WO2017031943A1 - 一种高容量硅粉掺杂锂电池负极浆料的制备方法 - Google Patents

一种高容量硅粉掺杂锂电池负极浆料的制备方法 Download PDF

Info

Publication number
WO2017031943A1
WO2017031943A1 PCT/CN2016/071966 CN2016071966W WO2017031943A1 WO 2017031943 A1 WO2017031943 A1 WO 2017031943A1 CN 2016071966 W CN2016071966 W CN 2016071966W WO 2017031943 A1 WO2017031943 A1 WO 2017031943A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
negative electrode
viscosity
minutes
powder
Prior art date
Application number
PCT/CN2016/071966
Other languages
English (en)
French (fr)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2017031943A1 publication Critical patent/WO2017031943A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the patent relates to the field of lithium ion batteries, and in particular to a method for preparing a nano silicon powder doped lithium battery anode slurry.
  • Lithium-ion batteries have the advantages of high energy density, small self-discharge, no memory effect, wide operating voltage range, long service life and no environmental pollution. They are the main power source for new energy vehicles.
  • the commercial lithium ion battery anode material is made of graphite-based carbon material, has low lithium insertion/deintercalation potential, suitable reversible capacity, rich resources, and low price, and is an ideal anode material for lithium ion batteries.
  • Graphite-based carbon materials which have the advantages of low lithium insertion/deintercalation potential, suitable reversible capacity, abundant resources, and low price, are ideal anode materials for lithium ion batteries.
  • its theoretical specific capacity is only 372 mAh/g, which limits the further improvement of the specific energy of lithium-ion batteries and cannot meet the needs of the increasingly high-energy portable mobile power sources.
  • Silicon is one of the most promising anode materials for carbon materials because silicon has the highest capacity of up to 4200 mAh/g and has a smooth discharge platform similar to graphite. However, similar to other high-capacity metals, silicon has very poor cycle performance and cannot perform normal charge and discharge cycles.
  • silicon is used as a negative electrode material, the reversible formation and decomposition of Li2Si alloy is accompanied by a large volume change during the charge-discharge cycle, which causes mechanical splitting (cracking and chalking) of the alloy, resulting in collapse of the material structure and electrode material.
  • the peeling off causes the electrode material to lose electrical contact, thereby causing a sharp drop in the cycle performance of the electrode, and finally causing electrode failure, so that it is difficult to practically apply in a lithium ion battery.
  • a lithium ion battery generally includes a positive electrode sheet, a negative electrode sheet, and a separator interposed between the positive electrode sheet and the negative electrode sheet.
  • the positive electrode tab includes a positive electrode current collector and a positive electrode film coated on the positive electrode current collector
  • the negative electrode plate includes a negative electrode current collector and a negative electrode film coated on the negative electrode current collector.
  • an active material such as lithium cobaltate, graphite, etc.
  • a conductive agent such as acetylene black, carbon nanotubes, carbon fiber, etc.
  • a binder such as polyvinylidene fluoride, polyvinylpyrrolidone, Carboxymethylcellulose sodium, styrene-butadiene rubber emulsion, etc.
  • solvent such as N-methylpyrrolidone, water, etc.
  • the performance of the electrode paste has an important influence on the performance of the lithium ion battery.
  • the effect of the active substance can be exerted during charging and discharging, and the average gram capacity is exerted. Will be improved to improve the performance of the full battery.
  • the conventional negative electrode slurry preparation method is to carry out the high-speed double-planetary dispersion of the conductive agent with the thickener solution, and then add the negative electrode active material, stir for a certain period of time, and then add the binder to pass through the line. The time was stirred to obtain the final negative electrode slurry.
  • This method firstly requires a long time treatment for the dispersion of the conductive agent, which takes a long time and is not ideal in the dispersion state, especially for the preparation of a slurry using a carbon nanotube (CNT), graphene or the like as a conductive agent; the second conventional process needs to be During the preparation of the slurry, the stirring system is kept under vacuum, which causes the internal temperature of the slurry system to rise easily, and at the same time, externally added circulating water for cooling, so the requirements and wear of the equipment are high.
  • the above results in low slurry preparation efficiency, poor stability, and unsatisfactory effect, which will affect the preparation of the subsequent pole piece and the performance of the lithium battery.
  • the object of the present invention is to provide a method for preparing a high capacity silicon powder doped lithium battery anode slurry, so as to realize the components of the slurry in a relatively short time, especially nanometer.
  • the silicon powder is uniformly dispersed, and the prepared slurry has good uniformity and excellent stability, and at the same time, the prepared battery sheet adhesion and gram capacity are improved, and thus the energy density and cycle stability of the battery are improved.
  • Dispersing the powder the negative electrode active material, the nano silicon powder and the conductive agent are added to the mixing tank in proportion and stirred for 30 to 40 minutes, and at the end of time 1/2 and at the end, the paddle and the barrel are scraped. Powder
  • High-viscosity stirring adding 55% to 60% of the total amount of the thickener solution to the stirred powder, stirring and dispersing for 60 to 70 minutes, and at the time of 1/3, 2/3 and end When the slurry is scraped on the paddle and the barrel, the temperature of the slurry is controlled between 25 and 35 ° C;
  • Low-viscosity stirring add 35 to 30% of the total amount of the thickener solution to the above-mentioned high-viscosity stirred slurry, stir and disperse for 60 to 70 minutes, and at time 1/3, 2/3 and At the end, the slurry on the paddle and the barrel is scraped, and the temperature of the slurry is controlled between 25 and 35 ° C;
  • Viscosity test the viscosity of the slurry with low viscosity stirring in the above steps is tested for viscosity, such as in the normal range of 2000-5000 Mpa ⁇ S, directly into the next step; if it exceeds the above range, 5% of the total amount of thickener solution is added. ⁇ 10%, stir and disperse for 30-40 minutes, and at time 1/2 and at the end, scrape the slurry on the paddle and barrel, and then test Once the viscosity of the slurry reaches the viscosity range, it can enter the next step;
