JP2009179677A - 硬化性ポリシロキサン化合物、及びその製造方法、並びに、それを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材 - Google Patents

硬化性ポリシロキサン化合物、及びその製造方法、並びに、それを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材 Download PDF

Info

Publication number
JP2009179677A
JP2009179677A JP2008018563A JP2008018563A JP2009179677A JP 2009179677 A JP2009179677 A JP 2009179677A JP 2008018563 A JP2008018563 A JP 2008018563A JP 2008018563 A JP2008018563 A JP 2008018563A JP 2009179677 A JP2009179677 A JP 2009179677A
Authority
JP
Japan
Prior art keywords
light
phosphor
light emitting
present
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008018563A
Other languages
English (en)
Inventor
Kenichi Takizawa
健一 滝沢
Tasuku Tonomura
翼 外村
Hanako Kato
波奈子 加藤
Hiroshi Mori
寛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2008018563A priority Critical patent/JP2009179677A/ja
Publication of JP2009179677A publication Critical patent/JP2009179677A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

【課題】 高屈折率を達成しつつ、耐熱性、耐候性に優れた硬化性ポリシロキサン化合物、及びその製造方法を提供すること。
【解決手段】 SiXn1 4-n(前記式中、Xは縮合性官能基を表わし、Y1は1価の有機基を表わし、nはX基の数を表わす1以上4以下の整数を表わす。)で表わされる化合物(1)、及び/又はそのオリゴマー(2)を、一種類以上重縮合させて得られる硬化性ポリシロキサン化合物であって、前記硬化性ポリシロキサン化合物の、温度が20℃における波長589nmの光の屈折率が、1.46以上であることを特徴とする、硬化性ポリシロキサン化合物を用いる。
【選択図】なし

