WO2022227345A1 - 一种复合隔膜及其制备方法和用途 - Google Patents
一种复合隔膜及其制备方法和用途 Download PDFInfo
- Publication number
- WO2022227345A1 WO2022227345A1 PCT/CN2021/113488 CN2021113488W WO2022227345A1 WO 2022227345 A1 WO2022227345 A1 WO 2022227345A1 CN 2021113488 W CN2021113488 W CN 2021113488W WO 2022227345 A1 WO2022227345 A1 WO 2022227345A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optionally
- coating
- ceramic
- polymer
- composite
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 101
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 238000000576 coating method Methods 0.000 claims abstract description 83
- 239000011248 coating agent Substances 0.000 claims abstract description 80
- 239000000919 ceramic Substances 0.000 claims abstract description 77
- 229920000642 polymer Polymers 0.000 claims abstract description 74
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 35
- 239000012528 membrane Substances 0.000 claims description 40
- 239000002245 particle Substances 0.000 claims description 26
- 229920001577 copolymer Polymers 0.000 claims description 24
- 239000011268 mixed slurry Substances 0.000 claims description 24
- -1 polyethylene Polymers 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 21
- 229920005553 polystyrene-acrylate Polymers 0.000 claims description 20
- 229910001593 boehmite Inorganic materials 0.000 claims description 19
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 19
- 239000004698 Polyethylene Substances 0.000 claims description 18
- 229920000573 polyethylene Polymers 0.000 claims description 18
- 239000002002 slurry Substances 0.000 claims description 18
- 238000005524 ceramic coating Methods 0.000 claims description 17
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 14
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 12
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 12
- 230000009477 glass transition Effects 0.000 claims description 11
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 10
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 9
- 239000004743 Polypropylene Substances 0.000 claims description 8
- 229920001155 polypropylene Polymers 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims description 6
- 229910002113 barium titanate Inorganic materials 0.000 claims description 6
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 6
- 239000000347 magnesium hydroxide Substances 0.000 claims description 6
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 6
- 239000000395 magnesium oxide Substances 0.000 claims description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 6
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 6
- 239000011787 zinc oxide Substances 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- 229920000098 polyolefin Polymers 0.000 claims description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 3
- 239000011247 coating layer Substances 0.000 claims description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 238000003618 dip coating Methods 0.000 claims description 2
- 150000002632 lipids Chemical class 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 238000002525 ultrasonication Methods 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 abstract description 14
- 230000035699 permeability Effects 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 14
- 239000000243 solution Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/42—Acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application belongs to the technical field of lithium ion batteries, and relates to a composite separator and a preparation method and application thereof.
- Lithium-ion batteries have the advantages of high specific energy, no pollution, long service life and no memory effect. As the power source of new energy vehicles, they have become a research hotspot in recent years.
- the separator as a key safety component of lithium-ion batteries, has a rich pore structure, and its function is to block the contact between the positive electrode and the negative electrode and provide a lithium ion transport channel.
- the commonly used separators are mainly polyolefin separators such as polyethylene (PE) and polypropylene (PP). Since the melting point of polyethylene (PE) and polypropylene (PP) separators is generally lower than 200°C, the heat resistance is poor. Therefore, how to improve the heat resistance of the separator has become the focus of research.
- PE polyethylene
- PP polypropylene
- CN104701478A discloses a polyethylene microporous film containing an organic/inorganic composite cross-linked coating for improving the use safety of lithium ion batteries and a preparation method thereof.
- the patent uses aromatic heterocyclic polyester diol and aromatic isocyanate as the basic components, combined with cross-linking agent, foaming agent, catalyst and inorganic nano-filler, and prepares a coating solution according to a certain composition ratio; The liquid is coated on at least one surface of the polyethylene microporous membrane, and after curing under a specific temperature condition, an organic polymer/inorganic nanoparticle composite cross-linked coating with an open-cell foam structure is formed on the surface of the polyethylene microporous membrane. However, there is no bonding between the separator and the positive and negative electrode sheets.
- CN106654119A discloses a hybrid coating diaphragm and its preparation method and application
- the hybrid coating diaphragm includes a base film, a ceramic particle coating and a polymer coating
- the ceramic particle coating is formed on one side or both sides of the base film
- the polymer coating is formed on the base film and/or on the ceramic particle coating.
- CN109994695A discloses a polymer slurry, a composite diaphragm and a preparation method thereof.
- the polymerization slurry comprises that the slurry comprises 10-30 parts by weight of polymer, 0.05-1.0 parts by weight of thickener, 5.1-26.5 parts by weight of wetting agent, 1.0-5.0 parts by weight of binder, 0.1-1.0 parts by weight of dispersant and 80-120 parts by weight of water.
- the composite membrane comprises a base film, a ceramic coating and a polymer dot coating respectively coated on both sides of the base film, wherein the polymer dot coating is obtained by coating the above polymer slurry through high pressure jet.
- the present application provides a composite diaphragm and its preparation method and use.
- the composite diaphragm has good thermal stability and electrolyte wettability, excellent mechanical properties, small air permeability value, and high lithium ion conductivity, effectively reducing the internal resistance of lithium ion batteries, and simultaneously improving the safety performance and hardness of lithium ion batteries. .
- the present application provides a composite membrane comprising a porous base membrane, and a composite coating coated on at least one side of the porous base membrane, the composite coating comprising mutually dispersed ceramic and polymer thing.
- ceramics have high temperature resistance, electrochemical stability, and good liquid absorption and liquid retention capacity, which can improve the heat resistance and oxidation resistance of the composite diaphragm, make the composite diaphragm safer, and prolong the lithium ion
- the polymer can enhance the adhesion between the composite separator and the pole piece, and at the same time improve the hardness of the battery
- the ceramic and the polymer are dispersed in each other, improve the heat resistance and mechanical properties of the porous base film, and improve the electrolyte
- the wettability of the battery is improved, and the hardness of the battery is improved, so that the safety performance of the lithium-ion battery is greatly improved.
