WO2014008761A1 - 锂离子电池用新型壳聚糖及其衍生物水系粘结剂 - Google Patents

锂离子电池用新型壳聚糖及其衍生物水系粘结剂 Download PDF

Info

Publication number
WO2014008761A1
WO2014008761A1 PCT/CN2013/071317 CN2013071317W WO2014008761A1 WO 2014008761 A1 WO2014008761 A1 WO 2014008761A1 CN 2013071317 W CN2013071317 W CN 2013071317W WO 2014008761 A1 WO2014008761 A1 WO 2014008761A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
binder
mah
electrode
lithium ion
Prior art date
Application number
PCT/CN2013/071317
Other languages
English (en)
French (fr)
Inventor
张灵志
岳鹿
仲皓想
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2014008761A1 publication Critical patent/WO2014008761A1/zh
Priority to US14/582,154 priority Critical patent/US20150108410A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Novel chitosan and its derivative water-based binder for lithium ion battery Novel chitosan and its derivative water-based binder for lithium ion battery
  • the invention relates to the technical field of electrochemical and new energy materials, in particular to a novel water-based binder for chitosan and its derivatives which is used as a positive and negative electrode material for lithium ion batteries.
  • Lithium-ion batteries are considered to be the most ideal power source because of their high open circuit voltage, high energy density, long life, no memory, low pollution, and low self-discharge rate.
  • Si-based materials have attracted much attention due to their highest theoretical lithium insertion capacity (4200 mAh/g, which is much higher than all other negative electrode materials available today).
  • the Si-based material has a severe volume effect under a high degree of deintercalation of lithium, resulting in a significant decrease in the cycle stability of the electrode.
  • researchers use a variety of routes to deal with, such as the preparation of Si / C composites, the preparation of nanostructured Si materials, the use of appropriate electrolyte additives to reduce polarization, choose the right bond Agents and so on.
  • the choice of binders plays a crucial role.
  • the conventional organic solvent-based binder polyvinylidene fluoride (PVDF)
  • PVDF polyvinylidene fluoride
  • the organic solvent used in PVDF has the characteristics of good dispersibility, it is volatile, flammable, explosive, and highly toxic, and seriously pollutes the atmosphere.
  • water-based adhesives have become solvent-free, environmentally friendly, low-cost, non-flammable, safe to use, and have become an important development direction in the adhesive industry.
  • the most commonly used water-based binder is sodium carboxymethylcellulose (CMC), due to its rich carboxyl functional groups capable of forming H bonds with the surface of Si0 2 Si Si enables to reduce the impact on the volume expansion of Si, so that Si negative
  • CMC sodium carboxymethylcellulose
  • the cycle performance is greatly improved relative to PVDF (Electrochem. Solid. St. 10 (2007): A17-A20).
  • I. Kovalenko et al. proposed a new type of green binder on Science. Compared with CMC, higher carboxyl content and greater strength make it better electrochemical performance than CMC in Si anode (Science). 7 (2011): 75-79). Seeking a new and efficient green binder to meet the commercialization needs of high-capacity power batteries is the most direct and effective way to promote the commercialization of Si anodes. Summary of the invention
  • the present invention proposes to replace the conventional PVDF and CMC with low-cost, environmentally-friendly water-soluble chitosan and its derivatives, and to provide a green and environmentally friendly new binder for lithium ion batteries.
  • Another object of the present invention is to provide a lithium ion battery electrode comprising the above binder.
  • X of the derivative type I is selected from various hydrocarbon acyl groups, aromatic acyl groups, alkyl groups and aromatic groups; and derivatives Y of the quinoid type are selected from the group consisting of an alkane acyl group and an aromatic acyl group.
  • the chitosan-based binder proposed by the present invention is originally made of chitin, which is extracted from crustaceans such as shrimp shells and crab shells, and thus has a wide range of sources, low cost, and no pollution in green. Chitin is deacetylated to prepare chitosan, and chitosan is further functionalized to prepare carboxylated chitosan, chitosan lactate and other derivatives.
  • the present invention also provides the use of chitosan of the formula I and its derivatives as binders in lithium ion batteries.
  • the chitosan of the formula I and the derivative thereof of the present invention have a viscosity ranging from 50 to 1000 cpso as a solvent for the binder, and for the chitosan, a water-acetic acid solution having a volume percentage of 1% is used as a solvent. This is because the solubility of chitosan in pure water is very small, and in order to increase its solubility, a small amount of weak acid is usually added. Acetic acid volatilizes under heating and does not remain in the electrode, so it does not affect the performance of the electrode. To adverse effects.
  • the chitosan derivative is water-soluble, and deionized water can be used as a solvent.
  • the binder used in the present invention is usually firstly configured as a 1 to 5 wt% solution for preparing an electrode material of a lithium ion battery, and the demineralized water is used as a diluent to prepare a thick slurry.
  • Lithium-ion battery negative electrode active materials including silicon anode, graphite anode, lithium titanate, metal oxides and sulfides, cathode active materials including lithium iron phosphate, lithium cobaltate, ternary, lithium-rich manganese and nickel-manganese binary materials Cathode material.
  • the conductive agent is preferably an ethylene black or a super conductive carbon black.
  • the mixing time is not less than 20 minutes during preparation, the coating film thickness is 100 ⁇ 300 ⁇ , and the baking film temperature is 60-90 °C.
  • the chitosan-based binder proposed by the invention is applied to the preparation of electrode sheets for positive and negative materials of lithium ion batteries, and the cycle performance of the battery is improved.
  • the new binders are widely used, have water solubility, and are green and environmentally friendly. Conjunction.
  • the use of water-soluble chitosan and its derivatives as battery binders undoubtedly plays an important role in the implementation of the sustainable development strategy and the commercialization of the Si negative electrode.
  • FIG. 1 is a test curve of a cycle performance of an embodiment of the present invention and a comparative electrode.
  • 1 is a cycle performance test curve of the embodiment of the present invention and a comparative silicon electrode material at a charge and discharge current density of 200 mA/g
  • FIG. 1b is an embodiment of the present invention and a comparative SnS 2 silicon electrode at 322 mA/g.
  • Figure lc is an embodiment of the invention and a comparative example of LiNi 1/3 Co 1/3 Mn 1/3 0 2 cathode material at a charge and discharge current density of 27.7 mA/g Cycle performance test curve.
  • 2 is a test curve of a ratio performance test of an embodiment of the present invention and a comparative example.
  • 2a is a charge-discharge cycle curve of an embodiment of the present invention and a comparative silicon electrode material at a current density of 1000 mA/g;
  • FIG. 2b is a charge of the embodiment of the present invention and a comparative SnS 2 electrode material at different current densities. Discharge cycle curve.
  • 3 is a Nyquist diagram of an AC impedance test of an embodiment of the present invention and a comparative electrode.
  • 3a is a Nyquist diagram of an AC impedance test of an embodiment of the present invention and a comparative silicon electrode after 2 cycles;
  • FIG. 3b is a Nyquist diagram of an AC impedance test of an embodiment of the present invention and a comparative silicon electrode after 40 cycles;
  • Figure 3c is a Nyquist plot of an AC impedance test of an embodiment of the invention and a comparative SnS 2 electrode after 2 cycles.
  • Figure 4 is a SEM and TEM image of an embodiment and comparative examples and related samples of the present invention.
  • Figure 4 (a) is an SEM image of Si
  • Figure 4 (b) is a TEM image of Si
  • Figure 4 (c) is an SEM image of a Si electrode
  • Figure 4 (d) The SEM image of PVDF as the binder pole piece after 40 cycles
  • Figure 4 (e) shows the SEM image of CMC as the binder pole piece after 40 cycles
  • Figure 4 (f) shows the viscosity of 300 chitosan as the viscosity.
  • Figure 4 (g) is the SEM image of the chitosan lactate as the binder pole piece after 40 cycles
  • Figure 4 (h) is the carboxylated chitosan as the bond.
  • the copper piece obtained in the step (5) is quickly air-dried to remove the solvent to obtain a pole piece, and the pole piece is vacuum-dried; the vacuum-dried pole piece piece is weighed and the battery can be assembled.
  • the chitosan having a viscosity of 90 cps was first formulated into a 5 wt% aqueous solution containing 1% acetic acid. 80 mg of nano Si and 38.7 mg of black block black were weighed in a mortar, ground for 10 minutes, and then 0.2064 g of a 5% chitosan aqueous solution was added dropwise. After grinding for 5 minutes until the binder is uniformly mixed with the Si powder and the carbon powder, 1 mL of deionized water is added dropwise, and the mixture is sufficiently ground for 15 to 10 minutes.
  • the paste mixture was poured onto a Cu sheet, uniformly coated with a squeegee blade, and quickly placed in a blast drying oven at 70 ° C, and taken out after five minutes.
  • the pole piece was then placed in a vacuum oven and vacuum dried at 90 ° C for 6 h.
  • a constant current charge and discharge test was performed for the electrolyte assembled battery.
  • chitosan having a viscosity of 300 cps was used as a binder.
  • Example 4 chitosan having a viscosity of 650 cps was used as a binder.
  • Example 2 Different from Example 1 is the use of carboxylated chitosan (see Construction II) with a viscosity of 90 cps as a binder (see
  • chitosan lactate (see Structural Formula III) having a viscosity of 90 cps was used as a binder.
  • the chitosan having a viscosity of 90 cps was firstly configured to be 3.5 wt% of a 1% acetic acid-containing aqueous solution.
  • 70 mg of nano-SnS 2 and 20 mg of ethylene black were weighed in a mortar, ground for 10 minutes, and then 0.2876 g of a 3.5% aqueous solution of chitosan was added dropwise.
  • lmL of deionized water is added dropwise, and then fully ground for 15 to 10 minutes.
  • the paste mixture was poured onto a Cu sheet, uniformly coated with a squeegee blade, and quickly placed in a blast drying oven at 70 ° C, and taken out after five minutes.
  • the chitosan having a viscosity of 90 cps was firstly configured to be 3.5 wt% of a 1% acetic acid-containing aqueous solution. Weigh 200mg
  • LiNi 1/3 Co 1/3 Mn 1/3 02 (Dow) and 25 mg of B block black were ground in a mortar for 10 minutes, and then 0.2083 g of a 3.5% aqueous solution of chitosan was added dropwise. After grinding for 5 minutes until the binder is uniformly mixed, 0.5 mL of deionized water is added dropwise, and the mixture is thoroughly ground for 15 to 10 minutes. Pour the paste mixture onto the AL foil, using ⁇ The doctor blade was uniformly coated, dried in a blast drying oven at 70 ° C for 1 h, and then the pole piece was placed in a vacuum drying oven and vacuum dried at 90 ° C for 6 h. The vacuum-dried pole pieces are weighed and assembled in a 2025 battery case in a glove box, with a lithium plate as the counter electrode and a polyethylene film as the separator.
  • Example 2 In contrast to Example 1, PVDF was used as a binder, and N-methylpyrrolidone (NMP) was used as a diluent solvent, and the corresponding film temperature was raised to 120 ° C (vacuum drying).
  • NMP N-methylpyrrolidone
  • Example 2 The difference from Example 1 was the use of CMC having a viscosity of 900-1200 cps as a binder.
  • the electrochemical properties and structural changes of the electrode materials of the chitosan-based binder proposed by the present invention were tested and characterized by charge-discharge cycles, AC impedance spectra and SEM photographs.
  • Figure la is a cycle performance test curve of an embodiment of the present invention and a comparative silicon electrode at a charge and discharge current density of 200 mA/g, and Table 1 shows its corresponding capacity and charge and discharge efficiency. It can be seen from the table that the first discharge capacity of carboxylated chitosan is as high as 4270 mAh/g, which is the same as the theoretical capacity of Si of 4200 mAh/g. The first efficiency of PVDF as a binder was only 71.3%, while the first efficiency of CMC and chitosan binders was above 87%.
  • the electrode discharge capacity of PVDF as a binder was only 12 mAh/g
  • the electrode of CMC as a binder was 33 mAh/g
  • the discharge capacity of the electrode of chitosan binder Be far better than them.
  • the chitosan with a viscosity of 90 cps is 271 mAh/g
  • the chitosan with a viscosity of 300 cps is 308 mAh/g
  • the chitosan with a viscosity of 650 cps is 293 mAh/g
  • the chitosan lactate is 1076 mAh/g.
  • the carboxylated chitosan was 1478 mAh/g.
  • Figure lb is a cycle performance test curve of an embodiment of the present invention and a comparative SnS 2 electrode material at a charge and discharge current density of 322 mA/g, and Table 1 shows its corresponding capacity and charge and discharge efficiency.
  • the first charge capacity of carboxylated chitosan as a binder is as high as 837.3 mAh/g.
  • the first efficiency of PVDF as a binder is only 47.5%, while the first efficiency of CMC and chitosan binders is above 60%.
  • the electrode charge capacity of PVDF as a binder was only 264.5 mAh/g, and the electrode of CMC as a binder was 544.3 mAh/g, while the charge capacity of the electrode of chitosan binder was It is far better than PVDF.
  • chitosan is 482.2 mAh/g and chitosan lactate is 485.6 mAh/g.
  • Figure lc is a cycle performance test curve of an embodiment of the present invention and a comparative LiNi 1/3 Co 1/3 Mn 1/3 02 cathode material at a charge and discharge current density of 27.7 mA/g, using PVDF as a binder for the first time.
  • the discharge capacity is 173.9 mAh/g
  • the first charge capacity of carboxylated chitosan as a binder can reach 183 mAh/g.
  • FIG. 2a is a cycle performance test curve of an embodiment of the present invention and a comparative silicon electrode at a charge and discharge current density of 1000 mA/g, and Table 2 shows its corresponding capacity and charge and discharge efficiency.
  • Table 2 shows its corresponding capacity and charge and discharge efficiency.
  • the electrode prepared by the chitosan-based binder proposed by the present invention still exhibits superior performance compared to PVDF and CMC.
  • the initial discharge capacity of carboxylated chitosan can still reach 3803 mAh/g, and the first efficiency is 89.3%.
  • the electrodes for PVDF and CMC as binders are 3 and 500, respectively.
  • the chitosan with a viscosity of 90cps is 147 mAh/g
  • the chitosan with a viscosity of 300cps is 75 mAh/g
  • the chitosan with a viscosity of 650cps is 256 mAh/g
  • the chitosan lactate is 787 mAh.
  • carboxylated chitosan was 1018 mAh/g.
  • the chitosan lactate and carboxylated chitosan can reach 393 and 498 mAh/g respectively after 100 cycles, showing good electrochemical performance.
  • 2a is a flow chart of the embodiment of the present invention and a comparative silicon electrode at a charge and discharge current density of 1000 mA/g.
  • FIG. 2b is a cycle performance test curve of an embodiment of the present invention and a comparative SnS 2 electrode at different charge and discharge current densities.
  • the electrodes prepared by the chitosan-based binder and the CMC binder proposed by the present invention exhibit superior performance at different discharge current densities compared to PVDF.
  • the discharge capacity of carboxylated chitosan can still reach 480mAh/g
  • chitosan lactate is 455mAh/g
  • CMC as binder is 440mAh/g
  • PVDF is only 175 mAh/go. It can be seen that the chitosan aqueous binder exhibits good rate of magnification.
  • FIG. 3 is a Nyquist diagram of an AC impedance test of an embodiment of the present invention and a comparative example silicon electrode after (a) and 40 cycles (b) after 2 cycles.
  • the arc in the high frequency region represents the charge transfer resistance, and its diameter represents the magnitude of the reaction resistance. Comparing the high-frequency arc radius of different binder Nyquist diagrams, it can be found that the charge transfer resistance of PVDF as binder is the largest after 2 cycles, and the charge transfer resistance of carboxylated chitosan as binder electrode is the smallest.
  • the charge transfer resistance of the polysaccharide-based binder electrode is not much different from that of the CMC. After 40 cycles of charge and discharge, the charge transfer resistance of PVDF changed the most, followed by CMC, while the charge transfer resistance of chitosan lactate and carboxylated chitosan did not change.
  • Figure 3c is a Nyquist plot of an AC impedance test of an embodiment of the invention and a comparative SnS 2 electrode after 2 cycles.
  • PVDF as the binder has the largest charge transfer resistance after 2 cycles, and the shell
  • the charge transfer resistance of the polysaccharide-based binder electrode is not much different from that of CMC, and is much smaller than PVDF.
  • FIG. 4 is a SEM and TEM image of an embodiment and a comparative example of the present invention and a silicon sample.
  • Figures 4(a) and (b) show the SEM and TEM images of Si. It can be seen that the Si particles are spherical, ranging in size from 80 to 150 nm, and have a layer of Si0 2 with a thickness of about 5 nm.
  • Fig. 4(c) is a SEM photograph before the electrode cycle test, and it can be seen that the Si particles and the B black particles are uniformly dispersed.
  • Fig. 4(d) shows the SEM of PVDF as the binder pole piece after 40 cycles. It can be seen that there is basically no electrode material present.
  • the Si particles are swollen in volume during charge and discharge, and have been detached from the electrode sheet.
  • . Fig. 4(e) It can be seen from the SEM image of the CMC as the binder pole piece after 40 cycles, there are some large particles and empty shell-like substances, which are the residues of the Si particles after expansion and rupture during charging and discharging.
  • . Fig. 4(f) shows the SEM of 300 chitosan as a binder pole piece after 40 cycles, and its morphology is similar to that of the CMC cycle.
  • Figure 4 (g) and 4 (h) are SEM images of chitosan lactate and carboxylated chitosan as binder electrodes for 40 cycles, respectively. It can be seen from the figure that Si nanoparticles are recycled. The morphology is preserved and the volume expansion problem of the Si particles is effectively suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提出用价格低廉、绿色环保的水溶性的壳聚糖及其衍生物来代替传统的PVDF和CMC,提供一种绿色环保的锂离子电池电极材料的新型粘结剂。本发明所提出的壳聚糖系粘结剂最初的原料是甲壳素,甲壳素是从甲壳动物如虾壳、蟹壳中提取出来的,因此来源广泛,成本低廉,且绿色无污染。甲壳素经过脱乙酰化后制备成壳聚糖,壳聚糖进一步功能化可制备出羧化壳聚糖、壳聚糖乳酸盐等。

Description

锂离子电池用新型壳聚糖及其衍生物水系粘结剂 技术领域
本发明涉及电化学和新能源材料技术领域,尤其涉及一种用作锂离子电池正 负极材料的新型壳聚糖及其衍生物水系粘结剂。 技术背景
各种便携式电子设备及电动汽车的快速发展迫切需要具有高比容量、高充放 电效率、 长循环寿命的电源系统与之相匹配。 锂离子电池由于具有开路电压高、 能量密度大、 使用寿命长、 无记忆效果、 少污染以及自放电率小等优点, 被认为 是最为理想的电源。
锂离子电池电极材料的开发过程中, Si基材料因具有最高的理论嵌锂容量 (4200 mAh/g, 远高于目前其它所有的负极材料) 而备受关注。但是, Si基材料在 高程度脱嵌锂条件下,存在严重的体积效应,造成电极的循环稳定性大幅度下降。 针对硅的体积效率, 科研工作者采用各种各样的路线来应对, 比如制备 Si/C复合 材料, 制备纳米结构的 Si材料, 采用合适的电解液添加剂以降低极化, 选择合适 的粘结剂等等。 其中粘结剂的选择占有至关重要的地位。
传统的有机溶剂型粘结剂聚偏氟乙烯(PVDF), 易吸收电解液而发生溶胀, 导致粘结性能下降, 从而造成不能有效的抑制 Si颗粒在充放电过程中体积的巨 大变化。 另外, PVDF所利用的有机溶剂虽然具有分散性好的特点, 但易挥发、 易燃易爆、 且毒性大, 严重污染大气环境。 与有机溶剂型粘合剂相比, 水基型粘 合剂具有无溶剂释放, 符合环境要求, 成本低, 不燃, 使用安全等特点, 成为粘 合剂行业的重要发展方向。 目前常用的水基粘结剂为羧甲基纤维素钠 (CMC), 由于其富含的羧基官能团能与 Si表面的 Si02形成 H键能使得 Si减少体积膨胀 对 Si的影响,使得 Si负极的循环性能相对于 PVDF大幅提高 (Electrochem. Solid. St. 10 (2007): A17-A20)。近来, I. Kovalenko等人在 Science上提出一种新型的绿 色粘结剂, 相比 CMC, 更高的羧基含量及更大的强度使得比 CMC在 Si负极中 有更好的电化学性能 (Science 7 (2011): 75-79)。 寻求一种高效、 绿色的新型粘结 剂以满足高容动力电池商业化的需求是推动 Si负极商业化进程最直接最有效的 一种手段。 发明内容
本发明提出用价格低廉、绿色环保的水溶性的壳聚糖及其衍生物来代替传统 的 PVDF和 CMC, 提供一种绿色环保的新型锂离子电池用粘结剂。
本发明的另一个目的是提供含上述粘结剂的锂离子电池电极。
本发明新型壳聚糖及其衍生物粘结剂的化学结构如式 I所示:
Figure imgf000004_0001
式 I
其中, 衍生物 I型的 X选自各种烃类酰基、 芳香酰基、 烷基和芳香基; 衍生物 Π型的 Y选自烷烃类酰基和芳香酰基。
本发明所提出的壳聚糖系粘结剂最初的原料是甲壳素,甲壳素是从甲壳动物 如虾壳、 蟹壳中提取出来的, 因此来源广泛, 成本低廉, 且绿色无污染。 甲壳素 经过脱乙酰化后制备成壳聚糖, 壳聚糖进一步功能化可制备出羧化壳聚糖、壳聚 糖乳酸盐等衍生物。
本发明还提供了式 I的壳聚糖及其衍生物作为粘结剂在锂离子电池中的用 途。
本发明所述的式 I的壳聚糖及其衍生物的粘度范围为 50~1000 cpso 作为粘结 剂所利用的溶剂, 对于壳聚糖使用体积百分比 1%的水-醋酸溶液来作为溶剂, 这 是由于壳聚糖在纯水中溶解度是很小的, 为了增加其溶解度, 通常加入少量的弱 酸。醋酸在加热的情况下会挥发, 不会残留于电极中, 因此不会对电极的性能带 来不利的影响。 而所述壳聚糖衍生物是水溶性的, 采用去离子水作为溶剂即可。 本发明中所用的粘结剂通常先配置成 1~5 wt%的溶液, 用于制备锂离子电池 的电极材料,制备过程中以去离子水作为稀释剂来调配浆料的稀稠。所述的锂离 子电池的电极材料组成比例按质量百分比为,活性材料:导电剂:粘结剂 =50~80: 10-30: 5~20。 锂离子电池负电极活性材料, 包括硅负极、 石墨负极、 钛酸锂、 金属氧化物和硫化物, 正极活性材料包括磷酸铁锂、 钴酸锂、 三元、 富锂锰和镍 锰二元材料正极材料。导电剂优选为乙块黑或超导电炭黑。制备时混浆时间不少 于 20分钟, 涂膜厚度为 100~300 μηι, 烘膜温度为 60~90°C。
本发明所提出的壳聚糖系粘结剂应用于锂离子电池正负极材料制备电极片, 电池循环性能得到改善, 所使用新粘结剂来源广泛, 具有水溶性, 是绿色环保的 新型粘结剂。 鉴于对 Si负极的良好性能, 利用水溶性壳聚糖及其衍生物作为电 池粘结剂, 对可持续发展战略的实施及推动 Si负极的商业化进程无疑具有重要 的作用。 附图说明
图 1为本发明实施例及对比例电极循环性能测试曲线。 其中图 la为本发明实 施例与对比例硅电极材料在 200 mA/g的充放电电流密度下的循环性能测试曲线; 图 lb为本发明实施例与对比例 SnS2硅电极在 322 mA/g的充放电电流密度下的循 环性能测试曲线; 图 lc为本发明实施例及对比例 LiNi1/3Co1/3Mn1/302正极材料在 27.7 mA/g的充放电电流密度下的循环性能测试曲线。
图 2为本发明实施例及对比例电极倍率性能测试曲线。 其中图 2a为本发明实 施例及对比例硅电极材料在 1000 mA/g电流密度下的的充放电循环曲线; 图 2b为 本发明实施例及对比例 SnS2电极材料在不同电流密度下的充放电循环曲线。
图 3为本发明实施例及对比例电极的交流阻抗测试的 Nyquist图。 其中图 3a为 本发明实施例及对比例硅电极在 2次循环后的交流阻抗测试的 Nyquist图; 图 3b为 本发明实施例及对比例硅电极在 40次循环后的交流阻抗测试的 Nyquist图; 图 3c 为本发明实施例及对比例 SnS2电极在 2次循环后的交流阻抗测试的 Nyquist图。
图 4为本发明实施例和对比例及相关样品的 SEM及 TEM图片。其中图 4 (a) 为 Si的 SEM图, 图 4 (b)为 Si的 TEM图, 图 4 (c)为 Si电极的 SEM图, 图 4 (d) 为 PVDF作粘结剂极片 40次循环后的 SEM图, 图 4 (e) 为 CMC作粘结剂极片 40次循环后 SEM图,图 4 (f) 为黏度为 300壳聚糖作粘结剂极片 40次循环后 SEM 图, 图 4 (g) 为壳聚糖乳酸盐作粘结剂极片 40次循环后 SEM图, 图 4 (h) 为羧 化壳聚糖作粘结剂极片 40次循环后 SEM图。 具体实施方式
下面通过将通过具体的实施例对本发明进行详细的说明。
本发明锂离子电池电极制备的具体步骤为:
(1) 将式 I的壳聚糖或壳聚糖衍生物配置成 1~5 wt%的水溶液;
(2) 将纳米 Si颗粒和乙块黑置于研钵中研磨 5~10分钟;
(3) 将步骤 (1)中制备的粘结剂滴加于步骤 (2)的混合物中, 两者质量比为 1 :
9~1: 4, 研磨至粘结剂均匀的混合于 Si粉和碳粉;
(4) 滴加去离子水于步骤 (3)得到的混合物中, 再充分研磨 15~10分钟;
(5) 将步骤 (4)得到混合物倒于 Cu片上, 均匀涂布;
(6) 将步骤 (5)得到的铜片迅速鼓风干燥以去除溶剂, 得到极片, 极片真空干 燥; 将真空干燥过的极片裁片称重后即可装配电池。
实施例 1
先将黏度为 90cps壳聚糖配置成 5 wt%的含 1%醋酸-水溶液。 称取 80mg纳 米 Si和 38.7mg的乙块黑于研钵中, 研磨 10分钟, 然后滴加 0.2064g的 5%壳聚 糖水溶液。 研磨 5分钟至粘结剂均匀的混合于 Si粉和碳粉后, 滴加 lmL去离子 水于, 再充分研磨 15~10分钟。将糊状的混合物倒于 Cu片上, 用 ΙΟΟμηι的刮刀 均匀涂布, 迅速至于 70°C的鼓风干燥箱中, 五分钟后取出。 然后将极片放入真 空干燥箱中, 90°C恒温真空干燥 6 h。 将真空干燥过的极片裁片称重后, 将之在 手套箱中组装在 2025电池壳内, 以锂片为对电极, 以聚乙烯膜为隔膜, 以 1 M LiPF6 EC/DMC/DEC (v/v/v=l/l)为电解液组装电池进行恒电流充放电测试。
实施例 2
与实例 1不同的是利用黏度为 300cps的壳聚糖作为粘结剂。
实施例 3
与实例 1不同的是利用黏度为 650cps的壳聚糖作为粘结剂。 实施例 4
与实例 1不同的是利用黏度为 90cps的羧化壳聚糖(见构式 II )作为粘结剂 (
Figure imgf000007_0001
化学结构式 II
实施例 5
与实例 1不同的是利用黏度为 90cps的壳聚糖乳酸盐(见结构式 III)作为粘 结剂。
Figure imgf000007_0002
化学结构式 III
实施例 6
先将黏度为 90cps壳聚糖配置成 3.5 wt%的含 1%醋酸-水溶液。 称取 70 mg 纳米 SnS2和 20 mg的乙块黑于研钵中,研磨 10分钟,然后滴加 0.2876 g的 3.5% 壳聚糖水溶液。 研磨 5分钟至粘结剂均匀混合后, 滴加 lmL去离子水于, 再充 分研磨 15~10分钟。 将糊状的混合物倒于 Cu片上, 用 ΙΟΟμηι的刮刀均匀涂布, 迅速至于 70°C的鼓风干燥箱中, 五分钟后取出。 然后将极片放入真空干燥箱中, 90°C恒温真空干燥 6 h。 将真空干燥过的极片裁片称重后, 将之在手套箱中组装 在 2025电池壳内, 以锂片为对电极, 以聚乙烯膜为隔膜, 以 1 M LiPF6 EC/DEC (v/v =1/1)为电解液组装电池进行恒电流充放电测试。
实施例 7
先将黏度为 90cps壳聚糖配置成 3.5 wt%的含 1%醋酸-水溶液。 称取 200mg
LiNi1/3Co1/3Mn1/302 (陶氏) 和 25 mg的乙块黑于研钵中, 研磨 10分钟, 然后滴 加 0.2083g的 3.5%壳聚糖水溶液。研磨 5分钟至粘结剂均匀混合后, 滴加 0.5mL 去离子水于, 再充分研磨 15~10分钟。 将糊状的混合物倒于 AL箔上, 用 ΙΟΟμηι 的刮刀均匀涂布, 于 70°C的鼓风干燥箱中烘干 l h, 然后将极片放入真空干燥箱 中, 90°C恒温真空干燥 6 h。 将真空干燥过的极片裁片称重后, 将之在手套箱中 组装在 2025电池壳内, 以锂片为对电极, 以聚乙烯膜为隔膜,
以 LiPF6 EC/DMC/DEC (v/v/v=l/l)为电解液组装电池进行恒电流充放电测试。
对比例 1
与实例 1不同的是利用 PVDF作为粘结剂, 用 N-甲基吡咯烷酮 (NMP ) 作为 稀释溶剂, 相应的烘膜温度升高至 120°C (真空干燥)。
对比例 2
与实例 1不同的是利用黏度为 900-1200cps的 CMC作为粘结剂。 下面通过充放电循环、交流阻抗图谱及 SEM照片对本发明提出的壳聚糖系粘 结剂的电极材料的电化学性能及结构变化进行测试和表征。
1、 循环性能测试
图 la为本发明实施例及对比例硅电极在 200 mA/g的充放电电流密度下的循 环性能测试曲线, 表 1为其相应的容量及充放电效率。 从表中可以看出, 羧化壳 聚糖的首次放电容量高达 4270 mAh/g,和 Si的理论容量 4200 mAh/g持平。 PVDF 作为粘结剂的首次效率仅为 71.3%, 而 CMC及壳聚糖系粘结剂的首次效率都在 87%以上。 在第五十次循环时, PVDF作粘结剂的电极放电容量仅为 12 mAh/g, CMC作粘结剂的电极为 33 mAh/g, 而壳聚糖系粘结剂的电极的放电容量要远远 好于它们。 如, 黏度 90cps的壳聚糖为 271 mAh/g, 黏度 300cps的壳聚糖为 308 mAh/g, 黏度 650cps的壳聚糖为 293 mAh/g, 壳聚糖乳酸盐为 1076 mAh/g, 羧 化壳聚糖为 1478 mAh/g。 其中壳聚糖乳酸盐和羧化壳聚糖的循环性能保持的最 好, 100个循环后放电容量还能分别达到 423和 766 mAh/g。 图 lb 为本发明实 施例及对比例 SnS2电极材料在 322 mA/g的充放电电流密度下的循环性能测试曲 线, 表 1为其相应的容量及充放电效率。 表 1-Si
Binders First discharge First charge First coulomb 50th discharge 100th discharge
capacity (mAh/g) capacity(mAh/g) efficiency capacity(mAh/g) capacity(mAh/ g)
PVDF 3579 2551 71.3% 12 8
CMC 3570 3173 88.9% 33 6
Chitosan-90 3991 3524 88.3% 271 57
Chitosan-300 3652 3235 88.6% 308 7.1
Chitosan-650 3577 3140 87.8% 293 1.3
C-chitosan 4270 3813 89.3% 1478 766
C itosan lactate 3803 3331 87.6% 1076 423
表 1- SnS:
Binders First First charge First 50 discharge 100 discharge discharge capacity(mAh/g) coulomb capacity(mAh/g) capacity(mAh/g) capacity efficiency
(mAh/g)
CMC 936.0 581. 3 62.1% 544.3 467.2
C-chitosan 837.3 510. 8 61.0% 482.2 339.3
Chitosan 768.2 467. 1 60.8% 485.6 356.0 lactate
PVDF 661.8 314. 4 47.5% 264.5 201.9 从表 1中可以看出, 采用羧化壳聚糖作为粘结剂的首次充电容量高达 837.3 mAh/g。 PVDF作为粘结剂的首次效率仅为 47.5%, 而 CMC及壳聚糖系粘结剂的 首次效率都在 60%以上。 在第五十次循环时, PVDF作粘结剂的电极充电容量仅 为 264.5 mAh/g, CMC作粘结剂的电极为 544.3 mAh/g, 而壳聚糖系粘结剂的电极 的充电容量要远远好于 PVDF。如, 壳聚糖为 482.2 mAh/g, 壳聚糖乳酸盐为 485.6 mAh/g
图 lc 为本发明实施例及对比例 LiNi1/3Co1/3Mn1/302正极材料在 27.7 mA/g的 充放电电流密度下的循环性能测试曲线, 采用 PVDF作为粘结剂的首次放电容量 为 173.9 mAh/g , 而采用羧化壳聚糖作为粘结剂的首次充电容量可达到 183 mAh/g
图 2a为本发明实施例及对比例硅电极在 1000 mA/g的充放电电流密度下的循 环性能测试曲线, 表 2为其相应的容量及充放电效率。 从表 2中可以看出, 在高的 放电电流密度下, 相比 PVDF和 CMC, 本发明提出的壳聚糖系粘结剂制备的电极 仍然表现出了优越的性能。羧化壳聚糖的首次放电容量仍能达 3803 mAh/g, 首次 效率为 89.3%。 在第五十次循环时, PVDF及 CMC作粘结剂的电极分别为 3和 500 mAh/g, 而黏度 90cps的壳聚糖为 147 mAh/g, 黏度 300cps的壳聚糖为 75 mAh/g, 黏度 650cps的壳聚糖为 256 mAh/g, 壳聚糖乳酸盐为 787 mAh/g, 羧化壳聚糖为 1018 mAh/g。 其中壳聚糖乳酸盐和羧化壳聚糖在 100个循环后放电容量还能分别 达到 393和 498 mAh/g, 表现出较好的电化学性能。
图 2a为本发明实施例及对比例硅电极在 1000 mA/g的充放电电流密度下的循 表 2
Binders First discharge First charge First coulomb 50th discharge 100th discharge capacity (mAh/g) capacity(mAh/g) efficiency capacity(mAh/g) capacity(mAh/ g)
PVDF 3529 2413 68.4% 3 2
CMC 3422 3059 89.4% 55 3.6
Chitosan-90 3291 2843 86.4% 147 7.4
Chitosan-300 3025 2649 87.6% 75 4
Chitosan-650 2834 2488 87.8% 256 90
C-chitosan 3803 3396 89.3% 1018 498
C itosan lactate 3715 3243 87.3% 787 393
图 2b为本发明实施例及对比例 SnS2电极在不同充放电电流密度下的循环性 能测试曲线。 从图中可以看出, 在不同放电电流密度下, 相比 PVDF, 本发明提 出的壳聚糖系粘结剂和 CMC粘结剂制备的电极显示出了优越的性能。 其中在 5C 放电条件下, 羧化壳聚糖的放电容量仍能达 480mAh/g, 壳聚糖乳酸盐为 455mAh/g, CMC作粘结剂为 440mAh/g禾口 PVDF只有 175 mAh/go 可见, 壳聚糖 水系粘结剂表现出良好的倍率性。
2、 交流阻抗测试
图 3为本发明实施例及对比例硅电极在 2次循环后 (a)及 40次循环后 (b) 的 交流阻抗测试的 Nyquist图。 高频区的圆弧代表电荷转移电阻, 其直径大小表现 反应电阻值的大小。 对比不同粘结剂 Nyquist图的高频圆弧半径可以发现, PVDF 作粘结剂在 2次循环后的电荷转移电阻最大, 羧化壳聚糖作粘结剂电极的电荷转 移电阻最小, 其它壳聚糖系粘结剂电极的电荷转移电阻和 CMC的相差不大。 经 历 40次充放电循环后, PVDF的电荷转移电阻改变最大, 其次是 CMC的, 而壳聚 糖乳酸盐及羧化壳聚糖的电荷转移电阻基本没有改变。
图 3c为本发明实施例及对比例 SnS2电极在 2次循环后的交流阻抗测试的 Nyquist图。 从图中可知, PVDF作粘结剂在 2次循环后的电荷转移电阻最大, 壳 聚糖系粘结剂电极的电荷转移电阻和 CMC的相差不大, 都远小于 PVDF。
3、 电镜分析
图 4为本发明实施例和对比例及硅样品的 SEM及 TEM图片。 图 4(a)和 (b)是 Si 的 SEM及 TEM图, 图上可以看出 Si的颗粒呈球形, 尺寸范围为 80-150 nm, 其表 面有一层厚度约为 5 nm的 Si02层。 图 4(c)为电极循环测试前的 SEM照片, 图上可 以看出 Si颗粒和乙块黑颗粒均匀的分散在一起。 图 4(d)为 PVDF作粘结剂极片 40 次循环后 SEM, 可以看出基本上看不到有电极材料的存在, Si颗粒在充放电的过 程中体积剧烈膨胀, 已从电极片上脱落。 图 4(e) CMC作粘结剂极片 40次循环后 SEM图上可以看到, 有一些大的颗粒及空壳状物质存在, 这是 Si颗粒在充放电过 程中膨胀破裂后的残余物。 图 4(f) 为 300壳聚糖作粘结剂极片 40次循环后 SEM, 其形貌与 CMC循环的类似。 图 4(g)与 4(h)分别为壳聚糖乳酸盐及羧化壳聚糖作粘 结剂极片 40次循环后 SEM图, 从图上可以看到, Si纳米颗粒在循环后的形貌得以 保存, Si颗粒的体积膨胀问题得以有效抑制。

Claims

权利要求书
1、 一种锂离子电池电极材料用粘结剂, 其特征在于所述的粘结剂为式 I所 示的壳聚糖及其衍生物, 分散体系为去离子水或 1%的醋酸-水混合体系;
Figure imgf000012_0001
式 I
其中, 衍生物 I型的 X选自各种烃类酰基、 芳香酰基、 烷基和芳香基; 衍生 物 II型的 Y选自烷烃类酰基和芳香酰基。
2、 按照权利要求 1所述的锂离子电池电极材料用粘结剂, 其特征在于所述 的壳聚糖及其衍生物的粘度范围为 50~1000 cps。
3、权利要求 1所述的壳聚糖及其衍生物作为粘结剂在锂离子电池中的用途。
4、 根据权利要求 3所述的壳聚糖及其衍生物作为粘结剂在锂离子电池中的 用途,其特征在于所述锂离子电池的电极材料组成成分按质量百分比为, 活性材 料: 导电剂: 粘结剂 =50~80: 10-30: 5-20, 其中粘结剂为式 I所示的壳聚糖及 其衍生物, 分散体系为去离子水或 1%的醋酸-水混合体系。
PCT/CN2013/071317 2012-07-13 2013-02-04 锂离子电池用新型壳聚糖及其衍生物水系粘结剂 WO2014008761A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/582,154 US20150108410A1 (en) 2012-07-13 2014-12-23 Chitosan-based binder for electrodes of lithium ion batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210243617.7 2012-07-13
CN201210243617.7A CN102760883B (zh) 2012-07-13 2012-07-13 锂离子电池用新型壳聚糖及其衍生物水系粘结剂

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/582,154 Continuation-In-Part US20150108410A1 (en) 2012-07-13 2014-12-23 Chitosan-based binder for electrodes of lithium ion batteries

Publications (1)

Publication Number Publication Date
WO2014008761A1 true WO2014008761A1 (zh) 2014-01-16

Family

ID=47055260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071317 WO2014008761A1 (zh) 2012-07-13 2013-02-04 锂离子电池用新型壳聚糖及其衍生物水系粘结剂

Country Status (3)

Country Link
US (1) US20150108410A1 (zh)
CN (1) CN102760883B (zh)
WO (1) WO2014008761A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760883B (zh) * 2012-07-13 2015-03-18 中国科学院广州能源研究所 锂离子电池用新型壳聚糖及其衍生物水系粘结剂
JP2015005474A (ja) * 2013-06-24 2015-01-08 株式会社ダイセル 結着剤、電極材スラリー、電極及びその製造方法並びに二次電池
CN103396500B (zh) * 2013-08-07 2016-08-17 中国科学院广州能源研究所 天然高分子衍生物-导电聚合物水性复合粘结剂及其应用
CN103682255B (zh) * 2013-12-25 2016-07-13 中国地质大学(武汉) 一种锂硫二次电池的正极片的制备方法
JP2015225761A (ja) * 2014-05-27 2015-12-14 株式会社カネカ 電極活物質混合物、それを用いて作製した電極及び非水電解質二次電池
CN104393247B (zh) * 2014-11-20 2016-09-07 浙江中科立德新材料有限公司 纳米级磷酸铁锂电池正极极片的制备方法
CN104409696B (zh) * 2014-11-20 2017-01-25 浙江中科立德新材料有限公司 使用水性粘结剂和涂炭导电铝箔集流体的磷酸铁锂电池正极极片的制备方法
CN104789160A (zh) * 2015-04-08 2015-07-22 浙江中科立德新材料有限公司 锂离子电池用水性粘结剂、正极浆料及其制备方法
CN106159271B (zh) * 2015-04-22 2019-04-23 北京有色金属研究总院 一种锂离子电池用原位交联聚合物粘结剂及其制备的电极
KR102022603B1 (ko) * 2016-02-04 2019-09-18 주식회사 엘지화학 양극 및 이를 포함하는 리튬 이차전지
CN105914340B (zh) * 2016-06-22 2019-05-24 宁德新能源科技有限公司 一种正极极片,其制备方法及含有该极片的锂离子电池
CN106560940A (zh) * 2016-08-17 2017-04-12 深圳市优特利电源有限公司 高克容量硅碳负电极及其制备方法和锂离子电池
CN106560943A (zh) * 2016-08-17 2017-04-12 深圳市优特利电源有限公司 硅碳负电极及其制备方法和锂离子电池
CN109804490A (zh) * 2016-08-30 2019-05-24 新加坡国立大学 电池电极粘结剂
CN106560941A (zh) * 2016-09-05 2017-04-12 深圳市优特利电源有限公司 磷酸铁锂电池正极及其制备方法和锂离子电池
CN106299245A (zh) * 2016-09-19 2017-01-04 吉安市优特利科技有限公司 硅基负电极及其制备方法和锂离子电池
TWI600204B (zh) * 2016-11-17 2017-09-21 聚和國際股份有限公司 鋰離子電池用負極材料及其製造方法
TWI631754B (zh) * 2017-07-07 2018-08-01 聚和國際股份有限公司 具三維結構的鋰電池黏著劑及含其的鋰電池負極材料
CN108232152B (zh) * 2017-12-29 2021-04-06 银隆新能源股份有限公司 一种电池正极浆料、电池正极及电池
CN108649228B (zh) * 2018-03-23 2021-10-01 合肥国轩高科动力能源有限公司 一种锂离子电池硅基负极用粘结剂、负极及制备方法
CN109244468A (zh) * 2018-08-02 2019-01-18 合肥国轩高科动力能源有限公司 一种改性的壳聚糖负极粘结剂及含有该粘结剂的负极片的制备方法
CN109473677B (zh) * 2018-10-23 2020-12-22 欣旺达电子股份有限公司 锂离子电池、硅负极水系粘结剂及其制备方法
EP3874550A4 (en) * 2018-11-02 2022-08-03 Volt14 Solutions BATTERY ELECTRODE BINDER
CN110518244A (zh) * 2019-07-16 2019-11-29 南方科技大学 锂硫电池粘结剂及其制备、使用方法和锂硫电池
CN110783532A (zh) * 2019-11-11 2020-02-11 天科新能源有限责任公司 一种锂离子电池用正极极片的制备方法
JP2022186278A (ja) * 2021-06-04 2022-12-15 トヨタ自動車株式会社 亜鉛二次電池
CN114039109B (zh) * 2021-11-05 2023-05-26 郑州大学 用于水系锌离子电池电解液的添加剂、水系锌离子电池电解液及水系锌离子电池
SE546096C2 (en) * 2022-06-30 2024-05-21 Northvolt Ab Binder combination for a secondary cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433850A (en) * 1987-07-29 1989-02-03 Toppan Printing Co Ltd Thin cell
CN102483977A (zh) * 2009-08-27 2012-05-30 大日精化工业株式会社 水系碳填料分散涂装液、导电性赋予材料、蓄电装置用电极板、蓄电装置用电极板的制造方法及蓄电装置
CN102760883A (zh) * 2012-07-13 2012-10-31 中国科学院广州能源研究所 锂离子电池用新型壳聚糖及其衍生物水系粘结剂

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034121A (en) * 1971-09-07 1977-07-05 Ralston Purina Company Foods with microcrystalline chitin
WO2006092057A1 (en) * 2005-03-04 2006-09-08 Laboratoires Mauves Inc. Amine-based and imine-based polymers, uses and preparation thereof
EP2429598A2 (en) * 2009-05-13 2012-03-21 Kitozyme S.A. Adhesive composition
CN102959768B (zh) * 2010-07-06 2015-04-01 株式会社杰士汤浅国际 蓄电元件用电极体及蓄电元件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433850A (en) * 1987-07-29 1989-02-03 Toppan Printing Co Ltd Thin cell
CN102483977A (zh) * 2009-08-27 2012-05-30 大日精化工业株式会社 水系碳填料分散涂装液、导电性赋予材料、蓄电装置用电极板、蓄电装置用电极板的制造方法及蓄电装置
CN102760883A (zh) * 2012-07-13 2012-10-31 中国科学院广州能源研究所 锂离子电池用新型壳聚糖及其衍生物水系粘结剂

Also Published As

Publication number Publication date
CN102760883B (zh) 2015-03-18
US20150108410A1 (en) 2015-04-23
CN102760883A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
WO2014008761A1 (zh) 锂离子电池用新型壳聚糖及其衍生物水系粘结剂
Wu et al. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries
Chai et al. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries
WO2017193571A1 (zh) 一种锂离子电池用导电粘结剂及其制备方法、锂离子电池电极极片及制备方法和锂离子电池
JP5761197B2 (ja) 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池負極、二次電池及び二次電池負極用バインダー組成物の製造方法
JP5967098B2 (ja) 導電性接着剤組成物、接着剤層付集電体および電気化学素子電極
JP5754855B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP7156449B2 (ja) リチウムイオン電池負極用バインダー水溶液
WO2017031943A1 (zh) 一种高容量硅粉掺杂锂电池负极浆料的制备方法
WO2015180472A1 (zh) 萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用
JP7056642B2 (ja) 電気化学素子電極用導電材分散液、電気化学素子電極用スラリー組成物およびその製造方法、電気化学素子用電極、並びに、電気化学素子
JP2020017504A (ja) リチウムイオン電池電極用スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池
CN106992299B (zh) 一种水系粘结剂和包含该粘结剂的锂电池
TWI772337B (zh) 非水電解質二次電池負極及非水電解質二次電池
JP6645101B2 (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
CN112447971B (zh) 一种正极材料添加剂、活性材料、正极材料及其制备和在锂离子电池中的应用
CN110190258B (zh) 硅碳复合材料水性复合浆料及其制备方法、锂离子电池
WO2019065909A1 (ja) 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層、二次電池用電極層および二次電池
He et al. Aqueous binder enhanced high-performance GeP5 anode for lithium-ion batteries
Bolloju et al. Vulcanized polyisoprene-graft-maleic anhydride as an efficient binder for silicon anodes in lithium-ion batteries
WO2015115201A1 (ja) 電気化学素子用電極及び電気化学素子
JP6922456B2 (ja) リチウムイオン電池正極用バインダー水溶液、リチウムイオン電池正極用粉体状バインダー、リチウムイオン電池正極用スラリー、リチウムイオン電池用正極、リチウムイオン電池
WO2021195913A1 (zh) 负极材料、负极极片、电化学装置和电子装置
CN111370642A (zh) 一种基于石墨烯量子点及其衍生物的导电涂层材料及其应用
WO2012043763A1 (ja) 蓄電デバイス用電極合剤およびその製造方法、ならびにこれを用いた蓄電デバイス用電極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817272

Country of ref document: EP

Kind code of ref document: A1