JP5880512B2 - 半導体デバイス用部材形成液、半導体デバイス用部材、及び半導体発光デバイス - Google Patents

半導体デバイス用部材形成液、半導体デバイス用部材、及び半導体発光デバイス Download PDF

Info

Publication number
JP5880512B2
JP5880512B2 JP2013206246A JP2013206246A JP5880512B2 JP 5880512 B2 JP5880512 B2 JP 5880512B2 JP 2013206246 A JP2013206246 A JP 2013206246A JP 2013206246 A JP2013206246 A JP 2013206246A JP 5880512 B2 JP5880512 B2 JP 5880512B2
Authority
JP
Japan
Prior art keywords
phosphor
light
light emitting
semiconductor device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013206246A
Other languages
English (en)
Other versions
JP2014027295A (ja
Inventor
波奈子 加藤
波奈子 加藤
森 寛
寛 森
小林 博
博 小林
翼 外村
翼 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2013206246A priority Critical patent/JP5880512B2/ja
Publication of JP2014027295A publication Critical patent/JP2014027295A/ja
Application granted granted Critical
Publication of JP5880512B2 publication Critical patent/JP5880512B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/72Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus also containing halogen, e.g. halophosphates
    • C09K11/73Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus also containing halogen, e.g. halophosphates also containing alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7735Germanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/774Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7775Germanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7781Sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7794Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7795Phosphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01066Dysprosium [Dy]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01067Holmium [Ho]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Silicon Polymers (AREA)
  • Luminescent Compositions (AREA)
  • Sealing Material Composition (AREA)
  • Led Devices (AREA)

