WO2015180472A1 - 萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用 - Google Patents

萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用 Download PDF

Info

Publication number
WO2015180472A1
WO2015180472A1 PCT/CN2014/095677 CN2014095677W WO2015180472A1 WO 2015180472 A1 WO2015180472 A1 WO 2015180472A1 CN 2014095677 W CN2014095677 W CN 2014095677W WO 2015180472 A1 WO2015180472 A1 WO 2015180472A1
Authority
WO
WIPO (PCT)
Prior art keywords
terpene resin
ion battery
lithium ion
supercapacitor
electrode
Prior art date
Application number
PCT/CN2014/095677
Other languages
English (en)
French (fr)
Inventor
张灵志
仲皓想
唐道平
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Priority to US14/843,965 priority Critical patent/US9899659B2/en
Publication of WO2015180472A1 publication Critical patent/WO2015180472A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J101/00Adhesives based on cellulose, modified cellulose, or cellulose derivatives
    • C09J101/08Cellulose derivatives
    • C09J101/26Cellulose ethers
    • C09J101/28Alkyl ethers
    • C09J101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J105/00Adhesives based on polysaccharides or on their derivatives, not provided for in groups C09J101/00 or C09J103/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J105/00Adhesives based on polysaccharides or on their derivatives, not provided for in groups C09J101/00 or C09J103/00
    • C09J105/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J145/00Adhesives based on homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic system; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J147/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J189/00Adhesives based on proteins; Adhesives based on derivatives thereof
    • C09J189/04Products derived from waste materials, e.g. horn, hoof or hair
    • C09J189/06Products derived from waste materials, e.g. horn, hoof or hair derived from leather or skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/54Aqueous solutions or dispersions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention belongs to the field of electrochemical and new energy materials, and discloses a terpene resin based water based binder and its application in a lithium ion battery anode or super capacitor.
  • PVDF polyvinylidene fluoride
  • the organic solvent used in PVDF has the characteristics of good dispersibility, it is volatile, flammable, explosive, and highly toxic, and seriously pollutes the atmosphere.
  • water-based adhesives have the advantages of solvent-free release, environmental requirements, low cost, non-combustible, safe use, etc., and become an important development direction of lithium-ion battery binders.
  • JP 5-74461 discloses the use of carboxymethyl cellulose (CMC) mixed with styrene-butadiene rubber emulsion (SBR) as a water-based binder for lithium ion battery anode materials
  • CMC/SBR carboxymethyl cellulose
  • Aqueous binders have been commercially used in lithium ion battery graphite anodes.
  • the solid electrolyte membrane Solid Electrolyte Interface
  • has a large impedance which is detrimental to the deintercalation of lithium ions, affecting the long-term cycling performance of the battery and the battery.
  • US20120088155A1 discloses alginate as an aqueous binder for a lithium ion battery anode material (mainly a silicon-based anode material), which can significantly improve the cycle stability and rate performance of the battery.
  • Terpene resin is a general term for a series of terpenoids, and is an olefin compound whose molecular formula is an integral multiple of isoprene.
  • Terpenes are a class of naturally occurring hydrocarbons that are widely found in plants and are available from many plants, especially conifers. In addition to the large amount of terpenoids present in plants, a large number of terpenoids are also extracted in marine organisms.
  • Terpene resin has low odor, non-toxic, non-crystalline, resistant to dilute acid and alkali, heat resistance, light resistance, anti-aging, strong adhesion, high adhesion, good thermal stability, good compatibility and solubility, etc. advantage.
  • the terpene resin-based water-based binder of the invention is applied to a lithium ion battery anode or a supercapacitor, and can significantly improve its high rate performance and cycle stability, compared with the current commercial lithium ion battery anode aqueous SBR/CMC binder system, Terpene resin raw materials come from a wide range of sources, green and environmentally friendly, and low cost. Research and development of new water-based binders to solve the dispersibility of electrode plate slurry, promote the development of green processes for lithium-ion battery and supercapacitor electrode plate preparation, and reduce Production costs and the development of electric vehicles and new energy industries are of great significance.