- the mutual cooperation of the ceramic, polymer and porous base film reduces the air permeability of the composite diaphragm, increases the conductivity of lithium ions, reduces the internal resistance of lithium ion batteries, and reduces polymer coating
- the phenomenon of blocking pores due to the swelling of the polymer improves the long-term performance of the battery.
- the composite membrane has lower closed-cell temperature, higher membrane breaking temperature and excellent thermal safety, its performance is better than the porous base membrane and polymer-coated membrane in the prior art, and can be widely used in power ion Energy storage devices such as batteries.
- the porous base film includes a polyolefin-based film, which can be optionally a polyethylene-based film and/or a polypropylene-based film.
- the thickness of the porous base film is 3-40 ⁇ m, such as 4 ⁇ m, 5 ⁇ m, 7 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m or 40 ⁇ m, etc., and can be 4-20 ⁇ m.
- the pore size of the porous base film is 10-400 nm, for example, it can be 10 nm, 12 nm, 15 nm, 30 nm, 50 nm, 100 nm, 120 nm, 170 nm, 200 nm, 230 nm, 260 nm, 300 nm, 320 nm, 380 nm or 400 nm, etc., Optional 20-100nm.
- the porosity of the porous base film is 30-60%, such as 30%, 35%, 40%, 45%, 50%, or 55%.
- the thickness of the composite coating is 0.5-10 ⁇ m, such as 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m or 10 ⁇ m, etc., optional 1-3 ⁇ m.
- the thickness of the composite coating is limited in the range of 0.5-5 ⁇ m to ensure the air permeability and adhesion of the composite membrane.
- the ceramic includes any one or a combination of at least two of boehmite, aluminum oxide, magnesium hydroxide, magnesium oxide, barium titanate, zinc oxide or barium sulfate, and can be optionally boehmite or Alumina.
- the specific surface area of the ceramic is 1-12m 2 /g, for example, it can be 2m 2 /g, 4m 2 /g, 6m 2 /g, 8m 2 /g, 10m 2 /g or 12m 2 /g etc., optional 4-8m 2 /g.
- the ceramic particles with smaller particle size can meet the requirements of thinner coating, the coating is more uniform, and has a higher specific surface area, so that the coated separator has good wettability and protection to the electrolyte.
- the liquid rate can effectively improve the capacity retention rate of lithium-ion batteries, and the particle size of the ceramic particles can be selected according to the coating thickness requirements.
- the particle size of the ceramic is 0.1-4 ⁇ m, such as 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m or 4 ⁇ m, etc., optionally 0.3-3 ⁇ m.
- the mass percentage of the ceramic is 5-98%, for example, it can be 5%, 10%, 20%, 30%, 40% , 50%, 60%, 70%, 80%, 90% or 95%, etc., optional 80-98%.
- the polymer comprises vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-octafluoroisobutylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polymethyl methacrylate or polystyrene acrylic acid Any one or a combination of at least two of the lipids, wherein typical but non-limiting combinations: vinylidene fluoride-hexafluoropropylene copolymer and vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-octafluoroisobutylene copolymer and polymethyl methacrylate, polystyrene acrylate, etc., can be selected from any one or at least two of vinylidene fluoride-hexafluoropropylene copolymer, polymethyl methacrylate, polystyrene acrylate combination.
- the molecular weight of the polymer is 30-200W, that is, 300,000-2,000,000, for example, it can be 40W, 50W, 60W, 80W, 100W, 120W, 140W, 160W, 180W or 200W, etc., optionally 40 -150W.
- the particle size of the polymer is 0.1-10 ⁇ m, such as 0.2 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 3 ⁇ m, 5 ⁇ m, 8 ⁇ m or 10 ⁇ m, etc., and optionally 0.15-7 ⁇ m.
- the glass transition temperature of the polymer is -60-30°C, for example, it can be -60°C, -40°C, -20°C, -10°C, 0°C, 10°C, 20°C, 30°C, etc. , optional -50-15°C.
- the mass percentage of the polymer is 2-95%, for example, it can be 3%, 5%, 10%, 20%, 30% %, 40%, 50%, 60%, 70%, 80% or 90%, etc., optional 2-20%.
- one side of the porous base membrane is coated with a composite coating, and the other side is coated with a ceramic coating.
- the ceramic coating and the composite coating cooperate with each other to further improve the thermal stability and mechanical properties of the composite separator, reduce the air permeability value, and improve the wettability of the electrolyte and the conductivity of lithium ions.
- the ceramics in the ceramic coating and the ceramics in the composite coating can be the same or different, as long as they cooperate with each other, the thermal stability and mechanical properties of the composite separator can be improved, the air permeability value can be reduced, and the electrolyte performance can be improved. Wetting properties and lithium ion conductivity are sufficient.
- the thickness of the ceramic coating is 0.5-5 ⁇ m, such as 0.5 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 4.8 ⁇ m or 5 ⁇ m, etc. , optional 1-3 ⁇ m.
- the thickness of the ceramic coating is limited to 0.5-5 ⁇ m, which ensures better thermal shrinkage performance and improves the heat resistance and oxidation resistance of the composite separator.
- the thickness of the composite coating is 0.5-10 ⁇ m.
- the thickness of the composite coating is 1-5 ⁇ m.
- the molecular weight of the polymer is 400,000-1,800,000.