  • Adding binder adding binder SBR, stirring and dispersing, the time is 10 to 30 minutes;
  • Vacuum defoaming Under low-speed stirring, the barrel is evacuated, the degree of vacuum is -0.09 to -0.1 MPa, and the time is 15 to 30 minutes, that is, the negative electrode slurry prepared by the method of the present invention is obtained.
  • the negative electrode active material in the above step 2 is one or a mixture of artificial graphite, natural graphite, lithium titanate, hard carbon, and mesocarbon microbeads.
  • the particle size of the nano silicon powder in the above step 2 is not more than 70 nm.
  • the conductive agent in the above step 2 is one or a mixture of conductive carbon black, conductive graphite, carbon nanotubes, carbon fibers, and graphene.
  • the mass ratios of the components of the negative electrode active material, the nano silicon powder, the conductive agent, the thickener, and the binder are (90-97): (1-10): (1-4) ): (1-5): (1-3), the solvent is 80% to 120% of the total amount of each of the above components.
  • the agitation device is a dual planetary vacuum agitator, and the slurry temperature is controlled by a method of introducing a constant temperature circulating water to the planetary agitating barrel at a corresponding temperature.
  • the present invention also has the following features:
  • the invention adds nano silicon powder to the traditional negative electrode slurry, improves the capacity of the material, can meet the requirements of high energy density of the lithium ion battery, and the nano silicon powder is fully dispersed. In the negative electrode system, the agglomeration of the nano silicon powder is avoided, and the cycle stability is ensured;
  • the preparation time is short: the preparation time of the negative electrode slurry of the invention is about 265 to 380 minutes, and in the subsequent preparation process, the accumulation of several practical experiences can omit the viscosity test step and directly enter the final vacuum defoaming process. This can save 30 to 40 minutes. If more than one device prepares the thickener solution first, it can save 60 to 100 minutes. Compared with the conventional anode slurry preparation process, it takes about 7 to 9 hours to greatly improve the production. effectiveness;
  • the equipment wear is small: the invention only needs to vacuum the barrel in the final vacuum defoaming process. Compared with the traditional process, the stirring system is kept in a vacuum state during the preparation process of the slurry, resulting in a stirring process. The heat is difficult to dissipate, the temperature of the slurry is easy to rise, and the effect is substantially improved.
  • the short-time vacuum treatment reduces the burden on the equipment and reduces equipment wear;
  • the negative electrode slurry prepared by the invention has a solid content of about 45 to 55%, and has the characteristics of high solid content and low viscosity compared with the conventional preparation process, so the proportion of water used is also reduced accordingly. , reducing the energy consumption required for evaporation of water during subsequent coating.
  • the negative active material, the nano silicon, and the conductive agent are added to the stirring tank to be stirred and dispersed for 30 minutes, and the powder on the paddle and the barrel is scraped at the time of 15 minutes and 30 minutes;
  • the test result is 5332 Mpa ⁇ S, the value of the normal range is 5%, the total amount of the solvent is added, and the dispersion is stirred for 30 minutes, and the time is 15 minutes. And 30 minutes, scrape the slurry on the paddle and the barrel, and then test the viscosity of the slurry.
  • the test result is 4215Mpa ⁇ S, which meets the viscosity range requirement;
  • the barrel is evacuated, the degree of vacuum is -0.09 to -0.1 MPa, and the time is 15 minutes, that is, the negative electrode slurry prepared by the method of the invention is obtained, and the total consumption time is about 265 minutes.
  • the negative electrode slurry is coated, dried, rolled, and cut into negative electrode sheets, and then assembled with lithium iron phosphate positive electrode sheets, separators, electrolytes, and battery cases, and activated by charge and discharge. After that, a 18650-type cylindrical lithium iron phosphate battery was produced.
  • the preparation takes about 7 hours, and according to the conventional production process of the lithium battery, a 18650-type cylindrical lithium iron phosphate battery is obtained.
  • Example 1 The electrical properties of the 18650-type cylindrical lithium iron phosphate battery prepared in Example 1 and Comparative Example 1 were tested. The total capacity, volumetric energy density, 500-cycle retention rate and battery internal resistance test results of the battery are shown in Table 1. .
  • the preparation steps are as follows:
  • the negative electrode active material and the conductive agent are added to the stirring tank to be stirred and dispersed for 40 minutes, and the powder on the paddle and the barrel is scraped at the time of 20 minutes and 40 minutes;
  • the barrel is evacuated, the degree of vacuum is -0.09 to -0.1 MPa, and the time is 30 minutes, that is, the negative electrode slurry prepared by the method of the invention is obtained, and the total consumption time is about 360 minutes.
  • the negative electrode slurry is coated, dried, rolled, and cut into negative electrode sheets, and then assembled with lithium cobaltate positive electrode sheets, separators, electrolytes, and battery cases, and activated by charge and discharge. After that, a 4244130 laminated soft pack battery was produced.
  • the preparation takes about 7.5 hours, and according to the conventional production process of the lithium battery, a 4244130 laminated soft pack battery is obtained.
  • the lithium battery prepared by using the anode slurry prepared by the method of the invention has lower internal resistance than the lithium battery produced by the conventional anode slurry production process, and the battery capacity and volume energy density.
  • the lithium battery produced by the conventional anode slurry production process is higher than the conventional anode, and the silicon powder still has the problem of attenuation, but the performance of the single silicon powder is very high. Great improvement and improvement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种高容量硅粉掺杂锂电池负极浆料的制备方法,通过在常规负极浆料制备过程中加入纳米硅粉,提高了材料的容量发挥性能,能满足锂离子电池对高能量密度的要求,并且经过增稠剂溶液制备、分散粉体、高粘度搅拌、低粘度搅拌、粘度测试、真空消泡等步骤,使各组分尤其是纳米硅粉充分分散于负极体系中,避免了纳米硅粉的团聚,保证循环稳定性;该方法具有制备时间短、设备磨损小、生产能耗低、分散效果好等优点,采用该方法提供的负极浆料所制得的锂电池,内阻低,体积能量密度得到明显提高,且电池的循环性能好。

