とするFc領域を構成する二つのポリペプチドのアミノ酸配列のうちEUナンバリングに従って特定される446位のグリシン、及び447位のリジンが欠失したFc領域が提供される。
これらの技術を複数、例えば2個以上組合せて用いることもできる。また、これらの技術は、会合させたい2つのH鎖に適宜別々に適用させることもできる。さらに、これらの技術は、上述のFcγ受容体に対する結合活性が低下しているFc領域に組み合わせて用いることもできる。なお、本発明の抗原結合分子は、上記改変が加えられたものをベースにして、同一のアミノ酸配列を有する抗原結合分子を別途作製したものであってもよい。
本発明に係る抗原結合分子(第1の抗原結合分子)は、前記の
(1)癌特異的抗原結合ドメイン、及び
(2)腫瘍壊死因子(TNF)スーパーファミリー結合ドメイン、又は、腫瘍壊死因子(TNF)受容体スーパーファミリー結合ドメイン
を含むものであればよく、その構造は限定されない。第1の抗原結合分子は、これら2つの結合ドメインを含むことにより、TNFスーパーファミリー又はTNF受容体スーパーファミリーに属する分子を発現する細胞であって、癌特異的抗原を発現する細胞又は当該細胞を含む腫瘍組織に含まれる細胞を特異的に活性化し、癌特異的抗原を発現する当該細胞又は当該細胞を含む腫瘍組織に対して優れた(特異的な)細胞傷害作用を誘導することが可能となる。本発明の癌特異的抗原結合ドメイン、TNFスーパーファミリー結合ドメイン及びTNF受容体スーパーファミリー結合ドメインは、それぞれ、上述の癌特異的抗原あるいは、TNFスーパーファミリー又はTNF受容体スーパーファミリーに属する抗原から適宜選択することができる。これらの結合ドメインは、ペプチド結合で直接連結することもできるし、リンカーを介して結合することもできる。
本発明の抗原結合分子は、さらに、FcRn結合ドメインを含んでいてもよい。該FcRn結合ドメインとして、上述の抗体のFc領域を用いる場合は、Fcγ受容体に対する結合活性が低下しているFc領域が好ましい。Fcγ受容体に対する結合活性を低下させることで、Fcγ受容体発現細胞とTNF受容体スーパーファミリーに属する因子を発現する細胞の間の架橋によって生じるサイトカインリリース等の免疫活性化によって生じる副作用を抑制することが可能である。
本発明の抗原結合分子は、上述の公知の方法を用いて作製することができる。
例えば、(1)癌特異的抗原結合ドメインとしてF(ab')2、(2)TNFスーパーファミリー結合ドメイン又はTNF受容体スーパーファミリー結合ドメインとしてF(ab')2を用い、(3)FcRn結合ドメインとして、Fcγ受容体に対する結合活性が低下しているFc領域を含むドメインを用いた場合に、(1)と(2)に記載された抗原結合ドメインと(3)に記載されたFc領域を含むドメインとをペプチド結合で直接連結したときは、連結されたポリペプチドは抗体の構造を形成する。そのような抗体を作製するためには前述のハイブリドーマの培養液から精製する他、当該抗体を構成するポリペプチドをコードするポリヌクレオチドを安定に保持している所望の宿主細胞の培養液から当該抗体を精製することもできる。
また、その他、リンカーを介して各ドメインを結合する場合は、採用されるリンカーとしては、上記で例示されるリンカーの他、例えばHisタグ、HAタグ、mycタグ、FLAGタグ等のペプチドタグを有するリンカーも適宜使用され得る。また、水素結合、ジスルフィド結合、共有結合、イオン性相互作用またはこれらの結合の組合せにより互いに結合する性質もまた好適に利用され得る。例えば、抗体のCH1とCL間の親和性が利用されたり、ヘテロFc領域の会合に際して前述の多重特異性抗体を起源とするFc領域が用いられたりする。
本発明においては、第1の抗原結合分子に、さらに第2の抗原結合分子を組み合わせて用いることができる。
該第2の抗原結合分子は、
(1)癌特異的抗原結合ドメイン、及び
(2)T細胞受容体複合体結合ドメイン
を含むものであればよく、第1の抗原結合分子と同様にその構造は限定されず、第1の抗原結合分子と同様な方法で取得することが可能である。また、第2の抗原結合分子は、癌特異的抗原結合ドメインとT細胞受容体複合体結合ドメインを含んでいれば、その構造は第1の抗原結合分子と同一である必要もない。また、第1の抗原結合分子の癌特異的抗原結合ドメインが結合する癌特異的抗原と第2の抗原結合分子の癌特異的抗原結合ドメインが結合する癌特異的抗原とは、同一の抗原であっても異なる抗原であってもよいが、同一の癌特異的抗原であることが好ましい。癌特異的抗原が同一である場合、第1の抗原結合分子と第2の抗原結合分子が結合するエピトープは同一であっても異なるものであってもよい。これら第1の抗原結合分子と第2の抗原結合分子を組み合わせて用いることで、優れた細胞傷害活性を得ることができる。第2の抗原結合ドメインに含まれる癌特異的抗原結合ドメイン及びT細胞受容体複合体結合ドメインは、それぞれ、上述の癌特異的抗原あるいはT細胞受容体複合体に属する抗原から適宜選択することができる。
本発明の第2の抗原結合分子も第1の抗原結合分子と同様に、さらに、FcRn結合ドメインを含んでいてもよい。該FcRn結合ドメインとして、上述の抗体のFc領域を用いる場合は、第1の抗原結合分子と同様にFcγ受容体に対する結合活性が低下しているFc領域が好ましい。Fcγ受容体に対する結合活性を低下させることで、Fcγ受容体発現細胞とT細胞受容体複合体発現細胞及び/又はTNF受容体スーパーファミリーに属する因子を発現する細胞の間の架橋によって生じるサイトカインリリース等の免疫活性化によって生じる副作用を抑制することが可能である。
また、本発明は、本発明の抗原結合分子をコードするポリヌクレオチドに関する。本発明の抗原結合分子は、任意の発現ベクターに組み込むことができる。発現ベクターで適当な宿主を形質転換し、抗原結合分子の発現細胞とすることができる。抗原結合分子の発現細胞を培養し、培養上清から発現産物を回収すれば、当該ポリヌクレオチドによってコードされる抗原結合分子を取得することができる。即ち本発明は、本発明の抗原結合分子をコードするポリヌクレオチドを含むベクター、当該ベクターを保持する細胞、および当該細胞を培養し培養上清から抗原結合分子を回収することを含む、抗原結合分子の製造方法に関する。これらは例えば、前記組換え抗体と同様の手法により得ることができる。
医薬組成物
別の観点においては、本発明は、上述の第1の抗原結合分子を有効成分として含む医薬組成物を提供する。また、本発明は、当該抗原結合分子を有効成分として含有する、細胞傷害を誘導する医薬組成物(細胞傷害誘導治療剤)、細胞増殖抑制剤および抗癌剤に関する。本発明の医薬組成物は、癌治療剤または癌予防剤として用いることもできる。本発明の細胞傷害誘導治療剤、細胞増殖抑制剤および抗癌剤は、癌を罹患している対象または再発する可能性がある対象に投与されることが好ましい。
また、本発明において、上述の第1の抗原結合分子を有効成分として含む、細胞傷害誘導治療剤、細胞増殖抑制剤および抗癌剤は、当該抗原結合分子を対象に投与する工程を含む、細胞障害を誘導する方法、細胞増殖を抑制する方法、癌細胞又は癌細胞を含む腫瘍組織に対する免疫を活性化する方法、または癌を予防もしくは治療する方法と表現することができ、あるいは、細胞傷害を誘導するための医薬組成物、細胞増殖抑制剤および抗癌剤の製造における当該抗原結合分子の使用と表現することもでき、あるいは、細胞障害の誘導、細胞増殖の抑制、癌細胞又は癌細胞を含む腫瘍組織に対する免疫の活性化またはがんの治療もしくは予防において使用するための当該抗原結合分子と表現することもできる。
本発明において、「抗原結合分子を有効成分として含む」とは、当該抗原結合分子を主要な活性成分として含むという意味であり、当該抗原結合分子の含有率を制限するものではない。
更に本発明における医薬組成物、あるいは細胞傷害を誘導するための医薬組成物、細胞増殖抑制剤および抗癌剤(以下、医薬組成物等)は、上述の第2の抗原結合分子を組み合わせて用いることができる。第1の抗原結合分子を含む医薬組成物等に第2の抗原結合分子を組み合わせて用いることにより、当該抗原を発現する細胞に対する細胞傷害作用を強化することができる。ここで、「第2の抗原結合分子を組み合わせて用いる」とは、第2の抗原結合分子が、第1の抗原結合分子を含む医薬組成物等中に一緒に配合されていてもよいし、第1の抗原結合分子を含む医薬組成物等とは異なる医薬組成物等中に第2の抗原結合分子が含まれていてもよい。その剤型も同一のものであってもよいし、異なるものであってもよい。また、第1の抗原結合分子と第2の抗原結合分子が異なる医薬組成物等中に含まれる場合には、これらの医薬組成物等は、対象に対して、同時に投与されてもよいし、別々に投与されてもよい。さらにこれらの医薬組成物等をキットとして提供してもよい。
また、本発明における第1の抗原結合分子又は第1の抗原結合分子を有効成分として含む医薬組成物は、第2の抗原結合分子又は第2の抗原結合分子を有効成分として含む医薬組成物等と併用することで、その細胞傷害活性の誘導を高める、或いは、細胞傷害活性を強化するための医薬組成物として用いることができる。また、第2の抗原結合分子又は第2の抗原結合分子を有効成分として含む医薬組成物は、第1の抗原結合分子又は第1の抗原結合分子を有効成分として含む医薬組成物等と併用することで、その細胞傷害活性の誘導を高める、或いは、細胞傷害活性を強化するための医薬組成物として用いることができる。
ここで、「併用」には、第1の抗原結合分子を有効成分として含む医薬組成物等と第2の抗原結合分子を有効成分として含む医薬組成物等とが、対象に対して、同時に投与されることも含まれるし、別々に投与されることも含まれる。また、その剤型は同一のものであってもよいし、異なるものであってもよい。さらに、これらの医薬組成物等をキットとして提供するものであってもよい。
また、本発明は、上記の第1の抗原結合分子又は当該結合分子を有効成分として含む医薬組成物等と、第2の抗原結合分子又は第2の抗原結合分子を有効成分として含む医薬組成物等を併用することによって生じる効果を利用することにより、第1の抗原結合分子又は第1の抗原結合分子を有効成分として含む医薬組成物等によって、第2の抗原結合分子又は第2の抗原結合分子を有効成分として含む医薬組成物等の細胞傷害活性又は抗腫瘍効果を強化する方法を提供する。また、第2の抗原結合分子又は第2の抗原結合分子を有効成分として含む医薬組成物等によって、第1の抗原結合分子又は第1の抗原結合分子を有効成分として含む医薬組成物等の細胞傷害活性又は抗腫瘍効果を強化する方法を提供する。
更に本発明における医薬組成物等は、必要に応じて複数種類の第1の抗原結合分子及び/又は第2の抗原結合分子を組み合わせて用いることが可能である。たとえば、同一の抗原に結合する複数の本発明の抗原結合分子のカクテルを用いることによって、当該抗原を発現する細胞に対する細胞傷害作用を強化できる可能性がある。
また、必要に応じ本発明の抗原結合分子はマイクロカプセル(ヒドロキシメチルセルロース、ゼラチン、ポリ[メチルメタクリル酸]等のマイクロカプセル)に封入され、コロイドドラッグデリバリーシステム(リポソーム、アルブミンミクロスフェア、マイクロエマルジョン、ナノ粒子及びナノカプセル等)とされ得る("Remington's Pharmaceutical Science 16th edition", Oslo Ed. (1980)等参照)。さらに、薬剤を徐放性の薬剤とする方法も公知であり、当該方法は本発明の抗原結合分子に適用され得る(J.Biomed.Mater.Res. (1981) 15, 267-277、Chemtech. (1982) 12, 98-105、米国特許第3773719号、欧州特許公開公報EP58481号・EP133988号、Biopolymers (1983) 22, 547-556)。
本発明の医薬組成物、あるいは細胞増殖抑制剤および抗癌剤は、経口、非経口投与のいずれかによって患者に投与することができる。好ましくは非経口投与である。係る投与方法としては具体的には、注射投与、経鼻投与、経肺投与、経皮投与などが挙げられる。注射投与としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などが挙げられる。例えば注射投与によって本発明の医薬組成物、あるいは細胞傷害誘導治療剤、細胞増殖抑制剤および抗癌剤が全身または局部的に投与できる。また、患者の年齢、症状により適宜投与方法を選択することができる。投与量としては、例えば、一回の投与につき体重1 kgあたり0.0001 mgから1000 mgの範囲で投与量を選択できる。あるいは、例えば、患者あたり0.001 mg/bodyから100000 mg/bodyの範囲で投与量を選択し得る。しかしながら、本発明の医薬組成物はこれらの投与量に制限されるものではない。
本発明の医薬組成物は、常法に従って製剤化することができ(例えば、Remington's Pharmaceutical Science, latest edition, Mark Publishing Company, Easton, U.S.A)、医薬的に許容される担体や添加物を共に含むものであってもよい。例えば界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等が挙げられる。更にこれらに制限されず、その他常用の担体を適宜使用できる。具体的には、軽質無水ケイ酸、乳糖、結晶セルロース、マンニトール、デンプン、カルメロースカルシウム、カルメロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアセタールジエチルアミノアセテート、ポリビニルピロリドン、ゼラチン、中鎖脂肪酸トリグリセライド、ポリオキシエチレン硬化ヒマシ油60、白糖、カルボキシメチルセルロース、コーンスターチ、無機塩類等を担体として挙げることができる。
また、本発明は、ある癌特異的抗原を発現する細胞を、当該癌特異的抗原に結合する本発明の第1の抗原結合分子、或いは、第1の抗原結合分子及び第2の抗原結合分子と接触させることにより、当該癌特異的抗原の発現細胞又は当該癌特異的抗原の発現細胞を含む腫瘍組織に傷害を引き起こす方法、或いは、当該細胞又は当該腫瘍組織の増殖を抑制する方法を提供する。当該癌特異的抗原に結合する本発明の抗原結合分子が結合する細胞は、当該癌特異的抗原が発現している細胞であれば特に限定されない。本発明における好ましい当該癌抗原の発現細胞は、具体的には、卵巣癌、前立腺癌、乳癌、子宮癌、肝癌、肺癌、膵臓癌、胃癌、膀胱癌及び大腸癌細胞等が好適に挙げられる。
本発明において「接触」は、例えば、インビトロで培養している癌抗原発現細胞の培養液に、当該癌抗原に結合する本発明の抗原結合分子を添加することにより行われる。この場合において、添加される抗原結合分子の形状としては、溶液又は凍結乾燥等により得られる固体等の形状が適宜使用され得る。水溶液として添加される場合にあっては純粋に本発明の抗原結合分子のみを含有する水溶液であり得るし、例えば上記記載の界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等を含む溶液でもあり得る。添加する濃度は特に限定されないが、培養液中の最終濃度として、好ましくは1 pg/mlから1 g/mlの範囲であり、より好ましくは1 ng/mlから1 mg/mlであり、更に好ましくは1μg/mlから1 mg/mlが好適に使用され得る。
