WO2007108488A1 - フタロシアニン結晶、並びにそれを用いた電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 - Google Patents

フタロシアニン結晶、並びにそれを用いた電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 Download PDF

Info

Publication number
WO2007108488A1
WO2007108488A1 PCT/JP2007/055744 JP2007055744W WO2007108488A1 WO 2007108488 A1 WO2007108488 A1 WO 2007108488A1 JP 2007055744 W JP2007055744 W JP 2007055744W WO 2007108488 A1 WO2007108488 A1 WO 2007108488A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
phthalocyanine
group
compound
photosensitive member
Prior art date
Application number
PCT/JP2007/055744
Other languages
English (en)
French (fr)
Inventor
Mitsuo Wada
Kazutaka Ida
Teruyuki Mitsumori
Hiroaki Takamura
Tadashi Mizushima
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to US12/293,830 priority Critical patent/US9296899B2/en
Priority to EP07739187A priority patent/EP1997857A1/en
Publication of WO2007108488A1 publication Critical patent/WO2007108488A1/ja
Priority to US13/441,633 priority patent/US8846282B2/en
Priority to US14/922,794 priority patent/US9835961B2/en
Priority to US15/670,632 priority patent/US10095135B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/045Special non-pigmentary uses, e.g. catalyst, photosensitisers of phthalocyanine dyes or pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0014Influencing the physical properties by treatment with a liquid, e.g. solvents
    • C09B67/0016Influencing the physical properties by treatment with a liquid, e.g. solvents of phthalocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0025Crystal modifications; Special X-ray patterns
    • C09B67/0026Crystal modifications; Special X-ray patterns of phthalocyanine pigments
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic

Definitions

  • Phthalocyanine crystal and electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus using the same
  • the present invention relates to a phthalocyanine crystal obtained by converting the crystal form of a phthalocyanine crystal precursor, an electrophotographic photoreceptor using the phthalocyanine crystal, an electrophotographic photoreceptor cartridge, and an image forming apparatus.
  • a phthalocyanine crystal obtained by converting the crystal form of a phthalocyanine crystal precursor, an electrophotographic photoreceptor using the phthalocyanine crystal, an electrophotographic photoreceptor cartridge, and an image forming apparatus.
  • it has high sensitivity to LED light and semiconductor laser light, and it can be suitably used as a material for solar cells, electronic paper, electrophotographic photoreceptors, etc., which has less sensitivity fluctuations with respect to changes in humidity in the usage environment.
  • the present invention relates to an excellent phthalocyanine crystal, and an electrophotographic photosensitive member, an electrophotographic photosensitive member cartridge, and an image forming apparatus that have high sensitivity and are less sensitive to changes in humidity in a use environment.
  • photosensitive member As an electrophotographic photosensitive member (hereinafter sometimes abbreviated as “photosensitive member” as appropriate) which is the core of the electrophotographic technology, conventionally, inorganic materials such as selenium, arsenic-selenium alloys, and zinc oxide are used. Photoconductors using photoconductive materials have been used, but recently, organic materials that have the advantages of being pollution-free, easy to form and manufacture, and having a high degree of freedom in material selection. Photoconductors using photoconductive materials have become the mainstream.
  • Phthalocyanine compounds have attracted attention as charge generation materials having sensitivity to light having a long wavelength of 600 to 800 nm, particularly chloroaluminum phthalocyanine, chloroindium phthalocyanine, Oxyvanadium phthalocyanine, hydroxygallium phthalocyanine Researches on metal-containing phthalocyanines such as guanine, black gallium phthalocyanine, magnesium phthalocyanine, and oxytitanium phthalocyanine, or metal-free phthalocyanine have been vigorously conducted.
  • a charge generation material having a high charge generation capability is essential.
  • active research is being conducted on oxytitanium phthalocyanine, which is currently highly sensitive to LD exposure.
  • the oxytitanium phthalocyanine is known to exhibit crystal polymorphism.
  • crystal types include ⁇ -type (see patent document 1), 8-type (see patent document 2), C-type (see patent document 3), D-type (see patent document 4), and saddle type (patent document 5).
  • Many crystal types have been reported, such as) type (see Patent Document 6), ⁇ - ⁇ type (see Patent Document 7), and I type (see Patent Document 8).
  • the phthalocyanine crystal types containing the specific crystal type oxytitanium phthalocyanine are known to have very high sensitivity. This high sensitivity is thought to be manifested by the presence of water molecules in the crystal and functioning as a sensitizer, and the water molecules acting as this sensitizer are placed in the crystal. The inside and outside of the crystal can freely move in and out due to changes in the humidity of the surrounding environment. When water molecules are desorbed and sensitivity is lowered, there is a drawback.
  • the disadvantage of reduced sensitivity due to desorption of water molecules due to this decrease in humidity is that when used as an electrophotographic photosensitive member in a laser printer, a copying machine, etc., the humidity is reduced to normal humidity. It appears as a problem that the obtained image density is different between both images output in a low state. In particular, in full-color laser printers and copiers that have become widespread in recent years, a decrease in image density has become a serious problem because it appears significantly due to changes in the color tone of full-color images.
  • the phthalocyanine crystal type containing a specific crystal type of oxytitanium phthalocyanine is highly sensitive, but has a problem that its characteristics greatly change due to changes in the environment in which it is used.
  • V-type hydroxygallium phthalocyanine has been reported as a charge-generating substance that changes less in electrical properties with respect to changes in humidity than the specific crystal form of oxytitanium phthalocyanine.
  • This V-type hydroxygallium phthalocyanine has the advantage that the sensitivity fluctuation with respect to changes in humidity is very small. The sensitivity is inferior to that of the specific crystal type oxytitanium phthalocyanine, and it has increased per unit time in recent years.
  • the electrical characteristics are insufficient to meet the demand for a high-speed image forming apparatus that can perform full color printing (see Non-Patent Document 3).
  • Non-Patent Document 1 Journal of Electrophotographic Society, No. 29, No. 3, pp. 250-258
  • Non-Patent Document 2 Journal of Electrophotographic Society, No. 32, No. 3, pp. 282-289
  • Non-Patent Document 3 Fuji Xerox Technical Report No.12 1998
  • Patent Document 1 Japanese Patent Application Laid-Open No. 61-217050
  • Patent Document 2 Japanese Patent Laid-Open No. 62-67094
  • Patent Document 3 Japanese Patent Laid-Open No. 63-366
  • Patent Document 4 Japanese Patent Laid-Open No. 2-8265
  • Patent Document 5 Japanese Patent Laid-Open No. 63-20365
  • Patent Document 6 JP-A-3-54265
  • Patent Document 7 JP-A-3-54264
  • Patent Document 8 Japanese Patent Laid-Open No. 3-128973
  • Patent Document 9 Japanese Patent Laid-Open No. 3-9962
  • Patent Document 10 Japanese Patent Laid-Open No. 2003-207912
  • Patent Document 11 Japanese Unexamined Patent Application Publication No. 2003-186217
  • Patent Document 12 Japanese Patent Laid-Open No. 2003-215825
  • phthalocyanine crystal showing the specific crystal type
  • a crystal composed of only one kind of phthalocyanine compound but also a plurality of kinds of phthalocyanine-
  • -Ny compound "will be described later) shows very high sensitivity.
  • This high sensitivity is manifested by the presence of water molecules in the crystal and functioning as a sensitizer, but the water molecules that act as the sensitizer are those of the humidity of the environment in which the crystals are placed. Since the crystal moves freely in and out with the change, moisture is desorbed from the crystal when the humidity is low, and the sensitivity is lowered.
  • the problem of sensitivity reduction due to desorption of water molecules accompanying the decrease in humidity is the problem when using a phthalocyanine crystal having the above specific crystal type as a material for an electrophotographic photosensitive member in a laser printer, a copying machine, or the like.
  • the obtained image density differs between an image output in a normal humidity state and an image output in a dry and low humidity state. Appear.
  • a decrease in image density is a significant problem because a significant decrease in the color tone of a full-color image appears.
  • the phthalocyanine crystal having the specific crystal type is produced by bringing a phthalocyanine as a precursor into contact with a specific compound and converting the crystal type.
  • this crystal form conversion step the ability to build a crystal form by the interaction between the compound molecule used and the phthalocyanines.
  • the interaction with the phthalocyanines differs depending on the compound used.
  • Various crystal types and particle shapes are shown depending on the difference.
  • the characteristics of the electrophotographic photosensitive member such as charge generation capability (sensitivity), chargeability, and dark decay depend on the manufacturing method, and it is very difficult to predict the performance in advance.
  • the phthalocyanine crystal having the specific crystal type described above has high sensitivity, but has a problem that the characteristics greatly change due to changes in the environment in which it is used.
  • laser printers, copiers, etc. that can print a large number of sheets per unit time with high image quality, which has become the mainstream in recent years, have higher sensitivity and less fluctuation in sensitivity to changes in humidity in the usage environment.
  • electrophotographic photoreceptors are widely desired, they are still being developed!
  • an object of the present invention is to provide a lid mouth cyanine crystal that has high sensitivity and has little fluctuation in sensitivity to changes in humidity in the usage environment, and is highly sensitive to changes in humidity in the usage environment.
  • An electrophotographic photosensitive member that can provide an image having a stable image quality against humidity changes in the environment of use by providing an electrophotographic photosensitive member with little fluctuation in sensitivity, and by using this electrophotographic photosensitive member. It is to provide a cartridge and an image forming apparatus.
  • the present inventors presume that the compound used for converting the crystal form of the phthalocyanine crystal precursor is deeply involved in the sensitivity fluctuation to the change in humidity of the obtained electrophotographic photosensitive member, and the above-mentioned problems are solved.
  • phthalocyanine crystals obtained by converting the crystal form of the phthalocyanine crystal precursor in the presence of a specific compound were obtained.
  • the crystal has a small variation in sensitivity to changes in humidity in the usage environment, and a high sensitivity electrophotographic photosensitive member that has a small variation in sensitivity to changes in humidity in the usage environment can be obtained.
  • the inventors have found that this is possible and have completed the present invention.
  • the gist of the present invention resides in a phthalocyanine crystal characterized by being obtained through a step of converting a crystal form by contacting a phthalocyanine crystal precursor with an aromatic aldehyde compound.
  • Still another subject matter of the present invention is an organic compound having no functional group that exhibits acidity in the presence of at least one compound selected from the group consisting of organic acid, organic acid anhydride, and organic acid ester having a hetero atom.
  • a phthalocyanine crystal which is obtained through a step of converting a crystal form by bringing a compound into contact with a phthalocyanine crystal precursor.
  • Still another gist of the present invention is that it is solid under conditions of 1013 hPa and 25 ° C, and is in a liquid state under conditions of 1013 hPa and 25 ° C in the presence of an aromatic compound having an electron-withdrawing substituent.
  • the phthalocyanine crystal is characterized by being obtained through a step of converting a crystal form by bringing an organic compound having no acidic functional group into contact with a phthalocyanine crystal precursor.
  • Another gist of the present invention is that a crystal form is obtained by bringing a phthalocyanine crystal precursor into contact with an aromatic compound having an oxygen atom-containing group and a halogen atom having an atomic weight of 30 or more as a substituent. It exists in the phthalocyanine crystal characterized by being obtained through the process of converting.
  • the group containing an oxygen atom is preferably a group selected from the group consisting of an organic group having a carbonyl group, a nitro group, and an ether group.
  • the step of converting the crystal form is performed in the presence of water.
  • the phthalocyanine crystal is preferably a crystal containing oxytitanium phthalocyanine.
  • each of the above phthalocyanine crystals exhibits a main diffraction peak at a Bragg angle (2 0 ⁇ 0.2 °) 27.2 ° with respect to CuKa characteristic X-rays (wavelength 1.541 A). I like it.
  • Another gist of the present invention is an electrophotographic photoreceptor having a photosensitive layer on a conductive support.
  • the photosensitive layer contains the above-mentioned phthalocyanine crystal.
  • Another gist of the present invention is that a half-exposure amount E1Z2 satisfying the following formula (1) at a temperature of 25 ° C. and a relative humidity of 50% rh in a photoconductor having a photosensitive layer thickness of 35 ⁇ 2.5 m,
  • the half-exposure E1Z2 satisfies the following formula (2) at a temperature of 25 ° C and a relative humidity of 50% rh, or the photosensitive layer thickness is 25
  • the half-exposure E1Z2 satisfies the following formula (3) at a temperature of 25 ° C and a relative humidity of 50% rh, or the photosensitive layer thickness is 20 ⁇ 2.5 ⁇ m.
  • a photoconductor with a half-exposure E1Z2 satisfying the following formula (4) at a temperature of 25 ° C and a relative humidity of 50% rh, or a photoconductor with a film thickness of 15 ⁇ 2.5 ⁇ m the temperature is 25 Half-exposure at ° C and relative humidity 50% rh
  • the exposure dose E1Z2 satisfies the following formula (5), and the light attenuation curve and temperature 25 ° C and relative humidity at 25 ° C and relative humidity 50% rh Light attenuation curve at 10% rh
  • the exposure amount in the range up to 10 times the 0 half decay exposure resides in an electrophotographic photoreceptor absolute value does not exceed 50V of the difference between the surface potential definitive same exposure.
  • El / 2 is the exposure dose of light having a wavelength of 780 nm (j / cm 2 required for attenuating the absolute value I V0 I of the surface potential V0 of the photoreceptor from 550 V to 275 V) )
  • El / 2 is the exposure dose of light having a wavelength of 780 nm (j / cm 2) required to attenuate the absolute value I V0 I of the surface potential V0 of the photoreceptor from 550V to 275V. )
  • El / 2 is the exposure amount of light having a wavelength of 780 nm (j / cm 2) required to attenuate the absolute value I V0 I of the surface potential V0 of the photoreceptor from 550V to 275V. )
  • El / 2 is the absolute value I V0 I of the surface potential V0 of the photoconductor. Represents the exposure dose (j / cm 2 ) of light with a wavelength of 780 nm necessary to attenuate to 275V)
  • El / 2 is the exposure dose of light having a wavelength of 780 nm (j / cm 2) required to attenuate the absolute value I V0 I of the surface potential V0 of the photoconductor from 550V to 275V. )
  • the photosensitive layer contains oxytitanium phthalocyanine.
  • Another gist of the present invention is that any one of the electrophotographic photosensitive members described above, a charging unit for charging the electrophotographic photosensitive member, and exposing the charged electrophotographic photosensitive member to form an electrostatic latent image. At least one of an exposure unit, a developing unit that develops an electrostatic latent image formed on the electrophotographic photosensitive member, and a cleaning unit that cleans the electrophotographic photosensitive member. It exists in the electrophotographic photosensitive member cartridge.
  • Another aspect of the present invention is to form the electrostatic latent image by exposing the electrophotographic photosensitive member described above, a charging unit that charges the electrophotographic photosensitive member, and the charged electrophotographic photosensitive member.
  • An image forming apparatus comprising: an exposure unit; and a developing unit that develops an electrostatic latent image formed on the electrophotographic photosensitive member.
  • the phthalocyanine crystal of the present invention has an advantage that it has a high sensitivity and has a small variation in sensitivity to changes in humidity in the usage environment.
  • the electrophotographic photosensitive member of the present invention has an advantage that it has high sensitivity and is less sensitive to fluctuations in humidity in the usage environment.
  • the electrophotographic photosensitive member cartridge and the image forming apparatus of the present invention have an advantage that an image having a stable image quality can be provided with respect to a change in humidity in a use environment.
  • FIG. 1 is a schematic diagram showing a main configuration of an embodiment of an image forming apparatus of the present invention.
  • FIG. 2 shows an example of a powder X-ray diffraction spectrum of low crystalline phthalocyanines.
  • FIG. 3 shows an example of a powder X-ray diffraction spectrum of a low crystalline phthalocyanine.
  • FIG. 4 shows an example of powder X-ray diffraction spectrum of amorphous phthalocyanines.
  • FIG. 5 shows an example of powder X-ray diffraction spectrum of amorphous phthalocyanines.
  • FIG. 6 is a powder XRD spectrum of ⁇ -type titanium phthalocyanine crystal obtained in Synthesis Example 1.
  • FIG. 7 is a powder XRD spectrum of low crystalline oxytitanium phthalocyanine obtained in Synthesis Example 2.
  • FIG. 8 is a powder XRD spectrum of the phthalocyanine crystal (crystal of oxytitanium phthalocyanine alone) obtained in Example 1.
  • FIG. 9 is a powder XRD spectrum of the phthalocyanine crystal (crystal of oxytitanium phthalocyanine alone) obtained in Example 2.
  • FIG. 10 is a powder XRD spectrum of the phthalocyanine crystal (crystal of oxytitanium phthalocyanine alone) obtained in Example 3.
  • FIG. 11 is a powder XRD spectrum of the phthalocyanine crystal (crystal of oxytitanium phthalocyanine alone) obtained in Example 4.
  • FIG. 12 is a powder XRD spectrum of the phthalocyanine crystal (crystal of oxytitanium phthalocyanine alone) obtained in Comparative Synthesis Example 1.
  • FIG. 13 is a powder XRD spectrum of the low crystalline phthalocyanine composition (composition containing oxytitanium phthalocyanine and metal-free phthalocyanine) obtained in Synthesis Example 3.
  • FIG. 14 is a powder XRD spectrum of the phthalocyanine crystal (mixed crystal of oxytitanium phthalocyanine and metal-free phthalocyanine) obtained in Example 5.
  • FIG. 15 is a powder XRD spectrum of the phthalocyanine crystal (mixed crystal of oxytitanium phthalocyanine and metal-free phthalocyanine) obtained in Example 6.
  • FIG. 16 is a powder XRD spectrum of the phthalocyanine crystal (mixed crystal of oxytitanium phthalocyanine and metal-free phthalocyanine) obtained in Example 7.
  • FIG. 17 is a powder XRD spectrum of the phthalocyanine crystal (mixed crystal of oxytitanium phthalocyanine and metal-free phthalocyanine) obtained in Example 8.
  • FIG. 18 is a powder XRD spectrum of the phthalocyanine crystal (mixed crystal of oxytitanium phthalocyanine and metal-free phthalocyanine) obtained in Comparative Synthesis Example 2.
  • FIG. 19 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 17.
  • FIG. 20 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 18.
  • FIG. 21 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 19.
  • FIG. 22 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 20.
  • FIG. 23 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 21.
  • FIG. 24 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 22.
  • FIG. 25 is a powder XRD spectrum of the phthalocyanine crystal (crystal of oxytitanium phthalocyanine alone) obtained in Comparative Synthesis Example 3.
  • FIG. 26 is a powder XRD spectrum of the phthalocyanine crystal (crystal of oxytitanium phthalocyanine alone) obtained in Comparative Synthesis Example 4.
  • FIG. 27 is a powder XRD spectrum of the phthalocyanine crystal (crystal of oxytitanium phthalocyanine alone) obtained in Comparative Synthesis Example 5.
  • FIG. 28 is a powder XRD spectrum of the phthalocyanine crystal (crystal of oxytitanium phthalocyanine alone) obtained in Comparative Synthesis Example 6.
  • FIG. 29 is a powder XRD spectrum of the phthalocyanine crystal (crystal of oxytitanium phthalocyanine alone) obtained in Comparative Synthesis Example 7.
  • FIG. 30 is a powder XRD spectrum of the phthalocyanine crystal (crystal of oxytitanium phthalocyanine alone) obtained in Comparative Synthesis Example 8.
  • FIG. 31 is a powder XRD spectrum of a phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 23.
  • FIG. 32 is a powder XRD spectrum of the phthalocyanine crystal (mixed crystal of oxytitanium phthalocyanine and metal-free phthalocyanine) obtained in Example 24.
  • FIG. 33 is a powder XRD spectrum of the phthalocyanine crystal (mixed crystal of oxytitanium phthalocyanine and metal-free phthalocyanine) obtained in Example 25.
  • FIG. 34 is a powder XRD spectrum of the phthalocyanine crystal (mixed crystal of oxytitanium phthalocyanine and metal-free phthalocyanine) obtained in Comparative Synthesis Example 9.
  • FIG. 35 is a powder XRD spectrum of the phthalocyanine crystal (mixed crystal of oxytitanium phthalocyanine and metal-free phthalocyanine) obtained in Comparative Synthesis Example 10.
  • FIG. 36 is a powder XRD spectrum of the phthalocyanine crystal (mixed crystal of oxytitanium phthalocyanine and metal-free phthalocyanine) obtained in Comparative Synthesis Example 11.
  • FIG. 37 is a powder XRD spectrum of the phthalocyanine crystal (mixed crystal of oxytitanium phthalocyanine and metal-free phthalocyanine) obtained in Comparative Synthesis Example 12.
  • FIG. 38 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 35.
  • FIG. 39 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 64.
  • FIG. 40 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 66.
  • FIG. 41 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 67.
  • FIG. 42 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 68.
  • FIG. 43 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 69.
  • FIG. 44 is a powder XRD spectrum of the phthalocyanine crystal (mixed crystal of oxytitanium phthalocyanine and metal-free phthalocyanine) obtained in Example 70.
  • FIG. 45 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 128.
  • FIG. 46 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 139.
  • FIG. 47 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 130.
  • FIG. 48 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 131.
  • FIG. 49 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 132.
  • FIG. 50 is a powder XRD spectrum of the phthalocyanine crystal (a single crystal of oxytitanium phthalocyanine) obtained in Example 133.
  • the phthalocyanine crystal of the present invention is a step of converting a crystal form by bringing a phthalocyanine crystal precursor into contact with a specific compound in the presence of the specific compound as necessary (hereinafter referred to as “crystal type conversion step” as appropriate). , And u)).
  • the crystal form conversion step is a specific compound that contacts the phthalocyanine crystal precursor (hereinafter sometimes referred to as “contact compound for crystal form conversion” as appropriate), and at that time, coexistence as necessary.
  • Specific compounds hereinafter sometimes referred to as “coexisting compounds for crystal form conversion” as appropriate.
  • the contact compounds for crystal form conversion and the coexisting compounds for crystal form conversion are collectively referred to as “crystal type Depending on the type of “converting compounds”), it is classified into the following (A) to (D).
  • a crystalline form is converted by bringing a phthalocyanine crystal precursor into contact with an aromatic aldehyde compound. That is, an aromatic aldehyde compound is used as the contact compound for crystal form conversion (hereinafter, this aromatic aldehyde compound may be referred to as “crystal form conversion compound (A)”).
  • (B) Presence of at least one compound selected from the group consisting of an organic acid ester having an organic acid, an organic acid anhydride, and a heteroatom (hereinafter, referred to as “specific organic acid compound” as appropriate).
  • the crystal form is converted by contacting with an organic compound having no acidic functional group (hereinafter referred to as “non-acidic organic compound” as appropriate). That is, a specific organic acid compound is used as a coexisting compound for crystal type conversion, and a non-acidic organic compound is used as a contact compound for crystal type conversion (hereinafter, these specific organic acid compound and non-acidic organic compound are combined). And may be referred to as “Crystal Form Conversion Compounds (B)”).
  • a phthalocyanine crystal precursor is brought into contact with an aromatic compound having an oxygen atom-containing group and a halogen atom having an atomic weight of 30 or more as a substituent (hereinafter referred to as “specific substituent-containing aromatic compound” as appropriate).
  • a specific substituent-containing aromatic compound is used as the contact compound for crystal type conversion (hereinafter, this specific substituent-containing aromatic compound may be referred to as “crystal type conversion compound (D)”.
  • crystal form conversion step two or more kinds of crystal form conversions may be used, in which any one of the above-mentioned crystal form conversion compounds (A) to (D) may be used alone.
  • Use chemical compounds in any combination and ratio may be used, in which any one of the above-mentioned crystal form conversion compounds (A) to (D) may be used alone.
  • phthalocyanine crystal refers to a crystal containing one or more phthalocyanine compounds. That is, not only a crystal composed of only one kind of phthalocyanine compound, but also a mixed crystal having a plurality of kinds of phthalocyanine compounds, one or more phthalocyanine compounds, and others.
  • a “phthalocyanine crystal” t ⁇ is also included, including a mixed crystal composed of the above molecules.
  • the “phthalocyanine compound” refers to a compound having a phthalocyanine skeleton. Specific examples thereof include metal-free phthalocyanine; phthalocyanine having a planar molecular structure such as copper phthalocyanine, zinc phthalocyanine, and lead phthalocyanine; oxytitanium phthalocyanine, oxyvanadium phthalocyanine, chloroaluminum phthalocyanine, Phthalocyanines whose molecules have a shuttlecock structure such as black-opened gallium phthalocyanine, black-opened indium phthalocyanine, hydroxygallium phthalocyanine; dichlorotin phthalocyanine, dichlorosilicon phthalocyanine, dihydroxytin phthalocyanine, dihydroxysilicon phthalocyanine, etc. Phthalocyanine whose molecule has a top structure; The
  • the phthalocyanine crystal of the present invention is also composed of a single kind of phthalocyanine compound force, a phthalocyanine compound having a shuttlecock structure is desirable in view of characteristics as an electrophotographic photosensitive member. .
  • the central metal of the phthalocyanine compound molecule is an oxide, chloride, Alternatively, it is more preferable to take the form of a hydroxide salt. From the viewpoint of easy production of phthalocyanine crystals, it is more preferable that the central metal take the form of an oxide.
  • oxytitanium phthalocyanine or oxyvanadium phthalocyanine is particularly preferable, and oxytitanium phthalocyanine is most preferable.
  • the phthalocyanine crystal of the present invention is a mixed crystal having a plurality of types of molecular forces, as described above, a plurality of types of phthalocyanine compound forces are also formed (that is, phthalocyanine compounds). And a compound other than one or two or more phthalocyanine compounds and a compound other than one or two or more phthalocyanine compounds (ie, phthalocyanine- In view of crystal stability, a plurality of types of phthalocyanine compound forces are also formed (that is, compounds other than phthalocyanine compounds are not included). ! /)) Is preferred.
  • the phthalocyanine crystal of the present invention is a mixed crystal, it is preferable to contain a phthalocyanine compound having a shuttlecock structure as a main component in view of characteristics as an electrophotographic photosensitive member.
  • the phthalocyanine compound contained as the main component (hereinafter referred to as “the main component phthalocyanine compound”) has an oxide, chloride or hydroxide compound as the central metal of the molecule. In view of the ease of production of phthalocyanine crystals, it is more preferable that the central metal take the form of an oxide.
  • oxytita-um phthalocyanine is particularly preferred, with oxytita-um phthalocyanine or oxyvanadium phthalocyanine being particularly preferred.
  • the content of the main component phthalocyanine compound is usually 60% by weight or more with respect to the mixed crystal phthalocyanine crystal, but if the content is small, the crystal form controllability is lowered.
  • 80% by weight or more is used as an electrophotographic photosensitive member in which 80% by weight or more is preferable from the viewpoint of crystal stability at the time of dispersion. From the standpoint of the characteristics at the time, it is more preferably 85% by weight or more.
  • the phthalocyanine crystal of the present invention is a mixed crystal
  • a phthalocyanine compound contained in addition to the above-mentioned main component phthalocyanine compound (hereinafter referred to as "phthalocyanine compound other than main component” as appropriate).
  • phthalocyanine compound other than main component Is preferably a phthalocyanine compound having a shuttlecock structure or a phthalocyanine compound having a planar molecular structure in terms of crystal stability as a mixed crystal.
  • oxyvanadium phthalocyanine, black gallium phthalocyanine, hydroxygallium phthalocyanine and black indium phthalocyanine are preferable among the phthalocyanine compounds having a shuttlecock structure from the viewpoint of electrophotographic photoreceptor characteristics, and have a planar structure.
  • the phthalocyanine compounds metal-free phthalocyanine, zinc phthalocyanine, and lead phthalocyanine are preferable.
  • vacant spaces in mixed crystals in which oxyvanadium phthalocyanine, black gallium phthalocyanine, black gallium indium phthalocyanine, hydroxygallium phthalocyanine, and metal-free phthalocyanine are preferred.
  • Metal-free phthalocyanine having a planar molecular structure is particularly preferred because of its increased power.
  • the phthalocyanine compound other than the main component only one type may be used, or two or more types may be used in any combination and ratio, but it is preferable to use only one type.
  • the content of the phthalocyanine compound other than the main component is usually 40% by weight or less with respect to the mixed crystal phthalocyanine crystal, but if it is too much, the crystal form controllability is lowered. 20% by weight or less is preferable from the viewpoint of stability during dispersion, and 15% by weight or less is preferable from the viewpoint of electrophotographic characteristics. However, if the content of the phthalocyanine compound other than the main component is too small, the effect of the content may not be obtained. Therefore, the content is preferably 0.1% by weight or more. More than wt% is more preferable.
  • the phthalocyanine crystal of the present invention is obtained through a step of converting a crystal form by bringing a phthalocyanine crystal precursor into contact with a compound for crystal form conversion.
  • the “phthalocyanine crystal precursor” refers to a substance from which a phthalocyanine crystal can be obtained by performing a crystal type conversion process (hereinafter sometimes referred to as “crystal type conversion process”). Therefore, the phthalocyanine crystal precursor is a kind of phthalocyanine compound, two or more kinds of lid openings. It can be any mixture of cyanine compounds, one or more phthalocyanine compounds and one or more other compounds!
  • phthalocyanines A compound or a mixture containing a phthalocyanine compound may be collectively referred to as “phthalocyanines.”) O
  • the presence state is not particularly limited, but considering the controllability of the crystal type at the time of crystal conversion, phthalocyanine As the crystal precursor, amorphous phthalocyanines or low crystalline phthalocyanines having the same molecular structure as the obtained phthalocyanine crystal are usually used.
  • the term " low crystalline phthalocyanines &quot refers to a powder X-ray diffraction (X-ray diffraction: hereinafter sometimes abbreviated as "XRD") spectrum, CuKo; Bragg angle (2 0 ⁇ 0.2 °) with respect to X-rays (wavelength 1.541 A)
  • XRD powder X-ray diffraction
  • the low crystalline phthalocyanines used as phthalocyanine crystal precursors in the present invention usually have a peak at half maximum of 0.35 ° or less, further 0.40 ° or less, and particularly 0.45 ° or less.
  • V I prefer to be a thing!
  • CuK a (CuK a + CuK a) line is used as X
  • the measurement conditions of the powder X-ray diffraction spectrum are as follows: scan range (2 ⁇ ) 3.0 to 40.0 °, scan step width 0.05 °, scan speed 3.0 ° Zmin, diverging slit 1 °, The scattering slit is 1 ° and the receiving slit is 0.2 mm.
  • the peak half-value width can be calculated by a profile fitting method.
  • the profile fitting can be performed using, for example, powder X-ray diffraction pattern analysis software JADE5.0 + manufactured by MDI.
  • the fitting function Peason-VII function considering CuKa contribution is used. Fuitte
  • the diffraction angle (2 ⁇ ), peak height, and peak half width (j8) are refined.
  • the effect of CuKa is eliminated, and the diffraction angle (2 0), peak height, peak
  • the peak half-value width (j8) derived from the sample is obtained.
  • low crystalline phthalocyanines and the amorphous phthalocyanines are not clear! /, It is preferred in the present invention to be used as a phthalocyanine crystal precursor.
  • low crystalline phthalocyanines and amorphous phthalocyanines are called without distinction, they are collectively referred to as “low crystalline ⁇ amorphous phthalocyanines”.
  • the crystal form of the phthalocyanine crystal of the present invention mainly includes a Bragg angle (2 0 ⁇ 0.2 °) 27.2 ° with respect to CuKa characteristic X-ray (wavelength 1.541 A).
  • a crystal form with a diffraction peak (specific crystal form) is preferred.
  • low-crystalline phthalocyanines having a peak near 27.2 ° have some degree of regularity similar to the phthalocyanine crystals with the above specific crystal form. It is preferable as a phthalocyanine crystal precursor because it has excellent crystal form controllability to the specific crystal form.
  • the low crystalline phthalocyanine has a peak with a half-value width of usually not more than 0.30 °, preferably not more than 0.35 °, more preferably not more than 0.40 °, and still more preferably not more than 0.45 °. It is not included.
  • the low crystalline phthalocyanine has a half width of usually 0.30 ° or less, preferably 0.50 ° or less, more preferably 0.70 ° or less. More preferably, it does not include a peak in the range of 0.90 ° or less.
  • FIGS. 2 to 5 show examples of powder X-ray diffraction spectra of low crystalline Z amorphous phthalocyanines. These X-ray diffraction spectra are exemplified for the purpose of explaining the present invention in detail, and phthalocyanines that can be used as phthalocyanine crystal precursors in the present invention unless they are contrary to the scope of the present invention. Is not limited to the low crystalline Z amorphous phthalocyanines having these X-ray diffraction spectra.
  • Crystalline phthalocyanines (phthalocyanine crystals) are usually in a state where the phthalocyanine molecules have a certain regularity or long-term order in a solid, and a powder X-ray diffraction spectrum is measured. Has a clear peak.
  • low-crystalline Z amorphous phthalocyanines are in a state in which the regularity of the molecular arrangement and the long-term order of the molecular arrangement are reduced in the solid, and the powder X-ray diffraction spectra illustrated in FIGS. As shown in the figure, even if it shows a halo figure or has a peak, its half-value width is very wide.
  • the low crystalline Z amorphous phthalocyanine which is a phthalocyanine crystal precursor is prepared by chemical treatment methods such as acid paste method and acid slurry method, powder mash, grinding, etc. It is possible to use a known preparation method such as a mechanical treatment method of
  • the acid paste method is more preferred than the chemical treatment method.
  • Crystalline conversion compounds (A) are aromatic aldehyde compounds. Aromatic aldehyde compounds are used as contact compounds for crystal form conversion.
  • the aromatic aldehyde compound used for obtaining the phthalocyanine crystal of the present invention is a compound having an aldehyde group directly bonded to an aromatic ring.
  • the number of aromatic rings is not particularly limited as long as the aromatic aldehyde compound used in the present invention is a compound having one or more aromatic rings that satisfy the Hückel rule. , 4n + 2 (where n is an integer), the value of n is usually 5 or less.
  • the value of n is preferably 3 or less, more preferably 2 or less, and even more preferably 1 in consideration of the operability at the time of crystal conversion and the characteristics of the electrophotographic photosensitive member of the phthalocyanine crystal.
  • aromatic rings include aromatic hydrocarbon rings composed of carbon atoms and hydrogen atoms, and hetero atoms such as nitrogen atoms, sulfur atoms and oxygen atoms in addition to carbon atoms and hydrogen atoms. There are aromatic heterocycles built into the structure.
  • the aromatic hydrocarbon ring structure and aromatic heterocyclic structure may have a condensed ring having no aromaticity in addition to the aromatic ring portion.
  • the number of aldehyde groups per molecule of the aromatic aldehyde compound used in the present invention is not particularly limited, but is usually 1 or more and usually 4 or less, preferably 2 or less.
  • the aromatic aldehyde compound used in the present invention may have other than the aldehyde group! /
  • Substituents which may be used include alkyl groups such as methyl group, ethyl group, isopropyl group and cyclohexyl group. Group; alkoxy group such as methoxy group, ethoxy group, isopropoxy group; aralkyloxy group such as benzyloxy group; aryloxy group such as phenoxy group; thioalkyl group such as thiomethyl group, cetyl group; phenyl group, naphthyl group, etc.
  • the substituent having a carbon chain in the substituent such as an alkyl group, an alkoxy group, a substituted amino group, an ester group, and a ketone group has a linear carbon chain portion.
  • the carbon number of the carbon chain portion in these substituents is usually 20 or less. When the carbon chain portion has too many carbon atoms, the effect of the aromatic aldehyde compound is reduced, so this carbon number is preferably 15 or less, more preferably 10 or less.
  • halogen atoms halogen atoms, halogen atoms, alkyl groups, alkoxy groups, ketone groups, ester groups, carboxy groups, nitro groups and the like are preferable from the viewpoint of crystal form controllability and charge generation ability, A ketone group and an alkoxy group are more preferable.
  • the number of substituents that the aromatic aldehyde compound used in the present invention has in addition to the aldehyde group is not particularly limited, but it is preferable in consideration of the operability during crystal conversion and the characteristics of the electrophotographic photoreceptor of the phthalocyanine crystal. 5 or less, more preferably 3 or less, and even more preferably 1 or less.
  • substituents other than the aldehyde group may be bonded to each other to form a ring structure.
  • aromatic aldehyde compound examples include those having an aromatic hydrocarbon ring and those having an aromatic heterocyclic ring.
  • aromatic aldehyde compound having an aromatic hydrocarbon ring examples include benzaldehydes (for example, fluorbenzaldehyde, black benzaldehyde, methoxybenzaldehyde, nitrobenzaldehyde, phenol benzaldehyde, 1 , 2, 3, 4-tetrahydronaphthaldehyde, etc.), naphthaldehydes (1 naphthaldehyde, 2-naphthaldehyde etc.), anthaldehydes (9-anthaldehyde etc.).
  • benzaldehydes for example, fluorbenzaldehyde, black benzaldehyde, methoxybenzaldehyde, nitrobenzaldehyde, phenol benzaldehyde, 1 , 2, 3, 4-tetrahydronaphthaldehyde, etc.
  • naphthaldehydes (1 naphthaldehyde, 2-naphthaldehyde etc.
  • aromatic aldehyde compounds having an aromatic heterocycle include pyridinecarbaldehydes (2-pyridinecarbaldehyde, etc.), quinolinecarbaldehydes (2-quinolinecarbaldehyde, etc.), thiophenealdehydes (2- Thiophene aldehyde) and pyrrole carbaldehydes (pyrrole 2-carbaldehyde, etc.).
  • aromatic aldehyde compounds aromatic hydrocarbons from the viewpoint of crystal conversion ability
  • aromatic aldehyde compounds in which the aldehyde group is directly bonded to the aromatic ring aromatic hydrocarbons from the viewpoint of crystal conversion ability
  • benzaldehydes are more preferable from the viewpoint of stability due to environmental fluctuations when used in electrophotographic photoreceptors.
  • the aromatic aldehyde compound may be V, or two or more of them may be used alone, or in any combination and ratio.
  • one or more aromatic aldehyde compounds may be mixed with one or more other compounds and brought into contact with the phthalocyanine crystal precursor.
  • the type of the other compound used in combination with the aromatic aldehyde compound is not particularly limited as long as it does not undesirably affect the phthalocyanine crystal precursor to be used and the phthalocyanine crystal to be obtained.
  • the ratio of the aromatic aldehyde compound to the total amount of the aromatic aldehyde compound and the other compound is usually 50% by weight or more, especially 75%. It is preferable to set it as weight% or more.
  • the amount of the aromatic aldehyde compound used varies depending on the method used for the contact treatment and cannot be generally specified, but is generally 50% by weight or more in terms of the weight ratio to the phthalocyanine crystal precursor.
  • the range is preferably 100% by weight or more, usually 2000% by weight or less, preferably 1000% by weight or less.
  • the compound for crystal form conversion (B) comprises at least one compound (specific organic acid compound) selected from the group consisting of an organic acid, an organic acid anhydride, and a heteroatom-containing organic acid ester, and an acidic functional group. It consists of an organic compound having no group (non-acidic organic compound). Specific organic acid compounds are used as coexisting compounds for crystal type conversion, and non-acidic organic compounds are used as contact compounds for crystal type conversion.
  • the phthalocyanine crystal of the present invention contains at least one compound selected from the group consisting of an organic acid, an organic acid anhydride, and an organic acid ester having a hetero atom (the above-mentioned phthalocyanine crystal precursor is appropriately specified).
  • organic acid compound it is obtained by contacting the non-acidic organic compound described below to convert the crystal form.
  • An organic acid is a generic term for compounds that exhibit acidity, and specifically includes carboxylic acid, sulfonic acid, sulfinic acid, sulfenic acid, phenol, enol, thiol, phosphonic acid, phosphoric acid, boronic acid, and imidic acid. , Hydrazone acid, hydroxyamic acid, hydroxysamic acid, and the like, which are compounds having an acidic functional group (hereinafter, abbreviated as “acidic functional group” as appropriate).
  • the organic acid used in the present invention is not particularly limited as long as it is a compound having the various acidic functional groups described above, but is usually from the viewpoint of versatility and stability of the reagent.
  • Organic acids having acidic functional groups composed of carbon atoms, oxygen atoms, sulfur atoms, phosphorus atoms, and boron atoms are used. Examples of such organic acids include carboxylic acid, sulfonic acid, sulfinic acid, phenol, thiol, phosphonic acid, phosphoric acid, boronic acid, borinic acid and the like.
  • carboxylic acid, sulfonic acid, and phosphonic acid are preferred, taking into account the characteristics of the electrophotographic photoreceptor using the obtained phthalocyanine crystal as a material, and carboxylic acid, sulfonic acid, phenol, phosphonic acid, phosphoric acid, and boronic acid are preferred. Phosphoric acid and boronic acid are more preferred.
  • the acidic functional group may have any known structure, but examples thereof include a carboxyl group, a thiocarboxyl group, a dithiocarboxyl group, a mercaptocarbo carbyl group, a hydroxy group, a sulfo group.
  • a carboxyl group a thiocarboxyl group, a dithiocarboxyl group, a mercaptocarbo carbyl group, a hydroxy group, a sulfo group.
  • the carboxyl functional groups that are usually composed of carbon atoms, oxygen atoms, sulfur atoms, phosphorus atoms, and fluorine atoms are preferred.
  • the organic acid used in the present invention exhibits the effect of the present invention by having an acidic functional group in its structure. Therefore, it is sufficient that at least one acidic functional group is contained per molecule of organic acid, but a plurality of acidic functional groups may be contained. Multiple acids per molecule of organic acid When a functional group is included, the plurality of acidic functional groups may be the same or different from each other. However, if the number of acidic functional groups per molecule of the organic acid is too large, the solubility in the non-acidic organic compound used in combination is reduced, and the effect of the present invention is reduced. More preferably, it is 7 or less, more preferably 4 or less.
  • the organic acid can be distinguished into an acidic functional group part and a part other than the acidic functional group part (organic residue part).
  • the structure of the acidic functional group moiety is as described above, but the structure of the organic residue moiety is not particularly limited and may have any known structure.
  • molecules of phthalocyanine compounds hereinafter sometimes referred to as “phthalocyanine molecules” have a large number of ⁇ electrons in their structures, and phthalocyanine molecules developed from each other. Since the phthalocyanine crystal is constructed by the action, the larger the interaction between the phthalocyanine molecule and the organic acid, the easier the organic acid can be taken into the phthalocyanine crystal.
  • the organic residue part of the organic acid preferably has a structure having ⁇ electrons so that the interaction between the organic acid and the phthalocyanine molecule is strengthened.
  • the number of ⁇ electrons in the organic residue portion is not particularly limited, and it is sufficient that at least two ⁇ electrons (that is, at least one carbon-carbon double bond) are contained in one organic acid molecule.
  • the organic residue part preferably contains an aromatic structure that satisfies the Hückel rule.
  • the molecular weight of the organic acid used in the present invention is not particularly limited, but is usually 50 or more, preferably 100 or more, and usually 1200 or less, preferably 1000 or less. If the molecular weight of the organic acid is too small, the solubility in water will be high, whereby the abundance in the phthalocyanine crystal will decrease, and the effectiveness of the present invention will tend to be small. On the other hand, if the molecular weight of the organic acid is too large, the molecular volume of the organic acid is too large, so that the abundance in the phthalocyanine crystal is reduced and the effect of the present invention tends to be reduced.
  • the molecular weight of the organic residue part is usually 1000 or less, preferably 500 or less, more preferably 400. Below, more preferably 300 or less.
  • the state of the organic acid includes the state of the organic acid as it is, the state where the organic acid is ionized, A state in which acid ions are combined with counter ions to form a salt, etc. is conceivable, but in the present invention, it is speculated that the acidic functional group part contributes to the expression of the effect by incorporating the organic acid itself into the crystal. Therefore, the organic acid used in the present invention may be in any of the above states.
  • the phthalocyanine crystal precursor when brought into contact with the non-acidic organic compound in the presence of the specific organic acid compound, it is preferable that water coexists. Therefore, although it is a compound other than an organic acid in the stage before the contact treatment, a compound that is converted into an organic acid by hydrolysis or the like when contacted with water may also be used as the specific organic acid compound. Is possible. In the following description, such compounds are collectively referred to as “organic acids”.
  • An organic acid anhydride is a compound having a bond in which two acyl groups share an oxygen atom (hereinafter referred to as “an acid anhydride bond” as appropriate).
  • the main organic acid anhydrides are one in which two molecules of an organic acid having one acidic functional group form an acid anhydride bond between the molecules, and one organic acid having two or more acidic functional groups. And those that form an acid anhydride bond in the molecule.
  • the former can be further divided into those in which two types of organic acids of the same type form acid anhydride bonds and those in which two types of organic acids of different types form acid anhydride bonds.
  • the type of the organic acid anhydride used in the present invention is not particularly limited, and any organic acid anhydride may be used.
  • organic acid anhydrides include carboxylic acids obtained by forming an acid anhydride bond between two molecules of the same type, such as acetic anhydride, propionic anhydride, butyric anhydride, and trifluoroacetic anhydride.
  • Acid anhydrides carboxylic acid anhydrides of carboxylic acid anhydrides such as propionic acid anhydride, trifluoroacetic acid anhydride, etc., in which two different types of carboxylic acid molecules form an acid anhydride bond between molecules; phthalic anhydride, maleic anhydride Carboxylic anhydride formed by dicarboxylic acid forming an acid anhydride bond in the same molecule, such as acid, succinic anhydride, 1,2-naphthalic anhydride, 1,8-naphthalic anhydride; methanesulfonic acid A sulfonic acid anhydride in which two molecules of the same or different types of sulfonic acid form an acid anhydride bond between molecules, such as an anhydride or benzenesulfonic acid anhydride; Different types Sulfinic acid anhydrides in which two sulfinic acid molecules form an acid anhydride bond between molecules; benzenesulfonic acid benzenesulfinic acid anhydride,
  • organic acid anhydrides used in the present invention include carboxylic acid anhydrides having the same acid power, carboxylic acid anhydrides having different carboxylic acids, from the viewpoint of the characteristics as an electrophotographic photosensitive member, Carboxylic acid anhydrides having an acid anhydride bond in the molecule, sulfonic acid anhydrides are preferred, more preferably carboxylic acid anhydrides having the same acidity, and carboxylic acid anhydrides having an acid anhydride bond in the molecule. is there.
  • the structure of the portion other than the acid anhydride bond (organic residue portion) of the organic acid anhydride used in the present invention is not particularly limited, and any structure may be used. For the same reason as described in the> column, a structure having ⁇ electrons is preferable.
  • the number of ⁇ electrons in the organic residue portion is not particularly limited, and it is sufficient that at least two ⁇ electrons (that is, at least one carbon-carbon double bond) are included in one organic acid molecule.
  • the organic residue portion preferably contains a structure having aromaticity that satisfies the Hückel rule.
  • the molecular weight of the organic acid anhydride is not particularly limited, but if it is too large, it tends to be difficult to be incorporated into the phthalocyanine crystal, so it is usually 1000 or less, preferably 500 or less, more preferably 400 or less, and still more preferably. Is less than 300. On the other hand, if the molecular weight of the organic acid anhydride is too low, the interaction with the phthalocyanine molecule decreases, and the amount of the organic acid anhydride present in the phthalocyanine crystal tends to decrease, thereby reducing the effect of the present invention.
  • the lower limit of the molecular weight is usually 50 or more, preferably 100 or more.
  • the organic acid ester having a hetero atom is an organic compound in which the acidic functional group portion of the organic acid having a hetero atom is changed to an organic acid ester not showing acidity.
  • an organic acid ester not showing acidity there may be mentioned a compound in which an acidic sulfone group is changed to a methyl sulfonate group so as not to exhibit acidity.
  • a heteroatom is generally a carbon atom and water among atoms constituting an organic compound. It means atoms other than elementary atoms.
  • organic acids usually have at least an oxygen atom and a Z or nitrogen atom in the acidic functional group, so when an oxygen atom and a nitrogen atom are included in the heteroatom, any organic acid ester has an organic atom having a heteroatom. This is not appropriate as a definition because it corresponds to an acid ester. For this reason, in the present invention, atoms other than carbon atoms, hydrogen atoms, nitrogen atoms, and oxygen atoms are defined as heteroatoms.
  • Heteroatoms generally introduced into the structure of organic compounds include boron atoms, sulfur atoms, phosphorus atoms, silicon atoms, selenium atoms, tellurium atoms, etc., but these are used in the present invention.
  • a boron atom, sulfur atom, or phosphorus atom is usually used as the heteroatom contained in the organic acid ester.
  • a sulfur atom and a phosphorus atom are preferable in consideration of the versatility of the organic acid ester used in the present invention.
  • the position at which the heteroatom is introduced is not particularly limited and may be introduced at any site, but before being introduced into the organic acid ester.
  • the acidic functional group moiety for example, sulfo group, phosphono group, etc.
  • the organic acid ester used in the present invention preferably has an acid ester group containing a hetero atom.
  • the structure of the organic acid ester having a hetero atom used in the present invention is not particularly limited in the structure of the portion other than the acid ester group containing a hetero atom (organic residue portion). Any structure may be used, but a structure having ⁇ electrons is preferable for the same reason as described above in the section of organic acid>.
  • the number of ⁇ electrons in the organic residue portion is not particularly limited, and it is sufficient that at least two ⁇ electrons (that is, at least one carbon-carbon double bond) are contained in one organic acid molecule.
  • the organic residue part contains an aromatic structure that satisfies the Hückel rule! /.
  • Examples of the organic acid ester having a hetero atom include phosphonic acid esters such as dimethyl methylphosphonate, dimethyl phosphophosphonate, dimethyl methylphosphonate, and jetyl phosphophosphonate; dimethyl methyl phosphate, dimethyl phosphate, etc.
  • phosphoric acid ester methyl methanesulfonate, methyl benzenesulfonate, ethylbenzenesulfonate Sulfonic acid esters such as methyl sulfinate; methyl sulfinic acid, methyl sulfinic acid methyl and other sulfinic acid esters; methyl sulfinoic acid methyl, methyl sulfino acid sulfinoic acid ester and the like; dimethyl methyl boronate, phenyl boronic acid Examples thereof include boronic acid esters such as dimethyl.
  • phosphonate esters, phosphate esters, sulfonate esters, and boronate esters are more preferable and phosphonate esters and sulfonate esters are more preferable from the viewpoint of versatility of reagents.
  • the molecular weight of the organic acid ester having a heteroatom is not particularly limited, but if it is too large, it is difficult to be incorporated into the phthalocyanine crystal, so it is usually 1000 or less, preferably 500 or less, more preferably 400 or less, and still more preferably. 300 or less. On the other hand, if the molecular weight of the organic acid ester having a heteroatom is too low, the interaction with the phthalocyanine molecule is reduced, and the amount of the organic acid ester having a heteroatom in the phthalocyanine crystal is reduced, so that the effect of the present invention is improved. Since it tends to be small, the lower limit of the molecular weight is usually 50 or more, preferably 100 or more.
  • any one of the above-mentioned organic acid, organic acid anhydride, and organic acid ester having a hetero atom is used. Any one kind of specific organic oxide compound may be used alone, or two or more kinds of specific organic acid compounds may be used in any combination and in any ratio. In particular, when two or more kinds of specific organic acid compounds are used in combination, two kinds from any one of the three categories of organic acid, organic acid anhydride, and organic acid ester having a hetero atom are used. You can select the above compounds and use them together. Any two categories or all three categories. One or more compounds can be selected and used together.
  • the form of the specific organic acid compound is not particularly limited, and may be any of liquid, gas, and solid.
  • the phthalocyanine crystal of the present invention does not have an acidic functional group from the above phthalocyanine crystal precursor in the presence of the above-mentioned specific organic acid compound! / A product obtained by contacting an organic compound (this is appropriately abbreviated as “non-acidic organic compound”).
  • the non-acidic organic compound used in the present invention refers to an organic compound that does not have the acidic functional group described in the section of ⁇ Organic acid> in its structure.
  • the non-acidic organic compound used in the present invention is not particularly limited as long as it has an ability to convert a crystal form.
  • Non-acidic organic compounds are roughly classified into aliphatic compounds and aromatic compounds (in the following description, these are referred to as “non-acidic aliphatic compound” and “non-acidic aromatic compound”, respectively). Shall be.)
  • non-acidic aliphatic compounds include saturated or unsaturated aliphatic carbonization such as vinylene, terbilenone, hexane, cyclohexane, octane, decane, 2-methylpentane, rigin, and petroleum benzine.
  • Hydrogen compounds Aliphatic ether compounds such as jetyl ether, diisopropyl ether, dibutyl ether, dimethyl caffeosolve, ethylene glycol dibutyl ether, tetrahydrofuran, 1,4 dioxane, 1,3 dioxolane; dichloromethane, chlorophenol, four Halogenated aliphatic compounds such as carbon chloride, 1,2-dichloroethane, 1,2,2,2-tetrachloroethane; methyl ethyl ketone, methyl isobutyl ketone, diisopropyl ketone, diisoptyl ketone, cyclohexanone, cyclo Aliphatic ketone compounds such as pentanone; ethyl acetate; Aliphatic ester compounds such as propyl acetate, butyl acetate, isobutyl acetate, hexyl acetate, butyl acrylate, methyl propionate,
  • non-acidic aromatic compounds include aromatic hydrocarbon compounds such as toluene, xylene, naphthalene, biphenyl, and terfel; monochrome benzene, dichlorobenzene, trichloro benzene, dichlorotonole , Chloronaphthalene, bromobenzene, etc., non-aromatic compounds; nitrobenzene, fluoro-trobenzene, etc., aromatic-tro compounds; methyl benzoate, butyl benzoate, methyl benzoate, methyl benzoate, Aromatic ester compounds such as phenol acetate; diphenyl ether, ether, Aromatic ether compounds such as oral roar-nor; Aromatic aldehyde compounds such as benzaldehyde and black mouth benzaldehyde; Aromatic ketone compounds such as acetophenone and chloroacetophenone; Heterocyclic fragrances
  • an aliphatic compound or an aromatic compound or an aromatic hydrocarbon compound containing a halogen atom or an oxygen atom is preferable from the viewpoint of crystal form conversion ability.
  • halogenated aliphatic compounds, aliphatic ether compounds, aliphatic ketone compounds, aliphatic ester compounds, aromatic hydrocarbon compounds, halogenated aromatic compounds In view of the characteristics of electrophotographic photoreceptors using phthalocyanine crystals, which can be obtained as aromatic nitro compounds, aromatic ketone compounds, aromatic ester compounds, and aromatic aldehyde compounds, aliphatic ether compounds More preferred are halogenated aromatic compounds, aromatic nitro compounds, aromatic ketone compounds, aromatic ester compounds, or aromatic aldehyde compounds.
  • non-acidic organic compounds may belong to a plurality of compound groups at the same time, depending on the type of substituents and the like in the structure (for example, nitrocarbene benzene is "Non-acidic organic compounds” belong to both “halogenated aromatic compounds” and “aromatic-tro compounds”). The attributes will be judged (eg -trochlorobenzene has the attributes of both halogenated aromatic compounds and aromatic nitro compounds).
  • any one of these non-acidic organic compounds may be used alone, or two or more thereof may be used in any combination and ratio.
  • the existence form of the non-acidic organic compound is not particularly limited and may be liquid, gas, or solid, but the contact treatment between the non-acidic organic compound and the phthalocyanine crystal precursor is usually a non-acidic organic compound. Is carried out in a liquid state, the melting point of the non-acidic organic compound is usually 150 ° C. or lower, preferably 100 ° C. or lower, more preferably 80 ° C. or lower.
  • the molecular weight of the non-acidic organic compound is not particularly limited, the contact treatment between the non-acidic organic compound and the phthalocyanine crystal precursor is usually performed in a liquid state of the non-acidic organic compound. Therefore, it is not desirable that the molecular weight of the non-acidic organic compound is too large. Specifically, the molecular weight of the non-acidic organic compound is usually 1000 or less, preferably 500 or less, more preferably 400 or less, and still more preferably 300 or less.
  • the lower limit of the molecular weight is usually 50 or more, preferably Is over 100.
  • Crystalline conversion compounds (C) are solid under conditions of 1013 hPa and 25 ° C, and have an electron-withdrawing substituent (hereinafter referred to as “electron-withdrawing specific aromatic compound” as appropriate). And an organic compound that is liquid under the conditions of 1013 hPa and 25 ° C and does not have an acidic functional group (hereinafter referred to as “non-acidic specific organic compound” as appropriate) Consists of.
  • the electron withdrawing specific aromatic compound is used as a coexisting compound for crystal form conversion, and the non-acid specific organic compound is used as a contact compound for crystal form conversion.
  • the electron-withdrawing specific aromatic compound is an aromatic compound that is solid under conditions of 1013 hPa and 25 ° C. and has an electron-withdrawing substituent (hereinafter also referred to as “electron-withdrawing group” as appropriate). .
  • the phthalocyanine crystal of the present invention is obtained by converting the crystal form by bringing the above-mentioned phthalocyanine crystal precursor into contact with a non-acidic specific organic compound in the presence of an electron-withdrawing specific aromatic compound.
  • the “electron withdrawing group” means a substituent constant ⁇ Q (hereinafter referred to as Hammett rule). Below, it may be simply referred to as “substituent constant ⁇ °”. ) Indicates a positive substituent.
  • the “Hammett relational rule” is an empirical rule used to explain the effect of substituents on aromatic compounds on the electronic state of the aromatic ring.
  • the pKa force of unsubstituted benzoic acid also has a benzoic acid having a substituent as described in “Editing Revised Edition 4” (issued by Maruzen Co., Ltd., September 30, 1993). It is calculated as a value obtained by subtracting the pKa of. Substituent constant ⁇ .
  • the value of is a hydrogen atom
  • electron-withdrawing group electron withdrawing particular aromatic compound to be used has in the present invention, although the kind thereof is not particularly limited as long as the value force substituent constant sigma Q of its ⁇ larger one,
  • Substituent constant ⁇ from the viewpoint of stability of characteristics of the obtained electrophotographic photosensitive member against environmental fluctuation.
  • An electron-withdrawing group having a value of usually 0.20 or more, particularly 0.300 or more is preferred.
  • the number of electron-withdrawing groups possessed by the electron-withdrawing specific aromatic compound used in the present invention is not particularly limited as long as it is 1 or more, but non-acidic if the number of electron-withdrawing groups is too large. Since the solubility with respect to a specific organic compound falls and the acquired effect falls, Preferably it is 5 or less, More preferably, it is 4 or less, More preferably, it is 3 or less. In addition, when it has two or more types of electron-withdrawing groups, they may be the same or different from each other.
  • Specific examples of the electron-withdrawing group of the electron-withdrawing specific aromatic compound used in the present invention include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, an aldehyde group, a nitro group, and a nitroso group.
  • acyl group alkoxycarbonyl group, aryloxycarbon group, aralkyloxycarbon group, alkoxysulfol group, alkoxysulfuryl group, alkylsulfoxyloxy group, alkyl Sulfieroxy group, fluoroalkyl group, carboxamide group, sulfonamido group, carboximide group, azo group, aryl Group, thioalkyl group, carboxyl group, sulfo group, sulfino group, sulfeno group, phosphinico group, phosphono group, boronic acid group, boranoic acid group and the like.
  • fluorine atom, chlorine atom, cyano group, aldehyde group, nitro group, acyl group, alkoxy carbo ol group, ally roxy carbo- Group, aralkyloxycarbol group, fluoroalkyl group, carboxyl group, sulfo group and boronic acid group are preferred, and more preferred are cyano group, nitro group, acyl group, alkoxycarbonyl group, aryloxy group.
  • An oxycarbonyl group is a carboxyl group.
  • the molecular weight of the electron-withdrawing group portion of the electron-withdrawing specific aromatic compound used in the present invention is too large, the molecular volume of the entire compound becomes large and it is difficult to incorporate into the phthalocyanine crystal.
  • the electron-withdrawing specific aromatic compound used in the present invention is classified into two parts, an electron-withdrawing group part and a part other than the electron-withdrawing group (aromatic ring part), from the viewpoint of the structure. Things come out.
  • the structure of the aromatic ring portion of the electron withdrawing specific aromatic compound used in the present invention has 4n + 2 (wherein n represents an integer of 0 or more) ⁇ electrons in the planar cyclic polyene.
  • n represents an integer of 0 or more
  • Any structure can be used as long as it has an aromaticity that satisfies the Hückel's rule.
  • is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less.
  • aromatic rings having a hydrocarbon power such as benzene, naphthalene, azulene, anthracene, phenanthrene, fluorene, pyrene, perylene, etc.
  • Aromatic rings containing heteroatoms such as pyrrole, thiophene, furan, silole, pyridin, indole, chroman, benzothiphene, benzofuran, quinoline, isoquinoline, strength rubazole, atalidine, phenoxazine, thianthrene, etc. Etc.
  • aromatic rings from the viewpoint of solubility in a non-acidic specific organic compound, an aromatic ring having an elemental number of 14 or less is preferable, and an aromatic ring having an element number of 10 or less is more preferable. Also preferred are benzene and naphthalene, which are more preferably aromatic rings made of hydrocarbons.
  • the molecular weight of the aromatic ring moiety of the electron withdrawing specific aromatic compound used in the present invention is 1000 or less, preferably 500 or less, more preferably 300 or less, and still more preferably 200 or less.
  • the electron-withdrawing specific aromatic compound used in the present invention may have a substituent other than the electron-withdrawing group described above.
  • substituent that the electron-withdrawing specific aromatic compound may have other than the electron-withdrawing group include an alkyl group, an aralkyl group, an alkoxy group, an aryloxy group, an aralkyloxy group, an alkenyl group, and a phenolic group. Examples thereof include a hydroxyl group, a substituted and an unsubstituted amino group, etc.
  • an alkyl group or an alkenyl group is more preferable, and an alkyl group is more preferable.
  • the molecular weight is usually 300 or less, preferably 250 or less, more preferably 200 or less, and still more preferably 150 or less.
  • the electron withdrawing specific aromatic compound used in the present invention is solid under the conditions of 1013 hPa (760 mm Hg) and 25 ° C.
  • a compound satisfying such conditions is preferred because it has a strong interaction with the phthalocyanine molecule.
  • Examples of the structure of the electron-withdrawing specific aromatic compound preferably used in the present invention are listed below. However, the following structures are merely shown as examples, and the structure of the electron withdrawing specific aromatic compound that can be used in the present invention is not limited to the following examples. As long as it is not contrary to the gist of the present invention, an electron-withdrawing specific aromatic compound having an arbitrary structure can be used.
  • an electron-withdrawing specific aromatic compound having an arbitrary structure can be used.
  • “Me” represents a methyl group
  • “Ph” represents a furol group
  • ⁇ ] represents a benzoyl group.
  • any one kind may be used alone, or two or more kinds may be used in any combination and in any ratio.
  • Non-acidic specific organic compounds are in a liquid state under the conditions of 1013 hPa and 25 ° C.
  • non-acidic organic compounds described in the column compounds that are in the liquid state under the conditions of 1013 hPa and 25 ° C correspond to the non-acidic specific organic compounds.
  • the “functional group showing acidity” means the acidity that an organic acid has in the structure.
  • functional groups include, for example, a force carboxyl group, a thiocarboxyl group, a dithiocarboxyl group, a mercaptocarboxyl group, a hydroperoxy group, a sulfo group, as described above in the section of the organic acid>.
  • Examples thereof include a sulfino group, a sulfenoic acid group, a phenolic hydroxyl group, a thiol group, a phosphinico group, a phosphono group, a selenono group, a selenino group, a seleneno group, an alcinico group, an arsono group, a boronic acid group, and a boranoic acid group.
  • the non-acidic specific organic compound used in the present invention is an organic compound that does not have these acidic functional groups.
  • the non-acidic specific organic compound used in the present invention may have any structure. From the viewpoint of controllability of the crystal form when brought into contact with the phthalocyanine crystal precursor, the non-acidic specific organic compound has no structure. An organic compound having no substituted amino group, monosubstituted amino group, and alcoholic hydroxyl group is preferred.
  • non-acidic specific organic compound used in the present invention can be roughly divided into an aliphatic compound and an aromatic compound (in the following description, these are referred to as “non-acidic specific aliphatic compound” as appropriate. And “non-acidic specific aromatic compounds”.
  • non-acidic specific aliphatic compounds include saturated or unsaturated aliphatic compounds such as vinylene, terbilenone, hexane, cyclohexane, octane, decane, 2-methylpentane, rigin, and petroleum benzine.
  • Hydrocarbon compounds such as jetyl ether, diisopropyl ether, dibutyl ether, dimethyl caffeosolve, ethylene glycol dibutyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolan; dichloromethane, chlorohonolem, Halogenated aliphatic compounds such as carbon tetrachloride, 1,2-dichloroethane, 1,2,2,2-tetrachloroethane; methyl ethyl ketone, methyl isobutyl ketone, diisopropyl ketone, diisoptyl ketone, cyclohexanone, Aliphatic ketone compounds such as cyclopentanone; acetic acid Aliphatic ester compounds such as chill, propyl acetate, butyl acetate, isobutyl acetate, hexyl acetate, butyl
  • non-acidic specific aromatic compounds include aromatic hydrocarbon compounds such as toluene, xylene, naphthalene, biphenyl, terfal; monochrome benzene, dichlorobenzene, trichloro benzene, Halogenated aromatic compounds such as dichlorotolenene, chloronaphthalene and bromobenzene; aromatic tro compounds such as -trobenzene and fluoro-trobenzene, methyl benzoate, butyl benzoate, methyl benzoate and methyl Aromatic ester compounds such as methyl benzoate and phenol acetate; Aromatic ether compounds such as diphenyl ether, ether, and chloroanol; Aromatic aldehyde compounds such as benzaldehyde and black benzene aldehyde; Acetofenone Aromatic ketone compounds such as chloroacetophenone; thiophene, furan, Hetero
  • an aliphatic compound or an aromatic compound containing an oxygen atom or an aromatic compound, or an aromatic hydrocarbon compound is preferable from the viewpoint of crystal form conversion ability.
  • a halogenated aliphatic compound, an aliphatic ether compound, an aliphatic ketone compound, an aliphatic soot compound, an aromatic hydrocarbon compound, and a halogenated aromatic compound is preferable from the viewpoint of crystal form conversion ability.
  • aliphatic ethers More preferred are compounds, halogenated aromatic compounds, aromatic nitro compounds, aromatic ketone compounds, aromatic ester compounds, or aromatic aldehyde compounds.
  • these non-acidic specific organic compounds may belong to a plurality of compound groups at the same time (for example, nitrocarbene benzene) “Non-alcoholic organic compounds” belong to both “halogenated aromatic compounds” and “aromatic-tro compounds”), but such non-alcoholic organic compounds have the attributes of all of their multiple categories. (E.g., -Trokuroguchi benzene has attributes of both halogenated aromatic compounds and aromatic-tro compounds).
  • the non-acidic specific organic compound used in the present invention is in a liquid state under conditions of 1013 hPa (760 mmHg) and 25 ° C.
  • the molecular weight of the non-acidic specific organic compound is not particularly limited. However, the viscosity of the non-acidic specific organic compound increases as the molecular weight increases and the productivity decreases, so the molecular weight of the non-acidic specific organic compound is usually 1000 or less, preferably 500 Below, more preferably 400 or less, and still more preferably 300 or less. On the other hand, if the molecular weight of the non-acidic specific organic compound is too small, the boiling point is generally low, and since it tends to volatilize, the handling during production tends to decrease. Therefore, the lower limit of the molecular weight is usually 50 or more, preferably 100 or more.
  • non-acidic specific organic compound any one kind may be used alone, or two or more kinds may be used in any combination and ratio.
  • the compound for crystal form conversion (D) is an aromatic compound having an oxygen atom-containing group and a halogen atom having an atomic weight of 30 or more as a substituent (hereinafter sometimes referred to as “specific substituent-containing aromatic compound” as appropriate). ). This specific substituent-containing aromatic compound is used as a contact compound for crystal form conversion.
  • the aromatic skeleton of the specific substituent-containing aromatic compound includes aromatic hydrocarbon skeletons such as benzene, naphthalene, anthracene, phenanthrene, biphenyl, and terphenyl, pyrrole, thiophene, furan, pyridine, and quinoline. Heterocyclic aromatic skeletons such as isoquinoline and phenantorophylline are included, and if the aromatic skeleton has a hetero atom such as nitrogen, oxygen or sulfur, it is a suitable crystal form in the phthalocyanine crystal of the present invention. An aromatic hydrocarbon skeleton is preferred because controllability to the specific crystal form described above is reduced.
  • the aromatic compound containing the specific substituent is in a liquid state when contacted with the phthalocyanine crystal precursor.
  • the aromatic skeleton has a large molecular weight and it is difficult to take a liquid state
  • usually skeletons such as benzene, naphthalene, biphenyl, pyrrole, thiophene, furan, and pyridine are used.
  • benzene is particularly preferred from the viewpoint of the electrophotographic photoreceptor characteristics of the phthalocyanine crystal, which is preferably an aromatic hydrocarbon skeleton such as benzene, naphthalene, and biphenyl.
  • the melting point of the specific substituent-containing aromatic compound is usually 100 ° C or lower. If the melting point is too high, the handleability of the aromatic compound containing the specific substituent will be reduced upon contact with the phthalocyanine crystal precursor, and the melting point of the aromatic compound containing the specific substituent is preferably 80 ° C or less. More preferably, it is 60 ° C or lower.
  • the halogen atom having an atomic weight of 30 or more possessed by the specific substituent-containing aromatic compound includes a chlorine atom, a bromine atom, and an iodine atom, but a chlorine atom and a bromine atom are preferred from the viewpoint of handling during production. Surface characteristics of electrophotographic photoconductors Chlorine atoms are more preferred.
  • the halogen atom having an atomic weight of 30 or more possessed by the specific substituent-containing aromatic compound is usually directly bonded to the aromatic skeleton.
  • the number of halogen atoms with an atomic weight of 30 or more is arbitrary, but as the number of halogen atoms increases, the freezing point increases and the handling at the time of manufacture decreases, so a sensitivity of 3 or less is preferred. In view of the above, 2 or less is more preferable. Among these, a monohalogen-substituted aromatic compound is particularly preferable.
  • the type of the group containing an oxygen atom that the specific substituent-containing aromatic compound has is not particularly limited, but examples thereof include a phenolic hydroxyl group; an aldehyde group; a carboxylic acid group; a nitroso group; a nitro group; Hydroxamic acid group; Hydroxamic acid group; Cyanic acid group; Isocyanic acid group; Azoxy group; Amide group; Acyl group such as acetyl group and phenoxy group; Ether group such as methoxy group, benzyloxy group and phenoxy group; Examples include acetal groups such as an acetal group, a methylethylacetal group, and an ethylene acetal group. Of these groups, a group having a substituent that can be further substituted, such as an alkyl chain, may be further substituted.
  • aldehyde group, ester Among the groups containing oxygen atoms, from the viewpoint of crystal controllability, an aldehyde group, ester Among them, aldehyde group, nitro group, ether group, ester group, acyl group, and acyloxy group are more preferable, among which substituents having a carbo group such as alkyl group, acyl group, and acyloxy group, nitro group and ether group are preferable. .
  • the effect of the present invention is that the use of a specific substituent-containing aromatic compound increases the ability to control the crystal form at the time of contact with the phthalocyanine crystal precursor, and further the specific substituent-containing aromatic compound. Since it is presumed that the compound is incorporated into the phthalocyanine crystal and exhibits an effect, the group containing an oxygen atom is a divalent organic residue (excluding the arylene group) which may be directly bonded to the aromatic ring. Bonded to an aromatic ring via
  • the molecular volume of the aromatic compound containing the specific substituent is increased by the amount of the organic residue, and phthalocyanine
  • the molecular weight of the organic residue part is usually 100 or less, preferably 50 or less, because it is difficult to be incorporated into nin crystals.
  • a group containing an oxygen atom does not have a divalent organic residue.
  • the molecular weight per group containing an oxygen atom is usually 300 or less. If the molecular weight is too large, the characteristics of the electrophotographic photosensitive member are deteriorated. Therefore, 250 or less is preferable, 200 or less is more preferable, and 150 or less is more preferable.
  • the number of oxygen-containing groups in the specific substituent-containing aromatic compound is too large, both the molecular weight and molecular volume of the specific substituent-containing aromatic compound increase, and the specific substituent Since the effect obtained by using the containing aromatic compound is lowered, it is usually 5 or less, preferably 3 or less, more preferably 2 or less, and still more preferably 1.
  • the specific substituent-containing aromatic compound may have other substituents on the aromatic ring in addition to the group containing an oxygen atom and a halogen atom having an atomic weight of 30 or less.
  • Other substituents include alkyl groups such as methyl, ethyl, isopropyl, and cyclohexyl groups; thioalkyl groups such as thiomethyl and thioethyl groups; cyan groups; mercapto groups; amino groups, monomethylamino groups, and methyl groups.
  • Substituted or unsubstituted amino group such as ethylamino group; halogenated alkyl group such as trifluoromethyl group; containing known oxygen atom such as fluorine atom Shina! ⁇ Substituent; halogen atom having a molecular weight of 29 or less.
  • the carbon chain portion is linear, branched, or cyclic.
  • the structure of the carbon chain portion of these substituents is too large, the stability of the resulting phthalocyanine crystal will be adversely affected. It is more preferable that the structure is linear.
  • the carbon chain portion usually has 20 or less carbon atoms, but if the carbon chain portion has too many carbon atoms, the effect of the specific substituent-containing aromatic compound is reduced. More preferably, it is 10 or less, more preferably 6 or less.
  • a fluorine atom or an alkyl group is preferable in consideration of crystal controllability at the time of crystal conversion.
  • a methyl group or a fluorine atom which is more preferably a methyl group, an ethyl group, or a fluorine atom, is more preferable because a crystal controllability at the time of crystal conversion is reduced when a three-dimensional molecular volume as a substituent is increased.
  • any one of the specific substituent-containing aromatic compounds may be used alone, or two or more of them may be used in any combination and ratio.
  • one or more kinds of specific substituent-containing aromatic compounds may be mixed with one or more kinds of other compounds and brought into contact with the phthalocyanine crystal precursor.
  • the type of the other compound used in combination with the specific substituent-containing aromatic compound is not particularly limited as long as it does not undesirably affect the phthalocyanine crystal precursor to be used and the phthalocyanine crystal to be obtained.
  • the ratio of the specific substituent-containing aromatic compound to the total amount of the specific substituent-containing aromatic compound and the other compound is usually 50% by weight. Above all, it is preferable to use 75% by weight or more.
  • the amount of the aromatic compound containing the specific substituent varies depending on the method used for the contact treatment, and cannot be specified unconditionally, but is generally 50% by weight in terms of the weight ratio relative to the phthalocyanine crystal precursor. Above, preferably 100% by weight or more, usually 2000% by weight or less, preferably 1000% by weight or less. In addition, when two or more kinds of specific substituent-containing aromatic compounds are used in combination, the total ratio of these satisfies the above range. Like that.
  • the crystal form of the phthalocyanine crystal precursor is converted using the above-described compounds for crystal form conversion. That is, the crystal form is converted by bringing the phthalocyanine crystal precursor into contact with the crystal form conversion contact compound in the presence of the crystal form conversion coexisting compound used as necessary. is there.
  • any one or more of the above-mentioned crystal form conversion compounds (A) to (D) may be used alone in any combination and ratio. You may use together.
  • the method of bringing the phthalocyanine crystal precursor into contact with at least one crystal type conversion compound selected from the crystal type conversion compounds is not particularly limited, and any known method may be used. Good.
  • the phthalocyanine crystal precursor with the crystal-type conversion compound in the presence of water, which is suitable for obtaining the phthalocyanine crystal of the present invention.
  • the amount of water to be used is not particularly limited, but is usually 100% by weight or more, particularly 500% by weight or more, and usually 5000% by weight or less, especially 1500% by weight with respect to the compound for converting the crystal form. % Or less is preferable. It should be noted that when two or more kinds of crystal form conversion compounds are used in combination, it is preferable that the total weight of the compounds is within the above range.
  • Specific examples of the method of contacting the crystal form conversion compound with the phthalocyanine crystal precursor include, for example, a phthalocyanine crystal precursor, a vapor or liquid containing the crystal form conversion compound, Or a method of coexisting with a solution containing a compound for crystal type conversion and contacting with stirring, a phthalocyanine crystal precursor and a compound for crystal type conversion, an automatic mortar, planetary mill, vibrating ball mill, CF mill, roller Examples include a method in which a physical force is applied together with media in an apparatus such as a mill, a sand mill, or a kneader.
  • the temperature at the time of contact between the compound for converting a crystal form and the phthalocyanine crystal precursor is not particularly limited, but is usually 150 ° C or lower.
  • the crystal form conversion used in the present invention It is desirable that the contact compounds for use generally have a melting point of 150 ° C or lower. If the melting point of the contact compound for crystal type conversion is too high, the handling property of the contact compound for crystal type conversion at the time of crystal conversion is reduced, so 120 ° C or less is preferable, more preferably 80 ° C. C or less.
  • the phthalocyanine crystal of the present invention can be obtained by contact treatment (ie, crystal form conversion treatment) of the compound for crystal form conversion and the phthalocyanine crystal precursor.
  • the obtained lid mouth cyanine crystal of the present invention may be washed with water, various organic solvents, or the like, if necessary.
  • the phthalocyanine crystal of the present invention obtained after the contact treatment or after washing is usually in a wet cake state.
  • the effect of the present invention can be obtained by incorporating the crystal-type conversion compounds into the phthalocyanine crystal when the phthalocyanine crystal precursor is brought into contact with the crystal-type conversion compounds during crystal conversion. Therefore, the content of phthalocyanines in the wet cake (weight of phthalocyanines relative to the total weight of the wet cake) of the phthalocyanine crystals of the present invention after contact treatment or after washing is particularly limited. Any amount may be used.
  • drying it is subjected to a drying process.
  • a drying method it is possible to dry by a known method such as blow drying, heat drying, vacuum drying, freeze drying and the like.
  • the phthalocyanine crystal of the present invention obtained by the above method usually takes a form in which primary particles aggregate to form secondary particles.
  • the particle size varies greatly depending on the conditions and formulation at the time of contact between the compound for converting the crystal form and the phthalocyanine crystal precursor, but considering dispersibility, the primary particle size is preferably 500 nm or less. From the viewpoint of film formability, it is preferably 25 Onm or less.
  • the definition as to whether or not the crystal conversion was performed before and after the contact between the phthalocyanine crystal precursor and the crystal-type conversion compound is as follows. In other words, if the peaks of the powder X-ray diffraction spectrum are completely the same before and after contact, it is defined that the crystal conversion has not been performed, and the peak position and peak obtained by the powder X-ray diffraction spectrum force before and after contact are defined. If there is any difference in information such as the presence or absence of a peak or peak half width, it is defined that the crystal has been transformed. [Crystal form of phthalocyanine crystal]
  • the crystal form of the phthalocyanine crystal of the present invention may be any crystal form as long as it is different from that of the phthalocyanine crystal precursor, and in particular, an electrophotographic image when the phthalocyanine crystal is used as a material for an electrophotographic photoreceptor.
  • the crystal form with the main diffraction peak at 2 ° is the Bragg angle (2 0 ⁇ 0.2 °) with respect to the Cu k o; characteristic X-ray (wavelength 1.541 A) It is sometimes referred to as “specific crystal type” as appropriate.
  • the mechanism by which the effects of the present invention can be obtained is not clear, when the phthalocyanine crystal precursor is brought into contact with the compound for crystal type conversion to construct the crystal type, the phthalocyanine ring and the crystal type conversion are obtained.
  • the compounds for interaction have an interaction, and the crystal conversion compounds are taken into the phthalocyanine crystal, and the incorporated crystal conversion compounds are mixed with water as a sensitizer present in the crystal.
  • the interaction suppresses the desorption of water in the crystal force under low-humidity conditions, and allows water molecules to exist in the phthalocyanine crystal even under low-humidity conditions. This is probably because the decrease in sensitivity due to the desorption of is suppressed, or because the crystal-type conversion compounds serve as a sensitizer instead of the water molecule as the sensitizer.
  • the specific crystal type since the specific crystal type has a lot of vacant space in the crystal having a lower crystal density than the other crystal types, the phthalocyanine crystal is brought into contact with the compound for converting the crystal type.
  • the crystal form conversion compounds are easily incorporated into the crystal.
  • the fragrance of the phthalocyanine ring and the aromatic aldehyde compound is obtained when the crystal form is constructed.
  • the ⁇ electrons in the ring part interact with each other, and the aromatic aldehyde compound is incorporated into the phthalocyanine crystal, and the aldehyde group part of the incorporated aromatic aldehyde compound is water as a sensitizer present in the crystal. Interacts with water to suppress the elimination of water from the crystal under low-humidity conditions, allowing moisture to be present in the phthalocyanine crystal even under low-humidity conditions, and is a sensitizer. Suppresses sensitivity loss due to water desorption, or aldehydes of aromatic aldehyde compounds It is thought that this is because the group plays a role as a sensitizer instead of the water molecule which is a sensitizer.
  • the specific organic acid compound is used in constructing the crystal form.
  • the product is incorporated into the phthalocyanine crystal and the incorporated specific organic acid compound interacts with water as a sensitizer present in the crystal, Since water desorption is suppressed, water molecules can be present in phthalocyanine crystals even under low humidity conditions, and a decrease in sensitivity due to desorption of water as a sensitizer is suppressed, or This is probably because the specific organic acid compound plays a role as a sensitizer instead of the water molecule as a sensitizer.
  • the above-mentioned specific crystal type has a large amount of space in the crystal, which has a lower crystal density than other crystal types.
  • the specific organic acid compound is easily incorporated into the phthalocyanine crystal and plays a role as a sensitizer in the phthalocyanine crystal. It ’s probably not!
  • the electron-withdrawing specification is used when constructing the crystal form.
  • the aromatic compound is incorporated into the phthalocyanine crystal, and the incorporated electron-withdrawing specific aromatic compound interacts with water as a sensitizer present in the crystal, so that it can be removed from the crystal under low humidity conditions.
  • the above-mentioned specific crystal type has a lot of vacant space in the crystal where the crystal density is low compared to other crystal types, so that non-acid specific organics are present in the presence of electron-withdrawing specific aromatic compounds.
  • the electron-withdrawing specific aromatic compound is easily incorporated into the phthalocyanine crystal. Therefore, it is thought that it plays a role as a sensitizer in phthalocyanine crystals.
  • the specific substituent-containing aromatic compound When the phthalocyanine crystal precursor is brought into contact with the specific substituent-containing aromatic compound to obtain the phthalocyanine crystal of the present invention, the specific substituent-containing aromatic compound has a halogen atom having an atomic weight of 30 or more. Therefore, it has excellent crystal form controllability at the time of crystal conversion to a specific crystal form, and the specific substituent-containing aromatic compound is incorporated into the phthalocyanine crystal at the time of crystal conversion. It is thought that the group containing an oxygen atom in the crystal plays the role of a sensitizer in the crystal. In particular, the above-mentioned specific crystal type has a large amount of space in the crystal, which has a lower crystal density than other crystal types.
  • the phthalocyanine ring of the phthalocyanine crystal precursor and the ⁇ - electron force S interaction of the aromatic ring part of the specific substituent-containing aromatic compound are identified by S interaction. It is considered that the substituent-containing aromatic compound is easily taken into the phthalocyanine crystal and serves as a sensitizer in the phthalocyanine crystal.
  • the phthalocyanine crystal of the present invention preferably has the above-mentioned specific crystal type.
  • a phthalocyanine crystal having a peak near 26.2 ° or 28.6 ° rearranges to another crystal type at the time of dispersion, resulting in a decrease in electrophotographic characteristics, and thus the phthalocyanine of the present invention. It is preferable that the crystal does not have a clear peak around 26.2 ° or 28.6 °.
  • the effect of the compound for crystal type conversion in the phthalocyanine crystal of the present invention is that the crystal form is obtained by bringing the phthalocyanine crystal precursor and the compound for crystal type conversion into contact with each other during crystal conversion.
  • Compound power for conversion It is considered to be obtained by incorporation into S phthalocyanine crystal, and is considered to depend on the orientation of molecules in the crystal. Therefore, in the preferable peak combinations listed above, the intensity ratio between the peaks is considered to have no correlation with the effect of the present invention. Therefore, these peaks may have any intensity ratio, but usually the peak near 27.2 ° or the peak near 9.6 ° is often the largest.
  • oxytitanium phthalocyanine crystal (a crystal or mixed crystal containing at least oxytitanium phthalocyanine) suitable as the phthalocyanine crystal of the present invention
  • oxytitanium phthalate in which the phthalocyanine ring is chlorinated in the crystal due to a difference in the production method. May contain Russian (chlorinated oxytitanium phthalocyanine). Since the effect of the present invention is considered to be manifested by the inclusion of the crystal form conversion compounds in the phthalocyanine crystal, the oxytitanium phthalocyanine crystal is incorporated so that a large amount of the crystal form conversion compounds are incorporated.
  • Chlorinated oxytitanium phthalocyanine has a black mouth group in the phthalocyanine ring portion, and its molecular volume is larger than that of unsubstituted oxytitanium phthalocyanine. For this reason, when chlorinated oxytitanium phthalocyanine is present in the crystal, the space for taking in the compound for converting the crystal form is reduced. For the above reasons, oxytitanium used as a phthalocyanine crystal precursor for the production of oxytitanium phthalocyanine crystals.
  • oxytitanium phthalocyanine crystal precursor preferably have a low content of chlorinated oxytitanium phthalocyanine.
  • the content of chlorinated oxytitanium phthalocyanine in the oxytitanium phthalocyanine crystal precursor can be measured by any conventionally known analytical method. For example, it can be determined by the elemental analysis method and mass spectrum measurement described in JP-A-2001-115054. Specific conditions for elemental analysis and mass spectrum measurement include, for example, the following conditions.
  • Oxytitanium phthalocyanine crystal precursor lOOmg is precisely weighed and placed on a quartz board, completely burned in a temperature rising electric furnace (for example, QF-02 manufactured by Mitsubishi Chemical Co., Ltd.), and the combustion gas is 15 ml of water. Quantitatively absorb with. Dilute the resulting absorbent to 50 ml and perform chlorine analysis with ion chromatography (“DX-120” manufactured by Dionex). The conditions for ion chromatography are shown below.
  • 0.50 g of oxytitanium phthalocyanine crystal precursor is placed in a 50 ml glass container together with 30 g of glass beads ( ⁇ 1.0 to 1.4 mm) and 10 g of cyclohexanone, and 3 hours in a dye dispersion tester (paint shaker) Disperse to give a 5 wt% oxytitanium phthalocyanine dispersion.
  • the amount of chlorinated oxytitanium phthalocyanine contained in the oxytitanium phthalocyanine crystal precursor obtained by the measurement based on the above ⁇ chlorine content measurement conditions (elemental analysis)> is preferably 0. 4% by weight or less, more preferably 0.3% by weight or less, and still more preferably 0.2% by weight or less.
  • the mass spectrum peak intensities of chlorinated oxytitanium phthalocyanine and unsubstituted oxytitanium phthalocyanine in the oxytitanium-muth phthalocyanine crystal precursor obtained by the measurement based on the above ⁇ mass spectrum measurement conditions >
  • the ratio is preferably 0.050 or less, more preferably ⁇ or 0.040 or less, and still more preferably ⁇ or 0.030 or less.
  • the compound for crystal type conversion in the present invention affects the characteristics of the phthalocyanine crystal as an electrophotographic photoreceptor. It is considered that the effect of the present invention can be obtained by being incorporated into the phthalocyanine crystal!
  • the amount of the contact compound for crystal form conversion incorporated into the crystal varies depending on the production method and is not particularly limited, but is usually 0.1 parts by weight or more with respect to 100 parts by weight of the phthalocyanine crystal. is there. In particular, if the amount of contact compounds for crystal form conversion is low, Since the effects of the invention are reduced, 0.2 parts by weight or more is preferable, and 0.3 parts by weight or more is more preferable. However, since the stability of the phthalocyanine crystal decreases if the amount of the contact compound for converting the crystal form is too large, the amount is preferably 10 parts by weight or less, more preferably 7 parts by weight or less. In the case where a plurality of contact compounds for crystal form conversion are present in the phthalocyanine crystal, the total amount is preferably within the above range.
  • the content of the contact compound for crystal form conversion in the phthalocyanine crystal can be calculated by measuring according to a known thermogravimetric analysis method.
  • phthalocyanine crystals having the above-mentioned specific crystal type are known to undergo crystal rearrangement at around 220 to 270 ° C., and the compounds contained in the crystal are released during this crystal rearrangement. Therefore, for the thermogravimetric analysis of the phthalocyanine crystal having the specific crystal form described above, the crystal form conversion contained from the weight difference before and after the crystal dislocation (for example, the weight difference between 200 ° C and 300 ° C). It is possible to calculate the amount of contact compounds.
  • the characteristics of the electrophotographic photosensitive member of the present invention are that the half-exposure amount is small and the sensitivity is high, and that the fluctuation of the light attenuation characteristic due to humidity change is extremely small.
  • the electrophotographic photosensitive member usually has a different capacitance depending on the film thickness of the photosensitive layer, the amount of surface charge varies with the same potential when the film thickness is different.
  • the half exposure amount when the quantum efficiency is 1 varies depending on the film thickness of the photoreceptor.
  • the technical idea that the half-exposure amount is small and the sensitivity is high, and at the same time, the fluctuation of the light attenuation characteristic due to humidity is very small.
  • the half-exposure dose E1Z2 in the present invention In consideration of the half-exposure dose when the quantum efficiency is 1, the half-exposure dose E1Z2 in the present invention and the degree of fluctuation of the light attenuation characteristics due to humidity are specified. As a result, it is possible to define an electrophotographic photosensitive member whose characteristics with respect to the image forming apparatus are particularly suitable for the film thickness.
  • the half-exposure E1Z2 at a temperature of 25 ° C and a relative humidity of 50% rh is usually 0.059 or less, preferably 0.054 or less, More preferable Is 0.051 or less, and most preferably 0.049 or less.
  • the half-exposure dose E1Z2 at a temperature of 25 ° C and a relative humidity of 50% rh is usually 0.061 or less, preferably 0.056 or less. More preferably, it is 0.053 or less, and most preferably 0.051 or less.
  • the half-exposure E1Z2 at a temperature of 25 ° C and a relative humidity of 50% rh is usually 0.066 or less, preferably 0.0061 or less. More preferably, it is less than or equal to 0.058, and most preferably less than or equal to 0.055.
  • the half-exposure E1Z2 at a temperature of 25 ° C and a relative humidity of 50% rh is usually 0.079 or less, preferably 0.073 or less. More preferably, it is 0.069 or less, and most preferably 0.066 or less.
  • the half-exposure E1Z2 at a temperature of 25 ° C and a relative humidity of 50% rh is usually 0.090 or less, preferably 0.083 or less. More preferably, it is 0.075 or less, and most preferably 0.75 or less.
  • the half-exposure dose E1Z2 in the present invention is the exposure dose of light having a wavelength of 780 nm (jZcm 2 ) required to attenuate the absolute value I VO I of the surface potential V0 of the electrophotographic photosensitive member from 550 V to 275 V Is defined as half-exposure dose E1Z2.
  • the measurement method is described later in the section “Measurement method of half-exposure E1Z2>.
  • the film thickness of the photosensitive layer refers to the total film thickness of the charge generation layer and the charge transport layer in the case of a multilayer type photoreceptor, and the film thickness of the photosensitive layer in the case of a single layer type photoreceptor. Shall be pointed to.
  • the film thickness including the surface protective layer is taken as the film thickness of the photosensitive layer.
  • a layer (for example, an intermediate layer) other than the charge generation layer, the charge transport layer, the single-layer type photosensitive layer, and the surface protective layer is present, the thickness of the layer is not included in the thickness of the photosensitive layer.
  • the film thickness can be measured by various methods. For example, the film thickness can be measured using Surfcom 570A manufactured by Tokyo Seimitsu Co., Ltd.
  • the light attenuation curve at a temperature of 25 ° C and a relative humidity of 50% rh and the light attenuation curve at a temperature of 25 ° C and a relative humidity of 10% rh The absolute value of the difference in surface potential at the same exposure dose (hereinafter referred to as environmental change) when the exposure dose is in the range of 0 to 10 times the half exposure dose E1Z2. This is called dynamic dependency.
  • environmental change The absolute value of the difference in surface potential at the same exposure dose (hereinafter referred to as environmental change) when the exposure dose is in the range of 0 to 10 times the half exposure dose E1Z2. This is called dynamic dependency.
  • the measurement method will be described later in the section ⁇ Environmental variation dependent amount>.
  • the smaller the environmental variation dependency the smaller the image degradation due to environmental variation.
  • the electrophotographic photosensitive member as described above When used in a process cartridge or an image forming apparatus, it can print a large number of sheets per unit time, consumes less power, and reduces image defects caused by environmental changes. I can do it.
  • the measurement environment for the half-exposure dose E1Z2 and the light attenuation curve is defined by the temperature and relative humidity. However, it is desirable to perform these measurements in an environment with as little error as possible.
  • the measuring method of temperature and relative humidity is not particularly limited, but is usually measured by a method based on a method standardized by Japanese Industrial Standards (JIS).
  • JIS Japanese Industrial Standards
  • the measurement method is specified in JIS Z8704, Z8705, and Z8707
  • the measurement method is specified in JIS Z8806.
  • the temperature if it is within the range of ⁇ 2 ° C of the temperature defined in the present invention, it is judged that the temperature corresponds to the temperature defined in the present invention.
  • humidity when it is expressed in relative humidity, if it is within the range of 5% of the humidity defined in the present invention, it is determined that the humidity corresponds to the humidity defined in the present invention.
  • the half-exposure amount 1Z2 in the present invention is a value measured by a static method using a commercially available photoconductor evaluation apparatus (Sincia 55, manufactured by Gentec Corporation). Specifically, it is measured by the procedure described below.
  • the surface of the photoconductor is charged at a constant rotational speed (30 rpm) and charged on a scorotron charger set to discharge in such a way that the surface potential of the photoconductor becomes about 700V. Stop when the charged photoreceptor surface reaches the probe position and stop 2.5 seconds later, 780 nm monochromatic light with an intensity of 0.15 WZcm 2 is applied for 7.5 seconds. At this time, the exposure amount required until the surface potential of the photoconductor is changed from 550 V to -275 V is measured. Rotate the photoconductor again and perform static discharge with the static eliminator, then perform the same operation. This cycle is repeated 6 times, and the measured values of the exposure dose of 5 times except the first are averaged, and the obtained average value is defined as half exposure dose E1Z 2 (j / cm 2 ).
  • the half-exposure E1Z2 is measured after leaving the photoconductor to be measured in an environment of temperature 25 ° C ⁇ 2 ° C and humidity 50% ⁇ 5% for more than 5 hours.
  • the amount of environmental variation dependence in the present invention is an electrophotographic characteristic evaluation apparatus produced in accordance with the standard of the Electrophotographic Society ["Fundamental and Application of Electrophotographic Technology” (Edited by the Electrophotographic Society, Corona Publishing, pages 404-405) )] Is mounted, and the electrical characteristics are evaluated by charging, exposure, potential measurement, and static elimination sites. Specifically, it is determined by the procedure described below.
  • the charger is placed at an angle of 70 °, the exposure device at 0 °, the surface electrometer probe at 36 °, and the charge eliminator at an angle of 150 °.
  • a scorotron charger is used for charging.
  • the exposure lamp used was a halogen lamp JDR110V — 85WLNZK7 manufactured by Usio Electric Co., Ltd., and a monochromatic light of 780 nm using a filter MX0780 manufactured by Asahi Spectroscope. 660nm LED light is used for static elimination light.
  • the absolute value of the initial surface potential of the photoconductor is 700V (+ 700V for positively charged photoconductors and 700V for negatively charged photoconductors).
  • the surface of the charged photoconductor is exposed to monochromatic light of 780 nm. The surface potential is measured when it passes through the exposure section and reaches the probe position of the surface potentiometer (exposure to potential measurement). Between 100ms). The 780nm monochromatic light is passed through the ND filter and the amount of light is changed. The exposure is irradiated with light in the range of 0 to 10 times the half exposure E1Z2, and the surface potential at each exposure is measured.
  • the photoconductor to be measured should be the NN environment (temperature 25 ° C ⁇ 2 ° C, relative humidity 50% rh ⁇ 5%) and NL, respectively. Perform after leaving it in the environment (temperature 25 ° C ⁇ 2 ° C, relative humidity 10% rh ⁇ 5%) for more than 5 hours.
  • the sensitivity retention rate due to a change in humidity in the present invention (hereinafter sometimes referred to as “sensitivity retention rate” in some cases) is as follows under the same measurement apparatus conditions using the same measurement apparatus as the measurement method of the environmental variation dependency amount. It can be obtained by evaluating the electrical characteristics by the cycle of charging, exposure, potential measurement, and static elimination according to the above procedure.
  • the absolute value of the initial surface potential of the photoconductor is 700V (+ 700V for positively charged photoconductors and -700V for negatively charged photoconductors).
  • Monochromatic light of 780 nm is irradiated through an ND filter while changing the amount of light, and the surface potential is 350 V (the absolute value of the initial surface potential is +350 V for a positively charged photoconductor, In this case, measure the irradiation energy (exposure energy) at 350V).
  • the value (unit jZcm 2 ) of irradiation energy (exposure energy) measured in the NN environment is the standard humidity sensitivity (hereinafter sometimes referred to as “En” as appropriate), and the value measured in the NL environment.
  • the NN environment and the NL environment When measuring the post-exposure potential below, leave the photoconductor to be measured in the NN and NL environments for at least 5 hours, respectively.
  • the sensitivity retention rate due to humidity change is calculated (unit%).
  • the electrophotographic photosensitive member of the present invention has a photosensitive layer on a conductive support and also has a force satisfying the characteristics of the electrophotographic photosensitive member, or the photosensitive layer contains the phthalocyanine crystal of the present invention. It is.
  • the conductive support examples include a metal material such as aluminum, aluminum alloy, stainless steel, copper, and nickel, and a resin material imparted with conductivity by adding conductive powder such as metal, carbon, and tin oxide.
  • resin, glass, paper, or the like obtained by depositing or coating a conductive material such as aluminum, nickel, ITO (indium tin oxide) on the surface is mainly used.
  • a conductive support made of a metal material coated with a conductive material with an appropriate resistance value to control conductivity and surface properties, or to cover defects. .
  • the surface of the conductive support may be smooth! Or may be roughened by using a special cutting method or polishing treatment. Further, it may be roughened by mixing particles having an appropriate particle diameter with the material constituting the support. In order to reduce the cost, it is possible to use the drawn pipe as it is without cutting. In particular, when using non-cut aluminum substrates such as drawing, impact processing, and ironing, the processing eliminates dirt and foreign matter adhering to the surface, small scratches, etc., and a uniform and clean substrate is obtained. This is preferable. [0170] Also, when a metal material such as an aluminum alloy is used as the conductive support, an anodized film may be applied to use the force.
  • Anodized film is formed by, for example, anodizing in an acidic bath such as chromic acid, sulfuric acid, oxalic acid, boric acid, sulfamic acid, etc., but anodizing treatment in sulfuric acid is better. Give a good result.
  • anodization in sulfuric acid the sulfuric acid concentration is 100 to 300 gZl, the dissolved aluminum concentration is 2 to 15 gZl, and the liquid temperature is 15 to 30.
  • the electrolysis voltage is preferably set in the range of 10 to 20 V, and the current density is set in the range of 0.5 to 2 A / dm 2 , but is not limited to the above conditions.
  • the average film thickness of the anodic oxide coating is usually 20 m or less, particularly 7 m or less.
  • sealing treatment may be performed by a normal method. For example, it is immersed in an aqueous solution containing nickel fluoride as a main component, or immersed in an aqueous solution containing nickel acetate as a main component. It is preferable to apply high temperature sealing treatment.
  • the concentration of the nickel fluoride aqueous solution to be used can be selected as appropriate, but more preferable results are obtained when the concentration is in the range of 3 to 6 gZl.
  • the pH of the aqueous nickel fluoride solution is usually 4.5 or higher, preferably 5.5 or higher, and usually 6.5 or lower, preferably 6.0 or lower.
  • oxalic acid, boric acid, formic acid, acetic acid, sodium hydroxide, sodium acetate, aqueous ammonia, etc. can be used.
  • the treatment temperature is usually 25 ° C. or higher, preferably 30 ° C. or higher, and usually 40 ° C. or lower, preferably 35 ° C. or lower, so that the sealing treatment can proceed smoothly.
  • the treatment time is preferably in the range of 1 to 3 minutes per film thickness: Lm. Next, it is washed with water and dried to finish the low-temperature sealing treatment.
  • an aqueous metal salt solution such as nickel acetate, cobalt acetate, lead acetate, nickel acetate, cobalt cobalt, and barium nitrate can be used as the sealant. It is preferable to use nickel acetate. When using an aqueous nickel acetate solution, the concentration is preferably within the range of 5 to 20 gZl. It is preferable that the pH of the aqueous nickel acetate solution is usually in the range of 5.0 to 6.0. As the pH regulator, aqueous ammonia, sodium acetate, or the like can be used.
  • sodium acetate, organic carboxylic acid, ionic surfactant, nonionic surfactant, etc. may be added to the aqueous nickel acetate solution.
  • the treatment temperature is usually 80 ° C or higher, usually 100 ° C or lower, preferably 90 ° C or higher, and preferably 98 ° C or lower.
  • the treatment time is usually 10 minutes or longer, preferably 20 minutes or longer. Subsequently, it is washed with water and dried to finish the high temperature sealing treatment.
  • An undercoat layer may be provided between the conductive support and the photosensitive layer described later for improving adhesiveness, blocking property and the like.
  • a binder resin a binder resin in which particles such as metal oxides are dispersed, and the like are used.
  • metal oxide particles used for the undercoat layer include gold oxide containing one kind of metal element such as titanium oxide, acid aluminum, silicon oxide, zirconium oxide, zinc oxide, and iron oxide.
  • metal oxide particles containing a plurality of metal elements such as metal oxide particles, calcium titanate, strontium titanate, and barium titanate. Any one kind of these metal oxide particles may be used alone, or a plurality of kinds may be mixed and used in an arbitrary combination and ratio. Of these metal particles, titanium oxide and aluminum oxide are preferred, and titanium oxide is particularly preferred.
  • the surface of the titanium oxide particle is treated with an inorganic substance such as tin oxide, aluminum oxide, acid antimony, acid zirconium, silicon oxide, or an organic substance such as stearic acid, polyol, or silicone. It may be.
  • an inorganic substance such as tin oxide, aluminum oxide, acid antimony, acid zirconium, silicon oxide, or an organic substance such as stearic acid, polyol, or silicone. It may be.
  • an inorganic substance such as tin oxide, aluminum oxide, acid antimony, acid zirconium, silicon oxide, or an organic substance such as stearic acid, polyol, or silicone. It may be.
  • an inorganic substance such as tin oxide, aluminum oxide, acid antimony, acid zirconium, silicon oxide, or an organic substance such as stearic acid, polyol, or silicone. It may be.
  • any of rutile, anatase, brookite, and amorphous can be used.
  • the average primary particle size is usually lOnm or more, usually lOOnm or less, especially 50nm, in terms of characteristics and liquid stability, among various available forces. The following ranges are preferred.
  • the undercoat layer is preferably formed in a form in which the metal oxide particles are dispersed in a binder resin.
  • binder resin used for the undercoat layer include epoxy resin and polyethylene resin. Resins, polypropylene resins, acrylic resins, methallyl resins, polyamide resins, vinyl chloride resins, chlorinated resin resins, acetic acid resin resins, phenol resins, polycarbonate resins, polyurethane resins, polyimide resins Fatty acid, salt-vinylidene resin, polybulacetal resin, salt-bulu acetate acetate copolymer, polybulu alcohol resin, polyurethane resin, polyacrylic acid resin, polyacrylamide resin, polybylpyrrolidone Fatty acid resin, polyburridine resin, water-soluble polyester resin, cellulose ester resin such as nitrocellulose, cellulose ether resin, casein, gelatin, polyglutamic acid, starch, starch acetate, amino starch, zirconium chelate compound
  • the use ratio of the metal oxide particles relative to Noinda rosin can be arbitrarily selected, but is usually 10% by weight or more and 500% by weight or less from the viewpoint of dispersion stability and coatability. It is preferable to use in the range.
  • the undercoat layer may contain pigment particles, resin particles, and the like for the purpose of preventing image defects.
  • the thickness of the undercoat layer can be arbitrarily selected.
  • a photosensitive layer is formed on the conductive support (on the undercoat layer when an undercoat layer is provided).
  • the photosensitive layer includes a charge generating material, a charge transporting material, and a noinder resin.
  • the photosensitive layer has a structure in which a charge generating substance and a charge transporting substance are dispersed in a binder resin and exist in the same layer (hereinafter referred to as "single-layer type photosensitive layer” as appropriate). )) And a charge generation layer in which a charge generation material is dispersed in a binder resin and a charge transport material.
  • Examples include a photosensitive layer having a laminated structure (hereinafter, referred to as “laminated photosensitive layer” as appropriate) that is functionally separated into a charge transporting layer dispersed in a binder resin, any of which can be used. .
  • a layered photosensitive layer is laminated in the order of a charge generation layer and a charge transport layer from the conductive support side, and a charge transport layer and a charge generation layer are laminated in the order of the conductive support side.
  • a charge transport layer and a charge generation layer are laminated in the order of the conductive support side.