Description

本発明は、新規な半導体デバイス用部材、並びに半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法、並びに、それを用いた半導体発光デバイス、半導体デバイス用部材形成液、及び蛍光体組成物に関する。詳しくは、耐熱性、耐光性、成膜性、密着性に優れた半導体デバイス用部材、並びに半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法、並びに、それを用いた半導体発光デバイス、半導体デバイス用部材形成液、及び蛍光体組成物に関する。
半導体デバイス、特に発光ダイオード(light emitting diode:以下適宜「LED」と略する。)や半導体レーザー等の半導体発光デバイスにおいては、半導体発光素子を透明の樹脂等の部材(半導体デバイス用部材)によって封止したものが一般的である。
この半導体デバイス用部材としては、例えばエポキシ樹脂が用いられている。また、この封止樹脂中に蛍光体などの顔料を含有させることによって、半導体発光素子からの発光波長を変換するものなどが知られている。
しかし、エポキシ樹脂は吸湿性が高いので、半導体デバイスを長時間使用した際に生ずる半導体発光素子からの熱によってクラックが生じたり、また水分の浸入により蛍光体や発光素子が劣化するなどの課題があった。
また近年、発光波長の短波長化に伴いエポキシ樹脂が劣化して着色するために、長時間の点灯及び高出力での使用においては半導体デバイスの輝度が著しく低下するという課題もあった。
これらの課題に対して、エポキシ樹脂の代替品として耐熱性、紫外耐光性に優れるシリコーン樹脂が使用されるようになった。しかし、シリコーン樹脂は、密着性、透明性、耐候性はいまだ不十分であった。これに対し、耐熱性、紫外耐光性に優れた材料として、無機系封止材やこれを用いた半導体デバイスが提案されている(例えば特許文献1〜6参照)。
特許第3275308号公報 特開2003−197976号公報 特開2004−231947号公報 特開2002−33517号公報 特開2002−203989号公報 特願2006−047274号明細書
しかしながら、溶融ガラス等の無機材料は、取り扱い温度が350℃以上と高く、発光素子にダメージを与えるため、これを無機系封止材に用いることは工業的に実現されていなかった。
また、ゾルゲル法により製造されるガラスでは、半導体デバイス用部材として成形する際の硬化収縮によるクラックの発生及び剥離といった成膜性の課題があり、長期に亘り厚膜状態で安定したものは未だ得られていなかった。
また、ゾルゲル法による製造方法は反応性が高すぎるため濃縮が困難であり、溶剤を多用することが多かった。溶剤を多用した場合にはゾル中の固形分量が少なくなるため、半導体デバイス上にゾルを塗布して半導体デバイス用部材を形成する際には、所定の厚みとなるまで繰り返し塗布することになり、生産効率が悪い。また、溶剤揮発を伴いつつ硬化するので、硬化した半導体デバイス用部材に内部応力が発生しやすくクラックや剥離が起きやすいほか、環境負荷の面でも好ましくない。
さらに、これらの無機系封止剤は非常に硬くもろいため、成膜性が不十分であり、半導体デバイスに用いられる熱膨張係数の異なる各部材の熱膨張・熱収縮に追随できず、使用中に剥離やクラック、断線を多発する課題があり、耐リフロー性や耐温度サイクル性に優れるものも未だ得られていなかった。なお、ここでリフローとは、はんだペーストを基板に印刷し、その上に部品を搭載して加熱、接合するはんだ付け工法のことをいう。そして、耐リフロー性とは、最高温度260℃、10秒間の熱衝撃に耐え得る性質のことを指す。
例えば、特許文献1や特許文献2には、4官能のアルコキシシランを用いてガラス材料を形成する技術が記載されている。しかしながら、特許文献1や特許文献2に記載の技術により得られる無機材料に関していえば、4官能のアルコキシシランの加水分解液を半導体発光デバイスに塗布し、半導体発光デバイスの性能を損なわない150℃程度のマイルドな硬化温度で数時間程度硬化していた。この場合、得られるガラス材料は、通常十数重量%以上のシラノールを含有する不完全なガラス体となっていた。したがって、特許文献1や特許文献2に記載の技術からは、溶融法ガラスのように真にシロキサン結合のみからなるガラス体を得ることはできなかった。
これは、一般の有機樹脂と異なり、特許文献1や特許文献2で用いた無機材料は架橋点が非常に多いために、構造の束縛が大きく、反応性末端が孤立して縮合することが出来ないためと推察される。このようなガラス体は緻密ではなく、また、その表面はシリカゲル同様に非常に親水性が高い状態となるため、十分な封止能力を持たない。
また、一般に、250℃以上の加熱により、このような反応しにくいシラノールはごく僅かに減少をはじめ、通常350℃以上、好ましくは400℃以上の高温で焼成すればシラノールの量を積極的に減少させることが出来る。しかし、これを利用して特許文献1や特許文献2に記載の無機材料からシラノールを除去しようとしたとしても、半導体デバイスの耐熱温度は通常260℃以下であるため、実現は困難である。
さらに、4官能のアルコキシシランは、脱水・脱アルコール縮合時に脱離する成分量が多いため、本質的に硬化時の収縮率が大きい。しかも、4官能のアルコキシシランは反応性が高いために、乾燥工程にて、希釈溶媒の一部が蒸発した表面部分から硬化が始まり、溶媒を包含した硬いゲル体を形成してから内部の溶媒を放出する傾向があるので、溶媒蒸発に伴う硬化時及び硬化後の収縮量も大きくなる。このため、特許文献1や特許文献2に記載の無機材料では、結果的に収縮による大きな内部応力が発生しクラックが多発する。したがって、4官能アルコキシシランのみを原料として半導体デバイス用部材として有用な大きなバルク体や厚膜を得ることは困難であった。
また、例えば、特許文献3には、有機基を含有するシラン化合物を原料とし、ゾルゲル法により3次元状の蛍光体層を寸法精度良く作製する技術が記載されている。しかしながら、特許文献3には架橋度に対する詳細な記載は無く、また、特許文献3記載の無機材料を得るためには高濃度の蛍光体粒子を必須とし、実質的にはこれが骨材として働き3次元の形状を保つために、無機材料中に蛍光体を含まない場合、透明でクラックの無い厚膜状のガラス状塗布物を得ることは出来なかった。
さらに、特許文献3記載の技術では、触媒として酢酸が使用されているが、得られる無機材料から酢酸が除去されていないために、酢酸が半導体発光素子に悪影響を及ぼす。また、特許文献3記載の無機材料を形成する場合には、硬化に400℃の高温を要するため、半導体デバイスと共に加熱することは実質的に不可能で、かつ高温における無理な縮合によりその構造に歪みがたまり、クラック発生が抑止されていなかった。
また、例えば、特許文献4には、シリカ又はシロキサンを骨格とする無機物ゾルに無機光散乱剤を混合して得た無機コーティング剤を塗布して半導体デバイス用部材を得る技術が記載されている。しかしながら、特許文献4記載の無機材料には無機光散乱剤が必須であり、さらに、特許文献4には原料及び製造方法の詳細な記載が無く、正確に技術を再現することは不可能である。
さらに、例えば、特許文献5には、ゾルゲル法ガラスを塗布して半導体デバイス用部材を得る技術が記載されている。しかしながら、特許文献3と同様、特許文献5記載の無機材料を得るには蛍光体が必須である。また、この蛍光体が骨材として働き、得られる無機材料は厚膜となっているが、膜厚100μmを超えるものではない。さらに、特許文献5には原料や製法が記載されておらず、一般的なアルコキシシランを使用して安定に技術を再現することは困難である。
また、本発明者らは、特許文献6で、上記課題を解決しうる、特定のケイ素含有半導体デバイス用部材を開示した。しかしながら、放熱が大きい半導体パワーデバイスに用いる場合は、耐光性、成膜性、密着性を維持しつつ、耐熱安定性のレベルをさらに上げることが望ましかった。また、半導体デバイス用部材の製造工程における低沸不純物の揮発を抑え、硬化物重量歩留まりを向上させることも望まれていた。
以上の背景から、耐熱性、耐光性、成膜性、密着性に優れ、長期間使用してもクラックや剥離、着色を生じることなく半導体デバイスを封止し、蛍光体を保持することのできる半導体デバイス用部材が求められていた。
本発明は、上述の課題に鑑みてなされたものである。すなわち、本発明の目的は、耐熱性、耐光性、成膜性、密着性に優れ、長期間使用してもクラックや剥離、着色を生じることなく半導体デバイスを封止し、蛍光体を保持することのできる、新規な半導体デバイス用部材、並びに、半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法、並びに、それを用いた半導体発光デバイス、半導体デバイス用部材形成液、及び蛍光体組成物を提供することにある。
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、熱重量減が少なく、一定の成膜性を有する特定の高分子が、半導体デバイス用部材とした際に厚膜化が可能であり、厚膜部においてもクラックの発生が抑制され、且つ耐熱性、耐光性に優れたものとなることを見出し、本発明を完成させた。
即ち、本発明の各種態様は、以下のとおりである。
<1> 両末端にヒドロキシ基を有するジメチルポリシロキサンと、フェニルトリメトキシシラン又はメトキシ基含有ポリメチルシロキサンとを含む原料を加水分解・重縮合して得られる重縮合物を含有する半導体デバイス用部材形成液の製造方法であって、
前記加水分解・重縮合を、ジルコニウムを含む有機金属化合物触媒の存在下で行ない、
前記原料の総重量に対する前記有機金属化合物触媒の配合量が0.01重量%以上、1重量%以下であり、
モル比において、シラノール含有量総量がアルコキシ基含有量総量と等量以上存在する半導体デバイス用部材形成液を得ることを特徴とする、半導体デバイス用部材形成液の製造方法
<2> 上記<1>に記載の製造方法において、液温25℃において、粘度が20mPa・s以上、1500mPa・s以下である半導体デバイス用部材形成液を得ることが好ましい。
<3> 上記<1>又は<2>に記載の製造方法において、分子量が800以下の成分が、全体の10%以下である半導体デバイス用部材形成液を得ることが好ましい。
<4> 上記<1>〜<3>のいずれか1項に記載の製造方法において、アルコキシ基含有量が、5重量%以下である半導体デバイス用部材形成液を得ることが好ましい。
<5> 上記<1>乃至<4>の何れか1項に記載の半導体デバイス用部材形成液の製造方法により得られた半導体デバイス用部材形成液を、縮合型の硬化機構により硬化させることを特徴とする、半導体デバイス用部材の製造方法
本発明の半導体デバイス用部材は、耐熱性、耐光性、成膜性、密着性に優れ、長期間使用してもクラックや剥離を生じることなく半導体デバイスを封止することが可能である。また、通常、従来の無機系の半導体デバイス用部材と比較して厚膜塗布が可能であり、半導体デバイス上に塗布、乾燥するだけで容易に半導体デバイスを封止し、蛍光体を保持することができる。
本発明の半導体デバイス用部材形成液及び蛍光体組成物によれば、本発明の半導体デバイス用部材を製造することができる。
本発明の半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法によれば、本発明の半導体デバイス用部材形成液及び半導体デバイス用部材を、製造することができる。
本発明の半導体発光デバイスは、封止剤が耐熱性、耐光性、成膜性、密着性に優れているため、長期間使用しても封止剤にクラックや剥離、着色を生じることなく、長期にわたって性能を維持することができる。
実施形態A−1を示す概略断面図である。 実施形態A−2を示す概略断面図である。 実施形態B−1を示し、(a)は概略断面図、(b)は(a)の要部拡大図である。 実施形態B−2を示す概略断面図である。 実施形態B−3を示す概略断面図である。 実施形態B−4を示す概略断面図である。 実施形態B−5を示す概略断面図である。 実施形態B−6を示す概略断面図である。 実施形態B−7を示す概略断面図である。 実施形態B−8を示す概略断面図である。 実施形態B−9を示す概略断面図である。 実施形態B−10を示す概略断面図である。 実施形態B−11を示す概略断面図である。 実施形態B−12を示す概略断面図である。 実施形態B−13を示す概略断面図である。 実施形態B−14を示す概略断面図である。 実施形態B−15を示す概略断面図である。 実施形態B−16を示す概略断面図である。 実施形態B−17を示す概略断面図である。 実施形態B−18を示す概略断面図である。 実施形態B−19を示す概略断面図である。 実施形態B−20を示す概略断面図である。 実施形態B−21を示す概略断面図である。 実施形態B−21について示す要部断面図である。 実施形態B−22を示す概略断面図である。 実施形態B−22について示す要部断面図である。 実施形態B−23を示す概略断面図である。 実施形態B−23について示す要部斜視図である。 実施形態B−24を示す概略断面図である。 実施形態B−24について示す要部断面図である。 実施形態B−24について示す要部斜視図である。 実施形態B−25を示す概略断面図である。 実施形態B−26を示す概略断面図である。 実施形態B−27を示す概略断面図である。 実施形態B−28を示す概略断面図である。 実施形態B−29を示す概略断面図である。 実施形態B−30を示し、(a)は概略断面図、(b)は(a)の要部拡大図である。 実施形態B−31を示す概略断面図である。 実施形態B−32を示す概略断面図である。 実施形態B−33を示す概略断面図である。 実施形態B−34を示す概略断面図である。 実施形態B−35を示す概略断面図である。 実施形態B−36を示す概略断面図である。 実施形態B−37を示す概略断面図である。 実施形態B−38を示す概略断面図である。 実施形態B−39を示す概略断面図である。 実施形態B−40を示す概略断面図である。 実施形態B−41を示す概略断面図である。 各実施形態の要部の他の構成例の説明図である。 (a)、(b)はいずれも、各実施形態の基本概念の説明図である。 本発明の実施例及び比較例で行なった連続点灯試験について説明するため、半導体発光デバイスを模式的に示す断面図である。
以下、本発明を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内であれば種々に変更して実施することができる。
[1]半導体デバイス用部材
本発明の第一の半導体デバイス用部材は、以下の特性(1)及び(2)を有する。
特性(1):後述の特定の加熱重量減測定方法(I)により測定された加熱重量減が50重量%以下である。
特性(2):後述の特定の密着性評価方法(II)により測定された剥離率が30%以下である。
また、本発明の第二の半導体デバイス用部材は、上記の特性(1)及び以下の特性(3)を有する。
特性(3):デュロメータタイプAによる硬度測定値(ショアA)が5以上90以下である。
以下、まずこれらの特性(1)、(2)及び(3)から説明する。なお、以下の説明において、本発明の第一の半導体デバイス用部材と第二の半導体デバイス用部材とを区別せずに指す場合、単に「本発明の半導体デバイス用部材」という。
[1−1]加熱重量減
加熱重量減は、本発明の半導体デバイス用部材の高度な耐熱性を評価する指標であり、後述する加熱重量減測定方法(I)により測定される。
本発明の半導体デバイス用部材の加熱重量減は、50重量%以下であり、好ましくは40重量%以下、さらに好ましくは35重量%以下である。また、下限に制限は無いが、通常5重量%以上、好ましくは10重量%以上である(特性(1))。加熱重量減が大きすぎると、半導体デバイスの長期間の使用により収縮が起こり、初期の特性を維持できなくなる可能性がある。加熱重量減が大きくなる要因は、例えば、半導体デバイス用部材に含まれる揮発性低分子量成分が多いこと、半導体デバイス用部材を形成する主鎖成分が加熱により分解切断しやすいことなどが考えられる。また、加熱重量減が小さいと半導体デバイス用部材は熱安定性に優れるものとなるが、このような半導体デバイス用部材は一般に多官能のSi成分を多く含んでおり、硬い膜となることが多い。そのため、加熱重量減が小さすぎる半導体デバイス用部材は、耐ヒートサイクル性、耐リフロー性などに劣り、半導体デバイス用部材として好ましくない。
〔加熱重量減測定方法(I)〕
前記半導体デバイス用部材の破砕片10mgを用いて、熱重量・示差熱測定(thermogravimetry − differential thermal analysis:以下適宜「TG−DTA」と略す。)装置により、空気200ml/分流通下、昇温速度10℃/分で35℃から500℃まで加熱し、重量減の測定を行う。
本発明の半導体デバイス用部材が上記の特性(1)を有するためには、例えば、以下の要件を満たすようにすれば良い。
(i)素材の選択を適切に行なえばよい。具体例を挙げると、後述する[1−4−1]に記載の構造を有する素材を選択したり、後述する[2−1]に記載の原料を用いたりすればよい。
(ii)後述する[2−2]に記載の加水分解・重縮合工程において、触媒を選択すればよい。
(iii)後述する[2−2]の加水分解・重縮合工程、及び/又は、加水分解・重縮合物の保管に際し、分子量管理を行えばよい。
[1−2]密着性
密着性評価剥離率は、本発明の半導体デバイス用部材の密着性を評価する指標であり、後述する密着性評価方法(II)により測定される。
本発明の半導体デバイス用部材の剥離率は、通常30%以下、好ましくは20%以下、更に好ましくは10%以下である(特性(2))。中でも、0%であることが最も好ましい。剥離率が大きすぎると、基板や枠材等に対する半導体デバイス用部材の密着性及び化学的安定性が劣り、温度衝撃や熱・光・電気化学的反応により封止剤が変性・収縮しやすくなる可能性がある。そのため、半導体デバイス用部材が基板や枠材等から剥離し、半導体デバイスの断線等を生じることがある。また、特に半導体発光デバイスにおいては電極部分やリフレクタ表面には銀素材が使用されることがあるが、密着性が低下すると、この表面から半導体デバイス用部材が剥離し、半導体発光デバイスの断線や不点灯・輝度低下を誘起することがある。
〔密着性評価方法(II)〕
(1)直径9mm、凹部の深さ1mmの銀メッキ表面銅製カップに半導体デバイス用部材形成液(後述する)を滴下し、所定の硬化条件にて硬化させて半導体デバイス用部材(以下、密着性評価方法(II)の説明においては、この半導体デバイス用部材を「測定用サンプル」という)を得る。
(2)得られた測定用サンプルを温度85℃、湿度85%の雰囲気下で20時間吸湿させる。
(3)吸湿後の測定用サンプルを室温より260℃まで50秒で昇温後、260℃で10秒間保持する。なお、ここで室温とは、20℃〜25℃のことをいう。
(4)昇温後の測定用サンプルを室温まで冷却し、目視及び顕微鏡観察により測定用サンプルの銅製カップからの剥離の有無を観察する。わずかでも剥離が観察されるものは、「剥離有」とする。
(5)測定用サンプル10個につき、それぞれ、前記(2)、(3)及び(4)の操作を実施し、前記測定用サンプルの剥離率を求める。なお、剥離率は、「剥離した測定用サンプルの個数/全測定サンプル数」により算出される比率である。
本発明の半導体デバイス用部材が上記の特性(2)を有するためには、例えば、以下の要件を満たすようにすれば良い。
(i)素材の選択を適切に行なえばよい。具体例を挙げると、後述する[1−4−1]に記載の構造を有する素材を選択したり、後述する[2−1]に記載の原料を用いたりすればよい。
(ii)後述する[2−2]に記載の加水分解・重縮合工程において、触媒を選択すればよい。
(iii)後述する[2−2]の加水分解・重縮合工程、及び/又は、加水分解・重縮合物の保管に際し、分子量管理を行えばよい。
[1−3]硬度測定値
硬度測定値は、本発明の半導体デバイス用部材の硬度を評価する指標であり、以下の硬度測定方法により測定される。
本発明の半導体デバイス用部材は、エラストマー状を呈する部材であることが好ましい。即ち、半導体デバイスには熱膨張係数の異なる部材を複数使用することになるが、上記のようにエラストマー状を呈することにより、本発明の半導体デバイス用部材が上記の各部剤の伸縮による応力を緩和することができる。したがって、使用中に剥離、クラック、断線などを起こしにくく、耐リフロー性及び耐温度サイクル性に優れる半導体デバイスを提供することができる。
具体的には、本発明の半導体デバイス用部材は、デュロメータタイプAによる硬度測定値(ショアA)が、通常5以上、好ましくは7以上、より好ましくは10以上、また、通常90以下、好ましくは80以下、より好ましくは70以下である(特性(3))。上記範囲の硬度測定値を有することにより、本発明の半導体デバイス用部材は、クラックが発生しにくく、耐リフロー性及び耐温度サイクル性に優れるという利点を得ることができる。
〔硬度測定方法〕
硬度測定値(ショアA)は、JIS K6253に記載の方法により測定することができる。具体的には、古里精機製作所製のA型ゴム硬度計を用いて測定を行なうことができる。
さて、このように、本発明の第一の半導体デバイス用部材は、[1−1]で説明した特性(1)、及び、[1−2]で説明した特性(2)を備えることにより、成膜性、密着性に優れ、硬化後の光・熱に対する耐久性に優れる硬化物を得ることができる。一方、本発明の第二の半導体デバイス用部材は、[1−1]で説明した特性(1)、及び、[1−3]で説明した特性(3)を備えることによっても、成膜性に優れ、硬化後の光・熱に対する耐久性に優れる硬化物を得ることができる。
また、上記の特性(1)、(2)及び(3)の全てを満たす半導体デバイス用部材は、本発明の第一の半導体デバイス用部材と第二の半導体デバイス用部材の両方の要件を満たし、より好ましい。
[1−4]その他物性
本発明の半導体デバイス用部材は、上記特性を主な特徴とするが、その他、下記の構造や性質を有していることが好ましい。
[1−4−1]基本骨格
従来の半導体デバイス用部材の基本骨格は炭素−炭素及び炭素−酸素結合を基本骨格としたエポキシ樹脂等の有機樹脂であるが、本発明の半導体デバイス用部材の基本骨格は、通常はメタロキサン骨格、好ましくはガラス(ケイ酸塩ガラス)などと同じ無機質のシロキサン骨格(シロキサン結合)であることが好ましい。シロキサン結合は、下記表1の化学結合の比較表からも明らかなように、半導体デバイス用部材として優れた以下の特徴がある。
(I)結合エネルギーが大きく、熱分解・光分解しにくいため、耐光性が良好である。
(II)電気的に若干分極している。
(III)鎖状構造の自由度は大きく、フレキシブル性に富む構造が可能であり、シロキサン鎖中心に自由回転可能である。
(IV)酸化度が大きく、これ以上酸化されない。
(V)電気絶縁性に富む。
Figure 0005880512
これらの特徴から、シロキサン結合が3次元的に、しかも高架橋度で結合した骨格で形成されるシリコーン系の半導体デバイス用部材は、エポキシ樹脂などの従来の樹脂系半導体デバイス用部材と異なりガラス或いは岩石などの無機質に近く、耐熱性・耐光性に富む保護皮膜となることが理解できる。特にメチル基を置換基とするシリコーン系半導体デバイス用部材は、紫外領域に吸収を持たないため光分解が起こりにくく、耐光性に優れる。
本発明の半導体デバイス用部材がシロキサン骨格を有する場合は、ケイ素含有率は、通常20重量%以上、好ましくは25重量%以上、さらに好ましくは30重量%以上である。一方、上限としては、SiO2のみからなるガラスのケイ素含有率が47重量%であるという理由から、通常47重量%以下の範囲である。ただし、半導体デバイス用部材を高屈折率とする場合は、高屈折率化に必要な成分を含有させることがあるため、通常10重量%以上であり、通常47重量%以下である。
なお、半導体デバイス用部材の前記ケイ素含有率は、例えば以下の方法を用いて誘導結合高周波プラズマ分光(inductively coupled plasma spectrometry:以下適宜「ICP」と略する。)分析を行ない、その結果に基づいて算出することができる。
〔ケイ素含有率の測定〕
半導体デバイス用部材の単独硬化物を100μm程度に粉砕し、白金るつぼ中にて大気中、450℃で1時間、ついで750℃で1時間、950℃で1.5時間保持して焼成し、炭素成分を除去した後、得られた残渣少量に10倍量以上の炭酸ナトリウムを加えてバーナー加熱し溶融させ、これを冷却して脱塩水を加え、更に塩酸にてpHを中性程度に調整しつつケイ素として数ppm程度になるよう定容し、ICP分析を行なう。
[1−4−2]シラノール含有率
本発明の半導体デバイス用部材がシロキサン骨格を有する場合は、シラノール含有率が、通常0.01重量%以上、好ましくは0.1重量%以上、更に好ましくは0.3重量%以上、また、通常12重量%以下、好ましくは8重量%以下、更に好ましくは6重量%以下の範囲である。
通常、アルコキシシランを原料としてゾルゲル法により得られるガラス体は、150℃、3時間程度の温和な硬化条件では完全に重合して酸化物になることは無く、一定量のシラノールが残存する。テトラアルコキシシランのみより得られるガラス体は高硬度・高耐光性であるが、架橋度が高いため分子鎖の自由度が小さく、完全な縮合が起こらないため残存シラノールの量が多い。また、加水分解・縮合液を乾燥硬化する際には、架橋点が多いため増粘が早く、乾燥と硬化が同時に進むため大きな歪みを持ったバルク体となる。このような部材を半導体デバイス用部材として用いると、長期使用時には残存シラノールの縮合による新たな内部応力が発生し、クラックや剥離、断線などの不具合を生じやすい。また、部材の破断面にはシラノールがより多く、透湿性は少ないものの表面吸湿性が高く水分の浸入を招きやすい。400℃以上の高温焼成によりシラノール含有率を減少させることが可能であるが、半導体デバイスの耐熱性は260℃以下のものがほとんどであり、現実的ではない。
一方、本発明の半導体デバイス用部材は、シラノール含有率が低いため経時変化が少なく、長期の性能安定性に優れ、吸湿が低い優れた性能を有する。但し、シラノールが全く含まれない部材は半導体デバイスとの密着性に劣るため、本発明においてはシラノール含有率に上記のごとく最適な範囲が存在する。
本発明の半導体デバイス用部材は、適当量のシラノールを含有しているため、デバイス表面に存在する極性部分にシラノールが水素結合し、密着性が発現する。極性部分としては、例えば、水酸基やメタロキサン結合の酸素等が挙げられる。
また、本発明の半導体デバイス用部材は、適当な触媒の存在下で加熱することにより、デバイス表面の水酸基との間に脱水縮合による共有結合を形成し、さらに強固な密着性を発現することができる。
一方、シラノールが多すぎると、前述のように、系内が増粘して塗布が困難になったり、活性が高くなり加熱により軽沸分が揮発する前に固化したりすることによって、発泡や内部応力の増大が生じ、クラックなどを誘起する可能性がある。
なお、半導体デバイス用部材のシラノール含有率は、例えば後述の方法を用いて固体Si−NMRスペクトル測定を行ない、全ピーク面積に対するシラノール由来のピーク面積の比率より、全ケイ素原子中のシラノールとなっているケイ素原子の比率(%)を求め、別に分析したケイ素含有率と比較することにより算出することができる。
〔固体Si−NMRスペクトル測定及びシラノール含有率の算出〕
半導体デバイス用部材について固体Si−NMRスペクトルを行なう場合、まず、以下の条件で固体Si−NMRスペクトル測定及びデータ解析を行なう。次に、全ピーク面積に対するシラノール由来のピーク面積の比率より、全ケイ素原子中のシラノールとなっているケイ素原子の比率(%)を求め、別に分析したケイ素含有率と比較することによりシラノール含有率を求める。
なお、測定データの解析(シラノール量解析)は、例えばガウス関数やローレンツ関数を使用した波形分離解析等により、各ピークを分割して抽出する方法で行なう。
〔装置条件例〕
装置:Chemagnetics社 Infinity CMX−400 核磁気共鳴分光装置
29Si共鳴周波数:79.436MHz
プローブ:7.5mmφCP/MAS用プローブ
測定温度:室温
試料回転数:4kHz
測定法:シングルパルス法
1Hデカップリング周波数:50kHz
29Siフリップ角:90゜
29Si90゜パルス幅:5.0μs
くり返し時間:600s
積算回数:128回
観測幅:30kHz
ブロードニングファクター:20Hz
〔データ処理例〕
半導体デバイス用部材については、512ポイントを測定データとして取り込み、8192ポイントにゼロフィリングしてフーリエ変換する。
〔波形分離解析例〕
フーリエ変換後のスペクトルの各ピークについてローレンツ波形及びガウス波形或いは両者の混合により作成したピーク形状の中心位置、高さ、半値幅を可変パラメータとして、非線形最小二乗法により最適化計算を行なう。
なお、ピークの同定はAIChE Journal,44(5),p.1141,1998年等を参考にする。
また、半導体デバイス用部材のシラノール含有率は、以下のIR測定により求めることも可能である。ここで、IR測定はシラノールピークを特定しやすいもののピークの形状がブロードであり面積誤差が出やすく、定量作業にあたっては一定膜厚のサンプルを正確に作製する必要があるなど手順も煩雑であるため、厳密な定量を行う上では固体Si−NMRを用いることが好ましい。固体Si−NMRを用いてシラノール量を測定する際に、シラノールの量が非常に微量で検出が難しい場合、複数のピークが重なりシラノールのピークを単離することが困難である場合、未知試料においてシラノールピークのケミカルシフトが不明である場合などには相補的にIR測定を行うことによりシラノールの濃度を決定することが出来る。
〔IR測定によるシラノール含有率の算出〕
・フーリエ変換赤外分光法 Fourier Transform Infrared Spectroscopy
・装置:Thermo Electron製 NEXUS670及びNic−Plan
・分解能:4cm-1
・積算回数:64 回
・パージ:N2
測定例:Siウエハ上に膜厚200μmの薄膜試料を塗布作製し、透過法によりSiウエハごと赤外吸収スペクトルを測定し、波数3751cm-1及び3701cm-1のシラノールピーク合計面積を求める。一方で、既知濃度試料としてトリメチルシラノールを無水の四塩化炭素に希釈し、光路長200μmの液セルを用いて透過法にて赤外吸収スペクトルを測定し、実サンプルとのピーク面積比比較によりシラノール濃度を算出することができる。なお、赤外吸収スペクトルにおいてはサンプル吸着水由来のピークがシラノールピークのバックグラウンドとして検出されるので、サンプル薄膜は測定前に常圧にて150℃20分以上加熱するか、100℃で10分以上真空処理するなどの方法にて吸着水を除いておく。
〔シラノール含有量総量とアルコキシ基含有量総量との比率〕
本発明の半導体デバイス用部材形成液のシラノール含有量総量とアルコキシ基含有量総量は、モル比において、シラノールがアルコキシ基と等量以上存在することが好ましい。理論的にはシラノールとアルコキシ基とは等量反応にてメタノールを生成し、シロキサン結合を形成することができる。したがって、シラノールがアルコキシ基と等量以上存在することにより、大気からの水分供給に頼らず加熱のみで硬化縮合することが出来、深型のパッケージに塗布した場合でも深部硬化性に優れる半導体デバイス用部材となる。
ここでシラノールがアルコキシ基より大過剰にあると、半導体デバイス用部材の反応活性が高くなるため半導体デバイスの表面との密着反応性が向上し、さらには活性が低いアルコキシ基の残存による硬化不良が抑制され、高温保持時の変形及び収縮並びに重量減も低減できる。このため、{アルコキシ基の数/(シラノールの数+アルコキシ基の数)}×100(%)で表される比率(即ち、脱水脱アルコール縮合し得る未反応末端中のアルコキシ基の存在比)は、通常0%以上であり、通常50%以下、好ましくは30%以下、特に好ましくは25%以下である。なお、この比率は液体29Si−NMR測定値により求めることができる。
この比率を上記の範囲とするためには、例えば、合成過程において原料アルコキシシランの加水分解を十分に行ない、生成したアルコールを確実に系外に留去し、溶媒には極力アルコールを使用しないようにすればよい。このほか、例えば、多量のシラノール末端を含有していても保存性の良い半導体デバイス用部材形成液を得るために、原料選択において下記式(B)で表される構造単位を有する成分の使用量を、下記式(A)で表される構造単位を有する成分の使用量と比較して、モル比において過剰量使用することなどを行なえば良い。
(R1SiO1.5) (A)
(前記式(A)中、R1は有機基を示す。)
((R22SiO) (B)
(前記式(B)中、R2は、それぞれ独立に有機基を示す。)
なお、液体29Si−NMRスペクトルの測定方法は、以下のとおりである。
〔液体29Si−NMRスペクトルの測定方法〕
液体29Si−NMRスペクトルの測定を行なう場合、以下の条件にて液体29Si−NMRスペクトルの測定及びデータ解析を行なう。
〔試料条件例〕
重アセトン50g、テトラメチルシラン2.5g、及び、緩和試薬としてクロムアセチルアセトン塩1.5gを混合し、X液とする。
測定試料3.0gと、前記のX液0.5gと、重アセトン1.0gとを混合し、全量を10mmテフロン(登録商標)製サンプル管に入れ、測定に供する。
例えば2液型市販シリコーン樹脂の場合、混合して測定すると測定中に増粘し測定不可であるため、混合前の主剤、硬化剤各々単独にNMR測定し、混合後のスペクトルは単独のスペクトルに混合比を考慮した台数和になると仮定してデータ計算を行なう。主剤、硬化剤各ピークの強度は内部標準テトラメチルシランの面積を1として規格化し、測定毎の誤差の影響を除く。
〔装置条件例〕
装置:JEOL社 JNM−AL400 核磁気共鳴分光装置
29Si共鳴周波数:78.50MHz
プローブ:AT10プローブ
測定温度:25.0℃
試料回転数:回転無し
測定法:シングルパルス法
PULS DELAY TIME : 12.7s
積算回数:512回
ブロードニングファクター:1.0Hz
〔波形処理解析例〕
フーリエ変換後のスペクトルの各ピークについて、ピークトップの位置によりケミカルシフトを求め、積分を行なう。なお、ピークの同定はAIChE Journal,44(5),p.1141,1998年等を参考にする。
例えば、市販シリコーン樹脂の分析において、(−Si−O−)2CH3SiHに由来するヒドロシリル基ケイ素のピークが−30〜−40ppmに検出された場合には、このピークは2官能ケイ素として分類する。
[1−4−3]UV透過率
本発明の半導体デバイス用部材は、半導体発光デバイスに用いる場合には、膜厚1mmでの半導体発光デバイスの発光波長における光透過率が、通常80%以上、中でも85%以上、更には90%以上であることが好ましい。半導体発光デバイスは各種の技術によりその光取り出し効率が高められているが、半導体発光素子を封止したり蛍光体を保持するための透光性部材の透明度が低いと、これを用いた半導体発光デバイスの輝度が低減するため、高輝度な半導体発光デバイス製品を得ることが困難になる。
ここで「半導体発光デバイスの発光波長」とは、半導体発光デバイスの種類に応じて異なる値であるが、一般的には、通常300nm以上、好ましくは350nm以上、また、通常900nm以下、好ましくは500nm以下の範囲の波長を指す。この範囲の波長における光透過率が低いと、半導体デバイス用部材が光を吸収してしまい、光取り出し効率が低下して、高輝度の半導体発光デバイスを得ることができなくなる。更に、光取り出し効率が低下した分のエネルギーは熱に変わり、半導体発光デバイスの熱劣化の原因となるため好ましくない。
なお、紫外〜青色領域(波長300nm〜500nm)においては封止部材が光劣化しやすいので、この領域に発光波長を有する半導体発光デバイスに、耐久性に優れた本発明の半導体デバイス用部材を使用すれば、その効果が大きくなるので好ましい。
なお、半導体デバイス用部材の光透過率は、例えば以下の手法により、膜厚1mmに成形した平滑な表面の単独硬化物膜のサンプルを用いて、紫外分光光度計により測定することができる。
〔透過率の測定〕
半導体デバイス用部材の、傷や凹凸による散乱の無い厚さ約1mmの平滑な表面の単独硬化物膜を用いて、紫外分光光度計(島津製作所製 UV−3100)を使用し、波長200nm〜800nmにおいて透過度測定を行なう。
但し、半導体発光デバイスの形状は様々であり、大多数は0.1mmを超える厚膜状態での使用であるが、LEDチップ(発光素子)から離れた位置に薄膜状の蛍光体層(例えばナノ蛍光体粒子や蛍光イオンを含む厚さ数μmの層)を設ける場合や、LEDチップの直上に薄膜上に高屈折光取り出し膜を設ける場合等、薄膜使用の用途もある。この様な場合には、この膜厚において80%以上の透過率を示すことが好ましい。このような薄膜状の適用形態においても、本発明の半導体デバイス用部材は優れた耐光性、耐熱性を示し、封止性能に優れ、クラック等なく安定して成膜できる。
[1−4−4]ピーク面積比
本発明の半導体デバイス用部材は、次の条件を満たすことが好ましい。即ち、本発明の半導体デバイス用部材は、固体Si−核磁気共鳴スペクトルにおいて、(ケミカルシフト−40ppm以上0ppm以下のピークの総面積)/(ケミカルシフト−40ppm未満のピークの総面積)の比(以下適宜、「本発明にかかるピーク面積比」という)が、通常3以上、好ましくは5以上、より好ましくは10以上、また、通常200以下、好ましくは100以下、より好ましくは50以下であることが好ましい。
本発明にかかるピーク面積比が上記の範囲にあることは、本発明の半導体デバイス用部材が、2官能シランを、3官能シランや4官能シランなどの3官能以上のシランよりも多く有することを表わす。このように、2官能以下のシランを多く有することにより、本発明の半導体デバイス用部材はエラストマー状を呈することが可能となり、応力を緩和することが可能となる。
ただし、本発明の半導体デバイス用部材は、本発明にかかるピーク面積比についての上記条件を満たさなくともエラストマー状を呈する場合がある。例えば、ケイ素以外の金属のアルコキシド等のカップリング剤を架橋剤として用いて本発明の半導体デバイス用部材を製造した場合などが、この場合に該当する。本発明の半導体デバイス用部材がエラストマー状を呈するための手法は任意であり、この本発明にかかるピーク面積比についての上記条件に限定されるものではない。
[1−4−5]官能基
本発明の半導体デバイス用部材は、ポリフタルアミドなどの樹脂、セラミック又は金属の表面に存在する所定の官能基(例えば、水酸基、メタロキサン結合中の酸素など)と水素結合可能な官能基を有する。半導体デバイス用の容器(後述するカップ等。以下適宜「半導体デバイス容器」という)は、通常、セラミック又は金属で形成されている。また、セラミックや金属の表面には、通常は水酸基が存在する。一方、本発明の半導体デバイス用部材は、通常、当該水酸基と水素結合可能な官能基を有している。したがって、前記水素結合により、本発明の半導体デバイス用部材は、半導体デバイス容器に対する密着性に優れているのである。
本発明の半導体デバイス用部材が有する、前記の水酸基に対して水素結合が可能な官能基としては、例えば、シラノール、アルコキシ基、アミノ基、イミノ基、メタクリル基、アクリル基、チオール基、エポキシ基、エーテル基、カルボニル基、カルボキシル基、スルホン酸基等が挙げられる。中でも耐熱性の観点からシラノール、アルコキシ基が好ましい。なお、前記官能基は1種でも良く、2種以上でもよい。
なお、本発明の半導体デバイス用部材が、前記のように、水酸基に対して水素結合が可能な官能基を有しているか否かは、固体Si−NMR、固体1H−NMR、赤外線吸収スペクトル(IR)、ラマンスペクトルなどの分光学的手法により確認することができる。
[1−4−6]耐熱性
本発明の半導体デバイス用部材は、耐熱性に優れる。即ち、高温条件下に放置した場合でも、所定の波長を有する光における透過率が変動しにくい性質を有する。具体的には、本発明の半導体デバイス用部材は、200℃に500時間放置した前後において、波長400nmの光に対する透過率の維持率が、通常80%以上、好ましくは90%以上、より好ましくは95%以上であり、また、通常110%以下、好ましくは105%以下、より好ましくは100%以下である。
なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、[1−4−3]で前述した透過度の測定方法と同様にして測定することができる。
[1−4−7]耐UV性
本発明の半導体デバイス用部材は、耐光性に優れる。即ち、UV(紫外光)を照射した場合でも、所定の波長を有する光に対する透過率が変動しにくい性質を有する。具体的には、本発明の半導体デバイス用部材は、中心波長380nm、放射強度0.4kW/m2の光を72時間照射した前後において、波長400nmの光における透過率の維持率が、通常80%以上、好ましくは90%以上、より好ましくは95%以上であり、また、通常110%以下、好ましくは105%以下、より好ましくは100%以下である。
なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、[1−4−3]で前述した透過率の測定方法と同様にして測定することができる。
[1−4−8]触媒残留量
本発明の半導体デバイス用部材は、通常、ジルコニウム、ハフニウム、スズ、亜鉛、及びチタンより選択される少なくとも1種の元素を含む有機金属化合物触媒を用いて製造される。そのため、本発明の半導体デバイス用部材には、通常は、これらの触媒が残留している。具体的には、本発明の半導体デバイス用部材は、前記の有機金属化合物触媒を、金属元素換算で、通常0.001重量%以上、好ましくは0.01重量%以上、より好ましくは0.02重量%以上、また、通常0.3重量%以下、好ましくは0.2重量%以下、より好ましくは0.1重量%以下だけ含有する。
なお、前記の有機金属化合物触媒の含有率は、ICP分析により測定できる。
[1−4−9]低沸点成分
本発明の半導体デバイス用部材はTG−mass(熱分解MSクロマトグラム)において、40℃〜210℃の範囲の加熱発生ガスのクロマトグラム積分面積が小さいものであることが好ましい。
TG−massは、半導体デバイス用部材を昇温して半導体デバイス用部材中の低沸点成分を検出するものであるが、40℃〜210℃の範囲にクロマトグラム積分面積が大きい場合、水、溶媒および3員環から5員環の環状シロキサンといった、低沸点成分が成分中に存在することを示す。このような場合、(i)低沸点成分が多くなり、硬化過程において気泡の発生またはブリードアウトし半導体デバイス容器との密着性が低くなる可能性や、(ii)使用時の発熱により気泡の発生またはブリードアウトするなどの可能性がある。そこで、本発明の半導体デバイス用部材はかかる低沸点成分が少ないものが好ましい。
本発明の半導体デバイス用部材において、TG−massで検出される前記低沸点成分量を低く抑える方法としては、例えば、下記の方法を挙げることができる。
(i)重合反応等を十分に行ない、低分子量の原料が残存しないようにする。例えば、後述する「[2]半導体デバイス用部材の製造方法」のような、特定の化合物を加水分解・重縮合した重縮合物を本発明の半導体デバイス用部材とする場合は、常圧で加水分解・重縮合を実施する場合、通常15℃以上、好ましくは20℃以上、より好ましくは40℃以上、また、通常140℃以下、好ましくは135℃以下、より好ましくは130℃以下の範囲で加水分解・重縮合を行なう。また、加水分解・重縮合反応時間は反応温度により異なるが、通常0.1時間以上、好ましくは1時間以上、更に好ましくは3時間以上、また、通常100時間以下、好ましくは20時間以下、更に好ましくは15時間以下の範囲で実施される。反応時間の調整はGPC、粘度測定により逐次分子量管理を行ないつつ適宜行なうことが好ましい。さらに、昇温時間を考慮して調節することが好ましい。
