JP6826529B2 - 免疫活性化剤の併用 - Google Patents

免疫活性化剤の併用 Download PDF

Info

Publication number
JP6826529B2
JP6826529B2 JP2017522231A JP2017522231A JP6826529B2 JP 6826529 B2 JP6826529 B2 JP 6826529B2 JP 2017522231 A JP2017522231 A JP 2017522231A JP 2017522231 A JP2017522231 A JP 2017522231A JP 6826529 B2 JP6826529 B2 JP 6826529B2
Authority
JP
Japan
Prior art keywords
antibody
pharmaceutical composition
region
antigen
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017522231A
Other languages
English (en)
Other versions
JPWO2016194992A1 (ja
Inventor
健治 谷口
健治 谷口
太郎 宮崎
太郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Publication of JPWO2016194992A1 publication Critical patent/JPWO2016194992A1/ja
Application granted granted Critical
Publication of JP6826529B2 publication Critical patent/JP6826529B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/303Liver or Pancreas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3046Stomach, Intestines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Cell Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、複数のT細胞活性化アゴニスト抗体による併用のための医薬組成物に関する。
癌は、一部を除いて根治の難しい致死的疾病の一つである。主たる治療法である化学療法剤を用いた治療成績も決して高いとは言えない。癌の治療を困難としている要因として、癌細胞そのものの不均一性のみならず腫瘍微小環境が大きな役割を演じていることが示唆されている(非特許文献1)。近年、切除不能な悪性黒色腫等において抑制性T細胞を減弱させる抗CTLA-4抗体によって治癒の可能性が示された(非特許文献2)。さらには、CTLA-4以外の免疫チェックポイント分子であるPD-1やPD-L1に対しても、その阻害抗体の治療効果が報告されている(非特許文献3)。これらの知見は、腫瘍免疫賦活が新たな癌治療戦略の基軸となり得ることを示唆している。
腫瘍免疫に重要な役割を持つT細胞の活性化は、1)腫瘍組織適合遺伝子複合体(MHC)クラスI分子により提示された抗原ペプチドに対するT細胞レセプター(TCR)の結合および活性化;2)抗原提示細胞上のそのリガンドに対するT細胞表面上の共刺激分子の結合と活性化、の二つのシグナルによりなされると理解されている。さらには、T細胞表面上のCD137(4-1BB)をはじめとする腫瘍壊死因子レセプタースーパーファミリー(TNFRSF)に属する副刺激分子の活性化がT細胞活性化に重要であることも述べられている(非特許文献4)。
TNFRSFには、CD137, CD40, OX40, RANK, GITR 等といった分子が含まれる。CD137はT細胞表面のみならず樹状細胞(DC)、B細胞、NK細胞、好中球など他の免疫細胞表面にも発現していることが報告されている(非特許文献5)。
CD137アゴニスト抗体が抗腫瘍効果を示すことは既に実証されており、それが主にCD8陽性T細胞とNK細胞の活性化に依るものであることがマウスモデルで実験的に示されている(非特許文献6)。しかしながら、臨床ならびに非臨床においてCD137アゴニスト抗体の非特異的な肝毒性による副作用が問題となっており、薬剤の開発は思うように進んでいない(非特許文献7)。この副作用の主たる原因としては、抗体定常領域を介したFcγレセプターへの結合の関与が示唆されている(非特許文献8)。
CD137アゴニスト抗体の開発は、単剤高用量ではその毒性が極めて懸念されるため、現在は低用量かつ他の薬剤との併用による臨床開発が主に進められている(非特許文献9)。併用薬剤とは、抗CD20抗体、抗EGFR抗体、抗PD-1抗体等が挙げられている。なおCD3アゴニスト抗体との併用は、T細胞活性化の増大が期待できる(非特許文献10)ものの、実際に臨床試験がなされた例は無い。また、癌抗原認識部位を細胞外ドメインに持ち細胞内ドメインとしてCD3およびCD137シグナル伝達領域を組み込んだキメラ抗原レセプターを有する改変T細胞(CAR-T)は、薬効持続作用が増強することが知られているが臨床試験においてグレード4のリンパ球減少といった毒性が報告されている(非特許文献11)。すなわち、複数のT細胞活性化アゴニストの単純な併用においては薬効の増強を期待できる一方毒性も上昇してしまうリスクが容易に想定される。
二重特異性抗体は少なくとも2つの結合ドメインを有するよう特徴づけられ、当該業者にとって既に良く知られた分子形である。このなかで、2つの結合ドメインのうち1つが癌表面抗原に特異的に結合し、かつ第2の結合ドメインがT細胞表面抗原のCD3に結合するような分子も構築されている(非特許文献12)。この二重特異性単鎖抗体は、癌抗原依存的にT細胞を活性化し抗腫瘍効果を発揮することが示されている。
グリピカン3(GPC3)は、グリコシルホスファチジルイノシトールを介して細胞表面に結合しているヘパラン硫酸プロテオグリカンの一群、すなわちグリピカンファミリーに属するタンパク質である(非特許文献13)。グリピカンは細胞の増殖、分化、遊走に重要な役割を果たしている。GPC3は、外科的切除または生検により得られた肝細胞癌組織の70%以上に発現しており、隣接する非腫瘍性の肝臓病変や大部分の成人組織においては全く、あるいはほとんど発現していない(非特許文献14)。さらには、肝細胞癌組織GPC3発現の高い患者で予後が悪いという報告もあり(非特許文献15)、GPC3は肝細胞癌に対する有望な標的分子と考えられている。
Hanahan, Cell, 2011, 144, 646-74 Prieto, Clin Cancer Res. 2012, 18, 2039-47 Hamid, 2013, Expert Opin. Biol. Ther., 6, 847-61 Summers, 2012, Nat Rev Immunol, 12, 339-51 Vinay, 2011, Cellular & Molecular Immunology, 8, 281-284 Houot, 2009, Blood, 114, 3431-8 Ascierto, 2010, Semin Oncol, 37, 508-16; Dubrot, 2010, Cancer Immunol Immunother, 59, 1223-33 Schabowsky, 2009, Vaccine, 28, 512-22 Yonezawa, 2015, Clin. Cancer Res. Apr.23 Son, 2004, J Immunol Methods, 286, 187-201 Porter, N ENGL J MED, 2011, 365, 725-733 Brandl, 2007, Cancer Immunol Immunother, 56, 1551-63 Filmus, J. Clin. Invest., 2001, 108, 497-501 Zhu-Zu-W, Gut, 2001, 48, 558-564; Yamauchi, Mod. Pathol., 2005, 18, 1591-1598 Yorita, Liver Int., 2010, 1, 120-131
本発明は上記の情況に鑑みてなされたものであり、腫瘍局所へT細胞を集積させる作用を有する多重特異性抗体を有効成分として含み、腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体と併用するための医薬組成物を提供すること、該アゴニスト抗体を有効成分として含み、該多重特異性抗体と併用するための医薬組成物を提供すること、及び、該多重特異性抗体を該アゴニスト抗体と併用することによって、該アゴニスト抗体の作用を腫瘍組織特異的に誘導する方法を提供することを目的とする。
本発明者等は、腫瘍局所へT細胞を集積させる作用を有する多重特異性抗体と、腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体を組み合わせることにより、予想外にもこれらの薬剤の併用が、該アゴニスト抗体単独で処方される際に認められる肝障害等の副作用を低減することができ、かつ有効な治療効果を奏することを見出し、本発明を完成させた。
すなわち、本発明は以下を提供するものである。
〔1〕(1) 癌特異的抗原結合ドメイン、
(2) CD3結合ドメイン、及び
(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、
を含む多重特異性抗体を有効成分として含む、腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体と併用するための医薬組成物。
〔2〕腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体による治療に伴う副作用を低減または除去するための〔1〕の医薬組成物。
〔3〕癌治療用の組成物である、〔1〕又は〔2〕の医薬組成物。
〔4〕前記腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体がCD137のアゴニスト抗体である、〔1〕から〔3〕のいずれかの医薬組成物。
〔5〕前記CD137のアゴニスト抗体がFc領域を含み、該Fc領域が、抑制型Fcγ受容体に対する結合活性が増加している、抗体のFc領域である、〔4〕の医薬組成物。
〔6〕前記副作用が主に肝障害である、〔2〕から〔5〕のいずれかの医薬組成物。
〔7〕前記多重特異性抗体が二重特異性抗体である、〔1〕から〔6〕のいずれかの医薬組成物。
〔8〕前記腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体の作用が、細胞傷害を誘導する作用である、〔1〕から〔7〕のいずれかの医薬組成物。
〔9〕前記腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体と同時に投与される、〔1〕から〔8〕のいずれかの医薬組成物。
〔10〕前記腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体と別々に投与される、〔1〕から〔8〕のいずれかの医薬組成物。
〔11〕腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体を有効成分として含む、
(1) 癌特異的抗原結合ドメイン、
(2) CD3結合ドメイン、及び
(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、
を含む多重特異性抗体と併用するための医薬組成物。
〔12〕腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体による作用を腫瘍組織特異的に誘導するための〔11〕の医薬組成物。
〔13〕癌治療用の組成物である、〔11〕又は〔12〕の医薬組成物。
〔14〕前記腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体がCD137のアゴニスト抗体である、〔11〕から〔13〕のいずれかの医薬組成物。
〔15〕前記CD137のアゴニスト抗体がFc領域を含み、該Fc領域が、抑制型Fcγ受容体に対する結合活性が増加している、抗体のFc領域である、〔14〕の医薬組成物。
〔16〕前記多重特異性抗体が二重特異性抗体である、〔11〕から〔15〕のいずれかの医薬組成物。
〔17〕前記多重特異性抗体の作用が、腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体による治療に伴う副作用を低減または除去する作用である、〔11〕から〔16〕のいずれかの医薬組成物。
〔18〕前記副作用が主に肝障害である、〔17〕の医薬組成物。
〔19〕前記多重特異性抗体と同時に投与される、〔11〕から〔18〕のいずれかの医薬組成物。
〔20〕前記多重特異性抗体と別々に投与される、〔11〕から〔18〕のいずれかの医薬組成物。
〔21〕(1) 癌特異的抗原結合ドメイン、
(2) CD3結合ドメイン、及び
(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、を含む多重特異性抗体並びに腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体を組み合わせてなる、医薬組成物。
〔22〕前記医薬組成物が配合剤であることを特徴とする、〔21〕の医薬組成物。
〔23〕前記多重特異性抗体および前記アゴニスト抗体が併用されることを特徴とする、〔21〕の医薬組成物。
〔24〕前記多重特異性抗体と前記アゴニスト抗体とが同時または順次に投与されることを特徴とする、〔23〕の医薬組成物。
〔25〕前記多重特異性抗体と前記アゴニスト抗体とが別々に投与されることを特徴とする、〔23〕の医薬組成物。
〔26〕腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体による治療に伴う副作用を低減または除去するための〔21〕から〔25〕のいずれかの医薬組成物。
〔27〕癌治療用の組成物である、〔21〕から〔26〕のいずれかの医薬組成物。
〔28〕前記腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体がCD137のアゴニスト抗体である、〔21〕から〔27〕のいずれかの医薬組成物。
〔29〕前記CD137のアゴニスト抗体がFc領域を含み、該Fc領域が、抑制型Fcγ受容体に対する結合活性が増加している、抗体のFc領域である、〔28〕の医薬組成物。
〔30〕前記副作用が主に肝障害である、〔26〕から〔29〕のいずれかの医薬組成物。
〔31〕前記多重特異性抗体が二重特異性抗体である、〔21〕から〔30〕のいずれかの医薬組成物。
〔32〕(1) 癌特異的抗原結合ドメイン、及び
(2) CD3結合ドメイン
を含む多重特異性抗体を用いて、該癌特異的抗原を発現する腫瘍組織へT細胞を集積させることを含む、該多重特異性抗体と併用される腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体の作用を該腫瘍組織特異的に誘導する方法。
〔33〕前記アゴニスト抗体による治療に伴う副作用を低減または除去する、〔32〕の方法。
〔34〕前記腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体がCD137のアゴニスト抗体である、〔32〕又は〔33〕の方法。
また、本発明は以下も提供する。
〔35〕有効量の〔1〕から〔8〕のいずれかの医薬組成物を投与する工程を含む、腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体による治療に伴う副作用を低減もしくは除去する方法、当該治療の効果を増強する方法、又は癌を治療もしくは予防する方法。
〔36〕腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体による治療に伴う副作用の低減もしくは除去、当該治療の効果の増強、又は癌の治療もしくは予防において用いるための、〔1〕から〔8〕のいずれかの医薬組成物。
〔37〕腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体による治療に伴う副作用の低減剤もしくは除去剤、当該治療の効果の増強剤、又は癌の治療剤もしくは予防剤の製造における、〔1〕から〔8〕のいずれかの医薬組成物の使用。
〔38〕〔1〕から〔8〕のいずれかの医薬組成物を含む、腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体による治療に伴う副作用の低減剤もしくは除去剤、当該治療の効果の増強剤、又は癌の治療剤もしくは予防剤。
また、本発明は以下も提供する。
〔39〕有効量の〔11〕から〔31〕のいずれかの医薬組成物を投与する工程を含む、腫瘍組織特異的に免疫応答を誘導もしくは増強する方法、又は癌を治療もしくは予防する方法。
〔40〕腫瘍組織特異的な免疫応答の誘導もしくは増強又は癌の治療もしくは予防において用いるための、〔11〕から〔31〕のいずれかの医薬組成物。
〔41〕腫瘍組織特異的な免疫応答誘導剤もしくは免疫応答増強剤又は癌の治療剤もしくは予防剤の製造における、〔11〕から〔31〕のいずれかの医薬組成物の使用。
〔42〕〔11〕から〔31〕のいずれかの医薬組成物を含む、腫瘍組織特異的な免疫応答誘導剤もしくは免疫応答増強剤又は癌の治療剤もしくは予防剤。
実施例3における、抗マウスCD137抗体もしくは抗ヒトGPC3/抗マウスCD3二重特異性抗体を投与したマウス、またはこれらを併用投与したマウスにおける腫瘍体積を経時的に測定した結果を示すグラフである。 実施例4における、抗マウスCD137抗体もしくは抗ヒトGPC3/抗マウスCD3二重特異性抗体を投与したマウス、またはこれらを併用投与したマウスにおける血中ASTの測定結果を示すグラフである。 実施例4における、抗マウスCD137抗体もしくは抗ヒトGPC3/抗マウスCD3二重特異性抗体を投与したマウス、またはこれらを併用投与したマウスにおける血中ALTの測定結果を示すグラフである。 実施例4における、抗マウスCD137抗体もしくは抗ヒトGPC3/抗マウスCD3二重特異性抗体を投与したマウス、またはこれらを併用投与したマウスにおける血中TBILの測定結果を示すグラフである。 実施例4における、抗マウスCD137抗体もしくは抗ヒトGPC3/抗マウスCD3二重特異性抗体を投与したマウス、またはこれらを併用投与したマウスから採取した肝臓組織標本を用いたヘマトキシリン・エオジン(HE)染色または抗マウスCD3免疫染色の結果を示す写真である。 実施例4における、抗マウスCD137抗体もしくは抗ヒトGPC3/抗マウスCD3二重特異性抗体を投与したマウス、またはこれらを併用投与したマウスから採取した肝臓組織より単離したRNAを用いた各標的遺伝子のリアルタイムPCRの測定結果を示すグラフである。 IgG1、IgG2、IgG3及びIgG4のFc領域を構成するアミノ酸残基と、kabatのEUナンバリング(本明細書においてEU INDEXとも呼ばれる)との関係を表す図である。 実施例6における、抗マウスCD137抗体もしくは抗ヒトGPC3/抗マウスCD3二重特異性抗体を投与したマウス、またはこれらを併用投与したマウスにおける腫瘍体積を経時的に測定した結果を示すグラフである。 実施例7における、抗マウスCD137抗体もしくは抗ヒトGPC3/抗マウスCD3二重特異性抗体を投与したマウス、またはこれらを併用投与したマウスにおける血中ALTの測定結果を示すグラフである。
本発明の一態様として、(1) 癌特異的抗原結合ドメイン、(2) CD3結合ドメイン、及び(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、を含む多重特異性抗体、並びに腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体を組み合わせてなる、医薬組成物を提供する。当該医薬組成物は、例えば、被験者において腫瘍組織特異的に免疫応答を誘導もしくは増強するため、又は癌を治療もしくは予防するために用いることができる。当該医薬組成物を用いることにより、腫瘍組織特異的に免疫応答を誘導することができ、また、副作用を低減もしくは除去しつつ癌を治療または予防することができる。
本発明において、「(1) 癌特異的抗原結合ドメイン、(2) CD3結合ドメイン、及び(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、を含む多重特異性抗体並びに腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体を組み合わせてなる、医薬組成物」とは、該多重特異性抗体および該アゴニスト抗体を同時に、別々に、または、順次に投与するために組み合わせた医薬組成物を意味する。本発明の医薬組成物は、該多重特異性抗体および該アゴニスト抗体が共に含有される配合剤の形で提供することができる。また、該多重特異性抗体を含有する薬剤と該アゴニスト抗体を含有する薬剤とが別々に提供され、これらの薬剤が、同時に、別々に、または順次に使用されてもよい。さらに、該多重特異性抗体を含有する薬剤と該アゴニスト抗体を含有する薬剤から構成されるキットとして提供してもよい。
上記の医薬組成物において、該多重特異性抗体と該アゴニスト抗体とが別々の薬剤に含有されて提供される場合には、これらの薬剤の剤型は、同じ剤型であっても異なる剤型であってもよい。例えば、双方が非経口製剤、注射剤、点滴剤、静脈内点滴剤のうちの一つであって互いに異なる剤型であってもよく、双方が非経口製剤、注射剤、点滴剤、静脈内点滴剤のうちの一つであって同種の剤型であってもよい。また、上記の医薬組成物には、さらに異なる一種以上の製剤を組み合わせてもよい。
本発明の一態様として、本発明は、(1) 癌特異的抗原結合ドメイン、(2) CD3結合ドメイン、及び(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、を含む多重特異性抗体を有効成分として含む、腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体と併用するための医薬組成物を提供する。当該医薬組成物は、例えば、被験者において前記アゴニスト抗体による治療に伴う副作用を軽減もしくは除去するため、当該治療の効果を増強するため、又は癌を治療もしくは予防するために用いることができる。該多重特異性抗体を有効成分として含む本発明の医薬組成物が該アゴニスト剤と併用される際には、該アゴニスト抗体と同時に投与され得るし、該アゴニスト抗体の投与前または投与後に投与され得る。該アゴニスト抗体の投与前または投与後に該多重特異性抗体が投与される場合には、被験者における当該アゴニスト抗体の残留濃度を測定することにより、その投与時期が最適化され得る。当該濃度は、被験者から採取された試料を用いて、例えば、当業者において公知の後述されるELISA等の免疫的測定法に基づいて決定され得る。
本発明の一態様として、本発明は、腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体を有効成分として含む、(1) 癌特異的抗原結合ドメイン、(2) CD3結合ドメイン、及び(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、を含む多重特異性抗体と併用するための医薬組成物を提供する。当該医薬組成物は、例えば、被験者において腫瘍組織特異的に免疫応答を誘導もしくは増強するため、又は癌を治療もしくは予防するために用いることができる。当該医薬組成物を用いることにより、腫瘍組織特異的に免疫応答を誘導することができ、また、副作用を低減もしくは除去しつつ癌を治療または予防することができる。該アゴニスト抗体を有効成分として含む医薬組成物が該多重特異性抗体と併用される際には、該多重特異性抗体と同時に投与され得るし、該多重特異性抗体の投与前または投与後に投与され得る。該多重特異性抗体の投与前または投与後に該アゴニスト抗体が投与される場合には、被験者における当該多重特異性抗体の残留濃度を測定することにより、その投与時期が最適化され得る。当該濃度は、被験者から採取された試料を用いて、例えば、当業者において公知の後述されるELISA等の免疫的測定法に基づいて決定され得る。
また、本発明は、本発明の医薬組成物を治療が必要な患者に投与することを特徴とする、癌の治療又は予防方法に関する。また、本発明は、本発明の前記多重特異性抗体、及び前記アゴニスト抗体を含む、本発明の方法に用いるためのキットに関する。また、本発明は、本発明の医薬組成物(例えば癌の治療又は予防用の医薬組成物の製造における本発明の前記多重特異性抗体及び前記アゴニスト抗体の使用に関する。また、本発明は、本発明の方法に使用するための、本発明の医薬組成物に関する。
本発明の非限定の一態様として、
(1) 癌特異的抗原結合ドメイン、
(2) CD3結合ドメイン、及び
(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、
を含む多重特異性抗体を有効成分として含む、腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体による治療に伴う副作用の低減剤又は予防剤を提供する。
