WO2018233269A1 - 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法 - Google Patents

一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法 Download PDF

Info

Publication number
WO2018233269A1
WO2018233269A1 PCT/CN2017/120056 CN2017120056W WO2018233269A1 WO 2018233269 A1 WO2018233269 A1 WO 2018233269A1 CN 2017120056 W CN2017120056 W CN 2017120056W WO 2018233269 A1 WO2018233269 A1 WO 2018233269A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
ceramic
coating
lithium ion
sodium
Prior art date
Application number
PCT/CN2017/120056
Other languages
English (en)
French (fr)
Inventor
廖培龙
平翔
姚勇强
张柳浩
陈良
Original Assignee
深圳市星源材质科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星源材质科技股份有限公司 filed Critical 深圳市星源材质科技股份有限公司
Priority to PL17895498T priority Critical patent/PL3644404T3/pl
Priority to US16/078,188 priority patent/US11811092B2/en
Priority to EP17895498.8A priority patent/EP3644404B1/en
Priority to JP2018542702A priority patent/JP6700406B2/ja
Publication of WO2018233269A1 publication Critical patent/WO2018233269A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lithium ion battery separator, in particular to a ceramic and polymer composite coated lithium ion separator which has good heat shrinkage performance, strong adhesion to a pole piece and can be mass-produced, and a preparation method thereof.
  • the material is generally a polyolefin-based porous film.
  • the battery separator mainly serves to separate the positive and negative electrodes during the charging and discharging process of the lithium battery, thereby avoiding short circuit of the battery and ensuring the passage of Li + .
  • the melting point of the existing polyolefin-based porous film is generally lower than 200 ° C, so when the battery is out of control due to collision, overshoot, etc., the separator will shrink or melt, causing a relationship between the positive electrode and the negative electrode. Direct contact causes the battery to be short-circuited, causing accidents such as battery fire.
  • a ceramic layer is generally coated on the diaphragm to reduce the degree of thermal shrinkage of the diaphragm, improve the mechanical strength of the diaphragm, and thereby reduce the thermal runaway in the battery, resulting in shrinkage or melting of the diaphragm, lithium dendrite, etc.
  • the probability of battery shorting caused by piercing the diaphragm can not meet the higher requirements of the battery industry in today's battery industry: 1 the separator has a high bond strength with the positive and negative electrodes, and the interface compatibility is good; 2 the coating has excellent electricity. Chemical properties, high ion conductivity.
  • One of the objects of the present invention is to provide a ceramic and polymer composite coated lithium ion separator, which has the advantages of high bonding strength with a battery pole piece and good heat shrinkage performance, and can effectively avoid misalignment with the battery pole piece. Causes a short circuit.
  • Another object of the present invention is to provide a method for producing a composite ion-coated lithium ion separator of the above ceramics and polymers, which is advantageous for continuous and large-scale production.
  • a ceramic and polymer composite coated lithium ion separator comprising a polyolefin porous membrane, a ceramic coating applied to one or both sides of the membrane surface, and a polymer coating applied to the ceramic or membrane surface.
  • the polyolefin porous separator is selected from the group consisting of a dry PP separator, a wet PE separator or a PE and PP composite three-layer separator; preferably, the polyolefin porous separator has a thickness of 2-50 um. More preferably, the polyolefin porous separator has a porosity of between 20 and 70%.
  • the ceramic coating has a thickness of 1-10 um; preferably, the polymer coating has a thickness of between 0.5 and 8 um.
  • the total thickness of the ceramic coating and the polymer coating is between 1.5 and 18 ⁇ m; preferably, the total coating of the ceramic coating and the polymer coating
  • the areal density is between 3 and 15 g/m 2 ; more preferably, the total composite coated lithium ion separator has a thickness between 3.5 and 68 ⁇ m; further preferably, the areal density of the total composite coated lithium ion separator is Between 3-50g/m 2 .
  • the ceramic coating is made of the following raw materials by weight: 15-45 parts of ceramic material, 0.5-8 parts of aqueous dispersant, 1-10 parts of aqueous binder, aqueous binder emulsion 1-5 parts, aqueous wetting agent 0.1-5 parts.
  • the ceramic material is selected from at least a combination of aluminum oxide, silicon dioxide, magnesium hydroxide, rutile titanium dioxide, magnesium oxide, boehmite, zirconium dioxide, barium titanate, and zinc oxide.
  • the ceramic material particles have a D50 between 20 and 2000 nm; more preferably, the ceramic material has a specific surface area between 0.8 and 200 m 2 /g.
  • the aqueous binder is selected from the group consisting of polyvinylidene fluoride, polyvinyl alcohol, styrene butadiene rubber, sodium carboxymethyl cellulose, styrene-acrylic latex, pure benzene latex, sodium alginate, and polyacrylic acid.
  • the aqueous dispersant is selected from the group consisting of sodium polyacrylate, polyethylene glycol, sodium lauryl sulfate, a carboxylate-based fluorine dispersant, sodium dibutylnaphthalenesulfonate, a sulfonate At least one of a combination of a fluorine-like dispersant, a potassium polyacrylate, a polyacrylamide, a polyethylene glycol fatty acid ester, and a sodium carboxymethyl cellulose; more preferably, the aqueous wetting agent is selected from the group consisting of Sodium acrylate, polyvinyl alcohol, sodium polyoxyethylene ether carboxylate, polyoxyethylene alkyl phenol ether, sodium alkylbenzene sulfonate, alkyl phenol ethoxylate, polyoxyethylene alkylamine, polyoxyethylene At least one of a combination of amide compositions.
  • the aqueous binder emulsion is composed of the following raw materials by weight: 1-10 parts of sodium carboxymethyl cellulose, 0-5 parts of high dielectric constant ceramic material, monomer for acrylic resin synthesis 5-20 parts, 0.1-0.5 parts of ammonium persulfate, and 0.2-2 parts of surfactant.
  • the polymer coating is made of the following raw materials by weight: 0-5 parts of high dielectric constant ceramic material, 0-2 parts of binder, 3-20 parts of polymer, and pore forming 2-20 parts of the agent, 0-5 parts of the dispersing agent, and 48-92 parts of the solvent.
  • the polymer is selected from at least one selected from the group consisting of a PVDF homopolymer, a copolymer of PVDF and hexafluoropropylene, a polyacrylonitrile, a polyoxyethylene, and a polymethacrylate; preferably, The molecular weight of the polymer is between 50,000 and 1200,000; more preferably, the porogen is selected from the group consisting of polyethylene glycol, polyvinylpyrrolidone, pure water, acetone, methyl acetate, methanol, isopropanol, ethanol, formic acid.
  • the solvent is selected from the group consisting of dimethylacetamide, At least one of a combination of dichloroethane, dimethylformamide, trichloroethane, sulfolane, dimethyl sulfoxide, N-methylpyrrolidone, chloroform, dichloromethane, and acetone; more preferably
  • the binder is at least one selected from the group consisting of polyvinylidene fluoride, polyvinyl alcohol, styrene butadiene rubber, sodium carboxymethyl cellulose, styrene-acrylic latex, pure benzene latex, sodium alginate, and polyacrylic acid.
  • the dispersing agent is selected from the group consisting of Sodium silicate, polyethylene glycol, sodium lauryl sulfate, carboxylate-based fluorine dispersant, sodium dibutylnaphthalene sulfonate, sulfonate-based fluorine dispersant, potassium polyacrylate, polyacrylamide, polyethyl b At least one of a combination of a diol fatty acid ester and sodium carboxymethyl cellulose.
  • the embodiment of the invention further provides a method for preparing a ceramic and polymer composite coated lithium ion separator, comprising the following steps:
  • the polymer slurry III is applied to both sides of the ceramic coating film, and after solidification, water washing, and the polymer is formed into a hole, it is dried.
  • the aqueous ceramic slurry I is prepared by using 15-45 parts of ceramic material, 0.5-8 parts of aqueous dispersant, 1-10 parts of aqueous binder, 1-5 by weight.
  • the aqueous binder emulsion, 0.1-5 parts of the aqueous wetting agent, and the pure water are mixed and dispersed by a ball mill pre-dispersion and dispersed in a high-speed disperser, and then filtered using a 200-500 mesh sieve.
  • the method for preparing the aqueous binder emulsion comprises the following steps:
  • the stirring and dispersing is stirred at 2000-3500 R/min for 30-60 min; preferably, in the step (4), the B solution is added dropwise to the A solution. At the time, the addition was completed within 10-60 minutes.
  • the polymer slurry III is prepared by using 2-20 parts of a pore former, 0-2 parts of a binder, 0-5 parts of a dispersant, and 48-92 parts by weight.
  • the solvent is mixed and stirred to obtain a mixed solution II; after mixing 3-20 parts of the polymer and 0-5 parts of the high dielectric constant ceramic material, the mixed solution II is added, followed by dispersion using a ball mill predispersion and a high speed disperser.
  • the mixing and stirring is performed at a rotation speed of 500-5000 R/min for 0.2-1.2 hours.
  • the ball mill pre-dispersion is stirred in a ball mill with a rotation speed of 200-2500 R/min for 0.1-1.5 hours; preferably, the high-speed disperser dispersion is a high-speed stirring at a rotation speed of 500-9000 R/min. 2 hours.
  • the coating is performed at a coating speed of 25-85 m/min using a coating machine; preferably, the coating is selected from the group consisting of dip coating, slope coating, curtain coating, One of micro gravure coating and spraying; more preferably, the drying is drying at a temperature of 35-78 ° C; further preferably, the solidification is after containing 60-100 wt% of pure water and 0 a coagulation tank of -40 Wt% alcohol; the alcohol is at least one selected from the group consisting of ethanol, methanol, isopropanol and ethylene glycol; and even more preferably, the water wash is washed with water containing pure water. groove.
  • a coating machine preferably, the coating is selected from the group consisting of dip coating, slope coating, curtain coating, One of micro gravure coating and spraying; more preferably, the drying is drying at a temperature of 35-78 ° C; further preferably, the solidification is after containing 60-100 wt% of pure water and 0 a coagulation
  • the ceramic and polymer composite coated lithium ion separator provided by the invention is prepared by coating a ceramic coating on the surface of the separator and coating the polymer coating, which has good heat resistance and bonding with the positive and negative electrodes.
  • the high strength has the advantages of improving the wettability of the electrolyte, preventing the internal short circuit caused by the split layer between the composite separator and the electrode, and improving the hardness and safety performance of the battery; further, the invention is technological.
  • the addition of a high dielectric constant ceramic material to the polymer coating greatly increases the Li + ion conductivity of the polymer coating, thereby improving the charge and discharge performance of the battery using the composite separator.
  • the preparation method of the ceramic and polymer composite coated lithium ion separator provided by the invention is advantageous for continuous and large-scale production.
  • Example 1 is a scanning electron micrograph of the surface of a ceramic and polymer composite coated lithium ion separator synthesized according to Example 1;
  • Example 2 is a scanning electron micrograph of a cross section of a ceramic and polymer composite coated lithium ion separator (PE, ceramic and polymer side) synthesized according to Example 1;
  • Example 3 is a scanning electron micrograph of a cross section of a ceramic and polymer composite coated lithium ion separator (PE and polymer side) synthesized according to Example 1;
  • Example 5 is a cycle curve of a soft pack battery fabricated under the same conditions and processes of a ceramic and polymer composite coated lithium ion separator and a PP base film synthesized according to Example 1 under 1 C charge and discharge conditions.
  • PP separator is an abbreviation for polypropylene separator
  • PE separator is an abbreviation for polyethylene separator
  • pure water is deionized water
  • Triton is a product name of polyoxyethylene-8-octylphenyl ether.
  • PVDF is an abbreviation for polyvinylidene fluoride
  • This embodiment provides a ceramic and polymer composite coated lithium ion separator, and the preparation method thereof is as follows:
  • the aqueous ceramic slurry I was coated on one side of a 12 um wet PE separator by a large coater, and the coating method was micro gravure coating at a coating speed of 60 m/min and a temperature of 55 ° C. Drying in an oven, winding up, and obtaining a ceramic coating film;
