WO2017031884A1 - 一种锂电池正极浆料的制备方法 - Google Patents

一种锂电池正极浆料的制备方法 Download PDF

Info

Publication number
WO2017031884A1
WO2017031884A1 PCT/CN2015/098767 CN2015098767W WO2017031884A1 WO 2017031884 A1 WO2017031884 A1 WO 2017031884A1 CN 2015098767 W CN2015098767 W CN 2015098767W WO 2017031884 A1 WO2017031884 A1 WO 2017031884A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
viscosity
preparation
solvent
minutes
Prior art date
Application number
PCT/CN2015/098767
Other languages
English (en)
French (fr)
Inventor
鲍海友
田东
谌江宏
鲍丹
张贵萍
Original Assignee
深圳市斯诺实业发展股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市斯诺实业发展股份有限公司 filed Critical 深圳市斯诺实业发展股份有限公司
Publication of WO2017031884A1 publication Critical patent/WO2017031884A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium ion batteries, in particular to a preparation process and a method for preparing a positive electrode material slurry.
  • Lithium-ion batteries have the advantages of high energy density, small self-discharge, no memory effect, wide operating voltage range, long service life and no environmental pollution. They are the main power source for new energy vehicles.
  • a lithium ion battery generally includes a positive electrode sheet, a negative electrode sheet, and a separator interposed between the positive electrode sheet and the negative electrode sheet.
  • the positive electrode tab includes a positive electrode current collector and a positive electrode film coated on the positive electrode current collector
  • the negative electrode plate includes a negative electrode current collector and a negative electrode film coated on the negative electrode current collector.
  • an active material such as lithium cobaltate, graphite, etc.
  • a conductive agent such as acetylene black, carbon nanotubes, carbon fiber, etc.
  • a binder such as polyvinylidene fluoride, polyvinylpyrrolidone, Carboxymethylcellulose sodium, styrene-butadiene rubber emulsion, etc.
  • a solvent such as N-methylpyrrolidone, water, etc.
  • the performance of the electrode paste has an important influence on the performance of the lithium ion battery.
  • the conventional positive electrode slurry preparation method is to carry out high-speed double planetary dispersion of a conductive agent with a binder solution, and then add a positive electrode active material, and stir for a certain period of time to obtain a final positive electrode slurry.
  • This method firstly requires a long time treatment for the dispersion of the conductive agent, which takes a long time and is not ideal in the dispersion state, especially for the preparation of a slurry using a carbon nanotube (CNT), graphene or the like as a conductive agent; the second conventional process needs to be During the preparation of the slurry, the stirring system is kept under vacuum, which causes the internal temperature of the slurry system to rise easily, and at the same time, externally added circulating water for cooling, so the requirements and wear of the equipment are high.
  • the above results in low slurry preparation efficiency, poor stability, and unsatisfactory effect, which will affect the preparation of the subsequent pole piece and the performance of the lithium battery.
  • the object of the present invention is to provide a method for preparing a positive electrode slurry of a lithium battery, so as to achieve uniform dispersion of the components of the slurry in a short time, and the prepared slurry is uniform. It has good properties and excellent stability, and at the same time, the prepared battery sheet adhesion is improved, and thus the consistency of the battery and the electrochemical performance of the battery are improved.
  • Step 1 Disperse the powder: the positive electrode active material, the conductive agent and the binder are added to the mixing tank in proportion and stirred for 30 to 40 minutes, and at the time of 1/2 and at the end, the paddle and the barrel are scraped. Powder
  • Step 2 high-viscosity stirring: adding 55% to 60% of the total amount of the solvent to the stirred powder, stirring and dispersing for 60 to 70 minutes, and at the time of 1/3, 2/3 and at the end, Scrape the paddle and the slurry on the barrel, and the slurry temperature is controlled between 25 and 35 ° C;
  • Step 3 Low-viscosity stirring: adding 35 to 30% of the total amount of the solvent to the above-mentioned high-viscosity stirred slurry, stirring and dispersing for 60 to 70 minutes, and at the time of 1/3, 2/3 and the end , scraping the slurry on the paddle and the barrel, the temperature of the slurry is controlled between 25 and 35 ° C;
  • Step 4 viscosity test: the viscosity of the slurry with low viscosity stirring in the above steps is carried out. Test, such as in the normal range of 3000 ⁇ 8000Mpa ⁇ S, directly into the next vacuum defoaming; if it exceeds the above range, add 5% to 10% of the total amount of solvent, and then stir and disperse, the time is 30 to 40 minutes, and At time 1/2 and at the end, the slurry on the paddle and the barrel is scraped, and the viscosity of the slurry is detected once, and the viscosity range is required to proceed to the next step;
  • Step 5 Vacuum defoaming: Under low-speed stirring, the barrel is evacuated, the degree of vacuum is -0.09 to -0.1 MPa, and the time is 15 to 30 minutes, that is, the positive electrode slurry prepared by the method of the present invention is obtained.
  • the positive electrode active material in the above step 1 is LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi x Co y Mn (1-xy) O 2 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x One or more mixtures of +y ⁇ 1) and LiFePO4.
  • the conductive agent in the above step 1 is one or a mixture of conductive carbon black, conductive graphite, carbon nanotubes, carbon fibers, and graphene.
