WO2017185519A1 - 一种锂离子电池用水性陶瓷涂覆隔膜及其制备方法 - Google Patents

一种锂离子电池用水性陶瓷涂覆隔膜及其制备方法 Download PDF

Info

Publication number
WO2017185519A1
WO2017185519A1 PCT/CN2016/088412 CN2016088412W WO2017185519A1 WO 2017185519 A1 WO2017185519 A1 WO 2017185519A1 CN 2016088412 W CN2016088412 W CN 2016088412W WO 2017185519 A1 WO2017185519 A1 WO 2017185519A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous
lithium ion
ion battery
microporous membrane
parts
Prior art date
Application number
PCT/CN2016/088412
Other languages
English (en)
French (fr)
Inventor
韩宏哲
于中彬
赵中雷
王庆通
庄浩然
邵培苓
李昆良
Original Assignee
沧州明珠隔膜科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沧州明珠隔膜科技有限公司 filed Critical 沧州明珠隔膜科技有限公司
Publication of WO2017185519A1 publication Critical patent/WO2017185519A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a coated diaphragm, in particular to an aqueous ceramic coated diaphragm for a lithium ion battery, and belongs to the technical field of diaphragms.
  • the lithium ion battery is mainly composed of a positive electrode material, a negative electrode material, a separator and an electrolyte, and the separator plays a role of preventing short circuit between the positive and negative materials, and the microporous structure in the separator enables lithium ions in the electrolyte. Freely traverse between the positive and negative electrodes to achieve ion conduction.
  • the polyolefin microporous separator has poor thermal stability, and is prone to shrinkage deformation at a relatively high temperature, resulting in a short circuit between the positive and negative electrodes, which poses a great hidden danger to the safety of the lithium ion battery.
  • the ceramic material is an inorganic material with better heat resistance. The ceramic particles are coated on the surface of the polyolefin separator, which can well solve the problem of poor heat resistance of the polyolefin separator on the one hand, and greatly reduce the battery.
  • the shrinkage deformation of the diaphragm improves the safety performance of the battery; on the other hand, the ceramic coated diaphragm and the electrolyte and the positive and negative materials have good ability to infiltrate and absorb liquid and liquid, which can greatly improve the service life of the battery.
  • a cellulose-based compound is used as a thickener in the ceramic coated separator to prevent sedimentation of ceramic particles, but since the cellulose compound has strong hydrophilicity, the ceramic coated diaphragm containing the cellulose compound The high water content has a great influence on the performance of the late assembled lithium ion battery.
  • the present invention is directed to the defects of the prior art, and provides an aqueous ceramic coated diaphragm for a lithium ion battery. It has low water content, long service life and high safety.
  • An aqueous ceramic coated membrane for a lithium ion battery comprising a microporous membrane and a ceramic coating, wherein a ceramic coating is disposed on one or both sides of the microporous membrane, wherein the ceramic coating is 40 parts by weight 70wt% water and 30-60wt% by weight of base material, the base material is 65-98 parts by weight of boehmite powder, 1-15 parts of water-based wetting agent, water-based adhesive 1-15 parts of the agent and 1-5 parts of the aqueous dispersant.
  • the lithium ion battery is coated with a water-based ceramic membrane, and the microporous membrane is a polypropylene microporous membrane, a polyethylene microporous membrane or a three-layer composite microporous membrane, and the three-layer composite microporous membrane is polypropylene or polyethylene.
  • Polypropylene is polymerized.
  • the above-mentioned lithium ion battery is coated with a water-based ceramic, wherein the boehmite powder has a granular shape of a diamond-shaped sheet, a particle diameter D50 of 0.4-2 ⁇ m, and a specific surface area BET of 5.0-15.0 m 2 /g. 80%-95% of the total mass of the material.
  • the above lithium ion battery is coated with a water-based ceramic, the aqueous wetting agent being sodium butyl naphthalene sulfonate, sodium isopropyl naphthalene sulfonate, sodium aryl naphthalene sulfonate, sodium sodium dodecyl benzene sulfonate or an alkane One or more of sodium sulfate.