(ii)重合反応等の反応工程以外の工程において、低沸点成分を効率良く除去する。例えば、後述する「[2]半導体デバイス用部材の製造方法」のような、特定の化合物を加水分解・重縮合した重縮合物を本発明の半導体デバイス用部材とする場合は、重縮合反応工程後の溶媒留去、乾燥工程において、重縮合反応を進めないようにしつつ、低沸点成分を除去する。具体的には、例えば溶媒の留去を行なう際の温度条件を、通常60℃以上、好ましくは80℃以上、より好ましくは100℃以上、また、通常150℃以下、好ましくは130℃以下、より好ましくは120℃以下とする。また、溶媒の留去を行なう際の圧力条件を、通常は常圧とする。さらに、必要に応じて溶媒留去時の反応液の沸点が硬化開始温度(通常は120℃以上)に達しないように減圧する。また、溶媒留去、乾燥工程をアルゴンガス、窒素ガス、ヘリウムガス、等の不活性ガス雰囲気下で行なう。
[1−4−10]他の部材との組み合わせ
本発明の半導体デバイス用部材は単独で封止材として用いても良いが、有機蛍光体、酸素や水分により劣化しやすい蛍光体、半導体発光デバイスを封止する場合等、より厳密に酸素や水分からの遮断を要求される用途においては、本発明の半導体デバイス用部材により蛍光体の保持や半導体発光素子の封止・光取り出しを実施し、さらにその外側にガラス板やエポキシ樹脂などの高気密素材による気密封止を実施したり、真空封止を実施しても良い。この場合のデバイス形状は特に制限無く、本発明の半導体デバイス用部材による封止体、塗布物あるいは塗布面が実質的に金属・ガラス・高気密性樹脂などの高気密素材により外界から保護遮断され酸素や水分の流通が無い状態になっていれば良い。
また、本発明の半導体デバイス用部材は、上述のように密着性が良好なため、半導体発光デバイス用接着剤として用いることが出来る。具体的には、例えば、半導体素子とパッケージを接着する場合、半導体素子とサブマウントを接着する場合、パッケージ構成要素同士を接着する場合、半導体発光デバイスと外部光学部材とを接着する場合などに、本発明の半導体デバイス用部材を塗布、印刷、ポッティングなどすることにより用いることが出来る。本発明の半導体デバイス用部材は特に耐光性、耐熱性に優れるため、長時間高温や紫外光にさらされる高出力の半導体発光デバイス用接着剤として用いた場合、長期使用に耐え高い信頼性を有する半導体発光デバイスを提供することが出来る。
なお、本発明の半導体デバイス用部材は、これのみで十分密着性を担保しうるものであるが、更に密着性を担保することを目的として、半導体デバイス用部材と直接接する表面に密着性改善のための表面処理を行なっても良い。このような、表面処理としては、例えばプライマーやシランカップリング剤を用いた密着改善層の形成、酸やアルカリなどの薬品を用いた化学的表面処理、プラズマ照射やイオン照射・電子線照射を用いた物理的表面処理、サンドブラストやエッチング・微粒子塗布などによる粗面化処理等が挙げられる。密着性改善のための表面処理としては、その他に例えば、特開平5−25300号公報、稲垣訓宏著「表面化学」Vol.18 No.9、pp21−26、黒崎和夫著「表面化学」Vol.19 No.2、pp44−51(1998)等に開示される公知の表面処理方法が挙げられる。
[1−4−11]その他
本発明の半導体デバイス用部材の形状及び寸法に制限は無く任意である。例えば、半導体デバイス用部材が何らかの半導体デバイス容器内を充填する封止材として使用される場合には、本発明の半導体デバイス用部材の形状及び寸法は、その半導体デバイス容器の形状及び寸法に応じて決定される。また、半導体デバイス用部材が何らかの基板の表面に形成される場合は、通常は膜状に形成されることが多く、その寸法は用途に応じて任意に設定される。
ただし、本発明の半導体デバイス用部材は、膜状に形成する場合、厚膜に形成することができることを利点の一つとしている。従来の半導体デバイス用部材は厚膜化すると内部応力等によりクラック等が生じて厚膜化が困難であったが、本発明の半導体デバイス用部材はそのようなことは無く、安定して厚膜化が可能である。具体的範囲を挙げると、本発明の半導体デバイス用部材は、通常0.1μm以上、好ましくは10μm以上、より好ましくは100μm以上の厚みで形成することが好ましい。なお、上限に制限は無いが、通常10mm以下、好ましくは5mm以下、より好ましくは1mm以下である。ここで、膜の厚みが一定でない場合には、膜の厚みとは、その膜の最大の厚み部分の厚さのことを指すものとする。
また、本発明の半導体デバイス用部材は、通常、従来よりも長期間にわたってクラックや剥離を生じることなく半導体デバイスを封止できる。具体的には、本発明の半導体デバイス用部材を用いて半導体発光デバイスを封止し、当該半導体発光デバイスに、通常20mA以上、好ましくは350mA以上の駆動電流を通電して温度85℃相対湿度85%にて連続点灯を行った場合に、通常500時間以上、好ましくは1000時間以上、より好ましくは2000時間以上経過後の輝度が、点灯直後の輝度と比較して低下しない。
また、用途によっては、半導体デバイス用部材は、その他の成分を含有していてもよい。例えば、本発明の半導体デバイス用部材を半導体発光デバイスの構成部材として用いる場合などにおいては、蛍光体や無機粒子などを含有させてもよい。なお、この点については、用途の説明と共に、後で説明する。
また、その他の成分は、1種のみを用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、本発明の半導体デバイス用部材には通常微量のアルコキシ基が残存する。この末端アルコキシ基が少ない半導体デバイス用部材はTG−DTAによる重量減が少なく、耐熱性が高くなる。
[2]半導体デバイス用部材の製造方法
本発明の半導体デバイス用部材を製造する方法は特に制限されないが、例えば、後述の一般式(1)や一般式(2)で表わされる化合物及び/又はそれらのオリゴマーを加水分解・重縮合し、重縮合物(加水分解・重縮合物)を乾燥させることにより得ることができる。ただし、本発明の半導体デバイス用部材ではシロキサン結合を主体とすることが好ましいため、一般式(1)で表わされる化合物又はそのオリゴマーを原料の主体とすることが望ましい。また、加水分解・重縮合物が溶媒を含有している場合には、乾燥させる前に事前に溶媒を留去するようにしてもよい。
なお、以下の説明において、前記加水分解・重縮合物又はこれを含有する組成物であって、乾燥工程の前に得られるものを半導体デバイス用部材形成液という。したがって、ここで説明する製造方法(以下適宜、「本発明の製造方法」という)により本発明の半導体デバイス用部材を製造する場合、この半導体デバイス用部材形成液から乾燥工程を経て得られたものが半導体デバイス用部材となる。
以下、この半導体デバイス用部材の製造方法について詳しく説明する。
[2−1]原料
原料としては、下記一般式(1)で表わされる化合物(以下適宜「化合物(1)」という。)及び/又はそのオリゴマーを用いる。
Figure 0005880512
一般式(1)中、Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンからなる群より選択される少なくとも1種の元素である。中でも、ケイ素が好ましい。
一般式(1)中、mは、Mの価数を表わし、1以上、4以下の整数である。また、「m+」とは、それが正の価数であることを表わす。
nは、X基の数を表わし、1以上、4以下の整数である。但し、m≧nである。
一般式(1)中、Xは、溶液中の水や空気中の水分などにより加水分解されて、反応性に富む水酸基を生成する加水分解性基であり、従来より公知のものを任意に使用することができる。例えば、C1〜C5の低級アルコキシ基、アセトキシ基、ブタノキシム基、クロル基等が挙げられる。なお、ここでCi(iは自然数)という表記は、炭素数がi個であることを表わす。さらに、Xは、水酸基であってもよい。また、これらの加水分解性基は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
中でも、反応後に遊離する成分が中性であることから、C1〜C5の低級アルコキシ基が好ましい。特に、反応性に富み、遊離する溶媒が軽沸であることから、メトキシ基又はエトキシ基が好ましい。
さらに、一般式(1)中でXがアセトキシ基やクロル基である場合には、加水分解反応後に酢酸や塩酸を遊離するため、半導体デバイス用部材に絶縁性が求められる場合には、酸成分を除去する工程を付加することが好ましい。
一般式(1)中、Y1は、いわゆるシランカップリング剤の1価の有機基として公知のものを、いずれも任意に選択して使用することができる。中でも、本発明において一般式(1)におけるY1として特に有用な有機基とは、以下のY0に表される群(有用有機基群)から選ばれるものである。さらに、半導体デバイスを構成する他の材料との親和性向上、密着性向上、半導体デバイス用部材の屈折率調整などのために、適宜、他の有機基を選択するようにしてもよい。
<有用有機基群Y0
0:脂肪族化合物、脂環式化合物、芳香族化合物、脂肪芳香族化合物より誘導される1価以上の有機基である。
また、群Y0に属する有機基の炭素数は、通常1以上、また、通常1000以下、好ましくは500以下、より好ましくは100以下、さらに好ましくは50以下である。
さらに、群Y0に属する有機基が有する水素原子のうち少なくとも一部は、下記に例示する原子及び/又は有機官能基等の置換基で置換されていても良い。この際、群Y0に属する有機基が有する水素原子のうちの複数が下記置換基で置換されていても良く、この場合、下記に示す置換基の中から選択した1種又は2種以上の組み合わせにより置換されていても良い。
群Y0に属する有機基の水素原子と置換可能な置換基の例としては、F、Cl、Br、I等の原子;ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、メルカプト基、エポキシ基、エポキシシクロヘキシル基、グリシドキシ基、アミノ基、シアノ基、ニトロ基、スルホン酸基、カルボキシ基、ヒドロキシ基、アシル基、アルコキシ基、イミノ基、フェニル基等の有機官能基などが挙げられる。
なお、上記全ての場合において、群Y0に属する有機基の有する水素原子と置換可能な置換基のうち、有機官能基については、その有機官能基の有する水素原子のうち少なくとも一部がF、Cl、Br、I等のハロゲン原子などで置換されていても良い。
ただし、群Y0に属する有機基の水素と置換可能な置換基として例示したもののなかでも、有機官能基は、導入しやすいものの一例であり、使用目的に応じてこの他各種の物理化学的機能性を持つ有機官能基を導入しても良い。
また、群Y0に属する有機基は、その中に連結基としてO、N、又はS等の各種の原子または原子団を有するものであっても良い。
一般式(1)中、Y1は、上記の有用有機基群Y0に属する有機基などから、その目的により様々な基を選択できるが、耐紫外線性、耐熱性に優れる点から、メチル基を主体とすることが好ましい。
上述の化合物(1)の具体例を挙げると、Mがケイ素である化合物としては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−(メタ)アクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、β−シアノエチルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、ジメチルジクロロシラン、ジフェニルジクロロシラン、メチルフェニルジメトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルクロロシラン、メチルトリクロロシラン、γ−アシノプロピルトリエトキシシラン、4−アシノブチルトリエトキシシラン、p−アミノフェニルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、アミノエチルアミノメチルフェネチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、4−アミノブチルトリエトキシシラン、N−(6−アミノヘキシル)アミノプロピルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリクロロシラン、(p−クロロメチル)フェニルトリメトキシシラン、4−クロロフェニルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、スチリルエチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリス(2−メトキシエトキシ)シラン、トリフルオロプロピルトリメトキシシランなどが挙げられる。
また、化合物(1)のうち、Mがアルミニウムである化合物としては、例えば、アルミニウムトリイソプロポキシド、アルミニウムトリn−ブトキシド、アルミニウムトリt−ブトシキド、アルミニウムトリエトキシドなどが挙げられる。
また、化合物(1)のうち、Mがジルコニウムである化合物としては、例えば、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラn−プロポキシド、ジルコニウムテトラi−プロポキシド、ジルコニウムテトラn−ブトキシド、ジルコニウムテトラi−ブトキシド、ジルコニウムテトラt−ブトキシド、ジルコニウムジメタクリレートジブトキシドなどが挙げられる。
また、化合物(1)のうち、Mがチタンである化合物としては、例えば、チタンテトライソプロポキシド、チタンテトラn−ブトキシド、チタンテトラi−ブトキシド、チタンメタクリレートトリイソプロポキシド、チタンテトラメトキシプロポキシド、チタンテトラn−プロポキシド、チタンテトラエトキシドなどが挙げられる。
ただし、これらに具体的に例示した化合物は、入手容易な市販のカップリング剤の一部であり、更に詳しくは、例えば、科学技術総合研究所発行の「カップリング剤最適利用技術」9章のカップリング剤及び関連製品一覧表により示すことができる。また、当然のことながら、本発明に使用できるカップリング剤は、これらの例示により制限されるものではない。
また、下記一般式(2)で表される化合物(以下適宜、「化合物(2)」という。)及び/又はそのオリゴマーも、上記化合物(1)及び/又はそのオリゴマーと同様に使用することができる。
Figure 0005880512
一般式(2)において、M、X及びY1は、それぞれ独立に、一般式(1)と同様のものを表わす。特にY1としては、一般式(1)の場合と同様、上記の有用有機基群Y0に属する有機基などから、その目的により様々な基を選択できるが、耐紫外線性、耐熱性に優れる点から、メチル基を主体とすることが好ましい。
また、一般式(2)において、sは、Mの価数を表わし、2以上、4以下の整数である。また、「s+」は、それが正の整数であることを表わす。
さらに、一般式(2)において、Y2は、u価の有機基を表わす。ただし、uは2以上の整数を表わす。したがって、一般式(2)中、Y2は、いわゆるシランカップリング剤の有機基として公知のもののうち2価以上のものを、任意に選択して使用することができる。
また、一般式(2)において、tは、1以上、s−1以下の整数を表わす。但し、t≦sである。
上記化合物(2)の例としては、各種有機ポリマーやオリゴマーに側鎖として加水分解性シリル基が複数結合しているもの、シロキサンポリマーにメチレン鎖等の有機連結基を介して加水分解性シリル基が結合しているもの、及び分子の複数の末端に加水分解性シリル基が結合しているものなどが挙げられる。
上記化合物(2)の具体例及びその製品名を以下に挙げる。
・ビス(トリエトキシシリルプロピル)テトラスルフィド
(信越化学製、KBE−846)
・2−ジエトキシメチルエチルシリルジメチル−2−フラニルシラン
(信越化学製、LS−7740)
・N,N’−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン
(チッソ製、サイラエースXS1003)
・N−グリシジル−N,N−ビス[3−(メチルジメトキシシリル)プロピル]アミン
(東芝シリコーン製、TSL8227)
・N−グリシジル−N,N−ビス[3−(トリメトキシシリル)プロピル]アミン
(東芝シリコーン製、TSL8228)
・N,N−ビス[(メチルジメトキシシリル)プロピル]アミン
(東芝シリコーン製、TSL8206)
・N,N−ビス[3−(メチルジメトキシシリル)プロピル]エチレンジアミン
(東芝シリコーン製、TSL8212)
・N,N−ビス[(メチルジメトキシシリル)プロピル]メタクリルアミド
(東芝シリコーン製、TSL8213)
・N,N−ビス[3−(トリメトキシシリル)プロピル]アミン
(東芝シリコーン製、TSL8208)
・N,N−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン
(東芝シリコーン製、TSL8214)
・N,N−ビス[3−(トリメトキシシリル)プロピル]メタクリルアミド
(東芝シリコーン製、TSL8215)
・N,N’,N”−トリス[3−(トリメトキシシリル)プロピル]イソシアヌレート
(ヒドラス化学製、12267−1)
・1,4−ビスヒドロキシジメチルシリルベンゼン
(信越化学製、LS−7325)
化合物(2)の合成にあたっては、加水分解・重縮合以外の公知の合成方法を経由しても良い。例えばSiH基を有するポリジメチルシロキサン鎖にビニル基を含有するアルコキシシランをヒドロシリル化反応にて付加縮合させ加水分解性シリル基を導入したり、ビニルトリアルコキシシランをアクリルモノマーやビニルモノマーと共重合させて加水分解性シリル基を導入しても良い。このような場合には系内に化合物(2)の合成由来の未反応残基や触媒が残留することがあるが、半導体デバイス用部材としての性能を損なわない程度の少量に未反応残基や触媒を低減することが好ましい。具体的には、固定化触媒を使用して反応後に除去したり、触媒濃度を反応が進行する最低限の濃度とすると良い。
原料としては化合物(1)、化合物(2)、及び/又はそれらのオリゴマーを使用することができる。即ち、本発明の製造方法では、原料として、化合物(1)、化合物(1)のオリゴマー、化合物(2)、化合物(2)のオリゴマー、及び化合物(1)と化合物(2)とのオリゴマーのいずれを用いてもよい。なお、原料として化合物(1)のオリゴマー又は化合物(2)のオリゴマーを用いる場合、そのオリゴマーの分子量は、本発明の半導体デバイス用部材を得ることができる限り任意であるが、通常400以上である。
ここで化合物(2)及び/又はそのオリゴマーを主原料として用いると系内の主鎖構造が有機結合主体となり耐久性に劣るものとなる可能性がある。このため、化合物(2)は主として密着性付与や屈折率調整、反応性制御、無機粒子分散性付与などの機能性付与のため最小限の使用量で用いることが望ましい。化合物(1)及び/又はそのオリゴマー(化合物(1)由来成分)と、化合物(2)及び/又はそのオリゴマー(化合物(2)由来成分)を同時に使用する場合には原料の総重量における化合物(2)由来成分の使用量割合が通常30重量%以下、好ましくは20重量%以下、さらに好ましくは10重量%以下であることが望ましい。
また、本発明の半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法において、原料として化合物(1)又は化合物(2)のオリゴマーを用いる場合には、オリゴマーを予め用意してするようにしてもよいが、製造工程の中でオリゴマーを調製するようにしてもよい。即ち、化合物(1)又は化合物(2)のようなモノマーを原料とし、これを製造工程中で一旦オリゴマーとして、このオリゴマーから後の反応を進行させるようにしてもよい。
また、オリゴマーは、結果として化合物(1)又は化合物(2)のようなモノマーから得られるものと同様の構造を有しているものであれば良く、そのような構造を有する市販のものを用いることもできる。かかるオリゴマーの具体例としては、例えば、以下のようなものが挙げられる。
<2官能ケイ素のみからなるオリゴマーの例>
GE東芝シリコーン社製ヒドロキシ末端ジメチルポリシロキサンでは、例えば、XC96−723、XF3905、YF3057、YF3800、YF3802、YF3807、YF3897などが挙げられる。
GE東芝シリコーン社製ヒドロキシ末端メチルフェニルポリシロキサンでは、例えば、YF3804などが挙げられる。
Gelest社製両末端シラノール ポリジメチルシロキサンでは、例えば、DMS−S12、DMS−S14などが挙げられる。
Gelest社製両末端シラノール ジフェニルシロキサン−ジメチルシロキサン コポリマーでは、例えば、PDS−1615が挙げられる。
Gelest社製両末端シラノール ポリジフェニルシロキサンでは、例えば、PDS−9931が挙げられる。
<3官能以上のケイ素を含むオリゴマーの例>
信越化学工業製 シリコーンアルコキシオリゴマー(メチル/メトキシ型)では、例えば、KC−89S、KR−500、X−40−9225、X−40−9246、X−40−9250などが挙げられる。
信越化学工業製 シリコーンアルコキシオリゴマー(フェニル/メトキシ型)では、例えば、KR−217などが挙げられる。
信越化学工業製 シリコーンアルコキシオリゴマー(メチルフェニル/メトキシ型)では、例えば、KR−9218、KR−213、KR−510、X−40−9227、X−40−9247などが挙げられる。
これらのうち、2官能ケイ素のみからなるオリゴマーは本発明の半導体デバイス用部材に柔軟性を与える効果が大きいが、2官能ケイ素のみでは機械的強度が不十分となりやすい。このため、3官能以上のケイ素からなるモノマー若しくは3官能以上のケイ素を含むオリゴマーと共に重合することにより、本発明の半導体デバイス用部材は封止剤として有用な機械的強度を得ることができる。また、反応性基としてシラノールを有するものは事前に加水分解する必要が無く、水を加えるための相溶剤としてアルコール等の溶剤の使用をする必要が無い長所がある。なお、アルコキシ基を有するオリゴマーを使用する場合には、アルコキシ基を有するモノマーを原料とする場合と同様、加水分解するための水が必要となる。
さらに、原料としては、これらの化合物(1)、化合物(2)、及びそのオリゴマーのうち1種類だけを用いてよいが、二種類以上を任意の組み合わせ及び組成で混合してもかまわない。さらに、予め加水分解された(即ち、一般式(1),(2)においてXがOH基である)化合物(1)、化合物(2)及びそのオリゴマーを用いるようにしてもよい。
但し、本発明では原料として、Mとしてケイ素を含有し、且つ、有機基Y1又は有機基Y2を少なくとも1つ有する化合物(1)、化合物(2)及びそのオリゴマー(加水分解されたものを含む)を、少なくとも1種以上用いる必要がある。また、系内の架橋が主としてシロキサン結合を始めとする無機成分により形成されることが好ましいことから、化合物(1)及び化合物(2)をともに使用する場合には、化合物(1)が主体となることが好ましい。
また、シロキサン結合を主体とする半導体デバイス用部材を得るためには、化合物(1)及び/又はそのオリゴマーを原料の主体として用いることが好ましい。さらに、これらの化合物(1)のオリゴマー及び/又は化合物(2)のオリゴマーは、2官能を主体とした組成で構成されていることが、より好ましい。特に、この化合物(1)のオリゴマー及び/又は化合物(2)のオリゴマーの2官能単位は、2官能オリゴマーとして用いられることが好ましい。
さらに、化合物(1)のオリゴマー及び/又は化合物(2)のオリゴマーのうち、2官能のもの(以下適宜、「2官能成分オリゴマー」という)を主体として用いる場合、これら2官能成分オリゴマーの使用量は、原料の総重量(即ち、化合物(1)、化合物(2)、及びそのオリゴマーの重量の和)に対して、通常50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上である。なお、使用量の上限は通常97重量%である。2官能成分オリゴマーを原料の主体として使用することが、本発明の半導体デバイス用部材の製造方法によって、本発明の半導体デバイス用部材を容易に製造することができる要因のうちのひとつとなっているためである。
以下、2官能成分オリゴマーを原料の主体として用いたことによる利点について詳しく説明する。
例えば従来のゾルゲル法により製造されていた半導体デバイス用部材では、その原料を加水分解及び重縮合させた加水分解・重縮合物(塗布液(加水分解液)に含有されたもの等を含む)は、高い反応活性を有していた。したがって、その加水分解・重縮合物をアルコール等の溶媒で希釈しないと系内の重合が進み、すぐに硬化するため、成形や取り扱いが困難であった。例えば、従来は溶媒で希釈しない場合には、温度が40℃〜50℃程度であっても硬化することがあった。したがって、加水分解後に得られた加水分解・重縮合物の取り扱い性を確保するためには、加水分解・重縮合物に溶媒を共存させることが必須であった。
また、加水分解・重縮合物に溶媒を共存させたまま加水分解・重縮合物の乾燥・硬化を行なわせると、硬化時に脱水縮合による収縮に加え、脱溶媒による収縮(脱溶媒収縮)が加味される。これにより、従来の半導体デバイスでは、硬化物の内部応力が大きくなりがちであり、この内部応力に起因するクラック、剥離、断線などが生じやすかった。
さらに、上記の内部応力を緩和するために半導体デバイス用部材を柔軟化する目的で原料として2官能成分モノマーを多用すると、重縮合体中の低沸環状体が多くなる可能性があった。低沸環状体は硬化時に揮発してしまうため、低沸環状体が多くなると重量歩留まりが低下することになる。また、低沸環状体は硬化物からも揮発し、応力発生の原因となることがある。さらに、低沸環状体を多く含む半導体デバイス用部材は耐熱性が低くなることがある。これらの理由により、従来は、半導体デバイス用部材を、性能の良いエラストマー状硬化体として得ることは困難であった。
これに対して、本発明の半導体デバイス用部材の製造方法では、原料として、別系で(即ち、加水分解・重縮合工程に関与しない系で)2官能成分をあらかじめオリゴマー化し、反応性末端を持たない低沸不純物を留去したものを原料として使用するようにしている。したがって、2官能成分(即ち、上記の2官能成分オリゴマー)を多用しても、それらの低沸不純物が揮発することはなく、硬化物重量歩留まりの向上を実現することができるとともに、性能の良いエラストマー状硬化物を得ることができる。
さらに、2官能成分オリゴマーを主原料とすることにより、加水分解・重縮合物の反応活性を抑制することができる。これは、加水分解・重縮合物の立体障害及び電子効果、並びに、2官能成分オリゴマーを使用したことに伴いシラノール末端量が低減したことによるものと推察される。反応活性を抑制したことにより、溶媒を共存させなくても加水分解・重縮合物は硬化することはなく、したがって、加水分解・重縮合物を一液型、かつ、無溶媒系とすることができる。
また、加水分解・重縮合物の反応活性が低下したことにより、硬化開始温度を従来よりも高くすることが可能となった。したがって、加水分解・重縮合物の硬化開始温度以下の溶媒を加水分解・重縮合物に共存させた場合には、加水分解・重縮合物の乾燥時に、加水分解・重縮合物の硬化が開始されるよりも以前に溶媒が揮発することになる。これにより、溶媒を使用した場合であっても脱溶媒収縮に起因する内部応力の発生を抑制することが可能となる。
[2−2]加水分解・重縮合工程
本発明ではまず、上述の化合物(1)、化合物(2)、及び/又はそれらのオリゴマーを加水分解・重縮合反応させる(加水分解・重縮合工程)。この加水分解・重縮合反応は、公知の方法によって行なうことができる。なお、以下適宜、化合物(1)、化合物(2)、及びそのオリゴマーを区別せずに指す場合、「原料化合物」という。
原料化合物の加水分解・重縮合反応を行なうために使用する水の理論量は、下記式(3)に示す反応式に基づき、系内の加水分解性基の総量の1/2モル比である。
Figure 0005880512
なお、上記式(3)は、一般式(1),(2)のMがケイ素である場合を例として表わしている。また、「≡Si」及び「Si≡」は、ケイ素原子の有する4つの結合手のうち3つを省略して表わしたものである。
本明細書では、この加水分解時に必要な水の理論量、即ち、加水分解性基の総量の1/2モル比に相当する水の量を基準(加水分解率100%)とし、加水分解時に使用する水の量をこの基準量に対する百分率、即ち「加水分解率」で表わす。
本発明において、加水分解・重縮合反応を行なうために使用する水の量は、上述の加水分解率で表わした場合に、通常80%以上、中でも100%以上の範囲が好ましい。加水分解率がこの範囲より少ない場合、加水分解・重合が不十分なため、硬化時に原料が揮発したり、硬化物の強度が不十分となったりする可能性がある。一方、加水分解率が200%を超える場合、硬化途中の系内には常に遊離の水が残存し、半導体発光素子や蛍光体に水分による劣化をもたらしたり、カップ部が吸水し、硬化時の発泡、クラック、剥離の原因となったりする場合がある。但し、加水分解反応において重要なのは100%近傍以上(例えば80%以上)の水で加水分解・重縮合を行なうということであり、塗布前に遊離の水を除く工程を付加すれば、200%を超える加水分解率を適用することは可能である。この場合、あまり大量の水を使用すると、除去すべき水の量や相溶剤として使用する溶媒の量が増え、濃縮工程が煩雑になったり、重縮合が進みすぎて部材の塗布性能が低下したりすることがあるので、加水分解率の上限は通常500%以下、中でも300%以下、好ましくは200%以下の範囲とすることが好ましい。
原料化合物を加水分解・縮重合する際には、触媒などを共存させて、加水分解・縮重合を促進することが好ましい。この場合、使用する触媒としては、例えば、酢酸、プロピオン酸、酪酸などの有機酸;硝酸、塩酸、リン酸、硫酸などの無機酸;有機金属化合物触媒などを用いることができる。このうち、半導体デバイスと直接接する部分に使用する部材とする場合には、絶縁特性に影響の少ない有機金属化合物触媒が好ましい。ここで、有機金属化合物触媒とは、有機基と金属原子とが直接に結合してなる狭義の有機金属化合物からなる触媒のみを指すのではなく、有機金属錯体、金属アルコキシド、有機酸と金属との塩などを含む広義の有機金属化合物からなる触媒を指す。
有機金属化合物触媒の中では、ジルコニウム、ハフニウム、スズ、亜鉛及びチタンより選択される少なくとも1種の元素を含む有機金属化合物触媒が好ましく、ジルコニウムを含む有機金属化合物触媒がさらに好ましい。
その具体例を挙げると、ジルコニウムを含有する有機金属化合物触媒の例としては、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシジアセチルアセトネート、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラノルマルブトキシド、ジルコニウムアシレート、ジルコニウムトリブトキシステアレートなどが挙げられる。
また、ハフニウムを含有する有機金属化合物触媒の例としては、ハフニウムテトラアセチルアセトネート、ハフニウムトリブトキシアセチルアセトネート、ハフニウムジブトキシジアセチルアセトネート、ハフニウムテトラノルマルプロポキシド、ハフニウムテトライソプロポキシド、ハフニウムテトラノルマルブトキシド、ハフニウムアシレート、ハフニウムトリブトキシステアレートなどが挙げられる。
また、チタンを含有する有機金属化合物触媒の例としては、チタニウムテトライソプロポキシド、チタニウムテトラノルマルブトキシド、ブチルチタネートダイマー、テトラオクチルチタネート、チタンアセチルアセトナート、チタンオクチレングリコレート、チタンエチルアセトアセテートなどが挙げられる。
また、亜鉛を含有する有機金属化合物触媒の例としては、ステアリン酸亜鉛、オクチル酸亜鉛、2−エチルヘキサン酸亜鉛、亜鉛トリアセチルアセトネートが挙げられる。
また、スズを含有する有機金属化合物触媒の例を挙げると、テトラブチルスズ、モノブチルスズトリクロライド、ジブチルスズジクロライド、ジブチルスズオキサイド、テトラオクチルスズ、ジオクチルスズジクロライド、ジオクチルスズオキサイド、テトラメチルスズ、ジブチルスズラウレート、ジオクチルスズラウレート、ビス(2−エチルヘキサノエート)スズ、ビス(ネオデカノエート)スズ、ジ−n−ブチルビス(エチルヘキシルマレート)スズ、ジ−ノルマルブチルビス(2,4−ペンタンジオネート)スズ、ジ−ノルマルブチルブトキシクロロスズ、ジ−ノルマルブチルジアセトキシスズ、ジ−ノルマルブチルジラウリル酸スズ、ジメチルジネオデカノエートスズなどが挙げられる。
なお、これらの有機金属化合物触媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記の好ましい有機金属化合物触媒を用いることにより、原料化合物を加水分解・重縮合する際には、副生物の低分子環状シロキサンの生成を抑え、高い歩留まりで半導体デバイス用部材形成液を合成することができる。
また、この有機金属化合物触媒を用いたことにより、本発明の半導体デバイス用部材は、前記[1−1]で説明した特性(1)の範囲を満たす、高い耐熱性を実現することができる。その理由は明らかではないが、前記有機金属化合物は、単に触媒として原料化合物の加水分解・重縮合反応を促進するだけではなく、加水分解・重縮合物及びその硬化物のシラノール末端に一時的に結合・解離することができ、これによりシラノール含有ポリシロキサンの反応性を調整して、高温条件における(i)有機基の酸化の防止、(ii)ポリマー間の不要な架橋の防止、(iii)主鎖の切断などの防止をする作用があると考えられる。以下、これらの作用(i)〜(iii)について説明する。
(i)有機基の酸化の防止としては、熱の作用によって、例えばメチル基上にラジカルが発生した時、有機金属化合物触媒の遷移金属がラジカルを補足する効果を有する。一方、この遷移金属自身はラジカル補足によってイオン価数を失い、そのために酸素と作用して有機基の酸化を防止する。その結果として、半導体デバイス用部材の劣化を抑えることになると推察される。
(ii)ポリマー間の不要な架橋の防止としては、例えば、メチル基が酸素分子によって酸化を受けるとホルムアルデヒドになり、ケイ素原子に結合した水酸基が生成する。こうしてできた水酸基同士が脱水縮合するとポリマー間に架橋点ができ、それが増加することによって本来ゴム状であった半導体デバイス用部材が硬く、もろくなる可能性がある。しかし、有機金属化合物触媒はシラノール基と結合し、これにより、熱分解による架橋の進行を防止できるものと推察される。
(iii)主鎖の切断などの防止としては、有機金属化合物触媒がシラノールと結合することにより、シラノールの分子内攻撃によるポリマー主鎖の切断及び環状シロキサンの生成による加熱重量減を抑制し、耐熱性が向上するものと推察される。
有機金属化合物触媒の好ましい配合量は、使用する触媒の種類によって適宜選択されるが、加水分解・重縮合を行う原料の総重量に対し、通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上、また、通常5重量%以下、好ましくは2重量%以下、特に好ましくは1重量%以下である。有機金属化合物触媒が少なすぎると、硬化に時間がかかりすぎたり、硬化不十分なために十分な機械的強度や耐久性が得られなかったりする可能性がある。一方、有機金属化合物触媒が多すぎると、硬化が速すぎて硬化物である半導体デバイス用部材の物性の制御が困難となったり、触媒が溶解分散できず析出し半導体デバイス用部材の透明度を損なったり、触媒自身が持ち込む有機物量が多くなり得られる半導体デバイス用部材が高温使用時に着色したりする可能性がある。
これらの有機金属触媒は、加水分解・縮合時に一括して原料系に混合しても良く、また分割混合しても良い。また、加水分解・重縮合時に触媒を溶解するために溶媒を使用しても良く、直接反応液に触媒を溶解しても良い。ただし、半導体発光デバイス用形成液として使用する際には、硬化時の発泡や熱による着色を防ぐために、加水分解・重縮合工程の後で前記の溶媒を厳密に留去することが望ましい。
なお、触媒が固体である場合には触媒の溶解度が低く、溶解不十分なまま直接昇温すると局所的に不均一な反応が起きて系内が白濁したり透明ゲル状の不溶物が生成したりすることがある。これを防ぎ均一に反応を進めるには、触媒粒子を(i)乳鉢により数十〜数百μmに粉砕し溶解しやすくしたり、(ii)触媒を溶解させるために、触媒を混合した樹脂組成物を30〜50℃で攪拌しつつ予備加熱し、触媒が溶解してから反応温度に昇温したりすると良い。また、活性の異なるシロキサン原料を混合する際には活性の低い成分に触媒を混合し、触媒が溶解してから最も活性の高い成分を混合すると良い。
加水分解・重縮合反応時に系内が分液し不均一となる場合には、溶媒を使用しても良い。溶媒としては、例えば、C1〜C3の低級アルコール類、ジメチルホルムアミド、ジメチルスルホキシド、アセトン、テトラヒドロフラン、メチルセロソルブ、エチルセロソルブ、メチルエチルケトン、トルエン、水等を任意に用いることができるが、中でも強い酸性や塩基性を示さないものが加水分解・重縮合に悪影響を与えない理由から好ましい。溶媒は1種を単独で使用しても良いが、2種以上を任意の組み合わせ及び比率で併用することもできる。溶媒使用量は自由に選択できるが、半導体デバイスに塗布する際には溶媒を除去することが多いため、必要最低限の量とすることが好ましい。また、溶媒除去を容易にするため、沸点が100℃以下、より好ましくは80℃以下の溶媒を選択することが好ましい。なお、外部より溶媒を添加しなくても加水分解反応によりアルコール等の溶媒が生成するため、反応当初は不均一でも反応中に均一になる場合もある。
上記原料化合物の加水分解・重縮合反応は、常圧で実施する場合、通常15℃以上、好ましくは20℃以上、より好ましくは40℃以上、また、通常140℃以下、好ましくは135℃以下、より好ましくは130℃以下の範囲で行なう。加圧下で液相を維持することでより高い温度で行なうことも可能であるが、150℃を超えないことが好ましい。
加水分解・重縮合反応時間は反応温度により異なるが、通常0.1時間以上、好ましくは1時間以上、更に好ましくは3時間以上、また、通常100時間以下、好ましくは20時間以下、更に好ましくは15時間以下の範囲で実施される。反応時間の調整は分子量管理を行いつつ適宜行うことが好ましい。
以上の加水分解・重縮合条件において、時間が短くなったり温度が低すぎたりすると、加水分解・重合が不十分なため硬化時に原料が揮発したり、硬化物の強度が不十分となる可能性がある。また、時間が長くなったり温度が高すぎたりすると、重合物の分子量が高くなり、系内のシラノール量が減少し、塗布時に密着性不良が生じたり硬化が早すぎて硬化物の構造が不均一となり、クラックを生じやすくなる。以上の傾向を踏まえて、所望の物性値に応じて条件を適宜選択することが望ましい。
上記加水分解・重縮合反応が終了した後、得られた加水分解・重縮合物はその使用時まで室温以下で保管されるが、この期間にもゆっくりと重縮合が進行するため、特に厚膜状の部材として使用する場合には前記加温による加水分解・重縮合反応が終了した時点より室温保管にて通常60日以内、好ましくは30日以内、更に好ましくは15日以内に使用に供することが好ましい。必要に応じ凍らない範囲にて低温保管することにより、この期間を延長することができる。保管期間の調整は分子量管理を行いつつ適宜行うことが好ましい。
前記の操作により、上記の原料化合物の加水分解・重縮合物(重縮合物)が得られる。この加水分解・重縮合物は、好ましくは液状である。しかし、固体状の加水分解・重縮合物でも、溶媒を用いることにより液状となるものであれば、使用することができる。また、こうして得られた液状の加水分解・重縮合物は、この後に説明する工程で硬化することにより本発明の半導体デバイス用部材となる半導体デバイス用部材形成液である。
[2−3]溶媒留去
上記の加水分解・重縮合工程において溶媒を用いた場合には、通常、乾燥の前に加水分解・重縮合物から溶媒を留去することが好ましい(溶媒留去工程)。これにより、溶媒を含まない半導体デバイス用部材形成液(液状の加水分解・重縮合物)を得ることができる。上述したように、従来は溶媒を留去すると加水分解・重縮合物が硬化してしまうために加水分解・重縮合物の取り扱いが困難となっていた。しかし、本発明の製造方法では、2官能成分オリゴマーを使用すると加水分解・重縮合物の反応性が抑制されるため、乾燥の前に溶媒を留去しても加水分解・重縮合物は硬化しなくなり、溶媒の留去が可能である。溶媒を乾燥前に留去しておくことにより、脱溶媒収縮によるクラック、剥離、断線などを防止することができる。
なお、通常は、溶媒の留去の際に、加水分解に用いた水の留去も行なわれる。また、留去される溶媒には、上記の一般式(1)、(2)で表わされる原料化合物の加水分解・重縮合反応により生成される、XH等で表わされる溶媒も含まれる。さらに、反応時に副生する低分子環状シロキサンも含まれる。
溶媒を留去する方法は、本発明の効果を著しく損なわない限り任意である。ただし、加水分解・重縮合物の硬化開始温度以上の温度で溶媒の留去を行なうことは避けるようにする。
溶媒の留去を行なう際の温度条件の具体的な範囲を挙げると、通常60℃以上、好ましくは80℃以上、より好ましくは100℃以上、また、通常150℃以下、好ましくは130℃以下、より好ましくは120℃以下である。この範囲の下限を下回ると溶媒の留去が不十分となる可能性があり、上限を上回ると加水分解・重縮合物がゲル化する可能性がある。
また、溶媒の留去を行なう際の圧力条件は、通常は常圧である。さらに、必要に応じて溶媒留去時の反応液の沸点が硬化開始温度(通常は120℃以上)に達しないように減圧する。また、圧力の下限は、加水分解・重縮合物の主成分が留出しない程度である。
一般に高温・高真空条件で軽沸分は効率良く留去できるが、軽沸分が微量であるため装置形状により精密に留去できない場合には、高温操作によりさらに重合が進み分子量が上がりすぎる可能性がある。さらに、所定の種類の触媒を使用している場合には、長時間高温反応に供すると失活し、半導体デバイス用部材形成液を硬化しにくくなる可能性もある。そこで、これらの場合などには、必要に応じ窒素吹き込みや水蒸気蒸留などにより低温常圧で軽沸分を留去しても良い。
減圧留去や窒素吹き込みなどの何れの場合にも、加水分解・重縮合物の主成分本体が留出しないよう、前段の加水分解・重縮合反応にて適度に分子量を上げておくことが望ましい。
これらの方法により溶媒や水分、副生低分子環状シロキサン、溶存空気などの軽沸分を十分に除いた半導体デバイス用形成液を用いて製造する半導体デバイス用部材は、軽沸分の気化による硬化時発泡や高温使用時のデバイスからの剥離を低減させることができるため、好ましい。
ただし、溶媒の留去を行なうことは、必須の操作ではない。特に、加水分解・重縮合物の硬化温度以下の沸点を有する溶媒を用いている場合には、加水分解・重縮合物の乾燥時に、加水分解・重縮合物の硬化が開始される前に溶媒が揮発してしまうため、特に溶媒留去工程を行なわなくても脱溶媒収縮によるクラック等の生成は防止することができる。しかし、溶媒の揮発により加水分解・重縮合物の体積が変化することもありえるため、半導体デバイス用部材の寸法や形状を精密に制御する観点からは、溶媒留去を行なうことが好ましい。
[2−4]乾燥
上述の加水分解・重縮合反応により得られた加水分解・重縮合物を乾燥させる(乾燥工程。または、硬化工程)ことにより、本発明の半導体デバイス用部材を得ることができる。この加水分解・重縮合物は上述のように通常は液状であるが、これを目的とする形状の型に入れた状態で乾燥を行なうことにより、目的とする形状を有する本発明の半導体デバイス用部材を形成することが可能となる。また、この加水分解・重縮合物を目的とする部位に塗布した状態で乾燥を行なうことにより、目的とする部位に直接、本発明の半導体デバイス用部材を形成することが可能となる。なお、乾燥工程では必ずしも溶媒が気化するわけではないが、ここでは、流動性を有する加水分解・重縮合物が流動性を失って硬化する現象を含めて、乾燥工程と呼ぶものとする。したがって、溶媒の気化を伴わない場合には、上記「乾燥」は「硬化」と読み替えて認識してもよい。
乾燥工程では、加水分解・重縮合物をさらに重合させることにより、メタロキサン結合を形成させて、重合物を乾燥・硬化させ、本発明の半導体デバイス用部材を得る。
乾燥の際には、加水分解・重縮合物を所定の硬化温度まで加熱して硬化させるようにする。具体的な温度範囲は加水分解・重縮合物の乾燥が可能である限り任意であるが、メタロキサン結合は通常100℃以上で効率良く形成されるため、好ましくは120℃以上、更に好ましくは150℃以上で実施される。但し、半導体デバイスと共に加熱される場合は、通常はデバイス構成要素の耐熱温度以下の温度、好ましくは200℃以下で乾燥を実施することが好ましい。