  • the polymer paste III was simultaneously coated on both sides of the ceramic coating film by a large coating machine on both sides, and the coating method was micro gravure coating at a coating speed of 35 m/min, after containing 85 parts of pure The coagulation tank of water and 15 parts of ethanol was solidified, washed in a washing tank containing pure water, and the polymer was formed into a hole, and then dried in an oven at a temperature of 60 ° C to be wound up to obtain a ceramic-polymer composite coated lithium ion separator.
  • the prepared ceramic and polymer composite coated lithium ion separator ceramic coating and polymer coating have a total coating thickness of 6.4 um and an areal density of 7.8 g/m 2 ; the total composite coated lithium ion separator thickness is 18.4 um, the areal density was 14.2 g/m 2 .
  • This embodiment provides a ceramic and polymer composite coated lithium ion separator, and the preparation method thereof is as follows:
  • the aqueous ceramic slurry I was coated on one side of a 16 um wet PP separator by a large coater, and the coating method was microgravure coating, the coating speed was 40 m/min, and the temperature was 50 ° C. Drying in an oven, winding up, and obtaining a ceramic coating film;
  • the polymer slurry III was simultaneously coated on both sides of the ceramic coating film by a large coating machine on both sides, and the coating method was falling curtain coating, the coating speed was 40 m/min, and the content was 90 parts pure.
  • the coagulation tank of water, 5 parts of ethanol and 5 parts of methanol is solidified, washed in a washing tank containing pure water, and the polymer is formed into a hole, and then dried in an oven at a temperature of 55 ° C to be wound up to obtain a composite coating of ceramic and polymer. Ion diaphragm.
  • the ceramic coating and the polymer coating of the ceramic and polymer composite coated lithium ion separator prepared in Example 2 had a total coating thickness of 5.1 um and an areal density of 6.9 g/m 2 ; the total composite coated lithium ion The separator had a thickness of 21.1 um and an areal density of 17.4 g/m 2 .
  • This embodiment provides a ceramic and polymer composite coated lithium ion separator, and the preparation method thereof is as follows:
  • the aqueous ceramic slurry I was coated on both sides of a 20 um PE and PP composite three-layer separator by a large coating machine, and the coating method was dip coating, the coating speed was 45 m/min, and the temperature was 55 ° C. The oven is dried and wound to obtain a ceramic coating film;
  • the polymer slurry III was simultaneously coated on both sides of the ceramic coating film by a large coating machine on both sides, and the coating method was micro gravure coating at a coating speed of 55 m/min, after containing 90 parts of pure The coagulation tank of water and 10 parts of ethanol was solidified, washed with a washing tank containing pure water, and the polymer was formed into a hole, and then dried in an oven at a temperature of 60 ° C to be wound up to obtain a ceramic-polymer composite coated lithium ion separator.
  • the ceramic coating and the polymer coating of the ceramic and polymer composite coated lithium ion separator prepared in Example 3 had a total coating thickness of 4.7 um and an areal density of 5.5 g/m 2 ; the total composite coated lithium ion The separator had a thickness of 24.7 um and an areal density of 17.2 g/m 2 .
  • This embodiment provides a ceramic and polymer composite coated lithium ion separator, and the preparation method thereof is as follows:
  • the dispersion After the dispersion is completed, it is pumped into a high-speed disperser, stirred at 4700 R / min for 900 min, the obtained slurry is poured into a plastic bucket, filtered with a 300 mesh screen, to obtain an aqueous ceramic slurry I;
  • the aqueous ceramic slurry I was coated on the side of the 16 um PE and PP composite three-layer separator by a large coating machine, and the coating method was dip coating, the coating speed was 52 m/min, and the temperature was 65 ° C. The oven is dried and wound to obtain a ceramic coating film;
  • the polymer slurry III was simultaneously coated on both sides of the ceramic coating film by a large coating machine on both sides, and the coating method was spray coating, and the coating speed was 42 m/min, and 100 parts of pure water was passed.
  • the solidification tank is solidified, washed in a washing tank containing pure water, and after the polymer is formed into a hole, it is dried in an oven at a temperature of 55 ° C, and wound up to obtain a ceramic and polymer composite coated lithium ion separator.
  • the ceramic coating and the polymer coating of the ceramic and polymer composite coated lithium ion separator prepared in Example 4 had a total coating thickness of 5.3 um and an areal density of 6.3 g/m 2 ; the total composite coated lithium ion The separator had a thickness of 21.3 um and an areal density of 16.8 g/m 2 .
  • the coating method is dip coating. Coating, coating speed of 35 m / min, drying in an oven at a temperature of 45 ° C, winding, to obtain a ceramic coating film.
  • the ceramic coating and the polymer coating of the ceramic and polymer composite coated lithium ion separator prepared in Example 5 have a total coating thickness of 1.5 um and an areal density of 3 g/m 2 ; the total composite coated lithium ion separator The thickness is 3.5 um and the areal density is 3 g/m 2 .
  • the aqueous ceramic slurry I is coated on both sides of the 50 um PE and PP composite three-layer separator by a large coating machine, and the coating method is applied.
  • the coating speed was 75 m/min, and it was dried in an oven at a temperature of 65 ° C to be wound up to obtain a ceramic coating film.
  • the ceramic coating and the polymer coating of the ceramic and polymer composite coated lithium ion separator prepared in Example 6 had a total coating thickness of 18 ⁇ m and an areal density of 15 g/m 2 ; the total composite coated lithium ion separator thickness It is 68 um and the areal density is 50 g/m 2 .
  • Example 7 The difference between Example 7 and Example 1 is that the preparation method of the aqueous binder emulsion in Example 7 is:
  • the aqueous ceramic slurry I in the seventh embodiment is prepared by taking 20 parts of magnesium oxide and 20 parts of boehmite as ceramic powder in terms of parts by weight (the ceramic powder has a D50 of 1.1 um, and the specific surface is 3.3m 2 /g), 5 parts of aqueous binder emulsion, 6 parts of aqueous binder styrene-acrylic latex, 5 parts of aqueous dispersant sodium dibutylnaphthalene sulfonate, 0.4 parts of wetting agent alkyl polymerization Sodium oxyetholate and 45 parts of pure water were added to the dispersion tank, and pre-dispersed in a ball mill at 1200 R/min for 30 min. After pre-dispersion, it was pumped into a high-speed disperser at 4700 R/min. After stirring at 900 rpm, the obtained slurry was poured into a plastic bucket and filtered through a 300 mesh screen.
  • Example 8 The difference between Example 8 and Example 2 is that the preparation method of the aqueous binder emulsion in Example 8 is:
  • the aqueous ceramic slurry I in the seventh embodiment is prepared by taking 20 parts of magnesium oxide and 20 parts of boehmite as ceramic powder in terms of parts by weight (the ceramic powder has a D50 of 1.1 um, and the specific surface is 3.3m 2 /g), 5 parts of aqueous binder emulsion, 6 parts of aqueous binder styrene-acrylic latex, 5 parts of aqueous dispersant sodium dibutylnaphthalene sulfonate, 0.4 parts of wetting agent alkyl polymerization Sodium oxyethylene ether carboxylate and 45 parts of pure water were added to the dispersion tank, and pre-dispersed by ball milling at 1500 R/min for 30 min in a ball mill. After pre-dispersion, it was pumped into a high-speed disperser at 6000 R/min. After stirring at a speed of 70 minutes, the obtained slurry was poured into a plastic bucket and filtered through a 300-mesh sieve
  • Example 9 The difference between Example 9 and Example 3 is that the preparation method of the aqueous binder emulsion in Example 9 is:
  • the aqueous ceramic slurry I in Example 9 was prepared by taking 15 parts by weight of zirconium dioxide, 15 parts of barium titanate and 15 parts of zinc oxide as ceramic powder (the D50 of the ceramic powder was 0.8 um). , specific surface 7.8 m 2 /g), 5 parts of aqueous binder emulsion, 3 parts of aqueous binder sodium alginate, 3 parts of aqueous binder polyacrylic acid, 2 parts of aqueous dispersant dibutyl Sodium naphthalene sulfonate, 2 parts of aqueous dispersant polyacrylamide, 0.4 parts of wetting agent alkyl polyoxyethylene amide and 50 parts of pure water were added to a dispersion tank and ball milled at 1800 R/min for 60 min in a ball mill.
  • pre-dispersion After pre-dispersion, after pre-dispersion, it is pumped into a high-speed disperser, stirred at 4200 R/min for 90 min, and then the obtained slurry is poured into a plastic bucket and filtered through a 300-mesh sieve.
  • Example 10 The difference between Example 10 and Example 3 is that the preparation method of the polymer slurry III in Example 10 is:
  • Example 11 The difference between Example 11 and Example 4 is that the preparation method of the polymer slurry III in Example 11 is:
  • the existing PE film was selected as the base film and its thickness was 12 um.
  • the existing PP film was selected as the base film and its thickness was 16 um.
  • Example 1 of the present invention The surface of the ceramic-polymer composite coated lithium ion separator prepared in Example 1 of the present invention, the cross section of the side surface of the PE, ceramic and polymer, and the cross section of the surface of the PE and the polymer side were subjected to electron microscopy. Scanning, as shown in FIG. 1 , FIG. 2 and FIG. 3 respectively, it can be seen that the ceramic coating and the polymer coating prepared by the composite membrane of Example 1 have uniform thickness and uniform thickness distribution, and can be seen on the composite membrane. The distribution of the pores is also very uniform.
  • Example 1 The properties of the ceramic and polymer composite coated lithium ion separator synthesized in Example 1, Example 2, Example 3, and Example 4, the base film provided in Comparative Example 1, and the base film provided in Comparative Example 2 were examined ( The test conditions are: temperature: 90 ° C, pressure: 5 MPa, duration: 1 min, pole piece is a lithium cobaltate pole piece), the data is shown in the table shown in FIG.
  • the ceramic and polymer composite coated lithium ion separator prepared in Example 4 had a significantly lower heat shrinkage value than the uncoated base film provided in Comparative Example 1 and Comparative Example 2, and the 130 ° C / 1H heat shrinkage value was determined by 3.86% of the 16umPP base film in the ratio 2 was reduced to 1.14% of the ceramic and polymer composite coated separator of Example 2; the ceramic and polymer composite coated separator and the lithium cobaltate pole piece provided by the respective examples were at 90 ° C,
  • the interfacial adhesion of 5Mpa and 1min under dry pressure conditions is above 39N/M, which can meet the requirements of the interface between the composite battery and the pole piece of power battery and digital consumer battery.
  • the cycle curves of the soft-packed battery fabricated by the ceramic and polymer composite coated lithium ion separator prepared in the examples and the PP base film provided in Comparative Example 2 under the same conditions and processes were subjected to 1 C charge and discharge, and the results were as follows.
  • the electrochemical performance of the battery prepared by using the ceramic and polymer composite coated separator provided in Example 1 is more excellent.
  • the 1C charge and discharge cycle is 900 weeks, and the battery capacity is still maintained above 90%, and the PP base film is prepared.
  • the battery capacity retention ratio was 87.9%. It can be seen that the ceramic and polymer composite coated separator provided by the present invention is more excellent in electrochemical performance.
  • the ceramic and polymer composite coated lithium ion separator provided by the invention has the advantages of good heat resistance and high bonding strength with the positive and negative electrode sheets, and at the same time, can improve the wettability of the electrolyte and prevent the composite separator and the electrode.
  • the internal short circuit caused by the staggered layer improves the hardness and safety performance of the battery; in addition, the inventive invention adds a high dielectric constant ceramic material to the polymer coating, which greatly improves the polymer coating.
  • the Li + ion conductivity of the layer improves the charge and discharge performance of the battery using the composite separator.
  • the preparation method of the ceramic and polymer composite coated lithium ion separator provided by the invention is advantageous for continuous and large-scale production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法,该陶瓷和聚合物复合涂覆锂离子隔膜包括聚烯烃多孔隔膜、涂覆于隔膜面一侧或者两侧的陶瓷涂层和涂覆在陶瓷面或者隔膜面的聚合物涂层。本发明制备的复合隔膜极大的提升了隔膜的耐热性及其与正负极片的粘结强度,改善了电解液的浸润性能,能够有效的防止隔膜与电极之间因错层而导致内短路,同时提升了电池的硬度和安全性能。本发明还公开了上述陶瓷和聚合物复合涂覆锂离子隔膜的制备方法,该方法能够制备得到陶瓷涂层和聚合物涂层涂覆厚度均匀和均一性好的隔膜,且有利于连续化、大规模化生产。

