WO2008023746A1 - Semiconductor device member, liquid for forming semiconductor device member, method for manufacturing semiconductor device member, and liquid for forming semiconductor device member using the method, phosphor composition, semiconductor light emitting device, illuminating apparatus and image display apparatus - Google Patents

Semiconductor device member, liquid for forming semiconductor device member, method for manufacturing semiconductor device member, and liquid for forming semiconductor device member using the method, phosphor composition, semiconductor light emitting device, illuminating apparatus and image display apparatus Download PDF

Info

Publication number
WO2008023746A1
WO2008023746A1 PCT/JP2007/066310 JP2007066310W WO2008023746A1 WO 2008023746 A1 WO2008023746 A1 WO 2008023746A1 JP 2007066310 W JP2007066310 W JP 2007066310W WO 2008023746 A1 WO2008023746 A1 WO 2008023746A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
semiconductor
light
phosphor
device member
Prior art date
Application number
PCT/JP2007/066310
Other languages
English (en)
French (fr)
Inventor
Hanako Kato
Yutaka Mori
Hiroshi Kobayashi
Tsubasa Tomura
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to KR1020097003592A priority Critical patent/KR101500765B1/ko
Priority to US12/438,283 priority patent/US8502364B2/en
Priority to EP07792895A priority patent/EP2065931A4/en
Priority to CN2007800308415A priority patent/CN101506969B/zh
Priority to KR1020147013991A priority patent/KR101523482B1/ko
Publication of WO2008023746A1 publication Critical patent/WO2008023746A1/ja
Priority to US13/654,087 priority patent/US20130037748A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/72Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus also containing halogen, e.g. halophosphates
    • C09K11/73Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus also containing halogen, e.g. halophosphates also containing alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7735Germanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/774Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7775Germanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7781Sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7794Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7795Phosphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01066Dysprosium [Dy]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01067Holmium [Ho]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • SEMICONDUCTOR DEVICE MEMBER SEMICONDUCTOR DEVICE MEMBER FORMING METHOD AND SEMICONDUCTOR DEVICE MEMBER MANUFACTURING METHOD, SEMICONDUCTOR DEVICE MEMBER FORMING LIQUID, PHOSPHOR COMPOSITION, SEMICONDUCTOR LIGHT EMITTING DEVICE, LIGHTING DEVICE, AND Image display device
  • the present invention relates to a novel semiconductor device member, a semiconductor device member forming liquid, a method for producing a semiconductor device member, a semiconductor light emitting device, a semiconductor device member forming liquid, and a phosphor composition.
  • a semiconductor device member having excellent heat resistance, light resistance, film-forming property, and adhesion a method for manufacturing a semiconductor device member forming liquid and a semiconductor device member, and a large-sized semiconductor element usable at high temperatures
  • the present invention relates to a semiconductor light-emitting device equipped with.
  • the present invention also relates to an illumination device and an image display device formed using the semiconductor light emitting device.
  • semiconductor elements In semiconductor devices, particularly semiconductor light emitting devices such as light emitting diodes (hereinafter abbreviated as “: LED”) and semiconductor lasers, semiconductor elements (also referred to as semiconductor light emitting elements) are made of transparent resin. What is sealed with a member (semiconductor device member) is generally used.
  • the semiconductor light-emitting device has been used as an information display device used outdoors such as signals and outdoor display devices, and as a lighting device that replaces automotive headlights, incandescent lamps, and fluorescent lamps. From this point, it is being put into practical use.
  • a high-power light-emitting device L, so-called “power device” is desirable for use in these applications!
  • Non-patent Document 1 As a high-power semiconductor light emitting device, for example, an example using an lmm square semiconductor element (chip) is disclosed (Non-patent Document 1). However, since it has been difficult to generalize semiconductor light-emitting devices as power devices, conventionally, the problem has been avoided by arranging a plurality of low-power elements.
  • an epoxy resin has been used as the above-mentioned member for a semiconductor device. Further, it has been known that a wavelength of light emitted from a semiconductor element is converted by incorporating a pigment such as a phosphor into the sealing resin.
  • silicone resins having excellent heat resistance and ultraviolet light resistance have been used as substitutes for epoxy resins.
  • silicone resin is adhesive and transparent.
  • Non-Patent Document 1 Yukio Narukawa et al., "Applied Physics", Vol. 74, No. 11, pp. 1423 to 1432, 2005
  • Patent Document 1 Japanese Patent No. 3275308
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-197976
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-231947
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-33517
  • Patent Document 5 JP 2002-203989 A
  • Patent Document 6 Japanese Patent Application No. 2006-047274 Specification
  • inorganic materials such as molten glass emit light with a high handling temperature of 350 ° C or higher. In order to damage the element, it has not been industrially realized to use it as an inorganic sealing material.
  • glass produced by the sol-gel method has a problem of film formability such as generation of cracks due to curing shrinkage and peeling when it is molded as a semiconductor device member. It was not obtained.
  • the production method by the sol-gel method is too reactive, so that it is difficult to concentrate, and many solvents are used frequently.
  • the amount of solid content in the sol decreases, so when applying a sol on a semiconductor device to form a semiconductor device member, it is repeatedly applied until a predetermined thickness is reached. Production efficiency is poor.
  • it is cured with solvent volatilization internal stress is likely to occur in the cured semiconductor device member, and cracks and peeling are liable to occur.
  • the reflow means a soldering method in which a solder paste is printed on a substrate, and components are mounted on the paste and heated and joined.
  • Reflow resistance refers to the property that can withstand a thermal shock of 10 seconds at a maximum temperature of 260 ° C.
  • Patent Document 1 and Patent Document 2 describe a technique for forming a glass material using tetrafunctional alkoxysilane.
  • a hydrolysis solution of tetrafunctional alkoxysilane is applied to the semiconductor light emitting device, and the performance of the semiconductor light emitting device is not impaired. It was cured for several hours at a mild curing temperature of about C. In this case, the obtained glass material was usually an incomplete glass body containing 10% by weight or more of silanol. Therefore, from the techniques described in Patent Document 1 and Patent Document 2, it has not been possible to obtain a glass body consisting only of siloxane bonds as in the case of molten glass.
  • Patent Document 1 and Patent Document 2 have very many bridge points, so that the reactive ends with large structural constraints are isolated and condensed. To do It is inferred that this is not possible.
  • Such a glass body is not dense, and its surface is very hydrophilic like silica gel, so it does not have sufficient sealing ability.
  • silanol which does not react easily starts to slightly decrease when heated to 250 ° C or higher, and is usually baked at a high temperature of 350 ° C or higher, preferably 400 ° C or higher.
  • the amount of lanol can be actively reduced.
  • the heat resistance temperature of semiconductor devices is usually 260 ° C or lower, which is difficult to realize. .
  • tetrafunctional alkoxysilanes have a large amount of components to be eliminated during dehydration and dealcoholization condensation, and thus essentially have a large shrinkage rate upon curing.
  • tetrafunctional alkoxysilanes are highly reactive, curing begins at the surface where some of the diluted solvent has evaporated during the drying process, forming a hard and / or gel body containing the solvent. Then, since there is a tendency to release the internal solvent, the amount of shrinkage during and after curing accompanying the evaporation of the solvent also increases. For this reason, in the inorganic materials described in Patent Document 1 and Patent Document 2, as a result, a large internal stress is generated due to shrinkage, and cracks frequently occur. Therefore, it has been difficult to obtain a large Balta body or thick film useful as a semiconductor device member using only tetrafunctional alkoxysilane as a raw material.
  • Patent Document 3 describes a technique for producing a three-dimensional phosphor layer with high dimensional accuracy by a sol-gel method using a silane compound containing an organic group as a raw material.
  • Patent Document 3 does not have a detailed description of the degree of cross-linking, and in order to obtain the inorganic material described in Patent Document 3, a high concentration of phosphor particles is essential, which is essentially used as an aggregate.
  • acetic acid is used as a catalyst. Since acetic acid is not removed from the obtained inorganic material, acetic acid has an adverse effect on the semiconductor element.
  • a high temperature of 400 ° C. is required for curing. Therefore, heating with a semiconductor device is substantially impossible, and the condensation is not possible due to excessive condensation at high temperature. The structure is distorted and cracks are not suppressed I got it.
  • Patent Document 4 describes a technique for obtaining a semiconductor device member by applying an inorganic coating agent obtained by mixing an inorganic light scatterer with an inorganic sol having a skeleton of silica or siloxane.
  • an inorganic light scattering agent is indispensable for the inorganic material described in Patent Document 4, and furthermore, Patent Document 4 cannot accurately reproduce the technology without detailed description of raw materials and production methods. Impossible.
  • Patent Document 5 describes a technique for obtaining a semiconductor device member by applying sol-gel glass.
  • a phosphor is essential to obtain the inorganic material described in Patent Document 5.
  • this phosphor works as an aggregate, and the resulting inorganic material does not exceed the thick film thickness of 100 m.
  • Patent Document 5 does not describe raw materials or production methods, and it is difficult to stably reproduce the technology using general alkoxysilanes.
  • Patent Document 6 a specific member containing a semiconductor device that can solve the above problems.
  • the package in the semiconductor light emitting device is subjected to various surface treatments for the purpose of improving brightness (reflectance), durability, heat resistance, light resistance, adhesion, heat dissipation, and the like.
  • power devices are often subjected to material selection and surface processing for the purpose of improving durability and heat resistance.
  • semiconductor elements are often provided with a protective layer from the viewpoint of processing.
  • a surface material contains a special component
  • a member such as a package or a semiconductor element that comes into contact with a sealing material in a semiconductor light-emitting device is one of the causes of a problem of peeling of the sealing. It was.
  • the present invention has been made in view of the above problems. That is, the first eye of the present invention It has excellent heat resistance, light resistance, film formability, and adhesion, and can seal a semiconductor device and retain a phosphor without cracking, peeling, or coloring even after long-term use.
  • An object of the present invention is to provide a semiconductor device member, a method for producing a semiconductor device member forming liquid and a semiconductor device member, a semiconductor device member forming liquid using the same, and a phosphor composition.
  • the second object of the present invention is to provide excellent brightness (reflectance), durability, heat resistance, light resistance, adhesion even when used for a power device, which does not cause cracking even after long-term use. It is an object of the present invention to provide a semiconductor light-emitting device having characteristics, etc., and an illumination device and an image display device using the same.
  • the present inventors have found that when a specific polymer having a certain film forming property with less thermal weight loss is used as a semiconductor device member. It has been found that the film thickness can be increased, cracks are suppressed even in the thick film portion, and the heat resistance and light resistance are excellent.
  • a sealing material that has extremely high adhesion to materials that have undergone surface treatment, etc., and that also excels in heat resistance and light resistance, it can be used especially in power devices equipped with large semiconductor light-emitting chips. I found that it could be possible. And based on these knowledge, this invention was completed.
  • the gist of the present invention is that the weight loss by heating measured by the following weight loss measuring method (I) is 50% by weight or less, and the peeling measured by the following adhesion evaluation method ( ⁇ ) The ratio is 30% or less, which resides in a semiconductor device member (claim 1).
  • a semiconductor device member forming solution is dropped onto a silver-plated surface copper cup having a diameter of 9 mm and a recess depth of 1 mm and cured under predetermined curing conditions to obtain a semiconductor device member.
  • Another gist of the present invention is that the weight loss by heating measured by the method for measuring weight loss by heating (I) is 50% by weight or less and the hardness measurement value (Shore A) by durometer type A is 5%. It is a member for semiconductor devices, characterized in that it is 90 or more (Claim 2).
  • the member for a semiconductor device of the present invention preferably has a metalloxane skeleton (claim 3).
  • the semiconductor device member of the present invention preferably contains inorganic particles (claim 4).
  • the semiconductor device member of the present invention preferably contains a phosphor (claim 5).
  • Still another subject matter of the present invention is a component forming solution for a semiconductor device containing a polycondensate obtained by hydrolysis / polycondensation of a compound represented by the following formula (1) and / or an oligomer thereof.
  • the hydrolysis is performed in the presence of an organometallic compound catalyst containing at least one element selected from zirconium, hafnium, tin, zinc, and titanium. It exists in the manufacturing method of the member formation liquid for semiconductor devices (Claim 6).
  • M represents at least one element selected from silicon, aluminum, zirconium, and titanium
  • X represents a hydrolyzable group
  • Y 1 represents a monovalent group.
  • m represents an integer of 1 or more representing the valence of M
  • n represents an integer of 1 or more representing the number of X groups, provided that m ⁇ n.
  • Still another subject matter of the present invention is a compound represented by the following formula (2) and / or an oligo thereof.
  • the present invention resides in a method for producing a member forming liquid for a semiconductor device, which is carried out in the presence of an organometallic compound catalyst containing at least one selected element (claim 7).
  • M represents at least one element selected from silicon, aluminum, zirconium, and titanium
  • X represents a hydrolyzable group
  • Y 1 represents a monovalent group.
  • Y 2 represents a u-valent organic group
  • s represents an integer of 2 or more representing the valence of M
  • t represents an integer of 1 or more and s-1 or less
  • u represents an integer of 2 or more.
  • Still another subject matter of the present invention is a semiconductor device having a step of drying a polycondensate obtained by hydrolysis and polycondensation of the compound represented by the formula (1) and / or its oligomer.
  • an organometallic compound catalyst comprising at least one element selected from the group consisting of zirconium, hafnium, tin, zinc, and titanium.
  • the present invention resides in a method for manufacturing a semiconductor device member (claim 8).
  • Still another subject matter of the present invention is a semiconductor device having a step of drying a polycondensate obtained by hydrolysis and polycondensation of the compound represented by the formula (2) and / or its oligomer.
  • an organometallic compound catalyst comprising at least one element selected from the group consisting of zirconium, hafnium, tin, zinc, and titanium.
  • the present invention provides a method for producing a member for a semiconductor device (claim 9).
  • Still another subject matter of the present invention lies in a semiconductor light emitting device comprising at least the semiconductor device member (claim 10).
  • Still another subject matter of the present invention lies in a member forming liquid for a semiconductor device, characterized by being manufactured by the method for manufacturing a member forming liquid for a semiconductor device (claim 11).
  • Still another subject matter of the present invention includes (A) a package, (B) a semiconductor element, and (C) a sealing material.
  • a semiconductor light emitting device having (A) a package and / or (B) a semiconductor element, the surface material of which includes at least one of Si, A1, and Ag, and (C) a sealing material, A semiconductor light-emitting device that satisfies all of the following conditions (i) to (c) and is in direct contact with the surface material of (A) a package and / or (B) a semiconductor element. 12).
  • the transmittance maintenance rate for light with a wavelength of 400 nm should be 80% or more and 110% or less.
  • the transmittance maintenance ratio for light with a wavelength of 400 nm is 80% or more and 110% or less before and after irradiation with light having a center wavelength of 380 nm and a wavelength of 370 nm or more and a radiation intensity of 0.6 kW / m 2 for 72 hours. There is.
  • the semiconductor light emitting device of the present invention preferably further satisfies the following condition (2) (claim 13).
  • a 350 mA drive current was applied to a square semiconductor element with an emission wavelength of 460 ⁇ 10 nm and a side of 900 m while maintaining the emission surface temperature at 100 ⁇ 10 ° C.
  • the ratio of the luminance after 500 hours to the luminance immediately after lighting should be 90% or more.
  • the surface material of (A) the package and / or (B) the semiconductor element contains one or more of SiN, SiC, and SiO (claim 15).
  • the surface material of (A) the package and / or (B) the semiconductor element contains one or more of Al, A1N, and A1O (claim 16).
  • the semiconductor light emitting device of the present invention preferably has (B) the surface material on the substrate portion of the semiconductor element (claim 17).
  • the area of the light emitting surface of the semiconductor element is preferably 0.15 mm 2 or more! / (Claim 18).
  • the surface temperature of the light emitting surface of the semiconductor element (B) during operation is 80 ° C or higher and 200 ° C or lower (claim 19).
  • the amount of power during operation is preferably 0.1 W or more (claim 20).
  • Still another subject matter of the present invention lies in an illumination device formed using the semiconductor light emitting device of the present invention (claim 21).
  • Still another subject matter of the present invention lies in an image display device formed using the semiconductor light emitting device of the present invention (claim 22).
  • the semiconductor device member of the present invention is excellent in heat resistance, light resistance, film-forming property, and adhesion, and can seal a semiconductor device without causing cracks or peeling even when used for a long period of time. is there. Also, compared to conventional inorganic semiconductor device members, it is generally possible to apply a thick film. By simply applying and drying on a semiconductor device, the semiconductor device can be easily sealed to hold the phosphor. Can do.
  • the semiconductor device member of the present invention can be produced.
  • the manufacturing force of the semiconductor device member forming liquid and the semiconductor device member of the present invention is reduced by the force S.
  • the encapsulant is excellent in heat resistance, light resistance, film-forming property, and adhesion, so that the encapsulant does not crack, peel, or color even after long-term use. The performance can be maintained for a long time.
  • FIG. 1 is a schematic sectional view showing Embodiment A-1.
  • FIG. 2 is a schematic sectional view showing Embodiment A-2.
  • FIG. 3 shows an embodiment B-1
  • FIG. 3 (a) is a schematic sectional view
  • FIG. 3 (b) is an enlarged view of the main part of FIG. 3 (a).
  • FIG. 4 is a schematic sectional view showing Embodiment B-2.
  • FIG. 5 is a schematic sectional view showing Embodiment B-3.
  • FIG. 6 is a schematic sectional view showing Embodiment B-4.
  • FIG. 7 is a schematic sectional view showing Embodiment B-5.
  • FIG. 8 is a schematic sectional view showing Embodiment B-6.
  • FIG. 9 is a schematic sectional view showing Embodiment B-7.
  • FIG. 10 is a schematic sectional view showing Embodiment B-8.
  • FIG. 11 is a schematic sectional view showing Embodiment B--9.
  • FIG. 12 is a schematic sectional view showing Embodiment B-10.
  • FIG. 13 is a schematic sectional view showing Embodiment B-11.
  • FIG. 14 is a schematic sectional view showing Embodiment B-12.
  • FIG. 15 is a schematic sectional view showing Embodiment B--13.
  • FIG. 16 is a schematic sectional view showing Embodiment B-14.
  • FIG. 17 is a schematic sectional view showing Embodiment B--15.
  • FIG. 18 is a schematic sectional view showing Embodiment B--16.
  • FIG. 19 is a schematic sectional view showing Embodiment B--17.
  • FIG. 20 is a schematic sectional view showing Embodiment B-18.
  • FIG. 21 is a schematic sectional view showing Embodiment B--19.
  • FIG. 22 is a schematic sectional view showing Embodiment B-20.
  • FIG. 23 is a schematic sectional view showing Embodiment B--21.
  • FIG. 24 is a cross-sectional view of an essential part shown in Embodiment B--21!
  • FIG. 25 is a schematic sectional view showing Embodiment B--22.
  • FIG. 26 is a sectional view of an essential part showing Embodiment B-22.
  • FIG. 27 is a schematic sectional view showing Embodiment B--23.
  • FIG. 28] is a perspective view of relevant parts shown for embodiment B-23.
  • FIG. 29 is a schematic sectional view showing Embodiment B-24.
  • FIG. 30 is a cross-sectional view of a main part shown for the embodiment B-24.
  • FIG. 31] is a perspective view of the essential part showing Embodiment B-24.
  • FIG. 32 is a schematic sectional view showing Embodiment B--25.
  • FIG. 33 is a schematic sectional view showing Embodiment B-26.
  • FIG. 34 is a schematic sectional view showing Embodiment B-27.
  • FIG. 35 is a schematic sectional view showing Embodiment B-28.
  • FIG. 36 is a schematic sectional view showing Embodiment B-29.
  • FIG. 37 shows Embodiment B-30
  • FIG. 37 (a) is a schematic cross-sectional view
  • FIG. 37 (b) is an enlarged view of the main part of FIG. 37 (a).
  • FIG. 38 is a schematic sectional view showing Embodiment B-31.
  • FIG. 39 is a schematic sectional view showing Embodiment B-32.
  • FIG. 40 is a schematic sectional view showing Embodiment B-33.
  • FIG. 41 is a schematic sectional view showing Embodiment B-34.
  • FIG. 42 is a schematic sectional view showing Embodiment B-35.
  • FIG. 43 is a schematic sectional view showing Embodiment B-36.
  • FIG. 44 is a schematic sectional view showing Embodiment B-37.
  • FIG. 45 is a schematic sectional view showing Embodiment B-38.
  • FIG. 46 is a schematic sectional view showing Embodiment B-39.
  • FIG. 47 is a schematic sectional view showing Embodiment B-40.
  • FIG. 48 is a schematic sectional view showing Embodiment B-41.
  • FIG. 49 is an explanatory diagram of another configuration example of a main part of each embodiment.
  • FIG. 50 (a) and FIG. 50 (b) are explanatory diagrams of the basic concept of each embodiment.
  • FIG. 51 is a cross-sectional view schematically showing a semiconductor light emitting device in order to describe continuous lighting tests performed in examples and comparative examples of the present invention.
  • 1, 1A, 1B light emitting device semiconductor light emitting device
  • the first member for a semiconductor device of the present invention has the following characteristics (1) and (2).
  • Characteristic (1) Heating weight loss measured by a specific heating weight loss measuring method (I) described later is 5
  • Characteristic (2) The peel rate measured by the specific adhesion evaluation method (ii) described later is 30% or less.
  • the second member for a semiconductor device of the present invention has the above-mentioned characteristic (1) and the following characteristic.
  • Characteristic (3) Hardness measurement value (Shore A) by Du mouth meter type A is 5 or more and 90 or less.
  • these characteristics (1), (2) and (3) will be described first. In the following description, when referring to the first semiconductor device member and the second semiconductor device member of the present invention without distinction, they are simply referred to as “the semiconductor device member of the present invention”.
  • the weight loss by heating is an index for evaluating the high heat resistance of the semiconductor device member of the present invention, and is measured by the heating weight loss measuring method (I) described later.
  • the weight loss by heating of the semiconductor device member of the present invention is 50% by weight or less, preferably 40% by weight or less, more preferably 35% by weight or less. Further, there is no limit on the lower limit. 1S Usually 5% by weight or more, preferably 10% by weight or more (characteristic (1)). If the weight loss by heating is too large, the semiconductor device may shrink due to long-term use, and the initial characteristics may not be maintained. Factors that increase the weight loss due to heating include, for example, that there are many volatile low-molecular-weight components contained in semiconductor device members, and that the main chain components that form semiconductor device members are easily decomposed and cut by heating. It is done. In addition, when the reduction in heating weight is small, the force for semiconductor device members becomes excellent in thermal stability.
  • Such a semiconductor device member generally contains a large amount of polyfunctional Si component, and can be a hard film. Many. For this reason, a semiconductor device member whose heating weight loss is too small is inferior in heat cycle resistance, reflow resistance and the like, and is not preferable as a semiconductor device member.
  • Thermogravimetry ⁇ difierential thermal analysis Using a device, heat from 35 ° C to 500 ° C at a heating rate of 10 ° C / min under a flow of air of 200ml / min, and measure the weight loss.
  • the material may be selected appropriately.
  • a material having the structure described in [1 4 1] described later may be selected, or a raw material described in [2 1] described later may be used.
  • a catalyst may be selected in the hydrolysis' polycondensation step described in [2-2] described later.
  • the molecular weight may be controlled during the hydrolysis / polycondensation step [2-2] and / or storage of the hydrolysis / polycondensate described later.
  • the adhesion evaluation peeling rate is an index for evaluating the adhesion of the semiconductor device member of the present invention, and is measured by an adhesion evaluation method ( ⁇ ) described later.
  • the peeling rate of the semiconductor device member of the present invention is usually 30% or less, preferably 20% or less, more preferably 10% or less (characteristic (2)). Of these, 0% is most preferred. If the peel rate is too large, the adhesion and chemical stability of the semiconductor device member to the substrate frame material, etc. will be inferior, and the sealing material will be easily modified and shrunk by thermal shock, heat, light, and electrochemical reaction. there is a possibility. For this reason, the semiconductor device member may be peeled off due to the force of the substrate, the frame material, etc., and the semiconductor device may be disconnected. In addition, silver materials are sometimes used for the electrode portions and the reflector surface particularly in semiconductor light emitting devices. However, when the adhesion decreases, the semiconductor device member peels off from the surface, and the semiconductor light emitting device Disconnection may cause non-lighting and lower brightness.
  • a semiconductor device component forming liquid (described later) is dropped onto a silver-plated surface copper cup with a diameter of 9 mm and a recess depth of 1 mm, and cured under predetermined curing conditions to form a semiconductor device member (hereinafter referred to as adhesion)
  • this semiconductor device member is referred to as a “measurement sample”.
  • the obtained measurement sample is absorbed for 20 hours in an atmosphere of 85 ° C and 85% humidity.
  • the sample for measurement is heated from room temperature to 260 ° C in 50 seconds and then held at 260 ° C for 10 seconds.
  • room temperature means 20 ° C to 25 ° C.
  • the peel rate is a ratio calculated by “number of peeled measurement samples / total number of measurement samples”.
  • the material may be selected appropriately.
  • a material having the structure described in [1 4 1] described later may be selected, or a raw material described in [2 1] described later may be used.
  • a catalyst may be selected in the hydrolysis' polycondensation step described in [2-2] described later.
  • the molecular weight may be controlled during the hydrolysis / polycondensation step [2-2] and / or storage of the hydrolysis / polycondensate described later.
  • the hardness measurement value is an index for evaluating the hardness of the semiconductor device member of the present invention, and is measured by the following hardness measurement method.
  • the member for a semiconductor device of the present invention is preferably a member having an elastomeric shape. That is, a plurality of members having different thermal expansion coefficients are used for the semiconductor device.
  • the semiconductor device member of the present invention relieves stress due to expansion and contraction of each of the above components. can do. Therefore, it is possible to provide a semiconductor device excellent in reflow resistance and temperature cycle resistance, which is difficult to cause peeling, cracking, disconnection and the like during use.
  • the semiconductor device member of the present invention has a durometer type A hardness measurement value (Shore A) of usually 5 or more, preferably 7 or more, more preferably 10 or more, and usually 90 In the following, it is preferably 80 or less, more preferably 70 or less (characteristic (3)).
  • the member for a semiconductor device of the present invention can obtain an advantage of being excellent in reflow resistance and temperature cycle resistance that are difficult to generate cracking force S.
  • the hardness measurement value (Shore A) can be measured by the method described in JIS K6253. Specifically, measurement can be performed using an A-type rubber hardness meter manufactured by Furusato Seiki Seisakusho.
  • the first member for a semiconductor device of the present invention has the characteristics (1) described in [11] and the characteristics (2) described in [12]. As a result, a cured product having excellent film formability and adhesion and excellent durability against light and heat after curing can be obtained.
  • the second member for a semiconductor device according to the present invention has the characteristics (1) described in [11] and the characteristics (3) described in [1-3]. A cured product having excellent film properties and excellent durability against light and heat after curing can be obtained.
  • the semiconductor device member that satisfies all of the above characteristics (1), (2), and (3) satisfies the requirements of both the first semiconductor device member and the second semiconductor device member of the present invention. More preferable.
  • the semiconductor device member of the present invention has the above-mentioned characteristics as main features, but also has the following structure and properties!
  • the basic skeleton of a conventional semiconductor device member is an organic resin such as an epoxy resin having a carbon, carbon, or carbon-oxygen bond as a basic skeleton, but the basic skeleton of a semiconductor device member of the present invention is usually a metalloxane skeleton, preferably Is preferably the same inorganic siloxane skeleton (siloxane bond) as glass (silicate glass)!
  • a metalloxane skeleton preferably Is preferably the same inorganic siloxane skeleton (siloxane bond) as glass (silicate glass)!
  • the siloxane bond has the following excellent characteristics as a semiconductor device member.
  • a silicone-based semiconductor device member formed of a skeleton in which a siloxane bond is bonded three-dimensionally, with a strong force and a high degree of crosslinking is used for a conventional resin-based semiconductor device such as an epoxy resin. It can be understood that unlike a member, it becomes a protective film with high heat resistance and light resistance close to those of inorganic materials such as glass or rock.
  • a silicon-based semiconductor device member having a methyl group as a substituent is excellent in light resistance, in which photolysis does not easily occur because it does not absorb in the ultraviolet region.
  • the content of silicon is usually 20% by weight or more, preferably 25% by weight or more, and more preferably 30% by weight or more.
  • the upper limit is that the glass content of only SiO is 47% by weight.
  • the semiconductor device component has a high refractive index, it is usually 10% by weight or more and usually 47% by weight or less because it may contain components necessary for increasing the refractive index.
  • the content of the silicon in the semiconductor device member is analyzed, for example, by the following method using an inductively coupled plasma spectrometry (hereinafter abbreviated as "ICP") analysis. And based on the results
  • a single cured product of a semiconductor device component is crushed to about 100 m and held in a platinum crucible in air at 450 ° C for 1 hour, then 750 ° C for 1 hour, and 950 ° C for 1.5 hours.
  • After calcination and removal of the carbon component add 10 times or more of sodium carbonate to a small amount of the resulting residue, heat with a burner to melt, cool it, add demineralized water, and then neutralize the pH with hydrochloric acid. Adjust the volume to about a few ppm as a key while adjusting the level, and perform ICP analysis.
  • the silanol content is usually 0.01% by weight or more, preferably 0.1% by weight or more, more preferably 0.3% by weight or more, The range is usually 12% by weight or less, preferably 8% by weight or less, more preferably 6% by weight or less.
  • a glass body obtained by a sol-gel method using an alkoxysilane as a raw material is 150 ° C,
  • the semiconductor device member of the present invention has excellent performance for a long period of time with little change with time due to low silanol content, and excellent performance with low moisture absorption.
  • silanol is not included at all! / Because the member is inferior in adhesion to the semiconductor device, the present invention has an optimum range for the silanol content as described above.
  • the semiconductor device member of the present invention contains an appropriate amount of silanol, the silanol hydrogen bonds to the polar portion present on the surface of the device, thereby exhibiting adhesion.
  • polarity Examples of the moiety include a hydroxyl group and a metalloxane-bonded oxygen.
  • the semiconductor device member of the present invention forms a covalent bond by dehydration condensation with a hydroxyl group on the surface of the device by heating in the presence of an appropriate catalyst, thereby further enhancing the adhesion. Can be expressed.
  • the silanol content of the semiconductor device member is determined by, for example, performing solid Si-NMR spectrum measurement using the method described later, and determining the ratio of the peak area derived from silanol to the total peak area, It can be calculated by obtaining the ratio (%) of the silicon atom which is silanol in the interior and comparing it with the separately analyzed content of silicon.
  • the analysis of the measurement data is performed by dividing each peak and extracting it by, for example, waveform separation analysis using a Gaussian function or Lorentz function.
  • Probe 7.5mm ⁇ CP / MAS probe
  • ⁇ 1 decoupling frequency 50kHz
  • 512 points are taken as measurement data, and 819 are zero-filled and Fourier transformed.
  • optimization calculation is performed by nonlinear least square method with the center position, height, and half width of the peak shape created by Lorentz waveform and Gaussian waveform or a mixture of both as variable parameters. Do.
  • the silanol content of the semiconductor device member can also be determined by the following IR measurement.
  • the IR measurement is easy to identify the silanol peak, but the shape of the peak is broad, the area error appears, and it is necessary to accurately prepare a sample with a certain film thickness for quantitative work immediately. Therefore, it is preferable to use solid-state Si-NMR for accurate quantification.
  • solid-state Si-NMR for accurate quantification.
  • Measurement example A thin film sample with a film thickness of 20011 m was coated on a Si wafer, and the infrared absorption spectrum of each Si wafer was measured by the transmission method. The total number of silanol peaks with wave numbers s sicnT 1 and SYOlcnT 1 Find the area.
  • trimethylsilanol as a known concentration sample was diluted in anhydrous carbon tetrachloride, and an infrared absorption spectrum was measured by a transmission method using a liquid cell with an optical path length of 200 m, and the peak area ratio with the actual sample was measured. It is possible to calculate the silanol concentration by comparison.
  • the peak derived from the sample adsorbed water is detected as the background of the silanol peak, so the sample thin film must be heated at 150 ° C for 20 minutes or more at normal pressure before measurement, Remove adsorbed water by vacuuming for 10 minutes or longer.
  • the silanol is present in an amount equal to or more than the alkoxy group.
  • silanol and an alkoxy group can generate methanol by an equivalent reaction to form a siloxane bond. Therefore, when silanol is present in an amount equal to or greater than that of the alkoxy group, it can be cured and condensed only by heating without relying on moisture supply from the atmosphere, and even when applied to a deep package, it is a semiconductor device that has excellent deep-curability. It becomes a member for use.
  • the ratio represented by ⁇ number of alkoxy groups / (number of silanols + number of alkoxy groups) ⁇ X 100 (%) (that is, the abundance ratio of alkoxy groups in the unreacted terminal that can undergo dehydration and dealcoholization condensation) ) Is usually at least 0%, usually at most 50%, preferably at most 30%, particularly preferably at most 25%. This ratio can be determined by liquid 29 Si-NMR measurement.
  • the raw material alkoxysilane is sufficiently hydrolyzed in the synthesis process, and the generated alcohol is surely distilled out of the system to dissolve it. Alcohol should be used as little as possible in the medium.
  • a component having a structural unit represented by the following formula (B) in raw material selection Compared to the amount of the component having the structural unit represented by the following formula (A), the amount used may be an excess amount in a molar ratio.
  • R 1 represents an organic group.
  • each R 2 independently represents an organic group.
  • Measurement sample 3 Og, 0.5 g of the above X solution and heavy acetone 1. Og are mixed, and the whole amount is put into a 10 mm Teflon (registered trademark) sample tube and used for measurement.
  • the light transmittance power at the emission wavelength of the semiconductor light emitting device at a film thickness of 1 mm is usually 80% or more, particularly 85% or more, more preferably 90% or more. It is preferable that The light-emitting efficiency of semiconductor light-emitting devices has been enhanced by various technologies. However, if the transparency of a translucent member for sealing a semiconductor element or holding a phosphor is low, a semiconductor light-emitting device using the same is used. As a result, it is difficult to obtain high-brightness semiconductor light-emitting device products.
  • the “emission wavelength of the semiconductor light-emitting device” is a value that varies depending on the type of the semiconductor light-emitting device, but is generally 300 nm or more, preferably 350 nm or more, and usually 900 nm or less. Preferably, it refers to a wavelength in the range of 500 nm or less. If the light transmittance at a wavelength in this range is low, the semiconductor device member absorbs light, the light extraction efficiency decreases, and a high-luminance semiconductor light-emitting device cannot be obtained. Furthermore, the energy corresponding to the decrease in the light extraction efficiency is changed to heat, which causes the deterioration of the semiconductor light emitting device, which is not preferable.
  • the sealing member In the ultraviolet to blue region (wavelength 300 nm to 500 nm), the sealing member is photodegraded. Therefore, if the semiconductor device member of the present invention having excellent durability is used for a semiconductor light emitting device having an emission wavelength in this region, the effect is increased, which is preferable.
  • the light transmittance of the semiconductor device member can be measured with an ultraviolet spectrophotometer using, for example, a sample of a single cured film having a smooth surface molded to a thickness of 1 mm by the following method. I'll do it.
  • the shape of the semiconductor light emitting device is various, and the majority is used in a thick film state exceeding 0.1 mm, but the thin film phosphor is located away from the LED chip (light emitting element).
  • the thin film phosphor is located away from the LED chip (light emitting element).
  • There are also applications using thin films such as when providing layers (for example, a layer with a thickness of nanophosphor particles or fluorescent ions) or when providing a high refractive light extraction film on a thin film directly above the LED chip. In such a case, it is preferable to show a transmittance of 80% or more at this film thickness.
  • the semiconductor device member of the present invention exhibits excellent light resistance and heat resistance, is excellent in sealing performance, and can be stably formed without cracks.
  • the member for a semiconductor device of the present invention preferably satisfies the following conditions. That is, the semiconductor device member of the present invention has a ratio (total area of peaks with a chemical shift of 40 ppm or more and Oppm or less) / (total area of peaks with a chemical shift of less than 40 ppm) in a solid Si nuclear magnetic resonance spectrum (hereinafter referred to as appropriate).
  • “Force in the present invention, called peak area ratio”) force usually 3 or more, preferably 5 or more, more preferably 10 or more, and usually 200 or less, preferably 100 or less, more preferably 50 or less Is preferred.
  • the peak area ratio according to the present invention is in the above range because the semiconductor device member of the present invention is more suitable than a bifunctional silane such as a trifunctional silane or a tetrafunctional silane such as a tetrafunctional silane. Indicates having a lot. Thus, by having a large amount of bifunctional or lower silane, the member for a semiconductor device of the present invention can exhibit an elastomeric shape and stress. Can be relaxed.
  • the member for a semiconductor device of the present invention may exhibit an elastomeric shape even if it does not satisfy the above-described conditions regarding the peak area ratio, which is a force of the present invention.
  • the case where the semiconductor device member of the present invention is manufactured using a coupling agent such as an alkoxide of a metal other than silicon as a crosslinking agent corresponds to this case.
  • the method for exhibiting the elastomeric shape of the semiconductor device member of the present invention is arbitrary, and is not limited to the above-mentioned conditions with respect to the present invention. Les.
  • the member for a semiconductor device of the present invention has a functional group capable of hydrogen bonding with a predetermined functional group (for example, a hydroxyl group, oxygen in a metalloxane bond, etc.) present on the surface of a resin such as polyphthalamide, ceramic or metal.
  • a predetermined functional group for example, a hydroxyl group, oxygen in a metalloxane bond, etc.
  • a container for a semiconductor device (a cup or the like, which will be described later, hereinafter referred to as “semiconductor device container” as appropriate) is usually formed of ceramic or metal.
  • a hydroxyl group usually exists on the surface of ceramic or metal.
  • the semiconductor device member of the present invention usually has a functional group capable of hydrogen bonding with the hydroxyl group. Therefore, due to the hydrogen bond, the semiconductor device member of the present invention is excellent in adhesion to the semiconductor device container.
  • Examples of the functional group capable of hydrogen bonding to the hydroxyl group included in the semiconductor device member of the present invention include silanol, alkoxy group, amino group, imino group, metatalyl group, acrylic group, Examples include thiol groups, epoxy groups, ether groups, carbonyl groups, carboxyl groups, and sulfonic acid groups. Of these, silanol and alkoxy groups are preferred from the viewpoint of heat resistance.
  • the functional group may be one kind or two or more kinds.
  • the semiconductor device member of the present invention has a functional group capable of hydrogen bonding to a hydroxyl group depends on solid-state Si-NMR, solid-state 1 H-NMR, infrared absorption spectrum.
  • the semiconductor device member of the present invention is excellent in heat resistance. In other words, even when left under high temperature conditions, the transmittance of light having a predetermined wavelength is less likely to vary.
  • the semiconductor device member of the present invention has a transmittance maintenance factor for light having a wavelength of 400 nm before and after being left at 200 ° C. for 500 hours, usually 80% or more, preferably 90% or more, more preferably Is 95% or more, and is usually 110% or less, preferably 105% or less, more preferably 100% or less.
  • the variation ratio can be measured by the transmittance measurement using an ultraviolet / visible spectrophotometer in the same manner as the transmittance measurement method described in [1-4 3].
  • the member for a semiconductor device of the present invention is excellent in light resistance. That is, even when UV (ultraviolet light) is irradiated, the transmittance with respect to light having a predetermined wavelength hardly changes.
  • the member for a semiconductor device of the present invention has a transmittance maintenance factor of light at a wavelength of 400 nm before and after irradiation with light having a center wavelength of 380 nm and a radiation intensity of 0.4 kW / m 2 for 72 hours. % Or more, preferably 90% or more, more preferably 95% or more, and usually 110% or less, preferably 105% or less, more preferably 100% or less.
  • the variation ratio can be measured by the transmittance measurement using an ultraviolet / visible spectrophotometer in the same manner as the transmittance measurement method described in [1-4 3].
  • the semiconductor device member of the present invention is usually produced by using an organometallic compound catalyst containing at least one element selected from zirconium, hafnium, tin, zinc, and titanium. Therefore, these catalysts usually remain in the semiconductor device member of the present invention.
  • the organometallic compound catalyst is usually 0.001% by weight or more, preferably 0.01% by weight or more, more preferably 0.02%, in terms of metal element. It is contained in an amount of not less than wt%, usually not more than 0.3 wt%, preferably not more than 0.2 wt%, more preferably not more than 0.1 wt%.
  • the content of the organometallic compound catalyst can be measured by ICP analysis.
  • the member for semiconductor device of the present invention preferably has a small chromatogram integrated area of a heat generation gas in the range of 40 ° C. to 210 ° C. in TG mass (pyrolysis MS chromatogram).
  • TG-mass is a force that detects the low boiling point component in a semiconductor device member by raising the temperature of the semiconductor device member.
  • the integrated area of the chromatogram is large in the range of 40 ° C to 210 ° C, Indicates that low-boiling components such as solvents and 3- to 5-membered cyclic siloxanes are present in the components.
  • the semiconductor device member of the present invention has few such low-boiling components.
  • examples of a method for suppressing the amount of the low boiling point component detected by TG-mass to be low include the following methods.
  • the polymerization reaction is sufficiently performed so that no low molecular weight raw material remains.
  • a polycondensate obtained by hydrolysis and polycondensation of a specific compound is used as the semiconductor device member of the present invention, as described later in “[2] Method for producing a semiconductor device member”, it is used at normal pressure.
  • hydrolysis and polycondensation it is usually 15 ° C or higher, preferably 20 ° C or higher, more preferably 40 ° C or higher, and usually 140 ° C or lower, preferably 135 ° C or lower, more preferably Perform hydrolysis and polycondensation at temperatures below 130 ° C.
  • the hydrolysis / polycondensation reaction time varies depending on the reaction temperature, usually 0.1 hour or more, preferably 1 hour or more, more preferably 3 hours or more, and usually 100 hours or less, preferably 20 hours or less, Preferably, it is carried out for 15 hours or less.
  • the reaction time is preferably adjusted appropriately while sequentially controlling the molecular weight by GPC and viscosity measurement. Furthermore, it is preferable to adjust in consideration of the temperature rise time.
  • a polycondensation reaction step In the subsequent solvent distillation and drying steps, low-boiling components are removed while preventing the polycondensation reaction from proceeding.
  • the temperature conditions when the solvent is distilled off are usually 60 ° C or higher, preferably 80 ° C or higher, more preferably 100 ° C or higher, and usually 150 ° C or lower, preferably Is 130 ° C or lower, more preferably 120 ° C or lower.
  • Solvent distillation The pressure condition at the time of leaving is usually normal pressure.
  • the solvent is distilled off and the drying step is performed in an inert gas atmosphere such as argon gas, nitrogen gas, helium gas, or the like.
  • the semiconductor device member of the present invention may be used alone as a sealing material, but more strictly in the case of sealing an organic phosphor, a phosphor that easily deteriorates due to oxygen or moisture, or a semiconductor light emitting device.
  • the semiconductor device member of the present invention is used to hold phosphors, seal semiconductor elements, and extract light, and then use a glass plate, epoxy resin, etc.
  • the material may be hermetically sealed or vacuum sealed.
  • the shape of the device is not particularly limited.
  • the sealed body, the coated product or the coated surface of the semiconductor device member of the present invention is substantially metal / glass. There is no oxygen or moisture distribution! / Is in a state! /
  • the semiconductor device member of the present invention since the semiconductor device member of the present invention has good adhesion as described above, it can be used as an adhesive for semiconductor light-emitting devices. Specifically, for example, when bonding a semiconductor element and a package, when bonding a semiconductor element and a submount, when bonding package components, or when bonding a semiconductor light emitting device and an external optical member For example, it is possible to use the semiconductor device member of the present invention by applying, printing, potting and the like. Since the semiconductor device member of the present invention is particularly excellent in light resistance and heat resistance, when used as an adhesive for a high-power semiconductor light-emitting device that is exposed to high temperature or ultraviolet light for a long time, it has high reliability withstanding long-term use. Semiconductor light emitting devices can be provided.
  • the semiconductor device member of the present invention alone can sufficiently secure the adhesion, but for the purpose of further ensuring the adhesion, the surface of the semiconductor device member in direct contact with the surface.
  • Surface treatment for improving adhesion may be performed. Examples of such surface treatment include formation of an adhesion improving layer using a primer-silane coupling agent, chemical surface treatment using a chemical such as acid or alkali, plasma irradiation, ion irradiation, or electron beam. Examples include physical surface treatment using irradiation, roughening treatment such as sand blasting and etching 'fine particle coating'.
  • Other surface treatments for improving adhesion include, for example, JP-A-5-25300, Nobuhiro Inagaki “Surface Chemistry” Vol. 18 No. 9, pp21—26, Kuroo Kurosaki “Surface Chemistry” Vol. 19 No. 2, pp44-51 (1998), etc., the known surface treatment method.
  • the shape and size of the semiconductor device member of the present invention depends on the shape and size of the semiconductor device container. Determined.
  • the semiconductor device member is formed on the surface of some substrate, it is usually formed in a film shape. The dimensions are arbitrarily set according to the application.
  • the semiconductor device member of the present invention when the semiconductor device member of the present invention is formed in a film shape, one of the advantages is that it can be formed into a thick film.
  • a conventional semiconductor device member is thickened, cracks or the like are generated due to internal stress, etc., making it difficult to thicken the film, and the semiconductor device member of the present invention is not so stable. Thickening is possible.
  • the semiconductor device member of the present invention is preferably formed with a thickness of usually 0.1 am or more, preferably 1 C ⁇ m or more, more preferably 100 m or more.
  • the upper limit is not limited, but is usually 10 mm or less, preferably 5 mm or less, more preferably 1 mm or less.
  • the film thickness refers to the thickness of the maximum thickness portion of the film.
  • the member for a semiconductor device of the present invention can usually seal a semiconductor device without causing cracking for a longer period of time than before.
  • a semiconductor light emitting device is sealed using the semiconductor device member of the present invention, and a driving current of usually 20 mA or more, preferably 350 mA or more is supplied to the semiconductor light emitting device at a temperature of 85 ° C.
  • a driving current usually 20 mA or more, preferably 350 mA or more is supplied to the semiconductor light emitting device at a temperature of 85 ° C.
  • the luminance power after 500 hours or more, preferably 1000 hours or more, more preferably 2000 hours or more is not reduced compared to the luminance immediately after lighting.
  • the semiconductor device member may contain other components.
  • a phosphor or inorganic particles may be contained. This point will be described later together with the description of the application.
  • This semiconductor device member with few terminal alkoxy groups has high heat resistance with less weight loss due to TG-DTA.
  • the method for producing the semiconductor device member of the present invention is not particularly limited.
  • a compound represented by the following general formula (1) or general formula (2) and / or an oligomer thereof is hydrolyzed / polycondensed, It can be obtained by drying the polycondensate (hydrolysis / polycondensate).
  • the semiconductor device member of the present invention is mainly composed of siloxane bonds, it is desirable that the compound represented by the general formula (1) or an oligomer thereof is mainly composed of the raw material.
  • the hydrolysis / polycondensate contains a solvent, the solvent may be distilled off in advance before drying.
  • the hydrolyzed polycondensate or a composition containing it is referred to as a semiconductor device member forming liquid, which is obtained before the drying step. Therefore, when the member for a semiconductor device of the present invention is manufactured by the manufacturing method described here (hereinafter referred to as “the manufacturing method of the present invention” as appropriate), the semiconductor device member forming solution is subjected to a drying step. What was obtained becomes a member for a semiconductor device.
  • compound (1) a compound represented by the following general formula (1) (hereinafter referred to as “compound (1)”) and / or an oligomer thereof is used.
  • M is at least one element selected from the group consisting of silicon, aluminum, zirconium, and titanium. Of these, key is preferable.
  • m represents the valence of M, and is an integer of 1 or more and 4 or less. “M +” means that it is a positive valence.
  • n represents the number of X groups, and is an integer of 1 or more and 4 or less. However, m ⁇ n.
  • X is a hydrolyzable group that is hydrolyzed by water in the solution or moisture in the air to generate a hydroxyl group rich in reactivity. It can be used arbitrarily. For example, a C1-C5 lower alkoxy group, acetoxy group, butanoxime group, chloro group and the like can be mentioned.
  • Ci (i is a natural number) indicates that the number of carbon atoms is i.
  • X may be a hydroxyl group.
  • a C1-C5 lower alkoxy group is preferable because a component liberated after the reaction is neutral.
  • a methoxy group or an ethoxy group is preferable because it is highly reactive and the solvent to be liberated is light boiling.
  • Y 1 can be arbitrarily selected and used as a monovalent organic group of a so-called silane coupling agent.
  • the organic group particularly useful as Y 1 in the general formula (1) in the present invention is selected from the following group represented by Y ° (useful organic group group).
  • other organic groups may be selected as appropriate in order to improve affinity with other materials constituting the semiconductor device, improve adhesion, and adjust the refractive index of the semiconductor device member.
  • ⁇ ° A monovalent or higher-valent organic group derived from an aliphatic compound, alicyclic compound, aromatic compound, or aliphatic aromatic compound.
  • the number of carbon atoms of the organic group belonging to the group is usually 1 or more, and usually 1000 or less. Or 500 or less, more preferably 100 or less, and still more preferably 50 or less.
  • At least a part of hydrogen atoms of the organic group belonging to the group Y ° may be substituted with a substituent such as the atom and / or organic functional group exemplified below.
  • a plurality of hydrogen atoms of the organic group belonging to the group may be substituted with the following substituents.
  • one or more kinds selected from the following substituents may be used. It is replaced by the combination!
  • substituents that can be substituted with hydrogen atoms of organic groups belonging to the group ⁇ ° include atoms such as F, Cl, Br, and I; bur groups, methacryloxy groups, attaryloxy groups, styryl groups, mercapto groups, Organic functional groups such as epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group, and phenyl group Etc.
  • atoms such as F, Cl, Br, and I
  • bur groups methacryloxy groups, attaryloxy groups, styryl groups, mercapto groups
  • Organic functional groups such as epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group
  • the organic functional group is at least one of the hydrogen atoms of the organic functional group. Some may be substituted with halogen atoms such as F, Cl, Br, and I.
  • the organic functional group is an example that can be easily introduced, and various other types may be used depending on the purpose of use.
  • Organic functional groups having the following physicochemical functionalities may be introduced.
  • the organic group belonging to the group ⁇ ° may have various atoms or atomic groups such as ⁇ , ⁇ , or S as a linking group.
  • Y 1 is a force capable of selecting various groups depending on the purpose from the organic groups belonging to the useful organic group group Y °, etc. From the viewpoint of excellent ultraviolet resistance and heat resistance, It is preferable that the main group is a methyl group.
  • Examples of the compound (1) are as follows.
  • Examples of the compound in which ⁇ is silicon include : phenyloxysilane, butyltrimethoxysilane, butyltriethoxysilane, butylmethoxysilane, orange Sidoxypropynoletriethoxysilane, ⁇ - (3,4-epoxycyclohexinole) ethinoretrimethoxysilane, ⁇ — (3,4-epoxycyclohexenole) ethinore Triethoxysilane, ⁇ (meth) talyloxypropyl trimethoxysilane, phenyltrimethoxy
  • Examples include trichlorosilane, butururis (2-methoxyethoxy) silane, trifluoropropyltrimethoxysilane, and the like.
  • examples of the compound in which ⁇ is aluminum include, for example, aluminum triisopropoxide, aluminum tri- ⁇ butoxide, aluminum tri-t-butoxide
  • examples of the compound in which M is zirconium include, for example, zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n propoxide.
  • examples of the compound in which M is titanium include, for example, titanium tetrisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium tetra Examples include methoxypropoxide, titanium tetra n-propoxide, titanium tetraethoxide and the like.
  • the compounds specifically exemplified in these are a part of commercially available coupling agents, and more specifically, for example, “Optimum utilization technology of coupling agents” published by Science and Technology Research Institute. It can be shown by the list of coupling agents and related products in Chapter 9. Of course, the coupling agents that can be used in the present invention are not limited by these examples.
  • compound (2) the compound represented by the following general formula (2) (hereinafter referred to as "compound (2)” as appropriate) and / or its oligomer are also the same as the above compound (1) and / or its oligomer. Use with power S.
  • M, X and Y 1 each independently represent the same as in general formula (1).
  • Y 1 as in the case of general formula (1), it is possible to select various groups depending on the purpose from the organic groups belonging to the above-mentioned useful organic group group Y °. Excellent in UV resistance and heat resistance Therefore, it is preferable to have a methyl group as the main component.
  • s represents the valence of M, and is an integer of 2 or more and 4 or less. “S +” indicates that it is a positive integer.
  • Y 2 represents a u-valent organic group.
  • u represents an integer of 2 or more. Therefore, in the general formula (2), Y 2 can be arbitrarily selected from divalent or higher ones among the known organic groups of so-called silane coupling agents.
  • t represents an integer of 1 or more and s ⁇ l or less. However, t ⁇ s.
  • Examples of the compound (2) include those in which a plurality of hydrolyzable silyl groups are bonded as side chains to various organic polymers and oligomers, and organic compounds such as methylene chains in siloxane polymers. And those having a hydrolyzable silyl group bonded via a linking group and those having a hydrolyzable silyl group bonded to a plurality of terminals of the molecule.
  • the compound (2) may be synthesized by a known synthesis method other than hydrolysis and polycondensation. For example, an alkoxysilane containing a bull group is added to a polydimethylsiloxane chain having a SiH group by a hydrosilylation reaction to introduce a hydrolyzable silyl group, or a butyltrialkoxysilane is copolymerized with an acrylic monomer or a bull monomer. A hydrolyzable silyl group may be introduced. In such a case, unreacted residues and catalysts derived from the synthesis of compound (2) may remain in the system, but the performance as a semiconductor device member is not impaired! It is preferable to reduce reaction residues and catalysts! Specifically, it is preferable to use an immobilized catalyst and remove it after the reaction, or set the catalyst concentration to the minimum concentration at which the reaction proceeds.
  • Compound (1), compound (2), and / or oligomers thereof can be used as a raw material. That is, in the production method of the present invention, as a raw material, compound (1), oligomer of compound (1), compound (2), oligomer of compound (2), and compound (1) and compound (2) Any of ligomers may be used.
  • the molecular weight of the oligomer is arbitrary as long as the semiconductor device member of the present invention can be obtained. Usually 400 or more It is.
  • the main chain structure in the system may be an organic bond main body and may have poor durability.
  • compound (1) and / or its oligomer (component derived from compound (1)) and compound (2) and / or its oligomer (component derived from compound (2)) are used at the same time,
  • the proportion of the component (2) -derived component used is usually 30% by weight or less, preferably 20% by weight or less, more preferably 10% by weight or less.
  • the oligomer for compound (1) or compound (2) is used as a raw material in the method for producing a semiconductor device member forming liquid and a semiconductor device member of the present invention
  • the oligomer is used.
  • an oligomer may be prepared in the manufacturing process. That is, starting from monomers such as compound (1) or compound (2) Once this is made into an oligomer during the manufacturing process, the subsequent reaction can proceed from this oligomer.
  • oligomer has a structure similar to that obtained from a monomer such as compound (1) or compound (2) as a result, a commercially available product having such a structure is sufficient. Can also be used. Specific examples of such oligomers include the following.
  • Examples of hydroxy-terminated dimethylpolysiloxane manufactured by GE Toshiba Silicone include XC96-723, XF3905, YF3057, YF3800, YF3802, YF3807, and YF3897.
  • Examples of the hydroxy-terminated methylphenylpolysiloxane manufactured by GE Toshiba Silicone include YF3804.
  • Examples of the both-end silanol polydimethylsiloxane manufactured by Gelest include DMS-S12 and DMS-S14.
  • Examples of the double-end silanol diphenylsiloxane-dimethylsiloxane copolymer manufactured by Gelest include PDS-1615.
  • silicone alkoxy oligomers (methyl / methoxy type) manufactured by Shin-Etsu Chemical include KC-89S, KR-500, X-40-9225, X-40-9246, and X-40-9250.
  • silicone alkoxy oligomers phenyl / methoxy type manufactured by Shin-Etsu Chemical
  • KR-217 examples of silicone alkoxy oligomers manufactured by Shin-Etsu Chemical
  • silicone alkoxy oligomers (methylphenyl / methoxy type) manufactured by Shin-Etsu Chemical include KR-9218, KR-213, KR-510, X-40-9227, and X-40-9247.
  • the oligomer composed only of bifunctional silicon is the semiconductor device part of the present invention.
  • the effect of giving flexibility to the material is great, but mechanical strength tends to be insufficient with only bifunctional key.
  • the semiconductor device member of the present invention can obtain mechanical strength useful as a sealing material by polymerizing together with a monomer composed of trifunctional or higher functional monomer or an oligomer containing trifunctional or higher functional silicon. it can.
  • those having silanol as a reactive group do not need to be hydrolyzed in advance, and do not require the use of a solvent such as alcohol as a compatibilizer for adding water.
  • water for hydrolysis is required as in the case of using a monomer having an alkoxy group as a raw material.
  • compound (1), compound (2), and oligomer thereof (hydrolysis) containing C as M and having at least one organic group Y 1 or organic group Y 2 It is necessary to use at least one of them.
  • the cross-linking in the system is mainly formed by inorganic components including siloxane bonds! /, So when using both compound (1) and compound (2)
  • the compound (1) is preferably the main component.
  • the compound (1) and / or an oligomer thereof is used as a main material.
  • the oligomer of the compound (1) and / or the oligomer of the compound (2) is composed of a bifunctional composition.
  • the bifunctional unit of the oligomer of the compound (1) and / or the oligomer of the compound (2) is preferably used as a bifunctional oligomer.
  • bifunctional component oligomers when bifunctional ones (hereinafter referred to as "bifunctional component oligomers" as appropriate) are mainly used, these bifunctional component oligomers
  • the amount of is usually 50% by weight or more, preferably 60% by weight, based on the total weight of the raw materials (ie, the sum of the weights of compound (1), compound (2), and oligomers thereof). Above, more preferably 70% by weight or more. The upper limit of the amount used is usually 97% by weight.
  • the use of the bifunctional component oligomer as the main ingredient is one of the factors that allow the semiconductor device member of the present invention to be easily manufactured by the method of manufacturing a semiconductor device member of the present invention. This is because.
  • hydrolysis / polycondensates obtained by hydrolysis and polycondensation of the raw materials Had a high reaction activity. Therefore, if the hydrolyzed polycondensate is not diluted with a solvent such as alcohol, polymerization in the system proceeds and cures quickly, making molding and handling difficult. For example, conventionally, when it is not diluted with a solvent, it may be cured even if the temperature is about 40 ° C to 50 ° C. Therefore, in order to ensure the handling and / or properties of the hydrolyzed / polycondensate obtained after hydrolysis, it was essential to allow a solvent to coexist with the hydrolyzed / polycondensed product.
  • a solvent such as alcohol
  • a difunctional component is previously prepared as an oligomer in a separate system (that is, in a system not involved in the hydrolysis / polycondensation step). It is used as a raw material after distilling off low boiling impurities that have no reactive ends. Therefore, even if a large amount of bifunctional components (that is, the above-mentioned bifunctional component oligomers) is used, it is possible to improve the weight yield of the cured product without causing the low boiling impurities to volatilize, and the performance is good. An elastomer-like cured product can be obtained.
  • the reaction activity of the hydrolyzed polycondensate can be suppressed. This is presumably due to the steric hindrance and electronic effect of the hydrolyzed polycondensate, and the decrease in the amount of silanol terminals due to the use of bifunctional component oligomers.
  • the hydrolysis 'polycondensate does not cure without the presence of a solvent. Therefore, the hydrolysis' polycondensate can be made into a one-pack type and solvent-free system. .
  • hydrolysis / polycondensation reaction first, the above compound (1), compound (2), and / or oligomer thereof is subjected to hydrolysis / polycondensation reaction (hydrolysis / polycondensation step).
  • This hydrolysis / polycondensation reaction can be carried out by a known method.
  • raw material compounds when referring to the compound (1), the compound (2), and the oligomer thereof without distinction, they are referred to as “raw material compounds”.
  • the amount of water used for carrying out the hydrolysis and polycondensation reaction is preferably 80% or more, more preferably 100% or more, when expressed by the above hydrolysis rate.
  • the hydrolysis rate is less than this range, hydrolysis and polymerization are insufficient, and thus the raw material may volatilize during curing or the strength of the cured product may be insufficient.
  • the hydrolysis rate exceeds 200%, free water always remains in the system during curing, causing deterioration of the semiconductor element and phosphor due to moisture, and the cup part absorbs water and foams during curing. May cause cracking and peeling.
  • the upper limit of the hydrolysis rate is usually 500% or less, particularly 300% or less, preferably 200% or less.
  • the raw material compound is hydrolyzed and polycondensed, it is preferable to promote hydrolysis and polycondensation in the presence of a catalyst or the like.
  • the catalyst used include organic acids such as acetic acid, propionic acid and butyric acid; inorganic acids such as nitric acid, hydrochloric acid, phosphoric acid and sulfuric acid; organometallic compound catalysts.
  • organometallic compound catalysts that have little effect on insulation properties are preferred when used as a member that is used in a portion that directly contacts a semiconductor device.
  • the organometallic compound catalyst refers not only to a catalyst consisting of a narrowly-defined organometallic compound in which an organic group and a metal atom are directly bonded, but to an organometallic complex, a metal alkoxide, an organic acid and a metal.
  • organometallic compound catalysts containing at least one element selected from zirconium, hafnium, tin, zinc and titanium are preferred. More preferred are organometallic compound catalysts comprising
  • organometallic compound catalyst containing zirconium include soot, zirconium dibutoxy diacetyl etherate, zirconium tetranormal pro-zirconium acylate, zirconium tributoxy systemate, and the like. Is mentioned.
  • examples of the organometallic compound catalyst containing hafnium include hafnium tetracetylacetonate, hafnium tributoxycetylacetonate, hafnium dibutoxysopropoxide, nofnium tetranoremanolebutoxide, Examples include hafnium acylate and nofumum tributoxy systemate.
  • organometallic compound catalyst containing titanium examples include titanium tetraisopropoxide, titanium tetranormal butoxide, butyl titanate dimer, tetraethylacetoacetate and the like.
  • organometallic compound catalyst containing zinc examples include zinc stearate, zinc octylate, zinc 2-ethylhexanoate, and zinc triacetylacetonate.
  • organometallic compound catalysts containing tin include tetraptyltin, monooctyltin, dioctyltin dichloride, dioctyltin oxide, tetramethyltin, dibutyltin laurate, dioctyltin.
  • Laurate bis (2-ethylhexanoate) tin, bis (neodecanoate) tin, di-n-butylbis (ethylhexylmalate) tin, di-normal butylbis (2,4-pentanedionate) tin, di- Examples include normal butynoleyl tin and dimethyldineodecanoate tin.
  • organometallic compound catalysts may be used alone or in combination of two or more in any combination and ratio.
  • the above preferred organometallic compound catalyst when hydrolyzing and polycondensing the raw material compound, the formation of a low-molecular cyclic siloxane as a by-product is suppressed, and a semiconductor device member forming liquid can be produced with a high yield. Can be synthesized.
  • the semiconductor device component of the present invention can achieve high heat resistance satisfying the range of the characteristic (1) described in [11].
  • the organometallic compound is temporarily bonded to the silanol end of the hydrolysis of the raw material compound, not just promoting the polycondensation reaction as a catalyst.
  • Can be dissociated, thereby adjusting the reactivity of the silanol-containing polysiloxane to (i) prevent oxidation of organic groups under high temperature conditions, (ii) prevent unwanted crosslinking between polymers, (iii) It is thought to have an action force to prevent strand breakage.
  • these actions (i) to (iii) will be described.
  • the organometallic compound catalyst binds to silanol, thereby suppressing the weight loss of the heat due to the intramolecular attack of silanol and the formation of cyclic siloxane. It is assumed that the heat resistance is improved.
  • a preferable blending amount of the organometallic compound catalyst is appropriately selected depending on the type of the catalyst to be used. 0.05 wt% or more, more preferably 0.1 wt% or more, and usually 5 wt% The amount is preferably 2% by weight or less, particularly preferably 1% by weight or less. If the amount of the organometallic compound catalyst is too small, it may take too much time for curing, or sufficient mechanical strength and durability may not be obtained due to insufficient curing. On the other hand, if there are too many organometallic compound catalysts, curing will be too fast and it will be difficult to control the physical properties of the cured semiconductor device member, or the catalyst will not dissolve and disperse and will precipitate and increase the transparency of the semiconductor device member. There is a possibility that the components for semiconductor devices, which can be damaged or the amount of organic substances brought in by the catalyst itself, can be colored when used at high temperatures.
  • organometallic catalysts may be mixed into the raw material at the time of hydrolysis and condensation, or may be divided and mixed. Further, a solvent may be used to dissolve the catalyst during hydrolysis / polycondensation, or the catalyst may be dissolved directly in the reaction solution. However, when used as a forming liquid for semiconductor light-emitting devices, it is desirable to strictly distill off the solvent after the hydrolysis / polycondensation step in order to prevent foaming during heating and coloring due to heat.
  • the catalyst is solid, the catalyst has low solubility, and if the temperature is raised directly with insufficient dissolution, a locally heterogeneous reaction occurs and the system becomes cloudy or a transparent gel-like insoluble matter is generated. Sometimes.
  • the catalyst particles can be easily dissolved by pulverizing the catalyst particles to tens to hundreds of meters in a mortar, or (ii) a resin mixed with a catalyst to dissolve the catalyst.
  • the composition is preferably preheated while stirring at 30 to 50 ° C., and the temperature is raised to the reaction temperature after the catalyst is dissolved.
  • siloxane raw materials having different activities it is preferable to mix a catalyst with a component having a low activity and the component having the highest activity after the catalyst is dissolved.
  • a solvent may be used.
  • the solvent for example, C1 to C3 lower alcohols, dimethylformamide, dimethyl sulfoxide, acetone, tetrahydrofuran, methylcetosolve, ethylcellosolve, methylethylketone, toluene, water and the like can be used arbitrarily. Those which are not acidic or basic are preferred because they do not adversely affect hydrolysis and polycondensation.
  • the solvent one kind may be used alone, but two kinds or more may be used in any combination and ratio.
  • the amount of solvent used can be freely selected, it is preferable to use the minimum amount necessary because the solvent is often removed when applying to semiconductor devices. .
  • a solvent such as alcohol is generated by the hydrolysis reaction, so that it may be non-uniform at the beginning of the reaction but uniform during the reaction.
  • the hydrolysis and polycondensation reaction of the above raw material compound is carried out at normal pressure, it is usually 15 ° C or higher, preferably 20 ° C or higher, more preferably 40 ° C or higher, and usually 140 ° C.
  • it is preferably carried out in the range of 135 ° C or lower, more preferably 130 ° C or lower. It is better to maintain the liquid phase under pressure! /, And the force that can be performed at temperature is not to exceed 150 ° C! /.
  • Hydrolysis / polycondensation reaction time varies depending on the reaction temperature, but is usually 0.1 hour or more, preferably 1 hour or more, more preferably 3 hours or more, and usually 100 hours or less, preferably 20 hours. Thereafter, it is more preferably carried out for 15 hours or less. It is preferable to adjust the reaction time appropriately while managing the molecular weight!
  • the obtained hydrolysis / polycondensate is stored at room temperature or lower until its use S, and polycondensation proceeds slowly during this period. Therefore, especially when used as a thick film member, it is usually within 60 days, preferably within 30 days, more preferably 15 days at room temperature storage after the completion of the hydrolysis / polycondensation reaction by heating. Preferable to use within days! /. This period can be extended by cryogenic storage in the range! It is preferable to adjust the storage period while controlling the molecular weight!
  • the above-mentioned hydrolysis of the raw material compound (polycondensate) is obtained.
  • This hydrolyzed 'polycondensate is preferably liquid.
  • solid hydrolysis-polycondensates can be used as long as they become liquid by using a solvent.
  • the liquid hydrolysis / polycondensate thus obtained is a member forming solution for a semiconductor device that becomes a member for a semiconductor device of the present invention by curing in a step described later.
  • the hydrolysis' polycondensate is cured.
  • the solvent can be distilled off. By distilling off the solvent before drying, it is possible to prevent cracking, recording IJ separation, spring breakage, etc. due to solvent removal shrinkage.
  • the solvent to be distilled off also includes a solvent represented by XH or the like produced by hydrolysis of the raw material compounds represented by the above general formulas (1) and (2). Furthermore, low-molecular cyclic siloxane by-produced during the reaction is also included.
  • the method for distilling off the solvent is arbitrary as long as the effects of the present invention are not significantly impaired. However, it should be avoided to distill off the solvent at a temperature higher than the curing start temperature of the hydrolysis and polycondensate.
  • the specific range of temperature conditions for distilling off the solvent is usually 60 ° C or higher, preferably 80 ° C or higher, more preferably 100 ° C or higher, and usually 150 ° C or lower. Preferably it is 130 ° C or lower, more preferably 120 ° C or lower. Below the lower limit of this range, the solvent may be insufficiently distilled, and when the upper limit is exceeded, the hydrolyzate / polycondensate may gel.
  • the pressure condition for distilling off the solvent is usually atmospheric pressure. If necessary, reduce the pressure so that the boiling point of the reaction mixture does not reach the curing start temperature (usually 120 ° C or higher). In addition, the lower limit of the pressure is such that the main component of the hydrolysis' polycondensate does not distill Degree.
  • light boiling components can be efficiently distilled off under high temperature and high vacuum conditions.
  • the amount of light boiling components is very small, it cannot be accurately distilled off due to the shape of the apparatus. May increase too much.
  • a predetermined type of catalyst when used, it may be deactivated when subjected to a high temperature reaction for a long time, and the semiconductor device member forming liquid may be hardened. Therefore, in these cases, the light boiling component may be distilled off at low temperature and normal pressure by blowing nitrogen or steam distillation, if necessary.
  • the molecular weight of the hydrolysis / polycondensation reaction is increased moderately in order to prevent the main component of the hydrolysis and polycondensate from distilling. It is desirable to keep it.
  • Semiconductor device parts manufactured using these methods to remove light boiling components such as solvents, moisture, by-product low-molecular-weight cyclic siloxane, and dissolved air are removed by vaporization of light boiling components. This is preferable because it can reduce foaming during curing and peeling from the device during high temperature use.
  • the distillation of the solvent is not an essential operation.
  • a solvent having a boiling point equal to or lower than the hydrolysis temperature of the hydrolysis / polycondensate when used, when the hydrolysis / polycondensation product is dried, before the hydrolysis of the hydrolysis / polycondensation product starts, Therefore, the generation of cracks and the like due to desolvation shrinkage can be prevented even without performing a solvent distillation step.
  • the volume of the hydrolysis / polycondensate may change due to volatilization of the solvent, it is preferable to distill the solvent from the viewpoint of precisely controlling the dimensions and shape of the semiconductor device member.
  • the member for a semiconductor device of the present invention can be obtained by drying the hydrolysis / polycondensation product obtained by the hydrolysis / polycondensation reaction described above (drying process or curing process).
  • This hydrolyzed polycondensate is normally a liquid force as described above, and is dried in a mold of the target shape for the semiconductor device of the present invention having the target shape.
  • a member can be formed.
  • this hydrolyzed 'polycondensate applied to the target site the target site can be obtained.
  • the member for a semiconductor device of the present invention can be directly formed.
  • the solvent is not necessarily vaporized, but here, the hydrolyzed polycondensate having fluidity is referred to as the drying step including the phenomenon that the fluidity loses fluidity and hardens. Therefore, when there is no solvent vaporization, the term “drying” may be read as “curing”.
  • the hydrolysis / polycondensate is further polymerized to form a metalloxane bond, and the polymer is dried and cured to obtain the semiconductor device member of the present invention.
  • the hydrolysis / polycondensate is heated to a predetermined curing temperature to be cured.
  • the specific temperature range is arbitrary as long as hydrolysis / drying of the polycondensate is possible.
  • the metalloxane bond is usually formed efficiently at 100 ° C or higher, preferably 120 ° C or higher, more preferably Implemented above 150 ° C.
  • the time for maintaining the curing temperature (curing time) for drying the hydrolyzate / polycondensate is not generally determined by the catalyst concentration or the thickness of the member, but is usually 0.1 hour or more. Preferably it is 0.5 hours or more, more preferably 1 hour or more, and usually 10 hours or less, preferably 5 hours or less, more preferably 3 hours or less.
  • the temperature raising conditions in the drying step are not particularly limited. That is, during the drying process, the temperature may be maintained at a constant temperature, or the temperature may be changed continuously or intermittently. In addition, the drying process may be further divided into a plurality of times. Furthermore, the temperature may be changed stepwise in the drying process. By changing the temperature stepwise, it is possible to obtain the advantage that foaming due to residual water vapor can be prevented. In addition, when cured at a low temperature and then cured at a high temperature, it is possible to obtain an advantage that internal stress is hardly generated in the obtained semiconductor device member and cracks and peeling are unlikely to occur.
  • the hydrolysis / polycondensation product is obtained even if the solvent distillation step is not performed or the solvent distillation step is performed. If the solvent remains in the solvent, the drying step is performed at a temperature below the boiling point of the solvent. It is preferable to carry out by dividing into a first drying step that substantially removes water and a second drying step that dries at a temperature equal to or higher than the boiling point of the solvent.
  • solvent mentioned here includes a solvent represented by XH or the like and a low-molecular cyclic siloxane produced by hydrolysis / polycondensation reaction of the above-mentioned raw material compounds.
  • drying refers to a step of hydrolysis of the above-mentioned raw material compound, in which the polycondensate loses the solvent, and further polymerizes and cures to form a metalloxane bond.
  • the first drying step is to substantially remove the contained solvent at a temperature not higher than the boiling point of the raw material compound without actively proceeding with further polymerization of the polycondensate. It is what you do. That is, the product obtained in this step is hydrolyzed prior to drying, the polycondensate is concentrated, the hydrogen-bonded viscous liquid or soft film-like force, and the solvent are removed. Hydrolysis ⁇ Polycondensate is present in liquid form.
  • the first drying step it is usually preferable to perform the first drying step at a temperature lower than the boiling point of the solvent.
  • the first drying is performed at a temperature equal to or higher than the boiling point of the solvent, the resulting film is foamed by the vapor of the solvent, and a uniform film having no defects is obtained.
  • This first drying step may be performed in a single step if the solvent evaporation efficiency is good, such as when it is a thin film member V, but the evaporation efficiency is poor if it is molded on a cup! /
  • the temperature may be divided into a plurality of steps.
  • a shape having extremely poor evaporation efficiency it may be dried and concentrated in advance in another efficient container, and then applied in a state where fluidity remains, and further dried. If the evaporation efficiency is poor, it is preferable to devise a method to dry the entire member uniformly without taking steps to concentrate only on the surface of the member, such as ventilation drying with a large air volume.
  • the hydrolysis 'polycondensate is heated to a temperature equal to or higher than the boiling point of the solvent in the state where the solvent of the hydrolysis' polycondensate has substantially disappeared in the first drying step.
  • a metalloxane bond to form a stable cured product. If a large amount of solvent remains in this process, the volume is reduced due to evaporation of the solvent while the crosslinking reaction proceeds, resulting in a large internal stress, which causes peeling and cracking due to shrinkage. Since the metalloxane bond is usually formed efficiently at 100 ° C or higher, the second drying step is preferably performed at 100 ° C or higher, more preferably 120 ° C or higher.
  • the curing time in the second drying step is not generally determined depending on the catalyst concentration, the thickness of the member, etc., but is usually 0.1 hours or more, preferably 0.5 hours or more, more preferably 1 hour or more, Usually, it is carried out for 10 hours or less, preferably 5 hours or less, more preferably 3 hours or less.
  • each drying step is not particularly limited as long as the first drying step and the second drying step described above are substantially realized. That is, during each drying step, the temperature may be maintained at a constant temperature, or the temperature may be changed continuously or intermittently. In addition, each drying step may be further divided into a plurality of times. Furthermore, even if the temperature temporarily exceeds the boiling point of the solvent during the first drying step, or a period during which the temperature is lower than the boiling point of the solvent is interposed during the second drying step, In particular, as long as the solvent removal step (first drying step) and the curing step (second drying step) as described above can be achieved independently, they are included in the scope of the present invention.
  • the hydrolyzed 'polycondensate becomes a liquid hydrolyzed' polycondensate containing no solvent. Then, after drying at a temperature equal to or higher than the boiling point of the solvent (that is, the curing temperature), a step of curing the hydrolysis / polycondensate (second drying step) proceeds. Therefore, when a solvent having a boiling point equal to or lower than the curing temperature is used as the solvent, the first drying step and the second drying step are performed even if they are not intended to be performed. .
  • the use of a solvent having a boiling point equal to or lower than the curing temperature of the hydrolysis polycondensate, preferably less than the above curing temperature, is that the hydrolysis / polycondensate contains a solvent during the drying step. Even if it is, it will not have a major impact on the quality of the semiconductor device components!
  • the obtained semiconductor device member may be subjected to various post-treatments as necessary.
  • the post-treatment include surface treatment for improving adhesion to the mold part, production of an antireflection film, and production of a fine uneven surface for improving light extraction efficiency.
  • the semiconductor device member forming liquid of the present invention is a liquid material obtained by a hydrolysis / polycondensation process, and becomes a semiconductor device member by being cured in a drying process. .
  • the semiconductor device member forming liquid is a curable organopolysiloxane
  • a branched organopolysiloxane is preferred to a linear organopolysiloxane in terms of the thermal expansion coefficient of the cured product.
  • the cured product of the linear organopolysiloxane is elastomeric and has a large coefficient of thermal expansion, but the thermal expansion coefficient of the cured product of the branched organopolysiloxane is the heat of the cured product of the linear organopolysiloxane. This is because the change in optical properties accompanying thermal expansion is small because it is smaller than the expansion coefficient! /.
  • the viscosity of the semiconductor device member forming liquid of the present invention is not limited, but is usually 20 mPa's or more, preferably lOOmPa's or more, more preferably 200 mPa's or more, at a liquid temperature of 25 ° C. Usually, it is 1500 mPa's or less, preferably lOOOOmPa's or less, more preferably 800 mPa's or less.
  • the viscosity is an RV viscometer (for example, RV manufactured by Brookfield). It can be measured with a type viscometer “RVDV—II + Pro”.
  • the weight average molecular weight and molecular weight distribution of the semiconductor device member forming solution of the present invention are not limited.
  • the member forming solution for semiconductor devices of the present invention has a polystyrene-equivalent weight average molecular weight (Mw) measured by GPC (gel permeation chromatography) of usually 500 or more, preferably 900 or more, more preferably 3200 or more. Usually, it is 400,000 or less, preferably 70,000 or less, more preferably 27,000 or less. If the weight average molecular weight is too small, bubbles tend to be generated during curing after filling the semiconductor device container. If the weight average molecular weight is too large, the semiconductor device component forming liquid tends to thicken over time even at low temperatures. There exists a tendency for the filling efficiency to a container to worsen.
  • the molecular weight distribution (Mw / Mn, where Mw represents the weight average molecular weight and Mn represents the number average molecular weight) is usually 20 or less, preferably 10 or less, more preferably 6 or less. . If the molecular weight distribution is too large, the material tends to thicken over time even at low temperatures and the filling efficiency into the semiconductor device container tends to deteriorate. Mn can be measured in terms of polystyrene by GPC, the same as Mw.
  • the member forming liquid for a semiconductor device of the present invention preferably has a low molecular weight component below a specific molecular weight. Specifically, it is usually 10% or less, preferably 7.5% or less, more preferably 5% or less of the total component force having a molecular weight of 800 or less in terms of the GPC area ratio in the semiconductor device member forming liquid of the present invention. is there. If there are too many low molecular weight components, bubbles may be generated during the curing of the semiconductor device member forming solution, or the weight yield (solid content) during curing may be reduced due to volatilization of the main components.
  • the semiconductor device member forming liquid of the present invention preferably has a low molecular weight component equal to or higher than a specific molecular weight.
  • the molecular weight force at which the high molecular weight fractional range force is 5% is usually 1000000 or less, preferably 30000 or less, more preferably 110000 or less. If there is too much fractionation range on the high molecular weight side in GPC,
  • the semiconductor device member forming liquid of the present invention preferably has the molecular weight range shown above, and the following method may be mentioned as a method for making such a molecular weight range. S is possible.
  • reaction rate and conditions during the synthesis reaction are appropriately controlled so that the polymerization reaction proceeds uniformly, and the molecular weight distribution is not increased more than necessary.
  • a semiconductor device member is formed from a polycondensate obtained by hydrolysis and polycondensation of a specific compound as in "[2] Method for producing a semiconductor device member", it is used for a semiconductor device. It is preferred that the hydrolysis and polymerization reaction during the synthesis of the member forming liquid proceed uniformly while maintaining an appropriate reaction rate. Hydrolysis / polymerization is usually 15 ° C or higher, preferably 20 ° C or higher, more preferably 40 ° C or higher, and usually 140 ° C or lower, preferably 135 ° C or lower, more preferably 130 ° C or lower. Do in range.
  • the hydrolysis time varies depending on the reaction temperature, usually 0.1 hour or more, preferably 1 hour or more, more preferably 3 hours or more, and usually 100 hours or less, preferably 20 hours or less, more preferably 15 It will be carried out within the time range. If the reaction time is shorter than this, the required molecular weight is not reached, or the reaction proceeds non-uniformly. As a result, low molecular weight raw materials remain and high molecular weight components exist, resulting in poor cured product quality and storage stability. It may become scarce. Further, the reaction time longer than this, or the polymerization catalyst is deactivated, long forces the synthesis, a possible force s hunting productivity is deteriorated.
  • reaction activity of the raw material is low and the reaction is difficult to proceed, if necessary, an inert gas such as argon gas, helium gas or nitrogen gas is circulated to The reaction may be accelerated by removing the alcohol accompanied.
  • the reaction time is adjusted as appropriate while controlling the molecular weight by GPC and viscosity measurement. It is preferable to do so. Furthermore, it is preferable to adjust in consideration of the temperature rising time.
  • the solvent When using a solvent, it is preferable to carry out the solvent distillation at normal pressure as required. Further, when the boiling point of the solvent or the low molecular weight substance to be removed is the curing start temperature (usually 120 ° C or higher), it is preferable to carry out distillation under reduced pressure as necessary. On the other hand, depending on the purpose of use, such as a thin coating of the light guide film, a part of the solvent may remain to reduce the viscosity. A solvent different from the reaction solvent may be added after the reaction solvent is distilled off. ,.
  • the upper limit and the lower limit of the molecular weight distribution of the semiconductor device member forming solution are preferably within the above range, and the molecular weight distribution is not necessarily limited.
  • semiconductor device member forming liquids having different molecular weight distributions may be mixed.
  • the molecular weight distribution curve may be multimodal. For example, in order to give mechanical strength to a semiconductor device member, a small amount of a low-molecular-weight second semiconductor device member-forming liquid containing a large amount of adhesion components is added to the first semiconductor device-member-forming liquid finished to a high molecular weight. This is the case when contained.
  • the low boiling point component in the semiconductor device member forming liquid of the present invention is preferably small, as in the case of the semiconductor device member of the present invention described in "[1 4 9] Low boiling point component”. Yes.
  • the semiconductor device member and the semiconductor device member forming liquid with few terminal alkoxy groups have high heat resistance with less weight loss due to TG-DTA.
  • the amount of alkoxy groups contained in the semiconductor device forming liquid of the present invention is usually 5% by weight or less, preferably 3% by weight or less, and more preferably 0.2% by weight or less.
  • the semiconductor device member forming liquid may contain other components.
  • the semiconductor device member forming liquid may contain phosphors, inorganic particles, and the like.
  • the one containing the semiconductor device member forming solution and the phosphor is particularly referred to as the phosphor composition of the present invention.
  • the use of the member for a semiconductor device of the present invention is not particularly limited, and can be used for various uses represented by a member (sealing material) for sealing a semiconductor element or the like.
  • a member sealing material
  • phosphor particles and / or inorganic particles in combination, it can be suitably used for a specific application.
  • the combined use of these phosphor particles and inorganic particles will be described.
  • the member for a semiconductor device of the present invention is obtained, for example, by dispersing a phosphor in a member for a semiconductor device and molding the phosphor in a cup of a semiconductor light emitting device, or by applying it in a thin layer on an appropriate transparent support. It can be used as a wavelength converting member.
  • One type of phosphor may be used alone, or two or more types may be used in any combination and ratio.
  • composition of the phosphor is typically represented by the crystal matrix Y O, Zn SiO, etc.
  • Metal oxides, phosphates typified by Ca (PO) C1, etc. and ZnS, SrS, CaS, etc.
  • crystal matrix for example, (Zn, Cd) S, SrGa S, SrS, ZnS, etc.
  • Sulfides such as Y O S, (Y, Gd) Al O, YAIO, BaMgAl O, (Ba, S
  • borate such as gB 2 O, (Y, Gd) BO, Ca (PO 2) (F, CI), (Sr, Ca, Ba, Mg) (
  • Halophosphates such as PO) CI, phosphates such as SrPO, (La, Ce) PO, etc.
  • the above-mentioned crystal matrix and activator or coactivator are particularly limited in elemental composition. However, it can be partially replaced with elements of the same family, and the obtained phosphor can be used as long as it absorbs light in the near ultraviolet to visible region and emits visible light.
  • phosphors that can be used in the present invention are not limited to these.
  • phosphors that differ only in part of the structure are omitted as appropriate. For example, “Y SiO: Ce 3+ ”, “Y SiO: Tb 3+ ” and “Y SiO: Ce 3+ , Tb 3+ ” are changed to “YS
  • the peak wavelength is usually 570 nm or more, preferably 580 nm or more, Usually, it is 700 nm or less, preferably 680 nm or less.
  • Such a red phosphor is composed of, for example, fractured particles having a red fracture surface, and emits light in the red region (Mg, Ca, Sr, Ba) Si N: Eu mouth represented by Eu Piu
  • Activated alkaline earth silicon nitride phosphor composed of growing particles with a nearly spherical shape as a regular crystal growth shape, and emits light in the red region (Y, La, Gd, Lu) OS: Eu
  • Eu-activated oxysulfide fireflies such as (La, Y) OS: Eu
  • Sr Eu-activated sulfide phosphor such as Eu, etc.
  • YAIO Eu-activated aluminate phosphor such as Eu LiY (SiO 2) O: Eu, Ca Y (SiO 2) O: Eu, (Sr, Ba, Ca) SiO: Eu, Sr Ba
  • SiO Eu-activated silicate phosphor such as Eu, (Y, Gd) Al 2 O: Ce, (Tb, Gd) Al 2 O: C