Description

本発明は、新規な硬化性ポリシロキサン化合物、及びその製造方法、並びに、それを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材に関する。
詳しくは、耐熱性、耐光性、成膜性、密着性に優れた硬化性ポリシロキサン化合物、及びその製造方法、並びに、それを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材に関する。
近年、耐熱性、耐光性等を要求される素材向けとして、硬化性ポリシロキサン化合物が開発されている(特許文献1参照)。一方、半導体発光装置(LED)用封止材や導光部材の素材としては光取り出しの高効率化目的から、屈折率の高い材質が望まれており、高屈折率の硬化性ポリシロキサン化合物が開発されている(特許文献2、特許文献3参照)。
特開2007−116139号公報 特開平6−1843190号公報 特開2000−212186号公報
しかしながら、硬化性ポリシロキサン化合物は、屈折率を向上させると、耐熱性、耐光性、硬化性等が低下したり、喪失したりする等の課題があり、改良が望まれていた。これは、硬化性ポリシロキサン化合物が高屈折率を得るためには、屈折率を向上させるような有機基(特にフェニル基等)を多く有するのが好ましいが、そのような有機基を多く有することで、硬化性ポリシロキサン化合物が有する、縮合に資する官能基の割合や官能基そのものの反応性が低下するためと考えられる。
さらに、縮合型の反応機構で硬化するタイプの硬化性ポリシロキサン化合物は、熱硬化時の重量維持、また硬化後の耐熱性に課題があった。
本発明は、上述の課題に鑑みてなされたものである。すなわち、本発明の目的は、高屈折率を達成しつつ、耐熱性、耐候性に優れた硬化性ポリシロキサン化合物、及びその製造方法、並びにそれを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材を提供することにある。
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、従来の、耐熱性、耐光性に優れた縮合反応型の硬化性ポリシロキサンについて、特定の原料や触媒の選択、組み合わせなどにより、耐熱性、耐光性を担保しつつ、飛躍的に高屈折率を実現する縮合性硬化物を得ることが出来ることを見出し、本発明を完成させた。
即ち、本発明の要旨は、SiXn1 4-n(前記式中、Xは縮合性官能基を表わし、Y1は1価の有機基を表わし、nはX基の数を表わす1以上4以下の整数を表わす。)で表わされる化合物(1)、及び/又はそのオリゴマー(2)を、一種類以上重縮合させて得られる硬化性ポリシロキサン化合物であって、前記硬化性ポリシロキサン化合物の、温度が20℃における波長589nmの光の屈折率が、1.46以上であることを特徴とする、硬化性ポリシロキサン化合物に存する(請求項1)。
このとき、上記化合物(1)、及び上記オリゴマー(2)の少なくとも1つの、温度が20℃における波長589nmの光の屈折率が、1.45以上であることが好ましい(請求項2)。
本発明の別の要旨は、SiXn1 4-n(前記式中、Xは縮合性官能基を表わし、Y1は1価の有機基を表わし、nはX基の数を表わす1以上4以下の整数を表わす。)で表わされる化合物(1)、及び/又はそのオリゴマー(2)と、下記式で示される化合物(3)とを重縮合させて得られる硬化性ポリシロキサン化合物であって、前記硬化性ポリシロキサン化合物の、温度が20℃における波長589nmの光の屈折率が、1.46以上であることを特徴とする、硬化性ポリシロキサン化合物に存する(請求項3)。
Figure 2009179677
上記式中、R1〜R6は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アリル基からなる群より選ばれる基を示す。R7、R8は、それぞれ独立して、縮合性官能基を示す。mは、0以上の整数を示す。
このとき、上記化合物(1)、上記オリゴマー(2)、及び上記化合物(3)の少なくとも1つの、温度が20℃における波長589nmの光の屈折率が、1.45以上である
ことが好ましい(請求項4)。
また、前記オリゴマー(2)の20℃における波長589nmの光の屈折率を、そのポリスチレン換算の重量平均分子量で除した値が、7×10-3以下であることが好ましい(請求項5)。
本発明のさらに別の要旨は、上記の硬化性ポリシロキサン化合物の製造方法であって、触媒として2価のスズ化合物を用いることを特徴とする、硬化性ポリシロキサン化合物の製造方法に存する(請求項6)。
本発明のさらに別の要旨は、上記の硬化性ポリシロキサン化合物を硬化させて得られることを特徴とした、ポリシロキサン硬化物に存する(請求項7)。
このとき、前記ポリシロキサン硬化物の、温度が20℃における波長589nmの光の屈折率が、1.47以上であることが好ましい(請求項8)。
また、本発明のさらに別の要旨は、上記のポリシロキサン硬化物を少なくとも備えてなることを特徴とした、光学部材に存する(請求項9)。
また、本発明のさらに別の要旨は、上記の光学部材を少なくとも備えてなることを特徴とした、半導体発光装置に存する(請求項10)。
また、本発明のさらに別の要旨は、上記の光学部材を少なくとも備えてなることを特徴とした、導光板に存する(請求項11)。
また、本発明のさらに別の要旨は、上記の光学部材を少なくとも備えてなることを特徴とした、航空宇宙産業用部材に存する(請求項12)。
本発明の硬化性ポリシロキサン化合物は、耐熱性、耐光性に優れている。また本発明の硬化性ポリシロキサン化合物を用いることで、上記の優れた特性を有するポリシロキサン硬化物を得ることができる。
また、本発明の硬化性ポリシロキサン化合物は、光線透過性(透明性)、耐光性、耐熱性等が高いため、光学部材に好適にもちいることができる。
該光学部材は、半導体発光装置、導光板、及び導波路に好適に用いることができる。さらに、本発明の硬化性ポリシロキサン化合物、及び光学部材は、前述の特性に加えて、耐水熱性、耐UV性等も高いため、これらの種々の特性が要求される航空宇宙産業用材料や、その他の材料にも適用することできる。
以下、本発明を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内であれば種々に変更して実施することができる。
[1]硬化性ポリシロキサン化合物
本発明の硬化性ポリシロキサン化合物は、SiXn1 4-n(前記式中、Xは縮合性官能基を表わし、Y1は1価の有機基を表わし、nはX基の数を表わす1以上4以下の整数を表わす。)で表わされる化合物(1)(以下、「原料化合物(1)」ということがある。)、及び/又はそのオリゴマー(2)(以下、「原料化合物(2)」ということがある。)を、一種類以上重縮合させて得られる硬化性ポリシロキサン化合物であって、前記硬化性ポリシロキサン化合物の、温度が20℃における波長589nmの光の屈折率が、1.46以上であることを特徴とする。以下、この硬化性ポリシロキサン化合物を本発明の第1の硬化性ポリシロキサン化合物という。
また、本発明の別の硬化性ポリシロキサン化合物は、SiXn1 4-n(前記式中、Xは縮合性官能基を表わし、Y1は1価の有機基を表わし、nはX基の数を表わす1以上4以下の整数を表わす。)で表わされる化合物(1)(則ち、原料化合物(1))、及び/又はそのオリゴマー(2)(則ち、原料化合物(2))と、下記式で示される化合物(3)(以下、「原料化合物(3)」ということがある。)とを重縮合させて得られる硬化性ポリシロキサン化合物であって、前記硬化性ポリシロキサン化合物の、温度が20℃における波長589nmの光の屈折率が、1.46以上であることを特徴とする。以下、この硬化性ポリシロキサン化合物を本発明の第2の硬化性ポリシロキサン化合物という。
Figure 2009179677
(上記式中、R1〜R6は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アリル基から選ばれる基を示す。R7、R8は、それぞれ独立して、縮合性官能基を示す。mは、0以上の整数を示す。)
以下、本発明の第1の硬化性ポリシロキサン化合物、及び本発明の第2の硬化性ポリシロキサン化合物(以下、これらを区別しない場合には「本発明の硬化性ポリシロキサン化合物」と総称する。)の特徴につき説明する。
[1−1]屈折率
本発明の硬化性ポリシロキサン化合物の屈折率は、該硬化性ポリシロキサン化合物の温度が20℃における波長589nmの光の屈折率が、通常1.46以上、好ましくは1.48以上、更に好ましくは1.5以上、また、上限は特に制限されないが、例えば光学部材に応用する場合には一般的な発光デバイスの屈折率が約2.5であることから、通常2.5以下であり、好ましくは2.0以下である。この範囲を下回ると例えば光取り出し効率が既存の半導体発光デバイス用部材と比較して向上しない可能性があり、逆にこの範囲を上回って発光デバイスの屈折率より大きくなると、光取り出し効率が向上しない可能性がある。
本発明の硬化性ポリシロキサン化合物の屈折率は、通常屈折計により測定することができる。具体的には、Abbe屈折計(ナトリウムD線(589nm)使用)を用いることができる。
本発明の硬化性ポリシロキサン化合物の屈折率を、上記範囲とする方法としては、例えば、後述するように、原料化合物(1)〜(3)を適宜選択することが挙げられる。特に、原料化合物(1)〜(3)の少なくとも1つ、好ましくは2つ以上、さらに好ましくは全てにおいて、温度が20℃における波長589nmの光の屈折率が、通常1.45以上、好ましくは1.46以上、さらに好ましくは1.48以上、また、通常2.5以下、好ましくは2以下である。この範囲を下回ると、例えば光学部材に応用する場合には光取り出し効率が既存の半導体発光デバイス用部材と比較して向上しない可能性があり、逆にこの範囲を上回って発光デバイスの屈折率より大きくなると、光取り出し効率が向上しない可能性がある。なお、原料化合物(1)〜(3)の屈折率は、各々本発明の硬化性ポリシロキサン化合物の屈折率の測定と同様に行なうことができる。
[1−2]原料化合物(1)〜(3)
[1−2−1]原料化合物(1)
本発明の硬化性ポリシロキサン化合物の原料としては、SiXn1 4-n(前記式中、Xは縮合性官能基を表わし、Y1は1価の有機基を表わし、nはX基の数を表わす1以上4以下の整数を表わす。)で表わされる化合物(1)(則ち、原料化合物(1))を用いる。ただし、後述する原料化合物(2)を用いる場合には、原料化合物(1)を用いなくてもよい。以下、原料化合物(1)につき、説明する。
(Xについて)
原料化合物(1)のXは、縮合反応によりシロキサン結合を形成する縮合性官能基である。その具体例としては、水酸基、アルコキシ基、アセトキシ基、エノキシ基、オキシム基、アミノ基、アミド基、ハロゲン基が挙げられる。
好ましいアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、フェノキシ基が挙げられる。
これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
(Y1について)
原料化合物(1)のY1は、いわゆるシランカップリング剤の1価の有機基として公知のものを、いずれも任意に選択して使用することができる。中でも、本発明において一般式(1)におけるY1として特に有用な有機基とは、以下のY0に表される群(有用有機基群)から選ばれるものである。さらに、後述する光学部材を構成する他の材料との親和性向上、密着性向上、光学部材の屈折率調整などのために、適宜、他の有機基を選択するようにしてもよい。
<有用有機基群Y0
0:脂肪族化合物、脂環式化合物、芳香族化合物、脂肪芳香族化合物より誘導される1価以上の有機基である。
また、群Y0に属する有機基の炭素数は、通常1以上、また、通常1000以下、好ましくは500以下、より好ましくは100以下、さらに好ましくは50以下である。
さらに、群Y0に属する有機基が有する水素原子のうち少なくとも一部は、下記に例示する原子及び/又は有機官能基等の置換基で置換されていても良い。この際、群Y0に属する有機基が有する水素原子のうちの複数が下記置換基で置換されていても良く、この場合、下記に示す置換基の中から選択した1種又は2種以上の組み合わせにより置換されていても良い。
群Y0に属する有機基の水素原子と置換可能な置換基の例としては、F、Cl、Br、I等の原子;ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、メルカプト基、エポキシ基、エポキシシクロヘキシル基、グリシドキシ基、アミノ基、シアノ基、ニトロ基、スルホン酸基、カルボキシ基、ヒドロキシ基、アシル基、アルコキシ基、イミノ基、フェニル基等の有機官能基などが挙げられる。
なお、上記全ての場合において、群Y0に属する有機基の有する水素原子と置換可能な置換基のうち、有機官能基については、その有機官能基の有する水素原子のうち少なくとも一部がF、Cl、Br、I等のハロゲン原子などで置換されていても良い。
ただし、群Y0に属する有機基の水素と置換可能な置換基として例示したもののなかでも、有機官能基は、導入しやすいものの一例であり、使用目的に応じてこの他各種の物理化学的機能性を持つ有機官能基を導入しても良い。
また、群Y0に属する有機基は、その中に連結基としてO、N、又はS等の各種の原子または原子団を有するものであっても良い。
1は、上記の有用有機基群Y0に属する有機基などから、その目的により様々な基を選択できるが、耐紫外線性、耐熱性に優れる点から、メチル基を主体とすることが好ましい。
原料化合物(1)の具体例を挙げると、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−(メタ)アクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、β−シアノエチルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、ジメチルジクロロシラン、ジフェニルジクロロシラン、メチルフェニルジメトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルクロロシラン、メチルトリクロロシラン、γ−アシノプロピルトリエトキシシラン、4−アシノブチルトリエトキシシラン、p−アミノフェニルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、アミノエチルアミノメチルフェネチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、4−アミノブチルトリエトキシシラン、N−(6−アミノヘキシル)アミノプロピルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリクロロシラン、(p−クロロメチル)フェニルトリメトキシシラン、4−クロロフェニルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、スチリルエチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリス(2−メトキシエトキシ)シラン、トリフルオロプロピルトリメトキシシランなどが挙げられる。
これらの中でも、フェニルトリメトキシシラン、フェニルトリアセトキシシランが好ましく、フェニルトリメトキシシランが特に好ましい。屈折率の高さとハンドリングのし易さのためである。なお、原料化合物(1)は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
[1−2−2]原料化合物(2)
本発明の硬化性ポリシロキサン化合物の原料としては、前述の原料化合物(1)と併用して、または前述の原料化合物(1)に代えて、原料化合物(1)のオリゴマー(原料化合物(2))を用いる。以下、原料化合物(2)につき説明する。
原料化合物(2)とは、原料化合物(1)が化学結合し、オリゴマーになったものである。このオリゴマーにおいて、原料化合物(1)は直鎖上に結合してもよく、分岐鎖状に結合してもよい。また、オリゴマーを形成する原料化合物(1)の組合せも任意であり、1種のみでも2種以上でもよい。ただし、オリゴマー形成の結果、未反応の縮合性官能基Xが多く残るほど好ましい。
原料化合物(2)をポリスチレン換算したときの重量平均分子量は、通常130以上、好ましくは280以上、また、通常70000以下、好ましくは20000以下である。この範囲を下回ると、硬化物として物理的強度が弱くなり、独立体としての硬化物を得にくくなる可能性がある。また、この範囲を上回ると、操作性に難が出てくる可能性がある。
また、原料化合物(2)の20℃における波長589nmの光の屈折率を、そのポリスチレン換算の重量平均分子量で除した値が、通常7×10-3以下、好ましくは4×10-3以下、また、通常0.2×10-3以上である。この範囲を下回ると、硬化物としての屈折率が低下する傾向にあり、また、この範囲を上回ると、硬化物として物理的強度が弱くなり、独立体としての硬化物を得にくくなる可能性がある。
ここで、本発明の硬化性ポリシロキサン化合物およびそれを含む組成物が、適当な硬化性を有するためには、分子量と屈折率とのバランスが重要である。原料化合物(2)の20℃における波長589nmの光の屈折率を、そのポリスチレン換算の重量平均分子量で除した値は、このバランスを数値で表現する指標であり、上述の技術的意義を有している。
かかる分子量と屈折率のバランスが硬化性に重要である理由は明らかではないが、発明者等は以下のとおり推論する。
一般に、オリゴマー(原料化合物(2))の分子量が小さくなると、一分子当たりの縮合性官能基の数が減る。また、オリゴマーの屈折率を高くする場合も、フェニル基などの屈折率を高める機能を有する官能基が一分子あたりで多くなる反面、一分子当たりの縮合性官能基の数が減る。従って、縮合性官能基を適度に有するように分子設計が必要になるものと推測される。そのため、前記の指標が大きすぎると硬化しにくくなる傾向にあり、小さすぎると屈折率が低くなる傾向にあるものと考えられる。
原料化合物(2)の具体例としては、例えば、以下のようなものが挙げられる。
<2官能ケイ素のみからなるオリゴマーである原料化合物(2)の例>
Momentive Performance Materials社製ヒドロキシ末端ジメチルポリシロキサンでは、例えば、XC96−723、XF3905、YF3057、YF3800、YF3802、YF3807、YF3897などが挙げられる。
Momentive Performance Materials社製ヒドロキシ末端メチルフェニルポリシロキサンでは、例えば、YF3804などが挙げられる。
Gelest社製両末端シラノール ポリジメチルシロキサンでは、例えば、DMS−S12、DMS−S14などが挙げられる。
Gelest社製両末端シラノール ジフェニルシロキサン−ジメチルシロキサン コポリマーでは、例えば、PDS−1615が挙げられる。
Momentive Performance Materials社製両末端メトキシ ポリメチルフェニルシロキサンでは、例えば、XC96-C2814が挙げられる。
Gelest社製両末端シラノール ポリジフェニルシロキサンでは、例えば、PDS−9931が挙げられる。
<3官能以上のケイ素を含むオリゴマーである原料化合物(2)の例>
信越化学工業製 シリコーンアルコキシオリゴマー(メチル/メトキシ型)では、例えば、KC−89S、KR−500、X−40−9225、X−40−9246、X−40−9250などが挙げられる。
信越化学工業製 シリコーンアルコキシオリゴマー(フェニル/メトキシ型)では、例えば、KR−217などが挙げられる。
信越化学工業製 シリコーンアルコキシオリゴマー(メチルフェニル/メトキシ型)では、例えば、KR−9218、KR−213、KR−510、X−40−9227、X−40−9247、KR−401Nなどが挙げられる。
東レダウコーニング社製では、DC−3074、DC−3037Intermediateなどが挙げられる。
Momentive Performance Materials製ではTSR−165などが挙げられる。
また、Momentive Performance Materials社製メチル/フェニル/ヒドロキシ系シリコーンワニスでは、例えばYR3204などが挙げられる。
原料化合物(2)は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
なお、2官能ケイ素のみからなるオリゴマーは本発明のポリシロキサン硬化物に柔軟性を与える効果が大きいが、2官能ケイ素のみでは機械的強度が不十分となりやすい。このため、3官能以上のケイ素からなるモノマー若しくは3官能以上のケイ素を含むオリゴマーと共に重合することにより、本発明のポリシロキサン硬化物は光学部材(半導体発光装置、封止材、導光板、航空宇宙産業用部材等)として有用な機械的強度を得ることができる。
[1−2−3]原料化合物(3)
本発明の第2の硬化性ポリシロキサン化合物の原料としては、前述の原料化合物(1)、及び/又は原料化合物(2)と、下記式で示される原料化合物(3)とを用いる。以下、原料化合物(3)につき説明する。
Figure 2009179677
(上記式中、R1〜R6は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アリル基から選ばれる基を示す。R7、R8は、それぞれ独立して、縮合性官能基を示す。mは、0以上の整数を示す。)
(R1〜R6
1〜R6は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アリル基からなる群より選ばれる基を示す。このうち、アルキル基、アルケニル基、アリル基は、さらにハロゲン原子に置換されていてもよい。
好ましいアルキル基としては、例えば、メチル基、エチル基、プロピル基、トリフルオロプロピル基が挙げられる。
好ましいアルケニル基としては、例えば、ビニル基が挙げられる。
好ましいアリル基としては、例えば、フェニル基が挙げられる。
これらの中でも、好ましいものとしては、フェニル基、メチル基等が挙げられる。
(R7、R8、m)
7、R8は、それぞれ独立して、縮合性官能基を示す。mは、0以上の整数を示す。縮合性官能基とは、縮合反応によりシロキサン結合をする官能基のことをいう。
好ましい縮合性官能基としては、水酸基、アルコキシ基、アセトキシ基、エノキシ基、オキシム基、アミノ基、アミド基が挙げられる。
好ましいアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、フェノキシ基が挙げられる。
これらの中でも、メトキシ基、エトキシ基、フェノキシ基が好ましく、メトキシ基が特に好ましい。工業的に原料の入手が最も容易であるためである。なお、原料化合物(3)は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
(ポリスチレン換算の重量平均分子)
原料化合物(3)のポリスチレン換算の重量平均分子量は、通常160以上、好ましくは400以上、さらに好ましくは500以上、また、通常700000以下、好ましくは50000以下、さらに好ましくは30000以下である。この範囲を下回ると、硬化物が固く脆くなるという可能性がある。また、この範囲を上回ると、硬化しづらくなる可能性がある。
[1−3]硬化性ポリシロキサン化合物の特性
硬化性ポリシロキサン化合物が硬化性オルガノポリシロキサンである場合は、その硬化物の熱膨張係数の点で直鎖状オルガノポリシロキサンよりは分岐状オルガノポリシロキサンが好ましい。直鎖状オルガノポリシロキサンの硬化物はエラストマー状であり、その熱膨張係数が大きいが、分岐状オルガノポリシロキサンの硬化物の熱膨張係数は直鎖状オルガノポリシロキサンの硬化物の熱膨張係数より小さいので、熱膨張に伴う光学特性の変化が小さいからである。
本発明の硬化性ポリシロキサン化合物の粘度に制限は無いが、液温25℃において、通常20mPa・s以上、好ましくは100mPa・s以上、より好ましくは200mPa・s以上、また、通常1500mPa・s以下、好ましくは1000mPa・s以下、より好ましくは800mPa・s以下である。なお、前記粘度はRV型粘度計(例えばブルックフィールド社製RV型粘度計「RVDV−II+Pro」により測定できる。
本発明の硬化性ポリシロキサン化合物の重量平均分子量及び分子量分布に制限は無い。ただし、本発明の硬化性ポリシロキサン化合物はGPC(ゲルパーミエーションクロマトグラフィー)で測定したポリスチレン換算の重量平均分子量(Mw)が、通常500以上、好ましくは900以上、更に好ましくは3200以上であり、通常400,000以下、好ましくは70,000以下、更に好ましくは27,000以下である。重量平均分子量が小さすぎると、硬化時に気泡が発生する傾向があり、大きすぎると硬化性ポリシロキサン化合物が低温でも経時で増粘する傾向や、所望の容器へ充填する場合などに充填効率が悪くなる傾向がある。
また、分子量分布(Mw/Mn。ここでMwは重量平均分子量を表わし、Mnは数平均分子量を表わす)が、通常20以下、好ましくは10以下、更に好ましくは6以下である。分子量分布が大きすぎると部材が低温でも経時で増粘する傾向や、所望の容器へ充填する場合などに容器への充填効率が悪くなる傾向がある。なお、Mnは、Mwと同じく、GPCによるポリスチレン換算で測定できる。
また、本発明の硬化性ポリシロキサン化合物は、特定分子量以下の低分子量成分が少ないものが好ましい。具体的には、本発明の硬化性ポリシロキサン化合物中のGPC面積比率で分子量が800以下の成分が、全体の、通常10%以下、好ましくは7.5%以下、更に好ましくは5%以下である。低分子量成分が多すぎると、硬化性ポリシロキサン化合物の硬化時に気泡が発生したり主成分の揮発により硬化時の重量歩留まり(固形分率)が低下したりする可能性がある。
さらに、本発明の硬化性ポリシロキサン化合物は、特定分子量以上の高分子量成分が少ないものが好ましい。具体的には、本発明の硬化性ポリシロキサン化合物のGPC分析値において、高分子量の分画範囲が5%となる分子量が、通常1000000以下、好ましくは330000以下、さらに好ましくは110000以下である。GPCで高分子量側の分画範囲が多すぎると、
a)硬化性ポリシロキサン化合物が低温保管においても経時で増粘する、
b)保管中の脱水縮合により水分生成し、ポリシロキサン硬化物を基板やパッケージ等の表面に形成した後に、硬化性ポリシロキサン化合物が基板やパッケージ等から剥離しやすくなる、
c)高粘度であるために硬化性ポリシロキサン化合物の硬化時に気泡の抜けが悪くなる、などの可能性がある。
総括すれば、本発明の硬化性ポリシロキサン化合物は、上記に示される分子量範囲であることが好ましく、このような分子量範囲とする方法としては下記の方法を挙げることが出来る。
(i)合成時の重合反応を十分に行い未反応原料を消費する。
(ii)合成反応後に軽沸分の留去を十分に行い軽沸の低分子量残留物を除去する。
(iii)合成反応時の反応速度や条件を適切に制御し、重合反応が均一に進行するようにし、分子量分布が必要以上に大きくならないようにする。
例えば、後述する「[3]ポリシロキサン化合物及びポリシロキサン硬化物の製造方法」のように、特定の原料化合物(1)〜(3)を重縮合した重縮合物であるポリシロキサン化合物を硬化させて、ポリシロキサン硬化物を形成する場合には、硬化性ポリシロキサン化合物の合成時の重合反応を適正な反応速度に維持しつつ、均一に進めることが好ましい。重合は通常15℃以上、好ましくは20℃以上、より好ましくは40℃以上、また通常140℃以下、好ましくは135℃以下、より好ましくは130℃以下の範囲で行う。また、重合時間は反応温度により異なるが、通常0.1時間以上、好ましくは1時間以上、さらに好ましくは3時間以上、また通常100時間以下、好ましくは20時間以下、更に好ましくは15時間以下の範囲で実施される。反応時間がこれより短いと、必要な分子量まで到達しなかったり、不均一に反応が進む結果、低分子量原料が残存しつつ高分子量の成分も存在し、硬化物の品質不良で貯蔵安定性に乏しいものとなったりする可能性がある。また、反応時間がこれより長いと、重合触媒が失活したり、合成に長時間かかり生産性が悪化したりする可能性がある。
原料の反応活性が低く反応が進みにくい場合には、必要に応じて、例えばアルゴンガス、ヘリウムガス、窒素ガス等の不活性ガスを流通させることにより、縮合反応にて発生する水分やアルコールを随伴させて除去を行ない反応を加速しても良い。
反応時間の調整は、GPC及び粘度測定により分子量管理を行ないつつ、適宜行なうことが好ましい。さらに、昇温時間を考慮して調節することが好ましい。
溶媒を用いる場合には、必要に応じて常圧にて溶媒留去を行なうことが好ましい。さらに、溶媒や除去したい低分子量物の沸点が硬化開始温度(通常は120℃以上)である場合には、必要に応じて減圧留去を行なうことが好ましい。一方、導光膜の薄層塗布など、使用目的によっては低粘度化のため溶媒が一部残存していても良く、反応溶媒と異なる溶媒を反応溶媒留去後に後混合しても良い。
ここで、硬化性ポリシロキサン化合物の分子量分布の上限及び下限は上記範囲に収まることが好ましく、その範囲であれば分子量分布は必ずしも一山でなくてもよい。また、機能付加などの目的により異なる分子量分布の硬化性ポリシロキサン化合物を混合してもよく、その場合には分子量分布曲線が多峰性になっても良い。例えば、ポリシロキサン硬化物に機械的強度を与えるため、高分子量に仕上げた硬化性ポリシロキサン化合物に、密着成分を多く含む低分子量の硬化性ポリシロキサン化合物を少量含有させた場合などがこれに該当する。
さらに、本発明の硬化性ポリシロキサン化合物に含有される低沸点成分は、「[2−3−9]低沸点成分」で後述する本発明のポリシロキサン硬化物と同様に、少ないことが好ましい。
また、本発明の硬化性ポリシロキサン化合物には通常微量のアルコキシ基が残存する。この末端アルコキシ基が少ないポリシロキサン硬化物及び硬化性ポリシロキサン化合物はTG−DTAによる重量減が少なく、耐熱性が高くなる。本発明の硬化性ポリシロキサン化合物に含まれるアルコキシ基量は、通常5重量%以下、好ましくは3重量%以下、さらに好ましくは0.2重量%以下である。
また、用途によっては、硬化性ポリシロキサン化合物は、その他の成分を含有させてもよい。例えば、本発明の光学部材を半導体発光装置の構成部材として用いる場合などにおいては、硬化性ポリシロキサン化合物に蛍光体や無機粒子などを含有させてもよい。
また、その他の成分は、1種のみを用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
ところで、本発明の硬化性ポリシロキサン化合物は、後述するように、通常、2価のスズを含むスズ化合物触媒を用いて製造される。そのため、本発明のポリシロキサン硬化物には、通常は、これらの触媒が残留している。具体的には、本発明のポリシロキサン硬化物は、前記のスズ化合物触媒を、金属元素換算で、通常0.001重量%以上、好ましくは0.01重量%以上、より好ましくは0.02重量%以上、また、通常0.3重量%以下、好ましくは0.2重量%以下、より好ましくは0.1重量%以下だけ含有する。
なお、前記のスズ化合物触媒の含有率は、後述するICP分析により測定できる。
[2]ポリシロキサン硬化物
本発明のポリシロキサン硬化物は、本発明の硬化性ポリシロキサン化合物を硬化させて得られることを特徴とする。以下、その特性につき説明する。
[2−1]屈折率
本発明のポリシロキサン硬化物は、該ポリシロキサン硬化物の温度が20℃における波長589nmの光の屈折率が、通常1.47以上、好ましくは1.48、更に好ましくは1.5以上、また、通常2.5以下、好ましくは2以下である。この範囲を下回ると、例えば光学部材に応用する場合には、光取り出し効率が既存の半導体発光デバイス用部材と比較して向上しない可能性があり、逆にこの範囲を上回って発光デバイスの屈折率より大きくなると、光取り出し効率は向上しない可能性がある。
本発明のポリシロキサン硬化物の屈折率は、通常屈折計により測定することができる。具体的には、例えば膜圧1mm以上に成形した平滑な表面の単独・独立硬化物膜をサンプルとして、Abbe屈折計(ナトリウムD線(589nm)使用)を用いることができる。
[2−2]透過率
本発明のポリシロキサン硬化物は、膜厚1mmとした時の400nm〜800nmのいずれの波長における光透過率も、通常80%以上、好ましくは90%以上、さらに好ましくは95%以上である。
[2−3]その他物性
本発明のポリシロキサン硬化物は、上記特性を主な特徴とするが、その他、下記の構造や性質を有していることが好ましい。
[2−3−1]基本骨格
本発明のポリシロキサン硬化物の基本骨格は、通常はメタロキサン骨格、好ましくはガラス(ケイ酸塩ガラス)などと同じ無機質のシロキサン骨格(シロキサン結合)であることが好ましい。シロキサン結合は、下記表1の化学結合の比較表からも明らかなように、ポリシロキサン硬化物を光学部材の用途等に用いるときに、以下の優れた特徴がある。
(I)結合エネルギーが大きく、熱分解・光分解しにくいため、耐光性が良好である。
(II)電気的に若干分極している。
(III)鎖状構造の自由度は大きく、フレキシブル性に富む構造が可能であり、シロキサン鎖中心に自由回転可能である。
(IV)酸化度が大きく、これ以上酸化されない。
(V)電気絶縁性に富む。
Figure 2009179677
これらの特徴から、シロキサン結合が3次元的に、しかも高架橋度で結合した骨格で形成されるシリコーン系のポリシロキサン硬化物は、エポキシ樹脂などと異なりガラス或いは岩石などの無機質に近く、耐熱性・耐光性に富む保護皮膜となることが理解できる。特にメチル基を置換基とするシリコーン系ポリシロキサン硬化物は、紫外領域に吸収を持たないため光分解が起こりにくく、耐光性に優れる。
本発明のポリシロキサン硬化物のケイ素含有率は、通常20重量%以上、好ましくは25重量%以上、さらに好ましくは30重量%以上である。一方、上限としては、SiO2のみからなるガラスのケイ素含有率が47重量%であるという理由から、通常47重量%以下の範囲である。ただし、ポリシロキサン硬化物を高屈折率とする場合は、高屈折率化に必要な成分を含有させることがあるため、通常10重量%以上であり、通常47重量%以下である。
なお、ポリシロキサン硬化物の前記ケイ素含有率は、例えば以下の方法を用いて誘導結合高周波プラズマ分光(inductively coupled plasma spectrometry:以下適宜「ICP」と略する。)分析を行ない、その結果に基づいて算出することができる。
〔ケイ素含有率の測定〕
ポリシロキサン硬化物を100μm程度に粉砕し、白金るつぼ中にて大気中、450℃で1時間、ついで750℃で1時間、950℃で1.5時間保持して焼成し、炭素成分を除去した後、得られた残渣少量に10倍量以上の炭酸ナトリウムを加えてバーナー加熱し溶融させ、これを冷却して脱塩水を加え、更に塩酸にてpHを中性程度に調整しつつケイ素として数ppm程度になるよう定容し、ICP分析を行なう。
[2−3−2]シラノール含有率
本発明のポリシロキサン硬化物は、シラノール含有率が、通常0.01重量%以上、好ましくは0.1重量%以上、更に好ましくは0.3重量%以上、また、通常12重量%以下、好ましくは8重量%以下、更に好ましくは6重量%以下の範囲である。
通常、アルコキシシランを原料としてゾルゲル法により得られるガラス体は、150℃、3時間程度の温和な硬化条件では完全に重合して酸化物になることは無く、一定量のシラノールが残存する。テトラアルコキシシランのみより得られるガラス体は高硬度・高耐光性であるが、架橋度が高いため分子鎖の自由度が小さく、完全な縮合が起こらないため残存シラノールの量が多い。また、本発明の硬化性ポリシロキサン化合物を乾燥硬化する際には、架橋点が多いため増粘が早く、乾燥と硬化が同時に進むため大きな歪みを持ったバルク体となる。このような部材を光学部材として用いると、長期使用時には残存シラノールの縮合による新たな内部応力が発生し、クラックや剥離、断線などの不具合を生じやすい。また、部材の破断面にはシラノールがより多く、透湿性は少ないものの表面吸湿性が高く水分の浸入を招きやすい。400℃以上の高温焼成によりシラノール含有率を減少させることが可能であるが、本発明のポリシロキサン硬化物を後述する半導体発光装置に用いる場合、該半導体発光装置の耐熱性は260℃以下のものがほとんどであり、現実的ではない。
一方、本発明のポリシロキサン硬化物は、シラノール含有率が低いため経時変化が少なく、長期の性能安定性に優れ、吸湿が低い優れた性能を有する。但し、シラノールが全く含まれない部材は密着性に劣るため、本発明においてはシラノール含有率に上記のごとく最適な範囲が存在する。
本発明のポリシロキサン硬化物は、適当量のシラノールを含有しているため、ポリシロキサン硬化物を形成する表面に存在する極性部分にシラノールが水素結合し、密着性が発現する。極性部分としては、例えば、水酸基やメタロキサン結合の酸素等が挙げられる。
また、本発明のポリシロキサン硬化物は、適当な触媒の存在下で加熱することにより、ポリシロキサン硬化物を形成する表面の水酸基との間に脱水縮合による共有結合を形成し、さらに強固な密着性を発現することができる。
一方、シラノールが多すぎると、前述のように、系内が増粘して塗布が困難になったり、活性が高くなり加熱により軽沸分が揮発する前に固化したりすることによって、発泡や内部応力の増大が生じ、クラックなどを誘起する可能性がある。
なお、ポリシロキサン硬化物のシラノール含有率は、例えば後述の方法を用いて固体Si−NMRスペクトル測定を行ない、全ピーク面積に対するシラノール由来のピーク面積の比率より、全ケイ素原子中のシラノールとなっているケイ素原子の比率(%)を求め、別に分析したケイ素含有率と比較することにより算出することができる。
〔固体Si−NMRスペクトル測定及びシラノール含有率の算出〕
ポリシロキサン硬化物について固体Si−NMRスペクトルを行なう場合、まず、以下の条件で固体Si−NMRスペクトル測定及びデータ解析を行なう。次に、全ピーク面積に対するシラノール由来のピーク面積の比率より、全ケイ素原子中のシラノールとなっているケイ素原子の比率(%)を求め、別に分析したケイ素含有率と比較することによりシラノール含有率を求める。
なお、測定データの解析(シラノール量解析)は、例えばガウス関数やローレンツ関数を使用した波形分離解析等により、各ピークを分割して抽出する方法で行なう。
〔装置条件例〕
装置:Chemagnetics社 Infinity CMX−400 核磁気共鳴分光装置
29Si共鳴周波数:79.436MHz
プローブ:7.5mmφCP/MAS用プローブ
測定温度:室温
試料回転数:4kHz
測定法:シングルパルス法
1Hデカップリング周波数:50kHz
29Siフリップ角:90゜
29Si90゜パルス幅:5.0μs
くり返し時間:600s
積算回数:128回
観測幅:30kHz
ブロードニングファクター:20Hz
〔データ処理例〕
ポリシロキサン硬化物については、512ポイントを測定データとして取り込み、8192ポイントにゼロフィリングしてフーリエ変換する。
〔波形分離解析例〕
フーリエ変換後のスペクトルの各ピークについてローレンツ波形及びガウス波形或いは両者の混合により作成したピーク形状の中心位置、高さ、半値幅を可変パラメータとして、非線形最小二乗法により最適化計算を行なう。
なお、ピークの同定はAIChE Journal,44(5),p.1141,1998年等を参考にする。
また、ポリシロキサン硬化物のシラノール含有率は、以下のIR測定により求めることも可能である。ここで、IR測定はシラノールピークを特定しやすいもののピークの形状がブロードであり面積誤差が出やすく、定量作業にあたっては一定膜厚のサンプルを正確に作製する必要があるなど手順も煩雑であるため、厳密な定量を行う上では固体Si−NMRを用いることが好ましい。固体Si−NMRを用いてシラノール量を測定する際に、シラノールの量が非常に微量で検出が難しい場合、複数のピークが重なりシラノールのピークを単離することが困難である場合、未知試料においてシラノールピークのケミカルシフトが不明である場合などには相補的にIR測定を行うことによりシラノールの濃度を決定することが出来る。
〔IR測定によるシラノール含有率の算出〕
・フーリエ変換赤外分光法 Fourier Transform Infrared
Spectroscopy
・装置:Thermo Electron製 NEXUS670及びNic−Plan
・分解能:4cm-1
・積算回数:64 回
・パージ:N2
測定例:Siウエハ上に膜厚200μmの薄膜試料を塗布作製し、透過法によりSiウエハごと赤外吸収スペクトルを測定し、波数3751cm-1及び3701cm-1のシラノールピーク合計面積を求める。一方で、既知濃度試料としてトリメチルシラノールを無水の四塩化炭素に希釈し、光路長200μmの液セルを用いて透過法にて赤外吸収スペクトルを測定し、実サンプルとのピーク面積比比較によりシラノール濃度を算出することができる。なお、赤外吸収スペクトルにおいてはサンプル吸着水由来のピークがシラノールピークのバックグラウンドとして検出されるので、サンプル薄膜は測定前に常圧にて150℃20分以上加熱するか、100℃で10分以上真空処理するなどの方法にて吸着水を除いておく。
〔シラノール含有量総量とアルコキシ基含有量総量との比率〕
本発明のポリシロキサン硬化物のシラノール含有量総量とアルコキシ基含有量総量は、モル比において、シラノールがアルコキシ基と等量以上存在することが好ましい。理論的にはシラノールとアルコキシ基とは等量反応にてメタノールを生成し、シロキサン結合を形成することができる。したがって、シラノールがアルコキシ基と等量以上存在することにより、大気からの水分供給に頼らず加熱のみで硬化縮合することが出来、深型のパッケージに塗布した場合でも深部硬化性に優れるポリシロキサン硬化物となる。