  • the binder in the above step 1 is polyvinylidene fluoride (PVDF).
  • the solvent in the above step 2 is N-methylpyrrolidone (NMP).
  • the mass ratio of each component of the positive electrode active material, the conductive agent, and the binder is (90-97): (1-4): (1-5), and the solvent is as described above. 50% to 100% of the total amount of each component.
  • the stirring device is a double planetary vacuum agitator
  • the slurry temperature is controlled by a method of introducing a constant temperature circulating water to the planetary agitating barrel to a corresponding temperature. Due to the adoption of the above technical solutions, the present invention brings about the following beneficial effects:
  • the preparation time of the positive electrode slurry of the invention is about 195 to 250 minutes, and in the subsequent preparation process, the accumulation of several practical experiences can omit the viscosity test step and directly enter the final vacuum defoaming process. Thereby, it can save 30-40 minutes, and the production time is greatly improved compared with the preparation time of about 5-8 hours of the conventional preparation process;
  • equipment wear is small: the invention only needs to vacuum the barrel in the final vacuum defoaming process, compared with the traditional process in the slurry preparation process, the stirring system has been kept vacuuming, resulting in the stirring process The heat is difficult to dissipate, the temperature of the slurry is easy to rise, and the effect is substantially improved.
  • the short-time vacuum treatment reduces the burden on the equipment and reduces equipment wear;
  • the solid content of the positive electrode slurry prepared by the invention is about 50-65%, which has the characteristics of high solid content and low viscosity compared with the conventional preparation process, so the amount of solvent used is correspondingly reduced. Reduces the energy required to evaporate and recover the solvent during subsequent coating processes;
  • the invention firstly stirs and disperses the positive electrode active material, the conductive agent and the binder, avoids the agglomeration of the conductive agent in the slurry, and adopts high-viscosity stirring and dispersion in the early stage, and the mechanical action of the stirring paddle on the slurry.
  • the force (extrusion, collision, friction) is large, and it can achieve a good dispersion effect, and then the low-viscosity agitation is used to completely disperse the components.
  • the lithium battery prepared by using the lithium battery positive electrode slurry provided by the invention has low internal resistance, is not easy to generate heat, has high energy density, good cycle performance and long service life.
  • Example 1 is a comparison chart of cycle test capacity retention ratios of Example 1 and Comparative Example 1.
  • Example 2 is a graph showing a comparison of cycle test capacity retention ratios of Example 2 and Comparative Example 2.
  • the preparation steps are as follows:
  • the barrel is evacuated, the degree of vacuum is -0.09 to -0.1 MPa, and the time is 30 minutes, that is, the positive electrode slurry prepared by the method of the invention is obtained, and the total consumption time is about 250 minutes.
  • the positive electrode slurry is coated, dried, rolled, and cut into positive electrode sheets, and then assembled with negative electrode sheets, separators, electrolytes, and battery casings, and then activated by charge and discharge.
  • Model 18650 cylindrical lithium iron phosphate battery with an initial design capacity of 1350 mA.
  • the preparation takes about 7 hours, and according to the conventional production process of the lithium battery, a 18650 type cylindrical lithium iron phosphate power battery with an initial design capacity of 1350 mA is obtained.
  • Example 1 was 97.92%, and Comparative Example 1 was 95.23%, the comparison results are shown in Figure 1, the energy density and internal resistance test comparison results are shown in Table 1.
  • Lithium cobaltate is used as the positive electrode active material
  • SP and KS-6 are the conductive agents
  • the preparation steps are as follows:
  • the barrel is evacuated, the degree of vacuum is -0.09 ⁇ -0.1MPa, and the time is 15 minutes, that is, the positive electrode slurry prepared by the method of the invention is obtained, and the total consumption time is about 165. minute.
  • the positive electrode slurry is coated, dried, rolled, and cut into positive electrode sheets, and then assembled with negative electrode sheets, separators, electrolytes, and battery casings, and then activated by charge and discharge.
  • Model 18650 cylindrical battery with an initial design capacity of 2000 mA.
  • the preparation takes about 6.5 hours, and according to the conventional production process of the lithium battery, a cylindrical battery of 18650 type with an initial design capacity of 2000 mA is obtained.
  • Example 1 The 18650 type cylindrical battery prepared in Example 1 and Comparative Example 1 was subjected to electrical performance test, which was charged and discharged at 1 C, and the cycle capacity retention rate was 1000 times, and Example 1 was 97.23%, and Comparative Example 1 was 93.23%.
  • the comparison results are shown in Figure 2.
  • the energy density and internal resistance test comparison results are shown in Table 1.
  • the lithium battery prepared by using the positive electrode slurry prepared by the method of the present invention has higher energy density than the lithium battery produced by the conventional positive electrode slurry production process, and is lower than the internal resistance.
  • a lithium battery produced by a conventional positive electrode slurry production process is lower than the internal resistance.