本発明の多重特異性抗体を投与した場合、本発明のTNF受容体スーパーファミリーのアゴニスト抗体を投与した場合、またはそれらを併用した場合における副作用の有無を周知の方法により確認することができる。ここで、「副作用」は、疾患の治療を受ける患者に観察される及び/又は測定される、臨床的、医学的、物理的、生理学的、及び/又は生化学的影響で、意図される治療結果の一部ではない影響を意味する。一般的に、前記影響は、治療される患者の健康状態及び/又は快適さ、治療される患者にとっての健康的危険性、及び/又は治療される患者に対する治療許容性に関して所望されるものではない。副作用の具体例としては、好中球減少、白血球減少、出血(消化管出血、肺出血、脳出血等)、高血圧、神経毒性、疲労・倦怠感、食欲減退、悪心、口内炎、脱毛症、血小板減少、尿蛋白陽性、ショック、アナフィラキシー、消化管穿孔、瘻孔、創傷治癒遅延、血栓塞栓症、高血圧性脳症、高血圧性クリーゼ、可逆性後白質脳症症候群、ネフローゼ症候群、骨髄抑制、感染症、うっ血性心不全、間質性肺炎、血栓性微小血管症、間質性肺疾患、肝機能障害、血中ビリルビン増加、味覚異常、発疹、血中クレアチニン増加、等があげられる。併用した場合において認められた副作用の頻度及びグレード等を単剤で投与した場合の頻度及びグレード等と比較することにより、併用した場合において副作用が低減されるか否かを確認することができる。
本発明の非限定の一態様として、
(1) 癌特異的抗原結合ドメイン、
(2) CD3結合ドメイン、及び
(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、
を含む多重特異性抗体を有効成分として含む、腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体による治療の効果を増強させるための医薬組成物を提供する。 本発明の非限定の一態様として、
腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体を有効成分として含む、(1) 癌特異的抗原結合ドメイン、(2) CD3結合ドメイン、及び(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、を含む多重特異性抗体による治療の効果を増強させるための医薬組成物を提供する。
ここで、「治療の効果の増強」とは、治療の奏功率が上昇すること、治療のために投与される薬剤の量を低減すること、および/または、薬剤による治療期間が短くなることをいう。
本発明の非限定の一態様として、
被験者において免疫応答を増強する方法であって、被験者に有効量の腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体、並びに有効量の(1) 癌特異的抗原結合ドメイン、(2) CD3結合ドメイン、及び(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、を含む多重特異性抗体を組み合わせて投与することを含む方法を提供する。
本発明の非限定の一態様として、
被験者において癌を治療または予防する方法であって、被験者に有効量の腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体、並びに有効量の(1) 癌特異的抗原結合ドメイン、(2) CD3結合ドメイン、及び(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、を含む多重特異性抗体を組み合わせて投与することを含む方法を提供する。
本発明の非限定の一態様として、
被験者において腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体による治療に伴う副作用を低減する方法であって、被験者に有効量の(1) 癌特異的抗原結合ドメイン、(2) CD3結合ドメイン、及び(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、を含む多重特異性抗体を前記アゴニスト抗体と組み合わせて投与することを含む方法を提供する。
本発明の非限定の一態様として、
(1) 癌特異的抗原結合ドメイン、及び(2) CD3結合ドメインを含む多重特異性抗体を用いて、該癌特異的抗原を発現する腫瘍組織へT細胞を集積させることを含む、該多重特異性抗体と併用される腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体の作用を該腫瘍組織特異的に誘導する方法を提供する。
特定の理論に拘束されることを意図せず、また特に限定されることはないが、(1) 癌特異的抗原結合ドメイン、及び(2) CD3結合ドメインを含む多重特異性抗体は、癌特異的抗原を発現する細胞を含む腫瘍組織局所へT細胞を集積させる作用を有していることから、正常組織へのT細胞浸潤を回避し、該多重特異性抗体と併用されるTNF受容体スーパーファミリーのアゴニスト抗体の作用(例えば、T細胞の活性化)を該腫瘍組織特異的に誘導することができると考えられる。T細胞を腫瘍組織局所へ誘導することによって、TNF受容体スーパーファミリーのアゴニスト抗体による抗腫瘍効果を減弱させることなく、副作用のみを低減させることが可能となる。
また、本発明の非限定の一態様として、
(1) 癌特異的抗原結合ドメイン、及び(2) CD3結合ドメインを含む多重特異性抗体を用いて、正常組織に浸潤しているT細胞の一部又は全部を正常組織から除去することを含む、該多重特異性抗体と併用される腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体の作用を該腫瘍組織特異的に誘導する方法を提供する。
また、本発明の非限定の一態様として、
(1) 癌特異的抗原結合ドメイン、及び(2) CD3結合ドメインを含む多重特異性抗体を用いて、正常組織に浸潤しているT細胞の一部又は全部を該癌特異的抗原を発現する腫瘍組織局所へ集積させることを含む、該多重特異性抗体と併用される腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体の作用を該腫瘍組織特異的に誘導する方法を提供する。
上記態様における「該多重特異性抗体と併用される腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体」とは、該多重特異性抗体および該アゴニスト抗体を同時に、別々に、または、順次に投与してもよいことを意味する。また、該多重特異性抗体および該アゴニスト抗体が共に含有される配合剤の形で提供することもできる。また、該多重特異性抗体を含有する薬剤と該アゴニスト抗体を含有する薬剤とが別々に提供され、これらの薬剤が、同時に、別々に、または順次に使用されてもよい。さらに、該多重特異性抗体を含有する薬剤と該アゴニスト抗体を含有する薬剤から構成されるキットとして提供してもよい。
上記の医薬組成物において、該多重特異性抗体と該アゴニスト抗体とが別々の薬剤に含有されて提供される場合には、これらの薬剤の剤型は、同じ剤型であっても異なる剤型であってもよい。例えば、双方が非経口製剤、注射剤、点滴剤、静脈内点滴剤のうちの一つであって互いに異なる剤型であってもよく、双方が非経口製剤、注射剤、点滴剤、静脈内点滴剤のうちの一つであって同種の剤型であってもよい。また、上記の医薬組成物には、さらに異なる一種以上の製剤を組み合わせてもよい。
多重特異性抗体
本発明における「多重特異性抗体」とは、本発明の(1) 癌特異的抗原結合ドメイン、(2) CD3結合ドメイン、及び(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、を含むものであればよく、その構造は限定されない。さらに、これらのドメイン以外に、5アミノ酸程度以上の長さを有するペプチドやタンパク質が含まれていてもよい。本発明における多重特異性抗体は、生物由来のペプチドやタンパク質に限定されず、例えば、人工的に設計された配列からなるポリペプチドであってもよく、天然ポリペプチド、あるいは合成ポリペプチド、組換えポリペプチド等のいずれであってもよい。
多重特異性抗体は、これら上記2つの結合ドメインを含むことにより、CD3を発現するT細胞と、癌特異的抗原を発現する細胞とを架橋し、当該細胞又は当該細胞を含む腫瘍組織における免疫応答を特異的に誘導し、癌特異的抗原を発現する当該細胞又は当該細胞を含む腫瘍組織に対して優れた(特異的な)細胞傷害作用を誘導することが可能となる。本発明の癌特異的抗原結合ドメイン及びCD3結合ドメインは、それぞれ、後述の癌特異的抗原あるいは、CD3抗原の一部又は全部に特異的に結合する領域から適宜選択することができる。これらの結合ドメインは、ペプチド結合で直接連結することもできるし、リンカーを介して結合することもできる。
本発明の多重特異性抗体は、後述の公知の方法を用いて作製することができる。
例えば、(1)癌特異的抗原結合ドメインとしてF(ab')2、(2)CD3結合ドメインとしてF(ab')2を用い、さらに(3)Fcγ受容体に対する結合活性が低下しているFc領域を含むドメインを用いた場合に、(1)と(2)に記載された抗原結合ドメインと(3)に記載されたFc領域を含むドメインとをペプチド結合で直接連結したときは、連結されたポリペプチドは抗体の構造を形成する。そのような抗体を作製するためには後述のハイブリドーマの培養液から精製する他、当該抗体を構成するポリペプチドをコードするポリヌクレオチドを安定に保持している所望の宿主細胞の培養液から当該抗体を精製することもできる。
また、その他、リンカーを介して各ドメインを結合する場合は、採用されるリンカーとしては、上記で例示されるリンカーの他、例えばHisタグ、HAタグ、mycタグ、FLAGタグ等のペプチドタグを有するリンカーも適宜使用され得る。また、水素結合、ジスルフィド結合、共有結合、イオン性相互作用またはこれらの結合の組合せにより互いに結合する性質もまた好適に利用され得る。例えば、抗体のCH1とCL間の親和性が利用されたり、ヘテロFc領域の会合に際して後述の多重特異性抗体を起源とするFc領域が用いられたりする。
本発明の多重特異性抗体における「Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン」は、抗体のFc領域に含まれるFcRn結合ドメインを含んでいることが好ましい。生体内に投与されたタンパク質の血中半減期を延ばす方法として、目的タンパク質に抗体のFcRn結合ドメインを付加し、FcRnを介したリサイクリング機能を利用する方法が良く知られている。
例えば、癌抗原に対する抗体のscFvとCD3 epsilon鎖に対する抗体のscFvが短いポリペプチドリンカーを介して連結された分子型(例えば、Blinatumomab)は、Fc領域を欠く低分子量型の改変抗体分子であるために、治療用抗体として通常用いられるIgG型の抗体に比較して、患者に投与された血中半減期は著しく短いという問題点が存在する。本発明の多重特異性抗体は、抗体のFc領域を含んでいるために、前記Fc領域を欠く改変抗体分子と比較して、より長い血中半減期を有する。さらに、本発明の多重特異性抗体における「Fc領域」は、Fcγ受容体に対する結合活性を低下させることで、Fcγ受容体発現細胞とT細胞受容体複合体発現細胞の間の架橋によって生じるサイトカインリリース等の免疫活性化によって生じる副作用を抑制することが可能である。
本発明において、「FcRn結合ドメイン」は、FcRnに対して結合活性を有するものであれば特に限定されず、例えば、FcRnを抗原とする抗体の可変領域、Fab、抗体のFc領域、これらの断片が挙げられる。本発明の好ましい態様の1つとして、抗体のFc領域、或いは、Fc領域中のFcRn結合領域を含む断片が挙げられる。ここで、「Fc領域」として、例えば、天然型IgG由来のFc領域を用いることができる。天然型IgGとは、天然に見出されるIgGと同一のアミノ酸配列を包含し、免疫グロブリンガンマ遺伝子により実質的にコードされる抗体のクラスに属するポリペプチドを意味する。例えば天然型ヒトIgGとは天然型ヒトIgG1、天然型ヒトIgG2、天然型ヒトIgG3、天然型ヒトIgG4などを意味する。天然型IgGにはそれから自然に生じる変異体等も含まれる。ヒトIgG1、ヒトIgG2、ヒトIgG3、ヒトIgG4抗体の定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されているが、本発明においてはそのいずれであっても良い。特にヒトIgG1の配列としては、EUナンバリング356〜358番目のアミノ酸配列がDELであってもEEMであってもよい。
抗体のFc領域としては、例えばIgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4、IgMタイプのFc領域が存在している。本発明の抗体のFc領域は、例えば天然型ヒトIgG抗体由来のFc領域を用いることができる。本発明のFc領域として、例えば、天然型IgGの定常領域、具体的には、天然型ヒトIgG1を起源とする定常領域(配列番号:1)、天然型ヒトIgG2を起源とする定常領域(配列番号:2)、天然型ヒトIgG3を起源とする定常領域(配列番号:3)、天然型ヒトIgG4を起源とする定常領域(配列番号:4)由来のFc領域を用いることができる。天然型IgGの定常領域にはそれから自然に生じる変異体等も含まれる。
このような抗体のFc領域は、例えばモノクローナル抗体等の抗体をペプシン等の蛋白質分解酵素にて部分消化した後に、断片をプロテインAカラム、あるいはプロテインGカラムに吸着させた後に、適切な溶出バッファー等により溶出させることにより好適に取得され得る。かかる蛋白質分解酵素としてはpH等の酵素の反応条件を適切に設定することによりモノクローナル抗体等の抗体を消化し得るものであれば特段の限定はされず、例えば、ペプシンやフィシン等を例示できる。
抗体のアイソタイプは、定常領域の構造によって決定される。IgG1、IgG2、IgG3、IgG4の各アイソタイプの定常領域は、それぞれ、Cγ1、Cγ2、Cγ3、Cγ4と呼ばれている。ヒトCγ1、Cγ2、Cγ3、Cγ4のFc領域を構成するポリペプチドのアミノ酸配列が、配列番号:5、6、7、8に例示される。各アミノ酸配列を構成するアミノ酸残基と、kabatのEUナンバリング(本明細書においてEU INDEXとも呼ばれる)との関係は図7に示されている。本明細書において別記なき場合、免疫グロブリン重鎖中の残基のナンバリングは、Sequences of Proteins of Immunological Interest (第5版、Public Health Service,National Institutes of Health,Bethesda,MD(1991))に記載された方法におけるEU INDEXのものである。
Fc領域は、二本の軽鎖、ならびに、鎖間のジスルフィド結合が2つの重鎖間で形成されるようにCH1ドメインおよびCH2ドメイン間の定常領域の一部分を含む二本の重鎖を含むF(ab')2を除いた領域のことをいう。本明細書において開示されるFc領域は、IgG1、IgG2、IgG3、IgG4モノクローナル抗体等をペプシン等の蛋白質分解酵素にて部分消化した後に、プロテインAカラムに吸着された画分を再溶出することによって好適に取得され得る。かかる蛋白質分解酵素としてはpH等の酵素の反応条件を適切に設定することにより制限的にF(ab')2を生じるように全長抗体を消化し得るものであれば特段の限定はされず、例えば、ペプシンやフィシン等が例示できる。
本発明の多重特異性抗体に含まれるFc領域としては、特にFcγ受容体に対する結合活性が低下しているFc領域が好ましい。ここで、Fcγ受容体(本明細書ではFcγレセプター、FcγRまたはFcgRと記載することがある)とは、IgG1、IgG2、IgG3、IgG4のFc領域に結合し得る受容体をいい、実質的にFcγレセプター遺伝子にコードされるタンパク質のファミリーのいかなるメンバーをも意味する。ヒトでは、このファミリーには、アイソフォームFcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64);アイソフォームFcγRIIa(アロタイプH131(H型)およびR131(R型)を含む)、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)およびFcγRIIcを含むFcγRII(CD32);およびアイソフォームFcγRIIIa(アロタイプV158およびF158を含む)およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)、並びにいかなる未発見のヒトFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されるものではない。FcγRは、ヒト、マウス、ラット、ウサギおよびサル由来のものが含まれるが、これらに限定されず、いかなる生物由来でもよい。マウスFcγR類には、FcγRI(CD64)、FcγRII(CD32)、FcγRIII(CD16)およびFcγRIII-2(CD16-2)、並びにいかなる未発見のマウスFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されない。こうしたFcγ受容体の好適な例としてはヒトFcγRI(CD64)、FcγRIIa(CD32)、FcγRIIb(CD32)、FcγRIIIa(CD16)及び/又はFcγRIIIb(CD16)が挙げられる。
FcγRには、ITAM(Immunoreceptor tyrosine-based activation motif)をもつ活性型レセプターとITIM(immunoreceptor tyrosine-based inhibitory motif)をもつ抑制型レセプターが存在する。FcγRはFcγRI、FcγRIIa R、FcγRIIa H、FcγRIIIa、FcγRIIIbの活性型FcγRと、FcγRIIbの抑制型FcγRに分類される。
FcγRIのポリヌクレオチド配列及びアミノ酸配列は、それぞれNM_000566.3及びNP_000557.1に、FcγRIIaのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC020823.1及びAAH20823.1に、FcγRIIbのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC146678.1及びAAI46679.1に、FcγRIIIaのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC033678.1及びAAH33678.1に、並びにFcγRIIIbのポリヌクレオチド配列及びアミノ酸配列は、それぞれBC128562.1及びAAI28563.1に記載されている(RefSeq登録番号)。尚、FcγRIIaには、FcγRIIaの131番目のアミノ酸がヒスチジン(H型)あるいはアルギニン(R型)に置換された2種類の遺伝子多型が存在する(J. Exp. Med, 172, 19-25, 1990)。また、FcγRIIbには、FcγRIIbの232番目のアミノ酸がイソロイシン(I型)あるいはスレオニン (T型)に置換された2種類の遺伝子多型が存在する(Arthritis. Rheum. 46: 1242-1254 (2002))。また、FcγRIIIaには、FcγRIIIaの158番目のアミノ酸がバリン(V型)あるいはフェニルアラニン(F型)に置換された2種類の遺伝子多型が存在する(J. Clin. Invest. 100(5): 1059-1070 (1997))。また、FcγRIIIbには、NA1型、NA2型の2種類の遺伝子多型が存在する(J. Clin. Invest. 85: 1287-1295 (1990))。
Fcγ受容体に対する結合活性が低下しているかどうかは、FACS、ELISAフォーマット、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法等、周知の方法によって確認することができる(Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010)。
ALPHAスクリーンは、ドナーとアクセプターの2つのビーズを使用するALPHAテクノロジーによって下記の原理に基づいて実施される。ドナービーズに結合した分子が、アクセプタービーズに結合した分子と生物学的に相互作用し、2つのビーズが近接した状態の時にのみ、発光シグナルを検出される。レーザーによって励起されたドナービーズ内のフォトセンシタイザーは、周辺の酸素を励起状態の一重項酸素に変換する。一重項酸素はドナービーズ周辺に拡散し、近接しているアクセプタービーズに到達するとビーズ内の化学発光反応を引き起こし、最終的に光が放出される。ドナービーズに結合した分子とアクセプタービーズに結合した分子が相互作用しないときは、ドナービーズの産生する一重項酸素がアクセプタービーズに到達しないため、化学発光反応は起きない。
例えば、本発明の抗体がFc領域を含む場合、野生型Fc領域を有する抗体と、Fcγ受容体に対する結合を変化させるためのアミノ酸変異が加えられた変異Fc領域を有する抗体を準備し、ドナービーズにビオチン標識された抗体を結合させ、アクセプタービーズにはグルタチオンSトランスフェラーゼ(GST)でタグ化されたFcγ受容体を結合させる。変異Fc領域を有する抗体の存在下では、野生型Fc領域を有する抗体とFcγ受容体とは相互作用し520-620 nmのシグナルを生ずる。変異Fc領域を有する抗体をタグ化しない場合、野生型Fc領域を有する抗体とFcγ受容体間の相互作用と競合する。競合の結果表れる蛍光の減少を定量することによって相対的な結合親和性が決定され得る。抗体をSulfo-NHS-ビオチン等を用いてビオチン化することは公知である。Fcγ受容体をGSTでタグ化する方法としては、Fcγ受容体をコードするポリヌクレオチドとGSTをコードするポリヌクレオチドをインフレームで融合した融合遺伝子を発現可能なベクターを保持した細胞等において発現し、グルタチオンカラムを用いて精製する方法等が適宜採用され得る。得られたシグナルは例えばGRAPHPAD PRISM(GraphPad社、San Diego)等のソフトウェアを用いて非線形回帰解析を利用する一部位競合(one-site competition)モデルに適合させることにより好適に解析される。
相互作用を観察する物質の一方(リガンド)をセンサーチップの金薄膜上に固定し、センサーチップの裏側から金薄膜とガラスの境界面で全反射するように光を当てると、反射光の一部に反射強度が低下した部分(SPRシグナル)が形成される。相互作用を観察する物質の他方(アナライト)をセンサーチップの表面に流しリガンドとアナライトが結合すると、固定化されているリガンド分子の質量が増加し、センサーチップ表面の溶媒の屈折率が変化する。この屈折率の変化により、SPRシグナルの位置がシフトする(逆に結合が解離するとシグナルの位置は戻る)。Biacoreシステムは上記のシフトする量、すなわちセンサーチップ表面での質量変化を縦軸にとり、質量の時間変化を測定データとして表示する(センサーグラム)。センサーグラムのカーブからカイネティクス:結合速度定数(ka)と解離速度定数(kd)が、当該定数の比からアフィニティー(KD)が求められる。BIACORE法では阻害測定法も好適に用いられる。阻害測定法の例はProc.Natl.Acad.Sci.USA (2006) 103 (11), 4005-4010において記載されている。
本明細書において、「Fcγ受容体に対する結合活性が低下している」とは、例えば、上記の解析方法に基づいて、対照とするFc領域を有する抗体の結合活性に比較して、被験抗体の結合活性が、50%以下、好ましくは45%以下、40%以下、35%以下、30%以下、20%以下、15%以下、特に好ましくは10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下、1%以下の結合活性を示すことをいう。
対照とする抗体としては、例えば、IgG1、IgG2、IgG3又はIgG4モノクローナル抗体のFc領域を含むドメインを有する抗体が適宜使用され得る。当該Fc領域の構造は、配列番号:1(RefSeq登録番号AAC82527.1のN末にA付加)、配列番号:2(RefSeq登録番号AAB59393.1のN末にA付加)、配列番号:3(RefSeq登録番号CAA27268.1のN末にA付加)、配列番号:4(RefSeq登録番号AAB59394.1のN末にA付加)に記載されている。また、ある特定のアイソタイプの抗体のFc領域の変異体を有する抗体を被験物質として使用する場合には、当該特定のアイソタイプの抗体のFc領域を有する抗体を対照として用いることによって、当該変異体が有する変異によるFcγ受容体への結合活性に対する効果が検証される。上記のようにして、Fcγ受容体に対する結合活性が低下していることが検証されたFc領域の変異体を有する抗体が適宜作製される。
このような変異体の例としては、EUナンバリングに従って特定されるアミノ酸である231A-238Sの欠失(WO 2009/011941)、C226S、C229S、P238S、(C220S)(J.Rheumatol (2007) 34, 11)、C226S、C229S(Hum.Antibod.Hybridomas (1990) 1(1), 47-54)、C226S、C229S、E233P、L234V、L235A(Blood (2007) 109, 1185-1192)等の変異体が公知である。