ここでシラノールがアルコキシ基より大過剰にあると、ポリシロキサン硬化物の反応活性が高くなるためポリシロキサン硬化物の接触表面の密着反応性が向上し、さらには活性が低いアルコキシ基の残存による硬化不良が抑制され、高温保持時の変形及び収縮並びに重量減も低減できる。このため、{アルコキシ基の数/(シラノールの数+アルコキシ基の数)}×100(%)で表される比率(即ち、脱水脱アルコール縮合し得る未反応末端中のアルコキシ基の存在比)は、通常0%以上であり、通常50%以下、好ましくは30%以下、特に好ましくは25%以下である。なお、この比率は液体29Si−NMR測定値により求めることができる。
この比率を上記の範囲とするためには、例えば、溶媒には極力アルコールを使用しないようにすればよい。このほか、例えば、多量のシラノール末端を含有していても保存性の良い硬化性ポリシロキサン化合物を得るために、原料選択において下記式(B)で表される構造単位を有する成分の使用量を、下記式(A)で表される構造単位を有する成分の使用量と比較して、モル比において過剰量使用することなどを行なえば良い。
(R1SiO1.5) (A)
(前記式(A)中、R1は有機基を示す。)
((R22SiO) (B)
(前記式(B)中、R2は、それぞれ独立に有機基を示す。)
〔液体29Si−NMRスペクトルの測定方法〕
なお、液体29Si−NMRスペクトルの測定方法は、以下のとおりである。
液体29Si−NMRスペクトルの測定を行なう場合、以下の条件にて液体29Si−NMRスペクトルの測定及びデータ解析を行なう。
〔試料条件例〕
重アセトン50g、テトラメチルシラン2.5g、及び、緩和試薬としてクロムアセチルアセトン塩1.5gを混合し、X液とする。
測定試料3.0gと、前記のX液0.5gと、重アセトン1.0gとを混合し、全量を10mmテフロン(登録商標)製サンプル管に入れ、測定に供する。
例えば2液型市販シリコーン樹脂の場合、混合して測定すると測定中に増粘し測定不可であるため、混合前の主剤、硬化剤各々単独にNMR測定し、混合後のスペクトルは単独のスペクトルに混合比を考慮した台数和になると仮定してデータ計算を行なう。主剤、硬化剤各ピークの強度は内部標準テトラメチルシランの面積を1として規格化し、測定毎の誤差の影響を除く。
〔装置条件例〕
装置:JEOL社 JNM−AL400 核磁気共鳴分光装置
29Si共鳴周波数:78.50MHz
プローブ:AT10プローブ
測定温度:25.0℃
試料回転数:回転無し
測定法:シングルパルス法
PULS DELAY TIME : 12.7s
積算回数:512回
ブロードニングファクター:1.0Hz
〔波形処理解析例〕
フーリエ変換後のスペクトルの各ピークについて、ピークトップの位置によりケミカルシフトを求め、積分を行なう。なお、ピークの同定はAIChE Journal,44(5),p.1141,1998年等を参考にする。
例えば、市販シリコーン樹脂の分析において、(−Si−O−)2CH3SiHに由来するヒドロシリル基ケイ素のピークが−30〜−40ppmに検出された場合には、このピークは2官能ケイ素として分類する。
[2−3−3]UV透過率
本発明のポリシロキサン硬化物を、半導体発光装置用の光学部材に用いる場合には、膜厚1mmでの半導体発光装置の発光波長における光透過率が、通常80%以上、中でも85%以上、更には90%以上であることが好ましい。半導体発光装置は各種の技術によりその光取り出し効率が高められているが、半導体発光素子を封止したり蛍光体を保持したりするための透光性部材の透明度が低いと、これを用いた半導体発光装置の輝度が低減するため、高輝度な半導体発光装置製品を得にくくなる傾向にある。
ここで「半導体発光装置の発光波長」とは、半導体発光装置の種類に応じて異なる値であるが、一般的には、通常300nm以上、好ましくは350nm以上、また、通常900nm以下、好ましくは500nm以下の範囲の波長を指す。この範囲の波長における光透過率が低いと、ポリシロキサン硬化物が光を吸収してしまい、光取り出し効率が低下して、高輝度の半導体発光装置を得ることができなくなる。更に、光取り出し効率が低下した分のエネルギーは熱に変わり、半導体発光装置の熱劣化の原因となるため好ましくない。
なお、紫外〜青色領域(波長300nm〜500nm)においては封止部材が光劣化しやすいので、この領域に発光波長を有する半導体発光装置に、耐久性に優れた本発明のポリシロキサン硬化物を使用すれば、その効果が大きくなるので好ましい。
なお、ポリシロキサン硬化物の光透過率は、例えば以下の手法により、膜厚1mmに成形した平滑な表面の単独硬化物膜のサンプルを用いて、紫外分光光度計により測定することができる。
〔透過率の測定〕
ポリシロキサン硬化物の、傷や凹凸による散乱の無い厚さ約1mmの平滑な表面の単独硬化物膜を用いて、紫外分光光度計(島津製作所製 UV−3100)を使用し、波長200nm〜800nmにおいて透過度測定を行なう。
但し、半導体発光装置の形状は様々であり、大多数は0.1mmを超える厚膜状態での使用であるが、LEDチップ(発光素子)から離れた位置に薄膜状の蛍光体層(例えばナノ蛍光体粒子や蛍光イオンを含む厚さ数μmの層)を設ける場合や、LEDチップの直上に薄膜上に高屈折光取り出し膜を設ける場合等、薄膜使用の用途もある。この様な場合には、この膜厚において80%以上の透過率を示すことが好ましい。このような薄膜状の適用形態においても、本発明のポリシロキサン硬化物は優れた耐光性、耐熱性を示し、封止性能に優れ、クラック等なく安定して成膜できる。
[2−3−4]ピーク面積比
本発明のポリシロキサン硬化物は、次の条件を満たすことが好ましい。即ち、本発明のポリシロキサン硬化物は、固体Si−核磁気共鳴スペクトルにおいて、(ケミカルシフト−40ppm以上0ppm以下のピークの総面積)/(ケミカルシフト−40ppm未満のピークの総面積)の比(以下適宜、「本発明にかかるピーク面積比」という)が、通常3以上、好ましくは5以上、より好ましくは10以上、また、通常200以下、好ましくは100以下、より好ましくは50以下であることが好ましい。
本発明にかかるピーク面積比が上記の範囲にあることは、本発明のポリシロキサン硬化物が、2官能シランを、3官能シランや4官能シランなどの3官能以上のシランよりも多く有することを表わす。このように、2官能以下のシランを多く有することにより、本発明のポリシロキサン硬化物はエラストマー状を呈することが可能となり、応力を緩和することが可能となる。
ただし、本発明のポリシロキサン硬化物は、本発明にかかるピーク面積比についての上記条件を満たさなくともエラストマー状を呈する場合がある。例えば、ケイ素以外の金属のアルコキシド等のカップリング剤を架橋剤として用いて本発明のポリシロキサン硬化物を製造した場合などが、この場合に該当する。本発明のポリシロキサン硬化物がエラストマー状を呈するための手法は任意であり、この本発明にかかるピーク面積比についての上記条件に限定されるものではない。
[2−3−5]官能基
本発明のポリシロキサン硬化物は、ポリフタルアミドなどの樹脂、セラミック又は金属の表面に存在する所定の官能基(例えば、水酸基、メタロキサン結合中の酸素など)と水素結合可能な官能基を有する。半導体発光装置用の容器(後述するカップ等。以下適宜「半導体発光装置容器」という)は、通常、セラミック又は金属で形成されている。また、セラミックや金属の表面には、通常は水酸基が存在する。一方、本発明のポリシロキサン硬化物は、通常、当該水酸基と水素結合可能な官能基を有している。したがって、前記水素結合により、本発明のポリシロキサン硬化物は、半導体発光装置容器に対する密着性に優れているのである。
本発明のポリシロキサン硬化物が有する、前記の水酸基に対して水素結合が可能な官能基としては、例えば、シラノール、アルコキシ基、アミノ基、イミノ基、メタクリル基、アクリル基、チオール基、エポキシ基、エーテル基、カルボニル基、カルボキシル基、スルホン酸基等が挙げられる。中でも耐熱性の観点からシラノール、アルコキシ基が好ましい。なお、前記官能基は1種でも良く、2種以上でもよい。
なお、本発明のポリシロキサン硬化物が、前記のように、水酸基に対して水素結合が可能な官能基を有しているか否かは、固体Si−NMR、固体1H−NMR、赤外線吸収スペクトル(IR)、ラマンスペクトルなどの分光学的手法により確認することができる。
[2−3−6]耐熱性
本発明のポリシロキサン硬化物は、耐熱性に優れる。即ち、高温条件下に放置した場合でも、所定の波長を有する光における透過率が変動しにくい性質を有する。具体的には、本発明のポリシロキサン硬化物は、200℃に500時間放置した前後において、波長400nmの光に対する透過率の維持率が、通常80%以上、好ましくは90%以上、より好ましくは95%以上であり、また、通常110%以下、好ましくは105%以下、より好ましくは100%以下である。
なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、[2−3−3]で前述したUV透過率の測定方法と同様にして測定することができる。
[2−3−7]耐UV性
本発明のポリシロキサン硬化物は、耐光性に優れる。即ち、UV(紫外光)を照射した場合でも、所定の波長を有する光に対する透過率が変動しにくい性質を有する。具体的には、本発明のポリシロキサン硬化物は、中心波長380nm、放射強度0.4kW/m2の光を72時間照射した前後において、波長400nmの光における透過率の維持率が、通常80%以上、好ましくは90%以上、より好ましくは95%以上であり、また、通常110%以下、好ましくは105%以下、より好ましくは100%以下である。
なお、前記の変動比は、紫外/可視分光光度計による透過率測定により、[2−3−3]で前述したUV透過率の測定方法と同様にして測定することができる。
[2−3−8]触媒残留量
本発明のポリシロキサン硬化物は、通常、2価のスズを含むスズ化合物触媒を用いて製造される。そのため、本発明のポリシロキサン硬化物には、通常は、これらの触媒が残留している。具体的には、本発明のポリシロキサン硬化物は、前記のスズ化合物触媒を、金属元素換算で、通常0.001重量%以上、好ましくは0.01重量%以上、より好ましくは0.02重量%以上、また、通常0.3重量%以下、好ましくは0.2重量%以下、より好ましくは0.1重量%以下だけ含有する。
なお、前記のスズ化合物触媒の含有率は、ICP分析により測定できる。
[2−3−9]低沸点成分
本発明のポリシロキサン硬化物はTG−mass(熱分解MSクロマトグラム)において、40℃〜210℃の範囲の加熱発生ガスのクロマトグラム積分面積が小さいものであることが好ましい。
TG−massは、ポリシロキサン硬化物を昇温してポリシロキサン硬化物中の低沸点成分を検出するものであるが、40℃〜210℃の範囲にクロマトグラム積分面積が大きい場合、水、溶媒および3員環から5員環の環状シロキサンといった、低沸点成分が成分中に存在することを示す。このような場合、(i)低沸点成分が多くなり、硬化過程において気泡の発生またはブリードアウトし半導体発光装置容器との密着性が低くなる可能性や、(ii)使用時の発熱により気泡の発生またはブリードアウトするなどの可能性がある。そこで、本発明のポリシロキサン硬化物はかかる低沸点成分が少ないものが好ましい。
本発明のポリシロキサン硬化物において、TG−massで検出される前記低沸点成分量を低く抑える方法としては、例えば、下記の方法を挙げることができる。
(i)重合反応等を十分に行ない、低分子量の原料が残存しないようにする。例えば、後述する「[3]ポリシロキサン化合物及びポリシロキサン硬化物の製造方法」のような、特定の原料化合物(1)〜(3)を重縮合した重縮合物であるポリシロキサン化合物を硬化して本発明のポリシロキサン硬化物とする場合は、常圧で重縮合を実施する場合、通常15℃以上、好ましくは20℃以上、より好ましくは40℃以上、また、通常140℃以下、好ましくは135℃以下、より好ましくは130℃以下の範囲で重縮合を行なう。また、重縮合反応時間は反応温度により異なるが、通常0.1時間以上、好ましくは1時間以上、更に好ましくは3時間以上、また、通常100時間以下、好ましくは20時間以下、更に好ましくは15時間以下の範囲で実施される。反応時間の調整はGPC、粘度測定により逐次分子量管理を行ないつつ適宜行なうことが好ましい。さらに、昇温時間を考慮して調節することが好ましい。
(ii)重合反応等の反応工程以外の工程において、低沸点成分を効率良く除去する。例えば、後述する「[3]ポリシロキサン化合物及びポリシロキサン硬化物の製造方法」のような、特定の原料化合物(1)〜(3)を重縮合した重縮合物であるポリシロキサン化合物を硬化させて本発明のポリシロキサン硬化物とする場合は、重縮合反応工程後の溶媒留去、乾燥工程において、重縮合反応を進めないようにしつつ、低沸点成分を除去する。具体的には、例えば溶媒の留去を行なう際の温度条件を、通常60℃以上、好ましくは80℃以上、より好ましくは100℃以上、また、通常150℃以下、好ましくは130℃以下、より好ましくは120℃以下とする。また、溶媒の留去を行なう際の圧力条件を、通常は常圧とする。さらに、必要に応じて溶媒留去時の反応液の沸点が硬化開始温度(通常は120℃以上)に達しないように減圧する。また、溶媒留去、乾燥工程をアルゴンガス、窒素ガス、ヘリウムガス、等の不活性ガス雰囲気下で行なう。
[2−3−10]硬度
本発明のポリシロキサン硬化物は、エラストマー状を呈する部材であることが好ましい。一般に半導体発光装置等の光学部材には熱膨張係数の異なる部材を複数使用することが多いが、本発明のポリシロキサン硬化物がエラストマー状を呈することにより、光学部材に用いられる部材の伸縮による応力を緩和することができる。したがって、使用中に剥離、クラック、断線などを起こしにくく、耐リフロー性及び耐温度サイクル性に優れる半導体デバイスを提供することができる。
具体的には、本発明の光学部材は、デュロメータタイプAによる硬度測定値(ショアA)が、通常5以上、好ましくは7以上、より好ましくは10以上、また、通常90以下、好ましくは80以下、より好ましくは70以下である。上記範囲の硬度測定値を有することにより、本発明の光学部材は、クラックが発生しにくく、耐リフロー性及び耐温度サイクル性に優れるという利点を得ることができる。
なお、硬度測定値(ショアA)は、JIS K6253に記載の方法により測定することができる。具体的には、古里精機製作所製のA型ゴム硬度計を用いて測定を行なうことができる。
[2−3−11]他の部材との組み合わせ
本発明のポリシロキサン硬化物は単独で封止材として用いても良いが、有機蛍光体、酸素や水分により劣化しやすい蛍光体、半導体発光装置を封止する場合等、より厳密に酸素や水分からの遮断を要求される用途においては、本発明のポリシロキサン硬化物により蛍光体の保持や半導体発光素子の封止・光取り出しを実施し、さらにその外側にガラス板やエポキシ樹脂などの高気密素材による気密封止を実施したり、真空封止を実施しても良い。この場合の形状に制限は無く、本発明のポリシロキサン硬化物による封止体、塗布物あるいは塗布面が実質的に金属・ガラス・高気密性樹脂などの高気密素材により外界から保護遮断され酸素や水分の流通が無い状態になっていれば良い。
また、本発明のポリシロキサン硬化物は、上述のように密着性が良好なため、半導体発光装置用接着剤として用いることが出来る。具体的には、例えば、半導体素子とパッケージを接着する場合、半導体素子とサブマウントを接着する場合、パッケージ構成要素同士を接着する場合、半導体発光装置と外部光学部材とを接着する場合などに、本発明のポリシロキサン硬化物を塗布、印刷、ポッティングなどすることにより用いることが出来る。本発明のポリシロキサン硬化物は特に耐光性、耐熱性に優れるため、長時間高温や紫外光にさらされる高出力の半導体発光装置用接着剤として用いた場合、長期使用に耐え高い信頼性を有する半導体発光装置を提供することが出来る。
なお、本発明のポリシロキサン硬化物は、これのみで十分密着性を担保しうるものであるが、更に密着性を担保することを目的として、ポリシロキサン硬化物と直接接する表面に密着性改善のための表面処理を行なっても良い。このような、表面処理としては、例えばプライマーやシランカップリング剤を用いた密着改善層の形成、酸やアルカリなどの薬品を用いた化学的表面処理、プラズマ照射やイオン照射・電子線照射を用いた物理的表面処理、サンドブラストやエッチング・微粒子塗布などによる粗面化処理等が挙げられる。密着性改善のための表面処理としては、その他に例えば、特開平5−25300号公報、稲垣訓宏著「表面化学」Vol.18 No.9、pp21−26、黒崎和夫著「表面化学」Vol.19 No.2、pp44−51(1998)等に開示される公知の表面処理方法が挙げられる。
[2−3−12]その他
本発明のポリシロキサン硬化物の形状及び寸法に制限は無く任意である。例えば、ポリシロキサン硬化物が何らかの半導体発光装置容器内を充填する封止材として使用される場合には、本発明のポリシロキサン硬化物の形状及び寸法は、その半導体発光装置容器の形状及び寸法に応じて決定される。また、ポリシロキサン硬化物が何らかの基板の表面に形成される場合は、通常は膜状に形成されることが多く、その寸法は用途に応じて任意に設定される。本発明のポリシロキサン硬化物を導光板や航空宇宙産業用部材に用いる場合にも、その適用する部位に合わせて、任意に形状を用いることができる。
ただし、本発明のポリシロキサン硬化物は、膜状に形成する場合、厚膜に形成することができることを利点の一つとしている。従来用いられてきた光学部材は、厚膜化すると内部応力等によりクラック等が生じて厚膜化が困難であったが、本発明のポリシロキサン硬化物はそのようなことは無く、安定して厚膜化が可能である。具体的範囲を挙げると、本発明のポリシロキサン硬化物は、通常0.1μm以上、好ましくは10μm以上、より好ましくは100μm以上の厚みで形成することが好ましい。なお、上限に制限は無いが、通常10mm以下、好ましくは5mm以下、より好ましくは1mm以下である。ここで、膜の厚みが一定でない場合には、膜の厚みとは、その膜の最大の厚み部分の厚さのことを指すものとする。
また、本発明のポリシロキサン硬化物は、通常、従来よりも長期間にわたってクラックや剥離を生じることなく半導体発光装置を封止できる。具体的には、本発明のポリシロキサン硬化物を用いて半導体発光装置を封止し、当該半導体発光装置に、通常20mA以上、好ましくは350mA以上の駆動電流を通電して温度85℃相対湿度85%にて連続点灯を行った場合に、通常500時間以上、好ましくは1000時間以上、より好ましくは2000時間以上経過後の輝度が、点灯直後の輝度と比較して低下しない。
また、用途によっては、ポリシロキサン硬化物は、その他の成分を含有していてもよい。例えば、本発明のポリシロキサン硬化物を半導体発光装置の構成部材として用いる場合などにおいては、蛍光体や無機粒子などを含有させてもよい。なお、この点については、用途の説明と共に、後で説明する。
また、その他の成分は、1種のみを用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、本発明のポリシロキサン硬化物には通常微量のアルコキシ基が残存する。この末端アルコキシ基が少ないポリシロキサン硬化物はTG−DTAによる重量減が少なく、耐熱性が高くなる。
[3]ポリシロキサン化合物及びポリシロキサン硬化物の製造方法
本発明の硬化性ポリシロキサン化合物は、原料化合物(1)及び/又は原料化合物(2)を重縮合させるか、原料化合物(1)及び/又は原料化合物(2)と原料化合物(3)とを重縮合させて製造する。この際、重縮合にあたり、2価のスズ化合物を触媒として用いる。
また、本発明のポリシロキサン硬化物を製造する方法は、本発明の硬化性ポリシロキサン化合物を硬化させる工程を有していれば制限されない。なお、重縮合物が溶媒を含有している場合には、乾燥させる前に事前に溶媒を留去するようにしてもよい。
[3−1]原料
本発明の硬化性ポリシロキサン化合物の原料は、上述した原料化合物(1)〜(3)を用いる。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
なお、原料化合物(2)は、1〜4官能の何れの原料化合物(1)のオリゴマーであってもよいが、中でも2官能の原料化合物(1)同士が結合した2官能のオリゴマー(以下適宜、「2官能成分オリゴマー」という。)を主に用いることが好ましい。これら2官能成分オリゴマーを主に用いる場合、その使用量は、原料の総重量に対して、通常50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上である。なお、使用量の上限は通常97重量%である。2官能成分オリゴマーを原料として主に使用することで、本発明のポリシロキサン硬化物の製造が、より容易になるためである。
以下、2官能成分オリゴマーを原料の主体として用いたことによる利点について詳しく説明する。
例えば従来のゾルゲル法により製造されていたポリシロキサン硬化物では、その原料を加水分解及び重縮合させた加水分解・重縮合物(塗布液(加水分解液)に含有されたもの等を含む)は、高い反応活性を有していた。したがって、その加水分解・重縮合物をアルコール等の溶媒で希釈しないと系内の重合が進み、すぐに硬化するため、成形や取り扱いが困難であった。例えば、従来は溶媒で希釈しない場合には、温度が40℃〜50℃程度であっても硬化することがあった。したがって、加水分解後に得られた加水分解・重縮合物の取り扱い性を確保するためには、加水分解・重縮合物に溶媒を共存させることが必須であった。
また、加水分解・重縮合物に溶媒を共存させたまま加水分解・重縮合物の乾燥・硬化を行なわせると、硬化時に脱水縮合による収縮に加え、脱溶媒による収縮(脱溶媒収縮)が加味される。これにより、従来の光学部材(特に、半導体発光装置用のもの)では、硬化物の内部応力が大きくなりがちであり、この内部応力に起因するクラック、剥離、断線などが生じやすかった。
さらに、上記の内部応力を緩和するためにポリシロキサン硬化物を柔軟化する目的で原料として2官能成分モノマーを多用すると、重縮合体中の低沸環状体が多くなる可能性があった。低沸環状体は硬化時に揮発してしまうため、低沸環状体が多くなると重量歩留まりが低下することになる。また、低沸環状体は硬化物からも揮発し、応力発生の原因となることがある。さらに、低沸環状体を多く含むポリシロキサン硬化物は耐熱性が低くなることがある。これらの理由により、従来は、ポリシロキサン硬化物を、性能の良いエラストマー状硬化体として得ることは困難であった。
これに対して、原料として、別系で(即ち、重縮合工程に関与しない系で)2官能成分をあらかじめオリゴマー化し、反応性末端を持たない低沸不純物を留去したものを使用するようにすれば、2官能成分(即ち、上記の2官能成分オリゴマー)を多用しても、それらの低沸不純物が揮発することはなく、硬化物重量歩留まりの向上を実現することができるとともに、性能の良いエラストマー状硬化物を得ることができる。
さらに、2官能成分オリゴマーを主原料とすることにより、重縮合物であるポリシロキサン化合物の反応活性を抑制することができる。これは、本発明の硬化性ポリシロキサン化合物の立体障害及び電子効果、並びに、2官能成分オリゴマーを使用したことに伴いシラノール末端量が低減したことによるものと推察される。反応活性を抑制したことにより、溶媒を共存させなくてもポリシロキサン化合物は硬化することはなく、したがって、ポリシロキサン化合物を一液型、かつ、無溶媒系とすることができる。
また、ポリシロキサン化合物の反応活性が低下したことにより、硬化開始温度を従来よりも高くすることが可能である。したがって、ポリシロキサン化合物の硬化開始温度以下の溶媒をポリシロキサン化合物に共存させた場合には、ポリシロキサン化合物の乾燥時に、ポリシロキサン化合物の硬化が開始されるよりも以前に溶媒が揮発することになる。これにより、溶媒を使用した場合であっても脱溶媒収縮に起因する内部応力の発生を抑制することが可能となる。
以上のように原料化合物(2)として、2官能成分オリゴマーを多く用いると、硬化物をより柔軟なエラストマーにすることができ、引張強度・曲げ応力緩和能力等の観点から好ましい等多くの利点が得られる。
[3−2]重縮合工程
原料化合物(1)〜(3)を重縮合反応させることにより、本発明の硬化性ポリシロキサン化合物を製造することができる(以下、「重縮合工程」ということがある。)。この重縮合反応工程は、公知の方法によって行なうことができる。
重縮合工程では、触媒として2価のスズ化合物を用いる。これによって、硬化性ポリシロキサン化合物が、屈折率を向上させるために屈折率を向上させるような有機基(特にフェニル基等)を多く有する場合でもあっても、硬化性ポリシロキサン化合物を合成するための重縮合の反応効率が低下せず、硬化性ポリシロキサン化合物、及びポリシロキサン硬化物の耐熱性、耐光性、硬化性等の低下を抑制することができる。
2価のスズが特に好ましい理由は定かではないが、その極めて強い求電子性のために、縮合性反応基例えばシラノール基とアルコキシシリル基に素早く配位して両官能基を引き付け合い、より熱力学的に安定なシロキサンとアルコールとのペアへと変換させる反応を触媒しているといった理由が考えられる。
本発明の硬化性ポリシロキサン化合物の製造に用いられる2価のスズ化合物としては、有機酸塩を含むものが反応速度の観点より好ましい。例えば、有機金属錯体、金属アルコキシド、有機酸と金属との塩などを含む広義の有機金属化合物からなる触媒等が挙げられる。具体的には2−エチルヘキサン酸スズ(II)、ステアリン酸スズ(II)、酢酸スズ(II)を挙げることができ、中でも2−エチルヘキサン酸スズ(II)が好ましい。これらの触媒は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
前記の本発明に係る触媒の使用量は、反応させる原料種にもよるが、通常、全原料量に対して0.00001重量%以上、好ましくは0.0001重量%以上、更に好ましくは0.0001重量%以上、また通常10重量%以下、好ましくは1重量%以下、さらに好ましくは0.5重量%以下である。この範囲を下回ると硬化反応が上手く進行しない可能性があり、この範囲を上回ると着色したり発泡したり、さらには室温での可使時間が極度に短くなるという可能性がある。
原料化合物(1)〜(3)を縮重合する際には、2価のスズ化合物に加えて他の触媒などを共存させて、縮重合を促進してもよい。この場合、使用する触媒としては、例えば、酢酸、プロピオン酸、酪酸などの有機酸;硝酸、塩酸、リン酸、硫酸などの無機酸;有機金属化合物触媒などを用いることができる。このとき、本発明のポリシロキサン硬化物を後述する半導体発光装置として用いる場合、該装置と直接接する部分に使用する部材とする場合には、絶縁特性に影響の少ない有機金属化合物触媒が好ましい。ここで、有機金属化合物触媒とは、有機基と金属原子とが直接に結合してなる狭義の有機金属化合物からなる触媒のみを指すのではなく、有機金属錯体、金属アルコキシド、有機酸と金属との塩などを含む広義の有機金属化合物からなる触媒を指す。
有機金属化合物触媒の中では、ジルコニウム、ハフニウム、スズ、亜鉛及びチタンより選択される少なくとも1種の元素を含む有機金属化合物触媒が好ましく、ジルコニウムを含む有機金属化合物触媒がさらに好ましい。
その具体例を挙げると、ジルコニウムを含有する有機金属化合物触媒の例としては、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシジアセチルアセトネート、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラノルマルブトキシド、ジルコニウムアシレート、ジルコニウムトリブトキシステアレートなどが挙げられる。
また、ハフニウムを含有する有機金属化合物触媒の例としては、ハフニウムテトラアセチルアセトネート、ハフニウムトリブトキシアセチルアセトネート、ハフニウムジブトキシジアセチルアセトネート、ハフニウムテトラノルマルプロポキシド、ハフニウムテトライソプロポキシド、ハフニウムテトラノルマルブトキシド、ハフニウムアシレート、ハフニウムトリブトキシステアレートなどが挙げられる。
また、チタンを含有する有機金属化合物触媒の例としては、チタニウムテトライソプロポキシド、チタニウムテトラノルマルブトキシド、ブチルチタネートダイマー、テトラオクチルチタネート、チタンアセチルアセトナート、チタンオクチレングリコレート、チタンエチルアセトアセテートなどが挙げられる。
また、亜鉛を含有する有機金属化合物触媒の例としては、ステアリン酸亜鉛、オクチル酸亜鉛、2−エチルヘキサン酸亜鉛、亜鉛トリアセチルアセトネートが挙げられる。
また、スズを含有する有機金属化合物触媒の例を挙げると、テトラブチルスズ、モノブチルスズトリクロライド、テトラオクチルスズ、テトラメチルスズ、ジブチルスズラウレート、ジオクチルスズラウレート、ビス(2−エチルヘキサノエート)スズ、ビス(ネオデカノエート)スズ、ジ−n−ブチルビス(エチルヘキシルマレート)スズ、ジ−ノルマルブチルビス(2,4−ペンタンジオネート)スズ、ジ−ノルマルブチルブトキシクロロスズ、ジ−ノルマルブチルジアセトキシスズ、ジ−ノルマルブチルジラウリル酸スズ、ジメチルジネオデカノエートスズ、ジブチルスズジクロライド、ジブチルスズオキサイド、ジオクチルスズジクロライド、ジオクチルスズオキサイドなどが挙げられる。
なお、これらの有機金属化合物触媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記の好ましい有機金属化合物触媒を用いることにより、原料化合物を重縮合する際には、副生物の低分子環状シロキサンの生成を抑え、高い歩留まりで硬化性ポリシロキサン化合物を合成することができる。
また、この有機金属化合物触媒を用いたことにより、本発明のポリシロキサン硬化物は、高い耐熱性を実現することができる。その理由は明らかではないが、前記有機金属化合物は、単に触媒として原料化合物(1)〜(3)の重縮合反応を促進するだけではなく、重縮合物及びその硬化物のシラノール末端に一時的に結合・解離することができ、これによりシラノール含有ポリシロキサン化合物の反応性を調整して、高温条件における(i)有機基の酸化の防止、(ii)ポリマー間の不要な架橋の防止、(iii)主鎖の切断などの防止をする作用があると考えられる。以下、これらの作用(i)〜(iii)について説明する。
(i)有機基の酸化の防止としては、熱の作用によって、例えばメチル基上にラジカルが発生した時、有機金属化合物触媒の遷移金属がラジカルを補足する効果を有する。一方、この遷移金属自身はラジカル補足によってイオン価数を失い、そのために酸素と作用して有機基の酸化を防止する。その結果として、ポリシロキサン硬化物の劣化を抑えることになると推察される。
(ii)ポリマー間の不要な架橋の防止としては、例えば、メチル基が酸素分子によって酸化を受けるとホルムアルデヒドになり、ケイ素原子に結合した水酸基が生成する。こうしてできた水酸基同士が脱水縮合するとポリマー間に架橋点ができ、それが増加することによって本来ゴム状であったポリシロキサン硬化物が硬く、もろくなる可能性がある。しかし、有機金属化合物触媒はシラノール基と結合し、これにより、熱分解による架橋の進行を防止できるものと推察される。
(iii)主鎖の切断などの防止としては、有機金属化合物触媒がシラノールと結合することにより、シラノール化合物の分子内攻撃によるポリマー主鎖の切断及び環状シロキサンの生成による加熱重量減を抑制し、耐熱性が向上するものと推察される。
有機金属化合物触媒の好ましい配合量は、使用する触媒の種類によって適宜選択されるが、重縮合を行う原料の総重量に対し、通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上、また、通常5重量%以下、好ましくは2重量%以下、特に好ましくは1重量%以下である。有機金属化合物触媒が少なすぎると、硬化に時間がかかりすぎたり、硬化不十分なために十分な機械的強度や耐久性が得られなかったりする可能性がある。一方、有機金属化合物触媒が多すぎると、硬化が速すぎてポリシロキサン硬化物の物性の制御が困難となったり、触媒が溶解分散できず析出しポリシロキサン硬化物の透明度を損なったり、触媒自身が持ち込む有機物量が多くなり得られるポリシロキサン硬化物が高温使用時に着色したりする可能性がある。
これらの有機金属触媒は、重縮合時に一括して原料系に混合しても良く、また分割混合しても良い。また、重縮合時に触媒を溶解するために溶媒を使用しても良く、直接反応液に触媒を溶解しても良い。ただし、光学部材(特に、半導体発光装置)として使用する際には、硬化時の発泡や熱による着色を防ぐために、重縮合工程の後で前記の溶媒を厳密に留去することが望ましい。
なお、触媒が固体である場合には触媒の溶解度が低く、溶解不十分なまま直接昇温すると局所的に不均一な反応が起きて系内が白濁したり透明ゲル状の不溶物が生成したりすることがある。これを防ぎ均一に反応を進めるには、触媒粒子を(i)乳鉢により数十〜数百μmに粉砕し溶解しやすくしたり、(ii)触媒を溶解させるために、触媒を混合した組成物を30〜50℃で攪拌しつつ予備加熱し、触媒が溶解してから反応温度に昇温したりすると良い。また、活性の異なるシロキサン原料を混合する際には活性の低い成分に触媒を混合し、触媒が溶解してから最も活性の高い成分を混合すると良い。
重縮合反応時に系内が分液し不均一となる場合には、溶媒を使用しても良い。溶媒としては、例えば、炭素数1以上3以下の低級アルコール類、ジメチルホルムアミド、ジメチルスルホキシド、アセトン、テトラヒドロフラン、メチルセロソルブ、エチルセロソルブ、メチルエチルケトン、トルエン、水等を任意に用いることができるが、中でも強い酸性や塩基性を示さないものが重縮合に悪影響を与えない理由から好ましい。溶媒は1種を単独で使用しても良いが、2種以上を任意の組み合わせ及び比率で併用することもできる。溶媒使用量は自由に選択できるが、半導体発光装置に塗布する際には溶媒を除去することが多いため、必要最低限の量とすることが好ましい。また、溶媒除去を容易にするため、沸点が100℃以下、より好ましくは80℃以下の溶媒を選択することが好ましい。なお、外部より溶媒を供給しなくても加水分解反応によりアルコール等の溶媒が生成するため、反応当初は不均一でも反応中に均一になる場合もある。
上記原料化合物の重縮合反応は、常圧で実施する場合、通常15℃以上、好ましくは20℃以上、より好ましくは40℃以上、また、通常140℃以下、好ましくは135℃以下、より好ましくは130℃以下の範囲で行なう。加圧下で液相を維持することでより高い温度で行なうことも可能であるが、150℃を超えないことが好ましい。
重縮合反応時間は反応温度により異なるが、通常0.1時間以上、好ましくは1時間以上、更に好ましくは3時間以上、また、通常100時間以下、好ましくは20時間以下、更に好ましくは15時間以下の範囲で実施される。反応時間の調整は分子量管理を行いつつ適宜行うことが好ましい。
以上の重縮合条件において、時間が短くなったり温度が低すぎたりすると、重縮合が不十分なため硬化時に原料が揮発したり、硬化物の強度が不十分となる可能性がある。また、時間が長くなったり温度が高すぎたりすると、硬化性ポリシロキサン化合物の分子量が高くなり、系内のシラノール量が減少し、塗布時に密着性不良が生じたり硬化が早すぎて硬化物の構造が不均一となり、クラックを生じやすくなる。以上の傾向を踏まえて、所望の物性値に応じて条件を適宜選択することが望ましい。
上記重縮合反応が終了した後、得られた硬化性ポリシロキサン化合物はその使用時まで室温以下で保管されるが、この期間にもゆっくりと重縮合が進行するため、特に厚膜状の部材として使用する場合には前記加温による重縮合反応が終了した時点より室温保管にて通常60日以内、好ましくは30日以内、更に好ましくは15日以内に使用に供することが好ましい。必要に応じ凍らない範囲にて低温保管することにより、この期間を延長することができる。保管期間の調整は分子量管理を行いつつ適宜行うことが好ましい。
前記の操作により、上記の本発明の硬化性ポリシロキサン化合物が得られる。この硬化性ポリシロキサン化合物は、好ましくは液状である。
[3−3]溶媒留去
上記の重縮合工程において溶媒を用いた場合には、通常、乾燥の前に硬化性ポリシロキサン化合物から溶媒を留去することが好ましい(溶媒留去工程)。これにより、溶媒を含まない硬化性ポリシロキサン化合物(液状の重縮合物)を得ることができる。上述したように、従来は溶媒を留去すると加水分解・重縮合物が硬化してしまうために加水分解・重縮合物の取り扱いが困難となっていた。しかし、2官能成分オリゴマーを使用すると重縮合物の反応性が抑制されるため、乾燥の前に溶媒を留去しても硬化性ポリシロキサン化合物は硬化しなくなり、溶媒の留去が可能である。溶媒を乾燥前に留去しておくことにより、脱溶媒収縮によるクラック、剥離、断線などを防止することができる。
なお、通常は、原料化合物(1)〜(3)を加水分解で得ている場合、溶媒の留去の際に、加水分解に用いた水の留去も行なわれる。さらに、反応時に副生する低分子環状シロキサンも含まれる。
溶媒を留去する方法は、本発明の効果を著しく損なわない限り任意である。ただし、硬化性ポリシロキサン化合物の硬化開始温度以上の温度で溶媒の留去を行なうことは避けるようにする。
溶媒の留去を行なう際の温度条件の具体的な範囲を挙げると、通常60℃以上、好ましくは80℃以上、より好ましくは100℃以上、また、通常150℃以下、好ましくは130℃以下、より好ましくは120℃以下である。この範囲の下限を下回ると溶媒の留去が不十分となる可能性があり、上限を上回ると硬化性ポリシロキサン化合物がゲル化する可能性がある。
また、溶媒の留去を行なう際の圧力条件は、通常は常圧である。さらに、必要に応じて溶媒留去時の反応液の沸点が硬化開始温度(通常は120℃以上)に達しないように減圧する。また、圧力の下限は、硬化性ポリシロキサン化合物の主成分が留出しない程度である。
一般に高温・高真空条件で軽沸分は効率良く留去できるが、軽沸分が微量であるため装置形状により精密に留去できない場合には、高温操作によりさらに重合が進み分子量が上がりすぎる可能性がある。さらに、所定の種類の触媒を使用している場合には、長時間高温反応に供すると失活し、硬化性ポリシロキサン化合物を硬化しにくくなる可能性もある。そこで、これらの場合などには、必要に応じ窒素吹き込みや水蒸気蒸留などにより低温常圧で軽沸分を留去しても良い。
減圧留去や窒素吹き込みなどの何れの場合にも、硬化性ポリシロキサン化合物の主成分本体が留出しないよう、前段の重縮合反応にて適度に分子量を上げておくことが望ましい。
これらの方法により溶媒や水分、副生低分子環状シロキサン、溶存空気などの軽沸分を十分に除いた硬化性ポリシロキサン化合物を用いて製造するポリシロキサン硬化物は、軽沸分の気化による硬化時発泡や高温使用時のデバイスからの剥離を低減させることができるため、好ましい。
ただし、溶媒の留去を行なうことは、必須の操作ではない。特に、硬化性ポリシロキサン化合物の硬化温度以下の沸点を有する溶媒を用いている場合には、硬化性ポリシロキサン化合物の乾燥時に、硬化性ポリシロキサン化合物の硬化が開始される前に溶媒が揮発してしまうため、特に溶媒留去工程を行なわなくても脱溶媒収縮によるクラック等の生成は防止することができる。しかし、溶媒の揮発により硬化性ポリシロキサン化合物の体積が変化することもありえるため、ポリシロキサン硬化物の寸法や形状を精密に制御する観点からは、溶媒留去を行なうことが好ましい。
[3−4]硬化工程
上述の重縮合反応により得られた硬化性ポリシロキサン化合物を乾燥させる(乾燥工程。または、硬化工程)ことにより、本発明のポリシロキサン硬化物を得ることができる。硬化性ポリシロキサン化合物は上述のように通常は液状であるが、これを目的とする形状の型に入れた状態で乾燥を行なうことにより、目的とする形状を有する本発明のポリシロキサン硬化物を形成することが可能となる。また、この硬化性ポリシロキサン化合物を目的とする部位に塗布した状態で乾燥を行なうことにより、目的とする部位に直接、本発明のポリシロキサン硬化物を形成することが可能となる。なお、乾燥工程では必ずしも溶媒が気化するわけではないが、ここでは、流動性を有する硬化性ポリシロキサン化合物が流動性を失って硬化する現象を含めて、乾燥工程と呼ぶものとする。したがって、溶媒の気化を伴わない場合には、上記「乾燥」は「硬化」と読み替えて認識してもよい。
乾燥工程では、硬化性ポリシロキサン化合物をさらに重合させることにより、メタロキサン結合を形成させて、硬化性ポリシロキサン化合物を乾燥・硬化させ、本発明のポリシロキサン硬化物を得る。
乾燥の際には、硬化性ポリシロキサン化合物を所定の硬化温度まで加熱して硬化させるようにする。具体的な温度範囲は硬化性ポリシロキサン化合物の乾燥が可能である限り任意であるが、メタロキサン結合は通常100℃以上で効率良く形成されるため、好ましくは120℃以上、更に好ましくは150℃以上で実施される。但し、本発明のポリシロキサン硬化物を、半導体発光装置として用いる場合であって、該半導体発光装置と共に加熱される場合は、通常は該半導体発光装置の構成要素の耐熱温度以下の温度、好ましくは200℃以下で乾燥を実施することが好ましい。
また、硬化性ポリシロキサン化合物を乾燥させるために硬化温度に保持する時間(硬化時間)は触媒濃度や部材の厚みなどにより一概には決まらないが、通常0.1時間以上、好ましくは0.5時間以上、更に好ましくは1時間以上、また、通常10時間以下、好ましくは5時間以下、更に好ましくは3時間以下の範囲で実施される。
なお、乾燥工程における昇温条件は特に制限されない。即ち、乾燥工程の間、一定の温度で保持しても良く、連続的又は断続的に温度を変化させても良い。また、乾燥工程を更に複数回に分けて行なってもよい。さらに、乾燥工程において、温度を段階的に変化させるようにしてもよい。温度を段階的に変化させることにより、残留溶媒や溶存水蒸気による発泡を防ぐことができるという利点を得ることができる。また、低温で硬化させた後、高温で追硬化した場合には、得られるポリシロキサン硬化物中に内部応力が発生しにくく、クラックや剥離を起こしにくいという利点も得ることができる。
ただし、上述の重縮合反応を溶媒の存在下にて行なったときに、溶媒留去工程を行なわなかった場合や、溶媒留去工程を行なっても硬化性ポリシロキサン化合物中に溶媒が残留している場合には、この乾燥工程を、溶媒の沸点以下の温度にて溶媒を実質的に除去する第1の乾燥工程と、該溶媒の沸点以上の温度にて乾燥する第2の乾燥工程とに分けて行なうことが好ましい。また、本明細書における「乾燥」とは、硬化性ポリシロキサン化合物が溶媒を失い、更に重合・硬化してメタロキサン結合を形成する工程を指す。