  • the charge generation layer of the multilayer photosensitive layer is prepared by dissolving or dispersing the binder resin in a solvent or dispersion medium, and dispersing the charge generation material to prepare a coating solution, which is used as a layered photosensitive layer.
  • a coating solution which is used as a layered photosensitive layer.
  • an undercoating layer if an undercoating layer is provided, on the undercoating layer
  • a reverse laminated type photosensitive material it is applied on the charge transport layer and deposited to form fine particles of the charge generating material. It is formed by binding with fat.
  • the charge generation material any conventionally known charge generation material can be used as long as the gist of the present invention is satisfied.
  • the phthalocyanine crystal of the present invention is used.
  • any one of them may be used alone.
  • Two or more types of 1S may be used in any combination and ratio.
  • only the phthalocyanine crystal of the present invention may be used as a charge generation material, but the phthalocyanine crystal of the present invention may be combined with other charge generation materials and used as a mixed state.
  • the particle size of the phthalocyanine crystal of the present invention used as a charge generating substance is preferably sufficiently small. Specifically, it is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • Examples of other charge generation materials used in a mixed state with the phthalocyanine crystal of the present invention include various known dyes and pigments.
  • dyes include phthalocyanine pigments, azo pigments, dithioketopyrrolopyrrole pigments, squalene (squarylium pigment), quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, anthanthrone pigments, benzimidazole pigments, etc. Is mentioned.
  • phthalocyanine pigments and azo pigments are preferably used from the viewpoint of photosensitivity.
  • the type of binder resin in the charge generation layer is not particularly limited, but examples thereof include polybutyl petal resin, polyform formal resin, and partially acetal oil in which a part of butyral is modified with formal, acetal, or the like.
  • Polybutylacetal resin such as polyvinyl butyral resin, polyarylate resin, polycarbonate resin, polyester resin, modified ether polyester resin, phenoxy resin, polychlorinated butyl resin, polysalt Bi-Reden resin, Polyvinyl acetate resin, Polystyrene resin, Acrylic resin, Metallic resin, Polyacrylamide resin, Polyamide resin, Polybulidine resin, Cellulosic resin, Polyurethane resin, Epoxy resin, silicone resin, polybulal alcohol resin, polybulylpyrrolidone resin, casei And vinyl chloride vinyl chloride, such as salt-but-butyl acetate acetate copolymer, hydroxy-modified vinyl chloride, vinyl acetate copolymer, carboxyl-modified vinyl chloride
  • the blending ratio (by weight) of the binder resin and charge generating material in the charge generating layer is usually 10 parts by weight or more, preferably 30 parts by weight or more, based on the ratio of the charge generating material to 100 parts by weight of the nonfuser resin Also, it is usually 1000 parts by weight or less, preferably 500 parts by weight or less. If the ratio of the charge generation material is too high, the stability of the coating solution may decrease due to problems such as aggregation of the charge generation material, while if it is too low, the sensitivity of the photoconductor may decrease. Therefore, it is preferable to use within the above range. [0190], solvent or dispersion medium:
  • Examples of the solvent or dispersion medium used for preparing the coating liquid include saturated aliphatic solvents such as pentane, hexane, octane, and nonane; aromatic solvents such as toluene, xylene, and anisole; black benzene, dichlorobenzene Halogenated aromatic solvents such as chloronaphthalene; Amides solvents such as dimethylformamide and N-methyl 2-pyrrolidone; Alcohol solvents such as methanol, ethanol, isopropanol, n-butanol and benzyl alcohol; Glycerin and polyethylene Aliphatic polyhydric alcohols such as glycols; chain and cyclic ketone solvents such as acetonitrile, cyclohexanone, methyl ethyl ketone, 4-methoxy-4-methyl-2 pentanone; and esters such as methyl formate, ethyl acetate, and n-butyl acetate Tell solvent;
  • a known dispersion method such as a ball mill dispersion method, an attritor dispersion method, or a sand mill dispersion method can be used.
  • it is effective to reduce the particle size of the charge generating material particles to a particle size of usually 0.5 m or less, preferably 0.3 m or less, more preferably 0.15 m or less.
  • the film thickness of the charge generation layer is usually in the range of not less than 0 .: m, preferably not less than 0.15 m, usually not more than 10 m, preferably not more than 0.6 ⁇ m.
  • the charge transport layer of the laminated photosensitive layer is obtained by dissolving or dispersing a binder resin in a solvent.
  • a coating solution is prepared by dispersing the charge transport material, and this is applied on the charge transport layer in the case of a forward-stacked type photoreceptor, or on a conductive support in the case of a reverse-stack type photoreceptor (providing an undercoat layer). In some cases, it is formed on the undercoat layer by binding the fine particles of the charge transport material with a binder resin.
  • noinder resin examples include butadiene resin, styrene resin, vinyl acetate resin, chlorinated resin, acrylic acid ester resin, methacrylic acid ester resin, butyl alcohol resin, ethyl vinyl ether Polymers and copolymers, polyvinyl butyral resin, polybulal formal resin, partially modified polybulassal, polycarbonate resin, polyester resin, polyarylate resin, polyamide resin, polyurethane resin, cellulose Examples include ester resin, phenoxy resin, silicone resin, silicone alkyd resin, and poly-N-vinylcarbazole resin. These binder resins may be modified with a silicon reagent or the like. Of the binder resin, polycarbonate resin resin and polyarylate resin are particularly preferable.
  • polycarbonate resins and polyarylate resins polycarbonate resins and polyarylate resins containing bisphenol residues and Z or biphenol residues represented by the following structural formula are sensitive and have residual potential. Strength Even more preferable, the surface strength of the mobility polycarbonate polycarbonate resin is more preferable.
  • Noinda rosins can be used after being crosslinked with heat, light or the like using an appropriate curing agent.
  • binder resin may be used alone or in combination of two or more kinds in any combination and ratio.
  • the charge transport material is not particularly limited as long as it is a known material, for example, aromatic-tro compounds such as 2,4,7-tri-trifluoroenone, cyan compounds such as tetracyanoquinodimethane, diphenoquinone, etc.
  • Electron withdrawing substances such as quinone compounds, heterocyclic compounds such as carbazole derivatives, indole derivatives, imidazole derivatives, oxazole derivatives, pyrazole derivatives, thiadiazole derivatives, benzofuran derivatives, aniline derivatives, hydrazone derivatives, aromatic amine derivatives, stilbenes Derivatives, butadiene derivatives, enamine derivatives, electron-donating substances such as polymers in which a plurality of these compounds are bonded, or polymers having a group consisting of these compounds in the main chain or side chain.
  • a strong rubazole derivative, an aromatic amine derivative, a stilbene derivative, a butadiene derivative, an enamine derivative, and a combination of these compounds are preferable.
  • the ratio of Noinda resin to charge transport material is usually 20 parts by weight or more with respect to 100 parts by weight of binder resin, and 30 parts by weight or more is preferable from the viewpoint of reducing residual potential. From the viewpoint of charge mobility, 40 parts by weight or less is more preferable. On the other hand, from the viewpoint of thermal stability of the photosensitive layer, it is usually 150 parts by weight or less, more preferably 120 parts by weight or less from the viewpoint of compatibility between the charge transporting material and Noinda resin, and from the viewpoint of printing durability. From the viewpoint of scratch resistance, which is preferably 100 parts by weight or less, 80 parts by weight or less is particularly preferable.
  • the type of the solvent or dispersion medium and the method of dispersing the charge transport material in the solvent or dispersion medium are as described in the section of “Charge generation layer of multilayer photosensitive layer”.
  • the thickness of the charge transport layer is not particularly limited, but is usually 5 m or more, particularly 10 m or more, and usually 50 m or less, especially 45 m or less, from the viewpoint of long life, image stability, and high resolution. Furthermore, it is preferable that the range is 30 m or less.
  • Single-layer type photosensitive layers are prepared by dissolving or dispersing a charge generating material, a charge transporting material, and a binder resin in a solvent on a conductive support (if an undercoat layer is provided, an undercoat layer is used. It is formed by applying and drying fine particles of a charge generating substance and a charge transporting substance on a binder resin with a binder resin.
  • the charge generation material those described in the section ⁇ Charge generation layer of the multilayer photosensitive layer> are used, and as the charge transport material and binder resin, the charge transport layer of the multilayer photosensitive layer described above is used. The one explained in the column of> is used.
  • the ratios of the charge generation material and the charge transport material to the binder resin are also as described in the above sections ⁇ Charge generation layer of multilayer photosensitive layer> and ⁇ Charge transport layer of multilayer photosensitive layer>, respectively. .
  • the ratio of the charge generating substance to 100 parts by weight of fat is preferably 0.1% by weight or more, more preferably 1% by weight or more, and preferably 50% by weight or less, more preferably 20% by weight or less.
  • the film thickness of the single-layer type photosensitive layer is usually not less than, preferably not less than 10 / z m, and usually not more than 100 ⁇ m, preferably not more than 50 ⁇ m.
  • the photosensitive layer has well-known antioxidants, plasticizers, ultraviolet absorbers, and electron-attracting properties to improve film-forming properties, flexibility, coating properties, stain resistance, gas resistance, light resistance, etc. Add additives such as compounds, leveling agents and visible light blocking agents.
  • a protective layer may be provided on the photosensitive layer in order to prevent the photosensitive layer from being worn out or to prevent the photosensitive layer from being deteriorated by a discharge substance generated from a charger or the like.
  • the protective layer is formed by containing a conductive material in a suitable binder resin, A copolymer using a compound having a charge transporting ability such as a triphenylamine skeleton as described in Japanese Patent No. 190004 can be used.
  • Examples of conductive materials include aromatic amino compounds such as TPD (N, N'-diphenyl-N, N, -bis- (m-tolyl) benzidine), antimony oxide, indium oxide, tin oxide, oxide Metal oxides such as titanium, tin oxide antimony monoxide, acid aluminum, and acid zinc can be used, but are not limited thereto.
  • the binders used for the protective layer include polyamide resin, polyurethane resin, polyester resin, epoxy resin, polyketone resin, polycarbonate resin, polyvinyl ketone resin, polystyrene resin, and polyacrylamide resin.
  • the protective layer is preferably configured to have an electrical resistance of 10 9 to: ⁇ " ⁇ 'cm. If the electrical resistance is too high, the residual potential tends to increase, resulting in an image with a lot of capri. On the other hand, if the electrical resistance is too low, there is a tendency that the image is blurred and the resolution is lowered, and the protective layer must be configured so as not to substantially prevent transmission of light irradiated for image exposure. Bunana ⁇ .
  • the surface of the electrophotographic photosensitive member is also used for the purpose of reducing the frictional resistance and wear on the surface of the electrophotographic photosensitive member and increasing the transfer efficiency of toner from the electrophotographic photosensitive member to the transfer belt or paper.
  • the surface layer may contain fluorine-based resin, silicone resin, polyethylene resin, or the like. In addition, particles made of these sallows and particles of inorganic compounds may be included.
  • Each layer constituting these photoreceptors is formed by applying the coating solution obtained by the above-described method on a support using a known coating method, repeating the coating and drying steps for each layer, and sequentially coating the layers.
  • the solid content concentration of the coating solution is usually 5% by weight or more, especially 10% by weight or more, and usually It is preferably 40% by weight or less, more preferably 35% by weight or less.
  • the viscosity of the coating solution is usually 10 mPa's or more, preferably 50 mPa's or more, and usually 500 mPa's or less. It is preferable to set it within 400mPa's! /.
  • the solid content concentration of the coating solution is usually 0.1% by weight or more, especially 1% by weight or more, and usually 15% by weight or less, especially 10%.
  • the following range is preferable.
  • the viscosity of the coating solution is preferably in the range of usually not less than 0. OlmPa's, especially not less than 0. ImPa's, usually not more than 20 mPa's, especially not more than lOmPa's.
  • Application methods for the coating liquid include dip coating, spray coating, spinner coating, bead coating, wire bar coating, blade coating, roller coating, air knife coating, curtain coating. Other known coating methods can also be used.
  • the method for drying the coating solution is not particularly limited, but it is usually preferable to dry by touching at room temperature and then heating and drying with no air or air.
  • the heating temperature is in the range of 30 to 200 ° C. in particular for 1 minute to 2 hours.
  • the heating temperature may be constant or may be changed during drying.
  • an embodiment of an image forming apparatus using the electrophotographic photosensitive member of the present invention (an image forming apparatus of the present invention) will be described with reference to FIG.
  • the embodiment is not limited to the following description, and can be arbitrarily modified without departing from the gist of the present invention.
  • the image forming apparatus includes an electrophotographic photosensitive member 1, a charging device 2, an exposure device 3, and a developing device 4, and further includes a transfer device 5, a cleaning device as required.
  • a fixing device 6 and a fixing device 7 are provided.
  • the electrophotographic photosensitive member 1 is not particularly limited as long as it is the above-described electrophotographic photosensitive member of the present invention.
  • the photosensitive layer described above is formed on the surface of a cylindrical conductive support. This shows a drum-shaped photoconductor formed.
  • a charging device 2, an exposure device 3, a developing device 4, a transfer device 5 and a cleaning device 6 are arranged along the outer peripheral surface of the electrophotographic photosensitive member 1, respectively.
  • the charging device 2 charges the electrophotographic photosensitive member 1, and the surface of the electrophotographic photosensitive member 1 is charged. Charge uniformly to a predetermined potential.
  • charging devices include corona charging devices such as corotron and scorotron, direct charging devices that contact a charged surface with a charged member directly on the surface of the photoconductor (contact type charging device), contact type charging devices such as a charging brush, etc. Is often used.
  • Examples of the direct charging means include a contact charger such as a charging roller and a charging brush. In FIG. 1, a roller-type charging device (charging roller) is shown as an example of the charging device 2.
  • the direct charging means charging with air discharge or injection charging without air discharge is possible.
  • a voltage applied at the time of charging only a DC voltage can be used, and an alternating current can be superimposed on a direct current.
  • the type of exposure apparatus 3 is not particularly limited as long as it can expose the electrophotographic photosensitive member 1 to form an electrostatic latent image on the photosensitive surface of the electrophotographic photosensitive member 1.
  • Specific examples include halogen lamps, fluorescent lamps, lasers such as semiconductor lasers and He-Ne lasers, and LEDs.
  • exposure may be performed by a photoconductor internal exposure method.
  • the light used for the exposure is arbitrary.For example, if the exposure is performed with monochromatic light with a wavelength of 780 nm, monochromatic light with a wavelength slightly shorter than 600 nm to 700 nm, or monochromatic light with a short wavelength of 380 nm to 500 nm, etc. .
  • the development device 4 is not limited to any particular type, and can be any of a dry development method such as cascade development, one-component insulating toner image, one-component conductive toner development, two-component magnetic brush development, or a wet image method. Can be used.
  • the developing device 4 includes a developing tank 41, an agitator 42, a supply roller 43, a developing roller 44, and a regulating member 45, and has a configuration in which toner T is stored inside the developing tank 41. .
  • a replenishing device (not shown) for replenishing toner T may be attached to the developing device 4. This replenishing device is configured to replenish toner T from a container such as a bottle or a cartridge.
  • the supply roller 43 is formed of a conductive sponge or the like.
  • the developing roller 44 is made of a metal roll such as iron, stainless steel, aluminum, or nickel, or a resin roll obtained by coating such a metal roll with a silicone resin, a urethane resin, a fluorine resin, or the like. If necessary, the surface of the developing roller 44 may be smoothed or roughened.
  • the developing roller 44 is disposed between the electrophotographic photosensitive member 1 and the supply roller 43, and is in contact with the electrophotographic photosensitive member 1 and the supply roller 43, respectively.
  • Supply roller 43 and development roller 44 Is rotated by a rotation drive mechanism (not shown).
  • the supply roller 43 carries the stored toner T and supplies it to the developing roller 44.
  • the developing roller 44 carries the toner T supplied by the supply roller 43 and contacts the surface of the electrophotographic photoreceptor 1.
  • the regulating member 45 is made of a resin blade such as silicone resin urethane urethane resin, a metal blade such as stainless steel, aluminum, copper, brass, phosphor bronze, or a blade obtained by coating such a metal blade with resin. Is formed.
  • the regulating member 45 abuts on the developing roller 44 and is pressed against the developing roller 44 side with a predetermined force by a spring or the like (general blade linear pressure is 5 to 500 gZcm). If necessary, the regulating member 45 may be provided with a function of imparting charge to the toner T by frictional charging with the toner T.
  • the agitator 42 is rotated by a rotation driving mechanism, and agitates the toner T and conveys the toner T to the supply roller 43 side.
  • Multiple agitators 42 may be provided with different blade shapes and sizes.
  • the toner in addition to the pulverized toner, a chemical toner such as suspension granulation, suspension polymerization, emulsion polymerization aggregation method or the like can be used.
  • a chemical toner such as suspension granulation, suspension polymerization, emulsion polymerization aggregation method or the like
  • those having a small particle size of about 4 to 8 / ⁇ ⁇ are used, and those having a shape that is close to a sphere, such as a potato shape or a rugby ball shape, are also used. be able to.
  • the polymerized toner is excellent in charging uniformity and transferability, and is preferably used for high image quality.
  • toner soot is arbitrary, and in addition to powdered toner, chemical toners such as suspension granulation, suspension polymerization, emulsion polymerization and aggregation can be used. In the case of chemical toners, particles with a small particle size of about 4 to 8 m are preferred. Also, the shape of toner particles varies from a nearly spherical shape to a potato shape that is not spherical. Things can be used. In particular, the polymerized toner is excellent in charging uniformity and transferability, and is suitably used for high image quality.
  • chemical toners particles with a small particle size of about 4 to 8 m are preferred.
  • shape of toner particles varies from a nearly spherical shape to a potato shape that is not spherical. Things can be used.
  • the polymerized toner is excellent in charging uniformity and transferability, and is suitably used for high image quality.
  • the toner used in the image forming apparatus of the present invention has an average circularity force measured by a flow particle image analyzer, preferably 0.940 or more, more preferably 0.950 or more, and still more preferably 0. More than 960.
  • the upper limit of the average circularity is not limited as long as it is 1.000 or less. However, the closer the toner shape is to a spherical shape, the easier the cleaning failure occurs, and it is difficult to produce a perfect spherical toner. Therefore, it is preferably 0.995 or less, more preferably 0.999 or less.
  • the average circularity is used as a simple method for quantitatively expressing the shape of toner particles.
  • a flow type particle image analyzer FPIA-2000 manufactured by Sysmetas is used. Then, the circularity [a] of the measured particle is obtained by the following equation (A).
  • Circularity a L / L (A)
  • L indicates the circumference of a circle with the same projected area as the particle image, and L is image processed.
  • the circularity is an index of the degree of unevenness of toner particles, and indicates 1.00 when the toner is a perfect sphere. The more complicated the surface shape, the smaller the circularity.
  • a specific method for measuring the average circularity is as follows. That is, a surfactant (preferably an alkylbenzene sulfonate) as a dispersant is added to 20 mL of water from which impurities have been previously removed, and about 0.05 g of a measurement sample (toner) is further added. The suspension in which this sample is dispersed is irradiated with ultrasonic waves for 30 seconds, and the dispersion concentration is set to 3.0 to 8.0 thousand Zw L. Measure the circularity distribution of particles with an equivalent circle diameter of less than 160 m.
  • a surfactant preferably an alkylbenzene sulfonate
  • toner As the type of toner, various powers are usually obtained depending on the manufacturing method. As the toner used in the image forming apparatus of the present invention, deviation can be used.
  • the toner of the present invention may be produced by any conventionally known method, and examples thereof include a polymerization method and a melt suspension method, and so-called heavy particles that generate toner particles in an aqueous medium. Legal toners are preferred.
  • the polymerization toner include suspension polymerization toner and emulsion polymerization aggregation toner.
  • the emulsion polymerization aggregation method is a method for producing toner by agglomerating polymer resin fine particles and a colorant in a liquid medium, and controlling the aggregation conditions to adjust the particle size and circularity of the toner. It is preferable because it can be done.
  • the toner in order to improve the releasability, low-temperature fixability, high-temperature offset property, filming resistance, etc. of the toner, a method of incorporating a low softening point substance (so-called wax) into the toner is proposed. It is. In the melt-kneading pulverization method, it is difficult to increase the amount of wax contained in the toner. The limit is about 5% by weight with respect to the polymer (binder resin). On the other hand, the polymer toner can contain a large amount (5 to 30% by weight) of a low softening point substance as described in JP-A-5-88409 and JP-A-11-143125. .
  • the polymer here is one of the materials constituting the toner. For example, in the case of a toner produced by an emulsion polymerization aggregation method described later, it is obtained by polymerizing a polymerizable monomer.
  • the toner produced by the emulsion polymerization aggregation method will be described in more detail.
  • the production process is usually carried out by a polymerization process, a mixing process, an aggregation process, a fusion process, and a washing and drying process. That is, generally, polymer primary particles are obtained by emulsion polymerization (polymerization step), and if necessary, a coloring agent (pigment), wax, charge control agent, etc. are added to the dispersion liquid containing the polymer primary particles.
  • Mix the dispersion (mixing step), add an aggregating agent to this dispersion to agglomerate the primary particles to form a particle aggregate (aggregation step), and perform operations to attach fine particles as necessary. Thereafter, particles are obtained by fusing (fusing step), and the obtained particles are washed and dried (washing and drying step) to obtain mother particles.
  • the polymer fine particles are not particularly limited. Accordingly, fine particles obtained by polymerizing a polymerizable monomer in a liquid medium by suspension polymerization method, emulsion polymerization method, etc. May be used as polymer primary particles.
  • a polymerization method particularly an emulsion polymerization method, in particular, a method using wax as a seed in emulsion polymerization is preferable.
  • wax is used as a seed in emulsion polymerization
  • fine particles having a structure in which the polymer wraps the wax can be produced as polymer primary particles. According to this method, the wax can be contained in the toner without being exposed on the surface of the toner.
  • the device members are not contaminated by wax, the chargeability of the toner is not impaired, and the low temperature fixing property, high temperature offset property, filming resistance, releasability, etc. of the toner can be improved.
  • a method for carrying out emulsion polymerization using wax as a seed and thereby obtaining polymer primary particles will be described.
  • the emulsion polymerization method may be performed according to a conventionally known method.
  • the wax is dispersed in a liquid medium in the presence of an emulsifier to form wax fine particles, and a polymerization initiator and a polymerizable monomer that gives a polymer by polymerization, that is, a polymerizable carbon-carbon double bond.
  • Polymerization is carried out by mixing and stirring the compound having the above and, if necessary, a chain transfer agent, a pH adjuster, a polymerization degree adjuster, an antifoaming agent, a protective colloid and an internal additive.
  • an emulsion in which polymer fine particles (that is, polymer primary particles) having a structure in which the polymer wraps the wax is dispersed in the liquid medium is obtained.
  • the structure in which the polymer wraps the wax is preferably a force core-shell type including a core-shell type, a phase separation type, and an occlusion type.
  • wax it is known that it can be used for this purpose, and any wax can be used.
  • low molecular weight polyethylene low molecular weight polypropylene
  • copolymer wax such as copolymer wax
  • paraffin wax silicone wax having an alkyl group
  • Fluororesin wax such as low molecular weight polytetrafluoroethylene; Higher fatty acids such as stearic acid; Long chain aliphatic alcohols such as eicosanol; Behelic acid behenate, montanic acid ester, stearyl stearate, etc.
  • Ester waxes having a long chain aliphatic group Ketones having a long chain alkyl group such as distearyl ketone; Plant waxes such as hydrogenated castor oil and carnauba; Polyhydric alcohols such as glycerin and pentaerythritol and long chain fatty acids Examples thereof include esters or partial esters obtained; higher fatty acid amides such as oleic acid amide and stearic acid amide; low molecular weight polyesters and the like. Among them, those having at least one endothermic peak at 50 to: LOO ° C by differential thermal analysis (DSC) are preferable.
  • DSC differential thermal analysis
  • waxes for example, ester waxes, paraffin waxes, olefin waxes such as low molecular weight polypropylene and copolymer polyethylene, silicone waxes, and the like are preferable because a release effect can be obtained in a small amount.
  • paraffin wax is preferable.
  • One type of wax may be used, or two or more types of wax may be used in any combination and ratio.
  • the amount used is arbitrary. However, it is desirable that the wax is usually 3 parts by weight or more, preferably 5 parts by weight or more, and usually 40 parts by weight or less, preferably 30 parts by weight or less with respect to 100 parts by weight of the polymer. If the amount of wax is too small, the fixing temperature range may be insufficient. If the amount is too large, the apparatus members may be contaminated and the image quality may be deteriorated.
  • Any emulsifier can be used as long as it does not significantly impair the effects of the present invention.
  • any of nonionic, ionic, cationic and amphoteric surfactants can be used.
  • nonionic surfactant examples include polyoxyalkylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyalkylene alkyl ethers such as polyoxyethylene octyl phenyl ether, and sorbitan mono And sorbitan fatty acid esters such as laurate.
  • anionic surfactants include fatty acid salts such as sodium stearate and sodium oleate, alkyl aryl sulfonates such as sodium dodecylbenzene sulfonate, and alkyl sulfate esters such as sodium lauryl sulfate.
  • fatty acid salts such as sodium stearate and sodium oleate
  • alkyl aryl sulfonates such as sodium dodecylbenzene sulfonate
  • alkyl sulfate esters such as sodium lauryl sulfate.
  • examples of the cationic surfactant include alkylamine salts such as laurylamine acetate, quaternary ammonium salts such as lauryltrimethylammonium chloride, and the like.
  • amphoteric surfactants examples include alkyl betaines such as lauryl betaine.
  • nonionic surfactants and anionic surfactants are preferred.
  • One emulsifier may be used, or two or more emulsifiers may be used in any combination and ratio.
  • the amount of the emulsifier is arbitrary as long as the effect of the present invention is not significantly impaired.
  • the emulsifier is usually used at a ratio of 1 to L0 parts by weight with respect to 100 parts by weight of the compatible monomer.
  • an aqueous medium is usually used, and water is particularly preferably used.
  • the quality of the liquid medium is also related to the coarsening due to re-aggregation of particles in the liquid medium, and if the conductivity of the liquid medium is high, the dispersion stability with time tends to deteriorate. Therefore, when using an aqueous medium such as water as the liquid medium, use ion-exchanged water that has been desalted to have a conductivity of usually SZcm or lower, preferably 5 ⁇ SZcm or lower, or distilled water. Is preferred. Conductivity is measured at 25 ° C using a conductivity meter (personal SC meter model SC72 and detector SC72SN-11 manufactured by Yokogawa Electric Corporation).
  • the amount of the liquid medium to be used is not limited, but is usually about 1 to 20 times the amount of the polymerizable monomer.
  • a liquid medium may be used individually by 1 type, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • fine wax particles are obtained.
  • the order of blending the emulsifier and the wax in the liquid medium is arbitrary, but usually the emulsifier is first blended in the liquid medium and then the wax is mixed. In addition, the emulsifier may be continuously mixed in the liquid medium.
  • a polymerization initiator is blended in the liquid medium.
  • Any polymerization initiator can be used as long as the effects of the present invention are not significantly impaired. Examples include persulfates such as sodium persulfate and ammonium persulfate; organic peracids such as t-butyl hydroperoxide, tamen hydroperoxide, p-menthane hydrobaroxide. Inorganic substances such as peracid and hydrogen are listed. Of these, inorganic peroxides are preferred.
  • One polymerization initiator may be used, or two or more polymerization initiators may be used in any combination and ratio.
  • the polymerization initiator examples include persulfates, organic or inorganic peroxides, and reducing organic compounds such as ascorbic acid, tartaric acid, and citrate, sodium thiosulfate, and sodium bisulfite.
  • reducing inorganic compounds such as sodium metabisulfite It can also be used as a redox initiator.
  • one reducing inorganic compound may be used alone, or two or more reducing inorganic compounds may be used in any combination and ratio.
  • limiting in the usage-amount of a polymerization initiator It is arbitrary. However, the polymerization initiator is usually used at a ratio of 0.05 to 2 parts by weight with respect to 100 parts by weight of the polymerizable monomer.
  • a polymerizable monomer is blended in the liquid medium in addition to the polymerization initiator.
  • the polymerizable monomer for example, styrenes, (meth) acrylic acid esters, acrylamides, monomers having Bronsted acidic groups (hereinafter simply referred to as “acidic monomers”) ), Monofunctional monomers such as monomers having Bronsted basic groups (hereinafter sometimes simply referred to as “basic monomers”) are mainly used. It is also possible to use a polyfunctional monomer in combination with a monofunctional monomer.
  • styrenes examples include styrene, methyl styrene, chlorostyrene, dichlorostyrene, p-tert-butyl styrene, pn-butyl styrene, pn-nonino styrene, and the like.
  • (meth) acrylic acid esters include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hydrated kichetil, and 2-ethylhexyl acrylate.
  • acrylamides include acrylamide, N propyl acrylamide, N, N dimethyl acrylamide, N, N dipropyl acrylamide, N, N-dibutyl acrylamide, and the like.
  • examples of the acidic monomer include monomers having a carboxyl group such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, and cinnamic acid; monomers having a sulfonic acid group such as sulfonated styrene; Examples thereof include a monomer having a sulfonamide group such as benzenesulfonamide.
  • aromatic having an amino group such as aminostyrene
  • nitrogen-containing heterocycle-containing monomers such as butyl compounds, butylpyridine and butylpyrrolidone
  • acrylic acid esters having an amino group such as dimethylaminoethyl acrylate and jetylaminoethyl methacrylate.
  • the acidic monomer and basic monomer may exist as a salt with a counter ion.
  • examples of the polyfunctional monomer include dibutenebenzene, hexanediol diatalate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, diethylene glycol diathalate, triethylene glycol diatalate, neopentyl.
  • examples include glycol dimetatalylate, neopentyl glycol ditalylate, and diallyl phthalate.
  • a monomer having a reactive group such as glycidyl methacrylate, N-methylol acrylamide, acrolein or the like. Of these, radically polymerizable bifunctional monomers, particularly dibutenebenzene and hexanediol diacrylate are preferred.
  • the polymerizable monomer is preferably composed of at least styrenes, (meth) acrylic acid esters, and acidic monomers having a carboxyl group.
  • styrene is preferred as the styrene
  • acrylic acid is preferred as the acidic monomer having a carboxyl group that is preferred as butyl acrylate as the (meth) acrylic acid ester.
  • polymerizable monomer one kind may be used, or two or more kinds may be used in any combination and in any ratio.
  • the amount of the acidic monomer or basic monomer is arbitrary.
  • the amount of the acidic monomer or basic monomer used is usually 0.05 parts by weight or more, preferably 0. It is desirable that the amount be 5 parts by weight or more, more preferably 1 part by weight or more, and usually 10 parts by weight or less, preferably 5 parts by weight or less. Acidic monomer Alternatively, if the amount of the basic monomer is less than the above range, the dispersion stability of the polymer primary particles may be deteriorated, and if it exceeds the upper limit, the chargeability of the toner may be adversely affected.
  • the blending amount thereof is arbitrary, but the blending amount of the polyfunctional monomer with respect to 100 parts by weight of the polymerizable monomer is usually 0.005 part by weight or more, preferably Is 0.1 part by weight or more, more preferably 0.3 part by weight or more, and usually 5 parts by weight or less, preferably 3 parts by weight or less, more preferably 1 part by weight or less.
  • the fixability of the toner can be improved.
  • the amount of the polyfunctional monomer is less than the above range, the high temperature offset resistance may be inferior, and if it exceeds the upper limit, the low temperature fixability may be inferior.
  • the method of blending the polymerizable monomer into the liquid medium is not particularly limited. For example, batch addition, continuous addition, or intermittent addition may be used, but from the viewpoint of reaction control, it may be blended continuously. preferable.
  • each polymerizable monomer may be blended separately, or may be premixed and blended. Furthermore, it may be blended while changing the composition of the monomer mixture.
  • the liquid medium may include a chain transfer agent, a pH adjuster, a polymerization degree adjuster, and an antifoaming agent as necessary.
  • Add additives such as protective colloids and internal additives. Any of these additives can be used as long as the effects of the present invention are not significantly impaired. In addition, these additives may be used alone or in combination of two or more in any combination and ratio.
  • chain transfer agent any known one can be used. Specific examples include tododecyl mercaptan, 2-mercaptoethanol, diisopropylxanthogen, carbon tetrachloride, trichlorobromomethane, and the like.
  • the chain transfer agent is usually used at a ratio of 5 parts by weight or less with respect to 100 parts by weight of the polymerizable monomer.
  • any protective colloid known to be usable for this purpose can be used.
  • Specific examples include partially or fully saponified polyvinyl alcohols such as polyvinyl alcohol, and cellulose derivatives such as hydroxyethyl cellulose. And the like.
  • Examples of the internal additive include those for modifying the adhesiveness, cohesiveness, fluidity, chargeability, surface resistance, and the like of toners such as silicone oils, silicone varnishes, and fluorine oils.
  • a polymer primary particle is obtained by mixing a polymerization initiator, a polymerizable monomer, and, if necessary, an additive in a liquid medium containing wax fine particles, stirring, and polymerizing.
  • the polymer primary particles can be obtained in an emulsion state in a liquid medium.
  • the reaction temperature of the polymerization is arbitrary as long as the reaction proceeds.
  • the polymerization temperature is usually 50 ° C or higher, preferably 60 ° C or higher, more preferably 70 ° C or higher, and usually 120 ° C or lower, preferably 100 ° C or lower, more preferably 90 ° C or lower. is there.
  • the volume average particle diameter of the polymer primary particles is not particularly limited, but is usually 0.02 m or more, preferably 0.75 mm or more, more preferably 0.1 mm or more, Usually, it is 3 ⁇ m or less, preferably 2 m or less, more preferably 1 ⁇ m or less. If the volume average particle size is too small, it may be difficult to control the aggregation rate, and if the volume average particle size is too large, the particle size of the toner obtained by aggregation tends to be large. It may be difficult to obtain a toner having a diameter.
  • the volume average particle diameter can be measured with a particle size analyzer using a dynamic light scattering method described later.
  • the volume particle size distribution is measured by a dynamic light scattering method.
  • This method finds the particle size distribution by detecting the speed of Brownian motion of finely dispersed particles, irradiating the particles with laser light, and detecting light scattering (Doppler shift) with different phases according to the speed. It is.
  • the volume particle size described above is set as follows using an ultrafine particle size distribution measuring device (Nikkiso Co., Ltd., UPA-EX150, hereinafter abbreviated as UPA) using the dynamic light scattering method. Do.
  • Measurement time lOOsec.
  • NZA Particle refractive index
  • Dispersion medium type WATER
  • Dispersion medium refractive index 1.333
  • the dispersion of particles is diluted with a liquid medium so that the sample concentration index is in the range of 0.01 to 0.1, and the measurement is performed with a sample subjected to dispersion treatment with an ultrasonic cleaner. Then, the volume average particle diameter which is different from the present invention is measured by using the result of the volume particle size distribution as an arithmetic average value.
  • the polymer constituting the polymer primary particles is at least one of the peak molecular weights in gel permeation chromatography (hereinafter sometimes abbreviated as "GPC" where appropriate). Usually 3000 or more, preferably It is desirable to be present at 10,000 or more, more preferably 30,000 or more, and usually 100,000 or less, preferably 70,000 or less, more preferably 60,000 or less.
  • the peak molecular weight is in the above range, the durability, storage stability, and fixing property of the toner tend to be good.
  • the peak molecular weight a value converted to polystyrene is used, and components insoluble in the solvent are excluded in measurement.
  • the peak molecular weight can be measured in the same manner as the toner described later.
  • the lower limit of the number average molecular weight of the polymer in gel permeation chromatography is usually 2000 or more, preferably 2500 or more, more preferably 3000 or more
  • the upper limit is usually 50,000 or less, preferably 40,000 or less, more preferably 350,000 or less.
  • the lower limit of the weight average molecular weight of the polymer is usually 20,000 or more, preferably 30,000 or more, more preferably 50,000 or more, and the upper limit is usually 1,000,000 or less, preferably 500,000 or less.
  • the resulting toner has good durability, storage stability and fixability. Because. More molecules
  • the quantity distribution may have two main peaks.
  • the styrene-based resin means that styrenes usually occupy 50% by weight or more, preferably 65% by weight or more in the whole polymer.
  • the softening point of the polymer (hereinafter sometimes abbreviated as "Sp") is usually 150 ° C or lower, preferably 140 ° C or lower, and the low energy fixing point is also preferable. Further, it is usually 80 ° C or higher, preferably 100 ° C or higher, from the viewpoint of high temperature offset resistance and durability.
  • the softening point of the polymer was measured with a flow tester under the conditions of Sample 1. Og, nozzle lmm X 10 mm, load 30 kg, preheating time 50 ° C for 5 minutes, and heating rate 3 ° CZ. The temperature at the midpoint of the strand from the start to the end of the flow can be obtained.
  • the glass transition temperature [Tg] of the polymer is usually 80 ° C or lower, preferably 70 ° C or lower. If the glass transition temperature [Tg] of the polymer is too high, low energy fixing may not be possible.
  • the lower limit of the glass transition temperature [Tg] of the polymer is usually 40 ° C or higher, preferably 50 ° C or higher. If the glass transition temperature [Tg] of the polymer is too low, the blocking resistance may be lowered.
  • the glass transition temperature [Tg] of the polymer is obtained by drawing a tangent line at the beginning of the transition (inflection) of the curve measured with a differential scanning calorimeter at a heating rate of 10 ° CZ. It can be determined as the temperature of the intersection.
  • the soft spot and glass transition temperature [Tg] of the polymer can be adjusted to the above ranges by adjusting the polymer type, monomer composition ratio, molecular weight, and the like.
  • a pigment particle is mixed and aggregated in the emulsion in which the polymer primary particles are dispersed to obtain an emulsion (aggregated particle) emulsion containing the polymer and the pigment.
  • an aqueous solvent such as water is usually used as the liquid medium of the pigment particle dispersion, and the pigment particle dispersion is prepared as an aqueous dispersion.
  • the polymer primary particles the polymer primary particles obtained by emulsion polymerization can be used. At this time, one kind of polymer primary particles may be used, or two or more kinds may be used in any combination and ratio. Furthermore, the polymer primary particles (hereinafter, referred to as “combined polymer particles” as appropriate) produced under different raw materials and reaction conditions than the emulsion polymerization described above may be used in combination.
  • Examples of the combined polymer particles include fine particles obtained by suspension polymerization or pulverization.
  • rosin can be used, and as this rosin, in addition to the above-mentioned monomer (co) polymer used for emulsion polymerization, for example, vinyl acetate, chloride.
  • Hull polymers such as bulls, bil alcohols, burpetilals, bulurpyrrolidones, copolymers or copolymers, saturated polyester resins, polycarbonate resins, polyamide resins, polyolefin resins, polyarylate resins, polysulfones Resin, thermoplastic resin such as polyethylene ether resin, and thermosetting resin such as unsaturated polyester resin, phenol resin, epoxy resin, urethane resin, rosin modified maleic acid resin, etc. Can be mentioned.
  • These combined polymer particles may be used alone or in combination of two or more in any combination and ratio. However, the ratio of the combined polymer particles is usually 5% by weight or less, preferably 4% by weight or less, more preferably 3% by weight or less based on the total of the polymer primary particles and the polymer of the combined polymer particles. .
  • the pigment is not limited, and any pigment can be used according to its application.
  • the pigment is usually present in the form of particles as colorant particles, it is preferable that the pigment particles have a smaller density difference from the polymer primary particles in the emulsion polymerization aggregation method. This is because when the density difference is smaller, a uniform aggregated state can be obtained when the polymer temporary particles and the pigment are aggregated, and thus the performance of the obtained toner is improved.
  • the density of the polymer primary particles is usually 1.1 to 1.3 gZcm 3 .
  • JIS K 5101- 11- 1 true density of the pigment particles, as measured by pycnometer method specified in 2004, usually 1. 2gZcm 3 or more, preferably 1. 3gZcm 3 than on Also, it is usually less than 2. OgZcm 3 , preferably 1.9 gZcm 3 or less, more preferably 1.8 g Zcm 3 or less.
  • true density of the pigment is large, the sedimentation property in a liquid medium tends to be poor.
  • the pigment Bon black or organic pigments are preferred.
  • pigments satisfying the above conditions include the following yellow pigments, magenta pigments, and cyan pigments. Further, as the black pigment, carbon black, or a yellow toned pigment, a magenta pigment, a cyan pigment mixed with a cyan pigment described below, and the like, are used.
  • carbon black used as a black pigment exists as an aggregate of very fine primary particles, and when dispersed as a pigment particle dispersion, carbon black particles are coarsened by reaggregation. Is likely to occur.
  • the degree of reagglomeration of carbon black particles correlates with the amount of impurities contained in carbon black (the degree of residual undecomposed organic matter), and if there are many impurities, coarsening due to reaggregation after dispersion is significant. Show a tendency to
  • the ultraviolet absorbance power of the toluene extract of carbon black measured by the following measurement method is usually 0.05 or less, preferably 0.03 or less.
  • the carbon black of the channel method tends to have a large amount of impurities, and therefore, the carbon black used in the toner of the present invention is preferably one produced by the furnace method.
  • the yellow pigment for example, a compound typified by a condensed azo compound or an isoindolinone compound is used. Specifically, CI Pigment Yellow 12, 13, 1 4, 15, 17, 62, 74, 83, 93, 94, 95, 109, 110, 111, 128, 129, 147, 168, 1 80, 185 Etc. are preferably used.
  • magenta pigment for example, a condensed azo compound, a diketopyro-pillar compound, Products, anthraquinones, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thiindigo compounds, perylene compounds, and the like.
  • quinacridone pigments represented by C. I. bigmen red 122, 202, 207, 209 and CI pigment noorets 19 are particularly preferable.
  • This quinacridone pigment is suitable as a magenta pigment because of its clear hue and high light resistance.
  • the compound strength represented by CI Pigment Red 122 is particularly preferable.
  • cyan pigments examples include copper phthalocyanine compounds and derivatives thereof, anthraquinone compounds, basic dye lake compounds, and the like. Specifically, C. I. pigment benore 1, 7, 15, 15: 1, 15: 2, 15: 3, 15: 4, 60, 62, 66 isotropic S can be used particularly suitably.
  • One kind of pigment may be used, or two or more kinds of pigments may be used in any combination and ratio.
  • the above-mentioned pigment is dispersed in a liquid medium and mixed with emulsion containing force polymer primary particles as a pigment particle dispersion.
  • the amount of the pigment particles used in the pigment particle dispersion is usually 3 parts by weight or more, preferably 5 parts by weight or more, and usually 50 parts by weight or less, preferably 40 parts by weight with respect to 100 parts by weight of the liquid medium. Or less. If the blending amount of the colorant exceeds the above range, the pigment concentration is high, so the probability that the pigment particles will re-aggregate during dispersion increases. It is preferable because it is difficult to obtain the distribution.
  • the ratio of the amount of the pigment used relative to the polymer contained in the polymer primary particles is usually 1% by weight or more, preferably 3% by weight or more, and usually 20% by weight or less, preferably 15% by weight or less. It is. If the amount of the pigment used is too small, the image density may become thin, and if it is too much, the aggregation control may become difficult.
  • the pigment particle dispersion may contain a surfactant.
  • This surfactant is not particularly limited, but for example, the interface exemplified as an emulsifier in the description of the emulsion polymerization method. The thing similar to an activator is mentioned. Among them, nonionic surfactants and key-on active agents such as alkyl aryl sulfonates such as sodium dodecyl benzene sulfonate
  • Polymeric surfactants and the like are preferably used. In this case, one surfactant may be used, or two or more surfactants may be used in any combination and ratio.
  • the ratio of the pigment in the pigment particle dispersion is usually 10 to 50% by weight.
  • the liquid medium of the pigment particle dispersion an aqueous medium is usually used, and water is preferably used.
  • water is preferably used.
  • the water quality of the polymer primary particles and the pigment particle dispersion is also related to the coarsening due to reaggregation of each particle, and when the conductivity is high, the dispersion stability with time tends to deteriorate. Therefore, it is preferable to use ion-exchanged water or distilled water that has been desalted so that the electrical conductivity is usually 10 ⁇ SZcm or less, preferably 5 ⁇ SZcm or less. Conductivity is measured at 25 ° C using a conductivity meter (Personal SC meter model SC72 and detector SC72SN-11 manufactured by Yokogawa Electric Corporation).
  • a wax may be mixed with the emulsion.
  • the wax the same waxes described in the explanation of the emulsion polymerization method can be used.
  • the wax may be mixed before, during or after mixing the pigment with the emulsion containing the polymer primary particles.
  • a charge control agent may be mixed with the emulsion.
  • any known charge control agent can be used.
  • the positively chargeable charge control agent include niggincin dyes, quaternary ammonium salts, triphenylmethane compounds, imidazole compounds, and polyamine resins.
  • negative charge control agents include azo complex compound dyes containing atoms such as Cr, Co, Al, Fe, and B; metal salts or metal complexes of salicylic acid or alkylsalicylic acid; Examples thereof include metal salts or metal complexes of benzylic acid, amido compounds, phenol compounds, naphthol compounds, phenol amid compounds, and the like. In particular, it is preferable to select colorless or light-colored toner in order to avoid color tone problems as a toner.
  • quaternary ammonia is used.
  • alkylsalicylic acid complex compounds containing atoms such as Cr, Co, Al, Fe and B, and curixarene compounds are preferred.
  • One charge control agent may be used, or two or more charge control agents may be used in any combination and ratio.
  • the amount of charge control agent used is not limited, but is usually 0.01 parts by weight or more, preferably 0.1 parts by weight or more, and 10 parts by weight or less, preferably 5 parts per 100 parts by weight of the polymer. Less than parts by weight. If the amount of the charge control agent used is too small or too large, the desired charge amount may not be obtained.
  • the charge control agent may be mixed before, during or after mixing the pigment with the emulsion containing the primary polymer particles.
  • the charge control agent is desirably mixed at the time of aggregation in the state of being emulsified in a liquid medium (usually an aqueous medium) like the pigment particles.
  • the pigment is mixed with the emulsion containing the polymer primary particles, the polymer primary particles and the pigment are aggregated. As described above, at the time of mixing, the pigment is usually mixed in the state of a pigment particle dispersion.
  • the aggregation method is not limited and is arbitrary, and examples thereof include heating, electrolyte mixing, pH adjustment and the like. Especially, the method of mixing electrolyte is preferable.
  • electrolytes used for agglomeration by mixing electrolytes include NaCl, KC1, LiCl
  • Inorganic salts such as sulfates such as O, Al (SO) and Fe (SO); CH COONa, C H SO N
  • Examples include organic salts such as 4 2 4 3 2 4 3 3 6 5 3 a. Of these, inorganic salts having a divalent or higher polyvalent metal cation are preferred.
  • One electrolyte may be used, or two or more electrolytes may be used in any combination and ratio.
  • the amount of electrolyte used is usually 0.05 parts by weight or more, preferably 0.1 parts by weight or more, and usually 25 parts by weight with respect to 100 parts by weight of the solid component in the emulsion that varies depending on the type of electrolyte. Part or less, preferably 15 parts by weight or less, more preferably 10 parts by weight or less.
  • the amount of electrolyte used is too small, There is a possibility that the progress of the reaction slows down and fine powder of 1 m or less remains after the aggregation reaction, the average particle size of the obtained aggregate does not reach the target particle size, and the amount of electrolyte used is large. If it is too high, the agglomeration reaction will occur rapidly, making it difficult to control the particle size, and the resulting agglomerates may contain coarse particles or irregular shapes.
  • the obtained agglomerates are preferably spheroidized by heating in a liquid medium in the same manner as the secondary agglomerates (aggregates after the melting step) described later. Heating should be performed under the same conditions as in the case of secondary aggregates (same conditions as described in the description of the fusion process).
  • the temperature condition is arbitrary as long as aggregation proceeds.
  • Specific temperature conditions are usually 15 ° C or higher, preferably 20 ° C or higher, and the polymer primary particle polymer glass transition temperature (Tg) or lower, preferably 55 ° C or lower. Aggregation is performed. Although the time for agglomeration is arbitrary, it is usually 10 minutes or longer, preferably 60 minutes or longer, and usually 300 minutes or shorter, preferably 180 minutes or shorter.
  • stirring is preferably performed when the aggregation is performed.
  • the apparatus used for stirring is not particularly limited, but those having double helical blades are preferred.
  • the obtained agglomerates may proceed to the next step of forming a resin coating layer (encapsulation step) as it is, or after performing a fusion treatment by heating in a liquid medium, You may proceed to.
  • the capsule step is performed, and the fusion step is performed by heating at a temperature equal to or higher than the glass transition temperature (Tg) of the capsule resin fine particles. This is preferable because it does not cause deterioration of toner performance (such as thermal deterioration).
  • the encapsulation process for forming the resin coating layer on the aggregate is a process for coating the aggregate with the resin by forming the resin coating layer on the surface of the aggregate.
  • the manufactured toner is provided with a resin coating layer.
  • the entire toner may not be completely covered, but the pigment makes it possible to obtain a toner that is not substantially exposed on the surface of the toner particles.
  • the thickness of the resin coating layer at this time is not limited, but is usually in the range of 0.01 to 0.5 m.
  • the method for forming the resin coating layer is not particularly limited!
  • a spray dry method for example, a mechanical particle composite method, an in-situ polymerization method, a liquid particle coating method, and the like.
  • a spray drying method for example, preparing a dispersion by dispersing the aggregate forming the inner layer and the resin fine particles forming the resin coating layer in an aqueous medium. By spraying the dispersion and drying it, a resin coating layer can be formed on the surface of the aggregate.
  • an aggregate forming an inner layer and a resin fine particle forming a resin coating layer are dispersed in a gas phase. This is a method in which fine particles are formed on the aggregate surface by applying mechanical force in a narrow gap. ) Etc. can be used.
  • the aggregate is dispersed in water, the monomer and the polymerization initiator are mixed, adsorbed on the surface of the aggregate, heated, and the monomer is heated.
  • the monomer and the polymerization initiator are mixed, adsorbed on the surface of the aggregate, heated, and the monomer is heated.
  • the particle coating method in the liquid for example, the aggregate forming the inner layer and the fine resin particles forming the outer layer are reacted or bonded in an aqueous medium, and the surface of the aggregate forming the inner layer is coated with the resin. This is a method of forming a coating layer.
  • the fine resin particles used for forming the outer layer are particles mainly having a fine particle component smaller than the aggregate.
  • the resin fine particles are not particularly limited as long as they are particles made of a polymer. However, from the viewpoint that the thickness of the outer layer can be controlled, it is preferable to use the same primary polymer particles, aggregates, or the same fine resin particles as the fused particles obtained by fusing the aggregates.
  • the fine resin particles similar to these polymer primary particles can be produced in the same manner as the polymer primary particles in the aggregate used for the inner layer.
  • the amount of the resin fine particles used is arbitrary, but is usually 1% by weight or more, preferably 5% by weight or more, and usually 50% by weight or less, preferably 25% by weight or less based on the toner particles. It is desirable to use in the range of.
  • the particle diameter of the fine resin particles is usually preferably about 0.04 to about m.
  • the glass transition temperature [Tg] of the polymer component (wax component) used in the resin coating layer is usually 60 ° C or higher, preferably 70 ° C or higher, and usually 110 ° C or lower. . Furthermore, the glass transition temperature [Tg] of the polymer component used in the resin coating layer is preferably 5 ° C or higher than the glass transition temperature [Tg] of the polymer primary particles. It is more preferable that it is higher. If the glass transition temperature [Tg] is too low, storage in a general environment is difficult, and if it is too high, sufficient meltability cannot be obtained.
  • polysiloxane wax in the resin coating layer.
  • the advantage of improving the high temperature offset resistance can be obtained.
  • the polysiloxane wax include silicone wax having an alkyl group.
  • the content of the polysiloxane wax is not limited, but is usually 0.01% by weight or more in the toner, preferably 0.05% by weight or more, more preferably 0.08% by weight or more, and usually 2% by weight. % Or less, preferably 1% by weight or less, more preferably 0.5% by weight or less. If the amount of the polysiloxane wax in the resin coating layer is too small, the high temperature offset resistance may be insufficient, and if it is too large, the blocking resistance may be lowered.
  • the method of incorporating the polysiloxane wax in the resin-coated phase is arbitrary.
  • emulsion polymerization is performed using the polysiloxane wax as a seed, and the resulting resin fine particles and aggregates forming an inner layer are formed.
  • the aggregates are melt-integrated by heat-treating the aggregates.
  • the polymer constituting the agglomerate and the resin-coated layer on the surface thereof are integrated by heat treatment. ⁇ will be made. Thereby, the pigment particles are obtained in a form that is not substantially exposed on the surface.
  • the temperature of the heat treatment in the fusion process depends on the glass transition of the polymer primary particles constituting the aggregate.
  • the temperature is equal to or higher than the temperature [Tg].
  • the temperature is equal to or higher than the glass transition temperature [Tg] of the polymer component forming the resin coating layer.
  • the specific temperature condition is arbitrary, it is usually preferably 5 ° C or more higher than the glass transition temperature [Tg] of the polymer component forming the resin coating layer.
  • the upper limit is not limited, but “higher than the glass transition temperature [Tg] of the polymer component forming the resin coating layer [Tg] by 50 ° C.” or less is preferred.
  • the time for the heat treatment is usually 0.5 to 6 hours, although it depends on the treatment capacity and the production amount.
  • the obtained capsule resin particles are washed and dried to remove the liquid medium, thereby obtaining a toner. It can. There are no restrictions on the washing and drying methods, and they are arbitrary.
  • volume average particle diameter [Dv] of the toner of the present invention There is no restriction on the volume average particle diameter [Dv] of the toner of the present invention. Any force as long as the effect of the present invention is not significantly impaired. Usually 4 ⁇ m or more, preferably 5 ⁇ m or more, and usually 10 ⁇ m or less. Lower, preferably 8 m or less. If the volume average particle diameter [Dv] of the toner is too small, the stability of the image quality may be lowered, and if it is too large, the resolution may be lowered.
  • the value [D vZDn] obtained by dividing the volume average particle size [Dv] by the number average particle size [Dn] is usually 1.0 or more, and usually 1.25 or less, Preferably it is 1.20 or less, more preferably 1.15 or less.
  • the value of [DvZDn] represents the state of particle size distribution. The closer this value is to 1.0, the sharper the particle size distribution. The sharper the particle size distribution is, the more uniform the charge of the toner is.
  • the toner of the present invention has a volume fraction of a particle size of 25 m or more, usually 1% or less, preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0. Less than 05%. The smaller this value, the better. This means that the ratio of the coarse powder contained in the toner is small. If the coarse powder is small, the toner consumption during continuous development is small and the image quality is stable, which is preferable. Although it is most preferable that there is no coarse powder having a particle size of 25 ⁇ m or more, it is difficult in actual production, and it is usually not necessary to make it 0.005% or less.
  • the toner of the present invention has a volume fraction of 15 m or more in particle size, usually 2% or less, preferably Is 1% or less, more preferably 0.1% or less. Although it is most preferable that there is no coarse powder having a particle size of 15 m or more, it is difficult in actual production, and it is usually not necessary to make it 0.01% or less.
  • the number fraction having a particle size of 5 m or less is usually 15% or less, preferably 10% or less, because it is effective for improving image capri.
  • the volume average particle diameter [Dv], number average particle diameter [Dn], volume fraction, number fraction, etc. of the toner can be measured as follows.
  • the Coulter Counter Multisizer Type II or Type III manufactured by Beckman Coulter Co., Ltd.
  • the electrolytic solution Isoton II is used as the electrolytic solution.
  • a surfactant preferably alkylbenzene sulfonate
  • a measurement sample toner
  • the electrolyte solution in which the sample is suspended is subjected to a dispersion treatment with an ultrasonic disperser for about 1 to 3 minutes, and measured using a Coulter counter multisizer type II or type III with a 100 ⁇ m aperture.
  • the number and volume of the toner are measured to calculate the number distribution and the volume distribution, respectively, and the volume average particle diameter [Dv] and the number average particle diameter [Dn] are obtained, respectively.
  • At least one of the peak molecular weights in the gel permeation chromatography of the THF soluble content of the toner of the present invention is usually 10,000 or more, preferably 20,000 or more, more preferably 30,000 or more, usually 15 10,000 or less, preferably 100,000 or less, more preferably 70,000 or less.
  • THF refers to tetrahydrofuran.
  • the THF-insoluble content of the toner is usually 10% or more, preferably 20% or more, and usually 60% or less, preferably 50% or less, as measured by a gravimetric method using Celite filtration described later. . If it is not within the above range, it becomes difficult to achieve both mechanical durability and low-temperature fixability. There is a case.
  • the peak molecular weight of the toner of the present invention is measured under the following conditions using a measuring apparatus: HLC-8120GPC (manufactured by Tosoh Corporation).
  • the column is stabilized in a 40 ° C. heat chamber, and tetrahydrofuran (THF) as a solvent is allowed to flow through the column at this temperature at a flow rate of 1 mL per minute.
  • THF tetrahydrofuran
  • the toner is dissolved in THF and then filtered through a 0.2 m filter, and the filtrate is used as a sample.
  • the measurement is carried out by injecting 50 to 200 L of a THF solution of coagulant with the sample concentration (concentration of the resin) adjusted to 0.05 to 0.6 mass%.
  • the molecular weight distribution of the sample is calculated from the relationship between the logarithmic value of the calibration curve created by several monodisperse polystyrene standard samples and the number of counts.
  • Standard polystyrene samples for preparing calibration curves include, for example, those manufactured by Pressure Chemical Co. or Toyo Soda Kogyo, whose molecular weights are 6 X 10 2 , 2.1 X 10 3 , 4 X 10 3 , 1. 75 X 10 4 , 5.1 X 4.
  • An RI (refractive index) detector is used as the detector.
  • THF tetrahydrofuran
  • the measurement of the insoluble content of tetrahydrofuran (THF) in the toner can be performed as follows. That is, add sample (toner) lg to THFlOOg, dissolve still at 25 ° C for 24 hours, filter with celite 10g, evaporate the solvent of the filtrate, quantify THF soluble content, and subtract from lg. By subtracting, the THF-insoluble matter can be calculated.
  • the softening point [Sp] of the toner of the present invention there is no limit on the softening point [Sp] of the toner of the present invention. Any force is provided as long as the effect of the present invention is not significantly impaired. From the viewpoint of fixing with low energy, it is usually 150 ° C or lower, preferably 140 ° C or lower. It is. From the viewpoint of high temperature offset resistance and durability, the soft spot is usually 80 ° C or higher, preferably 100 ° C or higher.
  • the softening point [Sp] of the toner was measured with a flow tester under the conditions of Sample 1. Og, nozzle lmm x 10 mm, load 30 kg, preheating time 50 ° C for 5 minutes, and heating rate 3 ° CZ. It can be determined as the temperature at the midpoint of the strand from the beginning to the end of the flow.
  • the glass transition temperature [Tg] of the toner of the present invention is not limited as long as the effect of the present invention is not significantly impaired, but is usually 80 ° C or lower, preferably 70 ° C or lower. It is desirable because it can be established with low energy.
  • the glass transition temperature [Tg] is usually 40 ° C or higher, preferably 50 ° C or higher, from the viewpoint of blocking resistance!
  • the glass transition temperature [Tg] of the toner is obtained by drawing a tangent line at the beginning of the transition (inflection) of the curve measured with a differential scanning calorimeter at a temperature increase rate of 10 ° CZ. It can be determined as temperature.
  • the softening point [Sp] and glass transition temperature [Tg] of the toner are greatly affected by the type and composition ratio of the polymer contained in the toner. Therefore, the soft soft point [Sp] and glass transition temperature [Tg] of the toner can be adjusted by appropriately optimizing the kind and composition of the polymer. It can also be adjusted by the molecular weight of the polymer, the gel content, the type of low melting point components such as wax, and the blending amount.
  • the dispersed particle diameter of the wax in the toner particles is usually 0.1 ⁇ m or more, preferably 0.3 ⁇ m or more as an average particle diameter, and the upper limit is Usually, it is 3 ⁇ m or less, preferably 1 ⁇ m or less. If the dispersed particle size is too small, there is a possibility that the effect of improving the filming resistance of the toner may not be obtained. If the dispersed particle size is too large, the wax tends to be exposed on the surface of the toner, and the chargeability and heat resistance are reduced. May be reduced.
  • the dispersed particle diameter of the wax is not dissolved in the wax, but after the toner polymer is eluted with an organic solvent or the like, it is filtered through a filter and remains on the filter. It is possible to confirm the wax particles by a method of measuring with a microscope.
  • the ratio of the wax in the toner is arbitrary as long as the effects of the present invention are not significantly impaired, but is usually 0.05% by weight or more, preferably 0.1% by weight or more, and usually 20% by weight. % Or less, preferably 15% by weight or less. If the amount of wax is too small, the fixing temperature range may be insufficient, and if it is too large, the image quality may deteriorate due to contamination of the equipment.
  • external additive fine particles may be added to the surface of the toner particles.
  • the secondary aggregate and the externally added fine particles are mixed in a liquid medium and then heated to externally add the toner particles onto the toner particles.
  • Examples include a method of fixing fine particles; a method of mixing or fixing externally added fine particles to toner particles obtained by separating, washing, and drying secondary agglomerates in a liquid medium.
  • Examples of the mixer used when mixing toner particles and externally added fine particles in a dry method include Henschel mixer, super mixer, Nauter mixer, V-type mixer, Redige mixer, double cone mixer, and drum type.
  • a mixer it is preferable to use a high-speed agitation type mixer such as a Henschel mixer, a super mixer, etc., and set the blade shape, the number of rotations, the time, the number of times to stop driving, etc. as appropriate, and mix by stirring and mixing uniformly .
  • a compression shearing device capable of applying a compressive shear stress, or a particle surface capable of melting the particle surface Examples include a melt processing apparatus.
  • a compression shearing apparatus generally has a head surface and a head surface that move relatively while maintaining a gap, a head surface and a wall surface, or a narrow gap formed by a wall surface and a wall surface. By being forced to pass through the gap, compressive stress and shear stress are applied to the particle surface that is not substantially crushed.
  • An example of such a compression shearing apparatus is a mechanofusion apparatus manufactured by Hosokawa Micron Corporation.
  • the particle surface melting apparatus generally uses a hot air stream or the like, and instantaneously heats the mixture of the base microparticles and the externally added microparticles to a melting start temperature or higher of the base microparticles. Constructed so that the child can be secured.
  • a particle surface melting apparatus include a surfing system manufactured by Japan-Eumatic Co., Ltd.
  • known fine particles that are known to be usable for this purpose can be used. Examples thereof include inorganic fine particles and organic fine particles.
  • Examples of the inorganic fine particles include carbides such as silicon carbide, boron carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, tantalum carbide, niobium carbide, tandasten carbide, chromium carbide, molybdenum carbide, and calcium carbide.
  • carbides such as silicon carbide, boron carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, tantalum carbide, niobium carbide, tandasten carbide, chromium carbide, molybdenum carbide, and calcium carbide.
  • Acid compound tricalcium phosphate, dihydrogen calcium phosphate, phosphorus Calcium monohydrogen, phosphoric acid compounds such as substituted calcium phosphates in which some of the phosphate ions are replaced by anions, sulfates such as disulfide and molybdenum, magnesium fluoride, carbon fluoride, etc.
  • Various carbon blacks including metal stalagmites such as fluoride, aluminum stearate, calcium stearate, zinc stearate, magnesium stearate, talc, bentonite, conductive carbon black, and the like can be used.
  • Sarasoko uses magnetic materials such as magnetite, maghematite, and an intermediate between magnetite and maghematite.
  • the organic fine particles include, for example, styrene-based resin, acrylic resin such as methyl polyacrylate and polymethyl methacrylate, epoxy resin, melamine resin, tetrafluoroethylene resin, and trifluoroethylene. Fine particles such as ethylene resin, polyvinyl chloride, polyethylene, and polyacrylo-tolyl can be used.
  • silica, titanium oxide, alumina, zinc oxide, carbon black and the like are particularly preferably used.
  • the external additive fine particles may be used alone or in combination of two or more in any combination and ratio.
  • the surface of these inorganic or organic fine particles is a silane coupling agent or titanate.
  • Hydrophobic by treatment agents such as coupling agents, silicone oils, modified silicone oils, silicone varnishes, fluorine-based silane coupling agents, fluorine-based silicone oils, coupling agents having amino group quaternary ammonium salt groups, etc. Surface treatment such as crystallization may be applied.
  • 1 type of processing agents may be used and 2 or more types may be used together by arbitrary combinations and ratios.
  • the number average particle diameter of the externally added fine particles is an arbitrary force as long as the effect of the present invention is not significantly impaired. Usually 0.001 ⁇ m or more, preferably ⁇ ⁇ m 0.005 ⁇ m or more, and usually 3 ⁇ m. m or less, preferably 1 ⁇ m or less, and a plurality of compounds having different average particle diameters may be blended.
  • the average particle diameter of the externally added fine particles can be determined by observation with an electron microscope or conversion of the value of the BET specific surface area.
  • the ratio of the externally added fine particles to the toner is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the ratio of the externally added fine particles to the total weight of the toner and the externally added fine particles is usually 0.1% by weight or more, preferably 0.3% by weight or more, more preferably 0.5% by weight or more. It is usually 10% by weight or less, preferably 6% by weight or less, more preferably 4% by weight or less. If the amount of externally added fine particles is too small, fluidity and charging stability may be insufficient, and if too large, fixability may be deteriorated.
  • the charging characteristics of the toner of the present invention can be set according to the type of image forming apparatus used, whether it is negatively charged or positively charged.
  • the charging characteristics of the toner can be adjusted by the selection and composition ratio of toner base particle components such as a charge control agent, the selection and composition ratio of externally added fine particles, and the like.
  • the toner of the present invention can be used as a one-component developer, or can be mixed with a carrier and used as a two-component developer.
  • the carrier that is mixed with the toner to form the developer may be, for example, a known magnetic substance such as an iron powder-based, ferrite-based, or magnetite-based carrier, or the surface thereof. It is possible to use a resin coated with a resin or a magnetic resin carrier.
  • Examples of the carrier coated resin include generally known styrene-based resins and waxes. Lil resin, styrene acrylic copolymer resin, silicone-based resin, modified silicone-based resin, fluorine-based resin, and the like can be used, but are not limited thereto.
  • the average particle size of the carrier is not particularly limited, but those having an average particle size of 10 to 200 m are preferable. These carriers are preferably used at a ratio of 5 to: LOO parts by weight with respect to 1 part by weight of the toner.
  • the transfer device 5 should be a device using any method such as electrostatic transfer methods such as corona transfer, roller transfer, belt transfer, pressure transfer method, adhesive transfer method, etc., which are not particularly limited in type. Can do.
  • the transfer device 5 includes a transfer charger, a transfer roller, a transfer belt, and the like that are disposed to face the electrophotographic photoreceptor 1.
  • the transfer device 5 applies a predetermined voltage value (transfer voltage) having a polarity opposite to the charging potential of the toner T, and transfers the toner image formed on the electrophotographic photosensitive member 1 onto the recording paper (paper, medium) P. Is.
  • the cleaning device 6 There are no particular restrictions on the cleaning device 6. Any cleaning device such as a brush cleaner, magnetic brush cleaner, electrostatic brush cleaner, magnetic roller cleaner, blade cleaner, etc. can be used.
  • the cleaning device 6 scrapes off residual toner adhering to the photoreceptor 1 with a cleaning member and collects the residual toner. If there is little or almost no residual toner, the cleaning device 6 may be omitted.
  • the fixing device 7 includes an upper fixing member (fixing roller) 71 and a lower fixing member (fixing roller) 72, and a heating device 73 is provided inside the fixing member 71 or 72.
  • FIG. 1 shows an example in which a heating device 73 is provided inside the upper fixing member 71.
  • a fixing roll in which a metal base tube such as stainless steel or aluminum is coated with silicon rubber, a fixing roll in which Teflon (registered trademark) resin is coated, a fixing sheet, or the like is known.
  • a heat fixing member can be used.
  • the toner transferred onto the recording paper P passes between the upper fixing member 71 and the lower fixing member 72 heated to a predetermined temperature, the toner is heated to a molten state and cooled after passing. The toner is fixed on the recording paper P.
  • a fixing device by any method such as heat roller fixing, flash fixing, oven fixing, and pressure fixing can be provided.
  • an image is recorded according to the following method (the image forming method of the present invention).
  • the surface (photosensitive surface) of the photoreceptor 1 is charged with a predetermined potential (for example —
  • charging may be performed by superimposing the AC voltage on the DC voltage, which may be charged by the DC voltage.
  • the photosensitive surface of the charged photoreceptor 1 is exposed by the exposure device 3 according to the image to be recorded, and an electrostatic latent image is formed on the photosensitive surface.
  • the developing device 4 develops the electrostatic latent image formed on the photosensitive surface of the photoreceptor 1.
  • Developing device 4 uses toner T supplied by supply roller 43 to control member (developing blade)
  • the surface of the photoconductor 1 is thinned by 45, frictionally charged to a predetermined polarity (here, the same polarity as the charging potential of the photoconductor 1 and negative polarity), and conveyed while being carried on the developing roller 44. Contact.
  • a predetermined polarity here, the same polarity as the charging potential of the photoconductor 1 and negative polarity
  • the final image is obtained by passing the fixing device 7 and thermally fixing the toner image onto the recording paper P.
  • the image forming apparatus may have a configuration capable of performing, for example, a static elimination process.
  • the neutralization step is a step of neutralizing the electrophotographic photosensitive member by exposing the electrophotographic photosensitive member, and a fluorescent lamp, LED, or the like is used as the neutralizing device.
  • the light used in the static elimination process has an exposure energy that is at least three times that of the exposure light. Often the light is
  • the image forming apparatus may be further modified.
  • the image forming apparatus may be configured to perform a process such as a pre-exposure process or an auxiliary charging process, or may be configured to perform offset printing. May be configured as a full-color tandem system using a plurality of types of toner.
  • the electrophotographic photoreceptor 1 is used alone, or one or more of the charging device 2, the exposure device 3, the developing device 4, the transfer device 5, the cleaning device 6, and the fixing device 7 are used. Combining the elements together, it is configured as an integrated cartridge (this is referred to as an “electrophotographic photosensitive member cartridge” as appropriate), and this electrophotographic photosensitive member cartridge is attached to the image forming apparatus main body such as a copying machine or a laser beam printer. And may be configured to be detachable. In this case, a cartridge case configured to be detachable from the image forming apparatus is used, and the electrophotographic photosensitive member 1 is housed and supported by the cartridge case alone or in combination with the above-described elements. It can be a cartridge.
  • the powder X-ray diffraction spectra of phthalocyanines obtained in each of Synthesis Examples and Comparative Synthesis Examples described later were measured by the following procedure. That is, as a measuring device, PW1700 manufactured by PANalytical, which is a powder X-ray diffractometer of a concentrated optical system using CuKo; characteristic X-ray (wavelength 1.541 A) as a radiation source, was used. Measurement conditions are: X-ray output 40kV, 30mA, scan range (2 ⁇ ) 3-40 °, scan step width 0.05 °, scan speed 3.0 ° Zmin, divergence slit 1.0 °, scattering slit 1.0 ° The light receiving slit was 0.2 mm.
  • the peak half-value width was calculated by a profile fitting method.
  • Profile fitting was performed using powder X-ray diffraction pattern analysis software JADE5.0 + manufactured by MDI. .
  • the fitting function is CuK a
  • the asymmetry was fixed at 0 and the shape constant was fixed at 1.5.
  • the peak half width ( ⁇ ) derived from the sample was determined.
  • j8 type oxytitanium phthalocyanine crystal was prepared.
  • Fig. 6 shows the powder XRD spectrum of the obtained ⁇ -type titanium phthalocyanine crystal.
  • the chlorine content contained in the obtained ⁇ -type titanium phthalocyanine crystal is described in the column of ⁇ Condition for measuring chlorine content (elemental analysis)> in the above [Best Mode for Carrying Out the Invention].
  • the chlorine content was not more than 0.20% by weight below the detection limit.
  • a phthalocyanine crystal precursor 33 parts by weight of the low crystalline oxytitanium phthalocyanine wet cake obtained in Synthesis Example 2 was placed in 90 parts by weight of water and stirred at room temperature for 30 minutes. Thereafter, 13 parts by weight of each compound shown in the right column of Table 2 was added, and the mixture was further stirred at room temperature for 1 hour. After stirring, water was separated, 80 parts by weight of methanol was added, and the mixture was stirred and washed at room temperature for 1 hour.
  • the phthalocyanine crystals of Examples 1 to 4 and Comparative Synthesis Example 1 are both CuKo; Bragg angles (20 0) with respect to characteristic X-rays (wavelength 1.541 A). ⁇ 0. 2 °) 27. It had a main diffraction peak at 2 °.
  • a phthalocyanine crystal precursor 33 parts by weight of a wet cake of the low crystalline phthalocyanine composition obtained in Synthesis Example 7 was added to 90 parts by weight of water and stirred at room temperature for 30 minutes. Thereafter, 13 parts by weight of each compound shown in the right column of Table 3 was added, and the mixture was further stirred at room temperature for 1 hour. After stirring, water was separated, 80 parts by weight of methanol was added, and the mixture was stirred and washed at room temperature for 1 hour.
  • a conductive support in which an aluminum vapor deposition film (thickness 70 nm) is formed on the surface of a biaxially stretched polyethylene terephthalate resin film (thickness 75 ⁇ m)
  • the following method is used on the vapor deposition layer of the support.
  • the undercoat layer dispersion prepared in (1) was applied with a bar coater so that the film thickness after drying was 1.25 m, and dried to form an undercoat layer.
  • the undercoat layer dispersion was prepared by the following method. That is, rutile type titanium oxide with an average primary particle size of 40 nm (“TT055N” manufactured by Ishihara Sangyo Co., Ltd.) and methyldimethoxysilane (“TSL8117” manufactured by Toshiba Silicone Co., Ltd.) at 3% by weight based on the titanium oxide.
  • the surface-treated titanium oxide obtained by mixing in a high-speed fluid mixing kneader (“SMG300” manufactured by Rikita Co., Ltd.) and mixing at a high speed at a rotational peripheral speed of 34.5 mZ seconds was added to methanol Z1-propanol.
  • a dispersion slurry of hydrophobized titanium oxide was obtained by dispersing with ball mill.
  • the dispersion slurry, a mixed solvent of methanol Z1-propanol Z-toluene, and ⁇ -force prolactam [compound represented by the following formula ( ⁇ )] ⁇ bis (4-amino-3-methylcyclohexyl) methane [following formula ( ⁇ ) Compound] ⁇ Hexamethylene diamine [Compound represented by the following formula (C)] ⁇ Decamethylene dicarboxylic acid [Compound represented by the following formula (D)] ⁇ ⁇ octadecamethylene dicarboxylic acid [
  • each phthalocyanine crystal to be described later is used as a charge generation material, and this is mixed with 280 parts by weight of 1,2 dimethoxyethane, and then pulverized in a sand grind mill for 2 hours to disperse fine particles.
  • 280 parts by weight of 1,2 dimethoxyethane was mixed with 280 parts by weight of 1,2 dimethoxyethane, and then pulverized in a sand grind mill for 2 hours to disperse fine particles.
  • polybulphirar made by Denki Kagaku Kogyo K.K. # 6000C
  • a coating solution for a charge generation layer was prepared by mixing the above-mentioned micronization treatment liquid obtained by the above-mentioned atomization dispersion treatment and the above-mentioned binder liquid and 230 parts by weight of 1,2 dimethoxyethane. This charge generation layer coating solution is applied onto the undercoat layer formed on the conductive support by a bar coater so that the film thickness after drying is 0. A generation layer was formed.
  • charge A transport layer coating solution A was prepared. This charge transport layer coating solution is applied onto the resin film provided with the charge generation layer as described above so that the film thickness after drying is 25 m and dried to form a charge transport layer. Thus, an electrophotographic photosensitive member having a laminated photosensitive layer was produced.
  • electrophotographic photoreceptors were produced according to the above-described photoreceptor production method (hereinafter, these are appropriately described in Examples 9 to 16 and It is referred to as an electrophotographic photoreceptor of Comparative Examples 1 and 2. 0 Correspondence between each electrophotographic photoreceptor, the phthalocyanine crystal used as a charge generating material and its composition is shown in Table 4 below.
  • An electrophotographic characteristic evaluation apparatus prepared according to the standards of the Electrophotographic Society of the electrophotographic photosensitive members of Examples 9 to 16 and Comparative Examples 1 and 2 ("Basic and Application of Secondary Electrophotographic Technology", Electrophotographic Society, edited by Corona) And the electrical characteristics were evaluated by carrying out a cycle of charging, exposure, potential measurement, and static elimination according to the following procedure.
  • the charger was placed at an angle of 70 °, the exposure device at 0 °, the surface electrometer probe at 36 °, and the static eliminator at an angle of 150 °.
  • a scorotron charger was used for charging.
  • the exposure lamp used was a halogen lamp JDR110 V-85WLNZK7 manufactured by Usio Electric Co., Ltd., and a monochromatic light of 780 nm using a filter MX0780 manufactured by Asahi Spectroscopic Co., Ltd.
  • a 660 nm LED light was used for the static elimination light.
  • the photoconductor While rotating the photoconductor at a constant rotation speed (60 rpm), the photoconductor is charged so that the initial surface potential is -700 V, and the charged photoconductor surface is passed through an exposure part where monochromatic light of 780 nm is exposed. Then, the surface potential when the probe came to the surface potential meter was measured (100ms between exposure and potential measurement). The irradiation energy (exposure energy) was measured when the surface potential was 350 V by irradiating 780 nm monochromatic light through an ND filter with varying light intensity.
  • the value (unit: zj / cm 2 ) of the irradiation energy (exposure energy) measured in the NN environment after standing in the NN environment for 8 hours is referred to as the standard humidity sensitivity (hereinafter sometimes referred to as “En”).
  • E1 low humidity sensitivity
  • Table 5 below shows the evaluation results of the electrical characteristics of the electrophotographic photoreceptors of Examples 1 to 8 and Comparative Examples 1 and 2.
  • the phthalocyanine crystals of Examples 1 to 8 and Comparative Synthesis Examples 1 and 2 used as charge generation materials are all characterized by CuKa characteristics, as is apparent from the powder XRD spectra (Figs. 8 to 12 and 14 to 18). It was a phthalocyanine crystal having a main diffraction peak at a Bragg angle (2 ⁇ ⁇ 0.2 °) 27.2 ° with respect to X-rays (wavelength 1.541 A).
  • the electrophotographic photoreceptors of Examples 9 to 16 and Comparative Examples 1 and 2 using the phthalocyanine crystals of Examples 1 to 8 and Comparative Synthesis Examples 1 and 2 as charge generation materials were used as the phthalocyanine crystals.
  • the sensitivity of the electrophotographic photosensitive member of the example to the humidity change is smaller than that of the comparative electrophotographic photosensitive member.
  • a phthalocyanine crystal precursor 38 parts by weight of the low crystalline oxytitanium phthalocyanine wet cake obtained in Synthesis Example 2 was added to 100 parts by weight of water, and the mixture was stirred at room temperature for 30 minutes. Thereafter, 9 ml of each aromatic compound shown in the right column of Table 6 was added, and the mixture was further stirred at room temperature for 1 hour. After stirring, water was separated, 80 parts by weight of methanol was added, and the mixture was stirred and washed at room temperature for 1 hour.
  • lid mouth cyanine crystals of Examples 17 to 22 and Comparative Synthesis Examples 3 to 8 The powder XRD spectra of the phthalocyanine crystals of Examples 17-22 and Comparative Synthesis Examples 3-8 are shown in FIGS. 19-30, respectively. Fig.
  • a phthalocyanine crystal precursor 33 parts by weight of the wet cake of the low crystalline phthalocyanine composition obtained in Synthesis Example 3 was added to 90 parts by weight of water, and the mixture was stirred at room temperature for 30 minutes. Thereafter, 9 ml of each aromatic compound shown in the right column of Table 7 was added, and the mixture was further stirred at room temperature for 1 hour. After stirring, water was separated, 80 parts by weight of methanol was added, and the mixture was stirred and washed at room temperature for 1 hour. After washing, it is filtered, and 80 parts by weight of methanol is added again.
  • the oxytita-um phthalocyanine mixed crystals of Examples 23 to 25 and Comparative Synthesis Examples 9 to 12 are all CuKo; characteristic X-rays (wavelength 1 Bragg angle (2 ⁇ ⁇ 0.2 °) with respect to 541A). 27.2 It had a main diffraction peak at 2 °.
  • the electrophotographic photoreceptors of Examples 26 to 34 and Comparative Examples 3 to 12 were evaluated for electrical characteristics in the same manner as the evaluations of Examples 9 to 16, and the electrophotographic examples of Examples 26 to 34 and Comparative Examples 3 to 12 were evaluated.
  • the evaluation results of the electrical characteristics of the photoreceptor are shown in Table 8 and Table 9 below.
  • Examples and Comparative Examples using phthalocyanine crystals obtained by contacting an aromatic compound having a similar structure and a phthalocyanine crystal precursor are shown side by side in the vertical direction. ing.
  • the phthalocyanine crystals of Examples 17 to 25 obtained through the step of converting the crystal form by contacting a phthalocyanine crystal precursor with a specific substituent-containing aromatic compound (ie, the present invention) It has been clarified that the phthalocyanine crystal of the invention can obtain a high standard humidity sensitivity En when used in an electrophotographic photoreceptor.
  • a phthalocyanine crystal precursor 40 parts by weight of the low crystalline oxytitanium phthalocyanine wet cake obtained in Synthesis Example 2 was put into 90 parts by weight of water and stirred for 30 minutes at room temperature. Thereafter, 9 ml of each of the contact treatment liquids of Examples 35 to 68 shown in Table 10 below (a solution obtained by mixing a specific organic acid compound with a non-acidic organic compound at a predetermined concentration) was added, and the mixture was further stirred at room temperature for 1 hour. After stirring, water was separated, 80 parts by weight of methanol was added, and the mixture was stirred and washed at room temperature for 1 hour. After washing, the mixture was filtered, and 80 parts by weight of methanol was added again, followed by stirring and washing for 1 hour.
  • phthalocyanine crystals of Examples 35 to 69 as appropriate.
  • Examples 35 to 68 described above instead of the contact treatment liquids of Examples 35 to 68, the contact treatment liquids of Comparative Synthesis Examples 13 and 14 shown in Table 11 below (consisting only of non-acidic organic compounds) Except for using 9 ml of each, the same operation as in Examples 35 to 68 was carried out to obtain crystals having oxytitanium phthalocyanine alone (hereinafter referred to as Comparative Synthesis Example 1 as appropriate). It is called 3, 14 phthalocyanine crystals. ).
  • Powder XRD spectra of the phthalocyanine crystals of Examples 35 to 69 and Comparative Synthesis Examples 13 and 14 were measured.
  • the obtained powder XRD spectra all have a main diffraction peak at CuK o; Bragg angle (2 0 ⁇ 0.2 °) 27.2 ° with respect to characteristic X-ray (wavelength 1.541 A). there were.
  • a powder X-ray diffraction spectrum having almost the same shape was obtained regardless of the presence or absence of the specific organic acid compound.
  • powder XRD spectra of the phthalocyanine crystals obtained in Examples 35, 64, 65, 67, and 68 are shown in FIGS. 38 to 42, respectively.
  • the powder XRD spectrum of the mouth cyanine crystal is mainly the Bragg angle (2 0 ⁇ 0. 2 °) 27.2 ° with respect to the CuKa characteristic X-ray (wavelength 1.541 A). It has a diffraction peak.
  • Example 69 In Example 69 described above, except that 100 ml of tetrahydrofuran was used in place of the tetrahydrofuran solution of 3-chlorobenzoic acid, a crystal having a single strength of oxytitanium phthalocyanine was obtained by performing the same operation as in Example 69. (This is hereinafter referred to as the phthalocyanine crystal of Comparative Synthesis Example 15 as appropriate.) O The powder XRD spectrum of the phthalocyanine crystal of Comparative Synthesis Example 6 was measured. The obtained powder XRD spectrum was the phthalocyanine crystal of Example 69 described above. The powder had almost the same shape as the powder XRD spectrum (Fig. 43).
  • a phthalocyanine crystal precursor 33 parts by weight of the wet cake of the low crystalline phthalocyanine composition obtained in Synthesis Example 3 was added to 90 parts by weight of water, and the mixture was stirred at room temperature for 30 minutes. Thereafter, 9 ml of each of the contact treatment liquids of Examples 70 to 74 shown in Table 11 below (a solution in which a specific organic acid compound was mixed with a non-acidic organic compound at a predetermined concentration) was added, and the mixture was further stirred at room temperature for 1 hour. After stirring, water was separated, 80 parts by weight of methanol was added, and the mixture was stirred and washed at room temperature for 1 hour. After washing, it is filtered, and 80 parts by weight of methanol is added again.
  • each of the obtained powder XRD spectra had a main diffraction peak at a Bragg angle (2 0 ⁇ 0.2 °) 27.2 ° with respect to CuKo; characteristic X-ray (wavelength 1.541 A). Also, these powder X-ray diffraction spectra were almost the same shape.
  • the powder XRD spectrum of the phthalocyanine crystal obtained in Example 70 is shown in FIG.
  • electrophotographic photosensitive members were manufactured according to the above-described photosensitive member manufacturing method (hereinafter referred to as the electrophotographic photosensitive members of Examples 75 to 114 as appropriate).
  • Tables 12 and 13 below show the correspondence between each electrophotographic photosensitive member, the lid mouth cyanine crystal used as the charge generation material, and the composition thereof.
  • the electrophotographic photosensitive members of Examples 75 to 114 and Comparative Examples 13 to 15 were evaluated for electrical characteristics in the same manner as the evaluations of Examples 9 to 16, and the electrophotographic images of Examples 75 to 114 and Comparative Examples 13 to 15 were evaluated.
  • the evaluation results of the sensitivity retention rate for the true photoconductor are shown in Table 12 and Table 13 below.
  • Examples and Comparative Examples using phthalocyanine crystals obtained using the same non-acidic organic compound are shown side by side.
  • the electrophotographic photosensitive member of Comparative Example 13 had a standard humidity sensitivity En of almost the same as that of the electrophotographic photosensitive member of the example.
  • the electrophotographic photosensitive member of the example using the phthalocyanine crystal obtained by contacting with the non-acidic organic compound and the specific organic acid compound was obtained by contacting with the non-acidic organic compound only.
  • the electrophotographic photosensitive member of the comparative example using crystals it can be seen that the sensitivity fluctuation with respect to the humidity change is small and more preferable.
  • the electrophotographic photosensitive member was prepared according to the same procedure as Example 115 except that 1.25 parts by weight of trimellitic organic acid anhydride was used instead of 1.25 parts by weight of 3-chlorobenzoic acid. Manufactured. This is hereinafter referred to as the electrophotographic photoreceptor of Example 116 as appropriate.
  • a phthalocyanine crystal precursor 40 parts by weight of a low crystalline oxytitanium phthalocyanine wet cake obtained in Synthesis Example 2 was added to 100 parts by weight of water, and the mixture was stirred at room temperature for 30 minutes. Thereafter, 9 ml of each of the contact treatment liquids of Examples 117 to 131 shown in Table 15 below (a solution obtained by mixing a non-acidic specific organic compound with an electron-withdrawing specific aromatic compound at a predetermined concentration) was added, and further at room temperature. Stir for hours. After stirring, water was separated, 80 parts by weight of methanol was added, and the mixture was stirred and washed at room temperature for 1 hour.
  • Powder XRD spectra of the phthalocyanine crystals of Examples 117 to 131 were measured. Each of the obtained powder XRD spectra had a main diffraction peak at a Bragg angle (2 0 ⁇ 0.2 °) 27.2 ° with respect to CuKo; characteristic X-ray (wavelength 1.541 A). When the same non-acidic specific organic compound was used, a powder X-ray diffraction spectrum with almost the same shape was obtained regardless of the presence or absence of the electron-withdrawing specific aromatic compound. As representative examples, powder XRD spectra of phthalocyanine crystals obtained in Examples 128 to 131 are shown in FIGS. 45 to 48, respectively.
  • Example 132 40 g of wet cake of low crystalline oxytitanium phthalocyanine (phthalocyanine crystal precursor) obtained in Synthesis Example 2 is added to 1 OO ml of tetrahydrofuran (non-acidic specific organic compound) 15 g of phthalide (electron-withdrawing specific aromatic compound) was added to the mixed solution (the contact treatment liquid of Example 132 shown in Table 15 below) and stirred at room temperature for 3 hours. After stirring, the crystals were separated by filtration and dried by heating in a vacuum drier to obtain crystals composed of oxytitanium phthalocyanine alone (hereinafter referred to as phthalocyanine crystals of Example 132 as appropriate).
  • Example 132 The powder XRD spectrum of the crystals is shown in FIG. As shown in Fig. 49, the powder XRD spectrum of the phthalocyanine crystal of Example 132 shows the Bragg angle (2 0 ⁇ 0.2 °) for CuKa characteristic X-ray (wavelength 1.541 A) 27.2 It had a main diffraction peak at ° C.
  • a phthalocyanine crystal precursor 33 parts by weight of the wet cake of the low crystalline phthalocyanine composition obtained in Synthesis Example 3 was added to 90 parts by weight of water, and the mixture was stirred at room temperature for 30 minutes. Thereafter, the contact treatment liquids of Examples 133 to 136 shown in Table 16 below (a non-acidic specific organic compound 3-clonal benzaldehyde was mixed with an electron-withdrawing specific aromatic compound at a predetermined concentration). Each solution was added with 9 ml and stirred at room temperature for 1 hour. After stirring, water was separated, 80 parts by weight of methanol was added, and the mixture was stirred and washed at room temperature for 1 hour.
  • Powder XRD spectra of the phthalocyanine crystals of Examples 133 to 136 were measured. Each of the obtained powder XRD spectra had a main diffraction peak at a Bragg angle (2 0 ⁇ 0.2 °) 27.2 ° with respect to CuKo; characteristic X-ray (wavelength 1.541 A). Also, these powder X-ray diffraction spectra were almost the same shape. As a representative example, a powder XRD spectrum of the phthalocyanine crystal obtained in Example 133 is shown in FIG.
  • electrophotographic photoreceptors were produced according to the above [Photoreceptor Production Method] (hereinafter referred to as the electrophotographic photoreceptors of Examples 137 to 156 as appropriate). 0 and each of the electrophotographic photosensitive member, the correspondence between the full Taroshianin crystal and its composition was used as a charge generating material, shown in the following Table 17 and Table 18.
  • the electrophotographic photosensitive member of Comparative Example 13 has the standard humidity sensitivity En is the electrophotographic example.
  • the photoconductor when comparing the value of sensitivity retention, the electrophotograph of an example using a phthalocyanine crystal obtained by contact with a non-acid specific organic compound and an electron-withdrawing specific aromatic compound
  • the photoconductor has a change in humidity compared to the electrophotographic photoconductor of the comparative example using the phthalocyanine crystal obtained by contacting only the non-acidic specific organic compound. Therefore, it is more preferable that there is less variation in the sensitivity to.
  • Example 15 In the above-mentioned [Photoconductor manufacturing method], 20 parts by weight of the phthalocyanine crystal of Example 1 is used as the charge generation material in the fine dispersion treatment step in preparing the coating solution for the charge generation layer, and phthalide 1
  • An electrophotographic photosensitive member was manufactured according to the above-mentioned procedure of [Method for manufacturing photosensitive member] except that 25 parts by weight were used together. This is referred to as appropriate in Example 15 below.
  • an electrophotographic photosensitive member was produced in the same manner as in Example 157 except that 1.25 parts by weight of 2-sulfobenzoic anhydride was used instead of 1.25 parts by weight of phthalide. This is hereinafter referred to as the electrophotographic photoreceptor of Example 158 as appropriate.
  • the above-described effects (improvement of sensitivity and humidity of the use environment) of the phthalocyanine crystal of the present invention can be obtained only by adding the above-mentioned electron-withdrawing specific aromatic compound during the preparation of the charge generation layer coating solution. It was found that the effect of suppressing sensitivity fluctuations to changes was small.
  • a cylinder made of an aluminum alloy with an outer diameter of 30 mm, a length of 350 mm, and a wall thickness of 1. Omm with a rough surface iJ (Rmax l. 2) is anodized, and then nickel acetate is the main component. By performing sealing treatment with a sealant, an anodic oxide coating (approx. 6 ⁇ m) A lumite film).
  • the cylinder was dipped in the charge generating layer forming coating solution prepared in Example 87 previously to form a charge generating layer so that the film thickness after drying was 0.4 m.
  • a polycarbonate resin having 51 mol% of the repeating unit represented by (G) and 49 mol% of the repeating unit represented by the structural formula (H) and having a terminal structural formula derived from p-t butylphenol.
  • An electrophotographic photosensitive member is produced by dip-coating the previously formed charge generation layer-formed cylinder in this charge transport layer forming coating solution and providing a 35 ⁇ m thick charge transport layer after drying. did. This is referred to as the electrophotographic photoreceptor of Example 159.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 159 except that the thickness of the charge transport layer was 30 m. This is referred to as an electrophotographic photosensitive member of Example 160.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 159 except that the thickness of the charge transport layer was 25 ⁇ m. This is the same as the electrophotographic photoreceptor of Example 161!
  • An electrophotographic photosensitive member was produced in the same manner as in Example 159 except that the thickness of the charge transport layer was 20 m. This is referred to as an electrophotographic photosensitive member of Example 162.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 159 except that the thickness of the charge transport layer was 15 m. This is referred to as an electrophotographic photosensitive member of Example 163.
  • Example 159 instead of the coating solution for forming the charge generation layer used in Example 159, it was prepared in Example 105.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 159 except that the charge generation layer forming coating solution was used. This is referred to as an electrophotographic photosensitive member of Example 164.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 164 except that the thickness of the charge transport layer was changed to 30 m. This is referred to as an electrophotographic photosensitive member of Example 165.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 164 except that the thickness of the charge transport layer was 25 ⁇ m. This is referred to as an electrophotographic photosensitive member of Example 166.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 164 except that the thickness of the charge transport layer was 20 m. This is referred to as an electrophotographic photosensitive member of Example 167.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 164 except that the thickness of the charge transport layer was 15 m. This is referred to as the electrophotographic photoreceptor of Example 168.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 159 except that the charge generation layer forming coating solution prepared in Example 97 was used instead of the charge generation layer forming coating solution used in Example 159. This is referred to as an electrophotographic photosensitive member of Example 169.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 169 except that the thickness of the charge transport layer was 30 m. This is referred to as an electrophotographic photosensitive member of Example 170.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 169 except that the thickness of the charge transport layer was 25 ⁇ m. This is the electrophotographic photoreceptor of Example 171! / 171.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 169 except that the thickness of the charge transport layer was 20 m. This is referred to as an electrophotographic photoreceptor of Example 172.
  • Example 173 An electrophotographic photosensitive member was produced in the same manner as in Example 169 except that the thickness of the charge transport layer was 15 m. This is referred to as an electrophotographic photosensitive member of Example 173.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 159 except that the charge generation layer forming coating solution prepared in Example 79 was used instead of the charge generation layer forming coating solution used in Example 159. This is referred to as an electrophotographic photosensitive member of Example 174.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 174 except that the thickness of the charge transport layer was 30 m. This is referred to as an electrophotographic photoreceptor of Example 175.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 174 except that the thickness of the charge transport layer was 25 ⁇ m. This is referred to as an electrophotographic photosensitive member of Example 176.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 174 except that the thickness of the charge transport layer was 20 m. This is referred to as an electrophotographic photosensitive member of Example 177.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 174 except that the thickness of the charge transport layer was 15 m. This is referred to as an electrophotographic photosensitive member of Example 178.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 159 except that the charge generation layer forming coating solution prepared in Example 145 was used instead of the charge generation layer forming coating solution used in Example 159. . This is referred to as an electrophotographic photoreceptor of Example 179.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 179 except that the thickness of the charge transport layer was 30 m. This is referred to as an electrophotographic photosensitive member of Example 180.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 179 except that the thickness of the charge transport layer was 25 ⁇ m. This is the electrophotographic photoreceptor of Example 181! / ⁇ ⁇ .
  • Example 182
  • An electrophotographic photosensitive member was produced in the same manner as in Example 179 except that the thickness of the charge transport layer was 20 m. This is referred to as an electrophotographic photoreceptor of Example 182.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 179 except that the thickness of the charge transport layer was 15 m. This is referred to as an electrophotographic photosensitive member of Example 183.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 159 except that the charge generation layer forming coating solution prepared in Example 144 was used instead of the charge generation layer forming coating solution used in Example 159. . This is referred to as an electrophotographic photosensitive member of Example 184.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 184 except that the thickness of the charge transport layer was 30 m. This is referred to as an electrophotographic photosensitive member of Example 185.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 184 except that the thickness of the charge transport layer was 25 ⁇ m. This is referred to as an electrophotographic photosensitive member of Example 186.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 184 except that the thickness of the charge transport layer was 20 m. This is referred to as an electrophotographic photosensitive member of Example 187.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 184 except that the thickness of the charge transport layer was 15 m. This is referred to as an electrophotographic photosensitive member of Example 188.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 159 except that the charge generation layer forming coating solution prepared in Example 9 was used instead of the charge generation layer forming coating solution used in Example 159. . This is referred to as an electrophotographic photosensitive member of Example 189.
  • Example 190 instead of the charge generation layer forming coating solution used in Example 159, it was prepared in Example 26.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 159 except that the charge generation layer forming coating solution was used. This is referred to as an electrophotographic photosensitive member of Example 190.
  • An electrophotographic photosensitive member was produced in the same manner as in Example 159 except that the charge generation layer forming coating solution prepared in Comparative Example 15 was used instead of the charge generation layer forming coating solution used in Example 159. did. This is referred to as the electrophotographic photoreceptor of Comparative Example 16.
  • An electrophotographic photosensitive member was produced in the same manner as in Comparative Example 16, except that the thickness of the charge transport layer was 30 m. This is referred to as the electrophotographic photoreceptor of Comparative Example 17.
  • An electrophotographic photosensitive member was produced in the same manner as in Comparative Example 16 except that the thickness of the charge transport layer was 25 ⁇ m. This is referred to as the electrophotographic photoreceptor of Comparative Example 18.
  • An electrophotographic photosensitive member was produced in the same manner as in Comparative Example 16 except that the thickness of the charge transport layer was 20 m. This is referred to as the electrophotographic photoreceptor of Comparative Example 19.
  • An electrophotographic photosensitive member was produced in the same manner as in Comparative Example 16 except that the thickness of the charge transport layer was 15 m. This is the same as the electrophotographic photosensitive member of Comparative Example 20.
  • the charger is placed at an angle of 0 °, the exposure device and the surface potential meter probe at 90 °, and the charge eliminator at an angle of 270 °.
  • the distance between the charger, the surface potential meter probe, and the charge remover is 2mm.
  • the scorotron charger is set to discharge in the dark so that the surface potential of the photoconductor is about -700 V.
  • the photoconductor after standing for 8 hours in an environment of 5% rh was charged by passing it through the surface of the photoconductor at a constant rotation speed (30 rpm).
  • the photoconductor was placed on an electrophotographic characteristic evaluation apparatus manufactured according to the standard of the Electrophotographic Society ["Basics and Applications of Secondary Electrophotographic Technology” (published by the Electrophotographic Society, published by Corona, page 404, 405)]. After mounting, the electrical characteristics were evaluated by cycles of charging, exposure, potential measurement and static elimination.
  • the charger was placed at 70 °, the exposure device at 0 °, the surface potentiometer probe at 36 °, and the static eliminator at an angle of –150 °.
  • a scorotron charger was used for charging.
  • As the exposure lamp a halogen lamp JDR1 10V-85WLNZK7 manufactured by Usio Electric Co., Ltd. was used, and a monochromatic light of 780 nm was obtained using a filter MX0780 manufactured by Asahi Spectroscopic Co., Ltd. A 660 nm LED light was used as the static elimination light.
  • the initial surface potential of the photoconductor is 700V while rotating the photoconductor at a constant rotation speed (60rpm) after leaving it in an environment of 25 ° C, 2 ° C, and relative humidity of 50% rh ⁇ 5% for 8 hours. Then, the surface of the charged photoconductor surface was exposed to the 780nm monochromatic light, and the surface potential was measured when it reached the probe position of the surface electrometer (100ms between exposure and potential measurement). )
  • the 780nm monochromatic light is passed through the ND filter to change the amount of light, and the exposure dose is 0 to 10 times the half exposure dose E.
  • the surface potential at each exposure dose is irradiated.
  • NL environment a temperature of 25 ° C ⁇ 2 ° C and a relative humidity of 10% rh ⁇ 5% Environment (room temperature and humidity)
  • V post-exposure potential in the NL environment at each exposure dose
  • an image formed using the electrophotographic photoreceptor was evaluated by the following evaluation method.
  • the electrophotographic photosensitive member was mounted on a cartridge for the digital copying machine DIALTA Di350 manufactured by Minolta, and the cartridge was mounted on the copying machine.
  • This copier is left for 24 hours in an environment with a temperature of 35 ° C ⁇ 2 ° C and a relative humidity of 83% ⁇ 5%, and then further 5 ° C, 2 ° C, and a relative humidity of 10% rh ⁇ 5.
  • a halftone image was printed after leaving it for 5 hours in a% environment.
  • the Minolta copier is a device that charges the electrophotographic photosensitive member with a scorotron charger and develops it using a two-component contact development system, and black lines are likely to occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)