  • Ce activated aluminate phosphor such as 5 3 5 12 3 5 12 e, (Ca, Sr, Ba) Si N: Eu, (Mg, Ca, Sr, Ba)
  • SiN Eu
  • AlSiN Eu-activated nitride phosphors such as Eu, (Mg, Ca, Sr, Ba)
  • Sr, Ba) AlSiN Ce-activated nitride phosphor such as Ce, (Sr, Ca, Ba, Mg) (PO) CI:
  • Mn-activated halophosphate phosphors such as Eu, Mn, (Ba Mg) Si O: Eu, Mn, (Ba, S
  • Mn-activated germanate phosphor such as Mn, Eu-activated ⁇ sialon
  • Eu-activated oxynitride phosphors such as (Gd, Y, Lu, La) 2 O: Eu, Bi-activated oxidation such as Eu and Bi
  • VO Eu
  • Bi-activated vanadate phosphor such as Eu, Bi, SrY S: Eu, Ce
  • Ce activated sulfide phosphors such as 4 2 4, CaLa S: Ce activated sulfide phosphors such as Ce, (Ba, S
  • MgPO Eu, Mn
  • Sr, Ca, Ba, Mg, Zn PO Eu, Mn, etc. with Eu, Mn
  • Eu, Ce x y z such as light body, (Ba, Sr, Ca) Si N: Eu, Ce (where x, y, z are integers of 1 or more)
  • red organic phosphor composed of a rare earth element ion complex having an anion such as ⁇ -diketonate, ⁇ -diketone, aromatic carboxylic acid, or Bronsted acid as a ligand, a perylene pigment (for example, dibenzo ⁇ [f, f ']-4,4', 7,7'-tetraphenyl-2-diendeno [1,2,3-cd: l ', 2,, 3,1lm] perylene), anthraquinone Pigments, lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments, isoindolinone pigments, phthalocyanine pigments, triphenylmethane basic dyes, indanthrone pigments Indophenol pigments, cyanine pigments, and dioxazine pigments can also be used.
  • a perylene pigment for example, dibenzo ⁇ [f, f ']-4,4
  • the peak wavelength is 580 nm or more, preferably 590 nm or more, Those having a wavelength of 620 nm or less, preferably 610 nm or less can be suitably used as an orange phosphor.
  • orange phosphors are (Sr, Ba) SiO 2: Eu, (
  • the peak wavelength is usually 490 nm or more, preferably 500 nm or more, Usually, it is 570 nm or less, preferably 550 nm or less.
  • a green phosphor such as two, for example, it is composed of fractured particles having a fracture surface and emits light in the green region (Mg, Ca, Sr, Ba) Si ON: Eu-pium represented by Eu With
  • Active alkaline earth silicon oxynitride phosphor composed of fractured particles with fractured surface, and emits light in the green region (Ba, Ca, Sr, Mg) SiO: Eu mouth expressed by Eu
  • Examples include a palladium-activated alkaline earth silicate phosphor.
  • green phosphors include SrAlO: Eu and (Ba, Sr, Ca) AlO: Eu.
  • Eu activated aluminate phosphor such as 4 14 25 2 4, (Sr, Ba) Al Si O: Eu, (Ba, Mg) SiO: Eu, (
  • Eu-activated borate phosphor such as Eu
  • Sr Si O 2SrCl Eu-activated halosilica such as Eu
  • Tb-activated aluminate phosphor such as Tb, Ca Y (SiO 2) O: Tb, La Ga SiO: T
  • Tb-activated silicate phosphor such as b, (Sr, Ba, Ca) Ga S: Eu, Tb, Sm such as Eu, Tb, Sm
  • Ce-activated aluminate phosphor such as Ce, Ca Sc Si O: Ce, Ca (Sc,
  • Ce-activated silicate phosphor such as Ce
  • CaSc O Ce-activated acid such as Ce
  • Tb-activated oxysulfide phosphors such as 2 4 2 2, LaPO: Ce, Tb-activated phosphate phosphors such as Ce and Tb, Z nS: Cu, Al, ZnS: Sulfide phosphors such as Cu, Au, Al, etc. (Y, Ga, Lu, Sc, La) BO: C
  • An active halosilicate phosphor or the like can also be used.
  • a green phosphor a pyridine monophthalimide condensed derivative, a benzoxazinone-based, a quinazolinone-based, a coumarin-based, a quinophthalone-based, a naltalimide-based fluorescent dye, or a hexyl salicylate as a ligand It is also possible to use organic phosphors such as terbium complexes.
  • the peak wavelength is usually 420 nm or more, preferably 440 nm or more, Usually, it is 480 nm or less, preferably 470 nm or less.
  • the blue phosphor such as N is composed of grown particles having a hexagonal shape as a regular crystal growth shape, and is represented by BaMgAl 2 O 3: Eu that emits light in the blue region.
  • Palladium-activated barium magnesium aluminate-based phosphor composed of regularly grown crystal grains with a nearly spherical shape, emits light in the blue region (Ca, Sr, Ba) (PO)
  • CI Eu-pium-activated calcium halophosphate fluorescence expressed by Eu
  • a regular crystal growth shape consisting of growing particles with a nearly cubic shape and emitting blue region light emission (Ca, Sr, Ba) B O CI: Eu
  • Alkaline earth chloroborate phosphor composed of fractured particles with a fracture surface, emits light in the blue-green region (Sr, Ca, Ba) Al 2 O: Eu or (Sr, Ca, Ba) Al 2 O: Eu so
  • alkaline earth aluminate-based phosphors activated by Pium are represented.
  • Sn-activated phosphate phosphor such as Sr P 2 O 3: Sn
  • SrGa S Ce
  • CaGa S Ce-activated thiogallate phosphor such as Ce, (Ba, Sr, Ca) M
  • gAl 2 O Eu
  • BaMgAl 2 O Eu-activated aluminate phosphors such as Eu, Tb, and Sm (Ba , Sr, Ca)
  • MgAl O Eu
  • Mn-activated aluminate phosphor such as Eu, Mn, (Sr, Ca, B
  • Eu-activated halophosphate phosphors such as BaAl Si O: Eu, (Sr, Ba) MgSi O: E such as Eu
  • Eu-activated phosphate phosphor such as Sr P O: Eu, ZnS: Ag, ZnS:
  • Sulfide phosphors such as Ag and A1
  • Y SiO Ce-activated silicate phosphors such as Ce, and CaWO
  • the blue phosphor includes, for example, naphthalimide, benzoxazole, styryl, coumarin, pyrazoline, and triazole compound fluorescent dyes, and organic phosphors such as thulium complexes. It is also possible to use it.
  • yellow phosphor An example of the specific wavelength range of the fluorescence emitted by a phosphor emitting yellow fluorescence (hereinafter referred to as “yellow phosphor” as appropriate) is usually 530 nm or more, preferably 540 nm or more, and more preferably 550 nm.
  • the wavelength is usually 620 nm or less, preferably 600 mm or less, more preferably 580 nm or less. If the emission peak wavelength of the yellow phosphor is too short, the yellow component is reduced and the semiconductor light-emitting device may have poor color rendering. If it is too long, the brightness of the semiconductor light-emitting device may be reduced.
  • Examples of such yellow phosphors include various oxide-based, nitride-based, oxynitride-based, sulfide-based, and oxysulfide-based phosphors.
  • RE M O Ce (where R
  • M represents at least one element of Y, Tb, Gd, Lu, and Sm
  • M represents at least one element of Al, Ga, and Sc.
  • M 3 is a trivalent metal element
  • M 4 is garnet phosphor having a garnet structure represented by tetravalent metal element) and the like
  • yellow phosphors include CaGa S: Eu (Ca, Sr) Ga S: Eu, (Ca, S
  • a phosphor activated with Eu such as an oxynitride phosphor having an N structure.
  • the semiconductor device member of the present invention may contain a phosphor other than those described above.
  • the semiconductor device member of the present invention may be a fluorescent glass in which an ionic fluorescent material or an organic-inorganic fluorescent component is dissolved and dispersed uniformly and transparently.
  • the particle size of the phosphor used in the present invention is not particularly limited, but the median particle size (D) is usually 0.
  • Light emitted from the semiconductor element is sufficiently scattered.
  • wavelength conversion is performed with high efficiency, and light emitted from the phosphor is irradiated in all directions.
  • primary light from multiple types of phosphors can be mixed to make white, and uniform white can be obtained, so uniform white light and illuminance can be obtained in the synthesized light emitted by the semiconductor light emitting device.
  • the median particle diameter (D) of the phosphor is larger than the above range, the phosphor sufficiently fills the space of the light emitting part.
  • the median particle size (D) of the phosphor is
  • the luminous efficiency of the phosphor decreases, and the illuminance of the semiconductor light emitting device may decrease.
  • the particle size distribution (QD) of the phosphor particles is small in order to align the dispersed state of the particles in the semiconductor device member, but is preferable! Usually lower than 0.03, preferably more than 0.05, more preferably 0. 07 or higher. Further, it is usually 0.4 or less, preferably 0.3 or less, more preferably 0.2 or less.
  • the median particle size (D) and particle size distribution (QD) are weight-based particle sizes.
  • the weight-based particle size distribution curve can be obtained by measuring the particle size distribution by a laser diffraction or scattering method. Specifically, for example, it can be measured as follows.
  • the particle size value when the integrated value is 50% is expressed as the median particle size D. Also, the particle size values when the integrated value is 25% and 75% are D, D and
  • a phosphor part forming liquid semiconductor device member forming liquid containing a phosphor
  • the phosphor used in the present invention may be subjected to a surface treatment for the purpose of improving water resistance or preventing unnecessary aggregation of the phosphor in the semiconductor device member.
  • a surface treatment for the purpose of improving water resistance or preventing unnecessary aggregation of the phosphor in the semiconductor device member.
  • Examples of such surface treatments include surface treatments using organic materials, inorganic materials, glass materials and the like described in JP-A-2002-223008, and metal phosphates described in JP-A-2000-96045.
  • Examples of the surface treatment include a coating treatment, a coating treatment with a metal oxide, and a known surface treatment such as silica coating.
  • the following surface treatments (i) to (iii) are performed in order to coat the phosphor with the metal phosphate.
  • a predetermined amount of a water-soluble phosphate such as potassium phosphate or sodium phosphate and at least one of alkaline earth metals such as calcium chloride, strontium sulfate, manganese chloride, zinc nitrate, Zn and Mn
  • a water-soluble phosphate such as potassium phosphate or sodium phosphate
  • alkaline earth metals such as calcium chloride, strontium sulfate, manganese chloride, zinc nitrate, Zn and Mn
  • a phosphate of at least one of the alkaline earth metals, Zn and Mn is formed in the suspension, and the generated metal phosphate is deposited on the phosphor surface.
  • suitable examples include silica coating, a method of neutralizing water glass to precipitate SiO, and surface treatment of hydrolyzed alkoxysilane.
  • the method for adding phosphor particles is not particularly limited. If the dispersion state of the phosphor particles is good, it only needs to be post-mixed in the above-mentioned member forming liquid for semiconductor devices. That is, the semiconductor device member forming liquid of the present invention and the phosphor may be mixed, a phosphor part forming liquid may be prepared, and a semiconductor device member may be produced using this phosphor part forming liquid. If aggregation of the phosphor particles is likely to occur, the phosphor particles are mixed in advance with a reaction solution containing the raw material compound before hydrolysis (hereinafter referred to as “pre-hydrolysis solution” as appropriate), and the presence of the phosphor particles. Under hydrolysis and polycondensation, the surface of the particles is partially silane-coupled to improve the dispersion state of the phosphor particles.
  • pre-hydrolysis solution a reaction solution containing the raw material compound before hydrolysis
  • the phosphors are hydrolyzable.
  • moisture is latent as a silanol body in the liquid state before application (semiconductor device member forming liquid). Therefore, it is possible to use such phosphors without hydrolysis.
  • the hydrolyzed / polycondensed semiconductor device member forming solution is used after dehydration / dealcoholation treatment, there is an advantage that it can be easily used together with such a phosphor.
  • the surface of the particles should be modified with an organic ligand to improve dispersibility.
  • organic ligand Conventional addition-type silicone resins that have been used as components for semiconductor devices have been unable to mix and cure particles that have undergone such surface treatment as soon as they are inhibited by such organic ligands. . This is because the platinum-based curing catalyst used in addition-reactive silicone resins has a strong interaction with these organic ligands and loses the hydrosilylation ability, resulting in poor curing.
  • Such poisonous substances include organic compounds containing multiple bonds, such as organic compounds containing N, P, S, etc., ionic compounds of heavy metals such as Sn, Pb, Hg, Bi, As, acetylene groups, etc. Flux, amines, vinyl chloride, sulfur vulcanized rubber) and the like.
  • the semiconductor device member of the present invention is based on a condensation-type curing mechanism that hardly causes curing inhibition by these poisoning substances.
  • the semiconductor device member of the present invention is a phosphor binder that has a high degree of freedom in mixing with phosphor components such as phosphor particles and inorganic particles whose surface has been modified with an organic ligand, and also a complex phosphor. It has excellent characteristics as a transparent material with high refractive index nanoparticles.
  • the phosphor content in the semiconductor device member of the present invention can be freely selected depending on the force and its application form, as long as the effects of the present invention are not significantly impaired.
  • a white light emitting semiconductor light emitting device used for applications such as white LEDs and white illumination.
  • fluorescent light emitting devices are used.
  • the total body weight is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more, and usually 35% by weight or less, preferably 30% by weight or less, more preferably 28% by weight or less. is there.
  • a phosphor dispersed at a high concentration is distant from the light emitting surface of the semiconductor element of the semiconductor light emitting device (for example, a package opening surface in which the recess including the semiconductor element is filled with a transparent sealing material).
  • a glass lid for LED hermetic sealing 'lens' and a light exiting surface of an external optical member such as a light guide plate is usually 5% by weight or more, preferably 7% by weight or more, more preferably Is 10% by weight or more, and usually 90% by weight or less, preferably 80% by weight or less, more preferably 70% by weight or less.
  • a white color is obtained by mixing the emission color of a semiconductor element and the emission color of a phosphor. In this case, part of the emission color of the semiconductor element is transmitted, so that the phosphor content is low and becomes a region near the lower limit of the above range.
  • white light is obtained by converting all the light emitted from the semiconductor element into a phosphor emission color
  • a high concentration phosphor is preferable, and the phosphor content is in a region near the upper limit of the above range. If the phosphor content is higher than this range, the coating performance may be deteriorated, or the utilization efficiency of the phosphor may be lowered due to optical interference, and the luminance of the semiconductor light emitting device may be lowered. Further, if the phosphor content is less than this range, wavelength conversion by the phosphor is insufficient, and there is a possibility that the intended emission color cannot be obtained.
  • the formation liquid for semiconductor devices of the present invention has a low viscosity compared to conventional formation liquids for semiconductor light emitting devices such as epoxy resins and silicone resins, and has a high concentration of fluorescent light that is compatible with phosphors and inorganic particles. Even if the body and inorganic particles are dispersed, the coating performance can be sufficiently maintained. It is also possible to increase the viscosity by adjusting the degree of polymerization if necessary, and by adding a thixo material such as aerosil, etc., and the viscosity adjustment range according to the target phosphor content is large. Types, shapes and even potting 'spin coating • We can provide coating solutions that can flexibly support various coating methods such as printing.
  • the phosphor content in the semiconductor device member is determined by the hydrofluoric acid treatment after the phosphor-containing sample is pulverized and pre-baked to remove the carbon component if the phosphor composition is specified.
  • Elementary components are removed as key hydrofluoric acid, the residue is dissolved in dilute sulfuric acid to make the main component metal elements into aqueous solution, and the main component metal elements are removed by known elemental analysis methods such as ICP, flame analysis, and fluorescent X-ray analysis.
  • the phosphor content can be obtained by quantification and calculation.
  • a simple method can be used in which the number of particles per unit area is obtained by image analysis of the cross-section of the coating and converted into the phosphor content.
  • the phosphor content in the phosphor part forming liquid may be set so that the phosphor content in the semiconductor device member falls within the above range. Therefore, phosphor In the case where the part forming liquid does not change in weight during the drying process! /, The phosphor content in the phosphor part forming liquid is the same as the phosphor content in the semiconductor device member. Also
  • the phosphor part forming liquid changes in weight in the drying process, such as when the phosphor part forming liquid contains a solvent or the like, the phosphor content in the phosphor part forming liquid excluding the solvent etc. What is necessary is just to make it become the same as the content rate of the fluorescent substance in the member for semiconductor devices.
  • the semiconductor device member of the present invention when used for a semiconductor light emitting device, the optical characteristics and workability are improved, and any of the following effects ⁇ 1> to ⁇ 5> is obtained.
  • inorganic particles may be further contained.
  • the refractive index is adjusted to improve the light extraction efficiency.
  • an appropriate amount of inorganic particles may be mixed in the semiconductor device member forming liquid in accordance with the purpose, as in the case of the phosphor powder.
  • the effect obtained varies depending on the kind and amount of the inorganic particles to be mixed.
  • the type of inorganic particles to be mixed may be selected according to the purpose. Moreover, the type may be a single type or a combination of multiple types. Moreover, in order to improve dispersibility, it may be surface-treated with a surface treatment agent such as a silane coupling agent.
  • a surface treatment agent such as a silane coupling agent.
  • inorganic particles used include inorganic oxide particles such as silica, barium titanate, titanium oxide, zirconium oxide, niobium oxide, aluminum oxide, cerium oxide, yttrium oxide, and diamond particles. Depending on the choice of other substances, it is not limited to these.
  • the form of the inorganic particles may be any form such as powder, slurry, etc. depending on the purpose. However, if it is necessary to maintain transparency, the refractive index may be equivalent to that of the semiconductor device member of the present invention. It is preferable to add it as a water-based / solvent-based transparent sol to the semiconductor device member forming liquid.
  • the median particle size of these inorganic particles is not particularly limited, but is usually about 1/10 or less of the phosphor particles. Specifically, the following median particle size is used according to the purpose. For example, if inorganic particles are used as the light scattering material, the median particle size is preferably. For example, if inorganic particles are used as the aggregate, the median particle size is preferably from lnm to 10 m. Further, for example, when inorganic particles are used as a thickener (thixotropic agent), the center particle is preferably 10 to! OOnm. Ma For example, if inorganic particles are used as the refractive index adjusting agent, the median particle size is preferably 1 to;! Onm.
  • the method of mixing the inorganic particles is not particularly limited, but it is usually recommended to mix while defoaming using a planetary stirring mixer or the like, similarly to the phosphor.
  • a planetary stirring mixer or the like similarly to the phosphor.
  • small particles such as Aerosil, which is easy to agglomerate
  • after mixing the particles if necessary, crush the aggregated particles using a bead mill or three rolls before mixing phosphors, etc.
  • a large particle component may be mixed.
  • the content of the inorganic particles in the semiconductor device member of the present invention is arbitrary as long as the effects of the present invention are not significantly impaired, but can be freely selected depending on the application form.
  • the content when inorganic particles are used as the light scattering agent, the content is preferably 0.01 to 10% by weight.
  • the content is preferably from ! to 50% by weight.
  • the content when inorganic particles are used as a thickener (thixotropic agent), the content is preferably 0.;! To 20% by weight.
  • the content is preferably 10 to 80% by weight. If the amount of inorganic particles is too small, the desired effect may not be obtained. If the amount is too large, various properties such as adhesion, transparency and hardness of the cured product may be adversely affected.
  • the formation liquid for semiconductor devices of the present invention has a low viscosity as compared with conventional formation liquids for semiconductor light-emitting devices such as epoxy resins and silicone resins, and is highly compatible with phosphors and inorganic particles. Even if the inorganic particles having a concentration are dispersed, the coating performance can be sufficiently maintained. It is also possible to increase the viscosity by adjusting the degree of polymerization, if necessary, by including a thixo material such as aerosil, etc., and the viscosity adjustment range according to the target inorganic particle content is large.
  • a thixo material such as aerosil, etc.
  • the content of inorganic particles in the semiconductor device member can be measured in the same manner as the phosphor content described above.
  • the content of the inorganic particles in the semiconductor device member forming liquid is determined by the semiconductor device. What is necessary is just to set so that the content rate of the inorganic particle in the member for a process may be settled in the said range. Therefore, the weight of the semiconductor device member forming liquid does not change during the drying process! / In this case, the content of the inorganic particles in the semiconductor device member forming liquid is the amount of the inorganic particles in the semiconductor device material. It becomes the same as the content rate. In addition, when the weight of the semiconductor device member forming liquid changes during the drying process, such as when the semiconductor device member forming liquid contains a solvent, the semiconductor device member forming liquid excluding the solvent, etc. What is necessary is just to make it the same as the content rate of the inorganic particle in the member for semiconductor devices.
  • the semiconductor device member of the present invention when used for a semiconductor light emitting device, it is intended to form an electric circuit at a temperature lower than the solder operating temperature by using a technique such as printing and potting that imparts conductivity. Alternatively, a conductive filler may be included.
  • the types of conductive filler used include noble metal powders such as silver powder, gold powder, platinum powder and palladium powder, base metal powders such as copper powder, nickel powder, aluminum powder, brass powder and stainless steel powder, silver, etc. Examples include base metal powders plated and alloyed with precious metals, organic resin powders and silica powders coated with precious metals and base metals, and other carbon-based fillers such as carbon black and graphite powder.
  • the present invention is not limited to these.
  • one type of conductive filler may be used. Two or more types of conductive fillers may be used in any combination and ratio.
  • the conductive filler may be supplied in any form, such as powder or slurry, depending on the purpose. However, when it is necessary to maintain transparency or when fine wiring needs to be printed and formed, Is preferably added to the semiconductor device member forming liquid as a water-based / solvent-based transparent sol without aggregation or a nanoparticle powder with surface modification that can be easily redispersed.
  • Examples of the shape of these metal powders include a flake shape (flaky shape), a spherical shape, a cocoon shape, a dendritic shape (dendritic shape), a spherical primary particle force, and a shape aggregated in a three-dimensional shape.
  • a flake shape flake shape
  • a spherical shape a cocoon shape
  • a dendritic shape dendritic shape
  • a spherical primary particle force a shape aggregated in a three-dimensional shape.
  • it is most preferable to use flaky and spherical silver powder and it is most preferable to use flaky and spherical silver powder in combination.
  • a small amount of inorganic filler such as silica,
  • the compounding ratio is, when the total amount of silver powder and carbon black and / or graphite fine powder is 100 mass ratio,
  • the upper limit of silver powder is preferably 99.5 mass ratio or less, more preferably 99 mass ratio or less.
  • the lower limit of silver powder is 85 mass ratio or more, more preferably 90 mass ratio or more.
  • the median particle diameter of the conductive filler is not particularly limited, but is usually 0.1 am or more, preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and usually 50 ⁇ m or less, preferably It is 20 ⁇ m or less, more preferably 10 m or less. In particular, when transparency and fine workability are required, it is usually 3 nm or more, preferably 10 nm or more, usually 150 nm or less, preferably lOOnm or less.
  • the content of the conductive filler is usually 50% by weight or more, preferably 75% by weight or more, more preferably 80% by weight, when the total amount of the conductive filler and the binder resin is 100% by weight. Above the ratio. From the viewpoint of adhesiveness and ink viscosity, it is usually 95% by weight or less, preferably 93% by weight or less, more preferably 90% by weight or less. If the amount of the conductive filler is too small, the desired effect may not be obtained, and if it is too large, various properties such as adhesion, transparency and hardness of the cured product may be adversely affected.
  • the formation liquid for semiconductor devices of the present invention has a low viscosity compared to conventional formation liquids for semiconductor light-emitting devices such as epoxy resins and silicone resins, and high-concentration inorganic particles having good compatibility with phosphors and inorganic particles. Even if dispersed, the coating performance can be sufficiently maintained. It is also possible to adjust the degree of polymerization as required to increase the viscosity by adding a thixo material such as aerosil, and to adjust the viscosity according to the target inorganic particle content. It is possible to provide coating solutions that can flexibly support various coating methods such as printing, shape, and potting 'spin coating'.
  • the content rate of the inorganic particles in the semiconductor device member is the phosphor content described above. It can be measured in the same way as the quantity.
  • the semiconductor device member of the present invention may be used alone as a sealing material. However, in the case of sealing an organic phosphor, a phosphor that is easily deteriorated by oxygen or moisture, or a semiconductor device, oxygen or moisture is more strictly sealed. In applications that require shielding from light sources, the members of the present invention are used to hold phosphors and seal semiconductor elements, and to extract light, and to the outside with a highly airtight material such as a glass plate or epoxy resin. Airtight sealing or vacuum sealing may be performed.
  • the shape of the device is not particularly limited, and there are encapsulated bodies and coated materials by the semiconductor device member of the present invention! It is only necessary that the force protection is cut off and oxygen and moisture do not flow.
  • the semiconductor device member of the present invention since the semiconductor device member of the present invention has good adhesion as described above, it can be used as an adhesive for semiconductor devices. Specifically, for example, when bonding a semiconductor element and a package, when bonding a semiconductor element and a submount, when bonding package components, when bonding a semiconductor device and an external optical member, etc.
  • the semiconductor device member of the present invention can be used by coating, printing, potting and the like. Since the semiconductor device member of the present invention is particularly excellent in light resistance and heat resistance, when used as a high-power semiconductor light-emitting device adhesive that is exposed to high temperature or ultraviolet light for a long time, it can withstand long-term use and has a high level of resistance. A reliable semiconductor light-emitting device can be provided.
  • the semiconductor device member of the present invention can sufficiently secure the adhesion by itself, but for the purpose of further ensuring the adhesion, the surface of the semiconductor device member is in direct contact with the surface.
  • Examples of such surface treatment include formation of an adhesion improving layer using a primer-silane coupling agent, chemical surface treatment using a chemical such as alkaline potassium, plasma irradiation, ion irradiation, and electron beam irradiation. Examples include physical surface treatment using spraying, roughening treatment such as sand blasting and etching 'fine particle coating.
  • Other surface treatments for improving adhesion include, for example, Japanese Patent Laid-Open No.
  • the package used for the semiconductor light emitting device of the present invention is characterized in that the surface material contains one or more of Si, A1 and Ag.
  • the package refers to a member on which a semiconductor element (B) described later is stacked in the semiconductor light emitting device.
  • the package include a cup shape, a shape in which a concave portion is provided on a flat plate, a shape in which a dam is provided around the flat plate, a flat plate shape, and the like. Usually, a cup shape is used.
  • the surface material of the package used in the semiconductor light emitting device of the present invention is characterized by containing one or more of Si, A1 and Ag.
  • the package is a component on which (B) semiconductor elements are mounted, but various surface treatments have been made to improve brightness (reflectance), durability, heat resistance, light resistance, adhesion, heat dissipation, etc. Is given.
  • power devices are often subjected to material selection and surface treatment for the purpose of improving durability and heat resistance.
  • surface treatment such as silver plating for the purpose of improving reflectivity and thus brightness, as well as improving heat dissipation, insulation, heat resistance and durability.
  • surface treatment such as silver plating for the purpose of improving reflectivity and thus brightness, as well as improving heat dissipation, insulation, heat resistance and durability.
  • Examples include surface treatment of ceramics such as surface smoothing and roughening by applying an inorganic coating layer for the purpose of improving reflectivity and imparting a light diffusion function.
  • the semiconductor light emitting device of the present invention has excellent properties without problems such as peeling of the sealing material even in a package subjected to such a special surface treatment.
  • the content of Si and Al contained in the surface material of the package used in the semiconductor light emitting device of the present invention is usually 5% by weight or more, preferably 10% by weight or more, more preferably 40% by weight or more in the surface material. It is usually 100% by weight or less, preferably 90% by weight or less, and more preferably 80% by weight or less.
  • the content is Al using SiO as a sintering aid.
  • the total content of Al In the case of a surface where SiO and Al O are dissolved and mixed like a ceramic sintered body, Considered as the total content of Al. In the case of a material surface consisting of two layers, such as a reinforced plastic containing an inorganic filler such as glass fiber, it is considered as the Si content in the reinforced plastic.
  • Ag In semiconductor light emitting devices, Ag is often present in high purity as a metallic metal.
  • the Ag content on the Ag-containing surface is usually 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more. It is usually 100% by weight or less, preferably 98% by weight or less, more preferably 95% by weight or less. If the content is too small, various effects such as surface treatment may not be achieved. On the other hand, if the amount is too large, there is a possibility that it may hinder processing or deviate from the intended ceramic composition.
  • the material of the package used for the semiconductor light emitting device of the present invention has the above-mentioned surface material in whole or in part.
  • any other part may be selected according to the purpose.
  • an organic material, an organic material, a glass material, etc., and a combination thereof are appropriately selected. You can select and use it.
  • Organic materials include polycarbonate resins, polyphenylene sulfide resins, epoxy resins, acrylic resins, silicone resins, ABS (acrylonitrile-butadiene-styrene) resins, nylon resins, polyphthalamide resins, polyethylene resins, and the like, and These resins, glass fillers and inorganic powders can be mixed to improve heat resistance and mechanical strength, and include reinforced plastics with a reduced coefficient of thermal expansion.
  • Inorganic materials include SiN, SiC, SiO, A1N, AlO and other ceramic materials, and iron 'copper'
  • Examples include metal materials such as brass, aluminum, nickel, gold, silver, platinum, and palladium, and alloys thereof.
  • the glass material examples include a low-melting glass used for bonding hermetic seal members and the like, and an optical glass used as a part of the package such as a package window material and a transparent lid.
  • the semiconductor light emitting device of the present invention when used in a so-called power device that generates a large amount of heat and emits light, a material that is more durable than a semiconductor light emitting device having a conventional configuration can be selected. In such power devices, deterioration such as discoloration occurs.
  • An inorganic material having excellent heat resistance and light resistance is preferable to the organic material. Of these, copper / aluminum 'SiN, A1N, AlO and other materials that are easy to process and have excellent heat dissipation are preferred.
  • these package materials may be subjected to surface processing such as silver plating for the purpose of improving reflectivity and thus improving luminance.
  • the shape of the package used in the semiconductor light-emitting device of the present invention is not particularly limited, but a known semiconductor light-emitting device package or a semiconductor light-emitting device package appropriately modified according to various purposes can be used.
  • Specific shapes include a ceramic package with an integrated reflector and substrate, a heat sink made of copper or aluminum directly under the light-emitting element, and a reflector with a reflective surface coated with silver.
  • the power S can be raised.
  • Examples of the package include a cup shape, a shape in which a concave portion is provided on a flat plate, a shape in which a weir is provided around the flat plate, and a flat plate shape. Usually, a cup shape is used.
  • a commercially available package can be used for the semiconductor light emitting device of the present invention.
  • model number “3PINMETAL” reflector material is copper with silver plating, hermetic seal around pin is made of low melting glass
  • Kyoritsu Elex Co., Ltd. model number “M5050N Reflector and substrate materials are made of AlO.
  • the electrode material is made of Ag-Pt, and the bonded part of the reflector and the substrate is made of low melting glass).
  • a light emitting diode LED
  • a semiconductor laser diode LD
  • the like can be used as a semiconductor element used in the semiconductor light emitting device of the present invention.
  • GaN compound semiconductors ZnSe compound semiconductors, and ZnO compound semiconductors.
  • GaN LEDs and LDs using GaN compound semiconductors are preferred. This is because GaN-based LEDs and LDs are extremely low power and extremely low power when combined with the phosphors described below, which have significantly higher light output and external quantum efficiency than SiC LEDs that emit light in this region. This is because bright light emission can be obtained.
  • GaN LEDs and LDs usually have a light emission intensity that is more than 100 times that of SiC.
  • An x y x y light layer is preferred.
  • those with an InGaNxy light-emitting layer have a very high emission intensity, so in the particularly preferred GaN-based LD, the multiple quantum of the InGaN layer and the GaN layer.
  • the well structure is particularly preferable because the emission intensity is very strong.
  • the value of x + y is usually in the range of 0.8 to 1.2.
  • these light-emitting layers doped with Zn or Si or those without dopants are preferred for adjusting the light emission characteristics.
  • GaN-based LEDs have these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic components.
  • the light-emitting layer is made of n-type and p-type AlGaN layers, GaN layers, or InGaN layers.
  • GaN crystal layer growth methods for forming GaN semiconductor elements include HVPE, MOVPE, and MBE.
  • HVPE method is preferred when producing a thick film, but the MOVPE method or MBE method is preferred when forming a thin film.
  • a surface-emitting type illuminant particularly a surface-emitting type GaN-based laser diode, as the light-emitting element, because this increases the luminous efficiency of the entire light-emitting device.
  • a surface-emitting type illuminant is an illuminant that emits intense light in the plane direction of the film.
  • the crystal growth of the light-emitting layer, etc. is controlled, and the reflective layer, etc.
  • the light emission in the surface direction can be made stronger than the edge direction of the light emitting layer.
  • the emission cross-sectional area per unit light emission amount can be increased compared to the type emitting light from the edge of the light emitting layer.
  • the emission peak wavelength of the semiconductor element used in the semiconductor light-emitting device of the present invention may be any of visible power and near-ultraviolet wavelengths.
  • the emission peak wavelength of a semiconductor element is related to the excitation efficiency of the phosphor, and thus the conversion efficiency of the phosphor from the excitation light to fluorescence. It is also an important factor that affects the durability of the sealing material.
  • a light emitting element having an emission wavelength from the near ultraviolet region to the blue region is usually used. Specifically, it is usually 300 nm or more, preferably 330 nm or more, and more preferably 350 or more.
  • a light emitting element having a peak emission wavelength of usually 900 or less, preferably 500 or less, more preferably 480 nm or less is used. If the wavelength is too short, the encapsulant absorbs the emission wavelength and a high-brightness device cannot be obtained, and it causes heat deterioration of the device due to heat generation.
  • the semiconductor light-emitting device of the present invention is particularly excellent for high-power power device applications. Therefore, when used in power device applications, (B) the area of the light emitting surface of the semiconductor element (chip) is usually 0.15 mm 2 or more, preferably 0.2 mm 2 or more, more preferably 0.3 mm 2 or more. , and the normal 10 mm 2 or less, preferably 5 mm 2 or less, more preferably 3 mm 2 hereinafter. If the area of the light emitting surface is too small, it is difficult to use it as a power device.
  • the light emitting surface means a pn junction surface.
  • the above area is the total area.
  • the shape of the chip itself is usually rectangular or square to reduce loss during wafer cutting.
  • the long side of the light emitting surface is usually 0.43 mm or more, preferably 0.5 mm or more, more preferably 0.6 mm or more, and usually 4 mm. Below, it is preferably 3 mm or less, more preferably 2 mm or less. Further, the short side is usually at least 0.35 mm, preferably at least 0.4 mm, more preferably at least 0.5 mm, and usually at most 2.5 mm, preferably at most 2 mm, more preferably at most 1.5 mm.
  • the side of the light emitting surface is usually 0.38 mm or more, preferably 0.45 mm or more, more preferably 0.55 mm or more, usually 3.1 mm or less, preferably 2.2 mm or less, More preferably, it is 1.7 mm or less.
  • the surface temperature of the light emitting surface of (B) semiconductor element (chip) during operation is usually 80 ° C or higher, preferably 85 ° C or higher, more preferably 90 ° C.
  • the temperature is usually 200 ° C. or lower, preferably 180 ° C. or lower, more preferably 150 ° C. or lower. If the surface temperature of the light emitting surface is too low, it is difficult to use it as a power device. If the surface temperature of the light emitting surface is too high, it may be difficult to dissipate heat, or it may be difficult to flow current uniformly.
  • the surface material of the semiconductor element used for the semiconductor light emitting device of the present invention is characterized by containing one or more of Si, A1 and Ag.
  • SiN and SiO as protective layers for semiconductor elements (chips) are usually not essential.
  • GaN is a chemically and physically “hard” material, it requires a lot of energy for processing. Therefore, it is better to have a protective layer from the viewpoint of processing.
  • SiN layer, SiC layer, and SiO layer a plasma 'chemical' oxidizing environment in the processing process?
  • the expression "chip” includes a protective layer, and the entire surface may be covered with the protective layer.
  • the electrode extraction surface and the side surface portion are in a state without a protective layer.
  • the thickness of the protective layer is usually sufficiently smaller than the thickness of the GaN layer of the chip body or the substrate in order to ensure the precision of microfabrication. That is, the thickness of the protective layer is usually lOOOnm or less, preferably 500 nm or less. Also, it is usually 1 nm or more, preferably 1 Onm or more. If the film thickness is too thin, the protective effect may be insufficient. If it is too thick, it may interfere with microfabrication. Al and Ag are opaque, and there are few examples of a protective layer on the LED chip.
  • the contents of Si, Al, and Ag contained in the surface material of the semiconductor element used in the semiconductor light emitting device of the present invention are usually 40% by weight or more, preferably 50% by weight or more, and more preferably 60%. It is usually not more than 100% by weight, preferably not more than 90% by weight, more preferably not more than 80% by weight.
  • a thin protective layer such as SiN or SiO having a thickness of several hundred nm exists on the surface of the light emitting surface of the semiconductor element, the material of the protective layer is defined as the surface composition.
  • the surface shape of the chip may be smooth or rough, but it is preferably one that does not adversely affect light extraction efficiency without causing unnecessary irregular reflection.
  • it is preferable that the shape of the entire chip is processed so as to prevent total reflection into the chip with respect to light emitted from the light emitting surface.
  • a fine structure suitable for light extraction is formed with a period of not more than the emission wavelength, more preferably not more than 1/4 of the emission wavelength, because high light extraction efficiency can be obtained.
  • a protective layer containing Si it is difficult to form (leave) a protective layer containing Si widely. However, when this is provided, the contact area becomes large, which has the advantage of improving the adhesive force.
  • the adhesiveness increases as the surface containing Si and Al comes into contact with the sealing material described later. Is preferable because of high.
  • a surface layer containing Si is present in order to improve the adhesion with the sealing material of the present invention. It is preferable that the ratio of the surface area of the layer containing Si to the total surface area of the chip (excluding the bonded surface by solder or silver paste) is 5% or more and 90% or less.
  • the shape of the chip itself is usually rectangular or square to reduce loss during wafer cutting.
  • the substrate can be selected appropriately according to the purpose, such as SiC, SiO, sapphire, GaN, A1N I can do it.
  • SiC containing Si, SiO, and sapphire containing A1 are the half of the present invention.
  • the coating layer containing Si SiN, SiO
  • the (C) encapsulant used in the semiconductor light-emitting device of the present invention (hereinafter, optionally referred to as “encapsulant of the present invention”) satisfies all of the following conditions (i) to (c). Is a feature. Moreover, you may satisfy
  • the transmittance maintenance rate for light with a wavelength of 400 nm should be 80% or more and 110% or less.
  • the transmittance maintenance ratio for light with a wavelength of 400 nm is not less than 80% and not more than 110% before and after irradiation with light having a center wavelength of 380 nm and a wavelength of 370 nm or more and a radiation intensity of 0.6 kW / m 2 for 72 hours. Be.
  • the sealing material of the present invention has a functional group capable of hydrogen bonding with a predetermined functional group (for example, a hydroxyl group, oxygen in a metalloxane bond, etc.) present on the surface of the ceramic or metal.
  • a predetermined functional group for example, a hydroxyl group, oxygen in a metalloxane bond, etc.
  • the surface of (A) package and (B) semiconductor element is usually formed or decorated with ceramic or metal.
  • a hydroxyl group usually exists on the surface of ceramic or metal.
  • the sealing material of the present invention usually has a functional group capable of hydrogen bonding with the hydroxyl group. Therefore, due to the hydrogen bonding, the sealing material of the present invention has excellent adhesion to (A) the package and (B) the semiconductor element.
  • Examples of the functional group capable of hydrogen bonding to the hydroxyl group of the sealing material of the present invention include silanol and alkoxy group.
  • the functional group may be one kind or two or more kinds.
  • the sealing material of the present invention has a functional group capable of hydrogen bonding to the hydroxyl group. Whether or not it has a group can be confirmed by spectroscopic techniques such as solid-state Si NMR, solid-state 1 H NMR, infrared spring absorption spectrum (IR), and Raman spectrum.
  • the sealing material of the present invention is excellent in heat resistance. That is, even when left under high temperature conditions, the transmittance of light having a predetermined wavelength is less likely to vary.
  • the sealing material of the present invention has a transmittance maintenance rate of light of 400 nm in wavelength before and after being left at 200 ° C. for 500 hours, usually 80% or more, preferably 90% or more. It is preferably 95% or more, and usually 110% or less, preferably 105% or less, more preferably 100% or less.
  • the variation ratio can be measured by the transmittance measurement using an ultraviolet / visible spectrophotometer in the same manner as the transmittance measurement method described in [1-4 3].
  • the sealing material of the present invention is excellent in light resistance. That is, even when irradiated with UV (ultraviolet light), the transmittance with respect to light having a predetermined wavelength hardly changes. Specifically, the sealing material of the present invention maintains the transmittance of light having a wavelength of 400 nm before and after irradiation with light having a central wavelength of 380 nm and a wavelength of 370 nm or more and a radiation intensity of 0.6 kW / m 2 for 72 hours.
  • the power is usually 80% or more, preferably 90% or more, more preferably 95% or more, and usually 110% or less, preferably 105% or less, more preferably 100% or less.
  • the variation ratio can be measured in the same manner as the transmittance measuring method described in [1-4 3] by measuring transmittance with an ultraviolet / visible spectrophotometer.
  • the sealing material of the present invention is mainly characterized by the above characteristics.
  • a sealing material an inorganic material and / or an organic material can be used.
  • the inorganic material for example, a solution obtained by hydrolytic polymerization of a solution containing a metal alkoxide, a ceramic precursor polymer or a metal alkoxide by a sol-gel method, or a combination of these solid materials (for example, having a siloxane bond) Inorganic materials).
  • organic materials include thermoplastic resins, thermosetting resins, and photocurable resins.
  • methacrylic resins such as methyl polymethacrylate
  • styrene resins such as polystyrene and styrene acrylonitrile copolymers
  • polycarbonate resins polyester resins
  • phenoxy resins such as butyral resins
  • Senorelose-based lunar odors such as epoxy resin, phenol resin, silicone resin and the like.
  • epoxy resin has been generally used as a phosphor dispersion material for semiconductor light-emitting devices.
  • a high-power light-emitting device such as lighting is required, it contains silicon for the purpose of heat resistance and light resistance. I prefer to use compounds.
  • a silicon-containing compound is a compound having a silicon atom in the molecule, and is an organic material such as polyorganosiloxane (silicone material), an inorganic material such as silicon oxide, silicon nitride, or silicon oxynitride, And glass materials such as borosilicates, phosphosilicates, and alkali silicates.
  • silicone materials are preferred from the viewpoint of ease of handling and the fact that the cured product has stress relaxation ability.
  • Silicone resins for semiconductor light-emitting devices are used for sealing materials in, for example, JP-A-10-228249, JP-A-2927279, JP-A-2001-36147, etc. Attempts to use it for the first time.
  • the silicone-based material usually refers to an organic polymer having a siloxane bond as a main chain, and examples thereof include a compound represented by a general composition formula and / or a mixture thereof.
  • R 1 to R 6 may be the same or different, and a group force such as an organic functional group, a hydroxyl group, a hydrogen atom force, or the like is selected.
  • a silicone material When a silicone material is used for sealing a semiconductor element, it can be used after being sealed with a liquid silicone material and then cured by heat or light.
  • silicone materials are classified according to their curing mechanism, it is usually possible to list silicone materials such as addition polymerization curing type, condensation polymerization curing type, ultraviolet curing type and peroxide crosslinking type.
  • addition polymerization curing type addition type silicone) Resin
  • condensation-curing type condensation-type silicone resin
  • ultraviolet-curing type ultraviolet-curing type
  • Addition-type silicone materials refer to those in which polyorganosiloxane chains are bridged by organic additional bonds.
  • a typical example is a compound having a Si—C C Si bond at a crosslinking point obtained by reacting butylsilane and hydrosilane in the presence of an addition catalyst such as a Pt catalyst.
  • an addition catalyst such as a Pt catalyst.
  • Commercially available products can be used.
  • specific product names of addition polymerization curing type include “LPS-1400”, “: LPS-2410”, “: LPS-3400”, etc. manufactured by Shin-Etsu Chemical Co., Ltd. Power
  • the addition-type silicone material is represented by, for example, (A) an alkenyl group-containing organopolysiloxane represented by the following average composition formula (la) and the following average composition formula (2a): (B) Hydrosilyl group-containing organopolysiloxane and (B) the total alkenyl group in (B) are mixed in an amount ratio such that the total hydrosilyl group amount of (B) is 0.5 to 2.0 times. (C) It can be obtained by reacting in the presence of an addition reaction catalyst.
  • Al alkenyl group-containing organopolysiloxane represented by the following average composition formula (la) and the following average composition formula (2a):
  • (B) Hydrosilyl group-containing organopolysiloxane and (B) the total alkenyl group in (B) are mixed in an amount ratio such that the total hydrosilyl group amount of (B) is 0.5 to 2.0 times.
  • C It can be obtained by reacting in the presence of an addition reaction catalyst.
  • the alkenyl group-containing organopolysiloxane is an organopolysiloxane having an alkenyl group bonded to at least two silicon atoms in one molecule represented by the following composition formula (la).
  • R is the same or different substituted or unsubstituted monovalent hydrocarbon group, alkoxy group, or hydroxyl group, and n is a positive number satisfying l ⁇ n ⁇ 2. And at least one of R is an alkenyl group.
  • the hydrosilyl group-containing polyorganosiloxane is an organohydrogenpolysiloxane having hydrogen atoms bonded to at least two silicon atoms in one molecule represented by the following composition formula (2a). .
  • R ′ is the same or different substituted or unsubstituted monovalent hydrocarbon group excluding the alkenyl group, and a and b are 0.7 ⁇ a ⁇ 2.1, 0. 001 ⁇ b ⁇ l. 0 force, a positive number that satisfies 0.8 ⁇ a + b ⁇ 2.6.
  • a and b are 0.7 ⁇ a ⁇ 2.1, 0. 001 ⁇ b ⁇ l. 0 force, a positive number that satisfies 0.8 ⁇ a + b ⁇ 2.6.
  • the alkenyl group is preferably an alkenyl group having 2 to 8 carbon atoms such as a butyl group, a allyl group, a butyr group or a penture group.
  • R is a hydrocarbon group
  • those selected from alkyl groups such as a methyl group and an ethyl group monovalent hydrocarbon groups having 1 to 20 carbon atoms such as a bur group and a phenyl group are preferred.
  • they are a methyl group, an ethyl group, and a phenyl group.
  • Each R may be different, but if UV resistance is required, 80% or more of R is preferably a methyl group! /.
  • R may be an alkoxy group having 1 to 8 carbon atoms or a hydroxyl group, but the content of the alkoxy group or hydroxyl group is preferably 3% or less of the weight of the (A) alkenyl group-containing organopolysiloxane! / ⁇
  • n is a positive force S satisfying l ⁇ n ⁇ 2, and if this value is 2 or more, sufficient strength as a sealing material cannot be obtained, and less than 1 If it is, synthesis of this organopolysiloxane becomes difficult.
  • the hydrosilyl group-containing polyorganosiloxane acts as a crosslinking agent for curing the composition by hydrosilylation reaction with (A) the alkenyl group-containing organopolysiloxane.
  • R ′ represents a monovalent hydrocarbon group excluding an alkenyl group.
  • R ′ the same group as R in the composition formula (la) (however, excluding the alkenyl group) can be cited.
  • at least 80% is preferably methyl groups.
  • a is usually a positive number of 0.7 or more, preferably 0.8 or more, and usually 2.1 or less, preferably 2 or less.
  • B is usually 0.001 or more, preferably 0.
  • a + b is 0 ⁇ 8 or more, preferably 1 or more, and 2.6 or less, preferably 2.4 or less.
  • the molecular structure of the (B) hydrosilyl group-containing polyorganosiloxane may be any of linear, cyclic, branched, and three-dimensional network structures, but the number of key atoms in one molecule ( Alternatively, the degree of polymerization) is 3 to 1000, particularly about 3 to 300.
  • hydrosilyl group containing polyorganosiloxane may use only 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
  • the amount of the (B) hydrosilyl group-containing polyorganosiloxane depends on the total amount of the alkenyl groups of the (A) alkenyl group-containing organopolysiloxane. Specifically, the total SiH power of (B) hydrosilyl group-containing polyorganosiloxane with respect to the total alkenyl groups of (A) anoalkenyl group-containing organopolysiloxane is usually 0.5 mol times or more, preferably 0.8 mol. The amount may be not less than twice, and usually not more than 2.0 mol times, preferably not more than 1.5 mol times.
  • the addition reaction catalyst promotes the hydrosilylation addition reaction of (A) the alkenyl group in the alkenyl group-containing organopolysiloxane and (B) the SiH group in the hydrosilyl group-containing polyorganosiloxane. It is a catalyst.
  • the (C) addition reaction catalyst include platinum black, platinous chloride, chloroplatinic acid, a reaction product of chloroplatinic acid and a monohydric alcohol, a complex of chlorophosphoric acid and olefins, platinum bismuth.
  • platinum group catalysts such as platinum catalysts such as cetoacetate, palladium catalysts and rhodium catalysts.
  • the addition amount of the addition reaction catalyst can be a catalytic amount, but usually the total weight of (A) an alkenyl group-containing organopolysiloxane and (B) a hydrosilyl group-containing polyorganosiloxane as a platinum group metal. On the other hand, it is preferable to add 1 ppm or more, particularly 2 ppm or more, and 500 ppm or less, particularly 10 ppm or less.
  • Addition control agent for imparting curability and pot life as an optional component, for adjusting hardness and viscosity for example, linear diorganopolysiloxane having an alkenyl group as well as linear non-reactive organopolysiloxane
  • the number of key atoms is 2 ⁇
  • About 10 linear or cyclic low-molecular-weight organopolysiloxanes may be contained in a range that does not impair the effects of the present invention.
  • the curing conditions for the composition are not particularly limited, but are preferably 120 to 180 ° C, 30 to 180 minutes.
  • the linear expansion coefficient is larger than that of rubber resin or hard plastic silicone resin, so it can be cured at a low temperature around room temperature for 10 to 30 hours. Force S to suppress the generation of internal stress.
  • addition-type silicone material a known material can be used, and an additive or an organic group for improving the adhesion to a metal or ceramics may be further introduced.
  • silicone materials described in Japanese Patent Nos. 39 09826, 3910080, 2003-128922, 2004 221308, and 2004-186168 are suitable.
  • condensation type silicone material examples include a compound having a Si 2 O 3 Si bond obtained by hydrolysis and polycondensation of an alkylalkoxysilane at a crosslinking point.
  • M represents at least one element selected from silicon, aluminum, zirconium, and titanium
  • X represents a hydrolyzable group
  • Y 1 represents a monovalent group.
  • M represents an integer of 1 or more representing the valence of M
  • n represents an integer of 1 or more representing the number of X groups, where m ⁇ n.
  • M represents at least one element selected from silicon, aluminum, zirconium, and titanium
  • X represents a hydrolyzable group
  • Y 1 represents a monovalent group.
  • Y 2 represents a u-valent organic group
  • s represents an integer of 1 or more representing the valence of M
  • t represents an integer of 1 or more and s—1 or less
  • u represents an integer of 2 or more.
  • a metal chelate compound or the like is preferably used as the curing catalyst. That power S.
  • the metal chelate compound is preferably one containing at least one of Ti, Ta, Zr, Hf, Zn, and Sn, and more preferably one containing Zr.
  • condensation type silicone material known materials can be used.
  • JP 2006-77234, JP 2006-29 plate 8, JP 2006-316264, JP 2006 —Semiconductor light-emitting device members described in Japanese Patent No. 336010, Japanese Patent Application Laid-Open No. 2006-348284, and International Publication No. 2006/0 90804 are suitable.
  • the sealing material used in the semiconductor light emitting device of the present invention it is preferable to use the semiconductor device member of the present invention. This is because the semiconductor device member of the present invention described above usually has the characteristics that the (C) sealing material should have and also has the excellent characteristics described above.
  • the semiconductor light emitting device is abbreviated as “light emitting device” as appropriate.
  • the sealing material used for the semiconductor light emitting device is referred to as a semiconductor light emitting device member, and the semiconductor device member of the present invention is used as the sealing material. Further, in which part the member for the semiconductor light emitting device of the present invention is used will be described collectively after the description of all the embodiments. However, these embodiments are merely used for convenience of explanation, and examples of the light-emitting device (semiconductor light-emitting device) of the present invention are not limited to these embodiments.
  • the semiconductor light emitting device using the member for semiconductor light emitting device of the present invention has the following application examples A) and B), for example.
  • the member for semiconductor light emitting device of the present invention exhibits superior light durability and thermal durability compared to conventional members for semiconductor light emitting device, and has a luminance that makes cracks and peeling difficult to occur. There is little decrease. Therefore, according to the semiconductor light emitting device member of the present invention, it is possible to use a force that provides a highly reliable member over a long period of time.
  • a semiconductor light emitting device that uses the light emission color of the light emitting element as it is.
  • a phosphor part is arranged in the vicinity of the light emitting element, the phosphor and the phosphor component in the phosphor part are excited by the light from the light emitting element, and light of a desired wavelength is emitted using the fluorescence.
  • Guidance Body light emitting device Guidance Body light emitting device.
  • a high durability sealing material, light extraction film it can be used as a functional component holding agent.
  • the member for a semiconductor light emitting device of the present invention is used as a functional component retaining agent for retaining the inorganic particles and the like, and the member for a semiconductor light emitting device of the present invention is allowed to retain a transparent high refractive component,
  • the power to gain is S kurakura.
  • the member for a semiconductor light-emitting device of the present invention can exhibit the same excellent performance as that of the application example of the above A), and the phosphor or phosphor.
  • a phosphor part having high durability and high light extraction efficiency can be formed.
  • the semiconductor light-emitting device member of the present invention is held together with a transparent high refractive component in addition to the phosphor and the phosphor component, the refractive index of the semiconductor light-emitting device member of the present invention is changed to the light-emitting element or phosphor. By setting the refractive index in the vicinity of the refractive index, interface reflection can be reduced and higher light extraction efficiency can be obtained.
  • FIG. 50 is an explanatory diagram of the basic concept of each embodiment.
  • FIG. 50 (a) corresponds to the application example of the above A
  • FIG. 50 (b) corresponds to the application example of the above B). ing.
  • the light-emitting devices (semiconductor light-emitting devices) 1A and 1B of the respective embodiments are arranged in the vicinity of the light-emitting element 2 composed of LED chips and the light-emitting element 2 as shown in FIGS. 50 (a) and 50 (b).
  • the semiconductor light emitting device members 3A and 3B of the present invention are provided.
  • the light emitting device 1A does not contain phosphors or phosphor components in the semiconductor light emitting device member 3A.
  • the semiconductor light emitting device member 3A exhibits functions such as sealing of the light emitting element 2, light extraction function, and functional component retention.
  • the phosphor or phosphor component is not contained! /,
  • the semiconductor light emitting device member 3A is These are referred to as “transparent members” as appropriate.
  • the light-emitting device 1B has fluorescent light on the semiconductor light-emitting device member 3B.
  • the semiconductor light emitting device member 3B can exhibit a wavelength conversion function in addition to the various functions that the semiconductor light emitting device member 3A in FIG. 50 (a) can exhibit.
  • the semiconductor light emitting device member 3B containing a phosphor or a phosphor component is appropriately referred to as a “phosphor portion”.
  • the phosphor part may be appropriately indicated by reference numerals 33 and 34 depending on the shape and function thereof.
  • the light-emitting element 2 may be, for example, an LED chip that emits blue light or ultraviolet light.
  • the transparent member 3A exhibits functions such as a highly durable sealing material, a light extraction film, and various function-added films of the light-emitting element 2.
  • the transparent member 3A may be used alone, but it can be controlled with the force S to contain any additive unless the phosphor and the phosphor component are removed, so long as the effects of the present invention are not significantly impaired.
  • the phosphor portion 3B can exhibit functions such as a highly durable sealing material, a light extraction film, and various function-added films of the light-emitting element 2, and is excited by light from the light-emitting element 2 to provide a desired It exhibits a wavelength conversion function that emits light of a wavelength of.
  • the phosphor portion 3B only needs to contain at least a fluorescent material that is excited by light from the light emitting element 2 and emits light of a desired wavelength. Examples of such fluorescent materials include the various phosphors exemplified above.
  • the luminescent color of the phosphor portion 3B not only the three primary colors of red (R), green (G), and blue (B) but also white such as a fluorescent lamp and yellow such as a light bulb are possible.
  • the phosphor portion 3B has a wavelength conversion function for emitting light having a desired wavelength different from the excitation light.
  • the light 4 emitted from the light-emitting element 2 passes through the transparent member 3A and is emitted outside the light-emitting device 1A. Therefore, in the light emitting device 1A, the light 4 emitted from the light emitting element 2 is used as it is in the emission color when emitted from the light emitting element 2.
  • a part 4a of the light emitted from the light emitting element 2 passes through the phosphor portion 3B as it is and is emitted to the outside of the light emitting device 1B.
  • light emitting equipment In the device IB the other part 4b of the light emitted from the light emitting element 2 is absorbed by the phosphor part 3B to excite the phosphor part 3B, and the phosphor particles, fluorescent ions, Light 5 having a wavelength peculiar to fluorescent components such as fluorescent dyes is emitted to the outside of the light emitting device 1B.
  • the combined light 6 of 4a and the light 5 emitted from the phosphor portion 3B is emitted as the wavelength-converted light, and the light emitting device 1B has the light emission color of the light emitting element 2 and the light emission color of the phosphor portion 3B.
  • the overall emission color is determined.
  • the light 4a emitted from the light emitting element 2 and transmitted through the phosphor portion 3B is not necessarily required! /.
  • the light emitting element 2 is surface-mounted on an insulating substrate 16 on which a printed wiring 17 is provided.
  • the p-type semiconductor layer (not shown) and the n-type semiconductor layer (not shown) of the light-emitting layer portion 21 are electrically connected to the printed wirings 17 and 17 through the conductive wires 15 and 15, respectively.
  • the conductive wires 15 and 15 have small cross-sectional areas so as not to block light emitted from the light emitting element 2.
  • the light-emitting element 2 an element that emits light of any wavelength from the ultraviolet region to the infrared region may be used, but here, a gallium nitride LED chip is used.
  • the light-emitting element 2 has an n-type semiconductor layer (not shown) on the lower surface side in FIG. 1 and a P-type semiconductor layer (not shown) on the upper surface side, and outputs light from the p-type semiconductor layer side. Therefore, the upper part of Fig. 1 is assumed to be the front.
  • a frame-shaped frame member 18 surrounding the light-emitting element 2 is fixed on the insulating substrate 16, and the frame member
  • a sealing portion 19 that seals and protects the light emitting element 2 is provided inside 18.
  • the sealing portion 19 is formed by the transparent member 3A which is a member for a semiconductor light emitting device of the present invention, and can be formed by potting with the above-described member forming liquid for a semiconductor light emitting device.
  • the light-emitting device 1A of the present embodiment includes the light-emitting element 2 and the transparent member 3A. Therefore, the light durability and heat durability of the light emitting device 1A can be improved. In addition, since the crack or peeling hardly occurs in the sealing portion 3A, it becomes possible to improve the transparency of the sealing portion 3A.
  • the sealing portion 3A can be made highly transparent with no cloudiness or turbidity, the light of the light emitting element 2 is excellent in light color uniformity and almost no light color variation between the light emitting devices 1A. It is possible to increase the efficiency of taking out the outside of the machine compared to the conventional one. In addition, the weather resistance of the luminescent material can be improved, and the lifetime of the light emitting device 1A can be extended as compared with the conventional case.
  • the transparent member 3A covers the front surface of the light emitting element 2, and the transparent member 3A is sealed with a material different from that of the transparent member 3A. Except for the formation of 19, the configuration is the same as in Embodiment A-1.
  • the transparent member 3A on the surface of the light-emitting element 2 is a transparent thin film that functions as a light extraction film and a sealing film.
  • the above-described member forming liquid for semiconductor light-emitting device is spun. It can be formed by coating or the like. Note that the same components as those in Embodiment A-1 are denoted by the same reference numerals and description thereof is omitted.
  • the light-emitting device 1A of the present embodiment also includes the light-emitting element 2 and the transparent member 3A, as in the embodiment A-1, and thus the light durability and heat durability of the light-emitting device 1A. It is possible to increase the transparency of the sealing portion 3A because the sealing portion 3A is less susceptible to cracking and peeling.
  • the light emitting device 1B of the present embodiment includes a light emitting element 2 made of an LED chip, and a mold part 11 in which a translucent transparent material is molded into a bullet shape.
  • the molding part 11 covers the light emitting element 2, and the light emitting element 2 is electrically connected to lead terminals 12 and 13 formed of a conductive material. Lead terminals 12, 13 are formed by lead frame Has been.
  • the light-emitting element 2 is a gallium nitride LED chip.
  • An n-type semiconductor layer (not shown) is formed on the lower surface side in FIG. 3A, and a p-type semiconductor layer (not shown) is formed on the upper surface side. Since the optical output is taken out from the p-type semiconductor layer side, the upper part of FIGS. 3 (a) and 3 (b) will be described as the front.
  • the rear surface of the light emitting element 2 is bonded to a mirror (cup portion) 14 attached to the front end portion of the lead terminal 13 by die bonding.
  • conductive wires 15 and 15 are connected to the above-described p-type semiconductor layer and n-type semiconductor layer by bonding, and the light-emitting element 2 is connected via the conductive wires 15 and 15. And lead terminals 12 and 13 are electrically connected.
  • the conductive wires 15 and 15 may be those that do not obstruct the light emitted from the light emitting element 2 and that have a small cross-sectional area.
  • the mirror 14 has a function of reflecting the light emitted from the side surface and the rear surface of the light emitting element 2 forward, and the light emitted from the LED chip and the light reflected forward by the mirror 14 are used as lenses. Radiated forward from the mold part 11 through the front end of the functioning mold part 11. Monored® covers the light-emitting element 2 together with the mirror 14, the conductive wires 15, 15, and the lead terminals 12, 13, and the light-emitting element 2 reacts with moisture in the atmosphere. Deterioration is prevented. The rear end portions of the lead terminals 12 and 13 protrude from the rear surface of the mold portion 11 to the outside.
  • the light emitting layer portion 21 made of a gallium nitride based semiconductor is formed on the phosphor portion 3B by using a semiconductor process.
  • a reflective layer 23 is formed on the rear surface of the body part 3B.
  • the light emitted from the light emitting layer 21 is emitted in all directions, but some of the light absorbed by the phosphor 3B excites the phosphor 3B and emits light having a wavelength specific to the fluorescent component. Radiate.
  • the light emitted from the phosphor portion 3B is reflected by the reflective layer 3 and emitted forward. Therefore, the light emitting device 1B can obtain a combined light of the light emitted from the light emitting layer portion 21 and the light emitted from the phosphor portion 3B.
  • the light emitting device 1B of the present embodiment includes the light emitting element 2 and the phosphor portion 3B that is excited by light from the light emitting element 2 and emits light of a desired wavelength.
  • a phosphor part 3B having excellent translucency is used, a part of the light emitted from the light emitting element 2 is radiated to the outside as it is, and other light emitted from the light emitting element 2 is also emitted.
  • the fluorescent component that becomes the emission center is excited and light due to the emission specific to the fluorescent component is emitted to the outside, so the light emitted from the light emitting element 2 and the light emitted from the fluorescent component of the phosphor part 3B
  • the light extraction efficiency can be increased.
  • the phosphor part 3B has a high transparency without cloudiness or turbidity, the light color uniformity is excellent and the light color variation between the light emitting devices 1B is almost uniform.
  • the extraction efficiency can be increased as compared with the conventional case.
  • the weather resistance of the luminescent material can be improved, and the life of the light emitting device 1B can be extended compared to the conventional case.
  • the phosphor portion 3B is also used as a substrate on which the light emitting element 2 is formed, the light emission center in the phosphor portion is obtained by part of the light from the light emitting element 2. Can be excited efficiently, and the brightness of light due to light emission specific to the fluorescent component can be increased.
  • the light emitting element 2 is surface-mounted on an insulating substrate 16 on which a printed wiring 17 is provided.
  • the light-emitting element 2 has the same configuration as that of Embodiment B-1, and a light-emitting layer portion 21 made of a gallium nitride-based semiconductor is formed on the phosphor portion 3B, and is reflected on the rear surface of the phosphor portion 3B.
  • Layer 23 is formed.
  • the p-type semiconductor layer (not shown) and the n-type semiconductor layer (not shown) of the light emitting layer portion 21 are electrically connected to the printed wirings 17 and 17 via the conductive wires 15 and 15, respectively. It is connected.
  • a frame-shaped frame member 18 surrounding the light-emitting element 2 is fixed on the insulating substrate 16, and a sealing portion 19 for sealing and protecting the light-emitting element 2 is provided inside the frame member 18. It is.
  • the basic configuration of the light emitting device IB of the present embodiment is substantially the same as that of the embodiment B-2, and does not use the frame material 18 (see FIG. 4) described in the embodiment B-2. Thus, the shape of the sealing part 19 is different. Note that the same components as those in Embodiment B-2 are denoted by the same reference numerals and description thereof is omitted.
  • the sealing portion 19 in the present embodiment is a truncated cone-shaped sealing functional portion that seals the light emitting element 2.
  • the force S for reducing the number of parts can be reduced compared to the embodiment B-2, and the size and weight can be reduced.
  • the lens function part 19b functioning as a lens in a part of the sealing part 19 it is possible to obtain a light distribution with excellent directivity with the force S.
  • the basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-2, and as shown in FIG. 6, a recess for housing the light emitting element 2 on one surface of the insulating substrate 16 (upper surface in FIG. 6).
  • the light emitting element 2 is mounted on the bottom of the recess 16a, and the sealing portion 19 is provided in the recess 16a.
  • the printed wirings 17 and 17 formed on the insulating substrate 16 are extended to the bottom of the recess 16a, and are electrically connected to the light emitting layer portion 21 made of a gallium nitride semiconductor of the light emitting element 2 through the conductive wires 15 and 15. Connected.
  • the same components as those in Embodiment B-2 are denoted by the same reference numerals and description thereof is omitted.
  • the sealing portion 19 is formed by filling the recess 16a formed on the upper surface of the insulating substrate 16, it has been described in the embodiment B-2.
  • the sealing portion 19 can be formed without using the frame member 18 (see FIG. 5) or the molding die described in the embodiment B-3, and the light emitting device is compared with the embodiments B-2 and B-3. There is an advantage that the second sealing process can be easily performed.
  • the basic configuration of the light-emitting device 1B of this embodiment is substantially the same as that of Embodiment B-4, and is characterized in that the light-emitting element 2 is so-called flip-chip mounted on an insulating substrate 16 as shown in FIG. There is. That is, the light emitting element 2 is provided with bumps 24 and 24 made of a conductive material on the surface side of each of the p-type semiconductor layer (not shown) and the n-type semiconductor layer (not shown) of the light emitting layer portion 21. The light emitting layer portion 21 is electrically connected to the printed wirings 17 and 17 of the insulating substrate 16 through the bumps 24 and 24 face down.
  • the light emitting layer portion 21 is disposed on the side closest to the insulating substrate 16, the reflection layer 23 is disposed on the side farthest from the insulating substrate 16, and the light emitting layer portion 21 and The phosphor portion 3B is interposed between the reflecting layer 23 and the reflecting layer 23.
  • the same components as those in Embodiment B-4 are denoted by the same reference numerals, and description thereof is omitted.
  • the light reflected downward (backward) in FIG. 7 by the reflective layer 23 is reflected by the inner peripheral surface of the recess 16a and radiates upward (forward) in FIG. Is done.
  • the conductive wires 15 and 15 as in the embodiment B-4 are used to connect the printed wirings 17 and 17 provided on the insulating substrate 16 and the light emitting element 2. Since this is not necessary, it is possible to improve the mechanical strength and reliability as compared with Embodiment B-4.
  • the basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-5, except that the reflective layer 23 described in the embodiment B-5 is not provided as shown in FIG.
  • the light emitting device 1B of the present embodiment the light emitted from the light emitting layer portion 21 and the light emitted from the phosphor portion 3B are transmitted through the sealing portion 19 and radiated forward as they are.
  • the same components as those in Embodiment B-5 are denoted by the same reference numerals and description thereof is omitted.
  • the number of parts can be reduced as compared with the embodiment B-5, and the manufacture becomes easy.
  • the basic configuration of the light-emitting device 1B of the present embodiment is substantially the same as that of Embodiment B-1, and includes a mold part 11 that covers the light-emitting element 2 as shown in FIG. It is characterized by the fact that it is integrally formed with. Note that the same constituent elements as in Embodiment B-1 The same reference numerals are given and description thereof is omitted.
  • a work-in-progress that is not provided with the mold part 11 is immersed in a molding die in which the phosphor part forming liquid is stored, and the phosphor part forming liquid (heavy The mold part 11 is formed by a method of curing the condensate).
  • the mold part 11 is formed integrally with the phosphor part, the mold for the semiconductor light-emitting device of the present invention is used as the phosphor part as described later. It becomes possible to improve the sealing property, transparency, light resistance, heat resistance, etc. of the part 11 and to suppress cracks and peeling due to long-term use.
  • the basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-1, and as shown in FIG. 10, a cup-shaped phosphor portion 3B having an open rear surface is mounted on the outer surface of the mold portion 11. It is characterized in that it is. That is, in this embodiment, instead of providing the phosphor portion 3B in the light emitting element 2 as in the embodiment B-1, a phosphor portion 3B having a shape along the outer periphery of the mold portion 11 is provided. Note that the same components as those in Embodiment B-1 are denoted by the same reference numerals and description thereof is omitted.
  • the phosphor part 3B in the present embodiment may be formed as a thin film by the method of curing the phosphor part forming liquid (polycondensate) described in the embodiment B-7, or may be solid fluorescent in advance. A member obtained by molding the body part into a cup shape may be attached to the mold part 11.
  • the material of the phosphor portion is compared to the case where the entire mold portion 11 is formed integrally with the phosphor portion as in the light emitting device 1B of the embodiment B-7.
  • the amount used can be reduced and the cost can be reduced.
  • the basic configuration of the light-emitting device 1B of this embodiment is substantially the same as that of Embodiment B-2, and as shown in FIG. 11, surrounds the light-emitting element 2 on the one surface (upper surface of FIG. 11) side of the insulating substrate 16.
  • the frame-shaped frame member 18 disposed in the frame member 18 is provided, and the sealing portion 19 inside the frame member 18 is formed of a phosphor portion similar to the phosphor portion 3B described in the embodiment B2.
  • the same components as those in the embodiment B-2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the sealing portion 19 is formed of the phosphor portion, by using the semiconductor light emitting device member of the present invention as described later as the phosphor portion, the sealing portion 19 It is possible to improve the sealing performance, transparency, light resistance, heat resistance, etc. of 19 and to suppress cracking caused by long-term use.
  • the basic configuration of the light-emitting device 1B of this embodiment is substantially the same as that of Embodiment B-2, and as shown in FIG. 12, surrounds the light-emitting element 2 on one surface (the upper surface of FIG. 12) of the insulating substrate 16.
  • the frame-shaped frame member 18 disposed in the frame member 18 is provided, and the sealing portion 19 inside the frame member 18 is formed of a phosphor portion similar to the phosphor portion 3B described in the embodiment B2.
  • the same components as those in the embodiment B-2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the sealing portion 19 is formed of the phosphor portion, by using the semiconductor light emitting device member of the present invention as described later as the phosphor portion, the sealing portion 19 It is possible to improve the sealing performance, transparency, light resistance, heat resistance, etc. of 19 and to suppress cracking caused by long-term use.
  • the phosphor portion 3B is formed on the rear surface of the light emitting layer portion 21 of the light emitting element 2, and the sealing portion 19 that covers the light emitting element 2 is formed by the phosphor portion. Since the phosphor portion is present in all directions of the light emitting layer portion 21 of the light emitting element 2, there is an advantage that excitation and emission of the phosphor portion can be performed more efficiently than in the embodiment B-9.
  • the basic configuration of the light-emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-2.
  • the light-emitting device 1B is preliminarily molded into a lens shape on the upper surface of the sealing portion 19 made of a translucent material.
  • the phosphor portion 33 is disposed.
  • the phosphor part 33 is made of the same material as the phosphor part 3B described in the embodiment B-2, and is excited by light from the light emitting element 2 to emit light of a desired wavelength. is there.
  • the same components as those in Embodiment B-2 are denoted by the same reference numerals and description thereof is omitted.
  • the phosphor part 33 has a function as a lens in addition to the wavelength conversion function, and the ability to control the directivity of light emission by the lens effect. Touch with S. [Embodiment B-12]
  • the basic configuration of the light-emitting device IB of the present embodiment is substantially the same as that of Embodiment B-2, and as shown in FIG. Another feature is that the phosphor portion 33 is disposed.
  • the phosphor portion 33 is made of the same material as the phosphor portion 3B described in the embodiment B-2, and is excited by light from the light emitting element 2 to emit light having a desired wavelength.
  • the same components as those in the embodiment B-2 are denoted by the same reference numerals and description thereof is omitted.
  • the phosphor portion 33 has a function as a lens in addition to the wavelength conversion function, and the directivity control of light emission by the lens effect can be performed. it can.
  • the phosphor portion 3B is formed on the rear surface of the light emitting layer portion 21 of the light emitting element 2, excitation and light emission of the phosphor portion are more efficient than those in the embodiment B-11. There is an advantage that can be done.
  • the basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-3, and includes a sealing portion 19 that covers the light emitting element 2 on the upper surface side of the insulating substrate 16, as shown in FIG.
  • the sealing part 19 is characterized in that it is formed of a phosphor part.
  • the sealing portion 19 is a lens-shaped sealing function portion 19a that seals the light emitting element 2, and a lens-like shape that functions as a lens at the front end portion of the sealing portion 19. It consists of a lens function unit 19b. Note that the same components as those in the embodiment B-3 are denoted by the same reference numerals and description thereof is omitted.
  • the sealing unit 19 only has a function of sealing and protecting the light emitting element 2, and the wavelength conversion function for converting the wavelength of the light from the light emitting element 2, and the light emission It has a lens function to control directivity.
  • the weather resistance of the sealing part 19 can be increased, and the life can be extended.
  • the phosphor portion 3B is formed on the rear surface of the light emitting layer portion 21 of the light emitting element 2, and the sealing portion 19 that covers the light emitting element 2 is formed by the phosphor portion.
  • the phosphor portion is present in all directions of the light emitting layer portion 21 of the second, and there is an advantage that excitation and emission of the phosphor portion can be performed more efficiently than in the embodiment B-12.
  • the basic configuration of the light emitting device IB of the present embodiment is substantially the same as that of the embodiment B-3, and as shown in FIG. 16, the sealing covering the light emitting element 2 on the one surface (upper surface of FIG. 16) side of the insulating substrate 16
  • the portion 19 is provided, and the sealing portion 19 is formed by the phosphor portion 3B.
  • the sealing portion 19 is a lens-shaped sealing function portion 19a that seals the light emitting element 2, and a lens-like shape that functions as a lens at the front end portion of the sealing portion 19. It consists of a lens function unit 19b. Note that the same components as those in Embodiment B-3 are denoted by the same reference numerals and description thereof is omitted.
  • the sealing unit 19 has a wavelength conversion function that converts the wavelength of light from the light emitting element 2 only by the function of sealing and protecting the light emitting element 2, and the light emitting device 1B. It has a lens function to control directivity. In addition, the weather resistance of the sealing part 19 can be increased, and the life can be extended.
  • the basic configuration of the light-emitting device 1B of this embodiment is substantially the same as that of Embodiment B-3.
  • a dome-shaped phosphor portion 34 that covers the light-emitting element 2 on the upper surface side of the insulating substrate 16 is provided.
  • a sealing portion 19 made of a translucent resin is formed on the outer surface side of the phosphor portion.
  • the sealing portion 19 includes a sealing function portion 19a that seals the light emitting element 2, and a lens-shaped lens function portion 19b that functions as a lens at the front end portion of the sealing portion 19. It consists of and. Note that the same components as those in Embodiment B-3 are denoted by the same reference numerals, and description thereof is omitted.
  • the amount of material used for the phosphor portion 34 can be reduced as compared with the embodiments B-13 and B-14. Further, in the present embodiment, since the dome-shaped phosphor portion 34 covering the light emitting element 2 is disposed, by using the semiconductor light emitting device member of the present invention as the phosphor portion as will be described later, it is possible from the outside. It is possible to more reliably prevent the light emitting element 2 from being deteriorated due to moisture or the like, and to extend the life.
  • the basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-3, and as shown in FIG. 18, a dome-shaped phosphor portion covering the light emitting element 2 on the upper surface side of the insulating substrate 16 34 is provided, and the sealing portion 19 is formed on the outer surface side of the phosphor portion 34.
  • the sealing unit 19 includes a sealing function unit 19a that seals the light emitting element 2, and a lens-shaped lens function unit that functions as a lens at the front end of the sealing unit 19. 19b. Note that the same components as those in Embodiment B-3 are denoted by the same reference numerals, and description thereof is omitted.
  • the amount of material used for the phosphor part 34 can be reduced as compared with the embodiments B-13 and B-14.
  • the dome-shaped phosphor portion 34 covering the light emitting element 2 is disposed, by using the semiconductor light emitting device member of the present invention as the phosphor portion as will be described later, it is possible from the outside. It is possible to more reliably prevent the light emitting element 2 from being deteriorated due to moisture or the like, and to extend the life.
  • the phosphor portion 3B is formed on the rear surface of the light emitting layer portion 21 of the light emitting element 2, and the sealing portion 19 that covers the light emitting element 2 is formed of the phosphor portion. Since the phosphor portion is present in all directions of the light emitting layer portion 21, there is an advantage that excitation and emission of the phosphor portion can be performed more efficiently than in the embodiment B-15.
  • the basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-4, and as shown in FIG. 19, at the bottom of the recess 16a provided on one surface of the insulating substrate 16 (upper surface in FIG. 19).
  • a sealing portion 19 for sealing the arranged light emitting element 2 is provided, and the sealing portion 19 is formed of a phosphor portion.
  • the phosphor portion is excited by light from the light emitting element 2 and emits light of a desired wavelength, like the phosphor portion 3B described in the embodiment B-1.
  • the same components as those in Embodiment B-4 are denoted by the same reference numerals, and description thereof is omitted.
  • the sealing portion 19 is formed of the phosphor portion, the semiconductor light emitting device member of the present invention is used as the phosphor portion as described later. As a result, it becomes possible to improve the sealing property, transparency, light resistance, heat resistance, etc. of the sealing part 19 and to suppress cracks and peeling due to long-term use.
  • the phosphor portion 3B is formed on the rear surface of the light emitting layer portion 21 of the light emitting element 2, and the sealing portion 19 that covers the light emitting element 2 is formed by the phosphor portion 3B. All directions of the light emitting layer 21 Thus, there is an advantage that excitation and light emission of the phosphor part can be performed more efficiently than in the embodiment B-15.
  • the basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-4, and as shown in FIG. 20, the bottom of the recess 16a provided on one surface of the insulating substrate 16 (the upper surface in FIG. 20).
  • a sealing portion 19 for sealing the arranged light emitting element 2 is provided, and the sealing portion 19 is formed by the phosphor portion 3B.
  • the phosphor portion 3B is excited by light from the light emitting element 2 and emits light of a desired wavelength, like the phosphor portion 3B described in the embodiment B-1.
  • the same components as those in Embodiment B-4 are denoted by the same reference numerals and description thereof is omitted.
  • the sealing portion 19 is formed of the phosphor portion
  • the semiconductor light emitting device member of the present invention is used as the phosphor portion 3B as described later. As a result, it becomes possible to improve the sealing property, transparency, light resistance, heat resistance, etc. of the sealing part 19, and to suppress cracks and peeling due to long-term use.
  • the basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-4, and as shown in FIG. 21, the phosphor previously molded into a lens shape on the upper surface (light extraction surface) of the sealing portion 19
  • the feature is that the portion 33 is provided.
  • the phosphor part 33 is excited by light from the light emitting element 2 and emits light of a desired wavelength, like the phosphor part 3B described in the embodiment B-1.
  • the same components as those in Embodiment B-4 are denoted by the same reference numerals, and description thereof is omitted.
  • the phosphor portion 33 has a function as a lens in addition to the wavelength conversion function, and the ability to control the directivity of light emission by the lens effect. Touch with S.
  • the basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-4, and as shown in FIG. 22, the phosphor previously molded into a lens shape on the upper surface (light extraction surface) of the sealing portion 19
  • the feature is that the portion 33 is provided.
  • the phosphor portion 33 is the same as that in Embodiment B-1. Similar to the phosphor portion 3B described, it is excited by light from the light emitting element 2 and emits light of a desired wavelength. Note that the same components as those in Embodiment B-4 are denoted by the same reference numerals, and description thereof is omitted.
  • the phosphor portion 33 has a function as a lens in addition to the wavelength conversion function, and the directivity control of light emission by the lens effect can be performed. it can. Further, in the present embodiment, since the phosphor portion 3B is also disposed on the rear surface of the light emitting layer portion 21 of the light emitting element 2, excitation and emission of the phosphor portion are further enhanced as compared with the embodiment B-19. There is an advantage that it is performed efficiently.
  • the basic configuration of the light-emitting device 1B of this embodiment is substantially the same as that of Embodiment B-5, and as shown in FIG. 23, the bottom of a recess 16a provided on one surface of the insulating substrate 16 (upper surface in FIG. 23)
  • a sealing portion 19 for sealing the arranged light emitting element 2 is provided, and the sealing portion 19 is formed by the phosphor portion 3B.
  • the sealing portion 19 has a concave portion 19c for accommodating the light emitting element 2 in a portion corresponding to the light emitting element 2 having an outer peripheral shape corresponding to the recess 16a.
  • the sealing process can be simplified. Further, the phosphor portion 3B forming the sealing portion 19 is excited by light from the light emitting element 2 and emits light of a desired wavelength, like the phosphor portion 3B described in the embodiment B-1. is there. Note that the same components as those in Embodiment B-5 are denoted by the same reference numerals and description thereof is omitted.
  • the sealing portion 19 is formed of the phosphor portion
  • the semiconductor light emitting device member of the present invention is used as the phosphor portion 3B as described later.
  • the sealing property, transparency, light resistance, heat resistance, etc. of the sealing part 19 is once reflected by the reflective layer 23 toward the inner bottom surface side of the recess 16a.
  • the optical path length can be increased by further reflecting off the inner bottom surface and the inner peripheral surface of the recess 16a and radiating forward. Excites and emits light more efficiently There is an advantage of being able to swell!
  • the basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-5, and as shown in FIG. 25, the bottom of the recess 16a provided on one surface of the insulating substrate 16 (upper surface in FIG. 25).
  • a sealing portion 19 for sealing the arranged light emitting element 2 is provided, and the sealing portion 19 is formed by the phosphor portion 3B.
  • the sealing portion 19 has a concave portion 19c for accommodating the light emitting element 2 in a portion corresponding to the light emitting element 2 having an outer peripheral shape corresponding to the recess 16a.
  • the sealing process can be simplified. Further, the phosphor portion 3B forming the sealing portion 19 is excited by light from the light emitting element 2 and emits light of a desired wavelength, like the phosphor portion 3B described in the embodiment B-1. is there. Note that the same components as those in Embodiment B-5 are denoted by the same reference numerals and description thereof is omitted.
  • the sealing portion 19 is formed by the phosphor portion 3B, as described later as the phosphor portion 3B, the semiconductor light emitting device component of the present invention is used. By using, it becomes possible to improve the sealing property, transparency, light resistance, heat resistance, etc. of the sealing part 19, and to suppress cracks and peeling due to long-term use.
  • the basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-6, and as shown in FIG. 27, the phosphor portion 3B previously processed into a rod shape is disposed on the upper surface of the light emitting element 2.
  • a sealing portion 19 made of a translucent material is formed around the light emitting element 2 and the phosphor portion 3B.
  • the phosphor portion 3B has one end surface (the lower end surface in FIG.
  • the other end surface (the upper end surface in FIG. 27) is in close contact with the light emitting layer portion 21 and exposed. Note that the same components as those in Embodiment B-6 are denoted by the same reference numerals and description thereof is omitted.
  • the phosphor portion 3B having the one end face in close contact with the light-emitting layer portion 21 of the light-emitting element 2 is formed in a rod shape.
  • the emitted light can be efficiently taken into the phosphor part 3B through the one end face of the phosphor part 3B.
  • the light emitted from the phosphor portion 3B excited by the taken-in light can be efficiently emitted to the outside through the other end surface of the phosphor portion 3B.
  • the phosphor portion 3B is formed in a relatively large diameter rod shape and only one force S is used.
  • the phosphor portion 3B is formed in a relatively small diameter fiber shape.
  • a plurality of phosphor portions 3B may be arranged side by side.
  • the cross-sectional shape of the phosphor portion 3B is not limited to a circle, and may be, for example, a square shape or other shapes!
  • the basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-23, and includes a sealing portion 19 provided in the recess 16a of the insulating substrate 16, as shown in FIG.
  • the feature is that the portion 19 is formed by the phosphor portion 3B.
  • the sealing portion 19 has a through-hole 19d for accommodating the light emitting element 2 in a portion corresponding to the light emitting element 2 with an outer peripheral shape corresponding to the recess 16a. Since the product processed into the shape having the is mounted in the recess 16a of the insulating substrate 16 on which the light emitting element 2 is mounted, the sealing process can be simplified.
  • the phosphor portion 3B forming the sealing portion 19 is excited by light from the light emitting element 2 and emits light having a desired wavelength, like the phosphor portion 3B described in the embodiment B-1.
  • the same components as those in Embodiment B-23 are denoted by the same reference numerals, and description thereof is omitted.
  • the sealing portion 19 is also formed by the phosphor portion 3B, it is possible to extend the life and increase the efficiency of light emission.
  • the phosphor portion 3B is formed in a relatively large-diameter rod shape and only one is used. As shown in FIG. 31, the phosphor portion 3B is formed in a relatively small-diameter fiber shape. A plurality of phosphor portions 3B may be arranged side by side.
  • the cross-sectional shape of the phosphor portion 3B is not limited to a circle, and may of course be formed in, for example, a square shape or other shapes.
  • the basic configuration of the light emitting device 1B of the present embodiment is substantially the same as that of the embodiment B-2.
  • the frame member 18 disposed on one surface (the upper surface in FIG. 32) of the insulating substrate 16 is provided.
  • the light-emitting layer 2 of the light-emitting element 2 is AlGaN-based and emits near-ultraviolet light.
  • Phosphor powder for example, YAG: Ce 3+ phosphor powder that emits yellow light when excited by near-ultraviolet light
  • the phosphor portion 3B includes a fluorophosphate glass (for example, PO-A1F-MgF-CaF-SrF that emits blue light when excited by near ultraviolet light).
  • the phosphor powder that is excited and emitted by the light from the light-emitting element 2 is dispersed in the sealing portion 19, and thus is emitted from the light-emitting element 2.
  • a light output composed of the combined light of the light, the light emitted from the phosphor portion 3B and the light emitted from the phosphor powder force is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Silicon Polymers (AREA)
  • Luminescent Compositions (AREA)
  • Sealing Material Composition (AREA)
  • Led Devices (AREA)

Description

明 細 書
半導体デバイス用部材、並びに半導体デバイス用部材形成液及び半導 体デバイス用部材の製造方法、並びに、それを用いた半導体デバイス用部材形 成液、蛍光体組成物、半導体発光デバイス、照明装置、及び画像表示装置
技術分野
[0001] 本発明は、新規な半導体デバイス用部材、並びに半導体デバイス用部材形成液及 び半導体デバイス用部材の製造方法、並びに、半導体発光デバイス、半導体デバイ ス用部材形成液、及び蛍光体組成物に関する。詳しくは、耐熱性、耐光性、成膜性、 密着性に優れた半導体デバイス用部材、並びに半導体デバイス用部材形成液及び 半導体デバイス用部材の製造方法、並びに、高温で使用可能な大型の半導体素子 を搭載した半導体発光デバイスに関する。また、本発明は、前記半導体発光デバィ スを用いて形成された照明装置、及び画像表示装置に関する。
背景技術
[0002] 半導体デバイス、特に発光ダイオード(light emitting diode:以下適宜「: LED」 と略する。)や半導体レーザー等の半導体発光デバイスにおいては、半導体素子(半 導体発光素子ともいう)を透明の樹脂等の部材(半導体デバイス用部材)によって封 止したものが一般的である。
[0003] 近年、信号、野外ディスプレイ装置など屋外で使用する情報表示装置、また自動車 用ヘッドライト、白熱灯、蛍光ランプに代わる照明装置に前記半導体発光デバイスが その発光効率、視認性、堅牢性などの点から実用化されつつある。しかし、これらの 用途に使用するためには大出力の発光装置(レ、わゆる「パワーデバイス」 )が望まし!/、
。大出力の半導体発光デバイスとしては、例えば lmm角の半導体素子(チップ)を使 用した例が開示されている(非特許文献 1)。し力、しながら、パワーデバイスとしての半 導体発光デバイスの一般化は困難であったため、従来は小出力の素子を複数個並 ベることにより課題を回避してきた。
ノ ヮ一デバイスとしての半導体発光デバイスの一般化は困難な理由は以下の通り である。即ち、例えば LED1個当たりの光出力を上げるためには、まず投入電力を大 きくすることになる。しかしながら、投入電力を大きくすると発熱も大きくなる。一方、熱 密度が増大を防止すべく LEDチップサイズを大型化すると、封止材とのチップとの熱 膨張率の差ができるため、剥離などの密着性が低下する。
[0004] 前述の半導体デバイス用部材としては、従来、例えばエポキシ樹脂が用いられてい た。また、この封止樹脂中に蛍光体などの顔料を含有させることによって、半導体素 子からの発光波長を変換するものなどが知られていた。
[0005] しかし、エポキシ樹脂は吸湿性が高!/、ので、半導体デバイスを長時間使用した際 に生ずる半導体素子からの熱によってクラックが生じたり、また水分の浸入により蛍光 体や発光素子が劣化するなどの課題があった。
[0006] また近年、発光波長の短波長化に伴いエポキシ樹脂が劣化して着色するために、 長時間の点灯及び高出力での使用においては半導体デバイスの輝度が著しく低下 するという課題もあった。
[0007] これらの課題に対して、エポキシ樹脂の代替品として耐熱性、紫外耐光性に優れる シリコーン樹脂が使用されるようになった。しかし、シリコーン樹脂は、密着性、透明性
、耐候性はいまだ不十分であった。これに対し、耐熱性、紫外耐光性に優れた材料と して、無機系封止材ゃこれを用いた半導体デバイスが提案されている (例えば特許 文献;!〜 6参照)。
[0008] 非特許文献 1 :成川幸男他、「応用物理」、第 74巻、第 11号、第 1423頁〜第 1432 頁、 2005年
特許文献 1:特許第 3275308号公報
特許文献 2:特開 2003— 197976号公報
特許文献 3 :特開 2004— 231947号公報
特許文献 4 :特開 2002— 33517号公報
特許文献 5:特開 2002— 203989号公報
特許文献 6:特願 2006— 047274号明細書
発明の開示
発明が解決しょうとする課題
[0009] しかしながら、溶融ガラス等の無機材料は、取り扱い温度が 350°C以上と高ぐ発光 素子にダメージを与えるため、これを無機系封止材に用いることは工業的に実現され ていなかった。
また、ゾルゲル法により製造されるガラスでは、半導体デバイス用部材として成形す る際の硬化収縮によるクラックの発生及び剥離といった成膜性の課題があり、長期に 亘り厚膜状態で安定したものは未だ得られていなかった。
[0010] また、ゾルゲル法による製造方法は反応性が高すぎるため濃縮が困難であり、溶剤 を多用することが多かった。溶剤を多用した場合にはゾル中の固形分量が少なくなる ため、半導体デバイス上にゾルを塗布して半導体デバイス用部材を形成する際には 、所定の厚みとなるまで繰り返し塗布することになり、生産効率が悪い。また、溶剤揮 発を伴いつつ硬化するので、硬化した半導体デバイス用部材に内部応力が発生し やすくクラックや剥離が起きやすいほか、環境負荷の面でも好ましくない。
[0011] さらに、これらの無機系封止材は非常に硬くもろいため、成膜性が不十分であり、 半導体デバイスに用いられる熱膨張係数の異なる各部材の熱膨張'熱収縮に追随 できず、使用中に剥離やクラック、断線を多発する課題があり、耐リフロー性ゃ耐温 度サイクル性に優れるものも未だ得られていなかった。なお、ここでリフローとは、は んだペーストを基板に印刷し、その上に部品を搭載して加熱、接合するはんだ付け 工法のことをいう。そして、耐リフロー性とは、最高温度 260°C、 10秒間の熱衝撃に 耐え得る性質のことを指す。
[0012] 例えば、特許文献 1や特許文献 2には、 4官能のアルコキシシランを用いてガラス材 料を形成する技術が記載されている。しかしながら、特許文献 1や特許文献 2に記載 の技術により得られる無機材料に関していえば、 4官能のアルコキシシランの加水分 解液を半導体発光デバイスに塗布し、半導体発光デバイスの性能を損なわない 150 °C程度のマイルドな硬化温度で数時間程度硬化していた。この場合、得られるガラス 材料は、通常十数重量%以上のシラノールを含有する不完全なガラス体となってレ、 た。したがって、特許文献 1や特許文献 2に記載の技術からは、溶融法ガラスのように 真にシロキサン結合のみからなるガラス体を得ることはできなかった。
[0013] これは、一般の有機樹脂と異なり、特許文献 1や特許文献 2で用いた無機材料は架 橋点が非常に多いために、構造の束縛が大きぐ反応性末端が孤立して縮合するこ とが出来ないためと推察される。このようなガラス体は緻密ではなぐまた、その表面 はシリカゲル同様に非常に親水性が高い状態となるため、十分な封止能力を持たな い。
[0014] また、一般に、 250°C以上の加熱により、このような反応しにくいシラノールはごく僅 かに減少をはじめ、通常 350°C以上、好ましくは 400°C以上の高温で焼成すればシ ラノールの量を積極的に減少させることが出来る。しかし、これを利用して特許文献 1 や特許文献 2に記載の無機材料からシラノールを除去しょうとしたとしても、半導体デ バイスの耐熱温度は通常 260°C以下であるため、実現は困難である。
[0015] さらに、 4官能のアルコキシシランは、脱水'脱アルコール縮合時に脱離する成分量 が多いため、本質的に硬化時の収縮率が大きい。し力、も、 4官能のアルコキシシラン は反応性が高いために、乾燥工程にて、希釈溶媒の一部が蒸発した表面部分から 硬化が始まり、溶媒を包含した硬!/、ゲル体を形成してから内部の溶媒を放出する傾 向があるので、溶媒蒸発に伴う硬化時及び硬化後の収縮量も大きくなる。このため、 特許文献 1や特許文献 2に記載の無機材料では、結果的に収縮による大きな内部応 力が発生しクラックが多発する。したがって、 4官能アルコキシシランのみを原料とし て半導体デバイス用部材として有用な大きなバルタ体や厚膜を得ることは困難であつ た。
[0016] また、例えば、特許文献 3には、有機基を含有するシラン化合物を原料とし、ゾルゲ ル法により 3次元状の蛍光体層を寸法精度良く作製する技術が記載されている。しか しながら、特許文献 3には架橋度に対する詳細な記載は無ぐまた、特許文献 3記載 の無機材料を得るためには高濃度の蛍光体粒子を必須とし、実質的にはこれが骨材 として働き 3次元の形状を保っために、無機材料中に蛍光体を含まない場合、透明 でクラックの無い厚膜状のガラス状塗布物を得ることは出来なかった。
[0017] さらに、特許文献 3記載の技術では、触媒として酢酸が使用されている力 得られる 無機材料から酢酸が除去されていないために、酢酸が半導体素子に悪影響を及ぼ す。また、特許文献 3記載の無機材料を形成する場合には、硬化に 400°Cの高温を 要するため、半導体デバイスと共に加熱することは実質的に不可能で、かつ高温に おける無理な縮合によりその構造に歪みがたまり、クラック発生が抑止されていなか つた。
[0018] また、例えば、特許文献 4には、シリカ又はシロキサンを骨格とする無機物ゾルに無 機光散乱剤を混合して得た無機コーティング剤を塗布して半導体デバイス用部材を 得る技術が記載されている。し力、しながら、特許文献 4記載の無機材料には無機光 散乱剤が必須であり、さらに、特許文献 4には原料及び製造方法の詳細な記載が無 ぐ正確に技術を再現することは不可能である。
[0019] さらに、例えば、特許文献 5には、ゾルゲル法ガラスを塗布して半導体デバイス用部 材を得る技術が記載されている。しかしながら、特許文献 3と同様、特許文献 5記載 の無機材料を得るには蛍光体が必須である。また、この蛍光体が骨材として働き、得 られる無機材料は厚膜となっている力 膜厚 100 mを超えるものではない。さらに、 特許文献 5には原料や製法が記載されておらず、一般的なアルコキシシランを使用 して安定に技術を再現することは困難である。
[0020] また、本発明者らは、特許文献 6で、上記課題を解決しうる、特定のケィ素含有半 導体デバイス用部材を開示した。し力もながら、放熱が大きい半導体パワーデバイス に用いる場合は、耐光性、成膜性、密着性を維持しつつ、耐熱安定性のレベルをさ らに上げることが望まし力 た。また、半導体デバイス用部材の製造工程における低 沸不純物の揮発を抑え、硬化物重量歩留まりを向上させることも望まれていた。
[0021] さらに、半導体発光デバイスにおけるパッケージは、輝度(反射率)、耐久性 '耐熱 性、耐光性、密着性、放熱性等の向上を目的として、種々の表面加工が施される。特 に、パワーデバイスにおいては、耐久性、耐熱性向上を目的とした、材料の選択、表 面加工がなされる場合が多い。また、半導体素子(チップ)は、加工の観点などから 保護層を設ける場合が多い。この様に、半導体発光デバイスにおいて封止材と接す るパッケージや半導体素子等の部材は、表面材質が特殊な成分を含有するため、一 層、封止の剥離の問題を助長する原因ともなつていた。
以上の背景から、耐熱性、耐光性、成膜性、密着性に優れ、長期間使用してもクラ ックゃ剥離、着色を生じることなく半導体デバイスを封止し、蛍光体を保持することの できる半導体デバイス用部材が求められていた。
[0022] 本発明は、上述の課題に鑑みてなされたものである。すなわち、本発明の第一の目 的は、耐熱性、耐光性、成膜性、密着性に優れ、長期間使用してもクラックや剥離、 着色を生じることなく半導体デバイスを封止し、蛍光体を保持することのできる、新規 な半導体デバイス用部材、並びに、半導体デバイス用部材形成液及び半導体デバ イス用部材の製造方法、並びに、それを用いた半導体デバイス用部材形成液、及び 蛍光体組成物を提供することにある。本発明の第二の目的は、長期間使用してもクラ ックゃ剥離を生じることなぐ特にパワーデバイスに用いた場合も優れた輝度 (反射率 )、耐久性 '耐熱性、耐光性、密着性等を有する半導体発光デバイス、及びそれを用 いた照明装置及び画像表示装置を提供することにある。
課題を解決するための手段
[0023] 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、熱重量減が少 なぐ一定の成膜性を有する特定の高分子が、半導体デバイス用部材とした際に厚 膜化が可能であり、厚膜部においてもクラックの発生が抑制され、且つ耐熱性、耐光 性に優れたものとなることを見出した。また、表面処理等がなされた材質にも極めて 高い密着性を有し、耐熱性、耐光性にも優れた封止材を使用することにより、特に大 型半導体発光チップを搭載したパワーデバイスでも使用可能となり得ることを見出し た。そして、これらの知見に基づき、本発明を完成させた。
[0024] 即ち、本発明の要旨は、下記加熱重量減測定方法 (I)により測定された加熱重量 減が 50重量%以下であり、且つ、下記密着性評価方法 (Π)により測定された剥離率 が 30%以下であることを特徴とする半導体デバイス用部材に存する(請求項 1)。 加熱重量減測定方法 (I)
前記半導体デバイス用部材の破砕片 10mgを用いて、熱重量 ·示差熱測定装置に より、空気 200ml/分流通下、昇温速度 10°C/分で 35°Cから 500°Cまで加熱し、 重量減の測定を行う。
密着性評価方法 (Π)
(1)直径 9mm、凹部の深さ lmmの銀メツキ表面銅製カップに半導体デバイス用部 材形成液を滴下し、所定の硬化条件にて硬化させて半導体デバイス用部材を得る。
(2)得られた半導体デバイス用部材を温度 85°C、湿度 85%の雰囲気下で 20時間 吸湿させる。 (3)吸湿後の半導体デバイス用部材を室温より 260°Cまで 50秒で昇温後、 260°Cで 10秒間保持する。
(4)昇温後の半導体デバイス用部材を室温まで冷却し、 目視及び顕微鏡観察により 半導体デバイス用部材の前記銅製カップからの剥離の有無を観察する。
(5)前記半導体デバイス用部材 10個につき、それぞれ、前記(2)、(3)及び (4)の操 作を実施し、前記半導体デバイス用部材の剥離率を求める。
[0025] 本発明の別の要旨は、前記加熱重量減測定方法 (I)により測定された加熱重量減 力 50重量%以下であり、且つ、デュロメータタイプ Aによる硬度測定値(ショァ A)が 5 以上 90以下であることを特徴とする半導体デバイス用部材に存する(請求項 2)。
[0026] このとき、本発明の半導体デバイス用部材は、メタロキサン骨格を有することが好ま しい(請求項 3)。
また、本発明の半導体デバイス用部材は、無機粒子を含有することが好ましい (請 求項 4)。
さらに、本発明の半導体デバイス用部材は、蛍光体を含有することが好ましい (請 求項 5)。
[0027] 本発明の更に別の要旨は、下記式(1)で表わされる化合物及び/又はそのオリゴ マーを加水分解 ·重縮合して得られる重縮合物を含有する半導体デバイス用部材形 成液の製造方法であって、前記加水分解 '重縮合を、ジルコニウム、ハフニウム、スズ 、亜鉛、及びチタンより選択される少なくとも 1種の元素を含む有機金属化合物触媒 の存在下で行なうことを特徴とする半導体デバイス用部材形成液の製造方法に存す る(請求項 6)。
[化 1コ
Mm + X n Y ( 1 )
(式(1)中、 Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンより選択される少な くとも 1種の元素を表わし、 Xは、加水分解性基を表わし、 Y1は、 1価の有機基を 表わし、 mは、 Mの価数を表わす 1以上の整数を表わし、 nは、 X基の数を表わす 1以 上の整数を表わす。但し、 m≥nである。 )
[0028] 本発明の更に別の要旨は、下記式(2)で表わされる化合物及び/又はそのオリゴ マーを加水分解 ·重縮合して得られる重縮合物を含有する半導体デバイス用部材形 成液の製造方法であって、前記加水分解 '重縮合を、ジルコニウム、ハフニウム、スズ 、亜鉛、及びチタンより選択される少なくとも 1種の元素を含む有機金属化合物触媒 の存在下で行なうことを特徴とする半導体デバイス用部材形成液の製造方法に存す る(請求項 7)。
[化 2]
( Μ ^ Χ , Υ 1 , ^ - ! ) U Y 2 ( 2 )
(式(2)中、 Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンより選択される少な くとも 1種の元素を表わし、 Xは、加水分解性基を表わし、 Y1は、 1価の有機基を表わ し、 Y2は、 u価の有機基を表わし、 sは、 Mの価数を表わす 2以上の整数を表わし、 t は、 1以上、 s— 1以下の整数を表わし、 uは、 2以上の整数を表わす。 )
[0029] 本発明の更に別の要旨は、前記式(1)で表わされる化合物及び/又はそのオリゴ マーを加水分解 ·重縮合して得られる重縮合物を乾燥させる工程を有する半導体デ ノ イス用部材の製造方法であって、前記加水分解 '重縮合を、ジルコニウム、ハフ二 ゥム、スズ、亜鉛、及びチタンより選択される少なくとも 1種の元素を含む有機金属化 合物触媒の存在下で行なうことを特徴とする半導体デバイス用部材の製造方法に存 する(請求項 8)。
[0030] 本発明の更に別の要旨は、前記式(2)で表わされる化合物及び/又はそのオリゴ マーを加水分解 ·重縮合して得られる重縮合物を乾燥させる工程を有する半導体デ ノ イス用部材の製造方法であって、前記加水分解 '重縮合を、ジルコニウム、ハフ二 ゥム、スズ、亜鉛、及びチタンより選択される少なくとも 1種の元素を含む有機金属化 合物触媒の存在下で行なうことを特徴とする半導体デバイス用部材の製造方法に存 する(請求項 9)。
[0031] 本発明の更に別の要旨は、前記の半導体デバイス用部材を少なくとも備えてなるこ とを特徴とする、半導体発光デバイスに存する(請求項 10)。
[0032] 本発明の更に別の要旨は、前記の半導体デバイス用部材形成液の製造方法で製 造されたことを特徴とする、半導体デバイス用部材形成液に存する(請求項 11)。
[0033] 本発明の更に別の要旨は、(A)パッケージ、(B)半導体素子、及び (C)封止材を 有する半導体発光デバイスであって、(A)パッケージ及び/又は (B)半導体素子に おいて、その表面材料が Si、 A1及び Agのいずれか 1以上を含有し、(C)封止材が、 下記条件 (ィ)〜(ハ)の全てを満たし、かつ (A)パッケージ及び/又は (B)半導体素 子の前記表面材料と直接接していることを特徴とする半導体発光デバイスに存する( 請求項 12)。
(ィ)セラミック又は金属の表面に存在する、水酸基、又は、メタロキサン結合中の酸 素と水素結合可能な官能基を有すること。
(口) 200°Cに 500時間放置した前後において、波長 400nmの光における透過率 の維持率が 80 %以上 110 %以下であること。
(ハ)中心波長が 380nm、かつ波長 370nm以上で、放射強度 0. 6kW/m2の光 を 72時間照射した前後において、波長 400nmの光に対する透過率の維持率が 80 %以上 110 %以下であること。
[0034] このとき、本発明の半導体発光デバイスは、さらに下記条件 (二)を満たすことが好 ましい(請求項 13)。
(二)発光波長 460 ± 10nm、かつ一辺が 900 mの正方形の半導体素子に、発 光面の温度が 100 ± 10°Cとなる様に維持しながら 350mAの駆動電流を通電して、 温度 85°C相対湿度 85%にて 500時間連続点灯を行った場合に、点灯直後の輝度 に対する 500時間後の輝度の割合が 90%以上であること。
[0035] また、本発明の半導体発光デバイスは、(C)封止材として、本発明の半導体デバイ ス用部材を用いることが好ましレ、 (請求項 14)。
[0036] さらに、(A)パッケージ及び/又は (B)半導体素子の前記表面材料が、 SiN、 SiC 、及び SiOの 1以上を含有することが好ましい(請求項 15)。
2
[0037] また、(A)パッケージ及び/又は(B)半導体素子の前記表面材料が、 Al、 A1N、 A 1 Oの 1以上を含有することが好ましい(請求項 16)。
2 3
[0038] さらに、本発明の半導体発光デバイスは、(B)半導体素子の基板部分に、前記表 面材料を有することが好ましレヽ (請求項 17)。
[0039] また、本発明の半導体発光デバイスは、(B)半導体素子の発光面の面積が 0. 15 mm2以上であることが好まし!/、(請求項 18)。 [0040] さらに、本発明の半導体発光デバイスは、動作時の(B)半導体素子の発光面の表 面温度が 80°C以上 200°C以下であることが好ましい(請求項 19)。
[0041] また、本発明の半導体発光デバイスは、動作時の電力量が 0. 1W以上であること が好ましい(請求項 20)。
[0042] 本発明の更に別の要旨は、本発明の半導体発光デバイスを用いて形成された照 明装置に存する (請求項 21)。
[0043] 本発明の更に別の要旨は、本発明の半導体発光デバイスを用いて形成された画 像表示装置に存する (請求項 22)。
発明の効果
[0044] 本発明の半導体デバイス用部材は、耐熱性、耐光性、成膜性、密着性に優れ、長 期間使用してもクラックや剥離を生じることなく半導体デバイスを封止することが可能 である。また、通常、従来の無機系の半導体デバイス用部材と比較して厚膜塗布が 可能であり、半導体デバイス上に塗布、乾燥するだけで容易に半導体デバイスを封 止し、蛍光体を保持することができる。
本発明の半導体デバイス用部材形成液及び蛍光体組成物によれば、本発明の半 導体デバイス用部材を製造することができる。
本発明の半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法に よれば、本発明の半導体デバイス用部材形成液及び半導体デバイス用部材を、製 造すること力 Sでさる。
本発明の半導体発光デバイスは、封止材が耐熱性、耐光性、成膜性、密着性に優 れているため、長期間使用しても封止材にクラックや剥離、着色を生じることなく、長 期にわたって性能を維持することができる。
図面の簡単な説明
[0045] [図 1]実施形態 A— 1を示す概略断面図である。
[図 2]実施形態 A— 2を示す概略断面図である。
[図 3]実施形態 B— 1を示し、図 3 (a)は概略断面図、図 3 (b)は図 3 (a)の要部拡大図 である。
[図 4]実施形態 B— 2を示す概略断面図である。 :図 5]実施形態 B -•3を示す概略断面図である。
:図 6]実施形態 B - •4を示す概略断面図である。
:図 7]実施形態 B - - 5を示す概略断面図である。
:図 8]実施形態 B - •6を示す概略断面図である。
:図 9]実施形態 B - - 7を示す概略断面図である。
:図10]実施形態 B- - 8を示す概略断面図である。
:図11]実施形態 B- - 9を示す概略断面図である。
:図12]実施形態 B- - 10を示す概略断面図である。
:図13]実施形態 B- - 11を示す概略断面図である。
:図 14]実施形態 B- - 12を示す概略断面図である。
:図15]実施形態 B- - 13を示す概略断面図である。
:図16]実施形態 B- - 14を示す概略断面図である。
:図 17]実施形態 B- - 15を示す概略断面図である。
:図18]実施形態 B- - 16を示す概略断面図である。
:図19]実施形態 B- - 17を示す概略断面図である。
:図 20]実施形態 B- - 18を示す概略断面図である。
:図 21]実施形態 B- - 19を示す概略断面図である。
:図 22]実施形態 B- - 20を示す概略断面図である。
:図 23]実施形態 B- - 21を示す概略断面図である。
:図 24]実施形態 B- - 21につ!/、て示す要部断面図である
:図 25]実施形態 B- - 22を示す概略断面図である。
:図 26]実施形態 B- - 22について示す要部断面図である
:図 27]実施形態 B- - 23を示す概略断面図である。
:図 28]実施形態 B- - 23について示す要部斜視図である
:図 29]実施形態 B- - 24を示す概略断面図である。
:図 30]実施形態 B- - 24について示す要部断面図である
:図 31]実施形態 B- - 24について示す要部斜視図である
:図 32]実施形態 B- - 25を示す概略断面図である。 [図 33]実施形態 B— 26を示す概略断面図である。
[図 34]実施形態 B— 27を示す概略断面図である。
[図 35]実施形態 B— 28を示す概略断面図である。
[図 36]実施形態 B— 29を示す概略断面図である。
[図 37]実施形態 B— 30を示し、図 37 (a)は概略断面図、図 37 (b)は図 37 (a)の要部 拡大図である。
[図 38]実施形態 B— 31を示す概略断面図である。
[図 39]実施形態 B— 32を示す概略断面図である。
[図 40]実施形態 B— 33を示す概略断面図である。
[図 41]実施形態 B— 34を示す概略断面図である。
[図 42]実施形態 B— 35を示す概略断面図である。
[図 43]実施形態 B— 36を示す概略断面図である。
[図 44]実施形態 B— 37を示す概略断面図である。
[図 45]実施形態 B— 38を示す概略断面図である。
[図 46]実施形態 B— 39を示す概略断面図である。
[図 47]実施形態 B— 40を示す概略断面図である。
[図 48]実施形態 B— 41を示す概略断面図である。
[図 49]各実施形態の要部の他の構成例の説明図である。
[図 50]図 50 (a)、図 50 (b)はいずれも、各実施形態の基本概念の説明図である。
[図 51]本発明の実施例及び比較例で行なった連続点灯試験について説明するため 、半導体発光デバイスを模式的に示す断面図である。
符号の説明
1 , 1A, 1B 発光装置(半導体発光デバイス)
2 発光素子
3A 透明部材 (半導体発光デバイス用部材)
3B 蛍光体部(半導体発光デバイス用部材)
4a, 4b 発光素子から放射された光の一部
5 蛍光体部に含有される蛍光体粒子、蛍光イオン、蛍光染料などの蛍光成分特有 の波長の光
11 モールド部
12, 13 リード端子
14 ミラー(カップ部)
15 導電ワイヤ
16 絶縁基板
16a 凹所
17 プリント配線
18 枠材
19 封止部
19a 封止機能部
19b レンズ機能部
19c 凹部
19d 貫通孔
21 発光層部
23 反射層
24 バンプ
33, 34 蛍光体部
35 固体媒質
36 蓋体
101 カップ
102 LEDチップ
103 LED素子
発明を実施するための最良の形態
[0047] 以下、本発明を詳細に説明するが、本発明は以下の実施の形態に限定されるもの ではなぐその要旨を逸脱しない範囲内であれば種々に変更して実施することができ
[0048] [1]半導体デバイス用部材 本発明の第一の半導体デバイス用部材は、以下の特性(1)及び(2)を有する。 特性(1):後述の特定の加熱重量減測定方法 (I)により測定された加熱重量減が 5
0重量%以下である。
特性(2):後述の特定の密着性評価方法 (Π)により測定された剥離率が 30%以下 である。
[0049] また、本発明の第二の半導体デバイス用部材は、上記の特性(1)及び以下の特性
(3)を有する。
特性(3):デュ口メータタイプ Aによる硬度測定値 (ショァ A)が 5以上 90以下である。 以下、まずこれらの特性(1)、(2)及び(3)から説明する。なお、以下の説明におい て、本発明の第一の半導体デバイス用部材と第二の半導体デバイス用部材とを区別 せずに指す場合、単に「本発明の半導体デバイス用部材」という。
[0050] [1 1 ]加熱重量減
加熱重量減は、本発明の半導体デバイス用部材の高度な耐熱性を評価する指標 であり、後述する加熱重量減測定方法 (I)により測定される。
本発明の半導体デバイス用部材の加熱重量減は、 50重量%以下であり、好ましく は 40重量%以下、さらに好ましくは 35重量%以下である。また、下限に制限は無い 1S 通常 5重量%以上、好ましくは 10重量%以上である(特性(1) )。加熱重量減が 大きすぎると、半導体デバイスの長期間の使用により収縮が起こり、初期の特性を維 持できなくなる可能性がある。加熱重量減が大きくなる要因は、例えば、半導体デバ イス用部材に含まれる揮発性低分子量成分が多いこと、半導体デバイス用部材を形 成する主鎖成分が加熱により分解切断しやすいことなどが考えられる。また、加熱重 量減が小さいと半導体デバイス用部材は熱安定性に優れるものとなる力、このような 半導体デバイス用部材は一般に多官能の Si成分を多く含んでおり、硬い膜となること が多い。そのため、加熱重量減が小さすぎる半導体デバイス用部材は、耐ヒートサイ クル性、耐リフロー性などに劣り、半導体デバイス用部材として好ましくない。
[0051] 〔加熱重量減測定方法 (I)〕
前記半導体デバイス用部材の破砕片 1 Omgを用いて、熱重量 ·示差熱測定 (ther mogravimetry ― difierential thermal analysis: |^;ιΐ 「ΤΟ— ϋΤΑ」と 略す。)装置により、空気 200ml/分流通下、昇温速度 10°C/分で 35°Cから 500°C まで加熱し、重量減の測定を行う。
[0052] 本発明の半導体デバイス用部材が上記の特性(1)を有するためには、例えば、以 下の要件を満たすようにすれば良い。
(i)素材の選択を適切に行なえばよい。具体例を挙げると、後述する [1 4 1]に 記載の構造を有する素材を選択したり、後述する [2 1]に記載の原料を用いたりす れば'よい。
(ii)後述する [2— 2]に記載の加水分解 '重縮合工程において、触媒を選択すれば よい。
(iii)後述する [2— 2]の加水分解 ·重縮合工程、及び/又は、加水分解 ·重縮合物 の保管に際し、分子量管理を行えばよい。
[0053] [1 2]密着性
密着性評価剥離率は、本発明の半導体デバイス用部材の密着性を評価する指標 であり、後述する密着性評価方法 (Π)により測定される。
本発明の半導体デバイス用部材の剥離率は、通常 30%以下、好ましくは 20%以 下、更に好ましくは 10%以下である(特性(2) )。中でも、 0%であることが最も好まし い。剥離率が大きすぎると、基板ゃ枠材等に対する半導体デバイス用部材の密着性 及び化学的安定性が劣り、温度衝撃や熱 ·光 ·電気化学的反応により封止材が変性 •収縮しやすくなる可能性がある。そのため、半導体デバイス用部材が基板や枠材等 力、ら剥離し、半導体デバイスの断線等を生じることがある。また、特に半導体発光デ バイスにおいては電極部分やリフレクタ表面には銀素材が使用されることがあるが、 密着性が低下すると、この表面から半導体デバイス用部材が剥離し、半導体発光デ ノ イスの断線ゃ不点灯'輝度低下を誘起することがある。
[0054] 〔密着性評価方法 (Π)〕
(1)直径 9mm、凹部の深さ lmmの銀メツキ表面銅製カップに半導体デバイス用部 材形成液(後述する)を滴下し、所定の硬化条件にて硬化させて半導体デバイス用 部材 (以下、密着性評価方法 (Π)の説明においては、この半導体デバイス用部材を「 測定用サンプル」という)を得る。 (2)得られた測定用サンプルを温度 85°C、湿度 85%の雰囲気下で 20時間吸湿させ
(3)吸湿後の測定用サンプルを室温より 260°Cまで 50秒で昇温後、 260°Cで 10秒 間保持する。なお、ここで室温とは、 20°C〜25°Cのことをいう。
(4)昇温後の測定用サンプルを室温まで冷却し、 目視及び顕微鏡観察により測定用 サンプルの銅製カップからの剥離の有無を観察する。わずかでも剥離が観察される ものは、「剥離有」とする。
(5)測定用サンプル 10個につき、それぞれ、前記(2)、(3)及び (4)の操作を実施し 、前記測定用サンプルの剥離率を求める。なお、剥離率は、「剥離した測定用サンプ ルの個数/全測定サンプル数」により算出される比率である。
[0055] 本発明の半導体デバイス用部材が上記の特性(2)を有するためには、例えば、以 下の要件を満たすようにすれば良い。
(i)素材の選択を適切に行なえばよい。具体例を挙げると、後述する [1 4 1]に 記載の構造を有する素材を選択したり、後述する [2 1]に記載の原料を用いたりす れば'よい。
(ii)後述する [2— 2]に記載の加水分解 '重縮合工程において、触媒を選択すれば よい。
(iii)後述する [2— 2]の加水分解 ·重縮合工程、及び/又は、加水分解 ·重縮合物 の保管に際し、分子量管理を行えばよい。
[0056] [1 3]硬度測定値
硬度測定値は、本発明の半導体デバイス用部材の硬度を評価する指標であり、以 下の硬度測定方法により測定される。
本発明の半導体デバイス用部材は、エラストマ一状を呈する部材であることが好ま しい。即ち、半導体デバイスには熱膨張係数の異なる部材を複数使用することになる 、上記のようにエラストマ一状を呈することにより、本発明の半導体デバイス用部材 が上記の各部剤の伸縮による応力を緩和することができる。したがって、使用中に剥 離、クラック、断線などを起こしにくぐ耐リフロー性及び耐温度サイクル性に優れる半 導体デバイスを提供することができる。 [0057] 具体的には、本発明の半導体デバイス用部材は、デュロメータタイプ Aによる硬度 測定値 (ショァ A)が、通常 5以上、好ましくは 7以上、より好ましくは 10以上、また、通 常 90以下、好ましくは 80以下、より好ましくは 70以下である(特性(3) )。上記範囲の 硬度測定値を有することにより、本発明の半導体デバイス用部材は、クラック力 S発生 しにくぐ耐リフロー性及び耐温度サイクル性に優れるという利点を得ることができる。
[0058] 〔硬度測定方法〕
硬度測定値 (ショァ A)は、 JIS K6253に記載の方法により測定することができる。 具体的には、古里精機製作所製の A型ゴム硬度計を用いて測定を行なうことができ
[0059] さて、このように、本発明の第一の半導体デバイス用部材は、 [1 1]で説明した特 性(1)、及び、 [1 2]で説明した特性 (2)を備えることにより、成膜性、密着性に優 れ、硬化後の光 ·熱に対する耐久性に優れる硬化物を得ることができる。一方、本発 明の第二の半導体デバイス用部材は、 [1 1]で説明した特性(1)、及び、 [1 - 3] で説明した特性(3)を備えることによつても、成膜性に優れ、硬化後の光'熱に対する 耐久性に優れる硬化物を得ることができる。
また、上記の特性(1)、(2)及び(3)の全てを満たす半導体デバイス用部材は、本 発明の第一の半導体デバイス用部材と第二の半導体デバイス用部材の両方の要件 を満たし、より好ましい。
[0060] [1 4]その他物性
本発明の半導体デバイス用部材は、上記特性を主な特徴とするが、その他、下記 の構造や性質を有して!/、ること力 S好ましレ、。
[0061] [1 4 1]基本骨格
従来の半導体デバイス用部材の基本骨格は炭素 炭素及び炭素 酸素結合を基 本骨格としたエポキシ樹脂等の有機樹脂であるが、本発明の半導体デバイス用部材 の基本骨格は、通常はメタロキサン骨格、好ましくはガラス(ケィ酸塩ガラス)などと同 じ無機質のシロキサン骨格 (シロキサン結合)であることが好まし!/、。シロキサン結合 は、下記表 1の化学結合の比較表からも明らかなように、半導体デバイス用部材とし て優れた以下の特徴がある。 [0062] (I)結合エネルギーが大きぐ熱分解 ·光分解しにくいため、耐光性が良好である。
(II)電気的に若干分極している。
(III)鎖状構造の自由度は大きぐフレキシブル性に富む構造が可能であり、シロキサ ン鎖中心に自由回転可能である。
(IV)酸化度が大きぐこれ以上酸化されない。
(V)電気絶縁性に富む。
[0063] [表 1]
表 1 化学結合比較表
Figure imgf000020_0001
[0064] これらの特徴から、シロキサン結合が 3次元的に、し力、も高架橋度で結合した骨格 で形成されるシリコーン系の半導体デバイス用部材は、エポキシ樹脂などの従来の 樹脂系半導体デバイス用部材と異なりガラス或いは岩石などの無機質に近ぐ耐熱 性-耐光性に富む保護皮膜となることが理解できる。特にメチル基を置換基とするシリ コーン系半導体デバイス用部材は、紫外領域に吸収を持たないため光分解が起こり にくぐ耐光性に優れる。
[0065] 本発明の半導体デバイス用部材がシロキサン骨格を有する場合は、ケィ素含有率 は、通常 20重量%以上、好ましくは 25重量%以上、さらに好ましくは 30重量%以上 である。一方、上限としては、 SiOのみからなるガラスのケィ素含有率が 47重量%で
2
あるという理由から、通常 47重量%以下の範囲である。ただし、半導体デバイス用部 材を高屈折率とする場合は、高屈折率化に必要な成分を含有させることがあるため、 通常 10重量%以上であり、通常 47重量%以下である。
[0066] なお、半導体デバイス用部材の前記ケィ素含有率は、例えば以下の方法を用いて 導結合尚周波プフズマ力、光 (inductively coupled plasma spectrometry : 以下適宜「ICP」と略する。)分析を行ない、その結果に基づいて算出することができ
[0067] 〔ケィ素含有率の測定〕 半導体デバイス用部材の単独硬化物を 100 m程度に粉砕し、白金るつぼ中にて 大気中、 450°Cで 1時間、ついで 750°Cで 1時間、 950°Cで 1. 5時間保持して焼成し 、炭素成分を除去した後、得られた残渣少量に 10倍量以上の炭酸ナトリウムを加え てバーナー加熱し溶融させ、これを冷却して脱塩水を加え、更に塩酸にて pHを中性 程度に調整しつつケィ素として数 ppm程度になるよう定容し、 ICP分析を行なう。
[0068] [1 4 2]シラノール含有率
本発明の半導体デバイス用部材がシロキサン骨格を有する場合は、シラノール含 有率が、通常 0. 01重量%以上、好ましくは 0. 1重量%以上、更に好ましくは 0. 3重 量%以上、また、通常 12重量%以下、好ましくは 8重量%以下、更に好ましくは 6重 量%以下の範囲である。
[0069] 通常、アルコキシシランを原料としてゾルゲル法により得られるガラス体は、 150°C、
3時間程度の温和な硬化条件では完全に重合して酸化物になることは無ぐ一定量 のシラノールが残存する。テトラアルコキシシランのみより得られるガラス体は高硬度' 高耐光性であるが、架橋度が高いため分子鎖の自由度が小さぐ完全な縮合が起こ らないため残存シラノールの量が多い。また、加水分解 '縮合液を乾燥硬化する際に は、架橋点が多いため増粘が早ぐ乾燥と硬化が同時に進むため大きな歪みを持つ たバルタ体となる。このような部材を半導体デバイス用部材として用いると、長期使用 時には残存シラノールの縮合による新たな内部応力が発生し、クラックや剥離、断線 などの不具合を生じやすい。また、部材の破断面にはシラノールがより多ぐ透湿性 は少な!/、ものの表面吸湿性が高く水分の浸入を招きやす!/、。 400°C以上の高温焼 成によりシラノール含有率を減少させることが可能である力 半導体デバイスの耐熱 性は 260°C以下のものがほとんどであり、現実的ではない。
[0070] 一方、本発明の半導体デバイス用部材は、シラノール含有率が低いため経時変化 が少なぐ長期の性能安定性に優れ、吸湿が低い優れた性能を有する。但し、シラノ ールが全く含まれな!/、部材は半導体デバイスとの密着性に劣るため、本発明におレ、 てはシラノール含有率に上記のごとく最適な範囲が存在する。
本発明の半導体デバイス用部材は、適当量のシラノールを含有しているため、デバ イス表面に存在する極性部分にシラノールが水素結合し、密着性が発現する。極性 部分としては、例えば、水酸基やメタロキサン結合の酸素等が挙げられる。
[0071] また、本発明の半導体デバイス用部材は、適当な触媒の存在下で加熱することに より、デバイス表面の水酸基との間に脱水縮合による共有結合を形成し、さらに強固 な密着性を発現することができる。
一方、シラノールが多すぎると、前述のように、系内が増粘して塗布が困難になった り、活性が高くなり加熱により軽沸分が揮発する前に固化したりすることによって、発 泡や内部応力の増大が生じ、クラックなどを誘起する可能性がある。
[0072] なお、半導体デバイス用部材のシラノール含有率は、例えば後述の方法を用いて 固体 Si— NMRスペクトル測定を行ない、全ピーク面積に対するシラノール由来のピ ーク面積の比率より、全ケィ素原子中のシラノールとなっているケィ素原子の比率(% )を求め、別に分析したケィ素含有率と比較することにより算出することができる。
[0073] 〔固体 Si— NMRスペクトル測定及びシラノール含有率の算出〕
半導体デバイス用部材について固体 Si— NMRスペクトルを行なう場合、まず、以 下の条件で固体 Si— NMRスペクトル測定及びデータ解析を行なう。次に、全ピーク 面積に対するシラノール由来のピーク面積の比率より、全ケィ素原子中のシラノール となっているケィ素原子の比率(%)を求め、別に分析したケィ素含有率と比較するこ とによりシラノーノレ含有率を求める。
なお、測定データの解析 (シラノール量解析)は、例えばガウス関数やローレンツ関 数を使用した波形分離解析等により、各ピークを分割して抽出する方法で行なう。
[0074] 〔装置条件例〕
装置: Chemagnetics社 Infinity CMX— 400 核磁気共鳴分光装置
29Si共鳴周波数: 79. 436MHz
プローブ: 7. 5mm φ CP/MAS用プローブ
測定温度:室温
試料回転数: 4kHz
測定法:シングルパルス法
ェ^1デカップリング周波数: 50kHz
29Siフリップ角: 90° 29Si90°パルス幅: 5. O ^ s
くり返し時間: 600s
積算回数: 128回
観測幅: 30kHz
ブロードユングファクター: 20Hz
[0075] 〔データ処理例〕
半導体デバイス用部材については、 512ポイントを測定データとして取り込み、 819 2ポイントにゼロフィリングしてフーリエ変換する。
[0076] 〔波形分離解析例〕
フーリエ変換後のスペクトルの各ピークについてローレンツ波形及びガウス波形或 いは両者の混合により作成したピーク形状の中心位置、高さ、半値幅を可変パラメ一 タとして、非線形最小二乗法により最適化計算を行なう。
[0077] なお、ピークの同定は AIChE Journal, 44 (5) , p. 1141 , 1998年等を参考にす
[0078] また、半導体デバイス用部材のシラノール含有率は、以下の IR測定により求めるこ とも可能である。ここで、 IR測定はシラノールピークを特定しやすいもののピークの形 状がブロードであり面積誤差が出やすぐ定量作業にあたっては一定膜厚のサンプ ルを正確に作製する必要があるなど手順も煩雑であるため、厳密な定量を行う上で は固体 Si— NMRを用レ、ること力 S好まし!/、。固体 Si— NMRを用レ、てシラノール量を 測定する際に、シラノールの量が非常に微量で検出が難しい場合、複数のピークが 重なりシラノールのピークを単離することが困難である場合、未知試料においてシラノ ールピークのケミカルシフトが不明である場合などには相補的に IR測定を行うことに よりシラノールの濃度を決定することが出来る。
[0079] 〔IR測定によるシラノール含有率の算出〕
'フーリエ変換赤外分光法 Fourier Transform Inirared Spectroscopy
•装置: Thermo Electron製 NEXUS 670及び Nic— Plan
'分解能: 4cm— 1
•積算回数: 64 回 'パージ: N
2
[0080] 測定例: Siウェハ上に膜厚 20011 mの薄膜試料を塗布作製し、透過法により Siゥェ ハごと赤外吸収スペクトルを測定し、波数 s sicnT1及び SYOlcnT1のシラノールピ ーク合計面積を求める。一方で、既知濃度試料としてトリメチルシラノールを無水の 四塩化炭素に希釈し、光路長 200 mの液セルを用いて透過法にて赤外吸収スぺ タトルを測定し、実サンプルとのピーク面積比比較によりシラノール濃度を算出するこ と力 Sできる。なお、赤外吸収スペクトルにおいてはサンプル吸着水由来のピークがシ ラノールピークのバックグラウンドとして検出されるので、サンプル薄膜は測定前に常 圧にて 150°C20分以上加熱する力、、 100°Cで 10分以上真空処理するなどの方法に て吸着水を除いておく。
[0081] 〔シラノール含有量総量とアルコキシ基含有量総量との比率〕
本発明の半導体デバイス用部材形成液のシラノール含有量総量とアルコキシ基含 有量総量は、モル比において、シラノールがアルコキシ基と等量以上存在することが 好ましい。理論的にはシラノールとアルコキシ基とは等量反応にてメタノールを生成し 、シロキサン結合を形成することができる。したがって、シラノールがアルコキシ基と等 量以上存在することにより、大気からの水分供給に頼らず加熱のみで硬化縮合する ことが出来、深型のパッケージに塗布した場合でも深部硬化性に優れる半導体デバ イス用部材となる。
[0082] ここでシラノールがアルコキシ基より大過剰にあると、半導体デバイス用部材の反応 活性が高くなるため半導体デバイスの表面との密着反応性が向上し、さらには活性 が低!/、アルコキシ基の残存による硬化不良が抑制され、高温保持時の変形及び収 縮並びに重量減も低減できる。このため、 {アルコキシ基の数/ (シラノールの数 +ァ ルコキシ基の数) } X 100 (%)で表される比率(即ち、脱水脱アルコール縮合し得る 未反応末端中のアルコキシ基の存在比)は、通常 0%以上であり、通常 50%以下、 好ましくは 30%以下、特に好ましくは 25%以下である。なお、この比率は液体29 Si— NMR測定値により求めることができる。
[0083] この比率を上記の範囲とするためには、例えば、合成過程において原料アルコキシ シランの加水分解を十分に行ない、生成したアルコールを確実に系外に留去し、溶 媒には極力アルコールを使用しないようにすればよい。このほか、例えば、多量のシ ラノール末端を含有していても保存性の良い半導体デバイス用部材形成液を得るた めに、原料選択において下記式 (B)で表される構造単位を有する成分の使用量を、 下記式 (A)で表される構造単位を有する成分の使用量と比較して、モル比において 過剰量使用することなどを行なえば良レ、。
(R'SiO ) (A)
1.5
(前記式 (A)中、 R1は有機基を示す。 )
( (R2) SiO) (B)
(前記式 (B)中、 R2は、それぞれ独立に有機基を示す。 )
[0084] なお、液体29 Si— NMRスペクトルの測定方法は、以下のとおりである。
〔液体29 Si— NMRスペクトルの測定方法〕
液体29 Si— NMRスペクトルの測定を行なう場合、以下の条件にて液体29 Si— NMR スペクトルの測定及びデータ解析を行なう。
〔試料条件例〕
重アセトン 50g、テトラメチルシラン 2· 5g、及び、緩和試薬としてクロムァセチルァセ トン塩 1. 5gを混合し、 X液とする。
測定試料 3. Ogと、前記の X液 0. 5gと、重アセトン 1. Ogとを混合し、全量を 10mm テフロン (登録商標)製サンプル管に入れ、測定に供する。
例えば 2液型市販シリコーン樹脂の場合、混合して測定すると測定中に増粘し測定 不可であるため、混合前の主剤、硬化剤各々単独に NMR測定し、混合後のスぺタト ルは単独のスペクトルに混合比を考慮した台数和になると仮定してデータ計算を行 なう。主剤、硬化剤各ピークの強度は内部標準テトラメチルシランの面積を 1として規 格化し、測定毎の誤差の影響を除く。
[0085] 〔装置条件例〕
装置: JEOL社 JNM— AL400 核磁気共鳴分光装置
29Si共鳴周波数: 78. 50MHz
プローブ: AT10プローブ
測定温度: 25. 0°C 試料回転数:回転無し
測定法:シングルパルス法
PULS DELAY TIME : 12. 7s
積算回数: 512回
ブロードユングファクター:1. 0Hz
[0086] 〔波形処理解析例〕
フーリエ変換後のスペクトルの各ピークにっレ、て、ピークトップの位置によりケミカル シフトを求め、積分を行なう。なお、ピークの同定は AIChE Journal, 44 (5) , p. 11 41 , 1998年等を参考にする。
例えば、巿販シリコーン樹脂の分析において、(一 Si O ) CH SiHに由来する ヒドロシリル基ケィ素のピークが— 30〜― 40ppmに検出された場合には、このピーク は 2官能ケィ素として分類する。
[0087] [1 4 3]UV透過率
本発明の半導体デバイス用部材は、半導体発光デバイスに用いる場合には、膜厚 lmmでの半導体発光デバイスの発光波長における光透過率力 通常 80%以上、中 でも 85%以上、更には 90%以上であることが好ましい。半導体発光デバイスは各種 の技術によりその光取り出し効率が高められているが、半導体素子を封止したり蛍光 体を保持するための透光性部材の透明度が低いと、これを用いた半導体発光デバィ スの輝度が低減するため、高輝度な半導体発光デバイス製品を得ることが困難にな
[0088] ここで「半導体発光デバイスの発光波長」とは、半導体発光デバイスの種類に応じ て異なる値であるが、一般的には、通常 300nm以上、好ましくは 350nm以上、また 、通常 900nm以下、好ましくは 500nm以下の範囲の波長を指す。この範囲の波長 における光透過率が低いと、半導体デバイス用部材が光を吸収してしまい、光取り出 し効率が低下して、高輝度の半導体発光デバイスを得ることができなくなる。更に、光 取り出し効率が低下した分のエネルギーは熱に変わり、半導体発光デバイスの熱劣 化の原因となるため好ましくない。
[0089] なお、紫外〜青色領域(波長 300nm〜500nm)においては封止部材が光劣化し やすいので、この領域に発光波長を有する半導体発光デバイスに、耐久性に優れた 本発明の半導体デバイス用部材を使用すれば、その効果が大きくなるので好ましい
[0090] なお、半導体デバイス用部材の光透過率は、例えば以下の手法により、膜厚 lmm に成形した平滑な表面の単独硬化物膜のサンプルを用いて、紫外分光光度計により 測定すること力でさる。
[0091] 〔透過率の測定〕
半導体デバイス用部材の、傷や凹凸による散乱の無い厚さ約 lmmの平滑な表面 の単独硬化物膜を用いて、紫外分光光度計(島津製作所製 UV— 3100)を使用し 、波長 200nm〜800nmにお!/、て透過度測定を行なう。
[0092] 但し、半導体発光デバイスの形状は様々であり、大多数は 0. lmmを超える厚膜状 態での使用であるが、 LEDチップ (発光素子)から離れた位置に薄膜状の蛍光体層 (例えばナノ蛍光体粒子や蛍光イオンを含む厚さ数 の層)を設ける場合や、 LE Dチップの直上に薄膜上に高屈折光取り出し膜を設ける場合等、薄膜使用の用途も ある。この様な場合には、この膜厚において 80%以上の透過率を示すことが好まし い。このような薄膜状の適用形態においても、本発明の半導体デバイス用部材は優 れた耐光性、耐熱性を示し、封止性能に優れ、クラック等なく安定して成膜できる。
[0093] [1 4 4]ピーク面積比
本発明の半導体デバイス用部材は、次の条件を満たすことが好ましい。即ち、本発 明の半導体デバイス用部材は、固体 Si 核磁気共鳴スペクトルにおいて、(ケミカル シフト 40ppm以上 Oppm以下のピークの総面積)/ (ケミカルシフト 40ppm未満 のピークの総面積)の比(以下適宜、「本発明に力、かるピーク面積比」という)力 通常 3以上、好ましくは 5以上、より好ましくは 10以上、また、通常 200以下、好ましくは 10 0以下、より好ましくは 50以下であることが好ましい。
[0094] 本発明にかかるピーク面積比が上記の範囲にあることは、本発明の半導体デバイ ス用部材が、 2官能シランを、 3官能シランや 4官能シランなどの 3官能以上のシラン よりも多く有することを表わす。このように、 2官能以下のシランを多く有することにより 、本発明の半導体デバイス用部材はエラストマ一状を呈することが可能となり、応力 を緩和することが可能となる。
[0095] ただし、本発明の半導体デバイス用部材は、本発明に力、かるピーク面積比につい ての上記条件を満たさなくともエラストマ一状を呈する場合がある。例えば、ケィ素以 外の金属のアルコキシド等のカップリング剤を架橋剤として用いて本発明の半導体デ ノ^ス用部材を製造した場合などが、この場合に該当する。本発明の半導体デバイ ス用部材がエラストマ一状を呈するための手法は任意であり、この本発明に力、かるピ ーク面積比につ!/、ての上記条件に限定されるものではなレ、。
[0096] [1 4 5]官能基
本発明の半導体デバイス用部材は、ポリフタルアミドなどの樹脂、セラミック又は金 属の表面に存在する所定の官能基 (例えば、水酸基、メタロキサン結合中の酸素な ど)と水素結合可能な官能基を有する。半導体デバイス用の容器 (後述するカップ等 。以下適宜「半導体デバイス容器」という)は、通常、セラミック又は金属で形成されて いる。また、セラミックや金属の表面には、通常は水酸基が存在する。一方、本発明 の半導体デバイス用部材は、通常、当該水酸基と水素結合可能な官能基を有してい る。したがって、前記水素結合により、本発明の半導体デバイス用部材は、半導体デ バイス容器に対する密着性に優れているのである。
[0097] 本発明の半導体デバイス用部材が有する、前記の水酸基に対して水素結合が可 能な官能基としては、例えば、シラノール、アルコキシ基、アミノ基、イミノ基、メタタリ ル基、アクリル基、チオール基、エポキシ基、エーテル基、カルボニル基、カルボキシ ル基、スルホン酸基等が挙げられる。中でも耐熱性の観点からシラノール、アルコキ シ基が好ましい。なお、前記官能基は 1種でも良ぐ 2種以上でもよい。
なお、本発明の半導体デバイス用部材が、前記のように、水酸基に対して水素結合 が可能な官能基を有しているか否かは、固体 Si— NMR、固体1 H— NMR、赤外線 吸収ス
ぺクトル (IR)、ラマンスペクトルなどの分光学的手法により確認することができる。
[0098] [1 4 6]耐熱性
本発明の半導体デバイス用部材は、耐熱性に優れる。即ち、高温条件下に放置し た場合でも、所定の波長を有する光における透過率が変動しにくい性質を有する。 具体的には、本発明の半導体デバイス用部材は、 200°Cに 500時間放置した前後 において、波長 400nmの光に対する透過率の維持率が、通常 80%以上、好ましく は 90%以上、より好ましくは 95%以上であり、また、通常 110%以下、好ましくは 105 %以下、より好ましくは 100%以下である。
なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、 [1 -4 3]で前述した透過度の測定方法と同様にして測定することができる。
[0099] [1 4 7]耐 UV性
本発明の半導体デバイス用部材は、耐光性に優れる。即ち、 UV (紫外光)を照射 した場合でも、所定の波長を有する光に対する透過率が変動しにくい性質を有する 。具体的には、本発明の半導体デバイス用部材は、中心波長 380nm、放射強度 0. 4kW/m2の光を 72時間照射した前後において、波長 400nmの光における透過率 の維持率が、通常 80%以上、好ましくは 90%以上、より好ましくは 95%以上であり、 また、通常 110%以下、好ましくは 105%以下、より好ましくは 100%以下である。 なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、 [1 -4 3]で前述した透過率の測定方法と同様にして測定することができる。
[0100] [1 4 8]触媒残留量
本発明の半導体デバイス用部材は、通常、ジルコニウム、ハフニウム、スズ、亜鉛、 及びチタンより選択される少なくとも 1種の元素を含む有機金属化合物触媒を用いて 製造される。そのため、本発明の半導体デバイス用部材には、通常は、これらの触媒 が残留している。具体的には、本発明の半導体デバイス用部材は、前記の有機金属 化合物触媒を、金属元素換算で、通常 0. 001重量%以上、好ましくは 0. 01重量% 以上、より好ましくは 0. 02重量%以上、また、通常 0. 3重量%以下、好ましくは 0. 2 重量%以下、より好ましくは 0. 1重量%以下だけ含有する。
なお、前記の有機金属化合物触媒の含有率は、 ICP分析により測定できる。
[0101] [1 4 9]低沸点成分
本発明の半導体デバイス用部材は TG mass (熱分解 MSクロマトグラム)におい て、 40°C〜210°Cの範囲の加熱発生ガスのクロマトグラム積分面積が小さいもので あることが好ましい。 TG— massは、半導体デバイス用部材を昇温して半導体デバイス用部材中の低沸 点成分を検出するものである力 40°C〜210°Cの範囲にクロマトグラム積分面積が 大きい場合、水、溶媒および 3員環から 5員環の環状シロキサンといった、低沸点成 分が成分中に存在することを示す。このような場合、(i)低沸点成分が多くなり、硬化 過程において気泡の発生またはブリードアウトし半導体デバイス容器との密着性が低 くなる可能性や、(ii)使用時の発熱により気泡の発生またはブリードアウトするなどの 可能性がある。そこで、本発明の半導体デバイス用部材はかかる低沸点成分が少な いものが好ましい。
[0102] 本発明の半導体デバイス用部材において、 TG— massで検出される前記低沸点 成分量を低く抑える方法としては、例えば、下記の方法を挙げることができる。
(i)重合反応等を十分に行ない、低分子量の原料が残存しないようにする。例えば、 後述する「 [2]半導体デバイス用部材の製造方法」のような、特定の化合物を加水分 解 ·重縮合した重縮合物を本発明の半導体デバイス用部材とする場合は、常圧で加 水分解 ·重縮合を実施する場合、通常 15°C以上、好ましくは 20°C以上、より好ましく は 40°C以上、また、通常 140°C以下、好ましくは 135°C以下、より好ましくは 130°C 以下の範囲で加水分解 ·重縮合を行なう。また、加水分解 ·重縮合反応時間は反応 温度により異なる力 通常 0. 1時間以上、好ましくは 1時間以上、更に好ましくは 3時 間以上、また、通常 100時間以下、好ましくは 20時間以下、更に好ましくは 15時間 以下の範囲で実施される。反応時間の調整は GPC、粘度測定により逐次分子量管 理を行ないつつ適宜行なうことが好ましい。さらに、昇温時間を考慮して調節すること が好ましい。
[0103] (ii)重合反応等の反応工程以外の工程において、低沸点成分を効率良く除去する。
例えば、後述する「[2]半導体デバイス用部材の製造方法」のような、特定の化合物 を加水分解 ·重縮合した重縮合物を本発明の半導体デバイス用部材とする場合は、 重縮合反応工程後の溶媒留去、乾燥工程において、重縮合反応を進めないようにし つつ、低沸点成分を除去する。具体的には、例えば溶媒の留去を行なう際の温度条 件を、通常 60°C以上、好ましくは 80°C以上、より好ましくは 100°C以上、また、通常 1 50°C以下、好ましくは 130°C以下、より好ましくは 120°C以下とする。また、溶媒の留 去を行なう際の圧力条件を、通常は常圧とする。さらに、必要に応じて溶媒留去時の 反応液の沸点が硬化開始温度(通常は 120°C以上)に達しないように減圧する。また 、溶媒留去、乾燥工程をアルゴンガス、窒素ガス、ヘリウムガス、等の不活性ガス雰 囲気下で行なう。
[0104] [1 4 10]他の部材との組み合わせ
本発明の半導体デバイス用部材は単独で封止材として用いても良いが、有機蛍光 体、酸素や水分により劣化しやすい蛍光体、半導体発光デバイスを封止する場合等 、より厳密に酸素や水分からの遮断を要求される用途においては、本発明の半導体 デバイス用部材により蛍光体の保持や半導体素子の封止 ·光取り出しを実施し、さら にその外側にガラス板やエポキシ樹脂などの高気密素材による気密封止を実施した り、真空封止を実施しても良い。この場合のデバイス形状は特に制限無ぐ本発明の 半導体デバイス用部材による封止体、塗布物あるいは塗布面が実質的に金属 ·ガラ ス '高気密性樹脂などの高気密素材により外界から保護遮断され酸素や水分の流通 が無!/、状態になって!/、れば良レ、。
[0105] また、本発明の半導体デバイス用部材は、上述のように密着性が良好なため、半導 体発光デバイス用接着剤として用いることが出来る。具体的には、例えば、半導体素 子とパッケージを接着する場合、半導体素子とサブマウントを接着する場合、パッケ ージ構成要素同士を接着する場合、半導体発光デバイスと外部光学部材とを接着 する場合などに、本発明の半導体デバイス用部材を塗布、印刷、ポッティングなどす ることにより用いること力 S出来る。本発明の半導体デバイス用部材は特に耐光性、耐 熱性に優れるため、長時間高温や紫外光にさらされる高出力の半導体発光デバイス 用接着剤として用いた場合、長期使用に耐え高い信頼性を有する半導体発光デバ イスを提供することが出来る。
[0106] なお、本発明の半導体デバイス用部材は、これのみで十分密着性を担保しうるもの であるが、更に密着性を担保することを目的として、半導体デバイス用部材と直接接 する表面に密着性改善のための表面処理を行なっても良い。このような、表面処理と しては、例えばプライマーゃシランカップリング剤を用いた密着改善層の形成、酸や アルカリなどの薬品を用いた化学的表面処理、プラズマ照射やイオン照射 ·電子線 照射を用いた物理的表面処理、サンドブラストやエッチング '微粒子塗布などによる 粗面化処理等が挙げられる。密着性改善のための表面処理としては、その他に例え ば、特開平 5— 25300号公報、稲垣訓宏著「表面化学」 Vol. 18 No. 9、pp21— 2 6、黒崎和夫著「表面化学」 Vol. 19 No. 2、 pp44— 51 (1998)等に開示される公 知の表面処理方法が挙げられる。
[0107] [1 4 11]その他
本発明の半導体デバイス用部材の形状及び寸法に制限は無く任意である。例えば 、半導体デバイス用部材が何らかの半導体デバイス容器内を充填する封止材として 使用される場合には、本発明の半導体デバイス用部材の形状及び寸法は、その半 導体デバイス容器の形状及び寸法に応じて決定される。また、半導体デバイス用部 材が何らかの基板の表面に形成される場合は、通常は膜状に形成されることが多ぐ その寸法は用途に応じて任意に設定される。
[0108] ただし、本発明の半導体デバイス用部材は、膜状に形成する場合、厚膜に形成す ること力 Sできることを利点の一つとしている。従来の半導体デバイス用部材は厚膜化 すると内部応力等によりクラック等が生じて厚膜化が困難であった力、本発明の半導 体デバイス用部材はそのようなことは無ぐ安定して厚膜化が可能である。具体的範 囲を挙げると、本発明の半導体デバイス用部材は、通常 0. 1 a m以上、好ましくは 1 C^ m以上、より好ましくは 100 m以上の厚みで形成することが好ましい。なお、上 限に制限は無いが、通常 10mm以下、好ましくは 5mm以下、より好ましくは lmm以 下である。ここで、膜の厚みが一定でない場合には、膜の厚みとは、その膜の最大の 厚み部分の厚さのことを指すものとする。
[0109] また、本発明の半導体デバイス用部材は、通常、従来よりも長期間にわたってクラッ クゃ剥離を生じることなく半導体デバイスを封止できる。具体的には、本発明の半導 体デバイス用部材を用いて半導体発光デバイスを封止し、当該半導体発光デバイス に、通常 20mA以上、好ましくは 350mA以上の駆動電流を通電して温度 85°C相対 湿度 85%にて連続点灯を行った場合に、通常 500時間以上、好ましくは 1000時間 以上、より好ましくは 2000時間以上経過後の輝度力 点灯直後の輝度と比較して低 下しない。 [0110] また、用途によっては、半導体デバイス用部材は、その他の成分を含有していても よい。例えば、本発明の半導体デバイス用部材を半導体発光デバイスの構成部材と して用いる場合などにおいては、蛍光体や無機粒子などを含有させてもよい。なお、 この点については、用途の説明と共に、後で説明する。
また、その他の成分は、 1種のみを用いても良ぐ 2種以上を任意の組み合わせ及 び比率で併用しても良い。
[0111] また、本発明の半導体デバイス用部材には通常微量のアルコキシ基が残存する。
この末端アルコキシ基が少ない半導体デバイス用部材は TG— DTAによる重量減が 少なぐ耐熱性が高くなる。
[0112] [2]半導体デバイス用部材の製造方法