Description

一种高容量硅粉掺杂锂电池负极浆料的制备方法 技术领域
本专利涉及锂离子电池领域,具体为一种纳米硅粉掺杂锂电池负极浆料的制备方法。
背景技术
目前随着全球性石油资源紧缺与气候环境的不断恶化,人类社会发展面临着严峻的挑战。发展清洁节能的新能源汽车受到世界各国的高度重视。新能源汽车的发展,关键在其动力电源。锂离子电池具有能量密度大、自放电小、无记忆效应、工作电压范围宽、使用寿命长、无环境污染等优点,是目前新能源汽车主要的动力电源。
锂离子电池的飞速发展主要是得益于电极材料的贡献,特别是负极材料的进步。目前商业化锂离子电池负极材料采用的是石墨类碳材料,具有较低的锂嵌入/脱嵌电位、合适的可逆容量且资源丰富、价格低廉等优点,是比较理想的锂离子电池负极材料。石墨类碳材料,具有较低的锂嵌入/脱嵌电位、合适的可逆容量且资源丰富、价格低廉等优点,是比较理想的锂离子电池负极材料。但其理论比容量只有372mAh/g,因而限制了锂离子电池比能量的进一步提高,不能满足日益发展的高能量便携式移动电源的需求。
硅是一种最有希望取代碳材料的负极材料,这是因为硅具有高达4200mAh/g的最高容量;并且具有类似于石墨的平稳的放电平台。但与其它高容量金属相似,硅的循环性能非常差,不能进行正常的充放电循环。硅作为负极材料使用时,在充放电循环过程中,Li2Si合金的可逆生成与分解伴随着巨大的体积变化,会引起合金的机械分裂(产生裂缝与粉化),导致材料结构的崩塌和电极材料的剥落而使电极材料失去电接触,从而造成电极的循环性能急剧下降,最后导致电极失效,因此在锂离子蓄电池中很难实际应用。研究表明,小粒径的硅或其合金无论在容量上还是在循环性能上都有很大的提高,当合金材料的颗粒达到纳米级时,充放电过程中的体积膨胀会大大减轻,性能也会有所提高,但是纳米材料具有较大的表面能,容易发生团聚,反而会使充放电效率降低并加快容量的衰减,从而抵消了纳米颗粒的优点。
锂离子电池一般包括正极片、负极片、间隔于正极片和负极片之间的隔膜。正极极片包括正极集流体和涂布在正极集流体上的正极膜片,负极片包括负极集流体和涂布在负极集流体上的负极膜片。电极极片制备时,首先将活性物质(如钴酸锂、石墨等)、导电剂(如乙炔黑,碳纳米管、碳纤维等)、粘接剂(如聚偏氟乙烯、聚乙烯基吡咯烷酮、羧甲基纤维素钠、丁苯橡胶乳液等)和溶剂(如N-甲基吡咯烷酮、水等)一起制成电极浆料,再将其按要求涂 覆在集流体表面,然后进行干燥,得到电池极片。
其中电极浆料的性能对锂离子电池的性能有着重要的影响。电极浆料中各组分分散得越均匀,极片便具有越好的加工性能,且电极各处的阻抗分布均匀,在充放电时活性物质的作用可以发挥得越大,其平均克容量发挥将会有所提升,从而提升全电池的性能。
实际应用上,传统的负极浆料制备方法是将导电剂用增稠剂溶液进行高转速的双行星式分散,然后加入负极活性物质,进行一定时间的搅拌后,再加入粘结剂经行短时间搅拌得到最终负极浆料。此种方法首先对导电剂的分散需要长时间处理,耗时长且分散状态并不理想,尤其是对于采用碳纳米管(CNT)、石墨烯等为导电剂的浆料制备;其次传统工艺需要在浆料制备过程中,对搅拌体系一直保持抽真空状态,造成浆料体系内部温度易升高,同时又在外部加循环水进行冷却,因此对设备的要求和磨损都很高。以上导致浆料制备效率低、稳定性差、效果不理想,对后续极片的制备、锂电池的性能都会造成影响。
发明内容
为了克服现有技术中存在的问题,本发明的目的是提供一种高容量硅粉掺杂锂电池负极浆料的制备方法,以实现在较短时间内对浆料各组分,尤其是纳米硅粉均匀分散,其制备出的浆料均匀性好,稳定性优异,同时其制备的电池极片粘附力和克容量得到了提高,并因此提高电池的能量密度及循环稳定性。
为了实现上述发明目的,本发明采用如下所述的技术方案:
1、增稠剂溶液制备:将增稠剂羧甲基纤维素钠(CMC)按一定比例加入去离子水溶剂中,用搅拌机溶解均匀,取出备用,时间为60~100分钟;
