WO2022161088A1 - 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜 - Google Patents

一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜 Download PDF

Info

Publication number
WO2022161088A1
WO2022161088A1 PCT/CN2021/142364 CN2021142364W WO2022161088A1 WO 2022161088 A1 WO2022161088 A1 WO 2022161088A1 CN 2021142364 W CN2021142364 W CN 2021142364W WO 2022161088 A1 WO2022161088 A1 WO 2022161088A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion battery
coating material
coating
separator
nanocellulose
Prior art date
Application number
PCT/CN2021/142364
Other languages
English (en)
French (fr)
Inventor
王海辉
刘凯
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2022161088A1 publication Critical patent/WO2022161088A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to a coating material for a lightweight lithium ion battery separator, a preparation method thereof, and a lightweight lithium ion battery composite separator.
  • lithium battery industry Due to the expansion of application fields and the increase in demand, the shape and size of batteries are changed, and lithium secondary batteries are required to have better durability and safety than existing small batteries.
  • the separator blocks the positive and negative electrodes in lithium-ion batteries to prevent short circuits, but allows free transport of lithium ions. Its structure and properties are critical to the performance, cycle life, and safety of lithium-ion batteries.
  • lithium-ion batteries mainly use microporous polyolefin separators, but their surface energy is high, and the electrolyte wettability is not good; the melting point is low, and when the temperature reaches 130 ° C or higher, it will soften or even melt, and the volume of the separator will shrink drastically. Causes an internal short circuit, resulting in catastrophic thermal runaway and poor safety performance. From the perspective of lithium battery safety, in order to improve electrolyte wettability and thermal stability, more and more battery companies have begun to focus on the field of separator coating and modification to produce composite lithium ion battery separators.
  • the common method is to coat inorganic particles on polymer microporous membranes such as PP, PE, and non-woven fabrics.
  • the presence of inorganic particles can improve the electrolyte wettability and high temperature dimensional stability of the multi-layer composite diaphragm, thereby improving the lithium ion
  • the performance of the ion battery however, the adhesion between the inorganic particle coating and the polymer separator is poor, and it is easy to fall off.
  • the commonly used separator coatings are inorganic particles such as boehmite and Al 2 O 3 , whose size is generally greater than 500 nm, the coating thickness is more than 2 microns, and the coating density is more than 4 g/m 2 .
  • the thick separator coating also partially hinders the transport of lithium ions.
  • the particle size of the inorganic particles of the coating is too small, it is easy to accumulate and agglomerate, and it is difficult to obtain a coating with uniform stability.
  • Chinese patent 201711485007.7 discloses a nanoparticle-coated lithium-ion battery separator and a preparation method thereof.
  • the lithium-ion battery separator includes a base film and nanoparticles coated on at least one surface of the base film. , wherein, the nanoparticles have a porous structure, and at least part of the pores run through the surface of the nanoparticles.
  • the coating is prepared by using nanoparticles with a porous structure.
  • the nanoparticles with a porous structure themselves have a well-developed pore structure, and lithium ions can not only be between the nanoparticles It can also diffuse freely in the internal pores of the porous structure of the nanoparticle itself.
  • porous silica particles By coating porous silica particles, the conductivity of lithium ions is improved with less sacrifice of gas permeability, but the peel strength and thermal stability of the modified separator have not been studied.
  • the present invention provides a coating material for a lightweight lithium ion battery separator, a preparation method thereof, and a lightweight lithium ion battery composite separator.
  • the present invention adopts following technical scheme:
  • the present invention provides a coating material for a lightweight lithium ion battery separator, using water as a liquid phase component, the coating material further includes a solid phase component, and the solid phase component includes nanofibers and porous inorganic nanofibers.
  • the invention combines porous inorganic nanofibers and nanocellulose, and the obtained coating material modifies the microporous polyolefin diaphragm, which can improve the electrolyte wettability and stability of the diaphragm without sacrificing the air permeability.
  • the obtained coating has strong bonding force with the base film, and the coating is light and thin, which is beneficial to the transmission of lithium ions and the improvement of the mass energy density of the battery and other properties, and has a very broad application prospect.
  • the mass ratio of the nanocellulose to the porous inorganic nanofibers is 0.4-1.5:1, more preferably 1:1.
  • L is 0.5-2 m
  • d is 20-50 nm.
  • the concentration and/or the length and diameter of the nanocellulose meet the above requirements, the solid components are not easy to agglomerate into balls, and the obtained coating material has good stability, so that the properties of the membrane such as air permeability and areal density are better.
  • the length of the porous inorganic nanofibers is ⁇ 5m.
  • the porosity of the porous inorganic nanofibers is 15-40%.
  • the preparation method of the porous inorganic nanofibers comprises: mixing a colloidal solution containing inorganic materials or their precursors with a polyvinyl alcohol solution to form a spinning solution, and performing electrospinning to obtain a composite fiber membrane of polyvinyl alcohol and inorganic materials , the composite fiber membrane is calcined and then placed in a NaOH solution to form micropores.