第1の乾燥工程は、硬化性ポリシロキサン化合物の更なる重合を積極的に進めることなく、含有される溶媒を該溶媒の沸点以下の温度にて実質的に除去するものである。即ち、この工程にて得られる生成物は、乾燥前の硬化性ポリシロキサン化合物が濃縮され、水素結合により粘稠な液或いは柔らかい膜状になったものか、溶媒が除去されて硬化性ポリシロキサン化合物が液状で存在しているものである。
ただし、通常は、溶媒の沸点未満の温度で第1の乾燥工程を行なうことが好ましい。該溶媒の沸点以上の温度で第1の乾燥を行なうと、得られる膜に溶媒の蒸気による発泡が生じ、欠陥の無い均質な膜が得にくくなる。この第1の乾燥工程は、薄膜状の部材とした場合など溶媒の蒸発の効率がよい場合は単独のステップで行なっても良いが、カップ上にモールドした場合など蒸発効率の悪い場合においては複数のステップに分けて昇温しても良い。また、極端に蒸発効率が悪い形状の場合は、予め別の効率良い容器にて乾燥濃縮を行なった上で、流動性が残る状態で塗布し、更に乾燥を実施してもよい。蒸発効率の悪い場合には、大風量の通風乾燥など部材の表面のみ濃縮が進む手段をとらず、部材全体が均一に乾燥するよう工夫することが好ましい。
第2の乾燥工程は、上述の硬化性ポリシロキサン化合物の溶媒が第1の乾燥工程により実質的に無くなった状態において、この硬化性ポリシロキサン化合物を溶媒の沸点以上の温度で加熱し、メタロキサン結合を形成することにより、安定な硬化物とするものである。この工程において溶媒が多く残留していると、架橋反応が進行しつつ溶媒蒸発による体積減が生じるため、大きな内部応力が生じ、収縮による剥離やクラックの原因となる。メタロキサン結合は通常100℃以上で効率良く形成されるため、第2の乾燥工程は好ましくは100℃以上、更に好ましくは120℃以上で実施される。但し、本発明のポリシロキサン硬化物を、半導体発光装置として用いる場合であって、該半導体発光装置と共に加熱される場合は、通常は該半導体発光装置の構成要素の耐熱温度以下の温度、好ましくは200℃以下で乾燥を実施することが好ましい。第2の乾燥工程における硬化時間は触媒濃度や部材の厚みなどにより一概には決まらないが、通常0.1時間以上、好ましくは0.5時間以上、更に好ましくは1時間以上、また、通常10時間以下、好ましくは5時間以下、更に好ましくは3時間以下の範囲で実施される。
このように溶媒除去の工程(第1の乾燥工程)と硬化の工程(第2の乾燥工程)とを明確に分けることにより、溶媒留去工程を行なわない場合であっても、本発明の物性を持つ耐光性、耐熱性に優れるポリシロキサン硬化物をクラック・剥離することなく得ることが可能となる。
ただし、第1の乾燥工程中でも硬化が進行することはありえるし、第2の乾燥工程中にも溶媒除去が進行する場合はありえる。しかし、第1の乾燥工程中の硬化や第2の乾燥工程中の溶媒除去は、通常は本発明の効果に影響を及ぼさない程度に小さいものである。
なお、実質的に上述の第1の乾燥工程及び第2の乾燥工程が実現される限り、各工程における昇温条件は特に制限されない。即ち、各乾燥工程の間、一定の温度で保持しても良く、連続的又は断続的に温度を変化させても良い。また、各乾燥工程を更に複数回に分けて行なってもよい。更には、第1の乾燥工程の間に一時的に溶媒の沸点以上の温度となったり、第2の乾燥工程の間に溶媒の沸点未満の温度となる期間が介在したりする場合でも、実質的に上述したような溶媒除去の工程(第1の乾燥工程)と硬化の工程(第2の乾燥工程)とが独立して達成される限り、本発明の範囲に含まれるものとする。
さらに、溶媒として硬化性ポリシロキサン化合物の硬化温度以下、好ましくは硬化温度未満の沸点を有するものを用いている場合には、硬化性ポリシロキサン化合物に共存している溶媒は、特に温度を調整せずに硬化性ポリシロキサン化合物を硬化温度まで加熱した場合であっても、乾燥工程の途中において、温度が沸点に到達した時点で硬化性ポリシロキサン化合物から留去されることになる。つまり、この場合、乾燥工程において硬化性ポリシロキサン化合物を硬化温度まで昇温する過程において、硬化性ポリシロキサン化合物が硬化する前に、溶媒の沸点以下の温度にて溶媒を実質的に除去する工程(第1の乾燥工程)が実施される。これにより、硬化性ポリシロキサン化合物は、溶媒を含有しない液状の硬化性ポリシロキサン化合物となる。そして、その後、溶媒の沸点以上の温度(即ち、硬化温度)にて乾燥し、硬化性ポリシロキサン化合物を硬化させる工程(第2の乾燥工程)が進行することになる。したがって、溶媒として上記の硬化温度以下の沸点を有するものを用いると、上記の第1の乾燥工程と第2の乾燥工程とは、たとえその実施を意図しなくても行なわれることになる。このため、溶媒として硬化性ポリシロキサン化合物の硬化温度以下、好ましくは上記硬化温度未満の沸点を有するものを用いることは、乾燥工程を実施する際には硬化性ポリシロキサン化合物が溶媒を含んでいたとしてもポリシロキサン硬化物の品質に大きな影響を与えることがないため、好ましいといえる。
[3−5]その他
上述の乾燥工程の後、得られたポリシロキサン硬化物に対し、必要に応じて各種の後処理を施しても良い。後処理の種類としては、モールド部との密着性の改善のための表面処理、反射防止膜の作製、光取り出し効率向上のための微細凹凸面の作製等が挙げられる。
[4]光学部材
本発明のポリシロキサン硬化物の用途は制限されないが、光線透過性(透明性)、耐光性、耐熱性、耐水熱性、耐UV性などの種々の特性が高いため、様々な光学部材に好適に用いることができる。本発明の光学部材の用途の具体例としては、半導体発光装置、導光板、及び宇宙産業用部材等が挙げられる。
本発明のポリシロキサン硬化物を光学部材として用いるときは、光学部材の用途によって適宜形状や透明度等を定めて用いたり、蛍光体や無機粒子等の他の化合物を併用したりしてもよい。これらの他の化合物を併用するときは、例えば、硬化性ポリシロキサン化合物に混合させ、用いればよい。
例えば、本発明の光学部材を半導体発光装置の半導体発光素子等を封止するための部材(封止材)に用いる場合、蛍光体粒子及び/又は無機粒子を併用することで、特定の用途に用いるときさらに好適に使用することが可能となる。以下、これらの蛍光体粒子及び無機粒子の併用について説明する。
[4−1]蛍光体
本発明のポリシロキサン硬化物を光学部材として用いる場合、例えば、原料化合物中に蛍光体を分散させて、後述する半導体発光装置のカップ内にモールドしたり、適当な透明支持体上に薄層状に塗布したりすることにより、波長変換用部材として使用することができる。なお、蛍光体は1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用しても良い。
[4−1−1]蛍光体の種類
蛍光体の組成には特に制限はないが、結晶母体であるY23、Zn2SiO4等に代表される金属酸化物、Ca5(PO43Cl等に代表されるリン酸塩及びZnS、SrS、CaS等に代表される硫化物に、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンやAg、Cu、Au、Al、Mn、Sb等の金属のイオンを付活剤または共付活剤として組み合わせたものが好ましい。
結晶母体の好ましい例としては、例えば、(Zn,Cd)S、SrGa24、SrS、ZnS等の硫化物、Y22S等の酸硫化物、(Y,Gd)3Al512、YAlO3、BaMgAl1017、(Ba,Sr)(Mg,Mn)Al1017、(Ba,Sr,Ca)(Mg,Zn,Mn)Al1017、BaAl1219、CeMgAl1119、(Ba,Sr,Mg)O・Al23、BaAl2Si28、SrAl24、Sr4Al1425、Y3Al512等のアルミン酸塩、Y2SiO5、Zn2SiO4等の珪酸塩、SnO2、Y23等の酸化物、GdMgB510、(Y,Gd)BO3等の硼酸塩、Ca10(PO46(F,Cl)2、(Sr,Ca,Ba,Mg)10(PO46Cl2等のハロリン酸塩、Sr227、(La,Ce)PO4等のリン酸塩等を挙げることができる。
ただし、上記の結晶母体及び付活剤または共付活剤は、元素組成には特に制限はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視領域の光を吸収して可視光を発するものであれば用いることが可能である。
具体的には、蛍光体として以下に挙げるものを用いることが可能であるが、これらはあくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。なお、以下の例示では、構造の一部のみが異なる蛍光体を、適宜省略して示している。例えば、「Y2SiO5:Ce3+」、「Y2SiO5:Tb3+」及び「Y2SiO5:Ce3+,Tb3+」を「Y2SiO5:Ce3+,Tb3+」と、「La22S:Eu」、「Y22S:Eu」及び「(La,Y)22S:Eu」を「(La,Y)22S:Eu」とまとめて示している。省略箇所はカンマ(,)で区切って示す。
[4−1−1−1]赤色蛍光体
赤色の蛍光を発する蛍光体(以下適宜、「赤色蛍光体」という)が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常570nm以上、好ましくは580nm以上、また、通常700nm以下、好ましくは680nm以下が望ましい。
このような赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行なう(Mg,Ca,Sr,Ba)2Si58:Euで表わされるユウロピウム付活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう(Y,La,Gd,Lu)22S:Euで表わされるユウロピウム付活希土類オキシカルコゲナイド系蛍光体等が挙げられる。
さらに、特開2004−300247号公報に記載された、Ti、Zr、Hf、Nb、Ta、W、及びMoよりなる群から選ばれる少なくも1種の元素を含有する酸窒化物及び/又は酸硫化物を含有する蛍光体であって、Al元素の一部又は全てがGa元素で置換されたアルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本実施形態において用いることができる。なお、これらは酸窒化物及び/又は酸硫化物を含有する蛍光体である。
また、そのほか、赤色蛍光体としては、(La,Y)22S:Eu等のEu付活酸硫化物蛍光体、Y(V,P)O4:Eu、Y23:Eu等のEu付活酸化物蛍光体、(Ba,Sr,Ca,Mg)2SiO4:Eu,Mn、(Ba,Mg)2SiO4:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO3:Eu等のEu付活アルミン酸塩蛍光体、LiY9(SiO462:Eu、Ca28(SiO462:Eu、(Sr,Ba,Ca)3SiO5:Eu、Sr2BaSiO5:Eu等のEu付活珪酸塩蛍光体、(Y,Gd)3Al512:Ce、(Tb,Gd)3Al512:Ce等のCe付活アルミン酸塩蛍光体、(Ca,Sr,Ba)2Si58:Eu、(Mg,Ca,Sr,Ba)SiN2:Eu、(Mg,Ca,Sr,Ba)AlSiN3:Eu等のEu付活窒化物蛍光体、(Mg,Ca,Sr,Ba)AlSiN3:Ce等のCe付活窒化物蛍光体、(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、(Ba3Mg)Si28:Eu,Mn、(Ba,Sr,Ca,Mg)3(Zn,Mg)Si28:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、3.5MgO・0.5MgF2・GeO2:Mn等のMn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La)23:Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y,Lu,La)22S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO4:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY24:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa24:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP27:Eu,Mn、(Sr,Ca,Ba,Mg,Zn)227:Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)2WO6:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)xSiyz:Eu,Ce(但し、x、y、zは、1以上の整数)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,Ba,Mg)10(PO46(F,Cl,Br,OH):Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb)1-xScxCey2(Ca,Mg)1-r(Mg,Zn)2+rSiz-qGeq12+δ等のCe付活珪酸塩蛍光体等を用いることも可能である。
赤色蛍光体としては、β−ジケトネート、β−ジケトン、芳香族カルボン酸、又は、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ペリレン系顔料(例えば、ジベンゾ{[f,f’]−4,4’,7,7’−テトラフェニル}ジインデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン)、アントラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。
また、赤色蛍光体のうち、ピーク波長が580nm以上、好ましくは590nm以上、また、620nm以下、好ましくは610nm以下の範囲内にあるものは、橙色蛍光体として好適に用いることができる。このような橙色蛍光体の例としては、(Sr,Ba)3SiO5:Eu、(Sr,Mg)3(PO42:Sn2+、SrCaAlSiN3:Eu、Eu付活αサイアロン等のEu付活酸窒化物蛍光体等が挙げられる。
[4−1−1−2]緑色蛍光体
緑色の蛍光を発する蛍光体(以下適宜、「緑色蛍光体」という)が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常490nm以上、好ましくは500nm以上、また、通常570nm以下、好ましくは550nm以下が望ましい。
このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Mg,Ca,Sr,Ba)Si222:Euで表わされるユウロピウム付活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Ba,Ca,Sr,Mg)2SiO4:Euで表わされるユウロピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。
また、そのほか、緑色蛍光体としては、Sr4Al1425:Eu、(Ba,Sr,Ca)Al24:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)Al2Si28:Eu、(Ba,Mg)2SiO4:Eu、(Ba,Sr,Ca,Mg)2SiO4:Eu、(Ba,Sr,Ca)2(Mg,Zn)Si27:Eu等のEu付活珪酸塩蛍光体、Y2SiO5:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr227−Sr225:Eu等のEu付活硼酸リン酸塩蛍光体、Sr2Si38−2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体、Zn2SiO4:Mn等のMn付活珪酸塩蛍光体、CeMgAl1119:Tb、Y3Al512:Tb等のTb付活アルミン酸塩蛍光体、Ca28(SiO462:Tb、La3Ga5SiO14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga24:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y3(Al,Ga)512:Ce、(Y,Ga,Tb,La,Sm,Pr,Lu)3(Al,Ga)512:Ce等のCe付活アルミン酸塩蛍光体、Ca3Sc2Si312:Ce、Ca3(Sc,Mg,Na,Li)2Si312:Ce等のCe付活珪酸塩蛍光体、CaSc24:Ce等のCe付活酸化物蛍光体、SrSi222:Eu、(Sr,Ba,Ca)Si222:Eu、Eu付活βサイアロン等のEu付活酸窒化物蛍光体、BaMgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrAl24:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)22S:Tb等のTb付活酸硫化物蛍光体、LaPO4:Ce,Tb等のCe,Tb付活リン酸塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,Ga,Lu,Sc,La)BO3:Ce,Tb、Na2Gd227:Ce,Tb、(Ba,Sr)2(Ca,Mg,Zn)B26:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、Ca8Mg(SiO44Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca,Ba)(Al,Ga,In)24:Eu等のEu付活チオアルミネート蛍光体やチオガレート蛍光体、(Ca,Sr)8(Mg,Zn)(SiO44Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体等を用いることも可能である。
また、緑色蛍光体としては、ピリジン−フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、ヘキシルサリチレートを配位子として有するテルビウム錯体等の有機蛍光体を用いることも可能である。
[4−1−1−3]青色蛍光体
青色の蛍光を発する蛍光体(以下適宜、「青色蛍光体」という)が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常420nm以上、好ましくは440nm以上、また、通常480nm以下、好ましくは470nm以下が望ましい。
このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行なうBaMgAl1017:Euで表わされるユウロピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)5(PO43Cl:Euで表わされるユウロピウム付活ハロリン酸カルシウム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)259Cl:Euで表わされるユウロピウム付活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行なう(Sr,Ca,Ba)Al24:Euまたは(Sr,Ca,Ba)4Al1425:Euで表わされるユウロピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
また、そのほか、青色蛍光体としては、Sr227:Sn等のSn付活リン酸塩蛍光体、Sr4Al1425:Eu、BaMgAl1017:Eu、BaAl813:Eu等のEu付活アルミン酸塩蛍光体、SrGa24:Ce、CaGa24:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl1017:Eu、BaMgAl1017:Eu,Tb,Sm等のEu付活アルミン酸塩蛍光体、(Ba,Sr,Ca)MgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu、(Ba,Sr,Ca)5(PO43(Cl,F,Br,OH):Eu,Mn,Sb等のEu付活ハロリン酸塩蛍光体、BaAl2Si28:Eu、(Sr,Ba)3MgSi28:Eu等のEu付活珪酸塩蛍光体、Sr227:Eu等のEu付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、Y2SiO5:Ce等のCe付活珪酸塩蛍光体、CaWO4等のタングステン酸塩蛍光体、(Ba,Sr,Ca)BPO5:Eu,Mn、(Sr,Ca)10(PO46・nB23:Eu、2SrO・0.84P25・0.16B23:Eu等のEu,Mn付活硼酸リン酸塩蛍光体、Sr2Si38・2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体等を用いることも可能である。
また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラゾリン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。
[4−1−1−4]黄色蛍光体
黄色の蛍光を発する蛍光体(以下適宜、「黄色蛍光体」という。)が発する蛍光の具体的な波長の範囲を例示すると、通常530nm以上、好ましくは540nm以上、より好ましくは550nm以上、また、通常620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあることが好適である。黄色蛍光体の発光ピーク波長が短すぎると黄色成分が少なくなり演色性が劣る半導体発光装置となる可能性があり、長すぎると半導体発光装置の輝度が低下する可能性がある。
このような黄色蛍光体としては、例えば、各種の酸化物系、窒化物系、酸窒化物系、硫化物系、酸硫化物系等の蛍光体が挙げられる。特に、RE3512:Ce(ここで、REは、Y,Tb,Gd,Lu,Smの少なくとも1種類の元素を表し、Mは、Al,Ga,Scの少なくとも1種類の元素を表す。)やM2 33 24 312:Ce(ここで、M2は2価の金属元素、M3は3価の金属元素、M4は4価の金属元素)等で表されるガーネット構造を有するガーネット系蛍光体、AE254:Eu(ここで、AEは、Ba,Sr,Ca,Mg,Znの少なくとも1種類の元素を表し、M5は、Si,Geの少なくとも1種類の元素を表す。)等で表されるオルソシリケート系蛍光体、これらの系の蛍光体の構成元素の酸素の一部を窒素で置換した酸窒化物系蛍光体、AEAlSiN3:Ce(ここで、AEは、Ba,Sr,Ca,Mg,Znの少なくとも1種類の元素を表す。)等のCaAlSiN3構造を有する窒化物系蛍光体等のCeで付活した蛍光体などが挙げられる。
また、そのほか、黄色蛍光体としては、CaGa24:Eu(Ca,Sr)Ga24:Eu、(Ca,Sr)(Ga,Al)24:Eu等の硫化物系蛍光体、Cax(Si,Al)12(O,N)16:Eu等のSiAlON構造を有する酸窒化物系蛍光体等のEuで付活した蛍光体を用いることも可能である。
[4−1−1−5]その他の蛍光体
本発明のポリシロキサン硬化物は、上述したもの以外の蛍光体を含有させることも可能である。例えば、本発明のポリシロキサン硬化物は、イオン状の蛍光物質や有機・無機の蛍光成分を均一・透明に溶解・分散させた蛍光ガラスとすることもできる。
[4−1−2]蛍光体の粒径
本発明に使用する蛍光体の粒径は特に制限はないが、中央粒径(D50)で、通常0.1μm以上、好ましくは2μm以上、さらに好ましくは5μm以上である。また、通常100μm以下、好ましくは50μm以下、さらに好ましくは20μm以下である。蛍光体の中央粒径(D50)が上記範囲にある場合は、後述する半導体発光装置において、半導体発光素子から発する光が充分に散乱される。また、半導体発光素子から発する光が充分に蛍光体粒子に吸収されるため、波長変換が高効率に行われると共に、蛍光体から発せられる光が全方向に照射される。これにより、複数種類の蛍光体からの一次光を混色して白色にすることができると共に、均一な白色が得られるため、半導体発光装置が発する合成光において、均一な白色光と照度が得られる。一方、蛍光体の中央粒径(D50)が上記範囲より大きい場合は、蛍光体が発光部の空間を充分に埋めることができないため、後述する半導体発光装置において、半導体発光素子からの光が充分に蛍光体に吸収されない可能性がある。また、蛍光体の中央粒径(D50)が、上記範囲より小さい場合は、蛍光体の発光効率が低下するため、半導体発光装置の照度が低下する可能性がある。
蛍光体粒子の粒度分布(QD)は、ポリシロキサン硬化物中での粒子の分散状態をそろえるために小さい方が好ましいが、小さくするためには分級収率が下がってコストアップにつながるので、通常0.03以上、好ましくは0.05以上、更に好ましくは0.07以上である。また、通常0.4以下、好ましくは0.3以下、更に好ましくは0.2以下である。
なお、本発明において、中央粒径(D50)および粒度分布(QD)は、重量基準粒度分布曲線から得ることが出来る。前記重量基準粒度分布曲線は、レーザ回折・散乱法により粒度分布を測定し得られるもので、具体的には、例えば以下のように測定することが出来る。
〔重量基準粒度分布曲線の測定方法〕
(1)気温25℃、湿度70%の環境下において、エチレングリコールなどの溶媒に蛍光体を分散させる。
(2)レーザ回折式粒度分布測定装置(堀場製作所 LA−300)により、粒径範囲0.1μm〜600μmにて測定する。
(3)この重量基準粒度分布曲線において積算値が50%のときの粒径値を中央粒径D50と表記する。また、積算値が25%及び75%の時の粒径値をそれぞれD25、D75と表記し、QD=(D75−D25)/(D75+D25)と定義する。QDが小さいことは粒度分布が狭いことを意味する。
また、蛍光体粒子の形状も、ポリシロキサン硬化物の形成に影響を与えない限り、例えば、蛍光体部形成液(蛍光体と硬化性ポリシロキサン化合物との混合液のことをいう。)の流動性等に影響を与えない限り、特に限定されない。
[4−1−3]蛍光体の表面処理
本発明に使用する蛍光体は、耐水性を高める目的で、またはポリシロキサン硬化物中で蛍光体の不要な凝集を防ぐ目的で、表面処理が行われていてもよい。かかる表面処理の例としては、特開2002−223008号公報に記載の有機材料、無機材料、ガラス材料などを用いた表面処理、特開2000−96045号公報等に記載の金属リン酸塩による被覆処理、金属酸化物による被覆処理、シリカコート等の公知の表面処理などが挙げられる。
表面処理の具体例を挙げると、例えば蛍光体の表面に上記金属リン酸塩を被覆させるには、以下の(i)〜(iii)の表面処理を行う。
(i)所定量のリン酸カリウム、リン酸ナトリウムなどの水溶性のリン酸塩と、塩化カルシウム、硫酸ストロンチウム、塩化マンガン、硝酸亜鉛等のアルカリ土類金属、Zn及びMnの中の少なくとも1種の水溶性の金属塩化合物とを蛍光体懸濁液中に混合し、攪拌する。
(ii)アルカリ土類金属、Zn及びMnの中の少なくとも1種の金属のリン酸塩を懸濁液中で生成させると共に、生成したこれらの金属リン酸塩を蛍光体表面に沈積させる。
(iii)水分を除去する。
また、表面処理の他の例のうち好適な例を挙げると、シリカコートとしては、水ガラスを中和してSiO2を析出させる方法、アルコキシシランを加水分解したものを表面処理する方法(例えば、特開平3−231987号公報)等が挙げられ、分散性を高める点においてはアルコキシシランを加水分解したものを表面処理する方法が好ましい。
[4−1−4]蛍光体の混合方法
本発明において、蛍光体粒子を加える方法は特に制限されない。蛍光体粒子の分散状態が良好な場合であれば、上述の硬化性ポリシロキサン化合物に後混合するだけでよい。即ち、本発明の硬化性ポリシロキサン化合物と蛍光体とを混合し、蛍光体部形成液を用意して、この蛍光体部形成液を用いてポリシロキサン硬化物を作製すればよい。蛍光体粒子の凝集が起こりやすい場合には、原料化合物(1)〜(3)を含む反応用溶液に蛍光体粒子を前もって混合し、蛍光体粒子の存在下で重縮合を行なうと、粒子の表面が一部シランカップリング処理され、蛍光体粒子の分散状態が改善される。
なお、蛍光体の中には加水分解性のものもあるが、本発明のポリシロキサン硬化物は、塗布前の液状態(硬化性ポリシロキサン化合物)において、水分はシラノール体として潜在的に存在し、遊離の水分はほとんど存在しないので、そのような蛍光体でも加水分解してしまうことなく使用することが可能である。また、重縮合後の硬化性ポリシロキサン化合物を脱水・脱アルコール処理を行なってから使用すれば、そのような蛍光体との併用が容易となる利点もある。
また、蛍光体粒子や無機粒子(後述する)を本発明のポリシロキサン硬化物に分散させる場合には、粒子表面に分散性改善のため有機配位子による修飾を行うことも可能である。従来、半導体発光装置の部材として用いられてきた付加型シリコーン樹脂は、このような有機配位子により硬化阻害を受けやすく、このような表面処理を行った粒子を混合・硬化することができなかった。これは、付加反応型シリコーン樹脂に使用されている白金系の触媒が、これらの有機配位子と強い相互作用を持ち、ヒドロシリル化の能力を失い、硬化不良を起こすためである。このような被毒物質としてはN、P、S等を含む有機化合物の他、Sn、Pb、Hg、Bi、As等の重金属のイオン性化合物、アセチレン基等、多重結合を含む有機化合物(フラックス、アミン類、塩ビ、硫黄加硫ゴム)などが挙げられる。これに対し、本発明のポリシロキサン硬化物は、これらの被毒物質による硬化阻害を起こしにくい縮合型の硬化機構によるものである。このため、本発明のポリシロキサン硬化物は有機配位子により表面改質した蛍光体粒子や無機粒子、さらには錯体蛍光体などの蛍光成分との混合使用の自由度が大きく、蛍光体バインダや高屈折率ナノ粒子導入透明材料として優れた特徴を備えるものである。
[4−1−5]蛍光体の含有率
本発明のポリシロキサン硬化物における蛍光体の含有率は、本発明の効果を著しく損なわない限り任意であるが、その適用形態により自由に選定できる。白色LEDや白色照明等の用途に用いる白色発光の半導体発光装置を例に挙げると、蛍光体を均一に分散して半導体発光素子を含むパッケージの凹部全体を埋めてポッティングする場合には、蛍光体総量として、通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上、また、通常35重量%以下、好ましくは30重量%以下、より好ましくは28重量%以下である。
また、同用途で蛍光体を高濃度に分散したものを、半導体発光装置の半導体発光素子の発光面より遠方(例えば、半導体発光素子を含む凹部を透明封止材で埋めたパッケージ開口面や、LED気密封止用ガラス蓋体・レンズ・導光板等の外部光学部材の出光面など)に薄膜状に塗布する場合には、通常5重量%以上、好ましくは7重量%以上、より好ましくは10重量%以上、また、通常90重量%以下、好ましくは80重量%以下、より好ましくは70重量%以下である。
また、一般に、半導体発光素子の発光色と蛍光体の発光色とを混色して白色を得る場合、半導体発光素子の発光色を一部透過させることになるため、蛍光体含有率は低濃度となり、上記範囲の下限近くの領域となる。一方、半導体発光素子の発光を全て蛍光体発光色に変換して白色を得る場合には、高濃度の蛍光体が好ましいため、蛍光体含有率は上記範囲の上限近くの領域となる。蛍光体含有率がこの範囲より多いと塗布性能が悪化したり、光学的な干渉作用により蛍光体の利用効率が低くなり、半導体発光装置の輝度が低くなったりする可能性がある。また、蛍光体含有率がこの範囲より少ないと、蛍光体による波長変換が不十分となり、目的とする発光色を得られなくなる可能性がある。
以上白色発光の半導体発光装置用途について例示したが、具体的な蛍光体含有率は目的色、蛍光体の発光効率、混色形式、蛍光体比重、塗布膜厚、半導体発光装置の形状により多様であり、この限りではない。
本発明の硬化性ポリシロキサン化合物はエポキシ樹脂やシリコーン樹脂など従来の光学部材用材料と比較して低粘度であり、かつ蛍光体や無機粒子とのなじみが良く、高濃度の蛍光体や無機粒子を分散しても十分に塗布性能を維持することが出来る利点を有する。また、必要に応じて重合度の調整やアエロジル等チキソ材を含有させることにより高粘度にすることも可能であり、目的の蛍光体含有量に応じた粘度の調整幅が大きく、塗布対象物の種類や形状さらにはポッティング・スピンコート・印刷などの各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。
なお、ポリシロキサン硬化物における蛍光体の含有率は、蛍光体組成が特定出来ていれば、蛍光体含有試料を粉砕後予備焼成し炭素成分を除いた後にフッ酸処理によりケイ素成分をケイフッ酸として除去し、残渣を希硫酸に溶解して主成分の金属元素を水溶液化し、ICPや炎光分析、蛍光X線分析などの公知の元素分析方法により主成分金属元素を定量し、計算により蛍光体含有率を求めることが出来る。また、蛍光体形状や粒径が均一で比重が既知であれば塗布物断面の画像解析により単位面積あたりの粒子個数を求め蛍光体含有率に換算する簡易法も用いることが出来る。
また、蛍光体部形成液における蛍光体の含有率は、ポリシロキサン硬化物における蛍光体の含有率が前記範囲に収まるように設定すればよい。したがって、蛍光体部形成液が乾燥工程において重量変化しない場合は蛍光体部形成液における蛍光体の含有率はポリシロキサン硬化物における蛍光体の含有率と同様になる。また、蛍光体部形成液が溶媒等を含有している場合など、蛍光体部形成液が乾燥工程において重量変化する場合は、その溶媒等を除いた蛍光体部形成液における蛍光体の含有率がポリシロキサン硬化物における蛍光体の含有率と同様になるようにすればよい。
[4−2]無機粒子(フィラー)の併用
また、本発明のポリシロキサン硬化物を少なくとも備えることを特徴とした光学部材を、半導体発光装置に使用する場合などにおいては、光学的特性や作業性を向上させるため、また、以下の<1>〜<5>の何れかの効果を得ることを目的として、更に無機粒子を含有させても良い。
<1>ポリシロキサン硬化物に光散乱物質として無機粒子を混入し、半導体発光装置の光を散乱させることにより、蛍光体に当たる半導体発光素子の光量を増加させ、波長変換効率を向上させると共に、半導体発光装置から外部に放出される光の指向角を広げる。
<2>ポリシロキサン硬化物に結合剤として無機粒子を配合することにより、クラックの発生を防止する。
<3>硬化性ポリシロキサン化合物に、粘度調整剤として無機粒子を配合することにより、当該形成液の粘度を高くする。
<4>ポリシロキサン硬化物に無機粒子を配合することにより、その収縮を低減する。
<5>ポリシロキサン硬化物に無機粒子を配合することにより、その屈折率を調整して、光取り出し効率を向上させる。
この場合は、硬化性ポリシロキサン化合物に、蛍光体の粉末と同様に、無機粒子を目的に応じて適量混合すればよい。この場合、混合する無機粒子の種類及び量によって得られる効果が異なる。
例えば、無機粒子が粒径約10nmの超微粒子状シリカ(日本アエロジル株式会社製、商品名:AEROSIL#200)の場合、硬化性ポリシロキサン化合物のチクソトロピック性が増大するため、上記<3>の効果が大きい。
また、無機粒子が粒径約数μmの破砕シリカ若しくは真球状シリカの場合、チクソトロピック性の増加はほとんど無く、ポリシロキサン硬化物の骨材としての働きが中心となるので、上記<2>及び<4>の効果が大きい。
また、ポリシロキサン硬化物とは屈折率が異なる粒径約1μmの無機粒子を用いると、ポリシロキサン硬化物と無機粒子との界面における光散乱が大きくなるので、上記<1>の効果が大きい。
また、ポリシロキサン硬化物より屈折率の大きな粒径3〜5nm、具体的には発光波長以下の粒径をもつ無機粒子を用いると、ポリシロキサン硬化物の透明性を保ったまま屈折率を向上させることができるので、上記<5>の効果が大きい。
従って、混合する無機粒子の種類は目的に応じて選択すれば良い。また、その種類は単一でも良く、複数種を組み合わせてもよい。また、分散性を改善するためにシランカップリング剤などの表面処理剤で表面処理されていても良い。
[4−2−1]無機粒子の種類
使用する無機粒子の種類としては、シリカ、チタン酸バリウム、酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化アルミニウム、酸化セリウム、酸化イットリウムなどの無機酸化物粒子やダイヤモンド粒子が例示されるが、目的に応じて他の物質を選択することもでき、これらに限定されるものではない。
無機粒子の形態は粉体状、スラリー状等、目的に応じいかなる形態でもよいが、透明性を保つ必要がある場合は、本発明のポリシロキサン硬化物と屈折率を同等としたり、水系・溶媒系の透明ゾルとして硬化性ポリシロキサン化合物に加えたりすることが好ましい。
[4−2−2]無機粒子の中央粒径
これらの無機粒子(一次粒子)の中央粒径は特に限定されないが、通常、蛍光体粒子の1/10以下程度である。具体的には、目的に応じて以下の中央粒径のものが用いられる。例えば、無機粒子を光散乱材として用いるのであれば、その中央粒径は0.1〜10μmが好適である。また、例えば、無機粒子を骨材として用いるのであれば、その中央粒径は1nm〜10μmが好適である。また、例えば、無機粒子を増粘剤(チキソ剤)として用いるのであれば、その中央粒子は10〜100nmが好適である。また、例えば、無機粒子を屈折率調整剤として用いるのであれば、その中央粒径は1〜10nmが好適である。
[4−2−3]無機粒子の混合方法
本発明において、無機粒子を混合する方法は特に制限されないが、通常は、蛍光体と同様に遊星攪拌ミキサー等を用いて脱泡しつつ混合することが推奨される。例えばアエロジルのような凝集しやすい小粒子を混合する場合には、粒子混合後必要に応じビーズミルや三本ロールなどを用いて凝集粒子の解砕を行ってから蛍光体等の混合容易な大粒子成分を混合しても良い。
[4−2−4]無機粒子の含有率
本発明のポリシロキサン硬化物における無機粒子の含有率は、本発明の効果を著しく損なわない限り任意であるが、その適用形態により自由に選定できる。例えば、無機粒子を光散乱剤として用いる場合は、その含有率は0.01〜10重量%が好適である。また、例えば、無機粒子を骨材として用いる場合は、その含有率は1〜50重量%が好適である。また、例えば、無機粒子を増粘剤(チキソ剤)として用いる場合は、その含有率は0.1〜20重量%が好適である。また、例えば、無機粒子を屈折率調整剤として用いる場合は、その含有率は10〜80重量%が好適である。無機粒子の量が少なすぎると所望の効果が得られなくなる可能性があり、多すぎると硬化物の密着性、透明性、硬度等の諸特性に悪影響を及ぼす可能性がある。
本発明の硬化性ポリシロキサン化合物はエポキシ樹脂やシリコーン樹脂など従来の光学部材用材料と比較して低粘度であり、かつ蛍光体や無機粒子とのなじみが良く、高濃度の無機粒子を分散しても十分に塗布性能を維持することが出来る利点を有する。また、必要に応じて重合度の調整やアエロジル等チキソ材のを含有させることにより高粘度にすることも可能であり、目的の無機粒子含有量に応じた粘度の調整幅が大きく、塗布対象物の種類や形状さらにはポッティング・スピンコート・印刷などの各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。
なお、ポリシロキサン硬化物における無機粒子の含有率は、前出の蛍光体含有量と同様に測定することが出来る。
また、本発明の硬化性ポリシロキサン化合物における無機粒子の含有率は、ポリシロキサン硬化物における無機粒子の含有率が前記範囲に収まるように設定すればよい。したがって、硬化性ポリシロキサン化合物が乾燥工程において重量変化しない場合は硬化性ポリシロキサン化合物における無機粒子の含有率はポリシロキサン硬化物における無機粒子の含有率と同様になる。また、硬化性ポリシロキサン化合物が溶媒等を含有している場合など、硬化性ポリシロキサン化合物が乾燥工程において重量変化する場合は、その溶媒等を除いた硬化性ポリシロキサン化合物における無機粒子の含有率がポリシロキサン硬化物における無機粒子の含有率と同様になるようにすればよい。
[4−3]導電性フィラーの併用
また、本発明のポリシロキサン硬化物を少なくとも備えてなることを特徴とする光学部材を、半導体発光装置に使用する場合などにおいては、導電性を付与し印刷やポッティングなどの技術を用いて半田使用温度より低温で電気回路を形成させることを目的として、導電性フィラーを含有させても良い。
使用する導電性フィラーの種類としては、銀粉、金粉、白金粉、パラジウム粉などの貴金属粉、銅粉、ニッケル粉、アルミ粉、真鍮粉、ステンレス粉などの卑貴金属粉、銀などの貴金属でめっき、合金化した卑貴金属粉、貴金属や卑金属で被覆された有機樹脂粉やシリカ粉、その他カーボンブラック、グラファイト粉などのカーボン系フィラーなどが例示されるが、目的に応じて他の物質を選択することもでき、これらに限定されるものではない。また、導電性フィラーは、1種を用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
導電性フィラーの供給形態は粉体状、スラリー状等、目的に応じいかなる形態でもよいが、透明性を保つ必要がある場合や、微細な配線を印刷形成する必要が有る場合には、凝集の無い水系・溶媒系の透明ゾル或いは再分散容易な表面修飾付きナノ粒子粉末として硬化性ポリシロキサン化合物に加えることが好ましい。
これらの金属粉の形状としては、フレーク状(リン片状)、球状、粟状、樹枝状(デンドライト状)、球状の一次粒子が3次元状に凝集した形状などがある。この内、導電性、コスト、信頼性の面より銀粉を主体とすることが好ましく、導電性の面より、銀粉に少量のカーボンブラック及び/またはグラファイト粉を併用することがより好ましい。また、導電性、信頼性の面からフレーク状、球状の銀粉を使用することが好ましく、フレーク状と球状の銀粉を併用することが特に好ましい。また、必要により、シリカ、タルク、マイカ、硫酸バリウム、酸化インジウムなどの無機フィラーなどを少量配合しても良い。