Description

一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法
相关申请的交叉引用
本申请要求于2017年06月20日提交中国专利局的申请号为201710470496.2、名称为“一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及锂离子电池隔膜,尤其是涉及一种热收缩性能好、与极片粘结力强、能大规模生产的陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法。
背景技术
随着近年来电动汽车呈现井喷式发展,电动汽车所需的动力电池的市场规模也在急剧上升,动力电池的安全也成为人们关注的焦点。据不完全统计,光是2016年上半年,电动汽车共发生11起起火事故,其中有1起起火事故是电池短路造成的。消除动力电池存在的安全隐患,提升动力电池的安全性能已成为行业的共识。
作为锂电池四大材料之一的隔膜,其材质一般为聚烯烃基多孔膜,电池隔膜在锂电池的充放电过程中主要起到分隔正负极,避免电池短路,确保Li +的通过性,保证电池内部电路畅通的作用,现有的聚烯烃基多孔膜熔点一般低于200℃,故当电池由于碰撞、过冲等发生热失控时,隔膜会收缩或熔融,引起正极和负极之间的直接接触,导致电池短路,从而引起电池起火等意外事故的发生。
为了避免隔膜收缩或熔融导致的电池短路,一般会在隔膜上面涂覆陶瓷层,起到降低隔膜热收缩程度、提升隔膜机械强度,进而降低电池中热失控导致隔膜收缩或熔融、锂枝晶等刺破隔膜造成的电池短路几率。但是仅仅在隔膜上涂覆陶瓷层还不能满足当今电池行业对隔膜提出的更高的要求:①隔膜与正负极片的粘结强度高,界面相容性好;②涂层有优异的电化学性能,离子通导率高。
因此,需要一种具有较高粘结强度并可以降低电池短路几率的高安全性能的电池用隔膜。
发明内容
本发明的目的之一在于提供一种陶瓷和聚合物复合涂覆锂离子隔膜,其具有与电池极片粘结强度高和热收缩性能好的优点,且其可有效的避免和电池极片错位导致短路。
本发明的另一目的在于提供一种上述陶瓷和聚合物复合涂覆锂离子隔膜的制造方法,该制造方法有利于连续化、大规模化的生产。
为实现上述目的中的至少一个,本发明采用的技术方案为:
一种陶瓷和聚合物复合涂覆锂离子隔膜,包括聚烯烃多孔隔膜、涂覆于隔膜面一侧或者两侧的陶瓷涂层和涂覆在陶瓷面或者隔膜面的聚合物涂层。
可选的,所述聚烯烃多孔隔膜选自于干法PP隔膜、湿法PE隔膜或者PE和PP复合三层隔膜中的一种;优选的,所述聚烯烃多孔隔膜的厚度在2-50um之间;更优选的,所述聚烯烃多孔隔膜的孔隙率在20-70%之间。
可选的,所述陶瓷涂层的厚度为1-10um;优选的,所述聚合物涂层的厚度在0.5-8um之间。
可选的,所述陶瓷涂层和所述聚合物涂层组成的总涂层的厚度在1.5-18um之间;优选的,所述陶瓷涂层和所述聚合物涂层组成的总涂层的面密度在3-15g/m 2之间;更优选的,总的复合涂覆锂离子隔膜的厚度在3.5-68um之间;进一步优选的,总的复合涂覆锂离子隔膜的面密度在3-50g/m 2之间。
可选的,所述陶瓷涂层是由下述重量份的原料制成的:陶瓷材料15-45份、水性分散剂0.5-8份、水性粘结剂1-10份、水性粘结剂乳液1-5份、水性润湿剂0.1-5份。
可选的,所述陶瓷材料选自由三氧化二铝、二氧化硅、氢氧化镁、金红石型二氧化钛、氧化镁、勃姆石、二氧化锆、钛酸钡和氧化锌组成的组合中的至少一种;优选的,所述陶瓷材料颗粒的D50在20-2000nm之间;更优选的,所述陶瓷材料的比表面积在0.8-200m 2/g之间。
可选的,所述水性粘结剂选自由聚偏氟乙烯、聚乙烯醇、丁苯橡胶、羧甲基纤维素钠、苯丙乳胶、纯苯乳胶、海藻酸钠、聚丙烯酸组成的组合中的至少一种;优选的,所述水性分散剂选自由聚丙烯酸钠、聚乙二醇、十二烷基硫酸钠、羧酸盐类氟分散剂、二丁基萘磺酸钠、磺酸盐类氟分散剂、聚丙烯酸钾、聚丙烯酰胺、聚乙二醇脂肪酸酯、羧甲基纤维素钠组成的组合中的至少一种;更优选的,所述的水性润湿剂选自由聚丙烯酸钠、聚乙烯醇、烷基聚氧乙烯醚羧酸钠、聚氧乙烯烷基酚醚、烷基苯磺酸钠、烷基酚聚氧乙烯醚、聚氧乙烯烷基胺、聚氧乙烯酰胺组成的组合中的至少一种。
可选的,所述水性粘结剂乳液是由下述重量份的原料组成的:羧甲基纤维素钠1-10份、高介电常数陶瓷材料0-5份、丙烯酸树脂合成用单体5-20份、过硫酸铵0.1-0.5份、表面活性剂0.2-2份。
可选的,所述高介电常数陶瓷材料选自由金红石型二氧化钛、钛酸钡、BaTiO 3-Nb 2O 5-MO x(其中M=Co、Ni、Mn、Zn)、铌酸钾、铌酸纳组成的组合中的 至少一种;优选的,所述表面活性剂选自由羧酸盐、苯磺酸钠、十二烷基苯磺酸钠、脂肪醇聚氧乙烯醚硫酸钠、曲拉通X-100、季铵盐、月桂基葡糖苷、十二烷基硫酸钠、甜菜碱盐组成的组合中的至少一种;更优选的,所述丙烯酸树脂合成用单体选自由丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸-2-乙基己酯、甲基丙烯酸乙酯、丙烯酸、甲基丙烯酸羟乙酯、丙烯酸羟乙酯、N-羟甲基丙烯酰胺、丙烯酸羟丙酯、丙烯酸缩水甘油酯、甲基丙烯酸、甲基丙烯酸羟丙酯、甲基丙烯酸缩水甘油酯组成的组合中的至少一种。
可选的,所述聚合物涂层是由下述重量份的原料制成的:高介电常数陶瓷材料0-5份、粘结剂0-2份、聚合物3-20份、成孔剂2-20份、分散剂0-5份、溶剂48-92份。
可选的,所述聚合物选自由PVDF均聚物、PVDF和六氟丙烯的共聚物、聚丙烯腈,聚氧乙烯和聚甲基丙烯酸酯组成的组合中的至少一种;优选的,所述聚合物的分子量为50000-1200000之间;更优选的,所述成孔剂选自由聚乙二醇、聚乙烯吡咯烷酮、纯水、丙酮、乙酸甲酯、甲醇、异丙醇、乙醇、甲酸、乙酸、丙酸、正丁醇、正辛醇、十二醇、氯化锂、高氯酸锂组成的组合中的至少一种;进一步优选的,所述溶剂选自由二甲基乙酰胺、二氯乙烷、二甲基甲酰胺、三氯乙烷、环丁砜、二甲基亚砜、N-甲基吡咯烷酮、氯仿和二氯甲烷、丙酮组成的组合中的至少一种;更进一步优选的,所述粘结剂选自由聚偏氟乙烯、聚乙烯醇、丁苯橡胶、羧甲基纤维素钠、苯丙乳胶、纯苯乳胶、海藻酸钠、聚丙烯酸组成的组合中的至少一种;再进一步优选的,所述分散剂选自由聚丙烯酸钠、聚乙二醇、十二烷基硫酸钠、羧酸盐类氟分散剂、二丁基萘磺酸钠、磺酸盐类氟分散剂、聚丙烯酸钾、聚丙烯酰胺、聚乙二醇脂肪酸酯、羧甲基纤维素钠组成的组合中的至少一种。
本发明实施例还一种陶瓷和聚合物复合涂覆锂离子隔膜的制备方法,包括以下步骤:
(1)将水性陶瓷浆料I涂覆于干法PP隔膜、湿法PE隔膜或者PE和PP复合三层隔膜的一侧或者两侧,烘干,得到陶瓷涂覆膜;
(2)将聚合物浆料III涂覆于所述陶瓷涂覆膜两侧,经过凝固、水洗、聚合物成孔后,烘干。
可选的,所述水性陶瓷浆料I的制备方法是:按重量份数计,将15-45份陶瓷材料、0.5-8份水性分散剂、1-10份水性粘结剂、1-5份水性粘结剂乳液、0.1-5份水性润湿剂、纯水混合经过球磨预分散、高速分散机分散后,使用200-500目筛网过滤。
可选的,所述水性粘结剂乳液的制备方法包括以下步骤:
(1)按重量份数计,取1-10份羧甲基纤维素钠加入到其重量5-20倍的去离子水 中,搅拌均匀,得到羧甲基纤维素钠水溶液;
(2)取0-5份高介电常数陶瓷材料、0.1-1份表面活性剂、所述羧甲基纤维素钠水溶液总重量的8-30%作为第一投入料,加入到所述第一投入料重量5-20倍的去离子水中,搅拌分散,得到A溶液;
(3)取5-20份丙烯酸树脂合成用单体、0.1-1表面活性剂作为第二投入料,加入到所述第二投入料重量5-20倍的去离子水中,搅拌分散均匀,得到B溶液;
(4)将所述A溶液升温至60-80℃,加入0.1-0.5份过硫酸铵,通入保护气体,在搅拌状态下往所述A溶液中滴加所述B溶液,保温搅拌10-60min,出料,冷却至常温,与上述羧甲基纤维素钠水溶液总重量的70-92%搅拌均匀。
可选的,所述步骤(2)中,搅拌分散是在2000-3500R/min下搅拌30-60min;优选的,所述步骤(4)中,往所述A溶液中滴加所述B溶液时,在10-60min内滴加完毕。
可选的,所述聚合物浆料III的制备方法是:按重量份数计,将2-20份成孔剂、0-2份粘结剂、0-5份分散剂、48-92份溶剂混合搅拌得到混合溶液II;将3-20份聚合物、0-5份高介电常数陶瓷材料混合后,加入所述混合溶液II,依次使用球磨预分散、高速分散机分散。
可选的,所述混合搅拌是在转速为500-5000R/min下搅拌0.2-1.2小时。
可选的,所述球磨预分散是在转速为200-2500R/min的球磨中搅拌0.1-1.5小时;优选的,所述高速分散机分散是在转速为500-9000R/min下高速搅拌0.3-2小时。
可选的,所述涂覆是使用涂覆机在涂覆速度为25-85米/min下进行;优选的,所述涂覆选自于浸涂、坡流涂布、落帘涂布、微凹版涂布、喷涂中的一种;更优选的,所述烘干是在温度为35-78℃下烘干;进一步优选的,所述凝固是经过含有60-100Wt%的纯水及0-40Wt%醇类的凝固槽;所述醇类选自于乙醇、甲醇、异丙醇和乙二醇组成的组合中的至少一种;更进一步优选的,所述水洗是经过含有纯水的水洗槽。
与现有技术相比,本发明的有益效果在于:
本发明提供的陶瓷和聚合物复合涂覆锂离子隔膜是在隔膜表面先涂覆陶瓷涂层,再涂覆聚合物涂层制备得到,其具有耐热性好、与正负极片的粘结强度高的优点,其同时还能够改善电解液的浸润性,防止该复合隔膜与电极之间因错层而导致的内短路,并提升了电池的硬度和安全性能;此外,本发明开创性的向聚合物涂层中加入高介电常数陶瓷材料,大幅度提升了聚合物涂层的Li +离子通导率,从而提高使用该复合隔膜的电池的充放电性能。本发明提供的陶瓷和聚合物复合涂覆锂离子隔膜的制备方法有利于连续化、大规模化生产。
附图说明
图1是根据实施例1合成的陶瓷和聚合物复合涂覆锂离子隔膜表面的扫描电镜图片;
图2是根据实施例1合成的陶瓷和聚合物复合涂覆锂离子隔膜(PE、陶瓷和聚合物一侧)横截面的扫描电镜图片;
图3是根据实施例1合成的陶瓷和聚合物复合涂覆锂离子隔膜(PE和聚合物一侧)横截面的扫描电镜图片;
图4是根据实施例1、2、3、4合成的陶瓷和聚合物复合涂覆锂离子隔膜和及对比例基膜的热收缩数据及涂层和极片与复合涂覆隔膜的界面粘结强度数据(测试条件为:温度:90℃,压力:5Mpa,时长:1min,极片为钴酸锂极片);