  • the technical solution adopted by the present invention is: a terpene resin-based water-based binder comprising a terpene resin emulsion and carboxymethyl cellulose, and the terpene resin-based water-based binder is used for a lithium ion battery negative electrode. Or supercapacitor pads.
  • the terpene resin emulsion is emulsified by a terpene resin and a polymer surfactant, and the terpene resin emulsion used in the present invention can be directly purchased from the market.
  • the mass ratio of the terpene resin to the carboxymethylcellulose is from 100:1 to 1:100.
  • the terpene resin emulsion has a terpene resin having a mass concentration of 55%.
  • the terpene resin emulsion is a binder, and the carboxymethyl cellulose is used as a thickener.
  • the terpene resin emulsion has a viscosity of from 4,000 to 5,000 mPa ⁇ s.
  • the terpene resin-based water-based binder is suitable for use as a binder for a lithium ion battery negative electrode or a supercapacitor, and is particularly suitable for use in graphite, activated carbon carbon materials, silicon, and lithium titanate.
  • the active material is graphite, activated carbon, silicon or lithium titanate; and the conductive agent is acetylene black.
  • the present invention also provides a method for preparing a negative electrode of a lithium ion battery or a supercapacitor electrode sheet as described above, the method comprising the steps of:
  • the electrode slurry prepared in the step (3) is uniformly coated on a Cu foil or an Al foil, and sufficiently dried to obtain a lithium ion battery negative electrode or a supercapacitor electrode sheet.
  • the electrode slurry obtained in the step (3) has a solid content of 30 to 45%, and the electrode slurry has a viscosity of 2,500 to 4,000 mPa ⁇ s.
  • the electrode sheet obtained in the step (4) is dried at 80-90 ° C and vacuum-dried for 24-48 h.
  • the electrode slurry is prepared by using deionized water as a solvent in the preparation process of the lithium ion battery negative electrode or the supercapacitor electrode sheet, and the solid content thereof is 30-45%; when preparing the lithium ion battery electrode, the baking film temperature is 80-90 ° C .
  • the present invention also provides a lithium ion battery or supercapacitor comprising a lithium ion battery negative electrode or a supercapacitor electrode sheet as described above.
  • the lithium ion battery or supercapacitor described above comprises a battery case, a pole core and an electrolyte, the pole core and the electrolyte are sealed in the battery case, the pole core comprising an electrode and a diaphragm between the electrodes,
  • the electrode includes an electrode containing a terpene resin-based water-based binder.
  • the present invention has the following advantages:
  • the terpene resin-based water-based binder provided by the present invention is applied to a lithium ion battery negative electrode or a super capacitor, which can reduce the interface impedance thereof;
  • the terpene resin provided by the present invention is widely derived from natural plants and is environmentally friendly.
  • the application of the water-based binder can significantly reduce the cost of the battery.
  • Example 1 is a cycle performance test curve of graphite and a comparative electrode according to Example 1 of the present invention at a charge and discharge current density of 0.2 C.
  • Example 2 is a cycle performance test curve of graphite and a comparative electrode at different charge and discharge current densities according to Example 2 of the present invention.
  • Example 3 is a comparison diagram of impedance tests of graphite and comparative electrodes at a rate of 0.2 C according to Example 3 of the present invention.
  • Example 4 is a comparison diagram of impedance tests of graphite and comparative electrodes at 1 C rate according to Example 4 of the present invention.
  • Embodiment 5 is a first charge and discharge curve of a silicon electrode according to Embodiment 5 of the present invention at a charge and discharge current density of 0.1 C.
  • Figure 6 is a graph showing the cycle performance of a lithium titanate negative electrode of Example 6 at a current ratio of 0.5 C.
  • Example 7 is a cycle stability curve of an activated carbon electrode at a current density of 200 mA/g according to Example 7 of the present invention.
  • terpene resin is abbreviated as TX
  • the present invention exemplifies a method for preparing a lithium ion battery or a supercapacitor electrode by using a terpene resin-based water-based binder, and a lithium ion battery or a supercapacitor of a lithium ion battery of a terpene resin-based water-based binder and other binders.
  • the battery can be assembled by weighing the fully dried pole pieces.
  • the terpene resin emulsion used in the specific examples of the present invention was purchased from Guangzhou Songbao Chemical Co., Ltd., model 8218 aqueous terpene resin viscosifying emulsion.