また、本発明において「接触」は更に、別の態様では、癌特異的抗原の発現細胞を体内に移植した非ヒト動物や、内在的に当該癌特異的抗原を発現する癌細胞を有する動物に、当該癌抗原に結合する本発明の抗原結合分子を投与することによっても行われる。投与方法は経口、非経口投与のいずれかによって実施できる。特に好ましくは非経口投与による投与方法であり、係る投与方法としては具体的には、注射投与、経鼻投与、経肺投与、経皮投与などが挙げられる。注射投与としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などが挙げられる。例えば注射投与によって本発明の医薬組成物、あるいは細胞傷害を誘導するための医薬組成物、細胞増殖阻害剤および抗癌剤を全身または局部的に投与できる。また、被験動物の年齢、症状により適宜投与方法を選択することができる。水溶液として投与される場合にあっては純粋に本発明の抗原結合分子のみを含有する水溶液であってもよいし、例えば上記記載の界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等を含む溶液であってもよい。投与量としては、例えば、一回の投与につき体重1 kgあたり0.0001 mgから1000 mgの範囲で投与量を選択できる。あるいは、例えば、患者あたり0.001から100000 mg/bodyの範囲で投与量を選択できる。しかしながら、本発明の抗原結合分子投与量はこれらの投与量に制限されるものではない。
本発明の抗原結合分子の接触によって当該抗原結合分子を構成する癌特異的抗原結合ドメインが結合する癌特異的抗原を発現する細胞に引き起こされた細胞傷害を評価又は測定する方法として、以下の方法が好適に使用される。インビトロで該細胞傷害活性を評価又は測定する方法としては、細胞傷害性T細胞活性などの測定法を挙げることができる。本発明の抗原結合分子がT細胞性傷害活性を有するか否かを、公知の方法により測定することができる(例えば、Current protocols in Immunology, Chapter 7. Immunologic studies in humans, Editor, John E, Coligan et al., John Wiley & Sons, Inc.,(1993)等)。活性の測定に際しては、本発明とはその抗原結合ドメインが結合する抗原が異なる抗原であって試験に使用する細胞が発現していない抗原に結合する抗原結合分子を対照として、本発明の抗原結合分子と同様に使用し、本発明の抗原結合分子が、対照として使用された抗原結合分子よりも強い細胞傷害活性を示すことにより、活性を判定し得る。
また、生体内で細胞傷害活性を評価又は測定するために、例えば本発明の抗原結合分子を構成する癌特異的抗原結合ドメインが結合する抗原を発現する細胞を、非ヒト被験動物の皮内又は皮下に移植後、当日又は翌日から毎日又は数日間隔で被験抗原結合分子を静脈又は腹腔内に投与する。腫瘍の大きさを経日的に測定することにより、当該腫瘍の大きさの変化の差異を細胞傷害活性と規定し得る。インビトロでの評価と同様に対照となる抗原結合分子を投与し、本発明の抗原結合分子の投与群における腫瘍の大きさが対照抗原結合分子の投与群における腫瘍の大きさよりも有意に小さいことにより、本発明の抗原結合分子が細胞傷害活性を有すると判定し得る。
本発明の抗原結合分子の接触による、当該抗原結合分子を構成する癌特異的抗原結合ドメインが結合する抗原を発現する細胞の増殖に対する抑制効果を評価又は測定する方法としては、アイソトープラベルしたthymidineの細胞へ取込み測定やMTT法が好適に用いられる。また、生体内で細胞増殖抑制活性を評価又は測定する方法として、上記記載の生体内において細胞傷害活性を評価又は測定する方法と同じ方法を好適に用いることができる。
また、本発明は、本発明の抗原結合分子または本発明の製造方法により製造された抗原結合分子を含む、本発明の方法に用いるためのキットを提供する。該キットには、その他、薬学的に許容される担体、媒体、使用方法を記載した指示書等をパッケージしておくことができる。
また、本発明は、本発明の方法に使用するための、本発明の抗原結合分子または本発明の製造方法により製造された抗原結合分子に関する。
本明細書に記載の1又は複数の態様を任意に組み合わせたものも、当業者の技術常識に基づいて技術的に矛盾しない限り、本発明に含まれることが当業者には当然に理解される。
なお、本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。
以下に実施例により本発明をより詳細に説明するが、これらの実施例は本発明の範囲を制限するものではない。
〔参考例1〕抗体の発現ベクターの作製および抗体の発現と精製
抗体の可変領域のH鎖およびL鎖の塩基配列をコードする全長の遺伝子の合成は、Assemble PCR等を用いて、当業者公知の方法で作製した。アミノ酸置換の導入はPCR等を用いて当業者公知の方法で行った。得られたプラスミド断片を動物細胞発現ベクターに挿入し、H鎖発現ベクターおよびL鎖発現ベクターを作製した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。作製したプラスミドをヒト胎児腎癌細胞由来HEK293H株(Invitrogen社)、またはFreeStyle293細胞(Invitrogen社)に一過性に導入し、抗体の発現を行った。得られた培養上清を回収した後、0.22μmフィルターMILLEX(R)-GV(Millipore)または0.45μmフィルターMILLEX(R)-GV(Millipore)を通して培養上清を得た。得られた培養上清から、rProtein A Sepharose Fast Flow(GEヘルスケア)またはProtein G Sepharose 4 Fast Flow(GEヘルスケア)を用いて当業者公知の方法で抗体を精製した。精製抗体濃度は、分光光度計を用いて280 nmでの吸光度を測定し、得られた値からPACE等の方法により算出された吸光係数を用いて抗体濃度を算出した(Protein Science 1995 ; 4 : 2411-2423)。
〔参考例2〕マウスFcγレセプター(mFcγR)の調製方法および改変抗体とmFcγRとの相互作用解析方法
マウスFcγRの細胞外ドメインを以下の方法で調製した。まずFcγRの細胞外ドメインの遺伝子の合成を当業者公知の方法で実施した。その際、各FcγRの配列はNCBIに登録されている情報に基づき作製した。具体的には、mFcγRIについてはNCBI Reference Sequence: NP_034316.1、mFcγRIIについてはNCBI Reference Sequence: NP_034317.1、mFcγRIIIについてはNCBI Reference Sequence: NP_034318.2、mFcγRIVについてはNCBI Reference Sequence: NP_653142.2の配列に基づいて作製し、C末端にHisタグを付加した。得られた遺伝子断片を動物細胞発現ベクターに挿入し、発現ベクターを作製した。作製した発現ベクターをヒト胎児腎癌細胞由来FreeStyle293細胞(Invitrogen社)に一過性に導入し、目的タンパク質の発現を行った。得られた培養上清を回収した後、0.22μmフィルターを通して培養上清を得た。得られた培養上清は原則として次の4ステップで精製した。第1ステップはイオン交換カラムクロマトグラフィー、第2ステップはHisタグに対するアフィニティカラムクロマトグラフィー(HisTrap HP)、第3ステップはゲルろ過カラムクロマトグラフィー(Superdex200)、第4ステップは無菌ろ過を実施した。第1ステップのイオン交換カラムクロマトグラフィーについて、mFcγRIはQ Sepharose HP、mFcγRIIおよびmFcγRIVはSP Sepharose FF、mFcγRIIIはSP Sepharose HPを用いた。また第3ステップ以降で用いた溶媒はD-PBS(-)としたが、mFcγRIIIについては0.1M Arginineを含むD-PBS(-)とした。精製したタンパク質については分光光度計を用いて280 nmでの吸光度を測定し、得られた値からPACE等の方法により算出された吸光係数を用いて精製タンパク質の濃度を算出した(Protein Science 1995 ; 4 : 2411-2423)。Biacore T100(GEヘルスケア)、Biacore T200(GEヘルスケア)、Biacore A100、Biacore 4000を用いて、各改変抗体と上記で調製したFcγレセプターとの相互作用解析を行った。ランニングバッファーにはHBS-EP+(GEヘルスケア)を用い、測定温度は25℃とした。Series S Sensor Chip CM5(GEヘルスケア)またはSeries S Sensor Chip CM4(GEヘルスケア)に、アミンカップリング法によりProtein L(ACTIGENまたはBioVision)を固定化したチップを用いた。これらのセンサーチップに目的の抗体をキャプチャーさせ、ランニングバッファーで希釈したmFcγRを相互作用させ、抗体に対する結合量を測定し、抗体間で比較した。ただし、mFcγRの結合量はキャプチャーした抗体の量に依存するため、各抗体のキャプチャー量でmFcγRの結合量を除した補正値で比較した。また、10 mM glycine-HCl、pH1.5を反応させることで、センサーチップにキャプチャーされた抗体を洗浄し、センサーチップを再生して繰り返し用いた。また、各改変抗体のFcγRに対するKD値を算出するための速度論的な解析は以下の方法にしたがって実施した。まず、上記のセンサーチップに目的の抗体をキャプチャーさせ、ランニングバッファーで希釈したmFcγRを相互作用させ、得られたセンサーグラムに対してBiacore Evaluation Softwareにより測定結果を1:1 Langmuir binding modelでglobal fittingさせることで結合速度定数ka(L/mol/s)、解離速度定数kd(1/s)を算出し、その値から解離定数KD(mol/L)を算出した。
〔参考例3〕実験動物及び細胞株
実験動物はC57BL/6 雌性マウス(日本チャールス・リバー株式会社)、あるいはBalb/c雌性マウス(日本チャールス・リバー株式会社)を用い、動物飼育室で一定の条件(温度:20〜26℃、明暗:12時間の明暗周期)で、飼料と飲水の自由摂取下で飼育した。マウス肺癌細胞株であるLLC(ATCC No. CRL-1642)の染色体に当業者公知の方法によりヒトGPC3遺伝子を組み込み、ヒトGPC3を高発現する細胞株LLC-GPC3を得た。ヒトGPC3発現レベル(2.3x105/cell)は、QIFIキット(Dako社)を用いて、製造元推奨の方法によって決定した。同様に、マウス大腸癌細胞株であるCT-26(ATCC No. CRL-2638)に対してもヒトGPC3遺伝子を組み込み、高発現株CT26-GPC3(発現レベル:3.1x105/cell)を得た。これら組換え細胞株はATCC推奨の培地にヒトGPC3遺伝子保持のためにジェネティシン(GIBCO)をLLC-GPC3に対しては400μg/ml、CT26-GPC3に対しては200μg/ml添加して培養した。培養後、これらの細胞を2.5g/Lトリプシン-1mM EDTA(nacalai tesque社)にて剥がした後に各実験に使用した。
〔実施例1〕抗CD137マウス抗体の作製とアゴニスト活性の評価
1−1.抗マウスCD137マウス抗体の作製とmFcγRへの結合評価
抗体H鎖可変領域としてはWO2005/017148に開示されているマウスCD137に対する可変領域である1D8VH(配列番号:28)を、抗体H鎖定常領域としては天然型マウスIgG1のH鎖定常領域を有する1D8VH-mIgG1(配列番号:29)を、参考例1の方法に従って作製した。また、1D8VH-mIgG1に対し、WO2012/133782に記載されているFcγRへの結合を排除する改変であるEUナンバリング235番目のProをLysに置換する改変、およびEUナンバリング239番目のSerをLysに置換する改変を導入した1D8VH-mF18(配列番号:30)を作製した。さらに、mFcgRIIに対する結合を増強する改変(T230E、V231P、P232N、S238E、S239D、N324D)を1D8VH-mIgG1に対して導入した1D8VH-MB492(配列番号:31)を作製した。抗体L鎖可変領域としてはWO2005/017148に開示されている1D8VLを、L鎖定常領域としてはマウスκ鎖の定常領域をもつ1D8VL-mk0(配列番号:32)を用い、参考例1の方法に従って発現、精製することで、1D8VH-mIgG1/1D8VL-mk0、1D8VH-mF18/1D8VL-mk0、1D8VH-MB492/1D8VL-mk0を得た。これらの抗体は以後簡略化のために1D8-mIgG1、1D8-mF18、1D8-MB492と記載する。
また、それぞれの定常領域のmFcγRに対する結合を測定するため、H鎖可変領域としてWO2009/125825に記載されている抗ヒトインターロイキン6レセプター抗体の可変領域であるH237(配列番号:33)を有するH237-mIgG1(配列番号:34)、H237-MB492(配列番号:35)を作製した。抗体L鎖としてはtocilizumabのL鎖であるMRAL-k0(配列番号:36)を使用し、参考例1の方法に従って発現、精製することで、H237-mIgG1/MRAL-k0、H237-MB492/MRAL-k0を得た。また同様に、抗体H鎖可変領域としてヒトIL6Rへの結合を有するマウス抗体であるmouse PM-1 (Sato, Cancer Res., 1993, 53, 851-856)の可変領域(mPM1H)を有するmPM1H-mIgG1(配列番号:37)、mPM1H-mF18(配列番号:38)を作製した。抗体L鎖としてはMRAL-k0を使用し、参考例1の方法に従って発現、精製することで、mPM1H-mIgG1/MRAL-k0、mPM1H-mF18/MRAL-k0を得た。
参考例2の方法に従い、mPM1H-mIgG1/MRAL-k0およびmPM1H-mF18/MRAL-k0のmFcγRII、mFcγRIIIに対する結合能を評価した。天然型のマウスIgG1(mIgG1)は4種類のマウスFcγRのうち、mFcγRIおよびmFcγRIVには結合せず、mFcγRIIおよびmFcγRIIIにのみ結合を示す(Nimmerjahn, 2005, Science, 310, 1510-1512)。従って天然型mIgG1に対しmFcγRへの結合を減弱する改変を導入することで、mFcγRIIおよびmFcγRIIIへの結合を減弱させ、全てのmFcγRに対する結合が低減された改変体が得られると期待された。結果を表1に示す。
Figure 0006629187
以上の結果から、定常領域mF18はmFcγRに対する結合が著しく低減された改変体であることが示された。
また同様に、H237-mIgG1/MRAL-k0およびH237-MB492/MRAL-k0のmFcγRII、mFcγRIIIへの結合を評価した結果を表2に示す。
Figure 0006629187
表中の「相対的結合活性」とは、各mFcγRに対する天然型mIgG1の結合活性を1とした時のMB492の結合活性を示す。以上の結果から、MB492はmFcγRIIに対してmIgG1の621.5倍、mFcγRIIIに対して10.9倍増強された改変体であることが示された。
1−2.抗マウスCD137抗体のインビトロCD137アゴニスト作用の評価
ナイーブなC57BL/6雌性マウスから脾臓を採取し、FBS 10%を含むRPMI1640培地に0.5 μg/ml イオノマイシン及び10 ng/ml PHORBOL 12-MYRISTATE 13-ACETATE (PMA)を添加した培地で細胞を懸濁し、2×105 細胞/100μl/ウェルの密度で96-ウェルプレートへ播種した。そこへ抗マウスCD137抗体を3μg/mlの濃度で添加し、37℃、5% CO2の条件下で3日間培養した。培養後の上清を回収し、含まれるマウスIFN-γ濃度をELISAにより測定することで脾臓由来T細胞の活性化を評価した。ELISAはキット製造業者(PeproTech社)の指示に従い実施した。