图5是根据实施例1合成的陶瓷和聚合物复合涂覆锂离子隔膜和PP基膜在相同条件及工艺下制作的软包电池在1C充放电情况下的循环曲线。
具体实施方式
以下结合具体的实施例和附图来对本发明的内容进一步说明,但是本发明的保护范围并不仅仅局限于实施例所描述的内容。
本发明使用的原料中:PP隔膜为聚丙烯隔膜的缩写、PE隔膜为聚乙烯隔膜的缩写,纯水为去离子水;曲拉通为聚氧乙烯-8-辛基苯基醚的产品名;PVDF为聚偏氟乙烯的缩写;
实施例1
本实施例提供了一种陶瓷和聚合物复合涂覆锂离子隔膜,其制备方法如下:
(1)制备水性粘结剂乳液:
①取羧甲基纤维素钠5份,加入到其重量8倍的去离子水中,搅拌均匀得到羧甲基纤维素钠水溶液;
②取钛酸钡粉体1.5份、十二烷基苯磺酸钠0.5份、上述羧甲基纤维素钠水溶液总重量的22%作为第一投入料,将第一投入料加入到其重量6倍的去离子水中,在2500R/min下高速搅拌分散60min,得到A溶液;
③取丙烯酸丁酯8份、甲基丙烯酸甲酯8份、曲拉通X-100:0.2份、十二烷基苯磺酸钠0.2份作为第二投入料,将第二投入料加入到其重量16倍的去离子水中,搅拌分散均匀,得到B溶液;
④将A溶液投入反应釜中升温至80℃,加入过硫酸铵0.25份,通入保护气体,在 搅拌状态下往A溶液中滴加B溶液,在30min内滴加完毕,保温搅拌50min,出料,冷却至常温,与上述羧甲基纤维素钠水溶液总重量的78%搅拌均匀,即得所述水性粘结剂乳液。
(2)取27份的三氧化二铝(D50为0.91um,比表面为4.87m 2/g)、4.5份的水性粘结剂乳液、2.8份的聚乙烯醇、3.7份的丁苯橡胶、0.85份的水性润湿剂烷基聚氧乙烯醚羧酸钠和59.15份的纯水加入到分散罐中,在球磨机中以800R/min转速下球磨40min预分散,预分散结束后,将其泵入高速分散机中,以6000R/min转速搅拌100min后,将得到的浆料倒入塑料桶内,用400目筛网过滤后,得到水性陶瓷浆料I;
(3)将6份的纯水、10份的异丙醇、1.8份的羧酸盐类氟分散剂、68份的NMP置于搅拌罐中,以2500R/min搅拌0.5h后,得到混合溶液II;
(4)将14份的PVDF和六氟丙烯(HFP)的共聚物P(VDF-HFP)粉、0.2份金红石型二氧化钛粉体(D50为25nm)置于分散罐中,加入混合溶液II,在球磨机中以800R/min转速下球磨30min预分散,预分散结束后,将其泵入高速分散机中,以3500R/min转速搅拌40min后,得到聚合物浆料III;
(5)将水性陶瓷浆料I用大型涂覆机涂覆于12um湿法PE隔膜的一侧,涂布方式为微凹版涂布,涂覆速度为60米/min,经过温度为55℃的烘箱烘干,收卷,得到陶瓷涂覆膜;
(6)将聚合物浆料III用大型涂覆机双面同时涂覆于陶瓷涂覆膜两侧,涂布方式为微凹版涂布,涂覆速度为35米/min,经过含有85份纯水、15份乙醇的凝固槽凝固、含有纯水的水洗槽水洗,聚合物成孔后,用温度为60℃的烘箱烘干,收卷,得到陶瓷和聚合物复合涂覆锂离子隔膜。
制备得到的陶瓷和聚合物复合涂覆锂离子隔膜的陶瓷涂层和聚合物涂层的总涂层厚度为6.4um,面密度为7.8g/m 2;总的复合涂覆锂离子隔膜厚度为18.4um,面密度为14.2g/m 2
实施例2
本实施例提供了一种陶瓷和聚合物复合涂覆锂离子隔膜,其制备方法如下:
(1)制备水性粘结剂乳液:
①羧甲基纤维素钠8份,加入到其重量10倍的去离子水中,搅拌均匀得到羧甲基纤维素钠水溶液;
②取金红石二氧化钛2.5份、十二烷基硫酸钠0.35份、上述羧甲基纤维素钠水溶液总重量的15%作为第一投入料,将第一投入料加入到其重量5倍的去离子水中,2500R/min高速搅拌分散55min,得到A溶液;
③取丙烯酸丁酯6份、丙烯酸乙酯7份、丙烯酸4.5份、十二烷基硫酸钠0.25份作为第二投入料,将第二投入料十二烷基苯磺酸钠0.25份,加入到其重量14倍的去离子水中,搅拌分散均匀,得到B溶液;
④将A溶液投入反应釜中升温至75℃,加入过硫酸铵0.35份,通入保护气体,在搅拌状态下往A溶液中滴加B溶液,在30min内滴加完毕,保温搅拌55min,出料,冷却至常温,与上述羧甲基纤维素钠水溶液总重量的85%搅拌均匀,即得所述水性粘结剂乳液。
(2)取36份的勃姆石(D50为1.06um,比表面为3.47m 2/g)、6.2份的水性粘结剂乳液、3.1份的羧甲基纤维素钠、3.1份的丁苯橡胶、3.5份的水性分散剂磺酸盐类氟分散剂、0.5份的水性润湿剂聚氧乙烯酰胺和47.6份的纯水加入到分散罐中,在球磨机中以500R/min转速下球磨30min预分散,预分散结束后,将其泵入高速分散器中,以6500R/min转速搅拌90min后,将得到的浆料倒入塑料桶内,用300目筛网过滤后,得到水性陶瓷浆料I;
(3)将8份的乙醇、7份的异丙醇、2.5份的聚丙烯酸钠、64份的二甲基乙酰胺置于搅拌罐中,以2500R/min搅拌0.5h后,得到混合溶液II;
(4)将18份的PVDF和六氟丙烯(HFP)的共聚物P(VDF-HFP)粉、0.5份钛酸钡(D50为130nm)置于分散罐中,加入混合溶液II,在球磨机中以600R/min转速下球磨60min预分散,预分散结束后,将其泵入高速分散机中,以50000R/min转速搅拌60min后,得到聚合物浆料III;
(5)将水性陶瓷浆料I用大型涂覆机涂覆于16um湿法PP隔膜的一侧,涂布方式为微凹版涂布,涂覆速度为40米/min,经过温度为50℃的烘箱烘干,收卷,得到陶瓷涂覆膜;
(6)将聚合物浆料III用大型涂覆机双面同时涂覆于陶瓷涂覆膜两侧,涂布方式为落帘涂布,涂覆速度为40米/min,经过含有90份纯水、5份乙醇、5份甲醇的凝固槽凝固、含有纯水的水洗槽水洗,聚合物成孔后,用温度为55℃的烘箱烘干,收卷,得到陶瓷和聚合物复合涂覆锂离子隔膜。
实施例2制备得到的陶瓷和聚合物复合涂覆锂离子隔膜的陶瓷涂层和聚合物涂层的总涂层厚度为5.1um,面密度为6.9g/m 2;总的复合涂覆锂离子隔膜厚度为21.1um,面密度为17.4g/m 2
实施例3
本实施例提供了一种陶瓷和聚合物复合涂覆锂离子隔膜,其制备方法如下:
(1)制备水性粘结剂乳液:
①取羧甲基纤维素钠10份,加入到其重量18倍的去离子水中,搅拌均匀得到羧甲基纤维素钠水溶液;
②取金红石型二氧化钛3.8份、曲拉通X-100:0.15份、上述羧甲基纤维素钠水溶液总重量的18%作为第一投入料,将第一投入料加入到其重量13倍的去离子水中,3300R/min高速搅拌分散35min,得到A溶液;
③取丙烯酸丁酯5份、丙烯酸乙酯5份、甲基丙烯酸甲酯8份、苯磺酸钠X-100:0.2份、十二烷基苯磺酸钠0.3份作为第二投入料,将第二投入料加入到其重量10倍的去离子水中,搅拌分散均匀,得到B溶液;
④将A溶液投入反应釜中升温至60℃,加入过硫酸铵0.35份,通入保护气体,在搅拌状态下往A溶液中滴加B溶液,在37min内滴加完毕,保温搅拌40min,出料,冷却至常温,与上述羧甲基纤维素钠水溶液总重量的82%搅拌均匀,即得所述水性粘结剂乳液。
(2)取30份的氢氧化镁(D50为0.87um,比表面为7.1m 2/g)、6.8份的水性粘结剂乳液、5份的苯丙乳胶、1.8份的聚乙烯醇、4.8份的水性分散剂聚乙二醇、0.6份的水性润湿剂聚氧乙烯烷基胺和51份的纯水加入到分散罐中,在球磨机中以750R/min转速下球磨45min预分散,预分散结束后,将其泵入高速分散器中,以4500R/min转速搅拌100min后,将得到的浆料倒入塑料桶内,用400目筛网过滤后,得到水性陶瓷浆料I;
(3)将12份的乙醇、75份的二甲基甲酰胺置于搅拌罐中,以1500R/min搅拌0.3h后,得到混合溶液II;
(4)将13份的PVDF和六氟丙烯(HFP)的共聚物P(VDF-HFP)粉置于分散罐中,加入混合溶液II,在球磨机中以800R/min转速下球磨30min,预分散结束后,将其泵入高速分散机中,以3500R/min转速搅拌70min后,得到聚合物浆料III;
(5)将水性陶瓷浆料I用大型涂覆机涂覆于20umPE和PP复合三层隔膜两侧,涂布方式为浸涂涂布,涂覆速度为45米/min,经过温度为55℃的烘箱烘干,收卷,得到陶瓷涂覆膜;
(6)将聚合物浆料III用大型涂覆机双面同时涂覆于陶瓷涂覆膜两侧,涂布方式为微凹版涂布,涂覆速度为55米/min,经过含有90份纯水、10份乙醇的凝固槽凝固、含有纯水的水洗槽水洗,聚合物成孔后,用温度为60℃的烘箱烘干,收卷,得到陶瓷和聚合物复合涂覆锂离子隔膜。
实施例3制备得到的陶瓷和聚合物复合涂覆锂离子隔膜的陶瓷涂层和聚合物涂层的总涂层厚度为4.7um,面密度为5.5g/m 2;总的复合涂覆锂离子隔膜厚度为24.7um, 面密度为17.2g/m 2
实施例4
本实施例提供了一种陶瓷和聚合物复合涂覆锂离子隔膜,其制备方法如下:
(1)制备水性粘结剂乳液:
①取羧甲基纤维素钠4.8份,加入到其重量14.5倍的去离子水中,搅拌均匀得到羧甲基纤维素钠水溶液;
②取钛酸钡粉体1.5份、金红石型二氧化钛2.5份、十二烷基硫酸钠0.31份、上述羧甲基纤维素钠水溶液总重量的25%作为第一投入料,将第一投入料加入到其重量15.5倍的去离子水中,2800R/min高速搅拌分散48min,得到A溶液;
③取丙烯酸丁酯6份、甲基丙烯酸甲酯6份、N-羟甲基丙烯酰胺3份、十二烷基硫酸钠0.26份、十二烷基苯磺酸钠0.15份作为第二投入料,将第二投入料加入到其重量13倍的去离子水中,搅拌分散均匀,得到B溶液;
④将A溶液投入反应釜中升温至80℃,加入过硫酸铵0.33份,通入保护气体,在搅拌状态下往A溶液中滴加B溶液,在55min内滴加完毕,保温搅拌38min,出料,冷却至常温,与上述羧甲基纤维素钠水溶液总重量的75%搅拌均匀,即得所述水性粘结剂乳液。
(2)取40份的三氧化二铝(D50为1.1um,比表面为3.3m 2/g)、6.5份的水性粘结剂乳液、6.5份的水性粘结剂聚丙烯酸乙酯、6.5份的水性分散剂二丁基萘磺酸钠、0.46份的水性润湿剂聚氧乙烯酰胺和40.04份的纯水加入到分散罐中,在球磨机中以1200R/min转速下球磨30min预分散,预分散结束后,将其泵入高速分散器中,以4700R/min转速搅拌900min后,将得到的浆料倒入塑料桶内,用300目筛网过滤后,得到水性陶瓷浆料I;
(3)将5份的乙醇、5份的纯水、0.8份的聚丙烯酸钾、79份的二甲基亚砜置于搅拌罐中,以1000R/min搅拌0.5h后,得到混合溶液II;