すなわち、特定のアイソタイプの抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかのアミノ酸:220位、226位、229位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、264位、265位、266位、267位、269位、270位、295位、296位、297位、298位、299位、300位、325位、327位、328位、329位、330位、331位、332位が置換されているFc領域を有する抗体が好適に挙げられる。Fc領域の起源である抗体のアイソタイプとしては特に限定されず、IgG1、IgG2、IgG3又はIgG4モノクローナル抗体を起源とするFc領域が適宜利用され得るが、天然型ヒトIgG1抗体を起源とするFc領域が好適に利用される。
例えば、IgG1抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかの置換(数字がEUナンバリングに従って特定されるアミノ酸残基の位置、数字の前に位置する一文字のアミノ酸記号が置換前のアミノ酸残基、数字の後に位置する一文字のアミノ酸記号が置換前のアミノ酸残基をそれぞれ表す):
(a)L234F、L235E、P331S、
(b)C226S、C229S、P238S、
(c)C226S、C229S、
(d)C226S、C229S、E233P、L234V、L235A
が施されているFc領域、又は、231位から238位のアミノ酸配列が欠失したFc領域を有する抗体も適宜使用され得る。
また、IgG2抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかの置換(数字がEUナンバリングに従って特定されるアミノ酸残基の位置、数字の前に位置する一文字のアミノ酸記号が置換前のアミノ酸残基、数字の後に位置する一文字のアミノ酸記号が置換前のアミノ酸残基をそれぞれ表す):
(e)H268Q、V309L、A330S、P331S
(f)V234A
(g)G237A
(h)V234A、G237A
(i)A235E、G237A
(j)V234A、A235E、G237A
が施されているFc領域を有する抗体も適宜使用され得る。
また、IgG3抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかの置換(数字がEUナンバリングに従って特定されるアミノ酸残基の位置、数字の前に位置する一文字のアミノ酸記号が置換前のアミノ酸残基、数字の後に位置する一文字のアミノ酸記号が置換前のアミノ酸残基をそれぞれ表す):
(k)F241A
(l)D265A
(m)V264A
が施されているFc領域を有する抗体も適宜使用され得る。
また、IgG4抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかの置換(数字がEUナンバリングに従って特定されるアミノ酸残基の位置、数字の前に位置する一文字のアミノ酸記号が置換前のアミノ酸残基、数字の後に位置する一文字のアミノ酸記号が置換前のアミノ酸残基をそれぞれ表す):
(n)L235A、G237A、E318A
(o)L235E
(p)F234A、L235A
が施されているFc領域を有する抗体も適宜使用され得る。
その他の好ましい例として、天然型ヒトIgG1抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれかのアミノ酸:233位、234位、235位、236位、237位、327位、330位、331位が、対応するIgG2またはIgG4においてそのEUナンバリングが対応するアミノ酸に置換されているFc領域を有する抗体が挙げられる。
その他の好ましい例として、天然型ヒトIgG1抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される下記のいずれか一つ又はそれ以上のアミノ酸:234位、235位、297位が他のアミノ酸によって置換されているFc領域を有する抗体が好適に挙げられる。置換後に存在するアミノ酸の種類は特に限定されないが、234位、235位、297位のいずれか一つ又はそれ以上のアミノ酸がアラニンに置換されているFc領域を有する抗体が特に好ましい。
その他の好ましい例として、IgG1抗体のFc領域を構成するアミノ酸のうち、EUナンバリングに従って特定される265位のアミノ酸が他のアミノ酸によって置換されているFc領域を有する抗体が好適に挙げられる。置換後に存在するアミノ酸の種類は特に限定されないが、265位のアミノ酸がアラニンに置換されているFc領域を有する抗体が特に好ましい。
本発明の多重特異性抗体に含まれる「癌特異的抗原結合ドメイン」、及び「CD3結合ドメイン」 (以下、これら2つの結合ドメインをまとめて抗原結合ドメインという)は、それぞれの抗原である、癌特異的抗原又は、CD3の一部または全部に特異的に結合する領域を意味し、例えば、抗体の抗原結合領域を含む領域が当該結合ドメインとして挙げられる。抗原の分子量が大きい場合、抗体の抗原結合領域は抗原の特定部分にのみ結合することができる。当該特定部分はエピトープと呼ばれる。抗原結合ドメインは一または複数の抗体の可変ドメインより提供され得る。好ましくは、抗原結合ドメインは抗体軽鎖可変領域(VL)と抗体重鎖可変領域(VH)とを含む。こうした抗原結合ドメインの例としては、「scFv(single chain Fv)」、「単鎖抗体(single chain antibody)」、「Fv」、「scFv2(single chain Fv 2)」、「Fab」または「F(ab')2」等が好適に挙げられる。
ここで、「癌特異的抗原」とは、癌細胞と健常細胞を区別することを可能とする、癌細胞が発現する抗原を意味し、例えば、細胞の悪性化に伴って発現する抗原、細胞が、がん化した際に細胞表面やタンパク質分子上に現れる異常な糖鎖が含まれる。具体的には、例えば、ALK受容体(プレイオトロフィン受容体)、プレイオトロフィン、KS 1/4膵臓癌抗原、卵巣癌抗原(CA125)、前立腺酸リン酸、前立腺特異的抗原(PSA)、メラノーマ関連抗原p97、メラノーマ抗原gp75、高分子量メラノーマ抗原(HMW-MAA)、前立腺特異的膜抗原、癌性胚抗原(CEA)、多型上皮ムチン抗原、ヒト乳脂肪球抗原、CEA、TAG-72、CO17-1A、GICA 19-9、CTA-1およびLEAなどの結腸直腸腫瘍関連抗原、バーキットリンパ腫抗原-38.13、CD19、ヒトBリンパ腫抗原-CD20、CD33、ガングリオシドGD2、ガングリオシドGD3、ガングリオシドGM2およびガングリオシドGM3などのメラノーマ特異的抗原、腫瘍特異的移植型細胞表面抗原(TSTA)、T抗原、DNA腫瘍ウイルスおよびRNA腫瘍ウイルスのエンベロープ抗原などのウイルスにより誘導される腫瘍抗原、結腸のCEA、5T4癌胎児トロホブラスト糖タンパク質および膀胱腫瘍癌胎児抗原などの癌胎児抗原α-フェトプロテイン、ヒト肺癌抗原L6およびL20などの分化抗原、線維肉腫の抗原、ヒト白血病T細胞抗原-Gp37、新生糖タンパク質、スフィンゴ脂質、EGFR(上皮増殖因子受容体)などの乳癌抗原、NY-BR-16、NY-BR-16およびHER2抗原(p185HER2)、多型上皮ムチン(PEM)、悪性ヒトリンパ球抗原-APO-1、胎児赤血球に認められるI抗原などの分化抗原、成人赤血球に認められる初期内胚葉I抗原、移植前の胚、胃癌に認められるI(Ma)、乳腺上皮に認められるM18、M39、骨髄細胞に認められるSSEA-1、VEP8、VEP9、Myl、VIM-D5、結腸直腸癌に認められるD156-22、TRA-1-85(血液群H)、精巣および卵巣癌に認められるSCP-1、結腸癌に認められるC14、肺癌に認められるF3、胃癌に認められるAH6、Yハプテン、胚性癌細胞に認められるLey、TL5(血液群A)、A431細胞に認められるEGF受容体、膵臓癌に認められるE1シリーズ(血液群B)、胚性癌細胞に認められるFC10.2、胃癌抗原、腺癌に認められるCO-514(血液群Lea)、腺癌に認められるNS-10、CO-43(血液群Leb)、A431細胞のEGF受容体に認められるG49、結腸癌に認められるMH2(血液群ALeb/Ley)、結腸癌に認められる19.9、胃癌ムチン、骨髄細胞に認められるT5A7、メラノーマに認められるR24、胚性癌細胞に認められる4.2、GD3、D1.1、OFA-1、GM2、OFA-2、GD2、およびM1:22:25:8ならびに4〜8細胞段階の胚に認められるSSEA-3およびSSEA-4、皮下T細胞リンパ腫抗原、MART-1抗原、シアリルTn(STn)抗原、結腸癌抗原NY-CO-45、肺癌抗原NY-LU-12変異体A、腺癌抗原ART1、腫瘍随伴性関連脳-精巣癌抗原(癌神経抗原MA2、腫瘍随伴性神経抗原)、神経癌腹部抗原2(NOVA2)、血液細胞癌抗原遺伝子520、腫瘍関連抗原CO-029、腫瘍関連抗原MAGE-C1(癌/精巣抗原CT7)、MAGE-B1(MAGE-XP抗原)、MAGE-B2(DAM6)、MAGE-2、MAGE-4a、MAGE-4bおよびMAGE-X2、癌-精巣抗原(NY-EOS-1)、YKL-40および上記ポリペプチドのいずれかの断片またはこれらに対して修飾された構造等(前記の修飾リン酸基や糖鎖等)、EpCAM、EREG、CA19-9、CA15-3、シリアルSSEA-1(SLX)、HER2、PSMA、CEA、CLEC12A等が挙げられる。本発明の癌特異的抗原結合ドメインの対象となる癌特異的抗原としては、特に、細胞表面に発現するものが好ましく、そのような癌特異的抗原としては、例えば、CD19、CD20、EGFR、HER2、EpCAM、EREGがあげられる。
本発明の(1) 癌特異的抗原結合ドメイン、(2) CD3結合ドメイン、及び(3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、を含む多重特異性抗体は、「CD3結合ドメイン」にかえて、「T細胞受容体複合体」や「TNF受容体スーパーファミリー」に結合するドメインを用いてもよい。
「TNF受容体スーパーファミリー」に属する因子としては、様々な免疫細胞の活性化に寄与する、3量体構造を有するリガンドと当該リガンドが結合する3量体構造のレセプターが知られている(Nat. Rev. Immunol., 2012, 12, 339-51)。TNF受容体スーパーファミリーに属する因子としては、例えば、CD137、CD40、OX40、CD27、HVEM、RANK、CD30、GITRが挙げられる。
「T細胞受容体複合体」は、T細胞受容体自身でもよいし、T細胞受容体とともにT細胞受容体複合体を構成するアダプター分子でもよい。アダプター分子として好適なものはCD3である。
T細胞受容体としては、可変領域でもよいし、定常領域でもよいが、好ましいT細胞受容体結合ドメインが結合するエピトープは定常領域に存在するエピトープである。定常領域の配列として、例えばRefSeq登録番号CAA26636.1のT細胞受容体α鎖(配列番号:9)、RefSeq登録番号C25777のT細胞受容体β鎖(配列番号:10)、RefSeq登録番号A26659のT細胞受容体γ1鎖(配列番号:11)、RefSeq登録番号AAB63312.1のT細胞受容体γ2鎖(配列番号:12)、RefSeq登録番号AAA61033.1のT細胞受容体δ鎖(配列番号:13)の配列を挙げることができる。
本発明における「CD3結合ドメイン」は一または複数の抗体の可変ドメインより提供され得る。好ましくは、CD3結合ドメインはCD3抗体の軽鎖可変領域(VL)とCD3抗体の重鎖可変領域(VH)とを含む。こうしたCD3結合ドメインの例としては、「scFv(single chain Fv)」、「単鎖抗体(single chain antibody)」、「Fv」、「scFv2(single chain Fv 2)」、「Fab」または「F(ab')2」等が好適に挙げられる。
本発明に係るCD3結合ドメインは、ヒトCD3を構成するγ鎖、δ鎖又はε鎖配列に存在するエピトープであればいずれのエピトープに結合するものでもあり得る。本発明において、好ましくはヒトCD3複合体のε鎖の細胞外領域に存在するエピトープに結合するCD3抗体の軽鎖可変領域(VL)とCD3抗体の重鎖可変領域(VH)とを含むCD3結合ドメインが好適に用いられる。こうしたCD3結合ドメインとしては、OKT3抗体(Proc. Natl. Acad. Sci. USA (1980) 77, 4914-4917)や種々の公知のCD3抗体の軽鎖可変領域(VL)とCD3抗体の重鎖可変領域(VH)とを含むCD3結合ドメインが好適に用いられる。また、ヒトCD3を構成するγ鎖、δ鎖又はε鎖を前記の方法によって所望の動物に免疫することによって取得された所望の性質を有するCD3抗体を起源とするCD3結合ドメインが適宜使用され得る。CD3結合ドメインの起源となるCD3抗体は下記のとおり適宜ヒト化された抗体やヒト抗体が適宜用いられる。CD3を構成するγ鎖、δ鎖又はε鎖の構造は、そのポリヌクレオチド配列が、配列番号:14(NM_000073.2)、16(NM_000732.4)及び18(NM_000733.3)に、そのポリペプチド配列が、配列番号:15(NP_000064.1)、17(NP_000723.1)及び19(NP_000724.1)に記載されている(カッコ内はRefSeq登録番号を示す)。
TNF受容体スーパーファミリーのアゴニスト抗体
本発明における「TNF受容体スーパーファミリーのアゴニスト抗体」とは、100%の活性化が、等モル量の結合パートナーにより生理学的条件下で達成される活性化レベルである場合に、TNF受容体スーパーファミリーを発現する細胞、組織または生体に付加されると、該TNF受容体スーパーファミリーを発現する細胞を少なくとも約5%、具体的には少なくとも約10%、より具体的には少なくとも約15%活性化する抗体を意味する。種々の具体例において、本発明の医薬組成物として使用するTNF受容体スーパーファミリーのアゴニスト抗体は、該細胞の活性を、少なくとも約20%、30%、40%、50%、60%、70%、80%、90%、100%、125%、150%、175%、200%、250%、300%、350%、400%、450%、500%、750%または1000%活性化させることができる。
「TNF受容体スーパーファミリーのアゴニスト抗体」の標的分子としては、TNF受容体スーパーファミリーを発現する細胞(例えば、T細胞やNK細胞など)を活性化する因子である限り特に制限されないが、好ましくは、「TNFスーパーファミリー」又は「TNF受容体スーパーファミリー」に属する因子である。「TNFスーパーファミリー」又は「TNF受容体スーパーファミリー」に属する因子としては、様々な免疫細胞の活性化に寄与する、3量体構造を有するリガンドと当該リガンドが結合する3量体構造のレセプターが知られている(Nat. Rev. Immunol., 2012, 12, 339-51)。TNFスーパーファミリー又はTNF受容体スーパーファミリーに属する因子としては、例えば、CD137、CD137L、CD40、CD40L、OX40、OX40L、CD27、CD70、HVEM、LIGHT、RANK、RANKL、CD30、CD153、GITR、GITRLが挙げられる。好ましい因子としては、例えばCD137、CD40が挙げられる。さらに好ましい因子としては、例えばCD137が挙げられる。
例えば、CD137アゴニスト抗体の例としては、Urelumab(CAS登録番号:934823-49-1)や種々の公知のCD137アゴニスト抗体を挙げることができる。
本発明の非限定の一態様として、「TNF受容体スーパーファミリーのアゴニスト抗体」はFc領域を含み、該Fc領域が、抑制型Fcγ受容体に対する結合活性が増加しているFc領域が提供される。
一実施態様において、本発明のアゴニスト抗体に含まれるFcγR結合ドメインとして、活性型FcγRよりも抑制型FcγRに対する結合活性が高いFcγR結合ドメインが使用され得る。例えば、当該FcγR結合ドメインとして、FcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64)、(アロタイプV158およびF158を含む)アイソフォームFcγRIIIaならびに(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)FcγRIIIbを含むFcγRIII(CD16)、ならびに(アロタイプH131およびR131を含む)アイソフォームFcγRIIaならびにFcγRIIcを含むFcγRII(CD32)のいずれかから選択される活性型FcγRよりも、(FcγRIIb-1およびFcγRIIb-2を含む)FcγRIIbに対する結合活性が高いFcγR結合ドメインが使用され得る。また、例えば、当該FcγR結合ドメインとして、FcγRIa、FcγRIb、FcγRIc、アロタイプV158を含むFcγRIIIa、アロタイプF158を含むFcγRIIIa、アロタイプFcγRIIIb-NA1を含むFcγRIIIb、アロタイプFcγRIIIb-NA2を含むFcγRIIIb、アロタイプH131を含むFcγRIIa、アロタイプR131を含むFcγRIIa、および/またはFcγRIIcよりも、FcγRIIb-1および/またはFcγRIIb-2に対する結合活性が高いFcγR結合ドメインが使用され得るがこれらに限定されない。
また、FcγR結合ドメインが選択的な結合活性を有するか否かは、上述した方法によって決定される各FcγRに対する結合活性を比較することによって確認できる。例えば、活性型FcγRに対するKD値を、抑制型FcγRに対するKD値で除した値(比)、すなわち下記式1で表されるFcγR選択性指数を比較することによって判断することが可能である。
〔式1〕 FcγR選択性指数=活性型FcγRに対するKD値/抑制型FcγRに対するKD値
当該式1において、活性型FcγRに対するKD値とは、FcγRIa、FcγRIb、FcγRIc、アロタイプV158を含むFcγRIIIa、アロタイプF158を含むFcγRIIIa、アロタイプFcγRIIIb-NA1を含むFcγRIIIb、アロタイプFcγRIIIb-NA2を含むFcγRIIIb、アロタイプH131を含むFcγRIIa、アロタイプR131を含むFcγRIIa、FcγRIIcのいずれか1つ以上に対するKD値をいい、抑制型FcγRに対するKD値とはFcγRIIb-1および/またはFcγRIIb-2に対するKD値をいい、KD値の測定に用いられる活性型FcγRおよび抑制型FcγRはいずれの組合せから選択されてもよい。例えば、アロタイプH131を含むFcγRIIaに対するKD値を、FcγRIIb-1および/またはFcγRIIb-2に対するKD値で除した値(比)が使用され得るがこれらに限定されない。
FcγR選択性指数としては、例えば、1.2以上、1.3以上、1.4以上、1.5以上、1.6以上、1.7以上、1.8以上、1.9以上、2以上、3以上、5以上、6以上、7以上、8以上、9以上、10以上、15以上、20以上、25以上、30以上、35以上、40以上、45以上、50以上、55以上、60以上、65以上、70以上、75以上、80以上、85以上、90以上、95以上、100以上、110以上、120以上、130以上、140以上、150以上、160以上、170以上、180以上、190以上、200以上、210以上、220以上、230以上、240以上、250以上、260以上、270以上、280以上、290以上、300以上、310以上、320以上、330以上、340以上、350以上、360以上、370以上、380以上、390以上、400以上、410以上、420以上、430以上、440以上、450以上、460以上、470以上、480以上、490以上、500以上、520以上、540以上、560以上、580以上、600以上、620以上、640以上、660以上、680以上、700以上、720以上、740以上、760以上、780以上、800以上、820以上、840以上、860以上、880以上、900以上、920以上、940以上、960以上、980以上、1000以上、1500以上、2000以上、2500以上、3000以上、3500以上、4000以上、4500以上、5000以上、5500以上、6000以上、6500以上、7000以上、7500以上、8000以上、8500以上、9000以上、9500以上、10000以上、又は、100000以上が挙げられるがこれらに限定されない。
一実施態様において、ヒトIgG(IgG1、IgG2、IgG3、IgG4)のEUナンバリングで表される238位のアミノ酸がAspであるFc領域、またはEUナンバリングで表される328位のアミノ酸がGluであるFc領域は、特にはWO2013/125667、WO2012/115241、WO2013/047752で説明されるように、FcγRIa、FcγRIb、FcγRIc、アロタイプV158を含むFcγRIIIa、アロタイプF158を含むFcγRIIIa、アロタイプFcγRIIIb-NA1を含むFcγRIIIb、アロタイプFcγRIIIb-NA2を含むFcγRIIIb、アロタイプH131を含むFcγRIIa、アロタイプR131を含むFcγRIIa、および/またはFcγRIIcよりも、FcγRIIb-1および/またはFcγRIIb-2に対する結合活性が高いことから、Fc領域を含む本発明のアゴニスト抗体において好適に用いられ得る。かかる実施態様における本発明のアゴニスト抗体は、天然型IgGの定常領域もしくは天然型IgGのFc領域を含む参照抗体と比較して、全ての活性型FcγR及びFcγRIIbに対する結合活性を有し、前記FcγRIIbに対する結合活性が維持もしくは増大され、及び/又は、全ての活性型FcγRに対する結合活性が減少している。
例えば、前記「全ての活性型FcγRに対する結合活性が減少している」程度としては、限定はされないが、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、90%以下、88%以下、86%以下、84%以下、82%以下、80%以下、78%以下、76%以下、74%以下、72%以下、70%以下、68%以下、66%以下、64%以下、62%以下、60%以下、58%以下、56%以下、54%以下、52%以下、50%以下、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下、5%以下、4%以下、3%以下、2%以下、1%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、0.1%以下、0.05%以下、0.01%以下、又は、0.005%以下が挙げられる。
例えば、前記「FcγRIIbに対する結合活性が維持もしくは増大され」ている程度としては、限定はされないが、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.5%以上、100%以上、101%以上、102%以上、103%以上、104%以上、105%以上、106%以上、107%以上、108%以上、109%以上、110%以上、112%以上、114%以上、116%以上、118%以上、120%以上、122%以上、124%以上、126%以上、128%以上、130%以上、132%以上、134%以上、136%以上、138%以上、140%以上、142%以上、144%以上、146%以上、148%以上、150%以上、155%以上、160%以上、165%以上、170%以上、175%以上、180%以上、185%以上、190%以上、195%以上、2倍以上、3倍以上、4倍以上、5倍以上、6倍以上、7倍以上、8倍以上、9倍以上、10倍以上、20倍以上、30倍以上、40倍以上、50倍以上、60倍以上、70倍以上、80倍以上、90倍以上、100倍以上、200倍以上、300倍以上、400倍以上、500倍以上、600倍以上、700倍以上、800倍以上、900倍以上、1000倍以上、10000倍以上、又は、100000倍以上が挙げられる。
一実施態様において、Fc領域を含む本発明のアゴニスト抗体は、天然型IgGの定常領域もしくは天然型IgGのFc領域を含む参照抗体と比較して、FcγRIIbに対する結合活性が維持もしくは増大されており、かつFcγRIIa(H型)およびFcγRIIa(R型)に対する結合活性が減少されていてよい。このような抗体では、FcγRIIaよりもFcγRIIbに対する結合選択性が向上する。このうち、FcγRIIa(R型)よりもFcγRIIbに対する結合選択性が向上する改変が好ましく、FcγRIIa(H型)よりもFcγRIIbに対する結合選択性が向上する改変がさらに好ましい。
例えば、前記「FcγRIIbに対する結合活性が維持もしくは増大」されている程度としては、限定はされないが、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.5%以上、100%以上、101%以上、102%以上、103%以上、104%以上、105%以上、106%以上、107%以上、108%以上、109%以上、110%以上、112%以上、114%以上、116%以上、118%以上、120%以上、122%以上、124%以上、126%以上、128%以上、130%以上、132%以上、134%以上、136%以上、138%以上、140%以上、142%以上、144%以上、146%以上、148%以上、150%以上、155%以上、160%以上、165%以上、170%以上、175%以上、180%以上、185%以上、190%以上、195%以上、2倍以上、3倍以上、4倍以上、5倍以上、6倍以上、7倍以上、8倍以上、9倍以上、10倍以上、20倍以上、30倍以上、40倍以上、50倍以上、60倍以上、70倍以上、80倍以上、90倍以上、100倍以上、200倍以上、300倍以上、400倍以上、500倍以上、600倍以上、700倍以上、800倍以上、900倍以上、1000倍以上、10000倍以上、又は、100000倍以上が挙げられる。