Abstract

 高い感度を有し、且つ、使用環境の湿度変化に対する感度の変動が少なく、太陽電池、電子ペーパー、電子写真感光体等の材料として好適に用いることのできる、優れたフタロシアニン結晶を提供する。フタロシアニン結晶前駆体を芳香族アルデヒド化合物に接触させることにより結晶型を変換する工程を経て得られるフタロシアニン結晶。また、高感度であるとともに、使用環境の湿度変化に対する感度変動の少ない電子写真感光体。更には、この電子写真感光体を用いることにより、使用環境の湿度変化に対して安定した画質の画像を提供することの出来る電子写真感光体カートリッジ及び画像形成装置を提供する。

Description

明 細 書
フタロシアニン結晶、並びにそれを用いた電子写真感光体、電子写真感 光体カートリッジ、及び画像形成装置
技術分野
[0001] 本発明は、フタロシアニン結晶前駆体の結晶型を変換して得られるフタロシアニン 結晶、並びに、そのフタロシアニン結晶を用いた電子写真感光体、電子写真感光体 カートリッジ、及び画像形成装置に関する。特に、 LED光や半導体レーザー光に対 して高い感度を有するとともに、使用環境の湿度変化に対する感度の変動が少なぐ 太陽電池、電子ペーパー、電子写真感光体等の材料として好適に用いることのでき る、優れたフタロシアニン結晶、並びに、高い感度を有するとともに、使用環境の湿度 変化に対する感度の変動が少ない電子写真感光体、電子写真感光体カートリッジ、 及び画像形成装置に関する。
背景技術
[0002] 近年、有機系の光導電材料を使用した、太陽電池、電子ペーパー、電子写真等に 利用可能な有機光デバイスが鋭意検討されている。この中でも特に電子写真技術は 、即時性に優れ、高品質の画像が得られること等から、近年では複写機の分野にとど まらず、各種のプリンター、印刷機の分野でも広く応用されてきている。
[0003] 電子写真技術の中核となる電子写真感光体 (以下、適宜「感光体」と略称すること がある。)としては、従来、セレン、砒素—セレン合金、酸ィ匕亜鉛といった無機系の光 導電材料を使用した感光体が用いられてきたが、最近では、無公害である、成膜,製 造が容易である、材料選択'組み合わせの自由度が高い等の利点を有する有機系 の光導電材料を使用した感光体が主流となって 、る。
[0004] 有機系の光導電性材料を使用した電子写真感光体の感度は、露光光の波長、電 荷発生物質の種類によって異なる。
[0005] 600〜800nmの長波長光に対して感度を有する電荷発生物質としては、フタロシ ァニン化合物が注目を浴びており、特に、クロロアルミ-ゥムフタロシアニン、クロロイ ンジゥムフタロシア-ン、ォキシバナジウムフタロシア-ン、ヒドロキシガリウムフタロシ ァニン、クロ口ガリウムフタロシア-ン、マグネシウムフタロシア-ン、ォキシチタニウム フタロシアニン等の金属含有フタロシアニン、或いは無金属フタロシアニン等につ ヽ ての研究が精力的に行なわれて!/、る。
[0006] フタロシアニン化合物については、単分子構造が同一であっても、単分子の集合 体である結晶の配列規則性 (結晶型)の違いにより、電荷発生効率が異なることが報 告されている (非特許文献 1、 2参照)。
[0007] 近年の複写機、レーザープリンター、普通紙ファックス等における電子写真プロセ スの高速化'フルカラー化に伴い、電子写真感光体の特性として、高感度化、高速応 答化が必須となっており、より高感度な電荷発生物質の開発が必須となっている。
[0008] 高感度のためには電荷発生能力の高い電荷発生物質が必須である。その中でも、 現在主流となっている LD露光に高感度を示すォキシチタニウムフタロシアニンに関 して、盛んに研究が行なわれている。前記ォキシチタニウムフタロシアニンは結晶多 型を示すことが知られている。公知の結晶型としては、 α型 (特許文献 1参照)、)8型 (特許文献 2参照)、 C型 (特許文献 3参照)、 D型 (特許文献 4参照)、 Υ型 (特許文献 5参照)、 Μ型 (特許文献 6参照)、 Μ— α型 (特許文献 7参照)、 I型 (特許文献 8参照 )など、数多くの結晶型が報告されている。
[0009] これら結晶型の中でも、 CuK a特性 X線 (波長 1. 541A)に対するブラッグ角(2 Θ
±0. 2° ) 27. 2° に主たる回折ピークを有する結晶型(以下適宜「特定結晶型」と いう場合がある。)が、高い量子効率を示し、高感度を示すことが知られている。
[0010] また、ォキシチタニウムフタロシアニン分子単体のみで構成される結晶以外にも、ォ キシチタニウムフタロシアニンと他のフタロシア-ン類ゃ他の顔料等と力 なる混晶で も、上記の特定結晶型を形成し、高感度を示すことが広く知られている(特許文献 9 参照)。
前記の、特定結晶型のォキシチタニウムフタロシアニンを含有するフタロシアニン結 晶型類は、非常に高い感度を有することが知られている。この高感度は、結晶中に水 分子が存在し、増感剤として機能することにより発現していると考えられ、この増感剤 として働 、て 、る水分子は、結晶のおかれて 、る環境の湿度の変化により結晶の中 と外を自由に出入りしており、結晶のおかれている環境の湿度が低くなると結晶中か ら水分子が脱離し、感度が低下すると 、う欠点を有して 、る。
この湿度の低下に伴う水分子の脱離による感度の低下という欠点は、電子写真感 光体としてレーザープリンター、複写機等に用いた場合に、通常の湿度の状態と、乾 燥して湿度の低くなつた状態で出力した両方の画像との間に、得られる画像濃度が 異なるという問題点となって現れる。特に近年幅広く普及してきているフルカラーレー ザ一プリンターや複写機において、画像濃度の低下が、フルカラー画像の色調の変 化等で顕著にあらわれるため大きな問題となってきている。
この様に特定結晶型のォキシチタニウムフタロシアニンを含有するフタロシアニン結 晶型類は、高感度である反面、使用する環境の変化によって特性が大きく変化して しまうと 、う問題点を有して 、る。
一方で、特定結晶型のォキシチタニウムフタロシアニンよりも、湿度の変化に対して 電気特性の変化が少な ヽ電荷発生物質として、 V型ヒドロキシガリウムフタロシアニン が報告されて 、る。この V型ヒドロキシガリウムフタロシアニンは湿度変化に対する感 度変動が非常に小さいという利点を有している力 特定結晶型のォキシチタニウムフ タロシアニンと比較して感度が劣り、近年の、単位時間当たりに多くの枚数をフルカラ 一印刷するような高速の画像形成装置の要求には、電気特性が不十分であるのが 現状である (非特許文献 3参照)。
更に、特定結晶型のォキシチタニウムフタロシアニンの湿度変化に対する感度変化 を抑制するために、電荷発生層に保湿剤を添加する方法が報告されて!ヽる (特許文 献 10〜12参照)が、これらの技術では、残留電位に係る湿度依存性のみが改善さ れて、湿度変化による感度変動は十分に改良されない。湿度依存による画像劣化は 黒ベタ画像ではなぐハーフトーン画像において生じやすいため、感度の変動を小さ くする必要がある。実際に特定結晶型のォキシチタニウムフタロシアニンの光減衰曲 線においては、湿度の変化に対してハーフトーンに係る電位部分 (電位の絶対値が 、 100〜300V付近)の変動が大きいことが分かっており、この電位変動を小さくする 要求には、未だ不十分なものであった。
非特許文献 1 :電子写真学会誌、第 29卷、第 3号、第 250〜258頁
非特許文献 2 :電子写真学会誌、第 32卷、第 3号、第 282〜289頁 非特許文献 3 : Fuji Xerox Technical Report No.12 1998
特許文献 1 :特開昭 61—217050号公報
特許文献 2:特開昭 62— 67094号公報
特許文献 3:特開昭 63— 366号公報
特許文献 4 :特開平 2— 8265号公報
特許文献 5:特開昭 63— 20365号公報
特許文献 6:特開平 3 - 54265号公報
特許文献 7:特開平 3 - 54264号公報
特許文献 8:特開平 3— 128973号公報
特許文献 9:特開平 3— 9962号公報
特許文献 10 :特開 2003— 207912公報
特許文献 11 :特開 2003— 186217公報
特許文献 12 :特開 2003— 215825公報
発明の開示
発明が解決しょうとする課題
[0012] 上記の特定結晶型を示すフタロシアニン結晶(以下「フタロシアニン結晶」と 、う場 合には、単一種のフタロシア-ンィ匕合物のみで構成される結晶のみならず、複数種 のフタロシア-ンィ匕合物力もなる混晶や、フタロシア-ンィ匕合物と他の分子と力もなる 混晶も含め、フタロシア-ンィ匕合物が含まれる結晶全てを指すものとする。なお、「フ タロシア-ンィ匕合物」については後述する。)は、非常に高い感度を示す。この高い 感度は、水分子が結晶中に存在し、増感剤として機能することにより発現しているが 、この増感剤として働いている水分子は、結晶のおかれている環境の湿度の変化に 伴って結晶の中と外を自由に出入りしているため、湿度が低くなると結晶中から水分 子が脱離し、感度が低下するという課題を有している。
[0013] この湿度の低下に伴う水分子の脱離による感度の低下という課題は、上記の特定 結晶型を有するフタロシアニン結晶を電子写真感光体の材料としてレーザープリンタ 一、複写機等に用いた場合に、通常の湿度の状態で出力した画像と、乾燥し湿度の 低くなつた状態で出力した画像との間で、得られる画像濃度が異なるという課題とな つて現れる。特に、近年幅広く普及してきているフルカラーレーザープリンターゃ複 写機においては、画像濃度の低下が、フルカラー画像の色調の変化等として顕著に 現れるため、大きな課題となっている。
[0014] 上記の特定結晶型を有するフタロシアニン結晶は、前駆体となるフタロシアニン類 を特定の化合物に接触させ、結晶型を変換することによって製造される。この結晶型 変換工程にぉ 、て、用いたィ匕合物分子とフタロシアニン類との相互作用により結晶 型を構築する力 この際、用いる化合物によって、フタロシアニン類との相互作用が 異なり、製造法の違いにより様々な結晶型、粒子形状を示す。また、電荷発生能力( 感度)、帯電性、暗減衰などの電子写真感光体としての特性の面も製造法に依存し ており、その性能を前もって予測することは非常に困難である。
[0015] この様に、上記の特定結晶型を有するフタロシアニン結晶は、高感度である反面、 使用する環境の変化によって特性が大きく変化してしまうという課題を有している。前 述した通り、近年主流となっている高画質で単位時間当たりに多くの枚数をフルカラ 一印刷できるレーザープリンター、複写機等において、より高感度、かつ使用環境の 湿度の変動に対する感度変動の少ない電子写真感光体が広く望まれているが、未 だ開発されて!、な!、のが現状である。
[0016] 本発明は、前記要望を鑑みてなされたものである。すなわち、本発明の目的は、高 い感度を有するとともに、使用環境の湿度変化に対する感度の変動が少ないフタ口 シァニン結晶を提供すること、また、高感度であるとともに、使用環境の湿度変化に 対する感度変動の少ない電子写真感光体を提供すること、更には、この電子写真感 光体を用いることにより、使用環境の湿度変化に対して安定した画質の画像を提供 することの出来る電子写真感光体カートリッジ及び画像形成装置を提供することにあ る。
課題を解決するための手段
[0017] 本発明者らは、フタロシアニン結晶前駆体の結晶型を変換する際に用いる化合物 力 得られる電子写真感光体の湿度の変化に対する感度変動に深く関与していると 推測し、上記課題を解決すべく鋭意検討を行なった結果、フタロシアニン結晶前駆 体を特定の化合物の存在下で結晶型を変換することにより得られたフタロシアニン結 晶が、高い感度を有するとともに、使用環境の湿度変化に対する感度の変動が少な いこと、また、高感度であって、使用環境の湿度変化に対する感度変動が少ない電 子写真感光体を得ることが可能であることを見出し、本発明を完成させるに至った。
[0018] 即ち、本発明の要旨は、フタロシアニン結晶前駆体を芳香族アルデヒド化合物に接 触させることにより結晶型を変換する工程を経て得られることを特徴とする、フタロシ ァニン結晶に存する。
本発明の更に別の要旨は、有機酸、有機酸無水物及びへテロ原子を有する有機 酸エステル力 なる群より選ばれる少なくとも一種の化合物の存在下、酸性を示す官 能基を有さない有機化合物に、フタロシアニン結晶前駆体を接触させることにより結 晶型を変換する工程を経て得られることを特徴とする、フタロシアニン結晶に存する。 本発明の更に別の要旨は、 1013hPa、 25°Cの条件下において固体であり、電子 吸引性の置換基を有する芳香族化合物の存在下、 1013hPa、 25°Cの条件下にお いて液体状態であり、酸性を示す官能基を有さない有機化合物と、フタロシアニン結 晶前駆体とを接触させることにより結晶型を変換する工程を経て得られることを特徴と する、フタロシアニン結晶に存する。
[0019] 本発明の別の要旨は、酸素原子を含有する基、及び、原子量 30以上のハロゲン原 子を置換基として有する芳香族化合物に、フタロシアニン結晶前駆体を接触させるこ とにより結晶型を変換する工程を経て得られることを特徴とする、フタロシアニン結晶 に存する。
[0020] ここで、前記の酸素原子を含有する基が、カルボ二ル基を有する有機基、ニトロ基 及びエーテル基力もなる群より選ばれる基であることが好ましい。
[0021] ここで、前記の結晶型を変換する工程を、水の存在下で行なうことが好ま 、。
また、フタロシアニン結晶がォキシチタニウムフタロシアニンを含有する結晶である ことが好ましい。
[0022] また、上述のフタロシアニン結晶は、いずれも、 CuK a特性 X線(波長 1. 541 A) に対するブラッグ角(2 0 ±0. 2° ) 27. 2° に主たる回折ピークを示すことが好まし い。
[0023] 本発明の別の要旨は、導電性支持体上に感光層を有する電子写真感光体におい て、該感光層が、上述のフタロシアニン結晶を含有することを特徴とする、電子写真 感光体に存する。
本発明の別の要旨は、感光層の膜厚が 35±2. 5 mの感光体において、温度 25 °C、相対湿度 50%rhにおける半減露光量 E1Z2が下記式(1)を満たす力、感光層 の膜厚が 30±2. 5 μ mの感光体において、温度 25°C、相対湿度 50%rhにおける 半減露光量 E1Z2が下記式(2)を満たすか、感光層の膜厚が 25 ±2. 5 mの感光 体において、温度 25°C、相対湿度 50%rhにおける半減露光量 E1Z2が下記式(3) を満たすか、感光層の膜厚が 20±2. 5 μ mの感光体において、温度 25°C、相対湿 度 50%rhにおける半減露光量 E1Z2が下記式 (4)を満たすか、或いは感光層の膜 厚が 15±2. 5 μ mの感光体において、温度 25°C、相対湿度 50%rhにおける半減 露光量 E1Z2が下記式(5)を満たすものであって、かつ、温度 25°C、相対湿度 50 %rhにおける光減衰曲線と温度 25°C、相対湿度 10%rhにおける光減衰曲線とを比 較したときに、露光量が 0〜半減露光量の 10倍までの範囲において、同じ露光量に おける表面電位の差の絶対値が 50Vを越えない電子写真感光体に存する。
El/2≤ 0. 059 (1)
(上記式(1)において、 El/2は感光体の表面電位 V0の絶対値 I V0 Iを 550Vか ら 275Vまで減衰させるのに必要とする 780nmの波長の光の露光量( j/cm2)を 表す)
El/2≤ 0. 061 (2)
(上記式(2)において、 El/2は感光体の表面電位 V0の絶対値 I V0 Iを 550Vか ら 275Vまで減衰させるのに必要とする 780nmの波長の光の露光量( j/cm2)を 表す)
El/2≤ 0. 066 (3)
(上記式(3)において、 El/2は感光体の表面電位 V0の絶対値 I V0 Iを 550Vか ら 275Vまで減衰させるのに必要とする 780nmの波長の光の露光量( j/cm2)を 表す)
El/2≤ 0. 079 (4)
(上記式(4)において、 El/2は感光体の表面電位 V0の絶対値 I V0 Iを 550Vか ら 275Vまで減衰させるのに必要とする 780nmの波長の光の露光量( j/cm2)を 表す)
El/2≤ 0. 090 (5)
(上記式(5)において、 El/2は感光体の表面電位 V0の絶対値 I V0 Iを 550Vか ら 275Vまで減衰させるのに必要とする 780nmの波長の光の露光量( j/cm2)を 表す)
ここで、上述の何れの電子写真感光体においても、該感光層が、ォキシチタニウム フタロシアニンを含有することが好まし 、。
また、本発明の別の要旨は、上述の何れかの電子写真感光体と、該電子写真感光 体を帯電させる帯電部、帯電した該電子写真感光体を露光させ静電潜像を形成す る露光部、該電子写真感光体上に形成された静電潜像を現像する現像部、及び該 電子写真感光体上をクリーニングするクリーニング部のうち少なくとも一つ、とを備え ることを特徴とする電子写真感光体カートリッジに存する。
[0024] また、本発明の別の要旨は、上述の電子写真感光体と、該電子写真感光体を帯電 させる帯電部と、帯電した該電子写真感光体を露光させ静電潜像を形成する露光部 と、該電子写真感光体上に形成された静電潜像を現像する現像部とを備えたことを 特徴とする、画像形成装置に存する。
発明の効果
[0025] 本発明のフタロシアニン結晶は、高い感度を有するとともに、使用環境の湿度変化 に対する感度の変動が少な 、と 、う利点を有する。
また、本発明の電子写真感光体は、高感度であって、且つ、使用環境の湿度変化 に対する感度変動が少な 、と 、う利点を有する。
また、本発明の電子写真感光体カートリッジ及び画像形成装置は、使用環境の湿 度変化に対して安定した画質の画像を提供することが出来るという利点を有する。 図面の簡単な説明
[0026] [図 1]本発明の画像形成装置の一実施態様の要部構成を示す概略図である。
[図 2]低結晶性フタロシアニン類の粉末 X線回折スペクトルの例を示す。
[図 3]低結晶性フタロシアニン類の粉末 X線回折スペクトルの例を示す。 [図 4]アモルファス性フタロシアニン類の粉末 X線回折スペクトルの例を示す。
[図 5]アモルファス性フタロシアニン類の粉末 X線回折スペクトルの例を示す。
[図 6]合成例 1で得られた β型ォキシチタニウムフタロシアニン結晶の粉末 XRDスぺ タトルである。
[図 7]合成例 2で得られた低結晶性ォキシチタニウムフタロシアニンの粉末 XRDスぺ タトルである。
[図 8]実施例 1で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単独の 結晶)の粉末 XRDスペクトルである。
[図 9]実施例 2で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単独の 結晶)の粉末 XRDスペクトルである。
[図 10]実施例 3で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単独 の結晶)の粉末 XRDスペクトルである。
[図 11]実施例 4で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単独 の結晶)の粉末 XRDスペクトルである。
[図 12]比較合成例 1で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン 単独の結晶)の粉末 XRDスペクトルである。
[図 13]合成例 3で得られた低結晶性フタロシアニン組成物 (ォキシチタニウムフタロシ ァニンと無金属フタロシアニンとを含む組成物)の粉末 XRDスペクトルである。
[図 14]実施例 5で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニンと無 金属フタロシアニンとの混晶)の粉末 XRDスペクトルである。
[図 15]実施例 6で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニンと無 金属フタロシアニンとの混晶)の粉末 XRDスペクトルである。
[図 16]実施例 7で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニンと無 金属フタロシアニンとの混晶)の粉末 XRDスペクトルである。
[図 17]実施例 8で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニンと無 金属フタロシアニンとの混晶)の粉末 XRDスペクトルである。
[図 18]比較合成例 2で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン と無金属フタロシアニンとの混晶)の粉末 XRDスペクトルである。 [図 19]実施例 17で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 20]実施例 18で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 21]実施例 19で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 22]実施例 20で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 23]実施例 21で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 24]実施例 22で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 25]比較合成例 3で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン 単独の結晶)の粉末 XRDスペクトルである。
[図 26]比較合成例 4で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン 単独の結晶)の粉末 XRDスペクトルである。
[図 27]比較合成例 5で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン 単独の結晶)の粉末 XRDスペクトルである。
[図 28]比較合成例 6で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン 単独の結晶)の粉末 XRDスペクトルである。
[図 29]比較合成例 7で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン 単独の結晶)の粉末 XRDスペクトルである。
[図 30]比較合成例 8で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン 単独の結晶)の粉末 XRDスペクトルである。
[図 31]実施例 23で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 32]実施例 24で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニンと無 金属フタロシアニンとの混晶)の粉末 XRDスペクトルである。 [図 33]実施例 25で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニンと無 金属フタロシアニンとの混晶)の粉末 XRDスペクトルである。
[図 34]比較合成例 9で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン と無金属フタロシアニンとの混晶)の粉末 XRDスペクトルである。
[図 35]比較合成例 10で得られたフタロシアニン結晶(ォキシチタニウムフタロシア- ンと無金属フタロシアニンとの混晶)の粉末 XRDスペクトルである。
[図 36]比較合成例 11で得られたフタロシアニン結晶(ォキシチタニウムフタロシア- ンと無金属フタロシアニンとの混晶)の粉末 XRDスペクトルである。
[図 37]比較合成例 12で得られたフタロシアニン結晶(ォキシチタニウムフタロシア- ンと無金属フタロシアニンとの混晶)の粉末 XRDスペクトルである。
[図 38]実施例 35で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 39]実施例 64で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 40]実施例 66で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 41]実施例 67で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 42]実施例 68で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 43]実施例 69で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 44]実施例 70で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニンと無 金属フタロシアニンとの混晶)の粉末 XRDスペクトルである。
[図 45]実施例 128で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 46]実施例 139で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。 [図 47]実施例 130で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 48]実施例 131で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 49]実施例 132で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
[図 50]実施例 133で得られたフタロシアニン結晶(ォキシチタニウムフタロシアニン単 独の結晶)の粉末 XRDスペクトルである。
符号の説明
1 感光体 (電子写真感光体)
2 帯電装置 (帯電ローラ;帯電部)
3 露光装置 (露光部)
4 現像装置 (現像部)
5 転写装置
6 クリーニング装置 (クリーニングき 1
7 定着装置
41 現像槽
42 アジテータ
43 供給ローラ
44 現像ローラ
45 規制部材
71 上部定着部材 (定着ローラ)
72 下部定着部材 (定着ローラ)
73 加熱装置
T トナー
P 記録紙 (用紙,媒体)
発明を実施するための最良の形態
以下、本発明を詳細に説明するが、本発明は以下の説明に限定されるものではな ぐその要旨の範囲内において種々に変更して実施することができる。
[I.フタロシアニン結晶]
本発明のフタロシアニン結晶は、フタロシアニン結晶前駆体を、必要に応じて特定 の化合物類の存在下、特定の化合物類に接触させることにより、結晶型を変換する 工程 (以下適宜「結晶型変換工程」と 、う。)を経て得られるものである。
ここで、結晶型変換工程は、フタロシアニン結晶前駆体を接触させる特定の化合物 類 (以下適宜「結晶型変換用接触化合物類」という場合がある。)、及び、その際に必 要に応じて共存させる特定の化合物類 (以下適宜「結晶型変換用共存ィ匕合物類」と いう場合がある。また、結晶型変換用接触化合物類及び結晶型変換用共存化合物 類を纏めて適宜「結晶型変換用化合物類」という場合がある。)の種類に応じて、以 下の (A)〜(D)に分類される。
(A)フタロシアニン結晶前駆体を、芳香族アルデヒドィ匕合物に接触させることにより、 結晶型を変換する。即ち、結晶型変換用接触化合物類として芳香族アルデヒド化合 物を使用する (以下、この芳香族アルデヒドィ匕合物を「結晶型変換用化合物類 (A)」 という場合がある。 ) o
(B)フタロシアニン結晶前駆体を、有機酸、有機酸無水物及びへテロ原子を有する 有機酸エステル力 なる群より選ばれる少なくとも一種の化合物(以下適宜「特定有 機酸化合物」という。)の存在下、酸性を示す官能基を有さない有機化合物 (以下適 宜「非酸性有機化合物」という。)に接触させることにより、結晶型を変換する。即ち、 結晶型変換用共存化合物類として特定有機酸化合物を使用し、結晶型変換用接触 化合物類として非酸性有機化合物を使用する (以下、これらの特定有機酸化合物及 び非酸性有機化合物を併せて「結晶型変換用化合物類 (B)」と ヽぅ場合がある。 )。
(C)フタロシアニン結晶前駆体を、 1013hPa、 25°Cの条件下において固体であり 、電子吸引性の置換基を有する芳香族化合物 (以下適宜「電子吸引性特定芳香族 化合物」という。)の存在下、 1013hPa、 25°Cの条件下において液体状態であり、酸 性を示す官能基を有さな!/ヽ有機化合物 (以下適宜「非酸性特定有機化合物」と ヽぅ。 )に接触させることにより、結晶型を変換する。即ち、結晶型変換用共存化合物類とし て電子吸引性特定芳香族化合物を使用し、結晶型変換用接触化合物類として非酸 性特定有機化合物を使用する (以下、これらの電子吸引性特定芳香族化合物及び 非酸性特定有機化合物を併せて「結晶型変換用化合物類 (C)」 t ヽぅ場合がある。 )
(D)フタロシアニン結晶前駆体を、酸素原子を含有する基、及び、原子量 30以上の ハロゲン原子を置換基として有する芳香族化合物 (以下適宜「特定置換基含有芳香 族化合物」という。 )に接触させることにより、結晶型を変換する。即ち、結晶型変換用 接触化合物類として特定置換基含有芳香族化合物を使用する (以下、この特定置換 基含有芳香族化合物を「結晶型変換用化合物類 (D)」 t ヽぅ場合がある。 )。
結晶型変換工程では、上述の結晶型変換用化合物類 (A)〜(D)のうち、何れか一 種の結晶型変換用化合物類を単独で用いてもよぐ二種以上の結晶型変換用化合 物類を任意の組み合わせ及び比率で併用してもょ 、。
以下の記載では、特に断り書きの無い限り、結晶型変換用化合物類の種類に拠ら ず共通の事項につ!、ては纏めて説明し、結晶型変換用化合物類 (A)〜 (D)の各々 に固有の事項についてのみ個別に説明するものとする。
〔フタロシアニン結晶の糸且成〕
本発明にお 、て「フタロシアニン結晶」とは、一種又は二種以上のフタロシアニン化 合物を含有する結晶をいう。即ち、一種のフタロシア-ンィ匕合物のみで構成される結 晶のみならず、複数種のフタロシア-ンィ匕合物力もなる混晶や、一種又は二種以上 のフタロシア-ンィ匕合物と他の分子とからなる混晶をも含めて、本発明では「フタロシ ァニン結晶」 t\、うものとする。
また、本発明において「フタロシアニン化合物」とは、フタロシアニン骨格を有する化 合物を言う。その具体例としては、無金属フタロシアニン;銅フタロシアニン、亜鉛フタ ロシアニン、鉛フタロシアニン等の、平面分子構造を有するフタロシアニン;ォキシチ タ -ゥムフタロシア-ン、ォキシバナジウムフタロシア-ン、クロロアルミ-ゥムフタロシ ァニン、クロ口ガリウムフタロシア-ン、クロ口インジウムフタロシア-ン、ヒドロキシガリウ ムフタロシアニン等の、分子がシャトルコック構造を有するフタロシアニン;ジクロロ錫 フタロシアニン、ジクロロ珪素フタロシアニン、ジヒドロキシ錫フタロシアニン、ジヒドロキ シ珪素フタロシアニン等の、分子がこま型構造を有するフタロシアニン;等が挙げられ る。
[0031] 本発明のフタロシアニン結晶が単一種のフタロシア-ンィ匕合物力も構成される場合 、電子写真感光体としての特性の面を考慮すると、シャトルコック構造を有するフタ口 シァニンィ匕合物が望ましい。また、シャトルコック構造を有するフタロシア-ンィ匕合物 の中でも、一般的に電子写真感光体としての特性が良好であることから、フタロシア ニンィ匕合物分子の中心金属が、酸化物、塩化物、又は水酸ィ匕物の形態を取ることが 好ましぐフタロシアニン結晶の製造の容易さからは、中心金属が酸化物の形態を取 ることがより好ましい。具体例としては、ォキシチタニウムフタロシアニン又はォキシバ ナジゥムフタロシアニンが特に好ましく、ォキシチタニウムフタロシアニンが最も好まし い。
[0032] 一方、本発明のフタロシアニン結晶が複数種の分子力 なる混晶である場合として は、上述のように、複数種のフタロシア-ンィ匕合物力も構成される(即ち、フタロシア- ン化合物以外の化合物を含まな 、)場合と、一種又は二種以上のフタロシア-ンィ匕 合物と、一種又は二種以上のフタロシア-ンィ匕合物以外の化合物とから構成される ( 即ち、フタロシア-ンィ匕合物以外の化合物を含む)場合とが挙げられるが、結晶安定 性の面から、複数種のフタロシア-ンィ匕合物力も構成される(即ち、フタロシアニン化 合物以外の化合物を含まな!/、)方が好ま 、。
[0033] 本発明のフタロシアニン結晶が混晶の場合、電子写真感光体としての特性の面を 考慮すると、シャトルコック構造を有するフタロシアニン化合物を主成分として含有す ることが好ま U、。この主成分として含有されるフタロシア-ンィ匕合物(以下適宜「主 成分のフタロシア-ンィ匕合物」という。)は、その分子の中心金属が酸化物、塩化物、 又は水酸ィ匕物の形態を取ることが好ましぐフタロシアニン結晶の製造の容易さから は、中心金属が酸ィ匕物の形態を取ることがより好ましい。具体例としては、ォキシチタ -ゥムフタロシアニン又はォキシバナジウムフタロシアニンが特に好ましぐォキシチ タ -ゥムフタロシアニンが最も好まし 、。主成分のフタロシア-ンィ匕合物の含有量は、 混晶であるフタロシアニン結晶に対して、通常 60重量%以上であるが、含有される量 が少ないと結晶型制御性が低下することから、 70重量%以上が好ましぐ分散時の 結晶安定性の点からは、 80重量%以上がより好ましぐ電子写真感光体として用い た際の特性の面からは、 85重量%以上が更に好ましい。
[0034] また、本発明のフタロシアニン結晶が混晶の場合、上述の主成分のフタロシアニン 化合物以外に含有されるフタロシア-ンィ匕合物(以下適宜「主成分以外のフタロシア ニンィ匕合物」という。)としては、混晶としての結晶安定性の面から、シャトルコック構造 を有するフタロシア-ンィ匕合物、又は、平面分子構造を有するフタロシアニン化合物 が好ましい。中でも、電子写真感光体特性の面から、シャトルコック構造を有するフタ ロシアニン化合物の中では、ォキシバナジウムフタロシアニン、クロ口ガリウムフタロシ ァニン、ヒドロキシガリウムフタロシアニン、クロ口インジウムフタロシアニンが好ましく、 平面構造を有するフタロシア-ンィ匕合物の中では、無金属フタロシアニン、亜鉛フタ ロシアニン、鉛フタロシアニンが好ましい。これらの中でも、ォキシバナジウムフタロシ ァニン、クロ口ガリウムフタロシア-ン、クロ口インジウムフタロシア-ン、ヒドロキシガリウ ムフタロシアニン、無金属フタロシアニンがより好ましぐ混晶結晶中での空いた空間 力 り増えることから、平面分子構造を有する無金属フタロシアニンが特に好まし 、。 主成分以外のフタロシア-ンィ匕合物は、一種類のみを使用してもよぐ二種類以上を 任意の組み合わせ及び比率で併用してもよ 、が、一種類のみを用いことが好ま ヽ 。主成分以外のフタロシア-ンィ匕合物の含有量は、混晶であるフタロシアニン結晶に 対して、通常 40重量%以下であるが、多過ぎると結晶型制御性が低下することから、 30重量%以下が好ましぐ分散時の安定性の面からは、 20重量%以下が好ましぐ 電子写真特性の面からは、 15重量%以下が好ましい。但し、主成分以外のフタロシ ァニン化合物の含有量が余りに少な過ぎると、その含有による効果が得られな 、場 合があるため、その含有量は 0. 1重量%以上が好ましぐ 0. 5重量%以上がより好ま しい。
[0035] 〔フタロシアニン結晶前駆体〕
本発明のフタロシアニン結晶は、フタロシアニン結晶前駆体を結晶型変換用化合 物類に接触させることにより結晶型を変換する工程を経て得られるものである。ここで 「フタロシアニン結晶前駆体」とは、結晶型を変換する処理 (以下「結晶型変換処理」 という場合がある。)を施すことにより、フタロシアニン結晶が得られる物質をいう。よつ て、フタロシアニン結晶前駆体は、一種のフタロシア-ンィ匕合物、二種以上のフタ口 シァニンィ匕合物の混合物、一種又は二種以上のフタロシア-ンィ匕合物と一種又は二 種以上の他の化合物との混合物の何れであってもよ!/ヽ(以下の記載ではフタロシア ニンィ匕合物又はフタロシアニン化合物を含有する混合物を総称して「フタロシアニン 類」と呼ぶ場合がある。 ) oまた、その存在状態も特に制限されないが、結晶変換時の 結晶型の制御性を考慮すると、フタロシアニン結晶前駆体としては、通常は、得られ るフタロシアニン結晶と同一の分子構造を有するアモルファス性フタロシア-ン類又 は低結晶性フタロシアニン類が用いられる。
[0036] 本発明にお!/、て「低結晶性フタロシアニン類」とは、粉末 X線回折 (X- ray diffraction :以下「XRD」と省略する場合がある。)スペクトルにおいて、 CuK o;特性 X線 (波長 1 . 541 A)に対するブラッグ角(2 0 ±0. 2° ) 0° 〜40° の範囲内に半値幅力 0. 30 ° 以下のピークを有さないフタロシアニン類をいう。この半値幅が小さ過ぎると、固体 中でフタロシアニン分子がある程度一定の規則性や長期的秩序を有している状態に なっており、結晶型を変換させる際に結晶型の制御性が低下することから、本発明に おいてフタロシアニン結晶前駆体として用いる低結晶性フタロシアニン類は、その半 値幅が通常 0. 35° 以下、更には 0. 40° 以下、特に 0. 45° 以下のピークを有さな V、ものであることが好まし!/、。
[0037] なお、本明細書にぉ 、て、フタロシアニン類の粉末 X線回折スペクトルの測定、 Cu Κ α特性 X線 (波長 1. 541 Α)に対するブラッグ角(2 0 ±0. 2° )の決定、並びにピ ーク半値幅の算出は、以下の条件で行なうものとする。
[0038] 粉末 X線回折スペクトルの測定装置としては、 CuK a (CuK a +CuK a )線を X
1 2 線源とした集中光学系の粉末 X線回折計 (例えば PANalytical社製 PW1700)を使 用する。
[0039] 粉末 X線回折スペクトルの測定条件は、走査範囲 (2 Θ )3. 0〜40. 0° 、スキャンス テツプ幅 0. 05° 、走査速度 3. 0° Zmin、発散スリット 1° 、散乱スリット 1° 、受光 スリット 0. 2mmとする。
[0040] ピーク半値幅は、プロファイルフィッティング法により算出することができる。プロファ ィルフィッティングは、例えば MDI社製粉末 X線回折パターン解析ソフト JADE5. 0 +を用いて行なうことができる。その算出条件は、以下の通りである。即ち、ノ ックグラ ンドは、全測定範囲(2 Θ = 3. 0〜40. 0° )力も理想的な位置に固定する。フイツテ イング関数としては、 CuK aの寄与を考慮した Peason— VII関数を用いる。フイツテ
2
イング関数の変数としては、回折角 (2 Θ )、ピーク高さ、ピーク半値幅( j8 )の 3つを精 密化する。 CuK a の影響を除去し、 CuK a 由来の回折角(2 0 )、ピーク高さ、ピー
2 1
ク半値幅(ι8 )を計算する。非対称は 0に、形定数は 1. 5に固定する。
[0041] 上記のプロファイルフィッティングより算出したピーク半値幅( j8 )を、同測定条件、 同プロファイルフィッティング条件により算出した標準 Si (NIST Si 640b)の 1 11ピー ク(2 0 = 28. 442° )のピーク半値幅(j8 )により、下式に従って補正することにより
Si
、試料由来のピーク半値幅( j8 )が求められる。
[0042] [数 1]
β - β5-
[0043] なお、低結晶性フタロシアニン類とアモルファス性フタロシアニン類との境界は明確 ではな!/、が、本発明では何れも好ま 、フタロシアニン結晶前駆体として使用するこ とが可能である。以下の記載では、低結晶性フタロシアニン類とアモルファス性フタ口 シァニン類とを特に区別せずに呼ぶ場合、「低結晶性 Ζアモルファス性フタロシア- ン類」と総称することにする。
[0044] 後述のように、本発明のフタロシアニン結晶の結晶型としては、 CuK a特性 X線 (波 長 1. 541 A)に対するブラッグ角(2 0 ± 0. 2° ) 27. 2° に主たる回折ピークを有す る結晶型 (特定結晶型)が好ましいが、 27. 2° 付近にピークを有する低結晶性フタ ロシアニン類は、上記特定結晶型を有するフタロシアニン結晶とある程度類似した規 則性を有しており、上記特定結晶型への結晶型制御性に優れることから、フタロシア ニン結晶前駆体として好ましい。この場合における低結晶性フタロシアニンは、その 半値幅が通常 0. 30° 以下、好ましくは 0. 35° 以下、より好ましくは 0. 40° 以下、 更に好ましくは 0. 45° 以下の範囲のピークを含まないものである。 [0045] 一方、 27. 2° 付近にピークを有さない低結晶性 Zアモルファス性フタロシアニン 類をフタロシアニン結晶前駆体として用いる場合には、上記特定結晶型を有するフタ ロシアニン結晶への結晶型制御性が低いことから、結晶性が低いことが望ましぐこの 場合における低結晶性フタロシアニンは、その半値幅が通常 0. 30° 以下、好ましく は 0. 50° 以下、より好ましくは 0. 70° 以下、更に好ましくは 0. 90° 以下の範囲の ピークを含まな ヽものである。
[0046] 図 2〜5に、低結晶性 Zアモルファス性フタロシアニン類の粉末 X線回折スペクトル の例を示す。なお、これらの X線回折スペクトルは、本発明を詳細に説明するために 例示したものであり、本発明の趣旨の範囲に反しない限り、本発明においてフタロシ ァニン結晶前駆体として使用可能なフタロシアニン類は、これらの X線回折スペクトル を有する低結晶性 Zアモルファス性フタロシアニン類に限定されるものではない。
[0047] 結晶性を有するフタロシアニン類 (フタロシアニン結晶)は、通常は固体中でフタ口 シァニン分子が一定の規則性や長期的秩序を有している状態であり、粉末 X線回折 スペクトルを測定すると明確なピークを有する。これに対して、低結晶性 Zァモルファ ス性フタロシアニン類は、固体中で分子配列の規則性や分子配列の長期的秩序が 低下した状態にあり、図 2〜5として例示した粉末 X線回折スペクトルのように、ハロー 図形を示すか、或いは、ピークを有してもその半値幅が非常に広いものとなる。
[0048] 本発明にお 、てフタロシアニン結晶前駆体となる低結晶性 Zアモルファス性フタ口 シァニン類の調製法としては、アシッドペースト法、アシッドスラリー法等の化学的処 理法、粉碎、磨砕等の機械的処理法等の公知の調製法を用いることが可能であるが
、より均一な低結晶性 Zアモルファス性フタロシアニン類が得られることから、化学的 処理法が好ましぐ中でもアシッドペースト法がより好ま U、。
[0049] 〔結晶型変換用化合物類〕
〔芳香族アルデヒド化合物〕
結晶型変換用化合物類 (A)は、芳香族アルデヒドィ匕合物である。芳香族アルデヒド 化合物は、結晶型変換用接触化合物類として使用される。
本発明のフタロシアニン結晶を得るために使用される芳香族アルデヒドィ匕合物は、 芳香環に直接結合したアルデヒド基を有する化合物である。 [0050] 本発明で使用される芳香族アルデヒドィ匕合物は、ヒュッケル則を満たす芳香環を 1 つ以上有する化合物であれば、芳香環の数は特に制限はないが、ヒュッケル則にお ける、 4n+ 2 (nは整数)の式において、 nの値は通常 5以下である。中でも、結晶変 換の際の操作性や、フタロシアニン結晶の電子写真感光体特性を考慮すると、 nの 値は好ましくは 3以下、より好ましくは 2以下、更に好ましくは 1である。
[0051] 芳香環の種類には、炭素原子と水素原子とからなる芳香族炭化水素環と、炭素原 子と水素原子以外に、窒素原子、硫黄原子、酸素原子等のへテロ原子が芳香環構 造に組み込まれた芳香族複素環とがある。
[0052] 芳香環の具体例としては、 n= 3の場合、アントラセン、フエナンスレン、アタリジン、 フエナンスリジン、フエナント口リン、フエナジン等、 n= 2の場合、ナフタレン、ァズレン 、キノリン、イソキノリン、キノキサリン、ナフチリジン等、 n= lの場合、ベンゼン、ピリジ ン、ピラジン、ピロール、チォフェン、フラン、チアゾール、ォキサゾール、イミダゾール 等の公知の芳香族炭化水素環構造及び芳香族複素環構造が挙げられる。前記芳 香族炭化水素環構造及び芳香族複素環構造は、芳香環部分以外に、更に芳香族 '性を有さな 、縮合環を有して 、てもよ 、。
[0053] また、本発明で使用される芳香族アルデヒド化合物が有する分子当たりのアルデヒ ド基の数は特に制限されないが、通常 1以上、また、通常 4以下、好ましくは 2以下で ある。
[0054] 本発明で使用される芳香族アルデヒド化合物がアルデヒド基以外に有して!/ヽてもよ い置換基としては、メチル基、ェチル基、イソプロピル基、シクロへキシル基等のアル キル基;メトキシ基、エトキシ基、イソプロポキシ基等のアルコキシ基;ベンジルォキシ 基等のァラルキルォキシ基;フエノキシ基等のァリールォキシ基;チォメチル基、チォ ェチル基等のチォアルキル基;フエ-ル基、ナフチル基等のァリール基;ニトロ基;シ ァノ基;カルボキシ基;スルホ基;スルフィノ基;スルフエノ基;ヒドロキシ基;メルカプト 基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;ァセチル基等のケトン基;力 ルボキサミド基等のアミド基;アミノ基、モノメチルァミノ基、メチルェチルァミノ基等の 置換、もしくは非置換のアミノ基;メチルォキシカルボ-ル基、ェチルォキシカルボ- ル基等のエステル基;トリフルォロメチル基等のハロゲン化アルキル基などの公知の 置換基が可能である。
[0055] 前記した置換基の例の中で、アルキル基、アルコキシ基、置換アミノ基、エステル基 、ケトン基等の置換基内に炭素鎖を有する置換基は、その炭素鎖部分が直鎖状、分 岐状、環状の何れの構造を有していてもよいが、これら置換基の炭素鎖部分の構造 が大き過ぎると結晶の安定性に悪影響を与えることから、直鎖状、分岐状構造が好ま しい。また、これら置換基内の炭素鎖部分の炭素数は、通常 20以下である。炭素鎖 部分の炭素数が多過ぎると芳香族アルデヒド化合物の効果が減少することから、この 炭素数は好ましくは 15以下、より好ましくは 10以下である。
[0056] 前記置換基の中でも、結晶型の制御性や電荷発生能力の点から、ハロゲン原子、 アルキル基、アルコキシ基、ケトン基、エステル基、カルボキシ基、ニトロ基等が好まし ぐハロゲン原子、ケトン基、アルコキシ基がより好ましい。
[0057] 本発明で使用される芳香族アルデヒド化合物がアルデヒド基以外に有する置換基 の数は特に制限されないが、結晶変換時の操作性やフタロシアニン結晶の電子写真 感光体特性を考慮すると、好ましくは 5以下、より好ましくは 3以下であり、更に好まし くは 1以下である。なお、アルデヒド基以外の置換基が互いに結合して環構造を形成 していてもよい。
[0058] 芳香族アルデヒドィ匕合物の例としては、芳香族炭化水素環を有するものと、芳香族 複素環を有するものが挙げられる。
芳香族炭化水素環を有する芳香族アルデヒド化合物の具体例としては、ベンズァ ルデヒド類(例えば、フルォロベンズアルデヒド、クロ口べンズアルデヒド、メトキシベン ズアルデヒド、ニトロべンズアルデヒド、フエ-ルペンズアルデヒド、 1, 2, 3, 4ーテトラ ヒドロナフトアルデヒド等)、ナフトアルデヒド類(1 ナフトアルデヒド、 2—ナフトアルデ ヒド等)、アンスアルデヒド類(9—アンスアルデヒド等)が挙げられる。
芳香族複素環を有する芳香族アルデヒド化合物の具体例としては、ピリジンカルボ アルデヒド類(2—ピリジンカルボアルデヒド等)、キノリンカルボアルデヒド類(2—キノ リンカルボアルデヒド等)、チォフェンアルデヒド類(2—チォフェンアルデヒド等)、ピロ ールカルボアルデヒド類(ピロ一ルー 2—カルボアルデヒド等)が挙げられる。
[0059] 上述の芳香族アルデヒド化合物の中でも、結晶変換能力の点から、芳香族炭化水 素環にアルデヒド基が直接結合した芳香族アルデヒドィ匕合物が好ましぐ中でも、電 子写真感光体に用いた際の環境変動による安定性の面から、ベンズアルデヒド類が より好まし 、。
[0060] なお、前記芳香族アルデヒド化合物は、 V、ずれか一種を単独で用いてもよぐ二種 以上を任意の組み合わせ及び比率で併用してもょ 、。
また、一種又は二種以上の芳香族アルデヒドィ匕合物を、一種又は二種以上の他の 化合物と混合して、フタロシアニン結晶前駆体に接触させてもよい。この場合、芳香 族アルデヒド化合物と併用する他の化合物は、使用するフタロシアニン結晶前駆体 や得られるフタロシアニン結晶に好ましからぬ影響を与えるものでない限り、その種 類は特に制限されない。但し、芳香族アルデヒド化合物以外の他の化合物を併用す る場合でも、芳香族アルデヒドィ匕合物と他の化合物との総量に対する芳香族アルデヒ ド化合物の割合を、通常 50重量%以上、中でも 75重量%以上とすることが好ましい
[0061] 芳香族アルデヒド化合物の使用量は、接触処理に用いる手法等によっても異なり、 一概には規定できないが、一般的には、フタロシアニン結晶前駆体に対する重量割 合で、通常 50重量%以上、好ましくは 100重量%以上、また、通常 2000重量%以 下、好ましくは 1000重量%以下の範囲である。なお、二種以上の芳香族アルデヒド 化合物を併用する場合には、これらの合計割合が上記範囲を満たすようにする。
[0062] 〔特定有機酸化合物〕
結晶型変換用化合物類 (B)は、有機酸、有機酸無水物及びへテロ原子を有する 有機酸エステル力 なる群より選ばれる少なくとも一種の化合物 (特定有機酸ィ匕合物 )と、酸性官能基を有さない有機化合物 (非酸性有機化合物)とからなる。特定有機 酸化合物は結晶型変換用共存化合物類として使用され、非酸性有機化合物は結晶 型変換用接触化合物類として使用される。
本発明のフタロシアニン結晶は、上述のフタロシアニン結晶前駆体を、有機酸、有 機酸無水物及びへテロ原子を有する有機酸エステルからなる群より選ばれる少なくと も一種の化合物 (これを適宜「特定有機酸化合物」と略称する。)の存在下、後述の 非酸性有機化合物に接触させて結晶型を変換することにより得られたものである。 [0063] <有機酸 >
有機酸とは、酸性を示す化合物類の総称であり、具体的には、カルボン酸、スルホ ン酸、スルフィン酸、スルフェン酸、フエノール、ェノール、チオール、ホスホン酸、リン 酸、ボロン酸、イミド酸、ヒドラゾン酸、ヒドロキシム酸、ヒドロキシサム酸等の、酸性を示 す官能基 (これを以下適宜「酸性官能基」と略称する。 )を有する化合物類である。
[0064] 本発明で使用される有機酸は、上述した各種の酸性官能基を有する化合物類であ れば、その種類は特に制限されないが、試薬の汎用性 ·安定性の面から、通常は炭 素原子、酸素原子、硫黄原子、リン原子、ホウ素原子から構成される酸性官能基を有 する有機酸が用いられる。このような有機酸の例としては、カルボン酸、スルホン酸、 スルフィン酸、フエノール、チオール、ホスホン酸、リン酸、ボロン酸、ボリン酸等が挙 げられる。中でも、得られるフタロシアニン結晶を材料として用いた電子写真感光体 の特性を考慮すると、カルボン酸、スルホン酸、フエノール、ホスホン酸、リン酸、ボロ ン酸が好ましぐカルボン酸、スルホン酸、ホスホン酸、リン酸、ボロン酸がより好まし い。
[0065] 酸性官能基は如何なる公知の構造を有して 、ても良!、が、例としてはカルボキシル 基、チォカルボキシル基、ジチォカルボキシル基、メルカプトカルボ-ル基、ヒドロべ ルォキシ基、スルホ基、スルフィノ基、スルフエノ基、フエノール性水酸基、チオール 基、ホスフィニコ基、ホスホノ基、セレノノ基、セレニノ基、セレネノ基、アルシニコ基、 アルソノ基、ボロン酸基、ボラン酸基等が挙げられる。これら酸性官能基の中でも、原 料の汎用性、安全性の面から、通常は炭素原子、酸素原子、硫黄原子、リン原子、ホ ゥ素原子から構成される酸性官能基が好ましぐカルボキシル基、チォカルボキシル 基、スルホ基、スルフィノ基、スルフエノ基、フエノール性水酸基、チオール基、ホスフ ィニコ基、ホスホノ基、ボロン酸基、ボラン酸基がより好ましぐ電子写真感光体として の特性の面から、カルボキシル基、ホスフィニコ基、ホスホノ基、スルホ基、ボロン酸基 が更に好ましい。
[0066] 本発明で使用される有機酸は、その構造中に酸性官能基を有することにより本発 明の効果を発揮している。よって、酸性官能基は、有機酸一分子当たり少なくとも 1個 含まれていればよいが、複数含まれていても構わない。有機酸一分子に複数の酸性 官能基が含まれている場合には、これら複数の酸性官能基は同一であってもよぐ互 いに異なっていてもよい。但し、有機酸一分子当たりの酸性官能基の個数が多過ぎ ると、併用する非酸性有機化合物に対する溶解性が低下し、本発明の効果が低下 することから、好ましくは 10個以下であり、より好ましくは 7個以下、更に好ましくは 4個 以下である。
[0067] 有機酸は構造の面から、酸性官能基部分と、酸性官能基部分以外の部分 (有機残 基部分)とに区別することができる。酸性官能基部分の構造については前述の通りで あるが、有機残基部分の構造については特に制限は無ぐ如何なる公知の構造を有 していてもよい。但し、フタロシア-ンィ匕合物の分子(以下「フタロシアニン分子」と略 称する場合がある。)はその構造中に多数の π電子を有しており、フタロシアニン分 子同士が発達した π電子の相互作用によりフタロシアニン結晶を構築しているため、 そのフタロシアニン分子と有機酸との相互作用が大きくなる程、フタロシアニン結晶中 への有機酸の取り込みが容易になる。従って、有機酸とフタロシアニン分子との相互 作用が強まるように、有機酸の有機残基部分は π電子を有する構造であることが好 ましい。有機残基部分が有する π電子の数は特に制限されず、有機酸一分子につ き π電子が少なくとも 2個 (即ち、炭素 炭素二重結合が少なくとも一つ)含まれてい ればよい。但し、フタロシアニン分子との相互作用を強める観点から、有機残基部分 は、ヒュッケル則を満たす芳香族性を有する構造を含んで ヽることが好ま 、。
[0068] 本発明で使用される有機酸の分子量は特に制限されないが、通常 50以上、好まし くは 100以上、また、通常 1200以下、好ましくは 1000以下の範囲である。有機酸の 分子量が小さ過ぎると水への溶解性が高くなり、それによりフタロシアニン結晶内で の存在量が減少して本発明の効果力 、さくなる傾向がある。また、有機酸の分子量 が大き過ぎると有機酸の分子体積が大き過ぎるため、フタロシアニン結晶内での存在 量が減少して本発明の効果が小さくなる傾向がある。特に、有機酸の有機残基部分 の分子体積が大き過ぎるとフタロシアニン結晶中への取り込みが困難になることから 、有機残基部分の分子量は通常 1000以下、好ましくは 500以下、より好ましくは 40 0以下、更に好ましくは 300以下である。
[0069] 有機酸の状態としては、有機酸そのままの状態、有機酸がイオン化した状態、有機 酸イオンが対イオンと結合して塩を形成した状態等が考えられるが、本発明では有機 酸自体が結晶中に取り込まれることにより、酸性官能基部分が効果の発現に寄与し ていると推測できることから、本発明において使用される有機酸は、上述の何れの状 態であってもよい。
[0070] なお、本発明では後述のように、フタロシアニン結晶前駆体を特定有機酸ィ匕合物の 存在下で非酸性有機化合物と接触させる際に、水を共存させることが好ましい。従つ て、接触処理を行なう前の段階では有機酸以外の化合物であるが、水と接触すること により加水分解等によって有機酸へと転換される化合物も、特定有機酸化合物として 使用することが可能である。以下の説明ではこのような化合物も含めて「有機酸」と総 称することにする。
[0071] <有機酸無水物 >
有機酸無水物とは、二つのァシル基が酸素原子を共有する形の結合 (これを以下 適宜「酸無水物結合」という。)を有する化合物である。主な有機酸無水物としては、 一つの酸性官能基を有する有機酸二分子が分子間で酸無水物結合を形成している ものと、二つ以上の酸性官能基を有する有機酸が単一分子内で酸無水物結合を形 成しているものとが挙げられる。前者は更に、同一種類の二分子の有機酸が酸無水 物結合を形成して ヽるものと、異なる種類の二分子の有機酸が酸無水物結合を形成 しているものとに分けられる。本発明で使用される有機酸無水物の種類は特に制限 されず、これらの何れの有機酸無水物であってもよい。
[0072] 有機酸無水物の例としては、無水酢酸、無水プロピオン酸、無水酪酸、無水トリフ ルォロ酢酸等の、同一種類のカルボン酸二分子が分子間で酸無水物結合を形成し てなるカルボン酸無水物;酢酸プロピオン酸無水物、酢酸トリフルォロ酢酸無水物等 の、異なる種類のカルボン酸二分子が分子間で酸無水物結合を形成してなるカルボ ン酸無水物;無水フタル酸、無水マレイン酸、無水コハク酸、 1, 2—ナフタル酸無水 物、 1, 8—ナフタル酸無水物等の、ジカルボン酸が同一分子内で酸無水物結合を 形成してなるカルボン酸無水物;メタンスルホン酸無水物、ベンゼンスルホン酸無水 物等の、同一又は異なる種類のスルホン酸二分子が分子間で酸無水物結合を形成 してなるスルホン酸無水物;ベンゼンスルフィン酸無水物等の、同一又は異なる種類 のスルフィン酸二分子が分子間で酸無水物結合を形成してなるスルフィン酸無水物; ベンゼンスルホン酸ベンゼンスルフィン酸無水物、環状無水スルホ酢酸等の、同一 又は異なる種類の有機酸二分子が分子間で酸無水物結合を形成してなる鎖状若し くは環状の有機酸無水物などが挙げられる。これらの中でも、本発明で使用する有 機酸無水物としては、電子写真感光体としての特性の面から、同一の酸力 なるカル ボン酸無水物、異種のカルボン酸からなるカルボン酸無水物、分子内で酸無水物結 合を有するカルボン酸無水物、スルホン酸無水物が好ましぐより好ましくは同一の酸 力 なるカルボン酸無水物、分子内で酸無水物結合を有するカルボン酸無水物であ る。
[0073] なお、本発明で使用する有機酸無水物の酸無水物結合以外の部分 (有機残基部 分)の構造は特に制限されず、如何なる構造であってもよいが、上記 <有機酸 >の 欄で説明したのと同様の理由から、 π電子を有する構造であることが好ましい。有機 残基部分が有する π電子の数は特に制限されず、有機酸一分子につき π電子が少 なくとも 2個 (即ち、炭素-炭素二重結合が少なくとも一つ)含まれていればよい。伹 し、フタロシアニン分子との相互作用を強める観点から、有機残基部分はヒュッケル 則を満たす芳香族性を有する構造を含んで ヽることが好ま ヽ。
[0074] 有機酸無水物の分子量は特に制限されないが、大き過ぎるとフタロシアニン結晶中 へ取り込まれ難くなる傾向があるため、通常 1000以下、好ましくは 500以下、より好 ましくは 400以下、更に好ましくは 300以下である。一方、有機酸無水物の分子量が あまりに低過ぎるとフタロシアニン分子との相互作用が減少し、フタロシアニン結晶内 での有機酸無水物の存在量が減少して本発明の効果が小さくなる傾向があるので、 分子量の下限は通常 50以上、好ましくは 100以上である。
[0075] <ヘテロ原子を有する有機酸エステル >
ヘテロ原子を有する有機酸エステルとは、ヘテロ原子を有する有機酸の酸性官能 基部分を、酸性を示さない有機酸エステルへと変化させた有機化合物である。例とし ては、酸性を有するスルホン基をスルホン酸メチル基へと変化させ、酸性を示さない 状態とした化合物等が挙げられる。
[0076] ヘテロ原子とは、一般的には有機化合物を構成する原子のうち、炭素原子及び水 素原子以外の原子を意味する。しかし、有機酸は通常、少なくとも酸素原子及び Z 又は窒素原子を酸性官能基中に有しているため、酸素原子及び窒素原子をへテロ 原子に含めると、あらゆる有機酸エステルがヘテロ原子を有する有機酸エステルに該 当することになつてしまい、定義として適切でない。このため、本発明においては炭素 原子、水素原子、窒素原子及び酸素原子以外の原子をへテロ原子として定義するも のとする。
[0077] 一般的に有機化合物の構造中に導入されるへテロ原子としては、ホウ素原子、硫 黄原子、リン原子、ケィ素原子、セレン原子、テルル原子等が挙げられるが、本発明 で使用される有機酸エステルが含有するへテロ原子としては、通常はホウ素原子、硫 黄原子、リン原子が用いられる。中でも、本発明で使用される有機酸エステルの汎用 性を考慮すると、硫黄原子、リン原子が好ましい。
[0078] 本発明で使用される有機酸エステルの構造において、ヘテロ原子が導入される部 位は特に制限されず、如何なる部位に導入されていてもよいが、有機酸エステルに 誘導される前の有機酸の構造において、酸性官能基部分 (例えばスルホ基、ホスホノ 基等)にへテロ原子を有することが好ましい。即ち、本発明で使用される有機酸エス テルは、ヘテロ原子を含む酸エステル基を有することが好ま U、。
[0079] なお、本発明で使用するへテロ原子を有する有機酸エステルの構造にお!ヽて、へ テロ原子を含む酸エステル基以外の部分 (有機残基部分)の構造は特に制限されず 、如何なる構造であってもよいが、上記く有機酸 >の欄で説明したのと同様の理由 から、 π電子を有する構造であることが好ましい。有機残基部分が有する π電子の数 は特に制限されず、有機酸一分子につき π電子が少なくとも 2個 (即ち、炭素-炭素 二重結合が少なくとも一つ)含まれていればよい。但し、フタロシアニン分子との相互 作用を強める観点から、有機残基部分はヒュッケル則を満たす芳香族性を有する構 造を含んで 、ることが好まし!/、。
[0080] ヘテロ原子を有する有機酸エステルの例としては、メチルホスホン酸ジメチル、フエ -ルホスホン酸ジメチル、メチルホスホン酸ジメチル、フエ-ルホスホン酸ジェチル等 のホスホン酸エステル;メチルリン酸ジメチル、フエ-ルリン酸ジメチル等のリン酸エス テル、メタンスルホン酸メチル、ベンゼンスルホン酸メチル、ベンゼンスルホン酸ェチ ル等のスルホン酸エステル類;メチルスルフィン酸メチル、フエ-ルスルフィン酸メチ ル等のスルフィン酸エステル;メチルスルフィノ酸メチル、フエ-ルスルフィノ酸メチル 等のスルフィノ酸エステル;メチルボロン酸ジメチル、フエ-ルボロン酸ジメチル等の ボロン酸エステルなどが挙げられる。中でも、試薬の汎用性の面から、ホスホン酸エス テル、リン酸エステル、スルホン酸エステル、ボロン酸エステルが好ましぐより好ましく はホスホン酸エステル、スルホン酸エステルである。
[0081] ヘテロ原子を有する有機酸エステルの分子量は特に制限されないが、大き過ぎると フタロシアニン結晶中へ取り込まれ難くなるため、通常 1000以下、好ましくは 500以 下、より好ましくは 400以下、更に好ましくは 300以下である。一方、ヘテロ原子を有 する有機酸エステルの分子量があまりに低過ぎるとフタロシアニン分子との相互作用 が減少し、フタロシアニン結晶内でのヘテロ原子を有する有機酸エステルの存在量 が減少し本発明の効果が小さくなる傾向があるので、分子量の下限は通常 50以上、 好ましくは 100以上である。
[0082] <その他 >
特定有機酸ィ匕合物としては、上述した有機酸、有機酸無水物及びへテロ原子を有 する有機酸エステルのうち何れかの化合物を用いる。何れか一種の特定有機酸化合 物を単独で用いてもよぐ二種以上の特定有機酸ィ匕合物を任意の組み合わせ及び 比率で併用してもよい。特に、二種以上の特定有機酸ィ匕合物を併用する場合には、 有機酸、有機酸無水物、ヘテロ原子を有する有機酸エステルという 3つのカテゴリー のうち、何れか一つのカテゴリーから二種以上の化合物を選択して併用してもよぐ 任意の 2つのカテゴリー又は 3つ全部のカテゴリ一力 それぞれ一種又は二種以上 の化合物を選択して併用してもょ 、。
[0083] また、特定有機酸化合物の存在形態も特に制限されず、液体、気体、固体の何れ であってもよい。
[0084] 〔非酸性有機化合物〕
本発明のフタロシアニン結晶は、上述の特定有機酸化合物の存在下、上述のフタ ロシアニン結晶前駆体を、酸性官能基を有さな!/ヽ有機化合物 (これを適宜「非酸性有 機化合物」と略称する。 )に接触させて得られたものである。 [0085] 本発明で使用される非酸性有機化合物は、上記 <有機酸 >の欄で説明した酸性 官能基を、その構造中に有さない有機化合物のことを言う。本発明で使用される非酸 性有機化合物は、結晶型を変換する能力を有するものであれば、その種類は特に制 限されない。
[0086] 非酸性有機化合物は、大別すると、脂肪族化合物と芳香族化合物とに分けられる ( 以下の記載ではこれらを適宜、それぞれ「非酸性脂肪族化合物」及び「非酸性芳香 族化合物」というものとする。)。
[0087] 非酸性脂肪族化合物の例としては、ビネン、テルビレノン、へキサン、シクロへキサ ン、オクタン、デカン、 2—メチルペンタン、リグ口イン、石油ベンジン等の飽和又は不 飽和の脂肪族炭化水素化合物;ジェチルエーテル、ジイソプロピルエーテル、ジブ チルエーテル、ジメチルセ口ソルブ、エチレングリコールジブチルエーテル、テトラヒド 口フラン、 1, 4 ジォキサン、 1, 3 ジォキソラン等の脂肪族エーテルィ匕合物;ジクロ ロメタン、クロロホノレム、四塩化炭素、 1, 2—ジクロロエタン、 1, 2, 2, 2—テトラクロ口 ェタン等のハロゲンィ匕脂肪族化合物;メチルェチルケトン、メチルイソブチルケトン、 ジイソプロピルケトン、ジイソプチルケトン、シクロへキサノン、シクロペンタノン等の脂 肪族ケトン化合物;酢酸ェチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸 へキシル、アクリル酸ブチル、プロピオン酸メチル、酢酸シクロへキシル等の脂肪族 エステル化合物;メタノール、エタノール、ブタノール等の脂肪族アルコール化合物; ノルマルプロピルアルデヒド、ノルマルブチルアルデヒド等の脂肪族アルデヒド化合物 などが挙げられる。なお、これらの非酸性脂肪族化合物が有する炭化水素骨格は、 鎖状 (直鎖状でも分岐鎖状でもよ!、)であっても環状であってもよぐ鎖状と環状とが 結合したものであってもよ 、。
[0088] 一方、非酸性芳香族化合物の例としては、トルエン、キシレン、ナフタレン、ビフエ- ル、ターフェ-ル等の芳香族炭化水素化合物;モノクロ口ベンゼン、ジクロロベンゼン 、トリクロ口ベンゼン、ジクロロトノレェン、クロロナフタレン、ブロモベンゼン等のノヽロゲン 化芳香族化合物;ニトロベンゼン、フルォ口-トロベンゼン等の芳香族-トロ化合物; 安息香酸メチル、安息香酸プチル、クロ口安息香酸メチル、メチル安息香酸メチル、 フエ-ルアセテート等の芳香族エステル化合物;ジフエ-ルエーテル、ァ-ソール、ク 口ロア-ノール等の芳香族エーテル化合物;ベンズアルデヒド、クロ口べンズアルデヒ ド等の芳香族アルデヒド化合物;ァセトフエノン、クロロアセトフエノン等の芳香族ケトン 化合物;チォフェン、フラン、キノリン、ピコリン等の複素環芳香族化合物などが挙げら れる。
[0089] これら非酸性有機化合物の中でも、結晶型の変換能力の点から、ハロゲン原子若 しくは酸素原子を含有する脂肪族化合物若しくは芳香族化合物、又は、芳香族炭化 水素化合物が好ましい。中でも、得られるフタロシアニン結晶の分散時の安定性を考 慮すると、ハロゲン化脂肪族化合物、脂肪族エーテル化合物、脂肪族ケトン化合物、 脂肪族エステル化合物、芳香族炭化水素化合物、ハロゲン化芳香族化合物、芳香 族ニトロ化合物、芳香族ケトン化合物、芳香族エステル化合物、芳香族アルデヒドィ匕 合物がより好ましぐ得られるフタロシアニン結晶を材料として用いた電子写真感光体 の特性の面から、脂肪族エーテル化合物、ハロゲン化芳香族化合物、芳香族ニトロ 化合物、芳香族ケトン化合物、芳香族エステル化合物、又は芳香族アルデヒドィ匕合 物が更に好ましい。
[0090] なお、これらの非酸性有機化合物は、その構造中の置換基等の種類によっては、 上述した化合物群のうち複数種の化合物群に同時に属する場合がある (例えばニト 口クロ口ベンゼンは「ハロゲン化芳香族化合物」及び「芳香族-トロ化合物」の双方に 属する。)が、そのような非酸性有機化合物は、それら複数種の分類全ての属性を有 しているものとして、化合物の属性を判断することとする(例えば-トロクロ口ベンゼン は、ハロゲンィ匕芳香族化合物及び芳香族ニトロ化合物の両方の属性を有する)。
[0091] これらの非酸性有機化合物は、何れか一種を単独で使用してもよぐ二種以上を任 意の組み合わせ及び比率で併用してもょ 、。
[0092] 非酸性有機化合物の存在形態は特に制限されず、液体、気体、固体の何れであつ てもよいが、非酸性有機化合物とフタロシアニン結晶前駆体との接触処理は通常、 非酸性有機化合物が液体の状態で行なわれることから、非酸性有機化合物の融点 は通常 150°C以下、好ましくは 100°C以下、より好ましくは 80°C以下である。
[0093] 非酸性有機化合物の分子量も特に制限されないが、非酸性有機化合物とフタロシ ァニン結晶前駆体との接触処理は通常、非酸性有機化合物が液体の状態で行なわ れることから、非酸性有機化合物の分子量があまり大き過ぎると望ましくない。具体的 に、非酸性有機化合物の分子量は通常 1000以下、好ましくは 500以下、より好まし くは 400以下、更に好ましくは 300以下である。一方、非酸性有機化合物の分子量 があまりに低過ぎると一般的に沸点が低くなり、揮発し易 、ため生産時の取り扱 、性 を低下させる傾向があるので、分子量の下限は通常 50以上、好ましくは 100以上で ある。
[0094] 〔特定有機酸化合物と非酸性有機化合物との併用〕
フタロシアニン結晶前駆体の結晶変換処理時に、結晶型変換用化合物類 (B)とし て、特定有機酸化合物及び非酸性有機化合物の併用することにより、得られるフタ口 シァニン結晶を材料として用いた電子写真感光体の特性がなぜ向上するのか、その メカニズムについては明白ではないが、結晶変換処理時に非酸性有機化合物が共 存することによって、同時に用いる特定有機酸ィ匕合物がより効率的にフタロシアニン 結晶中に取り込まれることにより、本発明の効果が得られているものと推測される。 〔電子吸引性特定芳香族化合物〕
結晶型変換用化合物類 (C)は、 1013hPa、 25°Cの条件下において固体であり、 電子吸引性の置換基を有する芳香族化合物 (以下適宜「電子吸引性特定芳香族化 合物」ということがある)と、 1013hPa、 25°Cの条件下において液体状態であり、酸性 を示す官能基を有さな ヽ有機化合物 (以下適宜「非酸性特定有機化合物」と ヽうこと 力ある)とからなる。電子吸引性特定芳香族化合物は結晶型変換用共存ィ匕合物類と して使用され、非酸性特定有機化合物は結晶型変換用接触化合物類として使用さ れる。
電子吸引性特定芳香族化合物は、 1013hPa、 25°Cの条件下において固体であり 、電子吸引性の置換基 (以下適宜「電子吸引性基」ということがある。)を有する芳香 族化合物である。
本発明のフタロシアニン結晶は、電子吸引性特定芳香族化合物の存在下、上述の フタロシアニン結晶前駆体を、非酸性特定有機化合物と接触させて結晶型を変換す ること〖こより得られたちのである。
[0095] 本発明において「電子吸引性基」とは、 Hammett則における置換基定数 σ Q (以 下単に「置換基定数 σ °」という場合がある。)の値が正の値を示す置換基のことを指
Ρ
すものとする。ここで、「Hammett関係則」とは、芳香族化合物における置換基が芳 香環の電子状態に与える効果を説明するために用いられる経験則であり、通常は、 日本化学会編「化学便覧基礎編 Π改訂 4版」(平成 5年 9月 30日、丸善 (株)発行) 3 79ページに記載されて 、るように、無置換の安息香酸の pKa力もその置換基を有す る安息香酸の pKaを減算した値として算出される。置換基定数 σ。の値は、水素原子
Ρ
の場合を 0とすると、電子吸引性が高くなるに従って絶対値の大きな正の値となり、電 子供与性が高くなるに従って絶対値の大きな負の値となる。よって、この置換基定数 σ Qを用いることにより、置換基を有している芳香族化合物の電子状態や電子密度を
P
予測 ·表現することが可能となる。代表的な置換基について、日本化学会編「化学便 覧基礎編 Π改訂 4版」(平成 5年 9月 30日、丸善 (株)発行)に記載されている置換基 定数 σ Qの値を下記表 1に示す。なお、本発明においては、前記文献に置換基定数
P
σ °の値が記載されている置換基については、その値を用いるものとし、記載されて
Ρ
いない置換基については、日本化学会編「化学便覧基礎編 II改訂 4版」(平成 5年 9 月 30日、丸善 (株)発行)に記載されている置換基定数 σ °の値の測定条件と同様の
Ρ
条件で測定し、算出することにより求めるものとする。
[表 1]
Figure imgf000034_0001
[0097] 本発明で使用される電子吸引性特定芳香族化合物が有する電子吸引性基は、そ の置換基定数 σ Qの値力^より大きなものであればその種類は特に制限されないが、
P
得られた電子写真感光体の環境変動に対する特性の安定性の面から、置換基定数 σ 。の値が通常 0. 200以上、中でも 0. 300以上である電子吸引性基が好ましい。
Ρ
[0098] 本発明で使用される電子吸引性特定芳香族化合物が有する電子吸引性基の数は 、 1つ以上であれば特に制限は無いが、電子吸引性基の数が多過ぎると非酸性特定 有機化合物に対する溶解性が低下し、得られる効果が低下することから、好ましくは 5以下、より好ましくは 4以下、更に好ましくは 3以下である。なお、二種以上の電子吸 引性基を有する場合には、それらは同一であってもよぐ互いに異なっていてもよい。