  • the porous inorganic nanofibers are porous inorganic SiO 2 or Al 2 O 3 nanofibers.
  • porous inorganic SiO 2 or Al 2 O 3 nanofibers can be prepared by the following methods:
  • PVA polyvinyl alcohol
  • Ethyl orthosilicate or nano-alumina and distilled water are mixed uniformly, then a small amount of phosphoric acid is added dropwise to the mixed solution, and stirred at room temperature for 12 hours to obtain a colloidal solution;
  • the above-mentioned PVA solution and the colloidal solution stir to obtain a spinning solution, and use an electrospinning machine to spin: the above-mentioned spinning solution containing a certain quality is loaded into a 5ml syringe with a needle of a suitable model, and the needle and the receiver are adjusted.
  • the distance between the receivers is 15cm
  • the translation speed is 300mm/min
  • the translation distance is 15cm.
  • the drum receiver is used to receive, and the rotation speed of the receiver is set to 50r/min.
  • the electrostatic high voltage is turned on for spinning to obtain PVA@SiO 2 or PVA@Al 2 O 3 composite fiber membrane;
  • the PVA@SiO 2 or PVA@Al 2 O 3 composite fiber film was peeled off from the aluminum foil and calcined at high temperature;
  • the product calcined at high temperature was placed in a certain amount of 2mol/L NaOH solution, stirred at 90 °C for 3 hours, centrifuged, and washed to obtain the target product porous inorganic SiO 2 or Al 2 O 3 nanofibers.
  • the present invention also provides a method for preparing the above-mentioned coating material for lightweight lithium ion battery separator.
  • the preparation method provided by the present invention includes the steps of mixing a first slurry and a second slurry, the first slurry including nanocellulose and water, and the second slurry including porous inorganic nanofibers and water.
  • the second slurry further includes 0.01-0.2 wt % of a binder.
  • the binder is polyvinyl alcohol with an alcoholysis degree of 97-99 mol% and a viscosity of 25-30 mPa.s.
  • the present invention adopts less or no binder, it is not easy to block the gap of the diaphragm, so that the obtained diaphragm has excellent air permeability and ionic conductivity.
  • the present invention provides a lightweight lithium ion battery composite separator, comprising a substrate, the substrate is a porous membrane material, and at least one surface of the substrate is provided with the lightweight lithium ion battery separator Finished coatings formed with coating materials.
  • the porous membrane material is preferably a polyethylene porous membrane and/or a polypropylene porous membrane.
  • the coating material is attached to the surface of the substrate in a manner not limited to coating.
  • the coating methods are conventional technical means mastered by those skilled in the art, including blade coating, dip coating, spray coating, spin coating and the like.
  • the coating material is coated on the surface of the substrate by means of blade coating, and the coating rate is preferably 30-80 m/min. After coating, the composite separator was dried at 40-90°C.
  • the thickness of the substrate is 9-13 ⁇ m.
  • the thickness of the modification coating is 400-1000 nm.
  • the areal density of the modified coating is less than 1.0 g/m 2 (the thickness of the currently commercialized Al 2 O 3 coating is usually 3 microns, Coating surface density>6g/m 2 ), excellent carbonate electrolyte wettability (eg: 1M LiPF6/EC+DMC electrolyte contact angle ⁇ 5 o ), and excellent thermal stability (150°C/ 1h, shrinkage rate ⁇ 3%), and the properties of high voltage resistance (electrochemical window ⁇ 4.8V), the ionic conductivity is increased by 20-60%.
  • the present invention also provides the application of the above-mentioned lightweight lithium-ion battery composite separator.
  • a lithium ion battery adopts the above-mentioned lightweight lithium ion battery composite separator as a separator.
  • the above-mentioned lightweight lithium-ion battery composite separator can be cut into the desired shape and size as required, and then assembled with the positive electrode, negative electrode, electrolyte, etc. to form the target lithium-ion battery.
  • the invention provides a coating material for a lightweight lithium ion battery separator, which combines porous inorganic nanofibers and nanocellulose. Under the premise of improving the electrolyte wettability and stability of the separator, and the obtained coating has strong bonding force with the base film, the coating is light and thin, which is conducive to the transmission of lithium ions and improves the quality and energy density of the battery. application prospects.
  • Fig. 1 is the SEM image of porous inorganic nanofiber in Example 1 of the present invention.
  • Example 2 is a cross-sectional SEM image of the lightweight lithium-ion battery composite separator provided in Example 1 of the present invention.
  • the present embodiment provides a coating material for a lightweight lithium-ion battery separator, the preparation method of which is as follows:
  • Disperse 160 g of nanocellulose with a diameter of 50 nm (d50 50 nm) and a length of 2 ⁇ m in 5 kg of deionized water, and stir and disperse for use; Vinyl alcohol (degree of alcoholysis: 99 mol%, viscosity: 28 mPa.s), after being homogenized by high-speed stirring for 5 hours, is stirred and mixed with nanocellulose slurry to obtain.
  • porous inorganic SiO nanofibers is as follows:
  • PVA polyvinyl alcohol
  • the drum receiver is used to receive, and the speed of the receiver is set to 50r/min. Finally, the electrostatic high voltage of 12kV is turned on, and spinning is performed to obtain PVA@SiO 2 Composite fiber membrane; peel off the PVA@SiO 2 composite fiber membrane from the aluminum foil, and calcinate at 1100 °C for 2 hours; place the product after high temperature calcination in 200 ml of 2 mol/L NaOH solution, and stir at 90 °C for 3 hours. hours, centrifugation, and washing to obtain porous inorganic SiO 2 nanofibers with a length of less than 5 ⁇ m and a porosity of 15-40%.