2、分散粉体:将负极活性物质、纳米硅粉、导电剂按比例加入搅拌桶搅拌分散,时间为30~40分钟,并在时间1/2和结束时,刮搅拌桨和桶体上的粉体;
3、高粘度搅拌:加入增稠剂溶液总量的55%~60%到上述搅拌后的粉体中,搅拌分散,时间为60~70分钟,并在时间1/3、2/3和结束时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
4、低粘度搅拌:加入增稠剂溶液总量的35~30%到上述高粘度搅拌后的浆料中,搅拌分散,时间为60~70分钟,并在时间1/3、2/3和结束时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
5、粘度测试:将上述步骤低粘度搅拌的浆料粘度进行粘度测试,如在正常范围2000~5000Mpa·S,直接进入下一步;如超过上述范围,则添加增稠剂溶液总量的5%~10%,再搅拌分散,时间为30~40分钟,并在时间1/2和结束时,刮搅拌桨和桶体上的浆料,再检测 一次浆料粘度,达到粘度范围要求即可进入下一步;
6、粘结剂添加:加入粘结剂SBR,搅拌分散,时间为10~30分钟;
7、真空消泡:在低速搅拌状态下,对桶体进行抽真空,真空度为-0.09~-0.1MPa,时间为15~30分钟,即得到本发明方法所制备的负极浆料。
上述步骤2中负极活性物质为人造石墨、天然石墨、钛酸锂、硬碳、中间相碳微球中的一种或多种混合物。
上述步骤2中纳米硅粉的粒径不大于70nm。
上述步骤2中导电剂为导电炭黑、导电石墨、碳纳米管、碳纤维、石墨烯中的一种或多种混合物。
上述步骤1和步骤2中,负极活性物质、纳米硅粉、导电剂、增稠剂、粘结剂各组分的质量比依次为(90-97):(1-10):(1-4):(1-5):(1-3),溶剂为上述各组分总量的80%~120%。
上述各步骤中,搅拌设备是双行星真空搅拌机,浆料温度是利用向行星搅拌桶通入相应温度的恒温循环水的方法来控制的。
其次,本发明还具有以下特点:
1、克比容量高:本发明因在传统负极浆料中,加入了纳米硅粉,提高了材料的容量发挥性能,能满足锂离子电池对高能量密度的要求,并且纳米硅粉充分分散了负极体系中,避免了纳米硅粉的团聚,保证循环稳定性;
2、制备时间短:本发明负极浆料制备时间全程约为265~380分钟,且在后续制备过程中,通过几次实际经验的积累,可省略粘度测试步骤,直接进入最后真空消泡过程,由此可节省30~40分钟,如有多台设备先制备好增稠剂溶液,又可节省60~100分钟,相比常规负极浆料制备工艺约7~9小时的时间,大大提高了生产效率;
3、设备磨损小:本发明只在最后真空消泡过程中才需要对桶体进行抽真空,相比传统工艺需要在浆料制备过程中,对搅拌体系一直保持抽真空状态,造成搅拌过程中热量难散发,浆料温度易升高的弊端,具有实质性改善效果,短时间抽真空处理降低设备负担,减小设备磨损;
4、生产能耗低:本发明所制得的负极浆料固含量约为45~55%,相比常规制备工艺,具有高固含量、低粘度的特点,因此使用的水的比例也相应减少,降低了后续涂布过程中对水分蒸发所需的能耗。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步的具体说明。
实施例1
以人造石墨为负极活性物质,SP为导电剂,纳米Si粒径为50nm,按石墨:Si:CMC:SBR=94.0:3.0:1.5:2.0:2.5的质量比,溶剂去离子水为上述各组分总量的100%。制备步骤如下:
1、将增稠剂CMC加入去离子水溶剂中,用搅拌机溶解均匀,取出备用,时间为60分钟;
2、将负极活性物质、纳米硅、导电剂加入搅拌桶搅拌分散,时间为30分钟,并在时间15分钟和30分钟时,刮搅拌桨和桶体上的粉体;
3、加入增稠剂溶液总量的55%到上述搅拌后的粉体中,搅拌分散,时间为60分钟,并在时间20分钟、40分钟和60分钟时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