銀粉とカーボンブラック及び/またはグラファイト微粉末の好ましい配合比(質量比)は、銀粉とカーボンブラック及び/またはグラファイト微粉末の合計量を100質量比とした時、銀粉としての上限は、好ましくは99.5質量比以下、より好ましくは99質量比以下である。銀粉としての下限は、85質量比以上、より好ましくは90質量比以上である。
導電性フィラーの中央粒径は特に限定されないが、通常0.1μm以上、好ましくは0.5μm以上、更に好ましくは1μm以上であり、通常50μm以下、好ましくは20μm以下、更に好ましくは10μm以下である。また、特に透明性や微細加工性が要求される場合には通常3nm以上、好ましくは10nm以上であり、通常150nm以下、好ましくは100nm以下である。
また、導電性フィラーの含有率は該導電性フィラーとバインダー樹脂の合計量を100重量%としたとき、通常50重量%以上、好ましくは75重量%以上、より好ましくは80質量比以上である。また、接着性、インキの粘性の観点から、通常95重量%以下、好ましくは93重量%以下、より好ましくは90重量%以下である。導電性フィラーの量が少なすぎると所望の効果が得られなくなる可能性があり、多すぎると硬化物の密着性、透明性、硬度等の諸特性に悪影響を及ぼす可能性がある。
本発明の硬化性ポリシロキサン化合物はエポキシ樹脂やシリコーン樹脂など従来の光学部材用材料と比較して低粘度かつ蛍光体や無機粒子とのなじみが良く、高濃度の無機粒子を分散しても十分に塗布性能を維持することが出来る特徴を有する。また必要に応じて重合度の調整やアエロジル等チキソ材を含有させることにより高粘度にすることも可能であり、目的の無機粒子含有量に応じた粘度の調整幅が大きく、塗布対象物の種類や形状さらにはポッティング・スピンコート・印刷などの各種塗布方法に柔軟に対応できる塗布液を提供することが出来る。
なお、硬化性ポリシロキサン化合物における無機粒子の含有率は、前出の蛍光体含有量と同様に測定することが出来る。
[4−4]他の部材との組み合わせ
本発明の硬化性ポリシロキサン化合物は単独で封止材料として用いても良いが、有機蛍光体、酸素や水分により劣化しやすい蛍光体、半導体発光装置を封止する場合等、より厳密に酸素や水分からの遮断を要求される用途においては、本発明の部材により蛍光体の保持や半導体発光素子の封止・光取り出しを実施し、さらにその外側にガラス板やエポキシ樹脂などの高気密素材による気密封止を実施したり、真空封止を実施しても良い。この場合の半導体発光装置の形状は特に制限無く、本発明の硬化性ポリシロキサン化合物による封止体、塗布物あるいは塗布面が実質的に金属・ガラス・高気密性樹脂などの高気密素材により外界から保護遮断され酸素や水分の流通無い状態になっていれば良い。
また、本発明の硬化性ポリシロキサン化合物は、上述のように密着性が良好なため、半導体発光装置用接着剤として用いることが出来る。具体的には、例えば、半導体素子とパッケージを接着する場合、半導体素子とサブマウントを接着する場合、パッケージ構成要素同士を接着する場合、半導体発光装置と外部光学部材とを接着する場合などに、本発明のポリシロキサン硬化物を塗布、印刷、ポッティングなどすることにより用いることが出来る。本発明のポリシロキサン硬化物は特に耐光性、耐熱性に優れるため、長時間高温や紫外光にさらされる高出力の半導体発光発光装置用接着剤として用いた場合、長期使用に耐え高い信頼性を有する半導体発光発光装置を提供することが出来る。
なお、本発明のポリシロキサン硬化物は、これのみで十分密着性を担保しうるものであるが、更に密着性を担保することを目的として、ポリシロキサン硬化物と直接接する表面に密着性改善のための表面処理を行っても良い。このような、表面処理としては、例えばプライマーやシランカップリング剤を用いた密着改善層の形成、酸やアルカリなどの薬品を用いた化学的表面処理、プラズマ照射やイオン照射・電子線照射を用いた物理的表面処理、サンドブラストやエッチング・微粒子塗布などによる粗面化処理等が挙げられる。密
着性改善のための表面処理としては、その他に例えば、特開平5−25300号、稲垣訓宏著「表面化学」Vol.18 No.9、pp21−26、黒崎和夫著「表面化学」Vol.19 No.2、pp44−51(1998)等に開示される公知の表面処理方法が挙げられる。
[5]半導体発光装置の実施形態
本発明のポリシロキサン硬化物を少なくとも備えてなる本発明の光学部材の例として、本発明の光学部材を少なくとも備えてなる半導体発光装置(以下、適宜「本発明の半導体発光装置」ということがある。)を例に挙げて、実施形態を用いて説明する。なお、以下の各実施形態では、本発明の半導体発光装置を適宜「発光装置」と略称することがある。さらに、本発明の半導体発光装置に用いる本発明の光学部材は、半導体発光装置用部材と呼ぶこととする。また、どの部位に本発明の光学部材を用いるかについては、全ての実施形態の説明の後にまとめて説明する。但し、これらの実施形態はあくまでも説明の便宜のために用いるものであって、本発明の光学部材を少なくとも備えてなる半導体発光装置の例は、これらの実施形態に限られるものではない。
[5−1]基本概念
本発明に係る半導体発光装置用部材を用いた本発明の半導体発光装置は、例えば、以下のA)、B)の適用例がある。本発明に係る半導体発光装置用部材は、何れの適用例においても、従来の半導体発光装置用の光学部材と比較して、優れた光耐久性及び熱耐久性を示し、クラックや剥離が起きにくく、輝度の低下が少ない。したがって、本発明に係る半導体発光装置用部材によれば、長期にわたって信頼性の高い部材を提供することができる。
A)発光素子の発光色をそのまま利用する半導体発光装置。
B)発光素子の近傍に蛍光体部を配設し、発光素子からの光により蛍光体部中の蛍光体や蛍光体成分を励起させ、蛍光を利用して所望の波長の光を発光する半導体発光装置。
A)の適用例においては、本発明に係る半導体発光装置用部材の高い耐久性、透明性および封止材性能を生かし、単独使用にて高耐久封止材、光取り出し膜、各種機能性成分保持剤として用いることができる。特に、本発明に係る半導体発光装置用部材を上記無機粒子等を保持する機能性成分保持剤として用い、本発明に係る半導体発光装置用部材に透明高屈折成分を保持させた場合には、本発明に係る半導体発光装置用部材を発光素子の出光面と密着させて使用し、かつ、発光素子に近い屈折率にすることで、発光素子の出光面での反射を低減し、より高い光取り出し効率を得ることが可能となる。
また、B)の適用例においても、本発明に係る半導体発光装置用部材は、上記のA)の適用例と同様の優れた性能を発揮することができ、かつ、蛍光体や蛍光体成分を保持することにより高耐久性で光取り出し効率の高い蛍光体部を形成することができる。さらに、本発明に係る半導体発光装置用部材に、蛍光体や蛍光体成分に加えて透明高屈折成分を併せて保持させた場合、本発明に係る半導体発光装置用部材の屈折率を発光素子や蛍光体の屈折率近傍にすることで、界面反射を低減し、より高い光取り出し効率を得ることができる。
以下に、本発明に係る半導体発光装置用部材を適用した各実施形態の基本概念について、図50(a),(b)を参照しながら説明する。なお、図50は各実施形態の基本概念の説明図であり、(a)は上記のA)の適用例に対応し、(b)は上記のB)の適用例に対応している。
各実施形態の発光装置(半導体発光装置)1A,1Bは、図50(a),(b)に示すように、LEDチップからなる発光素子2と、発光素子2の近傍に配設された本発明に係る半導体発光装置用部材3A,3Bとを備えている。
ただし、図50(a)に示すような、上記A)の適用例に対応した実施形態(実施形態A−1,A−2)においては、発光装置1Aは半導体発光装置用部材3Aに蛍光体や蛍光体成分を含まない。この場合、半導体発光装置用部材3Aは、発光素子2の封止、光取り出し機能、機能性成分保持などの各機能を発揮する。なお、以下の説明において、蛍光体や蛍光体成分を含有しない半導体発光装置用部材3Aを、適宜「透明部材」と呼ぶ。
一方、図50(b)に示すような、上記B)の適用例に対応した実施形態(実施形態B−1〜B−41)においては、発光装置1Bは半導体発光装置用部材3Bに蛍光体や蛍光体成分を含む。この場合、半導体発光装置用部材3Bは、図50(a)の半導体発光装置用部材3Aが発揮しうる諸機能に加え、波長変換機能も発揮できる。なお、以下の説明において、蛍光体や蛍光体成分を含有する半導体発光装置用部材3Bを、適宜「蛍光体部」と呼ぶ。また、蛍光体部は、その形状や機能などに応じて、適宜、符号33,34などで示す場合もある。
発光素子2は、例えば、青色光ないし紫外光を放射するLEDチップにより構成されるが、これら以外の発光色のLEDチップであってもよい。
また、透明部材3Aは、発光素子2の高耐久性封止材、光取出し膜、諸機能付加膜などの機能を発揮するものである。透明部材3Aは単独で用いてもよいが、蛍光体や蛍光体成分を除けば本発明の効果を著しく損なわない限り任意の添加剤を含有させることができる。
一方、蛍光体部3Bは、発光素子2の高耐久性封止材、光取出し膜、諸機能付加膜などの機能を発揮しうると共に、発光素子2からの光により励起されて所望の波長の光を発光する波長変換機能を発揮するものである。蛍光体部3Bは、発光素子2からの光により励起されて所望の波長の光を発光する蛍光物質を少なくとも含んでいればよい。このような蛍光物質の例としては、上に例示した各種の蛍光体が挙げられる。蛍光体部3Bの発光色としては、赤色(R),緑色(G),青色(B)の3原色は勿論のこと、蛍光灯のような白色や電球のような黄色も可能である。要するに、蛍光体部3Bは、励起光とは異なる所望の波長の光を放射する波長変換機能を有している。
図50(a)に示す上述の発光装置1Aでは、発光素子2から放射された光4は、透明部材3Aを透過し、発光装置1Aの外部に放射される。したがって、発光装置1Aでは、発光素子2から放射された光4は、発光素子2から放射された際の発光色のままで利用される。
一方、図50(b)に示す発光装置1Bでは、発光素子2から放射された光の一部4aは蛍光体部3Bをそのまま透過し、発光装置1Bの外部へ放射される。また、発光装置1Bでは、発光素子2から放射された光の他の一部4bが蛍光体部3Bに吸収されて蛍光体部3Bが励起され、蛍光体部3Bに含有される蛍光体粒子、蛍光イオン、蛍光染料等の蛍光成分特有の波長の光5が発光装置1Bの外部へ放射される。
したがって、発光装置1Bからは、発光素子2で発光して蛍光体部3Bを透過した光4aと蛍光体部3Bで発光した光5との合成光6が、波長変換された光として放射されることになり、発光素子2の発光色と蛍光体部3Bの発光色とで発光装置1B全体としての発光色が決まることになる。なお、発光素子2で発光して蛍光体部3Bを透過する光4aは必ずしも必要ではない。
[5−2]実施形態
[A.蛍光を利用しない実施形態]
〔実施形態A−1〕
本実施形態の発光装置1Aは、図1に示すように、プリント配線17が施された絶縁基板16上に発光素子2が表面実装されている。この発光素子2は発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれが、導電ワイヤ15,15を介してプリント配線17,17に電気的に接続されている。なお、導電ワイヤ15,15は、発光素子2から放射される光を妨げないように、断面積の小さいものが用いられている。
ここにおいて、発光素子2としては、紫外〜赤外域までどのような波長の光を発するものを用いてもよいが、ここでは、窒化ガリウム系のLEDチップを用いているものとする。また、この発光素子2は、図1における下面側にn形半導体層(図示せず)、上面側にp形半導体層(図示せず)が形成されており、p形半導体層側から光出力を取り出すから図1の上方を前方として説明する。
また、絶縁基板16上には発光素子2を囲む枠状の枠材18が固着されており、枠材18の内側には発光素子2を封止・保護する封止部19を設けてある。この封止部19は、本発明に係る半導体発光装置用部材である透明部材3Aにより形成されたもので、上記のポリシロキサン硬化物の原料でポッティングを行なうことにより形成できる。
しかして、本実施形態の発光装置1Aは、発光素子2と、透明部材3Aとを備えているため、発光装置1Aの光耐久性、熱耐久性を向上させることができる。また、封止部3Aにクラックや剥離が起きにくいため、封止部3Aの透明性を高めることが可能となる。
さらに、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができる。すなわち、封止部3Aを、曇りや濁りがなく透明性が高いものとすることができるため、光色の均一性に優れ、発光装置1A間の光色ばらつきもほとんどなく、発光素子2の光の外部への取り出し効率を従来に比べて高めることができる。また、発光物質の耐候性を高めることができ、従来に比べて発光装置1Aの長寿命化を図ることが可能となる。
〔実施形態A−2〕
本実施形態の発光装置1Aは、図2に示すように、発光素子2の前面を透明部材3Aが覆っており、また、その透明部材上に、透明部材3Aとは異なる材料で封止部19が形成された他は、上記の実施形態A−1と同様に構成されている。また、発光素子2表面の透明部材3Aは、光取出し膜、封止膜として機能する透明の薄膜であり、例えば、発光素子2のチップ形成時に上記のポリシロキサン硬化物の原料をスピンコーティング等で塗布することにより形成できる。なお、実施形態A−1と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Aにおいても、実施形態A−1と同様に、発光素子2と、透明部材3Aとを備えているため、発光装置1Aの光耐久性、熱耐久性を向上させることができ、封止部3Aにクラックや剥離が起きにくいため、封止部3Aの透明性を高めることが可能となる。
さらに、実施形態A−1と同様の利点を得ることも可能である。
[B.蛍光を利用した実施形態]
〔実施形態B−1〕
本実施形態の発光装置1Bは、図3(a)に示すように、LEDチップからなる発光素
子2と、透光性の透明な材料を砲弾形に成形したモールド部11とを備えている。モールド部11は発光素子2を覆っており、発光素子2は導電性材料により形成したリード端子12,13に電気的に接続されている。リード端子12,13はリードフレームにより形成されている。
発光素子2は、窒化ガリウム系のLEDチップであり、図3(a)における下面側にn形半導体層(図示せず)、上面側にp形半導体層(図示せず)が形成されており、p形半導体層側から光出力を取り出すから図3の上方を前方として説明する。発光素子2の後面はリード端子13の前端部に取り付けられたミラー(カップ部)14に対してダイボンドによって接合されている。また、発光素子2は、上述のp形半導体層及びn形半導体層それぞれに導電ワイヤ(例えば、金ワイヤ)15,15がボンディングにより接続され、この導電ワイヤ15,15を介して発光素子2とリード端子12,13とが電気的に接続されている。なお、導電ワイヤ15,15は発光素子2から放射される光を妨げないように断面積の小さいものが用いられている。
ミラー14は発光素子2の側面及び後面から放射された光を前方に反射する機能を有し、LEDチップから放射された光及びミラー14により前方に反射された光は、レンズとして機能するモールド部11の前端部を通してモールド部11から前方に放射される。モールド部11は、ミラー14、導電ワイヤ15,15、リード端子12,13の一部とともに、発光素子2を覆っており、発光素子2が大気中の水分などと反応することによる特性の劣化が防止されている。各リード端子12,13の後端部はそれぞれモールド部11の後面から外部に突出している。
ところで、発光素子2は、図3(b)に示すように、窒化ガリウム系半導体からなる発光層部21が、蛍光体部3B上に半導体プロセスを利用して形成されており、蛍光体部3Bの後面には反射層23が形成されている。発光層部21からの発光による光は全方位に放射されるが、蛍光体部3Bに吸収された一部の光は蛍光体部3Bを励起し、上記蛍光成分特有の波長の光を放射する。この蛍光体部3Bで発光した光は反射層3によって反射されて前方へ放射される。したがって、発光装置1Bは、発光層部21から放射された光と蛍光体部3Bから放射された光との合成光が得られることになる。
しかして、本実施形態の発光装置1Bは、発光素子2と、発光素子2からの光により励起されて所望の波長の光を発光する蛍光体部3Bとを備えてなる。ここで、蛍光体部3Bとして透光性に優れたものを用いれば、発光素子2から放射された光の一部がそのまま外部へ放射されるとともに、発光素子2から放射された光の他の一部によって発光中心となる蛍光成分が励起されて当該蛍光成分特有の発光による光が外部へ放射されるから、発光素子2から放射される光と蛍光体部3Bの蛍光成分から放射される光との合成光を得ることができ、また、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができる。すなわち、蛍光体部3Bとして、曇りや濁りがなく透明性が高いものを用いれば、光色の均一性に優れ、発光装置1B間の光色ばらつきもほとんどなく、発光素子2の光の外部への取り出し効率を従来に比べて高めることができる。また、発光物質の耐候性を高めることができ、従来に比べて発光装置1Bの長寿命化を図ることが可能となる。
また、本実施形態の発光装置1Bでは、蛍光体部3Bが発光素子2を形成する基板に兼用されているので、発光素子2からの光の一部により蛍光体部中の発光中心となる蛍光体を効率良く励起することができ、当該蛍光成分特有の発光による光の輝度を高めることができる。
〔実施形態B−2〕
本実施形態の発光装置1Bは、図4に示すように、プリント配線17が施された絶縁基板16上に発光素子2が表面実装されている。ここにおいて、発光素子2は、実施形態B−1と同様の構成であって、窒化ガリウム系半導体からなる発光層部21が蛍光体部3B上に形成され、蛍光体部3Bの後面に反射層23が形成されている。また、発光素子2は発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれが、導電ワイヤ15,15を介してプリント配線17,17に電気的に接続されている。
また、絶縁基板16上には発光素子2を囲む枠状の枠材18が固着されており、枠材18の内側には発光素子2を封止・保護する封止部19を設けてある。
しかして、本実施形態の発光装置1Bにおいても、実施形態B−1と同様に、発光素子2と、発光素子2からの光により励起されて所望の波長の光を発光する蛍光体部3Bとを備えてなるので、発光素子2からの光と蛍光体からの光との合成光を得ることができる。また、実施形態B−1と同様、従来に比べて光色むらや光色ばらつきを少なくすることができるとともに、外部への光の取り出し効率を高めることができ、長寿命化を図ることも可能となる。
〔実施形態B−3〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、実施形態B−2で説明した枠材18(図4参照)を用いておらず、図5に示すように、封止部19の形状が異なる。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態における封止部19は、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。
しかして、本実施形態の発光装置1Bでは、実施形態B−2に比べて部品点数を少なくすることができ、小型化及び軽量化を図ることができる。しかも、封止部19の一部にレンズとして機能するレンズ機能部19bを設けたことにより、指向性の優れた配光を得ることができる。
〔実施形態B−4〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図6に示すように、絶縁基板16の一面(図6における上面)に発光素子2を収納する凹所16aが設けられており、凹所16aの底部に発光素子2が実装され、凹所16a内に封止部19を設けている点に特徴がある。ここにおいて、絶縁基板16に形成されたプリント配線17,17は凹所16aの底部まで延長され、導電ワイヤ15,15を介して発光素子2の窒化ガリウム系半導体からなる発光層部21に電気的に接続されている。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは封止部19が絶縁基板16の上面に形成された凹所16aを充填することで形成されているので、実施形態B−2で説明した枠材18(図5参照)や実施形態B−3で説明した成形用金型を用いることなく封止部19を形成することができ、実施形態B−2,B−3に比べて発光素子2の封止工程を簡便に行えるという利点がある。
〔実施形態B−5〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図7に示すように、発光素子2が絶縁基板16に所謂フリップチップ実装されている点に特徴がある。すなわち、発光素子2は、発光層部21のp形半導体層(図示せず)及びn形半導体層(図示せず)それぞれの表面側に導電性材料からなるバンプ24,24が設けられており、発光層部21がフェースダウンでバンプ24,24を介して絶縁基板16のプリント配線17,17と電気的に接続されている。したがって、本実施形態における発光素子2は、絶縁基板16に最も近い側に発光層部21が配設され、絶縁基板16から最も遠い側に反射層23が配設され、発光層部21と反射層23との間に蛍光体部3Bが介在することになる。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の発光装置1Bでは、反射層23で図7における下方(後方)へ反射された光は、凹所16aの内周面で反射されて同図における上方(前方)へ放射される。ここにおいて、凹所16aの内周面であってプリント配線17,17以外の部位には、反射率の高い材料からなる反射層を別途に設けることが望ましい。
しかして、本実施形態の発光装置1Bでは絶縁基板16に設けられたプリント配線17,17と発光素子2とを接続するために実施形態B−4のような導電ワイヤ15,15を必要としないので、実施形態B−4に比べて機械的強度及び信頼性を向上させることが可能となる。
〔実施形態B−6〕
本実施形態の発光装置1Bの基本構成は実施形態B−5と略同じであって、図8に示すように、実施形態B−5で説明した反射層23を設けていない点が相違する。要するに、本実施形態の発光装置1Bでは、発光層部21で発光した光及び蛍光体部3Bで発光した光が封止部19を透過してそのまま前方へ放射されることになる。なお、実施形態B−5と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−5に比べて部品点数を削減できて製造が容易になる。
〔実施形態B−7〕
本実施形態の発光装置1Bの基本構成は実施形態B−1と略同じであって、図9に示すように、発光素子2を覆うモールド部11を備えており、モールド部11を蛍光体部と一体に形成している点に特徴がある。なお、実施形態B−1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の発光装置1Bの製造にあたっては、モールド部11を設けていない仕掛品を蛍光体部形成液を溜めた成形金型の中に浸漬し、蛍光体部形成液(重縮合体)を硬化させる方法などによってモールド部11を形成している。
しかして、本実施形態では、モールド部11が蛍光体部と一体に形成されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、モールド部11の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
〔実施形態B−8〕
本実施形態の発光装置1Bの基本構成は実施形態B−1と略同じであって、図10に示すように、モールド部11の外面に後面が開口されたカップ状の蛍光体部3Bが装着されている点に特徴がある。すなわち、本実施形態では、実施形態B−1のように発光素子2に蛍光体部3Bを設ける代わりに、モールド部11の外周に沿う形状の蛍光体部3Bを設けているのである。なお、実施形態B−1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態における蛍光体部3Bは、実施形態B−7で説明した蛍光体部形成液(重縮合体)を硬化させる方法により薄膜として形成してもよいし、あるいは予め固体の蛍光体部をカップ状に成形加工した部材をモールド部11に装着するようにしてもよい。
しかして、本実施形態の発光装置1Bでは、実施形態B−7の発光装置1Bのようにモールド部11全体を蛍光体部と一体に形成する場合に比べて、蛍光体部の材料使用量の削減を図ることができ、低コスト化を図れる。
〔実施形態B−9〕
本実施形態の発光装置1Bの基本構成は、実施形態B−2と略同じであって、図11に示すように、絶縁基板16の一面(図11の上面)側において発光素子2を囲むように配設された枠状の枠材18を備えており、枠材18の内側の封止部19を実施形態B−2で説明した蛍光体部3Bと同様の蛍光体部により形成している点に特徴がある。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態では、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
〔実施形態B−10〕
本実施形態の発光装置1Bの基本構成は、実施形態B−2と略同じであって、図12に示すように、絶縁基板16の一面(図12の上面)側において発光素子2を囲むように配設された枠状の枠材18を備えており、枠材18の内側の封止部19を実施形態B−2で説明した蛍光体部3Bと同様の蛍光体部により形成している点に特徴がある。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態では、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B−9に比べてより一層効率的に行えるという利点がある。
〔実施形態B−11〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図13に示すように、透光性材料よりなる封止部19の上面に、あらかじめレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は、実施形態B−2で説明した蛍光体部3Bと同様の材質よりなり、発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。
〔実施形態B−12〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図14に示すように、透光性材料よりなる封止部19の上面に、あらかじめレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は、実施形態B−2で説明した蛍光体部3Bと同様と同様の材質よりなり、発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成されているので、蛍光体部の励起、発光を実施形態B−11に比べてより一層効率的に行えるという利点がある。
〔実施形態B−13〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図15に示すように、絶縁基板16の上面側において発光素子2を覆う封止部19を備えており、封止部19が蛍光体部により形成されている点に特徴がある。ここに、封止部19は、実施形態B−3と同様に、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が発光素子2を封止・保護する機能だけでなく、発光素子2からの光を波長変換する波長変換機能、発光の指向性を制御するレンズ機能を有することになる。また、封止部19の耐候性を高めることができ、長寿命化を図ることができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B−12に比べてより一層効率的に行えるという利点がある。
〔実施形態B−14〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図16に示すように、絶縁基板16の一面(図16の上面)側において発光素子2を覆う封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここに、封止部19は、実施形態B−3と同様に、発光素子2を封止する円錐台状の封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が発光素子2を封止・保護する機能だけでなく、発光素子2からの光を波長変換する波長変換機能、発光の指向性を制御するレンズ機能を有することになる。また、封止部19の耐候性を高めることができ、長寿命化を図ることができる。
〔実施形態B−15〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図17に示すように、絶縁基板16の上面側において発光素子2を覆うドーム状の蛍光体部34を配設し、蛍光体部34の外面側に透光性樹脂からなる封止部19が形成されている点に特徴がある。ここに、封止部19は、実施形態B−3と同様に、発光素子2を封止する封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−13,B−14に比べて蛍光体部34の材料使用量を低減することができる。また、本実施形態では、発光素子2を覆うドーム状の蛍光体部34が配設されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、外部からの水分などによる発光素子2の劣化をより確実に防止することができ、長寿命化を図ることができる。
〔実施形態B−16〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図18に示すように、絶縁基板16の上面側において発光素子2を覆うドーム状の蛍光体部34を配設し、蛍光体部34の外面側に封止部19が形成されている点に特徴がある。ここに、封止部19は、実施形態B−3と同様に、発光素子2を封止する封止機能部19aと封止部19の前端部においてレンズとして機能するレンズ状のレンズ機能部19bとで構成されている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−13,B−14に比べて蛍光体部34の材料使用量を低減することができる。また、本実施形態では、発光素子2を覆うドーム状の蛍光体部34が配設されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、外部からの水分などによる発光素子2の劣化をより確実に防止することができ、長寿命化を図ることができる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部により形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B−15に比べてより一層効率的に行えるという利点がある。
〔実施形態B−17〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図19に示すように、絶縁基板16の一面(図19における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部により形成されている点に特徴がある。ここにおいて、蛍光体部は実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。また、本実施形態では、発光素子2の発光層部21の後面に蛍光体部3Bが形成され、発光素子2を覆う封止部19が蛍光体部3Bにより形成されているので、発光素子2の発光層部21の全方位に蛍光体部が存在することになり、蛍光体部の励起、発光を実施形態B−15に比べてより一層効率的に行えるという利点がある。
〔実施形態B−18〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図20に示すように、絶縁基板16の一面(図20における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、蛍光体部3Bは実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部3Bとして後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
〔実施形態B−19〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図21に示すように、封止部19の上面(光取り出し面)に予めレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。
〔実施形態B−20〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図22に示すように、封止部19の上面(光取り出し面)に予めレンズ状に成形した蛍光体部33を配設している点に特徴がある。ここにおいて、蛍光体部33は実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、蛍光体部33が波長変換機能だけでなく、レンズとしての機能を有することになり、レンズ効果による発光の指向性制御を行うことができる。また、本実施形態では、発光素子2の発光層部21の後面にも蛍光体部3Bが配設されているので、実施形態B−19に比べて蛍光体部の励起、発光がより一層効率的に行われるという利点がある。
〔実施形態B−21〕
本実施形態の発光装置1Bの基本構成は実施形態B−5と略同じであって、図23に示すように、絶縁基板16の一面(図23における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図24に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための凹部19cを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−5と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部により形成されているので、蛍光体部3Bとして後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。また、本実施形態では、発光素子2の発光層部21から前方へ放射された光が反射層23によって一旦、凹所16aの内底面側に向けて反射されるので、凹所16aの内底面及び内周面に反射層を設けておけば、凹所16aの内底面及び内周面でさらに反射されて前方へ放射されることになって光路長を長くとれ、蛍光体部3Bにより効率的に励起、発光を行うことができるという利点がある。
〔実施形態B−22〕
本実施形態の発光装置1Bの基本構成は実施形態B−5と略同じであって、図25に示すように、絶縁基板16の一面(図25における上面)に設けた凹所16aの底部に配設された発光素子2を封止する封止部19を備えており、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図26に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための凹部19cを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−5と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19が蛍光体部3Bにより形成されているので、蛍光体部3Bとして後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性等を高めたり、長期間使用に伴うクラックや剥離を抑制したりすることが可能となる。
〔実施形態B−23〕
本実施形態の発光装置1Bの基本構成は実施形態B−6と略同じであって、図27に示すように、発光素子2の上面に、予めロッド状に加工した蛍光体部3Bを配設している点に特徴がある。ここにおいて、発光素子2及び蛍光体部3Bの周囲には透光性材料からなる封止部19が形成されており、蛍光体部3Bは一端面(図27における下端面)が発光素子2の発光層部21に密着し他端面(図27における上端面)が露出している。なお、実施形態B−6と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、上記一端面が発光素子2の発光層部21に密着する蛍光体部3Bがロッド状に形成されているので、発光層部21で発光した光を蛍光体部3Bの上記一端面を通して蛍光体部3Bへ効率的に取り込むことができ、取り込んだ光により励起された蛍光体部3Bの発光を蛍光体部3Bの上記他端面を通して外部へ効率的に放射させることができる。なお、本実施形態では、蛍光体部3Bを比較的大径のロッド状に形成して1つだけ用いているが、図28に示すように蛍光体部3Bを比較的小径のファイバ状に形成して複数本の蛍光体部3Bを並べて配設するようにしてもよい。また、蛍光体部3Bの断面形状は円形に限らず、例えば四角形状に形成してもよいし、その他の形状に形成してもよいのは勿論である。
〔実施形態B−24〕
本実施形態の発光装置1Bの基本構成は実施形態B−23と略同じであって、図29に示すように、絶縁基板16の凹所16a内に設けた封止部19を備え、封止部19が蛍光体部3Bにより形成されている点に特徴がある。ここにおいて、封止部19は、予め、図30に示すように、外周形状が凹所16aに対応する形状であって発光素子2に対応する部位に発光素子2を収納するための貫通孔19dを有する形状に加工したものを、発光素子2が実装された絶縁基板16の凹所16aに装着しているので、封止工程を簡便化することができる。また、封止部19を形成する蛍光体部3Bは実施形態B−1で説明した蛍光体部3Bと同様に発光素子2からの光によって励起され所望の波長の光を発光するものである。なお、実施形態B−23と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、封止部19も蛍光体部3Bにより形成されているので、長寿命化及び発光の高効率化を図ることができる。なお、本実施形態では、蛍光体部3Bを比較的大径のロッド状に形成して1つだけ用いているが、図31に示すように蛍光体部3Bを比較的小径のファイバ状に形成して複数本の蛍光体部3Bを並べて配設するようにしてもよい。また、蛍光体部3Bの断面形状は円形に限らず、例えば四角形状に形成してもよいし、その他の形状に形成してもよいのは勿論である。
〔実施形態B−25〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図32に示すように絶縁基板16の一面(図32における上面)側に配設された枠材18を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、枠材18の内側の封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散されている点に特徴がある。また、本実施形態では、蛍光体部3Bとして、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。
したがって、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。本実施形態では、蛍光体部3Bから青色光が放射されるとともに、蛍光体粉末から黄色光が放射され、いずれの発光色とも異なる白色光を得ることができる。
なお、既存の蛍光体粉末や蛍光体部の蛍光体粒子ではそれぞれに発光可能な材料が限定されており、いずれか一方だけでは所望の光色が得られないこともあり、このような場合には本実施形態は極めて有効である。つまり、蛍光体部3Bだけで所望の光色特性が得られない場合には、蛍光体部3Bに欠けている適当な光色特性を有する蛍光体粉末を併用して補完することにより、所望の光色特性の発光装置1Bが実現できる。また、本実施形態では、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。ここに、蛍光体部3Bと蛍光体粉末とで発光色を略同色とする場合には、例えば、蛍光体部3Bの蛍光体粒子として赤色光を発光するP25・SrF2・BaF2:Eu3+を用いるとともに、蛍光体粉末として赤色光を発光するY22S:Eu3+を用いれば、赤色発光の高効率化を図れる。この蛍光体部3Bと蛍光体粉末との組み合わせは一例であって他の組み合わせを採用してもよいことは勿論である。
〔実施形態B−26〕
本実施形態の発光装置1Bの基本構成は実施形態B−3と略同じであって、図33に示すように、絶縁基板16の一面(図33の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−3と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−27〕
本実施形態の発光装置1Bの基本構成は実施形態B−4と略同じであって、図34に示すように、絶縁基板16の上面に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−4と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−28〕
本実施形態の発光装置1Bの基本構成は実施形態B−5と略同じであって、図35に示すように、絶縁基板16の一面(図35における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−5と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−29〕
本実施形態の発光装置1Bの基本構成は実施形態B−6と略同じであって、図36に示すように、絶縁基板16の一面(図36における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−6と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−30〕