  • the mass ratio of the terpene resin to the carboxymethyl cellulose in the graphite, the conductive agent and the terpene resin-based water-based binder was 95:1:4.
  • the comparative electrode was prepared in the same manner using SBR/CMC as a binder.
  • FIG. 1 is a cycle performance test curve of the test electrode and the comparison electrode at a charge and discharge current density of 0.2 C of the present embodiment
  • Table 2 shows the corresponding specific capacity and the first charge and discharge efficiency.
  • the first efficiency of the graphite electrode using TX/CMC as the binder was 92.2%, which was higher than the first efficiency (91.5%) of SBR/CMC.
  • the graphite electrode prepared by using TX/CMC as a binder has a 50-cycle cycle, and its specific capacity is not attenuated, while the specific capacity of the SBR/CMC binder graphite is significantly attenuated.
  • Table 2 shows the first efficiency of preparing graphite anode materials with different binders.
  • Electrochemical tests were performed on the charge-discharge cycle stability and rate performance of the test electrode and the comparison electrode.
  • TX/CMC is a cycle performance test curve of the test electrode and the comparative electrode at different charge and discharge current densities in the present embodiment.
  • the use of TX/CMC as a binder for graphite shows good high rate characteristics.
  • the magnification is higher than 0.5C
  • the graphite using TX/CMC as a binder is much higher than SBR/CMC.
  • the magnification is 1C
  • the specific capacity of graphite prepared by using TX/CMC as a binder is 339 mAh/g, which is significantly higher than the specific capacity of graphite (329 mAh/g) using SBR/CMC binder.
  • 3 is an impedance test result of the test electrode and the comparison electrode of the test electrode and the comparative electrode at a rate of 0.2 C, respectively, using TX/CMC and SBR/CMC as binders, and the graphite electrode is circulated for 3 times. It can be seen from the figure that with TX/CMC as the binder, the impedance value of the graphite electrode is relatively smaller than that of SBR/CMC.
  • test electrode uses TX/CMC as a binder, wherein the mass ratio of TX/CMC is 1:100.
  • test electrode is also made of a terpene resin emulsion as a binder, but silicon (Si) is used as an active material.
  • Si silicon
  • the mass ratio of the terpene resin to the carboxymethyl cellulose in the silicon, the conductive agent and the terpene resin-based water-based binder is 70:20:10.
  • the test electrode was tested for the first charge and discharge.
  • FIG. 5 is a first charge-discharge curve of a Si electrode at a charge and discharge current density of 0.1 C according to an embodiment of the present invention, the first efficiency of which is 80%, and the first discharge specific capacity is 1800 mAh/g.
  • test electrode is also made of a terpene resin emulsion as a binder, but lithium titanate (LTO) is used as an active material.
  • LTO lithium titanate
  • the mass ratio of the terpene resin and the carboxymethylcellulose in the lithium titanate, the conductive agent and the terpene resin-based water-based binder was 80:10:10.
  • the test electrode was tested for charge and discharge cycle stability.
  • FIG. 6 is a cycle performance test of a lithium titanate electrode according to an embodiment of the present invention at a charge and discharge rate of 0.5 C.
  • the first efficiency was 84%, and after 60 cycles, the capacity retention rate reached 99%.
  • test electrode is also made of a terpene resin emulsion as a binder, but activated carbon (C) is used as an active material.
  • activated carbon C
  • the mass ratio of the terpene resin and the carboxymethylcellulose in the activated carbon, the conductive agent and the terpene resin-based water-based binder was 85:10:5.
  • the activated carbon and the conductive agent are mixed and stirred until uniformly dispersed; the carboxymethyl cellulose is added to deionized water to prepare an aqueous solution of carboxymethyl cellulose, and the obtained aqueous solution of carboxymethyl cellulose is added to the above system and stirred uniformly;
  • test electrode was tested for cycle stability at a current density of 200 mA/g.
  • Figure 7 is a cyclic stability curve for an activated carbon electrode prepared using a TX/CMC binder at a current density of (0-2.5 V) at a current density of 200 mA/g.
  • the specific capacitance is 110 F/g.
  • the capacitance retention rate is 96.9%. The capacitor exhibits good cycle stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明提供了萜烯树脂基水系粘结剂在锂离子电池负极或超级电容器中的应用,所述的萜烯树脂基水系粘结剂是由萜烯树脂乳液和羧甲基纤维素按一定比例配成,萜烯树脂与羧甲基纤维素的质量比为100∶1-1∶100。所述的含有该萜烯树脂基水系粘结剂构成的锂离子电池负极或超级电容器,其组成的比例为:活性材料∶导电剂∶(萜烯树脂+羧甲基纤维素)=70-95∶1-20∶4-10。本发明采用天然环保的萜烯树脂作为锂离子电池或超级电容器水系粘结剂,能极大提高电池的整体循环稳定性和倍率性能,并能显著降低电池的成本。