本発明の半導体デバイス用部材を製造する方法は特に制限されないが、例えば、 後述の一般式(1)や一般式(2)で表わされる化合物及び/又はそれらのオリゴマー を加水分解 ·重縮合し、重縮合物 (加水分解 ·重縮合物)を乾燥させることにより得る こと力 Sできる。ただし、本発明の半導体デバイス用部材ではシロキサン結合を主体と することが好ましいため、一般式(1)で表わされる化合物又はそのオリゴマーを原料 の主体とすることが望ましい。また、加水分解 ·重縮合物が溶媒を含有している場合 には、乾燥させる前に事前に溶媒を留去するようにしてもよい。
[0113] なお、以下の説明において、前記加水分解 '重縮合物又はこれを含有する組成物 であって、乾燥工程の前に得られるものを半導体デバイス用部材形成液という。した がって、ここで説明する製造方法(以下適宜、「本発明の製造方法」という)により本発 明の半導体デバイス用部材を製造する場合、この半導体デバイス用部材形成液から 乾燥工程を経て得られたものが半導体デバイス用部材となる。
以下、この半導体デバイス用部材の製造方法について詳しく説明する。
[0114] [2— 1 ]原料
原料としては、下記一般式(1)で表わされる化合物(以下適宜「化合物(1)」とレ、う。 )及び/又はそのオリゴマーを用いる。
[化 3コ
Mm+ X j π ( 1 ) [0115] 一般式(1)中、 Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンからなる群よ り選択される少なくとも 1種の元素である。中でも、ケィ素が好ましい。
[0116] 一般式(1)中、 mは、 Mの価数を表わし、 1以上、 4以下の整数である。また、「m+ 」とは、それが正の価数であることを表わす。
nは、 X基の数を表わし、 1以上、 4以下の整数である。但し、 m≥nである。
[0117] 一般式(1)中、 Xは、溶液中の水や空気中の水分などにより加水分解されて、反応 性に富む水酸基を生成する加水分解性基であり、従来より公知のものを任意に使用 すること力 Sできる。例えば、 C1〜C5の低級アルコキシ基、ァセトキシ基、ブタノキシム 基、クロル基等が挙げられる。なお、ここで Ci (iは自然数)という表記は、炭素数が i個 であることを表わす。さらに、 Xは、水酸基であってもよい。また、これらの加水分解性 基は 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用しても 良い。
[0118] 中でも、反応後に遊離する成分が中性であることから、 C1〜C5の低級アルコキシ 基が好ましい。特に、反応性に富み、遊離する溶媒が軽沸であることから、メトキシ基 又はエトキシ基が好ましい。
[0119] さらに、一般式(1)中で Xがァセトキシ基ゃクロル基である場合には、加水分解反応 後に酢酸や塩酸を遊離するため、半導体デバイス用部材に絶縁性が求められる場 合には、酸成分を除去する工程を付加することが好まし!/、。
[0120] 一般式(1)中、 Y1は、いわゆるシランカップリング剤の 1価の有機基として公知のも のを、いずれも任意に選択して使用することができる。中でも、本発明において一般 式(1)における Y1として特に有用な有機基とは、以下の Y°に表される群(有用有機 基群)から選ばれるものである。さらに、半導体デバイスを構成する他の材料との親和 性向上、密着性向上、半導体デバイス用部材の屈折率調整などのために、適宜、他 の有機基を選択するようにしてもょレ、。
[0121] <有用有機基群 Υ°〉
Υ° :脂肪族化合物、脂環式化合物、芳香族化合物、脂肪芳香族化合物より誘導さ れる 1価以上の有機基である。
また、群 Υ°に属する有機基の炭素数は、通常 1以上、また、通常 1000以下、好まし くは 500以下、より好ましくは 100以下、さらに好ましくは 50以下である。
[0122] さらに、群 Y°に属する有機基が有する水素原子のうち少なくとも一部は、下記に例 示する原子及び/又は有機官能基等の置換基で置換されていても良い。この際、群 Υ°に属する有機基が有する水素原子のうちの複数が下記置換基で置換されていて も良ぐこの場合、下記に示す置換基の中から選択した 1種又は 2種以上の組み合わ せにより置換されて!/、ても良レ、。
[0123] 群 Υ°に属する有機基の水素原子と置換可能な置換基の例としては、 F、 Cl、 Br、 I 等の原子;ビュル基、メタクリロキシ基、アタリロキシ基、スチリル基、メルカプト基、ェ ポキシ基、エポキシシクロへキシル基、グリシドキシ基、アミノ基、シァノ基、ニトロ基、 スルホン酸基、カルボキシ基、ヒドロキシ基、ァシル基、アルコキシ基、イミノ基、フエ二 ル基等の有機官能基などが挙げられる。
[0124] なお、上記全ての場合において、群 Y°に属する有機基の有する水素原子と置換可 能な置換基のうち、有機官能基については、その有機官能基の有する水素原子のう ち少なくとも一部が F、 Cl、 Br、 I等のハロゲン原子などで置換されていても良い。
[0125] ただし、群 Y°に属する有機基の水素と置換可能な置換基として例示したもののな かでも、有機官能基は、導入しやすいものの一例であり、使用目的に応じてこの他各 種の物理化学的機能性を持つ有機官能基を導入しても良い。
また、群 Υ°に属する有機基は、その中に連結基として〇、 Ν、又は S等の各種の原 子または原子団を有するものであっても良い。
[0126] 一般式(1)中、 Y1は、上記の有用有機基群 Y°に属する有機基などから、その目的 により様々な基を選択できる力 耐紫外線性、耐熱性に優れる点から、メチル基を主 体とすることが好ましい。
[0127] 上述の化合物(1)の具体例を挙げると、 Μがケィ素である化合物としては、例えば フエ二ルジェトキシシラン、ビュルトリメトキシシラン、ビュルトリエトキシシラン、ビュルト メトキシシラン、 Ίーグリシドキシプロピノレトリエトキシシラン、 β一(3, 4—エポキシシ クロへキシノレ)ェチノレトリメトキシシラン、 γ—(3, 4—エポキシシクロへキシノレ)ェチノレ トリエトキシシラン、 γ (メタ)アタリロキシプロビルトリメトキシシラン、フエニルトリメトキ
—クロ口プロピルトリメトキシシラン、 13—シァノエチルトリエトキシシラン、メチルトリメト キシシラン、メチノレトリエトキシシラン、メチノレトリプロポキシシラン、メチノレトリブトキシシ ラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、テトラメトキシシラン、テトラエ ジフエ二ルジクロロシラン、メチルフエ二ルジメトキシシラン、トリメチルメトキシシラン、ト リメチルエトキシシラン、トリメチルクロロシラン、メチルトリクロロシラン、 γ アシノプロ ピルトリエトキシシラン、 4—アシノブチルトリエトキシシラン、 ρ ァミノフエニルトリメトキ シシラン、 Ν— (2 アミノエチル) 3 ァミノプロピルトリメトキシシラン、アミノエチル
— (3, 4—エポキシシクロへキシル)ェチルトリメトキシシラン、 3—ァミノプロピルトリメト キシシラン、 3—ァミノプロピルトリエトキシシラン、 4—アミノブチルトリエトキシシラン、 Ν— (6—ァミノへキシル)ァミノプロピルトリメトキシシラン、 3—クロ口プロビルトリメトキ シシラン、 3—クロ口プロピルトリクロロシラン、 (ρ クロロメチル)フエニルトリメトキシシ ラン、 4 クロ口フエニルトリメトキシシラン、 3—メタクリロキシプロビルトリメトキシシラン
トリクロロシラン、ビュルトリス(2—メトキシエトキシ)シラン、トリフルォロプロピルトリメト キシシランなどが挙げられる。
[0128] また、化合物(1)のうち、 Μがアルミニウムである化合物としては、例えば、アルミ二 ゥムトリイソプロポキシド、アルミニウムトリ η ブトキシド、アルミニウムトリ t—ブトシキド
、アルミニウムトリエトキシドなどが挙げられる。
[0129] また、化合物(1)のうち、 Mがジルコニウムである化合物としては、例えば、ジルコ二 ゥムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラ n プロポキシド
、ジルコニウムテトラ i プロポキシド、ジルコニウムテトラ n ブトキシド、ジルコニウム テトラ iーブトキシド、ジルコニウムテトラ tーブトキシド、ジルコニウムジメタクリレートジ ブトキシドなどが挙げられる。 [0130] また、化合物(1)のうち、 Mがチタンである化合物としては、例えば、チタンテトライ ソプロポキシド、チタンテトラ n—ブトキシド、チタンテトラ iーブトキシド、チタンメタクリレ ートトリイソプロポキシド、チタンテトラメトキシプロポキシド、チタンテトラ n—プロポキシ ド、チタンテトラエトキシドなどが挙げられる。
[0131] ただし、これらに具体的に例示した化合物は、入手容易な市販のカップリング剤の 一部であり、更に詳しくは、例えば、科学技術総合研究所発行の「カップリング剤最 適利用技術」 9章のカップリング剤及び関連製品一覧表により示すことができる。また 、当然のことながら、本発明に使用できるカップリング剤は、これらの例示により制限さ れるものではない。
[0132] また、下記一般式 (2)で表される化合物(以下適宜、「化合物(2)」という。)及び/ 又はそのオリゴマーも、上記化合物( 1 )及び/又はそのオリゴマ一と同様に使用する こと力 Sでさる。
[化 4コ
(M s + X t Y 1 s _ t _ 1 ) U Y 2 ( 2 )
[0133] 一般式(2)において、 M、 X及び Y1は、それぞれ独立に、一般式(1)と同様のも のを表わす。特に Y1としては、一般式(1)の場合と同様、上記の有用有機基群 Y°に 属する有機基などから、その目的により様々な基を選択できる力 耐紫外線性、耐熱 性に優れる点から、メチル基を主体とすることが好ましレ、。
また、一般式(2)において、 sは、 Mの価数を表わし、 2以上、 4以下の整数である。 また、「s +」は、それが正の整数であることを表わす。
さらに、一般式(2)において、 Y2は、 u価の有機基を表わす。ただし、 uは 2以上の 整数を表わす。したがって、一般式(2)中、 Y2は、いわゆるシランカップリング剤の有 機基として公知のもののうち 2価以上のものを、任意に選択して使用することができる
また、一般式(2)において、 tは、 1以上、 s—l以下の整数を表わす。但し、 t≤sで ある。
[0134] 上記化合物(2)の例としては、各種有機ポリマーやオリゴマーに側鎖として加水分 解性シリル基が複数結合しているものや、シロキサンポリマーにメチレン鎖等の有機 連結基を介して加水分解性シリル基が結合して!/、るもの、及び分子の複数の末端に 加水分解性シリル基が結合しているものなどが挙げられる。
上記化合物(2)の具体例及びその製品名を以下に挙げる。
(信越化学製、 KBE— 846)
• 2 ジエトキシメチノレエチノレシリノレジメチノレ 2ーフラニノレシラン
(信越化学製、 LS— 7740)
(チッソ製、サイラエース XS1003)
•N グリシジルー N, N—ビス [3—(メチルジメトキシシリル)プロピル]ァミン
(東芝シリコーン製、 TSL8227)
•N グリシジルー N, N—ビス [3—(トリメトキシシリル)プロピル]ァミン
(東芝シリコーン製、 TSL8228)
(東芝シリコーン製、 TSL8206)
•N, N ビス [3—(メチルジメトキシシリル)プロピル]エチレンジァミン
(東芝シリコーン製、 TSL8212)
(東芝シリコーン製、 TSL8213)
•N, N—ビス [3—(トリメトキシシリル)プロピノレ]ァミン
(東芝シリコーン製、 TSL8208)
(東芝シリコーン製、 TSL8214)
(東芝シリコーン製、 TSL8215)
•N, Ν' , Ν" トリス [3—(トリメトキシシリノレ)プロピノレ]イソシァヌレート
(ヒドラスィ匕学製、 12267- 1) (信越化学製、 LS— 7325)
[0136] 化合物(2)の合成にあたっては、加水分解 '重縮合以外の公知の合成方法を経由 しても良い。例えば SiH基を有するポリジメチルシロキサン鎖にビュル基を含有する アルコキシシランをヒドロシリル化反応にて付加縮合させ加水分解性シリル基を導入 したり、ビュルトリアルコキシシランをアクリルモノマーやビュルモノマーと共重合させ て加水分解性シリル基を導入しても良い。このような場合には系内に化合物(2)の合 成由来の未反応残基や触媒が残留することがあるが、半導体デバイス用部材として の性能を損なわな!/、程度の少量に未反応残基や触媒を低減することが好まし!/、。具 体的には、固定化触媒を使用して反応後に除去したり、触媒濃度を反応が進行する 最低限の濃度とすると良い。
[0137] 原料としては化合物(1)、化合物(2)、及び/又はそれらのオリゴマーを使用するこ と力 Sできる。即ち、本発明の製造方法では、原料として、化合物(1)、化合物(1)のォ リゴマー、化合物(2)、化合物(2)のオリゴマー、及び化合物(1)と化合物(2)とのォ リゴマーのいずれを用いてもよい。なお、原料として化合物(1)のオリゴマー又は化 合物(2)のオリゴマーを用いる場合、そのオリゴマーの分子量は、本発明の半導体デ バイス用部材を得ることができる限り任意である力 通常 400以上である。
[0138] ここで化合物(2)及び/又はそのオリゴマーを主原料として用いると系内の主鎖構 造が有機結合主体となり耐久性に劣るものとなる可能性がある。このため、化合物(2 )は主として密着性付与や屈折率調整、反応性制御、無機粒子分散性付与などの機 能性付与のため最小限の使用量で用いることが望ましい。化合物(1)及び/又はそ のオリゴマー(化合物(1)由来成分)と、化合物(2)及び/又はそのオリゴマー(化合 物(2)由来成分)を同時に使用する場合には原料の総重量における化合物(2)由来 成分の使用量割合が通常 30重量%以下、好ましくは 20重量%以下、さらに好ましく は 10重量%以下であることが望ましい。
[0139] また、本発明の半導体デバイス用部材形成液及び半導体デバイス用部材の製造 方法にお!/、て、原料として化合物(1)又は化合物(2)のオリゴマーを用いる場合には 、オリゴマーを予め用意してするようにしてもよいが、製造工程の中でオリゴマーを調 製するようにしてもよい。即ち、化合物(1)又は化合物(2)のようなモノマーを原料とし 、これを製造工程中で一旦オリゴマーとして、このオリゴマーから後の反応を進行させ るようにしてあよレヽ。
[0140] また、オリゴマーは、結果として化合物(1)又は化合物(2)のようなモノマーから得ら れるものと同様の構造を有しているものであれば良ぐそのような構造を有する市販 のものを用いることもできる。力、かるオリゴマーの具体例としては、例えば、以下のよう なものが挙げられる。
[0141] < 2官能ケィ素のみからなるオリゴマーの例〉
GE東芝シリコーン社製ヒドロキシ末端ジメチルポリシロキサンでは、例えば、 XC96 — 723、 XF3905、 YF3057、 YF3800、 YF3802、 YF3807、 YF3897など力 S挙 げられる。
GE東芝シリコーン社製ヒドロキシ末端メチルフエ二ルポリシロキサンでは、例えば、 YF3804などが挙げられる。
Gelest社製両末端シラノール ポリジメチルシロキサンでは、例えば、 DMS— S12 、 DMS— S14などが挙げられる。
Gelest社製両末端シラノール ジフエニルシロキサンージメチルシロキサン コポリ マーでは、例えば、 PDS— 1615が挙げられる。
Gelest社製両末端シラノール ポリジフエニルシロキサンでは、例えば、 PDS— 99 31が挙げられる。
[0142] < 3官能以上のケィ素を含むオリゴマーの例〉
信越化学工業製 シリコーンアルコキシオリゴマー(メチル/メトキシ型)では、例え ば、 KC— 89S、 KR— 500、 X— 40— 9225、 X— 40— 9246、 X— 40— 9250など が挙げられる。
信越化学工業製 シリコーンアルコキシオリゴマー(フエニル/メトキシ型)では、例 えば、 KR— 217などが挙げられる。
信越化学工業製 シリコーンアルコキシオリゴマー(メチルフエニル/メトキシ型)で は、例えば、 KR— 9218、 KR— 213、 KR— 510、 X— 40— 9227、 X— 40— 9247 などが挙げられる。
[0143] これらのうち、 2官能ケィ素のみからなるオリゴマーは本発明の半導体デバイス用部 材に柔軟性を与える効果が大きレ、が、 2官能ケィ素のみでは機械的強度が不十分と なりやすい。このため、 3官能以上のケィ素からなるモノマー若しくは 3官能以上のケ ィ素を含むオリゴマーと共に重合することにより、本発明の半導体デバイス用部材は 封止材として有用な機械的強度を得ることができる。また、反応性基としてシラノール を有するものは事前に加水分解する必要が無ぐ水を加えるための相溶剤としてアル コール等の溶剤の使用をする必要が無い長所がある。なお、アルコキシ基を有する オリゴマーを使用する場合には、アルコキシ基を有するモノマーを原料とする場合と 同様、加水分解するための水が必要となる。
[0144] さらに、原料としては、これらの化合物(1)、化合物(2)、及びそのオリゴマーのうち 1種類だけを用いてよ!/、が、二種類以上を任意の組み合わせ及び組成で混合しても かまわない。さらに、予め加水分解された(即ち、一般式(1) , (2)において Xが OH 基である)化合物(1)、化合物(2)及びそのオリゴマーを用いるようにしてもよ!/、。
[0145] 但し、本発明では原料として、 Mとしてケィ素を含有し、且つ、有機基 Y1又は有機 基 Y2を少なくとも 1つ有する化合物(1)、化合物(2)及びそのオリゴマー(加水分解さ れたものを含む)を、少なくとも 1種以上用いる必要がある。また、系内の架橋が主とし てシロキサン結合を始めとする無機成分により形成されることが好まし!/、ことから、化 合物(1)及び化合物(2)をともに使用する場合には、化合物(1)が主体となることが 好ましい。
[0146] また、シロキサン結合を主体とする半導体デバイス用部材を得るためには、化合物( 1)及び/又はそのオリゴマーを原料の主体として用いることが好ましい。さらに、これ らの化合物(1)のオリゴマー及び/又は化合物(2)のオリゴマーは、 2官能を主体と した組成で構成されていることが、より好ましい。特に、この化合物(1)のオリゴマー及 び/又は化合物(2)のオリゴマーの 2官能単位は、 2官能オリゴマーとして用いられる ことが好ましい。
[0147] さらに、化合物(1)のオリゴマー及び/又は化合物(2)のオリゴマーのうち、 2官能 のもの(以下適宜、「2官能成分オリゴマー」という)を主体として用いる場合、これら 2 官能成分オリゴマーの使用量は、原料の総重量 (即ち、化合物(1)、化合物(2)、及 びそのオリゴマーの重量の和)に対して、通常 50重量%以上、好ましくは 60重量% 以上、より好ましくは 70重量%以上である。なお、使用量の上限は通常 97重量%で ある。 2官能成分オリゴマーを原料の主体として使用することが、本発明の半導体デ ノ イス用部材の製造方法によって、本発明の半導体デバイス用部材を容易に製造 することができる要因のうちのひとつとなっているためである。
[0148] 以下、 2官能成分オリゴマーを原料の主体として用いたことによる利点について詳し く説明する。
例えば従来のゾルゲル法により製造されて!/、た半導体デバイス用部材では、その 原料を加水分解及び重縮合させた加水分解 ·重縮合物(塗布液 (加水分解液)に含 有されたもの等を含む)は、高い反応活性を有していた。したがって、その加水分解' 重縮合物をアルコール等の溶媒で希釈しないと系内の重合が進み、すぐに硬化する ため、成形や取り扱いが困難であった。例えば、従来は溶媒で希釈しない場合には 、温度が 40°C〜50°C程度であっても硬化することがあった。したがって、加水分解 後に得られた加水分解 ·重縮合物の取り扱!/、性を確保するためには、加水分解 ·重 縮合物に溶媒を共存させることが必須であった。
[0149] また、加水分解 ·重縮合物に溶媒を共存させたまま加水分解 ·重縮合物の乾燥 '硬 化を行なわせると、硬化時に脱水縮合による収縮に加え、脱溶媒による収縮 (脱溶媒 収縮)が加味される。これにより、従来の半導体デバイスでは、硬化物の内部応力が 大きくなりがちであり、この内部応力に起因するクラック、剥離、断線などが生じやす かった。
[0150] さらに、上記の内部応力を緩和するために半導体デバイス用部材を柔軟化する目 的で原料として 2官能成分モノマーを多用すると、重縮合体中の低沸環状体が多く なる可能性があった。低沸環状体は硬化時に揮発してしまうため、低沸環状体が多く なると重量歩留まりが低下することになる。また、低沸環状体は硬化物からも揮発し、 応力発生の原因となることがある。さらに、低沸環状体を多く含む半導体デバイス用 部材は耐熱性が低くなることがある。これらの理由により、従来は、半導体デバイス用 部材を、性能の良いエラストマ一状硬化体として得ることは困難であった。
[0151] これに対して、本発明の半導体デバイス用部材の製造方法では、原料として、別系 で(即ち、加水分解 ·重縮合工程に関与しない系で) 2官能成分をあらかじめオリゴマ 一化し、反応性末端を持たない低沸不純物を留去したものを原料として使用するよう にしている。したがって、 2官能成分(即ち、上記の 2官能成分オリゴマー)を多用して も、それらの低沸不純物が揮発することはなぐ硬化物重量歩留まりの向上を実現す ることができるとともに、性能の良いエラストマ一状硬化物を得ることができる。
[0152] さらに、 2官能成分オリゴマーを主原料とすることにより、加水分解 '重縮合物の反 応活性を抑制することができる。これは、加水分解 '重縮合物の立体障害及び電子 効果、並びに、 2官能成分オリゴマーを使用したことに伴いシラノール末端量が低減 したことによるものと推察される。反応活性を抑制したことにより、溶媒を共存させなく ても加水分解 '重縮合物は硬化することはなぐしたがって、加水分解 '重縮合物を 一液型、かつ、無溶媒系とすることができる。
[0153] また、加水分解 ·重縮合物の反応活性が低下したことにより、硬化開始温度を従来 よりも高くすることが可能となった。したがって、加水分解 '重縮合物の硬化開始温度 以下の溶媒を加水分解 '重縮合物に共存させた場合には、加水分解'重縮合物の乾 燥時に、加水分解 ·重縮合物の硬化が開始されるよりも以前に溶媒が揮発することに なる。これにより、溶媒を使用した場合であっても脱溶媒収縮に起因する内部応力の 発生を抑制することが可能となる。
[0154] [2— 2]加水分解 ·重縮合工程
本発明ではまず、上述の化合物(1)、化合物(2)、及び/又はそれらのオリゴマー を加水分解 ·重縮合反応させる (加水分解 ·重縮合工程)。この加水分解 ·重縮合反 応は、公知の方法によって行なうことができる。なお、以下適宜、化合物(1)、化合物 (2)、及びそのオリゴマーを区別せずに指す場合、「原料化合物」という。
[0155] 原料化合物の加水分解 '重縮合反応を行なうために使用する水の理論量は、下記 式(3)に示す反応式に基づき、系内の加水分解性基の総量の 1/2モル比である。
[0156] [化 5]
2 X ≡ S i - X + H 2 0 → ≡ S i - 0 - S i≡ + 2 X X H ( 3 ) なお、上記式(3)は、一般式(1) , (2)の Mがケィ素である場合を例として表わして いる。また、「≡Si」及び「Si≡」は、ケィ素原子の有する 4つの結合手のうち 3つを省 略して表わしたものである。 [0157] 本明細書では、この加水分解時に必要な水の理論量、即ち、加水分解性基の総量 の 1/2モル比に相当する水の量を基準 (加水分解率 100%)とし、加水分解時に使 用する水の量をこの基準量に対する百分率、即ち「加水分解率」で表わす。
[0158] 本発明において、加水分解 '重縮合反応を行なうために使用する水の量は、上述 の加水分解率で表わした場合に、通常 80%以上、中でも 100%以上の範囲が好ま しい。加水分解率がこの範囲より少ない場合、加水分解 '重合が不十分なため、硬化 時に原料が揮発したり、硬化物の強度が不十分となったりする可能性がある。一方、 加水分解率が 200%を超える場合、硬化途中の系内には常に遊離の水が残存し、 半導体素子や蛍光体に水分による劣化をもたらしたり、カップ部が吸水し、硬化時の 発泡、クラック、剥離の原因となったりする場合がある。但し、加水分解反応において 重要なのは 100 %近傍以上 (例えば 80 %以上)の水で加水分解 ·重縮合を行なうと いうことであり、塗布前に遊離の水を除く工程を付加すれば、 200%を超える加水分 解率を適用することは可能である。この場合、あまり大量の水を使用すると、除去す べき水の量や相溶剤として使用する溶媒の量が増え、濃縮工程が煩雑になったり、 重縮合が進みすぎて部材の塗布性能が低下したりすることがあるので、加水分解率 の上限は通常 500%以下、中でも 300%以下、好ましくは 200%以下の範囲とするこ とが好ましい。
[0159] 原料化合物を加水分解 '縮重合する際には、触媒などを共存させて、加水分解 '縮 重合を促進することが好ましい。この場合、使用する触媒としては、例えば、酢酸、プ ロピオン酸、酪酸などの有機酸;硝酸、塩酸、リン酸、硫酸などの無機酸;有機金属化 合物触媒などを用いることができる。このうち、半導体デバイスと直接接する部分に使 用する部材とする場合には、絶縁特性に影響の少ない有機金属化合物触媒が好ま しい。ここで、有機金属化合物触媒とは、有機基と金属原子とが直接に結合してなる 狭義の有機金属化合物からなる触媒のみを指すのではなぐ有機金属錯体、金属ァ ルコキシド、有機酸と金属との塩などを含む広義の有機金属化合物からなる触媒を 指す。
[0160] 有機金属化合物触媒の中では、ジルコニウム、ハフニウム、スズ、亜鉛及びチタンよ り選択される少なくとも 1種の元素を含む有機金属化合物触媒が好ましぐジルコユウ ムを含む有機金属化合物触媒がさらに好ましい。
[0161] その具体例を挙げると、ジルコニウムを含有する有機金属化合物触媒の例としては ート、ジルコニウムジブトキシジァセチルァセトネート、ジルコニウムテトラノルマルプロ ジルコニウムァシレート、ジルコニウムトリブトキシステアレートなどが挙げられる。
[0162] また、ハフニウムを含有する有機金属化合物触媒の例としては、ハフニウムテトラァ セチルァセトネート、ハフニウムトリブトキシァセチルァセトネート、ハフニウムジブトキ ソプロポキシド、ノヽフニゥムテトラノノレマノレブトキシド、ハフニウムァシレート、ノヽフニゥ ムトリブトキシステアレートなどが挙げられる。
[0163] また、チタンを含有する有機金属化合物触媒の例としては、チタニウムテトライソプ ロポキシド、チタニウムテトラノルマルブトキシド、ブチルチタネートダイマー、テトラオ ェチルァセトアセテートなどが挙げられる。
[0164] また、亜鉛を含有する有機金属化合物触媒の例としては、ステアリン酸亜鉛、オタ チル酸亜鉛、 2—ェチルへキサン酸亜鉛、亜鉛トリァセチルァセトネートが挙げられる
[0165] また、スズを含有する有機金属化合物触媒の例を挙げると、テトラプチルスズ、モノ クチルスズ、ジォクチルスズジクロライド、ジォクチルスズオキサイド、テトラメチルスズ 、ジブチルスズラウレート、ジォクチルスズラウレート、ビス(2—ェチルへキサノエート )スズ、ビス(ネオデカノエート)スズ、ジー n—ブチルビス(ェチルへキシルマレート)ス ズ、ジ一ノルマルブチルビス(2, 4—ペンタンジォネート)スズ、ジ一ノルマルブチノレ リル酸スズ、ジメチルジネオデカノエートスズなどが挙げられる。
[0166] なお、これらの有機金属化合物触媒は、 1種を単独で用いてもよぐ 2種以上を任意 の組み合わせ及び比率で併用してもよ!/、。 [0167] 上記の好ましい有機金属化合物触媒を用いることにより、原料化合物を加水分解 · 重縮合する際には、副生物の低分子環状シロキサンの生成を抑え、高い歩留まりで 半導体デバイス用部材形成液を合成することができる。
また、この有機金属化合物触媒を用いたことにより、本発明の半導体デバイス用部 材は、前記 [1 1]で説明した特性(1)の範囲を満たす、高い耐熱性を実現すること ができる。その理由は明らかではないが、前記有機金属化合物は、単に触媒として 原料化合物の加水分解 '重縮合反応を促進するだけではなぐ加水分解 '重縮合物 及びその硬化物のシラノール末端に一時的に結合 ·解離することができ、これにより シラノール含有ポリシロキサンの反応性を調整して、高温条件における(i)有機基の 酸化の防止、(ii)ポリマー間の不要な架橋の防止、(iii)主鎖の切断などの防止をす る作用力あると考えられる。以下、これらの作用(i)〜(iii)について説明する。
[0168] (i)有機基の酸化の防止としては、熱の作用によって、例えばメチル基上にラジカ ルが発生した時、有機金属化合物触媒の遷移金属がラジカルを補足する効果を有 する。一方、この遷移金属自身はラジカル補足によってイオン価数を失い、そのため に酸素と作用して有機基の酸化を防止する。その結果として、半導体デバイス用部 材の劣化を抑えることになると推察される。
[0169] (ii)ポリマー間の不要な架橋の防止としては、例えば、メチル基が酸素分子によつ て酸化を受けるとホルムアルデヒドになり、ケィ素原子に結合した水酸基が生成する 。こうしてできた水酸基同士が脱水縮合するとポリマー間に架橋点ができ、それが増 加することによって本来ゴム状であった半導体デバイス用部材が硬ぐもろくなる可能 性がある。しかし、有機金属化合物触媒はシラノール基と結合し、これにより、熱分解 による架橋の進行を防止できるものと推察される。
[0170] (iii)主鎖の切断などの防止としては、有機金属化合物触媒がシラノールと結合する ことにより、シラノールの分子内攻撃によるポリマー主鎖の切断及び環状シロキサン の生成による加熱重量減を抑制し、耐熱性が向上するものと推察される。
[0171] 有機金属化合物触媒の好ましい配合量は、使用する触媒の種類によって適宜選 択されるが、加水分解 ·重縮合を行う原料の総重量に対し、通常 0. 01重量%以上、 好ましくは 0. 05重量%以上、さらに好ましくは 0. 1重量%以上、また、通常 5重量% 以下、好ましくは 2重量%以下、特に好ましくは 1重量%以下である。有機金属化合 物触媒が少なすぎると、硬化に時間力かかりすぎたり、硬化不十分なために十分な 機械的強度や耐久性が得られなかったりする可能性がある。一方、有機金属化合物 触媒が多すぎると、硬化が速すぎて硬化物である半導体デバイス用部材の物性の制 御が困難となったり、触媒が溶解分散できず析出し半導体デバイス用部材の透明度 を損なったり、触媒自身が持ち込む有機物量が多くなり得られる半導体デバイス用部 材が高温使用時に着色したりする可能性がある。
[0172] これらの有機金属触媒は、加水分解 '縮合時に一括して原料系に混合しても良ぐ また分割混合しても良い。また、加水分解 ·重縮合時に触媒を溶解するために溶媒を 使用しても良く、直接反応液に触媒を溶解しても良い。ただし、半導体発光デバイス 用形成液として使用する際には、硬化時の発泡や熱による着色を防ぐために、加水 分解 ·重縮合工程の後で前記の溶媒を厳密に留去することが望ましい。
なお、触媒が固体である場合には触媒の溶解度が低ぐ溶解不十分なまま直接昇 温すると局所的に不均一な反応が起きて系内が白濁したり透明ゲル状の不溶物が 生成したりすることがある。これを防ぎ均一に反応を進めるには、触媒粒子を (i)乳鉢 により数十〜数百 mに粉砕し溶解しやすくしたり、(ii)触媒を溶解させるために、触 媒を混合した樹脂組成物を 30〜50°Cで攪拌しつつ予備加熱し、触媒が溶解してか ら反応温度に昇温したりすると良い。また、活性の異なるシロキサン原料を混合する 際には活性の低!/、成分に触媒を混合し、触媒が溶解してから最も活性の高!/、成分を 混合すると良い。
[0173] 加水分解 ·重縮合反応時に系内が分液し不均一となる場合には、溶媒を使用して も良い。溶媒としては、例えば、 C1〜C3の低級アルコール類、ジメチルホルムアミド 、ジメチルスルホキシド、アセトン、テトラヒドロフラン、メチルセ口ソルブ、ェチルセロソ ルブ、メチルェチルケトン、トルエン、水等を任意に用いることができる力 中でも強い 酸性や塩基性を示さないものが加水分解 ·重縮合に悪影響を与えない理由から好ま しい。溶媒は 1種を単独で使用しても良いが、 2種以上を任意の組み合わせ及び比 率で併用することもできる。溶媒使用量は自由に選択できるが、半導体デバイスに塗 布する際には溶媒を除去することが多いため、必要最低限の量とすることが好ましい 。また、溶媒除去を容易にするため、沸点が 100°C以下、より好ましくは 80°C以下の 溶媒を選択することが好ましい。なお、外部より溶媒を添加しなくても加水分解反応 によりアルコール等の溶媒が生成するため、反応当初は不均一でも反応中に均一に なる場合もある。
[0174] 上記原料化合物の加水分解 ·重縮合反応は、常圧で実施する場合、通常 15°C以 上、好ましくは 20°C以上、より好ましくは 40°C以上、また、通常 140°C以下、好ましく は 135°C以下、より好ましくは 130°C以下の範囲で行なう。加圧下で液相を維持する ことでより高!/、温度で行なうことも可能である力 150°Cを超えな!/、ことが好まし!/、。
[0175] 加水分解 ·重縮合反応時間は反応温度により異なるが、通常 0. 1時間以上、好ま しくは 1時間以上、更に好ましくは 3時間以上、また、通常 100時間以下、好ましくは 2 0時間以下、更に好ましくは 15時間以下の範囲で実施される。反応時間の調整は分 子量管理を行レ、つつ適宜行うことが好まし!/、。
[0176] 以上の加水分解 '重縮合条件において、時間が短くなつたり温度が低すぎたりする と、加水分解 ·重合が不十分なため硬化時に原料が揮発したり、硬化物の強度が不 十分となる可能性がある。また、時間が長くなつたり温度が高すぎたりすると、重合物 の分子量が高くなり、系内のシラノール量が減少し、塗布時に密着性不良が生じたり 硬化が早すぎて硬化物の構造が不均一となり、クラックを生じやすくなる。以上の傾 向を踏まえて、所望の物性値に応じて条件を適宜選択することが望ましレ、。
[0177] 上記加水分解 ·重縮合反応が終了した後、得られた加水分解 ·重縮合物はその使 用時まで室温以下で保管される力 S、この期間にもゆっくりと重縮合が進行するため、 特に厚膜状の部材として使用する場合には前記加温による加水分解 ·重縮合反応 が終了した時点より室温保管にて通常 60日以内、好ましくは 30日以内、更に好まし くは 15日以内に使用に供することが好まし!/、。必要に応じ凍らな!/、範囲にて低温保 管することにより、この期間を延長することができる。保管期間の調整は分子量管理 を行!/、つつ適宜行うことが好まし!/、。
[0178] 前記の操作により、上記の原料化合物の加水分解 '重縮合物(重縮合物)が得られ る。この加水分解 '重縮合物は、好ましくは液状である。しかし、固体状の加水分解- 重縮合物でも、溶媒を用いることにより液状となるものであれば、使用することができ る。また、こうして得られた液状の加水分解 ·重縮合物は、この後に説明する工程で 硬化することにより本発明の半導体デバイス用部材となる半導体デバイス用部材形 成液である。
[0179] [2— 3]溶媒留去
上記の加水分解 ·重縮合工程において溶媒を用いた場合には、通常、乾燥の前に 加水分解 ·重縮合物から溶媒を留去することが好ましレ、 (溶媒留去工程)。これにより 、溶媒を含まなレ、半導体デバイス用部材形成液 (液状の加水分解 ·重縮合物)を得る ことができる。上述したように、従来は溶媒を留去すると加水分解 ·重縮合物が硬化し てしまうために加水分解 ·重縮合物の取り扱いが困難となっていた。しかし、本発明の 製造方法では、 2官能成分オリゴマーを使用すると加水分解 '重縮合物の反応性が 抑制されるため、乾燥の前に溶媒を留去しても加水分解 '重縮合物は硬化しなくなり 、溶媒の留去が可能である。溶媒を乾燥前に留去しておくことにより、脱溶媒収縮に よるクラック、录 IJ離、断泉などを防止すること力 Sできる。
[0180] なお、通常は、溶媒の留去の際に、加水分解に用いた水の留去も行なわれる。また 、留去される溶媒には、上記の一般式(1)、(2)で表わされる原料化合物の加水分 解'重縮合反応により生成される、 XH等で表わされる溶媒も含まれる。さらに、反応 時に副生する低分子環状シロキサンも含まれる。
[0181] 溶媒を留去する方法は、本発明の効果を著しく損なわない限り任意である。ただし 、加水分解 '重縮合物の硬化開始温度以上の温度で溶媒の留去を行なうことは避け るようにする。
溶媒の留去を行なう際の温度条件の具体的な範囲を挙げると、通常 60°C以上、好 ましくは 80°C以上、より好ましくは 100°C以上、また、通常 150°C以下、好ましくは 13 0°C以下、より好ましくは 120°C以下である。この範囲の下限を下回ると溶媒の留去 が不十分となる可能性があり、上限を上回ると加水分解 ·重縮合物がゲル化する可 能性がある。
[0182] また、溶媒の留去を行なう際の圧力条件は、通常は常圧である。さらに、必要に応 じて溶媒留去時の反応液の沸点が硬化開始温度(通常は 120°C以上)に達しないよ うに減圧する。また、圧力の下限は、加水分解 '重縮合物の主成分が留出しない程 度である。
[0183] 一般に高温 ·高真空条件で軽沸分は効率良く留去できるが、軽沸分が微量である ため装置形状により精密に留去できない場合には、高温操作によりさらに重合が進 み分子量が上がりすぎる可能性がある。さらに、所定の種類の触媒を使用している場 合には、長時間高温反応に供すると失活し、半導体デバイス用部材形成液を硬化し に《なる可能性もある。そこで、これらの場合などには、必要に応じ窒素吹き込みや 水蒸気蒸留などにより低温常圧で軽沸分を留去しても良い。
[0184] 減圧留去ゃ窒素吹き込みなどの何れの場合にも、加水分解 '重縮合物の主成分本 体が留出しないよう、前段の加水分解 ·重縮合反応にて適度に分子量を上げておく ことが望ましい。
これらの方法により溶媒や水分、副生低分子環状シロキサン、溶存空気などの軽沸 分を十分に除いた半導体デバイス用形成液を用いて製造する半導体デバイス用部 材は、軽沸分の気化による硬化時発泡や高温使用時のデバイスからの剥離を低減さ せること力 Sできるため、好ましい。
[0185] ただし、溶媒の留去を行なうことは、必須の操作ではない。特に、加水分解 '重縮合 物の硬化温度以下の沸点を有する溶媒を用いている場合には、加水分解 ·重縮合 物の乾燥時に、加水分解'重縮合物の硬化が開始される前に溶媒が揮発してしまう ため、特に溶媒留去工程を行なわなくても脱溶媒収縮によるクラック等の生成は防止 すること力 Sできる。しかし、溶媒の揮発により加水分解 ·重縮合物の体積が変化するこ ともありえるため、半導体デバイス用部材の寸法や形状を精密に制御する観点から は、溶媒留去を行なうことが好ましい。
[0186] [2— 4]乾燥
上述の加水分解 ·重縮合反応により得られた加水分解 ·重縮合物を乾燥させる(乾 燥工程。または、硬化工程)ことにより、本発明の半導体デバイス用部材を得ることが できる。この加水分解 ·重縮合物は上述のように通常は液状である力 これを目的と する形状の型に入れた状態で乾燥を行なうことにより、 目的とする形状を有する本発 明の半導体デバイス用部材を形成することが可能となる。また、この加水分解 '重縮 合物を目的とする部位に塗布した状態で乾燥を行なうことにより、 目的とする部位に 直接、本発明の半導体デバイス用部材を形成することが可能となる。なお、乾燥工程 では必ずしも溶媒が気化するわけではないが、ここでは、流動性を有する加水分解' 重縮合物が流動性を失って硬化する現象を含めて、乾燥工程と呼ぶものとする。し たがって、溶媒の気化を伴わない場合には、上記「乾燥」は「硬化」と読み替えて認識 してもよい。
[0187] 乾燥工程では、加水分解 ·重縮合物をさらに重合させることにより、メタロキサン結 合を形成させて、重合物を乾燥 '硬化させ、本発明の半導体デバイス用部材を得る。 乾燥の際には、加水分解 ·重縮合物を所定の硬化温度まで加熱して硬化させるよう にする。具体的な温度範囲は加水分解 ·重縮合物の乾燥が可能である限り任意であ る力 メタロキサン結合は通常 100°C以上で効率良く形成されるため、好ましくは 120 °C以上、更に好ましくは 150°C以上で実施される。但し、半導体デバイスと共に加熱 される場合は、通常はデバイス構成要素の耐熱温度以下の温度、好ましくは 200°C 以下で乾燥を実施することが好ましレ、。
[0188] また、加水分解 ·重縮合物を乾燥させるために硬化温度に保持する時間(硬化時 間)は触媒濃度や部材の厚みなどにより一概には決まらないが、通常 0. 1時間以上 、好ましくは 0. 5時間以上、更に好ましくは 1時間以上、また、通常 10時間以下、好 ましくは 5時間以下、更に好ましくは 3時間以下の範囲で実施される。
[0189] なお、乾燥工程における昇温条件は特に制限されない。即ち、乾燥工程の間、一 定の温度で保持しても良ぐ連続的又は断続的に温度を変化させても良い。また、乾 燥工程を更に複数回に分けて行なってもよい。さらに、乾燥工程において、温度を段 階的に変化させるようにしてもよい。温度を段階的に変化させることにより、残留溶媒 ゃ溶存水蒸気による発泡を防ぐことができるという利点を得ることができる。また、低 温で硬化させた後、高温で追硬化した場合には、得られる半導体デバイス用部材中 に内部応力が発生しにくぐクラックや剥離を起こしにくいという利点も得ることができ
[0190] ただし、上述の加水分解 ·重縮合反応を溶媒の存在下にて行なったときに、溶媒留 去工程を行なわなかった場合や、溶媒留去工程を行なっても加水分解 ·重縮合物中 に溶媒が残留している場合には、この乾燥工程を、溶媒の沸点以下の温度にて溶媒 を実質的に除去する第 1の乾燥工程と、該溶媒の沸点以上の温度にて乾燥する第 2 の乾燥工程とに分けて行なうことが好ましい。なお、ここで言う「溶媒」には、上述の原 料化合物の加水分解 ·重縮合反応により生成される、 XH等で表わされる溶媒や低 分子環状シロキサンも含まれる。また、本明細書における「乾燥」とは、上述の原料化 合物の加水分解 '重縮合物が溶媒を失い、更に重合'硬化してメタロキサン結合を形 成する工程を指す。
[0191] 第 1の乾燥工程は、原料化合物の加水分解 '重縮合物の更なる重合を積極的に進 めることなぐ含有される溶媒を該溶媒の沸点以下の温度にて実質的に除去するも のである。即ち、この工程にて得られる生成物は、乾燥前の加水分解 '重縮合物が濃 縮され、水素結合により粘稠な液或いは柔らかい膜状になったもの力、、溶媒が除去さ れて加水分解 ·重縮合物が液状で存在しているものである。
[0192] ただし、通常は、溶媒の沸点未満の温度で第 1の乾燥工程を行なうことが好ましい 。該溶媒の沸点以上の温度で第 1の乾燥を行なうと、得られる膜に溶媒の蒸気による 発泡が生じ、欠陥の無い均質な膜が得に《なる。この第 1の乾燥工程は、薄膜状の 部材とした場合など溶媒の蒸発の効率がよい場合は単独のステップで行なっても良 V、が、カップ上にモールドした場合など蒸発効率の悪!/、場合にお!/、ては複数のステ ップに分けて昇温しても良い。また、極端に蒸発効率が悪い形状の場合は、予め別 の効率良い容器にて乾燥濃縮を行なった上で、流動性が残る状態で塗布し、更に乾 燥を実施してもよい。蒸発効率の悪い場合には、大風量の通風乾燥など部材の表面 のみ濃縮が進む手段をとらず、部材全体が均一に乾燥するよう工夫することが好まし い。
[0193] 第 2の乾燥工程は、上述の加水分解 '重縮合物の溶媒が第 1の乾燥工程により実 質的に無くなった状態において、この加水分解 '重縮合物を溶媒の沸点以上の温度 で加熱し、メタロキサン結合を形成することにより、安定な硬化物とするものである。こ の工程において溶媒が多く残留していると、架橋反応が進行しつつ溶媒蒸発による 体積減が生じるため、大きな内部応力が生じ、収縮による剥離やクラックの原因とな る。メタロキサン結合は通常 100°C以上で効率良く形成されるため、第 2の乾燥工程 は好ましくは 100°C以上、更に好ましくは 120°C以上で実施される。但し、半導体デ バイスと共に加熱される場合は、通常はデバイス構成要素の耐熱温度以下の温度、 好ましくは 200°C以下で乾燥を実施することが好ましい。第 2の乾燥工程における硬 化時間は触媒濃度や部材の厚みなどにより一概には決まらないが、通常 0. 1時間以 上、好ましくは 0. 5時間以上、更に好ましくは 1時間以上、また、通常 10時間以下、 好ましくは 5時間以下、更に好ましくは 3時間以下の範囲で実施される。
[0194] このように溶媒除去の工程 (第 1の乾燥工程)と硬化の工程 (第 2の乾燥工程)とを 明確に分けることにより、溶媒留去工程を行なわない場合であっても、本発明の物性 を持つ耐光性、耐熱性に優れる半導体デバイス用部材をクラック '剥離することなく得 ること力 S可倉 となる。
ただし、第 1の乾燥工程中でも硬化が進行することはありえるし、第 2の乾燥工程中 にも溶媒除去が進行する場合はありえる。しかし、第 1の乾燥工程中の硬化や第 2の 乾燥工程中の溶媒除去は、通常は本発明の効果に影響を及ぼさな!/、程度に小さ!/ヽ ものである。
[0195] なお、実質的に上述の第 1の乾燥工程及び第 2の乾燥工程が実現される限り、各 工程における昇温条件は特に制限されない。即ち、各乾燥工程の間、一定の温度で 保持しても良ぐ連続的又は断続的に温度を変化させても良い。また、各乾燥工程を 更に複数回に分けて行なってもよい。更には、第 1の乾燥工程の間に一時的に溶媒 の沸点以上の温度となったり、第 2の乾燥工程の間に溶媒の沸点未満の温度となる 期間が介在したりする場合でも、実質的に上述したような溶媒除去の工程 (第 1の乾 燥工程)と硬化の工程 (第 2の乾燥工程)とが独立して達成される限り、本発明の範囲 に含まれるものとする。
[0196] さらに、溶媒として加水分解 ·重縮合物の硬化温度以下、好ましくは硬化温度未満 の沸点を有するものを用いて!/、る場合には、加水分解 '重縮合物に共存してレ、る溶 媒は、特に温度を調整せずに加水分解 ·重縮合物を硬化温度まで加熱した場合で あっても、乾燥工程の途中において、温度が沸点に到達した時点で加水分解 ·重縮 合物から留去されることになる。つまり、この場合、乾燥工程において加水分解 '重縮 合物を硬化温度まで昇温する過程において、加水分解'重縮合物が硬化する前に、 溶媒の沸点以下の温度にて溶媒を実質的に除去する工程 (第 1の乾燥工程)が実施 される。これにより、加水分解 '重縮合物は、溶媒を含有しない液状の加水分解 '重 縮合物となる。そして、その後、溶媒の沸点以上の温度(即ち、硬化温度)にて乾燥し 、加水分解 ·重縮合物を硬化させる工程 (第 2の乾燥工程)が進行することになる。し たがって、溶媒として上記の硬化温度以下の沸点を有するものを用いると、上記の第 1の乾燥工程と第 2の乾燥工程とは、たとえその実施を意図しなくても行なわれること になる。このため、溶媒として加水分解 '重縮合物の硬化温度以下、好ましくは上記 硬化温度未満の沸点を有するものを用いることは、乾燥工程を実施する際には加水 分解 ·重縮合物が溶媒を含んでいたとしても半導体デバイス用部材の品質に大きな 影響を与えることがな!/、ため、好ましレ、とレ、える。
[0197] [2— 5]その他
上述の乾燥工程の後、得られた半導体デバイス用部材に対し、必要に応じて各種 の後処理を施しても良い。後処理の種類としては、モールド部との密着性の改善のた めの表面処理、反射防止膜の作製、光取り出し効率向上のための微細凹凸面の作 製等が挙げられる。
[0198] [3]半導体デバイス用部材形成液
本発明の半導体デバイス用部材形成液は、上述したように、加水分解 ·重縮合ェ 程により得られる液状材料であり、乾燥工程で硬化させられることによって半導体デ ノ イス用部材となるものである。
[0199] 半導体デバイス用部材形成液が硬化性オルガノポリシロキサンである場合は、その 硬化物の熱膨張係数の点で直鎖状オルガノポリシロキサンよりは分岐状オルガノポリ シロキサンが好ましレ、。直鎖状オルガノポリシロキサンの硬化物はエラストマ一状であ り、その熱膨張係数が大きいが、分岐状オルガノポリシロキサンの硬化物の熱膨張係 数は直鎖状オルガノポリシロキサンの硬化物の熱膨張係数より小さ!/、ので、熱膨張 に伴う光学特性の変化が小さいからである。
[0200] 本発明の半導体デバイス用部材形成液の粘度に制限は無いが、液温 25°Cにおい て、通常 20mPa ' s以上、好ましくは lOOmPa ' s以上、より好ましくは 200mPa ' s以上 、また、通常 1500mPa ' s以下、好ましくは lOOOmPa ' s以下、より好ましくは 800mP a ' s以下である。なお、前記粘度は RV型粘度計 (例えばブルックフィールド社製 RV 型粘度計「RVDV— II+Pro」により測定できる。
[0201] 本発明の半導体デバイス用部材形成液の重量平均分子量及び分子量分布に制 限は無い。ただし、本発明の半導体デバイス用部材形成液は GPC (ゲルパーミエ一 シヨンクロマトグラフィー)で測定したポリスチレン換算の重量平均分子量 (Mw)が、 通常 500以上、好ましくは 900以上、更に好ましくは 3200以上であり、通常 400, 00 0以下、好ましくは 70, 000以下、更に好ましくは 27, 000以下である。重量平均分 子量が小さすぎると半導体デバイス容器への充填後の硬化時に気泡が発生する傾 向があり、大きすぎると半導体デバイス用部材形成液が低温でも経時で増粘する傾 向や半導体デバイス容器への充填効率が悪くなる傾向がある。
[0202] また、分子量分布(Mw/Mn。ここで Mwは重量平均分子量を表わし、 Mnは数平 均分子量を表わす)が、通常 20以下、好ましくは 10以下、更に好ましくは 6以下であ る。分子量分布が大きすぎると部材が低温でも経時で増粘する傾向や半導体デバイ ス容器への充填効率が悪くなる傾向がある。なお、 Mnは、 Mwと同じぐ GPCによる ポリスチレン換算で測定できる。
[0203] また、本発明の半導体デバイス用部材形成液は、特定分子量以下の低分子量成 分が少ないものが好ましい。具体的には、本発明の半導体デバイス用部材形成液中 の GPC面積比率で分子量が 800以下の成分力 全体の、通常 10%以下、好ましく は 7. 5%以下、更に好ましくは 5%以下である。低分子量成分が多すぎると、半導体 デバイス用部材形成液の硬化時に気泡が発生したり主成分の揮発により硬化時の 重量歩留まり(固形分率)が低下したりする可能性がある。
[0204] さらに、本発明の半導体デバイス用部材形成液は、特定分子量以上の高分子量成 分が少ないものが好ましい。具体的には、本発明の半導体デバイス用部材形成液の GPC分析値において、高分子量の分画範囲力 5%となる分子量力 通常 1000000 以下、好ましくは 330000以下、さらに好ましくは 110000以下である。 GPCで高分 子量側の分画範囲が多すぎると、
a)半導体デバイス用部材形成液が低温保管においても経時で増粘する、
b)保管中の脱水縮合により水分生成し、半導体デバイス用部材を基板やパッケージ 等の表面に形成した後で半導体デバイス用部材形成液が基板やパッケージ等から 剥離しやすくなる、
c)高粘度であるために半導体デバイス用部材形成液の硬化時に気泡の抜けが悪く なる、
などの可能性がある。
[0205] 総括すれば、本発明の半導体デバイス用部材形成液は、上記に示される分子量範 囲であることが好ましぐこのような分子量範囲とする方法としては下記の方法を挙げ ること力 S出来る。
(i)合成時の重合反応を十分に行!、未反応原料を消費する。
(ii)合成反応後に軽沸分の留去を十分に行い軽沸の低分子量残留物を除去する。
(iii)合成反応時の反応速度や条件を適切に制御し、重合反応が均一に進行するよ うにし、分子量分布が必要以上に大きくならないようにする。
[0206] 例えば、「[2]半導体デバイス用部材の製造方法」のように、特定の化合物を加水 分解 ·重縮合した重縮合物で半導体デバイス用部材を形成する場合には、半導体デ バイス用部材形成液合成時の加水分解 ·重合反応を適正な反応速度を維持しつつ 、均一に進めることが好ましい。加水分解 ·重合は通常 15°C以上、好ましくは 20°C以 上、より好ましくは 40°C以上、また通常 140°C以下、好ましくは 135°C以下、より好ま しくは 130°C以下の範囲で行う。また、加水分解 '重合時間は反応温度により異なる 、通常 0. 1時間以上、好ましくは 1時間以上、さらに好ましくは 3時間以上、また通 常 100時間以下、好ましくは 20時間以下、更に好ましくは 15時間以下の範囲で実施 される。反応時間がこれより短いと、必要な分子量まで到達しなかったり、不均一に反 応進む結果低分子量原料が残存しつつ高分子量の成分も存在し、硬化物の品質不 良で貯蔵安定性に乏しいものとなったりする可能性がある。また、反応時間がこれより 長いと、重合触媒が失活したり、合成に長時間力、かり生産性が悪化したりする可能性 力 sある。
[0207] 原料の反応活性が低く反応が進みにくい場合には、必要に応じて、例えばァルゴ ンガス、ヘリウムガス、窒素ガス等の不活性ガスを流通させることにより、縮合反応に て発生する水分やアルコールを随伴させて除去を行ない反応を加速しても良い。 反応時間の調整は、 GPC及び粘度測定により分子量管理を行ないつつ、適宜行 なうことが好ましい。さらに、昇温時間を考慮して調節することが好ましい。
溶媒を用いる場合には、必要に応じて常圧にて溶媒留去を行なうことが好ましい。 さらに、溶媒や除去したい低分子量物の沸点が硬化開始温度(通常は 120°C以上) である場合には、必要に応じて減圧留去を行なうことが好ましい。一方、導光膜の薄 層塗布など、使用目的によっては低粘度化のため溶媒が一部残存していても良ぐ 反応溶媒と異なる溶媒を反応溶媒留去後に後添加しても良!/、。
[0208] ここで、半導体デバイス用部材形成液の分子量分布の上限及び下限は上記範囲 に収まることが好ましぐその範囲であれば分子量分布は必ずしも一山でなくてもよい 。また、機能付加などの目的により異なる分子量分布の半導体デバイス用部材形成 液を混合してもよぐその場合には分子量分布曲線が多峰性になっても良い。例え ば、半導体デバイス用部材に機械的強度を与えるため、高分子量に仕上げた第一 の半導体デバイス用部材形成液に、密着成分を多く含む低分子量の第二の半導体 デバイス用部材形成液を少量含有させた場合などがこれに該当する。
[0209] さらに、本発明の半導体デバイス用部材形成液中の低沸点成分は、「[1 4 9] 低沸点成分」で説明した本発明の半導体デバイス用部材と同様に、少ないことが好 ましい。
[0210] また、本発明の半導体デバイス用部材には通常微量のアルコキシ基が残存する。
この末端アルコキシ基が少ない半導体デバイス用部材及び半導体デバイス用部材 形成液は TG— DTAによる重量減が少なぐ耐熱性が高くなる。本発明の半導体デ バイス用形成液に含まれるアルコキシ基量は、通常 5重量%以下、好ましくは 3重量 %以下、さらに好ましくは 0. 2重量%以下である。
[0211] また、用途によっては、半導体デバイス用部材形成液は、その他の成分を含有して いてもよい。例えば、本発明の半導体デバイス用部材を半導体発光デバイスの構成 部材として用いる場合などにおいては、半導体デバイス用部材形成液に蛍光体や無 機粒子などを含有させてもよい。この際、半導体デバイス用部材形成液と蛍光体とを 含有するものを、特に、本発明の蛍光体組成物という。なお、これらの点については 、用途の説明と共に、後で説明する。
また、その他の成分は、 1種のみを用いても良ぐ 2種以上を任意の組み合わせ及 び比率で併用しても良い。
[0212] [4]半導体デバイス用部材の用途
本発明の半導体デバイス用部材の用途は特に制限されず、半導体素子等を封止 するための部材 (封止材)に代表される各種の用途に使用することができる。中でも、 蛍光体粒子及び/又は無機粒子を併用することによって、特定の用途により好適に 使用することが可能となる。以下、これらの蛍光体粒子及び無機粒子の併用につい て説明する。
[0213] [4 1]蛍光体
本発明の半導体デバイス用部材は、例えば、半導体デバイス用部材中に蛍光体を 分散させて、半導体発光デバイスのカップ内にモールドしたり、適当な透明支持体上 に薄層状に塗布することにより、波長変換用部材として使用することができる。なお、 蛍光体は 1種類を単独で用いてもよぐ 2種類以上を任意の組み合わせ及び比率で 併用しても良い。
[0214] [4 1 1]蛍光体の種類
蛍光体の組成には特に制限はないが、結晶母体である Y O 、 Zn SiO等に代表
2 3 2 4
される金属酸化物、 Ca (PO ) C1等に代表されるリン酸塩及び ZnS、 SrS、 CaS等
5 4 3
に代表される石) ¾ィ匕物に、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Tb、 Dy、 Ho, Er、 Tm、 Yb等 の希土類金属のイオンや Ag、 Cu、 Au、 Al、 Mn、 Sb等の金属のイオンを付活剤ま たは共付活剤として組み合わせたものが好ましい。
[0215] 結晶母体の好ましい例としては、例えば、(Zn, Cd) S、 SrGa S 、 SrS、 ZnS等の
2 4
硫化物、 Y O S等の酸硫化物、(Y, Gd) Al O 、 YAIO、 BaMgAl O 、 (Ba, S
2 2 3 5 12 3 10 17 r) (Mg, Mn)Al O 、 (Ba, Sr, Ca) (Mg, Zn, Mn)Al O 、 BaAl O 、 CeMg
10 17 10 17 12 19
Al O 、 (Ba, Sr, Mg) 0 -Al O、 BaAl Si O、 SrAl O、 Sr Al O 、 Y Al O
11 19 2 3 2 2 8 2 4 4 14 25 3 5 12 等のアルミン酸塩、 Y SiO 、 Zn SiO等の珪酸塩、 SnO 、 Y Ο等の酸化物、 GdM
2 5 2 4 2 2 3
gB O 、 (Y, Gd) BO等の硼酸塩、 Ca (PO ) (F, CI) 、 (Sr, Ca, Ba, Mg) (
5 10 3 10 4 6 2 10
PO ) CI等のハロリン酸塩、 Sr P O、 (La, Ce) PO等のリン酸塩等を挙げることが
4 6 2 2 2 7 4
できる。
[0216] ただし、上記の結晶母体及び付活剤または共付活剤は、元素組成には特に制限 はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視 領域の光を吸収して可視光を発するものであれば用いることが可能である。
[0217] 具体的には、蛍光体として以下に挙げるものを用いることが可能である力 これらは あくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。 なお、以下の例示では、構造の一部のみが異なる蛍光体を、適宜省略して示してい る。例えば、「Y SiO : Ce3+」、「Y SiO : Tb3+」及び「Y SiO : Ce3+, Tb3+」を「Y S
2 5 2 5 2 5 2 iO : Ce3+, Tb3+」と、「: La O S : Eu」、「Y O S : Eu」及び「(: La, Y) O S : Eu」を「(
5 2 2 2 2 2 2
La, Y) O S : Eu」とまとめて示している。省略箇所はカンマ(,)で区切って示す。
2 2
[0218] [4 1 1 1]赤色蛍光体
赤色の蛍光を発する蛍光体(以下適宜、「赤色蛍光体」と!、う)が発する蛍光の具体 的な波長の範囲を例示すると、ピーク波長が、通常 570nm以上、好ましくは 580nm 以上、また、通常 700nm以下、好ましくは 680nm以下が望ましい。
[0219] このような赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成さ れ、赤色領域の発光を行なう(Mg, Ca, Sr, Ba) Si N : Euで表わされるユウ口ピウ
2 5 8
ム付活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ 球形状を有する成長粒子から構成され、赤色領域の発光を行なう (Y, La, Gd, Lu) O S : Euで表わされるユウ口ピウム付活希土類ォキシカルコゲナイド系蛍光体等が
2 2
挙げられる。
[0220] さら ίこ、特開 2004— 300247号公幸 ίこ記載された、丁 i、 Zr、 Hf、 Nb、丁 a、 W、及 び Moよりなる群から選ばれる少なくも 1種の元素を含有する酸窒化物及び/又は酸 硫化物を含有する蛍光体であって、 A1元素の一部又は全てが Ga元素で置換された アルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本実施形態において 用いることができる。なお、これらは酸窒化物及び/又は酸硫化物を含有する蛍光 体である。
[0221] また、そのほか、赤色蛍光体としては、(La, Y) O S: Eu等の Eu付活酸硫化物蛍
2 2
光体、 Y(V, P) 0 : Eu、 Y Ο : Eu等の Eu付活酸化物蛍光体、(Ba, Sr, Ca, Mg)
4 2 3 2
SiO : Eu, Mn、 (Ba, Mg) SiO : Eu, Mn等の Eu, Mn付活珪酸塩蛍光体、 (Ca,
4 2 4
Sr) S: Eu等の Eu付活硫化物蛍光体、 YAIO : Eu等の Eu付活アルミン酸塩蛍光体 、 LiY (SiO ) O : Eu, Ca Y (SiO ) O : Eu、(Sr, Ba, Ca) SiO : Eu、 Sr Ba
9 4 6 2 2 8 4 6 2 3 5 2
SiO : Eu等の Eu付活珪酸塩蛍光体、(Y, Gd) Al O : Ce、(Tb, Gd) Al O : C
5 3 5 12 3 5 12 e等の Ce付活アルミン酸塩蛍光体、(Ca, Sr, Ba) Si N : Eu、(Mg, Ca, Sr, Ba)
2 5 8
SiN : Eu、(Mg, Ca, Sr, Ba)AlSiN : Eu等の Eu付活窒化物蛍光体、(Mg, Ca,
2 3
Sr, Ba)AlSiN : Ce等の Ce付活窒化物蛍光体、(Sr, Ca, Ba, Mg) (PO ) CI :
3 10 4 6 2
Eu, Mn等の Eu, Mn付活ハロリン酸塩蛍光体、 (Ba Mg) Si O : Eu, Mn、 (Ba, S
3 2 8
r, Ca, Mg) (Zn, Mg) Si O : Eu, Mn等の Eu, Mn付活珪酸塩蛍光体、 3. 5Mg
3 2 8
Ο · 0. 5MgF .GeO : Mn等の Mn付活ゲルマン酸塩蛍光体、 Eu付活 αサイアロン
2 2
等の Eu付活酸窒化物蛍光体、(Gd, Y, Lu, La) O : Eu, Bi等の Eu, Bi付活酸化
2 3
物蛍光体、(Gd, Y, Lu, La) 〇 S : Eu, Bi等の Eu, Bi付活酸硫化物蛍光体、 (Gd
2 2
, Y, Lu, La)VO : Eu, Bi等の Eu, Bi付活バナジン酸塩蛍光体、 SrY S : Eu, Ce
4 2 4 等の Eu, Ce付活硫化物蛍光体、 CaLa S : Ce等の Ce付活硫化物蛍光体、 (Ba, S
2 4
r, Ca) MgP O : Eu, Mn、 (Sr, Ca, Ba, Mg, Zn) P O : Eu, Mn等の Eu, Mn付
2 7 2 2 7
活リン酸塩蛍光体、(Y, Lu) WO : Eu, Mo等の Eu, Mo付活タングステン酸塩蛍
2 6
光体、(Ba, Sr, Ca) Si N : Eu, Ce (但し、 x、 y、 zは、 1以上の整数)等の Eu, Ce x y z
付活窒化物蛍光体、(Ca, Sr, Ba, Mg) (PO ) (F, CI, Br, OH): Eu, Mn等の
10 4 6
Eu, Mn付活ハロリン酸塩蛍光体、((Y, Lu, Gd, Tb) Sc Ce ) (Ca, Mg) ( Mg, Zn) Si Ge O 等の Ce付活珪酸塩蛍光体等を用いることも可能である
2 + r z-q q 12+ δ