4、加入增稠剂溶液总量的35%到上述高粘度搅拌后的浆料中,搅拌分散,时间为60分钟,并在时间20分钟、40分钟和60分钟时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
5、将上述步骤低粘度搅拌的浆料粘度进行粘度测试,测试结果为5332Mpa·S,超正常范围值,添加溶剂总量的5%,再搅拌分散,时间为30分钟,并在时间15分钟和30分钟时,刮搅拌桨和桶体上的浆料,再检测一次浆料粘度,测试结果为4215Mpa·S,达到粘度范围要求;
6、加入粘结剂SBR,搅拌分散,时间为10分钟;
7、在低速搅拌状态下,对桶体进行抽真空,真空度为-0.09~-0.1MPa,时间为15分钟,即得到本发明方法所制备的负极浆料,共耗时约265分钟。
按照锂电池常规生产工艺,将负极浆料经涂布、干燥、轧膜、分切制成负极片,然后与磷酸铁锂正极片、隔膜、电解液、电池外壳进行组装成,经充放电活化后制得18650型圆柱磷酸铁锂电池。
对比例1
按照常规的人造石墨负极浆料生产工艺,制备耗时约7个小时,按照锂电池常规生产工艺,制得18650型圆柱磷酸铁锂电池。
对实施例1和对比例1所制得的18650型圆柱磷酸铁锂电池进行电学性能测试,电池的总容量、体积能量密度、500次循环保持率及电池内阻测试对比结果如表1所示。
实施例2
以天然石墨为负极活性物质,SP为导电剂,纳米Si粒径为50nm,按石墨:Si:SP:CMC:SBR=94.5:7.0:2.0:1.6:1.9的质量比,溶剂去离子水为上述各组分总量的80%。制备步骤如下:
1、将增稠剂CMC加入去离子水溶剂中,用搅拌机溶解均匀,取出备用,时间为120分钟;
2、将负极活性物质、导电剂加入搅拌桶搅拌分散,时间为40分钟,并在时间20分钟和40分钟时,刮搅拌桨和桶体上的粉体;
3、加入增稠剂溶液总量的60%到上述搅拌后的粉体中,搅拌分散,时间为70分钟,并在时间23分钟、46分钟和70分钟时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
4、加入增稠剂溶液总量的35%到上述高粘度搅拌后的浆料中,搅拌分散,时间为70分钟,并在时间23分钟、46分钟和70分钟时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
5、将上述步骤低粘度搅拌的浆料粘度进行粘度测试,测试结果为4578Mpa·S,属于正常范围值,达到要求;
6、加入粘结剂SBR,搅拌分散,时间为30分钟;
7、在低速搅拌状态下,对桶体进行抽真空,真空度为-0.09~-0.1MPa,时间为30分钟,即得到本发明方法所制备的负极浆料,共耗时约360分钟。
按照锂电池常规生产工艺,将负极浆料经涂布、干燥、轧膜、分切制成负极片,然后与钴酸锂正极片、隔膜、电解液、电池外壳进行组装成,经充放电活化后制得4244130型叠片式软包电池。
对比例1
按照常规的天然石墨负极浆料生产工艺,制备耗时约7.5个小时,按照锂电池常规生产工艺,制得4244130型叠片式软包电池。
对实施例2和对比例2所制得的4244130型叠片式软包电池进行电学性能测试,电池的总容量、体积能量密度、500次循环保持率及电池内阻测试对比结果如表1所示。
表1各实施例与对比例的循环、倍率放电及内阻测试对比结果
Figure PCTCN2016071966-appb-000001
从上表可以看出,采用本发明方法制备的负极浆料所制得的锂电池,在内阻上均低于常规负极浆料生产工艺所制得的锂电池,在电池容量和体积能量密度上均高于常规负极浆料生产工艺所制得的锂电池,500次循环容量保持率低于常规负极,主要由于硅粉仍存在衰减的问题,但相比单一硅粉的性能情况,具有很大的提升和改善。