Abstract

本发明提供一种锂电池正极浆料的制备方法,包括:步骤A:将正极活性物质、导电剂、粘结剂和溶剂按比例加入搅拌桶搅拌分散;步骤B:加入溶剂总量的55%~60%到上述搅拌后的粉体中,搅拌分散,浆料温度为25~35℃;步骤C:加入溶剂总量的35~30%到步骤B得到的浆料中,搅拌分散,浆料温度为25~35℃;步骤D:将上述步骤B搅拌的浆料粘度进行粘度测试,若范围3000~8000Mpa·S,直接进入下一步真空消泡;若超过上述范围,则步骤D1:添加溶剂总量的5%~10%,再搅拌分散,检测浆料粘度达到粘度范围要求即可进入下一步;步骤E:在低速搅拌状态下,对桶体进行抽真空,真空度为-0.09~-0.1MPa,时间为15~30分钟,即得到正极浆料。采用本发明提供的锂电池正极浆料所制得的锂电池,内阻低,不易发热,而且能量密度高、循环性能好、使用寿命长。

Description

一种锂电池正极浆料的制备方法 技术领域
本发明涉及锂离子电池领域,具体为一种正极材料浆料的制备工艺及方法。
背景技术
目前随着全球性石油资源紧缺与气候环境的不断恶化,人类社会发展面临着严峻的挑战。发展清洁节能的新能源汽车受到世界各国的高度重视。新能源汽车的发展,关键在其动力电源。锂离子电池具有能量密度大、自放电小、无记忆效应、工作电压范围宽、使用寿命长、无环境污染等优点,是目前新能源汽车主要的动力电源。
锂离子电池一般包括正极片、负极片、间隔于正极片和负极片之间的隔膜。正极极片包括正极集流体和涂布在正极集流体上的正极膜片,负极片包括负极集流体和涂布在负极集流体上的负极膜片。电极极片制备时,首先将活性物质(如钴酸锂、石墨等)、导电剂(如乙炔黑,碳纳米管、碳纤维等)、粘接剂(如聚偏氟乙烯、聚乙烯基吡咯烷酮、羧甲基纤维素钠、丁苯橡胶乳液等)和溶剂(如N-甲基吡咯烷酮、水等)一起制成电极浆料,再将其按要求涂覆在集流体表面,然后进行干燥,得到电池极片。
其中电极浆料的性能对锂离子电池的性能有着重要的影响。电极浆料中各组分分散得越均匀,极片便具有越好的加工性能,且电极各处的阻抗分布均匀,在充放电时活性物质的作用可以发挥得越大,其 平均克容量发挥将会有所提升,从而提升全电池的性能。
实际应用上,传统的正极浆料制备方法是将导电剂用粘结剂溶液进行高转速的双行星式分散,然后加入正极活性物质,进行一定时间的搅拌后得到最终正极浆料。此种方法首先对导电剂的分散需要长时间处理,耗时长且分散状态并不理想,尤其是对于采用碳纳米管(CNT)、石墨烯等为导电剂的浆料制备;其次传统工艺需要在浆料制备过程中,对搅拌体系一直保持抽真空状态,造成浆料体系内部温度易升高,同时又在外部加循环水进行冷却,因此对设备的要求和磨损都很高。以上导致浆料制备效率低、稳定性差、效果不理想,对后续极片的制备、锂电池的性能都会造成影响。
发明内容
为了克服现有技术中存在的问题,本发明的目的是提供一种锂电池正极浆料的制备方法,以实现在较短时间内对浆料各组分均匀分散,其制备出的浆料均匀性好,稳定性优异,同时其制备的电池极片粘附力得到提高,并因此提高电池的一致性及其电池的电化学性能。
为了实现上述发明目的,本发明采用如下所述的技术方案:
步骤1、分散粉体:将正极活性物质、导电剂、粘结剂按比例加入搅拌桶搅拌分散,时间为30~40分钟,并在时间1/2和结束时,刮搅拌桨和桶体上的粉体;
步骤2、高粘度搅拌:加入溶剂总量的55%~60%到上述搅拌后的粉体中,搅拌分散,时间为60~70分钟,并在时间1/3、2/3和结束时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