- the glass transition temperature of the polymer is -60-100°C, for example, it can be -60°C, -40°C, -20°C, -10°C, 0°C, 20°C, 40°C, 60°C, 80°C or 100°C, etc., optional -50-80°C.
- the present application provides a method for preparing a composite diaphragm as described in the first aspect, the method comprising the following steps:
- step (2) Coating the mixed slurry obtained in step (1) on the surface of at least one side of the porous base membrane to obtain the composite membrane.
- the preparation method provided by the present application improves the thermal stability and mechanical properties of the porous base film, reduces the air permeability value, improves the wettability of the electrolyte and the conductivity of lithium ions, and reduces the lithium ion battery through the mutual dispersion of ceramics and polymers.
- the internal resistance of the battery improves the hardness and safety performance of the battery.
- the method has simple coating process and high production efficiency.
- the ceramics described in step (1) include any one or at least two of boehmite, aluminum oxide, magnesium hydroxide, magnesium oxide, barium titanate, zinc oxide or barium sulfate. Combination, optional boehmite or alumina.
- the specific surface area of the ceramic in step (1) is 1-12m 2 /g, for example, it can be 2m 2 /g, 4m 2 /g, 6m 2 /g, 8m 2 /g, 10m 2 /g or 12m 2 /g, etc., optional 4-8m 2 /g.
- the particle size of the ceramic in step (1) is 0.1-4 ⁇ m, for example, it can be 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m or 4 ⁇ m, etc., optionally 0.3-3 ⁇ m.
- the mass percentage of the ceramic is 5-98%, for example, it can be 5%, 10%, 20%, 30% %, 40%, 50%, 60%, 70%, 80%, 90% or 95%, etc., optional 80-98%.
- the polymer in step (1) includes vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-octafluoroisobutylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polymethyl methacrylate or Any one or a combination of at least two of the polystyrene acrylates can be selected from any one or at least two of the vinylidene fluoride-hexafluoropropylene copolymer, polymethyl methacrylate, and polystyrene acrylates. combination of species.
- the molecular weight of the polymer described in step (1) is 30-200W, that is, 300,000-2,000,000, such as 40W, 50W, 60W, 80W, 100W, 120W, 140W, 160W, 180W or 200W, etc., Optional 40-150W.
- the particle size of the polymer described in step (1) is 0.1-10 ⁇ m, such as 0.2 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 3 ⁇ m, 5 ⁇ m, 8 ⁇ m or 10 ⁇ m, etc., optionally 0.15-7 ⁇ m.
- the glass transition temperature of the polymer in step (1) is -60-30°C, for example, it can be -60°C, -40°C, -20°C, -10°C, 0°C, 10°C, 20°C Or 30°C, etc., optional -50-15°C.
- the mass percentage of the polymer is 2-95%, for example, it can be 3%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%, etc., optional 2-20%.
- the solvent in step (1) includes any one or a combination of at least two of water, acetone, dichloromethane, cyclohexane or N-methylpyrrolidone, and can be optionally water or dichloromethane.
- step (1) includes the following steps:
- the polymer and the solvent are mixed once, the ceramic is added, and the mixed slurry is obtained for the second time.
- the mixing method can uniformly disperse the polymer in the slurry.
- the means of primary mixing and secondary mixing independently include stirring and/or sonication.
- the viscosity of the mixed slurry in step (1) is 0-80CP, such as 10CP, 20CP, 30CP, 40CP, 50CP, 60CP, 70CP or 80CP, optionally 30-50CP.
- the solid content of the mixed slurry in step (1) is 20-70%, for example, it can be 20%, 30%, 40%, 50%, 60% or 70%, optionally 30-50% .
- the porous base film in step (2) includes a polyolefin base film, which can be optionally a polyethylene base film and/or a polypropylene base film.
- the thickness of the porous base film in step (2) is 3-40 ⁇ m, such as 4 ⁇ m, 5 ⁇ m, 7 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m or 40 ⁇ m, etc. -20 ⁇ m.
- the pore size of the porous base film in step (2) is 10-400 nm, for example, it can be 10 nm, 12 nm, 15 nm, 30 nm, 50 nm, 100 nm, 120 nm, 170 nm, 200 nm, 230 nm, 260 nm, 300 nm, 320 nm, 380 nm Or 400nm, etc., optional 20-100nm.
- the porosity of the porous base film in step (2) is 30-60%, for example, it can be 30%, 35%, 40%, 45%, 50% or 55%.
- the method of coating in step (2) includes any one or a combination of at least two of coating, roll coating, spray coating or dip coating, and may be roll coating and/or coating.
- the thickness of the coating in step (2) is 0.5-5 ⁇ m, for example, it can be 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m or 5 ⁇ m, etc., optional 1-3 ⁇ m.
- step (2) further includes: drying the mixed slurry after coating the surface of at least one side of the porous base film.
- step (2) one side of the porous base membrane is coated with the mixed slurry, and the other side of the porous base membrane is coated with the ceramic slurry.
- the mixed slurry and the ceramic slurry can be coated on the surface of the porous base membrane at the same time, or can be coated on the surface of the porous base membrane in steps, as long as the coating method is commonly used by those skilled in the art, both Suitable for this application, optional simultaneous coating, and simultaneous coating to improve production efficiency.
- the preparation method of the ceramic slurry is not specifically limited, the binder and the solvent may be mixed first, and then mixed with the ceramic, or the ceramic may be directly added to the binder solution and mixed.
- the preparation method of the ceramic slurry includes the following steps:
- the ceramic is added into the binder solution and mixed to obtain the ceramic slurry.
- the thickness of the ceramic slurry coating is 0.5-5 ⁇ m, such as 0.5 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 4.8 ⁇ m or 5 ⁇ m, etc., optional 1-3 ⁇ m.