  • This embodiment also provides a lightweight lithium-ion battery composite diaphragm, which is composed of a polyethylene porous film as a base material and a modified coating attached to both sides of the polyethylene porous film.
  • the preparation method is as follows:
  • FIG. 1 is a SEM image of the porous inorganic nanofibers in this embodiment
  • FIG. 2 is a cross-sectional SEM image of a lithium-ion battery composite separator in this embodiment.
  • the present embodiment provides a coating material for a lightweight lithium-ion battery separator, the preparation method of which is as follows:
  • Disperse 160g of nanocellulose with a diameter of 50nm (d50 50nm) and a length of 2 ⁇ m in 5kg of deionized water, stir and disperse for use ; 160g of porous inorganic Al2O3 nanofibers are dispersed in 5kg of deionized water, add 0.1wt%
  • the obtained polyvinyl alcohol (degree of alcoholysis: 99 mol%, viscosity: 28 mPa.s) was homogenized by high-speed stirring for 5 hours, and then mixed with nanocellulose slurry.
  • porous inorganic Al2O3 nanofibers is as follows:
  • PVA polyvinyl alcohol
  • PVA polyvinyl alcohol
  • 2534H type electrospinning machine for spinning put a certain mass of the above spinning solution into a 5ml syringe with a suitable type of needle, and set the bolus speed to 0.02mm/min, adjust the needle and the receiver. The distance between them was 15 cm, the translation speed was 300 mm/min, and the translation distance was 15 cm. The drum receiver was used to receive, and the speed of the receiver was set to 50 r/min.
  • the electrostatic high voltage of 12 kV was turned on, and spinning was performed to obtain PVA@Al 2 O 3 Composite fiber membrane; peel off the PVA@Al 2 O 3 composite fiber membrane from the aluminum foil, and calcinate at a high temperature of 1100 °C for 2 hours; place 5 g of the product after high temperature calcination in 200 ml of 2mol/L NaOH solution at 90 °C Under stirring for 3 hours, centrifugation and washing, porous inorganic Al 2 O 3 nanofibers are obtained, the length of which is less than 5 ⁇ m and the porosity is 15-40%.
  • This embodiment also provides a lightweight lithium-ion battery composite diaphragm, which is composed of a polyethylene porous film as a base material and a modified coating attached to both sides of the polyethylene porous film.
  • the preparation method is as follows:
  • the present embodiment provides a lithium-ion battery composite diaphragm, and its preparation method is as follows:
  • Disperse 16g of nanocellulose with a diameter of 50nm (d50 50nm) and a length of 2 ⁇ m in 500g of deionized water, stir and disperse for use; disperse 16g of the prepared porous inorganic particles in 500g of deionized water, add 0.1wt% polyethylene Alcohol (degree of alcoholysis: 99mol%, viscosity: 28mPa.s), after high-speed stirring and homogenizing for 5 hours, stirring and mixing with nanocellulose slurry;
  • the present embodiment provides a lithium-ion battery composite diaphragm, and its preparation method is as follows:
  • the present embodiment provides a lithium-ion battery composite diaphragm, and its preparation method is as follows:
  • Disperse 16g of nanocellulose with a diameter of 50nm (d50 50nm) and a length of 2um in 500g of deionized water, stir and homogenize it at a high speed for 5h and stand by for use;
  • the present embodiment provides a lithium-ion battery composite diaphragm, and its preparation method is as follows:
  • PVA polyvinyl alcohol
  • the drum receiver is used to receive, and the speed of the receiver is set to 50r/min. Finally, the electrostatic high voltage of 12kV is turned on, and spinning is performed to obtain PVA@SiO 2 composite fiber membrane, the PVA@SiO 2 composite fiber membrane was peeled off from the aluminum foil, and calcined at a high temperature of 1100 ° C for 2 hours to obtain inorganic fibers;
  • the present embodiment provides a lithium-ion battery composite diaphragm, and its preparation method is as follows:
  • the present embodiment provides a lithium-ion battery composite diaphragm, and its preparation method is as follows:
  • PVA polyvinyl alcohol
  • the drum receiver is used to receive, and the speed of the receiver is set to 50r/min. Finally, the electrostatic high voltage of 12kV is turned on, and spinning is performed to obtain PVA@SiO 2 Composite fiber membrane; peel off the PVA@SiO 2 composite fiber membrane from the aluminum foil, and calcinate at 1100 °C for 2 hours; place the product after high temperature calcination in 200 ml of 2 mol/L NaOH solution, and stir at 90 °C for 3 hours. hours, centrifuged and washed to obtain porous inorganic SiO2 nanofibers;
  • Disperse 200 g of nanocellulose with a diameter of 100 nm (d50 100 nm) and a length of 2 ⁇ m in 5 kg of deionized water, and stir and disperse for use; Vinyl alcohol (degree of alcoholysis: 99mol%, viscosity: 28mPa.s), after high-speed stirring and homogenizing for 5 hours, stirring and mixing with nanocellulose slurry for use;
  • test method of peel strength refers to the national standard "GB/T 36363-2018" test
  • the invention provides a coating material for a lightweight lithium ion battery separator, a preparation method thereof, and a lightweight lithium ion battery composite separator.
  • the coating material uses water as a liquid phase component, and the coating material also includes solid Phase components, the solid phase components include nanocellulose and porous inorganic nanofibers.
  • the coating material for the lightweight lithium ion battery separator provided by the invention combines porous inorganic nanofibers and nanocellulose, and the coating material modifies the microporous polyolefin separator, which can achieve the premise of not sacrificing the air permeability.
  • the obtained coating has a strong bonding force with the base film, and the coating is light and thin, which is conducive to the transmission of lithium ions and improves the quality and energy density of the battery. application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