(4)将9份的PVDF和六氟丙烯(HFP)的共聚物P(VDF-HFP)粉、1.2份的铌酸钠置于分散罐中,加入混合溶液II,在球磨机中以750R/min转速下球磨45min预分散,预分散结束后,将其泵入高速分散机中,以6500R/min转速搅拌40min后,得到聚合物浆料III;
(5)将水性陶瓷浆料I用大型涂覆机涂覆于16umPE和PP复合三层隔膜一侧,涂布方式为浸涂涂布,涂覆速度为52米/min,经过温度为65℃的烘箱烘干,收卷,得到陶瓷涂覆膜;
(6)将聚合物浆料III用大型涂覆机双面同时涂覆于陶瓷涂覆膜两侧,涂布方式 为喷涂涂布,涂覆速度为42米/min,经过含有100份纯水的凝固槽凝固、含有纯水的水洗槽水洗,聚合物成孔后,用温度为55℃的烘箱烘干,收卷,得到陶瓷和聚合物复合涂覆锂离子隔膜。
实施例4制备得到的陶瓷和聚合物复合涂覆锂离子隔膜的陶瓷涂层和聚合物涂层的总涂层厚度为5.3um,面密度为6.3g/m 2;总的复合涂覆锂离子隔膜厚度为21.3um,面密度为16.8g/m 2
实施例5
实施例5与实施例2不同之处在于,实施例5中,步骤(5)将水性陶瓷浆料I用大型涂覆机涂覆于2um湿法PP隔膜一侧时,涂布方式为浸涂涂布,涂覆速度为35米/min,经过温度为45℃的烘箱烘干,收卷,得到陶瓷涂覆膜。
实施例5制备得到的陶瓷和聚合物复合涂覆锂离子隔膜的陶瓷涂层和聚合物涂层的总涂层厚度在1.5um,面密度在3g/m 2;总的复合涂覆锂离子隔膜厚度在3.5um,面密度在3g/m 2
实施例6
实施例6与实施例5不同之处在于,实施例6中,步骤(5)中将水性陶瓷浆料I用大型涂覆机涂覆于50umPE和PP复合三层隔膜两侧时,涂布方式为浸涂涂布,涂覆速度为75米/min,经过温度为65℃的烘箱烘干,收卷,得到陶瓷涂覆膜。
实施例6制备得到的陶瓷和聚合物复合涂覆锂离子隔膜的陶瓷涂层和聚合物涂层的总涂层厚度为18um,面密度为15g/m 2;总的复合涂覆锂离子隔膜厚度为68um,面密度为50g/m 2
实施例7
实施例7与实施例1的不同之处在于,实施例7中水性粘结剂乳液的制备方法是:
①按重量份数计,取羧甲基纤维素钠7份,加入到其重量5倍的去离子水中,搅拌均匀得到羧甲基纤维素钠水溶液;
②取铌酸钾粉体1份、铌酸纳粉体1份、十二烷基苯磺酸钠0.8份、上述羧甲基纤维素钠水溶液总重量的10%作为第一投入料,将第一投入料加入到其重量6倍的去离子水中,在2500R/min下高速搅拌分散60min,得到A溶液;
③取N-羟甲基丙烯酰胺6份、甲基丙烯酸缩水甘油酯9份、月桂基葡糖苷0.4份、脂肪醇聚氧乙烯醚硫酸钠0.4份作为第二投入料,将第二投入料加入到其重量12倍的去离子水中,搅拌分散均匀,得到B溶液;
④将A溶液投入反应釜中升温至80℃,加入过硫酸铵0.3份,通入保护气体,在搅拌状态下往A溶液中滴加B溶液,在30min内滴加完毕,保温搅拌50min,出料, 冷却至常温,与上述羧甲基纤维素钠水溶液总重量的90%搅拌均匀,即得所述水性粘结剂乳液。
实施例7中水性陶瓷浆料I的制备方法是:以重量份数计,取20份的氧化镁、20份的勃姆石作为陶瓷粉体(陶瓷粉体的D50为1.1um,比表面为3.3m 2/g)、5份的水性粘结剂乳液、6份的水性粘结剂苯丙乳胶、5份的水性分散剂二丁基萘磺酸钠、0.4份的润湿剂烷基聚氧乙烯醚羧酸钠和45份的纯水加入到分散罐中,在球磨机中以1200R/min转速下球磨30min预分散,预分散结束后,将其泵入高速分散器中,以4700R/min转速搅拌900min后,将得到的浆料倒入塑料桶内,用300目筛网过滤后即得。
实施例8
实施例8与实施例2的不同之处在于,实施例8中水性粘结剂乳液的制备方法是:
①按重量份数计,取羧甲基纤维素钠6份,加入到其重量12倍的去离子水中,搅拌均匀得到羧甲基纤维素钠水溶液;
②取BaTiO 3-Nb 2O 5-ZnO粉体1份、钛酸钡粉体1份、十二烷基苯磺酸钠0.8份、上述羧甲基纤维素钠水溶液总重量的10%作为第一投入料,将第一投入料加入到其重量12倍的去离子水中,在2800R/min下高速搅拌分散50min,得到A溶液;
③取N-羟甲基丙烯酰胺6份、甲基丙烯酸缩水甘油酯9份、月桂基葡糖苷0.4份、脂肪醇聚氧乙烯醚硫酸钠0.4份作为第二投入料,将第二投入料加入到其重量15倍的去离子水中,搅拌分散均匀,得到B溶液;
④将A溶液投入反应釜中升温至70℃,加入过硫酸铵0.3份,通入保护气体,在搅拌状态下往A溶液中滴加B溶液,在40min内滴加完毕,保温搅拌40min,出料,冷却至常温,与上述羧甲基纤维素钠水溶液总重量的90%搅拌均匀,即得所述水性粘结剂乳液。
实施例7中水性陶瓷浆料I的制备方法是:以重量份数计,取20份的氧化镁、20份的勃姆石作为陶瓷粉体(陶瓷粉体的D50为1.1um,比表面为3.3m 2/g)、5份的水性粘结剂乳液、6份的水性粘结剂苯丙乳胶、5份的水性分散剂二丁基萘磺酸钠、0.4份的润湿剂烷基聚氧乙烯醚羧酸钠和45份的纯水加入到分散罐中,在球磨机中以1500R/min转速下球磨30min预分散,预分散结束后,将其泵入高速分散器中,以6000R/min转速搅拌70min后,将得到的浆料倒入塑料桶内,用300目筛网过滤后即得。
实施例9
实施例9与实施例3的不同之处在于,实施例9中水性粘结剂乳液的制备方法是:
①按重量份数计,取羧甲基纤维素钠10份,加入到其重量20倍的去离子水中, 搅拌均匀得到羧甲基纤维素钠水溶液;
②取钛酸钡粉体1份、铌酸纳粉体1份,金红石型二氧化钛粉体1份、苯磺酸钠0.6份、上述羧甲基纤维素钠水溶液总重量的20%作为第一投入料,将第一投入料加入到其重量6倍的去离子水中,在3200R/min下高速搅拌分散40min,得到A溶液;
③取丙烯酸-2-乙基己酯5份、甲基丙烯酸羟乙酯5份、甲基丙烯酸羟丙酯5份、丙烯酸丁酯5份、十二烷基硫酸钠0.3份、甜菜碱盐酸盐0.5份份作为第二投入料,将第二投入料加入到其重量10倍的去离子水中,搅拌分散均匀,得到B溶液;
④将A溶液投入反应釜中升温至75℃,加入过硫酸铵0.3份,通入保护气体,在搅拌状态下往A溶液中滴加B溶液,在35min内滴加完毕,保温搅拌40min,出料,冷却至常温,与上述羧甲基纤维素钠水溶液总重量的80%搅拌均匀,即得所述水性粘结剂乳液。
实施例9中水性陶瓷浆料I的制备方法是:以重量份数计,取15份二氧化锆、15份钛酸钡和15份氧化锌作为陶瓷粉体(陶瓷粉体的D50为0.8um,比表面为7.8m 2/g)、5份的水性粘结剂乳液、3份的水性粘结剂海藻酸钠、3份的水性粘结剂聚丙烯酸、2份的水性分散剂二丁基萘磺酸钠、2份的水性分散剂聚丙烯酰胺、0.4份的润湿剂烷基聚氧乙烯酰胺和50份的纯水加入到分散罐中,在球磨机中以1800R/min转速下球磨60min预分散,预分散结束后,将其泵入高速分散器中,以4200R/min转速搅拌90min后,将得到的浆料倒入塑料桶内,用300目筛网过滤后即得。
实施例10
实施例10与实施例3的不同之处在于,实施例10中聚合物浆料III的制备方法是:
(3)将8份的乙酸甲酯、8份的纯水、0.8份的二丁基萘磺酸钠、35份的N-甲基吡咯烷酮、30份环丁砜置于搅拌罐中,以1800R/min搅拌1.5h后,得到混合溶液II;
(4)将5份的聚丙烯腈和5份的聚氧乙烯、2份的金红石型二氧化钛置于分散罐中,加入混合溶液II,在球磨机中以750R/min转速下球磨45min预分散,预分散结束后,将其泵入高速分散机中,以6500R/min转速搅拌40min即得。
实施例11
实施例11与实施例4的不同之处在于,实施例11中聚合物浆料III的制备方法是:
(3)将5份的氯化锂、5份的聚乙二醇、15份的纯水、1.5份的聚乙二醇脂肪酸酯、40份二甲基乙酰胺、40份二氯乙烷置于搅拌罐中,以1500R/min搅拌1.2h后,得到混合溶液II;
(4)将6份聚丙烯腈、10份聚氧乙烯、3份的钛酸钡置于分散罐中,加入混合溶液II,在球磨机中以1250R/min转速下球磨35min预分散,预分散结束后,将其泵入 高速分散机中,以4000R/min转速搅拌50min即得。
对比例1
选用现有的PE膜作为基膜,其厚度为12um。
对比例2
选用现有的PP膜作为基膜,其厚度为16um。
对本发明实施例1制备得到的陶瓷和聚合物复合涂覆锂离子隔膜的表面、其具有PE、陶瓷和聚合物一侧表面的横截面以及其具有PE和聚合物一侧表面的横截面进行电镜扫描,分别如图1、图2和图3所示,可见实施例1制备得到复合隔膜的陶瓷涂层和聚合物涂层涂覆的厚度均匀,且厚度分布均一性好,同时可见复合隔膜上孔隙的分布也十分均匀。
分别对实施例1、实施例2、实施例3、实施例4合成的陶瓷和聚合物复合涂覆锂离子隔膜、对比例1提供的基膜和对比例2提供的基膜的性能进行检测(测试条件为:温度:90℃,压力:5Mpa,时长:1min,极片为钴酸锂极片),数据见图4显示的表格,本发明实施例1、实施例2、实施例3和实施例4制作的陶瓷和聚合物复合涂覆锂离子隔膜与对比例1和对比例2提供的未经涂覆的基膜相比,热收缩值大幅度降低,130℃/1H热收缩值由对比例2中16umPP基膜的3.86%降为实施例2中陶瓷和聚合物复合涂覆隔膜的1.14%;各个实施例提供的陶瓷和聚合物复合涂覆隔膜与钴酸锂极片在90℃,5Mpa,1min干压条件下的界面粘结力达到39N/M以上,可以满足动力电池、数码消费类电池对复合隔膜与极片界面粘结力的要求。
此外,测试实施例合制备的陶瓷和聚合物复合涂覆锂离子隔膜和对比例2提供的PP基膜在相同条件及工艺下制作的软包电池在1C充放电情况下的循环曲线,结果如图5所示,使用实施例1提供的陶瓷和聚合物复合涂覆隔膜制备得到电池的电化学性能更加优异,1C充放电循环900周,电池容量仍然保持在90%以上,而PP基膜制备得到电池的充放电循环900周时,其电池容量保持率为87.9%,可见,本发明提供的陶瓷和聚合物复合涂覆隔膜的电化学性能更优异。
以上是对本发明进行了具体的阐述,用于帮助理解本发明,但本发明的实施方式并不受上述实施例的限制,任何未背离本发明原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
工业实用性
本发明提供的陶瓷和聚合物复合涂覆锂离子隔膜具有耐热性好、与正负极片的粘结强度高的优点,其同时还能够改善电解液的浸润性,防止该复合隔膜与电极之间因错层而导致的内短路,并提升了电池的硬度和安全性能;此外,本发明开创性的向聚 合物涂层中加入高介电常数陶瓷材料,大幅度的提升了聚合物涂层的Li +离子通导率,从而提高使用该复合隔膜的电池的充放电性能。本发明提供的陶瓷和聚合物复合涂覆锂离子隔膜的制备方法有利于连续化、大规模化生产。