その結果(図1)、作製した抗マウスCD137マウスIgG1抗体において、FcγRへの結合を極めて減弱させたもの(1D8-mF18)では活性が見られず、野生型Fcのもの(1D8-mIgG1)ではT細胞活性化が確認された。さらには、FcγRIIBに対する結合能を高めたもの(1D8-MB492)では、野生型Fcのものに比べて約8倍比活性が上昇した。
このことから、Proc Natl Acad Sci U S A. 2013, 110(48), 19501-6に記されているように他のTNFRSFに対するアゴニスト抗体と同様に、抗CD137抗体がアゴニスト活性を発揮するためには、抗体のFcγRIIへの結合が必要であり、CD137が発現しているT細胞に結合した抗CD137抗体がFcγRII発現細胞によって架橋されることが必要であることが分かった(図2)。FcγRIIはB細胞など多くの免疫細胞・貪食細胞に発現していることから、抗CD137抗体によるアゴニスト活性は全身的に起こることが考えられ、それにより副作用が生じると考えられた。
〔実施例2〕抗ヒトGPC3/抗マウスCD137二重特異性抗体の作製とアゴニスト活性の評価
2−1.癌抗原とCD137の二重特異性抗体による癌抗原依存的なアゴニスト抗体のコンセプト
実施例1の検討から、通常の抗CD137抗体によるアゴニスト活性は全身的に起こるため、抗腫瘍効果と正常組織での副作用(T細胞の活性化等)を分離することができないと考えられた。そこで、癌抗原とCD137の二重特異性抗体を用いることで、CD137を発現しているT細胞と癌抗原を発現している細胞(癌細胞等)が当該二重特異性抗体によって架橋されることにより、癌抗原が存在している癌組織においてのみ、抗CD137抗体によるアゴニスト活性が発揮されるのではないかと考えた(図3)。
2−1.抗ヒトGPC3/抗マウスCD137二重特異性抗体(GPC3 ERY22-1D8、GPC3 ERY22-G2-1D8、GPC3 ERY22-G4-1D8)の作製
ヒトIgG1、IgG2、IgG4の定常領域を有する3種類の抗ヒトGPC3/抗マウスCD137二重特異性抗体を作製した。これらの分子では、H鎖とL鎖の会合を制御し、効率良く二重特異性抗体を得るため、Schaeferらによって報告されているCrossMab技術を用いた(Schaefer, Proc. Natl. Acad. Sci., 2011, 108, 11187-11192)。すなわち、これらの分子はWO2012/073985に記載されているヒトGPC3に対するFabのVHドメインとVLドメインが置換された分子となっている。また、抗体H鎖定常領域には、ヘテロ会合を促進するために、Knobs-into-Holes技術を用いた。Knobs-into-Holes技術は、一方のH鎖のCH3領域に存在するアミノ酸側鎖をより大きい側鎖(Knob;突起)に置換し、もう一方のH鎖のCH3領域に存在するアミノ酸側鎖をより小さい側鎖(Hole;空隙)に置換することで突起が空隙内に配置されるようにしてH鎖のヘテロ二量化を促進し、目的のヘテロ二量化抗体を効率的に取得できる技術である(Burmeister, Nature, 1994, 372, 379-383)。以降、Knob改変が導入された定常領域をKn、Hole改変が導入された定常領域をHlと示す。また、FcγRに対する結合を減弱させる改変として、WO2011/108714に記載されている改変を用いた。具体的には、IgG1型、IgG4型に対しては、EUナンバリング234番目、235番目、297番目をAlaに置換する改変を導入した。また、IgG2型に対しては、234番目、237番目、297番目をAlaに置換する改変を導入した。抗体H鎖のC末端からはEUナンバリング446番目のGlyおよび447番目のLysを除去し、そこに対してさらに抗体発現後の精製を容易にするため、抗ヒトGPC3側のH鎖のC末端にヒスチジンタグを、抗マウスCD137側のH鎖のC末端にFLAGタグを付加した。以上の改変を導入した抗ヒトGPC3側H鎖として、GC33(2)H-G1dKnHS(配列番号:39)、GC33(2)H-G2dmKnHS(配列番号:40)、GC33(2)H-G4dKnHS(配列番号:41)を作製した。また、抗マウスCD137側のH鎖として、1D8VH-G1dHlFS(配列番号:42)、1D8VH-G2dmHlFS(配列番号:43)、1D8VH-G4dHlFS(配列番号:44)を作製した。ここで、IgG2型の定常領域を有するGC33(2)H-G2dmKnHSおよび1D8VH-G2dmHlFSは、CH1ドメインおよびヒンジ領域の前半部分のみIgG1型となっている。具体的には、天然型ヒトIgG2のCH1の配列と比較して、EUナンバリング131番目がSerに、133番目がLysに、137番目、138番目がGlyとなっており、ヒンジ領域は、219番目がSerとなっている。抗体L鎖としては、抗ヒトGPC3側としてGC33(2)L-k0(配列番号:45)を、抗マウスCD137側として1D8VL-k0(配列番号:46)を共通して用いた。これらの抗体を表3の組み合わせで発現し、目的の二重特異性抗体を得た。なお、これらの抗体の発現は1−1に従いFreeStyle293細胞 (Invitrogen社)で一過性発現させた。得られた培養上清をAnti FLAG M2カラム(Sigma社)に添加し、当該カラムを洗浄した後、0.1 mg/mL FLAGペプチド(Sigma社)による溶出を実施した。抗体を含む画分をHisTrap HPカラム(GE Healthcare社)に添加し、当該カラムを洗浄した後、イミダゾールの濃度勾配による溶出を実施した。抗体を含む画分を限外ろ過膜で濃縮した後、濃縮液をSuperdex 200カラム(GE Healthcare社)に添加し、その溶出液の単量体の抗体のみを回収することにより精製抗体を得た。
Figure 0006629187
2−2.抗ヒトGPC3/抗マウスCD137二重特異性抗体のGPC3依存的なインビトロCD137アゴニスト作用の評価
マウスT細胞株CTLL-2(ATCC Cat. No. TIB-214)を、FBS 10%を含むRPMI1640培地に0.5μg/ml イオノマイシン及び10ng/ml PMA を添加した培地で懸濁し、2×104 細胞/100μl/ウェルの密度で96-ウェルプレートへ播種した。そこへ、ヒトGPC3を発現するマウス肺癌細胞株LLC-GPC3(参考例3)を同じ培地にて懸濁し、2×104 細胞/100μl/ウェルの密度で96-ウェルプレートへ播種した。さらには、CTLL-2とLLC-GPC3をそれぞれ同細胞数含む懸濁液を調製し4×104 細胞/100μl/ウェルの密度で96-ウェルプレートへ播種した。そこへFcγRへの結合を極めて減弱させた抗ヒトGPC3/抗マウスCD137二重特異性ヒトIgG1型抗体(GPC3 ERY22-1D8)、或いは、抗ヒトGPC3単一特異性ヒトIgG型抗体(GC33(2)H2-G1dS及びGC33(2)L2-k0からなるGC33(2)-hG1S)を5μg/mlの濃度で添加し、37℃、5% CO2の条件下で24時間培養した。培養後の上清を回収し、含まれるマウスIFN-γ濃度をELISAにより測定することでCTLL-2の活性化を評価した。ELISAはキット製造業者(PeproTech社)の指示に従い実施した。
その結果、LLC-GPC3およびCTLL-2両方の細胞が存在する条件下においてのみ、マウスIFN-γの高い蓄積が見られた(図4)。このことは、GPC3発現細胞と結合した複数の前記二重特異性抗体によるT細胞上のCD137の会合化に伴うT細胞活性化が起きているものと考えられた(図3)。
また、前記二重特異性抗体のFc部分をFcγRへの結合を極めて減弱させたヒトIgG2型(GPC3 ERY22-G2-1D8)およびヒトIgG4型(GPC3 ERY22-G4-1D8)に変えた場合の活性を図5に示す。抗体のサブクラスを変えてもCD137アゴニスト活性に大きな差は無かった。
これらの結果から、FcγRへの結合を減弱させた、癌抗原(本実施例ではGPC3)とCD137に対する二重特異性抗体は、癌抗原を発現した細胞(癌細胞等)が存在している時に初めてT細胞上のCD137の会合化が起こり、アゴニスト活性を発揮することができることが確認された。すなわち、癌抗原が存在しない正常組織においてはT細胞が活性化されないため、副作用を低減ないしは回避することができると考えられる。
〔実施例3〕抗ヒトGPC3/抗マウスCD137二重特異性抗体と抗ヒトGPC3/抗マウスCD3二重特異性抗体の混合物によるT細胞活性化増強作用
3−1.コンセプト
抗CD137アゴニスト抗体はT細胞を活性化することで抗腫瘍効果を発揮することが知られているが、一方で、抗CD137アゴニスト抗体は単剤ではその効果が低いことが知られている。そこで、抗癌抗原/抗CD137二重特異性抗体によるT細胞の活性化能力を増強し、より強い抗腫瘍効果を発揮するために、同じくT細胞を活性化する薬剤と併用することを検討した。抗癌抗原/抗CD3二重特異性抗体は、T細胞を癌抗原にリダイレクトし、T細胞によって癌細胞に対して細胞障害活性を発揮することが可能であるが、一方で、抗癌抗原/抗CD3二重特異性抗体も単剤では必ずしもその抗腫瘍効果は高くない。そこで、抗癌抗原/抗CD137二重特異性抗体と抗癌抗原/抗CD3二重特異性抗体を併用することによって、相乗的なT細胞活性化能力と抗腫瘍効果を発揮できないかを検討した。
3−2.GPC3 ERY22-3-1D8、GPC3 ERY22-3-2C11の作製
抗ヒトGPC3/抗マウスCD137二重特異性抗体であるGPC3 ERY22-3-1D8、および抗ヒトGPC3/抗マウスCD3二重特異性抗体GPC3 ERY22-3-2C11を作製した。GPC3 ERY22-3-1D8は、実施例2−1で作製した二重特異性抗体GPC3 ERY22-1D8の定常領域に対して、より精製を簡便化するための当業者公知の改変を加えたものである。具体的には、抗ヒトGPC3側H鎖定常領域遺伝子GC33(2)H-G1dKnHSに対して精製を簡便化するための当業者公知の改変であるH435R改変を加えたGC33(2)H-G1dKnHSG3(配列番号:48)を作製した。またこれに伴い、抗マウスCD137側H鎖定常領域遺伝子1D8VH-G1dHlFSからFLAGタグを除去した1D8VH-G1dHlS(配列番号:47)を作製した。また、抗マウスCD3抗体のH鎖可変領域として2C11VH(配列番号:49)の配列を用い、2C11VH-G1dHlS(配列番号:50)を作製した。抗体L鎖としては、抗ヒトGPC3側としてGC33(2)L-k0、抗マウスCD137側として1D8VL-k0、抗マウスCD3側として2C11VL-k0(配列番号:51)を用い、これらの抗体を表4の組み合わせで発現し、目的の二重特異性抗体を得た。なお、これらの抗体の発現は参考例1に従いFreeStyle293細胞で一過性発現させた。得られた培養上清をMabSelect SuReカラム(GE Healthcare社)に添加し、当該カラムを洗浄した後、50 mM酢酸による溶出を実施した。抗体を含む画分をHisTrap HPカラム(GE Healthcare社)もしくはNi Sepharose FFカラム(GE Healthcare社)に添加し、当該カラムを洗浄した後、イミダゾールによる溶出を実施した。抗体を含む画分を限外ろ過膜で濃縮した後、濃縮液をSuperdex 200カラム(GE Healthcare社)に添加し、その溶出液の単量体の抗体のみを回収することにより精製抗体を得た。
Figure 0006629187
また、比較対照として、同じ抗ヒトGPC3抗体で、FcγRへの結合を減弱したGC33(2)-G1dSを作製した。GC33(2)-G1dSは、CrossMab技術を用いていない天然型の抗ヒトGPC3抗体で、FcγRへの結合を減弱した定常領域を有するものである。具体的には、抗体H鎖可変領域としてGC33(2)H2(配列番号:52)を持ち、抗体H鎖定常領域としてG1dに対しL234A、L235A、N297Aを導入した、GC33(2)H2-G1dS(配列番号:53)を作製した。抗体L鎖としてはGC33(2)L2-k0(配列番号:54)を用い、参考例1の方法に従って発現、精製することでGC33(2)H2-G1dS/GC33(2)L2-k0を得た。以降、簡略化のため、本抗体をGC33(2)-G1dSと記す。
3−3.抗ヒトGPC3/抗マウスCD137二重特異性抗体と抗ヒトGPC3/抗マウスCD3二重特異性抗体の混合物によるインビトロT細胞活性化増強作用の評価
ナイーブなC57BL/6雌性マウスから脾臓を採取し、FBS 10%を含むRPMI1640培地に10ng/ml マウスIL2を添加した培地で細胞を4×106 細胞/mlの密度で懸濁した。また、ヒトGPC3を発現するマウス大腸癌細胞株CT26-GPC3(参考例3)を同じ培地にて4×105細胞/mlの密度で懸濁した。両細胞懸濁液を等量ずつ混合し、100μl/ウェルで96-ウェルプレートへ播種した。ウェルの一部にはさらに0.5μg/ml イオノマイシン及び10 ng/ml PMAを添加した。そこへFcγRへの結合を極めて減弱させた抗ヒトGPC3/抗マウスCD137二重特異性抗体(GPC3 ERY22-1D8)およびFcγRへの結合を極めて減弱させた抗ヒトGPC3/抗マウスCD3二重特異性抗体(GPC3 ERY22-2C11:GPC3 ERY22-3-2C11からH435R改変を元に戻したもの)を3 μg/mlの濃度で添加し、37℃、5% CO2の条件下で24時間培養した。培養後の上清を回収し、含まれるマウスIFN-γ濃度をELISAにより測定することで脾臓細胞に含まれるT細胞の活性化を評価した。ELISAはキット製造業者(PeproTech社)の指示に従い実施した。
その結果(図6)、1D8-MB492およびGPC3 ERY22-1D8はイオノマイシンおよびPMA添加の場合においてIFN-γ誘導活性を示した。このことは、マイトジェン等の刺激により脾臓T細胞においてCD137が誘導されてきた結果と推察された。そして、GPC3 ERY22-1D8およびGPC3 ERY22-2C11の混合物においてはIFN-γの高い蓄積が見られた。このことは、CD3刺激とCD137刺激を同時に行うことでT細胞の活性化が強く惹起されていることを示唆している。
〔実施例4〕抗ヒトGPC3/抗マウスCD137二重特異性抗体の抗腫瘍効果ならびに肝臓に対する毒性の軽減作用
4−1.抗ヒトGPC3/抗マウスCD137二重特異性抗体と抗マウスCD137抗体との薬効比較
ヒトGPC3を発現する組換えマウス大腸癌細胞株CT26-GPC3(参考例3)をHanks' Balanced Salt Solution (HBSS)にて5 x 106 細胞/mLに調製し、BALB/cマウス(メス、7週齢、日本チャールス・リバー社)の腹部皮下へ200μL(1 x 106細胞)移植した。無作為に5匹ずつ5群に群分けした後、移植3日後、7日後、10日後、17日後に尾静脈注射により抗体を投与した。抗ヒトGPC3/マウスCD137二重特異性抗体(GPC3 ERY22-3-1D8)は溶媒(150 mM NaCl、20 mM His-HCl を含む水溶液(pH 6.0)を0.22 μm フィルターを通したもの)にて0.75 mg/mL、0.15 mg/mLに調製して10 mL/kgで投与した(各々7.5 mg/kg、1.5 mg/kg)。抗マウスCD137抗体(1D8-MB492)は溶媒にて1.5 mg/mL、0.3 mg/mLに調製して10 mL/kgで投与した(各々15 mg/kg、3 mg/kg)。腫瘍増殖抑制率(%)は以下の式から算出した腫瘍体積により評価した。