  • the above lithium ion battery is coated with a water-based ceramic, and the water-based adhesive is one or more of polymethyl methacrylate, polybutyl methacrylate, polyvinylidene fluoride, styrene-butadiene latex or styrene-acrylic latex.
  • the water-based adhesive is one or more of polymethyl methacrylate, polybutyl methacrylate, polyvinylidene fluoride, styrene-butadiene latex or styrene-acrylic latex.
  • the above lithium ion battery is coated with a water-based ceramic, and the aqueous dispersant is one or more of polyacrylamide, sodium polyacrylate, ammonium polyacrylate, sodium hexametaphosphate or polyacrylic acid.
  • the above lithium ion battery is coated with a water-based ceramic having a thickness of 2-4 ⁇ m, a thickness of the microporous film of 16 to 25 ⁇ m, and a porosity of 40 to 55%.
  • the method for preparing an aqueous ceramic coated separator for a lithium ion battery characterized in that it comprises the following step:
  • the coating thickness is 2-4 ⁇ m.
  • the aqueous ceramic coated separator prepared by the invention does not use a cellulose compound as a thickener, and therefore, the introduced hydrophilic group is remarkably reduced, so the water content of the ceramic separator is as low as 286, which is lower than that of ordinary lithium.
  • the ion battery separator is more than half lower, which is beneficial to improve the electrical cycle life and safety of the lithium battery.
  • the separator prepared by the invention has a high porosity and a maximum of 55%, which is favorable for ions to pass freely on both sides of the separator, has high lithium ion conduction effect, and has good thermal stability of the separator and good infiltration property to the electrolyte, and the separator
  • the thermal shrinkage rate is at least 2.1% and the impedance is at least 0.25 ⁇ .
  • the invention uses a polypropylene microporous membrane with a thickness of 20 ⁇ m and a porosity of 45%, and applies an aqueous ceramic coating on the side of the polypropylene microporous membrane to a thickness of 4 ⁇ m, wherein the aqueous ceramic coating slurry is calculated by mass percentage.
  • the binder comprises 80 g of boehmite powder, D 50 of 0.4 ⁇ m, aqueous wetting agent sodium dodecylbenzenesulfonate 10 g, water-based adhesive polymethacrylic acid 8 g of methyl ester and 2 g of aqueous dispersant polyacrylic acid, the total mass of the binder was 100 g.
  • the preparation method comprises the following steps:
  • boehmite powder and the deionized water are stirred and mixed, and then dispersed using a high-speed disperser at a rotation speed of 13,000 rpm to obtain a boehmite dispersion solution;
  • boehmite dispersion solution (2) mixing the above-mentioned boehmite dispersion solution with an aqueous dispersant polyacrylic acid, a water-based adhesive polymethyl methacrylate, and an aqueous wetting agent sodium dodecylbenzenesulfonate in a formula ratio, and stirring using a blender. 20 minutes, the rotation speed was 500 rpm, and the boehmite dispersion slurry was obtained;
  • boehmite dispersion slurry is uniformly coated on one side of the polypropylene microporous film by micro-gravure coating method, and dried to obtain a water-soluble ceramic coated diaphragm of a lithium ion battery, and the coating thickness is 4 ⁇ m. .
  • the invention uses a polyethylene microporous membrane with a thickness of 16 ⁇ m and a porosity of 55%, and applies an aqueous ceramic coating on the side of the polyethylene microporous membrane to a thickness of 2 ⁇ m, wherein the aqueous ceramic coating slurry is calculated by mass percentage.
  • the base material comprises 98 g of boehmite powder, D 50 of 1 ⁇ m, 1 g of aqueous wetting agent isopropyl naphthalene sulfonate, 1 g of water-based adhesive styrene-butadiene latex, water-based Dispersing agent sodium polyacrylate 1 g, the total mass of the base material was 100 g.
  • the preparation method was the same as in Example 1, in which the disperser rotation speed was 15000 rpm, the mixer rotation speed was 600 rpm, the stirring time was 30 minutes, and the coating method was spray coating, and the coating thickness was 2 ⁇ m.