Claims (19)

  1. 一种陶瓷和聚合物复合涂覆锂离子隔膜,其特征在于,包括聚烯烃多孔隔膜、涂覆于隔膜面一侧或者两侧的陶瓷涂层和涂覆在陶瓷面或者隔膜面的聚合物涂层。
  2. 根据权利要求1所述的陶瓷和聚合物复合涂覆锂离子隔膜,其特征在于,所述聚烯烃多孔隔膜选自于干法PP隔膜、湿法PE隔膜或者PE和PP复合三层隔膜中的一种;优选的,所述聚烯烃多孔隔膜的厚度在2-50um之间;更优选的,所述聚烯烃多孔隔膜的孔隙率在20-70%之间。
  3. 根据权利要求1或2所述的陶瓷和聚合物复合涂覆锂离子隔膜,其特征在于,所述陶瓷涂层的厚度为1-10um;优选的,所述聚合物涂层的厚度在0.5-8um之间。
  4. 根据权利要求1-3中任一项所述的陶瓷和聚合物复合涂覆锂离子隔膜,其特征在于:所述陶瓷涂层和所述聚合物涂层组成的总涂层的厚度在1.5-18um之间;优选的,所述陶瓷涂层和所述聚合物涂层组成的总涂层的面密度在3-15g/m 2之间;更优选的,总的复合涂覆锂离子隔膜的厚度在3.5-68um之间;进一步优选的,总的复合涂覆锂离子隔膜的面密度在3-50g/m 2之间。
  5. 根据权利要求1-4中任一项所述的陶瓷和聚合物复合涂覆锂离子隔膜,其特征在于,所述陶瓷涂层是由下述重量份的原料制成的:陶瓷材料15-45份、水性分散剂0.5-8份、水性粘结剂1-10份、水性粘结剂乳液1-5份、水性润湿剂0.1-5份。
  6. 根据权利要求5所述的陶瓷和聚合物复合涂覆锂离子隔膜,其特征在于,所述陶瓷材料选自由三氧化二铝、二氧化硅、氢氧化镁、金红石型二氧化钛、氧化镁、勃姆石、二氧化锆、钛酸钡和氧化锌组成的组合中的至少一种;优选的,所述陶瓷材料颗粒的D50在20-2000nm之间;更优选的,所述陶瓷材料的比表面积在0.8-200m 2/g之间。
  7. 根据权利要求5或6所述的陶瓷和聚合物复合涂覆锂离子隔膜,其特征在于,所述水性粘结剂选自由聚偏氟乙烯、聚乙烯醇、丁苯橡胶、羧甲基纤维素钠、苯丙乳胶、纯苯乳胶、海藻酸钠、聚丙烯酸组成的组合中的至少一种;优选的,所述水性分散剂选自由聚丙烯酸钠、聚乙二醇、十二烷基硫酸钠、羧酸盐类氟分散剂、二丁基萘磺酸钠、磺酸盐类氟分散剂、聚丙烯酸钾、聚丙烯酰胺、聚乙二醇脂肪酸酯、羧甲基纤维素钠组成的组合中的至少一种;更优选的,所述的水性润湿剂选自由聚丙烯酸钠、聚乙烯醇、烷基聚氧乙烯醚羧酸钠、聚氧乙烯烷基酚醚、烷基苯磺酸钠、烷基酚聚氧乙烯醚、聚氧乙烯烷基胺、聚氧乙烯酰胺组成的组合中的至少一种。
  8. 根据权利要求5至7中任一项所述的陶瓷和聚合物复合涂覆锂离子隔膜,其特征 在于,所述水性粘结剂乳液是由下述重量份的原料组成的:羧甲基纤维素钠1-10份、高介电常数陶瓷材料0-5份、丙烯酸树脂合成用单体5-20份、过硫酸铵0.1-0.5份、表面活性剂0.2-2份。
  9. 根据权利要求8所述的陶瓷和聚合物复合涂覆锂离子隔膜,其特征在于,所述高介电常数陶瓷材料选自由金红石型二氧化钛、钛酸钡、BaTiO 3-Nb 2O 5-MO x(其中M=Co、Ni、Mn、Zn)、铌酸钾、铌酸纳组成的组合中的至少一种;优选的,所述表面活性剂选自由羧酸盐、苯磺酸钠、十二烷基苯磺酸钠、脂肪醇聚氧乙烯醚硫酸钠、曲拉通X-100、季铵盐、月桂基葡糖苷、十二烷基硫酸钠、甜菜碱盐组成的组合中的至少一种;更优选的,所述丙烯酸树脂合成用单体选自由丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸-2-乙基己酯、甲基丙烯酸乙酯、丙烯酸、甲基丙烯酸羟乙酯、丙烯酸羟乙酯、N-羟甲基丙烯酰胺、丙烯酸羟丙酯、丙烯酸缩水甘油酯、甲基丙烯酸、甲基丙烯酸羟丙酯、甲基丙烯酸缩水甘油酯组成的组合中的至少一种。
  10. 根据权利要求1至9中任一项所述的陶瓷和聚合物复合涂覆锂离子隔膜,其特征在于,所述聚合物涂层是由下述重量份的原料制成的:高介电常数陶瓷材料0-5份、粘结剂0-2份、聚合物3-20份、成孔剂2-20份、分散剂0-5份、溶剂48-92份。
  11. 根据权利要求10所述的陶瓷和聚合物复合涂覆锂离子隔膜,其特征在于,所述聚合物选自由PVDF均聚物、PVDF和六氟丙烯的共聚物、聚丙烯腈,聚氧乙烯和聚甲基丙烯酸酯组成的组合中的至少一种;优选的,所述聚合物的分子量为50000-1200000之间;更优选的,所述成孔剂选自由聚乙二醇、聚乙烯吡咯烷酮、纯水、丙酮、乙酸甲酯、甲醇、异丙醇、乙醇、甲酸、乙酸、丙酸、正丁醇、正辛醇、十二醇、氯化锂、高氯酸锂组成的组合中的至少一种;进一步优选的,所述溶剂选自由二甲基乙酰胺、二氯乙烷、二甲基甲酰胺、三氯乙烷、环丁砜、二甲基亚砜、N-甲基吡咯烷酮、氯仿和二氯甲烷、丙酮组成的组合中的至少一种;更进一步优选的,所述粘结剂选自由聚偏氟乙烯、聚乙烯醇、丁苯橡胶、羧甲基纤维素钠、苯丙乳胶、纯苯乳胶、海藻酸钠、聚丙烯酸组成的组合中的至少一种;再进一步优选的,所述分散剂选自由聚丙烯酸钠、聚乙二醇、十二烷基硫酸钠、羧酸盐类氟分散剂、二丁基萘磺酸钠、磺酸盐类氟分散剂、聚丙烯酸钾、聚丙烯酰胺、聚乙二醇脂肪酸酯、羧甲基纤维素钠组成的组合中的至少一种。
  12. 一种陶瓷和聚合物复合涂覆锂离子隔膜的制备方法,其特征在于,包括以下步骤:
    (1)将水性陶瓷浆料I涂覆于干法PP隔膜、湿法PE隔膜或者PE和PP复合三 层隔膜的一侧或者两侧,烘干,得到陶瓷涂覆膜;
    (2)将聚合物浆料III涂覆于所述陶瓷涂覆膜两侧,经过凝固、水洗、聚合物成孔后,烘干。
  13. 根据权利要求12所述的陶瓷和聚合物复合涂覆锂离子隔膜的制备方法,其特征在于,所述水性陶瓷浆料I的制备方法是:按重量份数计,将15-45份陶瓷材料、0.5-8份水性分散剂、1-10份水性粘结剂、1-5份水性粘结剂乳液、0.1-5份水性润湿剂、纯水混合经过球磨预分散、高速分散机分散后,使用200-500目筛网过滤。
  14. 根据权利要求13所述的陶瓷和聚合物复合涂覆锂离子隔膜的制备方法,其特征在于,所述水性粘结剂乳液的制备方法包括以下步骤:
    (1)按重量份数计,取1-10份羧甲基纤维素钠加入到其重量5-20倍的去离子水中,搅拌均匀,得到羧甲基纤维素钠水溶液;
    (2)取0-5份高介电常数陶瓷材料、0.1-1份表面活性剂、所述羧甲基纤维素钠水溶液总重量的8-30%作为第一投入料,加入到所述第一投入料重量5-20倍的去离子水中,搅拌分散,得到A溶液;
    (3)取5-20份丙烯酸树脂合成用单体、0.1-1表面活性剂作为第二投入料,加入到所述第二投入料重量5-20倍的去离子水中,搅拌分散均匀,得到B溶液;
    (4)将所述A溶液升温至60-80℃,加入0.1-0.5份过硫酸铵,通入保护气体,在搅拌状态下往所述A溶液中滴加所述B溶液,保温搅拌10-60min,出料,冷却至常温,与上述羧甲基纤维素钠水溶液总重量的70-92%搅拌均匀。
  15. 根据权利要求14所述的陶瓷和聚合物复合涂覆锂离子隔膜的制备方法,其特征在于,所述步骤(2)中,搅拌分散是在2000-3500R/min下搅拌30-60min;优选的,所述步骤(4)中,往所述A溶液中滴加所述B溶液时,在10-60min内滴加完毕。
  16. 根据权利要求12至15中任一项所述的陶瓷和聚合物复合涂覆锂离子隔膜的制备方法,其特征在于,所述聚合物浆料III的制备方法是:按重量份数计,将2-20份成孔剂、0-2份粘结剂、0-5份分散剂、48-92份溶剂混合搅拌得到混合溶液II;将3-20份聚合物、0-5份高介电常数陶瓷材料混合后,加入所述混合溶液II,依次使用球磨预分散、高速分散机分散。
  17. 根据权利要求16所述的陶瓷和聚合物复合涂覆锂离子隔膜的制备方法,其特征在于,所述混合搅拌是在转速为500-5000R/min下搅拌0.2-1.2小时。
  18. 根据权利要求13至16中任一项所述的陶瓷和聚合物复合涂覆锂离子隔膜的制备方法,其特征在于,所述球磨预分散是在转速为200-2500R/min的球磨中搅拌0.1-1.5小时;优选的,所述高速分散机分散是在转速为500-9000R/min下高速搅拌0.3-2小时。
  19. 根据权利要求12至18中任一项所述的陶瓷和聚合物复合涂覆锂离子隔膜的制备方法,其特征在于,所述涂覆是使用涂覆机在涂覆速度为25-85米/min下进行;优选的,所述涂覆选自于浸涂、坡流涂布、落帘涂布、微凹版涂布、喷涂中的一种;更优选的,所述烘干是在温度为35-78℃下烘干;进一步优选的,所述凝固是经过含有60-100Wt%的纯水及0-40Wt%醇类的凝固槽;所述醇类选自于乙醇、甲醇、异丙醇和乙二醇组成的组合中的至少一种;更进一步优选的,所述水洗是经过含有纯水的水洗槽。
PCT/CN2017/120056 2017-06-20 2017-12-29 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法 WO2018233269A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL17895498T PL3644404T3 (pl) 2017-06-20 2017-12-29 Separator jonów litu powleczony kompozytem ceramiczno- polimerowym i sposób jego przygotowania
US16/078,188 US11811092B2 (en) 2017-06-20 2017-12-29 Ceramic-and-polymer-compositely-coated lithium ion separator and preparation method therefor
EP17895498.8A EP3644404B1 (en) 2017-06-20 2017-12-29 Ceramic and polymer composite coated lithium ion separator and preparation method therefor
JP2018542702A JP6700406B2 (ja) 2017-06-20 2017-12-29 セラミック・ポリマー複合コーティングリチウムイオン電池用セパレーター及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710470496.2A CN107275550B (zh) 2017-06-20 2017-06-20 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法
CN201710470496.2 2017-06-20

Publications (1)