腫瘍体積(mm3)=長径(mm) x 短径(mm)x 短径(mm)/2

腫瘍増殖抑制率(%)=[1 - (T - T0)/(C - C0)] × 100
T: 各群の各測定日の平均腫瘍体積
T0:各群の初回投与日の平均腫瘍体積
C: コントロール群の各測定日の平均腫瘍体積
C0:コントロール群の初回投与日の平均腫瘍体積
図7に示されるように、抗体を投与したいずれの群においても腫瘍増殖抑制率が95%以上の強い抗腫瘍効果を示した。すなわち、抗ヒトGPC3/マウスCD137二重特異性抗体は、抗マウスCD137抗体と同様に強い抗腫瘍効果を示し、癌抗原依存的にCD137を活性化した場合にも強い抗腫瘍効果を発現することが示された。
4−2.CT26-GPC3皮下移植モデルでの抗ヒトGPC3/マウスCD137二重特異性抗体による肝障害低減
抗体投与薬効試験の終了時に麻酔下全採血により安楽死処置を実施後、血漿を分離した。血漿を用いてアスパラギン酸アミノトランスフェラーゼ(AST;JSCC Transferable法)、アラニンアミノトランスフェラーゼ(ALT;JSCC Transferable法)、総ビリルビン(TBIL;酵素法)を、自動分析装置TBA-120FR(東芝メディカルシステムズ株式会社)を用いて測定した。剖検時に肝臓を採取し、10%中性緩衝ホルマリン液にて固定し、常法に従いパラフィン包埋薄切組織標本(ヘマトキシリン・エオジン(HE))を作製し、光学顕微鏡で病理組織学的に観察した。統計解析は、対照群に対するノンパラメトリックDunnett型多重比較検定により行った。
その結果、図8から図11に示されるように、抗マウスCD137抗体(1D8-MB492)投与群においては、いずれの用量においても血中AST、ALT及びTBILの増加あるいは増加傾向が認められ、病理組織学的には軽微から軽度な肝細胞の変性・壊死、炎症といった肝障害が全例でみられた。一方、抗ヒトGPC3/マウスCD137二重特異性抗体(GPC3 ERY22-3-1D8)投与群では、血中AST、ALT及びTBILにおいて肝障害に起因すると考えられる変化は認められず、病理組織学的には軽微な肝細胞の変性・壊死あるいは炎症が各用量群で5例中2ないし3例でみられ、肝障害は軽減していた。なお、同抗体3mg/kg投与群の1例において血中AST及びALTの顕著な増加が認められたが、血中TBILには変化がみられず、肝臓の病理組織学的観察では肝障害を示唆する所見はみられなかったことより、本酵素の由来は肝障害に起因するものではないと判断された。
以上の結果より、抗ヒトGPC3/抗マウスCD137二重特異性抗体GPC3 ERY22-3-1D8は、通常の抗CD137アゴニスト抗体でこれまで報告されているような重篤な肝障害を引き起こさずに強い抗腫瘍効果を有することが示された。すなわち、FcγRへの結合を低減させた、癌抗原とCD137に対する二重特異性抗体は、癌抗原依存的にCD137アゴニスト活性を発揮し、腫瘍中でのみT細胞を活性化することで、選択的に癌細胞に対する細胞障害活性を発揮し、正常組織においてはT細胞を活性化することなく、細胞障害やサイトカインリリース等の副作用を回避することができたと考えられた。
〔実施例5〕抗ヒトGPC3/抗マウスCD137二重特異性抗体と抗ヒトGPC3/抗マウスCD3二重特異性抗体の併用による抗腫瘍効果
ヒトGPC3を発現するマウス肺癌細胞株LLC-GPC3(参考例3)をHBSSにて5 x 106 細胞/mLに懸濁し、C57BL/6Nマウス(メス、6週齢、日本チャールス・リバー社)の腹部皮下へ200 μL(1 x 106細胞)移植した。移植10日後に腫瘍体積と体重データをもとに偏りの無い様に5匹ずつ5群に群分けし、移植10日後、14日後、17日後に尾静脈注射により抗体を投与した。抗ヒトGPC3/マウスCD137二重特異性抗体(GPC3 ERY22-3-1D8)は溶媒(150 mM NaCl、20 mM His-HCl を含む水溶液(pH 6.0)を0.22μm フィルターを通したもの)にて0.5 mg/mLに調製して10 mL/kgで投与した(5 mg/kg)。抗ヒトGPC3/マウスCD3二重特異性抗体(GPC3 ERY22-3-2C11)は溶媒にて0.45 mg/mLに調製して10 mL/kgで投与した(4.5 mg/kg)。さらに2種類の抗体を併用投与する群を設定した。腫瘍増殖抑制率(%)は以下の式から算出した腫瘍体積により評価した。