本実施形態の発光装置1Bの基本構成は実施形態B−1と略同じであって、図37(a),(b)に示すように、砲弾形のモールド部11を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、モールド部11として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、モールド部11が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−1と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末がモールド部11に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bとモールド部11中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−31〕
本実施形態の発光装置1Bの基本構成は実施形態B−8と略同じであって、図38に示すように、砲弾形のモールド部11を備え、発光素子2の発光層部21(図38では図示を略している。)がAlGaN系で近紫外光を発光するものであり、モールド部11として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、モールド部11が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−8と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末がモールド部11に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bとモールド部11中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−32〕
本実施形態の発光装置1Bの基本構成は実施形態B−11と略同じであって、図39に示すように、絶縁基板16の一面(図39の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部33の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−11と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部33から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部33と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部33の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部33の発光色に揃えておけば、蛍光体部33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−33〕
本実施形態の発光装置1Bの基本構成は実施形態B−15と略同じであって、図40に示すように、絶縁基板16の一面(図40の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部34の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−15と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部34から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部34と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部34の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部34の発光色に揃えておけば、蛍光体部34の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−34〕
本実施形態の発光装置1Bの基本構成は実施形態B−19と略同じであって、図41に示すように、絶縁基板16の一面(図41における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部33の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−19と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部33から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部33と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部33の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部33の発光色に揃えておけば、蛍光体部33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−35〕
本実施形態の発光装置1Bの基本構成は実施形態B−12,B−22と略同じであって、図42に示すように、絶縁基板16の一面(図42における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部33の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−12,B−22と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部33と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部33の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部33の発光色に揃えておけば、蛍光体部33の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−36〕
本実施形態の発光装置1Bの基本構成は実施形態B−12と略同じであって、図43に示すように、絶縁基板16の上面側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−12と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−37〕
本実施形態の発光装置1Bの基本構成は実施形態B−16と略同じであって、図44に示すように、絶縁基板16の一面(図44の上面)側において発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部34の蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−16と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部34から放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部34と封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部34の発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部34の発光色に揃えておけば、蛍光体部34の発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−38〕
本実施形態の発光装置1Bの基本構成は実施形態B−20と略同じであって、図45に示すように、絶縁基板16の一面(図45における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−20と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−39〕
本実施形態の発光装置1Bの基本構成は実施形態B−5,B−12と略同じであって、図46に示すように、絶縁基板16の一面(図46における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−5,B−12と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−40〕
本実施形態の発光装置1Bの基本構成は実施形態B−20,B−21と略同じであって、図47に示すように、絶縁基板16の一面(図47における上面)に形成された凹所16aに充填されて発光素子2を封止する封止部19を備え、発光素子2の発光層部21がAlGaN系で近紫外光を発光するものであり、封止部19として用いる透光性材料中に蛍光体粉末(例えば、近紫外光により励起されて黄色光を発光するYAG:Ce3+蛍光体の粉末)が分散され、封止部19が蛍光体部として機能している点に特徴がある。また、本実施形態では、蛍光体部3Bの蛍光体粒子として、フツリン酸塩系ガラス(例えば、近紫外光により励起されて青色光を発光するP25・AlF3・MgF・CaF2・SrF2・BaCl2:Eu2+)を用いている。なお、実施形態B−20,B−21と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の発光装置1Bでは、実施形態B−25と同様、発光素子2からの光により励起されて発光する蛍光体粉末が封止部19に分散されているので、発光素子2から放射された光と蛍光体部3Bから放射された光と蛍光体粉末から放射された光との合成光からなる光出力が得られる。つまり、実施形態B−25と同様に、発光素子2の発光層部21の材料として近紫外光を発光する材料を選んでおけば、発光素子2から放射された光によって蛍光体部3Bと封止部19中の蛍光体粉末との双方が励起されてそれぞれが固有の発光を呈し、その合成光が得られることになる。また、本実施形態においても、蛍光体粉末の発光色を蛍光体部3Bの発光色と異ならせてあるが、蛍光体粉末の発光色を蛍光体部3Bの発光色に揃えておけば、蛍光体部3Bの発光に蛍光体粉末の発光が重畳され、光出力を増加することができ、発光効率を高めることができる。
〔実施形態B−41〕
本実施形態の発光装置1Bの基本構成は実施形態B−2と略同じであって、図48に示すように、絶縁基板16の一面(図48の上面)側において発光素子2を囲むように配設された枠状の枠材18を備えており、枠材18の内側の封止部19を実施形態B−2で説明した蛍光体部3Bと同様の蛍光体部により形成している点に特徴がある。ここに、発光素子2と封止部19の上面側は、ガラスや高気密樹脂よりなる透明蓋体36により外界の酸素や水分から遮断されている。なお、実施形態B−2と同様の構成要素には同一の符号を付して説明を省略する。蓋体36と封止部19は直接接していても空隙を有していても良いが、空隙無い方が光取り出し効率高く輝度高い半導体発光装置を得ることができる。空隙を有する場合、真空封止や不活性ガス封入とすることが好ましい。
しかして、本実施形態では、封止部19が蛍光体部により形成されているので、蛍光体部として後述するように本発明に係る半導体発光装置用部材を用いることにより、封止部19の封止性、透明性、耐光性、耐熱性を高めたり、長時間使用に伴うクラックや剥離を抑制したりすることが可能となる。
また、本実施形態では、水分や酸素など蛍光体・封止樹脂の劣化を促進する外界因子の侵入や、熱・光による封止樹脂分解ガスの揮発が蓋体36により抑制されるため、これらに起因する輝度低下や封止部収縮剥離が低減できるという利点がある。
ところで、上記各実施形態では、蛍光体部3Bを所望の形状に加工したりゾルゲル法で形成したりしているが、図49に示すように、蛍光体部3Bを直径が可視波長よりもやや大きな球状に形成して多数の蛍光体部3Bを透光性材料からなる固体媒質35中に分散させて上記各実施形態における蛍光体部の代わりに用いるようにすれば、可視波長域での蛍光体部の透明性を維持しながらも蛍光体部の材料使用量の低減化を図ることができ、低コスト化を図れる。
また、上記各実施形態の発光装置1Bは1個の発光素子2しか備えていないが、複数個の発光素子2により1単位のモジュールを構成し、モジュールの少なくとも一部に発光物質としての蛍光体部を近接して配設するようにしてもよいことは勿論である。なお、例えば実施形態B−1で説明したような砲弾形のモールド部11を備える発光装置の場合には複数個の発光装置を同一プリント基板に実装して1単位のモジュールを構成するようにしてもよい。また、例えば実施形態B−2で説明したような表面実装型の発光装置については複数個の発光素子2を同一の絶縁基板16上に配設して1単位のモジュールを構成するようにしてもよい。
〔半導体発光装置用部材の適用〕
以上説明した各実施形態A−1,A−2,B−1〜B−41の発光装置(半導体発光装置)1A,1Bにおいて、本発明に係る半導体発光装置部材を適用する箇所は特に制限されない。上記の各実施形態においては、透明部材3Aや蛍光体部3B,33,34などを形成する部材として本発明に係る半導体発光装置部材を適用した例を示したが、これ以外にも、例えば上述のモールド部11、枠材18、封止部19等を形成する部材として好適に用いることができる。これらの部材として本発明に係る半導体発光装置部材を用いることにより、上述した優れた封止性、透明性、耐光性、耐熱性、成膜性、長期間使用に伴うクラックや剥離の抑制等の各種の効果を得ることが可能となる。
また、本発明に係る半導体発光装置部材を適用する場合には、本発明を適用する箇所に応じて、適宜変形を加えるのが好ましい。例えば、蛍光体部3B,33,34に本発明を適用する場合には、上述した蛍光体粒子又は蛍光体イオンや蛍光染料等の蛍光成分を本発明に係る半導体発光装置用部材に混合して用いればよい。これによって、上に挙げた各種効果に加え、蛍光体の保持性を高めるという効果を得ることができる。
また、本発明に係る半導体発光装置用部材は耐久性に優れているので、蛍光体を含まず単独で使用しても、光耐久性(紫外線耐久性)や熱耐久性に優れた封止材料(無機系接着剤用途)として、発光素子(LEDチップ等)を封止することが可能である。
また、先述した無機粒子を本発明に係る半導体発光装置用部材に混合して用いれば、上に挙げた各種効果に加え、無機粒子の併用の説明において先述した効果を得ることが可能となる。特に、無機粒子を併用することにより、発光素子の屈折率と近い屈折率となるように調整したものは、好適な光取り出し膜として作用する。
〔半導体発光装置の用途等〕
半導体発光装置は、例えば、発光装置に用いることができる。半導体発光装置を発光装置に用いる場合、当該発光装置は、赤色蛍光体、青色蛍光体及び緑色蛍光体の混合物を含む蛍光体含有層を、光源上に配置すればよい。この場合、赤色蛍光体は、青色蛍光体、緑色蛍光体とは必ずしも同一の層中に混合されなくてもよく、例えば、青色蛍光体と緑色蛍光体を含有する層の上に赤色蛍光体を含有する層が積層されていてもよい。
発光装置において、蛍光体含有層は光源の上部に設けることができる。蛍光体含有層は、光源と封止樹脂部との間の接触層として、または、封止樹脂部の外側のコーティング層として、または、外部キャップの内側のコーティング層として提供できる。また、封止樹脂内に蛍光体を含有させた形態をとることもできる。
使用される封止樹脂としては、本発明の硬化性ポリシロキサン化合物を用いることができる。また、その他の樹脂を使用することもできる。そのような樹脂としては、通常、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。また、無機系材料、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液又はこれらの組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料を用いることができる。なお、封止樹脂は、1種を用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
封止樹脂に対する蛍光体の使用量は特に限定されるものではないが、通常、封止樹脂100重量部に対して0.01重量部以上、好ましくは0.1重量部以上、より好ましくは1重量部以上、また、通常100重量部以下、好ましくは80重量部以下、より好ましくは60重量部以下である。
また、封止樹脂に蛍光体や無機粒子以外の成分を含有させることもできる。例えば、色調補正用の色素、酸化防止剤、燐系加工安定剤等の加工・酸化および熱安定化剤、紫外線吸収剤等の耐光性安定化剤およびシランカップリング剤を含有させることができる。なお、これらの成分は、1種で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
光源に制限は無いが、350nm〜500nmの範囲にピーク波長を有する光を発光するものが好ましく、具体例としては、発光ダイオード(LED)またはレーザーダイオード(LD)等を挙げることができる。その中でも、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系LEDやLDはSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlXGaYN発光層、GaN発光層、またはInXGaYN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInXGaYN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InXGaYN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。
なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。
GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlXGaYN層、GaN層、またはInXGaYN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。
発光装置は、白色光を発するものであり、装置の発光効率が20lm/W以上、好ましくは22lm/W以上、より好ましくは25lm/W以上であり、特に好ましくは28lm/W以上であり、平均演色評価指数Raが80以上、好ましくは85以上、より好ましくは88以上である。
発光装置は、単独で、又は複数個を組み合わせることにより、例えば、照明ランプ、液晶パネル用等のバックライト、超薄型照明等の種々の照明装置、画像表示装置として使用することができる。
さらに、本発明の光学部材はLED素子封止用、特に青色LED及び紫外LEDの素子封止用として有用なものである。また、青色発光素子又は紫外発光素子を励起光源とし、蛍光体により波長変換した白色LED及び電球色LEDなどの高出力照明光源用蛍光体保持材として好ましく使用することが出来る。その他にもその優れた耐熱性、耐紫外線性、透明性等の特性から下記のディスプレイ材料等の用途に用いることができる。
ディスプレイ材料としては、例えば、液晶ディスプレイの基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム等の液晶表示装置周辺材料、次世代フラットパネルディスプレイであるカラープラズマディスプレイ(PDP)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材・前面ガラスの保護フィルム、前面ガラス代替材料、接着材等、プラズマアドレス液晶(PALC)ディスプレイの基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム等、有機EL(エレクトロルミネッセンス)ディスプレイの前面ガラスの保護フィルム、前面ガラス代替材料、接着剤等、フィールドエミッションディスプレイ(FED)の各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤等が挙げられる。
本発明の光学部材は密着性に優れ、困難な重ね塗りによる積層が可能である。この特性を生かし、例えばメチル基主体の本発明の光学部材を低屈折率層とし、フェニル基などの高屈折有機基やジルコニアナノ粒子などを導入した高屈折率層と積層することにより、屈折率差のある層構造を形成し、高耐久かつ密着性及び可撓性に優れた導光層を容易に形成することができる。
[6]導光板
本発明のポリシロキサン硬化物を少なくとも備えてなる本発明の光学部材の例として、本発明の光学部材を少なくとも備えてなる導光板(以下、適宜「本発明の導光板」ということがある。)について説明する。
本発明の硬化性ポリシロキサン化合物、又はポリシロキサン硬化物は、光学部材として、光通信システム、特に光送受信モジュールに使用することができる。光信号を伝送するための光導波路においては、高生産性、低コストのみならず、光線透過性(透明性)、耐光性、耐熱性、耐水熱性、耐UV性などの種々の特性が要求される。上記特性を有する点で、特に光学機器において、例えばディスプレイなどの表示装置の表示部や、ファクシミリ、電話、携帯電話、その他各種家電のボタン部分などを表示する際に、光源から発する光を所望の部位で発光させる導光板として利用することが好ましい。本発明の硬化性ポリシロキサン化合物、及びポリシロキサン硬化物は、特に高屈折率を達成できるため、光学部材として、導光板、及び光導波路のいわゆるコア層(コア部)に好適である。
[7]航空宇宙産業用部材
本発明のポリシロキサン硬化物を少なくとも備えてなる本発明の光学部材の例として、本発明の光学部材を少なくとも備えてなる航空宇宙産業用部材(以下、適宜「本発明の航空宇宙産業用部材」ということがある。)について説明する。
本発明の硬化性ポリシロキサン化合物、又はポリシロキサン硬化物は、光学部材として用いたときに、光線透過性(透明性)、耐光性、耐熱性、耐水熱性、耐UV性などの種々の特性が高く、これらの特性が要求される航空宇宙産業用材料に使用することができる。航空宇宙産業用材料としては、例えば、カーボン系ナノ材料とコンポジット化することにより静電気除電材料・導電性接着剤・ガスケット用材料・閃光防御材料・電磁遮蔽材料・タンク用材料・ロケット外材などとして使用することが出来る。
以下、実施例を挙げて本発明をより具体的に説明するが、それらは本発明の説明を目的とするものであって、本発明をこれらの態様に限定することを意図したものではない。
[実施例1]
20mLのスクリュー管に、Momentive Performance Materials製両末端シラノールジメチルシロキサンジフェニルシロキサン共重合体シリコーンオイルYF−3804を3g、東レ・ダウコーニング製メチル/フェニル/メトキシ系シリコーンオリゴマーDC−3037Intermediateを0.3g、触媒としてSTREM製2−エチルヘキサン酸錫(II)を0.003g仕込み、室温大気下にて30分撹拌し、反応液(硬化性ポリシロキサン化合物)を得た。反応液約2gを直径5cmのテフロンシャーレに入れて小さな孔を開けたアルミホイルで覆って、防爆炉中150℃にて3時間保持し、厚さ約1mmの無色透明エラストマー状膜(ポリシロキサン硬化物)を得た。
なお、YF−3804は、以下の構造をした化合物である。
Figure 2009179677
(上記式中、Meはメチル基を、Phはフェニル基を表わす。n及びmは、0以上の整数を示す。)
[実施例2]
東レ・ダウコーニング製メチル/フェニル/メトキシ系シリコーンオリゴマーDC−3037Intermediateの量を0.9gとし、2−エチルヘキサン酸錫(II)の量を0.004gとした以外は、実施例1の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例3]
DC−3037Intermediateのかわりに信越化学工業製KR−401Nを使用した以外は、実施例1の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例4]
DC−3037Intermediateのかわりに信越化学工業製KR−401Nを0.9g使用し、2−エチルヘキサン酸錫(II)の量を0.004gとした以外は、実施例1の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例5]
DC−3037Intermediateのかわりに信越化学工業製X−40−9227を0.9g使用し、2−エチルヘキサン酸錫(II)の量を0.004gとした以外は、実施例1の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例6]
DC−3037Intermediateのかわりに信越化学工業製X−40−9247を0.9g使用し、2−エチルヘキサン酸錫(II)の量を0.004gとした以外は、実施例1の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例7]
DC−3037IntermediateのかわりにMomentive Performance Materials製TSR−165を0.9g使用し、2−エチルヘキサン酸錫(II)の量を0.004gとした以外は、実施例1の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例8]
DC−3037Intermediateのかわりに東レ・ダウコーニング製DC−3074を0.9g使用し、2−エチルヘキサン酸錫(II)の量を0.004gとした以外は、実施例1の方法に従って厚さ約1mmの無色透明エラストマー状膜が得た。
[実施例9]
DC−3037Intermediateのかわりに信越化学工業製KR−9218を0.75g使用し、2−エチルヘキサン酸錫(II)を0.002g使用した以外は、実施例1の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例10]
DC−3037Intermediateのかわりに信越化学工業製KR−213を0.75g使用し、2−エチルヘキサン酸錫(II)を0.002g使用した以外は、実施例1の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例11]
25mLのナス型フラスコに、Momentive Performance Materials製両末端シラノールジメチルシロキサンジフェニルシロキサン共重合体シリコーンオイルYF−3804を7g、Phenyltrimethoxysilaneを0.23g、触媒としてSTREM製2−エチルヘキサン酸錫(II)を0.007g仕込み、室温大気下にて30分撹拌し、反応液(硬化性ポリシロキサン化合物)を得た。その後、室温1kPaの減圧下で低沸点成分を取り除いた後、反応液約2gを直径5cmのテフロンシャーレに入れて小さな孔を開けたアルミホイルで覆って、防爆炉中150℃にて3時間保持したところ、厚さ約1mmの無色透明エラストマー状膜(ポリシロキサン硬化物)が得られた。
[実施例12]
20mLのスクリュー管に、Momentive Performance Materials製両末端メトキシポリメチルフェニルシロキサンXC96−C2814を3g、同じくMomentive Performance Materials製メチル/フェニル/ヒドロキシ系シリコーンワニスYR3204を1.5g、触媒としてSTREM製2−エチルヘキサン酸錫(II)を0.005g仕込み、室温大気下にて30分撹拌し、反応液(硬化性ポリシロキサン化合物)を得た。反応液約2gを直径5cmのテフロンシャーレに入れて小さな孔を開けたアルミホイルで覆って、防爆炉中150℃にて3時間保持し、厚さ約1mmの無色透明エラストマー状膜(ポリシロキサン硬化物)を得た。
[実施例13]
YR3204を2.3g使用した以外は、実施例12の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例14]
触媒として2−エチルヘキサン酸錫(II)のかわりに酢酸錫(II)を0.04g使用した以外は、実施例2の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例15]
触媒として2−エチルヘキサン酸錫(II)のかわりにステアリン酸錫(II)を0.04g使用した以外は、実施例2の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例16]
20mLのスクリュー管に、Momentive Performance Materials製メチル/フェニル/ヒドロキシ系シリコーンワニスYR3204を2g、東レ・ダウコーニング製メチル/フェニル/メトキシ系シリコーンオリゴマーDC−3037Intermediateを2g、触媒としてSTREM製2−エチルヘキサン酸錫(II)を0.004g仕込み、室温大気下にて30分撹拌した。反応液約2gを直径5cmのテフロンシャーレに入れて小さな孔を開けたアルミホイルで覆って、防爆炉中150℃にて3時間保持し、厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例17]
DC−3037Intermediateのかわりに信越化学工業製KR−401Nを2g使用した以外は、実施例16の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例18]
DC−3037Intermediateのかわりに信越化学工業製X−40−9227を2g使用した以外は、実施例16の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例19]
DC−3037Intermediateのかわりに信越化学工業製X−40−9247を2g使用した以外は、実施例16の方法に従って厚さ約1mmの無色透明エラストマー状膜が得た。
[実施例20]
DC−3037Intermediateのかわりに信越化学工業製KR−9218を2g使用した以外は、実施例16の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例21]
DC−3037Intermediateのかわりに信越化学工業製KR−213を2g使用した以外は、実施例16の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[実施例22]
DC−3037IntermediateのかわりにMomentive Performance Materials製TSR−165を2g使用した以外は、実施例16の方法に従って厚さ約1mmの無色透明エラストマー状膜を得た。
[比較例1]
DC−3037Intermediateのかわりに信越化学工業製KR−217を使用し、防暴炉での加熱時間を5時間に伸長した以外は実施例2の方法に従ったが、完全な硬化物は得られなかった。
[比較例2]
KR−217の量を1.5gとした以外は比較例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例3]
KR−217の量を2.4gとし、2−エチルヘキサン酸錫(II)を0.005g使用した以外は比較例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例4]
KR−217の量を0.75gとし、2−エチルヘキサン酸錫(II)を0.02g使用した以外は比較例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例5]
KR−217の量を3gとし、2−エチルヘキサン酸錫(II)を0.03g使用した以外は比較例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例6]
触媒として酢酸錫(II)を0.004g使用した以外は比較例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例7]
触媒としてしゅう酸錫(II)を0.004g使用した以外は比較例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例8]
触媒としてステアリン酸錫(II)を0.004g使用した以外は比較例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例9]
YF−3804を5g、DC−3037Intermediateを0.1g、触媒としてジブチルジラウリル酸錫(IV)を0.005g使用した以外は実施例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例10]
YF−3804を5g、DC−3037Intermediateを0.25g、触媒としてジブチルジラウリル酸錫(IV)を0.005g使用した以外は実施例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例11]
YF−3804を5g、DC−3037Intermediateを0.5g、触媒としてジブチルジラウリル酸錫(IV)を0.006g使用した以外は実施例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例12]
YF−3804を5g、DC−3037Intermediateを1.5g、触媒としてジブチルジラウリル酸錫(IV)を0.007g使用した以外は実施例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例13]
YF−3804を5g、DC−3037Intermediateを0.1g、触媒としてZr(acac)4を0.005g使用した以外は実施例1の方法に従ったが、完全な硬化物は得られなかった。なお、「acac」はアセチルアセトネートを表わす(以後同様である。)。
[比較例14]
YF−3804を5g、DC−3037Intermediateを0.25g、触媒としてZr(acac)4を0.005g使用した以外は実施例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例15]
YF−3804を5g、DC−3037Intermediateを0.5g、触媒としてZr(acac)4を0.006g使用した以外は実施例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例16]
YF−3804を5g、DC−3037Intermediateを1.5g、触媒としてZr(acac)4を0.007g使用した以外は実施例1の方法に従ったが、完全な硬化物は得られなかった。
[比較例17]
触媒としてジブチル酸化錫(IV)を0.004g使用した以外は実施例2の方法に従ったが、完全な硬化物は得られなかった。
[比較例18]
触媒としてビス(ジブチルラウリル酸錫(IV))オキサイドを0.004g使用した以外は実施例2の方法に従ったが、完全な硬化物は得られなかった。
[比較例19]
触媒としてジオクチルジラウリル酸錫(IV)を0.004g使用した以外は実施例2の方法に従ったが、完全な硬化物は得られなかった。
[比較例20]
触媒として2−エチルヘキサン酸亜鉛(II)を0.004g使用した以外は実施例2の方法に従ったが、完全な硬化物は得られなかった。
[比較例21]
触媒としてZn(acac)2・nH2Oを0.004g使用した以外は実施例2の方法に従ったが、完全な硬化物は得られなかった。
[比較例22]
触媒としてステアリン酸亜鉛(II)を0.004g使用した以外は実施例2の方法に従ったが、完全な硬化物は得られなかった。
[比較例23]
DC−3037Intermediateのかわりに信越化学工業製KR−217を2g使用した以外は実施例16の方法に従ったが、完全な硬化物は得られなかった。
[ポリシロキサン硬化物の屈折率の測定]
上記の実施例1〜22、及び比較例1〜23につき、屈折率は以下の様に測定した。結果を表2〜表4に示す。なお、表中「−」と表現されている欄は、該当するデータがないことを示している。
ポリシロキサン硬化物の屈折率は、例えば膜圧1mm以上に成形した平滑な表面の単独・独立硬化物膜をサンプルとして、Abbe屈折計(ナトリウムD線(589nm)使用)を用いて20℃にて測定することができる。
[ポリシロキサン硬化物の透過率の測定]
上記の実施例1〜22、及び比較例1〜23につき、透過率は以下の様に測定した。結果を表2〜表4に示す。なお、表中「−」と表現されている欄は、該当するデータがないことを示している。
ポリシロキサン硬化物の透過率は、例えば膜圧1mm以上に成形した平滑な表面の単独・独立硬化物膜をサンプルとして、紫外分光光度計(例として島津製作所製 UV−3100)を使用し、波長200nm〜800nmにおいて透過率測定を行うことによって測定することができる。
Figure 2009179677
Figure 2009179677
Figure 2009179677
本発明の硬化性ポリシロキサン化合物、及びポリシロキサン硬化物の用途は特に制限されないが、半導体分野特に半導体発光装置分野において、封止材として好適に用いることができ、例えば照明装置、画像表示装置、薄型テレビなどの液晶バックライト用光源などの広範な分野において好適に使用することが出来る。特に耐UV性に優れる特徴から、従来適切な封止材の無かった近紫外光・紫外光を発する半導体発光装置、並びにそれが適用されうる照明装置、及び画像表示装置等の各分野において、その産業上の利用可能性は極めて高い。
さらに、近紫外・紫外光により励起される蛍光体保持用のバインダとして使用することにより青色励起より広範な蛍光体を選択することが可能となり、高演色性、高輝度の半導体発光装置の提供が可能となる。このような紫外光励起の赤・緑・青蛍光体による白色光源は高演色性で色再現性に優れ、本発明の硬化性ポリシロキサン化合物、およびその硬化物を液晶ディスプレイのバックライト、住宅や店舗用照明、理化学用・医療用・工程検査用などの写真撮像用照明などに用いることにより、長時間連続して見つめていても眼の疲れや体の不調を起こしにくい高品質の照明を提供することができる。
また、本発明の硬化性ポリシロキサン化合物、およびポリシロキサン硬化物は、前述の半導体発光装置の分野のみならず、光線透過性(透明性)、耐光性、耐熱性、耐水熱性、耐UV性などの種々の特性が要求される航空宇宙産業用材料や、その他の材料、例えば、熱伝導性シート、熱伝導性接着材、絶縁性熱伝導材料、アンダーフィル材、シーラント、光学用導波路構造材、導光板、導光シート、反射光制御材料、診断用マイクロフルイド材料、微生物培養媒体、ナノインプリント用材料にも適用性が高いため、航空宇宙・光学・電気電子・バイオ等の各分野において、その産業上の利用可能性は極めて高い。
実施形態A−1を示す概略断面図である。 実施形態A−2を示す概略断面図である。 実施形態B−1を示し、(a)は概略断面図、(b)は(a)の要部拡大図である。 実施形態B−2を示す概略断面図である。 実施形態B−3を示す概略断面図である。 実施形態B−4を示す概略断面図である。 実施形態B−5を示す概略断面図である。 実施形態B−6を示す概略断面図である。 実施形態B−7を示す概略断面図である。 実施形態B−8を示す概略断面図である。 実施形態B−9を示す概略断面図である。 実施形態B−10を示す概略断面図である。 実施形態B−11を示す概略断面図である。 実施形態B−12を示す概略断面図である。 実施形態B−13を示す概略断面図である。 実施形態B−14を示す概略断面図である。 実施形態B−15を示す概略断面図である。 実施形態B−16を示す概略断面図である。 実施形態B−17を示す概略断面図である。 実施形態B−18を示す概略断面図である。 実施形態B−19を示す概略断面図である。 実施形態B−20を示す概略断面図である。 実施形態B−21を示す概略断面図である。 実施形態B−21について示す要部断面図である。 実施形態B−22を示す概略断面図である。 実施形態B−22について示す要部断面図である。 実施形態B−23を示す概略断面図である。 実施形態B−23について示す要部斜視図である。 実施形態B−24を示す概略断面図である。 実施形態B−24について示す要部断面図である。 実施形態B−24について示す要部斜視図である。 実施形態B−25を示す概略断面図である。 実施形態B−26を示す概略断面図である。 実施形態B−27を示す概略断面図である。 実施形態B−28を示す概略断面図である。 実施形態B−29を示す概略断面図である。 実施形態B−30を示し、(a)は概略断面図、(b)は(a)の要部拡大図である。 実施形態B−31を示す概略断面図である。 実施形態B−32を示す概略断面図である。 実施形態B−33を示す概略断面図である。 実施形態B−34を示す概略断面図である。 実施形態B−35を示す概略断面図である。 実施形態B−36を示す概略断面図である。 実施形態B−37を示す概略断面図である。 実施形態B−38を示す概略断面図である。 実施形態B−39を示す概略断面図である。 実施形態B−40を示す概略断面図である。 実施形態B−41を示す概略断面図である。 各実施形態の要部の他の構成例の説明図である。 (a)、(b)はいずれも、各実施形態の基本概念の説明図である。
符号の説明
1,1A,1B 発光装置(半導体発光装置)
2 発光素子
3A 透明部材(半導体発光装置用部材)
3B 蛍光体部(半導体発光装置用部材)
4a,4b 発光素子から放射された光の一部
5 蛍光体部に含有される蛍光体粒子、蛍光イオン、蛍光染料などの蛍光成分特有の波長の光
11 モールド部
12,13 リード端子
14 ミラー(カップ部)
15 導電ワイヤ
16 絶縁基板
16a 凹所
17 プリント配線
18 枠材
19 封止部
19a 封止機能部
19b レンズ機能部
19c 凹部
19d 貫通孔
21 発光層部
23 反射層
24 バンプ
33,34 蛍光体部
35 固体媒質
36 蓋体
101 カップ
102 LEDチップ
103 LED素子