[0099] 本発明で使用される電子吸引性特定芳香族化合物が有する電子吸引性基の具体 例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シァノ基、アルデヒド基、 ニトロ基、ニトロソ基、ァシル基、アルコキシカルボ-ル基、ァリールォキシカルボ-ル 基、ァラルキルォキシカルボ-ル基、アルコキシスルホ -ル基、アルコキシスルフィ- ル基、アルキルスルホ-ルォキシ基、アルキルスルフィエルォキシ基、フルォロアル キル基、カルボキシアミド基、スルホンアミド基、カルボキシイミド基、ァゾ基、ァリール 基、チォアルキル基、カルボキシル基、スルホ基、スルフィノ基、スルフエノ基、ホスフ ィニコ基、ホスホノ基、ボロン酸基、ボラン酸基等が挙げられる。中でも、電子吸引性 特定芳香族化合物の安定性'汎用性の面から、フッ素原子、塩素原子、シァノ基、ァ ルデヒド基、ニトロ基、ァシル基、アルコキシカルボ-ル基、ァリールォキシカルボ- ル基、ァラルキルォキシカルボ-ル基、フルォロアルキル基、カルボキシル基、スル ホ基、ボロン酸基が好ましぐより好ましくはシァノ基、ニトロ基、ァシル基、アルコキシ カルボニル基、ァリールォキシカルボニル基、ァラルキルォキシカルボニル基、カル ボキシル基、ボロン酸基であり、更に好ましくは、シァノ基、ニトロ基、ァシル基、アル コキシカルボニル基、ァリールォキシカルボニル基、ァラルキルォキシカルボニル基 、カルボキシル基である。
[0100] 本発明で使用される電子吸引性特定芳香族化合物が有する電子吸引性基部分の 分子量は、大き過ぎると化合物全体の分子体積が大きくなり、フタロシアニン結晶へ 取り込まれ難くなることから、通常は 300以下であり、好ましくは 250以下、より好まし くは 200以下、更に好ましくは 150以下である。
[0101] 本発明で使用される電子吸引性特定芳香族化合物は、その構造の面から、電子吸 引性基部分と、電子吸引性基以外の部分 (芳香環部分)の 2つに区別することが出 来る。
[0102] 本発明で使用される電子吸引性特定芳香族化合物の芳香環部分の構造は、平面 環状ポリェン内に 4n+ 2個(ここで nは 0以上の整数を表わす。 )の π電子を有する構 造、即ちヒュッケル則を満たす芳香族性を有する構造であれば、如何なる構造であつ てもよいが、芳香環部分の構造が大き過ぎると溶解性の低下などの弊害が多くなる 場合があることから、ヒュッケル貝 IJ〖こおける 4η+ 2の式〖こおいて、 ηは 5以下であること が好ましぐより好ましくは 4以下であり、更に好ましくは 3以下である。
[0103] 本発明で使用される電子吸引性特定芳香族化合物の芳香環部分の例としては、 ベンゼン、ナフタレン、ァズレン、アントラセン、フエナントレン、フルオレン、ピレン、ぺ リレン等の炭化水素力もなる芳香環、ピロール、チォフェン、フラン、シロール、ピリジ ン、インドール、クロマン、ベンゾチ才フェン、ベンゾフラン、キノリン、イソキノリン、力 ルバゾール、アタリジン、フエノキサジン、チアントレン等のへテロ原子を含む芳香環 等が挙げられる。これらの芳香環の中でも、非酸性特定有機化合物に対する溶解性 の面から、芳香環を構成する元素数が 14以下の芳香環が好ましぐ元素数が 10以 下の芳香環がより好ましい。また、炭化水素からなる芳香環がより好ましぐベンゼン 、ナフタレンが更に好ましい。
[0104] 本発明で使用される電子吸引性特定芳香族化合物の芳香環部分の分子量は、大 き過ぎるとフタロシアニン結晶中への電子吸引性特定芳香族化合物の取り込みが困 難になることから、通常 1000以下であり、好ましくは 500以下、より好ましくは 300以 下、更に好ましくは 200以下である。
[0105] 本発明で使用される電子吸引性特定芳香族化合物は、先述した電子吸引性基以 外の置換基を有していてもよい。電子吸引性特定芳香族化合物が電子吸引性基以 外に有してもよい置換基の例としては、アルキル基、ァラルキル基、アルコキシ基、ァ リールォキシ基、ァラルキルォキシ基、ァルケ-ル基、フエノール性水酸基、置換、無 置換のアミノ基等が挙げられるが、電子供与性が強くなると本発明の効果が得られ難 くなることから、アルキル基、アルケニル基が好ましぐより好ましくはアルキル基であ る。これら電子吸引性基以外の置換基も、電子吸引性基と同様に、分子量が大き過 ぎると電子吸引性特定芳香族化合物全体の分子体積が大きくなり、フタロシアニン結 晶へ取り込まれ難くなることから、その分子量は、通常は 300以下、好ましくは 250以 下、より好ましくは 200以下、更に好ましくは 150以下である。
[0106] また、本発明で使用される電子吸引性特定芳香族化合物は、 1013hPa (760mm Hg)、 25°Cの条件下において固体のものである。このような条件を満たすィ匕合物は、 フタロシアニン分子と強く相互作用を有するという理由で好ましい。
[0107] 本発明で好適に使用される電子吸引性特定芳香族化合物の構造の例を以下に挙 げる。但し、以下の構造はあくまでも例として示すものであり、本発明で使用可能な電 子吸引性特定芳香族化合物の構造は、以下の例示に限定されるものではない。本 発明の趣旨に反しない限り、任意の構造の電子吸引性特定芳香族化合物を用いる ことができる。なお、下記構造式中、「Me」はメチル基を表わし、「Ph」はフ 二ル基を 表わし、 ΓΒζ]はベンゾィル基を表わす。
[0108] [化 1]
Figure imgf000037_0001
Figure imgf000037_0002
[0109] なお、電子吸引性特定芳香族化合物としては、何れか一種を単独で用いてもよぐ 二種以上を任意の組み合わせ及び比率で併用してもょ 、。
[0110] 〔非酸性特定有機化合物〕
非酸性特定有機化合物とは、 1013hPa、 25°Cの条件下において液体状態であり
、酸性を示す官能基を有さない有機化合物を言う。即ち、結晶型変換用化合物類 (B
)の欄で説明した非酸性有機化合物のうち、 1013hPa、 25°Cの条件下において液 体状態である化合物が、非酸性特定有機化合物に該当する。
[0111] 本発明にお ヽて「酸性を示す官能基」とは、有機酸が構造中に有する酸性を示す ために機能する官能基であり、例としては、上記く有機酸 >の欄で説明したような力 ルボキシル基、チォカルボキシル基、ジチォカルボキシル基、メルカプトカルボ-ル 基、ヒドロペルォキシ基、スルホ基、スルフィノ基、スルフエノ酸基、フエノール性水酸 基、チオール基、ホスフィニコ基、ホスホノ基、セレノノ基、セレニノ基、セレネノ基、ァ ルシニコ基、アルソノ基、ボロン酸基、ボラン酸基等が挙げられる。本発明に使用され る非酸性特定有機化合物は、これらの酸性を示す官能基を有さな ヽ有機化合物で ある。
[0112] 本発明で使用される非酸性特定有機化合物は、如何なる構造を有していてもよい 力 フタロシアニン結晶前駆体と接触させた際の結晶型の制御性の観点から、その 構造中に無置換アミノ基、 1置換アミノ基、及びアルコール性水酸基を有さない有機 化合物であることが好まし 、。
[0113] 本発明で使用される非酸性特定有機化合物は、大別すると、脂肪族化合物と芳香 族化合物に分けることができる(以下の記載ではこれらを適宜、それぞれ「非酸性特 定脂肪族化合物」及び「非酸性特定芳香族化合物」 、うものとする。 )。
[0114] 非酸性特定脂肪族化合物の例としては、ビネン、テルビレノン、へキサン、シクロへ キサン、オクタン、デカン、 2—メチルペンタン、リグ口イン、石油ベンジン等の飽和又 は不飽和の脂肪族炭化水素化合物;ジェチルエーテル、ジイソプロピルエーテル、 ジブチルエーテル、ジメチルセ口ソルブ、エチレングリコールジブチルエーテル、テト ラヒドロフラン、 1, 4—ジォキサン、 1, 3—ジォキソラン等の脂肪族エーテルィ匕合物; ジクロロメタン、クロロホノレム、四塩化炭素、 1, 2—ジクロロエタン、 1, 2, 2, 2—テトラ クロロェタン等のハロゲンィ匕脂肪族化合物;メチルェチルケトン、メチルイソブチルケト ン、ジイソプロピルケトン、ジイソプチルケトン、シクロへキサノン、シクロペンタノン等の 脂肪族ケトン化合物;酢酸ェチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢 酸へキシル、アクリル酸ブチル、プロピオン酸メチル、酢酸シクロへキシル等の脂肪 族エステル化合物;メタノール、エタノール、ブタノール等の脂肪族アルコール化合 物;ノルマルプロピルアルデヒド、ノルマルブチルアルデヒド等の脂肪族アルデヒドィ匕 合物などが挙げられる。なお、これらの非酸性特定脂肪族化合物が有する炭化水素 骨格は、鎖状 (直鎖状でも分岐鎖状でもよい)であっても環状であってもよぐ鎖状と 環状とが結合したものであってもよ 、。
[0115] 一方、非酸性特定芳香族化合物の例としては、トルエン、キシレン、ナフタレン、ビ フエ-ル、ターフェ-ル等の芳香族炭化水素化合物;モノクロ口ベンゼン、ジクロロべ ンゼン、トリクロ口ベンゼン、ジクロロトノレェン、クロロナフタレン、ブロモベンゼン等の ハロゲン化芳香族化合物;-トロベンゼン、フルォ口-トロベンゼン等の芳香族-トロ 化合物、安息香酸メチル、安息香酸プチル、クロ口安息香酸メチル、メチル安息香酸 メチル、フエ-ルアセテート等の芳香族エステル化合物;ジフエ-ルエーテル、ァ-ソ ール、クロロア-ノール等の芳香族エーテル化合物;ベンズアルデヒド、クロ口べンズ アルデヒド等の芳香族アルデヒド化合物;ァセトフヱノン、クロロアセトフヱノン等の芳 香族ケトンィ匕合物;チォフェン、フラン、キノリン、ピコリン等の複素環芳香族化合物な どが挙げられる。
[0116] これら非酸性特定有機化合物の中でも、結晶型の変換能力の点から、ハロゲン原 子若しくは酸素原子を含有する脂肪族化合物若しくは芳香族化合物、又は、芳香族 炭化水素化合物が好ましい。中でも、得られたフタロシアニン結晶の分散時の安定 性を考慮すると、ハロゲン化脂肪族化合物、脂肪族エーテル化合物、脂肪族ケトン 化合物、脂肪族ヱステル化合物、芳香族炭化水素化合物、ハロゲン化芳香族化合 物、芳香族ニトロ化合物、芳香族ケトン化合物、芳香族ヱステル化合物、芳香族アル デヒド化合物がより好ましぐ得られたフタロシアニン結晶を材料として用いた電子写 真感光体の特性の面から、脂肪族エーテル化合物、ハロゲン化芳香族化合物、芳 香族ニトロ化合物、芳香族ケトン化合物、芳香族エステル化合物、又は芳香族アル デヒド化合物が更に好まし 、。
[0117] なお、これらの非酸性特定有機化合物は、構造中の置換基等の種類によっては、 上述した化合物群のうち複数種の化合物群に同時に属する場合がある (例えばニト 口クロ口ベンゼンは「ハロゲン化芳香族化合物」及び「芳香族-トロ化合物」の双方に 属する。)が、そのような非アルコール性有機化合物は、それら複数種の分類全ての 属性を有しているものとして、化合物の属性を判断することとする(例えば-トロクロ口 ベンゼンは、ハロゲンィ匕芳香族化合物及び芳香族-トロ化合物の両方の属性を有す る)。 [0118] また、本発明で使用される非酸性特定有機化合物は、 1013hPa (760mmHg)、 2 5°Cの条件下にお 、て液体状態のものである。
[0119] 非酸性特定有機化合物の分子量は特に制限されないが、分子量の増加と共に粘 度等が上昇し、製造性が低下することから、非酸性特定有機化合物の分子量は通常 1000以下、好ましくは 500以下、より好ましくは 400以下、更に好ましくは 300以下 である。一方、非酸性特定有機化合物の分子量があまりに小さ過ぎると、一般的に沸 点が低くなり、揮発し易いため生産時の取り扱いが低下する傾向があるので、分子量 の下限は通常 50以上、好ましくは 100以上である。
[0120] なお、非酸性特定有機化合物としては、何れか一種を単独で用いてもよぐ二種以 上を任意の組み合わせ及び比率で併用してもょ 、。
[0121] 〔電子吸引性特定芳香族化合物と非酸性特定有機化合物との併用〕
結晶型を変換させる際の電子吸引性特定芳香族化合物の存在が、フタロシアニン 結晶の電子写真感光体としての特性になぜ影響を及ぼすか、そのメカニズムは明白 ではないが、非酸性特定有機化合物と電子吸引性特定芳香族化合物とが共存して いることにより、電子吸引性特定芳香族化合物がより効率的にフタロシアニン結晶中 に取り込まれることにより、本発明の効果が得られているのではないかと推測される。
[0122] 〔特定置換基含有芳香族化合物〕
結晶型変換用化合物類 (D)は、酸素原子を含有する基、及び、原子量 30以上の ハロゲン原子を置換基として有する芳香族化合物 (以下適宜「特定置換基含有芳香 族化合物」ということがある)である。この特定置換基含有芳香族化合物は、結晶型 変換用接触化合物類として使用される。
[0123] 特定置換基含有芳香族化合物の芳香族骨格としては、ベンゼン、ナフタレン、アン トラセン、フエナントレン、ビフエニル、ターフェニル等の芳香族炭化水素骨格や、ピロ ール、チォフェン、フラン、ピリジン、キノリン、イソキノリン、フエナント口リン等の複素 環芳香族骨格が挙げられるが、芳香族骨格部分に窒素、酸素、硫黄等のへテロ原 子を有すると、本発明のフタロシアニン結晶における好適な結晶型である上述の特 定結晶型への制御性が低下することから、芳香族炭化水素骨格が好ましい。特定置 換基含有芳香族化合物はフタロシアニン結晶前駆体と接触させる際に液体状態で あることが好ま 、が、芳香族骨格部分の分子量が大き 、と液体状態を取り難 、こと から、通常はベンゼン、ナフタレン、ビフエ-ル、ピロール、チォフェン、フラン、ピリジ ン等の骨格が用いられる。中でも、ベンゼン、ナフタレン、ビフヱ-ル等の芳香族炭化 水素骨格が好ましぐフタロシアニン結晶の電子写真感光体特性の面から、ベンゼン が特に好ましい。
[0124] また、特定置換基含有芳香族化合物とフタロシアニン結晶前駆体との接触は普通 100°C以下で行なわれるため、特定置換基含有芳香族化合物の融点は通常 100°C 以下である。あまり融点が高過ぎると、フタロシアニン結晶前駆体との接触の際に特 定置換基含有芳香族化合物の取扱性が低下することから、特定置換基含有芳香族 化合物の融点は好ましくは 80°C以下、より好ましくは 60°C以下である。
[0125] 特定置換基含有芳香族化合物が有する原子量 30以上のハロゲン原子としては、 塩素原子、臭素原子、ヨウ素原子が挙げられるが、製造時の取扱の面から塩素原子 、臭素原子が好ましぐ電子写真感光体としての特性の面力 塩素原子がより好まし い。
[0126] 特定置換基含有芳香族化合物が有する原子量 30以上のハロゲン原子は、通常は その芳香族骨格に直接結合して 、る。原子量 30以上のハロゲン原子の数は任意で あるが、ハロゲン原子の数が多くなるにつれて凝固点が高くなり、製造時の取扱性が 低下することから、 3以下が好ましぐ電子写真感光体の感度の面から、 2以下がより 好ましい。中でも、モノハロゲン置換芳香族化合物であることが特に好ましい。
[0127] 特定置換基含有芳香族化合物が有する酸素原子を含有する基の種類は特に制限 されないが、例としては、フエノール性水酸基;アルデヒド基;カルボン酸基;ニトロソ基 ;ニトロ基;イミド酸基;ヒドロキシム酸基;ヒドロキシサム酸基;シアン酸基;イソシアン酸 基;ァゾキシ基;アミド基;ァセチル基、フエノキシ基等のァシル基;メトキシ基、ベンジ ルォキシ基、フエノキシ基等のエーテル基;ジメチルァセタール基、メチルェチルァセ タール基、エチレンァセタール基等のァセタール基が挙げられる。これらの基のうち、 アルキル鎖等の更に置換が可能な置換基を有する基にっ 、ては、それらの置換基 が更に置換されて 、てもよ 、。
[0128] 前記酸素原子を含有する基の中でも、結晶制御性の面から、アルデヒド基、エステ ル基、ァシル基、ァシルォキシ基等のカルボ-ル基を有する置換基、ニトロ基、エー テル基が好ましぐ中でもアルデヒド基、ニトロ基、エーテル基、エステル基、ァシル基 、ァシルォキシ基がより好ましい。
[0129] 本発明の効果は、特定置換基含有芳香族化合物を用いることにより、フタロシア二 ン結晶前駆体との接触時の結晶型の制御能力が増加し、更に、該特定置換基含有 芳香族化合物がフタロシアニン結晶中に取り込まれ効果を発現すると推測されること から、酸素原子を含有する基は、芳香環に直接結合していてもよぐ 2価の有機残基 (ァリーレン基を除く。 )を介して芳香環に結合して 、てもよ 、。
[0130] 酸素原子を含有する基が 2価の有機残基を介して芳香環に結合している場合、有 機残基の分だけ特定置換基含有芳香族化合物の分子体積が大きくなり、フタロシア ニン結晶中へ取り込まれ難くなるため、有機残基部分の分子量は通常 100以下、好 ましくは 50以下である。但し、酸素原子を含有する基は、 2価の有機残基を有さず、 エーテル基の様に酸素原子を介して芳香環に直接結合する力、或いは、カルボ-ル 基の炭素原子やニトロ基の窒素原子の様に、芳香環に直接結合する原子が酸素原 子を有することがより好まし 、。
[0131] 酸素原子を含有する基一つ当たりの分子量は、通常は 300以下である。この分子 量が大き過ぎると電子写真感光体の特性が低下することから、中でも 250以下が好 ましぐ 200以下がより好ましぐ 150以下が更に好ましい。
[0132] 特定置換基含有芳香族化合物が有する酸素原子を含有する基の数につ!、ては、 多過ぎると特定置換基含有芳香族化合物の分子量、分子体積が共に増加し、特定 置換基含有芳香族化合物を用いることにより得られる効果が低下することから、通常 5以下、好ましくは 3以下、より好ましくは 2以下、更に好ましくは 1である。
[0133] 特定置換基含有芳香族化合物は、酸素原子を含有する基及び原子量 30以下の ハロゲン原子の他に、芳香環にその他の置換基を有していてもよい。その他の置換 基としては、メチル基、ェチル基、イソプロピル基、シクロへキシル基等のアルキル基 ;チオメチル基、チォェチル基等のチォアルキル基;シァノ基;メルカプト基;アミノ基 、モノメチルァミノ基、メチルェチルァミノ基等の置換若しくは無置換のアミノ基;トリフ ルォロメチル基等のハロゲン化アルキル基;フッ素原子等の公知の酸素原子を含有 しな!ヽ置換基;分子量 29以下のハロゲン原子等が挙げられる。
[0134] 前述したその他の置換基の例のうち、アルキル基、置換アミノ基、ハロゲンィ匕アルキ ル基等の炭素鎖を有する置換基については、その炭素鎖部分が直鎖状、分岐状、 環状の何れの構造を有して 、てもよ 、が、これら置換基の炭素鎖部分の構造が大き 過ぎると、得られるフタロシアニン結晶の安定性に悪影響を与えることから、直鎖状又 は分岐状の構造であることが好ましぐ直鎖状であることがより好ましい。また、当該炭 素鎖部分の炭素数は、通常 20以下であるが、炭素鎖部分の炭素数が多過ぎると特 定置換基含有芳香族化合物の効果が減少することから、好ましくは 15以下、より好ま しくは 10以下、更に好ましくは 6以下である。
[0135] 前述したその他の置換基の例の中でも、結晶変換時の結晶制御性を考慮すると、 フッ素原子又はアルキル基が好ましい。中でも、置換基としての 3次元的な分子体積 が大きくなると結晶変換時の結晶制御性が低下することから、メチル基、ェチル基、 フッ素原子がより好ましぐメチル基又はフッ素原子が更に好ましい。
[0136] なお、前記特定置換基含有芳香族化合物は、いずれか一種を単独で用いてもよく 、二種以上を任意の組み合わせ及び比率で併用してもよ!/、。
また、一種又は二種以上の特定置換基含有芳香族化合物を、一種又は二種以上 の他の化合物と混合して、フタロシアニン結晶前駆体に接触させてもよい。この場合 、特定置換基含有芳香族化合物と併用する他の化合物は、使用するフタロシアニン 結晶前駆体や得られるフタロシアニン結晶に好ましからぬ影響を与えるものでない限 り、その種類は特に制限されない。但し、特定置換基含有芳香族化合物以外の他の 化合物を併用する場合でも、特定置換基含有芳香族化合物と他の化合物との総量 に対する特定置換基含有芳香族化合物の割合を、通常 50重量%以上、中でも 75 重量%以上とすることが好ま 、。
[0137] 特定置換基含有芳香族化合物の使用量は、接触処理に用いる手法等によっても 異なり、一概には規定できないが、一般的には、フタロシアニン結晶前駆体に対する 重量割合で、通常 50重量%以上、好ましくは 100重量%以上、また、通常 2000重 量%以下、好ましくは 1000重量%以下の範囲である。なお、二種以上の特定置換 基含有芳香族化合物を併用する場合には、これらの合計割合が上記範囲を満たす ようにする。
〔結晶型変換工程〕
結晶型変換工程は、上述の結晶型変換用化合物類を使用して、フタロシアニン結 晶前駆体の結晶型を変換するものである。即ち、フタロシアニン結晶前駆体を、必要 に応じて用いられる結晶型変換用共存ィ匕合物類の共存下、結晶型変換用接触化合 物類に接触させることにより、その結晶型を変換するものである。
結晶型変換工程では、上述したように、上述の結晶型変換用化合物類 (A)〜(D) のうち、何れか一種を単独で用いてもよぐ二種以上を任意の組み合わせ及び比率 で併用してもよい。
[0138] 〔接触手順〕
結晶変換工程において、フタロシアニン結晶前駆体と、結晶型変換用化合物類か ら選ばれる少なくとも 1つの結晶型変換用化合物類とを、接触させる方法は特に制限 されず、いかなる公知の方法を用いてもよい。
[0139] 中でも、水の共存下で、フタロシアニン結晶前駆体と結晶型変換用化合物類とを接 触させるのが一般的であり、本発明のフタロシアニン結晶を得るために好適である。 水を使用する場合のその使用量は特に制限されないが、結晶型変換用化合物類に 対する重量比で、通常 100重量%以上、中でも 500重量%以上、また、通常 5000 重量%以下、中でも 1500重量%以下の範囲とすることが好ましい。なお、二種以上 の結晶型変換用化合物類を併用する場合には、それらの合計重量が上記範囲を満 たすようにすることが好ま U、。
[0140] 結晶型変換用化合物類と、フタロシアニン結晶前駆体との具体的な接触の方法と しては、例えば、フタロシアニン結晶前駆体を、結晶型変換用化合物類の含まれる蒸 気や液体、又は結晶型変換用化合物類を含む溶液と共存させ、撹拌しながら接触さ せる方法や、フタロシアニン結晶前駆体と結晶型変換用化合物類とを、自動乳鉢、 遊星ミル、振動ボールミル、 CFミル、ローラーミル、サンドミル、ニーダ一等の装置中 でメディアと共に物理的な力を加えながら接触させる方法などが挙げられる。
[0141] 結晶型変換用化合物類と、フタロシアニン結晶前駆体との接触時の温度は特に制 限されないが、通常は 150°C以下である。よって、本発明に使用される結晶型変換 用接触化合物類は、いずれもその融点が通常 150°C以下であることが望ましい。結 晶型変換用接触化合物類の融点があまり高過ぎると、結晶変換時の結晶型変換用 接触化合物類の取扱性が低下することから、 120°C以下が好ましぐより好ましくは 8 0°C以下である。
[0142] 結晶型変換用化合物類とフタロシアニン結晶前駆体との接触処理 (即ち、結晶型 変換処理)により、本発明のフタロシアニン結晶が得られる。得られた本発明のフタ口 シァニン結晶は、必要に応じて水や各種の有機溶媒等を用いて洗浄してもよい。接 触処理後又は洗浄後において得られる本発明のフタロシアニン結晶は、通常はゥェ ットケーキの状態である。前述したように、本発明の効果は、結晶変換時にフタロシア ニン結晶前駆体を結晶型変換用化合物類と接触させた際に、フタロシアニン結晶中 に結晶型変換用化合物類が取り込まれることにより得られるものであると考えられるこ とから、接触処理後又は洗浄後における本発明のフタロシアニン結晶の、ウエットケ ーキ中におけるフタロシアニン類の含有量(ウエットケーキ総重量に対するフタロシア ニン類の重量)は特に制限されず、いかなる量であってもよい。
[0143] 接触処理後又は洗浄後に得られた本発明のフタロシアニン結晶のウエットケーキは
、通常は乾燥工程に供される。乾燥方法は送風乾燥、加熱乾燥、真空乾燥、凍結乾 燥等の公知の方法で乾燥することが可能である。
[0144] 以上の方法により得られる本発明のフタロシアニン結晶は、通常は、一次粒子が凝 集して二次粒子を形成する形態をとる。その粒子径は、結晶型変換用化合物類とフ タロシアニン結晶前駆体との接触時の条件 ·処方等によって大きく異なるが、分散性 を考慮すると、 1次粒子径として、 500nm以下が好ましぐ塗布成膜性の面からは 25 Onm以下であることが好まし 、。
[0145] 本発明にお 、て、フタロシアニン結晶前駆体と結晶型変換用化合物類との接触前 後で、結晶変換がされたか否かの定義は、以下の通りである。即ち、接触前後にお V、て粉末 X線回折スペクトルの各ピークが全く同一の場合は結晶変換がされてな ヽ ものと定義し、接触前後において粉末 X線回折スペクトル力 得られるピーク位置、ピ ークの有無、ピーク半値幅等の情報に少しでも差異が認められた場合は結晶変換が されたものと定義する。 [0146] 〔フタロシアニン結晶の結晶型〕
本発明のフタロシアニン結晶の結晶型は、フタロシアニン結晶前駆体と異なる結晶 型であれば、如何なる結晶型であってもよいが、中でも、フタロシアニン結晶を電子 写真感光体の材料として使用した場合における電子写真感光体の特性の面から、 C uK o;特性 X線 (波長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° ) 27. 2° に主た る回折ピークを有する結晶型 (以下適宜「特定結晶型」ということがある。)が好ましい
[0147] 本発明の効果が得られるメカニズムは明らかとなっていないが、フタロシアニン結晶 前駆体を結晶型変換用化合物類に接触させ該結晶型を構築する際に、フタロシア二 ン環と結晶型変換用化合物類が相互作用を持ち、結晶型変換用化合物類がフタ口 シァニン結晶中に取り込まれるとともに、取り込まれた結晶型変換用化合物類が、結 晶中に存在する増感剤としての水と相互作用することにより、低湿条件下での結晶中 力 の水の脱離を抑制し、低湿条件下でも水分子がフタロシアニン結晶中で存在す ることができるようになり、増感剤である水の脱離による感度低下を抑制しているため 、或いは、結晶型変換用化合物類が増感剤である水分子の替わりに増感剤としての 役割を果たして 、るためではな 、かと考えられる。
[0148] 特に、上記特定結晶型は、他の結晶型と比較して結晶密度が低ぐ結晶中の空い ている空間部分が多いため、フタロシアニン結晶を結晶型変換用化合物類と接触さ せて上述の特定結晶型を構築する際に、結晶中に結晶型変換用化合物類が取り込 まれ易くなる。
フタロシアニン結晶前駆体を芳香族アルデヒドィ匕合物に接触させ、本発明のフタ口 シァニン結晶を得る場合には、該結晶型を構築する際に、フタロシアニン環と芳香族 アルデヒドィ匕合物の芳香環部分の π電子同士が相互作用を持ち、芳香族アルデヒド 化合物がフタロシアニン結晶中に取り込まれるとともに、取り込まれた芳香族アルデヒ ド化合物のアルデヒド基部分が、結晶中に存在する増感剤としての水と相互作用す ることにより、低湿条件下での結晶中からの水の脱離を抑制し、低湿条件下でも水分 子がフタロシアニン結晶中で存在することができるようになり、増感剤である水の脱離 による感度低下を抑制しているため、或いは、芳香族アルデヒドィ匕合物のアルデヒド 基が増感剤である水分子の替わりに増感剤としての役割を果たして 、るためではな いかと考えられる。
フタロシアニン結晶前駆体を特定有機酸ィ匕合物の存在下で非酸性有機化合物に 接触させ、本発明のフタロシアニン結晶を得る場合には、該結晶型を構築する際に、 特定有機酸ィ匕合物がフタロシアニン結晶中に取り込まれるとともに、取り込まれた特 定有機酸ィ匕合物が、結晶中に存在する増感剤としての水と相互作用することにより、 低湿条件下での結晶中からの水の脱離を抑制し、低湿条件下でも水分子がフタロシ ァニン結晶中で存在することができるようになり、増感剤である水の脱離による感度 低下を抑制しているため、或いは、特定有機酸ィ匕合物が増感剤である水分子の替わ りに増感剤としての役割を果たして 、るためではな 、かと考えられる。
特に、上述の特定結晶型は、他の結晶型と比較して結晶密度が低ぐ結晶中の空 V、て 、る空間部分が多!、ため、特定有機酸化合物の存在下で非酸性有機化合物を フタロシアニン結晶前駆体に接触させて上述の特定結晶型を構築する際に、特定有 機酸ィ匕合物がフタロシアニン結晶中に容易に取り込まれ、フタロシアニン結晶中で増 感剤としての役割を果たして ヽるのではな!/ヽかと考えられる。
フタロシアニン結晶前駆体を電子吸引性特定芳香族化合物の存在下で非酸性特 定有機化合物と接触させ、本発明のフタロシアニン結晶を得る場合には、該結晶型 を構築する際に、電子吸引性特定芳香族化合物がフタロシアニン結晶中に取り込ま れるとともに、取り込まれた電子吸引性特定芳香族化合物が、結晶中に存在する増 感剤としての水と相互作用することにより、低湿条件下での結晶中からの水の脱離を 抑制し、低湿条件下でも水分子がフタロシアニン結晶中で存在することができるよう になり、増感剤である水の脱離による感度低下を抑制しているため、或いは、電子吸 引性特定芳香族化合物が増感剤である水分子の替わりに増感剤としての役割を果 たして 、るためではな 、かと考えられる。
特に、上述の特定結晶型は、他の結晶型と比較して結晶密度が低ぐ結晶中の空 いている空間部分が多いため、電子吸引性特定芳香族化合物の存在下で非酸性特 定有機化合物をフタロシアニン結晶前駆体に接触させて上述の特定結晶型を構築 する際に、電子吸引性特定芳香族化合物がフタロシアニン結晶中に容易に取り込ま れ、フタロシアニン結晶中で増感剤としての役割を果たして 、るのではな 、かと考え られる。
フタロシアニン結晶前駆体を特定置換基含有芳香族化合物と接触させ、本発明の フタロシアニン結晶を得る場合には、上記の特定置換基含有芳香族化合物が、原子 量 30以上のハロゲン原子を有していることにより、特定結晶型へと結晶変換する際 の結晶型制御性に優れ、且つ、特定置換基含有芳香族化合物が結晶変換の際にフ タロシアニン結晶中に取り込まれ、特定置換基含有芳香族化合物中の酸素原子を 含有する基が、結晶中で増感剤の役割を果たして 、るのではな 、かと考えられる。 特に、上述の特定結晶型は、他の結晶型と比較して結晶密度が低ぐ結晶中の空 V、て 、る空間部分が多!、ため、該特定置換基含有芳香族化合物をフタロシアニン結 晶前駆体に接触させて上述の特定結晶型を構築する際に、フタロシアニン結晶前駆 体のフタロシアニン環と特定置換基含有芳香族化合物の芳香環部分の π電子同士 力 S相互作用することにより、特定置換基含有芳香族化合物がフタロシアニン結晶中 に容易に取り込まれ、フタロシアニン結晶中で増感剤としての役割を果たして 、るの ではないかと考えられる。
以上の理由から、本発明のフタロシアニン結晶は、上述の特定結晶型を有するもの が望ましい。
[0149] 本発明のフタロシアニン結晶が上述の特定結晶型を有する場合、 27. 2° のピーク と共に示す明確なピークの組み合わせとしては、以下の(i)〜(iii)が挙げられる。
(i) 9. 6° 、 24. 1° 、 27. 2°
(ii) 9. 5° 、 9. 7° 、 24. 1° 、 27. 2°
(iii) 9. 0° 、 14. 2° 、 23. 9° 、 27. 1°
[0150] 中でも、上記(i)〜(iii)のピークの組み合わせのうち、上記(i)又は(ii)のピークの組 み合わせを示すもの力 分散時の結晶安定性に優れることから好ましい。
[0151] 特【こ、 7. 3° 、 9. 6° 、 11. 6° 、 14. 2° 、 18. 0° 、 24. 1° 及び 27. 2° 【こ主た る回折ピークを有する結晶型、又は、 7. 3° 、 9. 5° 、 9. 7° 、 11. 6° 、 14. 2° 、 18. 0° 、 24. 2° 及び 27. 2° に主たる回折ピークを有する結晶型力 電子写真感 光体の材料として用いた場合の暗減衰、残留電位の観点カゝらより好まし 、。 [0152] なお、 26. 2° 又は 28. 6° 付近にピークを有するフタロシアニン結晶は、分散時 に他の結晶型に転位し、電子写真特性の低下を招くことから、本発明のフタロシア- ン結晶は、 26. 2° 又は 28. 6° 付近には明確なピークを有さないことが好ましい。
[0153] 上述のように、本発明のフタロシアニン結晶における結晶型変換用化合物類の効 果は、結晶変換の際にフタロシアニン結晶前駆体と結晶型変換用化合物類とを接触 させることにより、結晶型変換用化合物類力 Sフタロシアニン結晶中に取り込まれること により得られるものであると考えられ、結晶の中の分子の配向性には依存して 、な 、 ものと考えられる。よって、上に挙げた好ましいピークの組み合わせにおいて、各ピー ク間の強度比は、本発明の効果とは相関性が無いと考えられる。従って、これらのピ ークはいかなる強度比を有していてもよいが、通常は 27. 2° 付近のピーク又は 9. 6 ° 付近のピークが最大となることが多い。
[0154] 〔塩素化ォキシチタニウムフタロシアニン〕
本発明のフタロシアニン結晶として好適なォキシチタニウムフタロシアニン結晶(ォ キシチタニウムフタロシアニンを少なくとも含む結晶又は混晶)の場合、製造法の違い により、その結晶中にフタロシアニン環が塩素化されたォキシチタニウムフタロシア- ン (塩素化ォキシチタニウムフタロシアニン)を含有する場合がある。本発明の効果は 、フタロシアニン結晶中に、結晶型変換用化合物類が含有されることにより発現して いると考えられることから、結晶型変換用化合物類が多く取り込まれるように、ォキシ チタニウムフタロシアニン結晶中には空間が多く存在して 、る方が好まし 、。塩素化 ォキシチタニウムフタロシアニンはフタロシアニン環部分にクロ口基を有しており、分 子体積が無置換のォキシチタニウムフタロシアニンと比較して大きくなつて 、る。この ため、結晶中に塩素化ォキシチタニウムフタロシアニンが存在すると、結晶型変換用 化合物類を取り込むための空間が少なくなる。以上の理由から、ォキシチタニウムフ タロシアニン結晶の製造のためのフタロシアニン結晶前駆体として用いるォキシチタ
-ゥムフタロシアニン類 (以下「ォキシチタニウムフタロシアニン結晶前駆体」と略称す る。)は、塩素化ォキシチタニウムフタロシアニンの含有量が少ない方が好ましい。
[0155] ォキシチタニウムフタロシアニン結晶前駆体中の塩素化ォキシチタニウムフタロシア ニンの含有量は、如何なる従来公知の分析方法により測定することも可能であるが、 例えば、特開 2001— 115054号公報に記載の元素分析法及びマススペクトル測定 により決定することが出来る。具体的な元素分析法及びマススペクトル測定の条件と しては、例えば以下の条件が挙げられる。
[0156] <塩素含有量測定条件 (元素分析) >
ォキシチタニウムフタロシアニン結晶前駆体 lOOmgを精秤して石英ボード上に載 置し、昇温型電気炉 (例えば三菱ィ匕学社製 QF— 02等)にて完全燃焼し、燃焼ガス を水 15mlにて定量吸収させる。得られた吸収液を 50mlに希釈し、イオンクロマトダラ フィー(Dionex社製「DX— 120」)で塩素分析を行なう。下記にイオンクロマトグラフ ィ一の条件を示す。
[0157] カラム: Dionex IonPak AG12A+AS12A
溶離液: 2. 7mM炭酸ナトリウム(Na CO )ZO. 3mM炭酸水素ナトリウム(NaHCO
2 3 3
)
流量: 1. 3ml/ mm
注入量:50 1
[0158] <マススペクトル測定条件 >
(a)試料の調製:
ォキシチタニウムフタロシアニン結晶前駆体 0. 50gを、ガラスビーズ(φ 1. 0〜1. 4 mm) 30g及びシクロへキサノン 10gと共に 50mlのガラス容器に入れ、染料分散試験 機 (ペイントシェーカー)で 3時間分散処理をし、 5重量%ォキシチタニウムフタロシア ニン分散液とする。この 5重量0 /0ォキシチタニウムフタロシアニン分散液 1 μ 1を 20ml サンプル瓶に採取し、クロ口ホルム 5mlを加え、 1時間超音波により分散させることに より、 lOppmォキシチタニウムフタロシアニン分散液を調製する。
[0159] (b)測定装置,条件:
測定装置: JEOLi^MS— 700/MStaion
イオン化モード: DCI (—)
反応ガス:イソブタン (イオンィ匕室圧力 1 X 10"5Torr)
フィラメントレート: 0→ 0. 90A (lA/min)
質量分析能: 2000 スキャン法: MF - Linear
スキャン質量範囲: 500 to 600
全質量範囲スキャン時間: 0. 8sec
繰り返し時間: 0. 5sec
[0160] (c)塩素化ォキシチタニウムフタロシアニンと無置換ォキシチタニウムフタロシアニン とのマススペクトルピーク強度比の算出方法:
上記手順で調製した lOppmォキシチタニウムフタロシアニン分散液 1 μ 1を DCIプ ローブのフィラメントに塗布し、上記条件によりマススペクトル測定を行なう。得られた マススペクトルにおいて、塩素化ォキシチタニウムフタロシアニンの分子イオンに相当 する mZz = 610及び無置換ォキシチタニウムフタロシアニンの分子イオンに相当す る m/z = 576のイオンクロマトグラフィーから得られるピーク面積の比(「610」ピーク 面積 Z「576」ピーク面積)をマススペクトルピーク強度比として算出する。
[0161] 上述の <塩素含有量測定条件 (元素分析) >に基づく測定によって得られる、ォキ シチタニウムフタロシアニン結晶前駆体中に含有される塩素化ォキシチタニウムフタ ロシアニンの量は、好ましくは 0. 4重量%以下、より好ましくは 0. 3重量%以下、更に 好ましくは 0. 2重量%以下である。
[0162] また、上述の <マススペクトル測定条件 >に基づく測定によって得られる、ォキシチ タ -ゥムフタロシアニン結晶前駆体中の塩素化ォキシチタニウムフタロシアニンと無 置換ォキシチタニウムフタロシアニンとのマススペクトルピーク強度比は、好ましくは 0 . 050以下、より好ましく ίま 0. 040以下、更に好ましく ίま 0. 030以下である。
[0163] 〔その他〕
本発明における結晶型変換用化合物類の使用が、フタロシアニン結晶の電子写真 感光体としての特性に影響を及ぼすメカニズムは明白ではないが、上述のように、結 晶変換時に結晶型変換用化合物類がフタロシアニン結晶中に取り込まれることにより 、本発明の効果が得られて 、るのではな!/、かと考えられる。
[0164] 結晶中に取り込まれる結晶型変換用接触化合物類の量は、製法によっても異なり、 特に制限されるものではないが、フタロシアニン結晶 100重量部に対して、通常 0. 1 重量部以上である。中でも、結晶型変換用接触化合物類の取り込み量が少ないと本 発明の効果が少なくなることから、 0. 2重量部以上が好ましぐより好ましくは 0. 3重 量部以上である。但し、結晶型変換用接触化合物類の取り込み量が多過ぎるとフタ ロシアニン結晶の安定性が低下することから、 10重量部以下が好ましぐより好ましく は 7重量部以下である。なお、フタロシアニン結晶中に結晶型変換用接触化合物類 が複数種存在する場合には、その合計量が上記範囲となることが好ま 、。
フタロシアニン結晶中における結晶型変換用接触化合物類の含有量は、公知の熱 重量分析方法に従って測定することにより算出が可能である。特に、上述の特定結 晶型を有するフタロシアニン結晶は、 220〜270°C付近で結晶転位することが知られ ており、この結晶転位の際に結晶中に含有されている化合物が放出される。よって、 上述の特定結晶型を有するフタロシアニン結晶の熱重量分析にぉ 、ては、結晶転位 前後の重量差 (例えば 200°Cと 300°Cでの重量差)から含有されている結晶型変換 用接触化合物類の量を算出することが可能である。
<電子写真感光体の特性 >
本発明の電子写真感光体の特徴は、半減露光量が小さく感度が高いこと、および 湿度変化による光減衰特性の変動が極めて小さいことにある。
半減露光量は小さければ小さいほど、プリンターや複写機などの画像形成装置に おける、露光光のエネルギー量を小さくすることが可能となり、例えば光源の消費電 力を下げることができ、好ましい。電子写真感光体は、通常、その感光層の膜厚によ つて静電容量が異なるので、膜厚が異なると同じ電位でも表面電荷の量が異なる。 即ち、感光体は膜厚によって、量子効率が 1であるときの半減露光量が異なる。 本発明にお 、ては、半減露光量が小さく感度が高 、のと同時に湿度による光減衰 特性の変動が極めて小さいという技術思想は共通である力 以上の理由から、膜厚 を区分し、その量子効率が 1であるときの半減露光量を考慮した上で、本発明におけ る半減露光量 E1Z2および湿度による光減衰特性の変動の程度を規定している。こ れにより、その膜厚において画像形成装置に対する特性が特に適した電子写真感 光体を規定することが可能である。
感光層の膜厚が 35 ±2. 5 μ mの感光体のときは、温度 25°C、相対湿度 50%rhに おける半減露光量 E1Z2が通常 0. 059以下、好ましくは 0. 054以下、より好ましく は 0. 051以下、最も好ましいのは 0. 049以下である。
感光層の膜厚が 30±2. 5 μ mの感光体のときは、温度 25°C、相対湿度 50%rhに おける半減露光量 E1Z2が通常 0. 061以下、好ましくは 0. 056以下、より好ましく は 0. 053以下、最も好ましいのは 0. 051以下である。
感光層の膜厚が 25 ±2. 5 μ mの感光体のときは、温度 25°C、相対湿度 50%rhに おける半減露光量 E1Z2が通常 0. 066以下、好ましくは 0. 061以下、より好ましく ίま 0. 058以下、最も好まし ヽの ίま 0. 055以下である。
感光層の膜厚が 20±2. 5 μ mの感光体のときは、温度 25°C、相対湿度 50%rhに おける半減露光量 E1Z2が通常 0. 079以下、好ましくは 0. 073以下、より好ましく は 0. 069以下、最も好ましいのは 0. 066以下である。
感光層の膜厚が 15±2. 5 μ mの感光体のときは、温度 25°C、相対湿度 50%rhに おける半減露光量 E1Z2が通常 0. 090以下、好ましくは 0. 083以下、より好ましく ίま 0. 079以下、最も好まし ヽの ίま 0. 075以下である。
但し、本発明における半減露光量 E1Z2は電子写真感光体の表面電位 V0の絶 対値 I VO Iを 550Vから 275Vまで減衰させるのに必要とする、 780nmの波長の光 の露光量( jZcm2)を半減露光量 E1Z2として定義する。測定方法につ!ヽては、 く半減露光量 E1Z2の測定方法 >の項において後述する。
また本発明における感光層の膜厚とは、積層型感光体の場合には電荷発生層と電 荷輸送層の合計の膜厚を指し、単層型感光体の場合には感光層の膜厚を指すもの とする。表面保護層が存在する場合、表面保護層も含めた膜厚を感光層の膜厚とす る。電荷発生層、電荷輸送層、単層型感光層、表面保護層以外の層 (例えば、中間 層)が存在する場合、その層の膜厚は感光層の膜厚に含めないものとする。膜厚は、 種々の方法で測定することが可能であるが、例えば、東京精密社製サーフコム 570 Aを用いて、測定することが可能である。
湿度変化による光減衰特性の変動は、小さいことが好ましいが、本発明においては 、温度 25°C、相対湿度 50%rhにおける光減衰曲線と温度 25°C、相対湿度 10%rh における光減衰曲線とを比較したときに、露光量が半減露光量 E1Z2の 0倍から 10 倍までの範囲において、同じ露光量における表面電位の差の絶対値 (以後、環境変 動依存量と呼ぶ。測定方法は、 <環境変動依存量 >の項で後述する。)が通常 50V 以下であり、 40V以下であることが好ましぐ 35V以下であることがより好ましぐ 30V 以下であることが更に好ましぐ 20V以下であることが好適である。環境変動依存量 が小さいほど環境変動に由来する画像劣化が小さくなる。
以上のような電子写真感光体は、プロセスカートリッジ、又は画像形成装置に用い た場合、単位時間当たりに多くの枚数を印刷でき、かつ消費電力が少なぐかつ環境 変動に由来する画像欠陥を少なくすることが出来る。
なお、本発明では、半減露光量 E1Z2及び光減衰曲線の測定環境を、その温度 及び相対湿度により規定しているが、これらの測定は、可能な限り誤差の小さな環境 で行なうことが望ましい。
温度及び相対湿度の測定方法に特に制限は無いが、通常、日本工業規格 (JIS: Ja panese Industrial Standards)により規格化された方法に準拠した方法で測定する。温 度については、 JIS Z8704,Z8705,Z8707 に測定方法が規定されており、湿度につい ては、 JIS Z8806 に測定方法が規定されている。
具体的に、温度については、本発明で規定する温度の ±2°Cの範囲内であれば、 本発明で規定する温度に該当するものと判断される。
また、湿度については、相対湿度で表わした場合に、本発明で規定する湿度の士 5%の範囲内であれば、本発明で規定する湿度に該当するものと判断される。
<半減露光量 E1Z2の測定方法 >
本発明における半減露光量 1Z2は、市販の感光体評価装置 (シンシァ 55、ジェン テック社製)を用いて、スタティック方式で測定した値である。具体的には、以下に説 明する手順によって測定される。
帯電器を 0° 、露光装置及び表面電位計プローブを 90° 、除電器を 270° の角度 に配置し、帯電器、表面電位計プローブ、除電器を感光体表面力ゝらの距離が 2mmと なるように配置する。
まず、暗所で、感光体の表面電位が約 700Vになるような放電が行なわれるよう に設定したスコロトロン帯電器上を、一定の回転速度(30rpm)で感光体表面を通過 させ帯電させる。帯電後の感光体表面がプローブ位置に到達したら停止させ、停止 してから 2. 5秒後に、付属の分光光源システム POLAS34力 得た、強度 0. 15 WZcm2の 780nmの単色光を 7. 5秒間照射する。この時、感光体の表面電位が 550Vから— 275Vになるまでに要した露光量を測定する。再び感光体を回転させ、 除電器により全周除電を行なった後、同じ操作を行なう。このサイクルを 6回繰り返し 、 1回目を除く 5回の露光量の測定値を平均し、得られた平均値を半減露光量 E1Z 2 ( j/cm2)とする。
なお、以上は負帯電型感光体の場合を例として説明したが、正帯電型感光体の場 合には電位を正にして考えればよい。
なお、半減露光量 E1Z2の測定は、測定対象の感光体を、温度 25°C±2°C、湿度 50% ±5%の環境中に、 5時間以上放置した後に、同環境下で行なう。
<環境変動依存量の測定方法 >
本発明における環境変動依存量は、電子写真学会標準に従って作製された電子 写真特性評価装置〔「続電子写真技術の基礎と応用」、(電子写真学会編、コロナ社 発行、第 404〜405頁記載)〕に感光体を装着し、帯電、露光、電位測定、除電のサ イタルによる電気特性の評価を行なうことにより得られる。具体的には、以下に説明す る手順によって求められる。
帯電器を 70° 、露光装置を 0° 、表面電位計プローブを 36° 、除電器を 150 ° の角度に配置し、各機器は感光体表面力 の距離を 2mmに配置する。帯電はス コロトロン帯電器を用いる。露光ランプはゥシォ電機社製のハロゲンランプ JDR110V — 85WLNZK7を用い、朝日分光社製フィルター MX0780を用いて 780nmの単 色光とした。除電光には 660nmの LED光を用いる。
感光体を一定の回転速度(60rpm)で回転させながら、感光体の初期表面電位の 絶対値が 700V (正帯電用感光体の場合は + 700V、負帯電型感光体の場合は 7 00V)となるよう〖こ帯電させ、帯電した感光体表面が 780nmの単色光が露光される 露光部を通過し、表面電位計のプローブの位置に来た時の表面電位を測定する(露 光〜電位測定間 100ms)。 780nmの単色光を NDフィルターに通して光量を変化さ せ、露光量が半減露光量 E1Z2の 0倍から 10倍までの範囲の光を照射し、それぞれ の露光量における表面電位を測定する。この操作を、温度 25°C±2°C、相対湿度 50 %rh± 5%の環境 (以下適宜「NN環境」 t 、う場合がある)で行な 各露光量にお ける NN環境下での露光後電位 (以下適宜「V 」と 、う場合がある)を測定する。 その後、温度 25°C± 2°C、相対湿度 10%rh± 5%の環境(以下適宜「NL環境」と いう場合がある)において同様の操作を行ない、各露光量における NL環境下での露 光後電位 (以下適宜「V 」と 、う場合がある)の測定を行なう。
NL
同じ露光量における NN環境下での露光後電位 V と NL環境下での露光後電位
V との差の絶対値( | V -V I )を計算し、その最大値を環境変動依存量とす
NL NL
る。
なお、 NN環境下及び NL環境下で露光後電位を測定する際は、測定対象の感光 体を、それぞれ NN環境 (温度 25°C± 2°C、相対湿度 50%rh± 5%)及び NL環境( 温度 25°C± 2°C、相対湿度 10%rh± 5%)中に、 5時間以上放置した後に行なう。 <感度保持率の測定方法 >
本発明における湿度変化による感度保持率 (以下適宜「感度保持率」 ヽぅ場合が ある。)は、上記環境変動依存量の測定方法と同じ測定装置を用いて、同じ測定装 置条件において、以下の手順に従って帯電、露光、電位測定、除電のサイクルによ る電気特性の評価を行なうことにより得られる。
感光体を一定の回転速度(60rpm)で回転させながら、感光体の初期表面電位 の絶対値が 700V (正帯電用感光体の場合は + 700V、負帯電型感光体の場合は - 700V)となるように帯電させ、帯電した感光体表面が 780nmの単色光が露光され る露光部を通過し、表面電位計のプローブの位置に来た時の表面電位を測定する( 露光〜電位測定間 100ms) 780nmの単色光を NDフィルターに通して光量を変化 させて照射して、表面電位が初期表面電位の絶対値が 350V (正帯電用感光体の場 合は + 350V、負帯電型感光体の場合は 350V)となる時の照射エネルギー(露光 エネルギー)を測定する。
照射エネルギー(露光エネルギー)を NN環境下で測定した値 (単位 jZcm2)を、 標準湿度感度 (以下適宜「En 」と言う場合がある。)とし、 NL環境下で測定した値
1/2
(単位 jZcm2)を、低湿感度 (以下適宜「E1 」と言う場合がある。)とする。
1/2
なお、上記環境変動依存量の測定方法の場合と同様に、 NN環境下及び NL環境 下で露光後電位を測定する際は、測定対象の感光体を、それぞれ NN環境及び NL 環境中に、 5時間以上放置した後に行なう。
[0165] 得られた標準湿度感度 En 及び低湿感度 El の値を用い、下記式に従って計
1/2 1/2
算することにより、湿度変化による感度保持率を算出する(単位%)。
[0166] [数 2] 湿度変化による感度保持率 (%)
Figure imgf000057_0001
[0167] [II.電子写真感光体]
以下、本発明の電子写真感光体について詳述する。本発明の電子写真感光体は 、導電性支持体上に感光層を有するとともに、上記電子写真感光体の特性を満たす ものである力、または該感光層に、本発明のフタロシアニン結晶を含有するものであ る。
[0168] [II 1.導電性支持体]
導電性支持体としては、例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、 ニッケル等の金属材料や、金属、カーボン、酸化錫などの導電性粉体を添加して導 電性を付与した榭脂材料や、アルミニウム、ニッケル、 ITO (酸化インジウム酸化錫) 等の導電性材料をその表面に蒸着又は塗布した榭脂、ガラス、紙等が主として使用 される。形状としては、ドラム状、シート状、ベルト状などのものが用いられる。また、金 属材料の導電性支持体に、導電性 ·表面性などの制御のためや欠陥被覆のため〖こ 、適当な抵抗値をもつ導電性材料を塗布したものを用いてもよ!、。
[0169] 導電性支持体の表面は、平滑であってもよ!、し、特別な切削方法を用いたり、研磨 処理したりすることにより、粗面化されていてもよい。また、支持体を構成する材料に 適当な粒径の粒子を混合することによって、粗面化されたものであってもよい。また、 安価化のためには切削処理を施さず、引き抜き管をそのまま使用することも可能であ る。特に引き抜き加工、インパクト加工、しごき加工等の非切削アルミニウム基体を用 いる場合、処理により、表面に存在した汚れや異物等の付着物、小さな傷等が無くな り、均一で清浄な基体が得られるので好ましい。 [0170] また、導電性支持体としてアルミニウム合金等の金属材料を用いる場合、陽極酸化 被膜を施して力も用いてもよい。陽極酸化被膜は、例えば、クロム酸、硫酸、シユウ酸 、ホウ酸、スルファミン酸等の酸性浴中で、陽極酸化処理することにより形成されるが 、硫酸中での陽極酸ィ匕処理がより良好な結果を与える。硫酸中での陽極酸化の場合 、硫酸濃度は 100〜300gZl、溶存アルミニウム濃度は 2〜15gZl、液温は 15〜30 。C、電解電圧は 10〜20V、電流密度は 0. 5〜2A/dm2の範囲内に設定されるのが 好ま 、が、前記条件に限定されるものではな 、。
[0171] 陽極酸化被膜の平均膜厚が厚すぎると、封孔液の高濃度化、高温'長時間処理に より強い封孔条件が求められる。従って生産性が悪くなると共に、被膜表面にシミ、 汚れ、粉ふきといつた表面欠陥を生じ易くなる。このような点から、陽極酸化被膜の平 均膜厚は、通常 20 m以下、特に 7 m以下で形成されることが好ましい。
[0172] 陽極酸ィ匕被膜を形成した場合、封孔処理を行なうことが好ま ヽ。封孔処理は、通 常の方法で良いが、例えば、主成分としてフッ化ニッケルを含有する水溶液中に浸 漬させる低温封孔処理、或いは、主成分として酢酸ニッケルを含有する水溶液中に 浸漬させる高温封孔処理を施すのが好ま 、。
[0173] 低温封孔処理の場合、使用するフッ化ニッケル水溶液の濃度は、適宜選択するこ とが可能であるが、中でも 3〜6gZlの範囲とすると、より好ましい結果が得られる。フ ッ化ニッケル水溶液の pHは、通常 4. 5以上、好ましくは 5. 5以上、また、通常 6. 5以 下、好ましくは 6. 0以下の範囲で処理するのがよい。 pH調節剤としては、シユウ酸、 ホウ酸、ギ酸、酢酸、水酸化ナトリウム、酢酸ナトリウム、アンモニア水等を用いること が出来る。また、被膜物性を更に改良するために、フッ化コバルト、酢酸コバルト、硫 酸ニッケル、界面活性剤等をフッ化ニッケル水溶液に加えてもよい。処理温度は、封 孔処理をスムーズに進めるために、通常 25°C以上、好ましくは 30°C以上、また、通 常 40°C以下、好ましくは 35°C以下の範囲とするのがよい。処理時間は、被膜の膜厚 : L mあたり 1〜3分間の範囲で処理することが好ましい。次いで水洗、乾燥して低温 封孔処理を終える。
[0174] 高温封孔処理の場合、封孔剤としては、酢酸ニッケル、酢酸コバルト、酢酸鉛、酢 酸ニッケル コバルト、硝酸バリウム等の金属塩水溶液を用いることが出来るが、特 に酢酸ニッケルを用いるのが好ましい。酢酸ニッケル水溶液を用いる場合、その濃度 は通常 5〜20gZlの範囲内で使用するのが好ましい。酢酸ニッケル水溶液の pHは 通常 5. 0〜6. 0の範囲で処理するのが好ましい。 pH調節剤としては、アンモニア水 、酢酸ナトリウム等を用いることが出来る。なお、被膜物性を改良するために、酢酸ナ トリウム、有機カルボン酸、ァ-オン系、ノ-オン系界面活性剤等を酢酸ニッケル水溶 液に加えてもよい。処理温度は通常 80°C以上、通常 100°C以下、好ましくは 90°C以 上、好ましくは 98°C以下の範囲である。処理時間は通常 10分以上、好ましくは 20分 以上である。次いで水洗、乾燥して高温封孔処理を終える。
[0175] [II 2.下引き層]
導電性支持体と後述する感光層との間には、接着性'ブロッキング性等の改善のた め、下引き層を設けてもよい。下引き層としては、バインダー榭脂、バインダー榭脂に 金属酸ィ匕物等の粒子を分散したものなどが用いられる。
[0176] 下引き層に用いられる金属酸ィ匕物粒子の例としては、酸化チタン、酸ィ匕アルミニゥ ム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の 1種の金属元素を含む金 属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の 複数の金属元素を含む金属酸ィ匕物粒子が挙げられる。これらの金属酸ィ匕物粒子は 、何れか 1種類を単独で用いてもよいし、複数種を任意の組み合わせ及び比率で混 合して用いてもよい。これらの金属粒子の中でも、酸化チタン及び酸化アルミニウム が好ましぐ特に酸ィ匕チタンが好ましい。酸ィ匕チタン粒子は、その表面に、酸化錫、 酸ィ匕アルミニウム、酸ィ匕アンチモン、酸ィ匕ジルコニウム、酸化珪素等の無機物、又は ステアリン酸、ポリオール、シリコーン等の有機物による処理を施されていてもよい。 酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファス の何れも用いることが出来る。また、複数の結晶状態のものが含有されていてもよい。
[0177] 金属酸ィ匕物粒子の粒径としては、種々のものが利用できる力 中でも特性及び液 の安定性の面から、平均一次粒径として通常 lOnm以上、また、通常 lOOnm以下、 特に 50nm以下の範囲のものが好ましい。
[0178] 下引き層は、前記金属酸ィ匕物粒子をバインダー榭脂に分散した形で形成するのが 望ましい。下引き層に用いられるバインダー榭脂としては、エポキシ榭脂、ポリエチレ ン榭脂、ポリプロピレン榭脂、アクリル榭脂、メタタリル榭脂、ポリアミド榭脂、塩化ビニ ル榭脂、塩化ビュル榭脂、酢酸ビュル榭脂、フエノール榭脂、ポリカーボネート榭脂、 ポリウレタン榭脂、ポリイミド榭脂、塩ィ匕ビニリデン榭脂、ポリビュルァセタール榭脂、 塩ィ匕ビュル 酢酸ビュル共重合体、ポリビュルアルコール榭脂、ポリウレタン榭脂、 ポリアクリル酸榭脂、ポリアクリルアミド榭脂、ポリビュルピロリドン榭脂、ポリビュルピリ ジン榭脂、水溶性ポリエステル榭脂、ニトロセルロース等のセルロースエステル榭脂、 セルロースエーテル榭脂、カゼイン、ゼラチン、ポリグルタミン酸、澱粉、スターチァセ テート、ァミノ澱粉、ジルコニウムキレートイ匕合物、ジルコニウムアルコキシドィ匕合物等 の有機ジルコニウム化合物、チタ-ルキレートイ匕合物、チタニルアルコキシド化合物 等の有機チタ-ルイ匕合物、シランカップリング剤などの公知のノインダー榭脂を用い ることが出来る。これらは単独、もしくは硬化剤とともに硬化した形で使用できる。中で も、アルコール可溶性の共重合ポリアミド、変性ポリアミド等は良好な分散性、塗布性 を示し好ましい。
[0179] ノインダー榭脂に対する金属酸ィ匕物粒子の使用比率は任意に選ぶことが可能で あるが、分散液の安定性、塗布性の観点から、通常 10重量%以上、 500重量%以 下の範囲で使用することが好ましい。
[0180] その他、下引き層には、画像欠陥防止などを目的として、顔料粒子、榭脂粒子等を 含有させてもよい。
[0181] 下引き層の膜厚は任意に選ぶことが出来るが、感光体特性及び塗布性から、通常
0. 01 μ m以上、中でち0. 1 μ m以上、また、通常 30 μ m以下、中でち20 μ m以下 の範囲内とすることが好ましい。
[0182] [II 3.感光層]
導電性支持体の上 (下引き層を設ける場合は下引き層の上)には、感光層が形成さ れる。感光層は、電荷発生物質と、電荷輸送物質と、ノインダー榭脂とを含んで構成 される。
[0183] 感光層の構造としては、電荷発生物質と電荷輸送物質がバインダー榭脂中に分散 されて同一層に存在する単層構造の感光層(以下適宜「単層型感光層」 t ヽぅ。)と、 電荷発生物質がバインダー榭脂中に分散された電荷発生層と電荷輸送物質がバイ ンダー榭脂中に分散された電荷輸送層とに機能分離された積層構造の感光層(以 下適宜「積層型感光層」という。)とが挙げられるが、何れを使用することも可能である 。また、積層型感光層の場合、導電性支持体側から電荷発生層、電荷輸送層の順に 積層される順積層型感光層と、導電性支持体側から電荷輸送層、電荷発生層の順 に積層される逆積層型感光層とに分けられるが、いずれを適用することも可能である 。以下、各構造について説明する。
[0184] <積層型感光層の電荷発生層 >
積層型感光層の電荷発生層は、溶媒又は分散媒にバインダー榭脂を溶解又は分 散させるととも〖こ、電荷発生物質を分散させて塗布液を調製し、これを順積層型感光 体の場合は導電性支持体上 (下引き層を設ける場合には下引き層上)、逆積層型感 光体の場合は電荷輸送層上に塗布'成膜し、電荷発生物質の微粒子をバインダー 榭脂によって結着することにより形成される。
[0185] ·電荷発生物質:
電荷発生物質としては、本発明の要旨を満たす限り、従前公知のどのような電荷発 生物質も使用することができる。好ましくは、本発明のフタロシアニン結晶が用いられ る。本発明のフタロシアニン結晶を用いる場合は、何れか一種を単独で用いてもよい 1S 二種以上を任意の組み合わせ及び比率で併用してもよい。また、本発明のフタ口 シァニン結晶のみを電荷発生物質として用いてもよいが、本発明のフタロシアニン結 晶を他の電荷発生物質と組み合わせ、混合状態として用いてもょ 、。
[0186] 電荷発生物質として用いられる本発明のフタロシアニン結晶の粒子径は、充分小さ いことが好ましい。具体的には、 1 μ m以下が好ましぐより好ましくは 0. 5 μ m以下で 使用される。
[0187] 本発明のフタロシアニン結晶と混合状態として用いる他の電荷発生物質としては、 公知の各種の染顔料が挙げられる。染顔料の例としては、フタロシアニン顔料、ァゾ 顔料、ジチオケトビロロピロール顔料、スクアレン (スクァリリウム顔料)、キナクリドン顔 料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダ ゾール顔料等が挙げられる。中でも、光感度の面から、フタロシアニン顔料、ァゾ顔 料が好ましく使用される。なお、他の電荷発生物質は何れか一種を単独で使用して もよぐ二種以上を任意の組成及び組み合わせで併用してもょ 、。
[0188] 'バインダー榭脂:
電荷発生層のバインダー榭脂の種類は特に制限されないが、その例としては、ポリ ビュルプチラール榭脂、ポリビュルホルマール榭脂、ブチラールの一部がホルマー ルゃ、ァセタール等で変性された部分ァセタールイ匕ポリビニルブチラール榭脂等の ポリビュルァセタール系榭脂、ポリアリレート榭脂、ポリカーボネート榭脂、ポリエステ ル榭脂、変性エーテル系ポリエステル榭脂、フエノキシ榭脂、ポリ塩化ビュル榭脂、ポ リ塩ィ匕ビ-リデン榭脂、ポリ酢酸ビニル榭脂、ポリスチレン榭脂、アクリル榭脂、メタタリ ル榭脂、ポリアクリルアミド榭脂、ポリアミド榭脂、ポリビュルピリジン榭脂、セルロース 系榭脂、ポリウレタン榭脂、エポキシ榭脂、シリコーン榭脂、ポリビュルアルコール榭 脂、ポリビュルピロリドン榭脂、カゼインや、塩ィ匕ビュル 酢酸ビュル共重合体、ヒドロ キシ変性塩化ビニル 酢酸ビニル共重合体、カルボキシル変性塩化ビニル 酢酸 ビニル共重合体、塩化ビニル 酢酸ビニル 無水マレイン酸共重合体等の塩化ビ 二ルー酢酸ビニル系共重合体、スチレン ブタジエン共重合体、塩ィヒビユリデンー アクリロニトリル共重合体、スチレン—アルキッド榭脂、シリコーン—アルキッド榭脂、 フエノール ホルムアルデヒド榭脂等の絶縁性榭脂や、ポリ N ビュルカルバゾー ル、ポリビュルアントラセン、ポリビュルペリレン等の有機光導電性ポリマーの中から 選択し、用いることが出来る力 これらポリマーに限定されるものではない。なお、これ らのバインダー榭脂は何れか一種を単独で用いてもよぐ 2種類以上を任意の組み 合わせ及び比率で混合して用いてもょ ヽ。
[0189] ·配合比:
電荷発生層におけるバインダー榭脂と電荷発生物質との配合比 (重量)としては、 ノ^ンダー榭脂 100重量部に対する電荷発生物質の比率で、通常 10重量部以上、 好ましくは 30重量部以上、また、通常 1000重量部以下、好ましくは 500重量部以下 の範囲とする。電荷発生物質の比率が高すぎる場合は、電荷発生物質の凝集等の 課題により塗布液の安定性が低下するおそれがあり、一方、低すぎる場合は感光体 としての感度の低下をまねくおそれがあることから、前記範囲で使用することが好まし い。 [0190] ,溶媒又は分散媒:
塗布液の作製に用いられる溶媒又は分散媒としては、例えば、ペンタン、へキサン 、オクタン、ノナン等の飽和脂肪族系溶媒;トルエン、キシレン、ァニソール等の芳香 族系溶媒;クロ口ベンゼン、ジクロロベンゼン、クロロナフタレン等のハロゲン化芳香族 系溶媒;ジメチルホルムアミド、 N メチル 2—ピロリドン等のアミド系溶媒;メタノー ル、エタノール、イソプロパノール、 n—ブタノール、ベンジルアルコール等のアルコ ール系溶媒;グリセリン、ポリエチレングリコール等の脂肪族多価アルコール類;ァセト ン、シクロへキサノン、メチルェチルケトン、 4ーメトキシー4ーメチルー 2 ペンタノン 等の鎖状及び環状ケトン系溶媒;ギ酸メチル、酢酸ェチル、酢酸 n ブチル等のエス テル系溶媒;塩化メチレン、クロ口ホルム、 1, 2—ジクロロェタン等のハロゲン化炭化 水素系溶媒;ジェチルエーテル、ジメトキシェタン、テトラヒドロフラン、 1, 4 ジォキ サン、メチルセルソルブ、ェチルセルソルブ等の鎖状及び環状エーテル系溶媒;ァセ トニトリル、ジメチルスルホキシド、スルフォラン、へキサメチルリン酸トリアミド等の非プ 口トン性極性溶媒; n—ブチルァミン、イソプロパノールァミン、ジェチルァミン、トリエタ ノールァミン、エチレンジァミン、トリエチレンジァミン、トリェチルァミン等の含窒素化 合物;リグ口イン等の鉱油;水などが挙げられ、上述の下引き層を溶解しないものが好 ましく用いられる。これらの溶媒又は分散媒は、何れか一種を単独で用いてもよぐ二 種以上を任意の組み合わせ及び比率で併用してもよ!、。
[0191] ·分散の手法:
電荷発生物質を溶媒又は分散媒に分散させる方法としては、ボールミル分散法、 アトライター分散法、サンドミル分散法等の公知の分散方法を用いることが出来る。こ の際、電荷発生物質粒子を通常 0. 5 m以下、好ましくは 0. 3 m以下、より好まし くは 0. 15 m以下の粒子サイズに微細化することが有効である。
[0192] ·膜厚:
電荷発生層の膜厚は、通常 0.: m以上、好ましくは 0. 15 m以上、通常 10 m以下、好ましくは 0. 6 μ m以下の範囲とする。
[0193] <積層型感光層の電荷輸送層 >
積層型感光層の電荷輸送層は、溶剤にバインダー榭脂を溶解又は分散させるとと もに、電荷輸送物質を分散させて塗布液を調製し、これを順積層型感光体の場合は 電荷輸送層上、逆積層型感光体の場合は導電性支持体上 (下引き層を設ける場合 には下引き層上)に塗布し、電荷輸送物質の微粒子をバインダー榭脂によって結着 すること〖こより形成される。
[0194] 'バインダー榭脂:
ノインダー樹脂としては、例えばブタジエン榭脂、スチレン榭脂、酢酸ビニル榭脂、 塩化ビュル榭脂、アクリル酸エステル榭脂、メタクリル酸エステル榭脂、ビュルアルコ ール榭脂、ェチルビニルエーテル等のビュルィ匕合物の重合体及び共重合体、ポリビ 二ルブチラール榭脂、ポリビュルホルマール榭脂、部分変性ポリビュルァセタール、 ポリカーボネート榭脂、ポリエステル榭脂、ポリアリレート榭脂、ポリアミド榭脂、ポリウ レタン樹脂、セルロースエステル榭脂、フエノキシ榭脂、シリコーン榭脂、シリコーン アルキッド榭脂、ポリ— N ビニルカルバゾール榭脂等が挙げられる。これらのバイン ダー榭脂は珪素試薬などで修飾されていてもよい。上記バインダー榭脂のうち、ポリ カーボネート榭脂、ポリアリレート榭脂が特に好ましい。
[0195] ポリカーボネート榭脂、ポリアリレート榭脂の中でも、下記構造式で表わされるビスフ ェノール残基、及び Z又は、ビフエノール残基を含有するポリカーボネート榭脂、ポリ ァリレート榭脂が感度、残留電位の点力 好ましぐ中でも移動度の面力 ポリカーボ ネート榭脂がより好ましい。
[0196] [化 2]
ooll
Figure imgf000065_0001
ooll
Figure imgf000066_0001
なお、これらのノインダー榭脂は、適当な硬化剤を用いて熱、光等により架橋させ て用いることちできる。
また、バインダー榭脂は、何れか一種類を単独で用いてもよぐ二種類以上を任意 の組み合わせ及び比率で混合して用いることもできる。 [0199] ·電荷輸送物質:
電荷輸送物質としては、公知の物質であれば特に限定されるものではなぐ例えば 、 2, 4, 7—トリ-トロフルォレノン等の芳香族-トロ化合物、テトラシァノキノジメタン等 のシァノ化合物、ジフエノキノン等のキノン化合物等の電子吸引性物質、カルバゾー ル誘導体、インドール誘導体、イミダゾール誘導体、ォキサゾール誘導体、ピラゾー ル誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、ァニリン 誘導体、ヒドラゾン誘導体、芳香族ァミン誘導体、スチルベン誘導体、ブタジエン誘導 体、ェナミン誘導体及びこれらの化合物の複数種が結合したもの、或いはこれらの化 合物からなる基を主鎖若しくは側鎖に有する重合体等の電子供与性物質等が挙げ られる。これらの中で、力ルバゾール誘導体、芳香族ァミン誘導体、スチルベン誘導 体、ブタジエン誘導体、ェナミン誘導体、及びこれらの化合物の複数種が結合したも のが好ましい。
[0200] ·配合比:
ノインダー榭脂と電荷輸送物質との割合は、バインダー榭脂 100重量部に対して 通常 20重量部以上、残留電位低減の観点から 30重量部以上が好ましぐ更に繰り 返し使用時の安定性、電荷移動度の観点から、 40重量部以下がより好ましい。一方 で、感光層の熱安定性の観点から、通常は 150重量部以下、更に電荷輸送物質と ノインダー榭脂の相溶性の観点からは好ましくは 120重量部以下、更に耐刷性の観 点からは 100重量部以下がより好ましぐ耐傷性の観点からは 80重量部以下がとりわ け好ましい。
[0201] ,溶媒又は分散媒並びに分散の手法:
溶媒又は分散媒の種類、並びに電荷輸送物質を溶媒又は分散媒に分散させる手 法については、く積層型感光層の電荷発生層〉の欄で説明した通りである。
[0202] '膜厚:
電荷輸送層の膜厚は特に制限されないが、長寿命や画像安定性の観点、並びに 高解像度の観点から、通常 5 m以上、中でも 10 m以上、また、通常 50 m以下 、中でも 45 m以下、更には 30 m以下の範囲とすることが好ましい。
[0203] <単層型感光層 > 単層型感光層は、電荷発生物質と電荷輸送物質とバインダー榭脂とを溶剤に溶解 又は分散して得られる塗布液を、導電性支持体上 (下引き層を設ける場合には下引 き層上)に塗布、乾燥し、電荷発生物質及び電荷輸送物質の微粒子をバインダー榭 脂によって結着することにより形成される。電荷発生物質としては、上記の <積層型 感光層の電荷発生層 >の欄で説明したものが用いられ、電荷輸送物質及びバイン ダー榭脂としては、上記のく積層型感光層の電荷輸送層〉の欄で説明したものが 用いられる。バインダー榭脂に対する電荷発生物質及び電荷輸送物質の比率も、そ れぞれ上述の <積層型感光層の電荷発生層 >及び <積層型感光層の電荷輸送層 >の欄で説明した通りである。
[0204] 単層型感光層内に分散されるフタロシアニン結晶は、少なすぎると充分な感度が得 られず、多すぎると帯電性の低下、感度の低下の弊害があるので、例えば、バインダ ー榭脂 100重量部に対する電荷発生物質の比率力 好ましくは 0. 1重量%以上、よ り好ましくは 1重量%以上、また、好ましくは 50重量%以下、より好ましくは 20重量% 以下の範囲で使用される。
[0205] 溶媒又は分散媒の種類、並びに分散の手法については、上記の <積層型感光層 の電荷発生層〉の欄で説明した通りである。
単層型感光層の膜厚は、通常 以上、好ましくは 10 /z m以上、また、通常 100 μ m以下、好ましくは 50 μ m以下の範囲で使用される。
[0206] <その他の成分 >
なお、感光層には成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性などを向 上させるために周知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レ ベリング剤、可視光遮光剤などの添加物を含有させてもょ 、。
[0207] [II 4.その他の層]
電子写真感光体の構成としては、以上説明した各層に加え、本発明の趣旨を逸脱 しない限りにおいて、他の層を設けてもよい。
[0208] 例えば、感光層の損耗を防止したり、帯電器等からの発生する放電物質等による 感光層の劣化を防止'軽減する目的で、感光層の上に保護層を設けてもよい。保護 層は、適当なバインダー榭脂中に導電性材料を含有させて形成するか、特開平 9 190004号公報等に記載のようなトリフエ-ルァミン骨格等の電荷輸送能を有する化 合物を用いた共重合体を用いることが出来る。導電性材料としては、 TPD (N, N' - ジフエ-ル— N, N,—ビス—(m—トリル)ベンジジン)等の芳香族ァミノ化合物、酸ィ匕 アンチモン、酸化インジウム、酸化錫、酸化チタン、酸化錫一酸化アンチモン、酸ィ匕 アルミ、酸ィ匕亜鉛等の金属酸ィ匕物などを用いることが可能であるが、これに限定され るものではない。保護層に用いるバインダー榭月旨としては、ポリアミド榭月旨、ポリウレタ ン榭脂、ポリエステル榭脂、エポキシ榭脂、ポリケトン樹脂、ポリカーボネート榭脂、ポ リビ-ルケトン榭脂、ポリスチレン榭脂、ポリアクリルアミド榭脂、シロキサン榭脂等の 公知の榭脂を用いることができ、また、特開平 9— 190004号公報の記載のようなトリ フエニルァミン骨格等の電荷輸送能を有する骨格と上記樹脂の共重合体を用いるこ とも出来る。保護層は、電気抵抗が 109〜: ίΟ"Ω 'cmとなるように構成することが好ま しい。電気抵抗が高過ぎると、残留電位が上昇しカプリの多い画像となってしまう傾 向があり、一方、電気抵抗が低過ぎると、画像のボケ、解像度の低下が生じてしまう 傾向がある。また、保護層は像露光に照射される光の透過を実質上妨げないように 構成されなければならな ヽ。
[0209] また、電子写真感光体の表面の摩擦抵抗や摩耗を低減したり、電子写真感光体か ら転写ベルトや紙へのトナーの転写効率を高める等の目的で、電子写真感光体の表 面層 (感光層、保護層等)に、フッ素系榭脂、シリコーン榭脂、ポリエチレン榭脂等を 含有させてもよい。また、これらの榭脂からなる粒子や、無機化合物の粒子等を含有 させてちょい。
[0210] [II 5.各層の形成方法]
これらの感光体を構成する各層は、前記方法により得られた塗布液を、支持体上に 公知の塗布方法を用い、各層ごとに塗布 ·乾燥工程を繰り返し、順次塗布していくこ とにより形成される。