腫瘍体積(mm3)=長径(mm) x 短径(mm)x 短径(mm)/2
腫瘍増殖抑制率(%)=[1 - (T - T0)/(C - C0)] × 100
T: 各群の各測定日の平均腫瘍体積
T0:各群の初回投与日の平均腫瘍体積
C: コントロール群の各測定日の平均腫瘍体積
C0:コントロール群の初回投与日の平均腫瘍体積
図12に示されるように、腫瘍移植23日後における腫瘍増殖抑制率は、抗ヒトGPC3/マウスCD137二重特異性抗体単独投与群で36%、抗ヒトGPC3/マウスCD3二重特異性抗体単独投与群で29%だったが、両抗体の併用投与群では100%の抑制率を示し、明らかに相乗的な併用効果が認められた。
なお、薬効試験終了時に4−2と同様の手法にて血漿中の肝機能パラメータ(AST、ALT、およびTBIL)の解析と肝臓組織切片のHE染色による病理組織学的解析を行ったが、いずれの投与群においても肝障害を示唆する変化は認められなかった。
以上から、癌抗原及びCD137に対する二重特異性抗体と、癌抗原及びCD3に対する二重特異性抗体の併用により、腫瘍局所特異的にCD137とCD3を同時に会合化することによって、インビトロの試験で認められたように各々の単独刺激においては達成することのできなかった強いT細胞活性化能を発揮し、それによりインビボにおいてもそれぞれ単剤では発揮されなかった強い抗腫瘍効果を発現することが示された。
〔実施例6〕ファージディスプレイ技術を用いたヒト抗体ライブラリからのヒトCD137に結合する抗体の取得
6−1.ナイーブヒト抗体ファージディスプレイライブラリの作製
ヒトPBMCから作製したポリA RNAや、市販されているヒトポリA RNAなどを鋳型として当業者に公知な方法に従い、互いに異なるヒト抗体配列のFabドメインを提示する複数のファージからなるヒト抗体ファージディスプレイライブラリが構築された。
6−2.ビーズパンニングによるナイーブヒト抗体ライブラリからのヒトCD137に結合する抗体の取得
実施例6−1で構築されたナイーブヒト抗体ファージディスプレイライブラリから、抗原に対する結合活性を示す抗体のスクリーニングが行われた。すなわち、ビーズにキャプチャーされた抗原に対して結合活性を示す抗体を提示しているファージが集められた。抗原としてビオチン化ヒトCD137が用いられた。具体的には、磁気ビーズに固定化された抗原を用いたパンニングが実施された。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)が用いられた。
まず、構築されたファージディスプレイ用ファージミドを保持した大腸菌から産生されたファージが、一般的な方法により精製された。その後、TBSで透析処理されたファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%となるようにBSAが添加された。
その後、調製されたファージライブラリ液に250 pmolのビオチン化ヒトCD137を加えることによって、当該ファージライブラリ液とヒトCD137とを室温にて60分間接触させた。次に、ファージライブラリ液に、BSAでブロッキングされた磁気ビーズが加えられ、ヒトCD137とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはTBSにて1回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられたビーズが室温で15分間懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4〜0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
2回目のパンニングにおいても、ヒトCD137に対して結合可能なファージの濃縮が行われた。得られたファージライブラリ液に100 pmolのビオチン化ヒトCD137を加えることによって、当該ファージライブラリ液をヒトCD137と室温にて60分間接触させた。次に、ファージライブラリ液に、BSAでブロッキングされた磁気ビーズが加えられ、ヒトCD137とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはTBST(0.1% Tween20を含むTBS)にて3回、TBSにて2回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられたビーズが室温で15分間懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4〜0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
同様の手順でヒトCD137に対して結合可能な抗体を取得するパンニングが3回繰り返された。ただし、4回目のパンニングには40pmolのビオチン化ヒトCD137が用いられた。
6−3.合成ヒト抗体ファージディスプレイライブラリの作製
当業者公知の方法により、10種類の重鎖germline配列, 7種類の軽鎖germline配列を用いた合成ヒト抗体ファージディスプレイライブラリーを構築した。用いたGermline配列は、ヒトB細胞レパートリーにおける出現頻度、可変領域ファミリーでの物理化学的性質を指標にし、VH1-2, VH1-69, VH3-23, VH3-66, VH3-72, VH4-59, VH4-61, VH4-b, VH5-51, VH6-1, Vκ1-39, Vκ2-28, Vκ3-20, Vλ1-40, Vλ1-44, Vλ2-14, Vλ3-21を選択した。ヒトB細胞の抗体のレパートリーを模した形で、合成抗体ライブラリーの抗原認識部位に多様性を持たせた。
6−4.ビーズパンニングによる合成ヒト抗体ライブラリからのヒトCD137に結合する抗体の取得
実施例6−3で構築された合成ヒト抗体ファージディスプレイライブラリから、抗原に対する結合活性を示す抗体のスクリーニングが行われた。すなわち、ビーズにキャプチャーされた抗原に対して結合活性を示す抗体を提示しているファージが集められた。抗原としてビオチン化ヒトCD137が用いられた。
構築されたファージディスプレイ用ファージミドを保持した大腸菌から産生されたファージは一般的な方法により精製された。ファージ産生が行われた大腸菌の培養液に2.5M NaCl/10%PEGを添加することによって沈殿させたファージの集団をTBSにて希釈することによってファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%となるようにBSAが添加された。磁気ビーズに固定化された抗原を用いたパンニングが実施された。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)が用いられた。
その後、調製されたファージライブラリ液に250 pmolのビオチン化ヒトCD137を加えることによって、当該ファージライブラリ液とヒトCD137とを室温にて60分間接触させた。次にファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、ヒトCD137とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはTBSにて1回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられたビーズが室温で15分間懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4〜0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
2回目のパンニングにおいても、ヒトCD137に対して結合可能なファージの濃縮が行われた。得られたファージライブラリ液に100 pmolのビオチン化ヒトCD137を加えることによって、当該ファージライブラリ液をヒトCD137と室温にて60分間接触させた。次にファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、ヒトCD137とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはTBSTにて3回、TBSにて2回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられたビーズが室温で15分間懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4〜0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
同様の手順でヒトCD137に対して結合可能な抗体を取得するパンニングが3回繰り返された。ただし4回目のパンニングには40pmolのビオチン化ヒトCD137が用いられた。
6−5.ファージELISAによるヒトCD137結合性の評価
上述の実施例で示されたPanning法により得られた大腸菌のシングルコロニーから、常法(Method Mol. Biol. (2002) 178, 133-145)に倣い、ファージ含有培養上清が回収された。
TBSが加えられたファージが以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原(ビオチン化ヒトCD137)を含む100μLのTBSにて室温で1時間コートされた。当該プレートの各ウェルをTBST(0.1% Tween20を含むTBS)にて洗浄することによってプレートに結合しなかった抗原が除かれた後、当該ウェルが1時間以上250μLの2% SkimMilk-TBSにてブロッキングされた。2% SkimMilk-TBSを除き、その後各ウェルに調製されたファージが加えられた当該プレートを室温で1時間静置することによって、抗体を提示したファージを各ウェルに存在する抗原に結合させた。TBSTにて洗浄された各ウェルに、TBSによって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)が添加されたプレートを1時間インキュベートした。TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。
ファージELISAを実施した192クローンの中から、ヒトCD137に対して結合活性を有する複数の抗体が確認された。ファージELISAの結果を表5に示した。
Figure 0006629187
6−6.ビオチン化ヒトCD137結合抗体の配列解析
実施例6−5で示されたファージELISAの結果、ヒトCD137に対して特異的な結合活性があると判断されたクローンから、特異的なプライマー対(ナイーブヒト抗体ライブラリ:配列番号55及び56、合成ヒト抗体ライブラリ:配列番号57及び56)を用いて増幅された遺伝子の塩基配列が解析された。解析の結果、ヒトCD137に対して結合活性を有する複数種の抗体の配列が存在していることが確認された。
6−7.ヒトCD137結合抗体の調製
実施例6−6で取得された、ビオチン標識ヒトCD137に対する結合活性を有すると判断されたクローンのうち、ナイーブヒト抗体ライブラリ由来の5クローン(R1〜R5)、及び合成ヒト抗体ライブラリ由来の14クローン(R6〜R19)の重鎖および軽鎖の可変領域配列を、重鎖抗体定常領域(ヒトIgG1の定常領域を改変した配列;配列番号:58)または軽鎖kappa定常領域配列(配列番号:59)もしくはlambda定常領域配列(配列番号:60)と連結し、動物発現用プラスミドへそれぞれ挿入した。各クローンの重鎖および軽鎖の可変領域配列を表6に示した。
Figure 0006629187
各抗体は、参考例1に記載の方法で発現・精製された。さらに、抗ヒトCD137抗体のインビトロT細胞活性化作用を増強する目的で、表6に示されるVH領域と、ヒトFcγRIIBへの結合を増強した定常領域(配列番号99)とを連結した遺伝子を作製し、動物細胞発現用のプラスミドベクターに挿入し、可変領域の組み合わせが表6に示された組み合わせとなるように、同様の方法で抗体を発現・精製した。
〔実施例7〕抗ヒトCD137抗体のエピトープ解析
7-1.断片化ヒトCD137-Fc融合タンパク質の調製および抗体の調製
取得された抗ヒトCD137抗体のエピトープを解析するために、TNFRSFに共通する構造およびJ Exp Med. 2014 Jun 30;211(7):1433-48を参考にCRDと呼ばれるCys-Cysで形成される構造でドメインわけした断片化ヒトCD137と抗体のFc領域との融合タンパク質を作製した(表7)。断片化ヒトCD137-Fc融合タンパク質は、表7に示されているアミノ酸配列を含むように、全長のヒトCD137-Fc融合タンパク質(配列番号100)をコードするポリヌクレオチドからPCR法によって各遺伝子断片を取得し、当業者公知の方法で動物細胞発現用のプラスミドベクターに組み込んだ。断片化ヒトCD137-Fc融合タンパク質は、参考例1に記載の方法で抗体と同様に精製された。さらに、ELISAのコントロール(Control)として、WO2005/035584A1に記載の抗ヒトCD137抗体(Bと略す)のH鎖定常領域を、ヒトIgG1のH鎖定常領域のC末端のGlyおよびLysを除去した定常領域に改変した抗体(H鎖配列番号101、L鎖配列番号102)と、WO2012/145183A3に記載の抗ヒトCD137抗体(Mと略す)の定常領域をヒトFcγRIIBへの結合を増強した定常領域に改変した抗体(H鎖配列番号103、L鎖配列番号104)とをそれぞれコードする遺伝子を動物細胞発現用プラスミドベクターに組み込み、参考例1に記載の方法で抗体を取得した。
Figure 0006629187
7-2-1.断片化ヒトCD137-Fc融合タンパク質を用いたエピトープ解析
実施例7-1で調製された断片化ヒトCD137-Fc融合タンパク質を用いて、前述の実施例6で得られた抗体(重鎖定常領域は配列番号99を用いた)がヒトCD137のどの部位に結合するかELISA法で結合評価を行った。例えば、ドメイン1に結合する抗体の場合、ドメイン1を含む断片化ヒトCD137-Fc融合タンパク質とは結合するが、ドメイン1を含まない断片化ヒトCD137-Fc融合タンパク質とは結合しないと予想される。
7-2-2.ELISA法
断片化ヒトCD137-Fc融合タンパク質を、pH9.6に調製されている炭酸ナトリウム水溶液に2μg/mLとなるように希釈した。希釈された断片化ヒトCD137-Fc融合タンパク質は、50μLずつNunc MaxiSorp flat-bottom 96 well plate(Nunc)の各ウェルに添加された。4℃で1晩以上静置した後、室温に1時間静置することで、プレートを室温と同じ温度になるようにした。断片化ヒトCD137-Fc融合タンパク質を含む溶液を転倒除去し、各ウェルをWash buffer(0.1% Tween20を含むTBS、TaKaRa)300μLで3回洗浄した。続いて、Blocking Buffer(2% BSAを含むTBS)を各ウェルに150μLずつ加えて、1時間以上静置した。Blocking Bufferを転倒除去し、Wash Bufferで各ウェルを前の工程と同様に3回洗浄した後、あらかじめTBSで10μg/mLもしくは5μg/mLに希釈した抗体溶液を各ウェルに50μLずつ添加した。室温で1時間600rpm程度の速さで、固相化されている抗原と抗体を結合させた。抗体溶液を転倒除去後、Wash Bufferで各ウェルを前の工程と同様に3回洗浄した。0.1% Tween20を含むTBSで1000倍に希釈された2次抗体を各ウェルに100μLずつ添加した。なお二次抗体は、Kappa鎖をもつ抗体の場合は、BIOSOURCE社ANTIBODY ALKALINE PHOSPHATASECONJUGATE HUMAN IMMUNO GLOBULIN ABSORBED Goat Anti-Human Kappa Alkaline Phosphateを用い、Lambda鎖を持つ抗体の場合は、BETHYL LABORATORIES.INC, Human Lambda Light Chain Antibody;Goat anti-Human Lambda Light Chain Antibody Alkaline Phosphatase Conjugatedを用いた。室温で静置し1時間反応させた後、抗体溶液を転倒除去し、Wash Bufferで各ウェルを前の工程と同様に3回洗浄した。KPL社のBlue Phos Microwellキットを用いて、発色を行った。KPL社のAP stop solutionを用いて発色反応を停止させた後、吸光光度計で620nmの吸光度を測定した。その結果を図14に示す。図14に示されるように、各抗体は、それぞれ断片化ヒトCD137-Fc融合タンパク質に対して異なる発色値を示し、ヒトCD137-Fcのうち異なる部分と結合していることが示された。さらに、取得された抗体は既存の抗体BやMとは異なることが示された。
〔実施例8〕抗ヒトCD137抗体のインビトロT細胞活性化作用の評価
市販PBMC(AllCells社)から、Dynabeads Human T-Activator CD3/CD28 (Gibco, 11132D)を用いてT細胞を拡大培養した。10% FBS、60U/ml ヒトIL2、0.5μg/ml イオノマイシン、10 ng/ml PMA、並びにペニシリン及びストレプトマイシンを所定濃度含むRPMI1640培地に、ヒトT細胞を4×105 細胞/mlの密度で懸濁した。また、ヒトB細胞リンパ腫株 Rajiを同じ培地にて4×105細胞/mlの密度で懸濁した。両細胞懸濁液を等量ずつ混合し、100μl/ウェルで96-ウェルプレートへ播種した。そこへ実施例6で得られたヒトCD137結合抗体(R1 〜R19;実施例7に記したELISAと同じ抗体を用いた)を5 μg/mlの濃度で添加し、37℃、5% CO2の条件下で3日間培養した。培養後の培養上清を回収し、含まれるヒトIFN-γ濃度をELISAにより測定することでヒトT細胞の活性化を評価した。ELISAはキット製造業者(PeproTech社)の指示に従い実施した。
その結果(図15)、コントロールヒトIgG (Allexis, 804-133-C100:図15中のhIgG)と比較して、R7, R15以外のクローンは全てIFN-γ誘導活性を示した。これらのIFN-γ誘導活性を有する抗体はCD137に対するアゴニスト抗体と判断される。
図16に、得られた抗体の性質を纏めたものを示す。前述の実施例で示した抗ヒトCD137抗体であるBやMとは異なるエピトープを認識する抗体が多く得られた。これらの抗ヒトCD137抗体をGC33抗体(抗ヒトGPC3抗体)との二重特異性抗体へ改変し、癌抗原(GPC3)依存的CD137アゴニスト能を評価することで、所望の抗腫瘍効果を発揮する抗ヒトGPC3/抗ヒトCD137二重特異性抗体を提供することができる。
〔実施例9〕抗ヒトGPC3/抗マウスCD40二重特異性抗体(GPC3 FAE-FGK45)の作製
ヒトIgG1の定常領域を有する抗ヒトGPC3/抗マウスCD40二重特異性抗体GPC3 FAE-FGK45は以下の手順で作製した。抗マウスCD40側には、重鎖可変領域としてFGK45VH6(配列番号120)、軽鎖可変領域としてFGK45VL4(配列番号121)を用いた。このとき、重鎖定常領域および軽鎖定常領域には、F760nG3P17(配列番号119)、k0(配列番号118)をそれぞれ用いた。抗ヒトGPC3側の抗体としては、重鎖可変領域H0000(配列番号115)および軽鎖可変領域GL4(配列番号116)を共通して用いた。このとき、定常領域は、Fcγ受容体への結合を低減し、2つの重鎖がヘテロ会合化するように改変を加えた重鎖定常領域F760nN17(配列番号117)、軽鎖定常領域k0(配列番号118)を使用した。これらの抗体を、以下の方法を用いて発現させた。FreeStyle 293 Expression Medium培地(Invitrogen)に1.33 x 106細胞/mLの細胞密度で懸濁し、播種したヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)に対して、調製されたプラスミドをリポフェクション法により導入した。CO2インキュベーター(37℃、8%CO2、90 rpm)で4日間培養した培養上清から、rProtein A SepharoseTM Fast Flow(Amersham Biosciences)またはProtein G Sepharose 4 Fast Flow(GE HEALTHCARE)を用いて当業者公知の方法で抗体を精製した。分光光度計を用いて、精製した抗体溶液の280 nmでの吸光度を測定した。得られた測定値からPACE法により算出した吸光係数を用いて、精製した抗体の濃度を算出した(Protein Science (1995) 4, 2411-2423)。精製したそれぞれのホモ体を表8の組み合わせで混合し、当業者公知の手法(WO2015/046467)を用いて目的の二重特異性抗体を作製した。
Figure 0006629187
〔実施例10〕抗ヒトGPC3/抗マウスCD40二重特異性抗体と抗ヒトGPC3/抗マウスCD3二重特異性抗体の混合物によるインビトロ脾細胞活性化増強作用の評価
ナイーブなBalb/c雌性マウスから脾臓を採取し、FBS 10%、0.5μg/ml イオノマイシン、及び10 ng/ml PMAを含むRPMI1640培地に10ng/ml マウスIL2を添加した培地で細胞を4×106 細胞/mlの密度で懸濁した。また、ヒトGPC3を発現するマウス大腸癌細胞株CT26-GPC3(参考例3)を同じ培地にて4×105細胞/mlの密度で懸濁した。両細胞懸濁液を等量ずつ混合し、100μl/ウェルで96-ウェルプレートへ播種した。そこへFcγRへの結合を極めて減弱させた抗ヒトGPC3/抗マウスCD40二重特異性抗体(GPC3 ERY22-FGK45)を3μg/mlおよびFcγRへの結合を極めて減弱させた抗ヒトGPC3/抗マウスCD3二重特異性抗体(GPC3 ERY22-2C11)を1 μg/mlの濃度で添加し、37℃、5% CO2の条件下で72時間培養した。培養後の上清を回収し、含まれるマウスIFN-γ濃度をELISAにより測定することで脾臓細胞に含まれるT細胞の活性化を評価した。ELISAはキット製造業者(PeproTech社)の指示に従い実施した。
その結果(図17)、GPC3 ERY22-2C11は単剤でIFN-γ誘導活性を示す一方、GPC3 ERY22-FGK45単剤はほとんど活性を示さなかった。しかしながら、GPC3 ERY22-FGK45およびGPC3 ERY22-2C11の混合物においてはIFN-γの高い蓄積が見られた。このことは、多様な免疫細胞混合物に対しCD3刺激とCD40刺激を同時に行うことで結果的にT細胞の活性化が強く惹起されることを示唆している。
〔実施例11〕抗ヒトGPC3/抗ヒトCD137二重特異性抗体の作製とアゴニスト活性の評価
11−1.抗ヒトGPC3/抗ヒトCD137二重特異性抗体の作製
ヒトIgG1の定常領域を有する抗ヒトGPC3/抗ヒトCD137二重特異性抗体は以下の手順で作製した。実施例7でヒトCD137との結合が確認された配列(R3とR5)から、重鎖CDR3のアミノ酸がランダムに変わるように設計されたプライマーを用いて改変した。可変領域配列を表9に示す。このとき、R3およびR5から改変した場合、重鎖定常領域および軽鎖定常領域には、実施例9で構築されているF760nG3P17配列のC末端にGly-Lys("GK"とも記載される)を付加した配列、lambda定常領域配列(配列番号:60)をそれぞれ用いた。抗ヒトGPC3側の抗体としては、重鎖可変領域H0000(配列番号115)および軽鎖可変領域GL4(配列番号116)を共通して用いた。このとき、定常領域は、Fcγ受容体への結合を低減し、2つの重鎖がヘテロ会合化するように改変を加えた重鎖定常領域F760nN17(配列番号117)、軽鎖定常領域k0(配列番号118)を使用した。これらの抗体を、以下の方法を用いて発現させた。FreeStyle 293 Expression Medium培地(Invitrogen)に1.33 x 106細胞/mLの細胞密度で懸濁し、播種したヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)に対して、調製されたプラスミドをリポフェクション法により導入した。CO2インキュベーター(37℃、8%CO2、90 rpm)で4日間培養した培養上清から、rProtein A SepharoseTM Fast Flow(Amersham Biosciences)またはProtein G Sepharose 4 Fast Flow(GE HEALTHCARE)を用いて当業者公知の方法で抗体を精製した。分光光度計を用いて、精製した抗体溶液の280 nmでの吸光度を測定した。得られた測定値からPACE法により算出した吸光係数を用いて、精製した抗体の濃度を算出した(Protein Science (1995) 4, 2411-2423)。なお抗ヒトCD137抗体(R3とR5由来)についてはE1%=14として計算した。表9に示したように実施例9と同様に精製した抗ヒトGPC抗体とヒトCD137抗体それぞれのホモ体を混合し、当業者公知の手法(WO2015/046467)を用いて目的の二重特異性抗体を作製した。
Figure 0006629187
11−2.抗ヒトGPC3/抗ヒトCD137二重特異性抗体のGPC3依存的なインビトロCD137アゴニスト作用の評価
市販PBMC(AllCells社)から、Dynabeads Human T-Activator CD3/CD28 (Gibco, 11132D)を用いてT細胞を拡大培養した。10% FBS、60 U/ml ヒトIL2、0.5 μg/ml イオノマイシン、10 ng/ml PMA、及びペニシリンストレプトマイシンを所定濃度含むRPMI1640培地に、ヒトT細胞を4×105 cells/mlの密度で懸濁した。また、ヒトGPC3を発現するマウス大腸癌細胞株CT26-GPC3(参考例3)を同じ培地にて4×105 cells/mlの密度で懸濁した。両細胞懸濁液を等量ずつ混合し、100 μl/ウェルで96-ウェルプレートへ播種した。そこへ、コントロールヒトIgG (Allexis, 804-133-C100:図18中のCtrl hIgG1)または前項11−1で調製されたGPC3 FAE-BMS(FcγRへの結合を極めて減弱させた抗ヒトGPC3/抗ヒトCD137二重特異性抗体)を10 μg/mlの濃度で添加し、37℃、5% CO2の条件下で3日間培養した。培養後の上清を回収し、含まれるヒトIFN-γ濃度をELISAにより測定することでT細胞の活性化を評価した。ELISAはキット製造業者(PeproTech社)の指示に従い実施した。
その結果(図18)、抗ヒトGPC3/抗ヒトCD137二重特異性抗体はIFN-γ誘導活性を示した。このことはヒトT細胞においても実施例2で示されたマウスT細胞を用いた場合と同様にCD137刺激を行うことでT細胞の活性化が強く惹起されることを示唆している。
11−3.抗ヒトGPC3/抗ヒトCD137二重特異性抗体のGPC3依存的なインビトロCD137アゴニスト作用の評価
ヒトCD137はB細胞株HDML-2にも発現しており、CD137のアゴニスト活性はHDML-2を用いても測定できる。20% FBS及びペニシリンストレプトマイシンを所定濃度含むRPMI1640培地に、ヒトB細胞癌細胞株HDLM-2を8×105 cells/mlの密度で懸濁した。また、ヒトGPC3を発現するマウス大腸癌細胞株CT26-GPC3(参考例3)を同じ培地にて4×105 cells/mlの密度で懸濁した。両細胞懸濁液を等量ずつ混合し、100 μl/ウェルで96-ウェルプレートへ播種した。そこへ、コントロールヒトIgG (Allexis, 804-133-C100:図19中のCtrl hIgG1)または前項11−1で調製されたFcγRへの結合を極めて減弱させた抗ヒトGPC3/抗ヒトCD137二重特異性抗体を10 μg/mlの濃度で添加し、37℃、5% CO2の条件下で3日間培養した。培養後の上清を回収し、含まれるヒトIL-6濃度をELISAにより測定することでB細胞の活性化を評価した。ELISAはキット製造業者(PeproTech社)の指示に従い実施した。
その結果(図19)、抗ヒトGPC3/抗ヒトCD137二重特異性抗体はIL-6誘導活性を示した。このことはヒトB細胞株においても実施例2で示されたマウスT細胞を用いた場合や実施例11−2で示されたヒトT細胞を用いた場合と同様にCD137刺激を評価できることが示された。
実施例11−2と11−3より、ヒトCD137もマウスCD137で行った実施例2から5に示した結果と同様に、二重特異性抗体でアゴニスト活性を有することが示され、マウスCD137と同様の効果が期待できると考えられる。
本発明によって、癌抗原非依存的にサイトカインストームや正常組織障害などによる毒性を有さずに、安全性が高く、かつ、優れた抗腫瘍活性を有する新たな抗原結合分子または医薬組成物が提供された。本発明の抗原結合分子を有効成分として含む医薬組成物が、癌抗原依存的に免疫細胞を活性化することで、癌細胞を含む様々な細胞を標的とする細胞傷害作用をもたらし、様々な癌を治療又は予防することができる。患者にとっても、安全性が高いばかりでなく、身体的負担が少なく利便性も高いという、望ましい治療ができるようになる。