Claims (12)

  1. SiXn1 4-n(前記式中、Xは縮合性官能基を表わし、Y1は1価の有機基を表わし、nはX基の数を表わす1以上4以下の整数を表わす。)で表わされる化合物(1)、及び/又はそのオリゴマー(2)を、一種類以上重縮合させて得られる硬化性ポリシロキサン化合物であって、
    前記硬化性ポリシロキサン化合物の、温度が20℃における波長589nmの光の屈折率が、1.46以上である
    ことを特徴とする、硬化性ポリシロキサン化合物。
  2. 上記化合物(1)、及び上記オリゴマー(2)の少なくとも1つの、温度が20℃における波長589nmの光の屈折率が、1.45以上である
    ことを特徴とする、請求項1又は請求項2に記載の硬化性ポリシロキサン化合物。
  3. SiXn1 4-n(前記式中、Xは縮合性官能基を表わし、Y1は1価の有機基を表わし、nはX基の数を表わす1以上4以下の整数を表わす。)で表わされる化合物(1)、及び/又はそのオリゴマー(2)と、下記式で示される化合物(3)とを重縮合させて得られる硬化性ポリシロキサン化合物であって、
    前記硬化性ポリシロキサン化合物の、温度が20℃における波長589nmの光の屈折率が、1.46以上である
    ことを特徴とする、硬化性ポリシロキサン化合物。
    Figure 2009179677
    上記式中、R1〜R6は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アリル基からなる群より選ばれる基を示す。R7、R8は、それぞれ独立して、縮合性官能基を示す。mは、0以上の整数を示す。
  4. 上記化合物(1)、上記オリゴマー(2)、及び上記化合物(3)の少なくとも1つの、温度が20℃における波長589nmの光の屈折率が、1.45以上である
    ことを特徴とする、請求項3に記載の硬化性ポリシロキサン化合物。
  5. 前記オリゴマー(2)の20℃における波長589nmの光の屈折率を、そのポリスチレン換算の重量平均分子量で除した値が、7×10-3以下である
    ことを特徴とする、請求項1〜4いずれか一項に記載の硬化性ポリシロキサン化合物。
  6. 請求項1〜5のいずれか一項に記載の硬化性ポリシロキサン化合物の製造方法であって、
    触媒として2価のスズ化合物を用いる
    ことを特徴とする、硬化性ポリシロキサン化合物の製造方法。
  7. 請求項1〜5のいずれか一項に記載の硬化性ポリシロキサン化合物を硬化させて得られる
    ことを特徴とした、ポリシロキサン硬化物。
  8. 前記ポリシロキサン硬化物の、温度が20℃における波長589nmの光の屈折率が、1.47以上である
    ことを特徴とする、請求項7に記載のポリシロキサン硬化物。
  9. 請求項7又は請求項8に記載のポリシロキサン硬化物を少なくとも備えてなる
    ことを特徴とした、光学部材。
  10. 請求項9に記載の光学部材を少なくとも備えてなる
    ことを特徴とした、半導体発光装置。
  11. 請求項9に記載の光学部材を少なくとも備えてなる
    ことを特徴とした、導光板。
  12. 請求項9に記載の光学部材を少なくとも備えてなる
    ことを特徴とした、航空宇宙産業用部材。
JP2008018563A 2008-01-30 2008-01-30 硬化性ポリシロキサン化合物、及びその製造方法、並びに、それを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材 Pending JP2009179677A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018563A JP2009179677A (ja) 2008-01-30 2008-01-30 硬化性ポリシロキサン化合物、及びその製造方法、並びに、それを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018563A JP2009179677A (ja) 2008-01-30 2008-01-30 硬化性ポリシロキサン化合物、及びその製造方法、並びに、それを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材