Description

萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用 技术领域
本发明属于电化学和新能源材料领域,公开了萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用。
背景技术
在电池或超级电容器制造过程中,均需使用粘结剂将电极活性物质粘结加工。传统的有机溶剂型粘结剂聚偏氟乙烯(PVDF),易吸收电解液而发生溶胀,导致粘结性能下降,不能有效的抑制颗粒在充放电过程中体积的变化。另外,PVDF所利用的有机溶剂虽然具有分散性好的特点,但易挥发、易燃易爆、且毒性大,严重污染大气环境。与有机溶剂型粘合剂相比,水性粘结剂具有无溶剂释放,符合环境要求,成本低,不燃,使用安全等特点,成为锂离子电池粘结剂的重要发展方向。
自从JP5-74461公开采用羧甲基纤维素(CMC)与丁苯橡胶乳液(SBR)混合作为锂离子电池负极材料的水系粘结剂,水系粘结剂目前已经得到了迅速的发展,CMC/SBR水性粘结剂在锂离子电池石墨负极已经商业应用。然而,石墨负极使用CMC/SBR水性粘结剂的商业锂离子电池中,电解液形成固态电解质膜(Solid Electrolyte Interface)阻抗较大,不利于锂离子的脱嵌,影响电池的长期循环性能以及电池的高倍率性能(J.Power Sources,147,249(2005))。最近,US20120088155A1公开了海藻酸盐作为锂离子电池负极材料(主要是硅基负极材料)的水性粘结剂,能显著改善电池的循环稳定性和倍率性能。
萜烯树脂是一系列萜类化合物的总称,是分子式为异戊二烯整数倍的烯烃类化合物。萜烯是一类广泛存在于植物体内的天然来源碳氢化合物,可从许多植物,特别是针叶树得到。除了在植物中大量存在萜类化合物外,在海洋生物体内也提取出了大量的萜类化合物。萜烯树脂具有低气味、无毒、不结晶、耐稀酸稀碱、耐热、耐光、抗老化、粘接力强、高附着力、热稳定性好,相容性和溶解性好等诸多优点。
本发明萜烯树脂基水系粘结剂应用于锂离子电池负极或超级电容器中,能显著提高其高倍率性能和循环稳定性,与目前商业锂离子电池负极水性SBR/CMC粘结剂体系比较,萜烯树脂原料来源广泛,绿色环保,成本低廉。研究开发新型的水系粘结剂,对解决极板浆料的分散性,推动锂离子电池和超级电容器电极板制备的绿色工艺发展,降低 生产成本,以及推动电动汽车和新能源产业的发展具有重要意义。
发明内容
本发明的目的是提供萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用。本发明的另一目的在于提供采用所述萜烯树脂基水系粘结剂的锂离子电池或超级电容器电极片及其制备方法;最后,本发明还提供了含有所述锂离子电池负极或超级电容器电极片的锂离子电池或超级电容器。
为实现上述目的,本发明采取的技术方案为:萜烯树脂基水系粘结剂,包含萜烯树脂乳液和羧甲基纤维素,所述萜烯树脂基水系粘结剂用于锂离子电池负极或超级电容器电极片。所述萜烯树脂乳液为萜烯树脂和高分子表面活性剂乳化而成,本发明所用萜烯树脂乳液可直接购买于市场。
作为本发明所述萜烯树脂基水系粘结剂的优选实施方式,其中萜烯树脂与羧甲基纤维素的质量比为100∶1~1∶100。
作为本发明所述萜烯树脂基水系粘结剂的优选实施方式,所述萜烯树脂乳液中萜烯树脂的质量浓度为55%。所述的萜烯树脂乳液为粘结剂,所述的羧甲基纤维素作为增稠剂。所述的萜烯树脂乳液的粘度为4000-5000mPa·s。
所述的萜烯树脂基水系粘结剂,适用于作为锂离子电池负极或超级电容器用粘结剂,尤其适用于石墨、活性炭碳材料、硅以及钛酸锂等。
如上所述萜烯树脂基水系粘结剂在锂离子电池负极或超级电容器电极片中的用途。
本发明还提供了锂离子电池负极或超级电容器电极片,所述锂离子电池负极或超级电容器电极片采用如上所述萜烯树脂基水系粘结剂作为粘结剂,且所述锂离子电池负极或超级电容器电极片中活性材料、导电剂和萜烯树脂基水系粘结剂中萜烯树脂与羧甲基纤维素质量比为活性材料:导电剂:(萜烯树脂+羧甲基纤维素)=70~95∶1~20∶4~10。
作为本发明所述锂离子电池负极或超级电容器电极片的优选实施方式,所述活性材料为石墨、活性炭、硅或钛酸锂;所述导电剂为乙炔黑。
本发明还提供了如上所述锂离子电池负极或超级电容器电极片的制备方法,所述方法包括以下步骤:
(1)将活性材料和导电剂混合搅拌至均匀分散;
(2)将萜烯树脂基水系粘结剂中的羧甲基纤维素加入去离子水制成羧甲基纤维素水溶液,然后将制得的羧甲基纤维素水溶液加入到步骤(1)的混合物中,搅拌均匀;
(3)将萜烯树脂基水系粘结剂中的萜烯树脂乳液加到步骤(2)所得的混合物中,再加适量去离子水,搅拌均匀,得到电极浆料;