例えば、前記「FcγRIIa(H型)およびFcγRIIa(R型)に対する結合活性が減少されている」程度としては、限定はされないが、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、90%以下、88%以下、86%以下、84%以下、82%以下、80%以下、78%以下、76%以下、74%以下、72%以下、70%以下、68%以下、66%以下、64%以下、62%以下、60%以下、58%以下、56%以下、54%以下、52%以下、50%以下、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下、5%以下、4%以下、3%以下、2%以下、1%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、0.1%以下、0.05%以下、0.01%以下、又は、0.005%以下が挙げられる。
このような改変として好ましいアミノ酸置換は、WO2013/047752で報告されているとおり、例えば、EUナンバリング237位で表されるGlyをTrpに置換した改変、EUナンバリング237位で表されるGlyをPheに置換した改変、EUナンバリング238位で表されるProをPheに置換した改変、EUナンバリング325位で表されるAsnをMetに置換した改変、EUナンバリング267位で表されるSerをIleに置換した改変、EUナンバリング328位で表されるLeuをAspに置換した改変、EUナンバリング267位で表されるSerをValに置換した改変、EUナンバリング328位で表されるLeuをTrpに置換した改変、EUナンバリング267位で表されるSerをGlnに置換した改変、EUナンバリング267位で表されるSerをMetに置換した改変、EUナンバリング236位で表されるGlyをAspに置換した改変、EUナンバリング327位で表されるAlaをAsnに置換した改変、EUナンバリング325位で表されるAsnをSerに置換した改変、EUナンバリング235位で表されるLeuをTyrに置換した改変、EUナンバリング266位で表されるValをMetに置換した改変、EUナンバリング328位で表されるLeuをTyrに置換した改変、EUナンバリング235位で表されるLeuをTrpに置換した改変、EUナンバリング235位で表されるLeuをPheに置換した改変、EUナンバリング239位で表されるSerをGlyに置換した改変、EUナンバリング327位で表されるAlaをGluに置換した改変、EUナンバリング327位で表されるAlaをGlyに置換した改変、EUナンバリング238位で表されるProをLeuに置換した改変、EUナンバリング239位で表されるSerをLeuに置換した改変、EUナンバリング328位で表されるLeuをThrに置換した改変、EUナンバリング328位で表されるLeuをSerに置換した改変、EUナンバリング328位で表されるLeuをMetに置換した改変、EUナンバリング331位で表されるProをTrpに置換した改変、EUナンバリング331位で表されるProをTyrに置換した改変、EUナンバリング331位で表されるProをPheに置換した改変、EUナンバリング327位で表されるAlaをAspに置換した改変、EUナンバリング328位で表されるLeuをPheに置換した改変、EUナンバリング271位で表されるProをLeuに置換した改変、EUナンバリング267位で表されるSerをGluに置換した改変、EUナンバリング328位で表されるLeuをAlaに置換した改変、EUナンバリング328位で表されるLeuをIleに置換した改変、EUナンバリング328位で表されるLeuをGlnに置換した改変、EUナンバリング328位で表されるLeuをValに置換した改変、EUナンバリング326位で表されるLysをTrpに置換した改変、EUナンバリング334位で表されるLysをArgに置換した改変、EUナンバリング268位で表されるHisをGlyに置換した改変、EUナンバリング268位で表されるHisをAsnに置換した改変、EUナンバリング324位で表されるSerをValに置換した改変、EUナンバリング266位で表されるValをLeuに置換した改変、EUナンバリング271位で表されるProをGlyに置換した改変、EUナンバリング332位で表されるIleをPheに置換した改変、EUナンバリング324位で表されるSerをIleに置換した改変、EUナンバリング333位で表されるGluをProに置換した改変、EUナンバリング300位で表されるTyrをAspに置換した改変、EUナンバリング337位で表されるSerをAspに置換した改変、EUナンバリング300位で表されるTyrをGlnに置換した改変、EUナンバリング335位で表されるThrをAspに置換した改変、EUナンバリング239位で表されるSerをAsnに置換した改変、EUナンバリング326位で表されるLysをLeuに置換した改変、EUナンバリング326位で表されるLysをIleに置換した改変、EUナンバリング239位で表されるSerをGluに置換した改変、EUナンバリング326位で表されるLysをPheに置換した改変、EUナンバリング326位で表されるLysをValに置換した改変、EUナンバリング326位で表されるLysをTyrに置換した改変、EUナンバリング267位で表されるSerをAspに置換した改変、EUナンバリング326位で表されるLysをProに置換した改変、EUナンバリング326位で表されるLysをHisに置換した改変、EUナンバリング334位で表されるLysをAlaに置換した改変、EUナンバリング334位で表されるLysをTrpに置換した改変、EUナンバリング268位で表されるHisをGlnに置換した改変、EUナンバリング326位で表されるLysをGlnに置換した改変、EUナンバリング326位で表されるLysをGluに置換した改変、EUナンバリング326位で表されるLysをMetに置換した改変、EUナンバリング266位で表されるValをIleに置換した改変、EUナンバリング334位で表されるLysをGluに置換した改変、EUナンバリング300位で表されるTyrをGluに置換した改変、EUナンバリング334位で表されるLysをMetに置換した改変、EUナンバリング334位で表されるLysをValに置換した改変、EUナンバリング334位で表されるLysをThrに置換した改変、EUナンバリング334位で表されるLysをSerに置換した改変、EUナンバリング334位で表されるLysをHisに置換した改変、EUナンバリング334位で表されるLysをPheに置換した改変、EUナンバリング334位で表されるLysをGlnに置換した改変、EUナンバリング334位で表されるLysをProに置換した改変、EUナンバリング334位で表されるLysをTyrに置換した改変、EUナンバリング334位で表されるLysをIleに置換した改変、EUナンバリング295位で表されるGlnをLeuに置換した改変、EUナンバリング334位で表されるLysをLeuに置換した改変、EUナンバリング334位で表されるLysをAsnに置換した改変、EUナンバリング268位で表されるHisをAlaに置換した改変、EUナンバリング239位で表されるSerをAspに置換した改変、EUナンバリング267位で表されるSerをAlaに置換した改変、EUナンバリング234位で表されるLeuをTrpに置換した改変、EUナンバリング234位で表されるLeuをTyrに置換した改変、EUナンバリング237位で表されるGlyをAlaに置換した改変、EUナンバリング237位で表されるGlyをAspに置換した改変、EUナンバリング237位で表されるGlyをGluに置換した改変、EUナンバリング237位で表されるGlyをLeuに置換した改変、EUナンバリング237位で表されるGlyをMetに置換した改変、EUナンバリング237位で表されるGlyをTyrに置換した改変、EUナンバリング330位で表されるAlaをLysに置換した改変、EUナンバリング330位で表されるAlaをArgに置換した改変、EUナンバリング233位で表されるGluをAspに置換した改変、EUナンバリング268位で表されるHisをAspに置換した改変、EUナンバリング268位で表されるHisをGluに置換した改変、EUナンバリング326位で表されるLysをAspに置換した改変、EUナンバリング326位で表されるLysをSerに置換した改変、EUナンバリング326位で表されるLysをThrに置換した改変、EUナンバリング323位で表されるValをIleに置換した改変、EUナンバリング323位で表されるValをLeuに置換した改変、EUナンバリング323位で表されるValをMetに置換した改変、EUナンバリング296位で表されるTyrをAspに置換した改変、EUナンバリング326位で表されるLysをAlaに置換した改変、EUナンバリング326位で表されるLysをAsnに置換した改変、EUナンバリング330位で表されるAlaをMetに置換した改変、
が挙げられるがこれらに限定されない。
上記の改変は一箇所であってもよいし、二箇所以上の組み合わせであってもよい。そのような改変で好ましい例としては、WO2013/047752の表14〜15、表17〜24、表26〜28に記載の改変が例示され、例えば、ヒトIgG(IgG1、IgG2、IgG3、IgG4)のEUナンバリングで表される238位のアミノ酸がAsp、およびEUナンバリングで表される271位のアミノ酸がGlyであるヒト定常領域もしくはヒトFc領域の改変体が例示され、さらに、EUナンバリングで表される、233位、234位、237位、264位、265位、266位、267位、268位、269位、272位、296位、326位、327位、330位、331位、332位、333位、396位のいずれか1つ以上が置換されていてもよい。かかる場合、例えば、EUナンバリングで表される、
233位のアミノ酸がAsp、
234位のアミノ酸がTyr、
237位のアミノ酸がAsp、
264位のアミノ酸がIle、
265位のアミノ酸がGlu、
266位のアミノ酸がPhe、Met、またはLeuのいずれか、
267位のアミノ酸がAla、Glu、Gly、またはGlnのいずれか、
268位のアミノ酸がAsp、またはGluのいずれか、
269位のアミノ酸がAsp、
272位のアミノ酸が、Asp、Phe、Ile、Met、Asn、またはGlnのいずれか、
296位のアミノ酸がAsp、
326位のアミノ酸がAla、またはAspのいずれか、
327位のアミノ酸がGly、
330位のアミノ酸がLys、またはArgのいずれか、
331位のアミノ酸がSer、
332位のアミノ酸がThr、
333位のアミノ酸がThr、Lys、またはArgのいずれか、
396位のアミノ酸がAsp、Glu、Phe、Ile、Lys、Leu、Met、Gln、Arg、またはTyrのいずれか、のいずれか1つ以上であるヒト定常領域もしくはヒトFc領域の改変体が例示されるがこれらに限定されない。
別の実施態様において、Fc領域を含む本発明のアゴニスト抗体は、天然型IgGの定常領域もしくは天然型IgGのFc領域を含む参照抗体と比較して、FcγRIIbに対する結合活性が維持もしくは増大し、かつFcγRIIa(H型)およびFcγRIIa(R型)に対する結合活性が減少されていてよい。
例えば、前記「FcγRIIbに対する結合活性が維持もしくは増大」されている程度としては、限定はされないが、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.5%以上、100%以上、101%以上、102%以上、103%以上、104%以上、105%以上、106%以上、107%以上、108%以上、109%以上、110%以上、112%以上、114%以上、116%以上、118%以上、120%以上、122%以上、124%以上、126%以上、128%以上、130%以上、132%以上、134%以上、136%以上、138%以上、140%以上、142%以上、144%以上、146%以上、148%以上、150%以上、155%以上、160%以上、165%以上、170%以上、175%以上、180%以上、185%以上、190%以上、195%以上、2倍以上、3倍以上、4倍以上、5倍以上、6倍以上、7倍以上、8倍以上、9倍以上、10倍以上、20倍以上、30倍以上、40倍以上、50倍以上、60倍以上、70倍以上、80倍以上、90倍以上、100倍以上、200倍以上、300倍以上、400倍以
上、500倍以上、600倍以上、700倍以上、800倍以上、900倍以上、1000倍以上、10000倍以上、又は、100000倍以上が挙げられる。
例えば、前記「FcγRIIa(H型)およびFcγRIIa(R型)に対する結合活性が減少されている」程度としては、限定はされないが、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、90%以下、88%以下、86%以下、84%以下、82%以下、80%以下、78%以下、76%以下、74%以下、72%以下、70%以下、68%以下、66%以下、64%以下、62%以下、60%以下、58%以下、56%以下、54%以下、52%以下、50%以下、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下、5%以下、4%以下、3%以下、2%以下、1%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、0.1%以下、0.05%以下、0.01%以下、又は、0.005%以下が挙げられる。
このような改変として好ましいアミノ酸置換部位は、WO2014/030728で報告されているとおり、例えば、EUナンバリング238番目のアミノ酸、並びに、EUナンバリング233番目のアミノ酸、234番目のアミノ酸、235番目のアミノ酸、237番目のアミノ酸、264番目のアミノ酸、265番目のアミノ酸、266番目のアミノ酸、267番目のアミノ酸、268番目のアミノ酸、269番目のアミノ酸、271番目のアミノ酸、272番目のアミノ酸、274番目のアミノ酸、296番目のアミノ酸、326番目のアミノ酸、327番目のアミノ酸、330番目のアミノ酸、331番目のアミノ酸、332番目のアミノ酸、333番目のアミノ酸、334番目のアミノ酸、355番目のアミノ酸、356番目のアミノ酸、358番目のアミノ酸、396番目のアミノ酸、409番目のアミノ酸及び419番目のアミノ酸から選ばれる少なくとも1つのアミノ酸であってよい。
さらに好ましくは、限定はされないが、EUナンバリング238番目のアミノ酸がAsp、並びに、EUナンバリング233番目のアミノ酸がAsp、234番目のアミノ酸がTyr、235番目のアミノ酸がPhe、237番目のアミノ酸がAsp、264番目のアミノ酸がIle、265番目のアミノ酸がGlu、266番目のアミノ酸がPhe、Leu又はMet、267番目のアミノ酸がAla、Glu、Gly又はGln、268番目のアミノ酸がAsp、Gln又はGlu、269番目のアミノ酸がAsp、271番目のアミノ酸がGly、272番目のアミノ酸がAsp、Phe、Ile、Met、Asn、Pro又はGln、274番目のアミノ酸がGln、296番目のアミノ酸がAsp又はPhe、326番目のアミノ酸がAla又はAsp、327番目のアミノ酸がGly、330番目のアミノ酸がLys、Arg又はSer、331番目のアミノ酸がSer、332番目のアミノ酸がLys、Arg、Ser又はThr、333番目のアミノ酸がLys、Arg、Ser又はThr、334番目のアミノ酸がArg、Ser又はThr、355番目のアミノ酸がAla、Gln、356番目のアミノ酸がGlu、358番目のアミノ酸がMet、396番目のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、Trp又はTyr、409番目のアミノ酸がArg及び419番目のアミノ酸がGluであるアミノ酸群から選ばれる少なくとも1つのアミノ酸を有していてよい。
別の実施態様において、Fc領域を含む本発明のアゴニスト抗体は、天然型IgGの定常領域もしくは天然型IgGのFc領域を含む参照抗体と比較して、FcγRIIbに対する結合活性が維持されつつ、かつ、全ての活性型FcγR、中でもFcγRIIa(R型)、に対する結合活性が減少されていてよい。
例えば、前記「FcγRIIbに対する結合活性が維持され」ている程度としては、限定はされないが、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、81%以上、82%以上、83%以上、84%以上、85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.5%以上、100%以上、101%以上、102%以上、103%以上、104%以上、105%以上、106%以上、107%以上、108%以上、109%以上、110%以上、120%以上、130%以上、140%以上、150%以上、175%以上、又は、2倍以上が挙げられる。
例えば、前記「全ての活性型FcγR、中でもFcγRIIa(R型)、に対する結合活性が減少されている」程度としては、限定はされないが、74%以下、72%以下、70%以下、68%以下、66%以下、64%以下、62%以下、60%以下、58%以下、56%以下、54%以下、52%以下、50%以下、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下、5%以下、4%以下、3%以下、2%以下、1%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、0.1%以下、0.05%以下、0.01%以下、又は、0.005%以下が挙げられる。
このような改変体として好ましいアミノ酸置換部位はWO2014/163101で報告されるとおり、例えば、EUナンバリングで表される、238番目のアミノ酸に加えて、EUナンバリング235番目のアミノ酸、237番目のアミノ酸、241番目のアミノ酸、268番目のアミノ酸、295番目のアミノ酸、296番目のアミノ酸、298番目のアミノ酸、323番目のアミノ酸、324番目のアミノ酸及び330番目のアミノ酸から選ばれる少なくとも1つであってよい。さらに好ましくは、限定はされないが、EUナンバリング238番目のアミノ酸がAsp、並びに、235番目のアミノ酸がPhe、237番目のアミノ酸がGln又はAsp、241番目のアミノ酸がMet又はLeu、268番目のアミノ酸がPro、295番目のアミノ酸がMet又はVal、296番目のアミノ酸がGlu、His、Asn又はAsp、298番目のアミノ酸がAla又はMet、323番目のアミノ酸がIle、324番目のアミノ酸がAsn又はHis、330番目のアミノ酸がHis又はTyrであるアミノ酸群から選ばれる少なくとも1つのアミノ酸を有していてよい。
抗体の結合活性
抗体の抗原結合活性の測定には公知の手段を使用することができる(Antibodies A Laboratory Manual.Ed Harlow,David Lane,Cold Spring Harbor Laboratory,1988)。例えば、ELISA(酵素結合免疫吸着検定法)、EIA(酵素免疫測定法)、RIA(放射免疫測定法)、FACS、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法あるいは蛍光免疫法などを用いることができる。更に、細胞に発現する抗原に対する抗体の結合活性を測定する手法としては、例えば、前記Antibodies A Laboratory Manual中の359-420ページに記載されている方法が挙げられる。
また、緩衝液等に懸濁した細胞の表面上に発現している抗原と当該抗原に対する抗体との結合を測定する方法として、特にフローサイトメーターを使用した方法を好適に用いることが出来る。使用するフローサイトメーターとしては例えば、FACSCantoTM II,FACSAriaTM,FACSArrayTM,FACSVantageTM SE,FACSCaliburTM (以上、BD Biosciences社)や、EPICS ALTRA HyPerSort,Cytomics FC 500,EPICS XL-MCL ADC EPICS XL ADC,Cell Lab Quanta / Cell Lab Quanta SC(以上、Beckman Coulter社)などを挙げることができる。
被験CD137抗体の抗原に対する結合活性の好適な測定方法の一例として、CD137を発現する細胞と反応させた被験抗体を認識するFITC標識した二次抗体で染色後、FACSCalibur(BD社)により測定を行い、その蛍光強度をCELL QUEST Software(BD社)を用いて解析する方法を挙げることができる。
抗体
本明細書において、抗体とは、天然のものであるかまたは部分的もしくは完全合成により製造された免疫グロブリンをいう。抗体はそれが天然に存在する血漿や血清等の天然資源や抗体を産生するハイブリドーマ細胞の培養上清から単離され得るし、または遺伝子組換え等の手法を用いることによって部分的にもしくは完全に合成され得る。抗体の例としては免疫グロブリンのアイソタイプおよびそれらのアイソタイプのサブクラスが好適に挙げられる。ヒトの免疫グロブリンとして、IgG1、IgG2、IgG3、IgG4、IgA1、IgA2、IgD、IgE、IgMの9種類のクラス(アイソタイプ)が知られている。本発明の抗体には、これらのアイソタイプのうちIgG1、IgG2、IgG3、IgG4が含まれ得る。
所望の結合活性を有する抗体を作製する方法は当業者において公知であり、ポリクローナルまたはモノクローナル抗体として取得され得る。本発明の抗体としては、哺乳動物由来のモノクローナル抗体が好適に作製され得る。哺乳動物由来のモノクローナル抗体には、ハイブリドーマにより産生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主細胞によって産生されるもの等が含まれる。
抗体取得のために免疫される哺乳動物としては、特定の動物に限定されるものではないが、ハイブリドーマ作製のための細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましい。一般的にはげっ歯類の動物、例えば、マウス、ラット、ハムスター、あるいはウサギ、サル等が好適に使用される。
公知の方法にしたがって上記の動物が感作抗原により免疫される。例えば、一般的な方法として、感作抗原が哺乳動物の腹腔内または皮下に注射によって投与されることにより免疫が実施される。具体的には、PBS(Phosphate-Buffered Saline)や生理食塩水等で適当な希釈倍率で希釈された感作抗原が、所望により通常のアジュバント、例えばフロイント完全アジュバントと混合され、乳化された後に、該感作抗原が哺乳動物に4から21日毎に数回投与される。また、感作抗原の免疫時には適当な担体が使用され得る。特に分子量の小さい部分ペプチドが感作抗原として用いられる場合には、アルブミン、キーホールリンペットヘモシアニン等の担体タンパク質と結合した該感作抗原ペプチドを免疫することが望ましい場合もある。
また、所望の抗体を産生するハイブリドーマは、DNA免疫を使用し、以下のようにしても作製され得る。DNA免疫とは、免疫動物中で抗原タンパク質をコードする遺伝子が発現され得るような態様で構築されたベクターDNAが投与された当該免疫動物中で、感作抗原が当該免疫動物の生体内で発現されることによって、免疫刺激が与えられる免疫方法である。蛋白質抗原が免疫動物に投与される一般的な免疫方法と比べて、DNA免疫には、次のような優位性が期待される。
−膜蛋白質の構造を維持して免疫刺激が与えられ得る
−免疫抗原を精製する必要が無い
DNA免疫によって本発明のモノクローナル抗体を得るために、まず、抗原タンパク質を発現するDNAが免疫動物に投与される。抗原タンパク質をコードするDNAは、PCRなどの公知の方法によって合成され得る。得られたDNAが適当な発現ベクターに挿入され、免疫動物に投与される。発現ベクターとしては、たとえばpcDNA3.1などの市販の発現ベクターが好適に利用され得る。ベクターを生体に投与する方法として、一般的に用いられている方法が利用され得る。たとえば、発現ベクターが吸着した金粒子が、gene gunで免疫動物個体の細胞内に導入されることによってDNA免疫が行われる。
このように哺乳動物が免疫され、血清中における抗原に結合する抗体力価の上昇が確認された後に、哺乳動物から免疫細胞が採取され、細胞融合に供される。好ましい免疫細胞としては、特に脾細胞が使用され得る。
前記免疫細胞と融合される細胞として、哺乳動物のミエローマ細胞が用いられる。ミエローマ細胞は、スクリーニングのための適当な選択マーカーを備えていることが好ましい。選択マーカーとは、特定の培養条件の下で生存できる(あるいはできない)形質を指す。選択マーカーには、ヒポキサンチン−グアニン−ホスホリボシルトランスフェラーゼ欠損(以下HGPRT欠損と省略する)、あるいはチミジンキナーゼ欠損(以下TK欠損と省略する)などが公知である。HGPRTやTKの欠損を有する細胞は、ヒポキサンチン−アミノプテリン−チミジン感受性(以下HAT感受性と省略する)を有する。HAT感受性の細胞はHAT選択培地中でDNA合成を行うことができず死滅するが、正常な細胞と融合すると正常細胞のサルベージ回路を利用してDNAの合成を継続することができるためHAT選択培地中でも増殖するようになる。
HGPRT欠損やTK欠損の細胞は、それぞれ6チオグアニン、8アザグアニン(以下8AGと省略する)、あるいは5'ブロモデオキシウリジンを含む培地で選択され得る。これらのピリミジンアナログをDNA中に取り込む正常な細胞は死滅する。他方、これらのピリミジンアナログを取り込めないこれらの酵素を欠損した細胞は、選択培地の中で生存することができる。この他G418耐性と呼ばれる選択マーカーは、ネオマイシン耐性遺伝子によって2-デオキシストレプタミン系抗生物質(ゲンタマイシン類似体)に対する耐性を与える。細胞融合に好適な種々のミエローマ細胞が公知である。