本发明提供一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜,所述涂层材料以水为液相组分,所述涂层材料中还包括固相组分,所述固相组分包括纳米纤维素和多孔无机纳米纤维。本发明提供的轻量化锂离子电池隔膜用涂层材料将多孔无机纳米纤维与纳米纤维素组合,该涂层材料对微孔聚烯烃隔膜进行修饰改性,可实现在不牺牲透气性的前提下,提升隔膜的电解液浸润性和稳定性,而且所得涂层与基膜结合力强,涂层轻薄,有利于锂离子的传输以及提升电池的质量能量密度等性能,具有非常广阔的应用前景。

Description

一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜
交叉引用
本申请要求2021年1月28日提交的专利名称为“一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜”的第202110121305.8号中国专利申请的优先权,其全部公开内容通过引用整体并入本文。
技术领域
本发明涉及锂离子电池技术领域,尤其涉及一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜。
背景技术
近年来随着电动交通工具以及便携式电子产品的迅速发展及大型锂离子动力电池的使用,促使锂电池工业发展迅猛。由于应用领域的扩大和需求的增加,电池的外形和尺寸发生变化,并且需要锂二次电池具有比现有小型电池更好的耐用性和安全性。隔膜在锂离子电池中阻隔电池正负极防止短路,但允许锂离子自由传输,其结构和性质对锂离子电池的性能、循环寿命、安全性至关重要。
目前商业的锂离子电池主要采用微孔聚烯烃隔膜,但其表面能高,电解液浸润性不好;熔点低,在温度达到130℃或更高时,会出现软化甚至熔化,隔膜体积剧烈收缩引起内部短路,从而引发灾难性的热失控,安全性能差。从锂电池安全性的角度考虑,为改善电解液浸润性和热稳定性,越来越多的电池企业开始把目光投向隔膜涂覆改性领域,生产出复合的锂离子电池隔膜。
常见的方法是将无机粒子涂覆在PP、PE以及无纺布等高分子微孔膜上,无机粒子的存在,能够提高多层复合隔膜的电解液浸润性和高温尺寸稳定性,进而提升锂离子电池的性能,然而无机粒子涂层与高分子隔膜的 粘结性较差,容易发生脱落。而且常用的隔膜涂层为勃姆石、Al 2O 3等无机颗粒,其尺寸一般大于500nm,涂层厚度在2微米以上,涂层密度4g/m 2以上,虽然改善了电池性能,但会影响电池的体积和质量能量密度,厚重的隔膜涂层也会部分阻碍锂离子的传输。反之,如果涂层的无机颗粒粒径过小,容易堆积团聚,难以获得稳定性均一的涂层。
研究人员又提出了进一步改进,中国专利201711485007.7公开了一种纳米粒子涂覆的锂离子电池隔膜及其制备方法,所述锂离子电池隔膜包括基膜和涂覆在基膜至少一个表面的纳米粒子,其中,纳米粒子具有多孔结构,并且至少部分孔道贯穿纳米粒子的表面其采用具有多孔结构的纳米粒子制备涂层,多孔结构的纳米粒子本身具有发达的孔道结构,锂离子不仅可以在纳米粒子间的空隙中扩散,还可以在纳米粒子本身的多孔结构内部孔道中自由扩散。通过涂覆多孔的二氧化硅颗粒,在较小牺牲透气性的前提下,提高了锂离子的电导率,但其对修饰后隔膜的剥离强度、热稳定性未有研究。
因此,在利用电池隔膜涂覆改善隔膜热稳定性、电解液浸润性的同时,提升隔膜的透气性,保证隔膜剥离强度和锂离子的传输效果,具有重要意义。
发明内容
针对现有技术存在的问题,本发明提供一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜。
本发明采用以下技术方案:
第一方面,本发明提供一种轻量化锂离子电池隔膜用涂层材料,以水为液相组分,所述涂层材料中还包括固相组分,所述固相组分包括纳米纤维素和多孔无机纳米纤维。
本发明将多孔无机纳米纤维与纳米纤维素组合,所得涂层材料对微孔聚烯烃隔膜进行修饰改性,可实现在不牺牲透气性的前提下,提升隔膜的电解液浸润性和稳定性,而且所得涂层与基膜结合力强,涂层轻薄,有利 于锂离子的传输以及提升电池的质量能量密度等性能,具有非常广阔的应用前景。
优选地,所述纳米纤维素与所述多孔无机纳米纤维的质量比为0.4-1.5:1,更优选为1:1。
优选地,所述纳米纤维素在所述涂层材料中的质量百分浓度c与所述纳米纤维素的长径比L/d满足:c=(0.03~0.05)*L/d%,其中L为纳米纤维素的平均长度,d为纳米纤维素的平均直径。
优选地,L为0.5~2m,d为20~50nm。
当纳米纤维素的浓度和/或长径尺寸满足上述要求,固体组分不易团聚成球,所得涂层材料稳定性好,从而隔膜透气性、面密度等性质较优。
优选地,所述多孔无机纳米纤维的长度<5m。
优选地,所述多孔无机纳米纤维的孔隙率为15-40%。
优选地,所述多孔无机纳米纤维的制备方法包括:将含有无机材料或其前驱体的胶体溶液与聚乙烯醇溶液混合形成纺丝液,进行静电纺丝得到聚乙烯醇和无机材料的复合纤维膜,将所述复合纤维膜进行煅烧后置于NaOH溶液中形成微孔。
在本发明的优选实施方式中,所述多孔无机纳米纤维为多孔无机SiO 2或Al 2O 3纳米纤维。
所述多孔无机SiO 2或Al 2O 3纳米纤维可采用如下方法制备:
将一定质量的聚乙烯醇(PVA)粉末溶于蒸馏水中,在80℃下搅拌1h,然后在室温下冷却12h,得到浓度为10wt%PVA溶液;
将正硅酸乙酯或纳米氧化铝和蒸馏水混合均匀,再向其混合溶液中逐滴加入少量磷酸,室温下搅拌12h,得到胶体溶液;
将上述PVA溶液和胶体溶液混合,搅拌得到纺丝液,采用静电纺丝机进行纺丝:将含有一定质量的上述纺丝液装入带有合适型号的针头的5ml注射器中,调整针头与接收器之间距离为15cm、平移速度为300mm/min、平移距离为15cm,采用转筒接收器接收,设置接收器的转 速为50r/min,最后开启静电高压进行纺丝,得到PVA@SiO 2或PVA@Al 2O 3复合纤维膜;
将PVA@SiO 2或PVA@Al 2O 3复合纤维膜从铝箔上剥离,进行高温煅烧;
将高温煅烧后的产物,置于一定量的2mol/L的NaOH溶液中,90℃下搅拌3小时,离心,清洗,得到目标产物多孔无机SiO 2或Al 2O 3纳米纤维。
第二方面,本发明还提供上述轻量化锂离子电池隔膜用涂层材料的制备方法。
本发明提供的制备方法包括将第一浆料和第二浆料混合的步骤,所述第一浆料包括纳米纤维素和水,所述第二浆料包括多孔无机纳米纤维和水。