Claims (6)

  1. 一种高容量硅粉掺杂锂电池负极浆料的制备方法,其采用以下技术方案:、
    (1)增稠剂溶液制备:将增稠剂羧甲基纤维素钠(CMC)按一定比例加入去离子水溶剂中,用搅拌机溶解均匀,取出备用,时间为60~100分钟;
    (2)分散粉体:将负极活性物质、纳米硅粉、导电剂按比例加入搅拌桶搅拌分散,时间为30~40分钟,并在时间1/2和结束时,刮搅拌桨和桶体上的粉体;
    (3)高粘度搅拌:加入增稠剂溶液总量的55%~60%到上述搅拌后的粉体中,搅拌分散,时间为60~70分钟,并在时间1/3、2/3和结束时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
    (4)低粘度搅拌:加入增稠剂溶液总量的35~30%到上述高粘度搅拌后的浆料中,搅拌分散,时间为60~70分钟,并在时间1/3、2/3和结束时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
    (5)粘度测试:将上述步骤低粘度搅拌的浆料粘度进行粘度测试,如在正常范围2000~5000Mpa·S,直接进入下一步;如超过上述范围,则添加增稠剂溶液总量的5%~10%,再搅拌分散,时间为30~40分钟,并在时间1/2和结束时,刮搅拌桨和桶体上的浆料,再检测一次浆料粘度,达到粘度范围要求即可进入下一步;
    (6)粘结剂添加:加入粘结剂SBR,搅拌分散,时间为10~30分钟;
    (7)真空消泡:在低速搅拌状态下,对桶体进行抽真空,真空度为-0.09~-0.1MPa,时间为15~30分钟,即得到本发明方法所制备的负极浆料。
  2. 根据权利要求1所述的一种高容量硅粉掺杂锂电池负极浆料的制备方法,其特征是,上述步骤(2)中负极活性物质为人造石墨、天然石墨、钛酸锂、硬碳、中间相碳微球中的一种或多种混合物。
  3. 根据权利要求1所述的一种高容量硅粉掺杂锂电池负极浆料的制备方法,其特征是,上述步骤(2)中纳米硅粉的粒径不大于70nm。
  4. 根据权利要求1所述的一种高容量硅粉掺杂锂电池负极浆料的制备方法,其特征是,上述步骤(2)中导电剂为导电炭黑、导电石墨、碳纳米管、碳纤维、石墨烯中的一种或多种混合物。
  5. 根据权利要求1所述的一种高容量硅粉掺杂锂电池负极浆料的制备方法,其特征是,上述步骤(1)、步骤(2)、步骤(6)中,负极活性物质、纳米硅粉、导电剂、增稠剂、粘结剂各组分的质量比依次为(90-97):(1-10):(1-4):(1-5):(1-3),溶剂为上述各组分总量的80%~ 120%。
  6. 根据权利要求1所述的一种高容量硅粉掺杂锂电池负极浆料的制备方法,其特征是,上述各步骤中,搅拌设备是双行星真空搅拌机,浆料温度是利用向行星搅拌桶通入相应温度的恒温循环水的方法来控制的。
PCT/CN2016/071966 2015-08-25 2016-01-25 一种高容量硅粉掺杂锂电池负极浆料的制备方法 WO2017031943A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510524533.4A CN105024044A (zh) 2015-08-25 2015-08-25 一种高容量硅粉掺杂锂电池负极浆料的制备方法
CN201510524533.4 2015-08-25