(4)将步骤(3)制备得到的电极浆料均匀涂覆于Cu箔或Al箔上,充分干燥,即得锂离子电池负极或超级电容器电极片。
优选地,所述步骤(3)中得到的电极浆料的固体含量为30~45%,电极浆料的粘度为2500-4000mPa·s。所述步骤(4)中得到的电极片的干燥条件是80-90℃,恒温真空干燥24-48h。
在锂离子电池负极或超级电容器电极片制备过程中以去离子水作为溶剂来制备电极浆料,其固体含量为30-45%;在制备锂离子电池电极时,烘膜温度为80~90℃。
最后,本发明还提供了含有如上所述的锂离子电池负极或超级电容器电极片组成的的锂离子电池或超级电容器。
上述所述锂离子电池或超级电容器包括电池壳、极芯和电解液,所述的极芯和电解液密封于电池壳内,所述的极芯包括电极和位于电极之间的隔膜,所述电极包括含萜烯树脂基水系粘结剂的电极。
与现有技术相比,本发明具有以下优势:
1)本发明提供的萜烯树脂基水系粘结剂应用于锂离子电池负极或超级电容器,能降低其界面阻抗;
2)本发明提供的萜烯树脂基水系粘结剂在锂离子电池负极或超级电容器中的应用,能较大改善材料的高倍率性能以及电池循环稳定性能;
3)本发明提供的萜烯树脂广泛来源于天然植物,绿色环保,应用于水系粘结剂能显著降低电池的成本。
附图说明
图1为本发明实施例1石墨及对比电极在0.2C充放电电流密度下的循环性能测试曲线。
图2为本发明实施例2石墨及对比电极在不同充放电电流密度下的循环性能测试曲线。
图3为本发明实施例3石墨及对比电极在0.2C倍率下阻抗测试对比图。
图4为本发明实施例4石墨及对比电极在1C倍率下阻抗测试对比图。
图5为本发明实施例5硅电极在0.1C充放电电流密度下的首次充放电曲线。
图6为本发明实施例6钛酸锂负极在0.5C电倍率下的循环性能曲线。
图7为本发明实施例7活性炭电极在200mA/g电流密度下的循环稳定性曲线
其中:萜烯树脂简写为TX
具体实施方式
本发明列举出利用萜烯树脂基水系粘结剂制备锂离子电池或超级电容器电极的方法,并将萜烯树脂基水系粘结剂的锂离子电池与其他粘结剂的锂离子电池或超级电容器进行电化学性能的对比测试:
本发明制备锂离子电池或超级电容器电极片的具体步骤为:
(1)将活性材料和导电剂混合搅拌至均匀分散;
(2)将萜烯树脂基水系粘结剂中的羧甲基纤维素加去离子水制成羧甲基纤维素水溶液,然后将制得的羧甲基纤维素水溶液加到步骤(1)的混合物中,搅拌均匀;
(3)将萜烯树脂基水系粘结剂中的萜烯树脂乳液加到步骤(2)所得的混合物中,再加适量去离子水,搅拌均匀,得到电极浆料;
(4)将步骤(3)制备得到的电极浆料均匀涂覆于Cu箔或Al箔上,充分干燥;
(5)将充分干燥过的极片裁片称重后即可装配电池。
本发明具体实施例中所用萜烯树脂乳液购自广州松宝化工有限公司,型号为8218水性萜烯树脂增粘乳液。
实施例1:
一、测试电极的配制:
石墨、导电剂和萜烯树脂基水系粘结剂中萜烯树脂和羧甲基纤维素质量和的质量比为95∶1∶4。将石墨和导电剂混合搅拌至均匀分散;再将羧甲基纤维素加入去离子水制成羧甲基纤维素水溶液,将制得的羧甲基纤维素水溶液加入上述体系中搅拌均匀;然后将萜烯树脂乳液加到上述所得的混合物中(TX/CMC=3/2),再加适量去离子水,搅拌均匀,得到石墨电极浆料(固含量为45%);将制得的浆料均匀涂覆于Cu箔上,90℃真空干燥,即得石墨负极片。将真空干燥过的极片裁片称重后,将之在手套箱中组装在2025电池壳内,以锂片为对电极,以聚乙烯膜为隔膜,以1 M LiPF6 EC/DMC/DEC(v/v/v=1/1)为电解液组装电池进行恒电流充放电测试。
二、对比电极的配制:
利用SBR/CMC作为粘结剂,按同样的方法配制对比电极。
三、电化学测试:
对测试电极、对比电极的充放电循环稳定性进行电化学测试。
四、结果分析:
图1为本实施例测试电极及对比电极在0.2C的充放电电流密度下的循环性能测试曲线,表2为其相应的比容量及首次充放电效率。从表中可以看出,采用TX/CMC作为粘结剂的石墨电极的首次效率为92.2%,高于SBR/CMC的首次效率(91.5%)。此外,采用TX/CMC作为粘结剂制备的石墨电极经过50圈循环,其比容量儿乎不衰减,而采用SBR/CMC粘结剂石墨的比容量出现明显的衰减。
表2为采用不同粘结剂制备石墨负极材料的首次效率
粘结剂 石墨首次效率
TX/CMC 92.2
SBR/CMC 91.5%
实施例2:
一、测试电极的配制:
本实施例与实施例1的区别在于,测试电极采用的TX/CMC作为粘结剂,其中TX/CMC=4∶1。
二、对比电极的配制:
同实施例1。
三、电化学测试:
对测试电极、对比电极的充放电循环稳定性、倍率性能进行电化学测试。
四、结果分析:
图2为本实施例测试电极及对比电极在不同充放电电流密度下的循环性能测试曲线。从图中可以看出,采用TX/CMC作为石墨的粘结剂显示良好的高倍率特性。当倍率高于0.5C时,采用TX/CMC作为粘结剂的石墨远高于SBR/CMC。倍率为1C时,采用TX/CMC作为粘结剂制备石墨的比容量为339 mAh/g,显著高于采用SBR/CMC粘结剂的石墨比容量(329 mAh/g)。
实施例3:
一、测试电极的配制:
本实施例与实施例1的区别在于,测试电极采用的TX/CMC作为粘结剂,其中TX/CMC=100∶1。
二、对比电极的配制:
同实施例1。
三、电化学测试:
对测试电极、对比电极循环3圈后的阻抗测试。
四、结果分析:
图3为本实施例测试电极及对比电极在0.2C倍率下,分别采用TX/CMC和SBR/CMC作为粘结剂,石墨电极循环3圈后的阻抗测试结果。由图可见,采用TX/CMC为粘结剂,石墨电极的阻抗值比SBR/CMC相对减小。
实施例4:
一、测试电极的配制:
本实施例与实施例1的区别在于,测试电极采用TX/CMC作为粘结剂,其中TX/CMC的质量比为1∶100。
二、对比电极的配制:
同实施例1。
三、电化学测试:
对测试电极、对比电极循环5圈后的阻抗测试。
四、结果分析:
图4为本实施例测试电极及对比电极在1C倍率下,分别采用TX/CMC和SBR/CMC作为粘结剂,石墨电极循环5圈后的阻抗测试结果。由图可见,采用TX/CMC为粘结剂,石墨电极的阻抗值较之SBR/CMC减小。
实施例5:
一、测试电极的配制:
本实施例与实施例1的区别在于,测试电极也是采用萜烯树脂乳液作为粘结剂,但采用硅(Si)作为活性材料。硅、导电剂和萜烯树脂基水系粘结剂中萜烯树脂和羧甲基纤维素质量和的质量比为70∶20∶10。将硅粉和导电剂混合搅拌至均匀分散;再将羧甲基 纤维素加入去离子水制成羧甲基纤维素水溶液,将制得的羧甲基纤维素水溶液加入上述体系中搅拌均匀;然后将萜烯树脂乳液加到上述所得的混合物中(TX/CMC=3/2),再加适量去离子水,搅拌均匀,得到电极浆料(固含量为30%);将制得的浆料均匀涂覆于Cu箔上,充分干燥,即得硅负极片。将真空干燥过的极片裁片称重后,将之在手套箱中组装在2025电池壳内,以锂片为对电极,以聚乙烯膜为隔膜,以1 M LiPF6EC/DMC/DEC(v/v/v=1/1)为电解液组装电池进行恒电流充放电测试。
二、电化学测试:
对测试电极首次充放电进行测试。
三、结果分析:
图5为本发明实施例Si电极在0.1C充放电电流密度下的首次充放电曲线,其首次效率为80%,首次放电比容量为1800 mAh/g。
实施例6:
一、测试电极的配制:
本实施例与实施例1的区别在于,测试电极也是采用萜烯树脂乳液作为粘结剂,但采用钛酸锂(LTO)作为活性材料。钛酸锂、导电剂和萜烯树脂基水系粘结剂中萜烯树脂和羧甲基纤维素的质量和的质量比为80∶10∶10。将钛酸锂和导电剂混合搅拌至均匀分散;再将羧甲基纤维素加入去离子水制成羧甲基纤维素水溶液,将制得的羧甲基纤维素水溶液加入上述体系中搅拌均匀;然后将萜烯树脂乳液加到上述所得的混合物中(TX/CMC=3/2),再加适量去离子水,搅拌均匀,得到钛酸锂电极浆料(固含量为40%);将制得的浆料均匀涂覆于Al箔上,充分干燥,即得钛酸锂负极片。将真空干燥过的极片裁片称重后,将之在手套箱中组装在2025电池壳内,以锂片为对电极,以聚乙烯膜为隔膜,以1 M LiPF6 EC/DMC/DEC(v/v/v=1/1)为电解液组装电池进行恒电流充放电测试。
二、电化学测试:
对测试电极充放电循环稳定性进行测试。
三、结果分析:
图6为本发明实施例钛酸锂电极在0.5C充放电倍率下的循环性能测试。首次效率为84%,经过60圈的循环,容量保持率达到99%。
实施例7:
一、测试电极的配制:
本实施例与实施例1的区别在于,测试电极也是采用萜烯树脂乳液作为粘结剂,但采用活性炭(C)作为活性材料。活性炭、导电剂和萜烯树脂基水系粘结剂中萜烯树脂和羧甲基纤维素的质量和的质量比为85∶10∶5。将活性炭和导电剂混合搅拌至均匀分散;再将羧甲基纤维素加入去离子水制成羧甲基纤维素水溶液,将制得的羧甲基纤维素水溶液加入上述体系中搅拌均匀;然后将萜烯树脂乳液加到上述所得的混合物中(TX/CMC=3/2),再加适量去离子水,搅拌均匀,得到活性炭电极浆料(固含量为40%);将制得的浆料均匀涂覆于Al箔上,充分干燥,即得活性炭电极片。将真空干燥过的极片裁片称重后,将极片和隔膜放入扣式电池壳中,滴加电解液后封口组装成对称型活性炭超级电容器,进行循环稳定性测试。
二、电化学测试:
测试电极在200 mA/g电流密度下的循环稳定性测试。
三、结果分析:
图7为采用TX/CMC粘结剂制备的活性炭电极,在200 mA/g电流密度下,(0-2.5V)电压范围内的循环稳定性曲线。首次比电容为110 F/g,经过200次的循环,电容保持率达96.9%,该电容器表现出良好的循环稳定性。

Claims (10)

  1. 萜烯树脂基水系粘结剂,其特征在于,包含萜烯树脂乳液和羧甲基纤维素,所述萜烯树脂基水系粘结剂用于锂离子电池负极或超级电容器电极片。
  2. 如权利要求1所述的萜烯树脂基水系粘结剂,其特征在于,其中萜烯树脂与羧甲基纤维素的质量比为100∶1~1∶100。
  3. 如权利要求1或2所述的萜烯树脂基水系粘结剂,其特征在于,所述萜烯树脂乳液中萜烯树脂的质量浓度为55%,所述萜烯树脂乳液的粘度为4000~5000mPa·s。
  4. 如权利要求1~3任一所述萜烯树脂基水系粘结剂在锂离子电池负极或超级电容器电极片中的用途。
  5. 锂离子电池负极或超级电容器电极片,其特征在于,所述锂离子电池负极或超级电容器电极片采用如权利要求1~3任一所述萜烯树脂基水系粘结剂作为粘结剂,且所述锂离子电池负极或超级电容器电极片中活性材料、导电剂和萜烯树脂基水系粘结剂中萜烯树脂与羧甲基纤维素质量比为活性材料∶导电剂∶(萜烯树脂+羧甲基纤维素)=70~95∶1~20∶4~10。
  6. 如权利要求5所述的锂离子电池负极或超级电容器电极片,其特征在于,所述活性材料为石墨、活性炭、硅或钛酸锂;所述导电剂为乙炔黑。
  7. 如权利要求5所述锂离子电池负极或超级电容器电极片的制备方法,其特征在于,包括以下步骤:
    (1)将活性材料和导电剂混合搅拌至均匀分散;
    (2)将萜烯树脂基水系粘结剂中的羧甲基纤维素加入去离子水制成羧甲基纤维素水溶液,然后将制得的羧甲基纤维素水溶液加入到步骤(1)的混合物中,搅拌均匀;
    (3)将萜烯树脂基水系粘结剂中的萜烯树脂乳液加到步骤(2)所得的混合物中,再加适量去离子水,搅拌均匀,得到电极浆料;
    (4)将步骤(3)制备得到的电极浆料均匀涂覆于Cu箔或Al箔上,充分干燥,即得锂离子电池负极或超级电容器电极片。
  8. 如权利要求7所述锂离子电池负极或超级电容器电极片的制备方法,其特征在于,所述步骤(3)中得到的电极浆料的固体含量为30~45%,电极浆料的粘度为2500-4000mPa·s。
  9. 如权利要求7所述的锂离子电池负极或超级电容器电极片的制备方法,其特征在于,所述步骤(4)中得到电极片的干燥条件是80-90℃,恒温真空干燥24-48h。
  10. 含有如权利要求5~6任一所述锂离子电池负极或超级电容器电极片的锂离子电池或超级电容器。
PCT/CN2014/095677 2014-05-27 2014-12-30 萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用 WO2015180472A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/843,965 US9899659B2 (en) 2014-05-27 2015-09-02 Method of preparing anode of lithium ion batteries or electrode plate of supercapacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410229082.7A CN104017520B (zh) 2014-05-27 2014-05-27 萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用
CN201410229082.7 2014-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/843,965 Continuation-In-Part US9899659B2 (en) 2014-05-27 2015-09-02 Method of preparing anode of lithium ion batteries or electrode plate of supercapacitor

Publications (1)

Publication Number Publication Date
WO2015180472A1 true WO2015180472A1 (zh) 2015-12-03

Family

ID=51434533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095677 WO2015180472A1 (zh) 2014-05-27 2014-12-30 萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用

Country Status (3)

Country Link
US (1) US9899659B2 (zh)
CN (1) CN104017520B (zh)
WO (1) WO2015180472A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681306A (zh) * 2014-12-12 2015-06-03 宁波南车新能源科技有限公司 一种混合型电容器负极浆料制备方法
CN105355452B (zh) * 2015-10-29 2019-03-01 上杭鑫昌龙实业有限公司 萜烯树脂基复合粘结剂在电化学储能器件中的用途
CN106025283B (zh) * 2016-05-25 2019-05-14 华南理工大学 用于锂离子电池负极的木质素基水性黏结剂和基于其的电极片与锂离子电池
CN105914377B (zh) * 2016-06-28 2019-05-17 中国科学院广州能源研究所 一种多元功能化改性高分子锂离子电池粘结剂及在电化学储能器件中的应用
US20190229336A1 (en) * 2016-08-30 2019-07-25 National University Of Singapore Battery electrode binder
JP6743159B2 (ja) * 2016-09-23 2020-08-19 株式会社豊田自動織機 Si粒子結合体及びその製造方法
CN106920969A (zh) * 2017-04-12 2017-07-04 哈尔滨工业大学 一种生物质水系导电粘结体系及应用该体系的化学电源
CN109148893A (zh) * 2018-08-27 2019-01-04 江苏中兴派能电池有限公司 一种基于锂离子电池负极材料SiOx/C复合电极及制备方法
CN110534707A (zh) * 2019-08-19 2019-12-03 江苏特丰新材料科技有限公司 一种钛酸锂浆料的制备方法
WO2022216460A1 (en) * 2021-04-08 2022-10-13 Fmc Lithium Usa Corp. Dry process for forming an electrode
WO2023076011A1 (en) * 2021-10-29 2023-05-04 Livent USA Corp. Dry process for forming an electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030149179A1 (en) * 2001-07-26 2003-08-07 Herbert Chao Hydroxyl-terminated polybutadienes and curing formulations
WO2005067081A1 (en) * 2004-01-05 2005-07-21 Showa Denko K.K. Negative electrode material for lithium battery, and lithium battery
CN102786894A (zh) * 2011-05-17 2012-11-21 张晓龙 一种胶管用水性胶黏剂及其制备方法
CN103361017A (zh) * 2013-07-23 2013-10-23 华南理工大学 基于水性环氧树脂型医疗包装用纸塑复合胶及其制备方法
CN103426496A (zh) * 2012-05-25 2013-12-04 比亚迪股份有限公司 太阳能电池用铝背场浆料及其制备方法、太阳能电池片的制备方法以及太阳能电池片

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125431A (en) * 1980-03-07 1981-10-01 Kao Corp Aqueous emulsion of tackifier resin
JPS58132063A (ja) * 1983-01-20 1983-08-06 Semedain Kk 初期接着強度を増強させた二液型水性接着剤
JPH04220478A (ja) * 1990-12-21 1992-08-11 Okamoto Ind Inc 生分解性粘着テープの製造方法
JP3260349B2 (ja) 2000-06-05 2002-02-25 松下電器産業株式会社 電気化学素子用封止剤およびそれを用いた電気化学素子
CN101475783B (zh) * 2009-01-20 2010-10-27 江苏共创人造草坪有限公司 一种用于人造草坪背胶的高性能水性胶粘剂组合物
CN103396500B (zh) * 2013-08-07 2016-08-17 中国科学院广州能源研究所 天然高分子衍生物-导电聚合物水性复合粘结剂及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030149179A1 (en) * 2001-07-26 2003-08-07 Herbert Chao Hydroxyl-terminated polybutadienes and curing formulations
WO2005067081A1 (en) * 2004-01-05 2005-07-21 Showa Denko K.K. Negative electrode material for lithium battery, and lithium battery
CN102786894A (zh) * 2011-05-17 2012-11-21 张晓龙 一种胶管用水性胶黏剂及其制备方法
CN103426496A (zh) * 2012-05-25 2013-12-04 比亚迪股份有限公司 太阳能电池用铝背场浆料及其制备方法、太阳能电池片的制备方法以及太阳能电池片
CN103361017A (zh) * 2013-07-23 2013-10-23 华南理工大学 基于水性环氧树脂型医疗包装用纸塑复合胶及其制备方法

Also Published As

Publication number Publication date
US20150380719A1 (en) 2015-12-31
CN104017520A (zh) 2014-09-03
CN104017520B (zh) 2016-06-01
US9899659B2 (en) 2018-02-20

Similar Documents

Publication Publication Date Title
WO2015180472A1 (zh) 萜烯树脂基水系粘结剂及其在锂离子电池负极或超级电容器中的应用
CN102760883B (zh) 锂离子电池用新型壳聚糖及其衍生物水系粘结剂
CN109546080B (zh) 一种正极极片、及其制备方法和用途
CN103117414B (zh) 一种负极钛酸锂电池用电解液、锂离子电池及其制备方法
CN105261760A (zh) 锂离子电池水性正极复合集流体、正极片及其制备方法、锂离子电池
WO2018000578A1 (zh) 多元功能化改性聚乙烯醇基锂离子电池水性粘结剂及在电化学储能器件中的应用
CN111293312B (zh) 一种柔性多功能的交联粘接剂及其制备方法和应用
CN106992299B (zh) 一种水系粘结剂和包含该粘结剂的锂电池
CN107658426A (zh) 一种锂离子电池水性正极片及其制备工艺
CN107359351B (zh) 一种锂离子电池用腐植酸基水系粘结剂及利用该粘结剂制备电极片的方法
CN106784662B (zh) 一种锂离子电池负极材料、负极极片及其制备方法和用途
CN108899522B (zh) 一种高容量硅碳负极材料、制备方法及应用
CN103928668B (zh) 一种锂离子电池及其正极材料的制备方法
JP2018526801A (ja) リチウムイオン電池負極材料及びその製造方法並びにリチウムイオン電池
CN113258031A (zh) 电池
WO2017084252A1 (zh) 一种宽温度区间可滥用电容器及其制造方法
CN106356556B (zh) 一种使用寿命长的锂离子动力电池及其制备方法
JP2014096238A (ja) 蓄電デバイス用正極の製造方法、及び正極
CN109428062A (zh) 一种石墨烯-硅复合负极材料及其制备方法
WO2023123087A1 (zh) 一种水系正极极片及包含该极片的二次电池及用电装置
CN110028627B (zh) 羧甲基纤维素接枝共聚物及其用途
CN109411758B (zh) 一种锂离子电池负极用水系导电粘合剂的制备方法
Zarei-Jelyani et al. Improved mechanical and electrochemical properties of artificial graphite anode using water-based binders in lithium-ion batteries
JP2006294599A (ja) 正負極接合型リチウム高分子電池の製造方法
CN111785973B (zh) 一种有机物双层包覆的三元正极材料及其制备和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A) DATED 20/03/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14893333

Country of ref document: EP

Kind code of ref document: A1