Publication Number Publication Date
WO2018233269A1 true WO2018233269A1 (zh) 2018-12-27

Family

ID=60068183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120056 WO2018233269A1 (zh) 2017-06-20 2017-12-29 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法

Country Status (7)

Country Link
US (1) US11811092B2 (zh)
EP (1) EP3644404B1 (zh)
JP (1) JP6700406B2 (zh)
CN (1) CN107275550B (zh)
HU (1) HUE056191T2 (zh)
PL (1) PL3644404T3 (zh)
WO (1) WO2018233269A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736364A (zh) * 2020-12-28 2021-04-30 惠州亿纬创能电池有限公司 一种复合隔膜及其制备方法和应用
CN114292121A (zh) * 2022-01-13 2022-04-08 顾燕清 一种室内装饰用陶瓷复合板及其制备方法
CN114641890A (zh) * 2019-11-14 2022-06-17 珠海冠宇电池股份有限公司 一种隔膜及包括该隔膜的高电压电池
CN115873290A (zh) * 2022-10-31 2023-03-31 湖北兴瑞硅材料有限公司 一种硅气凝胶隔热膜的制备方法

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275550B (zh) 2017-06-20 2020-07-07 深圳市星源材质科技股份有限公司 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法
CN108035142B (zh) * 2017-11-29 2020-10-30 上海恩捷新材料科技有限公司 一种新型涂覆无纺布及其制备方法
CN108183188A (zh) * 2017-11-29 2018-06-19 合肥国轩高科动力能源有限公司 一种锂离子电池复合隔膜及其制备方法
CN108305976B (zh) * 2018-02-01 2021-04-20 中航锂电技术研究院有限公司 一种锂离子动力电池及其隔膜
CN108467503B (zh) * 2018-03-02 2021-08-10 瑞固新能(上海)材料科技有限公司 一种耐热型锂电池隔膜的制备方法
CN108511664B (zh) * 2018-03-30 2021-05-18 吉林师范大学 一种锂硫电池隔膜及其制备方法
CN108470874A (zh) * 2018-04-11 2018-08-31 北京国能电池科技股份有限公司 改善电芯挤压性能的方法、锂离子电池的制备工艺及锂离子电池
CN108711603A (zh) * 2018-04-27 2018-10-26 青岛蓝科途膜材料有限公司 一种芳纶聚合物涂布有色陶瓷涂覆膜及其制备方法
CN108807789A (zh) * 2018-05-28 2018-11-13 上海恩捷新材料科技股份有限公司 用于锂离子电池的隔膜及其制备方法
KR102543254B1 (ko) * 2018-06-26 2023-06-13 셴젠 시니어 테크놀로지 매테리얼 씨오., 엘티디. 복합 리튬 전지 분리막 및 이의 제조방법
CN108987649B (zh) * 2018-07-16 2021-10-22 怀化学院 电池用陶瓷浆料及其制备方法、应用、电池隔膜及电池
CN108987650B (zh) * 2018-07-20 2021-06-15 河北金力新能源科技股份有限公司 电池用隔膜及其制备方法和电池
CN109167001B (zh) * 2018-08-09 2020-06-12 上海恩捷新材料科技股份有限公司 一种锂离子电池隔膜及其制备方法
CN108807802A (zh) * 2018-08-20 2018-11-13 湖南烁普新材料有限公司 高透气性聚合物涂覆隔膜及其制备方法和应用
CN109216635A (zh) * 2018-08-30 2019-01-15 溧阳天目先导电池材料科技有限公司 活化膜及其制备方法和应用
CN109461866A (zh) * 2018-08-30 2019-03-12 上海顶皓新材料科技有限公司 一种低水分锂离子电池陶瓷涂覆隔膜及其制备方法
CN109103397A (zh) * 2018-09-28 2018-12-28 河南福森新能源科技有限公司 一种锂离子电池用陶瓷涂覆隔膜的制备方法
KR102388261B1 (ko) * 2018-10-12 2022-04-18 주식회사 엘지에너지솔루션 다공성 분리막 및 이를 포함하는 리튬 이차 전지
CN109461867A (zh) * 2018-10-18 2019-03-12 苏州捷力新能源材料有限公司 一种多层水系pvdf锂离子电池隔膜及制备方法
CN109494390A (zh) * 2018-10-30 2019-03-19 溧阳天目先导电池材料科技有限公司 一种改性固态电解质膜及其制备方法和锂电池
CN111200112B (zh) * 2018-11-16 2021-06-08 宁德时代新能源科技股份有限公司 一种正极极片及电化学装置
CN109301136A (zh) * 2018-11-28 2019-02-01 河北金力新能源科技股份有限公司 一种耐热的锂电池隔膜及其制备方法
CN109411682B (zh) * 2018-12-11 2022-01-28 广东永邦新能源股份有限公司 一种高热稳定性的锂电池隔膜及其制备方法
CN109802073A (zh) * 2018-12-21 2019-05-24 上海顶皓新材料科技有限公司 一种新型的锂离子电池用陶瓷隔膜及其制备方法
KR102374143B1 (ko) * 2018-12-21 2022-03-14 주식회사 엘지에너지솔루션 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
CN109860486A (zh) * 2018-12-30 2019-06-07 湖北金泉新材料有限责任公司 一种电池用隔膜及其制备方法
CN111435761B (zh) * 2019-01-11 2021-08-10 荣盛盟固利新能源科技有限公司 一种全固态锂离子电池及其多层电解质膜热压制备的方法
CN109888290B (zh) * 2019-03-19 2021-01-22 郑州中科新兴产业技术研究院 一种高倍率锂离子电池、陈化及化成方法
CN110190235A (zh) * 2019-06-14 2019-08-30 湖南高瑞电源材料有限公司 一种水溶液型锂电池陶瓷隔膜专用粘合剂及其制备方法和应用
CN110635089B (zh) * 2019-09-27 2022-04-19 宁德卓高新材料科技有限公司 高透气性偏氟乙烯聚合物混涂隔膜的制备方法
CN110635090B (zh) * 2019-09-27 2022-04-29 宁德卓高新材料科技有限公司 高耐热性偏氟乙烯聚合物混涂隔膜的制备方法
CN110600657B (zh) * 2019-09-27 2022-04-19 宁德卓高新材料科技有限公司 丝状偏氟乙烯聚合物复合涂覆隔膜的制备方法
CN110660949A (zh) * 2019-10-08 2020-01-07 宁波中科达新材料有限公司 一种无机与有机复合涂覆隔膜的制备方法
CN110828757A (zh) * 2019-11-20 2020-02-21 江苏塔菲尔新能源科技股份有限公司 一种锂离子电池隔膜及其制备方法和用途
CN112952295B (zh) * 2019-11-26 2023-03-10 北京卫蓝新能源科技有限公司 一种聚烯烃-纤维素复合隔膜及其制备方法
CN110828779B (zh) * 2019-12-11 2022-08-23 东莞维科电池有限公司 一种锂离子电池负极片及其制备方法、锂离子电池
CN111129397A (zh) * 2019-12-18 2020-05-08 中国科学院广州能源研究所 一种锂离子电池隔膜水性涂层及其制备方法
CN113224465A (zh) * 2020-01-17 2021-08-06 厦门大学 一种多层复合结构的陶瓷隔膜及其电池
CN113437438A (zh) * 2020-03-06 2021-09-24 厦门大学 一种环氧树脂改性陶瓷隔膜及其制备方法和应用
CN115836437A (zh) * 2020-03-18 2023-03-21 宁德新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置
KR102572651B1 (ko) 2020-03-24 2023-08-31 삼성에스디아이 주식회사 복합 세퍼레이터, 이를 채용한 리튬 전지, 및 이의 제조방법
CN113451708A (zh) * 2020-03-26 2021-09-28 广州汽车集团股份有限公司 功能涂覆隔膜及其制备方法、锂离子电芯、锂离子电池包及其应用
CN113540686A (zh) * 2020-04-20 2021-10-22 河北金力新能源科技股份有限公司 锂硫电池用功能性隔膜及其制备方法
CN111554858B (zh) * 2020-05-15 2022-04-01 瑞固新能(上海)材料科技有限公司 一种高剥离强度型陶瓷浆料及陶瓷涂覆隔膜
CN113794035A (zh) * 2020-05-26 2021-12-14 深圳格林德能源集团有限公司 一种锂离子电池隔膜及其锂离子电池
CN111384346A (zh) * 2020-05-28 2020-07-07 北京小米移动软件有限公司 隔膜及其制造方法、电芯和电池
CN111668427A (zh) * 2020-06-30 2020-09-15 沧州明珠锂电隔膜有限公司 一种耐温性和粘接性优良的复合电池隔膜及制备方法
CN111769237A (zh) * 2020-07-21 2020-10-13 河北金力新能源科技股份有限公司 锂电池用功能性隔膜及其制备方法
CN111900315B (zh) * 2020-08-04 2021-10-22 中国科学院物理研究所 具有双面涂覆材料涂层的陶瓷隔膜及其制备方法和应用
CN111900316B (zh) * 2020-08-11 2023-05-09 珠海冠宇电池股份有限公司 一种隔膜以及锂离子电池
CN114106717A (zh) * 2020-09-01 2022-03-01 沈敏怡 一种可冷裱的水性胶预涂膜
CN112151727B (zh) * 2020-10-14 2023-04-07 湖北亿纬动力有限公司 一种含锂隔膜及其制备方法和锂离子电池
CN112406239A (zh) * 2020-10-16 2021-02-26 西南计算机有限责任公司 一种军用电力设备绝缘体及其制备方法
CN112242589A (zh) * 2020-10-19 2021-01-19 深圳市鼎泰祥新能源科技有限公司 一种聚合物和陶瓷复合涂覆隔膜及其制备方法和锂电子电池
CN116457997A (zh) * 2020-10-26 2023-07-18 株式会社半导体能源研究所 隔离体及二次电池以及隔离体的制造方法
CN112490581B (zh) * 2020-10-28 2022-12-27 河北金力新能源科技股份有限公司 一种间位芳纶与油系pdvf复合涂层隔膜及其制备方法
CN112366425B (zh) * 2020-11-20 2022-06-17 江苏厚生新能源科技有限公司 一种防漏涂蓝色陶瓷涂覆膜及其制备方法
CN112652861A (zh) * 2020-12-21 2021-04-13 惠州锂威电子科技有限公司 一种锂离子电池隔离膜
CN112768835B (zh) * 2021-01-07 2022-07-15 广州明美新能源股份有限公司 一种Cr3AlC2/PVDF-PVA锂离子电池隔膜的制备方法
CN112909426B (zh) * 2021-01-21 2022-11-01 河北金力新能源科技股份有限公司 锂电池改性涂层隔膜及其制备方法
EP4113685A4 (en) * 2021-04-26 2023-02-22 Contemporary Amperex Technology Co., Limited BATTERY GROUP, BATTERY PACK, ELECTRICAL APPARATUS, AND METHOD OF MANUFACTURING AND FABRICATION DEVICE FOR BATTERY GROUP
CN113178663A (zh) * 2021-04-28 2021-07-27 惠州亿纬锂能股份有限公司 一种复合隔膜及其制备方法和用途
CN115477876A (zh) * 2021-06-16 2022-12-16 深圳市星源材质科技股份有限公司 一种涂覆浆料、涂覆隔膜及其制备方法
CN113437435B (zh) * 2021-06-23 2023-05-26 江苏星源新材料科技有限公司 涂覆浆料、涂覆隔膜及其制备方法
CN113555540A (zh) * 2021-07-21 2021-10-26 凤凰新能源(惠州)有限公司 一种快充聚合物锂离子电池
CN113690545A (zh) * 2021-08-02 2021-11-23 惠州锂威电子科技有限公司 一种陶瓷隔膜及其制备方法以及二次电池
CN113394515B (zh) * 2021-08-17 2021-11-02 江苏卓高新材料科技有限公司 用于锂电池的复合隔膜及其制备方法以及其检测方法
CN113972441A (zh) * 2021-09-26 2022-01-25 中材锂膜有限公司 一种具有高耐热高粘接性的锂离子电池隔膜及其制备方法
CN114156591A (zh) * 2021-10-21 2022-03-08 东风汽车集团股份有限公司 一种水性涂覆电极支撑无机隔膜及其制备方法
CN116120864A (zh) * 2021-11-12 2023-05-16 上海道赢实业有限公司 一种电芯正极陶瓷锁边胶、制备方法及叠片电池
CN114447520B (zh) * 2021-12-22 2024-03-19 河北金力新能源科技股份有限公司 功能梯度涂层锂电池隔膜及其制备方法
CN114464950B (zh) * 2021-12-23 2024-02-27 惠州锂威新能源科技有限公司 一种高离子电导型隔膜、隔膜的制备方法及电池
CN114335903A (zh) * 2021-12-24 2022-04-12 惠州亿纬锂能股份有限公司 一种耐热隔膜及其制备方法和应用
CN114006127B (zh) * 2021-12-30 2022-03-18 湖南中锂新材料科技有限公司 包含多孔pvdf系树脂涂层的锂电池隔膜及其制备方法
CN114243214A (zh) * 2021-12-30 2022-03-25 东莞凯德新能源有限公司 一种无机陶瓷涂敷隔膜及其制备方法和应用
US11728548B1 (en) * 2022-02-07 2023-08-15 Natron Energy, Inc. Separator for electrochemical cell
CN114464957A (zh) * 2022-02-11 2022-05-10 黑溪科技(深圳)有限公司 适于电液动力学ehd喷射印刷技术的钠米级锂电池隔膜涂料
CN114824665A (zh) * 2022-04-06 2022-07-29 东风汽车集团股份有限公司 一种固态电解质隔膜及其制备方法和应用
KR20230148039A (ko) * 2022-04-15 2023-10-24 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
CN114696040B (zh) * 2022-06-01 2022-08-30 沧州明珠隔膜科技有限公司 一种锂离子电池隔膜及其制备方法和应用
CN114865221B (zh) * 2022-06-16 2024-03-19 河北金力新能源科技股份有限公司 耐穿刺的无机复合涂覆隔膜及其制备方法
CN114976491B (zh) * 2022-06-16 2023-09-01 江苏厚生新能源科技有限公司 一种基于二氧化钛同轴管的高耐热电池隔膜及其制备方法
KR20240001699A (ko) * 2022-06-24 2024-01-03 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 분리막, 그 제조방법 및 그 관련된 이차전지와 전기기기
CN115000622B (zh) * 2022-07-21 2024-04-26 浙江人行道化工有限公司 Pvdf涂覆隔膜及其制备方法
CN115084781A (zh) * 2022-07-22 2022-09-20 欣旺达电子股份有限公司 陶瓷涂层隔膜、二次电池和用电设备
CN115312962A (zh) * 2022-08-18 2022-11-08 惠州锂威电子科技有限公司 一种交联复合隔膜及其制备方法
CN115301087B (zh) * 2022-08-20 2023-03-17 西藏旭升矿业开发有限公司 一种电极液回收用电渗析离子交换膜及其制备方法
CN115714239A (zh) * 2022-12-07 2023-02-24 广东卓高新材料科技有限公司 具有热关断效应的锂离子电池用复合隔膜及其制备方法
CN115966775B (zh) * 2022-12-14 2023-08-29 东莞市晟驰动力技术有限公司 一种超低自放电率的可充电锂电池及其制备方法
CN116093542A (zh) * 2023-03-07 2023-05-09 中材锂膜有限公司 非水电解液锂二次电池用隔膜及制备方法、电化学装置
CN117210167B (zh) * 2023-11-08 2024-01-09 广东鑫瑞新材料有限公司 一种纳米纤维陶瓷高隔热遮阳胶膜及其制备方法和应用
CN117352959A (zh) * 2023-12-01 2024-01-05 宁德时代新能源科技股份有限公司 隔离膜、电池和用电设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881438B2 (en) 2000-03-07 2005-04-19 Teijin Limited Process for production of composite porous film
US20070281206A1 (en) * 2006-06-05 2007-12-06 Matsushita Electric Industrial Co., Ltd. Separator for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
CN101326658A (zh) * 2005-12-06 2008-12-17 Lg化学株式会社 具有形态梯度的有机/无机复合隔膜、其制造方法和含该隔膜的电化学装置
JP5226744B2 (ja) 2001-09-28 2013-07-03 帝人株式会社 複合多孔膜の製造法
CN104157819A (zh) * 2014-09-02 2014-11-19 深圳市星源材质科技股份有限公司 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法
CN104157818A (zh) * 2014-09-02 2014-11-19 深圳市星源材质科技股份有限公司 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法
CN104393215A (zh) * 2014-12-01 2015-03-04 天津工业大学 组分比例呈梯度连续变化的多层多孔电池隔膜及其制备方法
KR20160125921A (ko) 2015-04-22 2016-11-01 주식회사 엘지화학 리튬 이차전지용 분리막 및 그의 제조방법
CN106654119A (zh) * 2016-11-14 2017-05-10 宁波中车新能源科技有限公司 一种混合涂层隔膜及其制备方法和应用
CN106784533A (zh) 2017-01-20 2017-05-31 东莞市卓高电子科技有限公司 一种含pmma及其共聚物涂层隔膜的生产工艺
CN107275550A (zh) * 2017-06-20 2017-10-20 深圳市星源材质科技股份有限公司 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4981220B2 (ja) * 2001-06-21 2012-07-18 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
KR20090103010A (ko) * 2008-03-27 2009-10-01 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 리튬 이차 전지
WO2012081556A1 (ja) * 2010-12-17 2012-06-21 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
CN102569701A (zh) * 2012-01-04 2012-07-11 宁德新能源科技有限公司 一种锂离子电池及其隔膜
WO2014041983A1 (ja) * 2012-09-11 2014-03-20 Jsr株式会社 保護膜を作製するための組成物および保護膜、ならびに蓄電デバイス
US9306202B2 (en) * 2012-11-20 2016-04-05 Samsung Sdi Co., Ltd. Separator for a secondary battery and secondary battery including the same
US20140272526A1 (en) * 2013-03-14 2014-09-18 GM Global Technology Operations LLC Porous separator for a lithium ion battery and a method of making the same
JP5647378B1 (ja) * 2013-03-19 2014-12-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
CN103618059B (zh) * 2013-12-10 2017-01-04 深圳市星源材质科技股份有限公司 一种高分子无机涂层锂离子电池隔膜及其制备方法
CN103915595A (zh) * 2014-04-23 2014-07-09 深圳市星源材质科技股份有限公司 水性聚合物隔膜及其制备方法
CN104241569B (zh) * 2014-08-28 2016-06-01 江苏华东锂电技术研究院有限公司 复合隔膜的制备方法
CN104269506A (zh) * 2014-10-24 2015-01-07 深圳市星源材质科技股份有限公司 多层共挤涂覆制备锂电池复合隔膜的方法及装置
KR20160059013A (ko) * 2014-11-17 2016-05-26 전자부품연구원 유전물질이 코팅된 분리막 제조방법 및 그 분리막을 포함하는 리튬-유황 이차전지
CN104446515B (zh) * 2014-11-20 2016-06-22 深圳市星源材质科技股份有限公司 锂离子电池隔膜的高固含量水性陶瓷浆料及其加工方法
KR102586597B1 (ko) * 2016-07-22 2023-10-11 셀가드 엘엘씨 개선된 코팅, 코팅된 분리기, 전지 및 관련 방법
CN107799703A (zh) * 2016-08-29 2018-03-13 比亚迪股份有限公司 一种聚合物复合膜及其制备方法以及包括其的锂离子电池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881438B2 (en) 2000-03-07 2005-04-19 Teijin Limited Process for production of composite porous film
JP5226744B2 (ja) 2001-09-28 2013-07-03 帝人株式会社 複合多孔膜の製造法
CN101326658A (zh) * 2005-12-06 2008-12-17 Lg化学株式会社 具有形态梯度的有机/无机复合隔膜、其制造方法和含该隔膜的电化学装置
US20070281206A1 (en) * 2006-06-05 2007-12-06 Matsushita Electric Industrial Co., Ltd. Separator for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
CN104157819A (zh) * 2014-09-02 2014-11-19 深圳市星源材质科技股份有限公司 陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法
CN104157818A (zh) * 2014-09-02 2014-11-19 深圳市星源材质科技股份有限公司 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法
CN104393215A (zh) * 2014-12-01 2015-03-04 天津工业大学 组分比例呈梯度连续变化的多层多孔电池隔膜及其制备方法
KR20160125921A (ko) 2015-04-22 2016-11-01 주식회사 엘지화학 리튬 이차전지용 분리막 및 그의 제조방법
US20180040868A1 (en) 2015-04-22 2018-02-08 Lg Chem, Ltd. Separator for lithium secondary battery and manufacturing method therefor
CN106654119A (zh) * 2016-11-14 2017-05-10 宁波中车新能源科技有限公司 一种混合涂层隔膜及其制备方法和应用
CN106784533A (zh) 2017-01-20 2017-05-31 东莞市卓高电子科技有限公司 一种含pmma及其共聚物涂层隔膜的生产工艺
CN107275550A (zh) * 2017-06-20 2017-10-20 深圳市星源材质科技股份有限公司 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114641890A (zh) * 2019-11-14 2022-06-17 珠海冠宇电池股份有限公司 一种隔膜及包括该隔膜的高电压电池
CN112736364A (zh) * 2020-12-28 2021-04-30 惠州亿纬创能电池有限公司 一种复合隔膜及其制备方法和应用
CN112736364B (zh) * 2020-12-28 2022-08-12 惠州亿纬创能电池有限公司 一种复合隔膜及其制备方法和应用
CN114292121A (zh) * 2022-01-13 2022-04-08 顾燕清 一种室内装饰用陶瓷复合板及其制备方法
CN115873290A (zh) * 2022-10-31 2023-03-31 湖北兴瑞硅材料有限公司 一种硅气凝胶隔热膜的制备方法