步骤3、低粘度搅拌:加入溶剂总量的35~30%到上述高粘度搅拌后的浆料中,搅拌分散,时间为60~70分钟,并在时间1/3、2/3和结束时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
步骤4、粘度测试:将上述步骤低粘度搅拌的浆料粘度进行粘度 测试,如在正常范围3000~8000Mpa·S,直接进入下一步真空消泡;如超过上述范围,则添加溶剂总量的5%~10%,再搅拌分散,时间为30~40分钟,并在时间1/2和结束时,刮搅拌桨和桶体上的浆料,再检测一次浆料粘度,达到粘度范围要求即可进入下一步;
步骤5、真空消泡:在低速搅拌状态下,对桶体进行抽真空,真空度为-0.09~-0.1MPa,时间为15~30分钟,即得到本发明方法所制备的正极浆料。
优选的,上述步骤1中正极活性物质为LiCoO2、LiNiO2、LiMn2O4、LiNixCoyMn(1-x-y)O2(0<x<1,0<y<1,0<x+y<1)和LiFePO4中的一种或多种混合物。
优选的,上述步骤1中导电剂为导电炭黑、导电石墨、碳纳米管、碳纤维、石墨烯中的一种或多种混合物。
优选的,上述步骤1中粘结剂为聚偏氟乙烯(PVDF)。
优选的,上述步骤2中溶剂为N-甲基吡咯烷酮(NMP)。
优选的,上述步骤1和步骤2中,正极活性物质、导电剂、粘结剂各组分的质量比依次为(90-97):(1-4):(1-5),溶剂为上述各组分总量的50%~100%。
优选的,上述各步骤中,搅拌设备是双行星真空搅拌机,浆料温度是利用向行星搅拌桶通入相应温度的恒温循环水的方法来控制的。由于采用上述技术方案,本发明带来了以下有益效果:
1、制备时间短:本发明正极浆料制备时间全程约为195~250分钟,且在后续制备过程中,通过几次实际经验的积累,可省略粘度测试步骤,直接进入最后真空消泡过程,由此又可节省30~40分钟,相比常规制备工艺约5~8小时的制备时间,大大提高了生产效率;
2、设备磨损小:本发明只在最后真空消泡过程中才需要对桶体进行抽真空,相比传统工艺需要在浆料制备过程中,对搅拌体系一直保持抽真空状态,造成搅拌过程中热量难散发,浆料温度易升高的弊端,具有实质性改善效果,短时间抽真空处理降低设备负担,减小设备磨损;
3、生产能耗低:本发明所制得的正极浆料固含量约为50~65%,相比常规制备工艺,具有高固含量、低粘度的特点,因此使用的溶剂量也相应减少,降低了后续涂布过程中对溶剂蒸发和回收所需的能耗;
4、分散效果好:本发明先将正极活性物质、导电剂、粘结剂进行搅拌分散,避免了导电剂在浆料中产生团聚,前期采用高粘度搅拌分散,搅拌桨对浆料的机械作用力(挤压、碰撞、摩擦)大,能起到很好的分散效果,再采用低粘度搅拌,使各组分彻底被分散开。
采用本发明提供的锂电池正极浆料所制得的锂电池,内阻低,不易发热,而且能量密度高、循环性能好、使用寿命长。
附图说明
图1是实施例1与对比例1的循环测试容量保持率对比图。
图2是实施例2与对比例2的循环测试容量保持率对比图。
具体实施方式
下面结合附图,对本发明的较优的实施例作进一步的详细说明:
实施例1
以磷酸铁锂为正极活性物质,SP为导电剂,PVDF为粘结剂,按照LiFePO4:SP:PVDF=95.7:2.3:2.0的质量比,溶剂NMP为上述各组分总量的100%。制备步骤如下:
1、将各组分加入搅拌桶搅拌分散,时间为40分钟,并在时间20分钟和40分钟时,刮搅拌桨和桶体上的粉体;
2、加入NMP总量的55%到上述搅拌后的粉体中,搅拌分散,时间为70分钟,并在时间20分钟、40分钟和60分钟时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