Claims (24)

  1. 下記のドメイン:
    (1)癌特異的抗原結合Fabドメイン
    (2)CD137結合FabドメインまたはCD40結合Fabドメイン、及び
    (3)Fcγ受容体に対する結合活性が低下している、抗体のFc領域
    を含む、二重特異性抗体
  2. 前記CD137結合FabドメインまたはCD40結合Fabドメインが、CD137結合Fabドメインである、請求項に記載の二重特性抗体
  3. 請求項1または2に記載の二重特異性抗体を有効成分として含む、医薬組成物。
  4. 細胞傷害を誘導する組成物である、請求項に記載の医薬組成物。
  5. 癌治療用の組成物である、請求項に記載の医薬組成物。
  6. 請求項1または2に記載の第1の二重特異性抗体と、下記のドメイン:
    (1)癌特異的抗原結合ドメイン
    (2)CD3結合ドメイン、及び
    (3)Fcγ受容体に対する結合活性が低下している、抗体のFc領域
    を含む第2の二重特異性抗体とを組み合わせてなる、医薬組成物。
  7. 第1の二重特異性抗体と第2の二重特異性抗体が配合されている、請求項に記載の医薬組成物。
  8. 第1の二重特異性抗体と第2の二重特異性抗体が併用される、請求項に記載の医薬組成物。
  9. 第1の二重特異性抗体と第2の二重特異性抗体とが同時に投与される、請求項に記載の医薬組成物。
  10. 第1の二重特異性抗体と第2の二重特異性抗体とが別々に投与される、請求項に記載の医薬組成物。
  11. 細胞傷害を誘導する組成物である、請求項から10のいずれかに記載の医薬組成物。
  12. 癌治療用の組成物である、請求項から10のいずれかに記載の医薬組成物。
  13. 下記のドメイン:
    (1)癌特異的抗原結合Fabドメイン
    (2)CD137結合FabドメインまたはCD40結合Fabドメイン、及び
    (3)Fcγ受容体に対する結合活性が低下している、抗体のFc領域
    を含む第1の二重特異性抗体を有効成分として含む、
    下記のドメイン:
    (1)癌特異的抗原結合ドメイン
    (2)CD3結合ドメイン、及び
    (3)Fcγ受容体に対する結合活性が低下している、抗体のFc領域
    を含む第2の二重特異性抗体と併用するための医薬組成物。
  14. 細胞傷害を誘導する組成物である、請求項13に記載の医薬組成物。
  15. 癌治療用の組成物である、請求項13に記載の医薬組成物。
  16. CD137結合FabドメインまたはCD40結合Fabドメインが、CD137結合Fabドメインである、請求項13から15のいずれかに記載の医薬組成物。
  17. 第2の二重特異性抗体と同時に投与される、請求項13から16のいずれかに記載の医薬組成物。
  18. 第2の二重特異性抗体と別々に投与される、請求項13から16のいずれかに記載の医薬組成物。
  19. 下記のドメイン:
    (1)癌特異的抗原結合ドメイン
    (2)CD3結合ドメイン、及び
    (3)Fcγ受容体に対する結合活性が低下している、抗体のFc領域
    を含む第2の二重特異性抗体を有効成分として含む、
    下記のドメイン:
    (1)癌特異的抗原結合ドメイン
    (2)CD137結合FabドメインまたはCD40結合Fabドメイン、及び
    (3)Fcγ受容体に対する結合活性が低下している、抗体のFc領域
    を含む第1の二重特異性抗体と併用するための医薬組成物。
  20. 細胞傷害を誘導する組成物である、請求項19に記載の医薬組成物。
  21. 癌治療用の組成物である、請求項19に記載の医薬組成物。
  22. CD137結合FabドメインまたはCD40結合Fabドメインが、CD137結合Fabドメインである、請求項19から21のいずれかに記載の医薬組成物。
  23. 第1の二重特異性抗体と同時に投与される、請求項19から22のいずれかに記載の医薬組成物。
  24. 第1の二重特異性抗体と別々に投与される、請求項19から22のいずれかに記載の医薬組成物。
JP2016512734A 2014-04-07 2015-04-07 免疫活性化抗原結合分子 Active JP6629187B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014078457 2014-04-07
JP2014078457 2014-04-07
JP2014264589 2014-12-26
JP2014264589 2014-12-26
PCT/JP2015/060794 WO2015156268A1 (ja) 2014-04-07 2015-04-07 免疫活性化抗原結合分子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019219236A Division JP7015819B2 (ja) 2014-04-07 2019-12-04 免疫活性化抗原結合分子

Publications (2)

Publication Number Publication Date
JPWO2015156268A1 JPWO2015156268A1 (ja) 2017-04-13
JP6629187B2 true JP6629187B2 (ja) 2020-01-15

Family

ID=54287844

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016512734A Active JP6629187B2 (ja) 2014-04-07 2015-04-07 免疫活性化抗原結合分子
JP2019219236A Active JP7015819B2 (ja) 2014-04-07 2019-12-04 免疫活性化抗原結合分子

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019219236A Active JP7015819B2 (ja) 2014-04-07 2019-12-04 免疫活性化抗原結合分子

Country Status (18)