Also Published As

Publication number Publication date
CN107275550A (zh) 2017-10-20
JP2019523518A (ja) 2019-08-22
JP6700406B2 (ja) 2020-05-27
EP3644404B1 (en) 2021-10-13
HUE056191T2 (hu) 2022-01-28
US20190245182A1 (en) 2019-08-08
EP3644404A1 (en) 2020-04-29
PL3644404T3 (pl) 2022-01-10
CN107275550B (zh) 2020-07-07
EP3644404A4 (en) 2020-06-10
US11811092B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2018233269A1 (zh) 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法
US10811659B2 (en) Separator for electricity storage device, laminate and porous film
CN108878751B (zh) 导电陶瓷复合隔膜和固态电池
JP7217297B2 (ja) 複合リチウム電池セパレータ及びその調製方法
KR102303725B1 (ko) 열가교형 리튬이온 전지용 슬러리 및 그 제조방법, 리튬이온 전지용 전극, 리튬이온 전지용 세퍼레이터, 리튬이온 전지용 세퍼레이터/전극적층체, 및 리튬이온 전지
JP6447129B2 (ja) 二次電池用セパレータおよび二次電池
JP2022506297A (ja) 改質固体電解質膜及びその製造方法並びにリチウム電池
JP6739320B2 (ja) 蓄電デバイス用セパレータ
WO2022161088A1 (zh) 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜
WO2016201757A1 (zh) 一种高介电常数的纳米复合涂层隔膜及其制备方法
CN105895844A (zh) 一种粘性陶瓷隔膜及其制备方法
JP2014056843A (ja) 電気化学素子用セパレータおよび電気化学素子
CN112521616B (zh) 接枝陶瓷粉体及制备方法、陶瓷隔膜及制备方法、锂离子电池、电池模组和电池包
CN103956451A (zh) 一种锂离子电池用复合陶瓷隔膜及其制备方法
JP7365754B2 (ja) 高安全性リチウムイオン電池用セパレータの製造方法
JP2016107642A (ja) 多層多孔膜及び蓄電デバイス用セパレータ
JP6547630B2 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
CN110729440A (zh) 一种锂离子电池涂层隔膜、制备方法及锂离子电池
JP2018200788A (ja) リチウムイオン二次電池用セパレータ
CN106803576B (zh) 锂离子电池用纳米陶瓷粉体组合物及其制法和应用
JP2019008882A (ja) パターン塗工用スラリー
CN114128028A (zh) 用于电化学装置的复合隔板和包括该复合隔板的电化学装置
TWI511352B (zh) Ion polymer film material and its preparation method and lithium secondary battery
CN110911619A (zh) 锂电池隔膜及其制备方法和锂电池
WO2021197134A1 (zh) 锂离子电池隔膜及其制备方法、锂离子电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018542702

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017895498

Country of ref document: EP

Effective date: 20200120