优选地,所述第二浆料还包括0.01~0.2wt%的粘结剂。
进一步优选地,所述粘结剂为醇解度为97~99mol%、黏度为25~30mPa.s的聚乙烯醇。
本发明由于采用较少或者不采用粘结剂,因此不容易堵塞隔膜空隙,从而所得隔膜具有优良的透气性和离子电导率。
第三方面,本发明提供一种轻量化锂离子电池复合隔膜,包括基材,所述基材为多孔膜材料,在所述基材的至少一个表面,设有由上述轻量化锂离子电池隔膜用涂层材料形成的修饰涂层。
其中,所述多孔膜材料优选为聚乙烯多孔膜和/或聚丙烯多孔膜。
所述涂层材料采用不限于涂覆的方式附着于所述基材表面。其中涂覆方式为本领域技术人员掌握的常规技术手段,包括刮刀涂覆、浸涂法、喷涂法、旋涂法等。在本发明的具体实施方式中,采用刮涂的方式将涂层材料涂覆于基材表面,涂覆速率优选为30~80m/min。涂覆后将复合隔膜在40~90℃下干燥。
优选地,所述基材的厚度为9~13μm。
优选地,所述修饰涂层的厚度为400~1000nm。
在本发明的优选实施方式中,所提供的轻量化锂离子电池复合隔膜,其修饰涂层的面密度小于1.0g/m 2(目前商业化的Al 2O 3涂层厚度通常在3微米,涂层面密度>6g/m 2),具有优异的碳酸酯类电解液浸润性(如:1M LiPF6/EC+DMC电解液的接触角<5 o),以及优异的热稳定性能(150℃/1h,收缩率<3%),以及耐高电压(电化学窗口≥4.8V)的性质,离子电导率提升20~60%。
第四方面,本发明还提供上述轻量化锂离子电池复合隔膜的应用。
一种锂离子电池,采用上述轻量化锂离子电池复合隔膜作为隔膜。在具体锂离子电池中,可将上述轻量化锂离子电池复合隔膜按要求剪成所需形状大小,然后与正极、负极、电解液等组装成目标锂离子电池。
本发明提供了一种轻量化锂离子电池隔膜用涂层材料,将多孔无机纳米纤维与纳米纤维素组合,该涂层材料对微孔聚烯烃隔膜进行修饰改性,可实现在不牺牲透气性的前提下,提升隔膜的电解液浸润性和稳定性,而且所得涂层与基膜结合力强,涂层轻薄,有利于锂离子的传输以及提升电池的质量能量密度等性能,具有非常广阔的应用前景。
附图说明
图1为本发明实施例1中多孔无机纳米纤维的SEM图;
图2为本发明实施例1提供的轻量化锂离子电池复合隔膜的截面SEM图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供一种轻量化锂离子电池隔膜用涂层材料,其制备方法如下:
将160g直径为50nm(d50=50nm),长2μm的纳米纤维素分散于5kg去离子水中,搅拌分散待用;将160g多孔无机SiO 2纳米纤维分散于5kg去离子水中,加入0.1wt%的聚乙烯醇(醇解度:99mol%,黏度:28mPa.s),高速搅拌匀浆5h后,与纳米纤维素浆料搅拌混合,即得。
其中多孔无机SiO 2纳米纤维的制备如下:
将10g的聚乙烯醇(PVA)粉末溶于90g蒸馏水中,在80℃下搅拌1h,然后在室温下冷却12h,得到浓度为10wt%PVA溶液;将正硅酸乙酯和蒸馏水各15ml混合,磁力搅拌均匀,再向其混合溶液中逐滴加入磷酸100μL(H 3PO 4),室温下搅拌12h,得到硅胶溶液;将上述PVA溶液和硅胶溶液混合,磁力搅拌1h,得到纺丝液,采用SS-2534H型号的静电纺丝机进行纺丝:将含有一定质量的上述纺丝液装入带有合适型号的针头的5ml注射器中,并设置推注速度为0.02mm/min,调整针头与接收器之间距离为15cm、平移速度为300mm/min、平移距离为15cm,采用转筒接收器接收,设置接收器的转速为50r/min,最后开启静电高压12kV,进行纺丝,得到PVA@SiO 2复合纤维膜;将PVA@SiO 2复合纤维膜从铝箔上剥离,进行1100℃高温煅烧2小时;将高温煅烧后的产物,置于200ml的2mol/L的NaOH溶液中,90℃下搅拌3小时,离心,清洗,得到多孔无机SiO 2纳米纤维,其长度小于5μm,孔隙率为15~40%。
本实施例还提供一种轻量化锂离子电池复合隔膜,由基材聚乙烯多孔膜和附着在聚乙烯多孔膜两面的修饰涂层构成,其制备方法如下:
准备聚乙烯多孔膜,厚度为9μm;
将上述制备的涂层材料以60m/min的涂覆速率涂覆于多孔膜的两侧后,在80℃的烘箱中烘干,制得复合隔膜即为样品S1。
图1为本实施例中多孔无机纳米纤维的SEM图;图2为本实施例中锂离子电池复合隔膜的截面SEM图。
实施例2
本实施例提供一种轻量化锂离子电池隔膜用涂层材料,其制备方法如下:
将160g直径为50nm(d50=50nm),长2μm的纳米纤维素分散于5kg去离子水中,搅拌分散待用;将160g多孔无机Al 2O 3纳米纤维分散于5kg去离子水中,加入0.1wt%的聚乙烯醇(醇解度:99mol%,黏度:28mPa.s),高速搅拌匀浆5h后,与纳米纤维素浆料搅拌混合,即得。
其中多孔无机Al 2O 3纳米纤维的制备如下:
将10g的聚乙烯醇(PVA)粉末溶于90g蒸馏水中,在80℃下搅拌1h,然后在室温下冷却12h,得到浓度为10wt%PVA溶液;将纳米氧化铝10g和蒸馏水50ml混合,磁力搅拌均匀,再向其混合溶液中逐滴加入磷酸100μL(H 3PO 4),室温下搅拌12h,得到胶体溶液;将上述PVA溶液和胶体溶液混合,磁力搅拌1h,得到纺丝液,采用SS-2534H型号的静电纺丝机进行纺丝:将含有一定质量的上述纺丝液装入带有合适型号的针头的5ml注射器中,并设置推注速度为0.02mm/min,调整针头与接收器之间距离为15cm、平移速度为300mm/min、平移距离为15cm,采用转筒接收器接收,设置接收器的转速为50r/min,最后开启静电高压12kV,进行纺丝,得到PVA@Al 2O 3复合纤维膜;将PVA@Al 2O 3复合纤维膜从铝箔上剥离,进行1100℃高温煅烧2小时;将高温煅烧后的产物5g,置于200ml的2mol/L的NaOH溶液中,90℃下搅拌3小时,离心,清洗,得到多孔无机Al 2O 3纳米纤维,其长度小于5μm,孔隙率为15~40%。
本实施例还提供一种轻量化锂离子电池复合隔膜,由基材聚乙烯多孔膜和附着在聚乙烯多孔膜两面的修饰涂层构成,其制备方法如下:
准备聚乙烯多孔膜,厚度为9μm;
将上述制备的涂层材料以60m/min的涂覆速率涂覆于多孔膜的两侧后,在80℃的烘箱中烘干,制得复合隔膜即为样品S2。
实施例3
本实施例提供一种锂离子电池复合隔膜,其制备方法如下:
将粒径100nm的氧化铝50g置于250ml的水中,再加入250ml 2mol/L的NaOH溶液,90℃下搅拌3小时,离心,清洗,干燥得到具有微孔结构的无机纳米颗粒;
将16g直径为50nm(d50=50nm),长2μm的纳米纤维素分散于500g去离子水中,搅拌分散待用;将制备的16g多孔无机颗粒分散于500g去离子水中,加入0.1wt%的聚乙烯醇(醇解度:99mol%,黏度:28mPa.s),高速搅拌匀浆5h后,与纳米纤维素浆料搅拌混合;
准备聚乙烯多孔膜,厚度为9μm;
将上述制备的浆料以60m/min的涂覆速率涂覆于多孔膜的两侧后,在80℃的烘箱中烘干,制得复合隔膜即为样品S3。
实施例4
本实施例提供一种锂离子电池复合隔膜,其制备方法如下:
将粒径为50nm的勃母石颗粒98g和粒径为10nm的鸡蛋壳粉2g分散于1L水中,加入0.2wt%的聚乙烯醇(醇解度:99mol%,黏度:29mPa.s),超声分散5min后高速搅拌匀浆5h;
准备聚乙烯多孔膜,厚度为9μm;
将上述制备的浆料以60m/min的涂覆速率涂覆于多孔膜的两侧后,在80℃的烘箱中烘干,制得复合隔膜即为样品S4。
实施例5
本实施例提供一种锂离子电池复合隔膜,其制备方法如下:
将16g直径为50nm(d50=50nm),长2um的纳米纤维素分散于500g去离子水中,高速搅拌匀浆5h后待用;
准备聚乙烯多孔膜,厚度为9μm;
将上述制备的浆料以60m/min的涂覆速率涂覆于多孔膜的两侧后,在80℃的烘箱中烘干,制得复合隔膜即为样品S5。
实施例6
本实施例提供一种锂离子电池复合隔膜,其制备方法如下:
将10g的聚乙烯醇(PVA)粉末溶于90g蒸馏水中,在80℃下搅拌1h,然后在室温下冷却12h,得到浓度为10wt%PVA溶液;将正硅酸乙酯和蒸馏水各15ml混合,磁力搅拌均匀,再向其混合溶液中逐滴加入磷酸100μl(H 3PO 4),室温下搅拌12h,得到硅胶溶液;将上述PVA溶液和硅胶溶液混合,磁力搅拌1h,得到纺丝液,采用SS-2534H型号的静电纺丝机进行纺丝:将含有一定质量的上述纺丝液装入带有合适型号的针头的5ml注射器中,并设置推注速度为0.02mm/min,调整针头与接收器之间距离为15cm、平移速度为300mm/min、平移距离为15cm,采用转筒接收器接收,设置接收器的转速为50r/min,最后开启静电高压12kV,进行纺丝,得到PVA@SiO 2复合纤维膜,将PVA@SiO 2复合纤维膜从铝箔上剥离,进行1100℃高温煅烧2小时,制得无机纤维;
将制备的160g无机纤维分散于5kg去离子水中,加入0.1wt%的聚乙烯醇(醇解度:99mol%,黏度:28mPa.s),高速搅拌匀浆5h后待用;
准备聚乙烯多孔膜,厚度为9μm;
将上述制备的浆料以60m/min的涂覆速率涂覆于多孔膜的两侧后,在80℃的烘箱中烘干,制得复合隔膜即为样品S6。
实施例7
本实施例提供一种锂离子电池复合隔膜,其制备方法如下:
将采用与实施例2相同制备方法制得的多孔无机Al 2O 3纳米纤维160g分散于5kg去离子水中,加入0.1wt%的聚乙烯醇(醇解度:99mol%,黏度:28mPa.s),高速搅拌匀浆5h后待用;
准备聚乙烯多孔膜,厚度为9μm;
将上述制备的浆料以60m/min的涂覆速率涂覆于多孔膜的两侧后,在80℃的烘箱中烘干,制得复合隔膜即为样品S7。
实施例8
本实施例提供一种锂离子电池复合隔膜,其制备方法如下:
将10g的聚乙烯醇(PVA)粉末溶于90g蒸馏水中,在80℃下搅拌1h,然后在室温下冷却12h,得到浓度为10wt%PVA溶液;将正硅酸乙酯和蒸馏水各15ml混合,磁力搅拌均匀,再向其混合溶液中逐滴加入磷酸100μL(H 3PO 4),室温下搅拌12h,得到硅胶溶液;将上述PVA溶液和硅胶溶液混合,磁力搅拌1h,得到纺丝液,采用SS-2534H型号的静电纺丝机进行纺丝:将含有一定质量的上述纺丝液装入带有合适型号的针头的5ml注射器中,并设置推注速度为0.02mm/min,调整针头与接收器之间距离为15cm、平移速度为300mm/min、平移距离为15cm,采用转筒接收器接收,设置接收器的转速为50r/min,最后开启静电高压12kV,进行纺丝,得到PVA@SiO 2复合纤维膜;将PVA@SiO 2复合纤维膜从铝箔上剥离,进行1100℃高温煅烧2小时;将高温煅烧后的产物,置于200ml的2mol/L的NaOH溶液中,90℃下搅拌3小时,离心,清洗,得到多孔无机SiO 2纳米纤维;
将200g直径为100nm(d50=100nm),长2μm的纳米纤维素分散于5kg去离子水中,搅拌分散待用;将200g多孔无机SiO 2纳米纤维分散于5kg去离子水中,加入0.1wt%的聚乙烯醇(醇解度:99mol%,黏度:28mPa.s),高速搅拌匀浆5h后,与纳米纤维素浆料搅拌混合,待用;
准备聚乙烯多孔膜,厚度为9μm;
将上述制备的浆料以60m/min的涂覆速率涂覆于多孔膜的两侧后,在80℃的烘箱中烘干,制得复合隔膜即为样品S8。
对复合隔膜样品S1-S8进行性能表征,结果如表1所示。
其中,剥离强度的测试方法参照国标《GB/T 36363-2018》测试;
离子电导率采用交流阻抗法测定,具体的,滴加两滴1mol/L的LiPF6(EC:DMC:DEC=1:1:1)电解液到所制备的隔膜中,将浸泡电解液的隔膜夹在两片不锈钢电极之间,组装对称电池,采用电化学工作站进行交流阻抗测试,根据公式(=d/RS,其中d为隔膜厚度,R为阻抗,S为隔膜面积)计算其离子电导率;
其余性能指标的测定按照本领域常规方法进行测定。
表1实施例1-8所得复合隔膜的性能表征结果
Figure PCTCN2021142364-appb-000001
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明提供一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜,所述涂层材料以水为液相组分,所述涂层材料中还包括固相组分,所述固相组分包括纳米纤维素和多孔无机纳米纤维。本发明提供的轻量化锂离子电池隔膜用涂层材料将多孔无机纳米纤维与纳米纤维素组合,该涂层材料对微孔聚烯烃隔膜进行修饰改性,可实现在不牺牲透气性的前提下,提升隔膜的电解液浸润性和稳定性,而且所得涂层与基膜结合力强,涂层轻薄,有利于锂离子的传输以及提升电池的质量能量密度等性能,具有较好的经济价值和应用前景。