Country Link
US (2) US11485790B2 (ja)
EP (1) EP3130606B1 (ja)
JP (2) JP6629187B2 (ja)
KR (1) KR102568808B1 (ja)
CN (1) CN106459206A (ja)
AU (1) AU2015244814B2 (ja)
BR (1) BR112016022912A2 (ja)
CA (1) CA2943943C (ja)
ES (1) ES2900898T3 (ja)
IL (1) IL247715B (ja)
MX (1) MX2016012552A (ja)
MY (1) MY194892A (ja)
NZ (1) NZ724710A (ja)
PL (1) PL3130606T3 (ja)
RU (1) RU2722788C2 (ja)
SG (1) SG11201607434WA (ja)
TW (1) TWI726842B (ja)
WO (1) WO2015156268A1 (ja)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5620626B2 (ja) 2005-03-31 2014-11-05 中外製薬株式会社 会合制御によるポリペプチド製造方法
CA2647846C (en) 2006-03-31 2016-06-21 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
EP4339294A2 (en) 2007-09-26 2024-03-20 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in cdr
EP4279512A3 (en) 2010-11-30 2024-02-28 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
JP6628966B2 (ja) 2012-06-14 2020-01-15 中外製薬株式会社 改変されたFc領域を含む抗原結合分子
JP6534615B2 (ja) 2013-09-27 2019-06-26 中外製薬株式会社 ポリペプチド異種多量体の製造方法
CN105940107B (zh) 2013-11-11 2021-06-15 中外制药株式会社 含有改变了抗体可变区的抗原结合分子
BR112016022912A2 (pt) 2014-04-07 2017-10-17 Chugai Pharmaceutical Co Ltd molécula de ligação ao antígeno de imunoativação
MX2016014434A (es) 2014-05-13 2017-02-23 Chugai Pharmaceutical Co Ltd Molecula de union a antigeno redirigida a celulas t para celulas que tienen funcion de inmunosupresion.
MA40764A (fr) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd Agent thérapeutique induisant une cytotoxicité
JP7125248B2 (ja) 2014-11-11 2022-08-24 中外製薬株式会社 改変された抗体可変領域を含む抗原結合分子のライブラリ
JP7082484B2 (ja) 2015-04-01 2022-06-08 中外製薬株式会社 ポリペプチド異種多量体の製造方法
AU2016262845B2 (en) * 2015-05-18 2020-07-23 Pieris Pharmaceuticals Gmbh Anti-cancer fusion polypeptide
EP3305322A4 (en) * 2015-06-05 2018-12-26 Chugai Seiyaku Kabushiki Kaisha Combined use of immune activators
US11649293B2 (en) 2015-11-18 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for enhancing humoral immune response
EP3378487B1 (en) 2015-11-18 2022-03-16 Chugai Seiyaku Kabushiki Kaisha Combination therapy using t cell redirection antigen binding molecule against cell having immunosuppressing function
KR20180116215A (ko) * 2016-03-14 2018-10-24 추가이 세이야쿠 가부시키가이샤 암의 치료에 이용하기 위한 세포상해 유도 치료제
CN117205314A (zh) * 2016-03-14 2023-12-12 中外制药株式会社 用于癌症治疗的诱导细胞损伤的治疗药物
US20190169308A1 (en) * 2016-04-22 2019-06-06 Alligator Bioscience Ab Novel bispecific polypeptides against cd137
US20170342169A1 (en) * 2016-05-27 2017-11-30 Abbvie Biotherapeutics Inc. Bispecific binding proteins
MA45672A (fr) 2016-07-14 2019-05-22 Biontech Ag Anticorps multispécifiques dirigés contre cd40 et cd137
AU2017299610B2 (en) * 2016-07-20 2022-09-29 Igm Biosciences, Inc. Multimeric CD40 binding molecules and uses thereof
AU2017299608A1 (en) * 2016-07-20 2019-02-07 Igm Biosciences, Inc. Multimeric CD137/4-1BB binding molecules and uses thereof
CA3038020A1 (en) 2016-09-23 2018-03-29 Merus N.V. Bispecific binding molecules that bind cd137
MX2019006955A (es) * 2016-12-19 2019-08-01 Hoffmann La Roche Terapia de combinacion con agonistas de 4-1bb orientados (cd137).
CA3047070A1 (en) 2017-01-03 2018-07-12 F.Hoffmann-La Roche Ag Bispecific antigen binding molecules comprising anti-4-1bb clone 20h4.9
US20200283535A1 (en) * 2017-07-06 2020-09-10 Tusk Therapeutics Ltd. Compounds and methods for tumour-specific cell depletion
EP3655439A1 (en) 2017-07-20 2020-05-27 Aptevo Research and Development LLC Antigen binding proteins binding to 5t4 and 4-1bb and related compositions and methods
MX2020001198A (es) 2017-08-04 2020-09-07 Genmab As Agentes de union que se unen a ligando 1 de muerte programada (pd-l1) y grupo de diferenciacion 137 (cd137) y uso de los mismos.
WO2019036855A1 (en) * 2017-08-21 2019-02-28 Adagene Inc. ANTI-CD137 MOLECULES AND THEIR USE
EP3708589A4 (en) 2017-11-08 2021-08-11 Kyowa Kirin Co., Ltd. BIS SPECIFIC ANTIBODY BINDING TO CD40 AND EPCAM
SG11202003912RA (en) * 2017-11-13 2020-05-28 Crescendo Biologics Ltd Single Domain Antibodies that Bind to CD137
WO2019109238A1 (en) * 2017-12-05 2019-06-13 Lyvgen Biopharma Co., Ltd. Anti-cd137 antibodies and uses thereof
EP3720963A4 (en) 2017-12-05 2021-12-08 Chugai Seiyaku Kabushiki Kaisha ANTIGEN BINDING MOLECULE INCLUDING A VARIABLE REGION OF MODIFIED ANTIBODIES BINDING TO CD3 AND CD137
WO2019148445A1 (en) 2018-02-02 2019-08-08 Adagene Inc. Precision/context-dependent activatable antibodies, and methods of making and using the same
EP3753956A4 (en) 2018-02-14 2021-12-22 Chugai Seiyaku Kabushiki Kaisha ANTIGEN BINDING MOLECULE AND COMBINATION
GB201802573D0 (en) 2018-02-16 2018-04-04 Crescendo Biologics Ltd Therapeutic molecules that bind to LAG3
WO2020067399A1 (en) * 2018-09-28 2020-04-02 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule comprising altered antibody variable region
MA53742A (fr) * 2018-09-28 2022-01-05 Chugai Pharmaceutical Co Ltd Molécules de liaison à l'antigène capables de se lier à cd3 et cd137 mais pas simultanément
TW202108626A (zh) 2019-05-15 2021-03-01 日商協和麒麟股份有限公司 與cd40及fap結合之雙專一性抗體
JPWO2020230901A1 (ja) 2019-05-15 2020-11-19
WO2020250915A1 (ja) 2019-06-10 2020-12-17 中外製薬株式会社 サイトカイン阻害剤と組み合わせて使用するための抗t細胞抗原結合分子
CN110452294B (zh) * 2019-08-06 2020-08-07 复旦大学 五种铰链区及其嵌合抗原受体和免疫细胞
MX2022011387A (es) 2020-03-31 2022-10-10 Chugai Pharmaceutical Co Ltd Metodo para producir moleculas de union a antigeno multiespecificas.
EP4126969A1 (en) 2020-03-31 2023-02-08 Chugai Seiyaku Kabushiki Kaisha Dll3-targeting multispecific antigen-binding molecules and uses thereof
KR20220161156A (ko) 2020-03-31 2022-12-06 추가이 세이야쿠 가부시키가이샤 면역 활성화 다중 특이성 항원 결합 분자 및 그의 사용
CA3180951A1 (en) 2020-06-19 2021-12-23 Takayoshi Tanaka Anti-t cell antigen-binding molecule for use in combination with angiogenesis inhibitor
TW202220677A (zh) 2020-07-31 2022-06-01 日商中外製藥股份有限公司 含有表現嵌合受體之細胞的醫藥組成物
KR20240000505A (ko) * 2021-04-23 2024-01-02 상하이 헨리우스 바이오테크, 인크. 항gpc3 항체, 다중 특이적 항체 및 사용 방법