  • the invention uses a polypropylene/polyethylene/polypropylene microporous membrane with a thickness of 25 ⁇ m and a porosity of 49%, and applies an aqueous ceramic coating on the side of the polyethylene microporous membrane to a thickness of 4 ⁇ m, wherein the aqueous ceramic coating slurry expected mass calculated percentage of binder containing 50wt% and 50wt% of water; said binder comprises boehmite powder 75g, D 50 is 0.7 ⁇ m, aqueous sodium butyl naphthalene sulfonate wetting agent 10g, aqueous adhesives 10 g of a mixture of polymethyl methacrylate and polybutyl methacrylate, 5 g of an aqueous dispersant polyacrylamide, and a total mass of the base material of 100 g.
  • the preparation method was the same as in Example 1, in which the dispersing machine was rotated at 10,000 rpm, the stirring machine was rotated at 650 rpm, and the stirring time was 25 minutes.
  • the coating method was dip coating, and the coating thickness was 4 ⁇ m.
  • the invention uses a polypropylene microporous membrane with a thickness of 25 ⁇ m and a porosity of 40%, and applies an aqueous ceramic coating on both sides of the polypropylene microporous membrane, the thickness is 2 ⁇ m, wherein the aqueous ceramic coating slurry is calculated by mass percentage.
  • the binder comprises boehmite powder 90 g
  • D 50 is 1.2 ⁇ m
  • aqueous dispersing agent ammonium polyacrylate 3g the total mass of the base material is 100g.
  • the preparation method was the same as in Example 1, in which the dispersing machine rotation speed was 12,000 rpm, the mixer rotation speed was 550 rpm, the stirring time was 27 minutes, and the coating method was slit coating, and the coating thickness was 4 ⁇ m.
  • the invention uses a polyethylene microporous membrane with a thickness of 20 ⁇ m and a porosity of 49%, and applies a water-based ceramic coating on the side of the polyethylene microporous membrane to a thickness of 4 ⁇ m, wherein the aqueous ceramic coating slurry is calculated by mass percentage.
  • the preparation method was the same as in Example 1, in which the dispersing machine rotation speed was 14000 rpm, the mixer rotation speed was 700 rpm, and the stirring time was 30 minutes.
  • the coating method was dip coating, and the coating thickness was 4 ⁇ m.
  • the present comparative example provides a ceramic coated lithium ion battery separator containing a cellulose thickener, wherein the polypropylene microporous membrane has a thickness of 20 ⁇ m, a porosity of 45%, and a coating thickness of 4 ⁇ m, wherein the aqueous ceramic coating slurry
  • the material comprises 40% by weight of the base material and 60% by weight of water by mass percentage; the base material comprises 80 g of boehmite powder, D 50 is 0.5 ⁇ m, and the aqueous wetting agent sodium dodecylbenzene sulfonate 5 g, water-based glue
  • the adhesive polymethyl methacrylate 8g, the aqueous dispersing agent polyacrylic acid 2g, the aqueous thickener carboxymethyl cellulose 5g, the total mass of the base material is 100g.
  • MD represents the longitudinal direction of the diaphragm and TD represents the lateral direction of the diaphragm.
  • the water content of Examples 1-5 of the present invention is significantly better than that of the comparative examples, indicating that the water content of the ceramic coated separator is significantly decreased in the system without the cellulose thickener, and the separator
  • the reduction in water content has a positive effect on the charge and discharge cycle performance and safety performance of the assembled lithium ion battery.
  • the gas permeability values and the heat shrinkage rates of 150 ° C of Examples 1-5 of the present invention are all within a reasonable range, indicating that the ceramic coating is prepared by using boehmite.
  • the heat resistance of the film is good.
  • the stacking mode of the boehmite in the coating makes the porosity larger, so the application of the boehmite slurry does not have a great influence on the gas permeability of the separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

一种锂离子电池用水性陶瓷涂覆隔膜及其制备方法,隔膜包括微孔膜与陶瓷涂层,所述微孔膜的一侧或两侧设置陶瓷涂层,所述陶瓷涂层由重量份数为40-70wt%的水和重量份数为30-60wt%的基料制成,所述基料按重量分数计为勃姆石粉料65-98份、水性润湿剂1-15份、水性胶黏剂1-15份、水性分散剂1-5份。该隔膜传导作用高,并且热稳定性好安全性高。

Description

一种锂离子电池用水性陶瓷涂覆隔膜及其制备方法 技术领域
本发明涉及一种涂覆隔膜,特别是锂离子电池用水性陶瓷涂覆隔膜,属隔膜技术领域。
背景技术
由于现在面临严重的环境污染和能源短缺问题,锂离子电池因具有高能量密度、无记忆效应和较长的循环寿命等特点而被得到高度重视。锂离子电池主要由正极材料、负极材料、隔膜和电解液组成,而隔膜在其中起到了防止正负极材料接触而发生短路的作用,同时隔膜中的微孔结构能够使电解液中的锂离子在正负极之间自由穿越,从而实现离子传导的作用。
聚烯烃微孔隔膜的热稳定性较差,在较高的温度下易发生收缩变形而导致正负极接触发生短路,对锂离子电池的使用安全性带来较大的隐患。陶瓷材料是一种耐热性能较好的无机材料,将陶瓷颗粒涂覆在聚烯烃隔膜表面,一方面能够很好地解决聚烯烃隔膜耐热性较差的问题,较大程度地减小电池隔膜的收缩变形,从而提高电池的安全性能;另一方面,由于陶瓷涂覆隔膜与电解液和正负极材料有良好的浸润和吸液保液的能力,能够大幅度提高电池的使用寿命。
现阶段陶瓷涂覆隔膜中使用纤维素类化合物作为增稠剂用来防止陶瓷颗粒的沉降,但由于纤维素类化合物具有较强的亲水性,因此,含有纤维素类化合物的陶瓷涂覆隔膜的含水量较高,对后期组装的锂离子电池的性能有较大影响。
发明内容
本发明针对现有技术之缺陷,提供一种锂离子电池用水性陶瓷涂覆隔膜, 其含水量低,使用寿命长,安全性高。
本发明所述技术问题是通过以下技术方案解决的:
一种锂离子电池用水性陶瓷涂覆隔膜,包括微孔膜与陶瓷涂层,所述微孔膜的一侧或两侧设置陶瓷涂层,,所述陶瓷涂层由重量份数为40-70wt%的水和重量份数为30-60wt%的基料制成,所述基料按重量份数计为勃姆石粉料65-98份、水性润湿剂1-15份、水性胶黏剂1-15份、水性分散剂1-5份。
上述锂离子电池用水性陶瓷涂覆隔膜,所述微孔膜为聚丙烯微孔膜、聚乙烯微孔膜或三层复合微孔膜,所述三层复合微孔膜为聚丙烯、聚乙烯、聚丙烯聚合而成。
上述锂离子电池用水性陶瓷涂覆隔膜,所述勃姆石粉料中颗粒形貌为菱形片状、粒径D50为0.4-2μm、比表面积BET为5.0-15.0m2/g的部分占勃姆石粉料体总质量的80%-95%。
上述锂离子电池用水性陶瓷涂覆隔膜,所述水性润湿剂为丁基萘磺酸钠、异丙基萘磺酸钠、芳基萘磺酸钠、十二烷基苯磺酸钠或烷基硫酸钠中的一种或几种。
上述锂离子电池用水性陶瓷涂覆隔膜,所述水性胶黏剂为聚甲基丙烯酸甲酯、聚甲基丙烯酸丁酯、聚偏氟乙烯、丁苯乳胶或苯丙乳胶中的一种或几种。
上述锂离子电池用水性陶瓷涂覆隔膜,所述水性分散剂为聚丙烯酰胺、聚丙烯酸钠、聚丙烯酸铵、六偏磷酸钠或聚丙烯酸中的一种或几种。
上述锂离子电池用水性陶瓷涂覆隔膜,所述陶瓷涂层厚度为2-4μm,所述微孔膜厚度为16-25μm,孔隙率为40-55%。
上述锂离子电池用水性陶瓷涂覆隔膜的制备方法,其特征在于,包括如下 步骤:
(1).将勃姆石粉料和去离子水搅拌混合后,在高速分散机下进行分散,转速为10000-15000rpm,得到勃姆石分散溶液;
(2).将所述勃姆石分散溶液与水性分散剂、水性胶黏剂、水性润湿剂按配方量进行混合,使用搅拌机搅拌25-30分钟,转速为500-700rpm,得到勃姆石分散浆料;
(3).将所述勃姆石分散浆料均匀的涂敷在聚烯烃微孔膜的一侧或两侧,干燥后得到锂离子电池用水性陶瓷涂覆隔膜,涂层厚度为2-4μm。
本发明具有以下优点:
本发明制备的水性陶瓷涂覆隔膜中未使用纤维素类化合物作为增稠剂,因此,所引入的亲水性基团明显减少,故而陶瓷隔膜的含水量较低最低达到286,比一般的锂离子电池隔膜低一半以上,有利于提高锂电池的电循环寿命及使用安全性。本发明制备的隔膜孔隙率较高,最高能达到55%,有利于离子在隔膜两侧自由穿越,锂离子传导作用高,并且隔膜的热稳定性好、对电解液的侵润性好,隔膜的热收缩率最小达到2.1%、阻抗最小达到0.25Ω。
具体实施方式
下面结合实施例对本发明作详细说明.
实施例1
本发明使用厚度为20μm的聚丙烯微孔膜,孔隙率为45%,在聚丙烯微孔膜一侧涂覆水性陶瓷涂层,厚度为4μm,其中水性陶瓷涂覆浆料按质量百分数计算含有40wt%的基料和60wt%的水;所述基料包括勃姆石粉料80g,D50为0.4μm,水性润湿剂十二烷基苯磺酸钠10g、水性胶黏剂聚甲基丙烯酸 甲酯8g、水性分散剂聚丙烯酸2g,基料总质量为100g。
其制备方法,包括如下步骤:
(1).将勃姆石粉料和去离子水搅拌混合后,使用高速分散机进行分散,转速为13000rpm,得到勃姆石分散溶液;
(2).将上述勃姆石分散溶液与水性分散剂聚丙烯酸、水性胶黏剂聚甲基丙烯酸甲酯、水性润湿剂十二烷基苯磺酸钠按配方比例进行混合,使用搅拌机搅拌20分钟,转速为500rpm,得到勃姆石分散浆料;
(3).将上述勃姆石分散浆料采用微凹版涂布方式均匀的涂敷在聚丙烯微孔膜的一侧,干燥后得到锂离子电池用水性陶瓷涂覆隔膜,涂层厚度为4μm。
实施例2
本发明使用厚度为16μm的聚乙烯微孔膜,孔隙率为55%,在聚乙烯微孔膜一侧涂覆水性陶瓷涂层,厚度为2μm,其中水性陶瓷涂覆浆料按质量百分数计算含有30wt%的基料和70wt%的水;所述基料包括勃姆石粉料98g,D50为1μm,水性润湿剂异丙基萘磺酸钠1g、水性胶黏剂丁苯乳胶1g、水性分散剂聚丙烯酸钠1g,基料总质量为100g。
所述制备方法与实施例1相同,其中分散机转速为15000rpm,搅拌机转速为600rpm,搅拌时间为30分钟,涂布方式为喷涂,涂层厚度为2μm。
实施例3
本发明使用厚度为25μm的聚丙烯/聚乙烯/聚丙烯微孔膜,孔隙率为49%,在聚乙烯微孔膜一侧涂覆水性陶瓷涂层,厚度为4μm,其中水性陶瓷涂覆浆料按质量百分数计算含有50wt%的基料和50wt%的水;所述基料包括勃姆石粉料75g,D50为0.7μm,水性润湿剂丁基萘磺酸钠10g、水性胶黏剂聚甲基 丙烯酸甲酯和聚甲基丙烯酸丁酯的混合液10g、水性分散剂聚丙烯酰胺5g,基料总质量为100g。
所述制备方法与实施例1相同,其中分散机转速为10000rpm,搅拌机转速为650rpm,搅拌时间为25分钟,涂布方式为浸涂,涂层厚度为4μm。
实施例4
本发明使用厚度为25μm的聚丙烯微孔膜,孔隙率为40%,在聚丙烯微孔膜两侧涂覆水性陶瓷涂层,厚度均为2μm,其中水性陶瓷涂覆浆料按质量百分数计算含有45wt%的基料和55wt%的水;所述基料包括勃姆石粉料90g,D50为1.2μm,水性润湿剂芳基萘磺酸钠2.5g、水性胶黏剂苯丙乳胶4.5g、水性分散剂聚丙烯酸铵3g,基料总质量为100g。
所述制备方法与实施例1相同,其中分散机转速为12000rpm,搅拌机转速为550rpm,搅拌时间为27分钟,涂布方式为狭缝式涂布,涂层厚度为4μm。
实施例5
本发明使用厚度为20μm的聚乙烯微孔膜,孔隙率为49%,在聚乙烯微孔膜一侧涂覆水性陶瓷涂层,厚度为4μm,其中水性陶瓷涂覆浆料按质量百分数计算含有60wt%的基料和40wt%的水;所述基料包括勃姆石粉料65g,D50为2μm,水性润湿剂烷基硫酸钠15g、水性胶黏剂聚偏氟乙烯15g、水性分散剂六偏磷酸钠5g,基料总质量为100g。
所述制备方法与实施例1相同,其中分散机转速为14000rpm,搅拌机转速为700rpm,搅拌时间为30分钟,涂布方式为浸涂,涂层厚度为4μm。
对比例
本对比例提供一种含有纤维素类增稠剂的陶瓷涂覆锂离子电池隔膜,其 中聚丙烯微孔膜厚度为20μm,孔隙率为45%,涂层厚度为4μm,其中水性陶瓷涂覆浆料按质量百分数计算含有40wt%的基料和60wt%的水;所述基料包括勃姆石粉料80g,D50为0.5μm,水性润湿剂十二烷基苯磺酸钠5g、水性胶黏剂聚甲基丙烯酸甲酯8g、水性分散剂聚丙烯酸2g,水性增稠剂羧甲基纤维素5g,基料总质量为100g。
对采用实施例1-5和对比例的方法制备的水性陶瓷涂覆锂离子电池隔膜的性能进行测试,所得数据如下表一:
Figure PCTCN2016088412-appb-000001
其中,MD表示隔膜的纵向,TD表示隔膜的横向。
从上表一数据可以看出,本发明的实施例1-5的含水量均明显优于对比例,说明在无纤维素类增稠剂的体系下陶瓷涂覆隔膜的含水量下降明显,隔膜含水量的降低对组装后的锂离子电池的充放电循环性能、安全性能等有积极的改善作用。本发明的实施例1-5的透气值及150℃热收缩率均在合理范围之内,表明采用勃姆石制备的陶瓷涂覆隔 膜的耐热性能较好,同时,涂层中勃姆石的堆砌方式使得孔隙率较大,因此涂敷勃姆石浆料后未对隔膜的透气率造成较大影响。

Claims (8)

  1. 一种锂离子电池用水性陶瓷涂覆隔膜,包括微孔膜与陶瓷涂层,其特征在于,所述微孔膜的一侧或两侧设置陶瓷涂层,所述陶瓷涂层由重量份数为40-70wt%的水和重量份数为30-60wt%的基料制成,所述基料按重量分数计为勃姆石粉料65-98份、水性润湿剂1-15份、水性胶黏剂1-15份、水性分散剂1-5份。
  2. 根据权利要求1所述的一种锂离子电池用水性陶瓷涂覆隔膜,其特征在于,所述微孔膜为聚丙烯微孔膜、聚乙烯微孔膜或三层复合微孔膜,所述三层复合微孔膜为聚丙烯、聚乙烯、聚丙烯聚合而成。
  3. 根据权利要求1所述的一种锂离子电池用水性陶瓷涂覆隔膜,其特征在于,所述勃姆石粉料中颗粒形貌为菱形片状、粒径D50为0.4-2μm、比表面积BET为5.0-15.0m2/g的部分占勃姆石粉料体总质量的80%-95%。
  4. 根据权利要求3所述的一种锂离子电池用水性陶瓷涂覆隔膜,其特征在于,所述水性润湿剂为丁基萘磺酸钠、异丙基萘磺酸钠、芳基萘磺酸钠、十二烷基苯磺酸钠或烷基硫酸钠中的一种或几种。
  5. 根据权利要求4所述的一种锂离子电池用水性陶瓷涂覆隔膜,其特征在于,所述水性胶黏剂为聚甲基丙烯酸甲酯、聚甲基丙烯酸丁酯、聚偏氟乙烯、丁苯乳胶或苯丙乳胶中的一种或几种。
  6. 根据权利要求5所述的一种锂离子电池用水性陶瓷涂覆隔膜,其特征在于,所述水性分散剂为聚丙烯酰胺、聚丙烯酸钠、聚丙烯酸铵、六偏磷酸钠或聚丙烯酸中的一种或几种。
  7. 根据权利要求6所述的一种锂离子电池用水性陶瓷涂覆隔膜,其特征在于,所述陶瓷涂层厚度为2-4μm,所述微孔膜厚度为16-25μm,孔隙率为40-55%。
  8. 一种锂离子电池用水性陶瓷涂覆隔膜的制备方法,其特征在于,包括如下步骤:
    (1).将勃姆石粉料和去离子水搅拌混合后,在高速分散机下进行分散,转速为10000-15000rpm,得到勃姆石分散溶液;
    (2).将所述勃姆石分散溶液与水性分散剂、水性胶黏剂、水性润湿剂按配方量进行混合,使用搅拌机搅拌25-30分钟,转速为500-700rpm,得到勃姆石分散浆料;
    (3).将所述勃姆石分散浆料均匀的涂敷在聚烯烃微孔膜的一侧或两侧,干燥后得到锂离子电池用水性陶瓷涂覆隔膜,涂层厚度为2-4μm。
PCT/CN2016/088412 2016-04-29 2016-07-04 一种锂离子电池用水性陶瓷涂覆隔膜及其制备方法 WO2017185519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610285356.3 2016-04-29
CN201610285356.3A CN105789539A (zh) 2016-04-29 2016-04-29 一种锂离子电池用水性陶瓷涂覆隔膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2017185519A1 true WO2017185519A1 (zh) 2017-11-02

Family

ID=56400345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088412 WO2017185519A1 (zh) 2016-04-29 2016-07-04 一种锂离子电池用水性陶瓷涂覆隔膜及其制备方法

Country Status (2)

Country Link
CN (1) CN105789539A (zh)
WO (1) WO2017185519A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802081A (zh) * 2019-02-18 2019-05-24 深圳市德立新材料科技有限公司 一种丙烯酸类粘接剂在锂电池隔膜上的应用
CN110364663A (zh) * 2019-06-03 2019-10-22 江西力能新能源科技有限公司 一种含勃姆石的陶瓷涂层的锂电池结构
CN110498671A (zh) * 2019-06-03 2019-11-26 江西力能新能源科技有限公司 一种用于锂电池极片含勃姆石的陶瓷涂层及制备方法
CN112054149A (zh) * 2019-06-05 2020-12-08 万向一二三股份公司 一种新型锂离子电池复合隔膜及其制备方法
CN113611981A (zh) * 2021-06-28 2021-11-05 湖南烁普新材料有限公司 一种低水分锂离子电池隔膜浆料及其制备方法、电池隔膜

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684296A (zh) * 2016-08-26 2017-05-17 宁德卓高新材料科技有限公司 一种安全性好的pvdf混合涂覆隔膜及其制备方法
CN106684293A (zh) * 2016-08-29 2017-05-17 东莞市卓高电子科技有限公司 一种锂电池隔膜的生产工艺
CN106784532B (zh) * 2016-08-29 2020-03-24 东莞市卓高电子科技有限公司 水性pvdf或其共聚物复合涂覆隔膜的制备方法
CN106803576B (zh) * 2016-12-30 2020-07-17 东莞市赛普克电子科技有限公司 锂离子电池用纳米陶瓷粉体组合物及其制法和应用
CN106531941B (zh) * 2017-01-10 2020-08-25 天津理工大学 一种锂电池隔膜用陶瓷浆料及其制备和应用方法
CN106953049B (zh) * 2017-01-20 2020-04-21 东莞市卓高电子科技有限公司 一种高安全性的陶瓷涂覆隔膜的制作方法
CN107123766B (zh) * 2017-03-29 2019-11-19 浙江谜蝶新材料有限公司 一种锂离子电池用隔膜及其制备方法
CN106997940A (zh) * 2017-04-29 2017-08-01 合肥国轩高科动力能源有限公司 一种用于锂离子电池隔膜涂覆的水性浆料及其制备方法
CN107403898A (zh) * 2017-07-17 2017-11-28 贵阳时代沃顿科技有限公司 一种锂离子电池用水性陶瓷浆料及其复合隔膜制备方法
CN107768582A (zh) * 2017-10-18 2018-03-06 深圳市高能达电池有限公司 一种锂离子电池用水性陶瓷涂覆隔膜
CN108206258A (zh) * 2017-12-26 2018-06-26 上海恩捷新材料科技股份有限公司 一种高安全性自熄灭锂离子电池隔膜
CN108539095B (zh) * 2018-04-03 2021-06-15 上海恩捷新材料科技有限公司 电池涂布膜浆料、电池隔膜、二次电池及其制备方法
CN108649168A (zh) * 2018-04-27 2018-10-12 中材锂膜有限公司 一种空心微珠陶瓷涂覆隔膜的制备方法
CN108565382A (zh) * 2018-04-28 2018-09-21 上海恩捷新材料科技股份有限公司 一种水性涂层锂离子电池隔膜及其制备方法
CN109378431B (zh) * 2018-10-09 2021-08-31 河北金力新能源科技股份有限公司 Pmma涂层浆料、pmma复合涂层隔膜及其制备方法
CN110819138B (zh) * 2019-09-29 2021-11-02 浙江安力能源有限公司 一种钠镍电池陶瓷管表面涂层的制作方法
CN112751140B (zh) * 2019-10-16 2023-09-15 珠海冠宇电池股份有限公司 一种提高锂离子电池电解液保液量和安全性能的隔膜功能涂层材料
CN110970590A (zh) * 2019-12-18 2020-04-07 江苏厚生新能源科技有限公司 陶瓷涂覆浆料及制备方法、锂电池隔膜、锂离子电池
CN111341982B (zh) * 2020-03-18 2022-11-25 江苏厚生新能源科技有限公司 涂覆隔膜及制备方法、掺杂勃姆石、陶瓷浆料、锂电池
CN113764830A (zh) * 2020-05-19 2021-12-07 重庆恩捷纽米科技股份有限公司 离子选择性功能隔膜及其制备方法和应用
CN114024097A (zh) * 2020-07-17 2022-02-08 深圳市星源材质科技股份有限公司 锂离子电池及其制备方法
CN112909423A (zh) * 2021-01-13 2021-06-04 镇江云峰电源材料有限公司 一种自动启停系统电池用隔膜及其制备方法
CN112876263A (zh) * 2021-02-01 2021-06-01 江苏厚生新能源科技有限公司 高比表面积陶瓷粉末及制备方法、高保液量陶瓷隔膜
CN113054320A (zh) * 2021-02-03 2021-06-29 中材锂膜有限公司 一种耐老化锂离子电池隔膜及制作方法
CN113659286B (zh) * 2021-08-10 2023-06-30 惠州亿纬锂能股份有限公司 一种勃姆石浆料、勃姆石涂覆隔膜及其制备方法和锂离子电池
CN114231105A (zh) * 2021-12-10 2022-03-25 河北金力新能源科技股份有限公司 低水分高绝缘锂离子电池隔膜及其制备方法
CN116247382A (zh) * 2023-04-27 2023-06-09 哈尔滨工业大学 一种清洁高粘接性能锂电复合隔膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103915591A (zh) * 2014-04-09 2014-07-09 深圳市星源材质科技股份有限公司 水性陶瓷涂层锂离子电池隔膜及其加工方法
CN104446515A (zh) * 2014-11-20 2015-03-25 深圳市星源材质科技股份有限公司 锂离子电池隔膜的高固含量水性陶瓷浆料及其加工方法
JP2015232930A (ja) * 2014-06-09 2015-12-24 株式会社村田製作所 非水電解質二次電池
CN105449141A (zh) * 2015-12-24 2016-03-30 深圳中兴创新材料技术有限公司 一种电池隔膜的制备方法及电池隔膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103915591A (zh) * 2014-04-09 2014-07-09 深圳市星源材质科技股份有限公司 水性陶瓷涂层锂离子电池隔膜及其加工方法
JP2015232930A (ja) * 2014-06-09 2015-12-24 株式会社村田製作所 非水電解質二次電池
CN104446515A (zh) * 2014-11-20 2015-03-25 深圳市星源材质科技股份有限公司 锂离子电池隔膜的高固含量水性陶瓷浆料及其加工方法
CN105449141A (zh) * 2015-12-24 2016-03-30 深圳中兴创新材料技术有限公司 一种电池隔膜的制备方法及电池隔膜

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802081A (zh) * 2019-02-18 2019-05-24 深圳市德立新材料科技有限公司 一种丙烯酸类粘接剂在锂电池隔膜上的应用
CN110364663A (zh) * 2019-06-03 2019-10-22 江西力能新能源科技有限公司 一种含勃姆石的陶瓷涂层的锂电池结构
CN110498671A (zh) * 2019-06-03 2019-11-26 江西力能新能源科技有限公司 一种用于锂电池极片含勃姆石的陶瓷涂层及制备方法
CN112054149A (zh) * 2019-06-05 2020-12-08 万向一二三股份公司 一种新型锂离子电池复合隔膜及其制备方法
CN112054149B (zh) * 2019-06-05 2022-06-14 万向一二三股份公司 一种锂离子电池复合隔膜及其制备方法
CN113611981A (zh) * 2021-06-28 2021-11-05 湖南烁普新材料有限公司 一种低水分锂离子电池隔膜浆料及其制备方法、电池隔膜

Also Published As

Publication number Publication date
CN105789539A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2017185519A1 (zh) 一种锂离子电池用水性陶瓷涂覆隔膜及其制备方法
WO2019153822A1 (zh) 一种粘结性聚合物涂覆锂离子电池隔膜及其制备方法
WO2018145666A1 (zh) 耐高温多种涂层的锂离子电池隔膜及其制备方法
WO2016201757A1 (zh) 一种高介电常数的纳米复合涂层隔膜及其制备方法
WO2017107435A1 (zh) 一种pvdf涂覆锂离子电池隔膜及其制备方法
CN104269505B (zh) 一种复合锂离子电池隔膜及其制备方法
CN112467079A (zh) 一种含硅负极片及包含该负极片的锂离子电池
CN105489819A (zh) 一种锂离子电池陶瓷隔膜浆料
WO2022161088A1 (zh) 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜
CN108807819B (zh) 隔膜及其制备方法和锂硫电池
CN105514328A (zh) 一种锂离子电池用陶瓷隔膜及其制备方法
WO2009096451A1 (ja) 絶縁層形成用スラリー、電気化学素子用セパレータおよびその製造方法、並びに電気化学素子
CN104868084A (zh) 一种锂离子二次电池用隔离膜
CN103545475B (zh) 锂离子电池硫酸钡隔膜及其制备方法
WO2014008761A1 (zh) 锂离子电池用新型壳聚糖及其衍生物水系粘结剂
CN106654125A (zh) 通过多巴胺复合粘结剂制备改性陶瓷隔膜的方法及其应用
WO2022057666A1 (zh) 一种正极片及电池
CN112968254A (zh) 一种锂离子电池用隔膜及其制备方法和锂离子电池
CN111613759A (zh) 一种隔膜浆料及其制备方法、隔膜和锂离子电池
CN109004152A (zh) 电极支撑型无机隔膜及其制备方法
CN115693032A (zh) 钠-锂复合固态电解质隔膜、制备方法及钠-锂复合电池
CN103633269A (zh) 一种锂离子电池用黄色陶瓷隔膜及其应用
CN113629357A (zh) 电池隔膜及其制备方法、二次电池
CN113113731A (zh) 隔膜及其制备方法以及锂离子电池
CN113725399A (zh) 多层结构的电池极片及其制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900029

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900029

Country of ref document: EP

Kind code of ref document: A1