このようなミエローマ細胞として、例えば、P3(P3x63Ag8.653)(J. Immunol.(1979)123 (4), 1548-1550)、P3x63Ag8U.1(Current Topics in Microbiology and Immunology(1978)81, 1-7)、NS-1(C. Eur. J. Immunol.(1976)6 (7), 511-519)、MPC-11(Cell(1976)8 (3), 405-415)、SP2/0(Nature(1978)276 (5685), 269-270)、FO(J. Immunol. Methods(1980)35 (1-2), 1-21)、S194/5.XX0.BU.1(J. Exp. Med.(1978)148 (1), 313-323)、R210(Nature(1979)277 (5692), 131-133)等が好適に使用され得る。
基本的には公知の方法、たとえば、ケーラーとミルステインらの方法(Methods Enzymol.(1981)73, 3-46)等に準じて、前記免疫細胞とミエローマ細胞との細胞融合が行われる。
より具体的には、例えば細胞融合促進剤の存在下で通常の栄養培養液中で、前記細胞融合が実施され得る。融合促進剤としては、例えばポリエチレングリコール(PEG)、センダイウイルス(HVJ)等が使用され、更に融合効率を高めるために所望によりジメチルスルホキシド等の補助剤が添加されて使用される。
免疫細胞とミエローマ細胞との使用割合は任意に設定され得る。例えば、ミエローマ細胞に対して免疫細胞を1から10倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640培養液、MEM培養液、その他、この種の細胞培養に用いられる通常の培養液が使用され、さらに、牛胎児血清(FCS)等の血清補液が好適に添加され得る。
細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混合し、予め37℃程度に加温されたPEG溶液(例えば平均分子量1000から6000程度)が通常30から60%(w/v)の濃度で添加される。混合液が緩やかに混合されることによって所望の融合細胞(ハイブリドーマ)が形成される。次いで、上記に挙げた適当な培養液が逐次添加され、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等が除去され得る。
このようにして得られたハイブリドーマは、通常の選択培養液、例えばHAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択され得る。所望のハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間(通常、係る十分な時間は数日から数週間である)上記HAT培養液を用いた培養が継続され得る。次いで、通常の限界希釈法によって、所望の抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングが実施される。
このようにして得られたハイブリドーマは、細胞融合に用いられたミエローマが有する選択マーカーに応じた選択培養液を利用することによって選択され得る。例えばHGPRTやTKの欠損を有する細胞は、HAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択され得る。すなわち、HAT感受性のミエローマ細胞を細胞融合に用いた場合、HAT培養液中で、正常細胞との細胞融合に成功した細胞が選択的に増殖し得る。所望のハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間、上記HAT培養液を用いた培養が継続される。具体的には、一般に、数日から数週間の培養によって、所望のハイブリドーマが選択され得る。次いで、通常の限界希釈法によって、所望の抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングが実施され得る。
所望の抗体のスクリーニングおよび単一クローニングが、公知の抗原抗体反応に基づくスクリーニング方法によって好適に実施され得る。所望の抗体は、例えば、FACS(fluorescence activated cell sorting)によってスクリーニングされ得る。FACSは、蛍光抗体と接触させた細胞をレーザー光で解析し、個々の細胞が発する蛍光を測定することによって細胞表面への抗体の結合を測定することを可能にするシステムである。
FACSによって本発明のモノクローナル抗体を産生するハイブリドーマをスクリーニングするためには、まず産生される抗体が結合する抗原を発現する細胞を調製する。スクリーニングのための好ましい細胞は、当該抗原を強制発現させた哺乳動物細胞である。宿主細胞として使用した形質転換されていない哺乳動物細胞を対照として用いることによって、細胞表面の抗原に対する抗体の結合活性が選択的に検出され得る。すなわち、宿主細胞に結合せず、抗原を強制発現させた細胞に結合する抗体を産生するハイブリドーマを選択することによって、所望のモノクローナル抗体を産生するハイブリドーマが取得され得る。
あるいは対象となる抗原を発現した細胞を固定化し、当該抗原発現細胞に対する抗体の結合活性がELISAの原理に基づいて評価され得る。たとえば、ELISAプレートのウェルに抗原発現細胞が固定化される。ハイブリドーマの培養上清をウェル内の固定化細胞に接触させ、固定化細胞に結合する抗体が検出される。モノクローナル抗体がマウス由来の場合、細胞に結合した抗体は、抗マウスイムノグロブリン抗体によって検出され得る。これらのスクリーニングによって選択された、抗原に対する結合能を有する所望の抗体を産生するハイブリドーマは、限界希釈法等によりクローニングされ得る。
このようにして作製されるモノクローナル抗体を産生するハイブリドーマは通常の培養液中で継代培養され得る。また、該ハイブリドーマは液体窒素中で長期にわたって保存され得る。
当該ハイブリドーマを通常の方法に従い培養し、その培養上清から所望のモノクローナル抗体が取得され得る。あるいはハイブリドーマをこれと適合性がある哺乳動物に投与して増殖せしめ、その腹水からモノクローナル抗体が取得され得る。前者の方法は、高純度の抗体を得るのに好適なものである。
当該ハイブリドーマ等の抗体産生細胞からクローニングされる抗体遺伝子によってコードされる抗体も好適に利用され得る。クローニングした抗体遺伝子を適当なベクターに組み込んで宿主に導入することによって、当該遺伝子によってコードされる抗体が発現する。抗体遺伝子の単離と、ベクターへの導入、そして宿主細胞の形質転換のための方法は例えば、Vandammeらによって既に確立されている(Eur.J. Biochem.(1990)192 (3), 767-775)。下記に述べるように組換え抗体の製造方法もまた公知である。
抗体の可変領域(V領域)をコードするcDNAを取得するためには、通常、まずハイブリドーマから全RNAが抽出される。細胞からmRNAを抽出するための方法として、たとえば次のような方法を利用することができる。
−グアニジン超遠心法(Biochemistry (1979) 18 (24), 5294-5299)
−AGPC法(Anal. Biochem. (1987) 162 (1), 156-159)
抽出されたmRNAは、例えばmRNA Purification Kit (GEヘルスケアバイオサイエンス製)等を使用して精製され得る。あるいは、QuickPrep mRNA Purification Kit (GEヘルスケアバイオサイエンス製)などのように、細胞から直接全mRNAを抽出するためのキットも市販されている。このようなキットを用いて、ハイブリドーマからmRNAが取得され得る。得られたmRNAから逆転写酵素を用いて抗体V領域をコードするcDNAが合成され得る。cDNAは、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit(生化学工業社製)等によって合成され得る。また、cDNAの合成および増幅のために、SMART RACE cDNA 増幅キット(Clontech製)およびPCRを用いた5'-RACE法(Proc. Natl. Acad. Sci. USA (1988) 85 (23), 8998-9002、Nucleic Acids Res. (1989) 17 (8), 2919-2932)が適宜利用され得る。更にこうしたcDNAの合成の過程においてcDNAの両末端に後述する適切な制限酵素サイトが導入され得る。
得られたPCR産物から目的とするcDNA断片が精製され、次いでベクターDNAと連結される。このように組換えベクターが作製され、大腸菌等に導入されコロニーが選択された後に、該コロニーを形成した大腸菌から所望の組換えベクターが調製され得る。そして、該組換えベクターが目的とするcDNAの塩基配列を有しているか否かについて、公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法等により確認される。
可変領域をコードする遺伝子を取得するためには、可変領域遺伝子増幅用のプライマーを使った5'-RACE法を利用するのが簡便である。まずハイブリドーマ細胞より抽出されたRNAを鋳型としてcDNAが合成され、5'-RACE cDNAライブラリーが得られる。5'-RACE cDNAライブラリーの合成にはSMART RACE cDNA 増幅キットなど市販のキットが適宜用いられる。
得られた5'-RACE cDNAライブラリーを鋳型として、PCR法によって抗体遺伝子が増幅される。公知の抗体遺伝子配列をもとにマウス抗体遺伝子増幅用のプライマーがデザインされ得る。これらのプライマーは、イムノグロブリンのサブクラスごとに異なる塩基配列である。したがって、サブクラスは予めIso Stripマウスモノクローナル抗体アイソタイピングキット(ロシュ・ダイアグノスティックス)などの市販キットを用いて決定しておくことが望ましい。
具体的には、たとえばマウスIgGをコードする遺伝子の取得を目的とするときには、重鎖としてγ1、γ2a、γ2b、γ3、軽鎖としてκ鎖とλ鎖をコードする遺伝子の増幅が可能なプライマーが利用され得る。IgGの可変領域遺伝子を増幅するためには、一般に3'側のプライマーには可変領域に近い定常領域に相当する部分にアニールするプライマーが利用される。一方5'側のプライマーには、5' RACE cDNAライブラリー作製キットに付属するプライマーが利用される。
こうして増幅されたPCR産物を利用して、重鎖と軽鎖の組み合せからなるイムノグロブリンが再構成され得る。再構成されたイムノグロブリンの、抗原に対する結合活性を指標として、所望の抗体がスクリーニングされ得る。たとえば次のようにしてスクリーニングされ得る;
(1)ハイブリドーマから得られたcDNAによってコードされるV領域を含む抗体を所望の抗原発現細胞に接触させる工程、
(2)該抗原発現細胞と抗体との結合を検出する工程、および
(3)該抗原発現細胞に結合する抗体を選択する工程。
抗体と該抗原発現細胞との結合を検出する方法は公知である。具体的には、先に述べたFACSなどの手法によって、抗体と該抗原発現細胞との結合が検出され得る。抗体の結合活性を評価するために該抗原発現細胞の固定標本が適宜利用され得る。
結合活性を指標とする抗体のスクリーニング方法として、ファージベクターを利用したパニング法も好適に用いられる。ポリクローナルな抗体発現細胞群より抗体遺伝子を重鎖と軽鎖のサブクラスのライブラリーとして取得した場合には、ファージベクターを利用したスクリーニング方法が有利である。重鎖と軽鎖の可変領域をコードする遺伝子は、適当なリンカー配列で連結することによってシングルチェインFv(scFv)を形成することができる。scFvをコードする遺伝子をファージベクターに挿入することにより、scFvを表面に発現するファージが取得され得る。このファージと所望の抗原との接触の後に、抗原に結合したファージを回収することによって、目的の結合活性を有するscFvをコードするDNAが回収され得る。この操作を必要に応じて繰り返すことにより、所望の結合活性を有するscFvが濃縮され得る。
目的とする抗体のV領域をコードするcDNAが得られた後に、当該cDNAの両末端に挿入した制限酵素サイトを認識する制限酵素によって該cDNAが消化される。好ましい制限酵素は、抗体遺伝子を構成する塩基配列に出現する頻度が低い塩基配列を認識して消化する。更に1コピーの消化断片をベクターに正しい方向で挿入するためには、付着末端を与える制限酵素の挿入が好ましい。上記のようにして消化された抗体のV領域をコードするcDNAを適当な発現ベクターに挿入することによって、抗体発現ベクターが取得され得る。このとき、抗体定常領域(C領域)をコードする遺伝子と、前記V領域をコードする遺伝子とがインフレームで融合されれば、キメラ抗体が取得される。ここで、キメラ抗体とは、定常領域と可変領域の由来が異なることをいう。したがって、マウス−ヒトなどの異種キメラ抗体に加え、ヒト−ヒト同種キメラ抗体も、本発明におけるキメラ抗体に含まれる。予め定常領域を有する発現ベクターに、前記V領域遺伝子を挿入することによって、キメラ抗体発現ベクターが構築され得る。具体的には、たとえば、所望の抗体定常領域(C領域)をコードするDNAを保持した発現ベクターの5'側に、前記V領域遺伝子を消化する制限酵素の制限酵素認識配列が適宜配置され得る。同じ組み合わせの制限酵素で消化された両者がインフレームで融合されることによって、キメラ抗体発現ベクターが構築される。
モノクローナル抗体の製造には、抗体遺伝子が発現制御領域による制御の下で発現するように発現ベクターに組み込まれる。抗体を発現するための発現制御領域とは、例えば、エンハンサーやプロモーターを含む。また、発現した抗体が細胞外に分泌されるように、適切なシグナル配列がアミノ末端に付加され得る。発現されたポリペプチドから、シグナル配列がそのカルボキシル末端部分から切断され、抗体が細胞外に分泌され得る。次いで、この発現ベクターによって適当な宿主細胞が形質転換されることによって、抗体をコードするDNAを発現する組換え細胞が取得され得る。
抗体遺伝子の発現のために、抗体重鎖(H鎖)および軽鎖(L鎖)をコードするDNAは、それぞれ別の発現ベクターに組み込まれる。H鎖とL鎖が組み込まれたベクターによって、同じ宿主細胞に同時に形質転換(co-transfect)されることによって、H鎖とL鎖を備えた抗体分子が発現され得る。あるいはH鎖およびL鎖をコードするDNAが単一の発現ベクターに組み込まれることによって宿主細胞が形質転換され得る(国際公開WO 94/11523を参照のこと)。
単離された抗体遺伝子を適当な宿主に導入することによって抗体を作製するための宿主細胞と発現ベクターの多くの組み合わせが公知である。これらの発現系は、いずれも本発明の癌特異的抗原結合ドメイン、腫瘍壊死因子受容体スーパーファミリー(TNFRSF)やT細胞受容体複合体結合ドメインを単離するのに応用され得る。
真核細胞が宿主細胞として使用される場合、動物細胞、植物細胞、あるいは真菌細胞が適宜使用され得る。具体的には、動物細胞としては、次のような細胞が例示され得る。
(1)哺乳類細胞、:CHO、COS、ミエローマ、BHK(baby hamster kidney)、Hela、Veroなど
(2)両生類細胞:アフリカツメガエル卵母細胞など
(3)昆虫細胞:sf9、sf21、Tn5など
あるいは植物細胞としては、ニコティアナ・タバカム(Nicotiana tabacum)などのニコティアナ(Nicotiana)属由来の細胞による抗体遺伝子の発現系が公知である。植物細胞の形質転換には、カルス培養した細胞が適宜利用され得る。
更に真菌細胞としては、次のような細胞を利用することができる。
−酵母:サッカロミセス・セレビシエ(Saccharomyces serevisiae)などのサッカロミセス(Saccharomyces)属、メタノール資化酵母(Pichia pastoris)などのPichia属
−糸状菌:アスペスギルス・ニガー(Aspergillus niger)などのアスペルギルス(Aspergillus)属
また、原核細胞を利用した抗体遺伝子の発現系も公知である。たとえば、細菌細胞を用いる場合、大腸菌(E. coli)、枯草菌などの細菌細胞が適宜利用され得る。これらの細胞中に、目的とする抗体遺伝子を含む発現ベクターが形質転換によって導入される。形質転換された細胞をin vitroで培養することにより、当該形質転換細胞の培養物から所望の抗体が取得され得る。
組換え抗体の産生には、上記宿主細胞に加えて、トランスジェニック動物も利用され得る。すなわち所望の抗体をコードする遺伝子が導入された動物から、当該抗体を得ることができる。例えば、抗体遺伝子は、乳汁中に固有に産生されるタンパク質をコードする遺伝子の内部にインフレームで挿入することによって融合遺伝子として構築され得る。乳汁中に分泌されるタンパク質として、たとえば、ヤギβカゼインなどを利用され得る。抗体遺伝子が挿入された融合遺伝子を含むDNA断片はヤギの胚へ注入され、当該注入された胚が雌のヤギへ導入される。胚を受容したヤギから生まれるトランスジェニックヤギ(またはその子孫)が産生する乳汁からは、所望の抗体が乳汁タンパク質との融合タンパク質として取得され得る。また、トランスジェニックヤギから産生される所望の抗体を含む乳汁量を増加させるために、ホルモンがトランスジェニックヤギに対して投与され得る(Bio/Technology (1994), 12 (7), 699-702)。
本明細書において記載される抗体がヒトに投与される場合、例えば、当該分子における各種結合ドメインとして、抗体の可変領域を含むドメインを用いる場合は、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体由来の抗原結合ドメインが適宜採用され得る。遺伝子組換え型抗体には、例えば、ヒト化(Humanized)抗体等が含まれる。これらの改変抗体は、公知の方法を用いて適宜製造される。
本明細書において記載される抗体における各種結合ドメインを作製するために用いられる抗体の可変領域は、通常、4つのフレームワーク領域(FR)にはさまれた3つの相補性決定領域(complementarity-determining region ; CDR)で構成されている。CDRは、実質的に、抗体の結合特異性を決定している領域である。CDRのアミノ酸配列は多様性に富む。一方FRを構成するアミノ酸配列は、異なる結合特異性を有する抗体の間でも、高い同一性を示すことが多い。そのため、一般に、CDRの移植によって、ある抗体の結合特異性を、他の抗体に移植することができるとされている。
ヒト化抗体は、再構成(reshaped)ヒト抗体とも称される。具体的には、ヒト以外の動物、たとえばマウス抗体のCDRをヒト抗体に移植したヒト化抗体などが公知である。ヒト化抗体を得るための一般的な遺伝子組換え手法も知られている。具体的には、マウスの抗体のCDRをヒトのFRに移植するための方法として、たとえばOverlap Extension PCRが公知である。Overlap Extension PCRにおいては、ヒト抗体のFRを合成するためのプライマーに、移植すべきマウス抗体のCDRをコードする塩基配列が付加される。プライマーは4つのFRのそれぞれについて用意される。一般に、マウスCDRのヒトFRへの移植においては、マウスのFRと同一性の高いヒトFRを選択するのが、CDRの機能の維持において有利であるとされている。すなわち、一般に、移植すべきマウスCDRに隣接しているFRのアミノ酸配列と同一性の高いアミノ酸配列からなるヒトFRを利用するのが好ましい。
また連結される塩基配列は、互いにインフレームで接続されるようにデザインされる。それぞれのプライマーによってヒトFRが個別に合成される。その結果、各FRにマウスCDRをコードするDNAが付加された産物が得られる。各産物のマウスCDRをコードする塩基配列は、互いにオーバーラップするようにデザインされている。続いて、ヒト抗体遺伝子を鋳型として合成された産物のオーバーラップしたCDR部分を互いにアニールさせて相補鎖合成反応が行われる。この反応によって、ヒトFRがマウスCDRの配列を介して連結される。
最終的に3つのCDRと4つのFRが連結されたV領域遺伝子は、その5'末端と3'末端にアニールし適当な制限酵素認識配列を付加されたプライマーによってその全長が増幅される。上記のように得られたDNAとヒト抗体C領域をコードするDNAとをインフレームで融合するように発現ベクター中に挿入することによって、ヒト型抗体発現用ベクターが作製できる。該組込みベクターを宿主に導入して組換え細胞を樹立した後に、該組換え細胞を培養し、該ヒト化抗体をコードするDNAを発現させることによって、該ヒト化抗体が該培養細胞の培養物中に産生される(欧州特許公開EP 239400、国際公開WO1996/002576参照)。
上記のように作製したヒト化抗体の抗原への結合活性を定性的又は定量的に測定し、評価することによって、CDRを介して連結されたときに該CDRが良好な抗原結合部位を形成するようなヒト抗体のFRが好適に選択できる。必要に応じ、再構成ヒト抗体のCDRが適切な抗原結合部位を形成するようにFRのアミノ酸残基を置換することもできる。たとえば、マウスCDRのヒトFRへの移植に用いたPCR法を応用して、FRにアミノ酸配列の変異を導入することができる。具体的には、FRにアニーリングするプライマーに部分的な塩基配列の変異を導入することができる。このようなプライマーによって合成されたFRには、塩基配列の変異が導入される。アミノ酸を置換した変異型抗体の抗原への結合活性を上記の方法で測定し評価することによって所望の性質を有する変異FR配列が選択され得る(Sato, K.et al., Cancer Res, 1993, 53, 851-856)。
また、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物(国際公開WO1993/012227、WO1992/003918、WO1994/002602、WO1994/025585、WO1996/034096、WO1996/033735参照)を免疫動物とし、DNA免疫により所望のヒト抗体が取得され得る。
さらに、ヒト抗体ライブラリーを用いて、パンニングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体のV領域が一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現される。抗原に結合するscFvを発現するファージが選択され得る。選択されたファージの遺伝子を解析することにより、抗原に結合するヒト抗体のV領域をコードするDNA配列が決定できる。抗原に結合するscFvのDNA配列を決定した後、当該V領域配列を所望のヒト抗体C領域の配列とインフレームで融合させた後に適当な発現ベクターに挿入することによって発現ベクターが作製され得る。当該発現ベクターを上記に挙げたような好適な発現細胞中に導入し、該ヒト抗体をコードする遺伝子を発現させることにより当該ヒト抗体が取得される。これらの方法は既に公知である(国際公開WO1992/001047、WO1992/020791、WO1993/006213、WO1993/011236、WO1993/019172、WO1995/001438、WO1995/015388参照)。
ファージディスプレイ法以外にも、ヒト抗体ライブラリを用いて、パンニングによりヒト抗体を取得する技術として、無細胞翻訳系を使用する技術、細胞またはウイルス表面に抗原結合分子を提示する技術、エマルジョンを使用する技術等が知られている。例えば、無細胞翻訳系を使用する技術としては、終止コドンの除去等によりリボゾームを介してmRNAと翻訳されたタンパク質の複合体を形成させるリボゾームディスプレイ法、ピューロマイシン等の化合物を用いて遺伝子配列と翻訳されたタンパク質を共有結合させるcDNAディスプレイ法、mRNAディスプレイ法や、核酸に対する結合タンパク質を用いて遺伝子と翻訳されたタンパク質の複合体を形成させるCISディスプレイ法等が使用され得る。また、細胞またはウイルス表面に抗原結合分子を提示する技術としては、ファージディスプレイ法以外にも、E. coliディスプレイ法、グラム陽性菌ディスプレイ法、酵母ディスプレイ法、哺乳類細胞ディスプレイ法、ウイルスディスプレイ法等が使用され得る。エマルジョンを使用する技術としては、エマルジョン中に遺伝子及び翻訳関連分子を内包させることによる、インビトロウイルスディスプレイ法等が使用され得る。これらの方法は既に公知である(Nat Biotechnol. 2000 Dec;18(12):1287-92、Nucleic Acids Res. 2006;34(19):e127、Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2806-10、Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9193-8、Protein Eng Des Sel. 2008 Apr;21(4):247-55、Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10701-5、MAbs. 2010 Sep-Oct;2(5):508-18、Methods Mol Biol.
CDRの定義の方法としては、Kabatらの方法(Sequences of Proteins of Immunological Interest, 5th Ed (1991), Bethesda, MD)、Chothiaらの方法(Science (1986) 233, 755-758)、抗原−抗体の接触(Contact)領域に基づく方法(J Mol Biol (1996) 262, 732-745)などが知られている。具体的には、各方法によるCDRは以下のように定義される。