3、加入溶剂总量的35%到上述高粘度搅拌后的浆料中,搅拌分散,时间为60分钟,并在时间23分钟、46分钟和70分钟时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
4、将上述步骤低粘度搅拌的浆料粘度进行粘度测试,测试结果为8514Mpa·S,超正常范围值,添加溶剂总量的5%,再搅拌分散,时间为40分钟,并在时间20分钟和40分钟时,刮搅拌桨和桶体上的浆料,再检测一次浆料粘度,测试结果为7627Mpa·S,达到粘度范 围要求;
5、在低速搅拌状态下,对桶体进行抽真空,真空度为-0.09~-0.1MPa,时间为30分钟,即得到本发明方法所制备的正极浆料,共耗时约250分钟。
按照锂电池常规生产工艺,将正极浆料经涂布、干燥、轧膜、分切制成正极片,然后与负极片、隔膜、电解液、电池外壳进行组装成,经充放电活化后制得18650型、初始设计容量为1350mA的圆柱磷酸铁锂电池。
对比例1
按照常规的磷酸铁锂正极浆料生产工艺,制备耗时约7个小时,按照锂电池常规生产工艺,制得18650型、初始设计容量为1350mA的圆柱磷酸铁锂功率型电池。
对实施例1和对比例1所制得的18650型圆柱磷酸铁锂电池进行电学性能测试,其在1C下充放,1000次的循环容量保持率,实施例1为97.92%,对比例1为95.23%,对比结果如图1所示,能量密度及内阻测试对比结果如表1所示。
实施例2
以钴酸锂为正极活性物质,SP和KS-6为导电剂,PVDF为粘结剂,按照LiCoO2:SP:KS-6:PVDF=93:2.2:1.3:3.5的质量比,溶剂NMP为上述各组分总量的60%。制备步骤如下:
1、将各组分加入搅拌桶搅拌分散,时间为30分钟,并在时间15分钟和30分钟时,刮搅拌桨和桶体上的粉体;
2、加入NMP总量的60%到上述搅拌后的粉体中,搅拌分散,时间为60分钟,并在时间20分钟、40分钟和60分钟时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
3、加入溶剂总量的30%到上述高粘度搅拌后的浆料中,搅拌分散,时间为60分钟,并在时间20分钟、40分钟和60分钟时,刮搅拌桨和桶体上的浆料,浆料温度控制在25~35℃之间;
4、将上述步骤低粘度搅拌的浆料粘度进行粘度测试,测试结果为6149Mpa·S,属于正常范围值,达到要求;
5、在低速搅拌状态下,对桶体进行抽真空,真空度为-0.09~-0.1MPa,时间为15分钟,即得到本发明方法所制备的正极浆料,共耗时约165 分钟。
按照锂电池常规生产工艺,将正极浆料经涂布、干燥、轧膜、分切制成正极片,然后与负极片、隔膜、电解液、电池外壳进行组装成,经充放电活化后制得18650型、初始设计容量为2000mA的圆柱型电池。
对比例2
按照常规的钴酸锂正极浆料生产工艺,制备耗时约6.5个小时,按照锂电池常规生产工艺,制得18650型、初始设计容量为2000mA的圆柱型电池。
对实施例1和对比例1所制得的18650型圆柱电池进行电学性能测试,其在1C下充放,1000次的循环容量保持率,实施例1为97.23%,对比例1为93.23%,对比结果如图2所示,能量密度及内阻测试对比结果如表1所示。
表1各实施例与对比例的能量密度及内阻测试对比结果
项目 能量密度(Wh/L) 内阻(mΩ)
实施例1 127.6 45.1
对比例1 118.4 49.3
实施例2 154.7 37.5
对比例2 142.9 40.8
从上表可以看出,采用本发明方法制备的正极浆料所制得的锂电池,在能量密度上均高于常规正极浆料生产工艺所制得的锂电池,在内阻上均低于常规正极浆料生产工艺所制得的锂电池。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (9)