- the present application provides a preparation method of a composite diaphragm, and the preparation method specifically includes the following steps:
- the binder optionally includes polyvinylidene fluoride, sodium carboxymethyl cellulose, polyacrylic acid, polyvinyl alcohol or butyl Any one or a combination of at least two of styrene rubber; ceramics include any one or a combination of at least two of boehmite, aluminum oxide, magnesium hydroxide, magnesium oxide, barium titanate, zinc oxide or barium sulfate ; Based on the total mass of the ceramic and the binder as 100%, the mass percentage of the binder is 2-8%, and the mass percentage of the ceramic is 92-98%.
- polymers include vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-octafluoroisobutylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polymethyl methacrylate or polystyrene acrylate Any one or a combination of at least two;
- the solvent includes any one or a combination of at least two of water, acetone, dichloromethane, cyclohexane or N-methylpyrrolidone;
- the ceramic includes boehmite, Any one or a combination of at least two of aluminum oxide, magnesium hydroxide, magnesium oxide, barium titanate, zinc oxide or barium sulfate; based on 100% of the total mass of the ceramic and polymer, the mass of the ceramic is 100% The fractional content is 5-98%, and the mass percentage of the polymer is 2-95%;
- step (3) coating the mixed slurry obtained in step (2) on one side or both sides of the porous base film, coating the ceramic slurry obtained in step (1) on one side of the porous base film, and drying to obtain the Composite diaphragm.
- the molecular weight of the polymer in step (1) is 40-180W.
- the glass transition temperature of the polymer in step (1) is -60-100°C, for example, it can be -60°C, -40°C, -20°C, -10°C, 0°C, 20°C, 30°C , 40°C, 60°C, 80°C or 100°C, etc., optional -50-80°C.
- the thickness of the coating in step (2) is 0.5-10 ⁇ m, such as 0.5 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 4.8 ⁇ m , 5 ⁇ m, 7 ⁇ m or 10 ⁇ m, etc.
- the thickness of the coating in step (2) is 1-5 ⁇ m.
- the present application provides a lithium ion battery, the lithium ion battery comprising the composite separator according to the first aspect.
- the lithium ion battery adopts the composite separator described in the first aspect, which has low internal resistance, excellent safety performance and hardness.
- the present application at least has the following beneficial effects:
- the composite separator of the present application has good thermal stability and electrolyte wettability, excellent mechanical properties, low air permeability value and high lithium ion conductivity, and effectively reduces the internal pressure of lithium ion batteries. resistance, while improving the safety performance and hardness of lithium-ion batteries;
- This application further improves the thermal stability of the composite diaphragm, the electrolyte solution by adjusting the mass percentage of ceramics and polymers in the mixed slurry, the thickness of the composite coating, and the thickness difference between the composite coating and the ceramic coating. wettability and conductivity of lithium ions;
- the preparation method provided by the application has simple process and high production efficiency.
- FIG. 1 is a schematic structural diagram of a composite diaphragm provided by an embodiment of the present application.
- FIG. 2 is a schematic structural diagram of a composite diaphragm provided by an embodiment of the present application.
- FIG. 3 is a schematic structural diagram of a composite membrane provided by an embodiment of the present application.
- FIG. 4 is a SEM image of the composite coating provided in the embodiment of the present application.
- 1-porous base film 2-ceramic coating, 3-composite coating, 4-ceramic, 5-polymer.
- the composite membrane includes a porous base membrane 1, a ceramic coating 2 coated on one side of the porous base membrane 1 and a composite coating 3 coated on the other side of the porous base membrane 1.
- the composite coating Layer 3 includes ceramic 4 and polymer 5 .
- the present embodiment provides a preparation method of a composite diaphragm, the method comprising the following steps:
- the mass percentage content of the alumina is 93%, and the mass percentage content of the polystyrene acrylate is 7%;
- step (2) Coating the mixed slurry obtained in step (1) on one side of a polyethylene-based film, the thickness of the polyethylene-based film being 9 ⁇ m and the porosity of 40%, and drying to obtain the composite diaphragm .
- the composite separator prepared in this example is shown in FIG. 1 , the thickness of the composite coating is 3 ⁇ m, and the SEM photo of the composite coating is shown in FIG. 4 .
- the present embodiment provides a preparation method of a composite diaphragm, the method comprising the following steps:
- alumina and polystyrene acrylate into water, the specific surface area of the alumina is 8 m 2 /g, the particle size is 0.2 ⁇ m, the molecular weight of the polystyrene acrylate is 100W, and the glass transition temperature is 10°C, the particle size is 3-10 ⁇ m, stir until dissolved, and obtain a mixed slurry with a viscosity of 50CP and a solid content of 30%;
- the mass percentage of the alumina is 95%, and the mass percentage of the polystyrene acrylate is 5%;
- step (2) Coat the mixed slurry obtained in step (1) on both sides of a polyethylene base film with a thickness of 9 ⁇ m and a porosity of 45%, and drying to obtain the composite diaphragm .
- the composite membrane prepared in this example as shown in FIG. 2 , the thickness of the composite coating is 2 ⁇ m.
- the present embodiment provides a preparation method of a composite diaphragm, the method comprising the following steps:
- boehmite (1) adding polystyrene acrylate into water, the molecular weight of the polystyrene acrylate is 200W, the glass transition temperature is -10°C, the particle size is 3-103-10 ⁇ m, stir until dissolved, add boehmite, The boehmite has a specific surface area of 9 m 2 /g, a particle size of 1 ⁇ m, and is uniformly stirred to obtain a mixed slurry with a viscosity of 60 CP and a solid content of 50%;
- the mass percentage content of the boehmite is 97%, and the mass percentage content of the polystyrene acrylate is 3% ;
- the mass percentage of the boehmite is 95%, and the mass percentage of the polyvinylidene fluoride is 5%;
- step (3) Roll-coating the mixed slurry obtained in step (1) on one side of the polyethylene-based film, roll-coating the ceramic slurry obtained in step (2) on the other side of the polyethylene-based film, and the polyethylene-based film
- the thickness of the membrane is 9 ⁇ m, the porosity is 43%, and it is dried to obtain the composite membrane.