Publications (1)

Publication Number Publication Date
JP2009179677A true JP2009179677A (ja) 2009-08-13

Family

ID=41033900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018563A Pending JP2009179677A (ja) 2008-01-30 2008-01-30 硬化性ポリシロキサン化合物、及びその製造方法、並びに、それを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材

Country Status (1)

Country Link
JP (1) JP2009179677A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004905A (ja) * 2011-06-21 2013-01-07 Mitsubishi Chemicals Corp 半導体発光装置用パッケージ及び半導体発光装置
KR20160133513A (ko) * 2014-04-15 2016-11-22 스미토모 긴조쿠 고잔 가부시키가이샤 피복막, 피복막의 형성 방법 및 발광 다이오드 디바이스
JP2020052425A (ja) * 2014-07-16 2020-04-02 日東電工株式会社 偏光フィルムおよびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145795A (ja) * 2003-11-19 2005-06-09 Central Glass Co Ltd 膜状有機無機ハイブリッドガラス状物質及びその製造方法
JP2006104293A (ja) * 2004-10-04 2006-04-20 Dow Corning Toray Co Ltd ポリオルガノシロキサン及びそれを含む硬化性シリコーン組成物並びにその用途
JP2007116139A (ja) * 2005-09-22 2007-05-10 Mitsubishi Chemicals Corp 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
WO2007097796A2 (en) * 2006-02-21 2007-08-30 Research Frontiers Incorporated Spd light valves incorporating films comprising improved matrix polymers and methods for making such matrix polymers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145795A (ja) * 2003-11-19 2005-06-09 Central Glass Co Ltd 膜状有機無機ハイブリッドガラス状物質及びその製造方法
JP2006104293A (ja) * 2004-10-04 2006-04-20 Dow Corning Toray Co Ltd ポリオルガノシロキサン及びそれを含む硬化性シリコーン組成物並びにその用途
JP2007116139A (ja) * 2005-09-22 2007-05-10 Mitsubishi Chemicals Corp 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
WO2007097796A2 (en) * 2006-02-21 2007-08-30 Research Frontiers Incorporated Spd light valves incorporating films comprising improved matrix polymers and methods for making such matrix polymers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004905A (ja) * 2011-06-21 2013-01-07 Mitsubishi Chemicals Corp 半導体発光装置用パッケージ及び半導体発光装置
KR20160133513A (ko) * 2014-04-15 2016-11-22 스미토모 긴조쿠 고잔 가부시키가이샤 피복막, 피복막의 형성 방법 및 발광 다이오드 디바이스
EP3133188A4 (en) * 2014-04-15 2017-08-30 Sumitomo Metal Mining Co., Ltd. Coating film, method for forming coating film, and light-emitting diode device
KR101894648B1 (ko) * 2014-04-15 2018-09-03 스미토모 긴조쿠 고잔 가부시키가이샤 피복막, 피복막의 형성 방법 및 발광 다이오드 디바이스
JP2020052425A (ja) * 2014-07-16 2020-04-02 日東電工株式会社 偏光フィルムおよびその製造方法
JP7019659B2 (ja) 2014-07-16 2022-02-15 日東電工株式会社 偏光フィルムおよびその製造方法

Similar Documents

Publication Publication Date Title
JP6213585B2 (ja) 半導体デバイス用部材、及び半導体発光デバイス
JP5742916B2 (ja) シリコーン系半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP5761397B2 (ja) 半導体発光デバイス用部材形成液、半導体発光デバイス用部材、航空宇宙産業用部材、半導体発光デバイス、及び蛍光体組成物
JP5552748B2 (ja) 硬化性ポリシロキサン組成物、並びに、それを用いたポリシロキサン硬化物、光学部材、航空宇宙産業用部材、半導体発光装置、照明装置、及び画像表示装置
TWI382077B (zh) 半導體發光裝置用構件及其製造方法,暨使用其之半導體發光裝置
JP2007116139A (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP5446078B2 (ja) 半導体デバイス用部材、並びに半導体デバイス用部材形成液及び半導体デバイス用部材の製造方法、並びに、それを用いた半導体発光デバイス、半導体デバイス用部材形成液、及び蛍光体組成物
WO2008001799A1 (en) Illuminating device
JP4876626B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2009224754A (ja) 半導体発光装置、照明装置、及び画像表示装置
JP4119940B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2009179677A (ja) 硬化性ポリシロキサン化合物、及びその製造方法、並びに、それを用いたポリシロキサン硬化物、光学部材、半導体発光装置、導光板、及び航空宇宙産業用部材
JP2008276175A (ja) 光学部材、光導波路および導光板
JP5694875B2 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016