また、加水分解・重縮合物を乾燥させるために硬化温度に保持する時間(硬化時間)は触媒濃度や部材の厚みなどにより一概には決まらないが、通常0.1時間以上、好ましくは0.5時間以上、更に好ましくは1時間以上、また、通常10時間以下、好ましくは5時間以下、更に好ましくは3時間以下の範囲で実施される。
なお、乾燥工程における昇温条件は特に制限されない。即ち、乾燥工程の間、一定の温度で保持しても良く、連続的又は断続的に温度を変化させても良い。また、乾燥工程を更に複数回に分けて行なってもよい。さらに、乾燥工程において、温度を段階的に変化させるようにしてもよい。温度を段階的に変化させることにより、残留溶媒や溶存水蒸気による発泡を防ぐことができるという利点を得ることができる。また、低温で硬化させた後、高温で追硬化した場合には、得られる半導体デバイス用部材中に内部応力が発生しにくく、クラックや剥離を起こしにくいという利点も得ることができる。
ただし、上述の加水分解・重縮合反応を溶媒の存在下にて行なったときに、溶媒留去工程を行なわなかった場合や、溶媒留去工程を行なっても加水分解・重縮合物中に溶媒が残留している場合には、この乾燥工程を、溶媒の沸点以下の温度にて溶媒を実質的に除去する第1の乾燥工程と、該溶媒の沸点以上の温度にて乾燥する第2の乾燥工程とに分けて行なうことが好ましい。なお、ここで言う「溶媒」には、上述の原料化合物の加水分解・重縮合反応により生成される、XH等で表わされる溶媒や低分子環状シロキサンも含まれる。また、本明細書における「乾燥」とは、上述の原料化合物の加水分解・重縮合物が溶媒を失い、更に重合・硬化してメタロキサン結合を形成する工程を指す。
第1の乾燥工程は、原料化合物の加水分解・重縮合物の更なる重合を積極的に進めることなく、含有される溶媒を該溶媒の沸点以下の温度にて実質的に除去するものである。即ち、この工程にて得られる生成物は、乾燥前の加水分解・重縮合物が濃縮され、水素結合により粘稠な液或いは柔らかい膜状になったものか、溶媒が除去されて加水分解・重縮合物が液状で存在しているものである。
ただし、通常は、溶媒の沸点未満の温度で第1の乾燥工程を行なうことが好ましい。該溶媒の沸点以上の温度で第1の乾燥を行なうと、得られる膜に溶媒の蒸気による発泡が生じ、欠陥の無い均質な膜が得にくくなる。この第1の乾燥工程は、薄膜状の部材とした場合など溶媒の蒸発の効率がよい場合は単独のステップで行なっても良いが、カップ上にモールドした場合など蒸発効率の悪い場合においては複数のステップに分けて昇温しても良い。また、極端に蒸発効率が悪い形状の場合は、予め別の効率良い容器にて乾燥濃縮を行なった上で、流動性が残る状態で塗布し、更に乾燥を実施してもよい。蒸発効率の悪い場合には、大風量の通風乾燥など部材の表面のみ濃縮が進む手段をとらず、部材全体が均一に乾燥するよう工夫することが好ましい。
第2の乾燥工程は、上述の加水分解・重縮合物の溶媒が第1の乾燥工程により実質的に無くなった状態において、この加水分解・重縮合物を溶媒の沸点以上の温度で加熱し、メタロキサン結合を形成することにより、安定な硬化物とするものである。この工程において溶媒が多く残留していると、架橋反応が進行しつつ溶媒蒸発による体積減が生じるため、大きな内部応力が生じ、収縮による剥離やクラックの原因となる。メタロキサン結合は通常100℃以上で効率良く形成されるため、第2の乾燥工程は好ましくは100℃以上、更に好ましくは120℃以上で実施される。但し、半導体デバイスと共に加熱される場合は、通常はデバイス構成要素の耐熱温度以下の温度、好ましくは200℃以下で乾燥を実施することが好ましい。第2の乾燥工程における硬化時間は触媒濃度や部材の厚みなどにより一概には決まらないが、通常0.1時間以上、好ましくは0.5時間以上、更に好ましくは1時間以上、また、通常10時間以下、好ましくは5時間以下、更に好ましくは3時間以下の範囲で実施される。
このように溶媒除去の工程(第1の乾燥工程)と硬化の工程(第2の乾燥工程)とを明確に分けることにより、溶媒留去工程を行なわない場合であっても、本発明の物性を持つ耐光性、耐熱性に優れる半導体デバイス用部材をクラック・剥離することなく得ることが可能となる。
ただし、第1の乾燥工程中でも硬化が進行することはありえるし、第2の乾燥工程中にも溶媒除去が進行する場合はありえる。しかし、第1の乾燥工程中の硬化や第2の乾燥工程中の溶媒除去は、通常は本発明の効果に影響を及ぼさない程度に小さいものである。
なお、実質的に上述の第1の乾燥工程及び第2の乾燥工程が実現される限り、各工程における昇温条件は特に制限されない。即ち、各乾燥工程の間、一定の温度で保持しても良く、連続的又は断続的に温度を変化させても良い。また、各乾燥工程を更に複数回に分けて行なってもよい。更には、第1の乾燥工程の間に一時的に溶媒の沸点以上の温度となったり、第2の乾燥工程の間に溶媒の沸点未満の温度となる期間が介在したりする場合でも、実質的に上述したような溶媒除去の工程(第1の乾燥工程)と硬化の工程(第2の乾燥工程)とが独立して達成される限り、本発明の範囲に含まれるものとする。
さらに、溶媒として加水分解・重縮合物の硬化温度以下、好ましくは硬化温度未満の沸点を有するものを用いている場合には、加水分解・重縮合物に共存している溶媒は、特に温度を調整せずに加水分解・重縮合物を硬化温度まで加熱した場合であっても、乾燥工程の途中において、温度が沸点に到達した時点で加水分解・重縮合物から留去されることになる。つまり、この場合、乾燥工程において加水分解・重縮合物を硬化温度まで昇温する過程において、加水分解・重縮合物が硬化する前に、溶媒の沸点以下の温度にて溶媒を実質的に除去する工程(第1の乾燥工程)が実施される。これにより、加水分解・重縮合物は、溶媒を含有しない液状の加水分解・重縮合物となる。そして、その後、溶媒の沸点以上の温度(即ち、硬化温度)にて乾燥し、加水分解・重縮合物を硬化させる工程(第2の乾燥工程)が進行することになる。したがって、溶媒として上記の硬化温度以下の沸点を有するものを用いると、上記の第1の乾燥工程と第2の乾燥工程とは、たとえその実施を意図しなくても行なわれることになる。このため、溶媒として加水分解・重縮合物の硬化温度以下、好ましくは上記硬化温度未満の沸点を有するものを用いることは、乾燥工程を実施する際には加水分解・重縮合物が溶媒を含んでいたとしても半導体デバイス用部材の品質に大きな影響を与えることがないため、好ましいといえる。
[2−5]その他
上述の乾燥工程の後、得られた半導体デバイス用部材に対し、必要に応じて各種の後処理を施しても良い。後処理の種類としては、モールド部との密着性の改善のための表面処理、反射防止膜の作製、光取り出し効率向上のための微細凹凸面の作製等が挙げられる。
[3]半導体デバイス用部材形成液
本発明の半導体デバイス用部材形成液は、上述したように、加水分解・重縮合工程により得られる液状材料であり、乾燥工程で硬化させられることによって半導体デバイス用部材となるものである。
半導体デバイス用部材形成液が硬化性オルガノポリシロキサンである場合は、その硬化物の熱膨張係数の点で直鎖状オルガノポリシロキサンよりは分岐状オルガノポリシロキサンが好ましい。直鎖状オルガノポリシロキサンの硬化物はエラストマー状であり、その熱膨張係数が大きいが、分岐状オルガノポリシロキサンの硬化物の熱膨張係数は直鎖状オルガノポリシロキサンの硬化物の熱膨張係数より小さいので、熱膨張に伴う光学特性の変化が小さいからである。
本発明の半導体デバイス用部材形成液の粘度に制限は無いが、液温25℃において、通常20mPa・s以上、好ましくは100mPa・s以上、より好ましくは200mPa・s以上、また、通常1500mPa・s以下、好ましくは1000mPa・s以下、より好ましくは800mPa・s以下である。なお、前記粘度はRV型粘度計(例えばブルックフィールド社製RV型粘度計「RVDV−II+Pro」により測定できる。
本発明の半導体デバイス用部材形成液の重量平均分子量及び分子量分布に制限は無い。ただし、本発明の半導体デバイス用部材形成液はGPC(ゲルパーミエーションクロマトグラフィー)で測定したポリスチレン換算の重量平均分子量(Mw)が、通常500以上、好ましくは900以上、更に好ましくは3200以上であり、通常400,000以下、好ましくは70,000以下、更に好ましくは27,000以下である。重量平均分子量が小さすぎると半導体デバイス容器への充填後の硬化時に気泡が発生する傾向があり、大きすぎると半導体デバイス用部材形成液が低温でも経時で増粘する傾向や半導体デバイス容器への充填効率が悪くなる傾向がある。
また、分子量分布(Mw/Mn。ここでMwは重量平均分子量を表わし、Mnは数平均分子量を表わす)が、通常20以下、好ましくは10以下、更に好ましくは6以下である。分子量分布が大きすぎると部材が低温でも経時で増粘する傾向や半導体デバイス容器への充填効率が悪くなる傾向がある。なお、Mnは、Mwと同じく、GPCによるポリスチレン換算で測定できる。
また、本発明の半導体デバイス用部材形成液は、特定分子量以下の低分子量成分が少ないものが好ましい。具体的には、本発明の半導体デバイス用部材形成液中のGPC面積比率で分子量が800以下の成分が、全体の、通常10%以下、好ましくは7.5%以下、更に好ましくは5%以下である。低分子量成分が多すぎると、半導体デバイス用部材形成液の硬化時に気泡が発生したり主成分の揮発により硬化時の重量歩留まり(固形分率)が低下したりする可能性がある。
さらに、本発明の半導体デバイス用部材形成液は、特定分子量以上の高分子量成分が少ないものが好ましい。具体的には、本発明の半導体デバイス用部材形成液のGPC分析値において、高分子量の分画範囲が5%となる分子量が、通常1000000以下、好ましくは330000以下、さらに好ましくは110000以下である。GPCで高分子量側の分画範囲が多すぎると、
a)半導体デバイス用部材形成液が低温保管においても経時で増粘する、
b)保管中の脱水縮合により水分生成し、半導体デバイス用部材を基板やパッケージ等の表面に形成した後で半導体デバイス用部材形成液が基板やパッケージ等から剥離しやすくなる、
c)高粘度であるために半導体デバイス用部材形成液の硬化時に気泡の抜けが悪くなる、などの可能性がある。
総括すれば、本発明の半導体デバイス用部材形成液は、上記に示される分子量範囲であることが好ましく、このような分子量範囲とする方法としては下記の方法を挙げることが出来る。
(i)合成時の重合反応を十分に行い未反応原料を消費する。
(ii)合成反応後に軽沸分の留去を十分に行い軽沸の低分子量残留物を除去する。
(iii)合成反応時の反応速度や条件を適切に制御し、重合反応が均一に進行するようにし、分子量分布が必要以上に大きくならないようにする。
例えば、「[2]半導体デバイス用部材の製造方法」のように、特定の化合物を加水分解・重縮合した重縮合物で半導体デバイス用部材を形成する場合には、半導体デバイス用部材形成液合成時の加水分解・重合反応を適正な反応速度を維持しつつ、均一に進めることが好ましい。加水分解・重合は通常15℃以上、好ましくは20℃以上、より好ましくは40℃以上、また通常140℃以下、好ましくは135℃以下、より好ましくは130℃以下の範囲で行う。また、加水分解・重合時間は反応温度により異なるが、通常0.1時間以上、好ましくは1時間以上、さらに好ましくは3時間以上、また通常100時間以下、好ましくは20時間以下、更に好ましくは15時間以下の範囲で実施される。反応時間がこれより短いと、必要な分子量まで到達しなかったり、不均一に反応進む結果低分子量原料が残存しつつ高分子量の成分も存在し、硬化物の品質不良で貯蔵安定性に乏しいものとなったりする可能性がある。また、反応時間がこれより長いと、重合触媒が失活したり、合成に長時間かかり生産性が悪化したりする可能性がある。
原料の反応活性が低く反応が進みにくい場合には、必要に応じて、例えばアルゴンガス、ヘリウムガス、窒素ガス等の不活性ガスを流通させることにより、縮合反応にて発生する水分やアルコールを随伴させて除去を行ない反応を加速しても良い。
反応時間の調整は、GPC及び粘度測定により分子量管理を行ないつつ、適宜行なうことが好ましい。さらに、昇温時間を考慮して調節することが好ましい。
溶媒を用いる場合には、必要に応じて常圧にて溶媒留去を行なうことが好ましい。さらに、溶媒や除去したい低分子量物の沸点が硬化開始温度(通常は120℃以上)である場合には、必要に応じて減圧留去を行なうことが好ましい。一方、導光膜の薄層塗布など、使用目的によっては低粘度化のため溶媒が一部残存していても良く、反応溶媒と異なる溶媒を反応溶媒留去後に後添加しても良い。
ここで、半導体デバイス用部材形成液の分子量分布の上限及び下限は上記範囲に収まることが好ましく、その範囲であれば分子量分布は必ずしも一山でなくてもよい。また、機能付加などの目的により異なる分子量分布の半導体デバイス用部材形成液を混合してもよく、その場合には分子量分布曲線が多峰性になっても良い。例えば、半導体デバイス用部材に機械的強度を与えるため、高分子量に仕上げた第一の半導体デバイス用部材形成液に、密着成分を多く含む低分子量の第二の半導体デバイス用部材形成液を少量含有させた場合などがこれに該当する。
さらに、本発明の半導体デバイス用部材形成液中の低沸点成分は、「[1−4−9]低沸点成分」で説明した本発明の半導体デバイス用部材と同様に、少ないことが好ましい。
また、本発明の半導体デバイス用部材には通常微量のアルコキシ基が残存する。この末端アルコキシ基が少ない半導体デバイス用部材及び半導体デバイス用部材形成液はTG−DTAによる重量減が少なく、耐熱性が高くなる。本発明の半導体デバイス用形成液に含まれるアルコキシ基量は、通常5重量%以下、好ましくは3重量%以下、さらに好ましくは0.2重量%以下である。
また、用途によっては、半導体デバイス用部材形成液は、その他の成分を含有していてもよい。例えば、本発明の半導体デバイス用部材を半導体発光デバイスの構成部材として用いる場合などにおいては、半導体デバイス用部材形成液に蛍光体や無機粒子などを含有させてもよい。この際、半導体デバイス用部材形成液と蛍光体とを含有するものを、特に、本発明の蛍光体組成物という。なお、これらの点については、用途の説明と共に、後で説明する。
また、その他の成分は、1種のみを用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
[4]半導体デバイス用部材の用途
本発明の半導体デバイス用部材の用途は特に制限されず、半導体発光素子等を封止するための部材(封止剤)に代表される各種の用途に使用することができる。中でも、蛍光体粒子及び/又は無機粒子を併用することによって、特定の用途により好適に使用することが可能となる。以下、これらの蛍光体粒子及び無機粒子の併用について説明する。
[4−1]蛍光体
本発明の半導体デバイス用部材は、例えば、半導体デバイス用部材中に蛍光体を分散させて、半導体発光デバイスのカップ内にモールドしたり、適当な透明支持体上に薄層状に塗布することにより、波長変換用部材として使用することができる。なお、蛍光体は1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用しても良い。
[4−1−1]蛍光体の種類
蛍光体の組成には特に制限はないが、結晶母体であるY23、Zn2SiO4等に代表される金属酸化物、Ca5(PO43Cl等に代表されるリン酸塩及びZnS、SrS、CaS等に代表される硫化物に、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンやAg、Cu、Au、Al、Mn、Sb等の金属のイオンを付活剤または共付活剤として組み合わせたものが好ましい。
結晶母体の好ましい例としては、例えば、(Zn,Cd)S、SrGa24、SrS、ZnS等の硫化物、Y22S等の酸硫化物、(Y,Gd)3Al512、YAlO3、BaMgAl1017、(Ba,Sr)(Mg,Mn)Al1017、(Ba,Sr,Ca)(Mg,Zn,Mn)Al1017、BaAl1219、CeMgAl1119、(Ba,Sr,Mg)O・Al23、BaAl2Si28、SrAl24、Sr4Al1425、Y3Al512等のアルミン酸塩、Y2SiO5、Zn2SiO4等の珪酸塩、SnO2、Y23等の酸化物、GdMgB510、(Y,Gd)BO3等の硼酸塩、Ca10(PO46(F,Cl)2、(Sr,Ca,Ba,Mg)10(PO46Cl2等のハロリン酸塩、Sr227、(La,Ce)PO4等のリン酸塩等を挙げることができる。
ただし、上記の結晶母体及び付活剤または共付活剤は、元素組成には特に制限はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視領域の光を吸収して可視光を発するものであれば用いることが可能である。
具体的には、蛍光体として以下に挙げるものを用いることが可能であるが、これらはあくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。なお、以下の例示では、構造の一部のみが異なる蛍光体を、適宜省略して示している。例えば、「Y2SiO5:Ce3+」、「Y2SiO5:Tb3+」及び「Y2SiO5:Ce3+,Tb3+」を「Y2SiO5:Ce3+,Tb3+」と、「La22S:Eu」、「Y22S:Eu」及び「(La,Y)22S:Eu」を「(La,Y)22S:Eu」とまとめて示している。省略箇所はカンマ(,)で区切って示す。
[4−1−1−1]赤色蛍光体
赤色の蛍光を発する蛍光体(以下適宜、「赤色蛍光体」という)が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常570nm以上、好ましくは580nm以上、また、通常700nm以下、好ましくは680nm以下が望ましい。
このような赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行なう(Mg,Ca,Sr,Ba)2Si58:Euで表わされるユウロピウム付活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう(Y,La,Gd,Lu)22S:Euで表わされるユウロピウム付活希土類オキシカルコゲナイド系蛍光体等が挙げられる。
さらに、特開2004−300247号公報に記載された、Ti、Zr、Hf、Nb、Ta、W、及びMoよりなる群から選ばれる少なくも1種の元素を含有する酸窒化物及び/又は酸硫化物を含有する蛍光体であって、Al元素の一部又は全てがGa元素で置換されたアルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本実施形態において用いることができる。なお、これらは酸窒化物及び/又は酸硫化物を含有する蛍光体である。
また、そのほか、赤色蛍光体としては、(La,Y)22S:Eu等のEu付活酸硫化物蛍光体、Y(V,P)O4:Eu、Y23:Eu等のEu付活酸化物蛍光体、(Ba,Sr,Ca,Mg)2SiO4:Eu,Mn、(Ba,Mg)2SiO4:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO3:Eu等のEu付活アルミン酸塩蛍光体、LiY9(SiO462:Eu、Ca28(SiO462:Eu、(Sr,Ba,Ca)3SiO5:Eu、Sr2BaSiO5:Eu等のEu付活珪酸塩蛍光体、(Y,Gd)3Al512:Ce、(Tb,Gd)3Al512:Ce等のCe付活アルミン酸塩蛍光体、(Ca,Sr,Ba)2Si58:Eu、(Mg,Ca,Sr,Ba)SiN2:Eu、(Mg,Ca,Sr,Ba)AlSiN3:Eu等のEu付活窒化物蛍光体、(Mg,Ca,Sr,Ba)AlSiN3:Ce等のCe付活窒化物蛍光体、(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、(Ba3Mg)Si28:Eu,Mn、(Ba,Sr,Ca,Mg)3(Zn,Mg)Si28:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、3.5MgO・0.5MgF2・GeO2:Mn等のMn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La)23:Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y,Lu,La)22S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO4:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY24:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa24:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP27:Eu,Mn、(Sr,Ca,Ba,Mg,Zn)227:Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)2WO6:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)xSiyz:Eu,Ce(但し、x、y、zは、1以上の整数)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,Ba,Mg)10(PO46(F,Cl,Br,OH):Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb)1-xScxCey2(Ca,Mg)1-r(Mg,Zn)2+rSiz-qGeq12+δ等のCe付活珪酸塩蛍光体等を用いることも可能である。
赤色蛍光体としては、β−ジケトネート、β−ジケトン、芳香族カルボン酸、又は、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ペリレン系顔料(例えば、ジベンゾ{[f,f’]−4,4’,7,7’−テトラフェニル}ジインデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン)、アントラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。
また、赤色蛍光体のうち、ピーク波長が580nm以上、好ましくは590nm以上、また、620nm以下、好ましくは610nm以下の範囲内にあるものは、橙色蛍光体として好適に用いることができる。このような橙色蛍光体の例としては、(Sr,Ba)3SiO5:Eu、(Sr,Mg)3(PO42:Sn2+、SrCaAlSiN3:Eu、Eu付活αサイアロン等のEu付活酸窒化物蛍光体等が挙げられる。
[4−1−1−2]緑色蛍光体
緑色の蛍光を発する蛍光体(以下適宜、「緑色蛍光体」という)が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常490nm以上、好ましくは500nm以上、また、通常570nm以下、好ましくは550nm以下が望ましい。
このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Mg,Ca,Sr,Ba)Si222:Euで表わされるユウロピウム付活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Ba,Ca,Sr,Mg)2SiO4:Euで表わされるユウロピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。
また、そのほか、緑色蛍光体としては、Sr4Al1425:Eu、(Ba,Sr,Ca)Al24:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)Al2Si28:Eu、(Ba,Mg)2SiO4:Eu、(Ba,Sr,Ca,Mg)2SiO4:Eu、(Ba,Sr,Ca)2(Mg,Zn)Si27:Eu等のEu付活珪酸塩蛍光体、Y2SiO5:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr227−Sr225:Eu等のEu付活硼酸リン酸塩蛍光体、Sr2Si38−2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体、Zn2SiO4:Mn等のMn付活珪酸塩蛍光体、CeMgAl1119:Tb、Y3Al512:Tb等のTb付活アルミン酸塩蛍光体、Ca28(SiO462:Tb、La3Ga5SiO14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga24:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y3(Al,Ga)512:Ce、(Y,Ga,Tb,La,Sm,Pr,Lu)3(Al,Ga)512:Ce等のCe付活アルミン酸塩蛍光体、Ca3Sc2Si312:Ce、Ca3(Sc,Mg,Na,Li)2Si312:Ce等のCe付活珪酸塩蛍光体、CaSc24:Ce等のCe付活酸化物蛍光体、SrSi222:Eu、(Sr,Ba,Ca)Si222:Eu、Eu付活βサイアロン等のEu付活酸窒化物蛍光体、BaMgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrAl24:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)22S:Tb等のTb付活酸硫化物蛍光体、LaPO4:Ce,Tb等のCe,Tb付活リン酸塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,Ga,Lu,Sc,La)BO3:Ce,Tb、Na2Gd227:Ce,Tb、(Ba,Sr)2(Ca,Mg,Zn)B26:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、Ca8Mg(SiO44Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca,Ba)(Al,Ga,In)24:Eu等のEu付活チオアルミネート蛍光体やチオガレート蛍光体、(Ca,Sr)8(Mg,Zn)(SiO44Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体等を用いることも可能である。
また、緑色蛍光体としては、ピリジン−フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、ヘキシルサリチレートを配位子として有するテルビウム錯体等の有機蛍光体を用いることも可能である。
[4−1−1−3]青色蛍光体
青色の蛍光を発する蛍光体(以下適宜、「青色蛍光体」という)が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常420nm以上、好ましくは440nm以上、また、通常480nm以下、好ましくは470nm以下が望ましい。
このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行なうBaMgAl1017:Euで表わされるユウロピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)5(PO43Cl:Euで表わされるユウロピウム付活ハロリン酸カルシウム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)259Cl:Euで表わされるユウロピウム付活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行なう(Sr,Ca,Ba)Al24:Euまたは(Sr,Ca,Ba)4Al1425:Euで表わされるユウロピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
また、そのほか、青色蛍光体としては、Sr227:Sn等のSn付活リン酸塩蛍光体、Sr4Al1425:Eu、BaMgAl1017:Eu、BaAl813:Eu等のEu付活アルミン酸塩蛍光体、SrGa24:Ce、CaGa24:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl1017:Eu、BaMgAl1017:Eu,Tb,Sm等のEu付活アルミン酸塩蛍光体、(Ba,Sr,Ca)MgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu、(Ba,Sr,Ca)5(PO43(Cl,F,Br,OH):Eu,Mn,Sb等のEu付活ハロリン酸塩蛍光体、BaAl2Si28:Eu、(Sr,Ba)3MgSi28:Eu等のEu付活珪酸塩蛍光体、Sr227:Eu等のEu付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、Y2SiO5:Ce等のCe付活珪酸塩蛍光体、CaWO4等のタングステン酸塩蛍光体、(Ba,Sr,Ca)BPO5:Eu,Mn、(Sr,Ca)10(PO46・nB23:Eu、2SrO・0.84P25・0.16B23:Eu等のEu,Mn付活硼酸リン酸塩蛍光体、Sr2Si38・2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体等を用いることも可能である。
また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラゾリン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。
[4−1−1−4]黄色蛍光体
黄色の蛍光を発する蛍光体(以下適宜、「黄色蛍光体」という。)が発する蛍光の具体的な波長の範囲を例示すると、通常530nm以上、好ましくは540nm以上、より好ましくは550nm以上、また、通常620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあることが好適である。黄色蛍光体の発光ピーク波長が短すぎると黄色成分が少なくなり演色性が劣る半導体発光デバイスとなる可能性があり、長すぎると半導体発光デバイスの輝度が低下する可能性がある。
このような黄色蛍光体としては、例えば、各種の酸化物系、窒化物系、酸窒化物系、硫化物系、酸硫化物系等の蛍光体が挙げられる。特に、RE3512:Ce(ここで、REは、Y,Tb,Gd,Lu,Smの少なくとも1種類の元素を表し、Mは、Al,Ga,Scの少なくとも1種類の元素を表す。)やM2 33 24 312:Ce(ここで、M2は2価の金属元素、M3は3価の金属元素、M4は4価の金属元素)等で表されるガーネット構造を有するガーネット系蛍光体、AE254:Eu(ここで、AEは、Ba,Sr,Ca,Mg,Znの少なくとも1種類の元素を表し、M5は、Si,Geの少なくとも1種類の元素を表す。)等で表されるオルソシリケート系蛍光体、これらの系の蛍光体の構成元素の酸素の一部を窒素で置換した酸窒化物系蛍光体、AEAlSiN3:Ce(ここで、AEは、Ba,Sr,Ca,Mg,Znの少なくとも1種類の元素を表す。)等のCaAlSiN3構造を有する窒化物系蛍光体等のCeで付活した蛍光体などが挙げられる。
また、そのほか、黄色蛍光体としては、CaGa24:Eu(Ca,Sr)Ga24:Eu、(Ca,Sr)(Ga,Al)24:Eu等の硫化物系蛍光体、Cax(Si,Al)12(O,N)16:Eu等のSiAlON構造を有する酸窒化物系蛍光体等のEuで付活した蛍光体を用いることも可能である。
[4−1−1−5]その他の蛍光体
本発明の半導体デバイス用部材は、上述したもの以外の蛍光体を含有させることも可能である。例えば、本発明の半導体デバイス用部材は、イオン状の蛍光物質や有機・無機の蛍光成分を均一・透明に溶解・分散させた蛍光ガラスとすることもできる。
[4−1−2]蛍光体の粒径
本発明に使用する蛍光体の粒径は特に制限はないが、中央粒径(D50)で、通常0.1μm以上、好ましくは2μm以上、さらに好ましくは5μm以上である。また、通常100μm以下、好ましくは50μm以下、さらに好ましくは20μm以下である。蛍光体の中央粒径(D50)が上記範囲にある場合は、後述する半導体発光デバイスにおいて、半導体発光素子から発する光が充分に散乱される。また、半導体発光素子から発する光が充分に蛍光体粒子に吸収されるため、波長変換が高効率に行われると共に、蛍光体から発せられる光が全方向に照射される。これにより、複数種類の蛍光体からの一次光を混色して白色にすることができると共に、均一な白色が得られるため、半導体発光デバイスが発する合成光において、均一な白色光と照度が得られる。一方、蛍光体の中央粒径(D50)が上記範囲より大きい場合は、蛍光体が発光部の空間を充分に埋めることができないため、後述する半導体発光デバイスにおいて、半導体発光素子からの光が充分に蛍光体に吸収されない可能性がある。また、蛍光体の中央粒径(D50)が、上記範囲より小さい場合は、蛍光体の発光効率が低下するため、半導体発光デバイスの照度が低下する可能性がある。
蛍光体粒子の粒度分布(QD)は、半導体デバイス用部材中での粒子の分散状態をそろえるために小さい方が好ましいが、小さくするためには分級収率が下がってコストアップにつながるので、通常0.03以上、好ましくは0.05以上、更に好ましくは0.07以上である。また、通常0.4以下、好ましくは0.3以下、更に好ましくは0.2以下である。
なお、本発明において、中央粒径(D50)および粒度分布(QD)は、重量基準粒度分布曲線から得ることが出来る。前記重量基準粒度分布曲線は、レーザ回折・散乱法により粒度分布を測定し得られるもので、具体的には、例えば以下のように測定することが出来る。
〔重量基準粒度分布曲線の測定方法〕
(1)気温25℃、湿度70%の環境下において、エチレングリコールなどの溶媒に蛍光体を分散させる。
(2)レーザ回折式粒度分布測定装置(堀場製作所 LA−300)により、粒径範囲0.1μm〜600μmにて測定する。
(3)この重量基準粒度分布曲線において積算値が50%のときの粒径値を中央粒径D50と表記する。また、積算値が25%及び75%の時の粒径値をそれぞれD25、D75と表記し、QD=(D75−D25)/(D75+D25)と定義する。QDが小さいことは粒度分布が狭いことを意味する。
また、蛍光体粒子の形状も、半導体デバイス用部材の形成に影響を与えない限り、例えば、蛍光体部形成液(蛍光体を含有する半導体デバイス用部材形成液のことを言い、蛍光体組成物と同様のものを指す)の流動性等に影響を与えない限り、特に限定されない。
[4−1−3]蛍光体の表面処理
本発明に使用する蛍光体は、耐水性を高める目的で、または半導体デバイス用部材中で蛍光体の不要な凝集を防ぐ目的で、表面処理が行われていてもよい。かかる表面処理の例としては、特開2002−223008号公報に記載の有機材料、無機材料、ガラス材料などを用いた表面処理、特開2000−96045号公報等に記載の金属リン酸塩による被覆処理、金属酸化物による被覆処理、シリカコート等の公知の表面処理などが挙げられる。
表面処理の具体例を挙げると、例えば蛍光体の表面に上記金属リン酸塩を被覆させるには、以下の(i)〜(iii)の表面処理を行う。
(i)所定量のリン酸カリウム、リン酸ナトリウムなどの水溶性のリン酸塩と、塩化カルシウム、硫酸ストロンチウム、塩化マンガン、硝酸亜鉛等のアルカリ土類金属、Zn及びMnの中の少なくとも1種の水溶性の金属塩化合物とを蛍光体懸濁液中に混合し、攪拌する。
(ii)アルカリ土類金属、Zn及びMnの中の少なくとも1種の金属のリン酸塩を懸濁液中で生成させると共に、生成したこれらの金属リン酸塩を蛍光体表面に沈積させる。
(iii)水分を除去する。
また、表面処理の他の例のうち好適な例を挙げると、シリカコートとしては、水ガラスを中和してSiO2を析出させる方法、アルコキシシランを加水分解したものを表面処理する方法(例えば、特開平3−231987号公報)等が挙げられ、分散性を高める点においてはアルコキシシランを加水分解したものを表面処理する方法が好ましい。
[4−1−4]蛍光体の混合方法
本発明において、蛍光体粒子を加える方法は特に制限されない。蛍光体粒子の分散状態が良好な場合であれば、上述の半導体デバイス用部材形成液に後混合するだけでよい。即ち、本発明の半導体デバイス用部材形成液と蛍光体とを混合し、蛍光体部形成液を用意して、この蛍光体部形成液を用いて半導体デバイス用部材を作製すればよい。蛍光体粒子の凝集が起こりやすい場合には、加水分解前の原料化合物を含む反応用溶液(以下適宜「加水分解前溶液」という。)に蛍光体粒子を前もって混合し、蛍光体粒子の存在下で加水分解・重縮合を行なうと、粒子の表面が一部シランカップリング処理され、蛍光体粒子の分散状態が改善される。
なお、蛍光体の中には加水分解性のものもあるが、本発明の半導体デバイス用部材は、塗布前の液状態(半導体デバイス用部材形成液)において、水分はシラノール体として潜在的に存在し、遊離の水分はほとんど存在しないので、そのような蛍光体でも加水分解してしまうことなく使用することが可能である。また、加水分解・重縮合後の半導体デバイス用部材形成液を脱水・脱アルコール処理を行なってから使用すれば、そのような蛍光体との併用が容易となる利点もある。
また、蛍光体粒子や無機粒子(後述する)を本発明の半導体デバイス用部材に分散させる場合には、粒子表面に分散性改善のため有機配位子による修飾を行うことも可能である。従来、半導体デバイス用部材として用いられてきた付加型シリコーン樹脂は、このような有機配位子により硬化阻害を受けやすく、このような表面処理を行った粒子を混合・硬化することができなかった。これは、付加反応型シリコーン樹脂に使用されている白金系の硬化触媒が、これらの有機配位子と強い相互作用を持ち、ヒドロシリル化の能力を失い、硬化不良を起こすためである。このような被毒物質としてはN、P、S等を含む有機化合物の他、Sn、Pb、Hg、Bi、As等の重金属のイオン性化合物、アセチレン基等、多重結合を含む有機化合物(フラックス、アミン類、塩ビ、硫黄加硫ゴム)などが挙げられる。これに対し、本発明の半導体デバイス用部材は、これらの被毒物質による硬化阻害を起こしにくい縮合型の硬化機構によるものである。このため、本発明の半導体デバイス用部材は有機配位子により表面改質した蛍光体粒子や無機粒子、さらには錯体蛍光体などの蛍光成分との混合使用の自由度が大きく、蛍光体バインダや高屈折率ナノ粒子導入透明材料として優れた特徴を備えるものである。
[4−1−5]蛍光体の含有率
本発明の半導体デバイス用部材における蛍光体の含有率は、本発明の効果を著しく損なわない限り任意であるが、その適用形態により自由に選定できる。白色LEDや白色照明等の用途に用いる白色発光の半導体発光デバイスを例を挙げると、蛍光体を均一に分散して半導体発光素子を含むパッケージの凹部全体を埋めてポッティングする場合には、蛍光体総量として、通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上、また、通常35重量%以下、好ましくは30重量%以下、より好ましくは28重量%以下である。
また、同用途で蛍光体を高濃度に分散したものを、半導体発光デバイスの半導体発光素子の発光面より遠方(例えば、半導体発光素子を含む凹部を透明封止剤で埋めたパッケージ開口面や、LED気密封止用ガラス蓋体・レンズ・導光板等の外部光学部材の出光面など)に薄膜状に塗布する場合には、通常5重量%以上、好ましくは7重量%以上、より好ましくは10重量%以上、また、通常90重量%以下、好ましくは80重量%以下、より好ましくは70重量%以下である。
また、一般に、半導体発光素子の発光色と蛍光体の発光色とを混色して白色を得る場合、半導体発光素子の発光色を一部透過させることになるため、蛍光体含有率は低濃度となり、上記範囲の下限近くの領域となる。一方、半導体発光素子の発光を全て蛍光体発光色に変換して白色を得る場合には、高濃度の蛍光体が好ましいため、蛍光体含有率は上記範囲の上限近くの領域となる。蛍光体含有率がこの範囲より多いと塗布性能が悪化したり、光学的な干渉作用により蛍光体の利用効率が低くなり、半導体発光デバイスの輝度が低くなったりする可能性がある。また、蛍光体含有率がこの範囲より少ないと、蛍光体による波長変換が不十分となり、目的とする発光色を得られなくなる可能性がある。
以上白色発光の半導体発光デバイス用途について例示したが、具体的な蛍光体含有率は目的色、蛍光体の発光効率、混色形式、蛍光体比重、塗布膜厚、デバイス形状により多様であり、この限りではない。
本発明の半導体デバイス用形成液はエポキシ樹脂やシリコーン樹脂など従来の半導体発光デバイス用形成液と比較して低粘度であり、かつ蛍光体や無機粒子とのなじみが良く、高濃度の蛍光体や無機粒子を分散しても十分に塗布性能を維持することが出来る利点を有する。また、必要に応じて重合度の調整やアエロジル等チキソ材を含有させることにより高粘度にすることも可能であり、目的の蛍光体含有量に応じた粘度の調整幅が大きく、塗布対象物の種類や形状さらにはポッティング・スピンコート・印刷などの各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。
なお、半導体デバイス用部材における蛍光体の含有率は、蛍光体組成が特定出来ていれば、蛍光体含有試料を粉砕後予備焼成し炭素成分を除いた後にフッ酸処理によりケイ素成分をケイフッ酸として除去し、残渣を希硫酸に溶解して主成分の金属元素を水溶液化し、ICPや炎光分析、蛍光X線分析などの公知の元素分析方法により主成分金属元素を定量し、計算により蛍光体含有率を求めることが出来る。また、蛍光体形状や粒径が均一で比重が既知であれば塗布物断面の画像解析により単位面積あたりの粒子個数を求め蛍光体含有率に換算する簡易法も用いることが出来る。
また、蛍光体部形成液における蛍光体の含有率は、半導体デバイス用部材における蛍光体の含有率が前記範囲に収まるように設定すればよい。したがって、蛍光体部形成液が乾燥工程において重量変化しない場合は蛍光体部形成液における蛍光体の含有率は半導体デバイス用部材における蛍光体の含有率と同様になる。また、蛍光体部形成液が溶媒等を含有している場合など、蛍光体部形成液が乾燥工程において重量変化する場合は、その溶媒等を除いた蛍光体部形成液における蛍光体の含有率が半導体デバイス用部材における蛍光体の含有率と同様になるようにすればよい。
[4−2]無機粒子(フィラー)の併用
また、本発明の半導体デバイス用部材を半導体発光デバイスに使用する場合などにおいては、光学的特性や作業性を向上させるため、また、以下の<1>〜<5>の何れかの効果を得ることを目的として、更に無機粒子を含有させても良い。
<1>半導体デバイス用部材に光散乱物質として無機粒子を混入し、半導体発光デバイスの光を散乱させることにより、蛍光体に当たる半導体発光素子の光量を増加させ、波長変換効率を向上させると共に、半導体発光デバイスから外部に放出される光の指向角を広げる。
<2>半導体デバイス用部材に結合剤として無機粒子を配合することにより、クラックの発生を防止する。
<3>半導体デバイス用部材形成液に、粘度調整剤として無機粒子を配合することにより、当該形成液の粘度を高くする。
<4>半導体デバイス用部材に無機粒子を配合することにより、その収縮を低減する。
<5>半導体デバイス用部材に無機粒子を配合することにより、その屈折率を調整して、光取り出し効率を向上させる。
この場合は、半導体デバイス用部材形成液に、蛍光体の粉末と同様に、無機粒子を目的に応じて適量混合すればよい。この場合、混合する無機粒子の種類及び量によって得られる効果が異なる。
例えば、無機粒子が粒径約10nmの超微粒子状シリカ(日本アエロジル株式会社製、商品名:AEROSIL#200)の場合、半導体デバイス用部材形成液のチクソトロピック性が増大するため、上記<3>の効果が大きい。
また、無機粒子が粒径約数μmの破砕シリカ若しくは真球状シリカの場合、チクソトロピック性の増加はほとんど無く、半導体デバイス用部材の骨材としての働きが中心となるので、上記<2>及び<4>の効果が大きい。
また、半導体デバイス用部材とは屈折率が異なる粒径約1μmの無機粒子を用いると、半導体デバイス用部材と無機粒子との界面における光散乱が大きくなるので、上記<1>の効果が大きい。