[0222] 赤色蛍光体としては、 β ジケトネート、 βージケトン、芳香族カルボン酸、又は、 ブレンステッド酸等のァニオンを配位子とする希土類元素イオン錯体からなる赤色有 機蛍光体、ペリレン系顔料 (例えば、ジベンゾ { [f, f ' ] -4, 4' , 7, 7 '—テトラフヱ二 ノレ }ジインデノ [1 , 2, 3-cd : l ' , 2, , 3, 一lm]ペリレン)、アントラキノン系顔料、レー キ系顔料、ァゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔 料、イソインドリノン系顔料、フタロシアニン系顔料、トリフエニルメタン系塩基性染料、 インダンスロン系顔料、インドフエノール系顔料、シァニン系顔料、ジォキサジン系顔 料を用いることも可能である。
[0223] また、赤色蛍光体のうち、ピーク波長が 580nm以上、好ましくは 590nm以上、また 、 620nm以下、好ましくは 610nm以下の範囲内にあるものは、橙色蛍光体として好 適に用いることができる。このような橙色蛍光体の例としては、(Sr, Ba) SiO : Eu、 (
3 5
Sr, Mg) (P〇) : Sn2+、 SrCaAlSiN : Eu、 Eu付活 αサイアロン等の Eu付活酸窒
3 4 2 3
化物蛍光体等が挙げられる。
[4 1 1 2]緑色蛍光体
緑色の蛍光を発する蛍光体(以下適宜、「緑色蛍光体」と!、う)が発する蛍光の具体 的な波長の範囲を例示すると、ピーク波長が、通常 490nm以上、好ましくは 500nm 以上、また、通常 570nm以下、好ましくは 550nm以下が望ましい。
[0225] 二のような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑 色領域の発光を行なう(Mg, Ca, Sr, Ba) Si O N : Euで表わされるユウ口ピウム付
2 2 2
活アルカリ土類シリコンォキシナイトライド系蛍光体、破断面を有する破断粒子から構 成され、緑色領域の発光を行なう(Ba, Ca, Sr, Mg) SiO : Euで表わされるユウ口
2 4
ピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。
[0226] また、そのほか、緑色蛍光体としては、 Sr Al O : Eu、 (Ba, Sr, Ca)Al O : Eu
4 14 25 2 4 等の Eu付活アルミン酸塩蛍光体、(Sr, Ba)Al Si O : Eu、 (Ba, Mg) SiO : Eu、 (
2 2 8 2 4
Ba, Sr, Ca, Mg) SiO : Eu、 (Ba, Sr, Ca) (Mg, Zn) Si O : Eu等の Eu付活珪
2 4 2 2 7
酸塩蛍光体、 Y SiO : Ce, Tb等の Ce, Tb付活珪酸塩蛍光体、 Sr P O— Sr B O
2 5 2 2 7 2 2
: Eu等の Eu付活硼酸リン酸塩蛍光体、 Sr Si O 2SrCl : Eu等の Eu付活ハロ珪
5 2 3 8 2
酸塩蛍光体、 Zn SiO : Mn等の Mn付活珪酸塩蛍光体、 CeMgAl O : Tb, Y Al
2 4 11 19 3
O : Tb等の Tb付活アルミン酸塩蛍光体、 Ca Y (SiO ) O :Tb、 La Ga SiO : T
5 12 2 8 4 6 2 3 5 14 b等の Tb付活珪酸塩蛍光体、(Sr, Ba, Ca) Ga S : Eu, Tb, Sm等の Eu, Tb, Sm
2 4
付活チォガレート蛍光体、 Y (Al, Ga) O : Ce、(Y, Ga, Tb, La, Sm, Pr, Lu) (
3 5 12 3
Al, Ga) O : Ce等の Ce付活アルミン酸塩蛍光体、 Ca Sc Si O : Ce、 Ca (Sc,
5 12 3 2 3 12 3
Mg, Na, Li) Si O : Ce等の Ce付活珪酸塩蛍光体、 CaSc O : Ce等の Ce付活酸
2 3 12 2 4
化物蛍光体、 SrSi O N : Eu、(Sr, Ba, Ca) Si O N : Eu、 Eu付活 /3サイアロン等
2 2 2 2 2 2
の Eu付活酸窒化物蛍光体、 BaMgAl O : Eu, Mn等の Eu, Mn付活アルミン酸
10 17
塩蛍光体、 SrAl O : Eu等の Eu付活アルミン酸塩蛍光体、(La, Gd, Y) O S :Tb
2 4 2 2 等の Tb付活酸硫化物蛍光体、 LaPO : Ce, Tb等の Ce, Tb付活リン酸塩蛍光体、 Z nS : Cu, Al、 ZnS : Cu, Au, Al等の硫化物蛍光体、(Y, Ga, Lu, Sc, La) BO : C
3 e, Tb、 Na Gd B O : Ce, Tb、 (Ba, Sr) (Ca, Mg, Zn) B O : K, Ce, Tb等の Ce
2 2 2 7 2 2 6
, Tb付活硼酸塩蛍光体、 Ca Mg (SiO ) CI : Eu, Mn等の Eu, Mn付活ハロ珪酸
8 4 4 2
塩蛍光体、(Sr, Ca, Ba) (Al, Ga, In) S : Eu等の Eu付活チオアルミネート蛍光体
2 4
やチォガレート蛍光体、 (Ca, Sr) (Mg, Zn) (SiO ) CI : Eu, Mn等の Eu, Mn付
8 4 4 2
活ハロ珪酸塩蛍光体等を用いることも可能である。
[0227] また、緑色蛍光体としては、ピリジン一フタルイミド縮合誘導体、ベンゾォキサジノン 系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、 へキシルサリチレートを配位子として有するテルビウム錯体等の有機蛍光体を用いる ことも可能である。
[0228] [4 1 1 3]青色蛍光体
青色の蛍光を発する蛍光体(以下適宜、「青色蛍光体」と!、う)が発する蛍光の具体 的な波長の範囲を例示すると、ピーク波長が、通常 420nm以上、好ましくは 440nm 以上、また、通常 480nm以下、好ましくは 470nm以下が望ましい。
[0229] 二のような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有す る成長粒子から構成され、青色領域の発光を行なう BaMgAl O : Euで表わされる
10 17
ユウ口ピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形 状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう (Ca, Sr, Ba) (PO ) CI : Euで表わされるユウ口ピウム付活ハロリン酸カルシウム系蛍光
5 4 3
体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、 青色領域の発光を行なう(Ca, Sr, Ba) B O CI : Euで表わされるユウ口ピウム付活
2 5 9
アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑 色領域の発光を行なう(Sr, Ca, Ba)Al O : Euまたは(Sr, Ca, Ba) Al O : Euで
2 4 4 14 25 表わされるユウ口ピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
[0230] また、そのほか、青色蛍光体としては、 Sr P O : Sn等の Sn付活リン酸塩蛍光体、
2 2 7
Sr Al O : Eu, BaMgAl O : Eu、BaAl〇 : Eu等の Eu付活アルミン酸塩蛍光
4 14 25 10 17 8 13
体、 SrGa S : Ce、 CaGa S : Ce等の Ce付活チォガレート蛍光体、(Ba, Sr, Ca) M
2 4 2 4
gAl O : Eu, BaMgAl O : Eu, Tb, Sm等の Eu付活アルミン酸塩蛍光体、(Ba , Sr, Ca) MgAl O : Eu, Mn等の Eu, Mn付活アルミン酸塩蛍光体、(Sr, Ca, B
10 17
a, Mg) (PO ) CI : Eu、 (Ba, Sr, Ca) (PO ) (CI, F, Br, OH): Eu, Mn, Sb
10 4 6 2 5 4 3
等の Eu付活ハロリン酸塩蛍光体、 BaAl Si O : Eu、(Sr, Ba) MgSi O : Eu等の E
2 2 8 3 2 8
u付活珪酸塩蛍光体、 Sr P O : Eu等の Eu付活リン酸塩蛍光体、 ZnS :Ag、 ZnS:
2 2 7
Ag, A1等の硫化物蛍光体、 Y SiO : Ce等の Ce付活珪酸塩蛍光体、 CaWO等の
2 5 4 タングステン酸塩蛍光体、(Ba, Sr, Ca) BP〇 : Eu, Mn、 (Sr, Ca) (PO ) ·ηΒ
5 10 4 6 2
〇 : Eu、 2SrO - 0. 84P O - 0. 16B O : Eu等の Eu, Mn付活硼酸リン酸塩蛍光体
3 2 5 2 3
、 Sr Si O - 2SrCl : Eu等の Eu付活ハロ珪酸塩蛍光体等を用いることも可能である
2 3 8 2
[0231] また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾォキサゾール系、ス チリル系、クマリン系、ピラゾリン系、トリァゾール系化合物の蛍光色素、ツリウム錯体 等の有機蛍光体等を用いることも可能である。
[0232] [4 1 1 4]黄色蛍光体
黄色の蛍光を発する蛍光体 (以下適宜、「黄色蛍光体」という。)が発する蛍光の具 体的な波長の範囲を例示すると、通常 530nm以上、好ましくは 540nm以上、より好 ましくは 550應以上、また、通常 620腹以下、好ましくは 600應以下、より好ましく は 580nm以下の波長範囲にあることが好適である。黄色蛍光体の発光ピーク波長 が短すぎると黄色成分が少なくなり演色性が劣る半導体発光デバイスとなる可能性 力 り、長すぎると半導体発光デバイスの輝度が低下する可能性がある。
[0233] このような黄色蛍光体としては、例えば、各種の酸化物系、窒化物系、酸窒化物系 、硫化物系、酸硫化物系等の蛍光体が挙げられる。特に、 RE M O : Ce (ここで、 R
3 5 12
Eは、 Y, Tb, Gd, Lu, Smの少なくとも 1種類の元素を表し、 Mは、 Al, Ga, Scの少 なくとも 1種類の元素を表す。)や M2 M3 M4 O : Ce (ここで、 M2は 2価の金属元素
3 2 3 12
、 M3は 3価の金属元素、 M4は 4価の金属元素)等で表されるガーネット構造を有する ガーネット系蛍光体、 AE M50 : Eu (ここで、 AEは、 Ba, Sr, Ca, Mg, Znの少なく
2 4
とも 1種類の元素を表し、 M5は、 Si, Geの少なくとも 1種類の元素を表す。)等で表さ れるオルソシリケート系蛍光体、これらの系の蛍光体の構成元素の酸素の一部を窒 素で置換した酸窒化物系蛍光体、 AEAlSiN : Ce (ここで、 AEは、 Ba, Sr, Ca, Mg , Znの少なくとも 1種類の元素を表す。)等の CaAlSiN構造を有する窒化物系蛍光
3
体等の Ceで付活した蛍光体などが挙げられる。
[0234] また、そのほか、黄色蛍光体としては、 CaGa S : Eu (Ca, Sr) Ga S : Eu、 (Ca, S
2 4 2 4
r) (Ga, Al) S : Eu等の硫化物系蛍光体、 Cax (Si, Al) (O, N) : Eu等の SiAlO
2 4 12 16
N構造を有する酸窒化物系蛍光体等の Euで付活した蛍光体を用いることも可能で ある。
[0235] [4 1 1 5]その他の蛍光体
本発明の半導体デバイス用部材は、上述したもの以外の蛍光体を含有させることも 可能である。例えば、本発明の半導体デバイス用部材は、イオン状の蛍光物質や有 機-無機の蛍光成分を均一 ·透明に溶解 ·分散させた蛍光ガラスとすることもできる。
[0236] [4 1 2]蛍光体の粒径
本発明に使用する蛍光体の粒径は特に制限はないが、中央粒径 (D )で、通常 0
50
. l ^ m以上、好ましくは 2 m以上、さらに好ましくは 5 m以上である。また、通常 1 OO ^ m以下、好ましくは 50 m以下、さらに好ましくは 20 m以下である。蛍光体の 中央粒径 (D )が上記範囲にある場合は、後述する半導体発光デバイスにおいて、
50
半導体素子から発する光が充分に散乱される。また、半導体素子から発する光が充 分に蛍光体粒子に吸収されるため、波長変換が高効率に行われると共に、蛍光体か ら発せられる光が全方向に照射される。これにより、複数種類の蛍光体からの一次光 を混色して白色にすることができると共に、均一な白色が得られるため、半導体発光 デバイスが発する合成光において、均一な白色光と照度が得られる。一方、蛍光体 の中央粒径 (D )が上記範囲より大きい場合は、蛍光体が発光部の空間を充分に埋
50
めることができないため、後述する半導体発光デバイスにおいて、半導体素子からの 光が充分に蛍光体に吸収されない可能性がある。また、蛍光体の中央粒径 (D )が
50
、上記範囲より小さい場合は、蛍光体の発光効率が低下するため、半導体発光デバ イスの照度が低下する可能性がある。
[0237] 蛍光体粒子の粒度分布(QD)は、半導体デバイス用部材中での粒子の分散状態 をそろえるために小さ!/、方が好まし!/、が、小さくするためには分級収率が下がってコ ストアップにつながるので、通常 0. 03以上、好ましくは 0. 05以上、更に好ましくは 0 . 07以上である。また、通常 0. 4以下、好ましくは 0. 3以下、更に好ましくは 0. 2以 下である。
[0238] なお、本発明にお!/、て、中央粒径 (D )および粒度分布(QD)は、重量基準粒度
50
分布曲線から得ることが出来る。前記重量基準粒度分布曲線は、レーザ回折,散乱 法により粒度分布を測定し得られるもので、具体的には、例えば以下のように測定す ること力 s出来る。
[0239] 〔重量基準粒度分布曲線の測定方法〕
(1)気温 25°C、湿度 70%の環境下において、エチレングリコールなどの溶媒に蛍光 体を分散させる。
(2)レーザ回折式粒度分布測定装置 (堀場製作所 LA— 300)により、粒径範囲 0. 1 μ m〜600 μ mにて測定する。
(3)この重量基準粒度分布曲線において積算値が 50%のときの粒径値を中央粒径 D と表記する。また、積算値が 25%及び 75%の時の粒径値をそれぞれ D 、 D と
50 25 75 表記し、 QD= (D -D ) / (D +D )と定義する。 QDが小さいことは粒度分布
75 25 75 25
が狭いことを意味する。
[0240] また、蛍光体粒子の形状も、半導体デバイス用部材の形成に影響を与えない限り、 例えば、蛍光体部形成液 (蛍光体を含有する半導体デバイス用部材形成液のことを 言い、蛍光体組成物と同様のものを指す)の流動性等に影響を与えない限り、特に 限定されない。
[0241] [4 1 3]蛍光体の表面処理
本発明に使用する蛍光体は、耐水性を高める目的で、または半導体デバイス用部 材中で蛍光体の不要な凝集を防ぐ目的で、表面処理が行われていてもよい。かかる 表面処理の例としては、特開 2002— 223008号公報に記載の有機材料、無機材料 、ガラス材料などを用いた表面処理、特開 2000— 96045号公報等に記載の金属リ ン酸塩による被覆処理、金属酸化物による被覆処理、シリカコート等の公知の表面処 理などが挙げられる。
[0242] 表面処理の具体例を挙げると、例えば蛍光体の表面に上記金属リン酸塩を被覆さ せるには、以下の(i)〜(iii)の表面処理を行う。 (i)所定量のリン酸カリウム、リン酸ナトリウムなどの水溶性のリン酸塩と、塩化カルシゥ ム、硫酸ストロンチウム、塩化マンガン、硝酸亜鉛等のアルカリ土類金属、 Zn及び M nの中の少なくとも 1種の水溶性の金属塩化合物とを蛍光体懸濁液中に混合し、攪 拌する。
(ii)アルカリ土類金属、 Zn及び Mnの中の少なくとも 1種の金属のリン酸塩を懸濁液 中で生成させると共に、生成したこれらの金属リン酸塩を蛍光体表面に沈積させる。
(iii)水分を除去する。
[0243] また、表面処理の他の例のうち好適な例を挙げると、シリカコートとしては、水ガラス を中和して SiOを析出させる方法、アルコキシシランを加水分解したものを表面処理
2
する方法 (例えば、特開平 3— 231987号公報)等が挙げられ、分散性を高める点に お!/、てはアルコキシシランを加水分解したものを表面処理する方法が好まし!/、。
[0244] [4 1 4]蛍光体の混合方法
本発明において、蛍光体粒子を加える方法は特に制限されない。蛍光体粒子の分 散状態が良好な場合であれば、上述の半導体デバイス用部材形成液に後混合する だけでよい。即ち、本発明の半導体デバイス用部材形成液と蛍光体とを混合し、蛍 光体部形成液を用意して、この蛍光体部形成液を用いて半導体デバイス用部材を 作製すればよい。蛍光体粒子の凝集が起こりやすい場合には、加水分解前の原料 化合物を含む反応用溶液(以下適宜「加水分解前溶液」という。 )に蛍光体粒子を前 もって混合し、蛍光体粒子の存在下で加水分解 '重縮合を行なうと、粒子の表面が 一部シランカップリング処理され、蛍光体粒子の分散状態が改善される。
[0245] なお、蛍光体の中には加水分解性のものもある力 本発明の半導体デバイス用部 材は、塗布前の液状態(半導体デバイス用部材形成液)において、水分はシラノール 体として潜在的に存在し、遊離の水分はほとんど存在しないので、そのような蛍光体 でも加水分解してしまうことなく使用することが可能である。また、加水分解 '重縮合 後の半導体デバイス用部材形成液を脱水 ·脱アルコール処理を行なってから使用す れば、そのような蛍光体との併用が容易となる利点もある。
[0246] また、蛍光体粒子や無機粒子(後述する)を本発明の半導体デバイス用部材に分 散させる場合には、粒子表面に分散性改善のため有機配位子による修飾を行うこと も可能である。従来、半導体デバイス用部材として用いられてきた付加型シリコーン 樹脂は、このような有機配位子により硬化阻害を受けやすぐこのような表面処理を行 つた粒子を混合 '硬化することができなかった。これは、付加反応型シリコーン樹脂に 使用されている白金系の硬化触媒力 これらの有機配位子と強い相互作用を持ち、 ヒドロシリル化の能力を失い、硬化不良を起こすためである。このような被毒物質とし ては N、 P、 S等を含む有機化合物の他、 Sn、 Pb、 Hg、 Bi、 As等の重金属のイオン 性化合物、アセチレン基等、多重結合を含む有機化合物(フラックス、アミン類、塩ビ 、硫黄加硫ゴム)などが挙げられる。これに対し、本発明の半導体デバイス用部材は 、これらの被毒物質による硬化阻害を起こしにくい縮合型の硬化機構によるものであ る。このため、本発明の半導体デバイス用部材は有機配位子により表面改質した蛍 光体粒子や無機粒子、さらには錯体蛍光体などの蛍光成分との混合使用の自由度 が大きぐ蛍光体バインダゃ高屈折率ナノ粒子導入透明材料として優れた特徴を備 えるものである。
[0247] [4 1 5]蛍光体の含有率
本発明の半導体デバイス用部材における蛍光体の含有率は、本発明の効果を著 しく損なわない限り任意である力 その適用形態により自由に選定できる。 白色 LED や白色照明等の用途に用いる白色発光の半導体発光デバイスを例を挙げると、蛍 光体を均一に分散して半導体素子を含むパッケージの凹部全体を埋めてポッティン グする場合には、蛍光体総量として、通常 0. 1重量%以上、好ましくは 1重量%以上 、より好ましくは 5重量%以上、また、通常 35重量%以下、好ましくは 30重量%以下 、より好ましくは 28重量%以下である。
[0248] また、同用途で蛍光体を高濃度に分散したものを、半導体発光デバイスの半導体 素子の発光面より遠方 (例えば、半導体素子を含む凹部を透明封止材で埋めたパッ ケージ開口面や、 LED気密封止用ガラス蓋体'レンズ'導光板等の外部光学部材の 出光面など)に薄膜状に塗布する場合には、通常 5重量%以上、好ましくは 7重量% 以上、より好ましくは 10重量%以上、また、通常 90重量%以下、好ましくは 80重量 %以下、より好ましくは 70重量%以下である。
[0249] また、一般に、半導体素子の発光色と蛍光体の発光色とを混色して白色を得る場 合、半導体素子の発光色を一部透過させることになるため、蛍光体含有率は低濃度 となり、上記範囲の下限近くの領域となる。一方、半導体素子の発光を全て蛍光体発 光色に変換して白色を得る場合には、高濃度の蛍光体が好ましいため、蛍光体含有 率は上記範囲の上限近くの領域となる。蛍光体含有率がこの範囲より多いと塗布性 能が悪化したり、光学的な干渉作用により蛍光体の利用効率が低くなり、半導体発光 デバイスの輝度が低くなつたりする可能性がある。また、蛍光体含有率がこの範囲よ り少ないと、蛍光体による波長変換が不十分となり、 目的とする発光色を得られなくな る可能十生がある。
[0250] 以上白色発光の半導体発光デバイス用途について例示したが、具体的な蛍光体 含有率は目的色、蛍光体の発光効率、混色形式、蛍光体比重、塗布膜厚、デバイス 形状により多様であり、この限りではない。
本発明の半導体デバイス用形成液はエポキシ樹脂やシリコーン樹脂など従来の半 導体発光デバイス用形成液と比較して低粘度であり、かつ蛍光体や無機粒子とのな じみが良ぐ高濃度の蛍光体や無機粒子を分散しても十分に塗布性能を維持するこ とが出来る利点を有する。また、必要に応じて重合度の調整ゃァエロジル等チキソ材 を含有させることにより高粘度にすることも可能であり、 目的の蛍光体含有量に応じた 粘度の調整幅が大きぐ塗布対象物の種類や形状さらにはポッティング 'スピンコート •印刷などの各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。
[0251] なお、半導体デバイス用部材における蛍光体の含有率は、蛍光体組成が特定出 来ていれば、蛍光体含有試料を粉砕後予備焼成し炭素成分を除いた後にフッ酸処 理によりケィ素成分をケィフッ酸として除去し、残渣を希硫酸に溶解して主成分の金 属元素を水溶液化し、 ICPや炎光分析、蛍光 X線分析などの公知の元素分析方法 により主成分金属元素を定量し、計算により蛍光体含有率を求めることが出来る。ま た、蛍光体形状や粒径が均一で比重が既知であれば塗布物断面の画像解析により 単位面積あたりの粒子個数を求め蛍光体含有率に換算する簡易法も用いることが出 来る。
[0252] また、蛍光体部形成液における蛍光体の含有率は、半導体デバイス用部材におけ る蛍光体の含有率が前記範囲に収まるように設定すればよい。したがって、蛍光体 部形成液が乾燥工程にぉレ、て重量変化しな!/、場合は蛍光体部形成液における蛍 光体の含有率は半導体デバイス用部材における蛍光体の含有率と同様になる。また
、蛍光体部形成液が溶媒等を含有している場合など、蛍光体部形成液が乾燥工程 において重量変化する場合は、その溶媒等を除いた蛍光体部形成液における蛍光 体の含有率が半導体デバイス用部材における蛍光体の含有率と同様になるようにす れば'よい。
[0253] [4 2]無機粒子(フイラ一)の併用
また、本発明の半導体デバイス用部材を半導体発光デバイスに使用する場合など においては、光学的特性や作業性を向上させるため、また、以下の < 1〉〜く 5〉の 何れかの効果を得ることを目的として、更に無機粒子を含有させても良い。
[0254] < 1〉半導体デバイス用部材に光散乱物質として無機粒子を混入し、半導体発光デ バイスの光を散乱させることにより、蛍光体に当たる半導体素子の光量を増加させ、 波長変換効率を向上させると共に、半導体発光デバイスから外部に放出される光の 指向角を広げる。
< 2〉半導体デバイス用部材に結合剤として無機粒子を配合することにより、クラック の発生を防止する。
< 3 >半導体デバイス用部材形成液に、粘度調整剤として無機粒子を配合すること により、当該形成液の粘度を高くする。
< 4〉半導体デバイス用部材に無機粒子を配合することにより、その収縮を低減する
< 5〉半導体デバイス用部材に無機粒子を配合することにより、その屈折率を調整し て、光取り出し効率を向上させる。
[0255] この場合は、半導体デバイス用部材形成液に、蛍光体の粉末と同様に、無機粒子 を目的に応じて適量混合すればよい。この場合、混合する無機粒子の種類及び量に よって得られる効果が異なる。
[0256] 例えば、無機粒子が粒径約 lOnmの超微粒子状シリカ(日本ァエロジル株式会社 製、商品名: AEROSIL # 200)の場合、半導体デバイス用部材形成液のチクソトロ ピック性が増大するため、上記 < 3〉の効果が大き!/、。 [0257] また、無機粒子が粒径約数 mの破砕シリカ若しくは真球状シリカの場合、チタソト 口ピック性の増加はほとんど無ぐ半導体デバイス用部材の骨材としての働きが中心 となるので、上記 < 2〉及び < 4〉の効果が大きい。
[0258] また、半導体デバイス用部材とは屈折率が異なる粒径約 1 μ mの無機粒子を用い ると、半導体デバイス用部材と無機粒子との界面における光散乱が大きくなるので、 上記 < 1〉の効果が大きい。
[0259] また、半導体デバイス用部材より屈折率の大きな粒径 3〜5nm、具体的には発光 波長以下の粒径をもつ無機粒子を用いると、半導体デバイス用部材の透明性を保つ たまま屈折率を向上させることができるので、上記 < 5〉の効果が大き!/、。
[0260] 従って、混合する無機粒子の種類は目的に応じて選択すれば良い。また、その種 類は単一でも良ぐ複数種を組み合わせてもよい。また、分散性を改善するためにシ ランカップリング剤などの表面処理剤で表面処理されていても良い。
[0261] [4 2 1]無機粒子の種類
使用する無機粒子の種類としては、シリカ、チタン酸バリウム、酸化チタン、酸化ジ ルコユウム、酸化ニオブ、酸化アルミニウム、酸化セリウム、酸化イットリウムなどの無 機酸化物粒子やダイヤモンド粒子が例示される力 目的に応じて他の物質を選択す ることあでさ、これらに限定されるあのではない。
[0262] 無機粒子の形態は粉体状、スラリー状等、 目的に応じいかなる形態でもよいが、透 明性を保つ必要がある場合は、本発明の半導体デバイス用部材と屈折率を同等とし たり、水系 ·溶媒系の透明ゾルとして半導体デバイス用部材形成液に加えたりするこ とが好ましい。
[0263] [4 2— 2]無機粒子の中央粒径
これらの無機粒子(一次粒子)の中央粒径は特に限定されないが、通常、蛍光体粒 子の 1/10以下程度である。具体的には、 目的に応じて以下の中央粒径のものが用 いられる。例えば、無機粒子を光散乱材として用いるのであれば、その中央粒径は 0 . ;!〜 lO ^ mが好適である。また、例えば、無機粒子を骨材として用いるのであれば 、その中央粒径は lnm〜; 10 mが好適である。また、例えば、無機粒子を増粘剤( チキソ剤)として用いるのであれば、その中央粒子は 10〜; !OOnmが好適である。ま た、例えば、無機粒子を屈折率調整剤として用いるのであれば、その中央粒径は 1 〜; !Onmが好適である。
[0264] [4 2— 3]無機粒子の混合方法
本発明において、無機粒子を混合する方法は特に制限されないが、通常は、蛍光 体と同様に遊星攪拌ミキサー等を用いて脱泡しつつ混合することが推奨される。例え ばァエロジルのような凝集しやすレ、小粒子を混合する場合には、粒子混合後必要に 応じビーズミルや三本ロールなどを用いて凝集粒子の解砕を行ってから蛍光体等の 混合容易な大粒子成分を混合しても良い。
[0265] [4 2— 4]無機粒子の含有率
本発明の半導体デバイス用部材における無機粒子の含有率は、本発明の効果を 著しく損なわない限り任意であるが、その適用形態により自由に選定できる。例えば、 無機粒子を光散乱剤として用いる場合は、その含有率は 0. 01〜; 10重量%が好適 である。また、例えば、無機粒子を骨材として用いる場合は、その含有率は;!〜 50重 量%が好適である。また、例えば、無機粒子を増粘剤(チキソ剤)として用いる場合は 、その含有率は 0.;!〜 20重量%が好適である。また、例えば、無機粒子を屈折率調 整剤として用いる場合は、その含有率は 10〜80重量%が好適である。無機粒子の 量が少なすぎると所望の効果が得られなくなる可能性があり、多すぎると硬化物の密 着性、透明性、硬度等の諸特性に悪影響を及ぼす可能性がある。
[0266] 本発明の半導体デバイス用形成液はエポキシ樹脂やシリコーン樹脂など従来の半 導体発光デバイス用形成液と比較して低粘度であり、かつ蛍光体や無機粒子とのな じみが良ぐ高濃度の無機粒子を分散しても十分に塗布性能を維持することが出来 る利点を有する。また、必要に応じて重合度の調整ゃァエロジル等チキソ材のを含 有させることにより高粘度にすることも可能であり、 目的の無機粒子含有量に応じた 粘度の調整幅が大きぐ塗布対象物の種類や形状さらにはポッティング 'スピンコート •印刷などの各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。 なお、半導体デバイス用部材における無機粒子の含有率は、前出の蛍光体含有 量と同様に測定することが出来る。
[0267] また、半導体デバイス用部材形成液における無機粒子の含有率は、半導体デバイ ス用部材における無機粒子の含有率が前記範囲に収まるように設定すればよい。し たがって、半導体デバイス用部材形成液が乾燥工程にお!/、て重量変化しな!/、場合 は半導体デバイス用部材形成液における無機粒子の含有率は半導体デバイス用部 材における無機粒子の含有率と同様になる。また、半導体デバイス用部材形成液が 溶媒等を含有している場合など、半導体デバイス用部材形成液が乾燥工程におい て重量変化する場合は、その溶媒等を除いた半導体デバイス用部材形成液におけ る無機粒子の含有率が半導体デバイス用部材における無機粒子の含有率と同様に なるようにすればよい。
[0268] [4 3]導電性フィラーの併用
また、本発明の半導体デバイス用部材を半導体発光デバイスに使用する場合など においては、導電性を付与し印刷ゃポッティングなどの技術を用いて半田使用温度 より低温で電気回路を形成させることを目的として、導電性フィラーを含有させても良 い。
[0269] 使用する導電性フィラーの種類としては、銀粉、金粉、白金粉、パラジウム粉などの 貴金属粉、銅粉、ニッケル粉、アルミ粉、真鍮粉、ステンレス粉などの卑貴金属粉、銀 などの貴金属でめっき、合金化した卑貴金属粉、貴金属や卑金属で被覆された有機 樹脂粉やシリカ粉、その他カーボンブラック、グラフアイト粉などのカーボン系フイラ一 などが例示されるが、 目的に応じて他の物質を選択することもでき、これらに限定され るものではない。また、導電性フイラ一は、 1種を用いても良ぐ 2種以上を任意の組 み合わせ及び比率で併用しても良!/、。
[0270] 導電性フィラーの供給形態は粉体状、スラリー状等、 目的に応じいかなる形態でも よいが、透明性を保つ必要がある場合や、微細な配線を印刷形成する必要が有る場 合には、凝集の無い水系 ·溶媒系の透明ゾル或いは再分散容易な表面修飾付きナ ノ粒子粉末として半導体デバイス用部材形成液に加えることが好ましい。
[0271] これらの金属粉の形状としては、フレーク状 (リン片状)、球状、粟状、樹枝状 (デン ドライト状)、球状の一次粒子力 ¾次元状に凝集した形状などがある。この内、導電性 、コスト、信頼性の面より銀粉を主体とすることが好ましぐ導電性の面より、銀粉に少 量のカーボンブラック及び/またはグラフアイト粉を併用することがより好ましい。また 、導電性、信頼性の面からフレーク状、球状の銀粉を使用することが好ましぐフレー ク状と球状の銀粉を併用することが最も好ましい。また、必要により、シリカ、タルク、 マイ力、硫酸バリウム、酸化インジウムなどの無機フィラーなどを少量配合しても良い
[0272] 銀粉とカーボンブラック及び/またはグラフアイト微粉末の好まし!/、配合比(質量比 )は、銀粉とカーボンブラック及び/またはグラフアイト微粉末の合計量を 100質量比 とした時、銀粉としての上限は、好ましくは 99. 5質量比以下、より好ましくは 99質量 比以下である。銀粉としての下限は、 85質量比以上、より好ましくは 90質量比以上 である。
[0273] 導電性フィラーの中央粒径は特に限定されないが、通常 0. 1 a m以上、好ましくは 0. 5 μ m以上、更に好ましくは 1 μ m以上であり、通常 50 μ m以下、好ましくは 20 μ m以下、更に好ましくは 10 m以下である。また、特に透明性や微細加工性が要求 される場合には通常 3nm以上、好ましくは 10nm以上であり、通常 150nm以下、好 ましくは lOOnm以下である。
[0274] また、導電性フィラーの含有率は該導電性フィラーとバインダー樹脂の合計量を 10 0重量%としたとき、通常 50重量%以上、好ましくは 75重量%以上、より好ましくは 8 0質量比以上である。また、接着性、インキの粘性の観点から、通常 95重量%以下、 好ましくは 93重量%以下、より好ましくは 90重量%以下である。導電性フィラーの量 が少なすぎると所望の効果が得られなくなる可能性があり、多すぎると硬化物の密着 性、透明性、硬度等の諸特性に悪影響を及ぼす可能性がある。
[0275] 本発明の半導体デバイス用形成液はエポキシ樹脂やシリコーン樹脂など従来の半 導体発光デバイス用形成液と比較して低粘度かつ蛍光体や無機粒子とのなじみが 良ぐ高濃度の無機粒子を分散しても十分に塗布性能を維持することが出来る特徴 を有する。また必要に応じて重合度の調整ゃァエロジル等チキソ材を含有させること により高粘度にすることも可能であり、 目的の無機粒子含有量に応じた粘度の調整 幅が大きぐ塗布対象物の種類や形状さらにはポッティング 'スピンコート'印刷など の各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。
なお、半導体デバイス用部材における無機粒子の含有率は、前出の蛍光体含有 量と同様に測定することが出来る。
[0276] [4 4]他の部材との組み合わせ
本発明の半導体デバイス用部材は単独で封止材料として用いても良いが、有機蛍 光体、酸素や水分により劣化しやすい蛍光体、半導体デバイスを封止する場合等、 より厳密に酸素や水分からの遮断を要求される用途においては、本発明の部材によ り蛍光体の保持や半導体素子の封止'光取り出しを実施し、さらにその外側にガラス 板やエポキシ樹脂などの高気密素材による気密封止を実施したり、真空封止を実施 しても良い。この場合のデバイス形状は特に制限無ぐ本発明の半導体デバイス用 部材による封止体、塗布物ある!/、は塗布面が実質的に金属 ·ガラス ·高気密性樹脂 などの高気密素材により外界力 保護遮断され酸素や水分の流通無い状態になつ ていれば良い。
[0277] また、本発明の半導体デバイス用部材は、上述のように密着性が良好なため、半導 体デバイス用接着剤として用いることが出来る。具体的には、例えば、半導体素子と ノ ッケージを接着する場合、半導体素子とサブマウントを接着する場合、パッケージ 構成要素同士を接着する場合、半導体デバイスと外部光学部材とを接着する場合な どに、本発明の半導体デバイス用部材を塗布、印刷、ポッティングなどすることにより 用いることが出来る。本発明の半導体デバイス用部材は特に耐光性、耐熱性に優れ るため、長時間高温や紫外光にさらされる高出力の半導体発光デバイス用接着剤と して用いた場合、長期使用に耐え高レ、信頼性を有する半導体発光デバイスを提供 することが出来る。
[0278] なお、本発明の半導体デバイス用部材は、これのみで十分密着性を担保しうるもの であるが、更に密着性を担保することを目的として、半導体デバイス用部材と直接接 する表面に密着性改善のための表面処理を行っても良い。このような、表面処理とし ては、例えばプライマーゃシランカップリング剤を用いた密着改善層の形成、酸ゃァ ルカリなどの薬品を用いた化学的表面処理、プラズマ照射やイオン照射 ·電子線照 射を用いた物理的表面処理、サンドブラストやエッチング '微粒子塗布などによる粗 面化処理等が挙げられる。密着性改善のための表面処理としては、その他に例えば 、特開平 5— 25300号、稻垣訓宏著「表面ィ匕学」 Vol. 18 No. 9、pp21— 26、黒崎 和夫著「表面化学」 Vol. 19 No. 2、 pp44— 51 (1998)等に開示される公知の表 面処理方法が挙げられる。
[0279] [5]半導体発光デバイス
[5 1] (A)パッケージ
本発明の半導体発光デバイスに用いられるパッケージは、その表面材料が Si、 A1 及び Agのいずれ力、 1以上を含有することを特徴とする。ここで、パッケージとは半導 体発光デバイスにおいて、後述の(B)半導体素子を積載する部材をいう。パッケージ はカップ状、平板に凹部を設けた形状、平板の周囲に堰を設けた形状のもの、平板 状等が挙げられ、通常はカップ状のものが用いられる。
[0280] [5— 1 1]表面材料
本発明の半導体発光デバイスに用いられるパッケージの表面材料は、 Si、 A1及び Agのいずれか 1以上を含有することを特徴とする。
パッケージは前述したとおり、(B)半導体素子を積載する部材であるが、輝度(反射 率)、耐久性 '耐熱性、耐光性、密着性、放熱性等の向上を目的として、種々の表面 加工が施される。特に、パワーデバイスにおいては、耐久性、耐熱性向上を目的とし た、材料の選択、表面加工がなされる場合が多い。
具体的には、例えば反射率の向上、ひいては輝度の向上を目的とした、銀メツキ等 の表面加工の他、放熱性 ·絶縁性 ·耐熱性 ·耐久性 '耐光性等の向上を目的とした Si N、 SiC、 SiO、 Al、 A1N、 Al O等を用いたセラミックス製パッケージの選択、また
2 2 3
は反射率向上や光拡散機能付与を目的とした無機系コーティング層塗布による表面 平滑化や粗面化などのセラミックス表面加工等が挙げられる。
即ち、本発明の半導体発光デバイスは、かかる特殊な表面処理を施したパッケ一 ジにおいても、封止材の剥離などの問題のない、優れた性質を有する。
本発明の半導体発光デバイスに用いられるパッケージの表面材料に含有される Si 、 Alの含有量は表面材料中、通常 5重量%以上、好ましくは 10重量%以上、更に好 ましくは 40重量%以上であり、通常 100重量%以下、好ましくは 90重量%以下、更 に好ましくは 80重量%以下である。前記含有量は、 SiOを焼結助剤として用いた Al
2
Oセラミックス焼結体のように SiOと Al Oが固溶し混在する表面の場合には、 Siと Alの合計含有量として考える。ガラス繊維などの無機質フィラーを含有する強化ブラ スチックのように 2つの層からなる素材表面の場合は、強化プラスチック中の Si含有 量として考える。また、半導体発光デバイスにおいて Agはメツキ金属として純度高く 存在することが多ぐ Ag含有表面における Ag含有量は通常 60重量%以上、好まし くは 70重量%以上、更に好ましくは 80重量%以上であり、通常 100重量%以下、好 ましくは 98重量%以下、更に好ましくは 95重量%以下である。上記含有量が少なす ぎると、種々の表面処理等の効果が達成されない可能性がある。また、多すぎると加 ェに支障をきたしたり目的とするセラミックス組成から逸脱したりする可能性がある。
[5— 1 2]その他材質
本発明の半導体発光デバイスに用いられるパッケージの材料は、前述の表面材料 を全部又は一部に有するものである。表面材料を一部に有するパッケージの場合は 、その他部分は、 目的に応じて如何なるものを選択しても良ぐ通常、有機材料、無 機材料、ガラス材料など、及びこれらの組合せの中から適宜選択して用いることが出 来る。
有機材料としては、ポリカーボネート樹脂、ポリフエ二レンスルフイド樹脂、エポキシ 樹脂、アクリル樹脂、シリコーン樹脂、 ABS (アクリロニトリル—ブタジエン—スチレン) 樹脂、ナイロン系樹脂、ポリフタルアミド系樹脂、ポリエチレン樹脂などの有機樹脂、 及びこれらの樹脂とガラスフィラーや無機粉末とを混合し、耐熱性や機械的強度を向 上させ、熱膨張率を低減した強化プラスチックなどが挙げられる。
無機材料としては SiN、 SiC、 SiO 、 A1N、 Al Oなどのセラミックス材料、鉄 '銅'
2 2 3
真鍮'アルミニウム'ニッケル'金 '銀'白金'パラジウム等の金属材料或いはこれらの 合金などが挙げられる。
ガラス材料としてはハーメチックシール部ゃ部材同士の接着などに用いられる低融 点ガラス、パッケージ窓材ゃ透明蓋体などパッケージの一部として用いられる光学ガ ラスなどが挙げられる。
また、本発明の半導体発光デバイスを、発熱'発光量の多いいわゆるパワーデバイ スにおいて用いる場合には、従来の構成の半導体発光デバイスより耐久性優れる材 料を選択することが出来る。このようなパワーデバイスにおいては変色等の劣化を起 こしゃすい有機材料より、耐熱 '耐光耐久性に優れた無機材料が好適である。中でも 、銅 ·アルミニウム ' SiN、 A1N、 Al Oなど加工しやすく放熱性に優れた材料が好ま
2 3
しい。また、これらのパッケージ素材は、前述のように反射率の向上、ひいては輝度 の向上を目的として、銀メツキ等の表面加工がなされていても良い。
[0282] [5— 1 3]形状
本発明の半導体発光デバイスに用いられるパッケージの形状は特に制限は無いが 、公知の半導体発光デバイス用パッケージ又は、諸目的に応じて適宜改良された半 導体発光デバイス用パッケージを用いることができる。具体的な形状としては、セラミ ックスパッケージでリフレクタと基板が一体型のもの、発光素子の直下に銅やアルミゥ ムなどからなるヒートシンクを設けたもの、リフレクタの反射面に銀を被覆したもの等を 挙げること力 Sできる。パッケージはカップ状、平板に凹部を設けた形状、平板の周囲 に堰を設けた形状のもの、平板状等が挙げられ、通常はカップ状のものが用いられる
本発明の半導体発光デバイスに用いられるパッケージは市販のものを用いることが できる。具体的には、例えば、ェムシ一ォー株式会社製、型番「3PINMETAL」(リ フレクタ素材は銀メツキ付き銅製、ピン周りのハーメチックシールは低融点ガラス製)、 共立エレックス株式会社製、型番「M5050N」(リフレクタ素材、基板素材は Al O製
2 3
、電極素材は Ag— Pt製、リフレクタと基板の接着部分は低融点ガラス製)などが挙げ られる。
[0283] [5— 2] (B)半導体素子
[5— 2— 1]半導体素子
本発明の半導体発光デバイスに用いられる半導体素子としては、具体的には発光 ダイオード (LED)や半導体レーザーダイオード(LD)等が使用できる。
具体的には、 GaN系化合物半導体、 ZnSe系化合物半導体、 ZnO系化合物半導 体を挙げること力 Sできる。中でも、 GaN系化合物半導体を使用した GaN系 LEDや L Dが好ましい。なぜなら、 GaN系 LEDや LDは、この領域の光を発する SiC系 LED等 に比し、発光出力や外部量子効率が格段に大きぐ後述の蛍光体と組み合わせるこ とによって、非常に低電力で非常に明るい発光が得られるからである。例えば、同じ 電流負荷に対し、通常 GaN系 LEDや LDは SiC系の 100倍以上の発光強度を有す る。 GaN系 LEDや LDにおいては、 Al Ga N発光層、 GaN発光層、又は In Ga N発
x y x y 光層を有しているものが好ましい。 GaN系 LEDにおいては、それらの中で In Ga N x y 発光層を有するものが発光強度が非常に強いので、特に好ましぐ GaN系 LDにお いては、 In Ga N層と GaN層の多重量子井戸構造のものが発光強度が非常に強い ので、特に好ましい。
[0284] なお、上記において x + yの値は通常 0. 8〜; 1. 2の範囲の値である。 GaN系 LED において、これら発光層に Znや Siをドープしたものやドーパント無しのものが発光特 性を調節する上で好ましレ、ものである。
GaN系 LEDはこれら発光層、 p層、 n層、電極、及び基板を基本構成要素としたも のであり、発光層を n型と p型の Al Ga N層、 GaN層、又は In Ga N層などでサンドィ ツチにしたへテロ構造を有しているもの力 発光効率が高ぐ好ましぐさらにへテロ構 造を量子井戸構造にしたもの力 発光効率がさらに高ぐより好ましい。
GaN系半導体素子を形成するための GaN系結晶層の成長方法としては、 HVPE 法、 MOVPE法、 MBE法などが挙げられる。厚膜を作製する場合は HVPE法が好 ましいが、薄膜を形成する場合は MOVPE法や MBE法が好ましい。
本発明の半導体発光デバイスにおいては、面発光型の発光体、特に面発光型 Ga N系レーザーダイオードを発光素子として使用することは、発光装置全体の発光効 率を高めることになるので、特に好ましい。面発光型の発光体とは、膜の面方向に強 い発光を有する発光体であり、面発光型 GaN系レーザーダイオードにおいては、発 光層等の結晶成長を制御し、かつ、反射層等をうまく工夫することにより、発光層の 縁方向よりも面方向の発光を強くすることができる。面発光型のものを使用することに よって、発光層の縁から発光するタイプに比べ、単位発光量あたりの発光断面積が 大きくとれる。
[0285] [5— 2— 2]発光ピーク波長
本発明の半導体発光デバイスに用いられる半導体素子の発光ピーク波長は、可視 力、ら近紫外のいずれの波長のものを用いることが出来る。半導体素子の発光ピーク 波長は、蛍光体の励起効率、延いては蛍光体の励起光から蛍光への変換効率と関 係し、また、封止材の耐久性にも影響する重要な要素である。本発明の半導体発光 デバイスにおいては、通常、近紫外領域から青色領域までの発光波長を有する発光 素子が使用され、具体的には、通常 300nm以上、好ましくは 330nm以上、更に好ま しくは 350應以上、また、通常 900應以下、好ましくは 500腹以下、更に好ましく は 480nm以下のピーク発光波長を有する発光素子が使用される。短波長すぎると 封止材が発光波長を吸収し高輝度のデバイスを得ることができず、また発熱によるデ バイスの熱劣化の原因となるため好ましくない。
[0286] [5— 2— 3]発光面のサイズ
本発明の半導体発光デバイスは、高出力のパワーデバイス用途に特に優れている 。したがって、パワーデバイス用途に用いられる場合、(B)半導体素子(チップ)の発 光面の面積は、通常 0. 15mm2以上、好ましくは 0. 2mm2以上、更に好ましくは 0. 3 mm2以上であり、通常 10mm2以下、好ましくは 5mm2以下、更に好ましくは 3mm2以 下である。発光面の面積が小さすぎると、パワーデバイス用途として用いることが困難 である。
[0287] ここで、発光面とは、 pn接合面を意味する。また、小型チップを 1つのパッケージに 連装する場合、前記の面積は、それらの合計面積とする。
なお、チップそのものの形状はゥエーハカッティングにおけるロス低減のため、通常 長方形または正方形である。
従ってチップが長方形の場合は、発光面がチップ 1個からなる場合、発光面は、長 辺が通常 0. 43mm以上、好ましくは 0. 5mm以上、さらに好ましくは 0. 6mm以上で あり、通常 4mm以下、好ましくは 3mm以下、さらに好ましくは 2mm以下である。また 、短辺が通常 0. 35mm以上、好ましくは 0. 4mm以上、さらに好ましくは 0. 5mm以 上であり、通常 2. 5mm以下、好ましくは 2mm以下、さらに好ましくは 1. 5mm以下 である。
チップが正方形の場合は、発光面は一辺が通常 0. 38mm以上、好ましくは 0. 45 mm以上、さらに好ましくは 0. 55mm以上であり、通常 3. 1mm以下、好ましくは 2. 2 mm以下、さらに好ましくは 1. 7mm以下である。
[0288] [5— 2— 4]発光面の表面温度 本発明の半導体発光デバイスは、高出力のパワーデバイス用途に特に優れている 。したがって、パワーデバイス用途に用いられる場合、動作時の(B)半導体素子(チ ップ)の発光面の表面温度が通常 80°C以上、好ましくは 85°C以上、更に好ましくは 9 0°C以上であり、通常 200°C以下、好ましくは 180°C以下、更に好ましくは 150°C以 下である。発光面の表面温度が低すぎると、パワーデバイス用途として用いることが 困難である。発光面の表面温度が高すぎると、放熱が困難になったり、均一に電流を 流すことが困難になる可能性がある。なお、発光面の表面温度が高くなりすぎる場合 は、ヒートシンクや放熱フィン等をデバイス近傍に設け、半導体や周辺部材の劣化を 抑制することが好ましい。
[0289] [5— 2— 5]表面材料
本発明の半導体発光デバイスに用いられる半導体素子の表面材料は、 Si、 A1及び Agのいずれか 1以上を含有することを特徴とする。
半導体素子(チップ)の保護層としての SiNや SiOは、通常必須ではなぐこれら
2
を用いないチップも使用できる。し力、し、 GaNは化学的物理的に"硬い"物質なので 加工に強いエネルギーを要するため、加工の観点からは保護層があったほうが良い 。即ち、 SiN層、 SiC層、 SiO層は加工工程におけるプラズマ'薬品'酸化的環境か
2
らの保護層である。また製品チップにおいては静電気、不純物金属のマイグレーショ ン、はんだ付着防止 ·光取り出し膜などの役割をも担う場合がある。但し、いずれの場 合も保護層は GaNを個別のチップに切り分ける前の工程にてつけるので、製品チッ プの側面は必ず保護層の無い面が生じることは避けられない。即ち、通常、保護層 は、チップの一部を覆う状態で存在する。
[0290] なお本発明においては「チップ」という表現は保護層も含んでおり、全面が保護層 で覆われていてもよい。実際には電極取り出し面や側面部分は保護層が無い状態に なっている。前記保護層の膜厚は、微細加工の精度を確保するため、通常チップ本 体や基板の GaN層の厚みと比較して十分に小さい。即ち、前記保護層の膜厚は、通 常 lOOOnm以下、好ましくは 500nm以下である。また、通常 lnm以上、好ましくは 1 Onm以上である。膜厚が薄すぎると保護効果が不十分となる可能性がある。厚すぎ ると微細加工に支障が生ずる可能性がある。 Al及び Agは不透明であり LEDチップ上にて保護層となる例は少ないが、 Alはサフ アイャ (Al O )としてチップの GaN発光層形成用基板 (絶縁性)に用いられる。
2 3
[0291] 本発明の半導体発光デバイスに用いられる半導体素子の表面材料に含有される S i、 Al及び Agの含有量は、通常 40重量%以上、好ましくは 50重量%以上、更に好ま しくは 60重量%以上であり、通常 100重量%以下、好ましくは 90重量%以下、更に 好ましくは 80重量%以下である。半導体素子の発光面の表面に厚さ数百 nmの SiN や SiOなど薄膜状の保護層が存在する場合、この保護層の材質を表面組成とする。
2
上記含有量が少なすぎると、種々の表面処理等の効果が十分に発現しない。また、 多すぎると不透明層となり発光出力に悪影響を及ぼしたり目的とするセラミックス組成 から逸脱したりする。
[0292] [5- 2 - 6]チップ表面形状及びチップ形状
チップの表面形状は平滑、粗面いずれであっても良いが、不必要な乱反射を生じ ることなく光取り出し効率に悪影響を及ぼさないものが好ましい。平滑である場合は チップ全体の形状が発光面から放射される光に対してチップ内への全反射を防ぐよ うに加工されたものが好ましい。粗面である場合には好ましくは発光波長以下、さらに 好ましくは発光波長の 1/4以下の周期で光取り出しに適した微細構造を形成したも のが高い光取り出し効率が得られるため好ましい。粗面の場合には Siを含む保護層 を広く設ける(残す)ことが加工上難しいがこれを設けた場合には接触面積が大きくな るため接着力が向上する利点がある。また、 SiC基板や、サフアイャ基板を有する半 導体素子において、基板上に粗面を設け、フリップチップ実装した場合、 Si、 Alを含 む表面が後述の封止材と接しているほど、密着性が高くなるので好ましい。また、上 記平滑、粗面何れの場合においても本発明の半導体発光デバイスにおいては Siを 含む表面層が存在することが本発明の封止材との接着性を向上させるために必須で あり、チップの全表面積(半田や銀ペーストによる接着面を除く)に対する Siを含む層 の表面積割合が 5%以上、 90%以下であることが好ましい。チップそのものの形状は ゥエーハカッティングにおけるロス低減のため、通常長方形または正方形である。
[0293] [5— 2— 7]チップ基板
基板は SiC、 SiO、サフアイャ、 GaN、 A1Nなど目的に応じて適宜選択することが 出来る。中でも Siを含有する SiC、 SiO、及び A1を含有するサフアイャは本発明の半
2
導体発光デバイスで用いられる封止材と高い密着性を有するため好ましい。 Si、 A1 を含有しない基板を用いる場合にはチップ発光面側に Siを含む被覆層(SiN、 SiO
x 2
)があることが好ましい。
[0294] [5— 3] (C)封止材
本発明の半導体発光デバイスに用いる(C)封止材(以下、任意に「本発明の封止 材」と称すること力ある。 )は、下記条件 (ィ)〜(ハ)の全てを満たすことが特徴である。 また、必要に応じて、後述のその他の要件を満たしていても良い。
(ィ)セラミック又は金属の表面に存在する、水酸基、又は、メタロキサン結合中の酸 素と水素結合可能な官能基を有すること。
(口) 200°Cに 500時間放置した前後において、波長 400nmの光における透過率 の維持率が 80 %以上 110 %以下であること。
(ハ)中心波長 380nm、かつ波長 370nm以上で、放射強度 0. 6kW/m2の光を 7 2時間照射した前後において、波長 400nmの光に対する透過率の維持率が 80%以 上 110%以下であること。
以下、(ィ)〜(八)の要件、およびその他の要件について、詳述する。
[0295] [5— 3— 1] (ィ)官能基
本発明の封止材は、セラミック又は金属の表面に存在する所定の官能基 (例えば、 水酸基、メタロキサン結合中の酸素など)と水素結合可能な官能基を有する。前述の 様に (A)パッケージや (B)半導体素子は、通常、表面がセラミック又は金属で形成ま たは装飾されている。また、セラミックや金属の表面には、通常は水酸基が存在する 。一方、本発明の封止材は、通常、当該水酸基と水素結合可能な官能基を有してい る。したがって、前記水素結合により、本発明の封止材は、(A)パッケージや (B)半 導体素子に対する密着性に優れているのである。
[0296] 本発明の封止材が有する、前記の水酸基に対して水素結合が可能な官能基として は、例えば、シラノールやアルコキシ基等が挙げられる。なお、前記官能基は 1種で も良ぐ 2種以上でもよい。
なお、本発明の封止材が、前記のように、水酸基に対して水素結合が可能な官能 基を有しているか否かは、固体 Si NMR、固体1 H NMR、赤外泉吸収スペクトル (IR)、ラマンスペクトルなどの分光学的手法により確認することができる。
[0297] [5— 3— 2] (口)耐熱性
本発明の封止材は、耐熱性に優れる。即ち、高温条件下に放置した場合でも、所 定の波長を有する光における透過率が変動しにくい性質を有する。具体的には、本 発明の封止材は、 200°Cに 500時間放置した前後において、波長 400nmの光に対 する透過率の維持率が、通常 80%以上、好ましくは 90%以上、より好ましくは 95% 以上であり、また、通常 110%以下、好ましくは 105%以下、より好ましくは 100%以 下である。
なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、 [1 -4 3]で説明した透過度の測定方法と同様にして測定することができる。
[0298] [5— 3— 3] (ハ)耐 UV性
本発明の封止材は、耐光性に優れる。即ち、 UV (紫外光)を照射した場合でも、所 定の波長を有する光に対する透過率が変動しにくい性質を有する。具体的には、本 発明の封止材は、中心波長 380nm、かつ波長 370nm以上で、放射強度 0. 6kW/ m2の光を 72時間照射した前後において、波長 400nmの光における透過率の維持 率力 通常 80%以上、好ましくは 90%以上、より好ましくは 95%以上であり、また、 通常 110%以下、好ましくは 105%以下、より好ましくは 100%以下である。
なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、 [1 -4 3]で説明した透過率の測定方法と同様にして測定することができる。
[0299] [5— 3— 4]その他物性
本発明の封止材は、上記特性を主な特徴とする。このような封止材としては無機系 材料および/または有機系材料が使用できる。
無機系材料としては、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは 金属アルコキシドを含有する溶液をゾルーゲル法により加水分解重合して成る溶液、 またはこれらの組み合わせを固化した無機系材料 (例えばシロキサン結合を有する 無機系材料)等を挙げること力できる。
[0300] 有機系材料としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられ る。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン 、スチレン アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリ エステル樹脂;フエノキシ樹脂;ブチラール樹脂;ポリビュルアルコール;ェチルセル口 ース、セノレロースアセテート、セノレロースアセテートブチレート等のセノレロース系樹月旨 ;エポキシ樹脂;フエノール樹脂;シリコーン樹脂等が挙げられる。従来、半導体発光 デバイス用の蛍光体分散材料としては、一般的にエポキシ樹脂が用いられてきたが 、特に照明など大出力の発光装置が必要な場合、耐熱性や耐光性等を目的として 珪素含有化合物を使用するのが好ましレ、。
[0301] 珪素含有化合物とは分子中に珪素原子を有する化合物をいい、ポリオルガノシロ キサン等の有機材料 (シリコーン系材料)、酸化ケィ素、窒化ケィ素、酸窒化ケィ素等 の無機材料、及びホウケィ酸塩、ホスホケィ酸塩、アルカリケィ酸塩等のガラス材料を 挙げること力 Sできる。中でも、ハンドリングの容易さや、硬化物が応力緩和力有する点 から、シリコーン系材料が好ましい。半導体発光デバイス用シリコーン樹脂に関して は例えば特開平 10— 228249号公報や特許 2927279号公報、特開 2001— 3614 7号公報などで封止材への使用、特開 2000— 123981号公報において波長調整コ 一ティングへの使用が試みられている。
[0302] [5— 3— 4A]シリコーン系材料
シリコーン系材料とは、通常、シロキサン結合を主鎖とする有機重合体をいい、例え ば一般組成式で表される化合物及び/またはそれらの混合物が挙げられる。
(R'R'R'SIO ) (R4R5SiO ) (R6SiO ) (SiO )
1/2 M 2/2 D 3/2 T 4/2 Q
ここで、 R1から R6は同じであっても異なってもよぐ有機官能基、水酸基、水素原子 力、らなる群力 選択される。また M、 D、 T及び Qは 0から 1未満であり、 M + D + T + Q = lを満足する数である。
[0303] シリコーン系材料を半導体素子の封止に用いる場合、液状のシリコーン系材料を 用いて封止した後、熱や光によって硬化させて用いることができる。
シリコーン系材料を硬化のメカニズムにより分類すると、通常付加重合硬化タイプ、 縮重合硬化タイプ、紫外線硬化タイプ、パーオキサイド架硫タイプなどのシリコーン系 材料を挙げること力 Sできる。これらの中では、付加重合硬化タイプ (付加型シリコーン 樹脂)、縮合硬化タイプ (縮合型シリコーン樹脂)、紫外線硬化タイプが好適である。 以下、付加型シリコーン系材料、及び縮合型シリコーン系材料について説明する。
[0304] [ 5— 3— 4A— 1 ]付加型シリコーン系材料
付加型シリコーン系材料とは、ポリオルガノシロキサン鎖が、有機付加結合により架 橋されたものをいう。代表的なものとしては、例えばビュルシランとヒドロシランを Pt触 媒などの付加型触媒の存在下反応させて得られる Si— C C Si結合を架橋点に 有する化合物等を挙げることができる。これらは市販のものを使用することができ、例 えば付加重合硬化タイプの具体的商品名としては、信越化学工業社製「LPS— 140 0」「: LPS— 2410」「: LPS— 3400」等力《挙げられる。
[0305] 上記付加型シリコーン系材料は、具体的には、例えば下記平均組成式(la)で表さ れる(A)アルケニル基含有オルガノポリシロキサンと、下記平均組成式(2a)で表され る(B)ヒドロシリル基含有オルガノポリシロキサンとを、(A)の総アルケニル基に対して (B)の総ヒドロシリル基量が 0. 5〜2. 0倍となる量比で混合し、触媒量の(C)付加反 応触媒の存在下反応させて得ることが出来る。
[0306] (A)アルケニル基含有オルガノポリシロキサンは、下記組成式(la)で示される 1分 子中に少なくとも 2個のケィ素原子に結合したアルケニル基を有するオルガノポリシ口 キサンである。
R SiO (la)
n 〔(4 n) /2〕
(但し、式(la)中、 Rは同一又は異種の置換又は非置換の 1価炭化水素基、アルコ キシ基、又は水酸基であり、 nは l≤n< 2を満たす正数である。ただし、 Rのうち少な くとも 1つはアルケニル基である。 )
[0307] (B)ヒドロシリル基含有ポリオルガノシロキサンは、下記組成式(2a)で示される 1分 子中に少なくとも 2個のケィ素原子に結合した水素原子を有するオルガノハイドロジェ ンポリシロキサンである。
R' H SiO (2a)
a b 〔(4 a— b) /2〕
(但し、式(2a)中、 R'はアルケニル基を除く同一又は異種の置換又は非置換の 1価 の炭ィ匕水素基であり、 a及び bは 0. 7≤a≤2. 1、 0. 001≤b≤l . 0力、つ、 0. 8≤a + b≤2. 6を満たす正数である。 ) [0308] 以下、付加型シリコーン樹脂につき更に詳しく説明する。
上記式(la)の Rにおいて、アルケニル基とはビュル基、ァリル基、ブテュル基、ぺ ンテュル基などの炭素数 2〜8のアルケニル基であることが好ましい。また、 Rが炭化 水素基である場合は、メチル基、ェチル基などのアルキル基、ビュル基、フエニル基 等の炭素数 1〜20の 1価炭化水素基から選択されるものが好ましぐより好ましくは、 メチル基、ェチル基、フエニル基である。 Rはそれぞれは異なっても良いが、耐 UV性 が要求される場合には Rの 80%以上はメチル基であることが好まし!/、。 Rが炭素数 1 〜8のアルコキシ基や水酸基であってもよいが、アルコキシ基や水酸基の含有率は( A)アルケニル基含有オルガノポリシロキサンの重量の 3%以下であることが好まし!/ヽ
[0309] 上記組成式(la)において、 nは l≤n< 2を満たす正数である力 S、この値が 2以上で あると封止材としての十分な強度が得られなくなり、 1未満であると合成上このオルガ ノポリシロキサンの合成が困難になる。
なお、(A)アルケニル基含有オルガノポリシロキサンは、 1種のみを用いても良ぐ 2 種以上を任意の組み合わせ及び比率で併用してもよい。
[0310] 次に、(B)ヒドロシリル基含有ポリオルガノシロキサンは、(A)アルケニル基含有ォ ルガノポリシロキサンとヒドロシリル化反応をすることにより、組成物を硬化させる架橋 剤として作用するものである。
[0311] 組成式(2a)において、 R'はアルケニル基を除く一価の炭化水素基を表わす。ここ で、 R'としては、組成式(la)中の Rと同様の基(ただし、アルケニル基を除く)を挙げ ること力 Sできる。また、耐 UV性要求される用途に用いる場合には少なくとも 80%以上 はメチル基であることが好ましレ、。
[0312] 組成式(2a)において、 aは、通常 0. 7以上、好ましくは 0. 8以上であり、通常 2. 1 以下、好ましくは 2以下の正の数である。また、 bは、通常 0. 001以上、好ましくは 0.
01以上であり、通常 1 · 0以下の正の数である。ただし、 a + bは、 0· 8以上、好ましく は 1以上であり、 2. 6以下、好ましくは 2. 4以下である。
[0313] さらに、(B)ヒドロシリル基含有ポリオルガノシロキサンは、 1分子中に少なくとも 2個
、好ましくは 3個以上の SiH結合を有する。 [0314] この(B)ヒドロシリル基含有ポリオルガノシロキサンの分子構造は、直鎖状、環状、 分岐状、三次元網状構造のいずれであってもよいが、 1分子中のケィ素原子の数 (又 は重合度)は、 3〜; 1000、特に 3〜300程度のものを使用することができる。
なお、(B)ヒドロシリル基含有ポリオルガノシロキサンは、 1種のみを用いても良ぐ 2 種以上を任意の組み合わせ及び比率で併用してもよい。
[0315] 上記(B)ヒドロシリル基含有ポリオルガノシロキサンの配合量は、(A)アルケニル基 含有オルガノポリシロキサンの総アルケニル基量に依存する。具体的には、(A)ァノレ ケニル基含有オルガノポリシロキサンの総アルケニル基に対して、(B)ヒドロシリル基 含有ポリオルガノシロキサンの総 SiH量力 通常 0. 5モル倍以上、好ましくは 0. 8モ ノレ倍以上、また、通常 2. 0モル倍以下、好ましくは 1. 5モル倍以下となる量とすれば よい。
[0316] (C)付加反応触媒は、(A)アルケニル基含有オルガノポリシロキサン中のアルケニ ル基と(B)ヒドロシリル基含有ポリオルガノシロキサン中の SiH基とのヒドロシリル化付 加反応を促進するための触媒である。この(C)付加反応触媒としては、例えば、白金 黒、塩化第 2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白 金酸とォレフィン類との錯体、白金ビスァセトアセテート等の白金系触媒、パラジウム 系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。
なお、(C)付加反応触媒は、 1種のみを用いても良ぐ 2種以上を任意の組み合わ せ及び比率で併用してもよ!/、。
[0317] この付加反応触媒の配合量は触媒量とすることができるが、通常、白金族金属とし て、(A)アルケニル基含有オルガノポリシロキサン及び(B)ヒドロシリル基含有ポリオ ルガノシロキサンの合計重量に対して、 lppm以上、特に 2ppm以上、また、 500pp m以下、特に lOOppm以下配合することが好ましい。
[0318] 付加型シリコーン系材料を得るための組成物には、上記 (A)アルケニル基含有ォ ノレガノポリシロキサン、(B)ヒドロシリル基含有ポリオルガノシロキサン及び(C)付加反 応触媒に加え、任意成分として硬化性、ポットライフを与えるための付加反応制御剤 、硬度 ·粘度を調節するための例えばアルケニル基を有する直鎖状のジオルガノポリ シロキサンの他にも直鎖状の非反応性オルガノポリシロキサン、ケィ素原子数が 2〜 10個程度の直鎖状又は環状の低分子オルガノポリシロキサンなどを本発明の効果 を損なわなレ、範囲で含有させても良レ、。
[0319] 上記組成物の硬化条件は特に制限されないが、 120〜; 180°C、 30〜; 180分の条 件とすることが好ましい。得られる硬化物が硬化後にも柔らかいゲル状である場合に は、ゴム状や硬質プラスチック状のシリコーン樹脂と比較して線膨張係数大きいため 、室温付近の低温にて 10〜30時間硬化することにより内部応力の発生を抑制するこ と力 Sできる。
[0320] 付加型シリコーン系材料は公知のものを使用することができ、さらには金属やセラミ ッタスへの密着性を向上させる添加剤や有機基を導入しても良い。例えば、特許 39 09826号公報、特許 3910080号公報、特開 2003— 128922号公報、特開 2004 221308号公報、特開 2004— 186168号公報に記載のシリコーン材料が好適で ある。
[0321] [5— 3— 4A— 2]縮合型シリコーン系材料
縮合型シリコーン系材料とは、例えば、アルキルアルコキシシランの加水分解 '重縮 合で得られる Si O Si結合を架橋点に有する化合物を挙げることができる。
具体的には、下記一般式(lb)及び/又は(2b)で表わされる化合物、及び/又は そのオリゴマーを加水分解 '重縮合して得られる重縮合物が挙げられる。
[0322] Mm"X Y1 (lb)
n m— 1
(式(lb)中、 Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンより選択される少 なくとも 1種の元素を表わし、 Xは、加水分解性基を表わし、 Y1は、 1価の有機基を表 わし、 mは、 Mの価数を表わす 1以上の整数を表わし、 nは、 X基の数を表わす 1以上 の整数を表わす。但し、 m≥nである。 )
[0323] (Ms+X Y1 ) Y2 (2b)
s - 1
(式(2b)中、 Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンより選択される少 なくとも 1種の元素を表わし、 Xは、加水分解性基を表わし、 Y1は、 1価の有機基を表 わし、 Y2は、 u価の有機基を表わし、 sは、 Mの価数を表わす 1以上の整数を表わし、 tは、 1以上、 s— 1以下の整数を表わし、 uは、 2以上の整数を表わす。 )
[0324] また、硬化触媒としては、例えば金属キレート化合物などを好適なものとして用いる こと力 Sできる。金属キレート化合物は、 Ti、 Ta、 Zr、 Hf、 Zn、 Snのいずれか 1以上を 含むものが好ましぐ Zrを含むものがさらに好ましい。
[0325] 縮合型シリコーン系材料は公知のものを使用することができ、例えば、特開 2006— 77234号公報、特開 2006— 29皿 8号公報、特開 2006— 316264号公報、特開 2006— 336010号公報、特開 2006— 348284号公報、および国際公開 2006/0 90804号パンフレットに記載の半導体発光デバイス用部材が好適である。
[0326] 中でも、本発明の半導体発光デバイスに用いる封止材としては、本発明の半導体 デバイス用部材を使用することが好ましい。上述した本発明の半導体デバイス用部 材は、通常、(C)封止材が有するべき特性を有するとともに、先に説明した優れた特 性をも有するからである。
[0327] 以下、半導体発光デバイスの実施形態を用いて説明する。なお、以下の各実施形 態では、半導体発光デバイスを適宜「発光装置」と略称するものとする。さらに、半導 体発光デバイスに用いる封止材は、半導体発光デバイス用部材と呼ぶこととし、当該 封止材として、本発明の半導体デバイス用部材を用いているものとする。また、どの 部位に本発明の半導体発光デバイス用部材を用いるかについては、全ての実施形 態の説明の後にまとめて説明する。但し、これらの実施形態はあくまでも説明の便宜 のために用いるものであって、本発明の発光装置(半導体発光デバイス)の例は、こ れらの実施形態に限られるものではない。
[0328] [5— 4]基本概念
本発明の半導体発光デバイス用部材を用いた半導体発光デバイスは、例えば、以 下の A)、 B)の適用例がある。本発明の半導体発光デバイス用部材は、何れの適用 例においても、従来の半導体発光デバイス用部材と比較して、優れた光耐久性及び 熱耐久性を示し、クラックや剥離が起きにくぐ輝度の低下が少ない。したがって、本 発明の半導体発光デバイス用部材によれば、長期にわたって信頼性の高い部材を 提供すること力でさる。
A)発光素子の発光色をそのまま利用する半導体発光デバイス。
B)発光素子の近傍に蛍光体部を配設し、発光素子からの光により蛍光体部中の 蛍光体や蛍光体成分を励起させ、蛍光を利用して所望の波長の光を発光する半導 体発光デバイス。
[0329] A)の適用例においては、本発明の半導体発光デバイス用部材の高い耐久性、透 明性および封止材性能を生かし、単独使用にて高耐久封止材、光取り出し膜、各種 機能性成分保持剤として用いることができる。特に、本発明の半導体発光デバイス用 部材を上記無機粒子等を保持する機能性成分保持剤として用い、本発明の半導体 発光デバイス用部材に透明高屈折成分を保持させた場合には、本発明の半導体発 光デバイス用部材を発光素子の出光面と密着させて使用し、かつ、発光素子に近い 屈折率にすることで、発光素子の出光面での反射を低減し、より高い光取り出し効率 を得ること力 S可倉 となる。
[0330] また、 B)の適用例においても、本発明の半導体発光デバイス用部材は、上記の A) の適用例と同様の優れた性能を発揮することができ、かつ、蛍光体や蛍光体成分を 保持することにより高耐久性で光取り出し効率の高い蛍光体部を形成することができ る。さらに、本発明の半導体発光デバイス用部材に、蛍光体や蛍光体成分に加えて 透明高屈折成分を併せて保持させた場合、本発明の半導体発光デバイス用部材の 屈折率を発光素子や蛍光体の屈折率近傍にすることで、界面反射を低減し、より高 い光取り出し効率を得ることができる。
[0331] 以下に、本発明の半導体発光デバイス用部材を適用した各実施形態の基本概念 について、図 50 (a) ,図 50 (b)を参照しながら説明する。なお、図 50は各実施形態 の基本概念の説明図であり、図 50 (a)は上記の A)の適用例に対応し、図 50 (b)は 上記の B)の適用例に対応している。
[0332] 各実施形態の発光装置(半導体発光デバイス) 1A, 1Bは、図 50 (a) ,図 50 (b)に 示すように、 LEDチップからなる発光素子 2と、発光素子 2の近傍に配設された本発 明の半導体発光デバイス用部材 3A, 3Bとを備えている。
[0333] ただし、図 50 (a)に示すような、上記 A)の適用例に対応した実施形態(実施形態 A
1 , A— 2)においては、発光装置 1Aは半導体発光デバイス用部材 3Aに蛍光体 や蛍光体成分を含まない。この場合、半導体発光デバイス用部材 3Aは、発光素子 2 の封止、光取り出し機能、機能性成分保持などの各機能を発揮する。なお、以下の 説明にお!/、て、蛍光体や蛍光体成分を含有しな!/、半導体発光デバイス用部材 3Aを 、適宜「透明部材」と呼ぶ。
[0334] 一方、図 50 (b)に示すような、上記 の適用例に対応した実施形態(実施形態 B — 1〜B— 41)においては、発光装置 1Bは半導体発光デバイス用部材 3Bに蛍光体 や蛍光体成分を含む。この場合、半導体発光デバイス用部材 3Bは、図 50 (a)の半 導体発光デバイス用部材 3Aが発揮しうる諸機能に加え、波長変換機能も発揮できる 。なお、以下の説明において、蛍光体や蛍光体成分を含有する半導体発光デバイス 用部材 3Bを、適宜「蛍光体部」と呼ぶ。また、蛍光体部は、その形状や機能などに応 じて、適宜、符号 33, 34などで示す場合もある。
[0335] 発光素子 2は、例えば、青色光ないし紫外光を放射する LEDチップにより構成され る力 これら以外の発光色の LEDチップであってもよ!/、。
[0336] また、透明部材 3Aは、発光素子 2の高耐久性封止材、光取出し膜、諸機能付加膜 などの機能を発揮するものである。透明部材 3Aは単独で用いてもよいが、蛍光体や 蛍光体成分を除けば本発明の効果を著しく損なわない限り任意の添加剤を含有させ ること力 Sでさる。
[0337] 一方、蛍光体部 3Bは、発光素子 2の高耐久性封止材、光取出し膜、諸機能付加 膜などの機能を発揮しうると共に、発光素子 2からの光により励起されて所望の波長 の光を発光する波長変換機能を発揮するものである。蛍光体部 3Bは、発光素子 2か らの光により励起されて所望の波長の光を発光する蛍光物質を少なくとも含んでいれ ばよい。このような蛍光物質の例としては、上に例示した各種の蛍光体が挙げられる 。蛍光体部 3Bの発光色としては、赤色(R) ,緑色(G) ,青色(B)の 3原色は勿論のこ と、蛍光灯のような白色や電球のような黄色も可能である。要するに、蛍光体部 3Bは 、励起光とは異なる所望の波長の光を放射する波長変換機能を有してレ、る。
[0338] 図 50 (a)に示す上述の発光装置 1 Aでは、発光素子 2から放射された光 4は、透明 部材 3Aを透過し、発光装置 1Aの外部に放射される。したがって、発光装置 1Aでは 、発光素子 2から放射された光 4は、発光素子 2から放射された際の発光色のままで 利用される。
[0339] 一方、図 50 (b)に示す発光装置 1Bでは、発光素子 2から放射された光の一部 4a は蛍光体部 3Bをそのまま透過し、発光装置 1Bの外部へ放射される。また、発光装 置 IBでは、発光素子 2から放射された光の他の一部 4bが蛍光体部 3Bに吸収されて 蛍光体部 3Bが励起され、蛍光体部 3Bに含有される蛍光体粒子、蛍光イオン、蛍光 染料等の蛍光成分特有の波長の光 5が発光装置 1Bの外部へ放射される。
[0340] したがって、発光装置 1Bからは、発光素子 2で発光して蛍光体部 3Bを透過した光
4aと蛍光体部 3Bで発光した光 5との合成光 6が、波長変換された光として放射される ことになり、発光素子 2の発光色と蛍光体部 3Bの発光色とで発光装置 1B全体として の発光色が決まることになる。なお、発光素子 2で発光して蛍光体部 3Bを透過する 光 4aは必ずしも必要ではな!/、。
[0341] [5— 5]実施形態
[A.蛍光を利用しない実施形態]
〔実施形態 A— 1〕
本実施形態の発光装置 1Aは、図 1に示すように、プリント配線 17が施された絶縁 基板 16上に発光素子 2が表面実装されている。この発光素子 2は発光層部 21の p形 半導体層(図示せず)及び n形半導体層(図示せず)それぞれが、導電ワイヤ 15, 15 を介してプリント配線 17, 17に電気的に接続されている。なお、導電ワイヤ 15, 15は 、発光素子 2から放射される光を妨げないように、断面積の小さいものが用いられて いる。
[0342] ここにおいて、発光素子 2としては、紫外〜赤外域までどのような波長の光を発する ものを用いてもよいが、ここでは、窒化ガリウム系の LEDチップを用いているものとす る。また、この発光素子 2は、図 1における下面側に n形半導体層(図示せず)、上面 側に P形半導体層(図示せず)が形成されており、 p形半導体層側から光出力を取り 出すから図 1の上方を前方として説明する。
[0343] また、絶縁基板 16上には発光素子 2を囲む枠状の枠材 18が固着されており、枠材
18の内側には発光素子 2を封止 ·保護する封止部 19を設けてある。この封止部 19 は、本発明の半導体発光デバイス用部材である透明部材 3Aにより形成されたもので 、上記の半導体発光デバイス用部材形成液でポッティングを行なうことにより形成で きる。
[0344] しかして、本実施形態の発光装置 1Aは、発光素子 2と、透明部材 3Aとを備えてい るため、発光装置 1Aの光耐久性、熱耐久性を向上させることができる。また、封止部 3Aにクラックや剥離が起きにくいため、封止部 3Aの透明性を高めることが可能となる
[0345] さらに、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外 部への光の取り出し効率を高めることができる。すなわち、封止部 3Aを、曇りや濁り がなく透明性が高いものとすることができるため、光色の均一性に優れ、発光装置 1 A間の光色ばらつきもほとんどなぐ発光素子 2の光の外部への取り出し効率を従来 に比べて高めることができる。また、発光物質の耐候性を高めることができ、従来に比 ベて発光装置 1Aの長寿命化を図ることが可能となる。
[0346] 〔実施形態 A— 2〕
本実施形態の発光装置 1Aは、図 2に示すように、発光素子 2の前面を透明部材 3 Aが覆っており、また、その透明部材上に、透明部材 3Aとは異なる材料で封止部 19 が形成された他は、上記の実施形態 A— 1と同様に構成されている。また、発光素子 2表面の透明部材 3Aは、光取出し膜、封止膜として機能する透明の薄膜であり、例 えば、発光素子 2のチップ形成時に上記の半導体発光デバイス用部材形成液をスピ ンコーティング等で塗布することにより形成できる。なお、実施形態 A—1と同様の構 成要素には同一の符号を付して説明を省略する。
[0347] しかして、本実施形態の発光装置 1Aにおいても、実施形態 A— 1と同様に、発光 素子 2と、透明部材 3Aとを備えているため、発光装置 1Aの光耐久性、熱耐久性を向 上させること力 Sでき、封止部 3Aにクラックや剥離が起きにくいため、封止部 3Aの透明 性を高めることが可能となる。
さらに、実施形態 A— 1と同様の利点を得ることも可能である。
[0348] [B.蛍光を利用した実施形態]
〔実施形態 B— 1〕
本実施形態の発光装置 1Bは、図 3 (a)に示すように、 LEDチップからなる発光素子 2と、透光性の透明な材料を砲弾形に成形したモールド部 11とを備えている。モール ド部 11は発光素子 2を覆っており、発光素子 2は導電性材料により形成したリード端 子 12, 13に電気的に接続されている。リード端子 12, 13はリードフレームにより形成 されている。
[0349] 発光素子 2は、窒化ガリウム系の LEDチップであり、図 3 (a)における下面側に n形 半導体層(図示せず)、上面側に p形半導体層(図示せず)が形成されており、 p形半 導体層側から光出力を取り出すから図 3 (a)及び図 3 (b)の上方を前方として説明す る。発光素子 2の後面はリード端子 13の前端部に取り付けられたミラー(カップ部) 14 に対してダイボンドによって接合されている。また、発光素子 2は、上述の p形半導体 層及び n形半導体層それぞれに導電ワイヤ (例えば、金ワイヤ) 15, 15がボンディン グにより接続され、この導電ワイヤ 15, 15を介して発光素子 2とリード端子 12, 13と が電気的に接続されている。なお、導電ワイヤ 15, 15は発光素子 2から放射される 光を妨げなレ、ように断面積の小さレ、ものが用いられて!/、る。
[0350] ミラー 14は発光素子 2の側面及び後面から放射された光を前方に反射する機能を 有し、 LEDチップから放射された光及びミラー 14により前方に反射された光は、レン ズとして機能するモールド部 11の前端部を通してモールド部 11から前方に放射され る。モーノレド咅 は、ミラー 14、導電ワイヤ 15, 15、リード端子 12, 13の一きととも に、発光素子 2を覆っており、発光素子 2が大気中の水分などと反応することによる特 性の劣化が防止されている。各リード端子 12, 13の後端部はそれぞれモールド部 1 1の後面から外部に突出している。
[0351] ところで、発光素子 2は、図 3 (b)に示すように、窒化ガリウム系半導体からなる発光 層部 21が、蛍光体部 3B上に半導体プロセスを利用して形成されており、蛍光体部 3 Bの後面には反射層 23が形成されている。発光層部 21からの発光による光は全方 位に放射されるが、蛍光体部 3Bに吸収された一部の光は蛍光体部 3Bを励起し、上 記蛍光成分特有の波長の光を放射する。この蛍光体部 3Bで発光した光は反射層 3 によって反射されて前方へ放射される。したがって、発光装置 1Bは、発光層部 21か ら放射された光と蛍光体部 3Bから放射された光との合成光が得られることになる。
[0352] しかして、本実施形態の発光装置 1Bは、発光素子 2と、発光素子 2からの光により 励起されて所望の波長の光を発光する蛍光体部 3Bとを備えてなる。ここで、蛍光体 部 3Bとして透光性に優れたものを用いれば、発光素子 2から放射された光の一部が そのまま外部へ放射されるとともに、発光素子 2から放射された光の他の一部によつ て発光中心となる蛍光成分が励起されて当該蛍光成分特有の発光による光が外部 へ放射されるから、発光素子 2から放射される光と蛍光体部 3Bの蛍光成分から放射 される光との合成光を得ることができ、また、従来に比べて光色むらや光色ばらつき を少なくすることができるとともに、外部への光の取り出し効率を高めることができる。 すなわち、蛍光体部 3Bとして、曇りや濁りがなく透明性が高いものを用いれば、光色 の均一性に優れ、発光装置 1B間の光色ばらつきもほとんどなぐ発光素子 2の光の 外部への取り出し効率を従来に比べて高めることができる。また、発光物質の耐候性 を高めることができ、従来に比べて発光装置 1Bの長寿命化を図ることが可能となる。
[0353] また、本実施形態の発光装置 1Bでは、蛍光体部 3Bが発光素子 2を形成する基板 に兼用されているので、発光素子 2からの光の一部により蛍光体部中の発光中心と なる蛍光体を効率良く励起することができ、当該蛍光成分特有の発光による光の輝 度を高めることができる。
[0354] 〔実施形態 B— 2〕
本実施形態の発光装置 1Bは、図 4に示すように、プリント配線 17が施された絶縁 基板 16上に発光素子 2が表面実装されている。ここにおいて、発光素子 2は、実施 形態 B—1と同様の構成であって、窒化ガリウム系半導体からなる発光層部 21が蛍 光体部 3B上に形成され、蛍光体部 3Bの後面に反射層 23が形成されている。また、 発光素子 2は発光層部 21の p形半導体層(図示せず)及び n形半導体層(図示せず )それぞれが、導電ワイヤ 15, 15を介してプリント配線 17, 17に電気的に接続されて いる。
[0355] また、絶縁基板 16上には発光素子 2を囲む枠状の枠材 18が固着されており、枠材 18の内側には発光素子 2を封止 ·保護する封止部 19を設けてある。
[0356] しかして、本実施形態の発光装置 1Bにおいても、実施形態 B—1と同様に、発光素 子 2と、発光素子 2からの光により励起されて所望の波長の光を発光する蛍光体部 3 Bとを備えてなるので、発光素子 2からの光と蛍光体からの光との合成光を得ることが できる。また、実施形態 B— 1と同様、従来に比べて光色むらや光色ばらつきを少なく すること力 Sできるとともに、外部への光の取り出し効率を高めることができ、長寿命化 を図ることも可能となる。 [0357] 〔実施形態 B— 3〕
本実施形態の発光装置 IBの基本構成は実施形態 B— 2と略同じであって、実施形 態 B— 2で説明した枠材 18 (図 4参照)を用いておらず、図 5に示すように、封止部 19 の形状が異なる。なお、実施形態 B— 2と同様の構成要素には同一の符号を付して 説明を省略する。
[0358] 本実施形態における封止部 19は、発光素子 2を封止する円錐台状の封止機能部
19aと封止部 19の前端部においてレンズとして機能するレンズ状のレンズ機能部 19 bとで構成されている。
[0359] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 2に比べて部品点数を少 なくすること力 Sでき、小型化及び軽量化を図ることができる。しかも、封止部 19の一部 にレンズとして機能するレンズ機能部 19bを設けたことにより、指向性の優れた配光 を得ること力 Sでさる。
[0360] 〔実施形態 B— 4〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 2と略同じであって、図 6に 示すように、絶縁基板 16の一面(図 6における上面)に発光素子 2を収納する凹所 16 aが設けられており、凹所 16aの底部に発光素子 2が実装され、凹所 16a内に封止部 19を設けている点に特徴がある。ここにおいて、絶縁基板 16に形成されたプリント配 線 17, 17は凹所 16aの底部まで延長され、導電ワイヤ 15, 15を介して発光素子 2の 窒化ガリウム系半導体からなる発光層部 21に電気的に接続されている。なお、実施 形態 B— 2と同様の構成要素には同一の符号を付して説明を省略する。
[0361] しかして、本実施形態の発光装置 1Bでは封止部 19が絶縁基板 16の上面に形成 された凹所 16aを充填することで形成されているので、実施形態 B— 2で説明した枠 材 18 (図 5参照)や実施形態 B— 3で説明した成形用金型を用いることなく封止部 19 を形成することができ、実施形態 B— 2, B— 3に比べて発光素子 2の封止工程を簡 便に行えるという利点がある。
[0362] 〔実施形態 B— 5〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 4と略同じであって、図 7に 示すように、発光素子 2が絶縁基板 16に所謂フリップチップ実装されている点に特徴 がある。すなわち、発光素子 2は、発光層部 21の p形半導体層(図示せず)及び n形 半導体層(図示せず)それぞれの表面側に導電性材料からなるバンプ 24, 24が設け られており、発光層部 21がフェースダウンでバンプ 24, 24を介して絶縁基板 16のプ リント配線 17, 17と電気的に接続されている。したがって、本実施形態における発光 素子 2は、絶縁基板 16に最も近い側に発光層部 21が配設され、絶縁基板 16から最 も遠い側に反射層 23が配設され、発光層部 21と反射層 23との間に蛍光体部 3Bが 介在することになる。なお、実施形態 B— 4と同様の構成要素には同一の符号を付し て説明を省略する。
[0363] 本実施形態の発光装置 1Bでは、反射層 23で図 7における下方(後方)へ反射され た光は、凹所 16aの内周面で反射されて同図における上方(前方)へ放射される。こ こにおいて、凹所 16aの内周面であってプリント配線 17, 17以外の部位には、反射 率の高!/、材料からなる反射層を別途に設けることが望まし!/、。
[0364] しかして、本実施形態の発光装置 1Bでは絶縁基板 16に設けられたプリント配線 17 , 17と発光素子 2とを接続するために実施形態 B— 4のような導電ワイヤ 15, 15を必 要としないので、実施形態 B— 4に比べて機械的強度及び信頼性を向上させることが 可能となる。
[0365] 〔実施形態 B— 6〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 5と略同じであって、図 8に 示すように、実施形態 B— 5で説明した反射層 23を設けていない点が相違する。要 するに、本実施形態の発光装置 1Bでは、発光層部 21で発光した光及び蛍光体部 3 Bで発光した光が封止部 19を透過してそのまま前方へ放射されることになる。なお、 実施形態 B— 5と同様の構成要素には同一の符号を付して説明を省略する。
[0366] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 5に比べて部品点数を削 減できて製造が容易になる。
[0367] 〔実施形態 B— 7〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 1と略同じであって、図 9に 示すように、発光素子 2を覆うモールド部 11を備えており、モールド部 11を蛍光体部 と一体に形成している点に特徴がある。なお、実施形態 B—1と同様の構成要素には 同一の符号を付して説明を省略する。
[0368] 本実施形態の発光装置 1Bの製造にあたっては、モールド部 11を設けていない仕 掛品を蛍光体部形成液を溜めた成形金型の中に浸漬し、蛍光体部形成液 (重縮合 体)を硬化させる方法などによってモールド部 11を形成している。
[0369] しかして、本実施形態では、モールド部 11が蛍光体部と一体に形成されているの で、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いること により、モールド部 11の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用 に伴うクラックや剥離を抑制したりすることが可能となる。
[0370] 〔実施形態 B— 8〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 1と略同じであって、図 10 に示すように、モールド部 11の外面に後面が開口されたカップ状の蛍光体部 3Bが 装着されている点に特徴がある。すなわち、本実施形態では、実施形態 B— 1のよう に発光素子 2に蛍光体部 3Bを設ける代わりに、モールド部 11の外周に沿う形状の蛍 光体部 3Bを設けているのである。なお、実施形態 B— 1と同様の構成要素には同一 の符号を付して説明を省略する。
[0371] 本実施形態における蛍光体部 3Bは、実施形態 B— 7で説明した蛍光体部形成液( 重縮合体)を硬化させる方法により薄膜として形成してもよいし、あるいは予め固体の 蛍光体部をカップ状に成形加工した部材をモールド部 11に装着するようにしてもよ い。
[0372] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 7の発光装置 1Bのように モールド部 11全体を蛍光体部と一体に形成する場合に比べて、蛍光体部の材料使 用量の削減を図ることができ、低コスト化を図れる。
[0373] 〔実施形態 B— 9〕
本実施形態の発光装置 1Bの基本構成は、実施形態 B— 2と略同じであって、図 11 に示すように、絶縁基板 16の一面(図 11の上面)側において発光素子 2を囲むよう に配設された枠状の枠材 18を備えており、枠材 18の内側の封止部 19を実施形態 B 2で説明した蛍光体部 3Bと同様の蛍光体部により形成している点に特徴がある。 なお、実施形態 B— 2と同様の構成要素には同一の符号を付して説明を省略する。 [0374] しかして、本実施形態では、封止部 19が蛍光体部により形成されているので、蛍光 体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、 封止部 19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラ ックゃ剥離を抑制したりすることが可能となる。
[0375] 〔実施形態 B— 10〕
本実施形態の発光装置 1Bの基本構成は、実施形態 B— 2と略同じであって、図 12 に示すように、絶縁基板 16の一面(図 12の上面)側において発光素子 2を囲むよう に配設された枠状の枠材 18を備えており、枠材 18の内側の封止部 19を実施形態 B 2で説明した蛍光体部 3Bと同様の蛍光体部により形成している点に特徴がある。 なお、実施形態 B— 2と同様の構成要素には同一の符号を付して説明を省略する。
[0376] しかして、本実施形態では、封止部 19が蛍光体部により形成されているので、蛍光 体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、 封止部 19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラ ックゃ剥離を抑制したりすることが可能となる。
[0377] また、本実施形態では、発光素子 2の発光層部 21の後面に蛍光体部 3Bが形成さ れ、発光素子 2を覆う封止部 19が蛍光体部により形成されているので、発光素子 2の 発光層部 21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実 施形態 B— 9に比べてより一層効率的に行えるという利点がある。
[0378] 〔実施形態 B— 11〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 2と略同じであって、図 13 に示すように、透光性材料よりなる封止部 19の上面に、あらかじめレンズ状に成形し た蛍光体部 33を配設している点に特徴がある。ここにおいて、蛍光体部 33は、実施 形態 B— 2で説明した蛍光体部 3Bと同様の材質よりなり、発光素子 2からの光によつ て励起され所望の波長の光を発光するものである。なお、実施形態 B— 2と同様の構 成要素には同一の符号を付して説明を省略する。
[0379] しかして、本実施形態の発光装置 1Bでは、蛍光体部 33が波長変換機能だけでな ぐレンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行 うこと力 Sでさる。 [0380] 〔実施形態 B— 12〕
本実施形態の発光装置 IBの基本構成は実施形態 B— 2と略同じであって、図 14 に示すように、透光性材料よりなる封止部 19の上面に、あらかじめレンズ状に成形し た蛍光体部 33を配設している点に特徴がある。ここにおいて、蛍光体部 33は、実施 形態 B— 2で説明した蛍光体部 3Bと同様と同様の材質よりなり、発光素子 2からの光 によって励起され所望の波長の光を発光するものである。なお、実施形態 B— 2と同 様の構成要素には同一の符号を付して説明を省略する。
[0381] しかして、本実施形態の発光装置 1Bでは、蛍光体部 33が波長変換機能だけでな ぐレンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行 うことができる。また、本実施形態では、発光素子 2の発光層部 21の後面に蛍光体部 3Bが形成されているので、蛍光体部の励起、発光を実施形態 B— 11に比べてより一 層効率的に行えるという利点がある。
[0382] 〔実施形態 B— 13〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 3と略同じであって、図 15 に示すように、絶縁基板 16の上面側において発光素子 2を覆う封止部 19を備えてお り、封止部 19が蛍光体部により形成されている点に特徴がある。ここに、封止部 19は 、実施形態 B— 3と同様に、発光素子 2を封止する円錐台状の封止機能部 19aと封 止部 19の前端部においてレンズとして機能するレンズ状のレンズ機能部 19bとで構 成されている。なお、実施形態 B— 3と同様の構成要素には同一の符号を付して説 明を省略する。
[0383] しかして、本実施形態の発光装置 1Bでは、封止部 19が発光素子 2を封止 ·保護す る機能だけでなぐ発光素子 2からの光を波長変換する波長変換機能、発光の指向 性を制御するレンズ機能を有することになる。また、封止部 19の耐候性を高めること ができ、長寿命化を図ることができる。また、本実施形態では、発光素子 2の発光層 部 21の後面に蛍光体部 3Bが形成され、発光素子 2を覆う封止部 19が蛍光体部によ り形成されているので、発光素子 2の発光層部 21の全方位に蛍光体部が存在するこ とになり、蛍光体部の励起、発光を実施形態 B— 12に比べてより一層効率的に行え るという利点がある。 [0384] 〔実施形態 B— 14〕
本実施形態の発光装置 IBの基本構成は実施形態 B— 3と略同じであって、図 16 に示すように、絶縁基板 16の一面(図 16の上面)側において発光素子 2を覆う封止 部 19を備えており、封止部 19が蛍光体部 3Bにより形成されている点に特徴がある。 ここに、封止部 19は、実施形態 B— 3と同様に、発光素子 2を封止する円錐台状の封 止機能部 19aと封止部 19の前端部においてレンズとして機能するレンズ状のレンズ 機能部 19bとで構成されている。なお、実施形態 B— 3と同様の構成要素には同一の 符号を付して説明を省略する。
[0385] しかして、本実施形態の発光装置 1Bでは、封止部 19が発光素子 2を封止 ·保護す る機能だけでなぐ発光素子 2からの光を波長変換する波長変換機能、発光の指向 性を制御するレンズ機能を有することになる。また、封止部 19の耐候性を高めること ができ、長寿命化を図ることができる。
[0386] 〔実施形態 B— 15〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 3と略同じであって、図 17 に示すように、絶縁基板 16の上面側において発光素子 2を覆うドーム状の蛍光体部 34を配設し、蛍光体部 34の外面側に透光性樹脂からなる封止部 19が形成されてい る点に特徴がある。ここに、封止部 19は、実施形態 B— 3と同様に、発光素子 2を封 止する封止機能部 19aと封止部 19の前端部においてレンズとして機能するレンズ状 のレンズ機能部 19bとで構成されている。なお、実施形態 B— 3と同様の構成要素に は同一の符号を付して説明を省略する。
[0387] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 13, B— 14に比べて蛍 光体部 34の材料使用量を低減することができる。また、本実施形態では、発光素子 2を覆うドーム状の蛍光体部 34が配設されているので、蛍光体部として後述するよう に本発明の半導体発光デバイス用部材を用いることにより、外部からの水分などによ る発光素子 2の劣化をより確実に防止することができ、長寿命化を図ることができる。
[0388] 〔実施形態 B— 16〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 3と略同じであって、図 18 に示すように、絶縁基板 16の上面側において発光素子 2を覆うドーム状の蛍光体部 34を配設し、蛍光体部 34の外面側に封止部 19が形成されている点に特徴がある。 ここに、封止部 19は、実施形態 B— 3と同様に、発光素子 2を封止する封止機能部 1 9aと封止部 19の前端部においてレンズとして機能するレンズ状のレンズ機能部 19b とで構成されている。なお、実施形態 B— 3と同様の構成要素には同一の符号を付し て説明を省略する。
[0389] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 13, B— 14に比べて蛍 光体部 34の材料使用量を低減することができる。また、本実施形態では、発光素子 2を覆うドーム状の蛍光体部 34が配設されているので、蛍光体部として後述するよう に本発明の半導体発光デバイス用部材を用いることにより、外部からの水分などによ る発光素子 2の劣化をより確実に防止することができ、長寿命化を図ることができる。 また、本実施形態では、発光素子 2の発光層部 21の後面に蛍光体部 3Bが形成され 、発光素子 2を覆う封止部 19が蛍光体部により形成されているので、発光素子 2の発 光層部 21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施 形態 B— 15に比べてより一層効率的に行えるという利点がある。
[0390] 〔実施形態 B— 17〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 4と略同じであって、図 19 に示すように、絶縁基板 16の一面(図 19における上面)に設けた凹所 16aの底部に 配設された発光素子 2を封止する封止部 19を備えており、封止部 19が蛍光体部に より形成されている点に特徴がある。ここにおいて、蛍光体部は実施形態 B— 1で説 明した蛍光体部 3Bと同様に発光素子 2からの光によって励起され所望の波長の光を 発光するものである。なお、実施形態 B— 4と同様の構成要素には同一の符号を付し て説明を省略する。
[0391] しかして、本実施形態の発光装置 1Bでは、封止部 19が蛍光体部により形成されて いるので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用 いることにより、封止部 19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間 使用に伴うクラックや剥離を抑制したりすることが可能となる。また、本実施形態では、 発光素子 2の発光層部 21の後面に蛍光体部 3Bが形成され、発光素子 2を覆う封止 部 19が蛍光体部 3Bにより形成されているので、発光素子 2の発光層部 21の全方位 に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態 B— 15に比べ てより一層効率的に行えるという利点がある。
[0392] 〔実施形態 B— 18〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 4と略同じであって、図 20 に示すように、絶縁基板 16の一面(図 20における上面)に設けた凹所 16aの底部に 配設された発光素子 2を封止する封止部 19を備えており、封止部 19が蛍光体部 3B により形成されている点に特徴がある。ここにおいて、蛍光体部 3Bは実施形態 B— 1 で説明した蛍光体部 3Bと同様に発光素子 2からの光によって励起され所望の波長 の光を発光するものである。なお、実施形態 B— 4と同様の構成要素には同一の符 号を付して説明を省略する。
[0393] しかして、本実施形態の発光装置 1Bでは、封止部 19が蛍光体部により形成されて いるので、蛍光体部 3Bとして後述するように本発明の半導体発光デバイス用部材を 用いることにより、封止部 19の封止性、透明性、耐光性、耐熱性等を高めたり、長期 間使用に伴うクラックや剥離を抑制したりすることが可能となる。
[0394] 〔実施形態 B— 19〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 4と略同じであって、図 21 に示すように、封止部 19の上面(光取り出し面)に予めレンズ状に成形した蛍光体部 33を配設している点に特徴がある。ここにおいて、蛍光体部 33は実施形態 B—1で 説明した蛍光体部 3Bと同様に発光素子 2からの光によって励起され所望の波長の 光を発光するものである。なお、実施形態 B— 4と同様の構成要素には同一の符号を 付して説明を省略する。
[0395] しかして、本実施形態の発光装置 1Bでは、蛍光体部 33が波長変換機能だけでな ぐレンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行 うこと力 Sでさる。
[0396] 〔実施形態 B— 20〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 4と略同じであって、図 22 に示すように、封止部 19の上面(光取り出し面)に予めレンズ状に成形した蛍光体部 33を配設している点に特徴がある。ここにおいて、蛍光体部 33は実施形態 B—1で 説明した蛍光体部 3Bと同様に発光素子 2からの光によって励起され所望の波長の 光を発光するものである。なお、実施形態 B— 4と同様の構成要素には同一の符号を 付して説明を省略する。
[0397] しかして、本実施形態の発光装置 1Bでは、蛍光体部 33が波長変換機能だけでな ぐレンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行 うことができる。また、本実施形態では、発光素子 2の発光層部 21の後面にも蛍光体 部 3Bが配設されているので、実施形態 B— 19に比べて蛍光体部の励起、発光がよ り一層効率的に行われるという利点がある。
[0398] 〔実施形態 B— 21〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 5と略同じであって、図 23 に示すように、絶縁基板 16の一面(図 23における上面)に設けた凹所 16aの底部に 配設された発光素子 2を封止する封止部 19を備えており、封止部 19が蛍光体部 3B により形成されている点に特徴がある。ここにおいて、封止部 19は、予め、図 24に示 すように、外周形状が凹所 16aに対応する形状であって発光素子 2に対応する部位 に発光素子 2を収納するための凹部 19cを有する形状に加工したものを、発光素子 2 が実装された絶縁基板 16の凹所 16aに装着しているので、封止工程を簡便化するこ と力 Sできる。また、封止部 19を形成する蛍光体部 3Bは実施形態 B— 1で説明した蛍 光体部 3Bと同様に発光素子 2からの光によって励起され所望の波長の光を発光す るものである。なお、実施形態 B— 5と同様の構成要素には同一の符号を付して説明 を省略する。
[0399] しかして、本実施形態の発光装置 1Bでは、封止部 19が蛍光体部により形成されて いるので、蛍光体部 3Bとして後述するように本発明の半導体発光デバイス用部材を 用いることにより、封止部 19の封止性、透明性、耐光性、耐熱性等を高めたり、長期 間使用に伴うクラックや剥離を抑制したりすることが可能となる。また、本実施形態で は、発光素子 2の発光層部 21から前方へ放射された光が反射層 23によって一旦、 凹所 16aの内底面側に向けて反射されるので、凹所 16aの内底面及び内周面に反 射層を設けておけば、凹所 16aの内底面及び内周面でさらに反射されて前方へ放 射されることになつて光路長を長くとれ、蛍光体部 3Bにより効率的に励起、発光を行 うこと力 Sできると!/、う利点がある。
[0400] 〔実施形態 B— 22〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 5と略同じであって、図 25 に示すように、絶縁基板 16の一面(図 25における上面)に設けた凹所 16aの底部に 配設された発光素子 2を封止する封止部 19を備えており、封止部 19が蛍光体部 3B により形成されている点に特徴がある。ここにおいて、封止部 19は、予め、図 26に示 すように、外周形状が凹所 16aに対応する形状であって発光素子 2に対応する部位 に発光素子 2を収納するための凹部 19cを有する形状に加工したものを、発光素子 2 が実装された絶縁基板 16の凹所 16aに装着しているので、封止工程を簡便化するこ と力 Sできる。また、封止部 19を形成する蛍光体部 3Bは実施形態 B— 1で説明した蛍 光体部 3Bと同様に発光素子 2からの光によって励起され所望の波長の光を発光す るものである。なお、実施形態 B— 5と同様の構成要素には同一の符号を付して説明 を省略する。
[0401] しかして、本実施形態の発光装置 1Bでは、封止部 19が蛍光体部 3Bにより形成さ れているので、蛍光体部 3Bとして後述するように本発明の半導体発光デバイス用部 材を用いることにより、封止部 19の封止性、透明性、耐光性、耐熱性等を高めたり、 長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
[0402] 〔実施形態 B— 23〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 6と略同じであって、図 27 に示すように、発光素子 2の上面に、予めロッド状に加工した蛍光体部 3Bを配設して いる点に特徴がある。ここにおいて、発光素子 2及び蛍光体部 3Bの周囲には透光性 材料からなる封止部 19が形成されており、蛍光体部 3Bは一端面(図 27における下 端面)が発光素子 2の発光層部 21に密着し他端面(図 27における上端面)が露出し ている。なお、実施形態 B— 6と同様の構成要素には同一の符号を付して説明を省 略する。
[0403] しかして、本実施形態の発光装置 1Bでは、上記一端面が発光素子 2の発光層部 2 1に密着する蛍光体部 3Bがロッド状に形成されているので、発光層部 21で発光した 光を蛍光体部 3Bの上記一端面を通して蛍光体部 3Bへ効率的に取り込むことができ 、取り込んだ光により励起された蛍光体部 3Bの発光を蛍光体部 3Bの上記他端面を 通して外部へ効率的に放射させることができる。なお、本実施形態では、蛍光体部 3 Bを比較的大径のロッド状に形成して 1つだけ用いている力 S、図 28に示すように蛍光 体部 3Bを比較的小径のファイバ状に形成して複数本の蛍光体部 3Bを並べて配設 するようにしてもよい。また、蛍光体部 3Bの断面形状は円形に限らず、例えば四角形 状に形成してもよレ、し、その他の形状に形成してもよ!/、のは勿論である。
[0404] 〔実施形態 B— 24〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 23と略同じであって、図 29 に示すように、絶縁基板 16の凹所 16a内に設けた封止部 19を備え、封止部 19が蛍 光体部 3Bにより形成されている点に特徴がある。ここにおいて、封止部 19は、予め、 図 30に示すように、外周形状が凹所 16aに対応する形状であって発光素子 2に対応 する部位に発光素子 2を収納するための貫通孔 19dを有する形状に加工したものを 、発光素子 2が実装された絶縁基板 16の凹所 16aに装着しているので、封止工程を 簡便化すること力 Sできる。また、封止部 19を形成する蛍光体部 3Bは実施形態 B— 1 で説明した蛍光体部 3Bと同様に発光素子 2からの光によって励起され所望の波長 の光を発光するものである。なお、実施形態 B— 23と同様の構成要素には同一の符 号を付して説明を省略する。
[0405] しかして、本実施形態の発光装置 1Bでは、封止部 19も蛍光体部 3Bにより形成さ れているので、長寿命化及び発光の高効率化を図ることができる。なお、本実施形態 では、蛍光体部 3Bを比較的大径のロッド状に形成して 1つだけ用いている力 図 31 に示すように蛍光体部 3Bを比較的小径のファイバ状に形成して複数本の蛍光体部 3Bを並べて配設するようにしてもよい。また、蛍光体部 3Bの断面形状は円形に限ら ず、例えば四角形状に形成してもよいし、その他の形状に形成してもよいのは勿論で ある。
[0406] 〔実施形態 B— 25〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 2と略同じであって、図 32 に示すように絶縁基板 16の一面(図 32における上面)側に配設された枠材 18を備 え、発光素子 2の発光層部 21が AlGaN系で近紫外光を発光するものであり、枠材 1 8の内側の封止部 19として用いる透光性材料中に蛍光体粉末 (例えば、近紫外光に より励起されて黄色光を発光する YAG: Ce3+蛍光体の粉末)が分散されている点に 特徴がある。また、本実施形態では、蛍光体部 3Bとして、フッリン酸塩系ガラス(例え ば、近紫外光により励起されて青色光を発光する P O -A1F -MgF- CaF - SrF ·Β
2 5 3 2 2 aCl : Eu2+)を用いている。なお、実施形態 B— 2と同様の構成要素には同一の符号
2
を付して説明を省略する。
[0407] しかして、本実施形態の発光装置 1Bでは、発光素子 2からの光により励起されて発 光する蛍光体粉末が封止部 19に分散されているので、発光素子 2から放射された光 と蛍光体部 3Bから放射された光と蛍光体粉末力 放射された光との合成光からなる 光出力が得られる。
[0408] したがって、発光素子 2の発光層部 21の材料として近紫外光を発光する材料を選 んでおけば、発光素子 2から放射された光によって蛍光体部 3Bと封止部 19中の蛍 光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られ ることになる。本実施形態では、蛍光体部 3Bから青色光が放射されるとともに、蛍光 体粉末から黄色光が放射され、いずれの発光色とも異なる白色光を得ることができる
[0409] なお、既存の蛍光体粉末や蛍光体部の蛍光体粒子ではそれぞれに発光可能な材 料が限定されており、いずれか一方だけでは所望の光色が得られないこともあり、こ のような場合には本実施形態は極めて有効である。つまり、蛍光体部 3Bだけで所望 の光色特性が得られない場合には、蛍光体部 3Bに欠けている適当な光色特性を有 する蛍光体粉末を併用して補完することにより、所望の光色特性の発光装置 1Bが実 現できる。また、本実施形態では、蛍光体粉末の発光色を蛍光体部 3Bの発光色と異 ならせてあるが、蛍光体粉末の発光色を蛍光体部 3Bの発光色に揃えておけば、蛍 光体部 3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、 発光効率を高めることができる。ここに、蛍光体部 3Bと蛍光体粉末とで発光色を略同 色とする場合には、例えば、蛍光体部 3Bの蛍光体粒子として赤色光を発光する P O
2
•SrF -BaF : Eu3+を用いるとともに、蛍光体粉末として赤色光を発光する Y O S :
5 2 2 2 2
Eu3+を用いれば、赤色発光の高効率化を図れる。この蛍光体部 3Bと蛍光体粉末と の組み合わせは一例であって他の組み合わせを採用してもよいことは勿論である。
[0410] 〔実施形態 B— 26〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 3と略同じであって、図 33 に示すように、絶縁基板 16の一面(図 33の上面)側において発光素子 2を封止する 封止部 19を備え、発光素子 2の発光層部 21が AlGaN系で近紫外光を発光するも のであり、封止部 19として用いる透光性材料中に蛍光体粉末 (例えば、近紫外光に より励起されて黄色光を発光する YAG : Ce3+蛍光体の粉末)が分散され、封止部 19 が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部 3 Bの蛍光体粒子として、フッリン酸塩系ガラス(例えば、近紫外光により励起されて青 色光を発光する P O -A1F -MgF- CaF - SrF -BaCl : Eu2+)を用いている。なお、
2 5 3 2 2 2
実施形態 B— 3と同様の構成要素には同一の符号を付して説明を省略する。
[0411] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末が封止部 19に分散されているので、発 光素子 2から放射された光と蛍光体部 3Bから放射された光と蛍光体粉末力も放射さ れた光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に、発 光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、発 光素子 2から放射された光によって蛍光体部 3Bと封止部 19中の蛍光体粉末との双 方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。ま た、本実施形態においても、蛍光体粉末の発光色を蛍光体部 3Bの発光色と異なら せてあるが、蛍光体粉末の発光色を蛍光体部 3Bの発光色に揃えておけば、蛍光体 部 3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光 効率を高めることができる。
[0412] 〔実施形態 B— 27〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 4と略同じであって、図 34 に示すように、絶縁基板 16の上面に形成された凹所 16aに充填されて発光素子 2を 封止する封止部 19を備え、発光素子 2の発光層部 21が AlGaN系で近紫外光を発 光するものであり、封止部 19として用いる透光性材料中に蛍光体粉末 (例えば、近 紫外光により励起されて黄色光を発光する YAG : Ce3+蛍光体の粉末)が分散され、 封止部 19が蛍光体部として機能している点に特徴がある。また、本実施形態では、 蛍光体部 3Bの蛍光体粒子として、フッリン酸塩系ガラス(例えば、近紫外光により励 起されて青色光を発光する P O -A1F -MgF- CaF - SrF -BaCl : Eu2+)を用いて
2 5 3 2 2 2
いる。なお、実施形態 B— 4と同様の構成要素には同一の符号を付して説明を省略 する。
[0413] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末が封止部 19に分散されているので、発 光素子 2から放射された光と蛍光体部 3Bから放射された光と蛍光体粉末力も放射さ れた光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に、発 光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、発 光素子 2から放射された光によって蛍光体部 3Bと封止部 19中の蛍光体粉末との双 方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。ま た、本実施形態においても、蛍光体粉末の発光色を蛍光体部 3Bの発光色と異なら せてあるが、蛍光体粉末の発光色を蛍光体部 3Bの発光色に揃えておけば、蛍光体 部 3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光 効率を高めることができる。
[0414] 〔実施形態 B— 28〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 5と略同じであって、図 35 に示すように、絶縁基板 16の一面(図 35における上面)に形成された凹所 16aに充 填されて発光素子 2を封止する封止部 19を備え、発光素子 2の発光層部 21が AlGa N系で近紫外光を発光するものであり、封止部 19として用いる透光性材料中に蛍光 体粉末 (例えば、近紫外光により励起されて黄色光を発光する YAG : Ce3+蛍光体の 粉末)が分散され、封止部 19が蛍光体部として機能している点に特徴がある。また、 本実施形態では、蛍光体部 3Bの蛍光体粒子として、フッリン酸塩系ガラス(例えば、 近紫外光により励起されて青色光を発光する P O -A1F -MgF - CaF - SrF -BaCl
2 5 3 2 2 2
: Eu2+)を用いている。なお、実施形態 B— 5と同様の構成要素には同一の符号を付 して説明を省略する。
[0415] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末が封止部 19に分散されているので、発 光素子 2から放射された光と蛍光体部 3Bから放射された光と蛍光体粉末力も放射さ れた光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に、発 光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、発 光素子 2から放射された光によって蛍光体部 3Bと封止部 19中の蛍光体粉末との双 方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。ま た、本実施形態においても、蛍光体粉末の発光色を蛍光体部 3Bの発光色と異なら せてあるが、蛍光体粉末の発光色を蛍光体部 3Bの発光色に揃えておけば、蛍光体 部 3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光 効率を高めることができる。
[0416] 〔実施形態 B— 29〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 6と略同じであって、図 36 に示すように、絶縁基板 16の一面(図 36における上面)に形成された凹所 16aに充 填されて発光素子 2を封止する封止部 19を備え、発光素子 2の発光層部 21が AlGa N系で近紫外光を発光するものであり、封止部 19として用いる透光性材料中に蛍光 体粉末 (例えば、近紫外光により励起されて黄色光を発光する YAG : Ce3+蛍光体の 粉末)が分散され、封止部 19が蛍光体部として機能している点に特徴がある。また、 本実施形態では、蛍光体部 3Bの蛍光体粒子として、フッリン酸塩系ガラス(例えば、 近紫外光により励起されて青色光を発光する P O -A1F -MgF - CaF - SrF -BaCl
2 5 3 2 2 2
: Eu2+)を用いている。なお、実施形態 B— 6と同様の構成要素には同一の符号を付 して説明を省略する。
[0417] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末が封止部 19に分散されているので、発 光素子 2から放射された光と蛍光体部 3Bから放射された光と蛍光体粉末力も放射さ れた光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に、発 光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、発 光素子 2から放射された光によって蛍光体部 3Bと封止部 19中の蛍光体粉末との双 方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。ま た、本実施形態においても、蛍光体粉末の発光色を蛍光体部 3Bの発光色と異なら せてあるが、蛍光体粉末の発光色を蛍光体部 3Bの発光色に揃えておけば、蛍光体 部 3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光 効率を高めることができる。
[0418] 〔実施形態 B— 30〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 1と略同じであって、図 37 ( a) ,図 37 (b)に示すように、砲弾形のモールド部 11を備え、発光素子 2の発光層部 2 1が AlGaN系で近紫外光を発光するものであり、モールド部 11として用いる透光性 材料中に蛍光体粉末 (例えば、近紫外光により励起されて黄色光を発光する YAG : Ce3+蛍光体の粉末)が分散され、モールド部 11が蛍光体部として機能している点に 特徴がある。また、本実施形態では、蛍光体部 3Bの蛍光体粒子として、フッリン酸塩 系ガラス(例えば、近紫外光により励起されて青色光を発光する P O -A1F -MgF-
2 5 3
CaF - SrF -BaCl : Eu2+)を用いている。なお、実施形態 B— 1と同様の構成要素
2 2 2
には同一の符号を付して説明を省略する。
[0419] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末がモールド部 11に分散されて!/、るので 、発光素子 2から放射された光と蛍光体部 3Bから放射された光と蛍光体粉末から放 射された光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に 、発光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、 発光素子 2から放射された光によって蛍光体部 3Bとモールド部 11中の蛍光体粉末 との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることにな る。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部 3Bの発光色と異 ならせてあるが、蛍光体粉末の発光色を蛍光体部 3Bの発光色に揃えておけば、蛍 光体部 3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、 発光効率を高めることができる。
[0420] 〔実施形態 B— 31〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 8と略同じであって、図 38 に示すように、砲弾形のモールド部 11を備え、発光素子 2の発光層部 21 (図 38では 図示を略している。)が AlGaN系で近紫外光を発光するものであり、モールド部 11と して用いる透光性材料中に蛍光体粉末 (例えば、近紫外光により励起されて黄色光 を発光する YAG: Ce3+蛍光体の粉末)が分散され、モールド部 11が蛍光体部として 機能している点に特徴がある。また、本実施形態では、蛍光体部 3Bの蛍光体粒子と して、フッリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光する P
2
〇 -A1F -MgF - CaF - SrF -BaCl : Eu2+)を用いている。なお、実施形態 B— 8と
5 3 2 2 2
同様の構成要素には同一の符号を付して説明を省略する。
[0421] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末がモールド部 11に分散されて!/、るので 、発光素子 2から放射された光と蛍光体部 3Bから放射された光と蛍光体粉末から放 射された光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に 、発光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、 発光素子 2から放射された光によって蛍光体部 3Bとモールド部 11中の蛍光体粉末 との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることにな る。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部 3Bの発光色と異 ならせてあるが、蛍光体粉末の発光色を蛍光体部 3Bの発光色に揃えておけば、蛍 光体部 3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、 発光効率を高めることができる。
[0422] 〔実施形態 B— 32〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 11と略同じであって、図 39 に示すように、絶縁基板 16の一面(図 39の上面)側において発光素子 2を封止する 封止部 19を備え、発光素子 2の発光層部 21が AlGaN系で近紫外光を発光するも のであり、封止部 19として用いる透光性材料中に蛍光体粉末 (例えば、近紫外光に より励起されて黄色光を発光する YAG : Ce3+蛍光体の粉末)が分散され、封止部 19 が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部 3 3の蛍光体粒子として、フッリン酸塩系ガラス(例えば、近紫外光により励起されて青 色光を発光する P O -A1F -MgF- CaF - SrF -BaCl : Eu2+)を用いている。なお、
2 5 3 2 2 2
実施形態 B— 11と同様の構成要素には同一の符号を付して説明を省略する。 [0423] しかして、本実施形態の発光装置 IBでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末が封止部 19に分散されているので、発 光素子 2から放射された光と蛍光体部 33から放射された光と蛍光体粉末力も放射さ れた光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に、発 光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、発 光素子 2から放射された光によって蛍光体部 33と封止部 19中の蛍光体粉末との双 方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。ま た、本実施形態においても、蛍光体粉末の発光色を蛍光体部 33の発光色と異なら せてあるが、蛍光体粉末の発光色を蛍光体部 33の発光色に揃えておけば、蛍光体 部 33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効 率を高めることができる。
[0424] 〔実施形態 B— 33〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 15と略同じであって、図 40 に示すように、絶縁基板 16の一面(図 40の上面)側において発光素子 2を封止する 封止部 19を備え、発光素子 2の発光層部 21が AlGaN系で近紫外光を発光するも のであり、封止部 19として用いる透光性材料中に蛍光体粉末 (例えば、近紫外光に より励起されて黄色光を発光する YAG : Ce3+蛍光体の粉末)が分散され、封止部 19 が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部 3 4の蛍光体粒子として、フッリン酸塩系ガラス(例えば、近紫外光により励起されて青 色光を発光する P O -A1F -MgF- CaF - SrF -BaCl : Eu2+)を用いている。なお、
2 5 3 2 2 2
実施形態 B— 15と同様の構成要素には同一の符号を付して説明を省略する。
[0425] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末が封止部 19に分散されているので、発 光素子 2から放射された光と蛍光体部 34から放射された光と蛍光体粉末力も放射さ れた光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に、発 光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、発 光素子 2から放射された光によって蛍光体部 34と封止部 19中の蛍光体粉末との双 方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。ま た、本実施形態においても、蛍光体粉末の発光色を蛍光体部 34の発光色と異なら せてあるが、蛍光体粉末の発光色を蛍光体部 34の発光色に揃えておけば、蛍光体 部 34の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効 率を高めることができる。
[0426] 〔実施形態 B— 34〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 19と略同じであって、図 41 に示すように、絶縁基板 16の一面(図 41における上面)に形成された凹所 16aに充 填されて発光素子 2を封止する封止部 19を備え、発光素子 2の発光層部 21が AlGa N系で近紫外光を発光するものであり、封止部 19として用いる透光性材料中に蛍光 体粉末 (例えば、近紫外光により励起されて黄色光を発光する YAG : Ce3+蛍光体の 粉末)が分散され、封止部 19が蛍光体部として機能している点に特徴がある。また、 本実施形態では、蛍光体部 33の蛍光体粒子として、フッリン酸塩系ガラス(例えば、 近紫外光により励起されて青色光を発光する P O -A1F -MgF - CaF - SrF -BaCl
2 5 3 2 2 2
: Eu2+)を用いている。なお、実施形態 B— 19と同様の構成要素には同一の符号を 付して説明を省略する。
[0427] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末が封止部 19に分散されているので、発 光素子 2から放射された光と蛍光体部 33から放射された光と蛍光体粉末力も放射さ れた光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に、発 光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、発 光素子 2から放射された光によって蛍光体部 33と封止部 19中の蛍光体粉末との双 方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。ま た、本実施形態においても、蛍光体粉末の発光色を蛍光体部 33の発光色と異なら せてあるが、蛍光体粉末の発光色を蛍光体部 33の発光色に揃えておけば、蛍光体 部 33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効 率を高めることができる。
[0428] 〔実施形態 B— 35〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 12, B— 22と略同じであつ て、図 42に示すように、絶縁基板 16の一面(図 42における上面)に形成された凹所 16aに充填されて発光素子 2を封止する封止部 19を備え、発光素子 2の発光層部 2 1が AlGaN系で近紫外光を発光するものであり、封止部 19として用いる透光性材料 中に蛍光体粉末 (例えば、近紫外光により励起されて黄色光を発光する YAG: Ce3+ 蛍光体の粉末)が分散され、封止部 19が蛍光体部として機能している点に特徴があ る。また、本実施形態では、蛍光体部 33の蛍光体粒子として、フッリン酸塩系ガラス( 例えば、近紫外光により励起されて青色光を発光する P O -A1F -MgF - CaF - Sr
2 5 3 2
F -BaCl : Eu2+)を用いている。なお、実施形態 B— 12, B— 22と同様の構成要素
2 2
には同一の符号を付して説明を省略する。
[0429] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末が封止部 19に分散されているので、発 光素子 2から放射された光と蛍光体部 3Bから放射された光と蛍光体粉末力も放射さ れた光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に、発 光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、発 光素子 2から放射された光によって蛍光体部 33と封止部 19中の蛍光体粉末との双 方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。ま た、本実施形態においても、蛍光体粉末の発光色を蛍光体部 33の発光色と異なら せてあるが、蛍光体粉末の発光色を蛍光体部 33の発光色に揃えておけば、蛍光体 部 33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効 率を高めることができる。
[0430] 〔実施形態 B— 36〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 12と略同じであって、図 43 に示すように、絶縁基板 16の上面側において発光素子 2を封止する封止部 19を備 え、発光素子 2の発光層部 21が AlGaN系で近紫外光を発光するものであり、封止 部 19として用いる透光性材料中に蛍光体粉末 (例えば、近紫外光により励起されて 黄色光を発光する YAG : Ce3+蛍光体の粉末)が分散され、封止部 19が蛍光体部と して機能している点に特徴がある。また、本実施形態では、蛍光体部 3Bの蛍光体粒 子として、フッリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光す る P O -A1F -MgF- CaF - SrF -BaCl : Eu2+)を用いている。なお、実施形態 B—
2 5 3 2 2 2
12と同様の構成要素には同一の符号を付して説明を省略する。
[0431] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末が封止部 19に分散されているので、発 光素子 2から放射された光と蛍光体部 3Bから放射された光と蛍光体粉末力も放射さ れた光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に、発 光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、発 光素子 2から放射された光によって蛍光体部 3Bと封止部 19中の蛍光体粉末との双 方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。ま た、本実施形態においても、蛍光体粉末の発光色を蛍光体部 3Bの発光色と異なら せてあるが、蛍光体粉末の発光色を蛍光体部 3Bの発光色に揃えておけば、蛍光体 部 3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光 効率を高めることができる。
[0432] 〔実施形態 B— 37〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 16と略同じであって、図 44 に示すように、絶縁基板 16の一面(図 44の上面)側において発光素子 2を封止する 封止部 19を備え、発光素子 2の発光層部 21が AlGaN系で近紫外光を発光するも のであり、封止部 19として用いる透光性材料中に蛍光体粉末 (例えば、近紫外光に より励起されて黄色光を発光する YAG : Ce3+蛍光体の粉末)が分散され、封止部 19 が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部 3 4の蛍光体粒子として、フッリン酸塩系ガラス(例えば、近紫外光により励起されて青 色光を発光する P O -A1F -MgF- CaF - SrF -BaCl : Eu2+)を用いている。なお、
2 5 3 2 2 2
実施形態 B— 16と同様の構成要素には同一の符号を付して説明を省略する。
[0433] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末が封止部 19に分散されているので、発 光素子 2から放射された光と蛍光体部 34から放射された光と蛍光体粉末力も放射さ れた光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に、発 光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、発 光素子 2から放射された光によって蛍光体部 34と封止部 19中の蛍光体粉末との双 方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。ま た、本実施形態においても、蛍光体粉末の発光色を蛍光体部 34の発光色と異なら せてあるが、蛍光体粉末の発光色を蛍光体部 34の発光色に揃えておけば、蛍光体 部 34の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効 率を高めることができる。
[0434] 〔実施形態 B— 38〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 20と略同じであって、図 45 に示すように、絶縁基板 16の一面(図 45における上面)に形成された凹所 16aに充 填されて発光素子 2を封止する封止部 19を備え、発光素子 2の発光層部 21が AlGa N系で近紫外光を発光するものであり、封止部 19として用いる透光性材料中に蛍光 体粉末 (例えば、近紫外光により励起されて黄色光を発光する YAG : Ce3+蛍光体の 粉末)が分散され、封止部 19が蛍光体部として機能している点に特徴がある。また、 本実施形態では、蛍光体部 3Bの蛍光体粒子として、フッリン酸塩系ガラス(例えば、 近紫外光により励起されて青色光を発光する P O -A1F -MgF - CaF - SrF -BaCl
2 5 3 2 2 2
: Eu2+)を用いている。なお、実施形態 B— 20と同様の構成要素には同一の符号を 付して説明を省略する。
[0435] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末が封止部 19に分散されているので、発 光素子 2から放射された光と蛍光体部 3Bから放射された光と蛍光体粉末力も放射さ れた光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に、発 光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、発 光素子 2から放射された光によって蛍光体部 3Bと封止部 19中の蛍光体粉末との双 方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。ま た、本実施形態においても、蛍光体粉末の発光色を蛍光体部 3Bの発光色と異なら せてあるが、蛍光体粉末の発光色を蛍光体部 3Bの発光色に揃えておけば、蛍光体 部 3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光 効率を高めることができる。 [0436] 〔実施形態 B— 39〕
本実施形態の発光装置 IBの基本構成は実施形態 B— 5, B— 12と略同じであって 、図 46に示すように、絶縁基板 16の一面(図 46における上面)に形成された凹所 16 aに充填されて発光素子 2を封止する封止部 19を備え、発光素子 2の発光層部 21が AlGaN系で近紫外光を発光するものであり、封止部 19として用いる透光性材料中 に蛍光体粉末 (例えば、近紫外光により励起されて黄色光を発光する YAG : Ce3+蛍 光体の粉末)が分散され、封止部 19が蛍光体部として機能している点に特徴がある 。また、本実施形態では、蛍光体部 3Bの蛍光体粒子として、フッリン酸塩系ガラス( 例えば、近紫外光により励起されて青色光を発光する P O -A1F - MgF - CaF - Sr
2 5 3 2
F - BaCl : Eu2 +)を用いている。なお、実施形態 B— 5, B— 12と同様の構成要素に
2 2
は同一の符号を付して説明を省略する。
[0437] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末が封止部 19に分散されているので、発 光素子 2から放射された光と蛍光体部 3Bから放射された光と蛍光体粉末力も放射さ れた光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に、発 光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、発 光素子 2から放射された光によって蛍光体部 3Bと封止部 19中の蛍光体粉末との双 方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。ま た、本実施形態においても、蛍光体粉末の発光色を蛍光体部 3Bの発光色と異なら せてあるが、蛍光体粉末の発光色を蛍光体部 3Bの発光色に揃えておけば、蛍光体 部 3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光 効率を高めることができる。
[0438] 〔実施形態 B— 40〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 20, B— 21と略同じであつ て、図 47に示すように、絶縁基板 16の一面(図 47における上面)に形成された凹所 16aに充填されて発光素子 2を封止する封止部 19を備え、発光素子 2の発光層部 2 1が AlGaN系で近紫外光を発光するものであり、封止部 19として用いる透光性材料 中に蛍光体粉末 (例えば、近紫外光により励起されて黄色光を発光する YAG: Ce3+ 蛍光体の粉末)が分散され、封止部 19が蛍光体部として機能している点に特徴があ る。また、本実施形態では、蛍光体部 3Bの蛍光体粒子として、フッリン酸塩系ガラス( 例えば、近紫外光により励起されて青色光を発光する P O -A1F -MgF - CaF - Sr
2 5 3 2
F -BaCl : Eu2+)を用いている。なお、実施形態 B— 20, B— 21と同様の構成要素
2 2
には同一の符号を付して説明を省略する。
[0439] しかして、本実施形態の発光装置 1Bでは、実施形態 B— 25と同様、発光素子 2か らの光により励起されて発光する蛍光体粉末が封止部 19に分散されているので、発 光素子 2から放射された光と蛍光体部 3Bから放射された光と蛍光体粉末力も放射さ れた光との合成光からなる光出力が得られる。つまり、実施形態 B— 25と同様に、発 光素子 2の発光層部 21の材料として近紫外光を発光する材料を選んでおけば、発 光素子 2から放射された光によって蛍光体部 3Bと封止部 19中の蛍光体粉末との双 方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。ま た、本実施形態においても、蛍光体粉末の発光色を蛍光体部 3Bの発光色と異なら せてあるが、蛍光体粉末の発光色を蛍光体部 3Bの発光色に揃えておけば、蛍光体 部 3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光 効率を高めることができる。
[0440] 〔実施形態 B 41〕
本実施形態の発光装置 1Bの基本構成は実施形態 B— 2と略同じであって、図 48 に示すように、絶縁基板 16の一面(図 48の上面)側において発光素子 2を囲むよう に配設された枠状の枠材 18を備えており、枠材 18の内側の封止部 19を実施形態 B 2で説明した蛍光体部 3Bと同様の蛍光体部により形成している点に特徴がある。 ここに、発光素子 2と封止部 19の上面側は、ガラスや高気密樹脂よりなる透明蓋体 3 6により外界の酸素や水分から遮断されている。なお、実施形態 B— 2と同様の構成 要素には同一の符号を付して説明を省略する。蓋体 36と封止部 19は直接接してい ても空隙を有してレ、ても良レ、が、空隙無レ、方が光取り出し効率高く輝度高レ、半導体 発光デバイスを得ることができる。空隙を有する場合、真空封止や不活性ガス封入と することが好ましい。
[0441] しかして、本実施形態では、封止部 19が蛍光体部により形成されているので、蛍光 体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、 封止部 19の封止性、透明性、耐光性、耐熱性を高めたり、長時間使用に伴うクラック や剥離を抑制したりすることが可能となる。
また、本実施形態では、水分や酸素など蛍光体'封止樹脂の劣化を促進する外界 因子の侵入や、熱 ·光による封止樹脂分解ガスの揮発が蓋体 36により抑制されるた め、これらに起因する輝度低下や封止部収縮剥離が低減できるという利点がある。
[0442] ところで、上記各実施形態では、蛍光体部 3Bを所望の形状に加工したりゾルゲノレ 法で形成したりしている力 図 49に示すように、蛍光体部 3Bを直径が可視波長よりも やや大きな球状に形成して多数の蛍光体部 3Bを透光性材料力 なる固体媒質 35 中に分散させて上記各実施形態における蛍光体部の代わりに用いるようにすれば、 可視波長域での蛍光体部の透明性を維持しながらも蛍光体部の材料使用量の低減 化を図ることができ、低コスト化を図れる。
[0443] また、上記各実施形態の発光装置 1Bは 1個の発光素子 2しか備えて!/、な!/、が、複 数個の発光素子 2により 1単位のモジュールを構成し、モジュールの少なくとも一部に 発光物質としての蛍光体部を近接して配設するようにしてもよいことは勿論である。な お、例えば実施形態 B— 1で説明したような砲弾形のモールド部 11を備える発光装 置の場合には複数個の発光装置を同一プリント基板に実装して 1単位のモジュール を構成するようにしてもよい。また、例えば実施形態 B— 2で説明したような表面実装 型の発光装置については複数個の発光素子 2を同一の絶縁基板 16上に配設して 1 単位のモジュールを構成するようにしてもよ!/、。
[0444] 〔半導体発光デバイス用部材の適用〕
以上説明した各実施形態 A— 1 , A— 2, B—;!〜 B— 41の発光装置(半導体発光 デバイス) 1A, 1Bにおいて、本発明の半導体発光デバイス部材を適用する箇所は 特に制限されない。上記の各実施形態においては、透明部材 3Aや蛍光体部 3B, 3 3, 34などを形成する部材として本発明の半導体発光デバイス部材を適用した例を 示したが、これ以外にも、例えば上述のモールド部 11、枠材 18、封止部 19等を形成 する部材として好適に用いることができる。これらの部材として本発明の半導体発光 デバイス部材を用いることにより、上述した優れた封止性、透明性、耐光性、耐熱性、 成膜性、長期間使用に伴うクラックや剥離の抑制等の各種の効果を得ることが可能と なる。
[0445] また、本発明の半導体発光デバイス部材を適用する場合には、本発明を適用する 箇所に応じて、適宜変形を加えるのが好ましい。例えば、蛍光体部 3B, 33, 34に本 発明を適用する場合には、上述した蛍光体粒子又は蛍光体イオンや蛍光染料等の 蛍光成分を本発明の半導体発光デバイス用部材に混合して用いればよい。これによ つて、上に挙げた各種効果に加え、蛍光体の保持性を高めるという効果を得ることが できる。
[0446] また、本発明の半導体発光デバイス用部材は耐久性に優れているので、蛍光体を 含まず単独で使用しても、光耐久性 (紫外線耐久性)や熱耐久性に優れた封止材料 (無機系接着剤用途)として、発光素子 (LEDチップ等)を封止することが可能である
また、先述した無機粒子を本発明の半導体発光デバイス用部材に混合して用いれ ば、上に挙げた各種効果に加え、無機粒子の併用の説明において先述した効果を 得ること力 S可能となる。特に、無機粒子を併用することにより、発光素子の屈折率と近 い屈折率となるように調整したものは、好適な光取り出し膜として作用する。
[0447] 〔半導体発光デバイスの用途等〕
半導体発光デバイスは、例えば、発光装置に用いることができる。半導体発光デバ イスを発光装置に用いる場合、当該発光装置は、赤色蛍光体、青色蛍光体及び緑 色蛍光体の混合物を含む蛍光体含有層を、光源上に配置すればよい。この場合、 赤色蛍光体は、青色蛍光体、緑色蛍光体とは必ずしも同一の層中に混合されなくて もよぐ例えば、青色蛍光体と緑色蛍光体を含有する層の上に赤色蛍光体を含有す る層が積層されていてもよい。
[0448] 発光装置において、蛍光体含有層は光源の上部に設けることができる。蛍光体含 有層は、光源と封止樹脂部との間の接触層として、または、封止樹脂部の外側のコ 一ティング層として、または、外部キャップの内側のコーティング層として提供できる。 また、封止樹脂内に蛍光体を含有させた形態をとることもできる。
[0449] 使用される封止樹脂としては、本発明の半導体発光デバイス用部材を用いることが できる。また、その他の樹脂を使用することもできる。そのような樹脂としては、通常、 熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば 、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン一アタリロニトリ ル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フエノキシ 樹脂;ブチラール樹脂;ポリビュルアルコール;ェチルセル口ース、セル口ースァセテ ート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フエノー ル樹脂;シリコーン樹脂等が挙げられる。また、無機系材料、例えば、金属アルコキシ ド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾルーゲル 法により加水分解重合して成る溶液又はこれらの組み合わせを固化した無機系材料 、例えばシロキサン結合を有する無機系材料を用いることができる。なお、封止樹脂 は、 1種を用いても良ぐ 2種以上を任意の組み合わせ及び比率で併用しても良い。
[0450] 封止樹脂に対する蛍光体の使用量は特に限定されるものではないが、通常、封止 樹脂 100重量部に対して 0. 01重量部以上、好ましくは 0. 1重量部以上、より好まし くは 1重量部以上、また、通常 100重量部以下、好ましくは 80重量部以下、より好ま しくは 60重量部以下である。
[0451] また、封止樹脂に蛍光体や無機粒子以外の成分を含有させることもできる。例えば 、色調補正用の色素、酸化防止剤、燐系加工安定剤等の加工 '酸化および熱安定 化剤、紫外線吸収剤等の耐光性安定化剤およびシランカップリング剤を含有させる こと力 Sできる。なお、これらの成分は、 1種で用いても良ぐ 2種以上を任意の組み合 わせ及び比率で併用しても良!/、。
[0452] 光源に制限は無いが、 350nm〜500nmの範囲にピーク波長を有する光を発光す るものが好ましく、具体例としては、発光ダイオード(LED)またはレーザーダイオード (LD)等を挙げること力 Sできる。その中でも、 GaN系化合物半導体を使用した、 GaN 系 LEDや LDが好ましい。なぜなら、 GaN系 LEDや LDは、この領域の光を発する Si C系 LED等に比し、発光出力や外部量子効率が格段に大きぐ前記蛍光体と組み 合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例 えば、 20mAの電流負荷に対し、通常 GaN系 LEDや LDは SiC系の 100倍以上の 発光強度を有する。 GaN系 LEDや LDにおいては、 Al Ga N発光層、 GaN発光層 、または In Ga N発光層を有しているものが好ましい。 GaN系 LEDにおいては、そ
X Y
れらの中で In Ga N発光層を有するものが発光強度が非常に強いので、特に好まし
X Y
く、 GaN系 LDにおいては、 In Ga N層と GaN層の多重量子井戸構造のものが発光
X Y
強度が非常に強いので、特に好ましい。
[0453] なお、上記において X + Yの値は通常 0. 8〜; 1. 2の範囲の値である。 GaN系 LED において、これら発光層に Znや Siをドープしたものやドーパント無しのものが発光 特性を調節する上で好ましレ、ものである。
[0454] GaN系 LEDはこれら発光層、 p層、 n層、電極、および基板を基本構成要素とした ものであり、発光層を n型と p型の Al Ga N層、 GaN層、または In Ga N層などでサ
X Y X Y
ンドイッチにしたへテロ構造を有しているものが発光効率が高ぐ好ましぐさらにへテ 口構造を量子井戸構造にしたものが発光効率がさらに高ぐより好ましい。
[0455] 発光装置は、白色光を発するものであり、装置の発光効率が 201m/W以上、好ま しくは 221m/W以上、より好ましくは 251m/W以上であり、特に好ましくは 281m/ W以上であり、平均演色評価指数 Raが 80以上、好ましくは 85以上、より好ましくは 8 8以上である。
[0456] 発光装置は、単独で、又は複数個を組み合わせることにより、例えば、照明ランプ、 液晶パネル用等のバックライト、超薄型照明等の種々の照明装置、画像表示装置と して使用すること力でさる。
[0457] さらに、本発明の半導体デバイス用部材は LED素子封止用、特に青色 LED及び 紫外 LEDの素子封止用として有用なものである。また、青色発光素子又は紫外発光 素子を励起光源とし、蛍光体により波長変換した白色 LED及び電球色 LEDなどの 高出力照明光源用蛍光体保持材として好ましく使用することが出来る。その他にもそ の優れた耐熱性、耐紫外線性、透明性等の特性から下記のディスプレイ材料等の用 途に用いることができる。
[0458] ディスプレイ材料としては、例えば、液晶ディスプレイの基板材料、導光板、プリズム シート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム等の 液晶表示装置周辺材料、次世代フラットパネルディスプレイであるカラープラズマデ イスプレイ(PDP)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材.前 面ガラスの保護フィルム、前面ガラス代替材料、接着材等、プラズマアドレス液晶(P ALC)ディスプレイの基板材料、導光板、プリズムシート、偏向板、位相差板、視野角 補正フィルム、接着剤、偏光子保護フィルム等、有機 EL (エレクト口ルミネッセンス)デ イスプレイの前面ガラスの保護フィルム、前面ガラス代替材料、接着剤等、フィールド ェミッションディスプレイ(FED)の各種フィルム基板、前面ガラスの保護フィルム、前 面ガラス代替材料、接着剤等が挙げられる。
[0459] 本発明の半導体デバイス用部材は密着性に優れ、公知の付加縮合型シリコーン樹 脂では困難な重ね塗りによる積層が可能である。この特性を生かし、例えばメチル基 主体の本発明の半導体デバイス用部材を低屈折率層とし、フエニル基などの高屈折 有機基やジルコユアナノ粒子などを導入した高屈折率層と積層することにより、屈折 率差のある層構造を形成し、高耐久かつ密着性及び可撓性に優れた導光層を容易 に形成することができる。
実施例
[0460] 以下、実施例を挙げて本発明をより具体的に説明するが、それらは本発明の説明 を目的とするものであって、本発明をこれらの態様に限定することを意図したものでは ない。
[0461] [I]第一実施例群
[I 1]分析方法
後述する各実施例及び各比較例の半導体デバイス用部材について、以下の手順 で分析を行なった。
[0462] [1- 1 1]加熱重量減(TG— DTA)の測定
各実施例及び各比較例の半導体デバイス用部材の lOmgの破砕片を用いて、熱 重直'不差熱 (thermogravimetry ― differential thermal analysis :以「一適 gTTG-DTAjと略す。 )測定装置(セイコーインスツルメンッ社製 TG/DTA6200 )により、空気 200ml/min流通下、昇温速度 10°C/minで 35°C力も 500°Cまで加 熱し、加熱重量減の測定を行なった。なお、破砕片の精秤が困難であるものについ ては、有効数字の範囲を考慮して、 10 ± lmgの範囲の破砕片は lOmgの破砕片とし て取り扱った。 [0463] [I 1 2]密着性評価方法
(1)実施例及び比較例の半導体デバイス用部材の硬化前の加水分解 '重縮合液( 半導体デバイス用部材形成液)を直径 9mm、凹部の深さ lmmの Agメツキ表面の銅 製カップに滴下し、所定の硬化条件で硬化させて測定用サンプル(半導体デバイス 用部材)を作製する。
(2)厚さ lmm、縦 25mm、横 70mmのアルミ板に放熱用シリコーングリースを薄く塗 り、得られた測定用サンプルを並べて温度 85°C、湿度 85%の雰囲気(以下適宜、「 吸湿環境」とレ、う)下で 20時間吸湿させる。
(3)吸湿させた測定用サンプルを、前記(2)の吸湿環境下から取り出し、室温(20〜 25°C)まで冷却させる。 260°Cに設定したホットプレート上に、吸湿させ冷却した測定 用サンプルをアルミ板ごと戴置し、 1分間保持する。この条件において、測定用サン プル実温は約 50秒で 260°Cに達し、その後 10秒間 260°Cに保持される。
(4)加熱後のサンプルをアルミ板ごとステンレス製、室温の冷却板上に置き、室温ま で冷却させる。 目視及び顕微鏡観察により、測定用サンプルの前記銅製カップから の剥離の有無を観察する。わずかでも剥離が観察されるものは、「剥離有」とする。
(5)測定用サンプル 10個につき、それぞれ、前記(2)、(3)及び (4)の操作を実施し 、前記測定用サンプルの剥離率を求める。
[0464] [I 1 3]硬度測定
実施例及び比較例の半導体デバイス用部材につ!/、て、古里精機製作所製 A型 (デ ュロメータタイプ A)ゴム硬度計を使用し、 JIS K6253に準拠して硬度(ショァ A)を測 定した。
[0465] [1- 1 -4]耐熱性試験
実施例及び比較例の半導体デバイス用部材について、テフロン (登録商標)シヤー レを用いて作製した直径 5cm、膜厚 lmmのサンプルを温度 200°Cの通風乾燥機中 で 500時間保持した。このサンプルの 400nmにおける透過率変化を試験前後で比 較した。
[0466] [I 1 5]ケィ素含有率の測定
各実施例及び各比較例の半導体デバイス用部材の単独硬化物を 100 a m程度に 粉砕し、白金るつぼ中にて大気中、 450°Cで 1時間、ついで 750°Cで 1時間、 950°C で 1. 5時間保持して焼成し、炭素成分を除去した後、得られた残渣少量に 10倍量 以上の炭酸ナトリウムを加えてバーナー加熱し溶融させ、これを冷却して脱塩水を加 え、更に塩酸にて pHを中性程度に調整しつつケィ素として数 ppm程度になるよう定 容し、セイコー電子社製「SPS1700HVR」を用いて ICP分析を行なった。
[0467] [I 1 6]連続点灯試験
実施例及び比較例で得られた封止材液を用いて半導体発光デバイスを作製し、そ の半導体発光デバイスに駆動電流 20mAを通電して温度 85°C相対湿度 85%にて 連続点灯を行った。 500時間経過後の輝度を測定し、点灯試験前の輝度と比較した
[0468] なお、半導体発光デバイスは以下のようにして用意した。即ち、まず、 LED光源とし て、図 50に示すように、カップ 101と LEDチップ 102とからなる表面実装型の LED素 子 103を作製した。カップ 101はポリフタルアミドにより形成されたもので、その底部に は図示しない電極が設けられている。また、 LEDチップ 102は、発光層として発光ピ ーク波長が 405nmのフェイスアップ型 GaN系半導体を備えるものを用いた。さらに、 ダイボンド剤としてエポキシ樹脂を用レ \ LEDチップ 102をカップ 101内の電極表面 にダイボンディング機器 (Westbond社製「マニュアルダイポンダー」 )でダイボンドし た。また、 LEDチップ 102の上部には電極(図示せず)が設けられていて、この電極 とカップ 101の電極とを日本アビォニタス社製ワイヤポンダー「MB— 2200」を用いて 金線にてワイヤボンディングし、電気的導通を取った。次に、実施例及び比較例で用 意した封止材液を、マイクロピペットを用いてカップ 101内にカップの上縁と同等の高 さになるよう滴下した。次いで、所定の温度条件にて封止材液を硬化させ、透明封止 層(半導体デバイス用部材)を備えた半導体発光デバイスを作製した。
[0469] [I 1 7]ヒートサイクル試験
実施例及び比較例の封止材液を表面実装用ポリフタルアミド性カップ (チップ無し 空カップ)にポッティングし、各々の封止材液を所定の硬化条件で硬化させた。この 空 PKG塗布品をタバイエスペック社製小型環境試験器 SH— 241に入れ、湿度調整 無し、「一 40。Cで 30分静置し、 40〜 00。Cに 日寺間力、けて昇温し、 100。Cで 30分 静置し、 100〜― 40°Cに 1時間かけて降温する操作」を 1サイクル (合計 3時間)とし て、 200サイクルの温度サイクル試験を実施した。 200サイクル後にサンプルを取り 出し、実体顕微鏡を用いてカップと封止材液の接触部分の剥離の有無を観察した。
[0470] [I 2]実験操作
<実施例 I 1〉
GE東芝シリコーン製両末端シラノールジメチルシリコーンオイル XC96— 723を 14 0g、フエニルトリメトキシシランを 14g、及び、触媒としてジルコニウムテトラァセチルァ セトネート粉末を 0· 308g用意し、これを攪拌翼とコンデンサとを取り付けた三つ口コ ルペン中に計量し、室温にて 15分触媒が十分溶解するまで攪拌した。この後、反応 液を 120度まで昇温し、 120度全還流下で 30分間攪拌しつつ初期加水分解を行つ た。
[0471] 続いて窒素を SV20で吹き込み生成メタノール及び水分、副生物の低沸ケィ素成 分を留去しつつ 120°Cで攪拌し、さらに 6時間重合反応を進めた。なお、ここで「SV」 とは「Space Velocity」の略称であり、単位時間当たりの吹き込み体積量を指す。よ つて、 SV20とは、 1時間に反応液の 20倍の体積の Nを吹き込むことをいう。
2
窒素の吹き込みを停止し反応液をいつたん室温まで冷却した後、ナス型フラスコに 反応液を移し、ロータリーエバポレーターを用いてオイルバス上 120°C、 lkPaで 20 分間微量に残留しているメタノール及び水分、低沸ケィ素成分を留去し、無溶剤の 封止材液 (半導体デバイス用部材形成液)を得た。
[0472] 上述の封止材液 2gを直径 5cmのテフロン (登録商標)シャーレに入れ、防爆炉中、 微風下、 110°Cで 1時間保持し、次いで 150°Cで 3時間保持したところ、厚さ約 lmm の独立した円形透明エラストマ一状膜が得られた。これをサンプルとして用いて、 [I 1 1]加熱重量減 (TG DTA)の測定、 [I 1 3]硬度測定、 [I 1 4]耐熱 性試験、及び、 [I 1 5]ケィ素含有率の測定を実施した。結果を表 2に示す。なお 、表 2において TG— DTAの欄の数ィ直は負の数となっているが、これは、重量が減少 して!/、ることを表わして!/、る。
[0473] また、この封止材液を用いて [I 1 2]密着性評価方法、 [I 1 6]連続点灯試 験、及び、 [1—1— 7]ヒートサイクル試験を行った。この際、前記所定の硬化条件とし て、 90°Cで 2時間、 110°Cで 1時間、続いて 150°Cで 3時間保持することにより封止 材液を硬化させるようにした。結果を表 2に示す。
[0474] <実施例 I 2〉
GE東芝シリコーン製両末端シラノールジメチルシリコーンオイル XC96— 723を 10 0g、フエニルトリメトキシシランを 10g、及び、触媒としてジルコニウムテトラ n—プロボ キシド溶液(ジルコニウムテトラ n プロポキシドの 75重量0 /on プロパノール溶液 5 重量部をトルエン 95重量部で希釈したもの)を 22g用意し、これを攪拌翼とコンデン サとを取り付けた三つ口コルベン中に計量し、室温にて大気圧下 15分攪拌し、初期 加水分解を行った後に約 50度にて 8時間攪拌しつつ加熱した。この後、反応液を室 温まで冷却し、ナス型フラスコに移し、ロータリーエバポレーターを用いて 50°C、 lkP aで 30分間溶媒及び反応によって生じたアルコールや水分、低沸ケィ素成分を留去 し、無溶剤の封止材液を得た。
[0475] 上述の封止材液 2gを、実施例 I 1と同様に、直径 5cmのテフロン (登録商標)シャ ーレに入れ、防爆炉中、微風下、 110°Cで 1時間保持し、次いで 150°Cで 3時間保持 したところ、厚さ約 lmmの独立した円形透明エラストマ一状膜が得られた。これをサ ンプルとして用いて、 [1 1 1]加熱重量減(丁0— 0丁八)の測定、 [1—1 3]硬度 測定、 [I 1 4]耐熱性試験、及び、 [I 1 5]ケィ素含有率の測定を実施した。 結果を表 2に示す。
[0476] また、この封止材液を用いて、 [1—1 2]密着性評価方法、 [1—1 6]連続点灯 試験、及び、 [1—1— 7]ヒートサイクル試験を行った。この際、前記所定の硬化条件と して、実施例 1—1と同様の硬化条件で封止材液を硬化させるようにした。結果を表 2 に示す。
[0477] <実施例 I 3〉
攪拌翼とジムロートコンデンサを取り付けた lOOccコルベンに信越化学製メチルノヽ イドロジェンポリシロキサン KF— 99を 27g、東京化成工業製ビュルトリメトキシシラン 3 2. 41g、及び白金元素換算で 5ppmの付加縮合触媒を計量し、攪拌して均一に混 合した。この液を窒素雰囲気下 100°Cで 20時間加熱し、粘度 300mPa' sのメトキシ 基含有ポリジメチルシロキサンを得た。 ifi— NMRにてこの液のビュル基残存量を測 定したところ、完全に消失していた。 100mlナス型フラスコにてこの液 lgにモメンティ ブ 'パフォーマンス 'マテリアルズ'ジャパン合同会社製両末端シラノールポリジメチル シロキサン XC96— 723を 10g、及び縮合触媒としてジルコニウムテトラァセチルァセ トネート粉末 0. 01 lgを混合し、室温にて密栓して触媒が完全に溶解するまでスター ラー攪拌した。この後、ジムロートコンデンサを取り付けて窒素雰囲気下反応液を 11 0°Cに昇温し、 30分間リフラックスを行なった。反応液をいつたん室温まで冷却した後 、ナス型フラスコをロータリーエバポレーターに接続し、オイルバス上で 120°C、 lkPa で 30分間微量に残留しているメタノール及び水分、低沸ケィ素成分を留去し、無溶 剤の封止材液(半導体デバイス用部材形成液)を得た。
[0478] 上述の封止材液 2gを直径 5cmのテフロン (登録商標)シャーレに入れ、防爆炉中、 微風下、 110°Cで 1時間保持し、次いで 150°Cで 3時間保持したところ、厚さ約 lmm の独立した円形透明エラストマ一状膜が得られた。これをサンプルとして用いて、 [I 1 1]加熱重量減 (TG DTA)の測定、 [I 1 3]硬度測定、 [I 1 4]耐熱 性試験、及び、 [I 1 5]ケィ素含有率の測定を実施した。結果を表 2に示す。
[0479] また、この封止材液を用いて [I 1 2]密着性評価方法、 [I 1 6]連続点灯試 験、及び、 [1—1— 7]ヒートサイクル試験を行った。この際、前記所定の硬化条件とし て、 90°Cで 2時間、 110°Cで 1時間、続いて 150°Cで 3時間保持することにより封止 材液を硬化させるようにした。結果を表 2に示す。
[0480] <比較例 I 1〉
GE東芝シリコーン製両末端シラノールジメチルシリコーンオイル XC96— 723を 10 0g、フエニルトリメトキシシランを 10g、及び、触媒としてアルミニウムトリァセチルァセト ネートの 5重量%メタノール溶液を 22g用意し、これを攪拌翼とコンデンサとを取り付 けた三つ口コルベン中に計量し、室温にて大気圧下 15分攪拌し、初期加水分解を 行った後に約 75°Cにて 4時間攪拌しつつ還流させた。この後内温が 100°Cになるま でメタノール及び低沸ケィ素成分を常圧にて留去し、さらに 100°Cで 4時間攪拌しつ つ還流させた。反応液を室温まで冷却し、無溶剤の封止材液を調液した。
[0481] 上述の封止材液 2. 5gを、直径 5cmのテフロン (登録商標)シャーレに入れ、防爆 炉中、微風下、 50°Cで 30分、 110°Cで 1時間保持し、次いで 150°Cで 3時間保持し たところ、厚さ約 lmmの独立した円形透明エラストマ一状膜が得られた。これをサン プルとして用いて、 [I 1 1]加熱重量減 (TG— DTA)の測定、 [I 1 3]硬度測 定、 [I 1 4]耐熱性試験、及び、 [I 1 5]ケィ素含有率の測定を実施した。結 果を表 2に示す。
[0482] また、この封止材液を用いて [I 1 2]密着性評価方法、 [I 1 6]連続点灯試 験、及び、 [1—1— 7]ヒートサイクル試験を行った。この際、前記所定の硬化条件とし て、 50°Cで 30分、 120°Cで 1時間、続いて 150°Cで 3時間保持することにより封止材 液を硬化させるようにした。結果を表 2に示す。
[0483] <比較例 I 2〉
半導体発光デバイス用モールド剤として使用されている市販のシリコーン樹脂(東 レダウコーユング社製 JCR6101UP)を封止材液として用意した。
この封止材液 30gをテフロン (登録商標)板上にアプリケーター塗工し、 25°Cで 1時 間、真空脱気を行なった後、 150°Cで 2時間加熱して乾燥した後、これを剥がして厚 さ約 lmmのエラストマ一状膜を得た。これをサンプルとして用いて、 [1—1— 1]加熱 重量減 (TG DTA)の測定、 [I 1 3]硬度測定、 [I 1 4]耐熱性試験、及び、 [1- 1 - 5]ケィ素含有率の測定を実施した。結果を表 2に示す。
[0484] また、この封止材液を用いて [I 1 2]密着性評価方法、 [I 1 6]連続点灯試 験、及び、 [1—1— 7]ヒートサイクル試験を行った。この際、前記所定の硬化条件とし て、 150°Cで 2時間加熱することにより封止材液を硬化させるようにした。結果を表 2 に示す。なお、前記所定の硬化条件で得られた封止部材はエラストマ一状の封止部 材であった。
[0485] <比較例 I 3〉
半導体発光デバイス用モールド剤として使用されている市販の 2液型シリコーン樹 脂(ペルノックス社製 XJL0012)を封止材液として用意した。
この封止材液 2gを直径 5cmのテフロン (登録商標)シャーレに入れ、防爆炉中、微 風下、 150°Cで 3時間保持したところ、厚さ約 lmmの独立した円形透明硬質膜が得 られた。これをサンプルとして用いて、 [1 1 1]加熱重量減(丁0— 0丁八)の測定、 [I 1 3]硬度測定、 [I 1 4]耐熱性試験、及び、 [I 1 5]ケィ素含有率の測 定を実施した。結果を表 2に示す。
[0486] また、この封止材液を用いて [I 1 2]密着性評価方法、 [I 1 6]連続点灯試 験、及び、 [1—1— 7]ヒートサイクル試験を行った。この際、前記所定の硬化条件とし て、 150°Cで 3時間加熱することにより封止材液を硬化させるようにした。結果を表 2 に示す。なお、前記所定の硬化条件で得られた封止部材は透明硬質の封止部材で あった。
[0487] <比較例 I 4〉
メチノレシリケー卜(三菱ィ匕学社製 MKCシリケ一卜 MS51) 30. 80g、メタノーノレ 56. 53g、水 6· 51g、及び、触媒として 5%ァセチルアセトンアルミニウム塩メタノール溶 液 6. 16gを用意し、これを密閉できる容器にて混合し、密栓してスターラーで撹拌し ながら 50°Cの温水バスにて 8時間加熱したのち室温に戻し、加水分解.重縮合液を 調液した。
[0488] この加水分解.重縮合液 10mlを直径 5cmのテフロン(登録商標)シャーレに入れて 実施例 1- 1と同様の条件で乾燥したところ、厚さ約 0. 3mmのガラス膜が得られたが 、乾燥途中の段階で大量のクラックが発生して粉々となり、独立した円形透明ガラス 膜として取り出すことはできなかった。ただし、これを用い、 [1—1 5]ケィ素含有率 の測定を行なった。
[0489] また、この加水分解.重縮合液をマイクロピペットにて 405nmの発光波長を持つ Ga N系の半導体発光デバイス上に滴下し、 35°Cで 30分間、次いで 50°Cで 1時間保持 し第 1の乾燥を行なった後、 150°Cで 3時間保持し第 2の乾燥を行なったところ、大量 のクラックが発生し、封止部材 (半導体デバイス用部材)として使用することはできな かった。
[0490] [表 2] ほ 2 ]
Figure imgf000132_0001
※クラックの発生により測定不能。
[0491] [1— 3]まとめ
上記の実施例によれば、本発明の半導体デバイス用部材は耐熱性、電極やリフレ クタなどに多用される銀表面をはじめとする半導体デバイス表面に対する密着性、及 び耐光性(特に耐 UV性)に優れることから、高温高湿の加速環境下の連続点灯試 験において密着性低下や変質による剥離ゃ不点灯、輝度低下を生じること無ぐ安 定した性能を維持することが出来る。また、本発明の半導体デバイス用部材は半導 体デバイスとの密着性が高く柔軟性を有することから、熱衝撃にも強ぐヒートサイク ノレ試験においても剥離を生じること無ぐ信頼性の高い半導体デバイスを提供するこ とが出来る。
[0492] これに対して、比較例 I 1の半導体デバイス用部材では実施例の部材と同様耐熱 試験による着色は見られないが、密着性が不十分でありヒートサイクル試験により剥 離が発生する。また、比較例 I 2の半導体デバイス用部材では耐熱試験による着色 は見られないが、実施例 I 1、 I 2及び比較例 I 1と比較して銀表面への密着性 が不十分であり、ヒートサイクル試験に加え連続点灯試験においても剥離 '不点灯を 生じる。さらに、比較例 1 3の半導体発光デバイス用部材は硬質であり 3官能ケィ素 を多く含み架橋度が高いため加熱重量減は少ないが、密着性が低く柔軟性にも乏し いため連続点灯では全数不点灯であり、ヒートサイクル試験でも剥離率が高い。さら に耐熱性試験では密着向上剤などの添加物に由来する着色が大きぐ連続点灯試 験でも輝度の低下が認められる。また、比較例 I 4で得られる部材は SiO力 なり
2 本来は耐熱性 ·耐光性が最も高いものと期待されるが、脱溶剤及び脱水縮合による 収縮に由来する硬化時の内部応力が大きぐ硬化時にクラック入りやすいため厚膜 の透明封止体を得ることが出来ない。
[0493] また、本発明の半導体デバイス用部材が、密着性改善のための表面処理との併用 で更に密着性向上効果を奏することが、下記の強制剥離試験にお!/、て確認された。
[強制剥離試験]
実施例 1 3 :ガラスビーカーにて 1 %酢酸水に Ίーメタクリロキシプロピルトリメトキ シシランを 1重量%となるように添加し 100gの処理液を調液した。マグネチックスター ラーを用いてこの液を室温で 1時間攪拌し、透明な加水分解液を得た。この加水分 解液に光学用ほうケィ酸ガラスの板を浸漬し、温水バスを用いて 50度 1時間表面処 理を行った。処理後のガラス板を処理液より取り出し処理面に手で触れないよう軽く 水洗し、水きりを行った後 100°Cの通風乾燥機で 1時間焼付けを行った。未処理のガ ラス板及び表面処理ガラス板平面上に実施例 I 1の半導体デバイス用部材形成液 を各々 0. 5ml滴下し、 150°C1. 5時間硬化させて厚さ 50 mの膜を得た。ピンセッ トにて膜の一端をつまみゆっくりと膜を引き剥がしたところ、処理無しガラス板に塗布 したものは膜とガラスとの界面に付着物を残しつつ膜が剥離した。一方表面処理ガラ ス板においては膜が破壊し、膜として剥離させることが出来な力 た。
[0494] 以上、本発明の半導体デバイス用部材は耐熱性、耐光性、密着性及び成膜性の ノ ランスにすぐれ、従来の半導体デバイス用部材と比較して過酷な使用条件下でも 信頼性高い半導体半導体デバイスを提供することが出来る。中でも透明性、耐 UV 性に優れることから半導体発光デバイス用部材として好適に使用することが出来る。
[0495] [Π]第二実施例群
[II 1]分析方法
後述する各実施例及び各比較例の半導体デバイス用部材について、以下の手順 で分析を行なった。
[0496] [II- 1 - 1]耐熱性試験 後述の実施例及び比較例の封止材(半導体デバイス用部材)について、テフロン( 登録商標)シャーレを用いて作製した直径 5cm、膜厚 lmmのサンプルを温度 200°C の通風乾燥機中で 500時間保持した。このサンプルの 400nmにおける透過率変化 を試験前後で比較した。
[0497] [II- 1 - 2]耐 UV性試験
後述の実施例及び比較例の封止材(半導体デバイス用部材)について、テフロン( 登録商標)シャーレを用いて作製した直径 5cm、膜厚約 0. 5mmのサンプルを用い、 下記条件にて紫外光を照射し、照射前後の膜の波長 400nmの光における透過率の 維持率を測定した。
照射装置:スガ試験機株式会社製加速耐光試験機 メタリングウエザーメーター MV 30照射波長: 255nm以上、主波長は 300nm〜450nm (480nm〜580nmに輝線 有り)の照射光を紫外線カットフィルムを用いて、中心波長 380nm、波長 370nm以 上とした。
照射時間:72時間
放射強度: 0. 6kW/m2
[0498] [Π— 1 3]連続点灯試験
後述の実施例及び比較例で得られた封止剤液を用いて半導体発光装置を作製し 、その半導体発光装置について、以下の連続点灯試験を行なった。
[II- 1 3 1]半導体発光装置の作製
タリー社製の 900 ^ 111角チップ「C460— XB900」を、 Au— Sn共晶半田でサブマ ゥント上に固着後、サブマウントを Au— Sn共晶半田にて、ェムシ一ォ一社製メタル パッケージ上に固着させた。チップ上の電極から金線にてメタルパッケージ上のピン
[0499] [Π— 1 3— 2]連続点灯試験
チップ(半導体素子)に、発光面の温度が 100 ± 10°Cとなる様に維持しながら 350 mAの駆動電流を通電して、温度 85°C相対湿度 85%にて 500時間連続点灯を行つ た。点灯直後の輝度に対する 500時間後の輝度の百分率 (輝度維持率)を測定した なお、輝度の測定には、オーシャンォプテイクス社製分光器「USB2000」(積算波 長範囲: 380— 800nm、受光方式: 100mm φの積分球)を用い、 25°C恒温槽内で 測定した。温度上昇を防ぐために、熱伝導性絶縁シートを介し 3mm厚のアルミ板に て放熱を行なった。
[0500] [II 1 4]密着性評価方法
(1)実施例及び比較例の封止材の硬化前の加水分解 '重縮合液(半導体デバイス 用部材形成液)を直径 9mm、凹部の深さ lmmの Agメツキ表面の銅製カップに滴下 し、所定の硬化条件で硬化させて測定用サンプルを作製した。
(2)厚さ lmm、縦 25mm、横 70mmのアルミ板に放熱用シリコーングリースを薄く塗 り、得られた測定用サンプルを並べて温度 85°C、湿度 85%の雰囲気(以下適宜、「 吸湿環境」とレ、う)下で 1時間吸湿させた。
(3)吸湿させた測定用サンプルを、前記(2)の吸湿環境下から取り出し、室温(20〜 25°C)まで冷却させた。 260°Cに設定したホットプレート上に、吸湿させ冷却した測定 用サンプルをアルミ板ごと戴置し、 1分間保持した。この条件において、測定用サン プル実温は約 50秒で 260度に達し、その後 10秒間 260度に保持された。
(4)加熱後のサンプルをアルミ板ごとステンレス製、室温の冷却板上に置き、室温ま で冷却させた。 目視及び顕微鏡観察により、測定用サンプルの前記銅製カップから の剥離の有無を観察した。わずかでも剥離が観察されるものは、「剥離有」とした。
(5)測定用サンプル 10個につき、それぞれ、前記(2)、 (3)及び (4)の操作を実施し 、前記測定用サンプルの剥離率を求めた。
[0501] [Π— 2]実験操作
<実施例 II 1〉
GE東芝シリコーン製両末端シラノールジメチルシリコーンオイル XC96— 723を 14 0g、フエニルトリメトキシシランを 14g、及び、触媒としてジルコニウムテトラァセチルァ セトネート粉末を 0· 308g用意し、これを攪拌翼とコンデンサとを取り付けた三つ口コ ルペン中に計量し、室温にて 15分触媒が十分溶解するまで攪拌した。この後、反応 液を 120度まで昇温し、 120度全還流下で 30分間攪拌しつつ初期加水分解を行つ た。 [0502] 続いて窒素を SV20で吹き込み生成メタノール及び水分、副生物の低沸ケィ素成 分を留去しつつ 120°Cで攪拌し、さらに 6時間重合反応を進めた。なお、ここで「SV」 とは「Space Velocity」の略称であり、単位時間当たりの吹き込み体積量を指す。よ つて、 SV20とは、 1時間に反応液の 20倍の体積の Nを吹き込むことをいう。
2
窒素の吹き込みを停止し反応液をいつたん室温まで冷却した後、ナス型フラスコに 反応液を移し、ロータリーエバポレーターを用いてオイルバス上 120°C、 lkPaで 20 分間微量に残留しているメタノール及び水分、低沸ケィ素成分を留去し、無溶剤の 封止剤液 (半導体デバイス用部材形成液)を得た。
[0503] 上述の封止剤液 2gを直径 5cmのテフロン (登録商標)シャーレに入れ、防爆炉中、 微風下、 110°Cで 1時間保持し、次いで 150°Cで 3時間保持したところ、厚さ約 lmm の独立した円形透明エラストマ一状膜が得られた。これをサンプルとして用いて、上 記 [Π— 1]の各評価を行なった。結果を表 3に示す。
[0504] <実施例 II 2〉
GE東芝シリコーン製両末端シラノールジメチルシリコーンオイル XC96— 723を 10 0g、フエニルトリメトキシシランを 10g、及び、触媒としてジルコニウムテトラ n—プロボ キシド溶液(ジルコニウムテトラ n プロポキシドの 75重量0 /on プロパノール溶液 5 重量部をトルエン 95重量部で希釈したもの)を 22g用意し、これを攪拌翼とコンデン サとを取り付けた三つ口コルベン中に計量し、室温にて大気圧下 15分攪拌し、初期 加水分解を行った後に約 50度にて 8時間攪拌しつつ加熱した。この後、反応液を室 温まで冷却し、ナス型フラスコに移し、ロータリーエバポレーターを用いて 50°C、 lkP aで 30分間溶媒及び反応によって生じたアルコールや水分、低沸ケィ素成分を留去 し、無溶剤の封止剤液を得た。
[0505] 上述の封止剤液 2gを、実施例 II 1と同様に、直径 5cmのテフロン (登録商標)シャ ーレに入れ、防爆炉中、微風下、 110°Cで 1時間保持し、次いで 150°Cで 3時間保持 したところ、厚さ約 lmmの独立した円形透明エラストマ一状膜が得られた。これをサ ンプルとして用いて、上記 [Π— 1]の各評価を行なった。結果を表 3に示す。
[0506] <実施例 II 3〉
攪拌翼とジムロートコンデンサを取り付けた lOOccコルベンに信越化学製メチルノヽ イドロジェンポリシロキサン KF— 99を 27g、東京化成工業製ビュルトリメトキシシラン 3 2. 41g、及び白金元素換算で 5ppmの付加縮合触媒を計量し、攪拌して均一に混 合した。この液を窒素雰囲気下 100°Cで 20時間加熱し、粘度 300mPa' sのメトキシ 基含有ポリジメチルシロキサンを得た。 ifi— NMRにてこの液のビュル基残存量を測 定したところ、完全に消失していた。 100mlナス型フラスコにてこの液 lgにモメンティ ブ 'パフォーマンス 'マテリアルズ'ジャパン合同会社製両末端シラノールポリジメチル シロキサン XC96— 723を 10g、及び縮合触媒としてジルコニウムテトラァセチルァセ トネート粉末 0. 01 lgを混合し、室温にて密栓して触媒が完全に溶解するまでスター ラー攪拌した。この後、ジムロートコンデンサを取り付けて窒素雰囲気下反応液を 11 0°Cに昇温し、 30分間リフラックスを行なった。反応液をいつたん室温まで冷却した後 、ナス型フラスコをロータリーエバポレーターに接続し、オイルバス上で 120°C、 lkPa で 30分間微量に残留しているメタノール及び水分、低沸ケィ素成分を留去し、無溶 剤の封止剤液 (半導体デバイス用部材形成液)を得た。
[0507] この封止剤液を用いて [Π— 1 1 ]耐熱性試験、 [II- 1 - 2]耐 UV性試験 [Π— 1 3]連続点灯試験及び [II 1 4]密着性評価方法を実施した。この際、前記所定の 硬化条件として、 90°Cで 2時間、 110°Cで 1時間、続いて 150°Cで 3時間保持するこ とにより封止剤液を硬化させるようにした。結果を表 3に示す。
[0508] <比較例 II 1〉〜<比較例 II 4〉
表 3に示す市販の封止材を用いて、上記 [Π— 1]の各評価を行なった。結果を表 3 に示す。
[0509] [表 3]
[表 3]
Figure imgf000138_0001
産業上の利用可能性
[0510] 本発明の半導体デバイス用部材の用途は特に制限されず、半導体素子等を封止 するための部材 (封止材)に代表される各種の用途に、好適に使用することができる 。中でも、青色 LED又は近紫外光 LED用の封止材又は光取り出し膜、並びに、青 色 LED又は近紫外光 LED等の発光素子を光源とする高出力白色 LED用蛍光体保 持剤として特に好適に使用することができる。
[0511] さらに、本発明の半導体デバイス用部材は LED素子封止用、特に青色 LED及び 紫外 LEDの素子封止用として有用なものである。また、青色発光素子又は紫外発光 素子を励起光源とし、蛍光体により波長変換した白色 LED及び電球色 LEDなどの 高出力照明光源用蛍光体保持材として好ましく使用することが出来る。その他にもそ の優れた耐熱性、耐紫外線性、透明性等の特性から下記の画像表示装置材料等の 用途に用いることができる。
[0512] 画像表示装置材料としては、例えば、液晶画像表示装置の基板材料、導光板、プ リズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム 等の液晶表示装置周辺材料、次世代フラットパネル画像表示装置であるカラーブラ ズマディスプレイ(PDP)の封止材、反射防止フィルム、光学補正フィルム、ハウジン グ材 ·前面ガラスの保護フィルム、前面ガラス代替材料、接着材等、プラズマアドレス 液晶(PALC)ディスプレイの基板材料、導光板、プリズムシート、偏向板、位相差板 、視野角補正フィルム、接着剤、偏光子保護フィルム等、有機 EL (エレクト口ルミネッ センス)ディスプレイの前面ガラスの保護フィルム、前面ガラス代替材料、接着剤等、 フィールドェミッションディスプレイ(FED)の各種フィルム基板、前面ガラスの保護フ イルム、前面ガラス代替材料、接着剤等が挙げられる。
[0513] 本発明の半導体デバイス用部材形成液は密着性に優れ、公知の付加縮合型シリ コーン樹脂では困難な重ね塗りによる積層が可能である。この特性を生かし、例えば メチル基主体の本発明の半導体デバイス用部材形成液を低屈折率層とし、フエニル 基などの高屈折有機基やジルコユアナノ粒子などを導入した高屈折率層と積層する ことにより、屈折率差のある層構造を形成し、高耐久かつ密着性及び可撓性に優れ た導光層を容易に形成することができる。 本発明を特定の態様を用レ、て詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。
なお本出願は、 2006年 8月 22日付で出願された日本特許出願(特願 2006— 22 5410号)、 2006年 8月 23曰付で出願された曰本特許出願(特願 2006— 226856 号)、 2007年 8月 22日付で出願された日本国特許出願(特願 2007— 216451号) 及び 2007年 8月 22日付で出願された日本国特許出願(特願 2007— 216452号) に基づいており、その全体が引用により援用される。