Publications (1)

Publication Number Publication Date
WO2017031943A1 true WO2017031943A1 (zh) 2017-03-02

Family

ID=54413853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071966 WO2017031943A1 (zh) 2015-08-25 2016-01-25 一种高容量硅粉掺杂锂电池负极浆料的制备方法

Country Status (2)

Country Link
CN (1) CN105024044A (zh)
WO (1) WO2017031943A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257584A (zh) * 2021-05-08 2021-08-13 贵州梅岭电源有限公司 一种锂离子电容器用硬碳浆料的制备方法
CN113823762A (zh) * 2021-09-16 2021-12-21 湖北亿纬动力有限公司 一种负极浆料的混合方法、电池制备方法以及用途
CN113851609A (zh) * 2021-08-26 2021-12-28 蜂巢能源科技有限公司 硅基负极极片及其制备方法、全固态锂离子电池
CN114388748A (zh) * 2020-10-21 2022-04-22 深圳格林德能源集团有限公司 一种硅碳负极浆料及其制备工艺
CN114530582A (zh) * 2022-01-25 2022-05-24 惠州锂威新能源科技有限公司 一种负极浆料及其制备方法、负极片和二次电池

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024044A (zh) * 2015-08-25 2015-11-04 田东 一种高容量硅粉掺杂锂电池负极浆料的制备方法
CN106299272A (zh) * 2016-08-22 2017-01-04 浙江金开来新能源科技有限公司 一种硅粉掺杂锂离子动力电池负极浆料的制备方法
CN106784609A (zh) * 2017-03-10 2017-05-31 江西佳沃新能源有限公司 一种锂电池负极浆料制备工艺
CN106981620B (zh) * 2017-04-07 2021-03-30 惠州拓邦电气技术有限公司 一种锂离子电池负极浆料的制备方法
CN108390095A (zh) * 2018-02-11 2018-08-10 三门峡速达交通节能科技股份有限公司 一种锂电池材料及其制备方法
CN110474024A (zh) * 2018-05-09 2019-11-19 南京乐金化学新能源电池有限公司 一种钛酸锂电池材料
CN109638287B (zh) * 2018-12-04 2021-07-16 湖北融通高科先进材料有限公司 负极浆料的制备方法和解决负极浆料凝胶问题的方法
CN111509191A (zh) * 2020-04-24 2020-08-07 中科(马鞍山)新材料科创园有限公司 一种负极浆料及其制备方法和锂离子电池
CN111697217A (zh) * 2020-06-15 2020-09-22 中国检验检疫科学研究院 一种锂离子电池硅/石墨复合负极制备方法
CN112234163A (zh) * 2020-11-11 2021-01-15 珠海冠宇电池股份有限公司 一种负极片及锂离子电池
CN112531202A (zh) * 2020-12-04 2021-03-19 上海普澜特夫精细化工有限公司 一种含多孔材料的电极浆料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916166A (zh) * 2012-10-16 2013-02-06 彩虹集团公司 一种锂离子电池浆料的制备方法
CN103022433A (zh) * 2012-11-23 2013-04-03 彩虹集团公司 一种锂电池浆料的制作方法
CN103956459A (zh) * 2014-03-13 2014-07-30 清华大学 一种环境友好的锂电池负极片制作方法
JP2014146471A (ja) * 2013-01-28 2014-08-14 Nippon Zeon Co Ltd 二次電池負極用スラリー組成物、その製造方法、二次電池用負極、及び二次電池
CN105024044A (zh) * 2015-08-25 2015-11-04 田东 一种高容量硅粉掺杂锂电池负极浆料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891283B (zh) * 2011-07-22 2015-06-10 湖北骆驼特种电源有限公司 锂离子动力电池负极干混配料工艺
CN104681785A (zh) * 2015-02-12 2015-06-03 山东精工电子科技有限公司 锂离子电池负极涂覆材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916166A (zh) * 2012-10-16 2013-02-06 彩虹集团公司 一种锂离子电池浆料的制备方法