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0307434B2 (en) 1987-03-18 1998-07-29 Scotgen Biopharmaceuticals, Inc. Altered antibodies
US5601819A (en) 1988-08-11 1997-02-11 The General Hospital Corporation Bispecific antibodies for selective immune regulation and for selective immune cell binding
WO1991006319A1 (en) 1989-10-27 1991-05-16 Arch Development Corporation Methods and compositions for promoting immunopotentiation
US6027725A (en) 1991-11-25 2000-02-22 Enzon, Inc. Multivalent antigen-binding proteins
GB9206422D0 (en) 1992-03-24 1992-05-06 Bolt Sarah L Antibody preparation
US5595756A (en) 1993-12-22 1997-01-21 Inex Pharmaceuticals Corporation Liposomal compositions for enhanced retention of bioactive agents
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US6805869B2 (en) * 1996-06-12 2004-10-19 Shanghai Cp Guojian Pharmaceutical Co., Ltd. Cellular vaccines and immunotherapeutics and methods for their preparation
JP4213224B2 (ja) 1997-05-02 2009-01-21 ジェネンテック,インコーポレーテッド ヘテロマルチマー及び共通成分を有する多重特異性抗体の製造方法
US20020062010A1 (en) 1997-05-02 2002-05-23 Genentech, Inc. Method for making multispecific antibodies having heteromultimeric and common components
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
WO1999061057A2 (en) 1998-05-23 1999-12-02 Tanox, Inc. Molecules targeting cd40 and tumor cells
ATE251181T1 (de) 1998-07-28 2003-10-15 Micromet Ag Heterominikörper
WO2000018806A1 (de) 1998-09-25 2000-04-06 Horst Lindhofer Bispezifische und trispezifische antikörper, die spezifisch mit induzierbaren oberflächenantigenen als operationelle zielstrukturen reagieren
KR100940380B1 (ko) 1999-01-15 2010-02-02 제넨테크, 인크. 효과기 기능이 변화된 폴리펩티드 변이체
US7183387B1 (en) 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
CZ20013270A3 (cs) 1999-03-11 2002-02-13 Micromet Ag Protilátkové a chemokinové konstrukty a jejich pouľití při léčbě autoimunitních chorob
IL151853A0 (en) 2000-04-11 2003-04-10 Genentech Inc Multivalent antibodies and uses therefor
WO2001090192A2 (en) 2000-05-24 2001-11-29 Imclone Systems Incorporated Bispecific immunoglobulin-like antigen binding proteins and method of production
DE10034607A1 (de) 2000-07-20 2002-02-07 Gundram Jung Multispezifisches Reagenz zur selektiven Stimulierung von Zelloberflächenrezeptoren
RU2252786C2 (ru) 2000-09-08 2005-05-27 Микромет Аг Конструкции антител и хемокинов и их применение при иммунологических нарушениях
CN1294148C (zh) 2001-04-11 2007-01-10 中国科学院遗传与发育生物学研究所 环状单链三特异抗体
CN100423777C (zh) 2001-10-25 2008-10-08 杰南技术公司 糖蛋白组合物
US20040002587A1 (en) 2002-02-20 2004-01-01 Watkins Jeffry D. Fc region variants
CA2478011C (en) 2002-03-01 2013-05-21 Immunomedics, Inc. Bispecific antibody point mutations for enhancing rate of clearance
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
JP2006512895A (ja) 2002-06-28 2006-04-20 ドマンティス リミテッド リガンド
US20060235208A1 (en) 2002-09-27 2006-10-19 Xencor, Inc. Fc variants with optimized properties
NZ581541A (en) 2002-10-17 2011-07-29 Genmab As Human monoclonal antibodies against CD20
KR20050107399A (ko) 2003-01-23 2005-11-11 오노 야꾸힝 고교 가부시키가이샤 인간 pd-1에 대하여 특이성을 갖는 물질
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
KR100973564B1 (ko) * 2003-05-02 2010-08-03 젠코어 인코포레이티드 최적화된 Fc 변이체 및 그의 제조 방법
US7288638B2 (en) 2003-10-10 2007-10-30 Bristol-Myers Squibb Company Fully human antibodies against human 4-1BB
WO2005063815A2 (en) 2003-11-12 2005-07-14 Biogen Idec Ma Inc. Fcϝ receptor-binding polypeptide variants and methods related thereto
US7235641B2 (en) 2003-12-22 2007-06-26 Micromet Ag Bispecific antibodies
CN1980957A (zh) * 2004-03-23 2007-06-13 比奥根艾迪克Ma公司 受体偶联剂及其治疗用途
GB0409799D0 (en) 2004-04-30 2004-06-09 Isis Innovation Method of generating improved immune response
EP1753783B1 (en) 2004-06-03 2014-08-06 Novimmune SA Anti-cd3 antibodies and methods of use thereof
CN111925445A (zh) 2004-07-09 2020-11-13 中外制药株式会社 抗-磷脂酰肌醇蛋白聚糖3抗体
US7740847B2 (en) 2004-08-04 2010-06-22 Applied Molecular Evolution, Inc. Variant Fc regions
WO2006074399A2 (en) 2005-01-05 2006-07-13 Biogen Idec Ma Inc. Multispecific binding molecules comprising connecting peptides
EP1858925A2 (en) 2005-01-12 2007-11-28 Xencor, Inc. Antibodies and fc fusion proteins with altered immunogenicity
JP5620626B2 (ja) 2005-03-31 2014-11-05 中外製薬株式会社 会合制御によるポリペプチド製造方法
WO2006105338A2 (en) 2005-03-31 2006-10-05 Xencor, Inc. Fc VARIANTS WITH OPTIMIZED PROPERTIES
ES2609429T3 (es) * 2005-05-12 2017-04-20 Zymogenetics, Inc. Composiciones y métodos para modular respuestas inmunitarias
EP1820513A1 (en) 2006-02-15 2007-08-22 Trion Pharma Gmbh Destruction of tumor cells expressing low to medium levels of tumor associated target antigens by trifunctional bispecific antibodies
TW200745163A (en) 2006-02-17 2007-12-16 Syntonix Pharmaceuticals Inc Peptides that block the binding of IgG to FcRn
CA2646965C (en) 2006-03-24 2016-06-21 Jonathan H. Davis Engineered heterodimeric protein domains
CA2647846C (en) 2006-03-31 2016-06-21 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
EP2023955A4 (en) 2006-06-06 2009-10-28 Tolerrx Inc Administration of anti-CD3 antibodies in the treatment of autoimmune diseases
EP2035456A1 (en) 2006-06-22 2009-03-18 Novo Nordisk A/S Production of bispecific antibodies
EP2049151A4 (en) 2006-07-17 2010-03-24 Quintessence Biosciences Inc METHOD AND COMPOSITIONS FOR THE TREATMENT OF CANCER
GB0620894D0 (en) * 2006-10-20 2006-11-29 Univ Southampton Human immune therapies using a CD27 agonist alone or in combination with other immune modulators
US8398956B2 (en) 2007-01-11 2013-03-19 Immunomedics, Inc. In vivo copper-free click chemistry for delivery of therapeutic and/or diagnostic agents
EP2107115A1 (en) 2007-01-24 2009-10-07 Kyowa Hakko Kirin Co., Ltd. Genetically recombinant antibody composition capable of binding specifically to ganglioside gm2
MX2009010282A (es) 2007-03-29 2009-10-12 Genmab As Anticuerpos biespecificos y metodos para su produccion.
CN101802011A (zh) 2007-06-29 2010-08-11 先灵公司 Mdl-1应用
CA3139492A1 (en) 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant region
WO2009053368A1 (en) 2007-10-22 2009-04-30 Merck Serono S.A. Single ifn-beta fused to a mutated igg fc fragment
US8242247B2 (en) 2007-12-21 2012-08-14 Hoffmann-La Roche Inc. Bivalent, bispecific antibodies
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
PL2235064T3 (pl) 2008-01-07 2016-06-30 Amgen Inc Sposób otrzymywania cząsteczek przeciwciał z heterodimerycznymi fc z zastosowaniem kierujących efektów elektrostatycznych
EP3153526B1 (en) 2008-01-31 2020-09-23 INSERM - Institut National de la Santé et de la Recherche Médicale Antibodies against human cd39 and use thereof for inhibiting t regulatory cells activity
EP2240204A1 (en) 2008-02-04 2010-10-20 Medarex, Inc. Anti-clta-4 antibodies with reduced blocking of binding of ctla-4 to b7 and uses thereof
SI2274008T1 (sl) 2008-03-27 2014-08-29 Zymogenetics, Inc. Sestavki in metode za zaviranje PDGFRBETA in VEGF-A
AU2009234253C1 (en) * 2008-04-11 2015-05-07 Merrimack Pharmaceuticals, Inc. Human serum albumin linkers and conjugates thereof
US9029508B2 (en) 2008-04-29 2015-05-12 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
AR072999A1 (es) 2008-08-11 2010-10-06 Medarex Inc Anticuerpos humanos que se unen al gen 3 de activacion linfocitaria (lag-3) y los usos de estos
CN102643345A (zh) 2008-09-26 2012-08-22 罗氏格黎卡特股份公司 双特异性抗-egfr/抗-igf-1r抗体
WO2010037835A2 (en) 2008-10-01 2010-04-08 Micromet Ag Cross-species-specific pscaxcd3, cd19xcd3, c-metxcd3, endosialinxcd3, epcamxc d3, igf-1rxcd3 or fapalpha xcd3 bispecific single chain antibody
US20110318380A1 (en) 2008-10-01 2011-12-29 Dako Denmark A/S MHC Multimers in Cancer Vaccines and Immune Monitoring
BRPI0921586A2 (pt) 2008-11-18 2019-09-24 Merrimack Pharmaceuticals Inc articuladores de albumina de soro humana e conjugados destes
DE202008016028U1 (de) 2008-12-04 2010-04-15 Melitta Haushaltsprodukte Gmbh & Co. Kg Behälter zur Aufbewahrung von Gegenständen
CA2750533A1 (en) 2009-01-23 2010-07-29 Biogen Idec Ma Inc. Stabilized fc polypeptides with reduced effector function and methods of use
ES2945533T3 (es) * 2009-02-13 2023-07-04 Immunomedics Inc Inmunoconjugados con un enlace escindible intracelularmente
NZ611324A (en) 2009-03-05 2015-02-27 Abbvie Inc Il-17 binding proteins
EP2409991B1 (en) 2009-03-19 2017-05-03 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
WO2010120561A1 (en) 2009-04-01 2010-10-21 Genentech, Inc. Anti-fcrh5 antibodies and immunoconjugates and methods of use
WO2010129304A2 (en) 2009-04-27 2010-11-11 Oncomed Pharmaceuticals, Inc. Method for making heteromultimeric molecules
BRPI1007602A2 (pt) 2009-05-27 2016-02-16 Hoffmann La Roche "anticorpo tri ou tetraespecífico, método para preparação de um anticorpo triespecífico ou tetraespecífico, célula hospedeira, composição, composição farmacêutica e método para o tratamento de um paciente com necessidade de terapia"
WO2010151792A1 (en) 2009-06-26 2010-12-29 Regeneron Pharmaceuticals, Inc. Readily isolated bispecific antibodies with native immunoglobulin format
JP5695059B2 (ja) 2009-09-29 2015-04-01 ロシュ グリクアート アーゲー 二重特異性デス受容体アゴニスト抗体
WO2011050106A2 (en) 2009-10-20 2011-04-28 Tolerx, Inc. Anti-cd3 antibody dosing in autoimmune disease
US10053513B2 (en) 2009-11-30 2018-08-21 Janssen Biotech, Inc. Antibody Fc mutants with ablated effector functions
EP2543730B1 (en) 2010-03-04 2018-10-31 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
TWI653333B (zh) 2010-04-01 2019-03-11 安進研究(慕尼黑)有限責任公司 跨物種專一性之PSMAxCD3雙專一性單鏈抗體
CN103097417B (zh) 2010-04-20 2019-04-09 根马布股份公司 含异二聚体抗体fc的蛋白及其制备方法
CN105001330B (zh) 2010-04-23 2020-05-01 弗·哈夫曼-拉罗切有限公司 生产异源多聚体蛋白质
EP2569337A1 (en) 2010-05-14 2013-03-20 Rinat Neuroscience Corp. Heterodimeric proteins and methods for producing and purifying them
CA3051311A1 (en) 2010-05-27 2011-12-01 Genmab A/S Monoclonal antibodies against her2
JP6167040B2 (ja) 2010-11-05 2017-07-19 ザイムワークス,インコーポレイテッド Fcドメイン中に突然変異を有する、安定したヘテロ二量体抗体の設計
EP4279512A3 (en) 2010-11-30 2024-02-28 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
UY33827A (es) 2010-12-22 2012-07-31 Abbott Lab Proteínas de unión a media-inmunoglobulina y sus usos
CN103347898B (zh) * 2011-01-10 2017-12-05 Ct大西洋有限公司 包括与肿瘤相关抗原结合抗体的联合治疗
CA2827170A1 (en) 2011-02-11 2012-08-16 David M. Hilbert Monovalent and multivalent multispecific complexes and uses thereof
BR112013021526B1 (pt) * 2011-02-25 2021-09-21 Chugai Seiyaku Kabushiki Kaisha Polipeptídio variante, métodos para manter ou diminuir as atividades de ligação a fcgriia (tipo r) e fcgriia (tipo h) e aumentar a atividade de ligação a fcgriib de um polipeptídio e para a supressão da produção de um anticorpo contra um polipeptídio compreendendo a região fc do anticorpo, métodos para a produção do referido polipeptídio com atividades de ligação mantidas ou diminuídas e aumentada e para a produção suprimida de um anticorpo, composição farmacêutica e uso de um polipeptídio
AU2012233313C1 (en) 2011-03-30 2017-08-03 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
ES2724801T3 (es) * 2011-04-19 2019-09-16 Pfizer Combinaciones de anticuerpos anti-4-1BB y anticuerpos inductores de ADCC para el tratamiento del cáncer
EP2537864B1 (en) 2011-06-24 2019-08-07 Laboratoire Français du Fractionnement et des Biotechnologies Fc variants with reduced effector functions
SI2726101T1 (sl) 2011-06-30 2018-12-31 Genzyme Corporation Inhibitorji aktivacije T-celic
PL3321286T3 (pl) 2011-08-23 2021-05-31 Roche Glycart Ag Dwuswoiste cząsteczki wiążące antygen aktywujące limfocyty T
DK2748202T3 (en) 2011-08-23 2018-09-17 Roche Glycart Ag BISPECIFIC ANTI-BINDING MOLECULES
ES2732712T3 (es) 2011-10-31 2019-11-25 Chugai Pharmaceutical Co Ltd Molécula de unión a antígeno que tiene una conjugación regulada entre la cadena pesada y la cadena ligera
WO2013070468A1 (en) * 2011-11-08 2013-05-16 The Trustees Of The University Of Pennsylvania Glypican-3-specific antibody and uses thereof
ES2716823T3 (es) 2011-11-17 2019-06-17 Jung Gundram Anticuerpos biespecíficos para uso médico
EA201400709A1 (ru) 2011-12-19 2016-08-31 Синиммун Гмбх Молекула биспецифического антитела
JP6514103B2 (ja) 2012-07-06 2019-05-15 ゲンマブ ビー.ブイ. 三重変異を有する二量体タンパク質
AU2013302696B9 (en) 2012-08-14 2018-08-09 Ibc Pharmaceuticals, Inc. T-cell redirecting bispecific antibodies for treatment of disease
JOP20200236A1 (ar) 2012-09-21 2017-06-16 Regeneron Pharma الأجسام المضادة لمضاد cd3 وجزيئات ربط الأنتيجين ثنائية التحديد التي تربط cd3 وcd20 واستخداماتها
JP6072495B2 (ja) 2012-10-12 2017-02-01 三菱電機株式会社 光源点灯装置及び照明システム
RS58528B1 (sr) 2012-12-03 2019-04-30 Bristol Myers Squibb Co Poboljšanje anti-kancerske aktivnosti imunomodulatornih fc fuzionih proteina
EP2948475A2 (en) * 2013-01-23 2015-12-02 AbbVie Inc. Methods and compositions for modulating an immune response
US20160015749A1 (en) 2013-03-05 2016-01-21 Baylor College Of Medicine Engager cells for immunotherapy
US20140302037A1 (en) 2013-03-15 2014-10-09 Amgen Inc. BISPECIFIC-Fc MOLECULES
CA2906927C (en) 2013-03-15 2021-07-13 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
WO2014165818A2 (en) * 2013-04-05 2014-10-09 T Cell Therapeutics, Inc. Compositions and methods for preventing and treating prostate cancer
EP3016681B1 (en) * 2013-07-05 2019-12-18 Genmab A/S Humanized or chimeric cd3 antibodies
JP6534615B2 (ja) * 2013-09-27 2019-06-26 中外製薬株式会社 ポリペプチド異種多量体の製造方法
SG11201603244VA (en) 2013-11-04 2016-05-30 Glenmark Pharmaceuticals Sa Production of t cell retargeting hetero-dimeric immunoglobulins
IL302303A (en) 2013-12-17 2023-06-01 Genentech Inc Anti-CD3 antibodies and methods of using them
NZ720353A (en) 2013-12-30 2019-12-20 Epimab Biotherapeutics Inc Fabs-in-tandem immunoglobulin and uses thereof
WO2015124715A1 (en) 2014-02-21 2015-08-27 Cellectis Method for in situ inhibition of regulatory t cells
US9822186B2 (en) 2014-03-28 2017-11-21 Xencor, Inc. Bispecific antibodies that bind to CD38 and CD3
BR112016022912A2 (pt) 2014-04-07 2017-10-17 Chugai Pharmaceutical Co Ltd molécula de ligação ao antígeno de imunoativação
MX2016014434A (es) 2014-05-13 2017-02-23 Chugai Pharmaceutical Co Ltd Molecula de union a antigeno redirigida a celulas t para celulas que tienen funcion de inmunosupresion.
MA40764A (fr) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd Agent thérapeutique induisant une cytotoxicité
EP3305322A4 (en) 2015-06-05 2018-12-26 Chugai Seiyaku Kabushiki Kaisha Combined use of immune activators
WO2017010423A1 (ja) 2015-07-10 2017-01-19 中外製薬株式会社 内因性cd3遺伝子をヒトcd3遺伝子に置換した非ヒト動物
EP3378487B1 (en) 2015-11-18 2022-03-16 Chugai Seiyaku Kabushiki Kaisha Combination therapy using t cell redirection antigen binding molecule against cell having immunosuppressing function
US11649293B2 (en) 2015-11-18 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for enhancing humoral immune response
KR20180116215A (ko) 2016-03-14 2018-10-24 추가이 세이야쿠 가부시키가이샤 암의 치료에 이용하기 위한 세포상해 유도 치료제
US20200123256A1 (en) 2017-05-02 2020-04-23 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
CN111108202A (zh) 2017-09-29 2020-05-05 中外制药株式会社 具有凝血因子viii(fviii)辅因子功能替代活性的多特异性抗原结合分子及含有所述分子作为活性成分的药物制剂
CA3100157A1 (en) 2018-05-16 2019-11-21 Janssen Biotech, Inc. Methods of treating cancers and enhancing efficacy of t cell redirecting therapeutics

Also Published As

Publication number Publication date
MX2016012552A (es) 2017-01-09
EP3130606A1 (en) 2017-02-15
KR102568808B1 (ko) 2023-08-18
KR20160142332A (ko) 2016-12-12
SG11201607434WA (en) 2016-10-28
NZ724710A (en) 2024-02-23
WO2015156268A1 (ja) 2015-10-15
BR112016022912A2 (pt) 2017-10-17
PL3130606T3 (pl) 2022-02-07
ES2900898T3 (es) 2022-03-18
JP2020063270A (ja) 2020-04-23
TWI726842B (zh) 2021-05-11
AU2015244814A1 (en) 2016-09-22
MY194892A (en) 2022-12-22
RU2722788C2 (ru) 2020-06-03
JPWO2015156268A1 (ja) 2017-04-13
CA2943943C (en) 2023-01-10
US20230151112A1 (en) 2023-05-18
IL247715B (en) 2022-07-01
US11485790B2 (en) 2022-11-01
CA2943943A1 (en) 2015-10-15
RU2016143383A3 (ja) 2018-11-09
EP3130606B1 (en) 2021-10-13
JP7015819B2 (ja) 2022-02-03
AU2015244814B2 (en) 2020-12-24
RU2016143383A (ru) 2018-05-07
IL247715A0 (en) 2016-11-30
US20170022287A1 (en) 2017-01-26
TW201613965A (en) 2016-04-16
EP3130606A4 (en) 2017-10-25
CN106459206A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP7015819B2 (ja) 免疫活性化抗原結合分子
JP7273904B2 (ja) 液性免疫応答の増強方法
JP6718305B2 (ja) 細胞傷害誘導治療剤
JP6826529B2 (ja) 免疫活性化剤の併用
JP6931329B2 (ja) 免疫抑制機能を有する細胞に対するt細胞リダイレクト抗原結合分子を用いた併用療法
TW202342540A (zh) 用於癌之治療的細胞傷害誘導治療劑
KR20210143192A (ko) 변형된 Fc 단편, 이를 포함하는 항체 및 이의 응용
JP2020518584A (ja) 細胞傷害誘導治療剤

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191204

R150 Certificate of patent or registration of utility model

Ref document number: 6629187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250