また、半導体デバイス用部材より屈折率の大きな粒径3〜5nm、具体的には発光波長以下の粒径をもつ無機粒子を用いると、半導体デバイス用部材の透明性を保ったまま屈折率を向上させることができるので、上記<5>の効果が大きい。
従って、混合する無機粒子の種類は目的に応じて選択すれば良い。また、その種類は単一でも良く、複数種を組み合わせてもよい。また、分散性を改善するためにシランカップリング剤などの表面処理剤で表面処理されていても良い。
[4−2−1]無機粒子の種類
使用する無機粒子の種類としては、シリカ、チタン酸バリウム、酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化アルミニウム、酸化セリウム、酸化イットリウムなどの無機酸化物粒子やダイヤモンド粒子が例示されるが、目的に応じて他の物質を選択することもでき、これらに限定されるものではない。
無機粒子の形態は粉体状、スラリー状等、目的に応じいかなる形態でもよいが、透明性を保つ必要がある場合は、本発明の半導体デバイス用部材と屈折率を同等としたり、水系・溶媒系の透明ゾルとして半導体デバイス用部材形成液に加えたりすることが好ましい。
[4−2−2]無機粒子の中央粒径
これらの無機粒子(一次粒子)の中央粒径は特に限定されないが、通常、蛍光体粒子の1/10以下程度である。具体的には、目的に応じて以下の中央粒径のものが用いられる。例えば、無機粒子を光散乱材として用いるのであれば、その中央粒径は0.1〜10μmが好適である。また、例えば、無機粒子を骨材として用いるのであれば、その中央粒径は1nm〜10μmが好適である。また、例えば、無機粒子を増粘剤(チキソ剤)として用いるのであれば、その中央粒子は10〜100nmが好適である。また、例えば、無機粒子を屈折率調整剤として用いるのであれば、その中央粒径は1〜10nmが好適である。
[4−2−3]無機粒子の混合方法
本発明において、無機粒子を混合する方法は特に制限されないが、通常は、蛍光体と同様に遊星攪拌ミキサー等を用いて脱泡しつつ混合することが推奨される。例えばアエロジルのような凝集しやすい小粒子を混合する場合には、粒子混合後必要に応じビーズミルや三本ロールなどを用いて凝集粒子の解砕を行ってから蛍光体等の混合容易な大粒子成分を混合しても良い。
[4−2−4]無機粒子の含有率
本発明の半導体デバイス用部材における無機粒子の含有率は、本発明の効果を著しく損なわない限り任意であるが、その適用形態により自由に選定できる。例えば、無機粒子を光散乱剤として用いる場合は、その含有率は0.01〜10重量%が好適である。また、例えば、無機粒子を骨材として用いる場合は、その含有率は1〜50重量%が好適である。また、例えば、無機粒子を増粘剤(チキソ剤)として用いる場合は、その含有率は0.1〜20重量%が好適である。また、例えば、無機粒子を屈折率調整剤として用いる場合は、その含有率は10〜80重量%が好適である。無機粒子の量が少なすぎると所望の効果が得られなくなる可能性があり、多すぎると硬化物の密着性、透明性、硬度等の諸特性に悪影響を及ぼす可能性がある。
本発明の半導体デバイス用形成液はエポキシ樹脂やシリコーン樹脂など従来の半導体発光デバイス用形成液と比較して低粘度であり、かつ蛍光体や無機粒子とのなじみが良く、高濃度の無機粒子を分散しても十分に塗布性能を維持することが出来る利点を有する。また、必要に応じて重合度の調整やアエロジル等チキソ材のを含有させることにより高粘度にすることも可能であり、目的の無機粒子含有量に応じた粘度の調整幅が大きく、塗布対象物の種類や形状さらにはポッティング・スピンコート・印刷などの各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。
なお、半導体デバイス用部材における無機粒子の含有率は、前出の蛍光体含有量と同様に測定することが出来る。
また、半導体デバイス用部材形成液における無機粒子の含有率は、半導体デバイス用部材における無機粒子の含有率が前記範囲に収まるように設定すればよい。したがって、半導体デバイス用部材形成液が乾燥工程において重量変化しない場合は半導体デバイス用部材形成液における無機粒子の含有率は半導体デバイス用部材における無機粒子の含有率と同様になる。また、半導体デバイス用部材形成液が溶媒等を含有している場合など、半導体デバイス用部材形成液が乾燥工程において重量変化する場合は、その溶媒等を除いた半導体デバイス用部材形成液における無機粒子の含有率が半導体デバイス用部材における無機粒子の含有率と同様になるようにすればよい。
[4−3]導電性フィラーの併用
また、本発明の半導体デバイス用部材を半導体発光デバイスに使用する場合などにおいては、導電性を付与し印刷やポッティングなどの技術を用いて半田使用温度より低温で電気回路を形成させることを目的として、導電性フィラーを含有させても良い。
使用する導電性フィラーの種類としては、銀粉、金粉、白金粉、パラジウム粉などの貴金属粉、銅粉、ニッケル粉、アルミ粉、真鍮粉、ステンレス粉などの卑貴金属粉、銀などの貴金属でめっき、合金化した卑貴金属粉、貴金属や卑金属で被覆された有機樹脂粉やシリカ粉、その他カーボンブラック、グラファイト粉などのカーボン系フィラーなどが例示されるが、目的に応じて他の物質を選択することもでき、これらに限定されるものではない。また、導電性フィラーは、1種を用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
導電性フィラーの供給形態は粉体状、スラリー状等、目的に応じいかなる形態でもよいが、透明性を保つ必要がある場合や、微細な配線を印刷形成する必要が有る場合には、凝集の無い水系・溶媒系の透明ゾル或いは再分散容易な表面修飾付きナノ粒子粉末として半導体デバイス用部材形成液に加えることが好ましい。
これらの金属粉の形状としては、フレーク状(リン片状)、球状、粟状、樹枝状(デンドライト状)、球状の一次粒子が3次元状に凝集した形状などがある。この内、導電性、コスト、信頼性の面より銀粉を主体とすることが好ましく、導電性の面より、銀粉に少量のカーボンブラック及び/またはグラファイト粉を併用することがより好ましい。また、導電性、信頼性の面からフレーク状、球状の銀粉を使用することが好ましく、フレーク状と球状の銀粉を併用することが最も好ましい。また、必要により、シリカ、タルク、マイカ、硫酸バリウム、酸化インジウムなどの無機フィラーなどを少量配合しても良い。
銀粉とカーボンブラック及び/またはグラファイト微粉末の好ましい配合比(質量比)は、銀粉とカーボンブラック及び/またはグラファイト微粉末の合計量を100質量比とした時、銀粉としての上限は、好ましくは99.5質量比以下、より好ましくは99質量比以下である。銀粉としての下限は、85質量比以上、より好ましくは90質量比以上である。
導電性フィラーの中央粒径は特に限定されないが、通常0.1μm以上、好ましくは0.5μm以上、更に好ましくは1μm以上であり、通常50μm以下、好ましくは20μm以下、更に好ましくは10μm以下である。また、特に透明性や微細加工性が要求される場合には通常3nm以上、好ましくは10nm以上であり、通常150nm以下、好ましくは100nm以下である。
また、導電性フィラーの含有率は該導電性フィラーとバインダー樹脂の合計量を100重量%としたとき、通常50重量%以上、好ましくは75重量%以上、より好ましくは80質量比以上である。また、接着性、インキの粘性の観点から、通常95重量%以下、好ましくは93重量%以下、より好ましくは90重量%以下である。導電性フィラーの量が少なすぎると所望の効果が得られなくなる可能性があり、多すぎると硬化物の密着性、透明性、硬度等の諸特性に悪影響を及ぼす可能性がある。
本発明の半導体デバイス用形成液はエポキシ樹脂やシリコーン樹脂など従来の半導体発光デバイス用形成液と比較して低粘度かつ蛍光体や無機粒子とのなじみが良く、高濃度の無機粒子を分散しても十分に塗布性能を維持することが出来る特徴を有する。また必要に応じて重合度の調整やアエロジル等チキソ材を含有させることにより高粘度にすることも可能であり、目的の無機粒子含有量に応じた粘度の調整幅が大きく、塗布対象物の種類や形状さらにはポッティング・スピンコート・印刷などの各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。
なお、半導体デバイス用部材における無機粒子の含有率は、前出の蛍光体含有量と同様に測定することが出来る。
[4−4]他の部材との組み合わせ
本発明の半導体デバイス用部材は単独で封止材料として用いても良いが、有機蛍光体、酸素や水分により劣化しやすい蛍光体、半導体デバイスを封止する場合等、より厳密に酸素や水分からの遮断を要求される用途においては、本発明の部材により蛍光体の保持や半導体発光素子の封止・光取り出しを実施し、さらにその外側にガラス板やエポキシ樹脂などの高気密素材による気密封止を実施したり、真空封止を実施しても良い。この場合のデバイス形状は特に制限無く、本発明の半導体デバイス用部材による封止体、塗布物あるいは塗布面が実質的に金属・ガラス・高気密性樹脂などの高気密素材により外界から保護遮断され酸素や水分の流通無い状態になっていれば良い。
また、本発明の半導体デバイス用部材は、上述のように密着性が良好なため、半導体デバイス用接着剤として用いることが出来る。具体的には、例えば、半導体素子とパッケージを接着する場合、半導体素子とサブマウントを接着する場合、パッケージ構成要素同士を接着する場合、半導体デバイスと外部光学部材とを接着する場合などに、本発明の半導体デバイス用部材を塗布、印刷、ポッティングなどすることにより用いることが出来る。本発明の半導体デバイス用部材は特に耐光性、耐熱性に優れるため、長時間高温や紫外光にさらされる高出力の半導体発光デバイス用接着剤として用いた場合、長期使用に耐え高い信頼性を有する半導体発光デバイスを提供することが出来る。
なお、本発明の半導体デバイス用部材は、これのみで十分密着性を担保しうるものであるが、更に密着性を担保することを目的として、半導体デバイス用部材と直接接する表面に密着性改善のための表面処理を行っても良い。このような、表面処理としては、例えばプライマーやシランカップリング剤を用いた密着改善層の形成、酸やアルカリなどの薬品を用いた化学的表面処理、プラズマ照射やイオン照射・電子線照射を用いた物理的表面処理、サンドブラストやエッチング・微粒子塗布などによる粗面化処理等が挙げられる。密着性改善のための表面処理としては、その他に例えば、特開平5−25300号、稲垣訓宏著「表面化学」Vol.18 No.9、pp21−26、黒崎和夫著「表面化学」Vol.19 No.2、pp44−51(1998)等に開示される公知の表面処理方法が挙げられる。
[5]半導体デバイス
以下、本発明の半導体デバイス用部材を用いた半導体デバイス(本発明の半導体デバイス)の例として、半導体発光デバイスを例に挙げて、実施形態を用いて説明する。なお、以下の各実施形態では、半導体発光デバイスを適宜「発光装置」と略称するものとする。さらに、半導体発光デバイスに用いる半導体デバイス用部材は、半導体発光デバイス用部材と呼ぶこととする。また、どの部位に本発明の半導体デバイス用部材を用いるかについては、全ての実施形態の説明の後にまとめて説明する。但し、これらの実施形態はあくまでも説明の便宜のために用いるものであって、本発明の半導体デバイス用部材を適用した発光装置(半導体発光デバイス)の例は、これらの実施形態に限られるものではない。
[5−1]基本概念
本発明の半導体発光デバイス用部材を用いた半導体発光デバイスは、例えば、以下のA)、B)の適用例がある。本発明の半導体発光デバイス用部材は、何れの適用例においても、従来の半導体発光デバイス用部材と比較して、優れた光耐久性及び熱耐久性を示し、クラックや剥離が起きにくく、輝度の低下が少ない。したがって、本発明の半導体発光デバイス用部材によれば、長期にわたって信頼性の高い部材を提供することができる。
A)発光素子の発光色をそのまま利用する半導体発光デバイス。
B)発光素子の近傍に蛍光体部を配設し、発光素子からの光により蛍光体部中の蛍光体や蛍光体成分を励起させ、蛍光を利用して所望の波長の光を発光する半導体発光デバイス。
A)の適用例においては、本発明の半導体発光デバイス用部材の高い耐久性、透明性および封止剤性能を生かし、単独使用にて高耐久封止剤、光取り出し膜、各種機能性成分保持剤として用いることができる。特に、本発明の半導体発光デバイス用部材を上記無機粒子等を保持する機能性成分保持剤として用い、本発明の半導体発光デバイス用部材に透明高屈折成分を保持させた場合には、本発明の半導体発光デバイス用部材を発光素子の出光面と密着させて使用し、かつ、発光素子に近い屈折率にすることで、発光素子の出光面での反射を低減し、より高い光取り出し効率を得ることが可能となる。
また、B)の適用例においても、本発明の半導体発光デバイス用部材は、上記のA)の適用例と同様の優れた性能を発揮することができ、かつ、蛍光体や蛍光体成分を保持することにより高耐久性で光取り出し効率の高い蛍光体部を形成することができる。さらに、本発明の半導体発光デバイス用部材に、蛍光体や蛍光体成分に加えて透明高屈折成分を併せて保持させた場合、本発明の半導体発光デバイス用部材の屈折率を発光素子や蛍光体の屈折率近傍にすることで、界面反射を低減し、より高い光取り出し効率を得ることができる。
以下に、本発明の半導体発光デバイス用部材を適用した各実施形態の基本概念について、図50(a),(b)を参照しながら説明する。なお、図50は各実施形態の基本概念の説明図であり、(a)は上記のA)の適用例に対応し、(b)は上記のB)の適用例に対応している。
各実施形態の発光装置(半導体発光デバイス)1A,1Bは、図50(a),(b)に示すように、LEDチップからなる発光素子2と、発光素子2の近傍に配設された本発明の半導体発光デバイス用部材3A,3Bとを備えている。
ただし、図50(a)に示すような、上記A)の適用例に対応した実施形態(実施形態A−1,A−2)においては、発光装置1Aは半導体発光デバイス用部材3Aに蛍光体や蛍光体成分を含まない。この場合、半導体発光デバイス用部材3Aは、発光素子2の封止、光取り出し機能、機能性成分保持などの各機能を発揮する。なお、以下の説明において、蛍光体や蛍光体成分を含有しない半導体発光デバイス用部材3Aを、適宜「透明部材」と呼ぶ。
一方、図50(b)に示すような、上記B)の適用例に対応した実施形態(実施形態B−1〜B−41)においては、発光装置1Bは半導体発光デバイス用部材3Bに蛍光体や蛍光体成分を含む。この場合、半導体発光デバイス用部材3Bは、図50(a)の半導体発光デバイス用部材3Aが発揮しうる諸機能に加え、波長変換機能も発揮できる。なお、以下の説明において、蛍光体や蛍光体成分を含有する半導体発光デバイス用部材3Bを、適宜「蛍光体部」と呼ぶ。また、蛍光体部は、その形状や機能などに応じて、適宜、符号33,34などで示す場合もある。
発光素子2は、例えば、青色光ないし紫外光を放射するLEDチップにより構成されるが、これら以外の発光色のLEDチップであってもよい。
また、透明部材3Aは、発光素子2の高耐久性封止剤、光取出し膜、諸機能付加膜などの機能を発揮するものである。透明部材3Aは単独で用いてもよいが、蛍光体や蛍光体成分を除けば本発明の効果を著しく損なわない限り任意の添加剤を含有させることができる。
一方、蛍光体部3Bは、発光素子2の高耐久性封止剤、光取出し膜、諸機能付加膜などの機能を発揮しうると共に、発光素子2からの光により励起されて所望の波長の光を発光する波長変換機能を発揮するものである。蛍光体部3Bは、発光素子2からの光により励起されて所望の波長の光を発光する蛍光物質を少なくとも含んでいればよい。このような蛍光物質の例としては、上に例示した各種の蛍光体が挙げられる。蛍光体部3Bの発光色としては、赤色(R),緑色(G),青色(B)の3原色は勿論のこと、蛍光灯のような白色や電球のような黄色も可能である。要するに、蛍光体部3Bは、励起光とは異なる所望の波長の光を放射する波長変換機能を有している。
図50(a)に示す上述の発光装置1Aでは、発光素子2から放射された光4は、透明部材3Aを透過し、発光装置1Aの外部に放射される。したがって、発光装置1Aでは、発光素子2から放射された光4は、発光素子2から放射された際の発光色のままで利用される。
一方、図50(b)に示す発光装置1Bでは、発光素子2から放射された光の一部4aは蛍光体部3Bをそのまま透過し、発光装置1Bの外部へ放射される。また、発光装置1Bでは、発光素子2から放射された光の他の一部4bが蛍光体部3Bに吸収されて蛍光体部3Bが励起され、蛍光体部3Bに含有される蛍光体粒子、蛍光イオン、蛍光染料等の蛍光成分特有の波長の光5が発光装置1Bの外部へ放射される。
したがって、発光装置1Bからは、発光素子2で発光して蛍光体部3Bを透過した光4aと蛍光体部3Bで発光した光5との合成光6が、波長変換された光として放射されることになり、発光素子2の発光色と蛍光体部3Bの発光色とで発光装置1B全体としての発光色が決まることになる。なお、発光素子2で発光して蛍光体部3Bを透過する光4aは必ずしも必要ではない。
[5−2]実施形態
[A.蛍光を利用しない実施形態]
〔実施形態A−1〕
本実施形態の発光装置1Aは、図1に示すように、プリント配線17が施された絶縁基板16上に発光素子2が表面実装されている。この発光素子2は発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれが、導電ワイヤ15,15を介してプリント配線17,17に電気的に接続されている。なお、導電ワイヤ15,15は、発光素子2から放射される光を妨げないように、断面積の小さいものが用いられている。
ここにおいて、発光素子2としては、紫外〜赤外域までどのような波長の光を発するものを用いてもよいが、ここでは、窒化ガリウム系のLEDチップを用いているものとする。また、この発光素子2は、図1における下面側にn形半導体層(図示せず)、上面側にp形半導体層(図示せず)が形成されており、p形半導体層側から光出力を取り出すから図1の上方を前方として説明する。
また、絶縁基板16上には発光素子2を囲む枠状の枠材18が固着されており、枠材18の内側には発光素子2を封止・保護する封止部19を設けてある。この封止部19は、本発明の半導体発光デバイス用部材である透明部材3Aにより形成されたもので、上記の半導体発光デバイス用部材形成液でポッティングを行なうことにより形成できる。
しかして、本実施形態の発光装置1Aは、発光素子2と、透明部材3Aとを備えているため、発光装置1Aの光耐久性、熱耐久性を向上させることができる。また、封止部3Aにクラックや剥離が起きにくいため、封止部3Aの透明性を高めることが可能となる。
さらに、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができる。すなわち、封止部3Aを、曇りや濁りがなく透明性が高いものとすることができるため、光色の均一性に優れ、発光装置1A間の光色ばらつきもほとんどなく、発光素子2の光の外部への取り出し効率を従来に比べて高めることができる。また、発光物質の耐候性を高めることができ、従来に比べて発光装置1Aの長寿命化を図ることが可能となる。
〔実施形態A−2〕
本実施形態の発光装置1Aは、図2に示すように、発光素子2の前面を透明部材3Aが覆っており、また、その透明部材上に、透明部材3Aとは異なる材料で封止部19が形成された他は、上記の実施形態A−1と同様に構成されている。また、発光素子2表面の透明部材3Aは、光取出し膜、封止膜として機能する透明の薄膜であり、例えば、発光素子2のチップ形成時に上記の半導体発光デバイス用部材形成液をスピンコーティング等で塗布することにより形成できる。なお、実施形態A−1と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Aにおいても、実施形態A−1と同様に、発光素子2と、透明部材3Aとを備えているため、発光装置1Aの光耐久性、熱耐久性を向上させることができ、封止部3Aにクラックや剥離が起きにくいため、封止部3Aの透明性を高めることが可能となる。
さらに、実施形態A−1と同様の利点を得ることも可能である。
[B.蛍光を利用した実施形態]
〔実施形態B−1〕
本実施形態の発光装置1Bは、図3(a)に示すように、LEDチップからなる発光素子2と、透光性の透明な材料を砲弾形に成形したモールド部11とを備えている。モールド部11は発光素子2を覆っており、発光素子2は導電性材料により形成したリード端子12,13に電気的に接続されている。リード端子12,13はリードフレームにより形成されている。
発光素子2は、窒化ガリウム系のLEDチップであり、図3(a)における下面側にn形半導体層(図示せず)、上面側にp形半導体層(図示せず)が形成されており、p形半導体層側から光出力を取り出すから図3の上方を前方として説明する。発光素子2の後面はリード端子13の前端部に取り付けられたミラー(カップ部)14に対してダイボンドによって接合されている。また、発光素子2は、上述のp形半導体層及びn形半導体層それぞれに導電ワイヤ(例えば、金ワイヤ)15,15がボンディングにより接続され、この導電ワイヤ15,15を介して発光素子2とリード端子12,13とが電気的に接続されている。なお、導電ワイヤ15,15は発光素子2から放射される光を妨げないように断面積の小さいものが用いられている。
ミラー14は発光素子2の側面及び後面から放射された光を前方に反射する機能を有し、LEDチップから放射された光及びミラー14により前方に反射された光は、レンズとして機能するモールド部11の前端部を通してモールド部11から前方に放射される。モールド部11は、ミラー14、導電ワイヤ15,15、リード端子12,13の一部とともに、発光素子2を覆っており、発光素子2が大気中の水分などと反応することによる特性の劣化が防止されている。各リード端子12,13の後端部はそれぞれモールド部11の後面から外部に突出している。
ところで、発光素子2は、図3(b)に示すように、窒化ガリウム系半導体からなる発光層部21が、蛍光体部3B上に半導体プロセスを利用して形成されており、蛍光体部3Bの後面には反射層23が形成されている。発光層部21からの発光による光は全方位に放射されるが、蛍光体部3Bに吸収された一部の光は蛍光体部3Bを励起し、上記蛍光成分特有の波長の光を放射する。この蛍光体部3Bで発光した光は反射層3によって反射されて前方へ放射される。したがって、発光装置1Bは、発光層部21から放射された光と蛍光体部3Bから放射された光との合成光が得られることになる。
しかして、本実施形態の発光装置1Bは、発光素子2と、発光素子2からの光により励起されて所望の波長の光を発光する蛍光体部3Bとを備えてなる。ここで、蛍光体部3Bとして透光性に優れたものを用いれば、発光素子2から放射された光の一部がそのまま外部へ放射されるとともに、発光素子2から放射された光の他の一部によって発光中心となる蛍光成分が励起されて当該蛍光成分特有の発光による光が外部へ放射されるから、発光素子2から放射される光と蛍光体部3Bの蛍光成分から放射される光との合成光を得ることができ、また、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができる。すなわち、蛍光体部3Bとして、曇りや濁りがなく透明性が高いものを用いれば、光色の均一性に優れ、発光装置1B間の光色ばらつきもほとんどなく、発光素子2の光の外部への取り出し効率を従来に比べて高めることができる。また、発光物質の耐候性を高めることができ、従来に比べて発光装置1Bの長寿命化を図ることが可能となる。
また、本実施形態の発光装置1Bでは、蛍光体部3Bが発光素子2を形成する基板に兼用されているので、発光素子2からの光の一部により蛍光体部中の発光中心となる蛍光体を効率良く励起することができ、当該蛍光成分特有の発光による光の輝度を高めることができる。
〔実施形態B−2〕
本実施形態の発光装置1Bは、図4に示すように、プリント配線17が施された絶縁基板16上に発光素子2が表面実装されている。ここにおいて、発光素子2は、実施形態B−1と同様の構成であって、窒化ガリウム系半導体からなる発光層部21が蛍光体部3B上に形成され、蛍光体部3Bの後面に反射層23が形成されている。また、発光素子2は発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれが、導電ワイヤ15,15を介してプリント配線17,17に電気的に接続されている。
また、絶縁基板16上には発光素子2を囲む枠状の枠材18が固着されており、枠材18の内側には発光素子2を封止・保護する封止部19を設けてある。
しかして、本実施形態の発光装置1Bにおいても、実施形態B−1と同様に、発光素子2と、発光素子2からの光により励起されて所望の波長の光を発光する蛍光体部3Bとを備えてなるので、発光素子2からの光と蛍光体からの光との合成光を得ることができる。また、実施形態B−1と同様、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができ、長寿命化を図ることも可能となる。
〔実施形態B−3〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、実施形態B−2で説明した枠材18(図4参照)を用いておらず、図5に示すように、封止部19の形状が異なる。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態における封止部19は、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。
しかして、本実施形態の発光装置1Bでは、実施形態B−2に比べて部品点数を少なくすることができ、小型化及び軽量化を図ることができる。しかも、封止部19の一部にレンズとして機能するレンズ機能部19bを設けたことにより、指向性の優れた配光を得ることができる。
〔実施形態B−4〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図6に示すように、絶縁基板16の一面(図6における上面)に発光素子2を収納する凹所16aが設けられており、凹所16aの底部に発光素子2が実装され、凹所16a内に封止部19を設けている点に特徴がある。ここにおいて、絶縁基板16に形成されたプリント配線17,17は凹所16aの底部まで延長され、導電ワイヤ15,15を介して発光素子2の窒化ガリウム系半導体からなる発光層部21に電気的に接続されている。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは封止部19が絶縁基板16の上面に形成された凹所16aを充填することで形成されているので、実施形態B−2で説明した枠材18(図5参照)や実施形態B−3で説明した成形用金型を用いることなく封止部19を形成することができ、実施形態B−2,B−3に比べて発光素子2の封止工程を簡便に行えるという利点がある。
〔実施形態B−5〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図7に示すように、発光素子2が絶縁基板16に所謂フリップチップ実装されている点に特徴がある。すなわち、発光素子2は、発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれの表面側に導電性材料からなるバンプ24,24が設けられており、発光層部21がフェースダウンでバンプ24,24を介して絶縁基板16のプリント配線17,17と電気的に接続されている。したがって、本実施形態における発光素子2は、絶縁基板16に最も近い側に発光層部21が配設され、絶縁基板16から最も遠い側に反射層23が配設され、発光層部21と反射層23との間に蛍光体部3Bが介在することになる。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の発光装置1Bでは、反射層23で図7における下方(後方)へ反射された光は、凹所16aの内周面で反射されて同図における上方(前方)へ放射される。ここにおいて、凹所16aの内周面であってプリント配線17,17以外の部位には、反射率の高い材料からなる反射層を別途に設けることが望ましい。
しかして、本実施形態の発光装置1Bでは絶縁基板16に設けられたプリント配線17,17と発光素子2とを接続するために実施形態B−4のような導電ワイヤ15,15を必要としないので、実施形態B−4に比べて機械的強度及び信頼性を向上させることが可能となる。
〔実施形態B−6〕
本実施形態の発光装置1Bの基本構成は実施形態B−5と略同じであって、図8に示すように、実施形態B−5で説明した反射層23を設けていない点が相違する。要するに、本実施形態の発光装置1Bでは、発光層部21で発光した光及び蛍光体部3Bで発光した光が封止部19を透過してそのまま前方へ放射されることになる。なお、実施形態B−5と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−5に比べて部品点数を削減できて製造が容易になる。
〔実施形態B−7〕
本実施形態の発光装置1Bの基本構成は実施形態B−1と略同じであって、図9に示すように、発光素子2を覆うモールド部11を備えており、モールド部11を蛍光体部と一体に形成している点に特徴がある。なお、実施形態B−1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の発光装置1Bの製造にあたっては、モールド部11を設けていない仕掛品を蛍光体部形成液を溜めた成形金型の中に浸漬し、蛍光体部形成液(重縮合体)を硬化させる方法などによってモールド部11を形成している。
しかして、本実施形態では、モールド部11が蛍光体部と一体に形成されているので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、モールド部11の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
〔実施形態B−8〕
本実施形態の発光装置1Bの基本構成は実施形態B−1と略同じであって、図10に示すように、モールド部11の外面に後面が開口されたカップ状の蛍光体部3Bが装着されている点に特徴がある。すなわち、本実施形態では、実施形態B−1のように発光素子2に蛍光体部3Bを設ける代わりに、モールド部11の外周に沿う形状の蛍光体部3Bを設けているのである。なお、実施形態B−1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態における蛍光体部3Bは、実施形態B−7で説明した蛍光体部形成液(重縮合体)を硬化させる方法により薄膜として形成してもよいし、あるいは予め固体の蛍光体部をカップ状に成形加工した部材をモールド部11に装着するようにしてもよい。
しかして、本実施形態の発光装置1Bでは、実施形態B−7の発光装置1Bのようにモールド部11全体を蛍光体部と一体に形成する場合に比べて、蛍光体部の材料使用量の削減を図ることができ、低コスト化を図れる。
〔実施形態B−9〕
本実施形態の発光装置1Bの基本構成は、実施形態B−2と略同じであって、図11に示すように、絶縁基板16の一面(図11の上面)側において発光素子2を囲むように配設された枠状の枠材18を備えており、枠材18の内側の封止部19を実施形態B−2で説明した蛍光体部3Bと同様の蛍光体部により形成している点に特徴がある。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態では、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
〔実施形態B−10〕
本実施形態の発光装置1Bの基本構成は、実施形態B−2と略同じであって、図12に示すように、絶縁基板16の一面(図12の上面)側において発光素子2を囲むように配設された枠状の枠材18を備えており、枠材18の内側の封止部19を実施形態B−2で説明した蛍光体部3Bと同様の蛍光体部により形成している点に特徴がある。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態では、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B−9に比べてより一層効率的に行えるという利点がある。
〔実施形態B−11〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図13に示すように、透光性材料よりなる封止部19の上面に、あらかじめレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は、実施形態B−2で説明した蛍光体部3Bと同様の材質よりなり、発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。
〔実施形態B−12〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図14に示すように、透光性材料よりなる封止部19の上面に、あらかじめレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は、実施形態B−2で説明した蛍光体部3Bと同様と同様の材質よりなり、発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成されているので、蛍光体部の励起、発光を実施形態B−11に比べてより一層効率的に行えるという利点がある。
〔実施形態B−13〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図15に示すように、絶縁基板16の上面側において発光素子2を覆う封止部19を備えており、封止部19が蛍光体部により形成されている点に特徴がある。ここに、封止部19は、実施形態B−3と同様に、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が発光素子2を封止・保護する機能だけでなく、発光素子2からの光を波長変換する波長変換機能、発光の指向性を制御するレンズ機能を有することになる。また、封止部19の耐候性を高めることができ、長寿命化を図ることができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B−12に比べてより一層効率的に行えるという利点がある。
〔実施形態B−14〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図16に示すように、絶縁基板16の一面(図16の上面)側において発光素子2を覆う封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここに、封止部19は、実施形態B−3と同様に、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が発光素子2を封止・保護する機能だけでなく、発光素子2からの光を波長変換する波長変換機能、発光の指向性を制御するレンズ機能を有することになる。また、封止部19の耐候性を高めることができ、長寿命化を図ることができる。
〔実施形態B−15〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図17に示すように、絶縁基板16の上面側において発光素子2を覆うドーム状の蛍光体部34を配設し、蛍光体部34の外面側に透光性樹脂からなる封止部19が形成されている点に特徴がある。ここに、封止部19は、実施形態B−3と同様に、発光素子2を封止する封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−13,B−14に比べて蛍光体部34の材料使用量を低減することができる。また、本実施形態では、発光素子2を覆うドーム状の蛍光体部34が配設されているので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、外部からの水分などによる発光素子2の劣化をより確実に防止することができ、長寿命化を図ることができる。
〔実施形態B−16〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図18に示すように、絶縁基板16の上面側において発光素子2を覆うドーム状の蛍光体部34を配設し、蛍光体部34の外面側に封止部19が形成されている点に特徴がある。ここに、封止部19は、実施形態B−3と同様に、発光素子2を封止する封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−13,B−14に比べて蛍光体部34の材料使用量を低減することができる。また、本実施形態では、発光素子2を覆うドーム状の蛍光体部34が配設されているので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、外部からの水分などによる発光素子2の劣化をより確実に防止することができ、長寿命化を図ることができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B−15に比べてより一層効率的に行えるという利点がある。
〔実施形態B−17〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図19に示すように、絶縁基板16の一面(図19における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部により形成されている点に特徴がある。ここにおいて、蛍光体部は実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部3Bにより形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B−15に比べてより一層効率的に行えるという利点がある。
〔実施形態B−18〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図20に示すように、絶縁基板16の一面(図20における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、蛍光体部3Bは実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部3Bとして後述するように本発明の半導体発光デバイス用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
〔実施形態B−19〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図21に示すように、封止部19の上面(光取り出し面)に予めレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。
〔実施形態B−20〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図22に示すように、封止部19の上面(光取り出し面)に予めレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。また、本実施形態では、発光素子2の発光層部21の後面にも蛍光体部3Bが配設されているので、実施形態B−19に比べて蛍光体部の励起、発光がより一層効率的に行われるという利点がある。
〔実施形態B−21〕
本実施形態の発光装置1Bの基本構成は実施形態B−5と略同じであって、図23に示すように、絶縁基板16の一面(図23における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図24に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための凹部19cを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−5と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部3Bとして後述するように本発明の半導体発光デバイス用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。また、本実施形態では、発光素子2の発光層部21から前方へ放射された光が反射層23によって一旦、凹所16aの内底面側に向けて反射されるので、凹所16aの内底面及び内周面に反射層を設けておけば、凹所16aの内底面及び内周面でさらに反射されて前方へ放射されることになって光路長を長くとれ、蛍光体部3Bにより効率的に励起、発光を行うことができるという利点がある。
〔実施形態B−22〕
本実施形態の発光装置1Bの基本構成は実施形態B−5と略同じであって、図25に示すように、絶縁基板16の一面(図25における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図26に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための凹部19cを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−5と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部3Bにより形成されているので、蛍光体部3Bとして後述するように本発明の半導体発光デバイス用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
〔実施形態B−23〕
本実施形態の発光装置1Bの基本構成は実施形態B−6と略同じであって、図27に示すように、発光素子2の上面に、予めロッド状に加工した蛍光体部3Bを配設している点に特徴がある。ここにおいて、発光素子2及び蛍光体部3Bの周囲には透光性材料からなる封止部19が形成されており、蛍光体部3Bは一端面(図27における下端面)が発光素子2の発光層部21に密着し他端面(図27における上端面)が露出している。なお、実施形態B−6と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、上記一端面が発光素子2の発光層部21に密着する蛍光体部3Bがロッド状に形成されているので、発光層部21で発光した光を蛍光体部3Bの上記一端面を通して蛍光体部3Bへ効率的に取り込むことができ、取り込んだ光により励起された蛍光体部3Bの発光を蛍光体部3Bの上記他端面を通して外部へ効率的に放射させることができる。なお、本実施形態では、蛍光体部3Bを比較的大径のロッド状に形成して1つだけ用いているが、図28に示すように蛍光体部3Bを比較的小径のファイバ状に形成して複数本の蛍光体部3Bを並べて配設するようにしてもよい。また、蛍光体部3Bの断面形状は円形に限らず、例えば四角形状に形成してもよいし、その他の形状に形成してもよいのは勿論である。
〔実施形態B−24〕
本実施形態の発光装置1Bの基本構成は実施形態B−23と略同じであって、図29に示すように、絶縁基板16の凹所16a内に設けた封止部19を備え、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図30に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための貫通孔19dを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−23と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19も蛍光体部3Bにより形成されているので、長寿命化及び発光の高効率化を図ることができる。なお、本実施形態では、蛍光体部3Bを比較的大径のロッド状に形成して1つだけ用いているが、図31に示すように蛍光体部3Bを比較的小径のファイバ状に形成して複数本の蛍光体部3Bを並べて配設するようにしてもよい。また、蛍光体部3Bの断面形状は円形に限らず、例えば四角形状に形成してもよいし、その他の形状に形成してもよいのは勿論である。