[0211] 単層型感光体の感光層及び機能分離型感光体の電荷輸送層を形成する場合、塗 布液の固形分濃度は、通常 5重量%以上、中でも 10重量%以上、また、通常 40重 量%以下、中でも 35重量%以下の範囲とするのが好ましい。また、塗布液の粘度は 、通常 lOmPa' s以上、好ましくは 50mPa' s以上、また、通常 500mPa' s以下、好ま しくは 400mPa' s以下の範囲とするのが好まし!/、。
[0212] 機能分離型感光体の電荷発生層を形成する場合、塗布液の固形分濃度は、通常 0. 1重量%以上、中でも 1重量%以上、また、通常 15重量%以下、中でも 10%以下 の範囲とするのが好ましい。また、塗布液の粘度は、通常 0. OlmPa ' s以上、中でも 0. ImPa ' s以上、また、通常 20mPa ' s以下、中でも lOmPa ' s以下の範囲とするの が好ましい。
[0213] 塗布液の塗布方法としては、浸漬コーティング法、スプレーコーティング法、スピナ 一コーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコー ティング法、ローラーコーティング法、エアーナイフコーティング法、カーテンコーティ ング法等が挙げられる力 他の公知のコーティング法を用いることも可能である。
[0214] 塗布液の乾燥方法は特に制限されないが、通常は、室温における指触乾燥後、無 風又は送風下で加熱乾燥することが好まし 、。加熱温度は特に 30〜200°Cの温度 範囲で、 1分〜 2時間に亘つて、また加熱温度は一定であっても、乾燥時に変更させ ながら行なってもよい。
[0215] [III.画像形成装置]
次に、本発明の電子写真感光体を用いた画像形成装置 (本発明の画像形成装置) の実施の形態について、装置の要部構成を示す図 1を用いて説明する。但し、実施 の形態は以下の説明に限定されるものではなぐ本発明の要旨を逸脱しない限り任 意に変形して実施することができる。
[0216] 図 1に示すように、画像形成装置は、電子写真感光体 1,帯電装置 2,露光装置 3 及び現像装置 4を備えて構成され、更に、必要に応じて転写装置 5,クリーニング装 置 6及び定着装置 7が設けられる。
[0217] 電子写真感光体 1は、上述した本発明の電子写真感光体であれば特に制限はな いが、図 1ではその一例として、円筒状の導電性支持体の表面に上述した感光層を 形成したドラム状の感光体を示して 、る。この電子写真感光体 1の外周面に沿って、 帯電装置 2,露光装置 3,現像装置 4,転写装置 5及びクリーニング装置 6がそれぞれ 配置されている。
[0218] 帯電装置 2は、電子写真感光体 1を帯電させるもので、電子写真感光体 1の表面を 所定電位に均一帯電させる。帯電装置としては、コロトロンゃスコロトロン等のコロナ 帯電装置、電圧印加された直接帯電部材を感光体表面に接触させて帯電させる直 接帯電装置 (接触型帯電装置)帯電ブラシ等の接触型帯電装置などがよく用いられ る。直接帯電手段の例としては、帯電ローラ、帯電ブラシ等の接触帯電器などが挙げ られる。なお、図 1では、帯電装置 2の一例としてローラ型の帯電装置 (帯電ローラ)を 示している。直接帯電手段として、気中放電を伴う帯電、あるいは気中放電を伴わな い注入帯電何れも可能である。また、帯電時に印可する電圧としては、直流電圧だ けの場合、及び直流に交流を重畳させて用いることもできる。
[0219] 露光装置 3は、電子写真感光体 1に露光を行なって電子写真感光体 1の感光面に 静電潜像を形成することができるものであれば、その種類に特に制限はない。具体 例としては、ハロゲンランプ、蛍光灯、半導体レーザーや He— Neレーザー等のレー ザ一、 LEDなどが挙げられる。また、感光体内部露光方式によって露光を行なうよう にしてもよい。露光を行なう際の光は任意である力 例えば波長が 780nmの単色光 、波長 600nm〜700nmのやや短波長寄りの単色光、波長 380nm〜500nmの短 波長の単色光などで露光を行なえばょ 、。
[0220] 現像装置 4は、その種類に特に制限はなぐカスケード現像、一成分絶縁トナー現 像、一成分導電トナー現像、二成分磁気ブラシ現像などの乾式現像方式や、湿式現 像方式などの任意の装置を用いることができる。図 1では、現像装置 4は、現像槽 41 、アジテータ 42、供給ローラ 43、現像ローラ 44、及び、規制部材 45からなり、現像槽 41の内部にトナー Tを貯留している構成となっている。また、必要に応じ、トナー Tを 補給する補給装置 (図示せず)を現像装置 4に付帯させてもよ 、。この補給装置は、 ボトル、カートリッジなどの容器からトナー Tを補給することが可能に構成される。
[0221] 供給ローラ 43は、導電性スポンジ等から形成される。現像ローラ 44は、鉄、ステン レス鋼、アルミニウム、ニッケルなどの金属ロール、又はこうした金属ロールにシリコー ン榭脂、ウレタン榭脂、フッ素榭脂などを被覆した榭脂ロールなどからなる。この現像 ローラ 44の表面には、必要に応じて、平滑力卩ェゃ粗面カ卩ェをカ卩えてもよい。
[0222] 現像ローラ 44は、電子写真感光体 1と供給ローラ 43との間に配置され、電子写真 感光体 1及び供給ローラ 43に各々当接している。供給ローラ 43及び現像ローラ 44 は、回転駆動機構(図示せず)によって回転される。供給ローラ 43は、貯留されてい るトナー Tを担持して、現像ローラ 44に供給する。現像ローラ 44は、供給ローラ 43に よって供給されるトナー Tを担持して、電子写真感光体 1の表面に接触させる。
[0223] 規制部材 45は、シリコーン榭脂ゃウレタン榭脂などの榭脂ブレード、ステンレス鋼、 アルミニウム、銅、真鍮、リン青銅などの金属ブレード、又はこうした金属ブレードに榭 脂を被覆したブレード等により形成されている。この規制部材 45は、現像ローラ 44に 当接し、ばね等によって現像ローラ 44側に所定の力で押圧 (一般的なブレード線圧 は 5〜500gZcm)される。必要に応じて、この規制部材 45に、トナー Tとの摩擦帯電 によりトナー Tに帯電を付与する機能を具備させてもよい。
[0224] アジテータ 42は、回転駆動機構によってそれぞれ回転されており、トナー Tを攪拌 するとともに、トナー Tを供給ローラ 43側に搬送する。アジテータ 42は、羽根形状、大 きさ等を違えて複数設けてもょ ヽ。
[0225] トナーとしては、粉砕トナーの他に、懸濁造粒、懸濁重合、乳化重合凝集法等のケ ミカルトナーを用いることができる。特に、ケミカルトナーの場合には、 4〜8 /ζ πι程度 の小粒径のものが用いられ、形状も球形に近いものから、ポテト状、ラグビーボール 状等の球形から外れたものも使用することができる。重合トナーは、帯電均一性、転 写性に優れ、高画質化には好適に用いられる。
[0226] トナー Τの種類は任意であり、粉状トナーのほか、懸濁造粒、懸濁重合、乳化重合 凝集法等のケミカルトナーを用いることができる。ケミカルトナーの場合には、 4〜8 m程度の小粒径のものが好ましぐまた、トナー粒子の形状も、球形に近いものから、 球形から外れたポテト状のものまで、様々な形状のものを使用することができる。特に 重合トナーは、帯電均一性、転写性に優れ、高画質化に好適に用いられる。
本発明の画像形成装置で使用するトナーの形状は、フロー式粒子像分析装置によ つて測定される平均円形度力 好ましくは 0. 940以上、より好ましくは 0. 950以上、 更に好ましくは 0. 960以上である。トナーの形状が球形に近いほど、トナーの粒子内 での帯電量の局在化が起こりにくぐ現像性が均一になる傾向にある。また、前記平 均円形度の上限は 1. 000以下であれば制限は無いが、トナーの形状が球形に近い ほどクリーニング不良が起こり易ぐまた完全な球状トナーを作ることは製造上困難で あるので、好ましくは 0. 995以下、より好ましくは 0. 990以下である。
[0227] なお、前記の平均円形度は、トナーの粒子の形状を定量的に表現する簡便な方法 として用いたものであり、本発明ではシスメッタス社製フロー式粒子像分析装置 FPIA - 2000を用いて測定を行な 、、測定された粒子の円形度〔a〕を下式 (A)により求め るちのとする。
円形度 a = L /L (A)
0
(式 (A)中、 Lは粒子像と同じ投影面積を持つ円の周囲長を示し、 Lは画像処理した
0
時の粒子像の周囲長を示す。 )
[0228] 前記の円形度は、トナー粒子の凹凸の度合いの指標であり、トナーが完全な球形 の場合 1. 00を示し、表面形状が複雑になるほど円形度は小さな値となる。
平均円形度の具体的な測定方法としては、以下の通りである。即ち、予め容器中の 不純物を除去した水 20mL中に分散剤として界面活性剤 (好ましくはアルキルべンゼ ンスルホン酸塩)をカ卩え、更に測定試料(トナー)を 0. 05g程度カ卩える。この試料を分 散した懸濁液に超音波を 30秒照射し、分散液濃度を 3. 0〜8. 0千個 Z w Lとして、 上記フロー式粒子像測定装置を用い、 0. 60 m以上 160 m未満の円相当径を 有する粒子の円形度分布を測定する。
[0229] トナーの種類は、通常はその製造方法に応じて様々なものが得られる力 本発明の 画像形成装置に用いるトナーとしては、 、ずれを用いることも可能である。
以下、トナーの製造方法とともに、そのトナーの種類を説明する。
[0230] 本発明のトナーは、従前公知のどのような方法で製造しても構わず、例えば重合法 や溶融懸濁法などが挙げられるが、水系媒体中でトナー粒子を生成する、いわゆる 重合法トナーが好ましい。重合法トナーとしては、例えば、懸濁重合法トナー、乳化 重合凝集法トナーなどが挙げられる。特に、乳化重合凝集法は、液状媒体中でポリ マー榭脂微粒子と着色剤等とを凝集させてトナーを製造する方法であり、凝集条件 を制御することによってトナーの粒径および円形度を調整することができるので好まし い。
[0231] また、トナーの離型性、低温定着性、高温オフセット性、耐フィルミング性などを改 良するために、トナーに低軟化点物質 ( 、わゆるワックス)を含有させる方法が提案さ れている。溶融混練粉砕法では、トナーに含まれるワックスの量を増やすのは難しぐ 重合体 (バインダ榭脂)に対して 5重量%程度が限界とされている。それに対して、重 合トナーでは、特開平 5— 88409号公報及び特開平 11— 143125号公報に記載の ごとぐ低軟化点物質を多量 (5〜30重量%)に含有させることが可能である。なお、 ここでいう重合体は、トナーを構成する材料の一つであり、例えば後述する乳化重合 凝集法により製造されるトナーの場合、重合性単量体が重合して得られるものである
[0232] L化重合凝集法により製造されるトナー]
以下、乳化重合凝集法により製造されるトナーについて更に詳細に説明する。 乳化重合凝集法によりトナーを製造する場合、その製造工程としては、通常、重合 工程、混合工程、凝集工程、融合工程、洗浄'乾燥工程を行なう。即ち、一般的には 乳化重合により重合体一次粒子を得て (重合工程)、その重合体一次粒子を含む分 散液に、必要に応じ、着色剤 (顔料)、ワックス、帯電制御剤等の分散体を混合し (混 合工程)、この分散液中に凝集剤を加えて一次粒子を凝集させて粒子凝集体とし (凝 集工程)、必要に応じて微粒子等を付着する操作を行ない、その後に融合させて粒 子を得て (融合工程)、得られた粒子を洗浄、乾燥することにより (洗浄'乾燥工程)、 母粒子が得られる。
[0233] 1.重合工程
重合体の微粒子 (重合体一次粒子)としては、特に限定されない。したがって、液状 媒体中で重合性単量体を、懸濁重合法、乳化重合法等により重合させて得られる微 粒子、榭脂等の重合体の塊を粉砕することによって得られる微粒子の ヽずれを重合 体一次粒子として用いてもよい。ただし、重合法、特に乳化重合法、なかでも乳化重 合におけるシードとしてワックスを用いたものが好ましい。乳化重合におけるシードと してワックスを用いると、重合体がワックスを包み込んだ構造の微粒子を重合体一次 粒子として製造することができる。この方法によれば、ワックスをトナーの表面に露出 させず、トナー内に含有させることができる。このため、ワックスによる装置部材の汚染 がなぐまた、トナーの帯電性を損なうこともなぐかつ、トナーの低温定着性や高温ォ フセット性、耐フィルミング性、離型性等を向上させることができる。 [0234] 以下、ワックスをシードとして乳化重合を行な 、、これにより重合体一次粒子を得る 方法について説明する。
乳化重合法としては、従来より知られている方法に従って行なえばよい。通常は、ヮ ックスを乳化剤の存在下で液状媒体に分散してワックス微粒子とし、これに重合開始 剤、重合により重合体を与える重合性単量体、即ち、重合性の炭素 炭素二重結合 を有する化合物、及び、必要に応じて連鎖移動剤、 pH調整剤、重合度調節剤、消 泡剤、保護コロイド、内添剤等を混合、攪拌して重合を行なう。これにより、重合体が ワックスを包み込んだ構造を有する重合体の微粒子 (即ち、重合体一次粒子)が液 状媒体に分散したェマルジヨンが得られる。なお、重合体がワックスを包み込んだ構 造としては、コアシェル型、相分離型、ォクルージョン型などが挙げられる力 コアシェ ル型が好ましい。
[0235] (i.ワックス)
ワックスとしては、この用途に用い得ることが知られて 、る任意のものを用いることが できる。例えば、低分子量ポリエチレン、低分子量ポリプロピレン、共重合ポリェチレ ン等のォレフイン系ワックス;パラフィンワックス;アルキル基を有するシリコーンワックス
;低分子量ポリテトラフルォロエチレン等のフッ素榭脂系ワックス;ステアリン酸等の高 級脂肪酸;エイコサノール等の長鎖脂肪族アルコール;ベヘン酸べへ-ル、モンタン 酸エステル、ステアリン酸ステアリル等の長鎖脂肪族基を有するエステル系ワックス; ジステアリルケトン等の長鎖アルキル基を有するケトン類;水添ひまし油、カルナバヮ ックス等の植物系ワックス;グリセリン、ペンタエリスリトール等の多価アルコールと長鎖 脂肪酸より得られるエステル類または部分エステル類;ォレイン酸アミド、ステアリン酸 アミド等の高級脂肪酸アミド;低分子量ポリエステルなどが挙げられる。なかでも、示 差熱分析 (DSC)による吸熱ピークを 50〜: LOO°Cに少なくとも 1つ有するものが好まし い。
[0236] また、ワックスの中でも、例えば、エステル系ワックス、パラフィンワックス、低分子量 ポリプロピレン、共重合ポリエチレン等のォレフィン系ワックス、シリコーンワックス等は 、少量で離型性の効果が得られるので好ましい。特に、パラフィンワックスが好ましい なお、ワックスは 1種を用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用 しても良い。
[0237] ワックスを用いる場合、その使用量は任意である。ただし、重合体 100重量部に対 して、ワックスを通常 3重量部以上、好ましくは 5重量部以上、また、通常 40重量部以 下、好ましくは 30重量部以下とすることが望ましい。ワックスが少なすぎると定着温度 幅が不十分となる可能性があり、多すぎると装置部材を汚染して画質の低下が生じる 可能性がある。
[0238] (ii.乳化剤)
乳化剤に制限は無ぐ本発明の効果を著しく損なわない範囲で任意のものを使用 することができる。例えば、非イオン性、ァ-オン性、カチオン性、及び両性のいずれ の界面活性剤も用いることができる。
[0239] 非イオン性界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル等の ポリオキシアルキレンアルキルエーテル類、ポリオキシエチレンォクチルフエニルエー テル等のポリオキシアルキレンアルキルフエ-ルエーテル類、ソルビタンモノラウレー ト等のソルビタン脂肪酸エステル類等が挙げられる。
[0240] また、ァニオン性界面活性剤としては、例えば、ステアリン酸ナトリウム、ォレイン酸 ナトリウム等の脂肪酸塩類、ドデシルベンゼンスルホン酸ナトリウム等のアルキルァリ 一ルスルホン酸塩類、ラウリル硫酸ナトリウム等のアルキル硫酸エステル塩類等が挙 げられる。
[0241] さらに、カチオン系界面活性剤としては、例えば、ラウリルアミンアセテート等のアル キルアミン塩類、ラウリルトリメチルアンモ -ゥムクロリド等の 4級アンモ-ゥム塩類等が 挙げられる。
また、両性界面活性剤としては、例えば、ラウリルべタイン等のアルキルべタイン類 等が挙げられる。
[0242] これらの中でも、非イオン性界面活性剤、ァニオン系界面活性剤が好ま 、。
なお、乳化剤は、 1種を用いてもよぐ 2種以上を任意の組み合わせ及び比率で併 用しても良い。
さらに、乳化剤の配合量も本発明の効果を著しく損なわない限り任意であるが、重 合性モノマー 100重量部に対して、乳化剤を、通常 1〜: L0重量部の割合で用いる。
[0243] (iii.液状媒体)
液状媒体としては、通常は水系媒体を用い、特に好ましくは水を用いる。ただし、液 状媒体の質は液状媒体中の粒子の再凝集による粗大化にも関係し、液状媒体の導 電率が高いと経時の分散安定性が悪ィ匕する傾向がある。したがって、液状媒体とし て水等の水系媒体を使用する場合、導電率を、通常 SZcm以下、好ましくは 5 μ SZcm以下となるように脱塩処理されたイオン交換水ある 、は蒸留水を用いること が好ましい。なお、導電率の測定は、導電率計 (横河電機社製のパーソナル SCメー タモデル SC72と検出器 SC72SN— 11)を用いて 25°C下で測定を行なう。
[0244] また、液状媒体の使用量に制限は無いが、重合性単量体に対して、通常 1〜20重 量倍程度の量を用いる。
なお、液状媒体は、 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び 比率で併用してもよい。
この液状媒体に、乳化剤の存在下で前記ワックスを分散させることにより、ワックス 微粒子を得る。乳化剤及びワックスを液状媒体に配合する順は任意であるが、通常 は、まず乳化剤を液状媒体に配合し、その後、ワックスを混合する。また、乳化剤は 連続的に液状媒体に配合してもよ ヽ。
[0245] (iv.重合開始剤)
上記のワックス微粒子を調製した後、液状媒体に、重合開始剤を配合する。重合開 始剤としては本発明の効果を著しく損なわない限り任意のものを用いることができる。 その例を挙げると、過硫酸ナトリウム、過硫酸アンモ-ゥム等の過硫酸塩類; t—プチ ルヒドロパーォキシド、タメンヒドロパーォキシド、 p—メンタンヒドロバーオキシド等の 有機過酸ィ匕物類;過酸ィ匕水素等の無機過酸ィ匕物類などが挙げられる。中でも、無機 過酸ィ匕物類が好ましい。なお、重合開始剤は 1種を用いてもよぐ 2種以上を任意の 組み合わせ及び比率で併用してもよ!、。
[0246] さらに、重合開始剤の他の例としては、過硫酸塩類、有機又は無機過酸化物類と、 ァスコルビン酸、酒石酸、クェン酸等の還元性有機化合物類、チォ硫酸ナトリウム、 重亜硫酸ナトリウム、メタ重亜硫酸ナトリウム等の還元性無機化合物類などとを併用し て、レドックス系開始剤とすることもできる。この場合、還元性無機化合物類は 1種を 単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用しても良 ヽ。 また、重合開始剤の使用量にも制限は無く任意である。ただし、重合開始剤は、重 合性単量体 100重量部に対して、通常 0. 05〜2重量部の割合で用いられる。
[0247] (v.重合性単量体)
上記のワックス微粒子を調製した後、液状媒体には、前記の重合開始剤の他に、 重合性単量体を配合する。重合性単量体に特に制限は無いが、例えば、スチレン類 、(メタ)アクリル酸エステル、アクリルアミド類、ブレンステッド酸性基を有する単量体( 以下、単に「酸性モノマー」と略記することがある)、ブレンステッド塩基性基を有する 単量体 (以下、単に「塩基性モノマー」と略記することがある)等の単官能性モノマー が主として用いられる。また、単官能性のモノマーに多官能性のモノマーを併用する ことちでさる。
[0248] スチレン類としては、例えば、スチレン、メチルスチレン、クロロスチレン、ジクロロス チレン、 p—tert—ブチルスチレン、 p—n—ブチルスチレン、 p—n—ノニノレスチレン 等が挙げられる。
また、(メタ)アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸ェチ ル、アクリル酸プロピル、アクリル酸 n—ブチル、アクリル酸イソブチル、アクリル酸ヒド 口キシェチル、アクリル酸 2—ェチルへキシル、メタクリル酸メチル、メタクリル酸ェ チル、メタクリル酸プロピル、メタクリル酸 n—ブチル、メタクリル酸イソブチル、メタタリ ル酸ヒドロキシェチル、メタクリル酸 2—ェチルへキシル等が挙げられる。
アクリルアミド類としては、アクリルアミド、 N プロピルアクリルアミド、 N, N ジメチ ルアクリルアミド、 N, N ジプロピルアクリルアミド、 N, N—ジブチルアクリルアミド等 が挙げられる。
[0249] さらに、酸性モノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマ ル酸、ケィ皮酸等のカルボキシル基を有するモノマー;スルホン化スチレン等のスル ホン酸基を有するモノマー;ビュルベンゼンスルホンアミド等のスルホンアミド基を有 するモノマーなどが挙げられる。
[0250] また、塩基性モノマーとしては、例えば、アミノスチレン等のアミノ基を有する芳香族 ビュル化合物、ビュルピリジン、ビュルピロリドン等の含窒素複素環含有モノマー;ジ メチルアミノエチルアタリレート、ジェチルアミノエチルメタタリレート等のアミノ基を有 する (メタ)アクリル酸エステルなどが挙げられる。
なお、酸性モノマー及び塩基性モノマーは、対イオンを伴って塩として存在してい てもよい。
[0251] さらに、多官能性モノマーとしては、例えば、ジビュルベンゼン、へキサンジオール ジアタリレート、エチレングリコールジメタタリレート、ジエチレングリコールジメタクリレ ート、ジエチレングリコールジアタリレート、トリエチレングリコールジアタリレート、ネオ ペンチルグリコールジメタタリレート、ネオペンチルグリコールジアタリレート、ジァリル フタレート等が挙げられる。また、グリシジルメタタリレート、 N—メチロールアクリルアミ ド、ァクロレイン等の反応性基を有するモノマーを用いることも可能である。中でもラジ カル重合性の二官能性モノマー、特に、ジビュルベンゼン、へキサンジオールジァク リレートが好ましい。
[0252] これらのなかでも、重合性単量体としては、少なくともスチレン類、(メタ)アクリル酸 エステル、カルボキシル基を有する酸性モノマーから構成されるのが好ましい。特に 、スチレン類としてはスチレンが好ましぐ(メタ)アクリル酸エステル類としてはアクリル 酸ブチルが好ましぐカルボキシル基を有する酸性モノマーとしてはアクリル酸が好ま しい。
なお、重合性単量体は、 1種を用いてもよぐ 2種以上を任意の組み合わせ及び比 率で併用しても良い。
[0253] ワックスをシードとして乳化重合を行なう際には、酸性モノマー又は塩基性モノマー と、これら以外のモノマーとを併用するのが好ましい。酸性モノマー又は塩基性モノマ 一を併用することにより、重合体一次粒子の分散安定性を向上させることができるか らである。
この際、酸性モノマー又は塩基性モノマーの配合量は任意である力 全重合性単 量体 100重量部に対する酸性モノマー又は塩基性モノマーの使用量を、通常 0. 05 重量部以上、好ましくは 0. 5重量部以上、より好ましくは 1重量部以上、また、通常 1 0重量部以下、好ましくは 5重量部以下となるようにすることが望ましい。酸性モノマー 又は塩基性モノマーの配合量が上記範囲を下回ると重合体一次粒子の分散安定性 が悪ィ匕する可能性があり、上限を上回るとトナーの帯電性に悪影響を及ぼす可能性 がある。
[0254] また、多官能性モノマーを併用する場合、その配合量は任意であるが、重合性単 量体 100重量部に対する多官能性モノマーの配合量は、通常 0. 005重量部以上、 好ましくは 0. 1重量部以上、より好ましくは 0. 3重量部以上、また、通常 5重量部以 下、好ましくは 3重量部以下、より好ましくは 1重量部以下である。多官能性モノマー を使用することにより、トナーの定着性を向上させることができる。この際、多官能性モ ノマーの配合量が上記範囲を下回ると耐高温オフセット性が劣る可能性があり、上限 を上回ると低温定着性が劣る可能性がある。
[0255] 液状媒体へ重合性単量体を配合する方法は特に限定されず、例えば、一括添加、 連続添加、間欠添加のいずれでもよいが、反応制御の点からは連続的に配合するの が好ましい。また、複数の重合性単量体を併用する場合、各重合性単量体は、別々 に配合してもよぐまた予め混合してカゝら配合してもよい。更には、単量体混合物の組 成を変化させながら配合してもよ 、。
[0256] (vi.連鎖移動剤等)
上記のワックス微粒子を調製した後、液状媒体には、前記の重合開始剤及び重合 性単量体の他に、必要に応じて、連鎖移動剤、 pH調整剤、重合度調節剤、消泡剤、 保護コロイド、内添剤などの添加剤を配合する。これらの添加剤は本発明の効果を著 しく損なわない限り任意のものを用いることができる。また、これらの添加剤は、 1種を 単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用しても良 ヽ。
[0257] 連鎖移動剤としては、公知の任意のものを使用することができる。具体例を挙げると 、 tードデシルメルカプタン、 2—メルカプトエタノール、ジイソプロピルキサントゲン、四 塩化炭素、トリクロロブロモメタン等が挙げられる。また、連鎖移動剤は、重合性単量 体 100重量部に対して、通常 5重量部以下の割合で用いられる。
[0258] さらに、保護コロイドとしては、この用途に用い得ることが知られている任意のものを 使用することができる。具体例を挙げると、部分又は完全ケン化ポリビニルアルコー ル等のポリビュルアルコール類、ヒドロキシェチルセルロース等のセルロース誘導体 類等などが挙げられる。
また、内添剤としては、例えば、シリコーンオイノレ、シリコーンワニス、フッ素系オイノレ 等のトナーの粘着性、凝集性、流動性、帯電性、表面抵抗等を改質するためのもの が挙げられる。
[0259] (vii.重合体一次粒子)
ワックス微粒子を含む液状媒体に重合開始剤及び重合性単量体、並びに、必要に 応じて添加剤を混合し、攪拌し、重合させることにより、重合体一次粒子を得る。この 重合体一次粒子は、液状媒体中にエマルシヨンの状態で得ることができる。
[0260] 重合開始剤、重合性単量体、添加剤などを液状媒体に混合する順番に制限は無 い。また、混合、攪拌の方法なども制限は無ぐ任意である。
さらに、重合 (乳化重合反応)の反応温度も反応が進行する限り任意である。但し、 重合温度は、通常 50°C以上、好ましくは 60°C以上、より好ましくは 70°C以上、また、 通常 120°C以下、好ましくは 100°C以下、より好ましくは 90°C以下である。
[0261] 重合体一次粒子の体積平均粒径に特に制限は無いが、通常 0. 02 m以上、好ま しく ίま 0. 05 μ m以上、より好ましく ίま 0. 1 μ m以上、また、通常 3 μ m以下、好ましく は 2 m以下、より好ましくは 1 μ m以下である。体積平均粒径が小さすぎると、凝集 速度の制御が困難となる場合があり、また、体積平均粒径が大きすぎると、凝集して 得られるトナーの粒径が大きくなり易ぐ目的とする粒径のトナーを得ることが困難とな る場合がある。なお、体積平均粒径は、後述する動的光散乱法を用いた粒度分析計 で測定することができる。
[0262] 本発明においては、体積粒度分布は動的光散乱法により測定される。この方式は 、微小に分散された粒子のブラウン運動の速さを、粒子にレーザー光を照射してその 速度に応じた位相の異なる光の散乱(ドップラーシフト)を検出して粒度分布を求める ものである。実際の測定では、上記の体積粒径については、動的光散乱方式を用い た超微粒子粒度分布測定装置(日機装社製、 UPA— EX150、以下 UPAと略す)を 用いて、以下の設定にて行なう。
測定上限 :6. 54 /z m
測定下限 :0. 0008 m チャンネル数: 52
測定時間 : lOOsec.
粒子透過性 :吸収
粒子屈折率 : NZA (適用しない)
粒子形状 :非球形
密度 : lgZ cm
分散媒種類 : WATER
分散媒屈折率: 1. 333
なお、測定時は、サンプル濃度指数が 0. 01〜0. 1の範囲になるように粒子の分散 体を液状媒体で希釈し、超音波洗浄器で分散処理した試料で測定する。そして、本 発明にカゝかわる体積平均粒子径は、上記の体積粒度分布の結果を算術平均値とし て計測される。
[0263] また、重合体一次粒子を構成する重合体は、ゲルパーミエーシヨンクロマトグラフィ 一(以下適宜、「GPC」と略す場合がある)におけるピーク分子量のうち少なくとも 1つ 力 通常 3000以上、好ましくは 1万以上、より好ましくは 3万以上、また、通常 10万以 下、好ましくは 7万以下、より好ましくは 6万以下に存在することが望ましい。ピーク分 子量が前記範囲にある場合、トナーの耐久性、保存性、定着性が良好となる傾向が ある。ここで、前記のピーク分子量とは、ポリスチレン換算した値を用いるものとし、測 定に際しては溶媒に不溶の成分を除くものとする。ピーク分子量は、後述するトナー の場合と同様に測定することが可能である。
[0264] 特に、前記の重合体力スチレン系榭脂である場合には、重合体のゲルパーミエ一 シヨンクロマトグラフィーにおける数平均分子量は、下限が通常 2000以上、好ましく は 2500以上、より好ましくは 3000以上、また上限は、通常 5万以下、好ましくは 4万 以下、より好ましくは 3. 5万以下である。さらに、重合体の重量平均分子量は、下限 が通常 2万以上、好ましくは 3万以上、より好ましくは 5万以上、また上限は、通常 100 万以下、好ましくは 50万以下である。数平均分子量、重量平均分子量の少なくとも 一方、好ましくは双方が前記の範囲に収まるスチレン系榭脂を重合体として用いた場 合、得られるトナーは、耐久性、保存性、定着性が良好となるからである。さらに分子 量分布において、メインピークが 2つあるものでもよい。なお、スチレン系榭脂とは、ス チレン類が全重合体中の通常 50重量%以上、好ましくは 65重量%以上を占めるも のを指す。
[0265] また、重合体の軟化点(以下「Sp」と略記することがある)は、通常 150°C以下、好ま しくは 140°C以下であることが低エネルギー定着の点力も好ましぐまた、通常 80°C 以上、好ましくは 100°C以上であることが耐高温オフセット性、耐久性の点で好ましい 。ここで重合体の軟化点は、フローテスターにおいて、試料 1. Ogをノズル lmm X 10 mm、荷重 30kg、予熱時間 50°Cで 5分、昇温速度 3°CZ分の条件下で測定を行な つたときの、フロー開始から終了までのストランドの中間点での温度として求めること ができる。
[0266] さらに、重合体のガラス転移温度〔Tg〕は、通常 80°C以下、好ましくは 70°C以下で ある。重合体のガラス転移温度〔Tg〕が高すぎると低エネルギー定着ができなくなる 可能性がある。また、重合体のガラス転移温度〔Tg〕の下限は、通常 40°C以上、好ま しくは 50°C以上である。重合体のガラス転移温度〔Tg〕が低すぎると耐ブロッキング 性が低下する可能性がある。ここで重合体のガラス転移温度〔Tg〕は、示差走査熱量 計において、昇温速度 10°CZ分の条件で測定した曲線の転移 (変曲)開始部に接 線を引き、 2つの接線の交点の温度として求めることができる。
重合体の軟ィ匕点及びガラス転移温度〔Tg〕は、重合体の種類およびモノマー組成 比、分子量等を調整することによって前記範囲とすることができる。
[0267] 2.混合工程及び凝集工程
前記の重合体一次粒子が分散したェマルジヨンに、顔料粒子を混合し、凝集させる ことにより、重合体、顔料を含む凝集体 (凝集粒子)のェマルジヨンを得る。この際、顔 料は、予め液状媒体に界面活性剤等を用いて均一に分散させた顔料粒子分散体を 用意し、これを重合体一次粒子のェマルジヨンに混合することが好ましい。この際、顔 料粒子分散体の液状媒体として通常は水等の水系溶媒を使用し、顔料粒子分散体 を水系分散体として用意する。また、その際には、必要に応じてワックス、帯電制御剤 、離型剤、内添剤等をェマルジヨンに混合してもよい。また、顔料粒子分散体の安定 性を保持するために、上述した乳化剤を加えてもょ ヽ。 [0268] 重合体一次粒子としては、乳化重合により得た前記の重合体一次粒子を使用する ことができる。この際、重合体一次粒子は 1種を用いてもよぐ 2種以上を任意の組み 合わせ及び比率で併用しても良い。さら〖こ、上述した乳化重合とは異なる原料や反 応条件で製造した重合体一次粒子 (以下適宜「併用重合体粒子」という)を併用して ちょい。
[0269] 併用重合体粒子としては、例えば、懸濁重合や粉砕で得られた微粒子などが挙げ られる。このような併用重合体粒子の材料としては榭脂を使用できるが、この榭脂とし ては、上述の乳化重合に供する単量体の(共)重合体の他に、例えば、酢酸ビニル、 塩化ビュル、ビュルアルコール、ビュルプチラール、ビュルピロリドン等のビュル系単 量体の単独重合体または共重合体、飽和ポリエステル榭脂、ポリカーボネート榭脂、 ポリアミド榭脂、ポリオレフイン榭脂、ポリアリレート榭脂、ポリスルホン樹脂、ポリフエ二 レンエーテル榭脂などの熱可塑性榭脂、及び、不飽和ポリエステル榭脂、フエノール 榭脂、エポキシ榭脂、ウレタン榭脂、ロジン変性マレイン酸榭脂などの熱硬化性榭脂 などが挙げられる。なお、これらの併用重合体粒子も、 1種を用いてもよぐ 2種以上 を任意の組み合わせ及び比率で併用しても良い。ただし、併用重合体粒子の割合 は、重合体一次粒子及び併用重合体粒子の重合体の合計に対して、通常 5重量% 以下、好ましくは 4重量%以下、より好ましくは 3重量%以下である。
[0270] また、顔料に制限は無ぐその用途に応じて任意のものを用いることができる。ただ し、顔料は通常は着色剤粒子として粒子状で存在するが、この顔料の粒子は、乳化 重合凝集法における重合体一次粒子との密度差が小さ ヽ方が好ま ヽ。前記の密 度差が小さいほうが、重合体一時粒子と顔料とを凝集させた場合に均一な凝集状態 が得られ、従って得られるトナーの性能が向上するからである。なお、重合体一次粒 子の密度は、通常は 1. 1〜1. 3gZcm3である。
[0271] 前記の観点から、 JIS K 5101— 11— 1 : 2004に規定されるピクノメーター法で 測定される顔料粒子の真密度は、通常 1. 2gZcm3以上、好ましくは 1. 3gZcm3以 上、また、通常 2. OgZcm3未満、好ましくは 1. 9gZcm3以下、より好ましくは 1. 8g Zcm3以下である。顔料の真密度が大きい場合は、特に液状媒体中での沈降性が 悪ィ匕する傾向にある。加えて、保存性、昇華性などの課題も考慮すると、顔料はカー ボンブラックあるいは有機顔料であるのが好ま 、。
[0272] 以上の条件を満たす顔料の例示としては、以下に示すイェロー顔料、マゼンタ顔 料及びシアン顔料などが挙げられる。また、黒色顔料としては、カーボンブラック、又 は、以下に示すイェロー顔料 Zマゼンタ顔料 Zシアン顔料を混合して黒色に調色さ れたものが利用される。
[0273] このうち、黒色顔料として使用されるカーボンブラックは、非常に微細な一次粒子の 凝集体として存在し、顔料粒子分散体として分散させたときに、再凝集によるカーボ ンブラック粒子の粗大化が発生しやす 、。カーボンブラック粒子の再凝集の程度は、 カーボンブラック中に含まれる不純物量 (未分解有機物量の残留程度)の大小と相 関が見られ、不純物が多いと分散後の再凝集による粗大化が顕著となる傾向を示す
[0274] 不純物量の定量的な評価としては、以下の測定方法で測定されるカーボンブラック のトルエン抽出物の紫外線吸光度力 通常 0. 05以下、好ましくは 0. 03以下である 。一般に、チャンネル法のカーボンブラックは不純物が多い傾向を示すので、本発明 のトナーに使用するカーボンブラックとしては、ファーネス法で製造されたものが好ま しい。
[0275] なお、カーボンブラックの紫外線吸光度( λ c)は、次の方法で求める。即ち、まず力 一ボンブラック 3gをトルエン 30mLに充分に分散、混合させて、続いてこの混合液を No. 5C濾紙を使用して濾過する。その後、濾液を吸光部が lcm角の石英セルに入 れて市販の紫外線分光光度計を用いて波長 336nmの吸光度を測定した値( λ s)と 、同じ方法でリファレンスとしてトルエンのみの吸光度を測定した値(λ ο)とから、紫外 線吸光度は λ c= λ s—え οで求める。市販の分光光度計としては、例えば島津製作 所製紫外可視分光光度計 (UV— 3100PC)等がある。
[0276] また、イェロー顔料としては、例えば、縮合ァゾ化合物、イソインドリノン化合物など に代表される化合物が用いられる。具体的には、 C. I.ビグメントイエロー 12、 13、 1 4、 15、 17、 62、 74、 83、 93、 94、 95、 109、 110、 111、 128、 129、 147、 168、 1 80、 185等が好適に用いられる。
[0277] さらに、マゼンタ顔料としては、例えば、縮合ァゾ化合物、ジケトピロ口ピロ一ルイ匕合 物、アンスラキノン、キナクリドン化合物、塩基染料レーキゥ化合物、ナフトール化合 物、ベンズイミダゾロンィ匕合物、チォインジゴィ匕合物、ペリレンィ匕合物などが用いられ る。具体的に【ま、 C. I.ピグメントレッド 2、 3、 5、 6、 7、 23、 48 : 2, 48 : 3, 48 :4, 57 : 1、 81 : 1、 122、 144、 146、 166、 169、 177、 184、 185、 202、 206、 207、 209、 220、 221、 238、 254、 C. I.ピグメントノィ才レット 19等力 ^好適に用!ヽられる。
[0278] 中でも C. I.ビグメン卜レッド 122、 202、 207、 209、 C. I.ピグメン卜ノ ィォレツ卜 19 で示されるキナクリドン系顔料が特に好ましい。このキナクリドン系顔料は、その鮮明 な色相ゃ高 ヽ耐光性など力もマゼンタ顔料として好適である。キナクリドン系顔料の 中でも、 C. I.ビグメントレッド 122で示される化合物力 特に好ましい。
[0279] また、シアン顔料としては、例えば、銅フタロシア-ンィ匕合物及びその誘導体、アン スラキノンィ匕合物、塩基染料レーキ化合物などが利用できる。具体的には、 C. I.ピ グメントブノレ一 1、 7、 15、 15 : 1、 15 : 2、 15 : 3、 15 :4、 60、 62、 66等力 S特に好適に 利用できる。
なお、顔料は 1種を用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用し ても良い。
[0280] 上記の顔料は、液状媒体に分散させ、顔料粒子分散体として力 重合体一次粒子 を含有するエマルシヨンと混合する。この際、顔料粒子分散体中における顔料粒子 の使用量は、液状媒体 100重量部に対して、通常 3重量部以上、好ましくは 5重量部 以上、また、通常 50重量部以下、好ましくは 40重量部以下である。着色剤の配合量 が前記範囲を上回る場合には顔料濃度が濃いので分散中で顔料粒子が再凝集す る確率が高まるので好ましくなぐ前記範囲未満の場合には分散が過剰となって適切 な粒度分布を得ることが困難なので好ましくな 、。
[0281] また、重合体一次粒子に含まれる重合体に対する顔料の使用量の割合は、通常 1 重量%以上、好ましくは 3重量%以上、また、通常 20重量%以下、好ましくは 15重量 %以下である。顔料の使用量が少なすぎると画像濃度が薄くなる可能性があり、多す ぎると凝集制御が困難となる可能性がある。
[0282] さらに、顔料粒子分散体には、界面活性剤を含有させても良い。この界面活性剤に 特に制限は無いが、例えば、乳化重合法の説明において乳化剤として例示した界面 活性剤と同様のものが挙げられる。中でも、非イオン系界面活性剤、ドデシルペンゼ ンスルホン酸ナトリウム等のアルキルァリールスルホン酸塩類等のァ-オン系活性剤
、ポリマー系界面活性剤等が好ましく用いられる。また、この際、界面活性剤は 1種を 用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用しても良 ヽ。
なお、顔料粒子分散体に占める顔料の割合は、通常 10〜50重量%である。
[0283] また、顔料粒子分散体の液状媒体としては、通常は水系媒体を用い、好ましくは水 を用いる。この際、重合体一次粒子及び顔料粒子分散体の水質は各粒子の再凝集 による粗大化にも関係し、導電率が高いと経時の分散安定性が悪ィ匕する傾向がある 。したがって、導電率を、通常 10 μ SZcm以下、好ましくは 5 μ SZcm以下となるよ うに脱塩処理されたイオン交換水あるいは蒸留水を用いることが好ましい。なお、導 電率の測定は、導電率計 (横河電機社製のパーソナル SCメータモデル SC72と検出 器 SC72SN— 11)を用いて 25°C下で測定を行なう。
[0284] また、重合体一次粒子を含有するエマルシヨンに顔料を混合させる際、エマルショ ンにワックスを混合しても良い。ワックスとしては、乳化重合法の説明において述べた ものを同様のものを使用することができる。なお、ワックスは、重合体一次粒子を含有 するエマルシヨンに顔料を混合する前、混合中、後のいずれにおいて混合しても良 い。
[0285] また、重合体一次粒子を含有するエマルシヨンに顔料を混合させる際、エマルショ ンに帯電制御剤を混合しても良 、。
帯電制御剤としては、この用途に用いられ得ることが知られている任意のものを使 用することができる。正荷電性帯電制御剤としては、例えば、ニグ口シン系染料、 4級 アンモニゥム塩、トリフエニルメタン系化合物、イミダゾール系化合物、ポリアミン榭脂 などが挙げられる。また、負荷電性帯電制御剤としては、例えば、 Cr、 Co、 Al、 Fe、 B等の原子を含有するァゾ錯化合物染料;サリチル酸若しくはアルキルサリチル酸の 金属塩又は金属錯体;カーリックスアレン化合物、ベンジル酸の金属塩又は金属錯 体、アミドィ匕合物、フエノール化合物、ナフトールイ匕合物、フエノールアミドィ匕合物など が挙げられる。中でも、トナーとしての色調障害を回避するため、無色ないしは淡色 のものを選択することが好ましぐ特に正荷電性帯電制御剤としては 4級アンモ-ゥム 塩、イミダゾール系化合物が好ましぐ負荷電性帯電制御剤としては Cr、 Co、 Al、 Fe 、 B等の原子を含有するアルキルサリチル酸錯ィ匕合物、カーリックスアレン化合物が 好ましい。なお、帯電制御剤は 1種を用いても良ぐ 2種以上を任意の組み合わせ及 び比率で併用しても良い。
[0286] 帯電制御剤の使用量に制限は無いが、重合体 100重量部に対し、通常 0. 01重量 部以上、好ましくは 0. 1重量部以上、また、 10重量部以下、好ましくは 5重量部以下 である。帯電制御剤の使用量が少なすぎても多すぎても所望の帯電量が得られなく なる可能性がある。
[0287] 帯電制御剤は、重合体一次粒子を含有するエマルシヨンに顔料を混合する前、混 合中、後のいずれにおいて混合しても良い。
また、帯電制御剤は、前記顔料粒子と同様に、液状媒体 (通常は、水系媒体)に乳 化した状態として、凝集時に混合することが望ま U、。
[0288] 上記の重合体一次粒子を含有するエマルシヨンに顔料を混合した後、重合体一次 粒子と顔料とを凝集させる。なお、上述したとおり、混合の際には、通常、顔料は顔料 粒子分散体とした状態で混合させる。
凝集方法に制限は無く任意であるが、例えば、加熱、電解質の混合、 pHの調整等 が挙げられる。なかでも、電解質を混合する方法が好ましい。
[0289] 電解質を混合して凝集を行なう場合の電解質としては、例えば、 NaCl、 KC1、 LiCl
、 MgCl、 CaCl等の塩ィ匕物; Na SO、 K SO、 Li SO、 MgSO、 CaSO、 ZnS
2 2 2 4 2 4 2 4 4 4
O、 Al (SO ) 、 Fe (SO )等の硫酸塩などの無機塩; CH COONa、 C H SO N
4 2 4 3 2 4 3 3 6 5 3 a等の有機塩などが挙げられる。これらのうち、 2価以上の多価の金属カチオンを有 する無機塩が好ましい。
なお、電解質は 1種を用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用 しても良い。
[0290] 電解質の使用量は、電解質の種類によって異なる力 ェマルジヨン中の固形成分 1 00重量部に対して、通常 0. 05重量部以上、好ましくは 0. 1重量部以上、また、通常 25重量部以下、好ましくは 15重量部以下、より好ましくは 10重量部以下である。電 解質を混合して凝集を行なう場合において、電解質の使用量が少なすぎると、凝集 反応の進行が遅くなり凝集反応後も 1 m以下の微粉が残ったり、得られる凝集体の 平均粒径が目的の粒径に達しないなどの可能性があり、また、電解質の使用量が多 すぎると、凝集反応が急速に起こるため粒径の制御が困難となり、得られる凝集体中 に粗粉や不定形のものが含まれる可能性がある。
得られた凝集体は、後述する二次凝集体 (溶融工程を経た凝集体)と同じぐ引き 続き液状媒体中で加熱して球形化するのが好ま ヽ。加熱は二次凝集体の場合と同 様の条件 (融合工程の説明にお 、て述べるのと同様の条件)で行なえばょ 、。
[0291] 一方、加熱により凝集を行なう場合、温度条件は凝集が進行する限り任意である。
具体的な温度条件を挙げると、通常 15°C以上、好ましくは 20°C以上、また、重合体 一次粒子の重合体のガラス転移温度〔Tg〕以下、好ましくは 55°C以下の温度条件で 凝集を行なう。凝集を行なう時間も任意であるが、通常 10分以上、好ましくは 60分以 上、また、通常 300分以下、好ましくは 180分以下である。
また、凝集を行なう際には、攪拌を行なうことが好ましい。攪拌に使用する装置は特 に限定されな 、が、ダブルヘリカル翼を有するものが好まし 、。
[0292] 得られた凝集体は、そのまま次工程の榭脂被覆層を形成する工程 (カプセル化工 程)に進んでもよいし、引き続き液状媒体中で加熱による融合処理を行なった後に、 カプセルィ匕工程に進んでもよい。そして、望ましくは、凝集工程の後に、カプセルィ匕 工程を行な ヽ、カプセルィ匕榭脂微粒子のガラス転移温度〔Tg〕以上の温度で加熱し て融合工程を行なうのが、工程を簡略化でき、トナーの性能劣化 (熱劣化など)を生 じないので好ましい。
[0293] 3.カプセル化工程
凝集体を得た後、当該凝集体には、必要に応じて榭脂被覆層を形成することが好 ましい。凝集体に榭脂被覆層を形成させるカプセル化工程とは、凝集体の表面に榭 脂被覆層を形成することにより、凝集体を榭脂により被覆する工程である。これにより 、製造されるトナーは榭脂被覆層を備えることになる。カプセルィ匕工程では、トナー全 体が完全に被覆されない場合もあるが、顔料は、実質的にトナー粒子の表面に露出 していないトナーを得ることができるようになる。この際の榭脂被覆層の厚さに制限は 無いが、通常は 0. 01〜0. 5 mの範囲である。 [0294] 前記榭脂被覆層を形成する方法としては、特に制限はな!/、が、例えば、スプレード ライ法、機械式粒子複合法、 in— situ重合法、液中粒子被覆法などが挙げられる。 上記スプレードライ法により榭脂被覆層を形成する方法としては、例えば、内層を 形成する凝集体と榭脂被覆層を形成する榭脂微粒子とを水媒体中に分散して分散 液を作製し、分散液をスプレー噴出し、乾燥することによって、凝集体表面に榭脂被 覆層を形成することができる。
[0295] また、前記機械式粒子複合法により榭脂被覆層を形成する方法としては、例えば、 内層を形成する凝集体と榭脂被覆層を形成する榭脂微粒子とを気相中に分散させ、 狭い間隙で機械的な力を加えて凝集体表面に榭脂微粒子を成膜ィ匕する方法であり 、例えばハイブリダィゼーシヨンシステム (奈良機械製作所社製)、メカノフュージョン システム (ホソカワミクロン社製)などの装置が使用できる。
[0296] さらに、前記 in— situ重合法としては、例えば、凝集体を水中に分散させ、単量体 及び重合開始剤を混合して、凝集体表面に吸着させ、加熱して、単量体を重合させ て、内層である凝集体表面に榭脂被覆層を形成する方法である。
また、前記液中粒子被覆法としては、例えば、内層を形成する凝集体と外層を形成 する榭脂微粒子とを、水媒体中で反応あるいは結合させ、内層を形成する凝集体の 表面に榭脂被覆層を形成させる方法である。
[0297] 外層を形成させる場合に用いる榭脂微粒子は、凝集体よりも粒径が小さく榭脂成分 を主体とする粒子である。この榭脂微粒子は、重合体で構成された粒子であれば特 に制限はない。ただし、外層の厚みがコントロールできるという観点から、上述した重 合体一次粒子、凝集体、又は、前記の凝集体を融合した融合粒子と同様の榭脂微 粒子を用いることが好ましい。なお、これらの重合体一次粒子等と同様の榭脂微粒子 は、内層に使用する凝集体における重合体一次粒子等と同様に製造することができ る。
[0298] また、榭脂微粒子の使用量は任意であるが、トナー粒子に対して通常 1重量%以 上、好ましくは 5重量%以上、また、通常 50重量%以下、好ましくは 25重量%以下の 範囲で用いることが望まし 、。
さらに、凝集体に対する榭脂微粒子の固着又は融合を効果的に行なうためには、 榭脂微粒子の粒径は、通常は、 0. 04〜: m程度のものが好ましく用いられる。
[0299] 榭脂被覆層に用いられる重合体成分 (榭脂成分)のガラス転移温度〔Tg〕としては、 通常 60°C以上、好ましくは 70°C以上、また、通常 110°C以下が望ましい。さらに、榭 脂被覆層に用いられる重合体成分のガラス転移温度〔Tg〕は、重合体一次粒子のガ ラス転移温度〔Tg〕より 5°C以上高いものであることが好ましぐ 10°C以上高いもので あることがより好ましい。ガラス転移温度〔Tg〕が低すぎると、一般環境での保存が困 難であり、また高すぎては充分な溶融性が得られないので好ましくない。
[0300] さらに、榭脂被覆層中にはポリシロキサンワックスを含有させることが好ましい。これ により、耐高温オフセット性の向上という利点を得ることができる。ポリシロキサンヮック スの例を挙げると、アルキル基を有するシリコーンワックスなどが挙げられる。
[0301] ポリシロキサンワックスの含有量に制限は無いが、トナー中、通常 0. 01重量%以上 、好ましくは 0. 05重量%以上、より好ましくは 0. 08重量%以上、また、通常 2重量% 以下、好ましくは 1重量%以下、より好ましくは 0. 5重量%以下とする。榭脂被覆層中 のポリシロキサンワックスの量が少なすぎると耐高温オフセット性が不十分となる可能 性があり、多すぎると耐ブロッキング性が低下する可能性がある。
[0302] 榭脂被覆相中にポリシロキサンワックスを含有させる方法は任意であるが、例えば、 ポリシロキサンワックスをシードとして乳化重合を行ない、得られた榭脂微粒子と、内 層を形成する凝集体とを、水系媒体中で反応あるいは結合させ、内層を形成する凝 集体の表面にポリシロキサンワックスを含有する榭脂被覆層を形成させることにより含 有させることが可會である。
[0303] 4.融合工程
融合工程では、凝集体を加熱処理することにより、凝集体を構成する重合体の溶 融一体化を行なう。
また、凝集体に榭脂被覆層を形成してカプセルィ匕榭脂微粒子とした場合には、加 熱処理をすることにより、凝集体を構成する重合体及びその表面の榭脂被覆層の融 合一体ィ匕がなされることになる。これにより、顔料粒子は実質的に表面に露出しない 形態で得られる。
[0304] 融合工程の加熱処理の温度は、凝集体を構成する重合体一次粒子のガラス転移 温度〔Tg〕以上の温度とする。また、榭脂被覆層を形成した場合には、榭脂被覆層を 形成する重合体成分のガラス転移温度〔Tg〕以上の温度とする。具体的な温度条件 は任意であるが、榭脂被覆層を形成する重合体成分のガラス転移温度〔Tg〕よりも、 通常 5°C以上高温であることが好ましい。その上限に制限は無いが、「榭脂被覆層を 形成する重合体成分のガラス転移温度〔Tg〕よりも 50°C高 、温度」以下が好ま U、。 なお、加熱処理の時間は処理能力、製造量にもよるが、通常 0. 5〜6時間である。
[0305] 5.洗浄 ·乾燥工程
上述した各工程を液状媒体中で行なっていた場合には、融合工程の後、得られた カプセルィ匕榭脂粒子を洗浄し、乾燥して液状媒体を除去することにより、トナーを得 ることができる。洗浄及び乾燥の方法に制限は無く任意である。
[0306] [トナーの粒径に関する物性値]
本発明のトナーの体積平均粒径〔Dv〕に制限は無ぐ本発明の効果を著しく損なわ ない限り任意である力 通常 4 μ m以上、好ましくは 5 μ m以上、また、通常 10 μ m以 下、好ましくは 8 m以下である。トナーの体積平均粒径〔Dv〕が小さすぎると画質の 安定性が低下する可能性があり、大きすぎると解像度が低下する可能性がある。
[0307] また、本発明のトナーは、体積平均粒径 [Dv]を個数平均粒径 [Dn]で除した値 [D vZDn〕が、通常 1. 0以上、また、通常 1. 25以下、好ましくは 1. 20以下、より好まし くは 1. 15以下であることが望ましい。〔DvZDn〕の値は、粒度分布の状態を表わし、 この値が 1. 0に近い方ほど粒度分布がシャープであることを表わす。粒度分布がシ ヤープであるほど、トナーの帯電 ¾が均一となるので望ましい。
[0308] さらに、本発明のトナーは、粒径 25 m以上の体積分率が、通常 1%以下、好まし くは 0. 5%以下、より好ましくは 0. 1%以下、更に好ましくは 0. 05%以下である。こ の値は小さいほど好ましい。これは、トナーに含まれる粗粉の割合が少ないことを意 味しており、粗粉が少ないと、連続現像の際のトナーの消費量が少なぐ画質が安定 するので好ましいのである。なお、粒径 25 μ m以上の粗粉は全く存在しないのが最 も好ましいが、実際の製造上は困難であり、通常は 0. 005%以下にしなくとも構わな い。
[0309] また、本発明のトナーは、粒径 15 m以上の体積分率が、通常 2%以下、好ましく は 1%以下、より好ましくは 0. 1%以下である。粒径 15 m以上の粗粉も全く存在し ないのが最も好ましいが、実際の製造上は困難であり、通常は 0. 01%以下にしなく とも構わない。
さらに、本発明のトナーは、粒径 5 m以下の個数分率が、通常 15%以下、好まし くは 10%以下であることが、画像カプリの改善に効果があるので、望ましい。
[0310] ここで、トナーの体積平均粒径 [Dv]、個数平均粒径 [Dn]、体積分率、個数分率な どは、以下のようにして測定することができる。即ち、トナーの粒子径の測定装置とし ては、コールターカウンターのマルチサイザ一 II型あるいは III型(ベックマン'コールタ 一社製)を用い、個数分布 ·体積分布を出力するインターフェイス及び一般的なパー ソナルコンピューターを接続して使用する。また、電解液はァイソトン IIを用いる。測定 法としては、前記電解液 100〜150mL中に分散剤として界面活性剤 (好ましくはァ ルキルベンゼンスルホン酸塩)を 0. l〜5mL加え、更に測定試料(トナー)を 2〜20 mg加える。そして、試料を懸濁した電解液は超音波分散器で約 1〜3分間分散処理 を行ない、前記コールターカウンターのマルチサイザ一 II型あるいは III型により、 100 μ mアパーチャ一を用いて測定する。このようにしてトナーの個数及び体積を測定し て、それぞれ個数分布、体積分布を算出し、それぞれ、体積平均粒径〔Dv〕、個数平 均粒径〔Dn〕を求める。
[0311] [トナーの分子量に関する物性値]
本発明のトナーの THF可溶分のゲルパーミエーシヨンクロマトグラフィーにおけるピ ーク分子量のうち少なくとも 1つは、通常 1万以上、好ましくは 2万以上、より好ましくは 3万以上であり、通常 15万以下、好ましくは 10万以下、より好ましくは 7万以下である 。なお、 THFはテトラヒドロフランのことを言う。ピーク分子量が何れも前記範囲より低 い場合は、非磁性一成分現像方式における機械的耐久性が悪化する場合があり、ピ ーク分子量が何れも前記範囲より高い場合は、低温定着性や定着強度が悪ィ匕する 場合がある。
[0312] さらに、トナーの THF不溶分は後述するセライト濾過による重量法で測定した場合 、通常 10%以上、好ましくは 20%以上であり、また、通常 60%以下、好ましくは 50% 以下である。前記範囲にない場合は、機械的耐久性と低温定着性の両立が困難とな る場合がある。
[0313] なお、本発明のトナーのピーク分子量は、測定装置: HLC— 8120GPC (東ソー株 式会社製)を用いて次の条件で測定される。
即ち、 40°Cのヒートチャンバ一中でカラムを安定ィ匕させ、この温度におけるカラムに 、溶媒としてテトラヒドロフラン (THF)を毎分 lmLの流速で流す。次いで、トナーを T HFに溶解後 0. 2 mフィルターで濾過し、その濾液を試料として用いる。
[0314] 測定は、試料濃度 (榭脂の濃度)を 0. 05〜0. 6質量%に調整した榭脂の THF溶 液を測定装置に 50〜200 L注入して行なう。試料(トナー中の榭脂成分)の分子量 測定にあたっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試 料により作成された検量線の対数値とカウント数との関係から算出する。検量線作成 用の標準ポリスチレン試料としては、例えば、 Pressure Chemical Co.製あるい は、東洋ソーダ工業社製の、分子量が 6 X 102、 2. 1 X 103、4 X 103、 1. 75 X 104、 5. 1 X
Figure imgf000094_0001
4. 48 X 106のものを用 い、少なくとも 10点程度の標準ポリスチレン試料を用いるのが適当である。また、検 出器には RI (屈折率)検出器を用いる。
[0315] さらに、前記の測定方法で用いるカラムとしては、 103〜2 X 106の分子量領域を適 確に測定するために、市販のポリスチレンゲルカラムを複数組合せるのが良ぐ例え ば、 Waters社製の — styragel 500, 103, 104, 105の組合せや、昭和電工社 製の shodex KA801, 802, 803, 804, 805, 806, 807の糸且合せ力 ^好まし!/ヽ。
[0316] また、トナーのテトラヒドロフラン (THF)不溶分の測定は、以下のようにして行なうこ とができる。即ち、試料(トナー) lgを THFlOOgに加え 25°Cで 24時間静置溶解し、 セライト 10gを用いて濾過し、濾液の溶媒を留去して THF可溶分を定量し、 lgから差 し引いて THF不溶分を算出することができる。
[0317] [トナーの軟化点及びガラス転移温度]
本発明のトナーの軟化点〔Sp〕に制限は無ぐ本発明の効果を著しく損なわない限 り任意である力 低エネルギーで定着する観点から、通常 150°C以下、好ましくは 14 0°C以下である。また、耐高温オフセット性、耐久性の点からは、軟ィ匕点は、通常 80 °C以上、好ましくは 100°C以上である。 なお、トナーの軟化点〔Sp〕は、フローテスターにおいて、試料 1. Ogをノズル lmm X 10mm,荷重 30kg、予熱時間 50°Cで 5分、昇温速度 3°CZ分の条件下で測定を 行なったときの、フロー開始から終了までのストランドの中間点での温度として求める ことができる。
[0318] また、本発明のトナーのガラス転移温度〔Tg〕に制限は無ぐ本発明の効果を著しく 損なわない限り任意であるが、通常 80°C以下、好ましくは 70°C以下であると、低エネ ルギ一で定着できるので望ましい。また、ガラス転移温度〔Tg〕は、通常 40°C以上、 好ましくは 50°C以上であると、耐ブロッキング性の点で好まし!/、。
なお、トナーのガラス転移温度〔Tg〕は、示差走査熱量計において、昇温速度 10°C Z分の条件で測定した曲線の転移 (変曲)開始部に接線を引き、 2つの接線の交点 の温度として求めることができる。
[0319] トナーの軟化点〔Sp〕及びガラス転移温度〔Tg〕は、トナーに含まれる重合体の種類 および組成比に大きく影響を受ける。このため、トナーの軟ィ匕点〔Sp〕及びガラス転移 温度〔Tg〕は、前記の重合体の種類及び組成を適宜最適化することにより調整するこ とができる。また、重合体の分子量、ゲル分、ワックス等の低融点成分の種類および 配合量によっても、調整することが可能である。
[0320] [トナー中のワックス]
本発明のトナーがワックスを含有する場合、トナー粒子中のワックスの分散粒径は、 平均粒径として、通常 0. 1 μ m以上、好ましくは 0. 3 μ m以上であり、また、上限は 通常 3 μ m以下、好ましくは 1 μ m以下である。分散粒径が小さすぎるとトナーの耐フ イルミング性改良の効果が得られない可能性があり、また、分散粒径が大きすぎるとト ナ一の表面にワックスが露出しやすくなり帯電性や耐熱性が低下する可能性がある。 なお、ワックスの分散粒径は、トナーを薄片化して電子顕微鏡観察する方法の他、 ワックスが溶解しな 、有機溶剤等でトナーの重合体を溶出した後にフィルターで濾過 し、フィルター上に残ったワックス粒子を顕微鏡により計測する方法などにより確認す ることがでさる。
[0321] また、トナーに占めるワックスの割合は本発明の効果を著しく損なわない限り任意で あるが、通常 0. 05重量%以上、好ましくは 0. 1重量%以上であり、また通常 20重量 %以下、好ましくは 15重量%以下である。ワックスが少なすぎると定着温度幅が不十 分となる可能性があり、多すぎると装置部材を汚染して画質が低下する可能性がある
[0322] [外添微粒子]
トナーの流動性、帯電安定性、高温下での耐ブロッキング性などを向上させるため に、トナー粒子表面に外添微粒子を添着させてもよい。
外添微粒子をトナー粒子表面に添着させる方法としては、例えば、上述したトナー の製造方法において、液状媒体中で二次凝集体と外添微粒子を混合した後、加熱 してトナー粒子上に外添微粒子を固着させる方法;二次凝集体を液状媒体力 分離 、洗浄、乾燥させて得られたトナー粒子に乾式で外添微粒子を混合又は固着させる 方法などが挙げられる。
[0323] 乾式でトナー粒子と外添微粒子とを混合する場合に用いられる混合機としては、例 えば、ヘンシェルミキサー、スーパーミキサー、ナウターミキサー、 V型ミキサー、レデ ィゲミキサー、ダブルコーンミキサー、ドラム型ミキサーなどが挙げられる。中でもヘン シェルミキサー、スーパーミキサー等の高速攪拌型の混合機を用い、羽根形状、回 転数、時間、駆動 停止の回数等を適宜設定して均一に攪拌、混合することにより 混合することが好ましい。
[0324] また、乾式でトナー粒子と外添微粒子を固着させる場合に用いられる装置としては 、圧縮剪断応力を加えることの出来る圧縮剪断処理装置や、粒子表面を溶融処理す ることのできる粒子表面溶融処理装置などが挙げられる。
[0325] 圧縮剪断処理装置は、一般に、間隔を保持しながら相対的に運動するヘッド面と ヘッド面、ヘッド面と壁面、あるいは壁面と壁面によって構成される狭い間隙部を有し 、被処理粒子が該間隙部を強制的に通過させられることによって、実質的に粉砕さ れることなぐ粒子表面に対して圧縮応力及び剪断応力が加えられるように構成され ている。このような圧縮剪断処理装置としては、例えば、ホソカワミクロン社製のメカノ フュージョン装置等が挙げられる。
[0326] 一方、粒子表面溶融処理装置は、一般に、熱風気流等を利用し、母体微粒子と外 添微粒子との混合物を母体微粒子の溶融開始温度以上に瞬時に加熱し外添微粒 子を固着できるように構成される。このような粒子表面溶融処理装置としては、例えば 、 日本-ユーマチック社製のサーフュージングシステム等が挙げられる。
[0327] また、外添微粒子としては、この用途に用い得ることが知られている公知のものが使 用できる。例えば、無機微粒子、有機微粒子などが挙げられる。
無機微粒子としては、例えば、炭化ケィ素、炭化ホウ素、炭化チタン、炭化ジルコ二 ゥム、炭化ハフニウム、炭化バナジウム、炭化タンタル、炭化ニオブ、炭化タンダステ ン、炭化クロム、炭化モリブデン、炭化カルシウム等の炭化物、窒化ホウ素、窒化チタ ン、窒化ジルコニウム、窒化珪素等の窒化物、ホウ化ジルコニウム等のホウ化物、シリ 力、コロイダルシリカ、酸化チタン、酸化アルミニウム、酸化カルシウム、酸化マグネシ ゥム、酸化亜鉛、酸化銅、酸ィ匕ジルコニウム、酸ィ匕セリウム、タノレク、ノ、イドロタノレサイト 等の酸化物や水酸化物、チタン酸カルシウム、チタン酸マグネシウム、チタン酸スト口 ンチウム、チタン酸バリウム等の各種チタン酸ィ匕合物、リン酸三カルシウム、リン酸二 水素カルシウム、リン酸一水素カルシウム、リン酸イオンの一部が陰イオンによって置 換された置換リン酸カルシウム等のリン酸ィ匕合物、二硫ィ匕モリブデン等の硫ィ匕物、フ ッ化マグネシウム、フッ化炭素等のフッ化物、ステアリン酸アルミニウム、ステアリン酸 カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の金属石鹼、滑石、ベント ナイト、導電性カーボンブラックをはじめとする種々のカーボンブラック等を用いること ができる。さら〖こは、マグネタイト、マグへマタイト、マグネタイトとマグへマタイトの中間 体等の磁性物質などを用いてもょ 、。
[0328] 一方、有機微粒子としては、例えば、スチレン系榭脂、ポリアクリル酸メチルゃポリメ タクリル酸メチル等のアクリル系榭脂、エポキシ系榭脂、メラミン系榭脂、テトラフロロ エチレン榭脂、トリフロロエチレン榭脂、ポリ塩化ビニル、ポリエチレン、ポリアクリロ-ト リルなどの微粒子を用いることができる。
これら外添微粒子の中では、特に、シリカ、酸化チタン、アルミナ、酸化亜鉛、カー ボンブラック等が好適に使用される。
なお、外添微粒子は、 1種を用いてもよぐ 2種以上を任意の組み合わせ及び比率 で併用しても良い。
[0329] また、これらの無機または有機微粒子の表面は、シランカップリング剤、チタネート 系カップリング剤、シリコーンオイル、変性シリコーンオイル、シリコーンワニス、フッ素 系シランカップリング剤、フッ素系シリコーンオイル、アミノ基ゃ第 4級アンモ-ゥム塩 基を有するカップリング剤等の処理剤によって疎水化などの表面処理が施されてい てもよい。なお、処理剤は、 1種を用いてもよぐ 2種以上を任意の組み合わせ及び比 率で併用しても良い。
[0330] さらに、外添微粒子の数平均粒径は本発明の効果を著しく損なわない限り任意で ある力 通常 0. 001 μ m以上、好ましく ίま 0. 005 μ m以上、また、通常 3 μ m以下、 好ましくは 1 μ m以下であり、異なる平均粒径のものを複数配合してもよい。なお、外 添微粒子の平均粒径は、電子顕微鏡観察や BET比表面積の値力ゝらの換算等により 求めることができる。
[0331] また、トナーに対する外添微粒子の割合は本発明の効果を著しく損なわない限り任 意である。ただし、トナーと外添微粒子との合計重量に対する外添微粒子の割合とし て、通常 0. 1重量%以上、好ましくは 0. 3重量%以上、より好ましくは 0. 5重量%以 上、また、通常 10重量%以下、好ましくは 6重量%以下、より好ましくは 4重量%以下 が望ましい。外添微粒子が少なすぎると流動性、帯電安定性が不足する可能性があ り、多すぎると定着性が悪化する可能性がある。
[0332] [その他]
本発明のトナーの帯電特性は、負帯電性であっても、正帯電性であっても良ぐ用 いる画像形成装置の方式に応じて設定することができる。なお、トナーの帯電特性は 、帯電制御剤などのトナー母粒子構成物の選択および組成比、外添微粒子の選択 および組成比等により調整することができる。
[0333] また、本発明のトナーは、一成分現像剤として用いることも、キャリアと混合して二成 分現像剤として用いることも可能である。
二成分現像剤として用いる場合には、トナーと混合して現像剤を形成するキャリアと しては、例えば、公知の鉄粉系、フェライト系、マグネタイト系キャリア等の磁性物質、 または、それらの表面に榭脂コーティングを施したものや磁性榭脂キャリアを用いるこ とがでさる。
[0334] キャリアの被覆榭脂としては、例えば、一般的に知られているスチレン系榭脂、ァク リル榭脂、スチレンアクリル共重合榭脂、シリコーン系榭脂、変性シリコーン系榭脂、 フッ素系榭脂等が利用できるが、これらに限定されるものではない。
また、キャリアの平均粒径は特に制限はないが、 10〜 200 mの平均粒径を有す るものが好ましい。これらのキャリアは、トナー 1重量部に対して 5〜: LOO重量部の割 合で用いるのが好ましい。
[0335] なお、電子写真方式によるフルカラー画像の形成は、マゼンタ、シアン、イェローの 各カラートナーおよび必要に応じてブラックトナーを用いて常法により実施することが できる。
[0336] 転写装置 5は、その種類に特に制限はなぐコロナ転写、ローラ転写、ベルト転写な どの静電転写法、圧力転写法、粘着転写法など、任意の方式を用いた装置を使用 することができる。ここでは、転写装置 5が電子写真感光体 1に対向して配置された転 写チャージヤー、転写ローラ、転写ベルト等から構成されるものとする。この転写装置 5は、トナー Tの帯電電位とは逆極性で所定電圧値 (転写電圧)を印加し、電子写真 感光体 1に形成されたトナー像を記録紙 (用紙、媒体) Pに転写するものである。
[0337] クリーニング装置 6について特に制限はなぐブラシクリーナー、磁気ブラシクリーナ 一、静電ブラシクリーナー、磁気ローラクリーナー、ブレードクリーナーなど、任意のク リー-ング装置を用いることができる。クリーニング装置 6は、感光体 1に付着している 残留トナーをクリーニング部材で搔き落とし、残留トナーを回収するものである。なお 、残留トナーが少ないか、ほとんど無い場合、クリーニング装置 6は無くてもかまわな い。
[0338] 定着装置 7は、上部定着部材 (定着ローラ) 71及び下部定着部材 (定着ローラ) 72 から構成され、定着部材 71又は 72の内部には加熱装置 73が備えられている。なお 、図 1では、上部定着部材 71の内部に加熱装置 73が備えられた例を示す。上部及 び下部の各定着部材 71, 72は、ステンレス,アルミニウムなどの金属素管にシリコン ゴムを被覆した定着ロール、更にテフロン (登録商標)榭脂で被覆した定着ロール、 定着シートなどが公知の熱定着部材を使用することができる。更に、各定着部材 71,
72は、離型性を向上させる為にシリコーンオイル等の離型剤を供給する構成としても よぐパネ等により互いに強制的に圧力を加える構成としてもよい。 [0339] 記録紙 P上に転写されたトナーは、所定温度に加熱された上部定着部材 71と下部 定着部材 72との間を通過する際、トナーが溶融状態まで熱加熱され、通過後冷却さ れて記録紙 P上にトナーが定着される。
[0340] なお、定着装置についてもその種類に特に限定はなぐここで用いたものをはじめ
、熱ローラ定着、フラッシュ定着、オーブン定着、圧力定着など、任意の方式による定 着装置を設けることができる。
[0341] 以上のように構成された画像形成装置では、次の方法 (本発明の画像形成方法) に従って画像の記録が行なわれる。
[0342] 即ち、まず感光体 1の表面 (感光面)が、帯電装置 2によって所定の電位 (例えば—
600V)に帯電される。この際、直流電圧により帯電させてもよぐ直流電圧に交流電 圧を重畳させて帯電させてもょ 、。
[0343] 続いて、帯電された感光体 1の感光面を、記録すべき画像に応じて露光装置 3によ り露光し、感光面に静電潜像を形成する。そして、その感光体 1の感光面に形成され た静電潜像の現像を、現像装置 4で行なう。
[0344] 現像装置 4は、供給ローラ 43により供給されるトナー Tを、規制部材 (現像ブレード)
45により薄層化するとともに、所定の極性 (ここでは感光体 1の帯電電位と同極性で あり、負極性)に摩擦帯電させ、現像ローラ 44に担持しながら搬送して、感光体 1の 表面に接触させる。
[0345] 現像ローラ 44に担持された帯電トナー Tが感光体 1の表面に接触すると、静電潜像 に対応するトナー像が感光体 1の感光面に形成される。そしてこのトナー像は、転写 装置 5によって記録紙 Pに転写される。この後、転写されずに感光体 1の感光面に残 留しているトナーが、クリーニング装置 6で除去される。
[0346] トナー像の記録紙 P上への転写後、定着装置 7を通過させてトナー像を記録紙 P上 へ熱定着することで、最終的な画像が得られる。
[0347] なお、画像形成装置は、上述した構成に加え、例えば除電工程を行なうことができ る構成としてもよい。除電工程は、電子写真感光体に露光を行なうことで電子写真感 光体の除電を行なう工程であり、除電装置としては、蛍光灯、 LED等が使用される。 また除電工程で用いる光は、強度としては露光光の 3倍以上の露光エネルギーを有 する光である場合が多い。
[0348] また、画像形成装置は更に変形して構成してもよぐ例えば、前露光工程、補助帯 電工程などの工程を行なうことができる構成としたり、オフセット印刷を行なう構成とし たり、更には複数種のトナーを用いたフルカラータンデム方式の構成としてもよい。
[0349] なお、電子写真感光体 1を単独で、又は、帯電装置 2、露光装置 3、現像装置 4、転 写装置 5、クリーニング装置 6、及び定着装置 7のうち 1つ又は 2つ以上の要素 袓み 合わせて、一体型のカートリッジ (これを適宜「電子写真感光体カートリッジ」という)と して構成し、この電子写真感光体カートリッジを複写機やレーザービームプリンター 等の画像形成装置本体に対して着脱可能な構成にしてもよい。この場合、画像形成 装置に対して着脱可能に構成されたカートリッジケースを用い、これに電子写真感光 体 1を単独で、又は上述の要素と組み合わせて収容し支持させることにより、電子写 真感光体カートリッジとすることができる。こうした構成により、例えば電子写真感光体 1やその他の部材が劣化した場合に、この電子写真感光体カートリッジを画像形成装 置本体から取り外し、別の新 Uゝ電子写真感光体カートリッジを画像形成装置本体 に装着することにより、画像形成装置の保守 ·管理が容易となる。
実施例
[0350] 以下、合成例、実施例及び比較例を挙げて、本発明を更に詳細に説明する。なお 、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその趣 旨に反しない限り以下の実施例に限定されるものではない。
[0351] [粉末 XRDスペクトル測定及びピーク半値幅の算出条件]
なお、後述の各合成例及び比較合成例で得られたフタロシアニン類の粉末 X線回 折スペクトルは、以下の手順で測定した。即ち、測定装置としては、 CuK o;特性 X線 (波長 1. 541 A)を線源とした集中光学系の粉末 X線回折計である PANalytical社 製の PW1700を使用した。測定条件は、 X線出力 40kV, 30mA,走査範囲(2 θ ) 3 〜40° 、スキャンステップ幅 0. 05° 、走査速度 3. 0° Zmin、発散スリット 1. 0° 、 散乱スリット 1. 0° 、受光スリット 0. 2mmとした。
[0352] ピーク半値幅は、プロファイルフィッティング法により算出した。プロファイルフイツテ イングは、 MDI社製粉末 X線回折パターン解析ソフト JADE5. 0 +を用いて行なった 。その算出条件は、以下の通りとした。即ち、バックグランドは、全測定範囲(2 Θ = 3 . 0-40. 0° )力も理想的な位置に固定した。フィッティング関数としては、 CuK a
2 の寄与を考慮した Peason— VII関数を用いた。フィッティング関数の変数としては、 回折角 (2 Θ )、ピーク高さ、ピーク半値幅( j8 )の 3つを精密化した。 CuK a の影響を
2 除去し、 CuK a 由来の回折角(2 0 )、ピーク高さ、ピーク半値幅( )を計算した。
1
非対称は 0に、形定数は 1. 5に固定した。
[0353] 上記のプロファイルフィッティングより算出したピーク半値幅( j8 )を、同測定条件、 同プロファイルフィッティング条件により算出した標準 Si (NIST Si 640b)の 111ピー ク(2 0 = 28. 442° )のピーク半値幅(j8 )により、下式に従って補正することにより
Si
、試料由来のピーク半値幅( β )を求めた。
[0354] [数 3]
β = - 2
[0355] [合成例 1 ( β型ォキシチタニウムフタロシアニン結晶) ]
特開平 10— 7925号公報に記載の「粗 TiOPcの製造例」、次いで「実施例 1」の手 順に従って、 j8型ォキシチタニウムフタロシアニン結晶を調製した。得られた β型ォ キシチタニウムフタロシアニン結晶の粉末 XRDスペクトルを図 6に示す。また、得られ た β型ォキシチタニウムフタロシアニン結晶中に含有される塩素分を、上記 [発明を 実施するための最良の形態]の <塩素含有量測定条件 (元素分析) >の欄に記載の 手法に従って分析した結果、塩素含有量は検出下限以下の 0. 20重量%以下であ つた。また、上記 [発明を実施するための最良の形態]のくマススペクトル測定条件 >の欄に記載の手法に従って、得られた β型ォキシチタニウムフタロシアニン結晶中 のォキシチタニウムフタロシアニンに対するクロ口ォキシチタニウムフタロシアニンのピ ーク強度比を測定したところ、 0. 002であった。
[0356] [合成例 2 (低結晶性ォキシチタニウムフタロシアニン) ] 合成例 1で得られた β型ォキシチタニウムフタロシアニン結晶 50重量部を、 - 10°C 以下に冷却した 95%濃硫酸 1250重量部中に加えた。この時、硫酸溶液の内温が — 5°Cを超えないように、ゆっくりと加えた。添加終了後、濃硫酸溶液を— 5°C以下で 2時間撹拌した。撹拌後、濃硫酸溶液をガラスフィルターで濾過し、不溶分を濾別後 、濃硫酸溶液を氷水 12500重量部中に放出することにより、ォキシチタニウムフタ口 シァニンを析出させ、放出後 1時間撹拌した。撹拌後、溶液を濾別し、得られたゥエツ トケーキを再度、水 2500重量部中で 1時間洗浄し、濾過を行なった。この洗浄操作 を、濾液のイオン伝導度が 0. 5mSZmになるまで繰り返すことにより、低結晶性ォキ シチタニウムフタロシアニンのウエットケーキ 452重量部を得た(ォキシチタニウムフタ ロシアニン含有率 11. 1重量%)。得られた低結晶性ォキシチタニウムフタロシアニン 結晶の粉末 XRDスペクトルを図 7に示す。
[0357] [実施例 1〜4、比較合成例 1]
フタロシアニン結晶前駆体として、合成例 2で得られた低結晶性ォキシチタニウムフ タロシアニンのウエットケーキ 33重量部を水 90重量部中にカ卩え、室温で 30分撹拌し た。その後、下記表 2の右欄に示すィ匕合物各 13重量部を加え、更に室温で 1時間撹 拌した。撹拌後、水を分離し、メタノール 80重量部を加え、室温で 1時間撹拌洗浄し た。洗浄後、濾別し、再度メタノール 80重量部を加えて 1時間撹拌洗浄した後、濾別 し、真空乾燥機で加熱乾燥することにより、ォキシチタニウムフタロシアニン単独から なる結晶を得た (これらを以下適宜、実施例 1〜4及び比較合成例 1のフタロシアニン 結晶という。 ) o実施例 1〜4及び比較合成例 1のフタロシアニン結晶の粉末 XRDスぺ タトルをそれぞれ図 8〜12に示す。図 8〜 12の粉末 XRDスペクトルから明らかなよう に、実施例 1〜4及び比較合成例 1のフタロシアニン結晶は、何れも CuK o;特性 X線 (波長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° ) 27. 2° に主たる回折ピークを 有するものであった。
[0358] [表 2] 表 2
Figure imgf000104_0001
(* >芳香族アルデヒド化合物
[0359] [合成例 3 (低結晶性フタロシアニン組成物) ]
合成例 2において原料として用いた合成例 1のォキシチタニウムフタロシアニン結晶 50重量部を、合成例 1のォキシチタニウムフタロシアニン結晶 47. 5重量部と無金属 フタロシアニン(大日本インキ化学工業 (株)社製「FastgenBlue8120BS」) 2. 5重 量部との混合物に変更した以外は、合成例 2と同様の操作を行なうことにより、低結 晶性フタロシアニン組成物のウエットケーキ 410重量部を得た (フタロシアニン類の含 有率 12. 2重量%)。得られた低結晶性フタロシアニン類の粉末 XRDスペクトルを図 13に示す。
[0360] [実施例 5〜8、比較合成例 2]
フタロシアニン結晶前駆体として、合成例 7で得られた低結晶性フタロシアニン組成 物のウエットケーキ 33重量部を水 90重量部中に加え、室温で 30分撹拌した。その後 、下記表 3の右欄に示すィ匕合物各 13重量部を加え、更に室温で 1時間撹拌した。撹 拌後、水を分離し、メタノール 80重量部を加え、室温で 1時間撹拌洗浄した。洗浄後 、濾別し、再度メタノール 80重量部を加え 1時間撹拌洗浄した後、濾別し、真空乾燥 機で加熱乾燥することにより、ォキシチタニウムフタロシアニンと無金属フタロシアニン との混晶を得た (これらを各々、実施例 5〜8及び比較合成例 2のフタロシアニン結晶 という。)。得られた実施例 5〜8及び比較合成例 2のォキシチタニウムフタロシアニン 結晶の粉末 XRDスペクトルを図 14〜 18に示す。図 14〜 18の粉末 XRDスペクトル 力 明らかなように、実施例 5〜8及び比較合成例 2のォキシチタニウムフタロシア- ン混晶は、何れも CuK a特性 X線 (波長 1. 541 A)に対するブラッグ角(2 0 ±0. 2 ° ) 27. 2° に主たる回折ピークを有するものであった。
[0361] [表 3] 表 3
Figure imgf000105_0001
(*)芳香族アルデヒド化合物
[0362] [感光体の製造方法]
二軸延伸ポリエチレンテレフタレート榭脂フィルム(厚み 75 μ m)の表面にアルミ- ゥム蒸着膜 (厚み 70nm)を形成した導電性支持体を用い、その支持体の蒸着層上 に、以下に示す手法で調製した下引き層用分散液をバーコ一ターにより、乾燥後の 膜厚が 1. 25 mとなるように塗布し、乾燥させ下引き層を形成した。
[0363] 下引き層用分散液の調製は以下の手法で行なった。即ち、平均一次粒子径 40nm のルチル型酸ィ匕チタン (石原産業社製「TT055N」)と、該酸化チタンに対して 3重 量%のメチルジメトキシシラン (東芝シリコーン社製「TSL8117」)とを、高速流動式 混合混練機((株)力ヮタ社製「SMG300」)に投入し、回転周速 34. 5mZ秒で高速 混合して得られた表面処理酸化チタンを、メタノール Z1—プロパノールのボールミ ルにより分散させることにより、疎水化処理酸化チタンの分散スラリーとした。該分散 スラリーと、メタノール Z1—プロパノール Zトルエンの混合溶媒、及び、 ε—力プロラ クタム [下記式 (Α)で表される化合物] Ζビス (4 ァミノ 3—メチルシクロへキシル) メタン [下記式 (Β)で表される化合物] Ζへキサメチレンジァミン [下記式 (C)で表され る化合物] Ζデカメチレンジカルボン酸 [下記式 (D)で表される化合物] Ζォクタデカ メチレンジカルボン酸 [下記式 (Ε)で表される化合物]の組成モル比率力 60%/ 1 5%Ζ5%Ζ15%Ζ5%力もなる共重合ポリアミドのペレットとを加熱しながら撹拌、 混合してポリアミドペレットを溶解させた後、超音波分散処理を行なうことにより、メタノ ール Zl プロパノール Ζトルエンの重量比が 7Z1Z2で、疎水性処理酸化チタン Z共重合ポリアミドを重量比 3Z1で含有する、固形分濃度 18. 0%の下引き層分散 液とした。
[0364] [化 4]
Figure imgf000106_0001
D E
Figure imgf000106_0002
[0365] 一方、電荷発生物質として、後述するフタロシアニン結晶各 20重量部を用い、これ を 1, 2 ジメトキシェタン 280重量部と混合し、サンドグラインドミルで 2時間粉砕して 微粒ィ匕分散処理を行なった。また、 1, 2 ジメトキシェタン 253重量部及び 4—メトキ シ 4 メチル - 2-ペンタノン 85重量部の混合液に、ポリビュルプチラール(電気 化学工業 (株)社製、商品名「デンカブチラール」 # 6000C) 10重量部を溶解させて 、ノ インダー液を調製した。上述の微粒化分散処理により得られた微細化処理液及 び上述のバインダー液と 1, 2 ジメトキシェタン 230重量部とを混合して、電荷発生 層用塗布液を調製した。この電荷発生層用塗布液を、前記導電性支持体上に形成 された下引き層上に、バーコ一ターにより、乾燥後の膜厚が 0. となるように塗 布し、乾燥させて電荷発生層を形成した。
[0366] 更に、特開 2002— 80432号公報の実施例 1に基づいて合成された、下記構造式
(F)で示される構造を主成分とする、幾何異性体の化合物群からなる混合物 50重量 部を電荷輸送物質として用い、また、下記構造式 (G)で示される 2, 2 ビス (4ーヒド 口キシー 3 メチルフエ-ル)プロパンを芳香族ジオール成分とする繰り返し単位 51 モル0 /0と、下記構造式 (H)で示される 1, 1 ビス(4ーヒドロキシフエ-ル) 1 フエ -ルェタンを芳香族ジオール成分とする繰り返し単位 49モル%と力 なり、 p—t—ブ チルフエノールに由来する末端構造式を有するポリカーボネート榭脂 100重量部を バインダー榭脂として用い、その他に、 2, 6 ジー tーブチルー 4 メチルフエノール 8重量部、シリコーンオイル (商品名「KF96」、信越ィ匕学工業 (株)製) 0. 03重量部を 、テトラヒドロフラン Zトルエン (重量比 8Z2)混合溶媒 640重量部に溶解させて電荷 輸送層用塗布液 Aを調製した。この電荷輸送層用塗布液を、前記のようにして電荷 発生層を設けた榭脂フィルム上に、乾燥後の膜厚が 25 mとなるように塗布し、乾燥 させて電荷輸送層を形成することにより、積層型感光層を有する電子写真感光体を 作製した。
[0367] [化 5]
Figure imgf000107_0001
[0368] [化 6]
Figure imgf000107_0002
[0369] [化 7]
(H)
Figure imgf000107_0003
[0370] [実施例 9〜16、比較例 1, 2]
電荷発生物質として実施例 9〜16、並びに、比較合成例 1及び 2のフタロシアニン 結晶を用い、上述の感光体製造方法に従って電子写真感光体を製造した (これらを 以下適宜、実施例 9〜16及び比較例 1, 2の電子写真感光体という。 )0各電子写真 感光体と、電荷発生物質として用いたフタロシアニン結晶及びその組成との対応を、 下記表 4に示す。
[0371] [表 4] 表 4
Figure imgf000108_0001
[0372] [電子写真感光体の評価]
実施例 9〜16及び比較例 1, 2の電子写真感光体を、電子写真学会標準に従って 作製された電子写真特性評価装置(「続電子写真技術の基礎と応用」、電子写真学 会編、コロナ社、 404〜405頁記載)に装着し、以下の手順に従って帯電、露光、電 位測定、除電のサイクルを実施することにより、電気特性の評価を行なった。
帯電器を 70° 、露光装置を 0° 、表面電位計プローブを 36° 、除電器を 150 ° の角度に配置し、各機器は感光体表面力 の距離を 2mmに配置した。帯電はス コロトロン帯電器を用いた。露光ランプはゥシォ電機社製のハロゲンランプ JDR110 V— 85WLNZK7を用い、朝日分光社製フィルター MX0780を用いて 780nmの単 色光とした。除電光には 660nmの LED光を用いた。
感光体を一定の回転速度(60rpm)で回転させながら、感光体の初期表面電位が - 700Vとなるように帯電させ、帯電した感光体表面を 780nmの単色光が露光され る露光部を通過させ、表面電位計のプローブの位置に来た時の表面電位を測定し た (露光〜電位測定間 100ms)。 780nmの単色光を NDフィルターに通して光量を変化させて照射して、表面電位 が 350Vとなる時の照射エネルギー(露光エネルギー)を測定した。
NN環境下に 8時間放置した後に、 NN環境下で測定した照射エネルギー(露光ェ ネルギー)の値 (単位; zj/cm2)を標準湿度感度 (以下「En 」と言う場合がある。)と
1/2
し、 NL環境下に 8時間放置した後に、 NL環境下で測定した照射エネルギー(露光 エネルギー)の値 (単位 j/cm2)を低湿感度(以下「E1 」と言う場合がある。 )とし
1/2
た。
得られた標準湿度感度: En 及び低湿感度: El の値を用い、下記式に従って計
1/2 1/2
算することにより、湿度変化による感度保持率を算出した (単位%)。
[0373] [数 4] 湿度変化による感度保持率 () = 低; Ζ度 i®度:^ EI1/2 ( j^U J cm72) 2) ^ χ 100
[0374] 実施例 1〜8及び比較例 1, 2の電子写真感光体についての電気特性の評価結果 を下記表 5に示す。
[0375] [表 5]
Figure imgf000109_0001
[0376] 電荷発生物質として用いた実施例 1〜8、比較合成例 1、 2のフタロシアニン結晶は 、粉末 XRDスペクトル(図 8〜12、 14〜18)から明らかなように、何れも CuK a特性 X線 (波長 1. 541 A)に対するブラッグ角(2 Θ ±0. 2° ) 27. 2° に主たる回折ピー クを有するフタロシアニン結晶であった。 [0377] これらの実施例 1〜8、比較合成例 1、 2のフタロシアニン結晶を電荷発生物質とし て用いた実施例 9〜16、比較例 1、 2の電子写真感光体を、そのフタロシアニン結晶 の組成に応じて二組に分け { (ォキシチタニウムフタロシアニン単独からなる結晶:実 施例 9〜12、比較例 1)と、(ォキシチタニウムフタロシアニンと無金属フタロシアニンと の混晶:実施例 13〜16、比較例 2) }、各組について実施例と比較例とを比較すると 、標準湿度感度 E1 は、実施例、比較例ともに同等である。し力しながら、感度保持
1/2
率の値を比較すると、実施例の電子写真感光体の方が比較例の電子写真感光体に 比べて、湿度変化に対する感度の変動が少ない。
[0378] 以上の結果から、フタロシアニン結晶前駆体を芳香族アルデヒドィ匕合物に接触させ ることにより結晶型を変換する工程を経て得られた実施例 1〜4、及び 5〜8のフタ口 シァニン結晶(即ち、本発明のフタロシアニン結晶)を、電子写真感光体に用いた際 に、使用環境の変化に対する感度変動を大幅に改善することが可能であることが明 らかとなつた。
[0379] [実施例 17〜22、比較合成例 3〜8]
フタロシアニン結晶前駆体として、合成例 2で得られた低結晶性ォキシチタニウムフ タロシアニンのウエットケーキ 38重量部を水 100重量部中に加え、室温で 30分撹拌 した。その後、下記表 6の右欄に示す芳香族化合物各 9mlを加え、更に室温で 1時 間撹拌した。撹拌後、水を分離し、メタノール 80重量部を加え、室温で 1時間撹拌洗 浄した。洗浄後、濾別し、再度メタノール 80重量部を加えて 1時間撹拌洗浄した後、 濾別し、真空乾燥機で加熱乾燥することにより、ォキシチタニウムフタロシアニン単独 力もなる結晶を得た (これらを以下適宜、実施例 17〜22、比較合成例 3〜8のフタ口 シァニン結晶という。)。実施例 17〜22、比較合成例 3〜8のフタロシアニン結晶の粉 末 XRDスペクトルをそれぞれ図 19〜30に示す。図 19〜30の粉末 XRDスペクトル 力も明らかなように、実施例 17〜22、比較合成例 3〜8のフタロシアニン結晶は、何 れも CuK o;特性 X線 (波長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° ) 27. 2° に 主たる回折ピークを有するものであった。
[0380] [表 6] フタロシアニン結晶前駆体と接触させる芳香族化合物
実施例 1 7 2—クロロアセトフエノン(*)
実施例 18 3—クロ口一 4_フルォロアセトフエノン(*)
実施例 1 9 2—クロ口安息香酸メチル ( *>
実施例 20 2, 6—ジクロロアニソール 実施例 21 2—クロ口フエニルアセテート (*)
実施例 22 2, 4—ジクロロニトロベンゼン ( *>
比較合成例 3 ァセトフエノン
比較合成例 4 2 _メチル安息香酸メチル 比較合成例 5 ァニソ一ル
比較合成例 6 フエニルアセテート 比較合成例 7 ニトロベンゼン
比較合成例 8 2—フルォロニトロベンゼン
置換基含有芳香族化合物
[0381] [実施例 23〜25、比較合成例 9〜 12]
フタロシアニン結晶前駆体として、合成例 3で得られた低結晶性フタロシアニン組成 物のウエットケーキ 33重量部を水 90重量部中に加え、室温で 30分撹拌した。その後 、下記表 7の右欄に示す芳香族化合物各 9mlを加え、更に室温で 1時間撹拌した。 撹拌後、水を分離し、メタノール 80重量部を加え、室温で 1時間撹拌洗浄した。洗浄 後、濾別し、再度メタノール 80重量部を加え 1時間撹拌洗浄した後、濾別し、真空乾 燥機で加熱乾燥することにより、ォキシチタニウムフタロシアニンと無金属フタロシア ニンとの混晶を得た (これらを各々、実施例 23〜25、比較合成例 9〜12のフタロシア ニン結晶という。 ) o得られた実施例 23〜25、比較合成例 9〜 12のォキシチタニウム フタロシアニン結晶の粉末 XRDスペクトルを図 31〜37に示す。図 31〜37の粉末 X RDスぺタトノレから明らかなように、実施例 23〜25、比較合成例 9〜 12のォキシチタ -ゥムフタロシア-ン混晶は、何れも CuK o;特性 X線 (波長 1. 541A)に対するブラ ッグ角(2 Θ ±0. 2° ) 27. 2° に主たる回折ピークを有するものであった。
[0382] [表 7] 表 7
Figure imgf000112_0001
[0383] [実施例 26〜34、比較例 3〜12]
電荷発生物質として実施例 17〜25、比較合成例 3〜 12のフタロシアニン結晶を用 V、、上述の感光体製造方法に従って電子写真感光体を製造した (これらを以下適宜 、実施例 26〜34、比較例 3〜12の電子写真感光体という。 )0各電子写真感光体と 、電荷発生物質として用いたフタロシアニン結晶との対応を、下記表 8及び表 9に示 す。
[0384] [電子写真感光体の評価]
実施例 26〜34、比較例 3〜 12の電子写真感光体を、実施例 9〜16の評価と同様 にして電気特性の評価を行ない、実施例 26〜34、比較例 3〜 12の電子写真感光体 についての電気特性の評価結果を、下記表 8及び表 9に示す。なお、下記表 8及び 表 9において、類似する構造の芳香族化合物とフタロシアニン結晶前駆体とを接触さ せて得られたフタロシアニン結晶を用いた実施例及び比較例については、上下に並 ベて示している。
[0385] [表 8]
表 8
Figure imgf000113_0001
< * >特定置換基含有芳香族化合物 [表 9] 表 9
Figure imgf000113_0002
( * >特定置換基含有芳香族化合物 電荷発生物質として用いた実施例 17〜25、並びに比較合成例 3〜12のフタロシ ァニン結晶は、粉末 XRDスペクトル(図 19〜37)力も明らかなように、何れも CuK o; 特性 X線 (波長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° ) 27. 2° に主たる回折 ピークを有するフタロシアニン結晶であった。
[0388] これらの実施例 17〜25、並びに比較合成例 3〜12のフタロシアニン結晶を電荷発 生物質として用いた実施例 26〜34及び比較例 3〜12の電子写真感光体を、使用し たフタロシアニン結晶の糸且成と、フタロシアニン結晶を製造する際に結晶変換処理に 用いた芳香族化合物の構造とに応じて 8組 (実施例 26, 27及び比較例 3 ;実施例 28 及び比較例 4;実施例 29及び比較例 5;実施例 30及び比較例 6;実施例 31及び比 較例 7, 8;実施例 32及び比較例 9;実施例 33及び比較例 10;実施例 34及び比較 例 11, 12)に分け、各組について実施例と比較例とを比較すると、実施例の電子写 真感光体の方が比較例の電子写真感光体に比べて、高い標準湿度感度 En が得
1/2 られているのが分かる。
[0389] 以上の結果から、フタロシアニン結晶前駆体を特定置換基含有芳香族化合物に接 触させることにより結晶型を変換する工程を経て得られた実施例 17〜25のフタロシ ァニン結晶(即ち、本発明のフタロシアニン結晶)は、電子写真感光体に用いた際に 、高い標準湿度感度 En が得られることが明らかとなった。
1/2
[0390] [実施例 35〜68、比較合成例 13〜14]
フタロシアニン結晶前駆体として、合成例 2で得られた低結晶性ォキシチタニウムフ タロシアニンのウエットケーキ 40重量部を水 90重量部中に力!]え、室温で 30分撹拌し た。その後、下記表 10に示す実施例 35〜68の接触処理液 (非酸性有機化合物に 特定有機酸化合物を所定の濃度で混合した溶液)各 9mlを加え、更に室温で 1時間 撹拌した。撹拌後、水を分離し、メタノール 80重量部を加え、室温で 1時間撹拌洗浄 した。洗浄後、濾別し、再度メタノール 80重量部を加えて 1時間撹拌洗浄した後、濾 別し、真空乾燥機で加熱乾燥することにより、ォキシチタニウムフタロシアニン単独か らなる結晶を得た (これらを以下適宜、実施例 35〜69のフタロシアニン結晶という。 )
[0391] また、上述の実施例 35〜68において、実施例 35〜68の接触処理液の代わりに、 下記表 11に示す比較合成例 13, 14の接触処理液 (非酸性有機化合物のみからな る液)各 9mlを用いた他は、実施例 35〜68と同様の操作を行なうことにより、ォキシ チタニウムフタロシアニン単独力もなる結晶を得た (これらを以下適宜、比較合成例 1 3, 14のフタロシアニン結晶という。)。
[0392] 実施例 35〜69及び比較合成例 13, 14のフタロシアニン結晶について、粉末 XRD スペクトルを測定した。得られた粉末 XRDスペクトルは、何れも CuK o;特性 X線 (波 長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° ) 27. 2° に主たる回折ピークを有す るものであった。なお、使用した非酸性有機化合物が同一の場合は、特定有機酸ィ匕 合物の存在の有無にかかわらず、概ね同じ形状の粉末 X線回折スペクトルが得られ た。代表例として、実施例 35、 64、 65、 67、 68で得られたフタロシアニン結晶の粉 末 XRDスペクトルをそれぞれ図 38〜図 42に示す。
[0393] [実施例 69]
合成例 2で得られた低結晶性ォキシチタニウムフタロシアニン (フタロシアニン結晶 前駆体)のウエットケーキ 40重量部を、テトラヒドロフラン (非酸性有機化合物) 100ml に 3—クロ口安息香酸 (特定有機酸ィ匕合物) 15gを溶解させた溶液 (下記表 10に示す 実施例 69の接触処理液)に加え、室温で 3時間撹拌した。撹拌後、濾別し、真空乾 燥機で加熱乾燥することにより、ォキシチタニウムフタロシアニン単独力もなる結晶を 得た (これを以下適宜、実施例 69のフタロシアニン結晶という。 ) 0実施例 69のフタ口 シァニン結晶の粉末 XRDスペクトルを図 43に示す。図 43から明らかなように、合成 例 37のフタロシアニン結晶の粉末 XRDスペクトルは、 CuK a特性 X線(波長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° ) 27. 2° に主たる回折ピークを有するもので めつに。
[0394] [比較合成例 15]
上述の実施例 69において、 3—クロ口安息香酸のテトラヒドロフラン溶液の代わりに テトラヒドロフラン 100mlを用いた他は、実施例 69と同様の操作を行なうことにより、ォ キシチタニウムフタロシアニン単独力もなる結晶を得た (これを以下適宜、比較合成 例 15のフタロシアニン結晶という。 ) o比較合成例 6のフタロシアニン結晶について粉 末 XRDスペクトルを測定したところ、得られた粉末 XRDスペクトルは、前述の実施例 69のフタロシアニン結晶の粉末 XRDスペクトル(図 43)と概ね同じ形状であった。
[0395] [表 10] 表 1 0
Figure imgf000116_0001
[実施例 70〜74]
フタロシアニン結晶前駆体として、合成例 3で得られた低結晶性フタロシアニン組成 物のウエットケーキ 33重量部を水 90重量部中に加え、室温で 30分撹拌した。その後 、下記表 11に示す実施例 70〜74の接触処理液 (非酸性有機化合物に特定有機酸 化合物を所定の濃度で混合した溶液)各 9mlを加え、更に室温で 1時間撹拌した。 撹拌後、水を分離し、メタノール 80重量部を加え、室温で 1時間撹拌洗浄した。洗浄 後、濾別し、再度メタノール 80重量部を加え 1時間撹拌洗浄した後、濾別し、真空乾 燥機で加熱乾燥することにより、ォキシチタニウムフタロシアニンと無金属フタロシア ニンとの混晶を得た (これらを各々、実施例 70〜74のフタロシアニン結晶という。 ) o
[0397] 実施例 70〜74のフタロシアニン結晶について、粉末 XRDスペクトルを測定した。
得られた粉末 XRDスペクトルは、何れも CuK o;特性 X線 (波長 1. 541 A)に対する ブラッグ角(2 0 ±0. 2° ) 27. 2° に主たる回折ピークを有するものであった。また、 これらの粉末 X線回折スペクトルは、何れも概ね同じ形状であった。代表例として、実 施例 70で得られたフタロシアニン結晶の粉末 XRDスペクトルを図 44に示す。
[0398] [表 11]
表 1 1
Figure imgf000117_0001
[実施例 75〜114]
電荷発生物質として実施例 35〜74のフタロシアニン結晶を用い、上述の感光体製 造方法に従って電子写真感光体を製造した (これらを以下適宜、実施例 75〜114の 電子写真感光体という。 ) o各電子写真感光体と、電荷発生物質として用いたフタ口 シァニン結晶及びその組成との対応を、下記表 12及び表 13に示す。
[電子写真感光体の評価]
実施例 75〜114、比較例 13〜 15の電子写真感光体を、実施例 9〜16の評価と 同様にして電気特性の評価を行ない、実施例 75〜114、比較例 13〜 15の電子写 真感光体についての感度保持率の評価結果を、下記表 12及び表 13に示す。なお、 下記表 12及び表 13において、同じ非酸性有機化合物を用いて得られたフタロシア ニン結晶を使用した実施例及び比較例については、上下に並べて示している。
[0399] [表 12] 表 12
Figure imgf000118_0001
13] 表 13
Figure imgf000119_0001
[0401] これらの実施例 35〜74、並びに、比較合成例 13〜 15のフタロシアニン結晶を電 荷発生物質として用いた実施例 75〜 114、比較例 13〜 15の電子写真感光体を比 較すると、比較例 14、 15の電子写真感光体は、標準湿度感度 En に劣るものであ
1/2
り、し力も感度保持率も劣るものであった。また、比較例 13の電子写真感光体は、標 準湿度感度 En は実施例の電子写真感光体とほぼ同等であつたが、感度保持率の
1/2
値を比較すると、非酸性有機化合物及び特定有機酸化合物に接触させて得られた フタロシアニン結晶を用いた実施例の電子写真感光体の方が、非酸性有機化合物 のみに接触させて得られたフタロシアニン結晶を用いた比較例の電子写真感光体に 比べて、湿度変化に対する感度の変動が少なくより好ましいことが分かる。
[0402] [実施例 115、 116]
上述の [感光体の製造方法]において、電荷発生層用塗布液を調製する際に、電 荷発生物質として、上述の各実施例及び比較合成例のフタロシアニン結晶各 20重 量部の代わりに、実施例 1のフタロシアニン結晶 20重量部と 3—クロ口安息香酸 1. 2 5重量部とを併せて用いた他は、上述の [感光体の製造方法]の手順に従って電子 写真感光体を製造した。これを以下適宜、実施例 115の電子写真感光体という。
[0403] また、 3—クロ口安息香酸 1. 25重量部の代わりにトリメリット有機酸無水物 1. 25重 量部を用いた他は、実施例 115と同様の手順に従って電子写真感光体を製造した。 これを以下適宜、実施例 116の電子写真感光体という。
[0404] これら実施例 115、 116の電子写真感光体についても、上述の実施例 9〜16、比 較例 1, 2の電子写真感光体の場合と同様の手順に従って、電気特性の評価を行な つた o
実施例 79, 86, 115, 116の電子写真感光体についての電気特性の評価結果を 下記表 14に示す。
[0405] [表 14]
Figure imgf000120_0001
[0406] 以上の結果から、上述の特定有機酸化合物を電荷発生層用塗布液の調製時に加 えただけでは、感度の向上及び使用環境の湿度変化に対する感度変動の抑制効果 は、小さいことが分かる。
[0407] [実施例 117〜 131]
フタロシアニン結晶前駆体として、合成例 2で得られた低結晶性ォキシチタニウムフ タロシアニンのウエットケーキ 40重量部を水 100量部中に加え、室温で 30分撹拌し た。その後、下記表 15に示す実施例 117〜131の接触処理液 (非酸性特定有機化 合物に電子吸引性特定芳香族化合物を所定の濃度で混合した溶液)各 9mlを加え 、更に室温で 1時間撹拌した。撹拌後、水を分離し、メタノール 80重量部を加え、室 温で 1時間撹拌洗浄した。洗浄後、濾別し、再度メタノール 80重量部を加えて 1時間 撹拌洗浄した後、濾別し、真空乾燥機で加熱乾燥することにより、ォキシチタニウムフ タロシアニン単独からなる結晶を得た (これらを以下適宜、実施例 117〜131のフタ口 シァニン結晶という。)。
[0408] 実施例 117〜131のフタロシアニン結晶について、粉末 XRDスペクトルを測定した 。得られた粉末 XRDスペクトルは、何れも CuK o;特性 X線 (波長 1. 541 A)に対する ブラッグ角(2 0 ±0. 2° ) 27. 2° に主たる回折ピークを有するものであった。なお、 使用した非酸性特定有機化合物が同一の場合は、電子吸引性特定芳香族化合物 の存在の有無にかかわらず、概ね同じ形状の粉末 X線回折スペクトルが得られた。 代表例として、実施例 128〜 131で得られたフタロシアニン結晶の粉末 XRDスぺタト ルをそれぞれ図 45〜図 48に示す。
[0409] [実施例 132] 合成例 2で得られた低結晶性ォキシチタニウムフタロシアニン (フタロシアニン結晶 前駆体)のウエットケーキ 40重量部を、テトラヒドロフラン (非酸性特定有機化合物) 1 OOmlにフタリド (電子吸引性特定芳香族化合物) 15gを溶解させた混合溶液 (下記 表 15に示す実施例 132の接触処理液)に加え、室温で 3時間撹拌した。撹拌後、濾 別し、真空乾燥機で加熱乾燥することにより、ォキシチタニウムフタロシアニン単独か らなる結晶を得た (これを以下適宜、実施例 132のフタロシアニン結晶という。 ) 0実施 例 132のフタロシアニン結晶の粉末 XRDスペクトルを図 49に示す。図 49力ら明ら力 なように、実施例 132のフタロシアニン結晶の粉末 XRDスペクトルは、 CuK a特性 X 線 (波長 1. 541 A)に対するブラッグ角(2 0 ±0. 2° ) 27. 2° に主たる回折ピーク を有するものであった。
[表 15] 表 15
Figure imgf000121_0001
[実施例 133〜 136]
フタロシアニン結晶前駆体として、合成例 3で得られた低結晶性フタロシアニン組成 物のウエットケーキ 33重量部を水 90重量部中に加え、室温で 30分撹拌した。その後 、下記表 16に示す実施例 133〜 136の接触処理液 (非酸性特定有機化合物である 3—クロ口べンズアルデヒドに電子吸引性特定芳香族化合物を所定の濃度で混合し た溶液)各 9mlを加え、更に室温で 1時間撹拌した。撹拌後、水を分離し、メタノール 80重量部を加え、室温で 1時間撹拌洗浄した。洗浄後、濾別し、再度メタノール 80 重量部を加え 1時間撹拌洗浄した後、濾別し、真空乾燥機で加熱乾燥することにより 、ォキシチタニウムフタロシアニンと無金属フタロシアニンとの混晶を得た (これらを各 々、実施例 133〜136のフタロシアニン結晶という。 ) o
[0412] 実施例 133〜 136のフタロシアニン結晶について、粉末 XRDスペクトルを測定した 。得られた粉末 XRDスペクトルは、何れも CuK o;特性 X線 (波長 1. 541 A)に対する ブラッグ角(2 0 ±0. 2° ) 27. 2° に主たる回折ピークを有するものであった。また、 これらの粉末 X線回折スペクトルは、何れも概ね同じ形状であった。代表例として、実 施例 133で得られたフタロシアニン結晶の粉末 XRDスペクトルを図 50に示す。
[0413] [表 16]
表 16
Figure imgf000122_0001
[実施例 137〜 156]
電荷発生物質として実施例 117〜 136のフタロシアニン結晶を用い、前記 [感光体 製造方法]に従って電子写真感光体を製造した (これらを以下適宜、実施例 137〜1 56の電子写真感光体という。 )0各電子写真感光体と、電荷発生物質として用いたフ タロシアニン結晶及びその組成との対応を、下記表 17及び表 18に示す。
[0414] [電子写真感光体の評価]
実施例 137〜156、および比較例 13〜 15の電子写真感光体を、実施例 9〜16の 電子写真感光体の評価の場合と同様の手順に従って電気特性の評価を行なった。 実施例 137〜156、および比較例 13〜 15の電子写真感光体についての感度保持 率の評価結果を、下記表 17及び表 18に示す。なお、下記表 17及び表 18において 、同じ非酸性有機化合物を用いて得られたフタロシアニン結晶を使用した実施例及 び比較例については、上下に並べて示している。 [0415] [表 17]
表 1 7
Figure imgf000123_0001
[0416] [表 18]
表 1 8
Figure imgf000123_0002
[0417] これらの実施例 117〜136、並びに、比較合成例 13〜15のフタロシアニン結晶を 電荷発生物質として用いた実施例 137〜 156、比較例 13〜 15の電子写真感光体を 比較すると、比較例 14、 15の電子写真感光体は、標準湿度感度 En に劣るもので
1/2
あった。比較例 13の電子写真感光体は、標準湿度感度 En は実施例の電子写真
1/2
感光体とほぼ同等であつたが、感度保持率の値を比較すると、非酸性特定有機化合 物及び電子吸引性特定芳香族化合物に接触させて得られたフタロシアニン結晶を 用いた実施例の電子写真感光体の方が、非酸性特定有機化合物のみに接触させて 得られたフタロシアニン結晶を用いた比較例の電子写真感光体に比べて、湿度変化 に対する感度の変動が少なくより好ましいことが分力る。
[0418] [実施例 157, 158]
上述の [感光体の製造方法]にお 、て電荷発生層用塗布液を調製する際の微細 分散処理工程において、電荷発生物質として実施例 1のフタロシアニン結晶 20重量 部を使用するとともに、フタリド 1. 25重量部を併せて用いた他は、上述の [感光体の 製造方法]の手順に従って電子写真感光体を製造した。これを以下適宜、実施例 15
7の電子写真感光体という。
[0419] また、フタリド 1. 25重量部の代わりに 2—スルホ安息香酸無水物 1. 25重量部を用 いた他は、実施例 157と同様の手順に従って電子写真感光体を製造した。これを以 下適宜、実施例 158の電子写真感光体という。
[0420] これら実施例 157, 158の電子写真感光体についても、実施例 9〜16の電子写真 感光体の評価の場合と同様の手順に従って電気特性の評価を行なった。 評価結果 を下記表 19に示す。
[0421] [表 19]
表 19
Figure imgf000124_0001
[0422] 以上の結果から、上述の電子吸引性特定芳香族化合物を電荷発生層用塗布液の 調製時に加えただけでは、本発明のフタロシアニン結晶による上述の効果 (感度の 向上及び使用環境の湿度変化に対する感度変動の抑制効果)は、小さいことが分か つた o
実施例 159
表面が粗切肖 iJ (Rmax= l . 2)された外径 30mm、長さ 350mm、肉厚 1. Ommの アルミニウム合金よりなるシリンダーを、陽極酸化処理を行い、その後酢酸ニッケルを 主成分とする封孔剤によって封孔処理を行うことにより、約 6 μ mの陽極酸化被膜 (ァ ルマイト被膜)を形成した。
このシリンダーを先に実施例 87で作製した電荷発生層形成用塗布液に浸漬塗布 し、乾燥後の膜厚が 0. 4 mとなるように電荷発生層を形成し、次に、前記構造式( G)で表される繰り返し単位 51モル%と、前記構造式 (H)で表される繰り返し単位 49 モル%とからなり、 p— t ブチルフエノールに由来する末端構造式を有するポリカー ボネート榭脂 (粘度平均分子量 49, 200)を 100重量部、前記式 (F)で表わされる構 造を主成分とする、幾何異性体の化合物群カゝらなる混合物を 50重量部、酸化防止 剤として BHT(3, 5—ジ tーブチルー 4ーヒドロキシトルエン)を 8重量部、レベリン グ剤としてシリコーンオイル 0. 05重量部を、テトラヒドロフランとトルエンとの混合溶媒 (テトラヒドロフラン 80重量0 /0、トルエン 20重量0 /0) 640重量部に混合し、電荷輸送層 形成用塗布液を調製した。先に作製した電荷発生層を形成したシリンダーを、この電 荷輸送層形成用塗布液に浸漬塗布し、乾燥後の膜厚 35 μ mの電荷輸送層を設け ることによって電子写真感光体を作製した。これを実施例 159の電子写真感光体と いう。
実施例 160
電荷輸送層の膜厚を 30 mとした以外は実施例 159と同様にして電子写真感光 体を作製した。これを実施例 160の電子写真感光体という。
実施例 161
電荷輸送層の膜厚を 25 μ mとした以外は実施例 159と同様にして電子写真感光 体を作製した。これを実施例 161の電子写真感光体と!/ヽぅ。
実施例 162
電荷輸送層の膜厚を 20 mとした以外は実施例 159と同様にして電子写真感光 体を作製した。これを実施例 162の電子写真感光体という。
実施例 163
電荷輸送層の膜厚を 15 mとした以外は実施例 159と同様にして電子写真感光 体を作製した。これを実施例 163の電子写真感光体という。
実施例 164
実施例 159に用いた電荷発生層形成用塗布液の代わりに、実施例 105で作製し た電荷発生層形成用塗布液を用いた以外は実施例 159と同様にして電子写真感光 体を作製した。これを実施例 164の電子写真感光体という。
実施例 165
電荷輸送層の膜厚を 30 mとした以外は実施例 164と同様にして電子写真感光 体を作製した。これを実施例 165の電子写真感光体という。
実施例 166
電荷輸送層の膜厚を 25 μ mとした以外は実施例 164と同様にして電子写真感光 体を作製した。これを実施例 166の電子写真感光体という。
実施例 167
電荷輸送層の膜厚を 20 mとした以外は実施例 164と同様にして電子写真感光 体を作製した。これを実施例 167の電子写真感光体という。
実施例 168
電荷輸送層の膜厚を 15 mとした以外は実施例 164と同様にして電子写真感光 体を作製した。これを実施例 168の電子写真感光体という。
実施例 169
実施例 159に用いた電荷発生層形成用塗布液の代わりに、実施例 97で作製した 電荷発生層形成用塗布液を用いた以外は実施例 159と同様にして電子写真感光体 を作製した。これを実施例 169の電子写真感光体という。
実施例 170
電荷輸送層の膜厚を 30 mとした以外は実施例 169と同様にして電子写真感光 体を作製した。これを実施例 170の電子写真感光体という。
実施例 171
電荷輸送層の膜厚を 25 μ mとした以外は実施例 169と同様にして電子写真感光 体を作製した。これを実施例 171の電子写真感光体と!/ヽぅ。
実施例 172
電荷輸送層の膜厚を 20 mとした以外は実施例 169と同様にして電子写真感光 体を作製した。これを実施例 172の電子写真感光体という。
実施例 173 電荷輸送層の膜厚を 15 mとした以外は実施例 169と同様にして電子写真感光 体を作製した。これを実施例 173の電子写真感光体という。
実施例 174
実施例 159に用いた電荷発生層形成用塗布液の代わりに、実施例 79で作製した 電荷発生層形成用塗布液を用いた以外は実施例 159と同様にして電子写真感光体 を作製した。これを実施例 174の電子写真感光体という。
実施例 175
電荷輸送層の膜厚を 30 mとした以外は実施例 174と同様にして電子写真感光 体を作製した。これを実施例 175の電子写真感光体という。
実施例 176
電荷輸送層の膜厚を 25 μ mとした以外は実施例 174と同様にして電子写真感光 体を作製した。これを実施例 176の電子写真感光体という。
実施例 177
電荷輸送層の膜厚を 20 mとした以外は実施例 174と同様にして電子写真感光 体を作製した。これを実施例 177の電子写真感光体という。
実施例 178
電荷輸送層の膜厚を 15 mとした以外は実施例 174と同様にして電子写真感光 体を作製した。これを実施例 178の電子写真感光体という。
実施例 179
実施例 159に用いた電荷発生層形成用塗布液の代わりに、実施例 145で作製し た電荷発生層形成用塗布液を用いた以外は実施例 159と同様にして電子写真感光 体を作製した。これを実施例 179の電子写真感光体という。
実施例 180
電荷輸送層の膜厚を 30 mとした以外は実施例 179と同様にして電子写真感光 体を作製した。これを実施例 180の電子写真感光体という。
実施例 181
電荷輸送層の膜厚を 25 μ mとした以外は実施例 179と同様にして電子写真感光 体を作製した。これを実施例 181の電子写真感光体と!/ヽぅ。 実施例 182
電荷輸送層の膜厚を 20 mとした以外は実施例 179と同様にして電子写真感光 体を作製した。これを実施例 182の電子写真感光体という。
実施例 183
電荷輸送層の膜厚を 15 mとした以外は実施例 179と同様にして電子写真感光 体を作製した。これを実施例 183の電子写真感光体という。
実施例 184
実施例 159に用いた電荷発生層形成用塗布液の代わりに、実施例 144で作製し た電荷発生層形成用塗布液を用いた以外は実施例 159と同様にして電子写真感光 体を作製した。これを実施例 184の電子写真感光体という。
実施例 185
電荷輸送層の膜厚を 30 mとした以外は実施例 184と同様にして電子写真感光 体を作製した。これを実施例 185の電子写真感光体という。
実施例 186
電荷輸送層の膜厚を 25 μ mとした以外は実施例 184と同様にして電子写真感光 体を作製した。これを実施例 186の電子写真感光体という。
実施例 187
電荷輸送層の膜厚を 20 mとした以外は実施例 184と同様にして電子写真感光 体を作製した。これを実施例 187の電子写真感光体という。
実施例 188
電荷輸送層の膜厚を 15 mとした以外は実施例 184と同様にして電子写真感光 体を作製した。これを実施例 188の電子写真感光体という。
実施例 189
実施例 159に用いた電荷発生層形成用塗布液の代わりに、実施例 9で作製した電 荷発生層形成用塗布液を用いた以外は実施例 159と同様にして電子写真感光体を 作製した。これを実施例 189の電子写真感光体という。
実施例 190
実施例 159に用いた電荷発生層形成用塗布液の代わりに、実施例 26で作製した 電荷発生層形成用塗布液を用いた以外は実施例 159と同様にして電子写真感光体 を作製した。これを実施例 190の電子写真感光体という。
比較実施例 16
実施例 159に用いた電荷発生層形成用塗布液の代わりに、比較実施例 15で作製 した電荷発生層形成用塗布液を用いた以外は実施例 159と同様にして電子写真感 光体を作製した。これを比較実施例 16の電子写真感光体という。
比較実施例 17
電荷輸送層の膜厚を 30 mとした以外は比較例 16と同様にして電子写真感光体 を作製した。これを比較実施例 17の電子写真感光体という。
比較実施例 18
電荷輸送層の膜厚を 25 μ mとした以外は比較例 16と同様にして電子写真感光体 を作製した。これを比較実施例 18の電子写真感光体という。
比較実施例 19
電荷輸送層の膜厚を 20 mとした以外は比較例 16と同様にして電子写真感光体 を作製した。これを比較実施例 19の電子写真感光体という。
比較実施例 20
電荷輸送層の膜厚を 15 mとした以外は比較例 16と同様にして電子写真感光体 を作製した。これを比較実施例 20の電子写真感光体と ヽぅ。
[電子写真感光体の評価]
実施例 159〜 190、比較例 16〜20で得られた電子写真感光体の半減露光量 E 1 Z2を、市販の感光体評価装置 (シンシァ 55、ジヱンテック社製)を用いて、以下に説 明する手順に従ってスタティック方式で測定した。
帯電器を 0° 、露光装置及び表面電位計プローブを 90° 、除電器を 270° の角度 に配置し、帯電器、表面電位計プローブ、除電器を感光体表面力ゝらの距離が 2mmと なるように配置し、暗所で、感光体の表面電位が約— 700Vになるような放電が行な われるように設定したスコロトロン帯電器上を、温度 25°C± 2°C、相対湿度 50%rh士 5%の環境中に 8時間放置した後の感光体を、一定の回転速度(30rpm)で感光体 表面を通過させ帯電させた。 帯電後の感光体表面がプローブ位置に到達した際に停止させ、停止してから 2. 5 秒後に、付属の分光光源システム POLAS34力 得た、強度 0. WZcm2の 78 Onmの単色光を 7. 5秒間照射し、感光体の表面電位が— 550Vから— 275Vになる までに要した露光量を測定した。再び感光体を回転させ、除電器により全周除電を 行なった後、同じ操作を行なった。このサイクルを 6回繰り返し、 1回目を除く 5回の露 光量の測定値を平均し、得られた平均値を半減露光量 E1Z2 jZcm2)とした。測 定結果を下記表 20に示した。
次に、電子写真学会標準に従って作製された電子写真特性評価装置〔「続電子写 真技術の基礎と応用」、(電子写真学会編、コロナ社発行、第 404 405頁記載)〕に 感光体を装着し、帯電、露光、電位測定、除電のサイクルによる電気特性の評価を 行った。
帯電器を— 70° 、露光装置を 0° 、表面電位計プローブを 36° 、除電器を— 150 ° の角度に配置し、各機器は感光体表面力もの距離を 2mmに配置した。帯電には スコロトロン帯電器を用いた。露光ランプは、ゥシォ電機社製のハロゲンランプ JDR1 10V— 85WLNZK7を用い、朝日分光社製フィルター MX0780を用いて 780nm の単色光とした。除電光には 660nmの LED光を用 ヽた。
温度 25°C士 2°C、相対湿度 50%rh± 5%の環境中に 8時間放置した後の感光体 を一定の回転速度(60rpm)で回転させながら、感光体の初期表面電位が 700V となるように帯電させ、帯電した感光体表面を 780nmの単色光により露光する露光 部を通過させ、表面電位計のプローブの位置に来た時の表面電位を測定した (露光 〜電位測定間 100ms)
780nmの単色光を NDフィルターに通して光量を変化させ、露光量が半減露光量 E の 0倍から 10倍までの範囲の光を照射し、それぞれの露光量における表面電位
1/2
を測定した。この操作を、温度 25°C± 2°C、相対湿度 50%rh± 5%の環境(常温常 湿環境。以下「NN環境」という場合がある。)で行ない、各露光量における NN環境 下での露光後電位 (これを以下「V 」と 、う場合がある。 )を測定した。
その後、感光体を温度 25°C± 2°C、相対湿度 10%rh± 5%の環境中に 8時間放 置した後に、温度 25°C± 2°C、相対湿度 10%rh± 5%の環境(常温低湿環境。以下 「NL環境」という場合がある。)において同様の操作を行ない、各露光量における NL 環境下での露光後電位 (これを以下「V 」と 、う場合がある。 )の測定を行った。
NL
同じ露光量における NN環境下での露光後電位 V と NL環境下での露光後電位
V との差の絶対値( | V -V | )を計算し、その最大値を環境変動依存量とし
NL NL
て、下記表 20に示した。
また、当該電子写真感光体を用いて形成した画像について、以下の評価方法によ り評価した。
ミノルタ社製デジタル複写機 DIALTA Di350用カートリッジに、当該電子写真感 光体を装着し、このカートリッジを当該複写機に装着した。この複写機を、温度 35°C ± 2°C、相対湿度 83% ± 5%の環境のもとで 24時間放置した後に、更に温度 5°C士 2°C、相対湿度 10%rh± 5%の環境のもとで 5時間放置した後、ハーフトーン画像を 印刷した。
このとき、電子写真感光体の 1周期で発生する黒いスジの出方を比較した。ミノルタ 社製複写機はスコロトロン帯電器により電子写真感光体を帯電させ、 2成分接触現像 方式で現像する装置あり、黒いスジが発生しやすい。
[表 20]
Figure imgf000132_0001
◎:全く見えない 〇:ほとんど見えない △:うつすらと見える
X:はっきりと見える [表 21]
21
Figure imgf000133_0001
※上記規定の手法で画像評価を行なった際に観察された黒いスジの出方 -以下の記号で示す。
◎:全く見えない
〇:ほとんど見えない
△:うつすらと見える
X:はっきりと見える
表 20の結果から、以下のことが分かる。実施例 159〜 190の電子写真感光体は、 同じ膜厚で比較したときに、比較例の感光体よりも半減露光量 E1Z2が小さく高感度 であって、環境変動依存量も小さい。これらの電子写真感光体を搭載した接触現像 方式の画像形成装置により画像を形成して、画像特性を評価すると、比較例の感光 体では黒!、スジが見られたのに対し、実施例の電子写真感光体では見られなかった 以上のことから、実施例 159〜 190の電子写真感光体は高感度で、且つ湿度変動 に対して特性の変動が小さいものであって、更にこれらの電子写真感光体を搭載し たプロセスカートリッジ、及び画像形成装置では、環境の変動に対して画像欠陥のな い高品質な画像を提供することが出来ることが明らかとなった。
実施例 191
前記構造式 (G)で表される繰り返し単位 51モル%と、前記構造式 (H)で表される 繰り返し単位 49モル%とからなり、 p— t—ブチルフエノールに由来する末端構造式 を有するポリカーボネート榭脂 100重量部、下記構造式 (I)で表される電荷輸送物質 50重量部、シリコーンオイル 0. 05重量部を、テトラヒドロフラントとトルエンの 8 : 2混 合溶媒 640重量部に溶解して、電荷輸送層用塗布液を調整した。
[0425] [化 8]
Figure imgf000134_0001
実施例 9にお 、て用いた電荷輸送層用塗布液の代わりに、上記の方法で調製した 電荷輸送層用塗布液を用いた以外は、実施例 9と同様にして電子写真感光体を作 製した。これを実施例 191の電子写真感光体という。
実施例 192
実施例 191にお 、て用 、た構造式 (I)で表される化合物の代わりに、下記構造式( J)で表される化合物を用いた以外は、実施例 191と同様にして電子写真感光体を作 製した。これを実施例 192の電子写真感光体という。
[0426] [化 9]
Figure imgf000135_0001
実施例 193
実施例 191にお 、て用 、た構造式 (I)で表される化合物の代わりに、下記構造式 ( K)で表される化合物を用いた以外は、実施例 191と同様にして電子写真感光体を 作製した。これを実施例 193の電子写真感光体という。
[0427] [化 10]
Figure imgf000135_0002
実施例 194
実施例 191にお 、て用 、た構造式 (I)で表される化合物の代わりに、下記構造式 ( L)および (M)で表される化合物の、 L/M= l/1 (重量比)の混合物をその合計重 量力 実施例 191で用いた構造式 (I)の化合物の重量と同じになるように用い、実施 例 9で用いた電荷発生層用塗布液の代わりに、実施例 87で用いた電荷発生層用塗 布液を用いた以外は、実施例 191と同様にして、電子写真感光体を作製した。これ を実施例 194の電子写真感光体と 、う。
[0428] [化 11]
Figure imgf000136_0001
実施例 195
実施例 194にお 、て用いた構造式 (L)および (M)の混合物の代わりに、下記構造 式 (N)および (O)で表される化合物の、 NZO = 1/1 (重量比)の混合物を用いた 以外は、実施例 194と同様にして、電子写真感光体を作製した。これを実施例 195 の電子写真感光体という。
[0429] [化 12]
(N) (θ)
Figure imgf000136_0002
実施例 196
実施例 194にお 、て用いた構造式 (L)および (M)の混合物の代わりに、下記構造 式 (P)で表される化合物を、構造式 (L)および (M)の混合物の合計重量と同じ重量 用いた以外は、実施例 194と同様にして、電子写真感光体を作製した。これを実施 例 196の電子写真感光体という。
[0430] [化 13]
Figure imgf000137_0001
実施例 197
実施例 196において、電荷輸送層用塗布液に用いたポリカーボネート榭脂の代わ りに、下記構造式 (Q)で表される繰り返し構造単位力もなるポリカーボネート榭脂を 用いた以外は、実施例 196と同様にして、電子写真感光体を作製した。これを実施 例 197の電子写真感光体という。
[化 14]
Figure imgf000137_0002
実施例 198
実施例 196において、電荷輸送層用塗布液に用いたポリカーボネート榭脂の代わ りに、下記構造式 (R)で表される繰り返し構造単位カゝらなるバインダー榭脂を用い、 前記構造式 (P)で表される化合物の代わりに、前記構造式 (F)で表される構造を主 成分とする、幾何異性体の化合物群力もなる混合物を用いた以外は、実施例 196と 同様にして、電子写真感光体を作製した。これを実施例 198の電子写真感光体とい
5o [0432] [化 15]
Figure imgf000138_0001
実施例 199
実施例 198にお 、て用 、た、構造式 (R)で表される繰り返し構造単位力もなるバイ ンダー榭脂の代わりに、下記構造式 (S)で表される繰り返し構造単位力もなるバイン ダー榭脂を用い、電荷発生層用塗布液として実施例 79で用いた電荷発生層用塗布 液を用いた以外は、実施例 198と同様にして、電子写真感光体を作製した。これを 実施例 199の電子写真感光体という。
[0433] [化 16]
Figure imgf000138_0002
o : p =9 : 1 実施例 200
実施例 198にお 、て、電荷輸送層用塗布液に用いたノインダー榭脂の代わりに、 下記構造式 (T)で表される繰り返し構造単位力 なるポリカーボネート榭脂を用いた 以外は、実施例 198と同様にして、電子写真感光体を作製した。これを実施例 200 の電子写真感光体という。
[0434] [化 17]
Figure imgf000138_0003
Q : R= 1 : 1 実施例 201 実施例 198にお 、て用いた電荷発生層用塗布液の代わりに、実施例 97で用いた 電荷発生層用塗布液を用い、電荷輸送層用塗布液のノインダー榭脂として、下記 構造式 (U)で表される繰り返し単位力もなるバインダー榭脂を用いた以外は、実施 例 198と同様にして、電子写真感光体を作製した。これを実施例 201の電子写真感 光体という。
[0435] [化 18]
Figure imgf000139_0001
実施例 202
実施例 201にお 、て、電荷輸送層用塗布液に用いたノインダー榭脂の代わりに、 下記構造式 (V)で表される繰り返し単位力もなるバインダー榭脂を用いた以外は、実 施例 198と同様にして、電子写真感光体を作製した。これを実施例 202の電子写真 感光体という。
[0436] [化 19]
Figure imgf000139_0002
S : T=3 : 比較例 21
実施例 191において、電荷発生層用塗布液の電荷発生物質を、比較合成例 1で 得られた化合物に代えた以外はすべて同様の操作を行い、電子写真感光体を作製 した。これを比較例 21の電子写真感光体という。
比較例 22
実施例 192において、電荷発生層用塗布液の電荷発生物質を、比較合成例 1で 得られた化合物に代えた以外はすべて同様の操作を行い、電子写真感光体を作製 した。これを比較例 22の電子写真感光体という。
<電子写真感光体特性の測定 >
実施例 191〜202、比較例 21〜22で作製した電子写真感光体について、実施例 9〜16の電子写真感光体と同様の手順に従って、標準湿度感度 En 及び低湿感
1/2
度 E1 を測定し、湿度変化による感度保持率(%)を求めた。その結果を下記表 22
1/2
に示す。
[表 22]
表 22
Figure imgf000140_0001
実施例 203
表面が鏡面仕上げされた外径 30mm、長さ 376mm、肉厚 0. 75mmのアルミ-ゥ ム製シリンダーの表面に、陽極酸化処理を行ない、その後、酢酸ニッケルを主成分と する封孔剤によって封孔処理を行なうことにより、約 6 μ mの陽極酸ィ匕被膜 (アルマイ ト被膜)を形成した。このシリンダーを、先に実施例 87で作製した電荷発生層形成用 塗布液に浸漬塗布して、乾燥後の膜厚が 0. 4 /z mとなるように電荷発生層を形成し た。
次に、前記構造式 (F)で表される示される構造を主成分とする、幾何異性体の化合 物群力もなる混合物 50重量部、前記構造式 (G)で表される繰り返し単位 51モル%と 、前記構造式 (H)で表される繰り返し単位 49モル%とからなり、 p— t—プチルフエノ ールに由来する末端構造式を有するポリカーボネート榭脂 (粘度平均分子量 49, 20 0)を 100重量部、酸化防止剤として 3, 5—ジ—tーブチルー 4ーヒドロキシトルエン 8 重量部、レべリング剤としてシリコーンオイル 0. 05重量部を、テトラヒドロフランとトル ェンとの混合溶媒 (テトラヒドロフラン 80重量0 /0、トルエン 20重量0 /0) 640重量部に混 合し、電荷輸送層形成用塗布液を調製した。
先に作製した電荷発生層を形成したシリンダーを、この電荷輸送層形成用塗布液 に浸漬塗布し、乾燥後の膜厚 18 μ mの電荷輸送層を設けることによって電子写真感 光体を作製した。これを実施例 203の電子写真感光体と ヽぅ。
実施例 204
実施例 203で使用した電荷発生層形成用塗布液を実施例 105で作製した電荷発 生層形成用塗布液とした他は、実施例 203と同様にして電子写真感光体を作製した 。 これを実施例 204の電子写真感光体という。
比較例 23
実施例 203で使用した電荷発生層形成用塗布液を比較実施例 15で作製した電荷 発生層形成用塗布液とした他は、実施例 203と同様にして電子写真感光体を作製し た。
<現像用トナーの製造 >
•ワックス ·長鎖重合性単量体分散液 A1の調製
パラフィンワックス(日本精鎩社製 HNP— 9、表面張力 23. 5mNZm、融点 82°C、 融解熱量 220jZg、融解ピーク半値幅 8. 2°C、結晶化ピーク半値幅 13. 0°C) 27部 (540g)、ステアリルアタリレート (東京化成社製) 2. 8部、 20重量0 /0ドデシルペンゼ ンスルホン酸ナトリウム水溶液 (第一工業製薬社製、ネオゲン S20A、以下適宜「20 %DBS水溶液」と略称する) 1. 9部、脱塩水 68. 3部を 90°Cに加熱してホモミキサー (特殊機化工業社製 マーク II fモデル)で 8000rpmの回転数で 10分間攪拌した。 次いで、この分散液を 90°Cに加熱し、ホモジナイザー(ゴーリン社製、 15-M-8P A型)を用いて約 25MPaの加圧条件で循環乳化を開始し、日機装社製マイクロトラ ック UPA (以下適宜「マイクロトラック UPA」と略称する)で測定しながら体積平均粒 径を 250nmまで分散してワックス ·長鎖重合性単量体分散液 A1 (エマルシヨン固形 分濃度 = 30. 2重量%)を作製した。
[0437] 'シリコーンワックス分散液 A2の調製
アルキル変性シリコーンワックス(融点 72°C) 27部(540g)、 20%DBS水溶液 1. 9 部、脱塩水 71. 1部を 3Lのステンレス容器に入れ 90°Cに加熱してホモミキサー(特 殊機化工業社製 マーク II fモデル)で 8000rpmの回転数で 10分間攪拌した。
[0438] 次いで、この分散液を 99°Cに加熱し、ホモジナイザー(ゴーリン社製、 15-M-8P A型)を用いて約 45MPaの加圧条件で循環乳化を開始し、マイクロトラック UPAで 測定しながら体積平均粒径が 240nmになるまで分散してシリコーンワックス分散液 A 2 (エマルシヨン固形分濃度 = 27. 4重量%)を作製した。
[0439] ·重合体一次粒子分散液 A1の調製
攪拌装置 (3枚翼)、加熱冷却装置、濃縮装置、及び各原料 ·助剤仕込み装置を備 えた反応器(内容積 21リットル、内径 250mm、高さ 420mm)に、ワックス '長鎖重合 性単量体分散液 A1を 35. 6重量部(712. 12g)と、脱塩水 259部とを仕込み、回転 数 103rpmで攪拌しながら窒素気流下で 90°Cに昇温した。
[0440] その後、下記のモノマー類及び乳化剤水溶液の混合物を重合開始から 5時間かけ て添加した。このモノマー類及び乳化剤水溶液の混合物を滴下開始した時間を重合 開始とし、下記の開始剤水溶液を重合開始 30分後から 4. 5時間かけて添加し、更に 重合開始 5時間後から下記の追カ卩開始剤水溶液を 2時間かけて添加し、更に回転数 103rpm、内温 90°Cのまま 1時間保持した。
[0441] [モノマー類]
スチレン 76. 8部 (1535. Og)
アクリル酸ブチル 23. 2
アクリル酸 1. 5部
トリクロロブロモメタン 1. 0部
へキサンジオールジアタリレート 0. 7部
L化剤水溶液]
20%DBS水溶液 1. 0部
脱塩水 67. 1咅 [開始剤水溶液]
8%過酸化水素水溶液 15. 5咅
8%L ( + )—ァスコルビン酸水溶液 15. 5咅
[追加開始剤水溶液]
8%L ( + )—ァスコルビン酸水溶液 14. 2部
[0442] 重合反応終了後冷却し、乳白色の重合体一次粒子分散液 A1を得た。マイクロトラ ック UPAで測定した体積平均粒子径は 280nmであり、固形分濃度は 21. 1重量% であった。
[0443] ·重合体一次粒子分散液 A2の調製
攪拌装置 (3枚翼)、加熱冷却装置、濃縮装置、及び各原料 ·助剤仕込み装置を備 えた反応器(内容積 21リットル、内径 250mm、高さ 420mm)に、シリコーンワックス 分散液 A2を 23. 6重量部(472. 3g)と、 20%DBS水溶液 1. 5重量部と、脱塩水 32 4部とを仕込み、窒素気流下で 90°Cに昇温し、 103rpmで攪拌しながら 8%過酸ィ匕 水素水溶液 3. 2部、 8%L ( + )—ァスコルビン酸水溶液 3. 2部を一括添加した。
[0444] その 5分後、下記のモノマー類,乳化剤水溶液の混合物を重合開始 (8%過酸ィ匕水 素水溶液 3. 2部、 8%L ( + )—ァスコルビン酸水溶液 3. 2部を一括添カ卩した時から 5 分後)から 5時間かけて、下記の開始剤水溶液を重合開始力も 6時間かけて添加し、 更に回転数 103rpm、内温 90°Cのまま 1時間保持した。
[0445] [モノマー類]
スチレン 92. 5部 (1850. Og)
アクリル酸ブチル 7. 5部
アクリル酸 1. 5部
トリクロロブロモメタン 0. 6咅
L化剤水溶液]
20%DBS水溶液 1. 5部
脱塩水 66. 2部
[開始剤水溶液]
8%過酸化水素水溶液 18. 9部 8%L ( + )—ァスコルビン酸水溶液 18. 9部
[0446] 重合反応終了後冷却し、乳白色の重合体一次粒子分散液 A2を得た。マイクロトラ ック UPAで測定した体積平均粒子径は 290nmであり、固形分濃度は 19. 0重量% であった。
[0447] ·着色剤分散液 Aの調製
攪拌機 (プロペラ翼)を備えた内容積 300Lの容器に、トルエン抽出液の紫外線吸 光度が 0. 02であり、真密度が 1. 8gZcm3のファーネス法で製造されたカーボンブ ラック(三菱化学社製、三菱カーボンブラック MA100S) 20部(40kg)、 20%DBS水 溶液 1部、非イオン界面活性剤 (花王社製、ェマルゲン 120) 4部、電気伝導度が 2 SZcmのイオン交換水 75部を加えて予備分散して顔料プレミックス液を得た。導電 率の測定は、導電率計 (横河電機社製のパーソナル SCメータモデル SC72と検出器 SC72SN- 11)を用いて行なった。
[0448] プレミックス後の分散液中カーボンブラックの体積累積 50%径 Dv は約 90 mで
50
あった。上記プレミックス液を原料スラリーとして湿式ビーズミルに供給し、ワンパス分 散を行なった。なお、ステータの内径は φ 75mm,セパレータの径が φ 60mm,セパ レータとディスク間の間隔は 15mmとし、分散用のメディアとして直径が 50 μ mのジ ルコ-ァビーズ (真密度 6. OgZcm3)を用いた。ステータの有効内容積は約 0. 5リツ トルであり、メディアの充填容積は 0. 35リットルとしたので、メディア充填率は 70%で ある。ロータの回転速度を一定 (ロータ先端の周速が約 l lmZsec)として、供給口よ り前記プレミツクススラリを無脈動定量ポンプにより供給速度約 50リットル Zhrで連続 的に供給し、排出口より連続的に排出する事により黒色の着色剤分散体 Aを得た。 マイクロトラック UPAで測定した体積平均粒子径は 150nmであり、固形分濃度は 24 . 2重量%であった。
[0449] ·現像用母粒子 Aの製造
重合体一次粒子分散液 A1 固形分として 95部 (固形分として 998. 2g) 重合体一次粒子分散液 A2 固形分として 5部
着色剤微粒子分散液 A 着色剤固形分として 6部
20%DBS水溶液 固形分として 0. 1部 上記の各成分を用いて、以下の手順によりトナーを製造した。
[0450] 攪拌装置 (ダブルヘリカル翼)、加熱冷却装置、濃縮装置、及び各原料'助剤仕込 み装置を備えた混合器 (容積 12リットル、内径 208mm、高さ 355mm)に重合体一 次粒子分散液 A1と 20%DBS水溶液を仕込み、内温 12°C40rpmで 5分間均一に混 合した。続いて、内温 12°Cで攪拌回転数を 250rpmに上げ第一硫酸鉄の 5%水溶 液を FeSO · 7Η Οとして 0. 52部を 5分かけて添カ卩して力 着色剤微粒子分散液 A
4 2
を 5分かけて添カ卩し、内温 12°Cで 250rpmのまま均一に混合し、更に同一の条件の まま 0. 5%硫酸アルミニウム水溶液を滴下した (榭脂固形分に対しての固形分が 0. 10部)。その後 250rpmのまま 75分かけて内温 53°Cに昇温して、その後 170分かけ て 56°Cまで昇温した。
ここでアパーチャ一径を 100 μ mとした精密粒度分布測定装置(マルチサイザ一 III :ベックマン'コールター社製;以下適宜「マルチサイザ一」と略称する)にて粒径測定 を測定したところ 50%体積径が 6. 7 mであった。
[0451] その後、 250rpmのまま重合体一次粒子分散液 A2を 3分かけて添カ卩してそのまま 60分保持し、回転数を 168rpmに落としてすぐに 20%DBS水溶液(固形分として 6 部)を 10分かけて添カ卩してから 30分かけて 168rpmのまま 90°Cに昇温して 60分保 持した。
[0452] その後 20分かけて 30°Cまで冷却して得られたスラリーを抜き出し、 5種 C (東洋濾 紙株式会社製 No5C)のろ紙を用いてァスピレーターにより吸引ろ過をした。ろ紙上 に残ったケーキを攪拌機 (プロペラ翼)を備えた内容積 10Lのステンレス容器に移し 、電気伝導度が 1 μ SZcmのイオン交換水 8kgをカ卩ぇ 50rpmで攪拌する事により均 一に分散させ、その後 30分間攪拌したままとした。
[0453] その後、再度 5種 C (東洋濾紙株式会社製 No5C)のろ紙を用いてァスピレーター により吸引ろ過をし、再度ろ紙上に残った固形物を攪拌機 (プロペラ翼)を備え電気 伝導度が: L SZcmのイオン交換水 8kgの入った内容積 10Lの容器に移し、 50rp mで攪拌する事により均一に分散させ 30分間攪拌したままとした。この工程を 5回繰 り返したところ、ろ液の電気伝導度は 2 SZcmとなった。導電率の測定は、導電率 計 (横河電機社製のパーソナル SCメータモデル SC72と検出器 SC72SN— 11)を 用いて行なった。
[0454] ここで得られたケーキをステンレス製バッドに高さ 20mm程度となるように敷き詰め、 40°Cに設定された送風乾燥機内で 48時間乾燥することにより、現像用母粒子 Aを 得た。
[0455] '現像用トナー Aの製造
攪拌機 (Z/A羽根)と上部より壁面に対し直角に向 、たディフレタターを備えた内
0
容積 10L (直径 230mm高さ 240mm)のヘンシェルミキサー内に、現像用母粒子 A1 00部(lOOOg)を投入し、続、てシリコーンオイルで疎水化処理された体積平均一次 粒径 0. 04 μ mのシリカ微粒子 0. 5部と、シリコーンオイルで疎水化処理された体積 平均一次粒径 0. 012 /z mのシリカ微粒子 2. 0部とを添加し、 3000rpmで 10分間攪 拌'混合して 150メッシュを通し篩別する事により現像用トナー Aを得た。マルチサイ ザ一 IIで測定したトナー Aの体積平均粒径は 7. 05 ^ m, DvZDnは 1. 14、 FPIA2 000で測定した平均円形度は 0. 963であつた。
[0456] [画像形成評価]
実施例 203, 204、および比較例 23で作製した電子写真感光体と、上記現像用ト ナー Aとを (株)沖データ社製カラープリンター MICROLINE Pro 9800PS— E用 のブラックドラムカートリッジ、及び、ブラックトナーカートリッジにそれぞれ搭載し、そ れぞれのカートリッジを上記プリンターに装着した。
MICROLINE Pro 9800PS— Eの仕様
4連タンデム
カラー 36ppm、モノクロ 40ppm
1200dpi
接触ローラ帯電 (直流電圧印加)
LED露光
除電光あり
[0457] このプリンターを NN環境中に 8時間放置した後、 NN環境下でノヽーフトーン画像を 形成し、更に、 NL環境中に 8時間放置した後、 NL環境下でノ、ーフトーン画像を形 成し、それらの画像を比較した。比較例 23の電子写真感光体を用いた場合では、 N L環境で形成した画像において、ハーフトーン濃度の低下が見られた。しかし、実施 例 203実施例 204の電子写真感光体を用いた場合では、 NL環境で形成した画像 にお ヽても濃度の低下はなぐ良好な画像が得られた。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2006年 3月 20日出願の日本特許出願 (特願 2006— 077251)、 2006年 3月 28曰出願の曰本特許出願(特願 2006— 088867)、
2006年 6月 9日出願の日本特許出願(特願 2006— 161372)、及び
2006年 6月 16日出願の日本特許出願(特願 2006— 167881)
に基づくものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
本発明のフタロシアニン結晶は、高い感度を有するとともに、使用環境の湿度変化 に対する感度の変動が少ないという利点を有する。従って、太陽電池、電子ぺーパ 一、電子写真感光体等の材料 (特に電荷発生物質)として、好適に用いることができ る。
また、本発明の電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 は、電子写真技術を用いた複写機、プリンター、ファクス等の各種電子写真デバイス 等の各種分野において、好適に使用することができる。