- the thickness of the composite coating is 2 ⁇ m
- the thickness of the ceramic coating is 2 ⁇ m
- Example 1 Compared with Example 1, the only difference is that the alumina in step (1) is replaced by boehmite.
- the composite separator prepared in this example has a porosity of 38%, and the thickness of the composite coating is 3 ⁇ m.
- Example 2 Compared with Example 2, the only difference is that the thickness of the polyethylene base film is replaced by 12 ⁇ m and the porosity is replaced by 48%.
- the thickness of the composite coating is 3 ⁇ m.
- Example 3 Compared with Example 3, the only difference is that this comparative example replaces the composite coating with a ceramic coating.
- Example 4 Compared with Example 4, in this comparative example, a vinylidene fluoride-hexafluoropropylene copolymer was roll-coated on one side of the base film in Example 4, and the molecular weight of the vinylidene fluoride-hexafluoropropylene copolymer was 40W and the particle size was 40W. is 200nm.
- the composite separator prepared in this comparative example includes a base film and a polymer layer coated on one side of the base film, and the thickness of the polymer coating is 1 ⁇ m.
- the composite membranes provided by the examples and comparative examples were tested for thermal stability, liquid absorption rate, air permeability value and ionic conductivity.
- the bare cell is placed on a shelf with a fixed height, and the deformation of the cell is tested after 24 hours.
- the mass ratio of graphite, acetylene black, sodium carboxymethyl cellulose and styrene-butadiene rubber in the negative electrode sheet is 9.5:0.2:0.15:0.15, and the electrolyte is injected, and the electrolyte is LiPF 6 /EC+DEC+DMC (EC, The volume ratio of DEC and DMC is 1:1:1)
- the internal resistance test is carried out.
- the test method is as follows:
- Thermal stability test Prepare 5 samples, cut out a square sample of 120mm ⁇ 120mm in the longitudinal direction of the film roll, and mark the sample with a length of 100mm ⁇ 100mm. Clamp it with a glass plate and bake it in a constant temperature oven at 130°C for 1 hour, measure the lengths in the MD and TD directions after baking, and calculate the shrinkage rate.
- the size of the glass plate 220mm ⁇ 220mm ⁇ 4mm; the material of the glass plate: tempered glass.
- Thermal shrinkage X is calculated as follows: (initial size - size after baking)/initial size
- EC ethylene carbonate
- PC propylene carbonate
- Air permeability value test refer to GB/T 458-2008, take 5 samples to test with air permeability meter, and take the average value of the measurement as the air permeability.
- Ionic conductivity test use inert stainless steel electrodes to make a symmetrical battery for testing. With the increase of the number of diaphragm layers, the battery resistance also increases accordingly, and there is a linear relationship, and the corresponding slope is the diaphragm resistance.
- the formula for calculating the ionic conductivity of the diaphragm: ⁇ S d/(RS ⁇ A ⁇ 10); among them,
- ⁇ S is the ionic conductivity of the diaphragm, unit: mS/cm;
- d is the thickness of the diaphragm, unit: ⁇ m; measured by the thickness gauge;
- RS is the diaphragm resistance, unit: ⁇ ;
- A is the effective area of the diaphragm in the symmetrical battery, which is 6cm 2 ;
- Test of battery internal resistance use a battery internal resistance tester to test.
- Example 3 Comparing Example 3 and Comparative Example 1, in Example 3, a composite coating and a ceramic coating were respectively applied on both sides of the base film, while in Comparative Example 1, a ceramic coating was applied on both sides of the base film.
- the thermal stability of Example 3 is better than that of Comparative Example 1, and the air permeability, ionic resistivity and battery internal resistance of Example 3 are all lower than those of Comparative Example 1, because the ceramic coating and the composite coating cooperate with each other to further improve
- the thermal stability and mechanical properties of the composite separator can reduce the air permeability value, improve the wettability of the electrolyte and the conductivity of lithium ions.
- Example 4 is coated with a composite coating composed of polymers and ceramics on the surface of the base film, while Comparative Example 2 is coated with a single polymer coating on the surface of the base film.
- Layer it can be seen from the test data that the thermal stability of Example 4 is better than that of Comparative Example 2, and the liquid absorption, air permeability, air permeability, ionic resistivity and battery internal resistance of Example 4 are all lower than those of Comparative Example 2.
- the mutual cooperation of ceramics, polymers and base film reduces the air permeability of the composite diaphragm, while improving the conductivity of lithium ions and reducing the internal resistance of lithium ion batteries.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Cell Separators (AREA)
Abstract
Description
Claims (25)
- 一种复合隔膜,其包括多孔基膜,以及涂覆在所述多孔基膜至少一侧的复合涂层,所述复合涂层包括相互分散的陶瓷和聚合物。
- 根据权利要求1所述的复合隔膜,其中,所述多孔基膜的一侧涂覆有复合涂层,另一侧涂覆有陶瓷涂层。
- 根据权利要求2所述的复合隔膜,其中,所述陶瓷涂层的厚度为0.5-5μm。
- 根据权利要求3所述的复合隔膜,其中,所述陶瓷涂层的厚度为1-3μm。
- 根据权利要求1-4中任一项所述的复合隔膜,其中,所述多孔基膜包括聚烯烃基膜,可选为聚乙烯基膜和/或聚丙烯基膜;可选地,所述多孔基膜的厚度为3-40μm,可选为4-20μm;可选地,所述多孔基膜的孔径为10-400nm,可选为20-100nm;可选地,所述多孔基膜的孔隙率为30-60%。
- 根据权利要求1-5中任一项所述的复合隔膜,其中,所述陶瓷包括勃姆石、氧化铝、氢氧化镁、氧化镁、钛酸钡、氧化锌或硫酸钡中的任意一种或至少两种的组合,可选为勃姆石或氧化铝;可选地,所述陶瓷的比表面积为1-12m 2/g,可选为4-8m 2/g;可选地,所述陶瓷的粒径为0.1-4μm,可选为0.3-3μm;可选地,以所述陶瓷和聚合物的总质量为100%计,所述陶瓷的质量百分含量为5-98%,可选为80-98%;可选地,所述聚合物包括偏氟乙烯-六氟丙烯共聚物、偏氟乙烯-八氟异丁烯共聚物、偏氟乙烯-四氟乙烯共聚物、聚甲基丙烯酸甲酯或聚苯乙烯丙烯酸脂中的任意一种或至少两种的组合,可选为偏氟乙烯-六氟丙烯共聚物、聚甲基丙烯酸甲酯或聚苯乙烯丙烯酸脂;可选地,以所述陶瓷和聚合物的总质量为100%计,所述聚合物的质量百分含量为2-95%,可选为2-20%。
- 根据权利要求1-6中任一项所述的复合隔膜,其中,所述聚合物的分子量为30万-200万,可选为40万-150万;可选地,所述聚合物的粒径为0.1-10μm,可选为0.15-7μm;可选地,所述聚合物的玻璃化温度为-60-30℃,可选为-50-15℃。
- 根据权利要求1-7中任一项所述的复合隔膜,其中,所述复合涂层的厚度为0.5-5μm,可选为1-3μm。
- 根据权利要求1-7中任一项所述的复合隔膜,其中,所述复合涂层的厚度为0.5-10μm。
- 根据权利要求1-7中任一项所述的复合隔膜,其中,所述复合涂层的厚度为1-5μm。
- 根据权利要求1-6中任一项所述的复合隔膜,其中,所述聚合物的分子量为40万-180万。
- 根据权利要求1-6中任一项所述的复合隔膜,其中,所述聚合物的玻璃化温度为-60-100℃,可选为-50-80℃。
- 一种权利要求1-8任一项所述的复合隔膜的制备方法,其包括以下步骤:(1)将陶瓷、聚合物和溶剂混合,得到混合浆料;(2)将步骤(1)得到的混合浆料涂覆在多孔基膜至少一侧的表面,得到所述的复合隔膜。
- 根据权利要求13所述的方法,其中,步骤(1)所述陶瓷包括勃姆石、 氧化铝、氢氧化镁、氧化镁、钛酸钡、氧化锌或硫酸钡中的任意一种或至少两种的组合,可选为勃姆石或氧化铝;可选地,步骤(1)所述陶瓷的比表面积为1-12m 2/g,可选为4-8m 2/g;可选地,步骤(1)所述陶瓷的粒径为0.1-4μm,可选为0.3-3μm;可选地,步骤(1)中,以陶瓷和聚合物的总质量为100%计,所述陶瓷的质量百分含量为5-98%,可选为80-98%;可选地,步骤(1)所述聚合物包括偏氟乙烯-六氟丙烯共聚物、偏氟乙烯-八氟异丁烯共聚物、偏氟乙烯-四氟乙烯共聚物、聚甲基丙烯酸甲酯或聚苯乙烯丙烯酸脂中的任意一种或至少两种的组合,可选为偏氟乙烯-六氟丙烯共聚物、聚甲基丙烯酸甲酯、聚苯乙烯丙烯酸脂中的任意一种或至少两种的组合;可选地,步骤(1)中,以陶瓷和聚合物的总质量为100%计,所述聚合物的质量百分含量为2-95%,可选为2-20%;可选地,步骤(1)所述溶剂包括水、丙酮、二氯甲烷、环己烷或N-甲基吡咯烷酮中的任意一种或至少两种的组合,可选为水或二氯甲烷。
- 根据权利要求13或14所述的方法,其中,步骤(1)所述混合包括以下步骤:将聚合物和溶剂进行一次混合,加入陶瓷,进行二次混合,得到所述的混合浆料;可选地,所述一次混合和二次混合的方式独立地包括搅拌和/或超声;可选地,步骤(1)所述混合浆料的粘度为0-80CP,可选为30-50CP;可选地,步骤(1)所述混合浆料的固含量为20-70%,可选为30-50%。
- 根据权利要求13-15任一项所述的方法,其中,步骤(2)所述多孔基 膜包括聚烯烃基膜,可选为聚乙烯基膜和/或聚丙烯基膜;可选地,步骤(2)所述多孔基膜的厚度为3-40μm,可选为4-20μm;可选地,步骤(2)所述多孔基膜的孔径为10-400nm,可选为20-100nm;可选地,步骤(2)所述多孔基膜的孔隙率为30-60%;可选地,步骤(2)所述涂覆的方式包括涂布、辊涂、喷涂或浸涂中的任意一种或至少两种的组合,可选为辊涂和/或涂布。
- 根据权利要求13-16任一项所述的方法,其中,步骤(2)还包括:所述混合浆料涂覆在多孔基膜至少一侧的表面之后,进行烘干;可选地,步骤(2)中,多孔基膜的一侧涂覆混合浆料,多孔基膜的另一侧涂覆陶瓷浆料;可选地,所述陶瓷浆料的制备方法包括以下步骤:将陶瓷加入粘结剂溶液中混合,得到所述的陶瓷浆料;可选地,所述陶瓷浆料涂覆的厚度为0.5-5μm,可选为1-3μm。
- 根据权利要求13-17任一项所述的方法,其中,步骤(2)所述涂覆的厚度为0.5-5μm,可选为1-3μm。
- 根据权利要求13-18任一项所述的方法,其中,步骤(1)所述聚合物的分子量为30万-200万,可选为40万-150万;可选地,步骤(1)所述聚合物的粒径为0.1-10μm,可选为0.15-7μm;可选地,步骤(1)所述聚合物的玻璃化温度为-60-30℃,可选为-50-15℃。
- 根据权利要求13-17任一项所述的方法,其中,步骤(2)所述涂覆的厚度为0.5-10μm。
- 根据权利要求13-17任一项所述的方法,其中,步骤(2)所述涂覆的 厚度为1-5μm。
- 根据权利要求13-18任一项所述的方法,其中,步骤(1)所述聚合物的分子量为40万-180万。
- 根据权利要求13-18任一项所述的方法,其中,步骤(1)所述聚合物的玻璃化温度为-60-100℃,可选为-50-80℃。
- 一种锂离子电池,其包含权利要求1-8任一项所述的复合隔膜。
- 一种锂离子电池,其包含权利要求9-12任一项所述的复合隔膜。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21938809.7A EP4333187A1 (en) | 2021-04-28 | 2021-08-19 | Composite separator and preparation method therefor and use thereof |
US18/014,087 US20240055724A1 (en) | 2021-04-28 | 2021-08-19 | Composite separator and preparation method therefor and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110470561.8A CN113178663A (zh) | 2021-04-28 | 2021-04-28 | 一种复合隔膜及其制备方法和用途 |
CN202110470561.8 | 2021-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022227345A1 true WO2022227345A1 (zh) | 2022-11-03 |
Family
ID=76925161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/113488 WO2022227345A1 (zh) | 2021-04-28 | 2021-08-19 | 一种复合隔膜及其制备方法和用途 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240055724A1 (zh) |
EP (1) | EP4333187A1 (zh) |
CN (1) | CN113178663A (zh) |
WO (1) | WO2022227345A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115548583A (zh) * | 2022-11-24 | 2022-12-30 | 合肥长阳新能源科技有限公司 | 一种高安全性锂离子电池复合隔膜及其应用 |
CN116144071A (zh) * | 2023-04-18 | 2023-05-23 | 合肥长阳新能源科技有限公司 | 一种锂电池复合隔膜及其制备方法与应用 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113178663A (zh) * | 2021-04-28 | 2021-07-27 | 惠州亿纬锂能股份有限公司 | 一种复合隔膜及其制备方法和用途 |
CN113851787A (zh) * | 2021-09-29 | 2021-12-28 | 中材锂膜有限公司 | 复合隔膜及其制备方法、二次电池 |
CN113871795B (zh) * | 2021-09-26 | 2023-11-03 | 惠州亿纬锂能股份有限公司 | 一种浸润性隔膜及其制备方法和应用 |
CN113972441A (zh) * | 2021-09-26 | 2022-01-25 | 中材锂膜有限公司 | 一种具有高耐热高粘接性的锂离子电池隔膜及其制备方法 |
CN114497899A (zh) * | 2022-02-11 | 2022-05-13 | 北京宇程科技有限公司 | 一种耐高温聚合物微球涂覆改性复合隔膜及其制备方法 |
CN114335903A (zh) * | 2021-12-24 | 2022-04-12 | 惠州亿纬锂能股份有限公司 | 一种耐热隔膜及其制备方法和应用 |
CN114927831A (zh) * | 2022-05-11 | 2022-08-19 | 惠州亿纬锂能股份有限公司 | 一种复合隔膜及其制备方法和锂离子电池 |
CN115117559A (zh) * | 2022-06-30 | 2022-09-27 | 中材锂膜有限公司 | 电池隔膜的涂覆浆料及其制备方法、电池隔膜和锂离子电池 |
CN114843708B (zh) * | 2022-07-04 | 2022-10-11 | 中材锂膜(宁乡)有限公司 | 一种多孔隔膜、其制备方法及电化学装置 |
CN115084781B (zh) * | 2022-07-22 | 2024-06-14 | 欣旺达电子股份有限公司 | 陶瓷涂层隔膜、二次电池和用电设备 |
CN115498363A (zh) * | 2022-10-26 | 2022-12-20 | 惠州亿纬锂能股份有限公司 | 一种复合隔膜及其制备方法和电化学装置 |
WO2024016952A1 (zh) * | 2023-05-09 | 2024-01-25 | 湖北亿纬动力有限公司 | 一种复合隔膜及其制备方法和二次电池 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103155258A (zh) * | 2010-10-05 | 2013-06-12 | 株式会社Lg化学 | 具有改善的循环特性的电化学装置 |
CN104701478A (zh) | 2015-03-02 | 2015-06-10 | 常州大学 | 一种含有机/无机复合交联涂层的聚乙烯微孔隔膜及其制备方法 |
CN106654119A (zh) | 2016-11-14 | 2017-05-10 | 宁波中车新能源科技有限公司 | 一种混合涂层隔膜及其制备方法和应用 |
CN107275550A (zh) * | 2017-06-20 | 2017-10-20 | 深圳市星源材质科技股份有限公司 | 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法 |
CN107611314A (zh) * | 2016-07-12 | 2018-01-19 | 宁德新能源科技有限公司 | 锂离子电池及其涂层隔膜 |
CN108963164A (zh) * | 2018-06-28 | 2018-12-07 | 深圳市旭然电子有限公司 | 无机陶瓷涂覆功能化锂离子电池隔离膜、制备方法及其锂离子电池 |
CN109994695A (zh) | 2019-05-29 | 2019-07-09 | 东莞东阳光科研发有限公司 | 聚合物浆料、复合隔膜及其制备方法 |
CN113178663A (zh) * | 2021-04-28 | 2021-07-27 | 惠州亿纬锂能股份有限公司 | 一种复合隔膜及其制备方法和用途 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103515564B (zh) * | 2013-10-15 | 2017-06-30 | 深圳市星源材质科技股份有限公司 | 一种复合隔膜及其制备方法 |
CN104157818A (zh) * | 2014-09-02 | 2014-11-19 | 深圳市星源材质科技股份有限公司 | 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法 |
CN104600230A (zh) * | 2014-12-12 | 2015-05-06 | 深圳中兴创新材料技术有限公司 | 一种电池隔膜及其应用 |
-
2021
- 2021-04-28 CN CN202110470561.8A patent/CN113178663A/zh active Pending
- 2021-08-19 EP EP21938809.7A patent/EP4333187A1/en active Pending
- 2021-08-19 US US18/014,087 patent/US20240055724A1/en active Pending
- 2021-08-19 WO PCT/CN2021/113488 patent/WO2022227345A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103155258A (zh) * | 2010-10-05 | 2013-06-12 | 株式会社Lg化学 | 具有改善的循环特性的电化学装置 |
CN104701478A (zh) | 2015-03-02 | 2015-06-10 | 常州大学 | 一种含有机/无机复合交联涂层的聚乙烯微孔隔膜及其制备方法 |
CN107611314A (zh) * | 2016-07-12 | 2018-01-19 | 宁德新能源科技有限公司 | 锂离子电池及其涂层隔膜 |
CN106654119A (zh) | 2016-11-14 | 2017-05-10 | 宁波中车新能源科技有限公司 | 一种混合涂层隔膜及其制备方法和应用 |
CN107275550A (zh) * | 2017-06-20 | 2017-10-20 | 深圳市星源材质科技股份有限公司 | 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法 |
CN108963164A (zh) * | 2018-06-28 | 2018-12-07 | 深圳市旭然电子有限公司 | 无机陶瓷涂覆功能化锂离子电池隔离膜、制备方法及其锂离子电池 |
CN109994695A (zh) | 2019-05-29 | 2019-07-09 | 东莞东阳光科研发有限公司 | 聚合物浆料、复合隔膜及其制备方法 |
CN113178663A (zh) * | 2021-04-28 | 2021-07-27 | 惠州亿纬锂能股份有限公司 | 一种复合隔膜及其制备方法和用途 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115548583A (zh) * | 2022-11-24 | 2022-12-30 | 合肥长阳新能源科技有限公司 | 一种高安全性锂离子电池复合隔膜及其应用 |
CN116144071A (zh) * | 2023-04-18 | 2023-05-23 | 合肥长阳新能源科技有限公司 | 一种锂电池复合隔膜及其制备方法与应用 |
CN116144071B (zh) * | 2023-04-18 | 2023-06-27 | 合肥长阳新能源科技有限公司 | 一种锂电池复合隔膜及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
US20240055724A1 (en) | 2024-02-15 |
EP4333187A1 (en) | 2024-03-06 |
CN113178663A (zh) | 2021-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022227345A1 (zh) | 一种复合隔膜及其制备方法和用途 | |
US11411281B2 (en) | Multi-layered composite functional separator for lithium-ion battery | |
KR101341196B1 (ko) | 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자 | |
JP6092389B2 (ja) | 有/無機複合コーテイング多孔性分離膜及びこれを利用した二次電池素子 | |
US20050186479A1 (en) | Separator for electronic component and method for producing the same | |
WO2022161088A1 (zh) | 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜 | |
CN104064707A (zh) | 无机/有机复合隔膜、其制备方法及含该隔膜的锂离子二次电池 | |
CN114361717B (zh) | 复合隔膜及电化学装置 | |
CN112467308B (zh) | 一种隔膜及其制备方法、锂离子电池 | |
CN111564661A (zh) | 一种高安全性的锂离子电池 | |
CN112635916A (zh) | 一种陶瓷复合隔膜及其制备方法及电池 | |
JP7531613B2 (ja) | リチウム二次電池用分離膜、その製造方法及びそれを含むリチウム二次電池 | |
TW201946316A (zh) | 聚合物隔膜及其製備方法和應用以及鋰離子電池及其製備方法 | |
WO2023040862A1 (zh) | 一种电极组件及其应用 | |
KR20160117109A (ko) | 접착성과 통기성이 우수한 이차전지용 분리막 및 이의 제조방법 | |
CN114430093A (zh) | 耐热性提高的隔膜和应用该隔膜的锂二次电池 | |
CN105449141A (zh) | 一种电池隔膜的制备方法及电池隔膜 | |
US20230352798A1 (en) | Coating liquid composition, substrate with coating film, separator, secondary battery, and electrode material | |
CN116111281B (zh) | 一种隔膜、电化学装置和电子装置 | |
CN117410648A (zh) | 一种锂离子电池隔膜及其制备方法 | |
CN114374058A (zh) | 一种涂层隔膜及其制备方法和应用 | |
CN109786620B (zh) | 一种涂层薄膜及其制备方法和应用 | |
CN105932197A (zh) | 一种聚苯二甲酰对苯二胺多孔膜的制备方法 | |
CN115513410B (zh) | 一种具有涂层的负极极片及其制备方法以及锂离子电池 | |
JP7482935B2 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21938809 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18014087 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021938809 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021938809 Country of ref document: EP Effective date: 20231128 |