CDR Kabat Chothia Contact
L1 L24-L34 L24-L34 L30-L36
L2 L50-L56 L50-L56 L46-L55
L3 L89-L97 L89-L97 L89-L96
H1 H31-H35B H26-H32/34 H30-H35B (Kabatナンバリング)
H1 H31-H35 H26-H32 H30-H35 (Chothiaナンバリング)
H2 H50-H65 H52-H56 H47-H58
H3 H95-H102 H95-H102 H93-H101
2012;911:183-98)。
本発明において「特異的」とは、特異的に結合する分子の一方の分子がその一または複数の結合する相手方の分子以外の分子に対しては何ら有意な結合を示さない状態をいう。また、抗原結合ドメインが、ある抗原中に含まれる複数のエピトープのうち特定のエピトープに対して特異的である場合にも用いられる。また、抗原結合ドメインが結合するエピトープが複数の異なる抗原に含まれる場合には、当該抗原結合ドメインを有する抗体は当該エピトープを含む様々な抗原と結合することができる。
また、抗原中に存在する抗原決定基を意味する「エピトープ」は、本明細書において開示される抗体中の各種結合ドメインが結合する抗原上の部位を意味する。よって、例えば、エピトープは、その構造によって定義され得る。また、当該エピトープを認識する抗体中の抗原に対する結合活性によっても当該エピトープが定義され得る。抗原がペプチド又はポリペプチドである場合には、エピトープを構成するアミノ酸残基によってエピトープを特定することも可能である。また、エピトープが糖鎖である場合には、特定の糖鎖構造によってエピトープを特定することも可能である。
直線状エピトープは、アミノ酸一次配列が認識されたエピトープを含むエピトープである。直線状エピトープは、典型的には、少なくとも3つ、および最も普通には少なくとも5つ、例えば約8〜約10個、6〜20個のアミノ酸が固有の配列において含まれる。
立体構造エピトープは、直線状エピトープとは対照的に、エピトープを含むアミノ酸の一次配列が、認識されたエピトープの単一の規定成分ではないエピトープ(例えば、アミノ酸の一次配列が、必ずしもエピトープを規定する抗体により認識されないエピトープ)である。立体構造エピトープは、直線状エピトープに対して増大した数のアミノ酸を包含するかもしれない。立体構造エピトープの認識に関して、抗体は、ペプチドまたはタンパク質の三次元構造を認識する。例えば、タンパク質分子が折り畳まれて三次元構造を形成する場合には、立体構造エピトープを形成するあるアミノ酸および/またはポリペプチド主鎖は、並列となり、抗体がエピトープを認識するのを可能にする。エピトープの立体構造を決定する方法には、例えばX線結晶学、二次元核磁気共鳴分光学並びに部位特異的なスピン標識および電磁常磁性共鳴分光学が含まれるが、これらには限定されない。例えば、Epitope Mapping Protocols in Methods in Molecular Biology (1996)、第66巻、Morris(編)を参照。
下記に被験抗体による癌特異的抗原中のエピトープへの結合の確認方法が例示されるが、他の結合ドメインの対象抗原中のエピトープへの結合の確認方法も下記の例示に準じて適宜実施され得る。
例えば、癌特異的抗原に対する抗原結合ドメインを含む被験抗体が、該抗原分子中に存在する線状エピトープを認識することは、たとえば次のようにして確認することができる。上記の目的のために例えば癌特異的抗原の細胞外ドメインを構成するアミノ酸配列からなる線状のペプチドが合成される。当該ペプチドは、化学的に合成され得る。あるいは、癌特異的抗原のcDNA中の、細胞外ドメインに相当するアミノ酸配列をコードする領域を利用して、遺伝子工学的手法により得られる。次に、細胞外ドメインを構成するアミノ酸配列からなる線状ペプチドと、癌特異的抗原に対する抗原結合ドメインを含む被験抗体との結合活性が評価される。たとえば、固定化された線状ペプチドを抗原とするELISAによって、当該ペプチドに対する当該抗体の結合活性が評価され得る。あるいは、癌特異的抗原を発現する細胞に対する当該抗体の結合における、線状ペプチドによる阻害のレベルに基づいて、線状ペプチドに対する結合活性が明らかにされ得る。これらの試験によって、線状ペプチドに対する当該抗体の結合活性が明らかにされ得る。
上記抗原に対する抗原結合ドメインを含む被験抗体が立体構造エピトープを認識することは、次のようにして確認され得る。例えば、癌特異的抗原に対する抗原結合ドメインを含む抗体が癌特異的抗原発現細胞に接触した際に当該細胞に強く結合する一方で、当該抗体が固定化された癌特異的抗原の細胞外ドメインを構成するアミノ酸配列からなる線状ペプチドに対して実質的に結合しないとき等が挙げられる。ここで、実質的に結合しないとは、抗原発現細胞に対する結合活性の80%以下、通常50%以下、好ましくは30%以下、特に好ましくは15%以下の結合活性をいう。
抗原結合ドメインを含む被験抗体の抗原発現細胞に対する結合活性を測定する方法としては、例えば、Antibodies A Laboratory Manual記載の方法(Ed Harlow, David Lane, Cold Spring Harbor Laboratory (1988) 359-420)が挙げられる。即ち、抗原発現細胞を抗原とするELISAやFACS(fluorescence activated cell sorting)の原理によって評価され得る。
ELISAフォーマットにおいて、抗原結合ドメインを含む被験抗体の抗原発現細胞に対する結合活性は、酵素反応によって生成するシグナルレベルを比較することによって定量的に評価される。すなわち、抗原発現細胞を固定化したELISAプレートに被験抗体を加え、該細胞に結合した被験抗体が、被験抗体を認識する酵素標識抗体を利用して検出される。あるいはFACSにおいては、被験抗体の希釈系列を作製し、抗原発現細胞に対する抗体結合力価(titer)を決定することにより、抗原発現細胞に対する被験抗体の結合活性が比較され得る。
緩衝液等に懸濁した細胞表面上に発現している抗原に対する被験抗体の結合は、フローサイトメーターによって検出することができる。フローサイトメーターとしては、例えば、次のような装置が知られている。
FACSCantoTM II
FACSAriaTM
FACSArrayTM
FACSVantageTM SE
FACSCaliburTM (いずれもBD Biosciences社の商品名)
EPICS ALTRA HyPerSort
Cytomics FC 500
EPICS XL-MCL ADC EPICS XL ADC
Cell Lab Quanta / Cell Lab Quanta SC(いずれもBeckman Coulter社の商品名)
例えば、上述の抗原結合ドメインを含む被験抗体の抗原に対する結合活性の好適な測定方法の一例として、次の方法が挙げられる。まず、抗原を発現する細胞と反応させた被験抗体を認識するFITC標識した二次抗体で染色する。被験抗体を適宜好適な緩衝液によって希釈することによって、当該抗体が所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用され得る。次に、FACSCalibur(BD社)により蛍光強度と細胞数が測定される。当該細胞に対する抗体の結合量は、CELL QUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、被験抗体の結合量によって表される被験抗体の結合活性が測定され得る。
本発明の抗原結合ドメインを含む被験抗原結合分が、ある抗体とエピトープを共有することは、両者の同じエピトープに対する競合によって確認され得る。抗体間の競合は、交叉ブロッキングアッセイなどによって検出される。例えば競合ELISAアッセイは、好ましい交叉ブロッキングアッセイである。
具体的には、交叉ブロッキングアッセイにおいては、マイクロタイタープレートのウェル上にコートした抗原が、候補となる競合抗体の存在下、または非存在下でプレインキュベートされた後に、被験抗体が添加される。ウェル中の抗原に結合した被験抗体の量は、同じエピトープへの結合に対して競合する候補となる競合抗体の結合能に間接的に相関している。すなわち同一エピトープに対する競合抗体の親和性が大きくなればなる程、被験抗体の抗原をコートしたウェルへの結合活性は低下する。
抗原を介してウェルに結合した被験抗原結合分の量は、予め抗体を標識しておくことによって、容易に測定され得る。たとえば、ビオチン標識された抗体は、アビジンペルオキシダーゼコンジュゲートと適切な基質を使用することにより測定される。ペルオキシダーゼなどの酵素標識を利用した交叉ブロッキングアッセイは、特に競合ELISAアッセイといわれる。抗体は、検出あるいは測定が可能な他の標識物質で標識され得る。具体的には、放射標識あるいは蛍光標識などが公知である。
候補の競合抗体の非存在下で実施されるコントロール試験において得られる結合活性と比較して、競合抗体が、抗原結合ドメインを含む被験抗体の結合を少なくとも20%、好ましくは少なくとも20−50%、さらに好ましくは少なくとも50%ブロックできるならば、当該被験抗体は競合抗体と実質的に同じエピトープに結合するか、又は同じエピトープへの結合に対して競合する抗体である。
本発明の抗原結合ドメインを含む被験抗体が結合するエピトープの構造が同定されている場合には、被験抗体と対照抗原結合分とがエピトープを共有することは、当該エピトープを構成するペプチドにアミノ酸変異を導入したペプチドに対する両者の抗体の結合活性を比較することによって評価され得る。
こうした結合活性を測定する方法としては、例えば、前記のELISAフォーマットにおいて変異を導入した線状のペプチドに対する被験抗体及び対照抗体の結合活性を比較することによって測定され得る。ELISA以外の方法としては、カラムに結合した当該変異ペプチドに対する結合活性を、当該カラムに被験抗体と対照抗体を流下させた後に溶出液中に溶出される抗体を定量することによっても測定され得る。変異ペプチドを例えばGSTとの融合ペプチドとしてカラムに吸着させる方法は公知である。
また、同定されたエピトープが立体エピトープの場合には、被験抗体と対照抗体とがエピトープを共有することは、次の方法で評価され得る。まず、抗原結合ドメインの対象となっている抗原を発現する細胞とエピトープに変異が導入された抗原を発現する細胞が調製される。これらの細胞がPBS等の適切な緩衝液に懸濁された細胞懸濁液に対して被験抗体と対照抗体が添加される。次いで、適宜緩衝液で洗浄された細胞懸濁液に対して、被験抗体と対照抗体を認識することができるFITC標識された抗体が添加される。標識抗体によって染色された細胞の蛍光強度と細胞数がFACSCalibur(BD社)によって測定される。被験抗体と対照抗体の濃度は好適な緩衝液によって適宜希釈することによって所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用される。当該細胞に対する標識抗体の結合量は、CELL QUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、標識抗体の結合量によって表される被験抗体と対照抗体の結合活性を測定することができる。
また、本明細書において、「scFv」、「単鎖抗体」、または「sc(Fv)2」という用語は、単一のポリペプチド鎖内に、重鎖および軽鎖の両方に由来する可変領域を含むが、定常領域を欠いている抗体断片を意味する。一般に、単鎖抗体は、抗原結合を可能にすると思われる所望の構造を形成するのを可能にする、VHドメインとVLドメインの間のポリペプチドリンカーをさらに含む。単鎖抗体は、The Pharmacology of Monoclonal Antibodies, 113巻, Rosenburg、及び、Moore編, Springer-Verlag, New York, 269〜315(1994)においてPluckthunによって詳細に考察されている。同様に、国際特許出願公開WO1988/001649および米国特許第4,946,778号および同第5,260,203号を参照。特定の態様において、単鎖抗体はまた、二重特異性であるか、かつ/またはヒト化され得る。
scFvはFvを構成するVHとVLとがペプチドリンカーによって連結された抗原結合ドメインである(Proc. Natl. Acad. Sci. U.S.A. (1988) 85 (16), 5879-5883)。当該ペプチドリンカーによってVHとVLとが近接した状態に保持され得る。
sc(Fv)2は二つのVLと二つのVHの4つの可変領域がペプチドリンカー等のリンカーによって連結され一本鎖を構成する単鎖抗体である(J Immunol. Methods (1999) 231 (1-2), 177-189)。この二つのVHとVLは異なるモノクローナル抗体から由来することもあり得る。例えば、Journal of Immunology (1994) 152 (11), 5368-5374に開示されるような同一抗原中に存在する二種類のエピトープを認識する二重特異性(bispecific sc(Fv)2)も好適に挙げられる。sc(Fv)2は、当業者に公知の方法によって作製され得る。例えば、scFvをペプチドリンカー等のリンカーで結ぶことによって作製され得る。
本明細書におけるsc(Fv)2を構成する抗原結合ドメインの構成としては、二つのVH及び二つのVLが、一本鎖ポリペプチドのN末端側を基点としてVH、VL、VH、VL([VH]リンカー[VL]リンカー[VH]リンカー[VL])の順に並んでいることを特徴とする抗体が挙げられるが、二つのVHと2つのVLの順序は特に上記の構成に限定されず、どのような順序で並べられていてもよい。例えば以下のような、順序の構成も挙げることができる。
[VL]リンカー[VH]リンカー[VH]リンカー[VL]
[VH]リンカー[VL]リンカー[VL]リンカー[VH]
[VH]リンカー[VH]リンカー[VL]リンカー[VL]
[VL]リンカー[VL]リンカー[VH]リンカー[VH]
[VL]リンカー[VH]リンカー[VL]リンカー[VH]
sc(Fv)2の分子形態についてはWO2006/132352においても詳細に記載されており、当業者であればこれらの記載に基づいて、本明細書で開示される抗体の作製のために適宜所望のsc(Fv)2を作製することが可能である。
ここで、Fv(variable fragment)は、抗体の軽鎖可変領域(VL(light chain variable region))と抗体の重鎖可変領域(VH(heavy chain variable region))とのペアからなる抗体由来の抗原結合ドメインの最小単位を意味する。1988年にSkerraとPluckthunは、バクテリアのシグナル配列の下流に抗体の遺伝子を挿入し大腸菌中で当該遺伝子の発現を誘導することによって、均一でかつ活性を保持した状態で大腸菌のペリプラズム画分から調製されることを見出した(Science (1988) 240 (4855), 1038-1041)。ペリプラズム画分から調製されたFvは、抗原に対する結合を有する態様でVHとVLが会合していた。
また本発明の抗体は、PEG等のキャリアー高分子や抗がん剤等の有機化合物をコンジュゲートしてもよい。また糖鎖付加配列を挿入し、糖鎖が所望の効果を得ることを目的として好適に付加され得る。
抗体の可変領域を結合するリンカーとしては、遺伝子工学により導入し得る任意のペプチドリンカー、又は合成化合物リンカー(例えば、Protein Engineering, 9 (3), 299-305, 1996参照)に開示されるリンカー等を用いることができるが、本発明においてはペプチドリンカーが好ましい。ペプチドリンカーの長さは特に限定されず、目的に応じて当業者が適宜選択することが可能であるが、好ましい長さは5アミノ酸以上(上限は特に限定されないが、通常、30アミノ酸以下、好ましくは20アミノ酸以下)であり、特に好ましくは15アミノ酸である。sc(Fv)2に3つのペプチドリンカーが含まれる場合には、全て同じ長さのペプチドリンカーを用いてもよいし、異なる長さのペプチドリンカーを用いてもよい。
例えば、ペプチドリンカーの場合:
Ser
Gly・Ser
Gly・Gly・Ser
Ser・Gly・Gly
Gly・Gly・Gly・Ser(配列番号:20)
Ser・Gly・Gly・Gly(配列番号:21)
Gly・Gly・Gly・Gly・Ser(配列番号:22)
Ser・Gly・Gly・Gly・Gly(配列番号:23)
Gly・Gly・Gly・Gly・Gly・Ser(配列番号:24)
Ser・Gly・Gly・Gly・Gly・Gly(配列番号:25)
Gly・Gly・Gly・Gly・Gly・Gly・Ser(配列番号:26)
Ser・Gly・Gly・Gly・Gly・Gly・Gly(配列番号:27)
(Gly・Gly・Gly・Gly・Ser(配列番号:22))n
(Ser・Gly・Gly・Gly・Gly(配列番号:23))n
[nは1以上の整数である]等を挙げることができる。但し、ペプチドリンカーの長さや配列は目的に応じて当業者が適宜選択することができる。
合成化学物リンカー(化学架橋剤)は、ペプチドの架橋に通常用いられている架橋剤、例えばN-ヒドロキシスクシンイミド(NHS)、ジスクシンイミジルスベレート(DSS)、ビス(スルホスクシンイミジル)スベレート(BS3)、ジチオビス(スクシンイミジルプロピオネート)(DSP)、ジチオビス(スルホスクシンイミジルプロピオネート)(DTSSP)、エチレングリコールビス(スクシンイミジルスクシネート)(EGS)、エチレングリコールビス(スルホスクシンイミジルスクシネート)(スルホ−EGS)、ジスクシンイミジル酒石酸塩(DST)、ジスルホスクシンイミジル酒石酸塩(スルホ−DST)、ビス[2-(スクシンイミドオキシカルボニルオキシ)エチル]スルホン(BSOCOES)、ビス[2-(スルホスクシンイミドオキシカルボニルオキシ)エチル]スルホン(スルホ-BSOCOES)などであり、これらの架橋剤は市販されている。
4つの抗体可変領域を結合する場合には、通常、3つのリンカーが必要となるが、全て同じリンカーを用いてもよいし、異なるリンカーを用いてもよい。
また、「Fab」は、一本の軽鎖、ならびに一本の重鎖のCH1領域および可変領域から構成される。Fab分子の重鎖は、別の重鎖分子とのジスルフィド結合を形成できない。
「F(ab')2」及び「Fab'」とは、イムノグロブリン(モノクローナル抗体)をタンパク質分解酵素であるペプシンあるいはパパイン等で処理することにより製造され、ヒンジ領域中の2本のH鎖間に存在するジスルフィド結合の前後で消化されて生成される抗体フラグメントを意味する。例えば、IgGをパパインで処理することにより、ヒンジ領域中の2本のH鎖間に存在するジスルフィド結合の上流で切断されてVL(L鎖可変領域)とCL(L鎖定常領域)からなるL鎖、及びVH(H鎖可変領域)とCHγ1(H鎖定常領域中のγ1領域)とからなるH鎖フラグメントがC末端領域でジスルフィド結合により結合した相同な2つの抗体フラグメントが製造され得る。これら2つの相同な抗体フラグメントはそれぞれFab'といわれる。
「F(ab')2」は、二本の軽鎖、ならびに、鎖間のジスルフィド結合が2つの重鎖間で形成されるようにCH1ドメインおよびCH2ドメインの一部分の定常領域を含む二本の重鎖を含む。本明細書において開示される抗体を構成するF(ab')2は、所望の抗原結合ドメインを有する全長モノクローナル抗体等をペプシン等の蛋白質分解酵素にて部分消化した後に、Fc断片をプロテインAカラムに吸着させて除去することにより、好適に取得され得る。かかる蛋白質分解酵素としてはpH等の酵素の反応条件を適切に設定することにより制限的にF(ab')2を生じるように全長抗体を消化し得るものであれば特段の限定はされず、例えば、ペプシンやフィシン等が例示できる。
本発明の「多重特異性抗体」の好ましい態様の1つとして、二重特異性抗体を挙げることができる。二重特異性抗体のFc領域として、Fcγ受容体に対する結合活性が低下しているFc領域を用いる場合、二重特異性抗体を起源とするFc領域も適宜使用される。
多重特異性抗体の会合化には、抗体H鎖の第二の定常領域(CH2)又はH鎖の第三の定常領域(CH3)の界面に電荷的な反発を導入して目的としないH鎖同士の会合を抑制する技術を適用することができる(WO2006/106905)。
CH2又はCH3の界面に電荷的な反発を導入して意図しないH鎖同士の会合を抑制させる技術において、H鎖の他の定常領域の界面で接触するアミノ酸残基としては、例えばCH3領域におけるEUナンバリング356番目の残基、EUナンバリング439番目の残基、EUナンバリング357番目の残基、EUナンバリング370番目の残基、EUナンバリング399番目の残基、EUナンバリング409番目の残基に相対する領域を挙げることができる。
より具体的には、例えば、2種のH鎖CH3領域を含む抗体においては、第1のH鎖CH3領域における以下の(1)〜(3)に示すアミノ酸残基の組から選択される1組ないし3組のアミノ酸残基が同種の電荷を有する抗体とすることができる; (1)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング356位および439位のアミノ酸残基、 (2)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング357位および370位のアミノ酸残基、 (3)H鎖CH3領域に含まれるアミノ酸残基であって、EUナンバリング399位および409位のアミノ酸残基。
更に、上記第1のH鎖CH3領域とは異なる第2のH鎖CH3領域における前記(1)〜(3)に示すアミノ酸残基の組から選択されるアミノ酸残基の組であって、前記第1のH鎖CH3領域において同種の電荷を有する前記(1)〜(3)に示すアミノ酸残基の組に対応する1組ないし3組のアミノ酸残基が、前記第1のH鎖CH3領域における対応するアミノ酸残基とは反対の電荷を有する抗体とすることができる。
上記(1)〜(3)に記載のそれぞれのアミノ酸残基は、会合した際に互いに接近している。当業者であれば、所望のH鎖CH3領域またはH鎖定常領域について、市販のソフトウェアを用いたホモロジーモデリング等により、上記(1)〜(3)に記載のアミノ酸残基に対応する部位を見出すことができ、適宜、該部位のアミノ酸残基を改変に供することが可能である。
上記抗体において、「電荷を有するアミノ酸残基」は、例えば、以下の(a)または(b)のいずれかの群に含まれるアミノ酸残基から選択されることが好ましい;
(a)グルタミン酸(E)、アスパラギン酸(D)、
(b)リジン(K)、アルギニン(R)、ヒスチジン(H)。
上記抗体において、「同種の電荷を有する」とは、例えば、2つ以上のアミノ酸残基のいずれもが、上記(a)または(b)のいずれか1の群に含まれるアミノ酸残基を有することを意味する。「反対の電荷を有する」とは、例えば、2つ以上のアミノ酸残基のなかの少なくとも1つのアミノ酸残基が、上記(a)または(b)のいずれか1の群に含まれるアミノ酸残基を有する場合に、残りのアミノ酸残基が異なる群に含まれるアミノ酸残基を有することを意味する。
好ましい態様において上記抗体は、第1のH鎖CH3領域と第2のH鎖CH3領域がジスルフィド結合により架橋されていてもよい。
本発明において改変に供するアミノ酸残基としては、上述した抗体の可変領域または抗体の定常領域のアミノ酸残基に限られない。当業者であれば、ポリペプチド変異体または異種多量体について、市販のソフトウェアを用いたホモロジーモデリング等により、界面を形成するアミノ酸残基を見出すことができ、会合を制御するように、該部位のアミノ酸残基を改変に供することが可能である。
また、本発明の多重特異性抗体の会合化には更に他の公知技術を用いることもできる。抗体の一方のH鎖の可変領域に存在するアミノ酸側鎖をより大きい側鎖(knob; 突起)に置換し、もう一方のH鎖の相対する可変領域に存在するアミノ酸側鎖をより小さい側鎖(hole; 空隙)に置換することによって、突起が空隙に配置され得るようにすることで効率的にFc領域を有する異なるアミノ酸を有するポリペプチド同士の会合化を起こすことができる(WO1996/027011、Ridgway JB et al., Protein Engineering (1996) 9, 617-621、Merchant AM et al. Nature Biotechnology (1998) 16, 677-681、US20130336973)。
これに加えて、本発明の多重特異性抗体の形成には更に他の公知技術を用いることもできる。抗体の一方のH鎖のCH3の一部をその部分に対応するIgA由来の配列にし、もう一方のH鎖のCH3の相補的な部分にその部分に対応するIgA由来の配列を導入したstrand-exchange engineered domain CH3を用いることで、異なる配列を有するポリペプチドの会合化をCH3の相補的な会合化によって効率的に引き起こすことができる (Protein Engineering Design & Selection, 23; 195-202, 2010)。この公知技術を使っても効率的に目的の多重特異性抗体の形成させることができる。