Claims (10)

  1. 一种轻量化锂离子电池隔膜用涂层材料,以水为液相组分,其特征在于,所述涂层材料中还包括固相组分,所述固相组分包括纳米纤维素和多孔无机纳米纤维。
  2. 根据权利要求1所述的轻量化锂离子电池隔膜用涂层材料,其特征在于,所述纳米纤维素与所述多孔无机纳米纤维的质量比为0.4-1.5:1。
  3. 根据权利要求1或2所述的轻量化锂离子电池隔膜用涂层材料,其特征在于,所述纳米纤维素在所述涂层材料中的质量百分浓度c与所述纳米纤维素的长径比L/d满足:c=(0.03~0.05)*L/d%,其中L为纳米纤维素的平均长度,d为纳米纤维素的平均直径。
  4. 根据权利要求3所述的轻量化锂离子电池隔膜用涂层材料,其特征在于,L为0.5~2m,d为20~50nm;
    和/或,所述多孔无机纳米纤维的长度<5m。
  5. 根据权利要求1~4任一项所述的轻量化锂离子电池隔膜用涂层材料,其特征在于,所述多孔无机纳米纤维的孔隙率为15-40%;
    优选地,所述多孔无机纳米纤维为多孔无机SiO 2或Al 2O 3纳米纤维。
  6. 根据权利要求1~5任一项所述的轻量化锂离子电池隔膜用涂层材料,其特征在于,所述多孔无机纳米纤维的制备方法包括:将含有无机材料或其前驱体的胶体溶液与聚乙烯醇溶液混合形成纺丝液,进行静电纺丝得到聚乙烯醇和无机材料的复合纤维膜,将所述复合纤维膜进行煅烧后置于NaOH溶液中形成微孔。
  7. 一种权利要求1~6任一项所述的轻量化锂离子电池隔膜用涂层材料的制备方法,其特征在于,包括将第一浆料和第二浆料混合的步骤,所述第一浆料包括纳米纤维素和水,所述第二浆料包括多孔无机纳米纤维和水。
  8. 一种轻量化锂离子电池复合隔膜,包括基材,所述基材为多孔膜材料,其特征在于,在所述基材的至少一个表面,设有由权利要求1~6 任一项所述的轻量化锂离子电池隔膜用涂层材料形成的修饰涂层。
  9. 根据权利要求8所述的轻量化锂离子电池复合隔膜,其特征在于,所述基材的厚度为9~13μm,和/或,所述修饰涂层的厚度为400~1000nm。
  10. 一种锂离子电池,其特征在于,包括权利要求8或9所述的轻量化锂离子电池复合隔膜。
PCT/CN2021/142364 2021-01-28 2021-12-29 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜 WO2022161088A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110121305.8A CN113013549B (zh) 2021-01-28 2021-01-28 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜
CN202110121305.8 2021-01-28

Publications (1)

Publication Number Publication Date
WO2022161088A1 true WO2022161088A1 (zh) 2022-08-04

Family

ID=76385249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142364 WO2022161088A1 (zh) 2021-01-28 2021-12-29 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜

Country Status (2)