〔実施形態B−25〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図32に示すように絶縁基板16の一面(図32における上面)側に配設された枠材18を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、枠材18の内側の封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散されている点に特徴がある。また、本実施形態では、蛍光体部3Bとして、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。
したがって、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。本実施形態では、蛍光体部3Bから青色光が放射されるとともに、蛍光体粉末から黄色光が放射され、いずれの発光色とも異なる白色光を得ることができる。
なお、既存の蛍光体粉末や蛍光体部の蛍光体粒子ではそれぞれに発光可能な材料が限定されており、いずれか一方だけでは所望の光色が得られないこともあり、このような場合には本実施形態は極めて有効である。つまり、蛍光体部3Bだけで所望の光色特性が得られない場合には、蛍光体部3Bに欠けている適当な光色特性を有する蛍光体粉末を併用して補完することにより、所望の光色特性の発光装置1Bが実現できる。また、本実施形態では、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。ここに、蛍光体部3Bと蛍光体粉末とで発光色を略同色とする場合には、例えば、蛍光体部3Bの蛍光体粒子として赤色光を発光するP25・SrF2・BaF2:Eu3+を用いるとともに、蛍光体粉末として赤色光を発光するY22S:Eu3+を用いれば、赤色発光の高効率化を図れる。この蛍光体部3Bと蛍光体粉末との組み合わせは一例であって他の組み合わせを採用してもよいことは勿論である。
〔実施形態B−26〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図33に示すように、絶縁基板16の一面(図33の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−27〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図34に示すように、絶縁基板16の上面に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−28〕
本実施形態の発光装置1Bの基本構成は実施形態B−5と略同じであって、図35に示すように、絶縁基板16の一面(図35における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−5と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−29〕
本実施形態の発光装置1Bの基本構成は実施形態B−6と略同じであって、図36に示すように、絶縁基板16の一面(図36における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−6と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−30〕
本実施形態の発光装置1Bの基本構成は実施形態B−1と略同じであって、図37(a),(b)に示すように、砲弾形のモールド部11を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、モールド部11として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、モールド部11が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−1と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末がモールド部11に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bとモールド部11中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−31〕
本実施形態の発光装置1Bの基本構成は実施形態B−8と略同じであって、図38に示すように、砲弾形のモールド部11を備え、発光素子2の発光層部21(図38では図示を略している。)がAlGaN系で近紫外光を発光するものであり、モールド部11として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、モールド部11が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−8と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末がモールド部11に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bとモールド部11中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−32〕
本実施形態の発光装置1Bの基本構成は実施形態B−11と略同じであって、図39に示すように、絶縁基板16の一面(図39の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部33の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−11と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部33から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部33と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部33の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部33の発光色に揃えておけば、蛍光体部33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−33〕
本実施形態の発光装置1Bの基本構成は実施形態B−15と略同じであって、図40に示すように、絶縁基板16の一面(図40の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部34の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−15と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部34から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部34と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部34の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部34の発光色に揃えておけば、蛍光体部34の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−34〕
本実施形態の発光装置1Bの基本構成は実施形態B−19と略同じであって、図41に示すように、絶縁基板16の一面(図41における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部33の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−19と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部33から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部33と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部33の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部33の発光色に揃えておけば、蛍光体部33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−35〕
本実施形態の発光装置1Bの基本構成は実施形態B−12,B−22と略同じであって、図42に示すように、絶縁基板16の一面(図42における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部33の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−12,B−22と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部33と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部33の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部33の発光色に揃えておけば、蛍光体部33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−36〕
本実施形態の発光装置1Bの基本構成は実施形態B−12と略同じであって、図43に示すように、絶縁基板16の上面側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−12と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−37〕
本実施形態の発光装置1Bの基本構成は実施形態B−16と略同じであって、図44に示すように、絶縁基板16の一面(図44の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部34の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−16と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部34から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部34と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部34の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部34の発光色に揃えておけば、蛍光体部34の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−38〕
本実施形態の発光装置1Bの基本構成は実施形態B−20と略同じであって、図45に示すように、絶縁基板16の一面(図45における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−20と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−39〕
本実施形態の発光装置1Bの基本構成は実施形態B−5,B−12と略同じであって、図46に示すように、絶縁基板16の一面(図46における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−5,B−12と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−40〕
本実施形態の発光装置1Bの基本構成は実施形態B−20,B−21と略同じであって、図47に示すように、絶縁基板16の一面(図47における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−20,B−21と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−41〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図48に示すように、絶縁基板16の一面(図48の上面)側において発光素子2を囲むように配設された枠状の枠材18を備えており、枠材18の内側の封止部19を実施形態B−2で説明した蛍光体部3Bと同様の蛍光体部により形成している点に特徴がある。ここに、発光素子2と封止部19の上面側は、ガラスや高気密樹脂よりなる透明蓋体36により外界の酸素や水分から遮断されている。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。蓋体36と封止部19は直接接していても空隙を有していても良いが、空隙無い方が光取り出し効率高く輝度高い半導体発光デバイスを得ることができる。空隙を有する場合、真空封止や不活性ガス封入とすることが好ましい。
しかして、本実施形態では、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明の半導体発光デバイス用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性を高めたり、長時間使用に伴うクラックや剥離を抑制したりすることが可能となる。
また、本実施形態では、水分や酸素など蛍光体・封止樹脂の劣化を促進する外界因子の侵入や、熱・光による封止樹脂分解ガスの揮発が蓋体36により抑制されるため、これらに起因する輝度低下や封止部収縮剥離が低減できるという利点がある。
ところで、上記各実施形態では、蛍光体部3Bを所望の形状に加工したりゾルゲル法で形成したりしているが、図49に示すように、蛍光体部3Bを直径が可視波長よりもやや大きな球状に形成して多数の蛍光体部3Bを透光性材料からなる固体媒質35中に分散させて上記各実施形態における蛍光体部の代わりに用いるようにすれば、可視波長域での蛍光体部の透明性を維持しながらも蛍光体部の材料使用量の低減化を図ることができ、低コスト化を図れる。
また、上記各実施形態の発光装置1Bは1個の発光素子2しか備えていないが、複数個の発光素子2により1単位のモジュールを構成し、モジュールの少なくとも一部に発光物質としての蛍光体部を近接して配設するようにしてもよいことは勿論である。なお、例えば実施形態B−1で説明したような砲弾形のモールド部11を備える発光装置の場合には複数個の発光装置を同一プリント基板に実装して1単位のモジュールを構成するようにしてもよい。また、例えば実施形態B−2で説明したような表面実装型の発光装置については複数個の発光素子2を同一の絶縁基板16上に配設して1単位のモジュールを構成するようにしてもよい。
〔半導体発光デバイス用部材の適用〕
以上説明した各実施形態A−1,A−2,B−1〜B−41の発光装置(半導体発光デバイス)1A,1Bにおいて、本発明の半導体発光デバイス部材を適用する箇所は特に制限されない。上記の各実施形態においては、透明部材3Aや蛍光体部3B,33,34などを形成する部材として本発明の半導体発光デバイス部材を適用した例を示したが、これ以外にも、例えば上述のモールド部11、枠材18、封止部19等を形成する部材として好適に用いることができる。これらの部材として本発明の半導体発光デバイス部材を用いることにより、上述した優れた封止性、透明性、耐光性、耐熱性、成膜性、長期間使用に伴うクラックや剥離の抑制等の各種の効果を得ることが可能となる。
また、本発明の半導体発光デバイス部材を適用する場合には、本発明を適用する箇所に応じて、適宜変形を加えるのが好ましい。例えば、蛍光体部3B,33,34に本発明を適用する場合には、上述した蛍光体粒子又は蛍光体イオンや蛍光染料等の蛍光成分を本発明の半導体発光デバイス用部材に混合して用いればよい。これによって、上に挙げた各種効果に加え、蛍光体の保持性を高めるという効果を得ることができる。
また、本発明の半導体発光デバイス用部材は耐久性に優れているので、蛍光体を含まず単独で使用しても、光耐久性(紫外線耐久性)や熱耐久性に優れた封止材料(無機系接着剤用途)として、発光素子(LEDチップ等)を封止することが可能である。
また、先述した無機粒子を本発明の半導体発光デバイス用部材に混合して用いれば、上に挙げた各種効果に加え、無機粒子の併用の説明において先述した効果を得ることが可能となる。特に、無機粒子を併用することにより、発光素子の屈折率と近い屈折率となるように調整したものは、好適な光取り出し膜として作用する。
〔半導体発光デバイスの用途等〕
半導体発光デバイスは、例えば、発光装置に用いることができる。半導体発光デバイスを発光装置に用いる場合、当該発光装置は、赤色蛍光体、青色蛍光体及び緑色蛍光体の混合物を含む蛍光体含有層を、光源上に配置すればよい。この場合、赤色蛍光体は、青色蛍光体、緑色蛍光体とは必ずしも同一の層中に混合されなくてもよく、例えば、青色蛍光体と緑色蛍光体を含有する層の上に赤色蛍光体を含有する層が積層されていてもよい。
発光装置において、蛍光体含有層は光源の上部に設けることができる。蛍光体含有層は、光源と封止樹脂部との間の接触層として、または、封止樹脂部の外側のコーティング層として、または、外部キャップの内側のコーティング層として提供できる。また、封止樹脂内に蛍光体を含有させた形態をとることもできる。
使用される封止樹脂としては、本発明の半導体発光デバイス用部材を用いることができる。また、その他の樹脂を使用することもできる。そのような樹脂としては、通常、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。また、無機系材料、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液又はこれらの組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料を用いることができる。なお、封止樹脂は、1種を用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
封止樹脂に対する蛍光体の使用量は特に限定されるものではないが、通常、封止樹脂100重量部に対して0.01重量部以上、好ましくは0.1重量部以上、より好ましくは1重量部以上、また、通常100重量部以下、好ましくは80重量部以下、より好ましくは60重量部以下である。
また、封止樹脂に蛍光体や無機粒子以外の成分を含有させることもできる。例えば、色調補正用の色素、酸化防止剤、燐系加工安定剤等の加工・酸化および熱安定化剤、紫外線吸収剤等の耐光性安定化剤およびシランカップリング剤を含有させることができる。なお、これらの成分は、1種で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
光源に制限は無いが、350nm〜500nmの範囲にピーク波長を有する光を発光するものが好ましく、具体例としては、発光ダイオード(LED)またはレーザーダイオード(LD)等を挙げることができる。その中でも、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系LEDやLDはSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlXGaYN発光層、GaN発光層、またはInXGaYN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInXGaYN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InXGaYN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。
なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。
GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlXGaYN層、GaN層、またはInXGaYN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。
発光装置は、白色光を発するものであり、装置の発光効率が20lm/W以上、好ましくは22lm/W以上、より好ましくは25lm/W以上であり、特に好ましくは28lm/W以上であり、平均演色評価指数Raが80以上、好ましくは85以上、より好ましくは88以上である。
発光装置は、単独で、又は複数個を組み合わせることにより、例えば、照明ランプ、液晶パネル用等のバックライト、超薄型照明等の種々の照明装置、画像表示装置として使用することができる。
さらに、本発明の半導体デバイス用部材はLED素子封止用、特に青色LED及び紫外LEDの素子封止用として有用なものである。また、青色発光素子又は紫外発光素子を励起光源とし、蛍光体により波長変換した白色LED及び電球色LEDなどの高出力照明光源用蛍光体保持材として好ましく使用することが出来る。その他にもその優れた耐熱性、耐紫外線性、透明性等の特性から下記のディスプレイ材料等の用途に用いることができる。
ディスプレイ材料としては、例えば、液晶ディスプレイの基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム等の液晶表示装置周辺材料、次世代フラットパネルディスプレイであるカラープラズマディスプレイ(PDP)の封止剤、反射防止フィルム、光学補正フィルム、ハウジング材・前面ガラスの保護フィルム、前面ガラス代替材料、接着材等、プラズマアドレス液晶(PALC)ディスプレイの基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム等、有機EL(エレクトロルミネッセンス)ディスプレイの前面ガラスの保護フィルム、前面ガラス代替材料、接着剤等、フィールドエミッションディスプレイ(FED)の各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤等が挙げられる。
本発明の半導体デバイス用部材は密着性に優れ、公知の付加縮合型シリコーン樹脂では困難な重ね塗りによる積層が可能である。この特性を生かし、例えばメチル基主体の本発明の半導体デバイス用部材を低屈折率層とし、フェニル基などの高屈折有機基やジルコニアナノ粒子などを導入した高屈折率層と積層することにより、屈折率差のある層構造を形成し、高耐久かつ密着性及び可撓性に優れた導光層を容易に形成することができる。
以下、実施例を挙げて本発明をより具体的に説明するが、それらは本発明の説明を目的とするものであって、本発明をこれらの態様に限定することを意図したものではない。
[1]分析方法
後述する各実施例及び各比較例の半導体デバイス用部材について、以下の手順で分析を行なった。
[1−1]加熱重量減(TG−DTA)の測定
各実施例及び各比較例の半導体デバイス用部材の10mgの破砕片を用いて、熱重量・示差熱(thermogravimetry − differential thermal analysis:以下適宜「TG−DTA」と略す。)測定装置(セイコーインスツルメンツ社製TG/DTA6200)により、空気200ml/min流通下、昇温速度10℃/minで35℃から500℃まで加熱し、加熱重量減の測定を行なった。なお、破砕片の精秤が困難であるものについては、有効数字の範囲を考慮して、10±1mgの範囲の破砕片は10mgの破砕片として取り扱った。
[1−2]密着性評価方法
(1)実施例及び比較例の半導体デバイス用部材の硬化前の加水分解・重縮合液(半導体デバイス用部材形成液)を直径9mm、凹部の深さ1mmのAgメッキ表面の銅製カップに滴下し、所定の硬化条件で硬化させて測定用サンプル(半導体デバイス用部材)を作製する。
(2)厚さ1mm、縦25mm、横70mmのアルミ板に放熱用シリコーングリースを薄く塗り、得られた測定用サンプルを並べて温度85℃、湿度85%の雰囲気(以下適宜、「吸湿環境」という)下で20時間吸湿させる。
(3)吸湿させた測定用サンプルを、前記(2)の吸湿環境下から取り出し、室温(20〜25℃)まで冷却させる。260℃に設定したホットプレート上に、吸湿させ冷却した測定用サンプルをアルミ板ごと戴置し、1分間保持する。この条件において、測定用サンプル実温は約50秒で260℃に達し、その後10秒間260℃に保持される。
(4)加熱後のサンプルをアルミ板ごとステンレス製、室温の冷却板上に置き、室温まで冷却させる。目視及び顕微鏡観察により、測定用サンプルの前記銅製カップからの剥離の有無を観察する。わずかでも剥離が観察されるものは、「剥離有」とする。
(5)測定用サンプル10個につき、それぞれ、前記(2)、(3)及び(4)の操作を実施し、前記測定用サンプルの剥離率を求める。
[1−3]硬度測定
実施例及び比較例の半導体デバイス用部材について、古里精機製作所製A型(デュロメータタイプA)ゴム硬度計を使用し、JIS K6253に準拠して硬度(ショアA)を測定した。
[1−4]耐熱性試験
実施例及び比較例の半導体デバイス用部材について、テフロン(登録商標)シャーレを用いて作製した直径5cm、膜厚1mmのサンプルを温度200℃の通風乾燥機中で500時間保持した。このサンプルの400nmにおける透過率変化を試験前後で比較した。
[1−5]ケイ素含有率の測定
各実施例及び各比較例の半導体デバイス用部材の単独硬化物を100μm程度に粉砕し、白金るつぼ中にて大気中、450℃で1時間、ついで750℃で1時間、950℃で1.5時間保持して焼成し、炭素成分を除去した後、得られた残渣少量に10倍量以上の炭酸ナトリウムを加えてバーナー加熱し溶融させ、これを冷却して脱塩水を加え、更に塩酸にてpHを中性程度に調整しつつケイ素として数ppm程度になるよう定容し、セイコー電子社製「SPS1700HVR」を用いてICP分析を行なった。
[1−6]連続点灯試験
実施例及び比較例で得られた封止剤液を用いて半導体発光デバイスを作製し、その半導体発光デバイスに駆動電流20mAを通電して温度85℃相対湿度85%にて連続点灯を行った。500時間経過後の輝度を測定し、点灯試験前の輝度と比較した。
なお、半導体発光デバイスは以下のようにして用意した。即ち、まず、LED光源として、図51に示すように、カップ101とLEDチップ102とからなる表面実装型のLED素子103を作製した。カップ101はポリフタルアミドにより形成されたもので、その底部には図示しない電極が設けられている。また、LEDチップ102は、発光層として発光ピーク波長が405nmのフェイスアップ型GaN系半導体を備えるものを用いた。さらに、ダイボンド剤としてエポキシ樹脂を用い、LEDチップ102をカップ101内の電極表面にダイボンディング機器(Westbond社製「マニュアルダイボンダー」)でダイボンドした。また、LEDチップ102の上部には電極(図示せず)が設けられていて、この電極とカップ101の電極とを日本アビオニクス社製ワイヤボンダー「MB−2200」を用いて金線にてワイヤボンディングし、電気的導通を取った。次に、実施例及び比較例で用意した封止剤液を、マイクロピペットを用いてカップ101内にカップの上縁と同等の高さになるよう滴下した。次いで、所定の温度条件にて封止剤液を硬化させ、透明封止層(半導体デバイス用部材)を備えた半導体発光デバイスを作製した。
[1−7]ヒートサイクル試験
実施例及び比較例の封止剤液を表面実装用ポリフタルアミド性カップ(チップ無し空カップ)にポッティングし、各々の封止剤液を所定の硬化条件で硬化させた。この空PKG塗布品をタバイエスペック社製小型環境試験器SH−241に入れ、湿度調整無し、「−40℃で30分静置し、−40〜100℃に1時間かけて昇温し、100℃で30分静置し、100〜−40℃に1時間かけて降温する操作」を1サイクル(合計3時間)として、200サイクルの温度サイクル試験を実施した。200サイクル後にサンプルを取り出し、実体顕微鏡を用いてカップと封止剤液の接触部分の剥離の有無を観察した。
[2]実験操作
<実施例1>
GE東芝シリコーン製両末端シラノールジメチルシリコーンオイルXC96−723を140g、フェニルトリメトキシシランを14g、及び、触媒としてジルコニウムテトラアセチルアセトネート粉末を0.308g用意し、これを攪拌翼とコンデンサとを取り付けた三つ口コルベン中に計量し、室温にて15分触媒が十分溶解するまで攪拌した。この後、反応液を120度まで昇温し、120度全還流下で30分間攪拌しつつ初期加水分解を行った。
続いて窒素をSV20で吹き込み生成メタノール及び水分、副生物の低沸ケイ素成分を留去しつつ120℃で攪拌し、さらに6時間重合反応を進めた。なお、ここで「SV」とは「Space Velocity」の略称であり、単位時間当たりの吹き込み体積量を指す。よって、SV20とは、1時間に反応液の20倍の体積のN2を吹き込むことをいう。
窒素の吹き込みを停止し反応液をいったん室温まで冷却した後、ナス型フラスコに反応液を移し、ロータリーエバポレーターを用いてオイルバス上120℃、1kPaで20分間微量に残留しているメタノール及び水分、低沸ケイ素成分を留去し、無溶剤の封止剤液(半導体デバイス用部材形成液)を得た。
上述の封止剤液2gを直径5cmのテフロン(登録商標)シャーレに入れ、防爆炉中、微風下、110℃で1時間保持し、次いで150℃で3時間保持したところ、厚さ約1mmの独立した円形透明エラストマー状膜が得られた。これをサンプルとして用いて、[1−1]加熱重量減(TG−DTA)の測定、[1−3]硬度測定、[1−4]耐熱性試験、及び、[1−5]ケイ素含有率の測定を実施した。結果を表2に示す。なお、表2においてTG−DTAの欄の数値は負の数となっているが、これは、重量が減少していることを表わしている。
また、この封止剤液を用いて[1−2]密着性評価方法、[1−6]連続点灯試験、及び、[1−7]ヒートサイクル試験を行った。この際、前記所定の硬化条件として、90℃で2時間、110℃で1時間、続いて150℃で3時間保持することにより封止剤液を硬化させるようにした。結果を表2に示す。
<実施例2>
GE東芝シリコーン製両末端シラノールジメチルシリコーンオイルXC96−723を100g、フェニルトリメトキシシランを10g、及び、触媒としてジルコニウムテトラn−プロポキシド溶液(ジルコニウムテトラn−プロポキシドの75重量%n−プロパノール溶液5重量部をトルエン95重量部で希釈したもの)を22g用意し、これを攪拌翼とコンデンサとを取り付けた三つ口コルベン中に計量し、室温にて大気圧下15分攪拌し、初期加水分解を行った後に約50度にて8時間攪拌しつつ加熱した。この後、反応液を室温まで冷却し、ナス型フラスコに移し、ロータリーエバポレーターを用いて50℃、1kPaで30分間溶媒及び反応によって生じたアルコールや水分、低沸ケイ素成分を留去し、無溶剤の封止剤液を得た。
上述の封止剤液2gを、実施例1と同様に、直径5cmのテフロン(登録商標)シャーレに入れ、防爆炉中、微風下、110℃で1時間保持し、次いで150℃で3時間保持したところ、厚さ約1mmの独立した円形透明エラストマー状膜が得られた。これをサンプルとして用いて、[1−1]加熱重量減(TG−DTA)の測定、[1−3]硬度測定、[1−4]耐熱性試験、及び、[1−5]ケイ素含有率の測定を実施した。結果を表2に示す。
また、この封止剤液を用いて、[1−2]密着性評価方法、[1−6]連続点灯試験、及び、[1−7]ヒートサイクル試験を行った。この際、前記所定の硬化条件として、実施例1と同様の硬化条件で封止材液を硬化させるようにした。結果を表2に示す。
<実施例3>
攪拌翼とジムロートコンデンサを取り付けた100ccコルベンに信越化学製メチルハイドロジェンポリシロキサンKF−99を27g、東京化成工業製ビニルトリメトキシシラン32.41g、及び白金元素換算で5ppmの付加縮合触媒を計量し、攪拌して均一に混合した。この液を窒素雰囲気下100℃で20時間加熱し、粘度300mPa・sのメトキシ基含有ポリメチルシロキサンを得た。1H−NMRにてこの液のビニル基残存量を測定したところ、完全に消失していた。100mlナス型フラスコにてこの液1gにモメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製両末端シラノールポリジメチルシロキサンXC96−723を10g、及び縮合触媒としてジルコニウムテトラアセチルアセトネート粉末0.011gを混合し、室温にて密栓して触媒が完全に溶解するまでスターラー攪拌した。この後、ジムロートコンデンサを取り付けて窒素雰囲気下反応液を110℃に昇温し、30分間リフラックスを行なった。反応液をいったん室温まで冷却した後、ナス型フラスコをロータリーエバポレーターに接続し、オイルバス上で120℃、1kPaで30分間微量に残留しているメタノール及び水分、低沸ケイ素成分を留去し、無溶剤の封止剤液(半導体デバイス用部材形成液)を得た。
上述の封止剤液2gを直径5cmのテフロン(登録商標)シャーレに入れ、防爆炉中、微風下、110℃で1時間保持し、次いで150℃で3時間保持したところ、厚さ約1mmの独立した円形透明エラストマー状膜が得られた。これをサンプルとして用いて、[1−1]加熱重量減(TG−DTA)の測定、[1−3]硬度測定、[1−4]耐熱性試験、及び、[1−5]ケイ素含有率の測定を実施した。結果を表2に示す。
また、この封止剤液を用いて[1−2]密着性評価方法、[1−6]連続点灯試験、及び、[1−7]ヒートサイクル試験を行った。この際、前記所定の硬化条件として、90℃で2時間、110℃で1時間、続いて150℃で3時間保持することにより封止剤液を硬化させるようにした。結果を表2に示す。
<比較例1>
GE東芝シリコーン製両末端シラノールジメチルシリコーンオイルXC96−723を100g、フェニルトリメトキシシランを10g、及び、触媒としてアルミニウムトリアセチルアセトネートの5重量%メタノール溶液を22g用意し、これを攪拌翼とコンデンサとを取り付けた三つ口コルベン中に計量し、室温にて大気圧下15分攪拌し、初期加水分解を行った後に約75℃にて4時間攪拌しつつ還流させた。この後内温が100℃になるまでメタノール及び低沸ケイ素成分を常圧にて留去し、さらに100℃で4時間攪拌しつつ還流させた。反応液を室温まで冷却し、無溶剤の封止剤液を調液した。
上述の封止剤液2.5gを、直径5cmのテフロン(登録商標)シャーレに入れ、防爆炉中、微風下、50℃で30分、110℃で1時間保持し、次いで150℃で3時間保持したところ、厚さ約1mmの独立した円形透明エラストマー状膜が得られた。これをサンプルとして用いて、[1−1]加熱重量減(TG−DTA)の測定、[1−3]硬度測定、[1−4]耐熱性試験、及び、[1−5]ケイ素含有率の測定を実施した。結果を表2に示す。
また、この封止剤液を用いて[1−2]密着性評価方法、[1−6]連続点灯試験、及び、[1−7]ヒートサイクル試験を行った。この際、前記所定の硬化条件として、50℃で30分、120℃で1時間、続いて150℃で3時間保持することにより封止剤液を硬化させるようにした。結果を表2に示す。
<比較例2>
半導体発光デバイス用モールド剤として使用されている市販のシリコーン樹脂(東レダウコーニング社製 JCR6101UP)を封止剤液として用意した。
この封止剤液30gをテフロン(登録商標)板上にアプリケーター塗工し、25℃で1時間、真空脱気を行なった後、150℃で2時間加熱して乾燥した後、これを剥がして厚さ約1mmのエラストマー状膜を得た。これをサンプルとして用いて、[1−1]加熱重量減(TG−DTA)の測定、[1−3]硬度測定、[1−4]耐熱性試験、及び、[1−5]ケイ素含有率の測定を実施した。結果を表2に示す。
また、この封止剤液を用いて[1−2]密着性評価方法、[1−6]連続点灯試験、及び、[1−7]ヒートサイクル試験を行った。この際、前記所定の硬化条件として、150℃で2時間加熱することにより封止剤液を硬化させるようにした。結果を表2に示す。なお、前記所定の硬化条件で得られた封止部材はエラストマー状の封止部材であった。
<比較例3>
半導体発光デバイス用モールド剤として使用されている市販の2液型シリコーン樹脂(ペルノックス社製 XJL0012)を封止剤液として用意した。
この封止剤液2gを直径5cmのテフロン(登録商標)シャーレに入れ、防爆炉中、微風下、150℃で3時間保持したところ、厚さ約1mmの独立した円形透明硬質膜が得られた。これをサンプルとして用いて、[1−1]加熱重量減(TG−DTA)の測定、[1−3]硬度測定、[1−4]耐熱性試験、及び、[1−5]ケイ素含有率の測定を実施した。結果を表2に示す。
また、この封止剤液を用いて[1−2]密着性評価方法、[1−6]連続点灯試験、及び、[1−7]ヒートサイクル試験を行った。この際、前記所定の硬化条件として、150℃で3時間加熱することにより封止剤液を硬化させるようにした。結果を表2に示す。なお、前記所定の硬化条件で得られた封止部材は透明硬質の封止部材であった。
<比較例4>
メチルシリケート(三菱化学社製 MKCシリケートMS51)30.80g、メタノール56.53g、水6.51g、及び、触媒として5%アセチルアセトンアルミニウム塩メタノール溶液6.16gを用意し、これを密閉できる容器にて混合し、密栓してスターラーで撹拌しながら50℃の温水バスにて8時間加熱したのち室温に戻し、加水分解・重縮合液を調液した。
この加水分解・重縮合液10mlを直径5cmのテフロン(登録商標)シャーレに入れて実施例1と同様の条件で乾燥したところ、厚さ約0.3mmのガラス膜が得られたが、乾燥途中の段階で大量のクラックが発生して粉々となり、独立した円形透明ガラス膜として取り出すことはできなかった。ただし、これを用い、[1−5]ケイ素含有率の測定を行なった。
また、この加水分解・重縮合液をマイクロピペットにて405nmの発光波長を持つGaN系の半導体発光デバイス上に滴下し、35℃で30分間、次いで50℃で1時間保持し第1の乾燥を行なった後、150℃で3時間保持し第2の乾燥を行なったところ、大量のクラックが発生し、封止部材(半導体デバイス用部材)として使用することはできなかった。
Figure 0005880512
[3]まとめ
上記の実施例によれば、本発明の半導体デバイス用部材は耐熱性、電極やリフレクタなどに多用される銀表面をはじめとする半導体デバイス表面に対する密着性、及び耐光性(特に耐UV性)に優れることから、高温高湿の加速環境下の連続点灯試験において密着性低下や変質による剥離や不点灯、輝度低下を生じること無く、安定した性能を維持することが出来る。また、本発明の半導体デバイス用部材は半導体デバイスとの密着性が高く柔軟性を有することから、熱衝撃にも強く、ヒートサイクル試験においても剥離を生じること無く、信頼性の高い半導体デバイスを提供することが出来る。
これに対して、比較例1の半導体デバイス用部材では実施例の部材と同様耐熱試験による着色は見られないが、密着性が不十分でありヒートサイクル試験により剥離が発生する。また、比較例2の半導体デバイス用部材では耐熱試験による着色は見られないが、実施例1、2及び比較例1と比較して銀表面への密着性が不十分であり、ヒートサイクル試験に加え連続点灯試験においても剥離・不点灯を生じる。さらに、比較例3の半導体発光デバイス用部材は硬質であり3官能ケイ素を多く含み架橋度が高いため加熱重量減は少ないが、密着性が低く柔軟性にも乏しいため連続点灯では全数不点灯であり、ヒートサイクル試験でも剥離率が高い。さらに耐熱性試験では密着向上剤などの添加物に由来する着色が大きく、連続点灯試験でも輝度の低下が認められる。また、比較例4で得られる部材はSiO2からなり本来は耐熱性・耐光性が最も高いものと期待されるが、脱溶剤及び脱水縮合による収縮に由来する硬化時の内部応力が大きく、硬化時にクラック入りやすいため厚膜の透明封止体を得ることが出来ない。
また、本発明の半導体デバイス用部材が、密着性改善のための表面処理との併用で更に密着性向上効果を奏することが、下記の強制剥離試験において確認された。
[強制剥離試験]
実施例3:ガラスビーカーにて1%酢酸水にγ−メタクリロキシプロピルトリメトキシシランを1重量%となるように添加し100gの処理液を調液した。マグネチックスターラーを用いてこの液を室温で1時間攪拌し、透明な加水分解液を得た。この加水分解液に光学用ほうケイ酸ガラスの板を浸漬し、温水バスを用いて50度1時間表面処理を行った。処理後のガラス板を処理液より取り出し処理面に手で触れないよう軽く水洗し、水きりを行った後100℃の通風乾燥機で1時間焼付けを行った。未処理のガラス板及び表面処理ガラス板平面上に実施例1の半導体デバイス用部材形成液を各々0.5ml滴下し、150℃1.5時間硬化させて厚さ50μmの膜を得た。ピンセットにて膜の一端をつまみゆっくりと膜を引き剥がしたところ、処理無しガラス板に塗布したものは膜とガラスとの界面に付着物を残しつつ膜が剥離した。一方表面処理ガラス板においては膜が破壊し、膜として剥離させることが出来なかった。
以上、本発明の半導体デバイス用部材は耐熱性、耐光性、密着性及び成膜性のバランスにすぐれ、従来の半導体デバイス用部材と比較して過酷な使用条件下でも信頼性高い半導体半導体デバイスを提供することが出来る。中でも透明性、耐UV性に優れることから半導体発光デバイス用部材として好適に使用することが出来る。
本発明の半導体デバイス用部材の用途は特に制限されず、半導体発光素子等を封止するための部材(封止剤)に代表される各種の用途に、好適に使用することができる。中でも、青色LED又は近紫外光LED用の封止剤又は光取り出し膜、並びに、青色LED又は近紫外光LED等の発光素子を光源とする高出力白色LED用蛍光体保持剤として特に好適に使用することができる。
さらに、本発明の半導体デバイス用部材はLED素子封止用、特に青色LED及び紫外LEDの素子封止用として有用なものである。また、青色発光素子又は紫外発光素子を励起光源とし、蛍光体により波長変換した白色LED及び電球色LEDなどの高出力照明光源用蛍光体保持材として好ましく使用することが出来る。その他にもその優れた耐熱性、耐紫外線性、透明性等の特性から下記の画像表示装置材料等の用途に用いることができる。
画像表示装置材料としては、例えば、液晶画像表示装置の基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム等の液晶表示装置周辺材料、次世代フラットパネル画像表示装置であるカラープラズマディスプレイ(PDP)の封止剤、反射防止フィルム、光学補正フィルム、ハウジング材・前面ガラスの保護フィルム、前面ガラス代替材料、接着材等、プラズマアドレス液晶(PALC)ディスプレイの基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム等、有機EL(エレクトロルミネッセンス)ディスプレイの前面ガラスの保護フィルム、前面ガラス代替材料、接着剤等、フィールドエミッションディスプレイ(FED)の各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤等が挙げられる。
本発明の半導体デバイス用部材形成液は密着性に優れ、公知の付加縮合型シリコーン樹脂では困難な重ね塗りによる積層が可能である。この特性を生かし、例えばメチル基主体の本発明の半導体デバイス用部材形成液を低屈折率層とし、フェニル基などの高屈折有機基やジルコニアナノ粒子などを導入した高屈折率層と積層することにより、屈折率差のある層構造を形成し、高耐久かつ密着性及び可撓性に優れた導光層を容易に形成することができる。
1,1A,1B 発光装置(半導体発光デバイス)
2 発光素子
3A 透明部材(半導体発光デバイス用部材)
3B 蛍光体部(半導体発光デバイス用部材)
4a,4b 発光素子から放射された光の一部
5 蛍光体部に含有される蛍光体粒子、蛍光イオン、蛍光染料などの蛍光成分特有の波長の光
11 モールド部
12,13 リード端子
14 ミラー(カップ部)
15 導電ワイヤ
16 絶縁基板
16a 凹所
17 プリント配線
18 枠材
19 封止部
19a 封止機能部
19b レンズ機能部
19c 凹部
19d 貫通孔
21 発光層部
23 反射層
24 バンプ
33,34 蛍光体部
35 固体媒質
36 蓋体
101 カップ
102 LEDチップ
103 LED素子