他にも多重特異性抗体の形成には、WO2011/028952やWO2014/018572やNat Biotechnol. 2014 Feb;32(2):191-8.に記載の抗体のCH1とCLの会合化、VH、VLの会合化を利用した抗体作製技術、WO2008/119353やWO2011/131746に記載の別々に調製したモノクローナル抗体同士を使用して二重特異性抗体を作製する技術(Fab Arm Exchange)、WO2012/058768やWO2013/063702に記載の抗体重鎖のCH3間の会合を制御する技術、WO2012/023053に記載の二種類の軽鎖と一種類の重鎖とから構成される二重特異性抗体を作製する技術、Christophら(Nature Biotechnology Vol. 31, p 753-758 (2013))に記載の1本のH鎖と1本のL鎖からなる抗体の片鎖をそれぞれ発現する2つのバクテリア細胞株を利用した二重特異性抗体を作製する技術等を用いることもできる。
多重特異性抗体の形成の一態様としては、上述したように、二種類のモノクローナル抗体を還元剤存在下で混合し、コアヒンジのdisulfide結合を開裂させたのちに、再会合させてヘテロ二量化した二重特異性抗体を得る方法が挙げられるが(FAE)、CH3領域の相互作用界面に静電相互作用(WO2006/106905)を導入することにより、再会合時にさらに効率的にヘテロ二量化を誘起することができる(WO2015/046467)。天然型IgGを用いたFAEでは再会合がランダムに起こるため理論上50%の効率でしか二重特異性抗体が得られないが、当該方法では高収率で二重特異性抗体を製造することができる。
また、効率的に目的の多重特異性抗体を形成させることができない場合であっても、産生された抗体の中から目的の多重特異性抗体を分離、精製することによっても、本発明の多重特異性抗体を得ることが可能である。例えば、2種類のH鎖の可変領域にアミノ酸置換を導入し等電点の差を付与することで、2種類のホモ体と目的のヘテロ抗体をイオン交換クロマトグラフィーで精製可能にする方法が報告されている(WO2007114325)。また、ヘテロ体を精製する方法として、これまでに、プロテインAに結合するマウスIgG2aのH鎖とプロテインAに結合しないラットIgG2bのH鎖からなるヘテロ二量化抗体をプロテインAを用いて精製する方法が報告されている(WO98050431、WO95033844)。更に、IgGとProteinAの結合部位であるEUナンバリング435番目および436番目のアミノ酸残基を、Tyr、HisなどのProteinAへの結合力の異なるアミノ酸に置換したH鎖を用いることで、各H鎖とProtein Aとの相互作用を変化させ、Protein Aカラムを用いることで、ヘテロ二量化抗体のみを効率的に精製することもできる。
また、異なる複数のH鎖に結合能を与え得る共通のL鎖を取得し、多重特異性抗体の共通L鎖として用いてもよい。このような共通L鎖と異なる複数のH鎖遺伝子を細胞に導入することによってIgGを発現させることで効率の良い多重特異性IgGの発現が可能となる(Nature Biotechnology (1998) 16, 677-681)。共通H鎖を選択する際に、任意の異なるH鎖に対応し高い結合能を示す共通L鎖を選択する方法も利用することができる(WO2004/065611)。
また、本発明のFc領域として、Fc領域のC末端のヘテロジェニティーが改善されたFc領域が適宜使用され得る。より具体的には、IgG1、IgG2、IgG3又はIgG4を起源とするFc領域を構成する二つのポリペプチドのアミノ酸配列のうちEUナンバリングに従って特定される446位のグリシン、及び447位のリジンが欠失したFc領域が提供される。
これらの技術を複数、例えば2個以上組合せて用いることもできる。また、これらの技術は、会合させたい2つのH鎖に適宜別々に適用させることもできる。さらに、これらの技術は、上述のFcγ受容体に対する結合活性が低下しているFc領域に組み合わせて用いることもできる。なお、本発明の抗体は、上記改変が加えられたものをベースにして、同一のアミノ酸配列を有する抗体を別途作製したものであってもよい。
また、本発明は、本発明の多重特異性抗体又はTNF受容体スーパーファミリーのアゴニスト抗体をコードするポリヌクレオチドに関する。当該ポリヌクレオチドは、任意の発現ベクターに組み込むことができる。発現ベクターで適当な宿主を形質転換し、抗体の発現細胞とすることができる。多重特異性抗体又はTNF受容体スーパーファミリーのアゴニスト抗体の発現細胞を培養し、培養上清から発現産物を回収すれば、当該ポリヌクレオチドによってコードされる多重特異性抗体又はTNF受容体スーパーファミリーのアゴニスト抗体を取得することができる。即ち本発明は、本発明の多重特異性抗体又はTNF受容体スーパーファミリーのアゴニスト抗体をコードするポリヌクレオチドを含むベクター、当該ベクターを保持する細胞、および当該細胞を培養し培養上清から抗体を回収することを含む、多重特異性抗体又はTNF受容体スーパーファミリーのアゴニスト抗体の製造方法に関する。これらは例えば、前記組換え抗体と同様の手法により得ることができる。
医薬組成物
別の観点としては、本発明は、本発明の多重特異性抗体を有効成分として含有する、TNF受容体スーパーファミリーのアゴニスト抗体と併用し、細胞傷害を誘導する医薬組成物(細胞傷害誘導治療剤)、細胞増殖抑制剤および抗癌剤に関する。また、本発明のTNF受容体スーパーファミリーのアゴニスト抗体を有効成分として含有する、本発明の多重特異性抗体と併用し、細胞傷害を誘導する医薬組成物(細胞傷害誘導治療剤)、細胞増殖抑制剤および抗癌剤に関する。本発明の医薬組成物は、癌治療剤または癌予防剤として用いることもできる。本発明の細胞傷害誘導治療剤、細胞増殖抑制剤および抗癌剤は、癌を罹患している対象または再発する可能性がある対象に投与されることが好ましい。
また、本発明において、上述の細胞傷害誘導治療剤、細胞増殖抑制剤および抗癌剤は、前記多重特異性抗体及び/又は前記アゴニスト抗体を対象に投与する工程を含む、細胞傷害を誘導する方法、細胞増殖を抑制する方法、癌細胞又は癌細胞を含む腫瘍組織に対する免疫を活性化する方法、または癌を予防もしくは治療する方法と表現することができ、あるいは、細胞傷害誘導治療剤(細胞傷害を誘導するための医薬組成物)、細胞増殖抑制剤および抗癌剤の製造における当該多重特異性抗体及び/又は当該アゴニスト抗体の使用と表現することもでき、あるいは、細胞傷害の誘導、細胞増殖の抑制、癌細胞又は癌細胞を含む腫瘍組織に対する免疫の活性化またはがんの治療もしくは予防において使用するための当該多重特異性抗体及び/又は当該アゴニスト抗体と表現することもできる。
また、本発明において「治療」という用語は本発明に係る医薬組成物が被験者に投与されることによって、癌細胞が死滅またはその細胞数が減少すること、癌細胞の増殖が抑制されること、癌に起因する様々な症状が改善されることを意味するものである。また、「予防」という語は、減少した癌細胞が再度増殖することによるその数の増加を防止すること、増殖が抑制された癌細胞の再増殖を防止することを意味する。
本発明において、「多重特異性抗体を有効成分として含む」又は「アゴニスト抗体を有効成分として含む」とは、当該多重特異性抗体又は当該アゴニスト抗体を主要な活性成分として含むという意味であり、当該多重特異性抗体又は当該アゴニスト抗体の含有率を制限するものではない。
ここで、「併用」には、本発明の多重特異性抗体を有効成分として含む医薬組成物等と本発明のTNF受容体スーパーファミリーのアゴニスト抗体を有効成分として含む医薬組成物等とが、対象に対して、同時に投与されることも含まれるし、別々に投与されることも含まれる。また、その剤型は同一のものであってもよいし、異なるものであってもよい。さらに、これらの医薬組成物等をキットとして提供するものであってもよい。
また、本発明は、上記の多重特異性抗体又は当該多重特異性抗体を有効成分として含む医薬組成物等と、上記のTNF受容体スーパーファミリーのアゴニスト抗体又は当該アゴニスト抗体を有効成分として含む医薬組成物等を併用することによって生じる効果を利用することにより、上記の多重特異性抗体又は当該多重特異性抗体を有効成分として含む医薬組成物等によって、上記のTNF受容体スーパーファミリーのアゴニスト抗体又は当該アゴニスト抗体を有効成分として含む医薬組成物等の細胞傷害活性又は抗腫瘍効果を強化する方法を提供する。また、上記のTNF受容体スーパーファミリーのアゴニスト抗体又は当該アゴニスト抗体を有効成分として含む医薬組成物等によって、上記の多重特異性抗体又は当該多重特異性抗体を有効成分として含む医薬組成物等の細胞傷害活性又は抗腫瘍効果を強化する方法を提供する。
更に本発明における医薬組成物等は、必要に応じて複数種類の本発明の多重特異性抗体及び/又は本発明のTNF受容体スーパーファミリーのアゴニスト抗体を組み合わせて用いることが可能である。たとえば、同一の抗原に結合する複数の本発明の抗体のカクテルを用いることによって、当該抗原を発現する細胞に対する細胞傷害作用を強化できる可能性がある。
また、必要に応じ本発明の抗体はマイクロカプセル(ヒドロキシメチルセルロース、ゼラチン、ポリ[メチルメタクリル酸]等のマイクロカプセル)に封入され、コロイドドラッグデリバリーシステム(リポソーム、アルブミンミクロスフェア、マイクロエマルジョン、ナノ粒子及びナノカプセル等)とされ得る("Remington's Pharmaceutical Science 16th edition", Oslo Ed. (1980)等参照)。さらに、薬剤を徐放性の薬剤とする方法も公知であり、当該方法は本発明の抗体に適用され得る(J.Biomed.Mater.Res. (1981) 15, 267-277、Chemtech. (1982) 12, 98-105、米国特許第3773719号、欧州特許公開公報EP58481号・EP133988号、Biopolymers (1983) 22, 547-556)。
本発明の医薬組成物、あるいは細胞増殖抑制剤および抗癌剤は、経口、非経口投与のいずれかによって患者に投与することができる。好ましくは非経口投与である。係る投与方法としては具体的には、注射投与、経鼻投与、経肺投与、経皮投与などが挙げられる。注射投与としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などが挙げられる。例えば注射投与によって本発明の医薬組成物、あるいは細胞傷害誘導治療剤、細胞増殖抑制剤および抗癌剤が全身または局部的に投与できる。また、患者の年齢、症状により適宜投与方法を選択することができる。投与量としては、例えば、一回の投与につき体重1 kgあたり0.0001 mgから1000 mgの範囲で投与量を選択できる。あるいは、例えば、患者あたり0.001 mg/bodyから100000 mg/bodyの範囲で投与量を選択し得る。しかしながら、本発明の医薬組成物はこれらの投与量に制限されるものではない。
本発明の医薬組成物は、常法に従って製剤化することができ(例えば、Remington's Pharmaceutical Science, latest edition, Mark Publishing Company, Easton, U.S.A)、医薬的に許容される担体や添加物を共に含むものであってもよい。例えば界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等が挙げられる。更にこれらに制限されず、その他常用の担体を適宜使用できる。具体的には、軽質無水ケイ酸、乳糖、結晶セルロース、マンニトール、デンプン、カルメロースカルシウム、カルメロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアセタールジエチルアミノアセテート、ポリビニルピロリドン、ゼラチン、中鎖脂肪酸トリグリセライド、ポリオキシエチレン硬化ヒマシ油60、白糖、カルボキシメチルセルロース、コーンスターチ、無機塩類等を担体として挙げることができる。
また、本発明は、ある癌特異的抗原を発現する細胞を、本発明の多重特異性抗体及び本発明のTNF受容体スーパーファミリーのアゴニスト抗体と接触させることにより、当該癌特異的抗原の発現細胞又は当該癌特異的抗原の発現細胞を含む腫瘍組織に傷害を引き起こす方法、或いは、当該細胞又は当該腫瘍組織の増殖を抑制する方法を提供する。当該癌特異的抗原に結合する本発明の多重特異性抗体が結合する細胞は、当該癌特異的抗原が発現している細胞であれば特に限定されない。本発明における好ましい当該癌抗原の発現細胞は、具体的には、卵巣癌、前立腺癌、乳癌、子宮癌、肝癌、肺癌、膵臓癌、胃癌、膀胱癌及び大腸癌細胞等が好適に挙げられる。
本発明において「接触」は、例えば、インビトロで培養している癌抗原発現細胞の培養液に、当該癌抗原に結合する本発明の抗体を添加することにより行われる。この場合において、添加される抗体の形状としては、溶液又は凍結乾燥等により得られる固体等の形状が適宜使用され得る。水溶液として添加される場合にあっては純粋に本発明の抗体のみを含有する水溶液であり得るし、例えば上記記載の界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等を含む溶液でもあり得る。添加する濃度は特に限定されないが、培養液中の最終濃度として、好ましくは1 pg/mlから1 g/mlの範囲であり、より好ましくは1 ng/mlから1 mg/mlであり、更に好ましくは1μg/mlから1 mg/mlが好適に使用され得る。
また、本発明において「接触」は更に、別の態様では、癌特異的抗原の発現細胞を体内に移植した非ヒト動物や、内在的に当該癌特異的抗原を発現する癌細胞を有する動物に、当該癌抗原に結合する本発明の多重特異性抗体及び/又はTNF受容体スーパーファミリーのアゴニスト抗体を投与することによっても行われる。投与方法は経口、非経口投与のいずれかによって実施できる。特に好ましくは非経口投与による投与方法であり、係る投与方法としては具体的には、注射投与、経鼻投与、経肺投与、経皮投与などが挙げられる。注射投与としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などが挙げられる。例えば注射投与によって本発明の医薬組成物、あるいは細胞傷害を誘導するための医薬組成物、細胞増殖阻害剤および抗癌剤を全身または局部的に投与できる。また、被験動物の年齢、症状により適宜投与方法を選択することができる。水溶液として投与される場合にあっては純粋に本発明の抗体のみを含有する水溶液であってもよいし、例えば上記記載の界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等を含む溶液であってもよい。投与量としては、例えば、一回の投与につき体重1 kgあたり0.0001 mgから1000 mgの範囲で投与量を選択できる。あるいは、例えば、患者あたり0.001から100000 mg/bodyの範囲で投与量を選択できる。しかしながら、本発明の抗体投与量はこれらの投与量に制限されるものではない。
本発明の多重特異性抗体及び/又は本発明のTNF受容体スーパーファミリーのアゴニスト抗体の接触によって当該多重特異性抗体を構成する癌特異的抗原結合ドメインが結合する癌特異的抗原を発現する細胞に引き起こされた細胞傷害を評価又は測定する方法として、以下の方法が好適に使用される。インビトロで該細胞傷害活性を評価又は測定する方法としては、細胞傷害性T細胞活性などの測定法を挙げることができる。本発明の抗体がT細胞性傷害活性を有するか否かを、公知の方法により測定することができる(例えば、Current protocols in Immunology, Chapter 7. Immunologic studies in humans, Editor, John E, Coligan et al., John Wiley & Sons, Inc.,(1993)等)。活性の測定に際しては、本発明とはその抗原結合ドメインが結合する抗原が異なる抗原であって試験に使用する細胞が発現していない抗原に結合する多重特異性抗体を対照として、本発明の多重特異性抗体と同様に使用し、本発明の多重特異性抗体が、対照として使用された多重特異性抗体よりも強い細胞傷害活性を示すことにより、活性を判定し得る。
また、生体内で細胞傷害活性を評価又は測定するために、例えば本発明の多重特異性抗体を構成する癌特異的抗原結合ドメインが結合する抗原を発現する細胞を、非ヒト被験動物の皮内又は皮下に移植後、当日又は翌日から毎日又は数日間隔で被験抗体を静脈又は腹腔内に投与する。腫瘍の大きさを経日的に測定することにより、当該腫瘍の大きさの変化の差異を細胞傷害活性と規定し得る。インビトロでの評価と同様に対照となる抗体を投与し、本発明の抗体の投与群における腫瘍の大きさが対照抗体の投与群における腫瘍の大きさよりも有意に小さいことにより、本発明の抗体が細胞傷害活性を有すると判定し得る。
本発明の抗体の接触による、当該抗体を構成する癌特異的抗原結合ドメインが結合する抗原を発現する細胞の増殖に対する抑制効果を評価又は測定する方法としては、アイソトープラベルしたthymidineの細胞へ取込み測定やMTT法が好適に用いられる。また、生体内で細胞増殖抑制活性を評価又は測定する方法として、上記記載の生体内において細胞傷害活性を評価又は測定する方法と同じ方法を好適に用いることができる。
また、本発明は、本発明の抗体または本発明の製造方法により製造された抗体を含む、本発明の方法に用いるためのキットを提供する。該キットには、その他、薬学的に許容される担体、媒体、使用方法を記載した指示書等をパッケージしておくことができる。
また、本発明は、本発明の方法に使用するための、本発明の抗体または本発明の製造方法により製造された抗体に関する。
また、本明細書においては、「単一の」又は「複数の」といった数量を意味する限定を記載して用語の説明をしていない限り、本明細書に記載されている用語は、特に数量が限定されたものとして解釈されず、「1又は複数の」という意味を有する用語であるものと理解される。
本明細書に記載の1又は複数の態様を任意に組み合わせたものも、当業者の技術常識に基づいて技術的に矛盾しない限り、本発明に含まれることが当業者には当然に理解される。
なお、本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。
以下に実施例により本発明をより詳細に説明するが、これらの実施例は本発明の範囲を制限するものではない。
〔参考例1〕抗体の発現ベクターの作製および抗体の発現と精製
抗体の可変領域のH鎖およびL鎖の塩基配列をコードする全長の遺伝子の合成は、Assemble PCR等を用いて、当業者公知の方法で作製した。アミノ酸置換の導入はPCR等を用いて当業者公知の方法で行った。得られたプラスミド断片を動物細胞発現ベクターに挿入し、H鎖発現ベクターおよびL鎖発現ベクターを作製した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。作製したプラスミドをヒト胎児腎癌細胞由来HEK293H株(Invitrogen社)、またはFreeStyle293細胞(Invitrogen社)に一過性に導入し、抗体の発現を行った。得られた培養上清を回収した後、0.22μmフィルターMILLEX(R)-GV(Millipore)または0.45μmフィルターMILLEX(R)-GV(Millipore)を通して培養上清を得た。得られた培養上清から、rProtein A Sepharose Fast Flow(GEヘルスケア)またはProtein G Sepharose 4 Fast Flow(GEヘルスケア)を用いて当業者公知の方法で抗体を精製した。精製抗体濃度は、分光光度計を用いて280 nmでの吸光度を測定し、得られた値からPACE等の方法により算出された吸光係数を用いて抗体濃度を算出した(Protein Science 1995 ; 4 : 2411-2423)。
〔参考例2〕実験動物及び細胞株
実験動物は、C57BL/6 雌性マウス(日本チャールス・リバー株式会社)、あるいはBalb/c雌性マウス(日本チャールス・リバー株式会社)を用い、動物飼育室で一定の条件(温度:20〜26℃、明暗:12時間の明暗周期)で、飼料と飲水の自由摂取下で飼育した。マウス肺癌細胞株であるLLC(ATCC No. CRL-1642)の染色体に当業者公知の方法によりヒトGPC3遺伝子を組み込み、ヒトGPC3を高発現する細胞株LLC-GPC3を得た。ヒトGPC3発現レベル(2.3x105/cell)は、QIFIキット(Dako社)を用いて、製造元推奨の方法によって決定した。同様に、マウス大腸癌細胞株であるCT-26(ATCC No. CRL-2638)に対してもヒトGPC3遺伝子を組み込み、高発現株CT26-GPC3(発現レベル:3.1x105/cell)を得た。これら組換え細胞株はATCC推奨の培地にヒトGPC3遺伝子保持のためにジェネティシン(GIBCO)を、LLC-GPC3に対しては400μg/ml、CT26-GPC3に対しては200μg/ml添加して培養した。培養後、これらの細胞を2.5g/Lトリプシン-1mM EDTA(nacalai tesque社)にて剥がした後に各実験に使用した。
〔実施例1〕抗マウスCD137抗体の作製
抗体H鎖可変領域としてはWO2005/017148に開示されているマウスCD137に対する可変領域である1D8VH(配列番号:28)を、抗体H鎖定常領域としては天然型マウスIgG1のH鎖定常領域に、mFcgRIIに対する結合を増強する改変(T230E、V231P、P232N、S238E、S239D、N324D)を導入して、1D8VH-MB492(配列番号:29)を参考例1の方法に従って作製した。抗体L鎖可変領域としてはWO2005/017148に開示されている1D8VLを、L鎖定常領域としてはマウスκ鎖の定常領域をもつ1D8VL-mk0(配列番号:30)を用い、参考例1の方法に従って発現、精製することで、1D8VH-MB492/1D8VL-mk0を得た。本抗体は以後簡略化のために抗マウスCD137抗体と記載する。
〔実施例2〕抗ヒトGPC3/抗マウスCD3二重特異性抗体の作製
抗ヒトGPC3/抗マウスCD3二重特異性抗体(GPC3 ERY22-3-2C11)を作製した。H鎖とL鎖の会合を制御し、効率良く二重特異性抗体を得るため、Schaeferらによって報告されているCrossMab技術を用いた(Schaefer, Proc. Natl. Acad. Sci., 2011, 108, 11187-11192)。すなわち、これらの分子はWO2012/073985に記載されているヒトGPC3に対するFabのVHドメインとVLドメインが置換された分子となっている。また、抗体H鎖定常領域には、ヘテロ会合を促進するために、Knobs-into-Holes技術を用いた。Knobs-into-Holes技術は、一方のH鎖のCH3領域に存在するアミノ酸側鎖をより大きい側鎖(Knob;突起)に置換し、もう一方のH鎖のCH3領域に存在するアミノ酸側鎖をより小さい側鎖(Hole;空隙)に置換することで突起が空隙内に配置されるようにしてH鎖のヘテロ二量化を促進し、目的のヘテロ二量化抗体を効率的に取得できる技術である(Burmeister, Nature, 1994, 372, 379-383)。以降、Knob改変が導入された定常領域をKn、Hole改変が導入された定常領域をHlと示す。また、FcγRに対する結合を減弱させる改変として、WO2011/108714に記載されている改変を用いた。具体的には、IgG1型に対して、EUナンバリング234番目、235番目、297番目をAlaに置換する改変を導入した。抗体H鎖のC末端からはEUナンバリング446番目のGlyおよび447番目のLysを除去し、そこに対してさらに抗体発現後の精製を容易にするため、抗ヒトGPC3側のH鎖のC末端にヒスチジンタグを、抗マウスCD3側のH鎖のC末端にFLAGタグを付加した。以上の改変を導入した抗ヒトGPC3側H鎖として、GC33(2)H-G1dKnHS(配列番号:31)を作製した。また、抗マウスCD3抗体のH鎖可変領域として2C11VH(配列番号:32)の配列を用い、2C11VH-G1dHlS(配列番号:33)を作製した。抗体L鎖としては、抗ヒトGPC3側としてGC33(2)L-k0(配列番号:34)、抗マウスCD3側として2C11VL-k0(配列番号:35)を用い、目的の二重特異性抗体を得た。参考例1の方法に従って発現することで得られた培養上清をMabSelect SuReカラム(GE Healthcare社)に添加し、当該カラムを洗浄した後、50 mM酢酸による溶出を実施した。抗体を含む画分をHisTrap HPカラム(GE Healthcare社)もしくはNi Sepharose FFカラム(GE Healthcare社)に添加し、当該カラムを洗浄した後、イミダゾールによる溶出を実施した。抗体を含む画分を限外ろ過膜で濃縮した後、濃縮液をSuperdex 200カラム(GE Healthcare社)に添加し、その溶出液の単量体の抗体のみを回収することにより精製抗体を得た。
〔実施例3〕抗マウスCD137抗体および抗ヒトGPC3/抗マウスCD3 二重特異性抗体の併用による抗腫瘍効果
ヒトGPC3を発現する組換えマウス大腸癌細胞株CT26-GPC3(参考例2)をHanks' Balanced Salt Solution (HBSS)にて1 x 107 cells/mLに調製し、BALB/cマウス(メス、5週齢、日本チャールス・リバー社)の腹部皮下へ100μL(1 x 106 cells)移植した。無作為に5匹ずつ4群に群分けした後、移植14日後、17日後に尾静脈注射により抗体を投与した。抗マウスCD137抗体(1D8-MB492)または抗ヒトGPC3/抗マウスCD3 二重特異性抗体(2C11)はvehicle(0.05% Tween20-PBS)にて希釈後0.5mg/mLに調製して10mL/kgで投与した(各々、5mg/kg)。併用群は抗マウスCD137抗体と抗ヒトGPC3/抗マウスCD3 二重特異性抗体を各々5mg/kgで投与した。腫瘍増殖抑制率(%)は以下の式から算出した腫瘍体積により評価した。