Claims

請求の範囲
[1] フタロシアニン結晶前駆体を芳香族アルデヒドィ匕合物に接触させることにより結晶 型を変換する工程を経て得られることを特徴とする、フタロシアニン結晶。
[2] 有機酸、有機酸無水物及びへテロ原子を有する有機酸エステルからなる群より選 ばれる少なくとも一種の化合物の存在下、酸性を示す官能基を有さない有機化合物 に、フタロシアニン結晶前駆体を接触させることにより結晶型を変換する工程を経て 得られることを特徴とする、フタロシアニン結晶。
[3] 1013hPa、 25°Cの条件下において固体であり、電子吸引性の置換基を有する芳 香族化合物の存在下、 1013hPa、 25°Cの条件下において液体状態であり、酸性を 示す官能基を有さな ヽ有機化合物と、フタロシアニン結晶前駆体とを接触させること により結晶型を変換する工程を経て得られることを特徴とする、フタロシアニン結晶。
[4] 酸素原子を含有する基、及び、原子量 30以上のハロゲン原子を置換基として有す る芳香族化合物に、フタロシアニン結晶前駆体を接触させることにより結晶型を変換 する工程を経て得られることを特徴とする、フタロシアニン結晶。
[5] 前記の酸素原子を含有する基が、カルボ二ル基を有する有機基、ニトロ基及びェ 一テル基力もなる群より選ばれる基であることを特徴とする、請求項 4に記載のフタ口 ンノ ュノ結晶。
[6] フタロシアニンの結晶型を変換させる際、水の共存下で行うことを特徴とする、請求 項 1〜請求項 4のいずれ力 1項に記載のフタロシアニン結晶。
[7] フタロシアニン結晶がォキシチタニウムフタロシアニンを含有する結晶であることを 特徴とする、請求項 1〜請求項 4のいずれか 1項に記載のフタロシアニン結晶。
[8] フタロシアニン結晶が CuK o;特性 X線 (波長 1. 541A)に対するブラッグ角(2 Θ士
0. 2° ) 27. 2° に主たる回折ピークを有することを特徴とする、請求項 1〜請求項 4 の!、ずれ力 1項に記載のフタロシアニン結晶。
[9] 導電性支持体上に感光層を有する電子写真感光体において、該感光層が、請求 項 1〜4のいずれか 1項に記載のフタロシアニン結晶を含有することを特徴とする、電 子写真感光体。
[10] 導電性支持体上に有する感光層の膜厚が 35± 2. 5 mの電子写真感光体にお いて、温度 25°C、相対湿度 50%rhにおける半減露光量 E1Z2が下記式(1)を満た し、かつ、温度 25°C、相対湿度 50%rhにおける光減衰曲線と温度 25°C、相対湿度 10%rhにおける光減衰曲線とを比較したときに、露光量が 0から半減露光量 E1Z2 の 10倍までの範囲において、同じ露光量における表面電位の差の絶対値が 50Vを 越えな!/ヽことを特徴とする電子写真感光体。
El/2≤ 0. 059 (1)
(上記式(1)において、 El/2は感光体の表面電位 VOの絶対値 I V0 Iを 550Vか ら 275Vまで減衰させるのに必要とする 780nmの波長の光の露光量( j/cm2)を 表す)
[11] 導電性支持体上に有する感光層の膜厚が 30± 2. 5 mの電子写真感光体にお いて、温度 25°C、相対湿度 50%rhにおける半減露光量 E1Z2が下記式(2)を満た し、かつ、温度 25°C、相対湿度 50%rhにおける光減衰曲線と温度 25°C、相対湿度 10%rhにおける光減衰曲線とを比較したときに、露光量が 0から半減露光量 E1Z2 の 10倍までの範囲において、同じ露光量における表面電位の差の絶対値が 50Vを 越えな!/ヽことを特徴とする電子写真感光体。
El/2≤ 0. 061 (2)
(上記式(2)において、 El/2は感光体の表面電位 V0の絶対値 I VO Iを 550Vか ら 275Vまで減衰させるのに必要とする 780nmの波長の光の露光量( j/cm2)を 表す)
[12] 導電性支持体上に有する感光層の膜厚が 25± 2. 5 mの電子写真感光体にお いて、温度 25°C、相対湿度 50%rhにおける半減露光量 E1Z2が下記式(3)を満た し、かつ、温度 25°C、相対湿度 50%rhにおける光減衰曲線と温度 25°C、相対湿度 10%rhにおける光減衰曲線とを比較したときに、露光量が 0から半減露光量 E1Z2 の 10倍までの範囲において、同じ露光量における表面電位の差の絶対値が 50Vを 越えな!/ヽことを特徴とする電子写真感光体。
El/2≤ 0. 066 (3)
(上記式(3)において、 El/2は感光体の表面電位 VOの絶対値 I VO Iを 550Vか ら 275Vまで減衰させるのに必要とする 780nmの波長の光の露光量( j/cm2)を 表す))
[13] 導電性支持体上に有する感光層の膜厚が 20± 2. 5 mの電子写真感光体にお いて、温度 25°C、相対湿度 50%rhにおける半減露光量 E1Z2が下記式 (4)を満た し、かつ、温度 25°C、相対湿度 50%rhにおける光減衰曲線と温度 25°C、相対湿度 10%rhにおける光減衰曲線とを比較したときに、露光量が 0から半減露光量 E1Z2 の 10倍までの範囲において、同じ露光量における表面電位の差の絶対値が 50Vを 越えな!/ヽことを特徴とする電子写真感光体。
El/2≤ 0. 079 (4)
(上記式(4)において、 El/2は感光体の表面電位 VOの絶対値 I V0 Iを 550Vか ら 275Vまで減衰させるのに必要とする 780nmの波長の光の露光量( j/cm2)を 表す)
[14] 導電性支持体上に有する感光層の膜厚が 15± 2. 5 mの電子写真感光体にお いて、温度 25°C、相対湿度 50%rhにおける半減露光量 E1Z2が下記式(5)を満た し、かつ、温度 25°C、相対湿度 50%rhにおける光減衰曲線と温度 25°C、相対湿度 10%rhにおける光減衰曲線とを比較したときに、露光量が 0から半減露光量 E1Z2 の 10倍までの範囲において、同じ露光量における表面電位の差の絶対値が 50Vを 越えな!/ヽことを特徴とする電子写真感光体。
El/2≤ 0. 090 (5)
(上記式(5)において、 El/2は感光体の表面電位 V0の絶対値 I VO Iを 550Vか ら 275Vまで減衰させるのに必要とする 780nmの波長の光の露光量( j/cm2)を 表す)
[15] 導電性支持体上に感光層を有する電子写真感光体において、該感光層がォキシ チタニウムフタロシアニンを含有することを特徴とする、請求項 10〜14のいずれか 1 項に記載の電子写真感光体。
[16] 請求項 9に記載の電子写真感光体と、該電子写真感光体を帯電させる帯電部、帯 電した該電子写真感光体を露光させ静電潜像を形成する露光部、該電子写真感光 体上に形成された静電潜像を現像する現像部、及び該電子写真感光体上をタリー ニングするクリーニング部のうち少なくとも一つ、とを備えることを特徴とする電子写真 感光体カートリッジ。
[17] 請求項 9に記載の電子写真感光体と、該電子写真感光体を帯電させる帯電部、帯 電した該電子写真感光体を露光させ静電潜像を形成する露光部、及び該電子写真 感光体上に形成された静電潜像を現像する現像部とを備えることを特徴とする画像 形成装置。
[18] 請求項 10〜14のいずれか 1項に記載の電子写真感光体と、該電子写真感光体を 帯電させる帯電部、帯電した該電子写真感光体を露光させ静電潜像を形成する露 光部、該電子写真感光体上に形成された静電潜像を現像する現像部、及び該電子 写真感光体上をクリーニングするクリーニング部のうち少なくとも一つ、とを備えること を特徴とする電子写真感光体カートリッジ。
[19] 請求項 10〜14のいずれか 1項に記載の電子写真感光体と、該電子写真感光体を 帯電させる帯電部、帯電した該電子写真感光体を露光させ静電潜像を形成する露 光部、及び該電子写真感光体上に形成された静電潜像を現像する現像部とを備え ることを特徴とする画像形成装置。
PCT/JP2007/055744 2006-03-20 2007-03-20 フタロシアニン結晶、並びにそれを用いた電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 WO2007108488A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/293,830 US9296899B2 (en) 2006-03-20 2007-03-20 Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same
EP07739187A EP1997857A1 (en) 2006-03-20 2007-03-20 Phthalocyanine crystal, electrophotographic photoreceptor utilizing the same, electrophotographic photoreceptor cartridge and image forming apparatus
US13/441,633 US8846282B2 (en) 2006-03-20 2012-04-06 Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same
US14/922,794 US9835961B2 (en) 2006-03-20 2015-10-26 Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same
US15/670,632 US10095135B2 (en) 2006-03-20 2017-08-07 Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006-077251 2006-03-20
JP2006077251 2006-03-20
JP2006-088867 2006-03-28
JP2006088867 2006-03-28
JP2006161372 2006-06-09
JP2006-161372 2006-06-09
JP2006-167881 2006-06-16
JP2006167881 2006-06-16

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/293,830 A-371-Of-International US9296899B2 (en) 2006-03-20 2007-03-20 Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same
US13/441,633 Division US8846282B2 (en) 2006-03-20 2012-04-06 Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same
US14/922,794 Continuation US9835961B2 (en) 2006-03-20 2015-10-26 Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same

Publications (1)

Publication Number Publication Date
WO2007108488A1 true WO2007108488A1 (ja) 2007-09-27

Family

ID=38522515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055744 WO2007108488A1 (ja) 2006-03-20 2007-03-20 フタロシアニン結晶、並びにそれを用いた電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置

Country Status (6)

Country Link
US (4) US9296899B2 (ja)
EP (1) EP1997857A1 (ja)
JP (6) JP2012255173A (ja)
KR (1) KR20080106438A (ja)
TW (1) TW200801129A (ja)
WO (1) WO2007108488A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122658A (ja) * 2007-10-24 2009-06-04 Mitsubishi Chemicals Corp 電子写真感光体、画像形成装置、及び電子写真カートリッジ
JP2010175817A (ja) * 2009-01-29 2010-08-12 Mitsubishi Chemicals Corp 電子写真感光体、画像形成装置及びプロセスカートリッジ
CN101840167A (zh) * 2009-03-17 2010-09-22 京瓷美达株式会社 电子照相感光体和图像形成装置
US8053962B2 (en) * 2009-05-04 2011-11-08 General Electric Company Fluorescent lamp with UV-blocking layer and protective sleeve
US8288949B2 (en) 2009-04-29 2012-10-16 General Electric Company Fluorescent lamp with protective sleeve
CN108801408A (zh) * 2017-05-03 2018-11-13 德国翰辉包装机械有限责任公司 用于封闭薄膜包装的内含物的定量质量确定的方法和装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997857A1 (en) 2006-03-20 2008-12-03 Mitsubishi Chemical Corporation Phthalocyanine crystal, electrophotographic photoreceptor utilizing the same, electrophotographic photoreceptor cartridge and image forming apparatus
JP2014134772A (ja) 2012-12-14 2014-07-24 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置、ならびにフタロシアニン結晶
EP3037890B1 (en) * 2014-12-25 2019-06-26 Canon Kabushiki Kaisha Developing unit, process cartridge, and electrophotographic apparatus
JP6197803B2 (ja) * 2015-02-04 2017-09-20 コニカミノルタ株式会社 電子写真感光体、画像形成装置および画像形成方法
US9864322B2 (en) * 2015-06-09 2018-01-09 Ricoh Company, Ltd. Image forming apparatus
JP6789617B2 (ja) * 2015-06-25 2020-11-25 キヤノン株式会社 カルボン酸無水物の製造方法、カルボン酸イミドの製造方法および電子写真感光体の製造方法
JP6413968B2 (ja) * 2015-07-28 2018-10-31 京セラドキュメントソリューションズ株式会社 正帯電単層型電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP6398904B2 (ja) * 2015-08-07 2018-10-03 京セラドキュメントソリューションズ株式会社 単層型電子写真感光体の製造方法
JP6624137B2 (ja) * 2017-03-24 2019-12-25 京セラドキュメントソリューションズ株式会社 正帯電性トナー
JP2023024114A (ja) 2021-08-06 2023-02-16 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217050A (ja) 1985-03-22 1986-09-26 Dainippon Ink & Chem Inc 単層型電子写真用感光体
JPS6267094A (ja) 1985-09-18 1987-03-26 Mitsubishi Chem Ind Ltd 結晶型オキシチタニウムフタロシアニンおよび電子写真用感光体
JPS63366A (ja) 1986-06-19 1988-01-05 Mitsubishi Chem Ind Ltd 結晶型オキシチタニウムフタロシアニン及びその製造方法
JPS6320365A (ja) 1986-07-11 1988-01-28 Sanyo Shikiso Kk チタニルフタロシアニン結晶の製造法
JPH028265A (ja) 1988-01-21 1990-01-11 Deutsche Solvay Werke Gmbh 自動車底板下面保護組成物及びその製法
JPH039962A (ja) 1989-06-06 1991-01-17 Nec Corp フタロシアニン結晶とその製造方法及びこれを用いた電子写真感光体
JPH0350270A (ja) * 1989-07-18 1991-03-04 Mitsubishi Kasei Corp オキシチタニウムフタロシアニンの製造方法
JPH0354265A (ja) 1989-07-21 1991-03-08 Canon Inc オキシチタニウムフタロシアニン、その製造方法およびそれを用いた電子写真感光体
JPH0354264A (ja) 1989-07-21 1991-03-08 Canon Inc オキシチタニウムフタロシアニン、その製造方法およびそれを用いた電子写真感光体
JPH03128973A (ja) 1989-07-21 1991-05-31 Canon Inc オキシチタニウムフタロシアニン,その製造方法,それを用いた電子写真感光体,該電子写真感光体を有する装置ユニットおよび電子写真装置
JPH04266972A (ja) * 1991-02-22 1992-09-22 Mitsubishi Kasei Corp オキシチタニウムフタロシアニン結晶の製造法
JPH04277562A (ja) * 1991-03-05 1992-10-02 Mitsubishi Kasei Corp オキシチタニウムフタロシアニン結晶の製造方法
JPH0588409A (ja) 1991-03-22 1993-04-09 Canon Inc 静電荷像現像用現像剤、画像形成方法及び加熱定着方法
JPH05202309A (ja) * 1991-05-28 1993-08-10 Xerox Corp チタニルフタロシアニンの製造法
JPH0987540A (ja) * 1995-09-20 1997-03-31 Mitsubishi Chem Corp チタニルフタロシアニン結晶の製造方法
JPH09190004A (ja) 1995-11-06 1997-07-22 Canon Inc 電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び画像形成装置
JPH107925A (ja) 1996-06-24 1998-01-13 Mitsubishi Chem Corp オキシチタニウムフタロシアニンの製造方法およびそれを用いた電子写真感光体
JPH10513573A (ja) * 1995-02-08 1998-12-22 ジンテク ゲゼルシャフト フュール ヘミー ウント テクノロジー デル インフォマシオンズアウフツアイヒヌング エム ベー ハー 電子写真活性なチタニルフタロシアニン変態の製造方法
JPH11143125A (ja) 1997-11-05 1999-05-28 Fuji Xerox Co Ltd 静電荷像現像用トナー、静電荷像現像用トナーの製造方法、静電荷像現像剤及び画像形成方法
JP2001115054A (ja) 1999-10-14 2001-04-24 Mitsubishi Chemicals Corp チタニルフタロシアニン化合物及びそれを用いた電子写真感光体
JP2002080432A (ja) 2000-06-29 2002-03-19 Mitsubishi Chemicals Corp アリールアミン化合物、その製造方法、及びそれを用いた電子写真感光体
JP2003186217A (ja) 2001-12-14 2003-07-03 Konica Corp 電子写真感光体、該電子写真感光体用の縮合体と該電子写真感光体の製造方法
JP2003207912A (ja) 2002-01-10 2003-07-25 Konica Corp 電子写真感光体、該電子写真感光体用塗布液及び該電子写真感光体の製造方法
JP2003215825A (ja) 2002-01-22 2003-07-30 Konica Corp 電子写真感光体、画像形成方法、画像形成装置及びプロセスカートリッジ

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017272U (ja) 1983-07-13 1985-02-05 東洋エアゾ−ル工業株式会社 エアゾ−ル容器用噴射継続装置
JP2782765B2 (ja) 1988-04-15 1998-08-06 日本電気株式会社 フタロシアニン結晶の製造方法
MY104251A (en) * 1988-11-01 1994-02-28 Mitsui Chemicals Inc Optical recording media
US5183886A (en) * 1989-05-22 1993-02-02 Mitsubishi Kasei Corporation Process for preparation of crystalline oxytitanium phthalocyanine showing A,B or C form
US5272264A (en) 1989-05-22 1993-12-21 Mitsubishi Kasei Corporation Process for preparation of crystalline oxytitanium phthalocyanine
JP2873597B2 (ja) * 1990-01-24 1999-03-24 コニカ株式会社 結晶変換によるチタニルフタロシアニンの製造方法
JP3141157B2 (ja) 1990-01-24 2001-03-05 コニカ株式会社 結晶変換によるチタニルフタロシアニンの製造方法
JPH04221962A (ja) 1990-12-25 1992-08-12 Konica Corp 電子写真感光体
JP2873627B2 (ja) 1990-12-26 1999-03-24 コニカ株式会社 チタニルフタロシアニン結晶の製造方法
JP2852582B2 (ja) 1992-06-23 1999-02-03 松下電工株式会社 赤外線式人体検知器
US5371213A (en) * 1993-08-23 1994-12-06 Xerox Corporation Titanium phthalocyanine imaging member
US5629418A (en) * 1994-10-27 1997-05-13 Eastman Kodak Company Preparation of titanyl fluorophthalocyanines
JPH0995623A (ja) 1995-09-29 1997-04-08 Konica Corp チタニルフタロシアニン粒子とその製造方法及びそれを用いた感光体
EP0845502A3 (en) * 1996-11-29 1999-08-11 Mitsubishi Chemical Corporation Silicon phthalocyanine compound, method of producing the same and electrophotographic photoreceptor
JPH1165183A (ja) 1997-08-13 1999-03-05 Fuji Xerox Co Ltd 電子写真方法および電子写真装置
JP2000007933A (ja) 1998-06-26 2000-01-11 Sharp Corp 結晶型オキソチタニルフタロシアニン及び電子写真感光体とその製造方法
ATE227301T1 (de) * 1998-08-11 2002-11-15 Ciba Sc Holding Ag Metallocenyl-phthalocyanine
JP2000206710A (ja) 1999-01-08 2000-07-28 Sharp Corp 電子写真感光体及び電子写真画像形成法
US6291120B1 (en) * 1999-05-14 2001-09-18 Sharp Kabushiki Kaisha Electrophotographic photoreceptor and coating composition for charge generating layer
JP4647739B2 (ja) * 2000-02-15 2011-03-09 保土谷化学工業株式会社 フタロシアニン組成物およびそれを用いた電子写真感光体
JP2003177561A (ja) 2001-12-12 2003-06-27 Konica Corp 電子写真感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2003335738A (ja) 2002-05-17 2003-11-28 Sharp Corp エナミン化合物、それを用いた電子写真感光体及び画像形成装置。
US7018757B2 (en) * 2003-01-31 2006-03-28 Samsung Electronics Co., Ltd. Photoconductor materials based on complex of charge generating material
JP4275600B2 (ja) * 2004-09-07 2009-06-10 シャープ株式会社 ヒドラゾン化合物および該ヒドラゾン化合物を用いた電子写真感光体、ならびに該電子写真感光体を備える画像形成装置
JP2006243417A (ja) * 2005-03-04 2006-09-14 Ricoh Co Ltd 画像形成装置及び画像形成方法
JP2007179038A (ja) 2005-12-02 2007-07-12 Mitsubishi Chemicals Corp 電子写真感光体、および画像形成装置
EP1997857A1 (en) 2006-03-20 2008-12-03 Mitsubishi Chemical Corporation Phthalocyanine crystal, electrophotographic photoreceptor utilizing the same, electrophotographic photoreceptor cartridge and image forming apparatus

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217050A (ja) 1985-03-22 1986-09-26 Dainippon Ink & Chem Inc 単層型電子写真用感光体
JPS6267094A (ja) 1985-09-18 1987-03-26 Mitsubishi Chem Ind Ltd 結晶型オキシチタニウムフタロシアニンおよび電子写真用感光体
JPS63366A (ja) 1986-06-19 1988-01-05 Mitsubishi Chem Ind Ltd 結晶型オキシチタニウムフタロシアニン及びその製造方法
JPS6320365A (ja) 1986-07-11 1988-01-28 Sanyo Shikiso Kk チタニルフタロシアニン結晶の製造法
JPH028265A (ja) 1988-01-21 1990-01-11 Deutsche Solvay Werke Gmbh 自動車底板下面保護組成物及びその製法
JPH039962A (ja) 1989-06-06 1991-01-17 Nec Corp フタロシアニン結晶とその製造方法及びこれを用いた電子写真感光体
JPH0350270A (ja) * 1989-07-18 1991-03-04 Mitsubishi Kasei Corp オキシチタニウムフタロシアニンの製造方法
JPH0354265A (ja) 1989-07-21 1991-03-08 Canon Inc オキシチタニウムフタロシアニン、その製造方法およびそれを用いた電子写真感光体
JPH0354264A (ja) 1989-07-21 1991-03-08 Canon Inc オキシチタニウムフタロシアニン、その製造方法およびそれを用いた電子写真感光体
JPH03128973A (ja) 1989-07-21 1991-05-31 Canon Inc オキシチタニウムフタロシアニン,その製造方法,それを用いた電子写真感光体,該電子写真感光体を有する装置ユニットおよび電子写真装置
JPH04266972A (ja) * 1991-02-22 1992-09-22 Mitsubishi Kasei Corp オキシチタニウムフタロシアニン結晶の製造法
JPH04277562A (ja) * 1991-03-05 1992-10-02 Mitsubishi Kasei Corp オキシチタニウムフタロシアニン結晶の製造方法
JPH0588409A (ja) 1991-03-22 1993-04-09 Canon Inc 静電荷像現像用現像剤、画像形成方法及び加熱定着方法
JPH05202309A (ja) * 1991-05-28 1993-08-10 Xerox Corp チタニルフタロシアニンの製造法
JPH10513573A (ja) * 1995-02-08 1998-12-22 ジンテク ゲゼルシャフト フュール ヘミー ウント テクノロジー デル インフォマシオンズアウフツアイヒヌング エム ベー ハー 電子写真活性なチタニルフタロシアニン変態の製造方法
JPH0987540A (ja) * 1995-09-20 1997-03-31 Mitsubishi Chem Corp チタニルフタロシアニン結晶の製造方法
JPH09190004A (ja) 1995-11-06 1997-07-22 Canon Inc 電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び画像形成装置
JPH107925A (ja) 1996-06-24 1998-01-13 Mitsubishi Chem Corp オキシチタニウムフタロシアニンの製造方法およびそれを用いた電子写真感光体
JPH11143125A (ja) 1997-11-05 1999-05-28 Fuji Xerox Co Ltd 静電荷像現像用トナー、静電荷像現像用トナーの製造方法、静電荷像現像剤及び画像形成方法
JP2001115054A (ja) 1999-10-14 2001-04-24 Mitsubishi Chemicals Corp チタニルフタロシアニン化合物及びそれを用いた電子写真感光体
JP2002080432A (ja) 2000-06-29 2002-03-19 Mitsubishi Chemicals Corp アリールアミン化合物、その製造方法、及びそれを用いた電子写真感光体
JP2003186217A (ja) 2001-12-14 2003-07-03 Konica Corp 電子写真感光体、該電子写真感光体用の縮合体と該電子写真感光体の製造方法
JP2003207912A (ja) 2002-01-10 2003-07-25 Konica Corp 電子写真感光体、該電子写真感光体用塗布液及び該電子写真感光体の製造方法
JP2003215825A (ja) 2002-01-22 2003-07-30 Konica Corp 電子写真感光体、画像形成方法、画像形成装置及びプロセスカートリッジ

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Kagaku Binran Kiso-hen II", 30 September 1993, MARUZEN
"Kagaku Binran Kiso-hen II", 30 September 1993, MARUZEN, pages: 379
"Society of Electrophotography", CORONA PUBLISHING CO. LTD, pages: 404 - 405
FUJI XEROX TECHNICAL REPORT, no. 12, 1998
JOURNAL OF THE SOCIETY OF ELECTROPHOTOGRAPHY OF JAPAN, vol. 29, no. 3, pages 250 - 258
JOURNAL OF THE SOCIETY OF ELECTROPHOTOGRAPHY OF JAPAN, vol. 32, no. 3, pages 282 - 289

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122658A (ja) * 2007-10-24 2009-06-04 Mitsubishi Chemicals Corp 電子写真感光体、画像形成装置、及び電子写真カートリッジ
JP2010175817A (ja) * 2009-01-29 2010-08-12 Mitsubishi Chemicals Corp 電子写真感光体、画像形成装置及びプロセスカートリッジ
CN101840167A (zh) * 2009-03-17 2010-09-22 京瓷美达株式会社 电子照相感光体和图像形成装置
US8288949B2 (en) 2009-04-29 2012-10-16 General Electric Company Fluorescent lamp with protective sleeve
US8053962B2 (en) * 2009-05-04 2011-11-08 General Electric Company Fluorescent lamp with UV-blocking layer and protective sleeve
CN108801408A (zh) * 2017-05-03 2018-11-13 德国翰辉包装机械有限责任公司 用于封闭薄膜包装的内含物的定量质量确定的方法和装置
CN108801408B (zh) * 2017-05-03 2021-07-13 德国翰辉包装机械有限责任公司 用于封闭薄膜包装的内含物的定量质量确定的方法和装置

Also Published As

Publication number Publication date
EP1997857A1 (en) 2008-12-03
KR20080106438A (ko) 2008-12-05
JP2014197237A (ja) 2014-10-16
JP5708601B2 (ja) 2015-04-30
JP5900547B2 (ja) 2016-04-06
US10095135B2 (en) 2018-10-09
JP5668733B2 (ja) 2015-02-12
JP2013037375A (ja) 2013-02-21
JP2013209672A (ja) 2013-10-10
US20170336724A1 (en) 2017-11-23
US20100232830A1 (en) 2010-09-16
US8846282B2 (en) 2014-09-30
US20120257907A1 (en) 2012-10-11
JP5648718B2 (ja) 2015-01-07
JP5882866B2 (ja) 2016-03-09
US20160109816A1 (en) 2016-04-21
JP2012256074A (ja) 2012-12-27
US9835961B2 (en) 2017-12-05
JP2013033264A (ja) 2013-02-14
TW200801129A (en) 2008-01-01
US9296899B2 (en) 2016-03-29
JP2012255173A (ja) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5900547B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2009008957A (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5671195B2 (ja) フタロシアニン結晶、電子写真感光体、並びにそれを用いた電子写真感光体カートリッジ及び画像形成装置
CN101405349A (zh) 酞菁结晶、使用该酞菁结晶的电子照相感光体、电子照相感光体盒以及图像形成装置
JP5659452B2 (ja) 電子写真感光体、画像形成装置、及び電子写真カートリッジ
JP5617192B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5157438B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP5521336B2 (ja) 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP2007213050A (ja) 画像形成装置
JP5119733B2 (ja) 電子写真感光体、該電子写真感光体を備える感光体カートリッジ及び画像形成装置
JP2008151876A (ja) 画像形成装置及び電子写真感光体カートリッジ
JP2008299215A (ja) 電子写真感光体、電子写真カートリッジ、および画像形成装置
JP2009020506A (ja) 画像形成装置及び電子写真感光体カートリッジ
JP5659454B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および、画像形成装置
JP2008299214A (ja) 電子写真感光体、並びにそれを用いた画像形成装置及び電子写真カートリッジ
JP4973018B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置、並びにフタロシアニン結晶
JP5783104B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2012014161A (ja) 画像形成装置
JP2009128587A (ja) 電子写真感光体、画像形成装置及び電子写真感光体カートリッジ
JP2009020177A (ja) 電子写真感光体、該電子写真感光体を備える感光体カートリッジ及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739187

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087022752

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007739187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780009960.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12293830

Country of ref document: US