CN103022433A (zh) * 2012-11-23 2013-04-03 彩虹集团公司 一种锂电池浆料的制作方法
JP2014146471A (ja) * 2013-01-28 2014-08-14 Nippon Zeon Co Ltd 二次電池負極用スラリー組成物、その製造方法、二次電池用負極、及び二次電池
CN103956459A (zh) * 2014-03-13 2014-07-30 清华大学 一种环境友好的锂电池负极片制作方法
CN105024044A (zh) * 2015-08-25 2015-11-04 田东 一种高容量硅粉掺杂锂电池负极浆料的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388748A (zh) * 2020-10-21 2022-04-22 深圳格林德能源集团有限公司 一种硅碳负极浆料及其制备工艺
CN113257584A (zh) * 2021-05-08 2021-08-13 贵州梅岭电源有限公司 一种锂离子电容器用硬碳浆料的制备方法
CN113257584B (zh) * 2021-05-08 2023-03-17 贵州梅岭电源有限公司 一种锂离子电容器用硬碳浆料的制备方法
CN113851609A (zh) * 2021-08-26 2021-12-28 蜂巢能源科技有限公司 硅基负极极片及其制备方法、全固态锂离子电池
CN113823762A (zh) * 2021-09-16 2021-12-21 湖北亿纬动力有限公司 一种负极浆料的混合方法、电池制备方法以及用途
CN114530582A (zh) * 2022-01-25 2022-05-24 惠州锂威新能源科技有限公司 一种负极浆料及其制备方法、负极片和二次电池

Also Published As

Publication number Publication date
CN105024044A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
WO2017031943A1 (zh) 一种高容量硅粉掺杂锂电池负极浆料的制备方法
WO2017031885A1 (zh) 一种锂电池负极浆料的制备方法
WO2017032144A1 (zh) 一种磷酸铁锂正极浆料的制备方法
WO2017032154A1 (zh) 一种锂电池石墨负极浆料的制备方法
WO2017031884A1 (zh) 一种锂电池正极浆料的制备方法
WO2017032166A1 (zh) 一种锡粉掺杂锂电池负极浆料的制备方法
CN108963187B (zh) 硅碳负极、其制备方法、锂离子电池及电动车辆
WO2017032167A1 (zh) 一种钴酸锂正极浆料的制备方法
WO2017032155A1 (zh) 一种锂电池钛酸锂负极浆料的制备方法
CN107204446B (zh) 锂离子电池正极材料及其制备方法
WO2017032165A1 (zh) 一种锰酸锂正极浆料的制备方法
CN110492105B (zh) 一种正极材料及其制备的正极极片和得到的锂离子电池
CN103199258A (zh) 锂离子电池正极材料、正极制备方法及锂离子电池
CN107104227B (zh) 锂离子电池正极材料及其制备方法
CN107316992B (zh) 钛酸锂负极材料及其制备方法
CN112186140B (zh) 应用于硅碳负极的硅基活性复合导电浆料及负极合浆方法
CN111384370B (zh) 一种高容量密度锂离子电池负极
CN108134087A (zh) 一种锂离子动力电池所用负极材料及其制备方法
CN110970619B (zh) 一种物理剥离法制备石墨烯纳米片的方法、锂离子电池负极用水性导电浆料及其制备方法
CN114497508A (zh) 一种功率型人造石墨复合材料及其制备方法
CN118263388A (zh) 碳纳米粒子涂覆方法
CN109817984B (zh) 高功率石墨负极浆料制备方法
CN116666641A (zh) 多元纳米碳导电预涂层改性集流体及其制备方法与应用
CN111326721A (zh) 一种复合负极预嵌锂材料的制备方法
Chang et al. Effects of chemical dispersant and wet mechanical milling methods on conductive carbon dispersion and rate capabilities of LiFePO4 batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 03/05/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16838209

Country of ref document: EP

Kind code of ref document: A1