腫瘍体積(mm3)=長径(mm) x 短径(mm)x 短径(mm)/2

腫瘍増殖抑制率(%)=[1 - (T - T0)/(C - C0)] × 100
T:各群の各測定日の平均腫瘍体積
T0:各群の初回投与日の平均腫瘍体積
C:コントロール群の各測定日の平均腫瘍体積
C0:コントロール群の初回投与日の平均腫瘍体積

図1に示されるように経時的に各群の腫瘍体積を測定した。その結果、2回目の投与から11日後の時点で腫瘍増殖抑制率は、抗マウスCD137抗体投与群で96%であり、抗ヒトGPC3/抗マウスCD3二重特異性抗体は48%であった。一方、併用群の腫瘍増殖抑制率は103%であった。
〔実施例4〕抗マウスCD137抗体と抗ヒトGPC3/抗マウスCD3 二重特異性抗体の併用による肝臓に対する毒性の軽減作用
抗体投与薬効試験の終了時に麻酔下全採血により安楽死処置を実施後、血漿を分離した。血漿を用いてアスパラギン酸アミノトランスフェラーゼ(AST;JSCC Transferable法)、アラニンアミノトランスフェラーゼ(ALT;JSCC Transferable法)、総ビリルビン(TBIL;酵素法)を自動分析装置TBA-120FR(東芝メディカルシステムズ株式会社)を用いて測定した。剖検時に肝臓を採取し、10%中性緩衝ホルマリン液にて固定し、常法に従いパラフィン包埋薄切組織標本(ヘマトキシリン・エオジン(HE))と抗マウスCD3免疫組織標本を作製し、光学顕微鏡で病理組織学的に観察した。
その結果、図2から図5に示されるように、抗マウスCD137抗体投与群においては、血中ALT及びTBILの増加が全例で認められ、さらに状態悪化により途中切迫殺剖検された1例では血中ALT, AST及びTBILが顕著に増加し、病理組織学的には軽度から重度な肝細胞の変性・壊死、CD3陽性細胞浸潤を伴う炎症といった肝障害が全例でみられた。抗マウスCD137抗体と抗ヒトGPC3/抗マウスCD3 二重特異性抗体の併用投与群では、抗マウスCD137抗体投与群で認められた血中ALT及びTBILの増加が抑制され、病理組織学的には軽微ないし軽度な肝細胞の変性・壊死、炎症が全例でみられ、肝障害は軽減していた。すなわち、併用投与によって抗マウスCD137抗体投与によって誘導された肝障害が軽減されていることが示唆された。
また、抗体投与試験終了時に剖検で採取された肝臓組織の一部からRNAを単離し炎症性マーカーの発現レベルを解析した。肝臓組織をRNAlater (QIAGEN社)で処理後、業者指定の方法に従って自動核酸分離装置QIAcube (QIAGEN社)にてトータルRNAを精製した。さらにTranscriptor First strand cDNA synthesis kit (Roche Life Science社)を用いて、業者推奨の方法に従い相補DNAを合成した。この相補DNAを鋳型に、Power SYBR Green PCR master Mix (Applied Biosystems社)およびLightCycler 480 (Roche Life Science社)を用いて業者推奨の方法に従い、図6に示す各標的遺伝子のリアルタイムPCRを実施した。データ補正はβアクチンを内部標準として行い、さらにvehicleの値を1とした比較値で示す。その結果、抗マウスCD137抗体投与群においては炎症性因子のCD137、IFNgやグランザイム(GZMB)および攻撃型T細胞の表面マーカーのCD3、CD8の発現レベルが顕著に亢進していたのに対し、併用投与群においてはそれら因子の発現が極めて低下していることが確認された。
以上の結果より、抗マウスCD137抗体と抗ヒトGPC3/抗マウスCD3 二重特異性抗体を併用することによって、抗マウスCD137抗体によって誘導される肝障害が軽減されることが示唆された。
〔実施例5〕抗ヒトGPC3/抗マウスCD3二重特異性抗体の作製
抗ヒトGPC3抗体および抗マウスCD3抗体をそれぞれ作成し、組み合わせることで抗ヒトGPC3/抗マウスCD3二重特異性抗体を作成した。抗ヒトGPC3抗体の重鎖としてFcγ受容体への結合を低減し、ヘテロ会合化するように改変を加えた重鎖定常領域を有するH0000-F760nN17(配列番号36)を作製した。また軽鎖にはGL4-k0(配列番号37)を用いた。抗マウスCD3抗体の重鎖としてFcγ受容体への結合を低減し、ヘテロ会合化するように改変を加えた重鎖定常領域を有する2C11VH-F760nP17(配列番号38)を作製した。また抗マウスCD3抗体の軽鎖には2C11VL-k0(配列番号:35)を用いた。
それぞれの抗体を参考例1の方法に従って発現、精製し、抗ヒトGPC3抗体(H0000-F760nN17/GL4-k0)と抗マウスCD3抗体(2C11VH-F760nP17/2C11VL-k0)を得た。精製したそれぞれの抗体を、定常領域の電荷の違いを利用した当業者公知の方法(WO2015/046467)で混合し、目的の二重特異性抗体を作製した。
〔実施例6〕抗マウスCD137抗体および抗ヒトGPC3/抗マウスCD3二重特異性抗体の併用による抗腫瘍効果
ヒトGPC3を発現する組換えマウス肺癌細胞株LLC-GPC3(参考例2)をHanks' Balanced Salt Solution (HBSS)にて5 x 106 cells/mLに調製し、C57BL/6NJclマウス(メス、6週齢、日本クレア社)の腹部皮下へ200μL(1 x 106 cells)移植した。移植10日後に腫瘍体積データにより無作為に9匹ずつ4群に群分けし移植10日後、14日後に尾静脈注射により抗体を投与した。抗マウスCD137抗体(1D8-MB492)または抗ヒトGPC3/抗マウスCD3 二重特異性抗体(2C11)はvehicle(0.05% Tween20-PBS)にて希釈後0.5mg/mLに調製して10mL/kgで投与した(各々、5mg/kg)。併用群は抗マウスCD137抗体と抗ヒトGPC3/抗マウスCD3 二重特異性抗体を各々5mg/kgで投与した。各群(9匹)から、腫瘍移植17日後、21日後、25日後に3匹ずつ採材を行った。腫瘍増殖抑制率(%)は以下の式から算出した腫瘍体積により評価した。

腫瘍体積(mm3)=長径(mm) x 短径(mm)x 短径(mm)/2

腫瘍増殖抑制率(%)=[1 - (T - T0)/(C - C0)] × 100
T:各群の各測定日の平均腫瘍体積
T0:各群の初回投与日の平均腫瘍体積
C:コントロール群の各測定日の平均腫瘍体積
C0:コントロール群の初回投与日の平均腫瘍体積

図8に示されるように経時的に各群の腫瘍体積を測定した。その結果、2回目の投与から11日後の時点で腫瘍増殖抑制率は、抗マウスCD137抗体投与群で43%であり、抗ヒトGPC3/抗マウスCD3二重特異性抗体は75%であった。一方、併用群の腫瘍増殖抑制率は104%であった。腫瘍移植23日後に抗マウスCD137抗体投与群の個体が1匹死亡したため、図8におけるこの群の移植25日後のデータは2例の平均値である。
〔実施例7〕抗マウスCD137抗体と抗ヒトGPC3/抗マウスCD3 二重特異性抗体の併用による肝臓に対する毒性の軽減作用
LLC-GPC3担癌マウスでの抗体投与薬効試験の腫瘍移植17日後、21日後、25日後に4群の実験群の個体を麻酔下全採血により安楽死処置を実施後、血漿を分離した。血漿を用いてアラニンアミノトランスフェラーゼ(ALT;JSCC Transferable法)を自動分析装置TBA-120FR(東芝メディカルシステムズ株式会社)を用いて測定した。腫瘍移植23日後に抗マウスCD137抗体投与群の個体が1匹死亡したため、この群の移植25日後のデータは2例のデータの平均値を算出した。その結果、図9に示されるように、抗マウスCD137抗体投与群においては、血中ALTの経時的増加が全例で認められた一方で、抗マウスCD137抗体と抗ヒトGPC3/抗マウスCD3 二重特異性抗体の併用投与群では、血中ALT増加が顕著に抑制され肝障害軽減が示唆された。
本発明の医薬組成物によって、腫瘍壊死因子(TNF)受容体スーパーファミリーのアゴニスト抗体単独で処方される際に認められる肝障害等の副作用を低減しつつ、癌特異的抗原を発現する癌細胞および該癌細胞を含む腫瘍組織特異的に優れた抗腫瘍活性を誘導できることが示された。癌抗原依存的に免疫細胞を活性化することで、癌細胞を含む様々な細胞を標的とする細胞傷害作用をもたらし、様々な癌を治療又は予防することができる。患者にとっても、安全性が高いばかりでなく、身体的負担が少なく利便性も高いという、望ましい治療ができるようになる。

Claims (25)

  1. (1) GPC3結合ドメイン、
    (2) CD3結合ドメイン、及び
    (3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、
    を含む多重特異性抗体を有効成分として含む、CD137のアゴニスト抗体と併用するための医薬組成物であって、
    前記CD137のアゴニスト抗体がFc領域を含み、該Fc領域が、抑制型Fcγ受容体に対する結合活性が増加している、抗体のFc領域である医薬組成物
  2. CD137のアゴニスト抗体による治療に伴う副作用を低減または除去するための請求項1に記載の医薬組成物。
  3. 癌治療用の組成物である、請求項1又は2に記載の医薬組成物。
  4. 前記副作用が主に肝障害である、請求項2または3に記載の医薬組成物。
  5. 前記多重特異性抗体が二重特異性抗体である、請求項1からのいずれかに記載の医薬組成物。
  6. 前記CD137のアゴニスト抗体の作用が、細胞傷害を誘導する作用である、請求項1からのいずれかに記載の医薬組成物。
  7. 前記CD137のアゴニスト抗体と同時に投与される、請求項1からのいずれかに記載の医薬組成物。
  8. 前記CD137のアゴニスト抗体と別々に投与される、請求項1からのいずれかに記載の医薬組成物。
  9. CD137のアゴニスト抗体を有効成分として含む、
    (1) GPC3結合ドメイン、
    (2) CD3結合ドメイン、及び
    (3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、
    を含む多重特異性抗体と併用するための医薬組成物であって、
    前記CD137のアゴニスト抗体がFc領域を含み、該Fc領域が、抑制型Fcγ受容体に対する結合活性が増加している、抗体のFc領域である医薬組成物
  10. CD137のアゴニスト抗体による作用を腫瘍組織特異的に誘導するための請求項に記載の医薬組成物。
  11. 癌治療用の組成物である、請求項又は10に記載の医薬組成物。
  12. 前記多重特異性抗体が二重特異性抗体である、請求項から11のいずれかに記載の医薬組成物。
  13. 前記多重特異性抗体の作用が、CD137のアゴニスト抗体による治療に伴う副作用を低減または除去する作用である、請求項から12のいずれかに記載の医薬組成物。
  14. 前記副作用が主に肝障害である、請求項13に記載の医薬組成物。
  15. 前記多重特異性抗体と同時に投与される、請求項から14のいずれかに記載の医薬組成物。
  16. 前記多重特異性抗体と別々に投与される、請求項から14のいずれかに記載の医薬組成物。
  17. (1) GPC3結合ドメイン、
    (2) CD3結合ドメイン、及び
    (3) Fcγ受容体に対する結合活性が低下しているFc領域を含むドメイン、を含む多重特異性抗体並びにCD137のアゴニスト抗体を組み合わせてなる、医薬組成物であって、
    前記CD137のアゴニスト抗体がFc領域を含み、該Fc領域が、抑制型Fcγ受容体に対する結合活性が増加している、抗体のFc領域である医薬組成物
  18. 前記医薬組成物が配合剤であることを特徴とする、請求項17に記載の医薬組成物。
  19. 前記多重特異性抗体および前記アゴニスト抗体が併用されることを特徴とする、請求項17に記載の医薬組成物。
  20. 前記多重特異性抗体と前記アゴニスト抗体とが同時または順次に投与されることを特徴とする、請求項19に記載の医薬組成物。
  21. 前記多重特異性抗体と前記アゴニスト抗体とが別々に投与されることを特徴とする、請求項19に記載の医薬組成物。
  22. CD137のアゴニスト抗体による治療に伴う副作用を低減または除去するための請求項17から21のいずれかに記載の医薬組成物。
  23. 癌治療用の組成物である、請求項17から22のいずれかに記載の医薬組成物。
  24. 前記副作用が主に肝障害である、請求項22または23に記載の医薬組成物。
  25. 前記多重特異性抗体が二重特異性抗体である、請求項17から24のいずれかに記載の医薬組成物。
JP2017522231A 2015-06-05 2016-06-02 免疫活性化剤の併用 Active JP6826529B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015114418 2015-06-05
JP2015114418 2015-06-05
PCT/JP2016/066331 WO2016194992A1 (ja) 2015-06-05 2016-06-02 免疫活性化剤の併用

Publications (2)

Publication Number Publication Date
JPWO2016194992A1 JPWO2016194992A1 (ja) 2018-03-22
JP6826529B2 true JP6826529B2 (ja) 2021-02-03

Family

ID=57440348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017522231A Active JP6826529B2 (ja) 2015-06-05 2016-06-02 免疫活性化剤の併用

Country Status (4)

Country Link
US (1) US20180171017A1 (ja)
EP (1) EP3305322A4 (ja)
JP (1) JP6826529B2 (ja)
WO (1) WO2016194992A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663123C2 (ru) 2010-11-30 2018-08-01 Чугаи Сейяку Кабусики Кайся Индуцирующий цитотоксичность терапевтический агент
RU2743463C2 (ru) 2012-05-30 2021-02-18 Чугаи Сейяку Кабусики Кайся Специфичная к ткани-мишени антигенсвязывающая молекула
AU2014250434B2 (en) 2013-04-02 2019-08-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
EP3763813A1 (en) 2013-12-04 2021-01-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
NZ724710A (en) 2014-04-07 2024-02-23 Chugai Pharmaceutical Co Ltd Immunoactivating antigen-binding molecule
BR112016026299A2 (ja) 2014-05-13 2018-02-20 Chugai Seiyaku Kabushiki Kaisha The T-lymph cell redirection antigen joint molecule to the cell which has an immunosuppressive function
EP3378488A4 (en) 2015-11-18 2019-10-30 Chugai Seiyaku Kabushiki Kaisha METHOD FOR ENHANCING THE HUMORAL IMMUNE RESPONSE
WO2017086367A1 (ja) 2015-11-18 2017-05-26 中外製薬株式会社 免疫抑制機能を有する細胞に対するt細胞リダイレクト抗原結合分子を用いた併用療法
EP3554542A1 (en) * 2016-12-19 2019-10-23 H. Hoffnabb-La Roche Ag Combination therapy with targeted 4-1bb (cd137) agonists
CN110573528B (zh) * 2017-03-29 2023-06-09 豪夫迈·罗氏有限公司 针对共刺激性tnf受体的双特异性抗原结合分子
EP3720963A4 (en) 2017-12-05 2021-12-08 Chugai Seiyaku Kabushiki Kaisha ANTIGEN BINDING MOLECULE INCLUDING A VARIABLE REGION OF MODIFIED ANTIBODIES BINDING TO CD3 AND CD137
CN112839960A (zh) * 2018-08-10 2021-05-25 中外制药株式会社 抗cd137抗原结合分子及其应用
CN113260634A (zh) * 2018-09-28 2021-08-13 中外制药株式会社 包含改变的抗体可变区的抗原结合分子
CA3118397A1 (en) * 2018-11-01 2020-05-07 Shandong Newtime Pharmaceutical Co., Ltd. Bispecific antibody targeting cd3 and bcma, and uses thereof
AU2021250186A1 (en) 2020-03-31 2022-12-01 Chugai Seiyaku Kabushiki Kaisha DLL3-targeting multispecific antigen-binding molecules and uses thereof
TW202404638A (zh) * 2022-04-13 2024-02-01 日商安斯泰來製藥股份有限公司 抗tspan8-抗cd3雙特異性抗體之與pd-1訊息抑制劑之組合在癌治療的用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595756A (en) * 1993-12-22 1997-01-21 Inex Pharmaceuticals Corporation Liposomal compositions for enhanced retention of bioactive agents
US7288638B2 (en) * 2003-10-10 2007-10-30 Bristol-Myers Squibb Company Fully human antibodies against human 4-1BB
JP5945386B2 (ja) * 2011-02-11 2016-07-05 名古屋電機工業株式会社 印刷半田検査装置
BR112013021526B1 (pt) * 2011-02-25 2021-09-21 Chugai Seiyaku Kabushiki Kaisha Polipeptídio variante, métodos para manter ou diminuir as atividades de ligação a fcgriia (tipo r) e fcgriia (tipo h) e aumentar a atividade de ligação a fcgriib de um polipeptídio e para a supressão da produção de um anticorpo contra um polipeptídio compreendendo a região fc do anticorpo, métodos para a produção do referido polipeptídio com atividades de ligação mantidas ou diminuídas e aumentada e para a produção suprimida de um anticorpo, composição farmacêutica e uso de um polipeptídio
CN104736174B (zh) * 2012-07-06 2019-06-14 根马布私人有限公司 具有三重突变的二聚体蛋白质
NZ724710A (en) * 2014-04-07 2024-02-23 Chugai Pharmaceutical Co Ltd Immunoactivating antigen-binding molecule

Also Published As

Publication number Publication date
WO2016194992A1 (ja) 2016-12-08
EP3305322A4 (en) 2018-12-26
US20180171017A1 (en) 2018-06-21
EP3305322A1 (en) 2018-04-11
JPWO2016194992A1 (ja) 2018-03-22

Similar Documents

Publication Publication Date Title
JP6826529B2 (ja) 免疫活性化剤の併用
JP7015819B2 (ja) 免疫活性化抗原結合分子
JP6773929B2 (ja) 細胞傷害誘導治療剤
JP7273904B2 (ja) 液性免疫応答の増強方法
JP6799101B2 (ja) クローディンを発現するガン疾患を処置するための剤
JP6931329B2 (ja) 免疫抑制機能を有する細胞に対するt細胞リダイレクト抗原結合分子を用いた併用療法
KR101834708B1 (ko) 암의 치료에 이용하기 위한 세포상해 유도 치료제
JP6894702B2 (ja) 免疫抑制機能を有する細胞に対するt細胞リダイレクト抗原結合分子
JP2020141709A (ja) 細胞傷害誘導治療剤
JP2020518584A (ja) 細胞傷害誘導治療剤
CN117205314A (zh) 用于癌症治疗的诱导细胞损伤的治疗药物
WO2024109657A1 (zh) 抗ccr8抗体及其用途

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200409

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210115

R150 Certificate of patent or registration of utility model

Ref document number: 6826529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250