Country Link
CN (1) CN113013549B (zh)
WO (1) WO2022161088A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013549B (zh) * 2021-01-28 2021-11-02 清华大学 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜
CN114171843B (zh) * 2021-11-18 2022-10-25 清华大学 一种锂离子电池隔膜用水性纳米复合涂覆液和锂离子电池隔膜
CN114335884B (zh) * 2021-12-10 2023-10-20 国网江西省电力有限公司电力科学研究院 一种利用生物膜制备锂离子电池隔膜材料的方法
CN115000628B (zh) * 2022-06-01 2024-02-09 江苏久泰电池科技有限公司 一种锂电池用纳米纤维隔膜材料及其制备方法
CN114988446B (zh) * 2022-06-08 2023-04-18 桂林奇宏科技有限公司 一种模板法制备氢氧化铝纳米线的方法及电池隔膜涂层
CN115149214B (zh) * 2022-06-16 2024-04-02 浙江锂威电子科技有限公司 一种电池隔膜及其制备方法和电池
WO2023245655A1 (zh) * 2022-06-24 2023-12-28 宁德时代新能源科技股份有限公司 一种隔离膜、其制备方法及其相关的二次电池和用电装置
CN115939671A (zh) * 2023-03-15 2023-04-07 中国铁塔股份有限公司 一种电池和电池制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150364267A1 (en) * 2014-06-11 2015-12-17 The Regents Of The University Of California Passivated porous silicon nanowires
CN105529425A (zh) * 2014-11-19 2016-04-27 比亚迪股份有限公司 一种陶瓷隔膜及其制备方法和应用
CN108281592A (zh) * 2017-12-29 2018-07-13 深圳中兴创新材料技术有限公司 一种耐高温的复合电池隔膜及其制备方法
CN108630871A (zh) * 2018-05-16 2018-10-09 深圳市星源材质科技股份有限公司 一种电池、电池隔膜及其制备方法
CN109167013A (zh) * 2018-08-31 2019-01-08 深圳市星源材质科技股份有限公司 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池
CN109167004A (zh) * 2018-08-31 2019-01-08 深圳市星源材质科技股份有限公司 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池
CN113013549A (zh) * 2021-01-28 2021-06-22 清华大学 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522514B (zh) * 2011-12-21 2014-07-16 莱州联友金浩新型材料有限公司 一种耐高温微孔薄膜材料及其应用
CN103579565B (zh) * 2013-11-21 2016-02-03 中国海诚工程科技股份有限公司 锂离子电池用无机纳米纤维陶瓷隔膜及其制备方法
CN104409674B (zh) * 2014-12-08 2017-03-29 清华大学 复合隔膜材料及其制备方法与应用
CN105789528A (zh) * 2014-12-24 2016-07-20 北京化工大学常州先进材料研究院 一种pa/pp多孔电池隔膜材料的制备方法
CN104485438B (zh) * 2014-12-25 2017-01-25 江苏清陶能源科技有限公司 高无机固相含量陶瓷隔膜及其在锂离子电池体系中的应用
CN108336279A (zh) * 2017-12-29 2018-07-27 武汉中兴创新材料技术有限公司 一种纳米粒子涂覆的锂离子电池隔膜及其制备方法
CN110767863A (zh) * 2019-11-01 2020-02-07 华南理工大学 一种用于锂离子电池隔膜的多孔SiO2微球的制备方法及应用
CN110797494B (zh) * 2019-11-08 2020-08-04 华南理工大学 一种用于锂离子电池的隔膜功能涂层材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150364267A1 (en) * 2014-06-11 2015-12-17 The Regents Of The University Of California Passivated porous silicon nanowires
CN105529425A (zh) * 2014-11-19 2016-04-27 比亚迪股份有限公司 一种陶瓷隔膜及其制备方法和应用
CN108281592A (zh) * 2017-12-29 2018-07-13 深圳中兴创新材料技术有限公司 一种耐高温的复合电池隔膜及其制备方法
CN108630871A (zh) * 2018-05-16 2018-10-09 深圳市星源材质科技股份有限公司 一种电池、电池隔膜及其制备方法
CN109167013A (zh) * 2018-08-31 2019-01-08 深圳市星源材质科技股份有限公司 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池
CN109167004A (zh) * 2018-08-31 2019-01-08 深圳市星源材质科技股份有限公司 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池
CN113013549A (zh) * 2021-01-28 2021-06-22 清华大学 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜

Also Published As

Publication number Publication date
CN113013549B (zh) 2021-11-02
CN113013549A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2022161088A1 (zh) 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜
WO2018145666A1 (zh) 耐高温多种涂层的锂离子电池隔膜及其制备方法
CN106159173B (zh) 一种聚合物复合膜及其制备方法、该方法制备的聚合物复合膜、凝胶电解质、锂离子电池
CN104124414B (zh) 一种锂离子电池复合电极片及其制备方法和锂离子电池
WO2022227345A1 (zh) 一种复合隔膜及其制备方法和用途
WO2018040903A1 (zh) 锂离子电池隔膜及其制备方法和锂离子电池
WO2020087873A1 (zh) 一种改性固态电解质膜及其制备方法和锂电池
TWI422090B (zh) 具形態梯度之有機-無機複合隔膜,其製造方法及含有該隔膜之電化學裝置
CN109103397A (zh) 一种锂离子电池用陶瓷涂覆隔膜的制备方法
CN103618059B (zh) 一种高分子无机涂层锂离子电池隔膜及其制备方法
CN110797494B (zh) 一种用于锂离子电池的隔膜功能涂层材料及其制备方法
WO2020155001A1 (zh) 一种具有耐高温涂层的锂离子电池隔膜及其制备方法
CN109167004A (zh) 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池
WO2022161089A1 (zh) 一种锂电池隔膜用水性纳米复合改性材料及其制备方法和轻量化锂电池隔膜
WO2017185519A1 (zh) 一种锂离子电池用水性陶瓷涂覆隔膜及其制备方法
CN107634168A (zh) 锂离子电池隔膜用的涂覆浆料、锂离子电池隔膜及其制备方法
CN206505967U (zh) 一种用于锂离子电池的隔膜及锂离子电池
CN112151728B (zh) 一种锂离子电池复合隔膜及其制备方法、锂离子电池
CN108695476A (zh) 陶瓷隔膜及其制备方法和应用
KR102341889B1 (ko) 고접착성 및 고습윤효율의 Al2O3-PMMA 복합재 및 그 제조방법, 폴리올레핀 복합 분리막
TW201946316A (zh) 聚合物隔膜及其製備方法和應用以及鋰離子電池及其製備方法
WO2023155604A1 (zh) 复合隔膜及电化学装置
CN112635916A (zh) 一种陶瓷复合隔膜及其制备方法及电池
WO2019154275A1 (zh) 聚合物隔膜及其制备方法和应用以及锂离子电池及其制备方法
WO2024008055A1 (zh) 一种多孔隔膜、其制备方法及电化学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922676

Country of ref document: EP

Kind code of ref document: A1