Claims (5)

  1. 両末端にヒドロキシ基を有するジメチルポリシロキサンと、フェニルトリメトキシシラン又はメトキシ基含有ポリメチルシロキサンとを含む原料を加水分解・重縮合して得られる重縮合物を含有する半導体デバイス用部材形成液の製造方法であって、
    前記加水分解・重縮合を、ジルコニウムを含む有機金属化合物触媒の存在下で行ない、
    前記原料の総重量に対する前記有機金属化合物触媒の配合量が0.01重量%以上、1重量%以下であり、
    モル比において、シラノール含有量総量がアルコキシ基含有量総量と等量以上存在する半導体デバイス用部材形成液を得ることを特徴とする、半導体デバイス用部材形成液の製造方法
  2. 液温25℃において、粘度が20mPa・s以上、1500mPa・s以下である半導体デバイス用部材形成液を得る
    ことを特徴とする、請求項1に記載の半導体デバイス用部材形成液の製造方法
  3. 分子量が800以下の成分が、全体の10%以下である半導体デバイス用部材形成液を得る
    ことを特徴とする、請求項1又は2に記載の半導体デバイス用部材形成液の製造方法
  4. アルコキシ基含有量が、5重量%以下である半導体デバイス用部材形成液を得る
    ことを特徴とする、請求項1〜3の何れか1項に記載の半導体デバイス用部材形成液の製造方法
  5. 請求項1乃至4の何れか1項に記載の半導体デバイス用部材形成液により得られた半導体デバイス用部材形成液を、縮合型の硬化機構により硬化させる
    ことを特徴とする、半導体デバイス用部材の製造方法
JP2013206246A 2006-08-22 2013-10-01 半導体デバイス用部材形成液、半導体デバイス用部材、及び半導体発光デバイス Expired - Fee Related JP5880512B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013206246A JP5880512B2 (ja) 2006-08-22 2013-10-01 半導体デバイス用部材形成液、半導体デバイス用部材、及び半導体発光デバイス