  1. 一种锂电池正极浆料的制备方法,其特征在于,包括:
    步骤A:将正极活性物质、导电剂、粘结剂和溶剂按比例加入搅拌桶搅拌分散;
    步骤B:加入溶剂总量的55%~60%到上述搅拌后的粉体中,搅拌分散,浆料温度为25~35℃;
    步骤C:加入溶剂总量的35~30%到步骤B得到的浆料中,搅拌分散,浆料温度为25~35℃;
    步骤D:将上述步骤B搅拌的浆料粘度进行粘度测试,若范围3000~8000Mpa·S,直接进入下一步;若超过上述范围,则
    步骤D1:添加溶剂总重量的5%~10%,再搅拌分散,检测浆料粘度达到粘度范围要求即可进入下一步;
    步骤E:在搅拌状态下,对桶体进行抽真空,真空度为-0.09~-0.1MPa,时间为15~30分钟,即得到正极浆料。
  2. 如权利要求1所述的制备方法,其特征在于,所述步骤A中,正极活性物质、导电剂与粘结剂各组分的质量比依次为(90-97):(1-4):(1-5),溶剂为正极活性物质、导电剂与粘结剂总量的50%~100%,搅拌时间为30~40分钟。
  3. 如权利要求1所述的制备方法,其特征在于,所述步骤B和C中,分散的时间为60~70分钟。
  4. 如权利要求1所述的制备方法,其特征在于,所述步骤A中正极活性物质为LiCoO2、LiNiO2、LiMn2O4、LiNixCoyMn(1-x-y)O2(0<x<1,0<y<1,0<x+y<1)和LiFePO4中的一种或多种混合物,导电剂采用导电炭黑、导电石墨、碳纳米管、碳纤维、石墨烯中的一种或多种混合物,粘结剂采用聚偏氟乙烯,溶剂采用N-甲基吡咯烷酮。
  5. 如权利要求1所述的制备方法,其特征在于,所述步骤E中,真空度为-0.09~-0.1MPa,时间为15~30分钟。
  6. 如权利要求1所述的制备方法,其特征在于,所述步骤A中,在时间1/2和结束时,刮搅拌桨和桶体上的粉体。
  7. 如权利要求1所述的制备方法,其特征在于,所述步骤B和C并在时间1/3、2/3和结束时,刮搅拌桨和桶体上的浆料。
  8. 如权利要求1所述的制备方法,其特征在于,所述步骤D1中,搅 拌分散,时间为30~40分钟,并在时间1/2和结束时,刮搅拌桨和桶体上的浆料,再检测浆料粘度。
  9. 如权利要求1所述的制备方法,其特征在于,上述各步骤中,搅拌设备采用双行星真空搅拌机,浆料温度是利用向行星搅拌桶通入相应温度的恒温循环水的方法来控制的。
PCT/CN2015/098767 2015-08-24 2015-12-24 一种锂电池正极浆料的制备方法 WO2017031884A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510523079.0A CN105185951A (zh) 2015-08-24 2015-08-24 一种锂电池正极浆料的制备方法
CN201510523079.0 2015-08-24

Publications (1)

Publication Number Publication Date
WO2017031884A1 true WO2017031884A1 (zh) 2017-03-02

Family

ID=54907908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098767 WO2017031884A1 (zh) 2015-08-24 2015-12-24 一种锂电池正极浆料的制备方法

Country Status (2)

Country Link
CN (1) CN105185951A (zh)
WO (1) WO2017031884A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112542585A (zh) * 2020-11-05 2021-03-23 杭州力奥科技有限公司 一种正极磷酸铁锂制浆工艺
CN114156431A (zh) * 2021-11-30 2022-03-08 蜂巢能源科技有限公司 正极匀浆方法、正极浆料及其应用
CN114497444A (zh) * 2022-02-16 2022-05-13 华鼎国联四川动力电池有限公司 锂离子电池极片保护涂层用陶瓷浆料及其制备方法
CN114843513A (zh) * 2022-04-15 2022-08-02 珠海鹏辉能源有限公司 复合导电剂、电池浆料、锂离子电池和制备方法
CN115842101A (zh) * 2022-05-26 2023-03-24 宁德时代新能源科技股份有限公司 正极浆料、其制法、正极极片、二次电池和用电装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185951A (zh) * 2015-08-24 2015-12-23 深圳市斯诺实业发展有限公司 一种锂电池正极浆料的制备方法
CN105161709A (zh) * 2015-08-25 2015-12-16 田东 一种锰酸锂正极浆料的制备方法
CN105047858A (zh) * 2015-08-25 2015-11-11 田东 一种钴酸锂正极浆料的制备方法
CN105514417A (zh) * 2016-01-28 2016-04-20 先进储能材料国家工程研究中心有限责任公司 一种高安全锂离子电池正极浆料及其制备方法
CN105870454A (zh) * 2016-06-03 2016-08-17 田东 石墨烯作为导电剂用于锂离子电池正极浆料的方法
CN106099029A (zh) * 2016-07-04 2016-11-09 金龙联合汽车工业(苏州)有限公司 一种锂离子电池电极浆料分散方法
CN107617351A (zh) * 2017-07-31 2018-01-23 珠海格力电器股份有限公司 一种锂离子电池负极搅拌方法、用途及锂离子电池
CN107579205A (zh) * 2017-08-21 2018-01-12 江苏东汛锂业有限公司 一种锂电池正极片的配方及制备工艺
CN108400287A (zh) * 2018-02-23 2018-08-14 安徽益佳通电池有限公司 采用振动-机械搅拌联用制备锂离子电池电极浆料的方法
CN109192941A (zh) * 2018-08-10 2019-01-11 欣旺达电子股份有限公司 锂离子电池、正极片、锂离子电池正极浆料及其制备方法
CN109244373B (zh) * 2018-11-08 2021-09-03 上海电气国轩新能源科技有限公司 一种正极浆料及制备方法、锂离子电池
CN110380015B (zh) * 2019-05-27 2020-09-29 合山市华美新能源科技有限公司 锂电池正极浆料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1835260A (zh) * 2005-03-17 2006-09-20 深圳市比克电池有限公司 锂离子电池正极浆料制备方法、正极片和锂离子电池
CN104577089A (zh) * 2014-11-19 2015-04-29 山东精工电子科技有限公司 一种钛酸锂负极浆料的制备方法
CN104638229A (zh) * 2015-01-30 2015-05-20 上海航天电源技术有限责任公司 一种车用动力锂离子电池电极浆料干混硬炼制备方法
CN105047858A (zh) * 2015-08-25 2015-11-11 田东 一种钴酸锂正极浆料的制备方法
CN105161676A (zh) * 2015-08-25 2015-12-16 田东 一种磷酸铁锂正极浆料的制备方法
CN105161709A (zh) * 2015-08-25 2015-12-16 田东 一种锰酸锂正极浆料的制备方法
CN105185951A (zh) * 2015-08-24 2015-12-23 深圳市斯诺实业发展有限公司 一种锂电池正极浆料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280566B (zh) * 2013-05-31 2015-07-08 广东凯德能源科技有限公司 一种锂离子电池正负极浆料的制备方法
CN104766948A (zh) * 2014-01-08 2015-07-08 中山天贸电池有限公司 一种锂离子电池正极浆料的加工方法
CN103715417B (zh) * 2014-01-09 2016-05-25 合肥恒能新能源科技有限公司 一种锂电池正极复合活性物质及其涂布浆料的制备方法
CN103887514B (zh) * 2014-04-15 2016-03-02 中国科学院宁波材料技术与工程研究所 一种锂离子电池正极浆料的制备方法
CN104319369A (zh) * 2014-11-25 2015-01-28 上海动力储能电池系统工程技术有限公司 一种电池浆料及由其制备的锂离子二次电池
CN104577071B (zh) * 2015-01-28 2016-12-07 山东齐星新能源科技有限责任公司 一种锂离子电池干粉制浆方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1835260A (zh) * 2005-03-17 2006-09-20 深圳市比克电池有限公司 锂离子电池正极浆料制备方法、正极片和锂离子电池
CN104577089A (zh) * 2014-11-19 2015-04-29 山东精工电子科技有限公司 一种钛酸锂负极浆料的制备方法
CN104638229A (zh) * 2015-01-30 2015-05-20 上海航天电源技术有限责任公司 一种车用动力锂离子电池电极浆料干混硬炼制备方法
CN105185951A (zh) * 2015-08-24 2015-12-23 深圳市斯诺实业发展有限公司 一种锂电池正极浆料的制备方法
CN105047858A (zh) * 2015-08-25 2015-11-11 田东 一种钴酸锂正极浆料的制备方法
CN105161676A (zh) * 2015-08-25 2015-12-16 田东 一种磷酸铁锂正极浆料的制备方法
CN105161709A (zh) * 2015-08-25 2015-12-16 田东 一种锰酸锂正极浆料的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112542585A (zh) * 2020-11-05 2021-03-23 杭州力奥科技有限公司 一种正极磷酸铁锂制浆工艺
CN114156431A (zh) * 2021-11-30 2022-03-08 蜂巢能源科技有限公司 正极匀浆方法、正极浆料及其应用
CN114156431B (zh) * 2021-11-30 2023-06-16 蜂巢能源科技有限公司 正极匀浆方法、正极浆料及其应用
CN114497444A (zh) * 2022-02-16 2022-05-13 华鼎国联四川动力电池有限公司 锂离子电池极片保护涂层用陶瓷浆料及其制备方法
CN114497444B (zh) * 2022-02-16 2023-05-30 华鼎国联四川动力电池有限公司 锂离子电池极片保护涂层用陶瓷浆料及其制备方法
CN114843513A (zh) * 2022-04-15 2022-08-02 珠海鹏辉能源有限公司 复合导电剂、电池浆料、锂离子电池和制备方法
CN115842101A (zh) * 2022-05-26 2023-03-24 宁德时代新能源科技股份有限公司 正极浆料、其制法、正极极片、二次电池和用电装置

Also Published As

Publication number Publication date
CN105185951A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2017031884A1 (zh) 一种锂电池正极浆料的制备方法
WO2017031885A1 (zh) 一种锂电池负极浆料的制备方法
WO2017032144A1 (zh) 一种磷酸铁锂正极浆料的制备方法
WO2017032154A1 (zh) 一种锂电池石墨负极浆料的制备方法
CN106207129B (zh) 一种高倍率锂离子电池正极浆料的制备方法
WO2017032167A1 (zh) 一种钴酸锂正极浆料的制备方法
CN106654177B (zh) 一种干法制备电池电容复合电极的方法
WO2017032165A1 (zh) 一种锰酸锂正极浆料的制备方法
WO2017031943A1 (zh) 一种高容量硅粉掺杂锂电池负极浆料的制备方法
CN107204446B (zh) 锂离子电池正极材料及其制备方法
WO2017032155A1 (zh) 一种锂电池钛酸锂负极浆料的制备方法
WO2016201940A1 (zh) 一种炭/石墨复合负极材料的制备方法
WO2017032166A1 (zh) 一种锡粉掺杂锂电池负极浆料的制备方法
JP7156449B2 (ja) リチウムイオン電池負極用バインダー水溶液
CN107104227B (zh) 锂离子电池正极材料及其制备方法
WO2016169289A1 (zh) 一种锂离子电池负极浆料的制备方法
CN107316992B (zh) 钛酸锂负极材料及其制备方法
CN104795541A (zh) 一种锂离子电池负极浆料制备方法
Sun et al. Effect of poly (acrylic acid)/poly (vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes
CN104241696A (zh) 一种高能量密度的锂离子电池及其制备方法
CN110828779B (zh) 一种锂离子电池负极片及其制备方法、锂离子电池
WO2016202168A1 (zh) 一种锂离子电池正极浆料及其制备方法
CN111799470B (zh) 正极极片及钠离子电池
WO2017107806A1 (zh) 一种锂离子电池正极浆料的制备方法
CN112271285A (zh) 一种锂离子电池正极浆料的制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 03/05/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15902152

Country of ref document: EP

Kind code of ref document: A1