Claims

請求の範囲 [1] 下記加熱重量減測定方法 (I)により測定された加熱重量減が 50重量%以下であり 、且つ、下記密着性評価方法 (Π)により測定された剥離率が 30%以下である ことを特徴とする半導体デバイス用部材。 加熱重量減測定方法 (I) 前記半導体デバイス用部材の破砕片 10mgを用いて、熱重量 ·示差熱測定装置に より、空気 200ml/分流通下、昇温速度 10°C/分で 35°Cから 500°Cまで加熱し、 重量減の測定を行う。 密着性評価方法 (Π)
(1)直径 9mm、凹部の深さ lmmの銀メツキ表面銅製カップに半導体デバイス用部 材形成液を滴下し、所定の硬化条件にて硬化させて半導体デバイス用部材を得る。
(2)得られた半導体デバイス用部材を温度 85°C、湿度 85%の雰囲気下で 20時間 吸湿させる。
(3)吸湿後の半導体デバイス用部材を室温より 260°Cまで 50秒で昇温後、 260°Cで 10秒間保持する。
(4)昇温後の半導体デバイス用部材を室温まで冷却し、 目視及び顕微鏡観察により 半導体デバイス用部材の前記銅製カップからの剥離の有無を観察する。
(5)前記半導体デバイス用部材 10個につき、それぞれ、前記(2)、(3)及び (4)の操 作を実施し、前記半導体デバイス用部材の剥離率を求める。
[2] 下記加熱重量減測定方法 (I)により測定された加熱重量減が 50重量%以下であり
、且つ、デュロメータタイプ Aによる硬度測定値(ショァ A)が 5以上 90以下である ことを特徴とする半導体デバイス用部材。
加熱重量減測定方法 (I)
前記半導体デバイス用部材の破砕片 10mgを用いて、熱重量 ·示差熱測定装置に より、空気 200ml/分流通下、昇温速度 10°C/分で 35°Cから 500°Cまで加熱し、 重量減の測定を行う。
[3] メタロキサン骨格を有する
ことを特徴とする、請求項 1又は請求項 2に記載の半導体デバイス用部材。 [4] 無機粒子を含有する
ことを特徴とする、請求項;!〜 3のいずれか 1項に記載の半導体デバイス用部材。
[5] 蛍光体を含有する
ことを特徴とする、請求項;!〜 4のいずれか 1項に記載の半導体デバイス用部材。
[6] 下記式(1)で表わされる化合物及び/又はそのオリゴマーを加水分解 '重縮合して 得られる重縮合物を含有する半導体デバイス用部材形成液の製造方法であって、 前記加水分解 '重縮合を、ジルコニウム、ハフニウム、スズ、亜鉛、及びチタンより選 択される少なくとも 1種の元素を含む有機金属化合物触媒の存在下で行なう ことを特徴とする半導体デバイス用部材形成液の製造方法。
[化 1コ
Figure imgf000142_0001
(式 (1)中、
Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも 1種の 元素を表わし、
Xは、加水分解性基を表わし、
Y1は、 1価の有機基を表わし、
mは、 Mの価数を表わす 1以上の整数を表わし、
nは、 X基の数を表わす 1以上の整数を表わす。但し、 m≥nである。 )
[7] 下記式(2)で表わされる化合物及び/又はそのオリゴマーを加水分解 '重縮合して 得られる重縮合物を含有する半導体デバイス用部材形成液の製造方法であって、 前記加水分解 '重縮合を、ジルコニウム、ハフニウム、スズ、亜鉛、及びチタンより選 択される少なくとも 1種の元素を含む有機金属化合物触媒の存在下で行なう ことを特徴とする半導体デバイス用部材形成液の製造方法。
[化 2]
(M 's + X , Υ 十 J U Y 2 ( 2 )
(式 (2)中、
Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも 1種の 元素を表わし、
Xは、加水分解性基を表わし、
Y1は、 1価の有機基を表わし、
Y2は、 u価の有機基を表わし、
sは、 Mの価数を表わす 2以上の整数を表わし、
tは、 1以上、 s— 1以下の整数を表わし、
uは、 2以上の整数を表わす。 )
[8] 下記式(1)で表わされる化合物及び/又はそのオリゴマーを加水分解 '重縮合して 得られる重縮合物を乾燥させる工程を有する半導体デバイス用部材の製造方法であ つて、
前記加水分解 '重縮合を、ジルコニウム、ハフニウム、スズ、亜鉛、及びチタンより選 択される少なくとも 1種の元素を含む有機金属化合物触媒の存在下で行なう ことを特徴とする半導体デバイス用部材の製造方法。
[化 3コ
Mm + X n Y ' m _ n ( 1 ) (式 (1)中、
Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも 1種の 元素を表わし、
Xは、加水分解性基を表わし、
Y1は、 1価の有機基を表わし、
mは、 Mの価数を表わす 1以上の整数を表わし、
nは、 X基の数を表わす 1以上の整数を表わす。但し、 m≥nである。 )
[9] 下記式(2)で表わされる化合物及び/又はそのオリゴマーを加水分解 '重縮合して 得られる重縮合物を乾燥させる工程を有する半導体デバイス用部材の製造方法であ つて、
前記加水分解 '重縮合を、ジルコニウム、ハフニウム、スズ、亜鉛、及びチタンより選 択される少なくとも 1種の元素を含む有機金属化合物触媒の存在下で行なう ことを特徴とする半導体デバイス用部材の製造方法。 [化 4コ
(M s + X t Y l s _ ( _ , ) U Y 2 ( 2 )
(式 (2)中、
Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも 1種の 元素を表わし、
Xは、加水分解性基を表わし、
Y1は、 1価の有機基を表わし、
Y2は、 u価の有機基を表わし、
sは、 Mの価数を表わす 2以上の整数を表わし、
tは、 1以上、 s— 1以下の整数を表わし、
uは、 2以上の整数を表わす。 )
[10] 請求項 6又は請求項 7に記載の半導体デバイス用部材形成液の製造方法で製造 された
ことを特徴とする、半導体デバイス用部材形成液。
[11] 請求項 10記載の半導体デバイス用部材形成液と蛍光体とを含有する
ことを特徴とする、蛍光体組成物。
[12] (A)パッケージ、(B)半導体素子、及び (C)封止材を有する半導体発光デバイスで あってゝ
(A)パッケージ及び/又は (B)半導体素子において、その表面材料が Si、 A1及び Agの!/、ずれか 1以上を含有し、
(C)封止材が、下記条件 (ィ)〜(八)の全てを満たし、かつ (A)パッケージ及び/ 又は(B)半導体素子の前記表面材料と直接接して!/、る
ことを特徴とする半導体発光デバイス。
(ィ)セラミック又は金属の表面に存在する、水酸基、又は、メタロキサン結合中の酸 素と水素結合可能な官能基を有すること
(口) 200°Cに 500時間放置した前後において、波長 400nmの光における透過率 の維持率が 80 %以上 110 %以下であること
(ハ)中心波長が 380nm、かつ波長 370nm以上で、放射強度 0. 6kW/m2の光 を 72時間照射した前後において、波長 400nmの光に対する透過率の維持率が 80
%以上 110 %以下であること
[13] さらに下記条件 (二)を満たす請求項 12に記載の半導体発光デバイス。
(二)発光波長 460 ± 10nm、かつ一辺が 900 mの正方形の半導体素子に、発 光面の温度が 100 ± 10°Cとなる様に維持しながら 350mAの駆動電流を通電して、 温度 85°C相対湿度 85%にて 500時間連続点灯を行った場合に、点灯直後の輝度 に対する 500時間後の輝度の割合が 90%以上であること
[14] (C)封止材が請求項 1〜5のいずれ力、 1項に記載の半導体デバイス用部材である 請求項 12または 13に記載の半導体発光デバイス。
[15] (A)パッケージ及び/又は (B)半導体素子の前記表面材料が、 SiN、 SiC、及び
SiOの 1以上を含有する請求項 12〜; 14のいずれか 1項に記載の半導体発光デバ
2
イス。
[16] (A)パッケージ及び/又は(B)半導体素子の前記表面材料が、 Al、 A1N、 Al O
2 3 の 1以上を含有する請求項 12〜; 15のいずれか 1項に記載の半導体発光デバイス。
[17] (B)半導体素子の基板部分に、前記表面材料を有する請求項 12〜; 16のいずれか
1項に記載の半導体発光デバイス。
[18] (B)半導体素子の発光面の面積が 0. 15mm2以上である請求項 12〜 17のいずれ 力、 1項に記載の半導体発光デバイス。
[19] 動作時の(B)半導体素子の発光面の表面温度が 80°C以上 200°C以下である請求 項 12〜; 18のいずれか 1項に記載の半導体発光デバイス。
[20] 動作時の電力量が 0. 1W以上である請求項 12〜; 19のいずれか 1項に記載の半導 体発光デバイス。
[21] 請求項 12〜20のいずれか 1項に記載の半導体発光デバイスを用いて形成された 照明装置。
[22] 請求項 12〜20のいずれか 1項に記載の半導体発光デバイスを用いて形成された 画像表示装置。
PCT/JP2007/066310 2006-08-22 2007-08-22 Semiconductor device member, liquid for forming semiconductor device member, method for manufacturing semiconductor device member, and liquid for forming semiconductor device member using the method, phosphor composition, semiconductor light emitting device, illuminating apparatus and image display apparatus WO2008023746A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020097003592A KR101500765B1 (ko) 2006-08-22 2007-08-22 반도체 디바이스용 부재, 그리고 반도체 디바이스용 부재 형성액 및 반도체 디바이스용 부재의 제조 방법, 그리고 그것을 이용한 반도체 디바이스용 부재 형성액, 형광체 조성물, 반도체 발광 디바이스, 조명 장치, 및 화상 표시 장치
US12/438,283 US8502364B2 (en) 2006-08-22 2007-08-22 Semiconductor device member, production method of semiconductor-device-member formation liquid and semiconductor device member, and semiconductor-device-member formation liquid, phosphor composition, semiconductor light-emitting device, lighting system and image display system using the same
EP07792895A EP2065931A4 (en) 2006-08-22 2007-08-22 SEMICONDUCTOR ELEMENT ELEMENT, LIQUID TO FORM A SEMICONDUCTOR COMPONENT member, PROCESS FOR PRODUCING A SEMICONDUCTOR COMPONENT link and FLUID TO FORM A SEMICONDUCTOR COMPONENT member USING THE METHOD, FLUORESCENT COMPOSITION, SEMICONDUCTOR LIGHT ELEMENT, ILLUMINATION DEVICE AND IMAGE DISPLAY DEVICE
CN2007800308415A CN101506969B (zh) 2006-08-22 2007-08-22 半导体器件用部材、以及半导体器件用部材形成液和半导体器件用部材的制造方法、以及使用该方法制造的半导体器件用部材形成液、荧光体组合物、半导体发光器件、照明装置和图像显示装置
KR1020147013991A KR101523482B1 (ko) 2006-08-22 2007-08-22 반도체 디바이스용 부재, 그리고 반도체 디바이스용 부재 형성액 및 반도체 디바이스용 부재의 제조 방법, 그리고 그것을 이용한 반도체 디바이스용 부재 형성액, 형광체 조성물, 반도체 발광 디바이스, 조명 장치, 및 화상 표시 장치
US13/654,087 US20130037748A1 (en) 2006-08-22 2012-10-17 Semiconductor device member, production method of semiconductor-device-member formation liquid and semiconductor device member, and semiconductor-device-member formation liquid, phosphor composition, semiconductor light-emitting device, lighting system and image display system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-225410 2006-08-22
JP2006225410 2006-08-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/654,087 Continuation US20130037748A1 (en) 2006-08-22 2012-10-17 Semiconductor device member, production method of semiconductor-device-member formation liquid and semiconductor device member, and semiconductor-device-member formation liquid, phosphor composition, semiconductor light-emitting device, lighting system and image display system using the same

Publications (1)

Publication Number Publication Date
WO2008023746A1 true WO2008023746A1 (en) 2008-02-28

Family

ID=39106831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066310 WO2008023746A1 (en) 2006-08-22 2007-08-22 Semiconductor device member, liquid for forming semiconductor device member, method for manufacturing semiconductor device member, and liquid for forming semiconductor device member using the method, phosphor composition, semiconductor light emitting device, illuminating apparatus and image display apparatus

Country Status (7)

Country Link
US (2) US8502364B2 (ja)
EP (1) EP2065931A4 (ja)
JP (3) JP2009105432A (ja)
KR (2) KR101523482B1 (ja)
CN (1) CN101506969B (ja)
TW (2) TWI404791B (ja)
WO (1) WO2008023746A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259913A (ja) * 2008-04-14 2009-11-05 Sharp Corp チップ部品型led
WO2010021346A1 (ja) * 2008-08-20 2010-02-25 三菱化学株式会社 半導体発光装置およびその製造方法
US20100123162A1 (en) * 2008-11-18 2010-05-20 Kondo Ryosuke Optical semiconductor apparatus and method for producing the same
JP2013153175A (ja) * 2013-02-26 2013-08-08 Shin Etsu Chem Co Ltd 封止樹脂の変色抑制方法
WO2014087629A1 (ja) * 2012-12-03 2014-06-12 コニカミノルタ株式会社 ディスペンサー塗布用透光性セラミック材料、及びこれを用いたled装置の製造方法
US20150021643A1 (en) * 2012-03-09 2015-01-22 Sumitomo Osaka Cement Co., Ltd Surface-modified-metal-oxide-particle material, composition for sealing optical semiconductor element, and optical semiconductor device
JP2015143295A (ja) * 2014-01-31 2015-08-06 住友化学株式会社 Uv−led用ポリシルセスキオキサン系封止材組成物及びそのための金属アルコキシドの使用
JP2020132813A (ja) * 2019-02-25 2020-08-31 デンカ株式会社 β型サイアロン蛍光体、発光部材および発光装置
CN115831881A (zh) * 2022-11-29 2023-03-21 无锡市博精电子有限公司 一种半导体封装用管座

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI382077B (zh) * 2005-02-23 2013-01-11 Mitsubishi Chem Corp 半導體發光裝置用構件及其製造方法,暨使用其之半導體發光裝置
KR20080106402A (ko) 2006-01-05 2008-12-05 일루미텍스, 인크. Led로부터 광을 유도하기 위한 개별 광학 디바이스
JP5197368B2 (ja) * 2006-08-30 2013-05-15 京セラ株式会社 発光装置
US8080833B2 (en) * 2007-01-26 2011-12-20 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
DE112007003638T5 (de) * 2007-09-10 2010-08-12 Fujitsu Ltd., Kawasaki Prozess zum Herstellen einer siliziumhaltigen Beschichtung, siliziumhaltige Beschichtung und Halbleitervorrichtung
US10008637B2 (en) 2011-12-06 2018-06-26 Cree, Inc. Light emitter devices and methods with reduced dimensions and improved light output
EP2240968A1 (en) 2008-02-08 2010-10-20 Illumitex, Inc. System and method for emitter layer shaping
KR101431711B1 (ko) * 2008-05-07 2014-08-21 삼성전자 주식회사 발광 장치 및 발광 시스템의 제조 방법, 상기 방법을이용하여 제조한 발광 장치 및 발광 시스템
US8490678B2 (en) * 2008-06-02 2013-07-23 Gerald Ho Kim Silicon-based thermal energy transfer device and apparatus
US8238401B2 (en) * 2008-08-25 2012-08-07 Gerald Ho Kim Silicon-based lens support structure for diode laser
US8563963B2 (en) * 2009-02-06 2013-10-22 Evergrand Holdings Limited Light-emitting diode die packages and methods for producing same
TWI487747B (zh) * 2009-02-09 2015-06-11 Arakawa Chem Ind 透明密封材組合物及光半導體元件
TWI469402B (zh) * 2009-02-24 2015-01-11 Ind Tech Res Inst 發光二極體封裝結構
TWI391688B (zh) * 2009-04-06 2013-04-01 Himax Tech Ltd 微粒檢測方法及其裝置
TWI384051B (zh) * 2009-04-30 2013-02-01 Ind Tech Res Inst 液態螢光劑組成物及發光裝置
US8585253B2 (en) 2009-08-20 2013-11-19 Illumitex, Inc. System and method for color mixing lens array
US8449128B2 (en) * 2009-08-20 2013-05-28 Illumitex, Inc. System and method for a lens and phosphor layer
JP5678592B2 (ja) * 2009-12-02 2015-03-04 横浜ゴム株式会社 加熱硬化性光半導体封止用シリコーン樹脂組成物およびこれを用いる光半導体封止体
JP5050045B2 (ja) * 2009-12-22 2012-10-17 株式会社東芝 発光装置
CN102117876B (zh) * 2009-12-30 2013-02-27 展晶科技(深圳)有限公司 半导体封装结构
US8729581B2 (en) * 2010-01-13 2014-05-20 Apple Inc. Light guide for LED source
JP5421799B2 (ja) * 2010-01-18 2014-02-19 パナソニック株式会社 Ledユニット
JP2011159813A (ja) * 2010-02-01 2011-08-18 Panasonic Electric Works Co Ltd 発光装置
JP5519774B2 (ja) 2010-03-23 2014-06-11 株式会社朝日ラバー シリコーン樹脂製反射基材、その製造方法、及びその反射基材に用いる原材料組成物
JP5844252B2 (ja) 2010-04-02 2016-01-13 株式会社カネカ 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
WO2011136302A1 (ja) * 2010-04-28 2011-11-03 三菱化学株式会社 半導体発光装置用パッケージ及び発光装置
TWI505509B (zh) * 2010-06-21 2015-10-21 Hon Hai Prec Ind Co Ltd 發光二極體及光源模組
JP5560982B2 (ja) * 2010-07-16 2014-07-30 横浜ゴム株式会社 シラノール縮合触媒、光半導体封止用熱硬化性シリコーン樹脂組成物およびこれを用いる封止体
KR20120008359A (ko) * 2010-07-16 2012-01-30 삼성모바일디스플레이주식회사 봉지 기판 및 유기 발광부 사이에 uv 차단 성능 등을 가지는 층을 포함하는 유기 발광 소자
JP5971835B2 (ja) * 2010-08-23 2016-08-17 信越化学工業株式会社 硬化性シリコーン樹脂組成物及びそれを用いた発光ダイオード装置
KR20120024104A (ko) * 2010-09-06 2012-03-14 서울옵토디바이스주식회사 발광 소자
CN102447035B (zh) * 2010-10-06 2015-03-25 赛恩倍吉科技顾问(深圳)有限公司 发光二极管、制造该发光二极管的模具及方法
US8573804B2 (en) * 2010-10-08 2013-11-05 Guardian Industries Corp. Light source, device including light source, and/or methods of making the same
US20130207002A1 (en) * 2010-10-22 2013-08-15 Koninklijke Philips Electronics N.V. Luminescent material and light emitting device comprising such luminescent material
CN102569535A (zh) * 2010-12-07 2012-07-11 展晶科技(深圳)有限公司 发光二极管封装结构的制造方法
CN102544303A (zh) * 2010-12-21 2012-07-04 展晶科技(深圳)有限公司 发光二极管封装结构
US8754440B2 (en) * 2011-03-22 2014-06-17 Tsmc Solid State Lighting Ltd. Light-emitting diode (LED) package systems and methods of making the same
US8752997B2 (en) * 2011-04-28 2014-06-17 Shenzhen China Star Optoelectronics Technology Co., Ltd. Backlight module and method for coating a thermal conducting material on the backlight module
US10211380B2 (en) 2011-07-21 2019-02-19 Cree, Inc. Light emitting devices and components having improved chemical resistance and related methods
US10686107B2 (en) 2011-07-21 2020-06-16 Cree, Inc. Light emitter devices and components with improved chemical resistance and related methods
KR20140038553A (ko) 2011-07-21 2014-03-28 크리,인코포레이티드 향상된 화학적 내성을 위한 발광 장치 패키지들, 부품들 및 방법들 그리고 관련된 방법들
JP6178789B2 (ja) * 2011-08-04 2017-08-09 フィリップス ライティング ホールディング ビー ヴィ 光コンバータ及び該光コンバータを有する照明ユニット
CN102290522B (zh) * 2011-09-16 2013-07-10 陆学中 无线led封装结构及其制造方法
TWI497769B (zh) * 2011-10-03 2015-08-21 Sdi Corp A light - emitting device package and its surface treatment method
KR101939333B1 (ko) 2011-10-07 2019-01-16 서울바이오시스 주식회사 발광 다이오드 패키지
JP6133306B2 (ja) 2011-10-20 2017-05-24 フィリップス ライティング ホールディング ビー ヴィ ランプシェードを有する照明ユニット
US9496466B2 (en) 2011-12-06 2016-11-15 Cree, Inc. Light emitter devices and methods, utilizing light emitting diodes (LEDs), for improved light extraction
US20150221837A1 (en) * 2011-12-26 2015-08-06 Konica Minolta, Inc. Sealant for led device, led device, and method for producing led device
DE102012200327B4 (de) * 2012-01-11 2022-01-05 Osram Gmbh Optoelektronisches Bauelement
KR101869246B1 (ko) * 2012-01-13 2018-07-20 엘지이노텍 주식회사 발광소자 패키지
US9343441B2 (en) 2012-02-13 2016-05-17 Cree, Inc. Light emitter devices having improved light output and related methods
US9240530B2 (en) 2012-02-13 2016-01-19 Cree, Inc. Light emitter devices having improved chemical and physical resistance and related methods
TWI455372B (zh) * 2012-03-07 2014-10-01 Achrolux Inc Led封裝件及其製法
US9269874B2 (en) * 2012-05-31 2016-02-23 Konica Minolta, Inc. Sealing material for light emitting device, light emitting device using the same, and manufacturing method for light emitting device
TWI460265B (zh) * 2012-11-12 2014-11-11 Ritedia Corp 導熱複合材料及其衍生之發光二極體
US10497633B2 (en) * 2013-02-06 2019-12-03 The Board Of Trustees Of The University Of Illinois Stretchable electronic systems with fluid containment
JP6141064B2 (ja) * 2013-03-21 2017-06-07 日立オートモティブシステムズ株式会社 回路基板と筐体の接続方法
DE102013206225A1 (de) * 2013-04-09 2014-10-09 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
JP6205824B2 (ja) * 2013-04-26 2017-10-04 富士電機株式会社 パワーモジュール
US9231168B2 (en) 2013-05-02 2016-01-05 Industrial Technology Research Institute Light emitting diode package structure
WO2014189707A1 (en) * 2013-05-20 2014-11-27 Dow Corning Corporation Optomechanical body, modular optomechanical device, optic module, modular optic device, kit and methods
WO2015008243A1 (en) * 2013-07-19 2015-01-22 Koninklijke Philips N.V. Pc led with optical element and without substrate carrier
US8981408B2 (en) 2013-07-26 2015-03-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Light source having liquid encapsulant
JP6211862B2 (ja) * 2013-09-18 2017-10-11 エスアイアイ・セミコンダクタ株式会社 光半導体装置およびその製造方法
EP3070145B1 (en) * 2013-11-13 2020-06-24 LG Innotek Co., Ltd. Blue-green phosphor, and light-emitting device package
TWI707484B (zh) * 2013-11-14 2020-10-11 晶元光電股份有限公司 發光裝置
JP6428249B2 (ja) * 2013-12-25 2018-11-28 日亜化学工業株式会社 発光装置
EP3101698A4 (en) * 2014-01-31 2017-06-28 Sumitomo Chemical Company Limited Method for manufacturing semiconductor light emitting device
JP2016076634A (ja) * 2014-10-08 2016-05-12 エルジー ディスプレイ カンパニー リミテッド Ledパッケージ、バックライトユニット及び液晶表示装置
US9705051B2 (en) * 2014-11-18 2017-07-11 PlayNitride Inc. Light emitting device
US9982867B2 (en) * 2015-05-29 2018-05-29 Nichia Corporation Wavelength converting member and light source device having the wavelength converting member
EP3104067B1 (en) * 2015-06-08 2018-11-21 Epistar Corporation Lighting apparatus
DE102015111910A1 (de) * 2015-07-22 2017-01-26 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement, Verbund von optoelektronischen Bauelementen und Verfahren zur Herstellung eines optoelektronischen Bauelements
CN108886079B (zh) * 2016-03-22 2022-07-19 苏州乐琻半导体有限公司 发光器件
CN109075238B (zh) * 2016-04-18 2021-10-12 奥斯兰姆奥普托半导体有限责任公司 制造光电子部件的方法和光电子部件
TWI721005B (zh) * 2016-08-17 2021-03-11 晶元光電股份有限公司 發光裝置以及其製造方法
JP6630754B2 (ja) * 2017-02-16 2020-01-15 住友化学株式会社 硬化性樹脂組成物、硬化膜及び表示装置
CN106947906A (zh) * 2017-03-23 2017-07-14 合肥仁德电子科技有限公司 一种电子封装材料及其制备方法
TWI631734B (zh) * 2017-04-20 2018-08-01 蔡凱雄 發光二極體裝置及其封裝方法
US20180332686A1 (en) * 2017-05-15 2018-11-15 Sumitomo Chemical Company, Limited Composition, cured product and semiconductor light emitting device
JP7077202B2 (ja) 2017-10-26 2022-05-30 晶元光電股▲ふん▼有限公司 発光装置
JP6962289B2 (ja) * 2018-07-31 2021-11-05 株式会社オートネットワーク技術研究所 配線部材
KR102152382B1 (ko) * 2018-08-16 2020-09-04 (주)디씨티 양자점을 포함하는 led 패키지
EP3673846A1 (en) 2018-12-27 2020-07-01 Bogdan Ionescu Device for an electrophysiology procedure
US11133443B2 (en) 2019-01-29 2021-09-28 Samsung Electronics Co., Ltd. Light emitting device package and method of manufacturing light emitting device package
US11349051B2 (en) 2019-05-10 2022-05-31 Osram Opto Semiconductors Gmbh Optoelectronic device and method of producing an optoelectronic device
US11239213B2 (en) * 2019-05-17 2022-02-01 Applied Materials, Inc. In-situ curing of color conversion layer in recess
CN110400864A (zh) * 2019-09-02 2019-11-01 宁波升谱光电股份有限公司 一种led灯及其封装芯片
TWI823371B (zh) * 2020-01-31 2023-11-21 日商日亞化學工業股份有限公司 面狀光源
KR20220072927A (ko) * 2020-11-25 2022-06-03 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR20220136584A (ko) * 2021-03-31 2022-10-11 삼성디스플레이 주식회사 전자 제품 및 표시 장치
TWI821731B (zh) * 2021-08-23 2023-11-11 啟端光電股份有限公司 底部發光型發光二極體顯示器
CN114487008B (zh) * 2022-01-28 2022-10-04 深圳大学 一种测量相变混凝土构件复合热学参数的系统及方法

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231987A (ja) 1989-12-26 1991-10-15 Kasei Optonix Co Ltd 螢光体及びその製造方法
JPH0489871A (ja) * 1990-08-01 1992-03-24 Toray Ind Inc シリカ系被膜
JPH0525300A (ja) 1991-07-22 1993-02-02 Sekisui Fine Chem Kk 表面が改質されたプラスチツク微粒子及びその製造方法
JPH06314816A (ja) * 1993-04-30 1994-11-08 Sharp Corp 化合物半導体封止用樹脂並びに半導体装置およびその製造方法
JPH10228249A (ja) 1996-12-12 1998-08-25 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いたled表示装置
JP2927279B2 (ja) 1996-07-29 1999-07-28 日亜化学工業株式会社 発光ダイオード
JP2000096045A (ja) 1998-09-18 2000-04-04 Kasei Optonix Co Ltd 電界放出型ディスプレイ用蛍光膜及びこれを用いた電界 放出型ディスプレイ装置
JP2000123981A (ja) 1998-10-14 2000-04-28 Asahi Rubber:Kk 調色照明装置
JP2000198930A (ja) * 1998-12-28 2000-07-18 Shin Etsu Chem Co Ltd 付加硬化型シリコ―ン組成物
JP2001036147A (ja) 1999-07-22 2001-02-09 Nichia Chem Ind Ltd 発光ダイオード
JP2002033517A (ja) 2000-05-09 2002-01-31 Nichia Chem Ind Ltd 発光素子とその製造方法
JP3275308B2 (ja) 1999-04-13 2002-04-15 サンケン電気株式会社 半導体発光装置及びその製法
JP2002203989A (ja) 2000-12-21 2002-07-19 Lumileds Lighting Us Llc 発光装置及びその製造方法
JP2002223008A (ja) 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv 発光素子
JP2003128922A (ja) 2001-10-19 2003-05-08 Dow Corning Toray Silicone Co Ltd 硬化性オルガノポリシロキサン組成物および半導体装置
JP2003197976A (ja) 2001-12-27 2003-07-11 Okaya Electric Ind Co Ltd 発光ダイオード
JP2004162039A (ja) * 2002-10-22 2004-06-10 Sophia Product:Kk 光素子用の封着材組成物、封着構造体および光素子
JP2004186168A (ja) 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2004221308A (ja) 2003-01-15 2004-08-05 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2004221186A (ja) * 2003-01-10 2004-08-05 Nanotemu:Kk 半導体発光装置
JP2004231947A (ja) 2003-01-10 2004-08-19 Tsuchiya Co Ltd 蛍光体層形成用液
JP2004300247A (ja) 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置、並びに照明装置
JP2004359756A (ja) * 2003-06-03 2004-12-24 Wacker Asahikasei Silicone Co Ltd Led用封止剤組成物
JP2005022899A (ja) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp 有機基担持シリカゲル
JP2006047274A (ja) 2004-07-07 2006-02-16 East Japan Railway Co 経路誘導システム
JP2006077234A (ja) 2004-08-10 2006-03-23 Shin Etsu Chem Co Ltd Led素子封止用樹脂組成物および該組成物を硬化してなる硬化物
JP2006090804A (ja) 2004-09-22 2006-04-06 Ishikawajima Inspection & Instrumentation Co 2振動子型高温用超音波探触子
JP2006291018A (ja) 2005-04-08 2006-10-26 Shin Etsu Chem Co Ltd Led素子封止用硬化性樹脂組成物
JP2006316264A (ja) 2005-04-15 2006-11-24 Jsr Corp 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006336010A (ja) 2005-05-02 2006-12-14 Jsr Corp シロキサン系縮合物およびその製造方法、ポリシロキサン組成物
JP2006348284A (ja) 2005-05-20 2006-12-28 Jsr Corp シロキサン系縮合物およびその製造方法
JP3909826B2 (ja) 2001-02-23 2007-04-25 株式会社カネカ 発光ダイオード
JP3910080B2 (ja) 2001-02-23 2007-04-25 株式会社カネカ 発光ダイオード

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656230B2 (ja) 1987-09-28 1994-07-27 三菱重工業株式会社 ガス吹出し機構付きフランジ
JPH0815731B2 (ja) 1990-03-27 1996-02-21 成雄 安藤 成形品の処理装置
JP3725178B2 (ja) 1991-03-22 2005-12-07 東レ・ダウコーニング株式会社 室温硬化性オルガノポリシロキサン組成物
JPH06273942A (ja) 1993-03-23 1994-09-30 Konica Corp 画像形成方法
JP3334408B2 (ja) 1995-03-01 2002-10-15 三菱化学株式会社 有機電界発光素子及びその製造方法
JPH08302211A (ja) 1995-05-09 1996-11-19 Toshiba Silicone Co Ltd 難燃性熱可塑性樹脂組成物
JP3703116B2 (ja) * 1995-07-05 2005-10-05 信越化学工業株式会社 オルガノポリシロキサン樹脂の製造方法
US5674936A (en) 1996-05-10 1997-10-07 General Electric Company Non-corrosive translucent RTV compositions having good rheology
DE19725518A1 (de) * 1997-06-17 1998-12-24 Huels Silicone Gmbh Polyorganosiloxane mit Dialkoxyorganosiloxy-Gruppen
JP4408458B2 (ja) * 1997-06-30 2010-02-03 ダウ コ−ニング コ−ポレ−ション 硬化性シリコーンレジン及び硬化物の各製造方法
JPH11116240A (ja) 1997-10-15 1999-04-27 Nippon Shokubai Co Ltd 紫外線吸収性微粒子およびその用途
JPH11335493A (ja) 1998-05-26 1999-12-07 Tokai Rubber Ind Ltd ゴム製品の製法
JP2000230093A (ja) * 1998-10-20 2000-08-22 Toray Ind Inc 難燃性樹脂組成物およびそれからなる成形品
JP2000231002A (ja) * 1999-02-10 2000-08-22 Konica Corp 光学用レンズ
JP2000272071A (ja) * 1999-03-23 2000-10-03 Mitsubishi Gas Chem Co Inc ポリカーボネート樹脂積層体
JP2000298352A (ja) 1999-04-14 2000-10-24 Jsr Corp 電子部品用材料およびその使用方法
JP2001146518A (ja) * 1999-11-19 2001-05-29 Dow Corning Asia Ltd 光学用ポリシロキサン
JP2001192641A (ja) 2000-01-06 2001-07-17 Dow Corning Toray Silicone Co Ltd シーリング材組成物
JP4542656B2 (ja) 2000-02-15 2010-09-15 株式会社朝日ラバー 発光ダイオードの包装装置
FR2825713B1 (fr) 2001-06-07 2005-03-11 Rhodia Chimie Sa Systeme silicone modulateur d'adherence et son utilisation pour la preparation de compositions anti-adherentes durcissables
JP4015970B2 (ja) * 2002-06-19 2007-11-28 株式会社日本触媒 有機質無機質複合体微粒子およびその用途
JP2004040031A (ja) 2002-07-08 2004-02-05 Stanley Electric Co Ltd 表面実装型発光ダイオード
WO2004036661A2 (en) * 2002-10-15 2004-04-29 Solvay Advanced Polymers, Llc Anti-yellowing polycondensation polymer compositions and articles
JP4360595B2 (ja) 2002-10-18 2009-11-11 ペルノックス株式会社 光電変換装置
JP2003179270A (ja) 2002-11-07 2003-06-27 Sanken Electric Co Ltd 半導体発光装置
US7160972B2 (en) 2003-02-19 2007-01-09 Nusil Technology Llc Optically clear high temperature resistant silicone polymers of high refractive index
JP2004266138A (ja) 2003-03-03 2004-09-24 Hitachi Chem Co Ltd 半導体用接着フィルム、これを用いた樹脂基板及び半導体装置、並びに半導体装置の製造方法
JP4860099B2 (ja) 2003-03-12 2012-01-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 室温硬化性ポリオルガノシロキサン組成物
JP2005022898A (ja) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp 有機基含有シリカゲル
JP3897115B2 (ja) * 2003-07-09 2007-03-22 信越化学工業株式会社 半導体素子の封止方法
US7393469B2 (en) * 2003-07-31 2008-07-01 Ramazan Benrashid High performance sol-gel spin-on glass materials
JP4788109B2 (ja) 2003-10-28 2011-10-05 パナソニック電工株式会社 半導体発光装置及びその製造方法
JP2005200546A (ja) * 2004-01-15 2005-07-28 Shin Etsu Chem Co Ltd シリコーンレジン組成物及びそれを用いた被覆物品
JP4293962B2 (ja) 2004-09-24 2009-07-08 シーケーディ株式会社 非接触吸着装置
JP4634810B2 (ja) * 2005-01-20 2011-02-16 信越化学工業株式会社 シリコーン封止型led
JP2006206721A (ja) 2005-01-27 2006-08-10 Kansai Electric Power Co Inc:The 高耐熱合成高分子化合物及びこれで被覆した高耐電圧半導体装置
JP4876626B2 (ja) 2005-02-23 2012-02-15 三菱化学株式会社 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
KR20100131500A (ko) 2005-09-22 2010-12-15 미쓰비시 가가꾸 가부시키가이샤 반도체 발광 디바이스용 부재 및 그 제조 방법, 및 그것을 이용한 반도체 발광 디바이스
DE602006008259D1 (de) * 2005-12-22 2009-09-17 Rohm & Haas Siloxaneinkapselungen

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231987A (ja) 1989-12-26 1991-10-15 Kasei Optonix Co Ltd 螢光体及びその製造方法
JPH0489871A (ja) * 1990-08-01 1992-03-24 Toray Ind Inc シリカ系被膜
JPH0525300A (ja) 1991-07-22 1993-02-02 Sekisui Fine Chem Kk 表面が改質されたプラスチツク微粒子及びその製造方法
JPH06314816A (ja) * 1993-04-30 1994-11-08 Sharp Corp 化合物半導体封止用樹脂並びに半導体装置およびその製造方法
JP2927279B2 (ja) 1996-07-29 1999-07-28 日亜化学工業株式会社 発光ダイオード
JPH10228249A (ja) 1996-12-12 1998-08-25 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いたled表示装置
JP2000096045A (ja) 1998-09-18 2000-04-04 Kasei Optonix Co Ltd 電界放出型ディスプレイ用蛍光膜及びこれを用いた電界 放出型ディスプレイ装置
JP2000123981A (ja) 1998-10-14 2000-04-28 Asahi Rubber:Kk 調色照明装置
JP2000198930A (ja) * 1998-12-28 2000-07-18 Shin Etsu Chem Co Ltd 付加硬化型シリコ―ン組成物
JP3275308B2 (ja) 1999-04-13 2002-04-15 サンケン電気株式会社 半導体発光装置及びその製法
JP2001036147A (ja) 1999-07-22 2001-02-09 Nichia Chem Ind Ltd 発光ダイオード
JP2002033517A (ja) 2000-05-09 2002-01-31 Nichia Chem Ind Ltd 発光素子とその製造方法
JP2002223008A (ja) 2000-10-17 2002-08-09 Koninkl Philips Electronics Nv 発光素子
JP2002203989A (ja) 2000-12-21 2002-07-19 Lumileds Lighting Us Llc 発光装置及びその製造方法
JP3909826B2 (ja) 2001-02-23 2007-04-25 株式会社カネカ 発光ダイオード
JP3910080B2 (ja) 2001-02-23 2007-04-25 株式会社カネカ 発光ダイオード
JP2003128922A (ja) 2001-10-19 2003-05-08 Dow Corning Toray Silicone Co Ltd 硬化性オルガノポリシロキサン組成物および半導体装置
JP2003197976A (ja) 2001-12-27 2003-07-11 Okaya Electric Ind Co Ltd 発光ダイオード
JP2004162039A (ja) * 2002-10-22 2004-06-10 Sophia Product:Kk 光素子用の封着材組成物、封着構造体および光素子
JP2004186168A (ja) 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2004231947A (ja) 2003-01-10 2004-08-19 Tsuchiya Co Ltd 蛍光体層形成用液
JP2004221186A (ja) * 2003-01-10 2004-08-05 Nanotemu:Kk 半導体発光装置
JP2004221308A (ja) 2003-01-15 2004-08-05 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2004300247A (ja) 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置、並びに照明装置
JP2004359756A (ja) * 2003-06-03 2004-12-24 Wacker Asahikasei Silicone Co Ltd Led用封止剤組成物
JP2005022899A (ja) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp 有機基担持シリカゲル
JP2006047274A (ja) 2004-07-07 2006-02-16 East Japan Railway Co 経路誘導システム
JP2006077234A (ja) 2004-08-10 2006-03-23 Shin Etsu Chem Co Ltd Led素子封止用樹脂組成物および該組成物を硬化してなる硬化物
JP2006090804A (ja) 2004-09-22 2006-04-06 Ishikawajima Inspection & Instrumentation Co 2振動子型高温用超音波探触子
JP2006291018A (ja) 2005-04-08 2006-10-26 Shin Etsu Chem Co Ltd Led素子封止用硬化性樹脂組成物
JP2006316264A (ja) 2005-04-15 2006-11-24 Jsr Corp 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006336010A (ja) 2005-05-02 2006-12-14 Jsr Corp シロキサン系縮合物およびその製造方法、ポリシロキサン組成物
JP2006348284A (ja) 2005-05-20 2006-12-28 Jsr Corp シロキサン系縮合物およびその製造方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Coupling-Zai Saiteki Riyo Gijutsu", INSTITUTE FOR SCIENCE AND TECHNOLOGY
AICHE JOURNAL, vol. 44, no. 5, 1998, pages 1141
HYOMEN KAGAKU, vol. 18, no. 9, pages 21 - 26
KAZUO KUROSAKI, HYOMEN KAGAKU, vol. 19, no. 2, 1998, pages 44 - 51
NORIHIRO INAGAKI, HYOMEN KAGAKU, vol. 18, no. 9, pages 21 - 26
NORIHIRO INAGAKI, HYOMEN KAGAKU, vol. 19, no. 2, 1998, pages 44 - 51
See also references of EP2065931A4
YUKIO NARIKAWA ET AL., OYO BUTSURI, vol. 74, 2005, pages 1423 - 1432

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259913A (ja) * 2008-04-14 2009-11-05 Sharp Corp チップ部品型led
WO2010021346A1 (ja) * 2008-08-20 2010-02-25 三菱化学株式会社 半導体発光装置およびその製造方法
US20100123162A1 (en) * 2008-11-18 2010-05-20 Kondo Ryosuke Optical semiconductor apparatus and method for producing the same
US9972757B2 (en) * 2012-03-09 2018-05-15 Sumitomo Osaka Cement Co., Ltd Surface-modified-metal-oxide-particle material, composition for sealing optical semiconductor element, and optical semiconductor device
US20150021643A1 (en) * 2012-03-09 2015-01-22 Sumitomo Osaka Cement Co., Ltd Surface-modified-metal-oxide-particle material, composition for sealing optical semiconductor element, and optical semiconductor device
WO2014087629A1 (ja) * 2012-12-03 2014-06-12 コニカミノルタ株式会社 ディスペンサー塗布用透光性セラミック材料、及びこれを用いたled装置の製造方法
JP2013153175A (ja) * 2013-02-26 2013-08-08 Shin Etsu Chem Co Ltd 封止樹脂の変色抑制方法
JP2015143295A (ja) * 2014-01-31 2015-08-06 住友化学株式会社 Uv−led用ポリシルセスキオキサン系封止材組成物及びそのための金属アルコキシドの使用
WO2015115343A1 (ja) * 2014-01-31 2015-08-06 住友化学株式会社 Uv-led用ポリシルセスキオキサン系封止材組成物及びそのための金属アルコキシドの使用
JP2020132813A (ja) * 2019-02-25 2020-08-31 デンカ株式会社 β型サイアロン蛍光体、発光部材および発光装置
JP7141351B2 (ja) 2019-02-25 2022-09-22 デンカ株式会社 β型サイアロン蛍光体、発光部材および発光装置
CN115831881A (zh) * 2022-11-29 2023-03-21 无锡市博精电子有限公司 一种半导体封装用管座
CN115831881B (zh) * 2022-11-29 2024-04-30 无锡市博精电子有限公司 一种半导体封装用管座

Also Published As

Publication number Publication date
JP5880512B2 (ja) 2016-03-09
KR101523482B1 (ko) 2015-05-28
EP2065931A1 (en) 2009-06-03
US20090309116A1 (en) 2009-12-17
KR20090042807A (ko) 2009-04-30
US20130037748A1 (en) 2013-02-14
KR20140087021A (ko) 2014-07-08
JP2016131248A (ja) 2016-07-21
TWI404791B (zh) 2013-08-11
CN101506969A (zh) 2009-08-12
JP2009105432A (ja) 2009-05-14
EP2065931A4 (en) 2013-02-27
CN101506969B (zh) 2011-08-31
US8502364B2 (en) 2013-08-06
KR101500765B1 (ko) 2015-03-09
TW200821371A (en) 2008-05-16
JP6213585B2 (ja) 2017-10-18
TW201346010A (zh) 2013-11-16
JP2014027295A (ja) 2014-02-06
TWI472595B (zh) 2015-02-11

Similar Documents

Publication Publication Date Title
JP6213585B2 (ja) 半導体デバイス用部材、及び半導体発光デバイス
JP5742916B2 (ja) シリコーン系半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP5552748B2 (ja) 硬化性ポリシロキサン組成物、並びに、それを用いたポリシロキサン硬化物、光学部材、航空宇宙産業用部材、半導体発光装置、照明装置、及び画像表示装置
JP5761397B2 (ja) 半導体発光デバイス用部材形成液、半導体発光デバイス用部材、航空宇宙産業用部材、半導体発光デバイス、及び蛍光体組成物
WO2006090804A1 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2007116139A (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP5446078B2 (ja) 半導体デバイス用部材、並びに半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法、並びに、それを用いた半導体発光デバイス、半導体デバイス用部材形成液、及び蛍光体組成物
JP4876626B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2007019459A (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2009224754A (ja) 半導体発光装置、照明装置、及び画像表示装置
JP4119940B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2009179677A (ja) 硬化性ポリシロキサン化合物、及びその製造方法、並びに、それを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材
JP5694875B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780030841.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792895

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097003592

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007792895

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12438283

Country of ref document: US