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006225410 2006-08-22
JP2006225410 2006-08-22
JP2013206246A JP5880512B2 (ja) 2006-08-22 2013-10-01 半導体デバイス用部材形成液、半導体デバイス用部材、及び半導体発光デバイス

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007216452A Division JP5446078B2 (ja) 2006-08-22 2007-08-22 半導体デバイス用部材、並びに半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法、並びに、それを用いた半導体発光デバイス、半導体デバイス用部材形成液、及び蛍光体組成物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016019158A Division JP6213585B2 (ja) 2006-08-22 2016-02-03 半導体デバイス用部材、及び半導体発光デバイス

Publications (2)

Publication Number Publication Date
JP2014027295A JP2014027295A (ja) 2014-02-06
JP5880512B2 true JP5880512B2 (ja) 2016-03-09

Family

ID=39106831

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2009003366A Pending JP2009105432A (ja) 2006-08-22 2009-01-09 半導体デバイス用部材、並びに半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法、並びに、それを用いた半導体発光デバイス、半導体デバイス用部材形成液、及び蛍光体組成物
JP2013206246A Expired - Fee Related JP5880512B2 (ja) 2006-08-22 2013-10-01 半導体デバイス用部材形成液、半導体デバイス用部材、及び半導体発光デバイス
JP2016019158A Active JP6213585B2 (ja) 2006-08-22 2016-02-03 半導体デバイス用部材、及び半導体発光デバイス

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009003366A Pending JP2009105432A (ja) 2006-08-22 2009-01-09 半導体デバイス用部材、並びに半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法、並びに、それを用いた半導体発光デバイス、半導体デバイス用部材形成液、及び蛍光体組成物

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016019158A Active JP6213585B2 (ja) 2006-08-22 2016-02-03 半導体デバイス用部材、及び半導体発光デバイス

Country Status (7)

Country Link
US (2) US8502364B2 (ja)
EP (1) EP2065931A4 (ja)
JP (3) JP2009105432A (ja)
KR (2) KR101523482B1 (ja)
CN (1) CN101506969B (ja)
TW (2) TWI404791B (ja)
WO (1) WO2008023746A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250074A1 (en) 2018-12-27 2020-12-17 Bogdan Ionescu Device for cardiac electrophysiology procedure

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100922488B1 (ko) * 2005-02-23 2009-10-20 미쓰비시 가가꾸 가부시키가이샤 반도체 발광 디바이스용 부재 및 그 제조 방법, 그리고그것을 사용한 반도체 발광 디바이스
JP2009530798A (ja) 2006-01-05 2009-08-27 イルミテックス, インコーポレイテッド Ledから光を導くための独立した光学デバイス
EP2061095A4 (en) * 2006-08-30 2012-03-07 Kyocera Corp LIGHT-EMITTING DEVICE
US8080833B2 (en) * 2007-01-26 2011-12-20 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
DE112007003638T5 (de) * 2007-09-10 2010-08-12 Fujitsu Ltd., Kawasaki Prozess zum Herstellen einer siliziumhaltigen Beschichtung, siliziumhaltige Beschichtung und Halbleitervorrichtung
US10008637B2 (en) 2011-12-06 2018-06-26 Cree, Inc. Light emitter devices and methods with reduced dimensions and improved light output
CN101939849A (zh) 2008-02-08 2011-01-05 伊鲁米特克有限公司 用于发射器层成形的系统和方法
JP5207807B2 (ja) * 2008-04-14 2013-06-12 シャープ株式会社 チップ部品型led
KR101431711B1 (ko) * 2008-05-07 2014-08-21 삼성전자 주식회사 발광 장치 및 발광 시스템의 제조 방법, 상기 방법을이용하여 제조한 발광 장치 및 발광 시스템
US8490678B2 (en) * 2008-06-02 2013-07-23 Gerald Ho Kim Silicon-based thermal energy transfer device and apparatus
WO2010021346A1 (ja) * 2008-08-20 2010-02-25 三菱化学株式会社 半導体発光装置およびその製造方法
US8238401B2 (en) * 2008-08-25 2012-08-07 Gerald Ho Kim Silicon-based lens support structure for diode laser
JP5363789B2 (ja) * 2008-11-18 2013-12-11 スタンレー電気株式会社 光半導体装置
US8563963B2 (en) * 2009-02-06 2013-10-22 Evergrand Holdings Limited Light-emitting diode die packages and methods for producing same
TWI487747B (zh) * 2009-02-09 2015-06-11 Arakawa Chem Ind 透明密封材組合物及光半導體元件
TWI469402B (zh) * 2009-02-24 2015-01-11 Ind Tech Res Inst 發光二極體封裝結構
TWI391688B (zh) * 2009-04-06 2013-04-01 Himax Tech Ltd 微粒檢測方法及其裝置
TWI384051B (zh) * 2009-04-30 2013-02-01 Ind Tech Res Inst 液態螢光劑組成物及發光裝置
US8585253B2 (en) 2009-08-20 2013-11-19 Illumitex, Inc. System and method for color mixing lens array
US8449128B2 (en) * 2009-08-20 2013-05-28 Illumitex, Inc. System and method for a lens and phosphor layer
JP5678592B2 (ja) * 2009-12-02 2015-03-04 横浜ゴム株式会社 加熱硬化性光半導体封止用シリコーン樹脂組成物およびこれを用いる光半導体封止体
JP5050045B2 (ja) * 2009-12-22 2012-10-17 株式会社東芝 発光装置
CN102117876B (zh) * 2009-12-30 2013-02-27 展晶科技(深圳)有限公司 半导体封装结构
US8729581B2 (en) * 2010-01-13 2014-05-20 Apple Inc. Light guide for LED source
JP5421799B2 (ja) * 2010-01-18 2014-02-19 パナソニック株式会社 Ledユニット
JP2011159813A (ja) * 2010-02-01 2011-08-18 Panasonic Electric Works Co Ltd 発光装置
WO2011118109A1 (ja) * 2010-03-23 2011-09-29 株式会社朝日ラバー 可撓性反射基材、その製造方法及びその反射基材に用いる原材料組成物
JP5844252B2 (ja) 2010-04-02 2016-01-13 株式会社カネカ 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
WO2011136302A1 (ja) * 2010-04-28 2011-11-03 三菱化学株式会社 半導体発光装置用パッケージ及び発光装置
TWI505509B (zh) * 2010-06-21 2015-10-21 Hon Hai Prec Ind Co Ltd 發光二極體及光源模組
KR20120008359A (ko) * 2010-07-16 2012-01-30 삼성모바일디스플레이주식회사 봉지 기판 및 유기 발광부 사이에 uv 차단 성능 등을 가지는 층을 포함하는 유기 발광 소자
JP5560982B2 (ja) * 2010-07-16 2014-07-30 横浜ゴム株式会社 シラノール縮合触媒、光半導体封止用熱硬化性シリコーン樹脂組成物およびこれを用いる封止体
JP5971835B2 (ja) * 2010-08-23 2016-08-17 信越化学工業株式会社 硬化性シリコーン樹脂組成物及びそれを用いた発光ダイオード装置
KR20120024104A (ko) * 2010-09-06 2012-03-14 서울옵토디바이스주식회사 발광 소자
CN102447035B (zh) * 2010-10-06 2015-03-25 赛恩倍吉科技顾问(深圳)有限公司 发光二极管、制造该发光二极管的模具及方法
US8573804B2 (en) 2010-10-08 2013-11-05 Guardian Industries Corp. Light source, device including light source, and/or methods of making the same
US20130207002A1 (en) * 2010-10-22 2013-08-15 Koninklijke Philips Electronics N.V. Luminescent material and light emitting device comprising such luminescent material
CN102569535A (zh) * 2010-12-07 2012-07-11 展晶科技(深圳)有限公司 发光二极管封装结构的制造方法
CN102544303A (zh) * 2010-12-21 2012-07-04 展晶科技(深圳)有限公司 发光二极管封装结构
US8754440B2 (en) * 2011-03-22 2014-06-17 Tsmc Solid State Lighting Ltd. Light-emitting diode (LED) package systems and methods of making the same
US8752997B2 (en) * 2011-04-28 2014-06-17 Shenzhen China Star Optoelectronics Technology Co., Ltd. Backlight module and method for coating a thermal conducting material on the backlight module
US10686107B2 (en) 2011-07-21 2020-06-16 Cree, Inc. Light emitter devices and components with improved chemical resistance and related methods
US10490712B2 (en) 2011-07-21 2019-11-26 Cree, Inc. Light emitter device packages, components, and methods for improved chemical resistance and related methods
US10211380B2 (en) 2011-07-21 2019-02-19 Cree, Inc. Light emitting devices and components having improved chemical resistance and related methods
WO2013018041A1 (en) * 2011-08-04 2013-02-07 Koninklijke Philips Electronics N.V. Light converter and lighting unit comprising such light converter
CN102290522B (zh) * 2011-09-16 2013-07-10 陆学中 无线led封装结构及其制造方法
TWI497769B (zh) * 2011-10-03 2015-08-21 Sdi Corp A light - emitting device package and its surface treatment method
KR101939333B1 (ko) 2011-10-07 2019-01-16 서울바이오시스 주식회사 발광 다이오드 패키지
JP6133306B2 (ja) 2011-10-20 2017-05-24 フィリップス ライティング ホールディング ビー ヴィ ランプシェードを有する照明ユニット
US9496466B2 (en) 2011-12-06 2016-11-15 Cree, Inc. Light emitter devices and methods, utilizing light emitting diodes (LEDs), for improved light extraction
US20150221837A1 (en) * 2011-12-26 2015-08-06 Konica Minolta, Inc. Sealant for led device, led device, and method for producing led device
DE102012200327B4 (de) * 2012-01-11 2022-01-05 Osram Gmbh Optoelektronisches Bauelement
KR101869246B1 (ko) * 2012-01-13 2018-07-20 엘지이노텍 주식회사 발광소자 패키지
US9343441B2 (en) 2012-02-13 2016-05-17 Cree, Inc. Light emitter devices having improved light output and related methods
US9240530B2 (en) 2012-02-13 2016-01-19 Cree, Inc. Light emitter devices having improved chemical and physical resistance and related methods
TWI455372B (zh) * 2012-03-07 2014-10-01 Achrolux Inc Led封裝件及其製法
CN103987657B (zh) * 2012-03-09 2015-09-02 住友大阪水泥股份有限公司 表面修饰金属氧化物粒子材料及光半导体元件密封组合物以及光半导体装置
EP2865703A4 (en) * 2012-05-31 2015-11-18 Konica Minolta Inc SEALANT FOR LIGHT-EMITTING DEVICE, LIGHT-EMITTING DEVICE THEREWITH AND LIGHT-EMITTING DEVICE MANUFACTURING METHOD
TWI460265B (zh) * 2012-11-12 2014-11-11 Ritedia Corp 導熱複合材料及其衍生之發光二極體
JPWO2014087629A1 (ja) * 2012-12-03 2017-01-05 コニカミノルタ株式会社 ディスペンサー塗布用透光性セラミック材料、及びこれを用いたled装置の製造方法
US10497633B2 (en) * 2013-02-06 2019-12-03 The Board Of Trustees Of The University Of Illinois Stretchable electronic systems with fluid containment
JP2013153175A (ja) * 2013-02-26 2013-08-08 Shin Etsu Chem Co Ltd 封止樹脂の変色抑制方法
JP6141064B2 (ja) * 2013-03-21 2017-06-07 日立オートモティブシステムズ株式会社 回路基板と筐体の接続方法
DE102013206225A1 (de) * 2013-04-09 2014-10-09 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
JP6205824B2 (ja) * 2013-04-26 2017-10-04 富士電機株式会社 パワーモジュール
US9231168B2 (en) 2013-05-02 2016-01-05 Industrial Technology Research Institute Light emitting diode package structure
WO2014189707A1 (en) * 2013-05-20 2014-11-27 Dow Corning Corporation Optomechanical body, modular optomechanical device, optic module, modular optic device, kit and methods
EP3022779B1 (en) * 2013-07-19 2020-03-18 Lumileds Holding B.V. Pc led with optical element and without substrate carrier
US8981408B2 (en) 2013-07-26 2015-03-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Light source having liquid encapsulant
JP6211862B2 (ja) * 2013-09-18 2017-10-11 エスアイアイ・セミコンダクタ株式会社 光半導体装置およびその製造方法
US9837584B2 (en) * 2013-11-13 2017-12-05 Lg Innotek Co., Ltd. Bluish green phosphor and light emitting device package including the same
TWI707484B (zh) * 2013-11-14 2020-10-11 晶元光電股份有限公司 發光裝置
JP6428249B2 (ja) 2013-12-25 2018-11-28 日亜化学工業株式会社 発光装置
WO2015115341A1 (ja) 2014-01-31 2015-08-06 住友化学株式会社 半導体発光装置の製造方法
JP6343947B2 (ja) * 2014-01-31 2018-06-20 住友化学株式会社 Uv−led用ポリシルセスキオキサン系封止材組成物及びそのための金属アルコキシドの使用
JP2016076634A (ja) * 2014-10-08 2016-05-12 エルジー ディスプレイ カンパニー リミテッド Ledパッケージ、バックライトユニット及び液晶表示装置
US9705051B2 (en) * 2014-11-18 2017-07-11 PlayNitride Inc. Light emitting device
US9982867B2 (en) * 2015-05-29 2018-05-29 Nichia Corporation Wavelength converting member and light source device having the wavelength converting member
EP3104067B1 (en) * 2015-06-08 2018-11-21 Epistar Corporation Lighting apparatus
DE102015111910A1 (de) * 2015-07-22 2017-01-26 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement, Verbund von optoelektronischen Bauelementen und Verfahren zur Herstellung eines optoelektronischen Bauelements
US10818822B2 (en) * 2016-03-22 2020-10-27 Lg Innotek Co., Ltd. Light emitting device and light-emitting module having same
DE112017002058B4 (de) 2016-04-18 2023-10-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines optoelektronischen Bauelements und optoelektronisches Bauelement
TWI721005B (zh) * 2016-08-17 2021-03-11 晶元光電股份有限公司 發光裝置以及其製造方法
JP6630754B2 (ja) * 2017-02-16 2020-01-15 住友化学株式会社 硬化性樹脂組成物、硬化膜及び表示装置
CN106947906A (zh) * 2017-03-23 2017-07-14 合肥仁德电子科技有限公司 一种电子封装材料及其制备方法
TWI631734B (zh) * 2017-04-20 2018-08-01 蔡凱雄 發光二極體裝置及其封裝方法
US20180332686A1 (en) * 2017-05-15 2018-11-15 Sumitomo Chemical Company, Limited Composition, cured product and semiconductor light emitting device
TWI793203B (zh) * 2017-10-26 2023-02-21 晶元光電股份有限公司 發光裝置
JP6962289B2 (ja) 2018-07-31 2021-11-05 株式会社オートネットワーク技術研究所 配線部材
KR102152382B1 (ko) * 2018-08-16 2020-09-04 (주)디씨티 양자점을 포함하는 led 패키지
KR20200093900A (ko) 2019-01-29 2020-08-06 삼성전자주식회사 발광 소자 패키지 및 이의 제조 방법
JP7141351B2 (ja) * 2019-02-25 2022-09-22 デンカ株式会社 β型サイアロン蛍光体、発光部材および発光装置
US11349051B2 (en) 2019-05-10 2022-05-31 Osram Opto Semiconductors Gmbh Optoelectronic device and method of producing an optoelectronic device
US11239213B2 (en) * 2019-05-17 2022-02-01 Applied Materials, Inc. In-situ curing of color conversion layer in recess
CN110400864A (zh) * 2019-09-02 2019-11-01 宁波升谱光电股份有限公司 一种led灯及其封装芯片
TWI823371B (zh) * 2020-01-31 2023-11-21 日商日亞化學工業股份有限公司 面狀光源
KR20220072927A (ko) * 2020-11-25 2022-06-03 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR20220136584A (ko) * 2021-03-31 2022-10-11 삼성디스플레이 주식회사 전자 제품 및 표시 장치
TWI821731B (zh) * 2021-08-23 2023-11-11 啟端光電股份有限公司 底部發光型發光二極體顯示器
CN114487008B (zh) * 2022-01-28 2022-10-04 深圳大学 一种测量相变混凝土构件复合热学参数的系统及方法
CN115831881B (zh) * 2022-11-29 2024-04-30 无锡市博精电子有限公司 一种半导体封装用管座

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656230B2 (ja) 1987-09-28 1994-07-27 三菱重工業株式会社 ガス吹出し機構付きフランジ
JP2884702B2 (ja) 1989-12-26 1999-04-19 化成オプトニクス株式会社 螢光体及びその製造方法
JPH0815731B2 (ja) 1990-03-27 1996-02-21 成雄 安藤 成形品の処理装置
JPH0489871A (ja) 1990-08-01 1992-03-24 Toray Ind Inc シリカ系被膜
JP3725178B2 (ja) 1991-03-22 2005-12-07 東レ・ダウコーニング株式会社 室温硬化性オルガノポリシロキサン組成物
JP3117485B2 (ja) 1991-07-22 2000-12-11 積水化学工業株式会社 表面が改質されたプラスチック微粒子及びその製造方法
JPH06273942A (ja) 1993-03-23 1994-09-30 Konica Corp 画像形成方法
JP2894921B2 (ja) * 1993-04-30 1999-05-24 シャープ株式会社 半導体装置およびその製造方法
JP3334408B2 (ja) 1995-03-01 2002-10-15 三菱化学株式会社 有機電界発光素子及びその製造方法
JPH08302211A (ja) 1995-05-09 1996-11-19 Toshiba Silicone Co Ltd 難燃性熱可塑性樹脂組成物
JP3703116B2 (ja) * 1995-07-05 2005-10-05 信越化学工業株式会社 オルガノポリシロキサン樹脂の製造方法
US5674936A (en) 1996-05-10 1997-10-07 General Electric Company Non-corrosive translucent RTV compositions having good rheology
JP2927279B2 (ja) 1996-07-29 1999-07-28 日亜化学工業株式会社 発光ダイオード
JPH10228249A (ja) 1996-12-12 1998-08-25 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いたled表示装置
DE19725518A1 (de) * 1997-06-17 1998-12-24 Huels Silicone Gmbh Polyorganosiloxane mit Dialkoxyorganosiloxy-Gruppen
JP4408458B2 (ja) * 1997-06-30 2010-02-03 ダウ コ−ニング コ−ポレ−ション 硬化性シリコーンレジン及び硬化物の各製造方法
JPH11116240A (ja) 1997-10-15 1999-04-27 Nippon Shokubai Co Ltd 紫外線吸収性微粒子およびその用途
JPH11335493A (ja) 1998-05-26 1999-12-07 Tokai Rubber Ind Ltd ゴム製品の製法
JP2000096045A (ja) 1998-09-18 2000-04-04 Kasei Optonix Co Ltd 電界放出型ディスプレイ用蛍光膜及びこれを用いた電界 放出型ディスプレイ装置
JP4286935B2 (ja) 1998-10-14 2009-07-01 株式会社朝日ラバー 調色照明装置
JP2000230093A (ja) * 1998-10-20 2000-08-22 Toray Ind Inc 難燃性樹脂組成物およびそれからなる成形品
JP3523098B2 (ja) 1998-12-28 2004-04-26 信越化学工業株式会社 付加硬化型シリコーン組成物
JP2000231002A (ja) * 1999-02-10 2000-08-22 Konica Corp 光学用レンズ
JP2000272071A (ja) * 1999-03-23 2000-10-03 Mitsubishi Gas Chem Co Inc ポリカーボネート樹脂積層体
JP3275308B2 (ja) 1999-04-13 2002-04-15 サンケン電気株式会社 半導体発光装置及びその製法
JP2000298352A (ja) 1999-04-14 2000-10-24 Jsr Corp 電子部品用材料およびその使用方法
JP4625997B2 (ja) 1999-07-22 2011-02-02 日亜化学工業株式会社 発光ダイオード
JP2001146518A (ja) * 1999-11-19 2001-05-29 Dow Corning Asia Ltd 光学用ポリシロキサン
JP2001192641A (ja) 2000-01-06 2001-07-17 Dow Corning Toray Silicone Co Ltd シーリング材組成物
JP4542656B2 (ja) 2000-02-15 2010-09-15 株式会社朝日ラバー 発光ダイオードの包装装置
JP3685018B2 (ja) 2000-05-09 2005-08-17 日亜化学工業株式会社 発光素子とその製造方法
DE10051242A1 (de) 2000-10-17 2002-04-25 Philips Corp Intellectual Pty Lichtemittierende Vorrichtung mit beschichtetem Leuchtstoff
JP5110744B2 (ja) 2000-12-21 2012-12-26 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー 発光装置及びその製造方法
JP3909826B2 (ja) 2001-02-23 2007-04-25 株式会社カネカ 発光ダイオード
JP3910080B2 (ja) 2001-02-23 2007-04-25 株式会社カネカ 発光ダイオード
FR2825713B1 (fr) 2001-06-07 2005-03-11 Rhodia Chimie Sa Systeme silicone modulateur d'adherence et son utilisation pour la preparation de compositions anti-adherentes durcissables
JP4040858B2 (ja) 2001-10-19 2008-01-30 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
JP2003197976A (ja) 2001-12-27 2003-07-11 Okaya Electric Ind Co Ltd 発光ダイオード
JP4015970B2 (ja) * 2002-06-19 2007-11-28 株式会社日本触媒 有機質無機質複合体微粒子およびその用途
JP2004040031A (ja) 2002-07-08 2004-02-05 Stanley Electric Co Ltd 表面実装型発光ダイオード
KR101016583B1 (ko) * 2002-10-15 2011-02-22 솔베이 어드밴스트 폴리머스 엘.엘.씨. 황화저항성 중축합 중합체 조성물 및 성형품
JP4360595B2 (ja) 2002-10-18 2009-11-11 ペルノックス株式会社 光電変換装置
JP4477335B2 (ja) * 2002-10-22 2010-06-09 有限会社ソフィアプロダクト 光素子用の封着材組成物、封着構造体および光素子
JP2003179270A (ja) 2002-11-07 2003-06-27 Sanken Electric Co Ltd 半導体発光装置
JP2004186168A (ja) 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2004221186A (ja) * 2003-01-10 2004-08-05 Nanotemu:Kk 半導体発光装置
JP2004231947A (ja) 2003-01-10 2004-08-19 Tsuchiya Co Ltd 蛍光体層形成用液
JP4071639B2 (ja) 2003-01-15 2008-04-02 信越化学工業株式会社 発光ダイオード素子用シリコーン樹脂組成物
US7160972B2 (en) 2003-02-19 2007-01-09 Nusil Technology Llc Optically clear high temperature resistant silicone polymers of high refractive index
JP2004266138A (ja) 2003-03-03 2004-09-24 Hitachi Chem Co Ltd 半導体用接着フィルム、これを用いた樹脂基板及び半導体装置、並びに半導体装置の製造方法
JP4860099B2 (ja) 2003-03-12 2012-01-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 室温硬化性ポリオルガノシロキサン組成物
JP2004300247A (ja) 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置、並びに照明装置
JP2004359756A (ja) * 2003-06-03 2004-12-24 Wacker Asahikasei Silicone Co Ltd Led用封止剤組成物
JP2005022899A (ja) 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp 有機基担持シリカゲル
JP2005022898A (ja) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp 有機基含有シリカゲル
JP3897115B2 (ja) * 2003-07-09 2007-03-22 信越化学工業株式会社 半導体素子の封止方法
US7393469B2 (en) * 2003-07-31 2008-07-01 Ramazan Benrashid High performance sol-gel spin-on glass materials
JP4788109B2 (ja) 2003-10-28 2011-10-05 パナソニック電工株式会社 半導体発光装置及びその製造方法
JP2005200546A (ja) * 2004-01-15 2005-07-28 Shin Etsu Chem Co Ltd シリコーンレジン組成物及びそれを用いた被覆物品
JP4904471B2 (ja) 2004-07-07 2012-03-28 東日本旅客鉄道株式会社 経路誘導システム
JP2006077234A (ja) * 2004-08-10 2006-03-23 Shin Etsu Chem Co Ltd Led素子封止用樹脂組成物および該組成物を硬化してなる硬化物
JP4502257B2 (ja) 2004-09-22 2010-07-14 株式会社Ihi検査計測 2振動子型高温用超音波探触子
JP4293962B2 (ja) 2004-09-24 2009-07-08 シーケーディ株式会社 非接触吸着装置
JP4634810B2 (ja) * 2005-01-20 2011-02-16 信越化学工業株式会社 シリコーン封止型led
JP2006206721A (ja) 2005-01-27 2006-08-10 Kansai Electric Power Co Inc:The 高耐熱合成高分子化合物及びこれで被覆した高耐電圧半導体装置
JP4876626B2 (ja) 2005-02-23 2012-02-15 三菱化学株式会社 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2006291018A (ja) 2005-04-08 2006-10-26 Shin Etsu Chem Co Ltd Led素子封止用硬化性樹脂組成物
JP5034301B2 (ja) 2005-04-15 2012-09-26 Jsr株式会社 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006336010A (ja) 2005-05-02 2006-12-14 Jsr Corp シロキサン系縮合物およびその製造方法、ポリシロキサン組成物
JP2006348284A (ja) 2005-05-20 2006-12-28 Jsr Corp シロキサン系縮合物およびその製造方法
WO2007034919A1 (ja) 2005-09-22 2007-03-29 Mitsubishi Chemical Corporation 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
DE602006008259D1 (de) * 2005-12-22 2009-09-17 Rohm & Haas Siloxaneinkapselungen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250074A1 (en) 2018-12-27 2020-12-17 Bogdan Ionescu Device for cardiac electrophysiology procedure

Also Published As

Publication number Publication date
US20130037748A1 (en) 2013-02-14
TW200821371A (en) 2008-05-16
US20090309116A1 (en) 2009-12-17
KR20140087021A (ko) 2014-07-08
KR101500765B1 (ko) 2015-03-09
EP2065931A1 (en) 2009-06-03
US8502364B2 (en) 2013-08-06
TWI472595B (zh) 2015-02-11
WO2008023746A1 (en) 2008-02-28
CN101506969A (zh) 2009-08-12
KR101523482B1 (ko) 2015-05-28
JP6213585B2 (ja) 2017-10-18
TW201346010A (zh) 2013-11-16
JP2009105432A (ja) 2009-05-14
JP2016131248A (ja) 2016-07-21
TWI404791B (zh) 2013-08-11
KR20090042807A (ko) 2009-04-30
CN101506969B (zh) 2011-08-31
EP2065931A4 (en) 2013-02-27
JP2014027295A (ja) 2014-02-06

Similar Documents

Publication Publication Date Title
JP6213585B2 (ja) 半導体デバイス用部材、及び半導体発光デバイス
JP5742916B2 (ja) シリコーン系半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP5761397B2 (ja) 半導体発光デバイス用部材形成液、半導体発光デバイス用部材、航空宇宙産業用部材、半導体発光デバイス、及び蛍光体組成物
JP5552748B2 (ja) 硬化性ポリシロキサン組成物、並びに、それを用いたポリシロキサン硬化物、光学部材、航空宇宙産業用部材、半導体発光装置、照明装置、及び画像表示装置
JP4882413B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2007116139A (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP5446078B2 (ja) 半導体デバイス用部材、並びに半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法、並びに、それを用いた半導体発光デバイス、半導体デバイス用部材形成液、及び蛍光体組成物
WO2006090804A1 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP4876626B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2007019459A (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2009224754A (ja) 半導体発光装置、照明装置、及び画像表示装置
JP4119940B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2009179677A (ja) 硬化性ポリシロキサン化合物、及びその製造方法、並びに、それを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材
JP2008072110A (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP5694875B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2008004961A (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5880512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees