JP5783104B2 - 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 - Google Patents

電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 Download PDF

Info

Publication number
JP5783104B2
JP5783104B2 JP2012067861A JP2012067861A JP5783104B2 JP 5783104 B2 JP5783104 B2 JP 5783104B2 JP 2012067861 A JP2012067861 A JP 2012067861A JP 2012067861 A JP2012067861 A JP 2012067861A JP 5783104 B2 JP5783104 B2 JP 5783104B2
Authority
JP
Japan
Prior art keywords
resin
photosensitive member
electrophotographic photosensitive
group
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012067861A
Other languages
English (en)
Other versions
JP2013200395A (ja
Inventor
山崎 大輔
大輔 山崎
愛子 原田
愛子 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012067861A priority Critical patent/JP5783104B2/ja
Publication of JP2013200395A publication Critical patent/JP2013200395A/ja
Application granted granted Critical
Publication of JP5783104B2 publication Critical patent/JP5783104B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

本発明は、電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置に関する。特に、感光層の接着性に関して優れ、且つ、電気特性の良好な電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置に関する。
電子写真技術は、即時性に優れ、且つ、高品質の画像が得られること等から、複写機、各種プリンター、印刷機等の分野で広く使われている。電子写真技術の中核となる電子写真感光体として、無公害で成膜が容易、製造が容易である等の利点を有する有機系の光導電材料を使用した電子写真感光体(以下に、単に「感光体」ともいう。)が使用されている。
有機系の光導電材料を使用した電子写真感光体としては、光導電性微粉末をバインダー樹脂中に分散させた、いわゆる分散型の単層型感光体や、電荷発生層及び電荷輸送層を積層した、積層型感光体が知られている。積層型感光体は、それぞれの効率の高い電荷発生材料及び広く安全性の高い感光体が得られること、また、感光体を塗布により容易に形成可能で生産性が高く、コスト面でも有利なこと、等の理由から感光体の主流であり、鋭意開発され実用化されている。
一方、単層型感光体は、電気特性面では積層型感光体に比べてやや劣ると共に、材料選択の自由度もやや少ないが、感光体表面近傍で電荷を発生させることができるので、高解像度化が可能であり、また、厚膜にしても画像ボケしないことから、厚膜化による高耐刷化が可能であるという利点がある。また単層型感光体は、塗布工程が少なくて済むこと、及び導電性基体(支持体)由来の干渉縞や素管欠陥に対して有利であり、無切削管等の安価基体を使用できること等の理由から、低コスト化が可能であるという利点がある。
有機系の電荷発生物質を使用する場合の電子写真感光体の感度は、電荷発生物質の種類によって異なり、露光光の波長によっても異なる。600〜800nmの長波長光に対して感度を有する電荷発生物質としては、フタロシアニン化合物が注目を浴びており、特に、クロロアルミニウムフタロシアニン、クロロインジウムフタロシアニン、オキシバナジウムフタロシアニン、ヒドロキシガリウムフタロシアニン、クロロガリウムフタロシアニン、マグネシウムフタロシアニン、オキシチタニウムフタロシアニン等の金属含有フタロシアニン、或いは無金属フタロシアニン等についての研究が精力的に行われている(特許文献1)。一般的に、金属含有フタロシアニンは、無金属フタロシアニンよりも感度に優れ、残留電位も低くなることが知られている。
電荷発生層の結着樹脂としては、耐久性、溶剤への溶解性などに優れているため、ポリビニルブチラール系樹脂が広く使用されており、その他にもポリビニルホルマール樹脂、ポリエステル樹脂など、様々な樹脂が使用されている(特許文献2、3、4)。
上述のように、数多くの電荷発生物質、結着樹脂など感光体材料が知られているが、その中から闇雲に高性能を有すると知られている材料を組み合わせて用いれば、優れた電子写真感光体特性を有し、かつ画像形成装置に使用した場合に、実際に所望する高画質な画像が得られる電子写真感光体を提供可能になるわけではない。特に近年、耐磨耗性の向上が望まれており、その一つの解決手段として、電荷輸送層に耐摩耗性に優れた結着樹脂を用いて、かつ電荷輸送物質の含有量を減少させ、結着樹脂の性能を極力損なわない手法がある。
特開2011−028041号公報 特開2001−183854号公報 特開平4−182652号公報 特開平9−197691号公報
しかしこの場合は、発明者らの検討によれば、感光層の収縮が大きくなるため、内部応力が大きくなり、感光層の接着性が悪化する欠点があった。
本発明は上述の課題に鑑みてなされたものである。即ち、本発明の目的は電気特性に優れ、かつ感光層の接着性も良好な電子写真感光体を提供すること、また該電子写真感光体を用いたプロセスカートリッジ、および画像形成装置を提供することにある。
本発明者らは、電荷発生層に特定の電荷発生物質と、同時に特定の結着樹脂を所定の割合で用いることにより、良好な電気特性を実現し、かつ接着性を改善できることを見出した。即ち本発明の要旨は以下の7点に存する。
(1)導導電性支持体上に感光層を有し、該感光層が電荷発生物質と結着樹脂とを含む電子写真感光体において、該電荷発生物質が金属含有フタロシアニンであり、且つ、感光層中における電荷発生物質と同一層中に存在する結着樹脂の電荷発生物質に対する質量比が80wt%以上300wt%以下であり、且つ、該結着樹脂が、下記一般式[1]で表される部
分構造を有するポリエステルを含有することを特徴とする電子写真感光体(請求項1)。
Figure 0005783104
(2)導電性支持体上に少なくとも電荷発生層及び電荷輸送層を有する負帯電方式で用いられる積層型電子写真感光体であって、該電荷発生層に一般式[1]で表される部分構造
を有するポリエステルを含有することを特徴とする(1)に記載の電子写真感光体(請求項2)。
(3)前記電荷輸送層がポリアリレート樹脂を含有することを特徴とする(2)に記載の電子写真感光体(請求項3)。
(4)前記結着樹脂中における、上記一般式[1]で表される部分構造のモル比が10mol%
以下であることを特徴とする(1)〜(3)のいずれかに記載の電子写真感光体(請求項4)。
(5)前記感光層中に下記一般式[2]で表されるポリアリレート樹脂が含有されること
を特徴とする(1)〜(2)に記載の電子写真感光体(請求項5)。
Figure 0005783104
(式[2]中、Ar1〜Ar4はそれぞれ独立に置換基を有していてもよいアリーレン基を表し、Xは単結合、酸素原子、硫黄原子、下記式[3]で表される基、又は下記式[4]で表される基であって、式[3]中のR及びRは、それぞれ独立に、水素原子、アルキル基、又はアリール基を表し、RとRとが結合して環を形成していてもよく、式[4]中のRは、アルキレン基、アリーレン基、又は下記式[5]で表される基であって、式[5]中のR及びRは、それぞれ独立に、アルキレン基を表し、Arはアリーレン基を表す。kは0〜5の整数を表す。但し、k = 0の場合、Ar3とAr4のうちいずれか一
方は置換基を有するアリーレン基である。)
Figure 0005783104
(式[2]中、Yは、単結合、酸素原子、硫黄原子、又は下記式[6]で表される基であって、式[6]中、R及びRは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又はアリール基を表し、RとRとが結合して環を形成していてもよい。)
Figure 0005783104
(6)(1)〜(5)のいずれかに記載の電子写真感光体と、該電子写真感光体を帯電させる帯電部、帯電した該電子写真感光体を露光させ静電潜像を形成する露光部、該電子写真感光体上に形成された静電潜像を現像する現像部、該電子写真感光体上をクリーニングするクリーニング部のうち、少なくとも一つとを備えることを特徴とする電子写真感光体カートリッジ(請求項6)。
(7)(1)〜(5)のいずれかに記載の電子写真感光体と、該電子写真感光体を帯電させる帯電部、帯電した該電子写真感光体を露光させ静電潜像を形成する露光部、及び該電子写真感光体上に形成された静電潜像を現像する現像部とを備えることを特徴とする画像形成装置(請求項7)。
本発明の電子写真感光体は、特定の電荷発生物質と結着樹脂を同時に所定の割合で用いることにより、良好な電気特性を実現しながら、同時に、感光層の接着性を良好にできるものであり、該電子写真感光体を備える電子写真プロセスカートリッジ、および該電子写真感光体を備える画像形成装置を提供することが可能となる。
本発明の画像形成装置の一実施態様の要部構成を示す概略図である。
以下、本発明の実施の形態につき詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、適宜変更して実施することができる。
[電子写真感光体]
以下、本発明の電子写真感光体について詳述する。
本発明の電子写真感光体は、感光層に金属含有フタロシアニンと特定構造を有する結着樹脂を併用されることを必要とする。
<金属含有フタロシアニン>
金属含有フタロシアニンとは下記式[7]で示される、フタロシアニン環の中心に金属原子を含有する化合物である。
Figure 0005783104
金属含有フタロシアニンの具体的な例としては、銅、インジウム、ガリウム、錫、チタン、亜鉛、バナジウム、シリコン、ゲルマニウム等の金属、又はその酸化物、ハロゲン化物、水酸化物、アルコキシド等の配位したフタロシアニン類の各種結晶型が使用される。特に、感度の高い結晶型であるA型(別称β型)、B型(別称α型)、D型(別称Y型)等のチタニルフタロシアニン(別称:オキシチタニウムフタロシアニン)、バナジルフタロシアニン、クロロインジウムフタロシアニン、II型等のクロロガリウムフタロシアニン、V型等のヒドロキシガリウムフタロシアニン、G型,I型等のμ−オキソ−ガリウムフタロシアニン二量体、II型等のμ−オキソ−アルミニウムフタロシアニン二量体が好適である。なお、これらのフタロシアニンのうち、A型(β型)、B型(α型)、D型(Y型)オキシチタニウムフタロシアニン、II型クロロガリウムフタロシアニン、V型ヒドロキシガリウムフタロシアニン、G型μ−オキソ−ガリウムフタロシアニン二量体等が特に好ましい。
特に、オキシチタニウムフタロシアニンは、CuKα特性X線による粉末X線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)27.2°に主たる明瞭な回折ピークを有するものが好ましい。また、該オキシチタニウムフタロシアニンは、CuKα特性X線による粉末X線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)9.0°〜9.7°に、明瞭な回折ピークを有することが好ましく、電子写真感光体特性に面から、9.
6°、24.1°、27.2°、または9.5°、9.7°、24.1°、27.2°に主たる回折ピークを有することが好ましく、分散時の安定性の面からは26.2°付近にはピークを有さないことが好ましい。上述したオキシチタニウムフタロシアニンのなかでも、7.3°、9.6°、11.6°、14.2°、18.0°、24.1°及び27.2°、又は7.3°、9.5°、9.7°、11.6°、14.2°、18.0°、24.2°及び27.2°に主たる回折ピークを有することがより好ましい。
本発明におけるCuKα特性X線による粉末X線回折スペクトルは以下の手法に基づき測定する。
<粉末XRD測定条件>
粉末のX線回折スペクトルを測定するための測定装置は、CuKα線を線源とした集中光学系の粉末X線回折計であるPANalytical社製のPW1700を使用した。
測定条件は、X線出力40kV,30mA、走査範囲(2θ)3〜40°、スキャンステップ幅0.05°、走査速度3.0°/min、発散スリット1.0°、散乱スリット1.0°、受光スリット0.2mmとした。
また、該オキシチタニウムフタロシアニンにおいては、結晶内の塩素含有量が1.5質量%以下であることが好ましい。該塩素含有量は元素分析から求めることができる。
該オキシチタニウムフタロシアニン結晶内においては、下記式[L]で表される塩素化オ
キシチタニウムフタロシアニンの割合が、下記式[M]で表される無置換オキシチタニウム
フタロシアニンに対して、マススペクトル強度比で、0.070以下であるものである。また、好ましくはマススペクトル強度比が0.060以下であり、より好ましくは0.055以下である。製造の際、非晶質化に乾式摩砕法を用いる場合は、0.02以上が好ましく、非晶質化にアシッドペースト法を用いる場合は、0.03以下が好ましい。塩素置換量は、特開2001−115054号公報の手法に基づいて測定する。
Figure 0005783104
本発明に好適な金属含有フタロシアニンであるCuKα特性X線による粉末X線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)27.2°に主たる明瞭な回折ピークを有すオキシチタニウムフタロシアニンの前駆体となる低結晶性フタロシアニン、アモルファス性フタロシアニンの調整法としては、アシッドペースト法、アシッドスラリー法等の化学的処理法、粉砕、磨砕等の機械的処理法などの公知の調整法を用いることが可能であるが、より均一なアモルファス性フタロシアニン、又は低結晶性フタロシアニンが得られることから、化学的処理法が好ましく、中でもアシッドペースト法がより好ましい。
化学的処理の具体的な例としては、オキシチタニウムフタロシアニンを濃硫酸中に溶解して行うアシッドペースティング法、または硫酸中で分散状態を経るアシッドスラリー法(硫酸塩法)、ジクロロチタニウムフタロシアニンにフェノール、アルコールを付加させた後に脱離させてオキシチタニウムフタロシアニンを得る方法等の化学的処理方法があげ
られ、より安定的なアモルファス、低結晶性オキシチタニウムフタロシアニンを得るにはアシッドペースト法がより好ましい。
アシッドペースト法、アシッドスラリー法とは、顔料を強酸に溶解もしくは、懸濁、分散させた溶液を調整し、その調整した溶液を、強酸と均一に混じり、顔料がほとんど溶解しない媒体中(例えば、オキシチタニウムフタロシアニンの場合は水、メタノール、エタノール、プロパノール等のアルコール、エチレングリコール、エチレングリコールモノメチエーテル、エチレングリコールジエチルエーテル、テトラヒドロフラン等のエーテルなど)に放出し、再顔料化させることにより顔料を改質する方法である。
アシッドスラリー法、アシッドペースト法には濃硫酸、有機スルホン酸、有機ホスホン酸、トリハロゲン化酢酸等の強酸が使用される。これら強酸は、強酸単独、もしくは強酸同士の混合使用、または強酸と有機溶媒の組み合わせ等で用いることが可能である。強酸の種類はオキシチタニルフタロシアニンの溶解性を考慮すると、トリハロゲン化酢酸、濃硫酸が好ましく、生産コストを考慮すると、濃硫酸がより好ましい。
濃硫酸の含有量は、オキシチタニウムフタロシアニンの溶解性を考慮すると、90%以上の濃硫酸が好ましく、さらに濃硫酸の含有量が低いと生産効率が低下することから、より好ましくは95%以上の濃硫酸である。強酸にオキシチタニルフタロシアニンを溶解させる温度は、公知文献に掲載されている温度条件で溶解させることが可能であるが、温度が高すぎるとフタロシアニン環が開環し、分解してしまうことから、5℃以下が好ましく、得られる電子写真感光体に及ぼす影響を考慮すると0℃以下がより好ましい。
用いる強酸の量は、任意の量で用いることが可能であるが、少なすぎるとオキシチタニルフタロシアニンの溶解性が悪くなることから、オキシチタニルフタロシアニン1質量部に対して5質量部以上、溶液中の固形分濃度が高すぎると撹拌効率が低下することから15質量部以上が好ましく、より好ましくは20質量部以上である。また、強酸使用量が多すぎると、廃棄酸量が増えることから、100質量部以下が好ましく、また生産効率を考慮すると50質量部以下がより好ましい。
得られたオキシチタニウムフタロシアニンの酸溶液を放出する媒体の種類としては、水、メタノール、エタノール、1−プロパノール、2−プロパノール等のアルコール、エチレングリコール、グリセリン等の多価アルコール、テトラヒドロフラン、ジオキサン、ジオキソラン、テトラヒドロピラン等の環状エーテル、エチレングリコールモノメチルエーテル、エチレングリコールジエチルエーテル等の鎖状―エーテルなどが挙げられ、公知の方法同様に、放出媒体は単一種で用いても、2種類以上を混合して使用してもよい。用いる媒体種により再顔料化された際の粒子形状、結晶状態等が変化し、この履歴が後に得られる最終結晶の電子写真感光体特性に影響を与えることから、好ましくは、水、メタノール、エタノール、1−プロパノール、2−プロパノール等の低級アルコール類が好ましく、生産性、コストの面から水がより好ましい。
オキシチタニルフタロシアニンの濃硫酸溶液を放出媒体に放出し、再顔料化されたオキシチタニウムフタロシアニンは濾別によりウェットケーキとして濾別されるが、このウエットケーキは放出媒体中に存在した、濃硫酸の硫酸イオン等の不純物を多く含むことから、再顔料化された後に、洗浄媒体で洗浄を行う。洗浄を行う媒体は、水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸水素ナトリウム水溶液、炭酸ナトリウム水溶液、炭酸カリウム水溶液、酢酸ナトリウム水溶液、アンモニア水溶液等のアルカリ性水溶液、希塩酸、希硝酸、希酢酸等の酸性水溶液、イオン交換水等の水などが挙げられるが、顔料中に残存したイオン性物質は電子写真感光体特性に悪影響を与える場合が多いことから、イオン交換水等のイオン性の物質を取り除いた水が好ましい。通常、アシッドペースト法、ア
シッドスラリー法より得られるオキシチタニウムフタロシアニンは明確な回折ピークを有さないアモルファスか、ピークは有するが、その強度が非常に弱く、半価幅の非常に大きいピークを有する低結晶性のものである。
通常、アシッドペースト法、アシッドスラリー法により得られたアモルファスオキシチタニウムフタロシアニン、又は低結晶性のオキシチタニウムフタロシアニンを有機溶媒に接触させることにより、本発明の電子写真感光体に好適に用いることが出来るCuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)9.6°、24.1°、27.2°または、9.5°、9.7°、24.1°、27.2に主たる回折ピークを有するオキシチタニウムフタロシアニンを得ることが出来る。通常有機溶媒との接触は水の存在下で行われる。水はアシッドペースト法、アシッドスラリー法により得られた含水ケーキ中に含まれたものを用いても、アシッドペースト法
アシッドスラリー法後に得られた含水ケーキをいったん乾燥させ、結晶変換時に新たに水を追加して用いても良いが、乾燥させてしまうと顔料と水との親和性が低下することから、乾燥させずにアシッドペースト法、アシッドスラリー法により得られた含水ケーキ中に含まれたものを用いて行うのが好ましい。
結晶変換に用いることが出来る溶媒としては、水と相溶性のある溶媒、水と非相溶の溶媒のいずれでも可能である。水と相溶性のある溶媒の好適な例としてはテトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン等の環状エーテルが挙げられる。また、水と非相溶の溶媒の好適な例としては、トルエン、ナフタレン、メチルナフタレン等の芳香族炭化水素系溶媒、クロロトルエン、o−ジクロロトルエン、ジクロロフルオロベンゼン、1,2−ジクロロエタン等のハロゲン系溶媒、ニトロベンゼン、1,2−メチレンジオキシベンゼン、アセトフェノン等の置換芳香族系溶媒が挙げられ、中でも環状エーテル、クロロトルエン、ハロゲン化炭化水素溶媒、芳香族炭化水素系溶媒が得られた結晶の電子写真特性が良好でありこの好ましく、テトラヒドロフラン、o−ジクロロベンゼン、1,2−ジクロロトルエン、ジクロロフルオロベンゼン、トルエン、ナフタレンが、得られた結晶の分散時の安定性という点でより好ましい。結晶変換後得られた結晶は、乾燥方法は送風乾燥、加熱乾燥、真空乾燥、凍結乾燥等の公知の方法で乾燥することが可能である。これらオキシチタニウムフタロシアニンの粒子径は製法、結晶変換方法によって大きく異なり特に制限はないが、分散性を考慮すると、1次粒子径として、500nm以下が好ましく、塗布成膜性の面からは300nm以下であることが好ましい。
ヒドロキシガリウムフタロシアニンとしては、好ましくは、CuKαのX 線回におけ
るブラッグ角( 2θ±0.2 °)28.1°に、主たる明瞭な回折ピークを有するものである。
また、ヒドロキシガリウムフタロシアニンの粒径に制限は無いが、通常1.0μm以下、好ましくは0.5μm以下である。さらに、ヒドロキシガリウムフタロシアニンの塩素含有量にも制限は無いが、通常0.1重量% 以下であり、好ましくは塩素を実質上含ま
ないことが好ましい。
該ヒドロキシガリウムフタロシアニンの製造方法に制限は無いが、例えば、ハロゲン化ガリウムフタロシアニンを処理して含水ヒドロキシガリウムフタロシアニンを得る工程と、前記含水ヒドロキシガリウムフタロシアニンを凍結乾燥して低結晶性ヒドロキシガリウムフタロシアニンとする工程と、前記低結晶性ヒドロキシガリウムフタロシアニンをミリング処理する工程とを有する方法により製造することができる。また、ハロゲン化ガリウムフタロシアニンを処理して含水ヒドロキシガリウムフタロシアニンを得る工程においては、酸ペーストを用いることは、好ましい。
以下、この製造方法について説明する。まず、ハロゲン化ガリウムフタロシアニンを、
アシッドペースティング法により処理してペースト状の含水ヒドロキシガリウムフタロシアニンを得る。この際、ハロゲン化ガリウムフタロシアニンとしては、例えば、クロロガリウムフタロシアニン、臭化ガリウムフタロシアニン、ヨウ化ガリウムフタロシアニンなどが使用できる。また、ハロゲン化ガリウムフタロシアニンは、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
次に、この含水ヒドロキシガリウムフタロシアニンを凍結乾燥して低結晶性のヒドロキシガリウムフタロシアニンとする。得られた低結晶のヒドロキシガリウムフタロシアニンを、例えば、アセトアミド、N ,N − ジメチルホルムアミド、N , N − ジメチル
アセトアミド、N − メチルホルムアミド、N − メチルアセトアミド、N − メチルプロピオアミド、ホルムアミド等のアミド系溶剤を分散剤として用いてミリング処理を行なうことにより、本発明の結晶形のヒドロキシガリウムフタロシアニンが得られる。ハロゲン化ガリウムフタロシアニンの製造方法は任意であり、例えば、特開平6−93203号公報に記載されている方法によっても得られる。
ここで行なうミリング処理とは、例えばガラスビーズ、スチールビーズ、アルミナボール等の分散メディアと共に、サンドミル、ボールミル等のミリング装置を用いて行なう処理である。ミリング処理時間は、使用するミリング装置により異なるため、一概には言えないが、4〜24時間程度が好ましい。あまり長すぎても本発明のヒドロキシガリウムフタロシアニンはできない。中でも好ましい方法は、1〜3時間おきにサンプルをとりブラッグ角を確認することである。ミリング処理で用いる分散剤の量は、重量基準で低結晶ヒドロキシガリウムフタロシアニンの10〜50倍が好ましい。
上述したヒドロキシガリウムフタロシアニンの製造方法の特徴の1つは、含水ヒドロキシガリウムフタロシアニンを凍結乾燥する点にある。凍結乾燥工程がないと、通常は、ブラッグ角(2θ±0.2°)28.1°が最大ピーク( 主たる回折ピーク) とならない。
前記の製造法では、凍結乾燥によって、含水ヒドロキシガリウムフタロシアニンに含まれる水を昇華させることにより、目的とする結晶型を有するヒドロキシガリウムフタロシアニンが得られるものと推察される。したがって、凍結乾燥の条件は水が昇華する条件である。例えば、含水ヒドロキシガリウムフタロシアニンを凍結させて、更に4Torr 以下
に減圧すれば、その後は室温でも昇華する。
前記の製造方法で使用できる装置の例を挙げると、金田理化製の凍結乾燥装置KFD−1に真空ポンプを接続したものを凍結乾燥に用いることができる。この装置では、水のトラップ部の温度を-20〜-110 ℃ の範囲で調整できる。この際、使用する真空ポンプの例
を挙げると、排気量100L/minで、到達真空度は10-4Torrのものを使用することができる。
<導電性支持体>
感光体に用いる導電性支持体としては、例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や、金属、カーボン、酸化錫などの導電性粉体を添加して導電性を付与した樹脂材料や、アルミニウム、ニッケル、ITO(酸化インジウム酸化錫)等の導電性材料をその表面に蒸着又は塗布した樹脂、ガラス、紙等が主として使用される。形態としては、ドラム状、シート状、ベルト状などのものが用いられる。金属材料の導電性支持体に、導電性・表面性などの制御のためや欠陥被覆のために、適当な抵抗値をもつ導電性材料を塗布したものでもよい。
導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化被膜を施してから用いてもよい。陽極酸化被膜を施した場合、公知の方法により封孔処理を施すのが望ましい。
例えば、クロム酸、硫酸、シュウ酸、ホウ酸、スルファミン酸等の酸性浴中で、陽極酸
化処理することにより形成されるが、硫酸中での陽極酸化処理がより良好な結果を与える。硫酸中での陽極酸化の場合、硫酸濃度は100−300g/l、溶存アルミニウム濃度は2−15g/l、液温は15−30℃、電解電圧は10−20V、電流密度は0.5−2A/dmの範囲内に設定されるのが好ましいが、前記条件に限定されるものではない。
このようにして形成された陽極酸化被膜に対して、封孔処理を行うことは好ましい。封孔処理は、通常の方法でよいが、例えば、主成分としてフッ化ニッケルを含有する水溶液中に浸漬させる低温封孔処理、あるいは主成分として酢酸ニッケルを含有する水溶液中に浸漬させる高温封孔処理が施されるのが好ましい。
上記低温封孔処理の場合に使用されるフッ化ニッケル水溶液濃度は、適宜選べるが、3−6g/lの範囲で使用された場合、より好ましい結果が得られる。また、封孔処理をスムーズに進めるために、処理温度としては、25−40℃、好ましくは30−35℃で、また、フッ化ニッケル水溶液のpHは、4.5−6.5、好ましくは5.5−6.0の範囲で処理するのがよい。pH調節剤としては、シュウ酸、ホウ酸、ギ酸、酢酸、水酸化ナトリウム、酢酸ナトリウム、アンモニア水等を用いることが出来る。処理時間は、被膜の膜厚1μmあたり1−3分の範囲で処理することが好ましい。なお、被膜物性を更に改良するためにフッ化コバルト、酢酸コバルト、硫酸ニッケル、界面活性剤等をフッ化ニッケル水溶液に添加しておいてもよい。次いで水洗、乾燥して低温封孔処理を終える。
前記高温封孔処理の場合の封孔剤としては、酢酸ニッケル、酢酸コバルト、酢酸鉛、酢酸ニッケル−コバルト、硝酸バリウム等の金属塩水溶液を用いることが出来るが、特に酢酸ニッケルを用いるのが好ましい。酢酸ニッケル水溶液を用いる場合の濃度は5−20g/lの範囲内で使用するのが好ましい。処理温度は80−100℃、好ましくは90−98℃で、また、酢酸ニッケル水溶液のpHは5.0−6.0の範囲で処理するのが好ましい。ここでpH調節剤としてはアンモニア水、酢酸ナトリウム等を用いることが出来る。処理時間は10分以上、好ましくは20分以上処理するのが好ましい。なお、この場合も被膜物性を改良するために酢酸ナトリウム、有機カルボン酸、アニオン系、ノニオン系界面活性剤等を酢酸ニッケル水溶液に添加してもよい。
次いで水洗、乾燥して高温封孔処理を終える。平均膜厚が厚い場合には、封孔液の高濃度化、高温・長時間処理により強い封孔条件を必要とする。従って生産性が悪くなると共に、被膜表面にシミ、汚れ、粉ふきといった表面欠陥を生じやすくなる。このような点から、陽極酸化被膜の平均膜厚は通常20μm以下、特に7μm以下で形成されることが好ましい。
支持体表面は、平滑であってもよいし、特別な切削方法を用いたり、研磨処理したりすることにより、粗面化されていてもよい。また、支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものであってもよい。また、安価化のためには切削処理を施さず、引き抜き管をそのまま使用することも可能である。特に引き抜き加工、インパクト加工、しごき加工等の非切削アルミニウム基体を用いる場合、処理により、表面に存在した汚れや異物等の付着物、小さな傷等が無くなり、均一で清浄な基体が得られるので好ましい。
<下引き層>
導電性支持体と後述する感光層との間には、接着性・ブロッキング性等の改善のため、下引き層を設けてもよい。下引き層としては、樹脂、樹脂に金属酸化物等の粒子を分散したものなどが用いられる。
下引き層に用いられる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒
子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素含む金属酸化物粒子が挙げられる。1種類の粒子のみを用いていてもよいし、複数の種類の粒子を混合して用いてもよい。これらの金属粒子の中で、酸化チタン及び酸化アルミニウムが好ましく、特に酸化チタンが好ましい。酸化チタン粒子は、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、またはステアリン酸、ポリオール、シリコーン等の有機物による処理を施されていてもよい。酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることが出来る。また、複数の結晶状態のものが含有されていてもよい。
また、金属酸化物粒子の粒径としては、種々のものが利用できるが、中でも特性及び液の安定性の面から、平均一次粒径としては10nm以上100nm以下が好ましく、特に好ましいのは、10nm以上50nm以下である。この平均一次粒径は、TEM写真等から得ることができる。
下引き層は、前記金属酸化物粒子をバインダー樹脂に分散した形で形成するのが望ましい。下引き層に用いられるバインダー樹脂としては、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリイミド樹脂、塩化ビニリデン樹脂、ポリビニルアセタール樹脂、塩化ビニル−酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリウレタン樹脂、ポリアクリル酸樹脂、ポリアクリルアミド樹脂、ポリビニルピロリドン樹脂、ポリビニルピリジン樹脂、水溶性ポリエステル樹脂、ニトロセルロース等のセルロースエステル樹脂、セルロースエーテル樹脂、カゼイン、ゼラチン、ポリグルタミン酸、澱粉、スターチアセテート、アミノ澱粉、ジルコニウムキレート化合物、ジルコニウムアルコキシド化合物等の有機ジルコニウム化合物、チタニルキレート化合物、チタニルアルコキシド化合物等の有機チタニル化合物、シランカップリング剤などの公知の結着樹脂を用いることが出来る。これらは単独、もしくは硬化剤とともに硬化した形で使用できる。中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド等は良好な分散性、塗布性を示し好ましい。
下引き層に用いられるバインダー樹脂に対する無機粒子の添加比は任意に選ぶことが可能であるが、分散液の安定性、塗布性の観点から、バインダー樹脂に対して、通常は10質量%以上、500質量%以下の範囲で使用することが好ましい。
下引き層の膜厚は、本発明の効果を著しく損なわない限り任意であるが、電子写真感光体の電気特性、強露光特性、画像特性、繰り返し特性、及び製造時の塗布性を向上させる観点から、通常は0.01μm以上、好ましくは0.1μm以上、また、通常30μm以下、好ましくは20μm以下である。下引き層には、公知の酸化防止剤等を混合しても良い。また、下引き層は、画像欠陥防止などを目的として、顔料粒子、樹脂粒子等を含有させ用いてもよい。
<感光層>
感光層は、上述の導電性支持体上に(前述の下引き層を設けた場合は下引き層上に)形成される。感光層は、電荷発生物質及び結着樹脂を含有する層であり、その形式としては、電荷発生物質と電荷輸送物質(本発明の電荷輸送物質を含む)とが同一層に存在し、それらがバインダー樹脂中に分散した単層構造のもの(以下適宜、「単層型感光層」という。)と、電荷発生物質がバインダー樹脂中に分散された電荷発生層及び電荷輸送物質(本発明の電荷輸送物質を含む)がバインダー樹脂中に分散された電荷輸送層を含む、二層以上の層からなる積層構造の機能分離型のもの(以下適宜、「積層型感光層」という)が挙げられるが、何れの形態であってもよい。
また、積層型感光層としては、導電性支持体側から電荷発生層、電荷輸送層をこの順に積層して設ける順積層型感光層と、逆に導電性支持体側から電荷輸送層、電荷発生層の順
に積層して設ける逆積層型感光層とがあり、いずれを採用することも可能であるが、最もバランスの取れた光導電性を発揮できる順積層型感光層が好ましい。
本発明の電子写真感光体においての感光層は、下記一般式[1]で表される部分構造を有
するポリエステルを有する結着樹脂を含有し、結着樹脂を有機溶剤に溶解した溶液に前記金属含有フタロシアニンを少なくとも1種含有する電荷発生物質を分散させることにより塗布液を調整し、これを導電性支持体上に塗布し、電荷発生物質の微粒子と各種バインダー樹脂とを結着することにより形成される。
Figure 0005783104
<結着樹脂>
感光層に用いられる結着樹脂は、前記一般式[1]で表される部分構造を有するポリエス
テルを含有する。原因は定かではないが、前記一般式[1]で表される部分構造を有するこ
とで、多層との分子間相互作用が強くなることにより接着性が改良すると考えられる。含有量としては、前記一般式[1]で表される部分構造のモル比が、通常10mol%以下、好まし
くは8mol%以下、更に好ましくは7mol%以下である。通常2mol%以上、好ましくは3mol%以
上、更に好ましくは3.5mol%以上である。該ポリエステルは、前記一般式[1]で表される部分構造単独の繰り返し単位で表される重合体として用いることができるが、他成分との共重合体であることが好ましい。他成分の種類としては、通常1〜10種、好ましくは3〜7種
、更に好ましくは4〜6種の成分からなる共重合体が好ましい。具体的には、フタル酸、テレフタル酸、イソフタル酸、トルエン-2,5-ジカルボン酸などの芳香族ジカルボン酸、エ
チレングリコール、ネオペンチルグリコール、テトラメチレングリコールなどの脂肪族ジオールが挙げられ、その中でもテレフタル酸、イソフタル酸、エチレングリコール、ネオペンチルグリコールが好ましい。これらのモル比率としては、テレフタル酸(20〜35%)、イソフタル酸(10〜25%)、エチレングリコール(20〜35%)、ネオペンチルグリコール(10〜25%)が好ましい。更に、テレフタル酸/イソフタル酸/エチレングリコール/ネオペンチルグリコール/ヒドロキシピバル酸の組成で、モル比率が27%/19%/28%/19%/7%であることが好ましい。他成分のモル比率は特に制限はないが、分子量制御の観点からジオール成分が通常30%以上、好ましくは40%以上、更に好ましくは45%以上である。また、同様に分子量制御の観点から通常70%以下、好ましくは60%以下、更に好ましくは55%以下である。
他成分の構造単位を例示する。以下の構造は本発明をより具体的にするために例示するものであり、本発明の概念を逸脱しない限りは下記構造に限定されるものではない。
Figure 0005783104
上記以外に用いられる結着樹脂の例としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールや、アセタール等で変性された部分アセタール化ポリビニルブチラール樹脂等のポリビニルアセタール系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼインや、塩化ビニル−酢酸ビニル共重合体、ヒドロキシ変性塩化ビニル−酢酸ビニル共重合体、カルボキシル変性塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体等の塩化ビニル−酢酸ビニル系共重合体、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、スチレン−アルキッド樹脂、シリコン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂等の絶縁性樹脂や、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルペリレン等の有機光導電性ポリマーの中から選択し、用いることが出来るが、これらポリマーに限定されるものではない。また、これら結着樹脂は単独で用いても、2種類以上を混合して用いてもよい。
結着樹脂を溶解させ、塗布液の作製に用いられる溶媒、分散媒としては例えば、ペンタン、ヘキサン、オクタン、ノナン等の飽和脂肪族系溶媒、トルエン、キシレン、アニソール等の芳香族系溶媒、クロロベンゼン、ジクロロベンゼン、クロロナフタレン等のハロゲン化芳香族系溶媒、ジメチルホルムアミド、N−メチル−2−ピロリドン等のアミド系溶媒、メタノール、エタノール、イソプロパノール、n−ブタノール、ベンジルアルコール等のアルコール系溶媒、グリセリン、ポリエチレングリコール等の脂肪族多価アルコール類、アセトン、シクロヘキサノン、メチルエチルケトン等の鎖状、及び環状ケトン系溶媒、ギ酸メチル、酢酸エチル、酢酸n−ブチル等のエステル系溶媒、塩化メチレン、クロロホルム、1,2―ジクロロエタン等のハロゲン化炭化水素系溶媒、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4−ジオキサン、メチルセルソルブ、エチルセルソルブ等の鎖状、及び環状エーテル系溶媒、アセトニトリル、ジメチルスルホキシド、スルフォラン、ヘキサメチルリン酸トリアミド等の非プロトン性極性溶媒、n−ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン、トリエチルアミン等の含窒素化合物、リグロイン等の鉱油、水などが挙げられ、前述の下引き層を溶解しないものが好ましく用いられる。またこれらは単独、または2種以上を併用しても用いることが可能である。
<積層型感光層>
[電荷発生層]
積層型感光層(機能分離型感光層)の電荷発生層は、金属含有フタロシアニンを含有すると共に、前記一般式[1]で表される部分構造を有するポリエステルを含む結着樹脂を含
有する。また、電荷発生層は、その他バインダー樹脂や必要に応じて使用されるその他の成分を含有する。このような電荷発生層は、例えば、電荷発生物質及びバインダー樹脂を溶媒又は分散媒に溶解又は分散して塗布液を作製し、これを順積層型感光層の場合には導電性支持体上に(下引き層を設ける場合は下引き層上に)、また、逆積層型感光層の場合には電荷輸送層上に塗布、乾燥して得ることができる。
電荷発生物質は金属含有フタロシアニンを単独として用いてもよいし、またはいくつかの染顔料との混合状態で用いてもよい。金属含有フタロシアニンと混合状態として用いる染顔料としては、フタロシアニン顔料、アゾ顔料、ジチオケトピロロピロール顔料、スクアレン(スクアリリウム顔料)、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料等が挙げられる。混合状態
として用いる染顔料としては、光感度の面から、フタロシアニン顔料、アゾ顔料が好ましく使用される。
機能分離型感光体の電荷発生層において、電荷発生層中の前記結着樹脂と電荷発生物質との配合比(質量)は、電荷発生物質100質量部に対して、80質量部以上、好ましくは90質量部以上、更に好ましくは100質量部以上であり、300質量部以下、好ましくは250質量部以下、更に好ましくは200質量部以下の範囲である。結着樹脂の比率が高すぎる場合は感光体としての感度の低下を招くことから、前記範囲で使用する事が好ましい。また電荷発生物質100質量部に対して電荷発生層の結着樹脂が80質量部に満たない場合、本発明の結着樹脂を使用する、接着性向上の効果が減少する。この理由は定かではないが、接着性向上の効果は電荷発生層内の結着樹脂部分が担っており、電荷発生層において結着樹脂の割合が減少すると、他層との結着樹脂の接触面積が減少または相溶部分が減少し、そのため結着樹脂の割合が減少すると、接着性向上の効果も低下すると考えられる。また、その膜厚は通常0.10μm以上、好ましくは0.12μm以上、更に好ましくは0.15μm以上であり、10μm以下、好ましくは2.0μm以下、更に好ましくは0.60μm以下である。前記電荷発生物質を分散させる方法としては、ボールミル分散法、アトライター分散法、サンドミル分散法等の公知の分散方法を用いることが出来る。この際粒子を0.50μm以下、好ましくは0.30μm以下、より好ましくは0.15μm以下の粒子サイズに微細化することが有効である。
[電荷輸送層]
電荷発生層と電荷輸送層を有する機能分離型感光体の電荷輸送層形成の際は、膜強度確保のためバインダー樹脂が使用される。電荷輸送層は、前記一般式[1]で表される部分構
造を有するポリエステルを含有していてもよい。
機能分離型感光体の電荷輸送層の場合、電荷輸送物質と各種バインダー樹脂とを溶剤に溶解、あるいは分散して得られる塗布液を塗布、乾燥して得ることが出来る。
<単層型感光層>
単層型感光層は、金属含有フタロシアニン及び前記一般式[1]で表される部分構造を有
するポリエステルを含む結着樹脂を含有する。さらに他の電荷発生物質及び電荷輸送物質に加えて、積層型感光体の電荷輸送層と同様に、膜強度確保のためにバインダー樹脂を使用して形成することができる。具体的には、電荷発生物質と電荷輸送物質と各種バインダー樹脂とを溶剤に溶解又は分散して塗布液を作製し、導電性支持体上(下引き層を設ける場合は下引き層上)に塗布、乾燥して得ることができる。
電荷輸送物質およびバインダー樹脂からなる電荷輸送媒体中に、さらに電荷発生物質及び前記一般式[1]で表される部分構造を有するポリエステルを含む結着樹脂が分散される
。前記結着樹脂と電荷発生物質との配合比(質量)は、電荷発生物質100質量部に対して、80質量部以上、好ましくは90質量部以上、更に好ましくは100質量部以上であり、300質量部以下、好ましくは250質量部以下、更に好ましくは200質量部以下の範囲である。前記範囲が好ましい理由は、積層型感光層の場合と同様である。
電荷発生物質は、積層型感光体の電荷発生層について説明したものと同様のものが使用できる。但し、単層型感光体の感光層の場合、電荷発生物質の粒子径を十分に小さくする必要がある。具体的には、通常1.0μm以下、好ましくは0.5μm以下の範囲とする。
単層型感光層の膜厚は、通常5.0μm以上、好ましくは10μm以上、また、通常100μm以下、好ましくは50μm以下の範囲である。
<電荷輸送物質>
電荷輸送物質としては特に限定されず、任意の物質を用いることが可能である。公知の電荷輸送物質の例としては、2,4,7−トリニトロフルオレノン等の芳香族ニトロ化合物、テトラシアノキノジメタン等のシアノ化合物、ジフェノキノン等のキノン化合物等の電子吸引性物質、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体、およびこれらの化合物の複数種が結合したもの、あるいはこれらの化合物からなる基を主鎖または側鎖に有する重合体等の電子供与性物質等が挙げられる。これらの中でも、カルバゾール誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体、およびこれらの化合物の複数種が結合したものが好ましい。これらの電荷輸送物質は、何れか1種を単独で用いても良く、2種以上を任意の組み合わせで併用しても良い。電荷輸送物質の割合は、通常バインダー樹脂に対して、10質量%以上であり、電子写真感光体の光減衰特性の面から、好ましくは30質量%以上であり、電子写真感光体の高速応答性の面から、より好ましくは40質量%以上であり、特に好ましくは50質量%以上である。耐刷性の観点から、好ましくは130質量%以下であり、より好ましくは100質量%以下であり、特に好ましくは80質量%以下である。
電荷輸送物質の好適な具体例を以下に示す。下記の化合物において、Rは同一でも、それぞれ異なっていてもよい。具体的には、水素原子、アルキル基、アルコキシ基、フェニル基、アリールアルキル等が好ましい。特に好ましくは、メチル基、エチル基又はベンジル基である。また、nは0以上2以下の整数である。
なお、以下の例示物は、電荷輸送物質の具体例であり、その他の電荷輸送物質は以下のものに限定されない。
Figure 0005783104
Figure 0005783104
Figure 0005783104
<バインダー樹脂>
バインダー樹脂としては、例えばブタジエン樹脂、スチレン樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、アクリル酸エステル樹脂、メタクリル酸エステル樹脂、ビニルアルコール樹脂、エチルビニルエーテル等のビニル化合物の重合体及び共重合体、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、部分変性ポリビニルアセタール、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリアミド樹脂、ポリウレタン樹脂、セルロースエステル樹脂、フェノキシ樹脂、シリコーン樹脂、シリコン−アルキッド樹脂、ポリ−N−ビニルカルバゾール樹脂等があげられる。これら樹脂は珪素試薬などで修飾されていてもよい。上記バインダー樹脂のうち、耐刷性の観点から、ポリアリレート樹脂が特に好ましい。また、接着性向上の観点から、電荷発生層の結着樹脂にポリエステルを含有し、電荷輸送層がポリアリレートを併用することが特に好ましい。この理由は定かではないが、同じエステル結合を有することで、互いの層間の相溶性や相互作用が大きくなるためであると思われる。
[ポリアリレート樹脂]
感光層に含まれる前記ポリアリレート樹脂の構造を以下に例示する。本例示は、本発明
の趣旨を明確にするために行うものであり、本発明の趣旨に反しない限りは例示される構造に限定されるものではない。感光層に含まれるポリアリレート樹脂は、例えば、上記一般式[2]で表される繰り返し構造を含むものであり、公知の方法により、例えば二価ヒドロキシアリール成分とジカルボン酸成分とにより製造することができる。
一般式[2]中、Ar〜Arはそれぞれ同一でも異なっていてもよく、それぞれ独立に置換基を有していてもよいアリーレン基を表す。前記アリーレン基としては、特に限定はされないが、炭素数6〜20のアリーレン基が好ましく、例えば、フェニレン基、ナフチレン基、アントリレン基、フェナントリレン基、ピレニレン基が挙げられる。中でも、製造コストの面から、フェニレン基とナフチレン基が特に好ましい。また、フェニレン基とナフチレン基を比較した場合、製造コストの面に加えて合成のし易さの面で、フェニレン基がより好ましい。但し、式[2]中、k = 0の場合、Ar3とAr4が同時に無置換のア
リーレン基の場合、感光層の接着性が悪いことから、Ar3とAr4のうちいずれか一方は置換基を有するアリーレン基である。
前記アリーレン基にそれぞれ独立に有していても良い置換基については特に限定されないが、例えば、水素原子、アルキル基、アルコキシ基、アリール基、縮合多環基、ハロゲン基を好ましく挙げることができる。感光層用バインダー樹脂としての機械的特性と感光層形成用塗布液に対する溶解性を勘案すれば、アリール基としてフェニル基、ナフチル基が好ましく、ハロゲン基としてフッ素原子、塩素原子、臭素原子、ヨウ素原子が好ましく、アルコキシ基としてメトキシ基、エトキシ基、ブトキシ基が好ましく、アルキル基としては、炭素数1〜10のアルキル基が好ましく、炭素数1〜8のアルキル基がさらに好ましく、炭素数1〜2のアルキル基が特に好ましく、具体的にはメチル基が最も好ましい。Ar〜Arそれぞれの置換基の数に特に制限は無いが、3個以下であることが好ましく、2個以下であることがより好ましく、1個以下であることが特に好ましい。
さらに、一般式[2]中、ArとArは同じ置換基を有する同じアリーレン基であることが好ましく、無置換のフェニレン基であることが特に好ましい。また、ArとArも同じアリーレン基であることが好ましく、メチル基を有するフェニレン基であることが特に好ましい。
一般式[2]中、Xは、単結合、酸素原子、硫黄原子、式[3]で表される構造、又は式[4]で表される構造を有する2価の有機残基を示す。式[3]中のR及びRは、それぞれ独立に、水素原子、アルキル基、若しくはアリール基、又はRとRとが結合して形成されるシクロアルキリデン基を示す。式[3]中のR及びRのアルキル基としては、炭素数は、通常10以下、好ましくは8以下、更に好ましくは4以下である。具体的には、メチル基、エチル基、プロピル基、ブチル基などが挙げられ、製造コストの観点からメチル基が好ましい。アリール基としては、炭素数は、通常30以下、好ましくは20以下、更に好ましくは10以下である。具体的には、フェニル基、ナフチル基などが挙げられ、溶解性の観点からフェニル基が好ましい。また、式[3]中のRとRとが結合して形成されるシクロアルキリデン基としては、炭素数は、通常20以下、好ましくは15以下、更に好ましくは10以下である。シクロペンチリデン基、シクロヘキシリデン基、シクロヘプチリデン基などが挙げられ、製造コストの観点からシクロヘキシリデン基が好ましい。さらに、式[4]中のRは、アルキレン基、アリーレン基、又は式[5]で表される基を示す。式[4]中のRのアルキレン基としては、炭素数は、通常10以下、好ましくは8以下、更に好ましくは4以下である。具体的には、メチレン基、エチレン基、プロピレン基などが挙げられ、製造コストの観点からメチレン基が好ましい。式[4]中のRのアリーレン基としては、炭素数は、通常30以下、好ましくは20以下、更に好ましくは10以下である。具体的には、フェニレン基、テルフェニレン基などが挙げられ、溶解性の観点からフェニル基が好ましい。式[5]で表される基のR及びRは、それぞれ独立にアルキレン基を表す。R及びRのアルキレン基としては、R
及びRの説明と同様である。Arはアリーレン基を表す。Arのアリーレン基としては、炭素数は、通常30以下、好ましくは20以下、更に好ましくは10以下である。具体的には、フェニレン基、テルフェニレン基などが挙げられ、溶解性の観点からフェニレン基が好ましい。式[5]で表される基の中でも、下記式[7]で表される基が好ましい。これらの中でも、耐磨耗性の観点から、Xは、酸素原子であることが好ましい。
Figure 0005783104
Figure 0005783104
一般式[2]中、kは0〜5の整数であるが、好ましくは0〜1の整数であり、耐磨耗性の観点から1であることが最も好ましい。
一般式[2]中、Yは、単結合、硫黄原子、酸素原子、又は式[6]で表される構造を有する2価の有機残基を示す。式[6]中のR及びRは、それぞれ独立に水素原子、アルキル基、アルコキシ基、アリール基、又はRとRとが結合して形成されるシクロアルキリデン基を表す。アリール基としては、炭素数は、通常30以下、好ましくは20以下、更に好ましくは10以下である。具体的には、フェニル基、ナフチル基等が挙げられ、感光層用バインダー樹脂としての機械的特性と感光層形成用塗布液に対する溶解性を勘案すれば、フェニル基が好ましい。アルコキシ基としては、炭素数は、通常10以下、好ましくは7以下、更に好ましくは4以下である。具体的には、メトキシ基、エトキシ基、ブトキシ基等が挙げられ、感光層用バインダー樹脂としての機械的特性と感光層形成用塗布液に対する溶解性を勘案すれば、メトキシ基が好ましい。アルキル基としては、炭素数は、通常10以下、好ましくは8以下、更に好ましくは4以下である。具体的には、メチル基、エチル基、プロピル基、ブチル基などが挙げられ、製造コストの観点からメチル基が好ましい。ポリアリレート樹脂を製造する際に用いる二価ヒドロキシアリール成分の製造の簡便性を勘案すれば、Yとして、単結合、−O−、−S−、−CH−、−CH(CH)−、−C(CH−、シクロヘキシリデンが好ましく、より好ましくは、−CH−、−CH(CH)−、−C(CH−、シクロヘキシリデンであり、特に好ましくは−CH−、−CH(CH)−である。
Figure 0005783104
本発明においては、前記ポリアリレート樹脂として、下記一般式[9]で表される繰り返し構造を含むポリアリレート樹脂であることが好ましい。下記一般式[9]中、Ar
〜Ar19はそれぞれ独立に置換基を有していてもよいアリーレン基を表し、Rは水素原子又はアルキル基を表す。
Figure 0005783104
上記一般式[9]中、Ar16〜Ar19は上記Ar〜Arにそれぞれ対応するものであり、特に好ましくは、それぞれ置換基を有していてもよいフェニレン基である。また、好ましい置換基としては、水素原子又はアルキル基であり、特に好ましくはメチル基である。さらに、一般式[9]中、Ar18とAr19はメチル基を有する同じフェニレン基であり、Ar16とAr17は置換基を有さないフェニレン基であることが特に好ましい。また、Rは、水素原子又はアルキル基を表すが、該アルキル基は、好ましくは炭素数が1〜10であり、さらに好ましくは炭素数が1〜8であり、特に好ましくはメチル基である。
上記ポリアリレート樹脂の中の二価ヒドロキシアリール残基となる二価ヒドロキシアリール成分は、下記一般式[10]で表されるが、好ましくは下記一般式[11]で表される。
Figure 0005783104
一般式[10]中のAr、Ar及びYは、既述のとおりである。
Figure 0005783104
一般式[11]中のAr18及びAr19は、独立に置換基を有していてもよいフェニレン基を表し、Rは水素原子又はメチル基を表す。
具体的には、一般式[11]中のRが水素原子の場合、ビス(2−ヒドロキシフェニル)メタン、(2−ヒドロキシフェニル)(3−ヒドロキシフェニル)メタン、(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)メタン、ビス(3−ヒドロキシフェニル)メタン、(3−ヒドロキシフェニル)(4−ヒドロキシフェニル)メタン、ビス(4−
ヒドロキシフェニル)メタン、ビス(2−ヒドロキシ−3−メチルフェニル)メタン、ビス(2−ヒドロキシ−3−エチルフェニル)メタン、(2−ヒドロキシ−3−メチルフェニル)(3−ヒドロキシ−4−メチルフェニル)メタン、(2−ヒドロキシ−3−エチルフェニル)(3−ヒドロキシ−4−エチルフェニル)メタン、(2−ヒドロキシ−3−メチルフェニル)(4−ヒドロキシ−3−メチルフェニル)メタン、(2−ヒドロキシ−3−エチルフェニル)(4−ヒドロキシ−3−エチルフェニル)メタン、ビス(3−ヒドロキシ−4−メチルフェニル)メタン、ビス(3−ヒドロキシ−4−エチルフェニル)メタン、(3−ヒドロキシ−4−メチルフェニル)(4−ヒドロキシ−3−メチルフェニル)メタン、(3−ヒドロキシ−4−エチルフェニル)(4−ヒドロキシ−3−エチルフェニル)メタン、ビス(4−ヒドロキシ−3−メチルフェニル)メタン、ビス(4−ヒドロキシ−3−エチルフェニル)メタンが挙げられる。また、Rがメチル基の場合は、1,1−ビス(2−ヒドロキシフェニル)エタン、1−(2−ヒドロキシフェニル)−1−(3−ヒドロキシフェニル)エタン、1−(2−ヒドロキシフェニル)−1−(4−ヒドロキシフェニル)エタン、1,1−ビス(3−ヒドロキシフェニル)エタン、1−(3−ヒドロキシフェニル)−1−(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(2−ヒドロキシ−3−メチルフェニル)エタン、1,1−ビス(2−ヒドロキシ−3−エチルフェニル)エタン、1−(2−ヒドロキシ−3−メチルフェニル)−1−(3−ヒドロキシ−4−メチルフェニル)エタン、1−(2−ヒドロキシ−3−エチルフェニル)−1−(3−ヒドロキシ−4−エチルフェニル)エタン、1−(2−ヒドロキシ−3−メチルフェニル)−1−(4−ヒドロキシ−3−メチルフェニル)エタン、1−(2−ヒドロキシ−3−エチルフェニル)−1−(4−ヒドロキシ−3−エチルフェニル)エタン、1,1−ビス(3−ヒドロキシ−4−メチルフェニル)エタン、1,1−ビス(3−ヒドロキシ−4−エチルフェニル)エタン、1−(3−ヒドロキシ−4−メチルフェニル)−1−(4−ヒドロキシ−3−メチルフェニル)エタン、1−(3−ヒドロキシ−4−エチルフェニル)−1−(4−ヒドロキシ−3−エチルフェニル)エタン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)エタン、1,1−ビス(4−ヒドロキシ−3−エチルフェニル)エタンが挙げられる。
このなかでも、一般式[11]中のRが水素原子の場合には、二価ヒドロキシアリール成分の製造の簡便性を考慮すれば、ビス(4−ヒドロキシフェニル)メタン、(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)メタン、ビス(2−ヒドロキシフェニル)メタン、ビス(4−ヒドロキシ−3−メチルフェニル)メタン、ビス(4−ヒドロキシ−3−エチルフェニル)メタンが特に好ましく、これらの二価ヒドロキシアリール成分を複数組み合わせて用いることも可能である。
また、一般式[11]中のRがメチル基の場合には、1,1−ビス(4−ヒドロキシフェニル)エタン、1−(2−ヒドロキシフェニル)−1−(4−ヒドロキシフェニル)エタン、1,1−ビス(2−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)エタン、1,1−ビス(4−ヒドロキシ−3−エチルフェニル)エタンが特に好ましく、これらの二価ヒドロキシアリール成分を複数組み合わせて用いることも可能である。
一般式[10]に一般式[11]は含まれるが、以下に、上記一般式[11]の例示以外の一般式[10]の化合物についても説明する。
一般式[10]で表される二価ヒドロキシアリール成分の具体例としては、3,3',
5,5'−テトラメチル−4,4'−ジヒドロキシビフェニル、2,4,3',5'−テトラメチル−3,4'−ジヒドロキシビフェニル、2,2',4,4'−テトラメチル−3,3'−ジヒドロキシビフェニル、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)エーテル、(4−ヒドロキシ−3,5−ジメチルフェニル)(3−ヒドロキシ−2,4−ジメチルフェニル)エーテル、ビス(3−ヒドロキシ−2,4−ジメチルフェニル)エーテル、
ビス(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、(4−ヒドロキシ−3,5−ジメチルフェニル)(3−ヒドロキシ−2,4−ジメチルフェニル)メタン、ビス(3−ヒドロキシ−2,4−ジメチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)エタン、1−(4−ヒドロキシ−3,5−ジメチルフェニル)−1−(3−ヒドロキシ−2,4−ジメチルフェニル)エタン、1,1−ビス(3−ヒドロキシ−2,4−ジメチルフェニル)エタン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2−(4−ヒドロキシ−3,5−ジメチルフェニル)−2−(3−ヒドロキシ−2,4−ジメチルフェニル)プロパン、2,2−ビス(3−ヒドロキシ−2,4−ジメチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)シクロヘキサン、1−(4−ヒドロキシ−3,5−ジメチルフェニル)−1−(3−ヒドロキシ−2,4−ジメチルフェニル)シクロヘキサン、1,1−ビス(3−ヒドロキシ−2,4−ジメチルフェニル)シクロヘキサンが挙げられ、好ましくは、3,3',5,5'−テトラメチル−4,4'−ジヒドロキシビフェニル、ビス(4−ヒ
ドロキシ−3,5−ジメチルフェニル)エーテル、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)エタン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)シクロヘキサンである。あるいは、ビス(2−ヒドロキシフェニル)エーテル、(2−ヒドロキシフェニル)(3−ヒドロキシフェニル)エーテル、(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)エーテル、ビス(3−ヒドロキシフェニル)エーテル、(3−ヒドロキシフェニル)(4−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシフェニル)エーテル、ビス(2−ヒドロキシ−3−メチルフェニル)エーテル、ビス(2−ヒドロキシ−3−エチルフェニル)エーテル、(2−ヒドロキシ−3−メチルフェニル)(3−ヒドロキシ−4−メチルフェニル)エーテル、(2−ヒドロキシ−3−エチルフェニル)(3−ヒドロキシ−4−エチルフェニル)エーテル、(2−ヒドロキシ−3−メチルフェニル)(4−ヒドロキシ−3−メチルフェニル)エーテル、(2−ヒドロキシ−3−エチルフェニル)(4−ヒドロキシ−3−エチルフェニル)エーテル、ビス(3−ヒドロキシ−4−メチルフェニル)エーテル、ビス(3−ヒドロキシ−4−エチルフェニル)エーテル、(3−ヒドロキシ−4−メチルフェニル)(4−ヒドロキシ−3−メチルフェニル)エーテル、(3−ヒドロキシ−4−エチルフェニル)(4−ヒドロキシ−3−エチルフェニル)エーテル、ビス(4−ヒドロキシ−3−メチルフェニル)エーテル、ビス(4−ヒドロキシ−3−エチルフェニル)エーテル、さらには、ビス(4−ヒドロキシフェニル)メタン、(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)メタン、ビス(2−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシ−3−メチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)エタン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロヘキサン、ビス(4−ヒドロキシ−3−メチルフェニル)エーテル、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)エタン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)シクロヘキサン、ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルメタン、1,1−ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルエタン、ビス(4−ヒドロキシフェニル)−1−フェニルメタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルプロパン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、ビス(4−ヒドロキシフェニル)メトキシメタン、1,1−ビス(4−ヒドロキシフェニル)−1−メトキシエタン、1,1−ビス(4−ヒドロキシフェニル)−1−メトキシプロパン、ビス
(4−ヒドロキシフェニル)ジメトキシメタン、等が挙げられる。
この中でも、二価ヒドロキシアリール成分の製造の簡便性を考慮すれば、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)シクロヘキサン、あるいは、ビス(4−ヒドロキシフェニル)エーテル、(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)エーテル、ビス(2−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシ−3−メチルフェニル)エーテル、ビス(4−ヒドロキシ−3−エチルフェニル)エーテルが特に好ましく、これらの二価ヒドロキシアリール成分を複数組み合わせて用いることも可能である。
上記ポリアリレート樹脂の中のジカルボン酸残基であるジカルボン酸成分は、下記一般式[12]で表される。
Figure 0005783104
一般式[12]中のAr、Ar、X、及びkは既述の通りであり、式[12]に含まれるジカルボン酸残基として、下記一般式[I]〜[VI]で表される構造を例示することができ、好ましくは下記一般式[13]で表される。
Figure 0005783104
一般式[13]中のAr16及びAr17も既述の通りであるが、好ましくは置換基を有していてもよいフェニレン基である。
好ましいジカルボン酸残基の具体的としては、ジフェニルエーテル−2,2'−ジカル
ボン酸残基、ジフェニルエーテル−2,3'−ジカルボン酸残基、ジフェニルエーテル−
2,4'−ジカルボン酸残基、ジフェニルエーテル−3,3'−ジカルボン酸残基、ジフェニルエーテル−3,4'−ジカルボン酸残基、ジフェニルエーテル−4,4'−ジカルボン酸残基等が挙げられる。これらの中でも、ジカルボン酸成分の製造の簡便性を考慮すれば、ジフェニルエーテル−2,2'−ジカルボン酸残基、ジフェニルエーテル−2,4'−ジカルボン酸残基、ジフェニルエーテル−4,4'−ジカルボン酸残基がより好ましく、ジ
フェニルエーテル−4,4'−ジカルボン酸残基が特に好ましい。
上記ポリアリレート樹脂は、他のジカルボン酸成分を含み、構造の一部に一般式[1]を内包する樹脂でもよい。その他のジカルボン酸残基の具体例としては、アジピン酸残基、スベリン酸残基、セバシン酸残基、フタル酸残基、イソフタル酸残基、テレフタル酸残基、トルエン−2,5−ジカルボン酸残基、p−キシレン−2,5−ジカルボン酸残基、ピリジン−2,3−ジカルボン酸残基、ピリジン−2,4−ジカルボン酸残基、ピリジン−2,5−ジカルボン酸残基、ピリジン−2,6−ジカルボン酸残基、ピリジン−3,4−ジカルボン酸残基、ピリジン−3,5−ジカルボン酸残基、ナフタレン−1,4−ジカルボン酸残基、ナフタレン−2,3−ジカルボン酸残基、ナフタレン−2,6−ジカルボン酸残基、ビフェニル−2,2'−ジカルボン酸残基、ビフェニル−4,4'−ジカルボン酸残基が挙げられ、好ましくは、アジピン酸残基、セバシン酸残基、フタル酸残基、イソフタル酸残基、テレフタル酸残基、ナフタレン−1,4−ジカルボン酸残基、ナフタレン−2,6−ジカルボン酸残基、ビフェニル−2,2'−ジカルボン酸残基、ビフェニル−
4,4'−ジカルボン酸残基であり、特に好ましくは、イソフタル酸残基、テレフタル酸
残基であり、これらのジカルボン酸残基を複数組み合わせて用いることも可能である。
なお、本発明を構成するジカルボン酸残基と上述した他のジカルボン酸残基とを有する場合、本発明を構成するジカルボン酸残基が、繰り返しユニットの個数として70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが特に好ましい。最も好ましくは、本発明を構成するジカルボン酸残基のみを有する場合、すなわち、本発明を構成するジカルボン酸残基が、繰り返しユニットの個数として100%である場合である。
また、本発明を構成するポリアリレート樹脂は、他の樹脂と混合して、電子写真感光体に用いることも可能である。ここで併用される他の樹脂としては、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体、及びその共重合体、ポリカーボネート、ポリアリレート、ポリスルホン、フェノキシ、エポキシ、シリコーン樹脂等の熱可塑性樹脂や種々の熱硬化性樹脂等が挙げられる。これら樹脂のなかでもポリカーボネート樹脂が好ましい。
併用する樹脂の混合割合は、特に限定されないが、本発明の効果を十分に得るためには、本発明のポリアリレート樹脂の割合を超えない範囲で併用することが好ましく、特には他の樹脂を併用しないことが好ましい。
ポリアリレート樹脂の粘度平均分子量は、特に限定されないが、通常、10,000以上、好ましくは15,000以上、さらに好ましくは20,000以上であり、但し、通常、300,000以下、好ましくは200,000以下、より好ましくは100,000以下である。粘度平均分子量が過度に小さいと、感光層の機械的強度が低下し実用的ではない。また、粘度平均分子量が過度に大きいと、感光層を適当な膜厚に塗布形成する事が困難である。
<感光層に含まれるその他の成分>
感光層には、例えば成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向上させるために、酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤、増感剤等の添加剤を含有させてもよい。添加剤は、1種を単独で用いてもよ
く、2種以上を任意の比率及び組み合わせで用いてもよい。
酸化防止剤の例としては、ヒンダードフェノール化合物、ヒンダードアミン化合物等が挙げられる。また染料、顔料の例としては、各種の色素化合物、アゾ化合物等が挙げられ、レベリング剤の例としては、シリコ−ンオイル、フッ素系オイル等が挙げられる。
ヒンダードフェノール系酸化防止剤としては、例えば、2,6−ジ−t−ブチルフェノール、2,6−ジ−t−ブチル−4−エチルフェノール、2,6−ジ−t−ブチル−4−メチルフェノール、2,2’−メチレンビス(6−t−ブチル−4−メチルフェノール)、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)、4,4’−チオビス(6−t−ブチル−3−メチルフェノール)、2,2’−ブチリデンビス(6−t−ブチル−4−メチルフェノール)、α−トコフェロール、β−トコフェロール、2,2,4−トリメチル−6−ヒドロキシ−7−t−ブチルクロマン、ペンタエリスリチルテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,2’−チオエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオールビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ブチルヒドロキシアニソール、ジブチルヒドロキシアニソール、1−[2−{(3,5−ジ−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]−4−[3−(3,5−ジ−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−2,2,6,6−テトラメチルピペラジル、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、1−[2−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]−4−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}−2,2,6,6−テトラメチルピペリジン、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、等を挙げることができる。
中でも、分子中のフェノール環にt−ブチル基を1個以上有するものが好ましく、中でも、当該t−ブチル基がフェノール性水酸基の隣接した位置に結合したもの(即ち、水酸基に対してオルト位にt−ブチル基が結合したもの)がより好適である。それらの中でも、そのt−ブチル基がフェノール性水酸基の隣接した位置に2個結合したもの(即ち、水酸基に対して2位及び6位の位置にt−ブチル基が結合したもの)が特に好ましい。その具体例を挙げると、2,6−ジ−t−ブチルフェノール、2,6−ジ−t−ブチル−4−エチルフェノール、2,6−ジ−t−ブチル−4−メチルフェノール、n−オクタデシル−3−(4’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)プロピオネート等のモノフェノール系酸化防止剤、2,2’−メチレンビス(6−t−ブチル−4−メチルフェノール)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、ペンタエリスリチルテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]等のポリフェノール系酸化防止剤等が好適である。これらを用いることにより、繰返し使用してもかぶりのない電子写真感光体を容易に製造することができる。
また、耐酸性ガス性を向上させるために、公知の置換基を有しても良いアルキルアミン化合物を用いることが可能である。例えば、特開平3−172852号公報、特開2007−52408号公報等に示される化合物を用いることが好ましい。それらの中でも、例えば、トリベンジルアミンを好適に用いることができる。
<その他の機能層>
本発明の積層型感光体では、その最表層に、感光層の損耗を防止し、帯電器等からの発
生する放電物質等による感光層の劣化を防止・軽減する目的で保護層を設けてもよい。保護層は導電性材料を適当な結着樹脂中に含有させて形成するか、特開平9−190004号公報、特開平10−252377号公報の記載のようなトリフェニルアミン骨格等の電荷輸送能を有する化合物を用いた共重合体を用いることが出来る。
保護層に用いる導電性材料としては、TPD(N,N’−ジフェニル−N,N’−ビス−(m−トリル)ベンジジン)等の芳香族アミノ化合物、酸化アンチモン、酸化インジウム、酸化錫、酸化チタン、酸化錫−酸化アンチモン、酸化アルミ、酸化亜鉛等の金属酸化物などを用いることが可能であるが、これに限定されるものではない。
保護層に用いる結着樹脂としてはポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート樹脂、ポリビニルケトン樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂、シロキサン樹脂等の公知の樹脂を用いることができ、また、特開平9−190004号公報記載のようなトリフェニルアミン骨格等の電荷輸送能を有する骨格と上記樹脂の共重合体を用いることも出来る。
保護層の電気抵抗は、通常10Ω・cm以上、1014Ω・cm以下の範囲とする。電気抵抗が該範囲より高くなると、残留電位が上昇しカブリの多い画像となってしまう一方、前記範囲より低くなると、画像のボケ、解像度の低下が生じてしまう。また、保護層は像露光の際に照射される光の透過を実質上妨げないように構成されなければならない。
また、感光体表面の摩擦抵抗や、摩耗を低減、トナーの感光体から転写ベルト、紙への転写効率を高める等の目的で、表面層にフッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂等、又はこれらの樹脂からなる粒子や無機化合物の粒子を含有させても良い。或いは、これらの樹脂や粒子を含む層を新たに表面層として形成しても良い。
<各層の形成方法>
上記した感光体を構成する各層は、含有させる物質を溶剤に溶解または分散させて得られた塗布液を、導電性支持体上に浸漬塗布、スプレー塗布、ノズル塗布、バーコート、ロールコート、ブレード塗布等の公知の方法により、各層ごとに順次塗布・乾燥工程を繰り返すことにより形成される。
塗布液の作製に用いられる溶媒または分散媒に特に制限は無いが、具体例としては、メタノール、エタノール、プロパノール、2−メトキシエタノール等のアルコール類、テトラヒドロフラン、1,4−ジオキサン、ジメトキシエタン等のエーテル類、ギ酸メチル、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、シクロヘキサノン、4−メトキシ−4−メチル−2−ペンタノン等のケトン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、テトラクロロエタン、1,2−ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類、n−ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン等の含窒素化合物類、アセトニトリル、N−メチルピロリドン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等が挙げられる。また、これらは1種を単独で用いてもよいし、2種以上を任意の組み合わせおよび種類で併用してもよい。
溶媒または分散媒の使用量は特に制限されないが、各層の目的や選択した溶媒・分散媒の性質を考慮して、塗布液の固形分濃度や粘度等の物性が所望の範囲となるように適宜調整するのが好ましい。
例えば、積層型感光体の電荷輸送層の場合には、塗布液の固形分濃度を通常5質量%以上、好ましくは10質量%以上、また、通常40質量%以下、好ましくは35質量%以下の範囲とする。また、塗布液の粘度を使用時の温度において通常10mPa・s以上、好
ましくは50mPa・s以上、また、通常500mPa・s以下、好ましくは400mPa・s以下の範囲とする。
また、積層型感光体の電荷発生層の場合には、塗布液の固形分濃度は、通常0.1質量%以上、好ましくは1質量%以上、また、通常15質量%以下、好ましくは10質量%以下の範囲とする。また、塗布液の粘度は、使用時の温度において、通常0.01mPa・s以上、好ましくは0.1mPa・s以上、また、通常20mPa・s以下、好ましくは10mPa・s以下の範囲とする。
これらの感光体を構成する各層は、前記方法により得られた塗布液を、支持体上に公知の塗布方法を用い、各層ごとに塗布・乾燥工程を繰り返し、順次塗布していくことにより形成される。塗布液の塗布方法としては、浸漬コーティング法、スプレーコーティング法、スピナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、エアーナイフコーティング法、カーテンコーティング法等が挙げられるが、他の公知のコーティング法を用いることも可能である。
塗布液の乾燥は、室温における指触乾燥後、通常30℃以上、200℃以下の温度範囲で、1分から2時間の間、静止又は送風下で加熱乾燥させることが好ましい。また、加熱温度は一定であってもよく、乾燥時に温度を変更させながら加熱を行っても良い。
<トナー>
本発明の電子写真感光体を用いて画像形成を行う場合、潜像を現像するために現像剤であるトナーを用いる。このようにトナーを用いることにより、本発明の画像形成装置は高画質の画像を形成することができるようになっている。
<トナーの円形度>
トナーの形状は、トナーを構成する粒子群に含まれる各粒子の形状が、互いに近いものであって、球形に近いほどトナーの粒子内での帯電量の局在化が起こりにくく、現像性が均一になる傾向にあり、画像品質を高める上で好ましい。特に、トナーの形状が完全な球形に近い形状となれば、電子写真感光体との接触面積が小さくなり、トナーの転写率が高まり、トナーの消費量を低減することが可能となる場合がある。一方で、完全な球状トナーを作ることは製造上困難であり、トナーが高コスト化するため、一定以上の条件で球に近ければよく、完全な球である必要は無い。
したがって、具体的には、トナーは、フロー式粒子像分析装置によって測定される平均円形度が、通常0.940以上、好ましくは0.945以上、より好ましくは0.950以上、更に好ましくは0.955以上、特に好ましくは0.960以上である。また、前記平均円形度の上限は1.000以下であれば制限は無いが、生産の容易さの観点から、好ましくは0.998以下、より好ましくは0.995以下である。
なお、前記の平均円形度は、トナーの粒子の形状を定量的に表現する簡便な方法として用いたものであり、本発明ではシスメックス社製フロー式粒子像分析装置FPIA−2000を用いて測定を行い、測定された粒子の円形度〔a〕を下式(X)により求めるものとする。
円形度a=L0/L・・・・・・(X)
(式(X)中、L0は粒子像と同じ投影面積を持つ円の周囲長を示し、Lは画像処理したときの粒子像の周囲長を示す。)
前記の円形度は、トナー粒子の凹凸の度合いの指標であり、トナーが完全な球形の場合1.000を示し、表面形状が複雑になるほど円形度は小さな値となる。
平均円形度の具体的な測定方法としては、以下の通りである。即ち、予め容器中の不純物を除去した水20mL中に分散剤として界面活性剤(好ましくはアルキルベンゼンスルホン酸塩)を加え、更に測定試料(トナー)を0.05g程度加える。この試料を分散した懸濁液に超音波を30秒照射し、分散液濃度を3.0〜8.0千個/μL(マイクロリットル)として、上記フロー式粒子像測定装置を用い、0.60μm以上160μm未満の円相当径を有する粒子の円形度分布を測定する。
<トナーの種類>
トナーは、上記の平均円形度を有する限り他に制限は無い。トナーの種類は、通常はその製造方法に応じて様々なものが得られるが、トナーとしては、いずれを用いることも可能である。
以下、トナーの製造方法とともに、そのトナーの種類を説明する。
トナーは、従前公知のどのような方法で製造しても構わず、例えば重合法や溶融懸濁法などにより製造されるトナーが挙げられ、更には、いわゆる粉砕トナーを熱などの処理により球形化したものも用いることができるが、水系媒体中でトナー粒子を生成する、いわゆる重合法により製造されるトナーが好ましい。
いわゆる重合法によるトナーの製造方法としては、特公昭36−10231号公報、特開昭59−53856号公報、特開昭59−61842号公報に述べられている懸濁重合方法を用いて直接トナーを生成する方法や、単量体には可溶で得られる重合体が不溶な水系有機溶剤を用い直接トナーを生成する分散重合方法または水溶性極性重合開始剤存在下で直接重合しトナーを生成するソープフリー重合方法に代表される乳化重合方法等を用いトナーを製造することが可能である。重合法トナーとしては、例えば、懸濁重合法トナー、乳化重合凝集法トナーなどが挙げられる。
また、トナーの離型性、低温定着性、高温オフセット性、耐フィルミング性などを改良するために、トナーに低軟化点物質(いわゆるワックス)を含有させる方法が提案されている。溶融混練粉砕法では、トナーに含まれるワックスの量を増やすのは難しく、重合体(バインダ樹脂)に対して5質量%程度が限界とされている。それに対して、重合トナーでは、低軟化点物質を多量(5〜30質量%)に含有させることが可能である。なお、ここでいう重合体は、トナーを構成する材料の一つであり、例えば後述する乳化重合凝集法により製造されるトナーの場合、重合性単量体が重合して得られるものである。
トナーの平均円形度を0.940以上にコントロールでき、比較的容易に粒度分布がシャープで3〜8μm粒径の微粒子トナーを得る方法として、例えば、常圧下での、または、加圧下での懸濁重合方法や、乳化重合凝集法が挙げられる。
懸濁重合法を用いてトナーを製造する場合、低軟化点物質を内包化せしめる具体的方法としては、水系媒体中での物質の極性を主要単量体より低軟化点物質の方を小さく設定し、さらに少量の極性の大きな樹脂または単量体を添加せしめることで低軟化点物質を外殻樹脂で被覆したいわゆるコア/シェル構造を有するトナーを得ることができる。トナーの粒度分布制御や粒径の制御は、難水溶性の無機塩や保護コロイド作用をする分散剤の種類や添加量を変える方法や機械的装置条件、例えば、ローターの周速・パス回数・撹拌羽根形状等の撹拌条件や容器形状または、水溶液中での固形分濃度等を制御することにより所定のトナーを得ることができる。
本発明に用いられるトナーの外殻樹脂としては、一般的に用いられているスチレン−(メタ)アクリル共重合体、ポリエステル樹脂、エポキシ樹脂、スチレン−ブタジエン共重合体を利用することができる。重合法により直接トナーを得る方法においては、それらの単量体が好ましく用いられる。
具体的には、スチレン、o(m−、p−)−メチルスチレン、m(p−)−エチルスチ
レン等のスチレン系単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベヘニル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル等の(メタ)アクリル酸エステル系単量体;ブタジエン、イソプレン、シクロヘキセン、(メタ)アクリロニトリル、アクリル酸アミド等のエン系単量体が好ましく用いられる。
これらは、単独または一般的には出版物ポリマーハンドブック第2版III−P139〜192(JohnWiley&Sons社製)に記載の理論ガラス転移温度(Tg)が、40〜75℃を示すように単量体を適宜混合し用いられる。理論ガラス転移温度が40℃未満の場合には、トナーの保存安定性や現像剤の耐久安定性の面から問題が生じ、一方75℃を越える場合は定着点の上昇をもたらし、特にフルカラートナーの場合においては各色トナーの混色が不十分となり色再現性に乏しく、さらにOHP画像の透明性を著しく低下させ高画質の面から好ましくない。
外殻樹脂の分子量は、GPC(ゲルパーミエーションクロマトグラフィー)により測定される。具体的なGPCの測定方法としては、予めトナーをソックスレー抽出器を用いトルエン溶剤で20時間抽出を行った後、ロータリーエバポレーターでトルエンを留去せしめ、さらに低軟化点物質は溶解するがシェル用樹脂は溶解し得ない有機溶剤、たとえばクロロホルム等を加え十分洗浄を行った後、THF(テトラヒドロフラン)に可溶した溶液をポア径が0.3μmの耐溶剤性メンブランフィルターでろ過したサンプルをウォーターズ社製150Cを用い、カラム構成は昭和電工製A−801,802,803,804,805,806,807を連結し標準ポリスチレン樹脂の検量線を用い分子量分布を測定し得る。
得られた樹脂成分の数平均分子量(Mn)は、5000〜1000000であり、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、2〜100を示す外殻樹脂が本発明には好ましい。
本発明においては、コア/シェル構造を有するトナーを製造する場合、外殻樹脂で低軟化点物質を内包化せしめるため、外殻樹脂の他にさらに極性樹脂を添加せしめることが特に好ましい。本発明に用いられる極性樹脂としては、スチレンと(メタ)アクリル酸の共重合体、マレイン酸共重合体、飽和ポリエステル樹脂、エポキシ樹脂が好ましく用いられる。該極性樹脂は、シェル樹脂または単量体と反応しうる不飽和基を分子中に含まないものが特に好ましい。仮に不飽和基を有する極性樹脂を含む場合においてはシェル樹脂層を形成する単量体と架橋反応が起き、特に、フルカラー用トナーとしては、極めて高分子量になり四色トナーの混色には不利となり好ましくない。
また、本発明においては、外殻構造を有するトナーの表面にさらに重ねて重合法により最外殻樹脂層を設けても良い。
上述の最外殻樹脂層のガラス転移温度は、耐ブロックキング性のさらなる向上のため外殻樹脂層のガラス転移温度以上に設計されること、さらに定着性を損なわない程度に架橋されていることが好ましい。また、該最外殻樹脂層には帯電性向上のため極性樹脂や荷電制御剤が含有されていることが好ましい。
また、最外殻樹脂層を設ける方法としては、特に限定されるものではないが、例えば以下のような方法が挙げられる。
1.重合反応後半、または終了後、反応系中に必要に応じて、極性樹脂、荷電制御剤、架橋剤等を溶解、分散したモノマーを添加し重合粒子に吸着させ、重合開始剤を添加し重合を行う方法。
2.必要に応じて、極性樹脂、荷電制御剤、架橋剤等を含有したモノマーからなる乳化重合粒子またはソープフリー重合粒子を反応系中に添加し、重合粒子表面に凝集、必要に応じて熱等により固着させる方法。
3.必要に応じて、極性樹脂、荷電制御剤、架橋剤等を含有したモノマーからなる乳化重合粒子またはソープフリー重合粒子を乾式で機械的にトナー粒子表面に固着させる方法。
本発明に用いられる着色剤は、黒色着色剤としてカーボンブラック、磁性体、以下に示すイエロー/マゼンタ/シアン着色剤を用い黒色に調色されたものが利用される。イエロー着色剤としては、縮合アゾ化合物、イソインドリノン化合物、アンスラキノン化合物、アゾ金属錯体、メチン化合物、アリルアミド化合物に代表される化合物が用いられる。具体的には、C.I.ピグメントイエロー12,13,14,15,17,62,74,83,93,94,95,109,110,111,128,129,147、168、等が好適に用いられる。
マゼンタ着色剤としては、縮合アゾ化合物、ジケトピロロピロール化合物、アンスラキノン、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物が用いられる。具体的には、C.I.ピグメントレット2,3,5,6,7,23,48;2,48;3、48;4,57;1,81;1,144,146,166,169,177,184,185,202,206,220,221,254が特に好ましい。
本発明に用いられるシアン着色剤としては、銅フタロシアニン化合物およびその誘導体、アンスラキノン化合物、塩基染料レーキ化合物等が利用できる。具体的には、C.I.ピグメントブルー1,7,15,15:1,15:2,15;3,15:4,60,62,66等が特に好適に利用できる。これらの着色剤は、単独または混合しさらには固溶体の状態で用いることができる。
本発明の着色剤は、カラートナーの場合、色相角、彩度、明度、耐候性、OHP透明性、トナー中への分散性の点から選択される。該着色剤の添加量は、樹脂100質量部に対し1〜20質量部添加して用いられる。黒色着色剤として磁性体を用いた場合には、他の着色剤と異なり樹脂100質量部に対し40〜150質量部添加して用いられる。
本発明に用いられる荷電制御剤としては、公知のものが利用できるが、カラートナーの場合は、特に、無色でトナーの帯電スピードが速く且つ一定の帯電量を安定して維持できる荷電制御剤が好ましい。さらに本発明において直接重合方法を用いる場合には、重合阻害性が無く水系への可溶化物の無い荷電制御剤が特に好ましい。
具体的化合物としては、ネガ系としてサリチル酸、ナフトエ酸、ダイカルボン酸の金属化合物、スルホン酸、カルボン酸を側鎖に持つ高分子型化合物、ホウ素化合物、尿素化合物、ケイ素化合物、カリークスアレーン等が利用でき、ポジ系として四級アンモニウム塩、該四級アンモニウム塩を側鎖に有する高分子型化合物、グアニジン化合物、イミダゾール化合物等が好ましく用いられる。該荷電制御剤は樹脂100質量部に対し0.5〜10質量部とすることが好ましい。しかしながら、本発明において荷電制御剤の添加は必須ではない。
本発明で直接重合方法を利用する場合には、重合開始剤として、たとえば、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリル等のア
ゾ系重合開始剤、ベンゾイルペルオキシド、メチルエチルケトンペルオキシド、ジイソプロピルペルオキシカーボネート、クメンヒドロペルオキシド、2,4−ジクロロベンゾイルペルオキシド、ラウロイルペルオキシド等の過酸化物系重合開始剤が用いられる。
該重合開始剤の添加量は、目的とする重合度により変化するが一般的には単量体に対し0.5〜20質量%添加され用いられる。開始剤の種類は、重合方法により若干異なるが、十時間半減期温度を参考に、単独または混合し利用される。重合度を制御するため公知の架橋剤・連鎖移動剤・重合禁止剤等をさらに添加し用いることも可能である。
本発明に用いられるトナー製造方法として懸濁重合を利用する場合には、用いる分散剤として、例えば無機系酸化物として、リン酸三カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウム、ベントナイト、シリカ、アルミナ、磁性体、フェライト等が挙げられる。有機系化合物としては、例えば、ポリビニルアルコール、ゼラチン、メチルセルロース、メチルヒドロキシプロピルセルロース、エチルセルロースCカルボキシメチルセルロースのナトリウム塩、デンプン等が水相に分散させて使用される。これら分散剤は、重合性単量体100質量部に対して0.2〜10.0質量部を使用することが好ましい。
これら分散剤は、市販のものをそのまま用いても良いが、細かい均一な粒度を有す分散粒子を得るために、分散媒体中にて高速撹拌下にて該無機化合物を生成させることもできる。例えば、リン酸三カルシウムの場合、高速撹拌下において、リン酸ナトリウム水溶液と塩化カルシウム水溶液を混合することで懸濁重合方法に好ましい分散剤を得ることができる。またこれら分散剤の微細化のため0.001〜0.1質量部の界面活性剤を併用しても良い。具体的には市販のノニオン、アニオン、カチオン型の界面活性剤が利用でき、例えば、ドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸カリウム、オレイン酸カルシウム等が好ましく用いられる。
本発明に用いられるトナーの製造方法として直接重合方法を用いる場合には、以下の如き製造方法によって具体的にトナーを製造することが可能である。単量体中に低軟化物質からなる離型剤、着色剤、荷電制御剤、重合開始剤その他の添加剤を加え、ホモジナイザー・超音波分散機等によって均一に溶解または分散せしめた単量体組成物を、分散安定剤を含有する水相中に通常の撹拌機またはホモミキサー、ホモジナイザー等により分散せしめる。好ましくは単量体組成物からなる液滴が所望のトナー粒子のサイズを有するように撹拌速度・時間を調整し、造粒する。その後は分散安定剤の作用により、粒子状態が維持され、且つ粒子の沈降が防止される程度の撹拌を行えば良い。
重合温度は40℃以上、一般的には50〜90℃の温度に設定して重合を行う。また、重合反応後半に昇温しても良く、さらに、耐久特性向上の目的で、未反応の重合性単量体、副生成物等を除去するために反応後半、または、反応終了後に一部水系媒体を留去しても良い。反応終了後、生成したトナー粒子を洗浄・ろ過により回収し、乾燥する。懸濁重合法においては、通常単量体系100質量部に対して水300〜3000質量部を分散媒体として使用するのが好ましい。
また、本発明におけるトナーは分級して粒度分布を制御しても良く、その方法として好ましくは、慣性力を利用した多分割分級装置を用いる。この装置を用いることにより、本発明の粒度分布を有するトナーを効率的に製造できる。
乳化重合凝集法によりトナーを製造する場合、その製造工程としては、通常、重合工程、混合工程、凝集工程、融合工程、洗浄・乾燥工程を行う。即ち、一般的には乳化重合により重合体一次粒子を得て(重合工程)、その重合体一次粒子を含む分散液に、必要に応
じ、着色剤(顔料)、ワックス、帯電制御剤等の分散体を混合し(混合工程)、この分散液中に凝集剤を加えて一次粒子を凝集させて粒子凝集体とし(凝集工程)、必要に応じて微粒子等を付着する操作を行い、その後に融合させて粒子を得て(融合工程)、得られた粒子を洗浄、乾燥することにより(洗浄・乾燥工程)、母粒子が得られる。
<重合工程>
重合体の微粒子(重合体一次粒子)としては、特に限定されない。したがって、液状媒体中で重合性単量体を、懸濁重合法、乳化重合法等により重合させて得られる微粒子、樹脂等の重合体の塊を粉砕することによって得られる微粒子のいずれを重合体一次粒子として用いてもよい。ただし、重合法、特に乳化重合法、なかでも乳化重合におけるシードとしてワックスを用いたものが好ましい。乳化重合におけるシードとしてワックスを用いると、重合体がワックスを包み込んだ構造の微粒子を重合体一次粒子として製造することができる。この方法によれば、ワックスをトナーの表面に露出させず、トナー内に含有させることができる。このため、ワックスによる装置部材の汚染がなく、また、トナーの帯電性を損なうこともなく、かつ、トナーの低温定着性や高温オフセット性、耐フィルミング性、離型性等を向上させることができる。
以下、ワックスをシードとして乳化重合を行い、これにより重合体一次粒子を得る方法について説明する。
乳化重合法としては、従来より知られている方法に従って行えばよい。通常は、ワックスを乳化剤の存在下で液状媒体に分散してワックス微粒子とし、これに重合開始剤、重合により重合体を与える重合性単量体(即ち、重合性の炭素−炭素二重結合を有する化合物)、並びに、必要に応じて連鎖移動剤、pH調整剤、重合度調節剤、消泡剤、保護コロイド、及び内添剤等を混合、撹拌して重合を行う。これにより、重合体がワックスを包み込んだ構造を有する重合体の微粒子(即ち、重合体一次粒子)が液状媒体に分散したエマルジョンが得られる。なお、重合体がワックスを包み込んだ構造としては、コアシェル型、相分離型、オクルージョン型などが挙げられるが、コアシェル型が好ましい。
(i.ワックス)
ワックスとしては、この用途に用い得ることが知られている任意のものを用いることができる。例えば、低分子量ポリエチレン、低分子量ポリプロピレン、共重合ポリエチレン等のオレフィン系ワックス;パラフィンワックス;アルキル基を有するシリコーンワックス;低分子量ポリテトラフルオロエチレン等のフッ素樹脂系ワックス;ステアリン酸等の高級脂肪酸;エイコサノール等の長鎖脂肪族アルコール;ベヘン酸ベヘニル、モンタン酸エステル、ステアリン酸ステアリル等の長鎖脂肪族基を有するエステル系ワックス;ジステアリルケトン等の長鎖アルキル基を有するケトン類;水添ひまし油、カルナバワックス等の植物系ワックス;グリセリン、ペンタエリスリトール等の多価アルコールと長鎖脂肪酸より得られるエステル類または部分エステル類;オレイン酸アミド、ステアリン酸アミド等の高級脂肪酸アミド;低分子量ポリエステルなどが挙げられる。中でも、示差熱分析(DSC)による吸熱ピークを50〜100℃に少なくとも1つ有するものが好ましい。
また、ワックスの中でも、例えば、エステル系ワックス、パラフィンワックス、低分子量ポリプロピレン、共重合ポリエチレン等のオレフィン系ワックス、シリコーンワックス等は、少量で離型性の効果が得られるので好ましい。特に、パラフィンワックスが好ましい。なお、ワックスは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
ワックスを用いる場合、その使用量は任意である。ただし、重合体100質量部に対して、ワックスを通常3質量部以上、好ましくは5質量部以上、また、通常40質量部以下、好ましくは30質量部以下とすることが望ましい。ワックスが少なすぎると定着温度幅
が不十分となる可能性があり、多すぎると装置部材を汚染して画質の低下が生じる可能性がある。
(ii.乳化剤)
乳化剤に制限は無く、本発明の効果を著しく損なわない範囲で任意のものを使用することができる。例えば、非イオン性、アニオン性、カチオン性、及び両性のいずれの界面活性剤も用いることができる。
非イオン性界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル等のポリオキシアルキレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル等のポリオキシアルキレンアルキルフェニルエーテル類、ソルビタンモノラウレート等のソルビタン脂肪酸エステル類等が挙げられる。
また、アニオン性界面活性剤としては、例えば、ステアリン酸ナトリウム、オレイン酸ナトリウム等の脂肪酸塩類、ドデシルベンゼンスルホン酸ナトリウム等のアルキルアリールスルホン酸塩類、ラウリル硫酸ナトリウム等のアルキル硫酸エステル塩類等が挙げられる。
さらに、カチオン系界面活性剤としては、例えば、ラウリルアミンアセテート等のアルキルアミン塩類、ラウリルトリメチルアンモニウムクロリド等の4級アンモニウム塩類等が挙げられる。
また、両性界面活性剤としては、例えば、ラウリルベタイン等のアルキルベタイン類等が挙げられる。
これらの中でも、非イオン性界面活性剤、アニオン系界面活性剤が好ましい。なお、乳化剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
さらに、乳化剤の配合量も本発明の効果を著しく損なわない限り任意であるが、重合性モノマー100質量部に対して、乳化剤を、通常1〜10質量部の割合で用いる。
(iii.液状媒体)
液状媒体としては、通常は水系媒体を用い、特に好ましくは水を用いる。ただし、液状媒体の質は液状媒体中の粒子の再凝集による粗大化にも関係し、液状媒体の導電率が高いと経時の分散安定性が悪化する傾向がある。したがって、液状媒体として水等の水系媒体を使用する場合、導電率を、通常10μS/cm以下、好ましくは5μS/cm以下となるように脱塩処理されたイオン交換水あるいは蒸留水を用いることが好ましい。なお、導電率の測定は、導電率計(横河電機社製のパーソナルSCメータモデルSC72と検出器SC72SN−11)を用いて25℃下で測定を行う。
また、液状媒体の使用量に制限は無いが、重合性単量体に対して、通常1〜20質量倍程度の量を用いる。
この液状媒体に、乳化剤の存在下で前記ワックスを分散させることにより、ワックス微粒子を得る。乳化剤及びワックスを液状媒体に配合する順は任意であるが、通常は、まず乳化剤を液状媒体に配合し、その後、ワックスを混合する。また、乳化剤は連続的に液状媒体に配合してもよい。
(iv.重合開始剤)
上記のワックス微粒子を調製した後、液状媒体に、重合開始剤を配合する。重合開始剤としては本発明の効果を著しく損なわない限り任意のものを用いることができる。その例を挙げると、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩類;t−ブチルヒドロパーオキシド、クメンヒドロパーオキシド、p−メンタンヒドロパーオキシド等の有機過酸化物類;過酸化水素等の無機過酸化物類などが挙げられる。中でも、無機過酸化物類が好ましい。なお、重合開始剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比
率で併用してもよい。
さらに、重合開始剤の他の例としては、過硫酸塩類、有機又は無機過酸化物類と、アスコルビン酸、酒石酸、クエン酸等の還元性有機化合物類、チオ硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウム等の還元性無機化合物類などとを併用して、レドックス系開始剤とすることもできる。この場合、還元性無機化合物類は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、重合開始剤の使用量にも制限は無く任意である。ただし、重合開始剤は、重合性単量体100質量部に対して、通常0.05〜2質量部の割合で用いられる。
(v.重合性単量体)
上記のワックス微粒子を調製した後、液状媒体には、前記の重合開始剤の他に、重合性単量体を配合する。重合性単量体に特に制限は無いが、例えば、スチレン類、(メタ)アクリル酸エステル、アクリルアミド類、ブレンステッド酸性基を有する単量体(以下、単に「酸性モノマー」と略記することがある)、ブレンステッド塩基性基を有する単量体(以下、単に「塩基性モノマー」と略記することがある)等の単官能性モノマーが主として用いられる。また、単官能性のモノマーに多官能性のモノマーを併用することもできる。
スチレン類としては、例えば、スチレン、メチルスチレン、クロロスチレン、ジクロロスチレン、p−tert−ブチルスチレン、p−n−ブチルスチレン、p−n−ノニルスチレン等が挙げられる。
また、(メタ)アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸ヒドロキシエチル、アクリル酸−2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸ヒドロキシエチル、メタクリル酸−2−エチルヘキシル等が挙げられる。
アクリルアミド類としては、アクリルアミド、N−プロピルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジプロピルアクリルアミド、N,N−ジブチルアクリルアミド等が挙げられる。
さらに、酸性モノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、ケイ皮酸等のカルボキシル基を有するモノマー;スルホン化スチレン等のスルホン酸基を有するモノマー;ビニルベンゼンスルホンアミド等のスルホンアミド基を有するモノマーなどが挙げられる。
また、塩基性モノマーとしては、例えば、アミノスチレン等のアミノ基を有する芳香族ビニル化合物、ビニルピリジン、ビニルピロリドン等の含窒素複素環含有モノマー;ジメチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート等のアミノ基を有する(メタ)アクリル酸エステルなどが挙げられる。
なお、酸性モノマー及び塩基性モノマーは、対イオンを伴って塩として存在していてもよい。
さらに、多官能性モノマーとしては、例えば、ジビニルベンゼン、ヘキサンジオールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ネオペンチルグリコールジアクリレート、ジアリルフタレート等が挙げられる。また、グリシジルメタクリレート、N−メチロールアクリルアミド、アクロレイン等の反応性基を有するモノマーを用いることも可能である。中でもラジカル重合性の二官能性モノマー、特に、ジビニルベンゼン、ヘキサンジオールジアクリレートが好ましい。
これらの中でも、重合性単量体としては、少なくともスチレン類、(メタ)アクリル酸エステル、カルボキシル基を有する酸性モノマーから構成されるのが好ましい。特に、スチレン類としてはスチレンが好ましく、(メタ)アクリル酸エステル類としてはアクリル酸ブチルが好ましく、カルボキシル基を有する酸性モノマーとしてはアクリル酸が好ましい。
なお、重合性単量体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
ワックスをシードとして乳化重合を行う際には、酸性モノマー又は塩基性モノマーと、これら以外のモノマーとを併用するのが好ましい。酸性モノマー又は塩基性モノマーを併用することにより、重合体一次粒子の分散安定性を向上させることができるからである。
この際、酸性モノマー又は塩基性モノマーの配合量は任意であるが、全重合性単量体100質量部に対する酸性モノマー又は塩基性モノマーの使用量を、通常0.05質量部以上、好ましくは0.5質量部以上、より好ましくは1質量部以上、また、通常10質量部以下、好ましくは5質量部以下となるようにすることが望ましい。酸性モノマー又は塩基性モノマーの配合量が上記範囲を下回ると重合体一次粒子の分散安定性が悪化する可能性があり、上限を上回るとトナーの帯電性に悪影響を及ぼす可能性がある。
また、多官能性モノマーを併用する場合、その配合量は任意であるが、重合性単量体100質量部に対する多官能性モノマーの配合量は、通常0.005質量部以上、好ましくは0.1質量部以上、より好ましくは0.3質量部以上、また、通常5質量部以下、好ましくは3質量部以下、より好ましくは1質量部以下である。多官能性モノマーを使用することにより、トナーの定着性を向上させることができる。この際、多官能性モノマーの配合量が上記範囲を下回ると耐高温オフセット性が劣る可能性があり、上限を上回ると低温定着性が劣る可能性がある。
液状媒体へ重合性単量体を配合する方法は特に限定されず、例えば、一括添加、連続添加、間欠添加のいずれでもよいが、反応制御の点からは連続的に配合するのが好ましい。また、複数の重合性単量体を併用する場合、各重合性単量体は、別々に配合してもよく、また予め混合してから配合してもよい。更には、単量体混合物の組成を変化させながら配合してもよい。
(vi.連鎖移動剤等)
上記のワックス微粒子を調製した後、液状媒体には、前記の重合開始剤及び重合性単量体の他に、必要に応じて、連鎖移動剤、pH調整剤、重合度調節剤、消泡剤、保護コロイド、内添剤などの添加剤を配合する。これらの添加剤は本発明の効果を著しく損なわない限り任意のものを用いることができる。また、これらの添加剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
連鎖移動剤としては、公知の任意のものを使用することができる。具体例を挙げると、t−ドデシルメルカプタン、2−メルカプトエタノール、ジイソプロピルキサントゲン、四塩化炭素、トリクロロブロモメタン等が挙げられる。また、連鎖移動剤は、重合性単量体100質量部に対して、通常5質量部以下の割合で用いられる。
さらに、保護コロイドとしては、この用途に用い得ることが知られている任意のものを使用することができる。具体例を挙げると、部分又は完全ケン化ポリビニルアルコール等のポリビニルアルコール類、ヒドロキシエチルセルロース等のセルロース誘導体類等などが挙げられる。
また、内添剤としては、例えば、シリコーンオイル、シリコーンワニス、フッ素系オイ
ル等のトナーの粘着性、凝集性、流動性、帯電性、表面抵抗等を改質するためのものが挙げられる。
(vii.重合体一次粒子)
ワックス微粒子を含む液状媒体に重合開始剤及び重合性単量体、並びに、必要に応じて添加剤を混合し、撹拌し、重合させることにより、重合体一次粒子を得る。この重合体一次粒子は、液状媒体中にエマルションの状態で得ることができる。
重合開始剤、重合性単量体、添加剤などを液状媒体に混合する順番に制限は無い。また、混合、撹拌の方法なども制限は無く、任意である。
さらに、重合(乳化重合反応)の反応温度も反応が進行する限り任意である。但し、重合温度は、通常50℃以上、好ましくは60℃以上、より好ましくは70℃以上、また、通常120℃以下、好ましくは100℃以下、より好ましくは90℃以下である。
重合体一次粒子の体積平均粒径に特に制限は無いが、通常0.02μm以上、好ましくは0.05μm以上、より好ましくは0.1μm以上、また、通常3μm以下、好ましくは2μm以下、より好ましくは1μm以下である。体積平均粒径が小さすぎると、凝集速度の制御が困難となる場合があり、また、体積平均粒径が大きすぎると、凝集して得られるトナーの粒径が大きくなり易く、目的とする粒径のトナーを得ることが困難となる場合がある。なお、体積平均粒径は、後述する動的光散乱法を用いた粒度分析計で測定することができる。
本発明においては、体積粒度分布は動的光散乱法により測定される。この方式は、微小に分散された粒子のブラウン運動の速さを、粒子にレーザー光を照射してその速度に応じた位相の異なる光の散乱(ドップラーシフト)を検出して粒度分布を求めるものである。実際の測定では、上記の体積粒径については、動的光散乱方式を用いた超微粒子粒度分布測定装置(日機装社製、UPA−EX150、以下UPA−EXと略す)を用いて、以下の設定にて行う。
測定上限 :6.54μm
測定下限 :0.0008μm
チャンネル数:52
測定時間 :100sec.
測定温度 :25℃
粒子透過性 :吸収
粒子屈折率 :N/A(適用しない)
粒子形状 :非球形
密度 :1g/cm
分散媒種類 :WATER
分散媒屈折率:1.333
なお、測定時は、サンプル濃度指数が0.01〜0.1の範囲になるように粒子の分散体を液状媒体で希釈し、超音波洗浄器で分散処理した試料で測定する。そして、本発明にかかわる体積平均粒子径は、上記の体積粒度分布の結果を算術平均値として計測される。
また、重合体一次粒子を構成する重合体は、ゲルパーミエーションクロマトグラフィーにおけるピーク分子量のうち少なくとも1つが、通常3000以上、好ましくは1万以上、より好ましくは3万以上、また、通常10万以下、好ましくは7万以下、より好ましくは6万以下に存在することが望ましい。ピーク分子量が前記範囲にある場合、トナーの耐久性、保存性、定着性が良好となる傾向がある。ここで、前記のピーク分子量とは、ポリスチレン換算した値を用いるものとし、測定に際しては溶媒に不溶の成分を除くものとする。ピーク分子量は、後述するトナーの場合と同様に測定することが可能である。
特に、前記の重合体がスチレン系樹脂である場合には、重合体のゲルパーミエーションクロマトグラフィーにおける数平均分子量は、下限が通常2000以上、好ましくは2500以上、より好ましくは3000以上、また上限は、通常5万以下、好ましくは4万以下、より好ましくは3.5万以下である。さらに、重合体の重量平均分子量は、下限が通常2万以上、好ましくは3万以上、より好ましくは5万以上、また上限は、通常100万以下、好ましくは50万以下である。数平均分子量、重量平均分子量の少なくとも一方、好ましくは双方が前記の範囲に収まるスチレン系樹脂を重合体として用いた場合、得られるトナーは、耐久性、保存性、定着性が良好となるからである。さらに分子量分布において、メインピークが2つあるものでもよい。なお、スチレン系樹脂とは、スチレン類が全重合体中の通常50質量%以上、好ましくは65質量%以上を占めるものを指す。
また、重合体の軟化点(以下「Sp」と略記することがある)は、通常150℃以下、好ましくは140℃以下であることが低エネルギー定着の点から好ましく、また、通常80℃以上、好ましくは100℃以上であることが耐高温オフセット性、耐久性の点で好ましい。ここで重合体の軟化点は、フローテスターにおいて、試料1.0gをノズル1mm×10mm、荷重30kg、予熱時間50℃で5分、昇温速度3℃/分の条件下で測定を行ったときの、フロー開始から終了までのストランドの中間点での温度として求めることができる。
さらに、重合体のガラス転移温度〔Tg〕は、通常80℃以下、好ましくは70℃以下である。重合体のガラス転移温度〔Tg〕が高すぎると低エネルギー定着ができなくなる可能性がある。また、重合体のガラス転移温度〔Tg〕の下限は、通常40℃以上、好ましくは50℃以上である。重合体のガラス転移温度〔Tg〕が低すぎると耐ブロッキング性が低下する可能性がある。ここで重合体のガラス転移温度〔Tg〕は、示差走査熱量計において、昇温速度10℃/分の条件で測定した曲線の転移(変曲)開始部に接線を引き、2つの接線の交点の温度として求めることができる。
重合体の軟化点及びガラス転移温度〔Tg〕は、重合体の種類およびモノマー組成比、分子量等を調整することによって前記範囲とすることができる。
<混合工程及び凝集工程>
前記の重合体一次粒子が分散したエマルジョンに、顔料粒子を混合し、凝集させることにより、重合体、顔料を含む凝集体(凝集粒子)のエマルジョンを得る。この際、顔料は、予め液状媒体に界面活性剤等を用いて均一に分散させた顔料粒子分散体を用意し、これを重合体一次粒子のエマルジョンに混合することが好ましい。この際、顔料粒子分散体の液状媒体として通常は水等の水系溶媒を使用し、顔料粒子分散体を水系分散体として用意する。また、その際には、必要に応じてワックス、帯電制御剤、離型剤、内添剤等をエマルジョンに混合してもよい。また、顔料粒子分散体の安定性を保持するために、上述した乳化剤を加えてもよい。
重合体一次粒子としては、乳化重合により得た前記の重合体一次粒子を使用することができる。この際、重合体一次粒子は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。さらに、上述した乳化重合とは異なる原料や反応条件で製造した重合体一次粒子(以下適宜「併用重合体粒子」という)を併用してもよい。
併用重合体粒子としては、例えば、懸濁重合や粉砕で得られた微粒子などが挙げられる。このような併用重合体粒子の材料としては樹脂を使用できるが、この樹脂としては、上述の乳化重合に供する単量体の(共)重合体の他に、例えば、酢酸ビニル、塩化ビニル、ビニルアルコール、ビニルブチラール、ビニルピロリドン等のビニル系単量体の単独重合体または共重合体、飽和ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリフェニレンエーテル樹
脂などの熱可塑性樹脂、及び、不飽和ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、ウレタン樹脂、ロジン変性マレイン酸樹脂などの熱硬化性樹脂などが挙げられる。なお、これらの併用重合体粒子も、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。ただし、併用重合体粒子の割合は、重合体一次粒子及び併用重合体粒子の重合体の合計に対して、通常5質量%以下、好ましくは4質量%以下、より好ましくは3質量%以下である。
また、顔料に制限は無く、その用途に応じて任意のものを用いることができる。ただし、顔料は通常は着色剤粒子として粒子状で存在するが、この顔料の粒子は、乳化重合凝集法における重合体一次粒子との密度差が小さい方が好ましい。前記の密度差が小さい方が、重合体一時粒子と顔料とを凝集させた場合に均一な凝集状態が得られ、従って得られるトナーの性能が向上するからである。なお、重合体一次粒子の密度は、通常は1.1〜1.3g/cmである。
前記の観点から、JIS K 5101−11−1:2004に規定されるピクノメーター法で測定される顔料粒子の真密度は、通常1.2g/cm以上、好ましくは1.3g/cm以上、また、通常2.0g/cm未満、好ましくは1.9g/cm以下、より好ましくは1.8g/cm以下である。顔料の真密度が大きすぎる場合は、特に液状媒体中での沈降性が悪化する傾向にある。加えて、保存性、昇華性などの課題も考慮すると、顔料はカーボンブラックあるいは有機顔料であるのが好ましい。
以上の条件を満たす顔料の例示としては、以下に示すイエロー顔料、マゼンタ顔料及びシアン顔料などが挙げられる。また、黒色顔料としては、カーボンブラック、又は、以下に示すイエロー顔料/マゼンタ顔料/シアン顔料を混合して黒色に調色されたものが利用される。
このうち、黒色顔料として使用されるカーボンブラックは、非常に微細な一次粒子の凝集体として存在し、顔料粒子分散体として分散させたときに、再凝集によるカーボンブラック粒子の粗大化が発生しやすい。カーボンブラック粒子の再凝集の程度は、カーボンブラック中に含まれる不純物量(未分解有機物量の残留程度)の大小と相関が見られ、不純物が多いと分散後の再凝集による粗大化が顕著となる傾向を示す。
不純物量の定量的な評価としては、以下の測定方法で測定されるカーボンブラックのトルエン抽出物の紫外線吸光度が、通常0.05以下、好ましくは0.03以下である。一般に、チャンネル法のカーボンブラックは不純物が多い傾向を示すので、トナーに使用するカーボンブラックとしては、ファーネス法で製造されたものが好ましい。
なお、カーボンブラックの紫外線吸光度(λc)は、次の方法で求める。即ち、まずカーボンブラック3gをトルエン30mLに十分に分散、混合させて、続いてこの混合液をNo.5C濾紙を使用して濾過する。その後、濾液を吸光部が1cm角の石英セルに入れて市販の紫外線分光光度計を用いて波長336nmの吸光度を測定した値(λs)と、同じ方法でリファレンスとしてトルエンのみの吸光度を測定した値(λo)とから、紫外線吸光度はλc=λs−λoで求める。市販の分光光度計としては、例えば島津製作所製紫外可視分光光度計(UV−3100PC)などがある。
また、イエロー顔料としては、例えば、縮合アゾ化合物、イソインドリノン化合物などに代表される化合物が用いられる。具体的には、C.I.ピグメントイエロー12、13、14、15、17、62、74、83、93、94、95、109、110、111、128、129、147、168、180、185等が好適に用いられる。
さらに、マゼンタ顔料としては、例えば、縮合アゾ化合物、ジケトピロロピロール化合物、アンスラキノン、キナクリドン化合物、塩基染料レーキウ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物などが用いられる。
具体的には、C.I.ピグメントレッド2、3、5、6、7、23、48:2、48:3、48:4、57:1、81:1、122、144、146、166、169、177、184、185、202、206、207、209、220、221、238、254、C.I.ピグメントバイオレット19等が好適に用いられる。
中でもC.I.ピグメントレッド122、202、207、209、C.I.ピグメントバイオレット19で示されるキナクリドン系顔料が特に好ましい。このキナクリドン系顔料は、その鮮明な色相や高い耐光性などからマゼンタ顔料として好適である。キナクリドン系顔料の中でも、C.I.ピグメントレッド122で示される化合物が、特に好ましい。
また、シアン顔料としては、例えば、銅フタロシアニン化合物及びその誘導体、アンスラキノン化合物、塩基染料レーキ化合物などが利用できる。具体的には、C.I.ピグメントブルー1、7、15、15:1、15:2、15:3、15:4、60、62、66等が特に好適に利用できる。
なお、顔料は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
上記の顔料は、液状媒体に分散させ、顔料粒子分散体としてから重合体一次粒子を含有するエマルションと混合する。この際、顔料粒子分散体中における顔料粒子の使用量は、液状媒体100質量部に対して、通常3質量部以上、好ましくは5質量部以上、また、通常50質量部以下、好ましくは40質量部以下である。着色剤の配合量が前記範囲を上回る場合には顔料濃度が濃いので分散中で顔料粒子が再凝集する確率が高まり、前記範囲未満の場合には分散が過剰となって適切な粒度分布を得ることが困難になる可能性がある。
また、重合体一次粒子に含まれる重合体に対する顔料の使用量の割合は、通常1質量%以上、好ましくは3質量%以上、また、通常20質量%以下、好ましくは15質量%以下である。顔料の使用量が少なすぎると画像濃度が薄くなる可能性があり、多すぎると凝集制御が困難となる可能性がある。
さらに、顔料粒子分散体には、界面活性剤を含有させても良い。この界面活性剤に特に制限は無いが、例えば、乳化重合法の説明において乳化剤として例示した界面活性剤と同様のものが挙げられる。中でも、非イオン系界面活性剤、ドデシルベンゼンスルホン酸ナトリウム等のアルキルアリールスルホン酸塩類等のアニオン系活性剤、ポリマー系界面活性剤等が好ましく用いられる。また、この際、界面活性剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
なお、顔料粒子分散体に占める顔料の割合は、通常10〜50質量%である。
また、顔料粒子分散体の液状媒体としては、通常は水系媒体を用い、好ましくは水を用いる。この際、重合体一次粒子及び顔料粒子分散体の水質は各粒子の再凝集による粗大化にも関係し、導電率が高いと経時の分散安定性が悪化する傾向がある。したがって、導電率を、通常10μS/cm以下、好ましくは5μS/cm以下となるように脱塩処理されたイオン交換水あるいは蒸留水を用いることが好ましい。なお、導電率の測定は、導電率計(横河電機社製のパーソナルSCメータモデルSC72と検出器SC72SN−11)を用いて25℃下で測定を行う。
また、重合体一次粒子を含有するエマルションに顔料を混合させる際、エマルションにワックスを混合しても良い。ワックスとしては、乳化重合法の説明において述べたものを同様のものを使用することができる。なお、ワックスは、重合体一次粒子を含有するエマルションに顔料を混合する前、混合中、後のいずれにおいて混合しても良い。
また、重合体一次粒子を含有するエマルションに顔料を混合させる際、エマルションに
帯電制御剤を混合しても良い。
帯電制御剤としては、この用途に用いられ得ることが知られている任意のものを使用することができる。正荷電性帯電制御剤としては、例えば、ニグロシン系染料、4級アンモニウム塩、トリフェニルメタン系化合物、イミダゾール系化合物、ポリアミン樹脂などが挙げられる。また、負荷電性帯電制御剤としては、例えば、Cr、Co、Al、Fe、B等の原子を含有するアゾ錯化合物染料;サリチル酸若しくはアルキルサリチル酸の金属塩又は金属錯体;カーリックスアレン化合物、ベンジル酸の金属塩又は金属錯体、アミド化合物、フェノール化合物、ナフトール化合物、フェノールアミド化合物などが挙げられる。中でも、トナーとしての色調障害を回避するため、無色ないしは淡色のものを選択することが好ましく、特に正荷電性帯電制御剤としては4級アンモニウム塩、イミダゾール系化合物が好ましく、負荷電性帯電制御剤としてはCr、Co、Al、Fe、B等の原子を含有するアルキルサリチル酸錯化合物、カーリックスアレン化合物が好ましい。なお、帯電制御剤は1種を用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
帯電制御剤の使用量に制限は無いが、重合体100質量部に対し、通常0.01質量部以上、好ましくは0.1質量部以上、また、10質量部以下、好ましくは5質量部以下である。帯電制御剤の使用量が少なすぎても多すぎても所望の帯電量が得られなくなる可能性がある。帯電制御剤は、重合体一次粒子を含有するエマルションに顔料を混合する前、混合中、後のいずれにおいて混合しても良い。また、帯電制御剤は、前記顔料粒子と同様に、液状媒体(通常は、水系媒体)に乳化した状態として、凝集時に混合することが望ましい。
上記の重合体一次粒子を含有するエマルションに顔料を混合した後、重合体一次粒子と顔料とを凝集させる。なお、上述したとおり、混合の際には、通常、顔料は顔料粒子分散体とした状態で混合させる。
凝集方法に制限は無く任意であるが、例えば、加熱、電解質の混合、pHの調整等が挙げられる。中でも、電解質を混合する方法が好ましい。
電解質を混合して凝集を行う場合の電解質としては、例えば、NaCl、KCl、LiCl、MgCl、CaCl等の塩化物;NaSO、KSO、LiSO、MgSO、CaSO、ZnSO、Al(SO、Fe(SO等の硫酸塩などの無機塩;CHCOONa、CSONa等の有機塩などが挙げられる。これらのうち、2価以上の多価の金属カチオンを有する無機塩が好ましい。
なお、電解質は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
電解質の使用量は、電解質の種類によって異なるが、エマルジョン中の固形成分100質量部に対して、通常0.05質量部以上、好ましくは0.1質量部以上、また、通常25質量部以下、好ましくは15質量部以下、より好ましくは10質量部以下である。電解質を混合して凝集を行う場合において、電解質の使用量が少なすぎると、凝集反応の進行が遅くなり凝集反応後も1μm以下の微粉が残ったり、得られる凝集体の平均粒径が目的の粒径に達しないなどの可能性があり、また、電解質の使用量が多すぎると、凝集反応が急速に起こるため粒径の制御が困難となり、得られる凝集体中に粗粉や不定形のものが含まれる可能性がある。
得られた凝集体は、後述する二次凝集体(溶融工程を経た凝集体)と同じく、引き続き液状媒体中で加熱して球形化するのが好ましい。加熱は二次凝集体の場合と同様の条件(融合工程の説明において述べるのと同様の条件)で行えばよい。
一方、加熱により凝集を行う場合、温度条件は凝集が進行する限り任意である。具体的な温度条件を挙げると、通常15℃以上、好ましくは20℃以上、また、重合体一次粒子の重合体のガラス転移温度〔Tg〕以下、好ましくは55℃以下の温度条件で凝集を行なう。凝集を行う時間も任意であるが、通常10分以上、好ましくは60分以上、また、通常300分以下、好ましくは180分以下である。
また、凝集を行う際には、撹拌を行うことが好ましい。撹拌に使用する装置は特に限定されないが、ダブルヘリカル翼を有するものが好ましい。
得られた凝集体は、そのまま次工程の樹脂被覆層を形成する工程(カプセル化工程)に進んでもよいし、引き続き液状媒体中で加熱による融合処理を行った後に、カプセル化工程に進んでもよい。そして、望ましくは、凝集工程の後に、カプセル化工程を行い、カプセル化樹脂微粒子のガラス転移温度〔Tg〕以上の温度で加熱して融合工程を行うのが、工程を簡略化でき、トナーの性能劣化(熱劣化など)を生じないので好ましい。
<カプセル化工程>
凝集体を得た後、当該凝集体には、必要に応じて樹脂被覆層を形成することが好ましい。凝集体に樹脂被覆層を形成させるカプセル化工程とは、凝集体の表面に樹脂被覆層を形成することにより、凝集体を樹脂により被覆する工程である。これにより、製造されるトナーは樹脂被覆層を備えることになる。カプセル化工程では、トナー全体が完全に被覆されない場合もあるが、顔料は、実質的にトナー粒子の表面に露出していないトナーを得ることができるようになる。この際の樹脂被覆層の厚さに制限は無いが、通常は0.01〜0.5μmの範囲である。
前記樹脂被覆層を形成する方法としては、特に制限はないが、例えば、スプレードライ法、機械式粒子複合法、in−situ重合法、液中粒子被覆法などが挙げられる。
上記スプレードライ法により樹脂被覆層を形成する方法としては、例えば、内層を形成する凝集体と樹脂被覆層を形成する樹脂微粒子とを水媒体中に分散して分散液を作製し、分散液をスプレー噴出し、乾燥することによって、凝集体表面に樹脂被覆層を形成することができる。
また、前記機械式粒子複合法により樹脂被覆層を形成する方法としては、例えば、内層を形成する凝集体と樹脂被覆層を形成する樹脂微粒子とを気相中に分散させ、狭い間隙で機械的な力を加えて凝集体表面に樹脂微粒子を成膜化する方法であり、例えばハイブリダイゼーションシステム(奈良機械製作所社製)、メカノフュージョンシステム(ホソカワミクロン社製)などの装置が使用できる。
さらに、前記in−situ重合法としては、例えば、凝集体を水中に分散させ、単量体及び重合開始剤を混合して、凝集体表面に吸着させ、加熱して、単量体を重合させて、内層である凝集体表面に樹脂被覆層を形成する方法である。
また、前記液中粒子被覆法としては、例えば、内層を形成する凝集体と外層を形成する樹脂微粒子とを、水媒体中で反応あるいは結合させ、内層を形成する凝集体の表面に樹脂被覆層を形成させる方法である。
外層を形成させる場合に用いる樹脂微粒子は、凝集体よりも粒径が小さく樹脂成分を主体とする粒子である。この樹脂微粒子は、重合体で構成された粒子であれば特に制限はない。ただし、外層の厚みがコントロールできるという観点から、上述した重合体一次粒子、凝集体、又は、前記の凝集体を融合した融合粒子と同様の樹脂微粒子を用いることが好ましい。なお、これらの重合体一次粒子等と同様の樹脂微粒子は、内層に使用する凝集体における重合体一次粒子等と同様に製造することができる。
また、樹脂微粒子の使用量は任意であるが、トナー粒子に対して通常1質量%以上、好ましくは5質量%以上、また、通常50質量%以下、好ましくは25質量%以下の範囲で用いることが望ましい。
さらに、凝集体に対する樹脂微粒子の固着又は融合を効果的に行うためには、樹脂微粒子の粒径は、通常は、0.04〜1μm程度のものが好ましく用いられる。
樹脂被覆層に用いられる重合体成分(樹脂成分)のガラス転移温度〔Tg〕としては、通常60℃以上、好ましくは70℃以上、また、通常110℃以下が望ましい。さらに、樹脂被覆層に用いられる重合体成分のガラス転移温度〔Tg〕は、重合体一次粒子のガラス転移温度〔Tg〕より5℃以上高いものであることが好ましく、10℃以上高いものであることがより好ましい。ガラス転移温度〔Tg〕が低すぎると、一般環境での保存が困難であり、また高すぎては十分な溶融性が得られないので好ましくない。
さらに、樹脂被覆層中にはポリシロキサンワックスを含有させることが好ましい。これにより、耐高温オフセット性の向上という利点を得ることができる。ポリシロキサンワックスの例を挙げると、アルキル基を有するシリコーンワックスなどが挙げられる。
ポリシロキサンワックスの含有量に制限は無いが、トナー中、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.08質量%以上、また、通常2質量%以下、好ましくは1質量%以下、より好ましくは0.5質量%以下とする。樹脂被覆層中のポリシロキサンワックスの量が少なすぎると耐高温オフセット性が不十分となる可能性があり、多すぎると耐ブロッキング性が低下する可能性がある。
樹脂被覆相中にポリシロキサンワックスを含有させる方法は任意であるが、例えば、ポリシロキサンワックスをシードとして乳化重合を行い、得られた樹脂微粒子と、内層を形成する凝集体とを、水系媒体中で反応あるいは結合させ、内層を形成する凝集体の表面にポリシロキサンワックスを含有する樹脂被覆層を形成させることにより含有させることが可能である。
<融合工程>
融合工程では、凝集体を加熱処理することにより、凝集体を構成する重合体の溶融一体化を行う。
また、凝集体に樹脂被覆層を形成してカプセル化樹脂微粒子とした場合には、加熱処理をすることにより、凝集体を構成する重合体及びその表面の樹脂被覆層の融合一体化がなされることになる。これにより、顔料粒子は実質的に表面に露出しない形態で得られる。
融合工程の加熱処理の温度は、凝集体を構成する重合体一次粒子のガラス転移温度〔Tg〕以上の温度とする。また、樹脂被覆層を形成した場合には、樹脂被覆層を形成する重合体成分のガラス転移温度〔Tg〕以上の温度とする。具体的な温度条件は任意であるが、樹脂被覆層を形成する重合体成分のガラス転移温度〔Tg〕よりも、通常5℃以上高温であることが好ましい。その上限に制限は無いが、「樹脂被覆層を形成する重合体成分のガラス転移温度〔Tg〕よりも50℃高い温度」以下が好ましい。
なお、加熱処理の時間は処理能力、製造量にもよるが、通常0.5〜6時間である。
<洗浄・乾燥工程>
上述した各工程を液状媒体中で行っていた場合には、融合工程の後、得られたカプセル化樹脂粒子を洗浄し、乾燥して液状媒体を除去することにより、トナーを得ることができる。洗浄及び乾燥の方法に制限は無く任意である。
<トナーの粒径に関する物性値>
トナーの体積平均粒径〔Dv〕に制限は無く、本発明の効果を著しく損なわない限り任
意であるが、通常4μm以上、好ましくは5μm以上、また、通常10μm以下、好ましくは8μm以下である。トナーの体積平均粒径〔Dv〕が小さすぎると画質の安定性が低下する可能性があり、大きすぎると解像度が低下する可能性がある。
また、トナーは、体積平均粒径〔Dv〕を個数平均粒径〔Dn〕で除した値〔Dv/Dn〕が、通常1.0以上、また、通常1.25以下、好ましくは1.20以下、より好ましくは1.15以下であることが望ましい。〔Dv/Dn〕の値は、粒度分布の状態を表わし、この値が1.0に近い方ほど粒度分布がシャープであることを表わす。粒度分布がシャープであるほど、トナーの帯電性が均一となるので望ましい。
さらに、トナーは、粒径25μm以上の体積分率が、通常1%以下、好ましくは0.5%以下、より好ましくは0.1%以下、更に好ましくは0.05%以下である。この値は小さいほど好ましい。これは、トナーに含まれる粗粉の割合が少ないことを意味しており、粗粉が少ないと、連続現像の際のトナーの消費量が少なく、画質が安定するので好ましいのである。なお、粒径25μm以上の粗粉は全く存在しないのが最も好ましいが、実際の製造上は困難であり、通常は0.005%以下にしなくとも構わない。
また、トナーは、粒径15μm以上の体積分率が、通常2%以下、好ましくは1%以下、より好ましくは0.1%以下である。粒径15μm以上の粗粉も全く存在しないのが最も好ましいが、実際の製造上は困難であり、通常は0.01%以下にしなくとも構わない。
さらに、トナーは、粒径5μm以下の個数分率が、通常15%以下、好ましくは10%以下であることが、画像カブリの改善に効果があるので、望ましい。
ここで、トナーの体積平均粒径〔Dv〕、個数平均粒径〔Dn〕、体積分率、個数分率などは、以下のようにして測定することができる。即ち、トナーの粒子径の測定装置としては、コールターカウンターのマルチサイザーII型あるいはIII型(ベックマン・コールター社製)を用い、個数分布・体積分布を出力するインターフェイス及び一般的なパーソナルコンピューターを接続して使用する。また、電解液はアイソトンIIを用いる。測定法としては、前記電解液100〜150mL中に分散剤として界面活性剤(好ましくはアルキルベンゼンスルホン酸塩)を0.1〜5mL加え、更に測定試料(トナー)を2〜20mg加える。そして、試料を懸濁した電解液は超音波分散器で約1〜3分間分散処理を行い、前記コールターカウンターのマルチサイザーII型あるいはIII型により、100μmアパーチャーを用いて測定する。このようにしてトナーの個数及び体積を測定して、それぞれ個数分布、体積分布を算出し、それぞれ、体積平均粒径〔Dv〕、個数平均粒径〔Dn〕を求める。
<トナーの分子量に関する物性値>
トナーのTHF可溶分のゲルパーミエーションクロマトグラフィー(以下、GPCと略す場合がある)におけるピーク分子量のうち少なくとも1つは、通常1万以上、好ましくは2万以上、より好ましくは3万以上であり、通常15万以下、好ましくは10万以下、より好ましくは7万以下である。なお、THFはテトラヒドロフランのことを言う。ピーク分子量が何れも前記範囲より低い場合は、非磁性一成分現像方式における機械的耐久性が悪化する場合があり、ピーク分子量が何れも前記範囲より高い場合は、低温定着性や定着強度が悪化する場合がある。
さらに、トナーのTHF不溶分は後述するセライト濾過による重量法で測定した場合、通常10%以上、好ましくは20%以上であり、また、通常60%以下、好ましくは50%以下である。前記範囲にない場合は、機械的耐久性と低温定着性の両立が困難となる場合がある。
なお、トナーのピーク分子量は、測定装置:HLC−8120GPC(東ソー株式会社製)を用いて次の条件で測定される。
即ち、40℃のヒートチャンバー中でカラムを安定化させ、この温度におけるカラムに、溶媒としてテトラヒドロフラン(THF)を毎分1mL(ミリリットル)の流速で流す。次いで、トナーをTHFに溶解後0.2μmフィルターで濾過し、その濾液を試料として用いる。
測定は、試料濃度(樹脂の濃度)を0.05〜0.6質量%に調整した樹脂のTHF溶液を測定装置に50〜200μL注入して行う。試料(トナー中の樹脂成分)の分子量測定にあたっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出する。検量線作成用の標準ポリスチレン試料としては、例えば、Pressure Chemical Co.製あるいは、東洋ソーダ工業社製の、分子量が6×10、2.1×10、4×10、1.75×10、5.1×10、1.1×10、3.9×10、8.6×10、2×10、4.48×10のものを用い、少なくとも10点程度の標準ポリスチレン試料を用いるのが適当である。また、検出器にはRI(屈折率)検出器を用いる。
さらに、前記の測定方法で用いるカラムとしては、10〜2×10の分子量領域を適確に測定するために、市販のポリスチレンゲルカラムを複数組合せるのが良く、例えば、Waters社製のμ−styragel 500,103,104,105の組合せや、昭和電工社製のshodex KA801,802,803,804,805,806,807の組合せが好ましい。
また、トナーのテトラヒドロフラン(THF)不溶分の測定は、以下のようにして行うことができる。即ち、試料(トナー)1gをTHF100gに加え25℃で24時間静置溶解し、セライト10gを用いて濾過し、濾液の溶媒を留去してTHF可溶分を定量し、1gから差し引いてTHF不溶分を算出することができる。
<トナーの軟化点及びガラス転移温度>
トナーの軟化点〔Sp〕に制限は無く、本発明の効果を著しく損なわない限り任意であるが、低エネルギーで定着する観点から、通常150℃以下、好ましくは140℃以下である。また、耐高温オフセット性、耐久性の点からは、軟化点は、通常80℃以上、好ましくは100℃以上である。
なお、トナーの軟化点〔Sp〕は、フローテスターにおいて、試料1.0gをノズル1mm×10mm、荷重30kg、予熱時間50℃で5分、昇温速度3℃/分の条件下で測定を行ったときの、フロー開始から終了までのストランドの中間点での温度として求めることができる。
また、トナーのガラス転移温度〔Tg〕に制限は無く、本発明の効果を著しく損なわない限り任意であるが、通常80℃以下、好ましくは70℃以下であると、低エネルギーで定着できるので望ましい。また、ガラス転移温度〔Tg〕は、通常40℃以上、好ましくは50℃以上であると、耐ブロッキング性の点で好ましい。
なお、トナーのガラス転移温度〔Tg〕は、示差走査熱量計において、昇温速度10℃/分の条件で測定した曲線の転移(変曲)開始部に接線を引き、2つの接線の交点の温度として求めることができる。
トナーの軟化点〔Sp〕及びガラス転移温度〔Tg〕は、トナーに含まれる重合体の種類および組成比に大きく影響を受ける。このため、トナーの軟化点〔Sp〕及びガラス転移温度〔Tg〕は、前記の重合体の種類及び組成を適宜最適化することにより調整することができる。また、重合体の分子量、ゲル分、ワックス等の低融点成分の種類および配合量によっても、調整することが可能である。
<トナー中のワックス>
トナーがワックスを含有する場合、トナー粒子中のワックスの分散粒径は、平均粒径として、通常0.1μm以上、好ましくは0.3μm以上であり、また、上限は通常3μm以下、好ましくは1μm以下である。分散粒径が小さすぎるとトナーの耐フィルミング性改良の効果が得られない可能性があり、また、分散粒径が大きすぎるとトナーの表面にワックスが露出しやすくなり帯電性や耐熱性が低下する可能性がある。
なお、ワックスの分散粒径は、トナーを薄片化して電子顕微鏡観察する方法の他、ワックスが溶解しない有機溶剤等でトナーの重合体を溶出した後にフィルターで濾過し、フィルター上に残ったワックス粒子を顕微鏡により計測する方法などにより確認することができる。
また、トナーに占めるワックスの割合は本発明の効果を著しく損なわない限り任意であるが、通常0.05質量%以上、好ましくは0.1質量%以上であり、より好ましくは1質量%以上、更に好ましは4質量%以上、また通常20質量%以下、好ましくは15質量%以下である。ワックスが少なすぎると定着温度幅が不十分となる可能性があり、多すぎると装置部材を汚染して画質が低下する可能性がある。
<外添微粒子>
トナーの流動性、帯電安定性、高温下での耐ブロッキング性などを向上させるために、トナー粒子表面に外添微粒子を添着させてもよい。
外添微粒子をトナー粒子表面に添着させる方法としては、例えば、上述したトナーの製造方法において、液状媒体中で二次凝集体と外添微粒子を混合した後、加熱してトナー粒子上に外添微粒子を固着させる方法;二次凝集体を液状媒体から分離、洗浄、乾燥させて得られたトナー粒子に乾式で外添微粒子を混合又は固着させる方法などが挙げられる。
乾式でトナー粒子と外添微粒子とを混合する場合に用いられる混合機としては、例えば、ヘンシェルミキサー、スーパーミキサー、ナウターミキサー、V型ミキサー、レディゲミキサー、ダブルコーンミキサー、ドラム型ミキサーなどが挙げられる。中でもヘンシェルミキサー、スーパーミキサー等の高速攪拌型の混合機を用い、羽根形状、回転数、時間、駆動−停止の回数等を適宜設定して均一に攪拌、混合することにより混合することが好ましい。
また、乾式でトナー粒子と外添微粒子を固着させる場合に用いられる装置としては、圧縮剪断応力を加えることの出来る圧縮剪断処理装置や、粒子表面を溶融処理することのできる粒子表面溶融処理装置などが挙げられる。
圧縮剪断処理装置は、一般に、間隔を保持しながら相対的に運動するヘッド面とヘッド面、ヘッド面と壁面、あるいは壁面と壁面によって構成される狭い間隙部を有し、被処理粒子が該間隙部を強制的に通過させられることによって、実質的に粉砕されることなく、粒子表面に対して圧縮応力及び剪断応力が加えられるように構成されている。このような圧縮剪断処理装置としては、例えば、ホソカワミクロン社製のメカノフュージョン装置等が挙げられる。
一方、粒子表面溶融処理装置は、一般に、熱風気流等を利用し、母体微粒子と外添微粒子との混合物を母体微粒子の溶融開始温度以上に瞬時に加熱し外添微粒子を固着できるように構成される。このような粒子表面溶融処理装置としては、例えば、日本ニューマチック社製のサーフュージングシステム等が挙げられる。
また、外添微粒子としては、この用途に用い得ることが知られている公知のものが使用できる。例えば、無機微粒子、有機微粒子などが挙げられる。
無機微粒子としては、例えば、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウ
ム、炭化ハフニウム、炭化バナジウム、炭化タンタル、炭化ニオブ、炭化タングステン、炭化クロム、炭化モリブデン、炭化カルシウム等の炭化物、窒化ホウ素、窒化チタン、窒化ジルコニウム、窒化珪素等の窒化物、ホウ化ジルコニウム等のホウ化物、シリカ、コロイダルシリカ、酸化チタン、酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化銅、酸化ジルコニウム、酸化セリウム、タルク、ハイドロタルサイト等の酸化物や水酸化物、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ストロンチウム、チタン酸バリウム等の各種チタン酸化合物、リン酸三カルシウム、リン酸二水素カルシウム、リン酸一水素カルシウム、リン酸イオンの一部が陰イオンによって置換された置換リン酸カルシウム等のリン酸化合物、二硫化モリブデン等の硫化物、フッ化マグネシウム、フッ化炭素等のフッ化物、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の金属石鹸、滑石、ベントナイト、導電性カーボンブラックをはじめとする種々のカーボンブラック等を用いることができる。さらには、マグネタイト、マグへマタイト、マグネタイトとマグヘマタイトの中間体等の磁性物質などを用いてもよい。
一方、有機微粒子としては、例えば、スチレン系樹脂、ポリアクリル酸メチルやポリメタクリル酸メチル等のアクリル系樹脂、エポキシ系樹脂、メラミン系樹脂、テトラフロロエチレン樹脂、トリフロロエチレン樹脂、ポリ塩化ビニル、ポリエチレン、ポリアクリロニトリルなどの微粒子を用いることができる。
これら外添微粒子の中では、特に、シリカ、酸化チタン、アルミナ、酸化亜鉛、カーボンブラック等が好適に使用される。
なお、外添微粒子は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、これらの無機または有機微粒子の表面は、シランカップリング剤、チタネート系カップリング剤、シリコーンオイル、変性シリコーンオイル、シリコーンワニス、フッ素系シランカップリング剤、フッ素系シリコーンオイル、アミノ基や第4級アンモニウム塩基を有するカップリング剤等の処理剤によって疎水化などの表面処理が施されていてもよい。なお、処理剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
さらに、外添微粒子の数平均粒径は本発明の効果を著しく損なわない限り任意であるが、通常0.001μm以上、好ましくは0.005μm以上、また、通常3μm以下、好ましくは1μm以下であり、異なる平均粒径のものを複数配合してもよい。なお、外添微粒子の平均粒径は、電子顕微鏡観察やBET比表面積の値からの換算等により求めることができる。
また、トナーに対する外添微粒子の割合は本発明の効果を著しく損なわない限り任意である。ただし、トナーと外添微粒子との合計質量に対する外添微粒子の割合として、通常0.1質量%以上、好ましくは0.3質量%以上、より好ましくは0.5質量%以上、また、通常10質量%以下、好ましくは6質量%以下、より好ましくは4質量%以下が望ましい。外添微粒子が少なすぎると流動性、帯電安定性が不足する可能性があり、多すぎると定着性が悪化する可能性がある。
<トナーその他>
トナーの帯電特性は、負帯電性であっても、正帯電性であっても良く、用いる画像形成装置の方式に応じて設定することができる。なお、トナーの帯電特性は、帯電制御剤などのトナー母粒子構成物の選択および組成比、外添微粒子の選択および組成比等により調整することができる。
また、トナーは、一成分現像剤として用いることも、キャリアと混合して二成分現像剤として用いることも可能である。二成分現像剤として用いる場合には、トナーと混合して現像剤を形成するキャリアとしては、例えば、公知の鉄粉系、フェライト系、マグネタイト系キャリア等の磁性物質、または、それらの表面に樹脂コーティングを施したものや磁性樹脂キャリアを用いることができる。
キャリアの被覆樹脂としては、例えば、一般的に知られているスチレン系樹脂、アクリル樹脂、スチレンアクリル共重合樹脂、シリコーン系樹脂、変性シリコーン系樹脂、フッ素系樹脂等が利用できるが、これらに限定されるものではない。
また、キャリアの平均粒径は特に制限はないが、10〜200μmの平均粒径を有するものが好ましい。これらのキャリアは、トナー1質量部に対して5〜100質量部の割合で用いるのが好ましい。
なお、電子写真方式によるフルカラー画像の形成は、マゼンタ、シアン、イエローの各カラートナーおよび必要に応じてブラックトナーを用いて常法により実施することができる。
<カートリッジ、画像形成装置>
次に、本発明の電子写真感光体を用いたドラムカートリッジ、画像形成装置について、装置の一例を示す図1に基づいて説明する。
図1において、1はドラム状感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。感光体1はその回転過程で帯電手段3により、その表面に正または負の所定電位の均一帯電を受け、ついで露光部4において像露光手段により潜像形成のための露光が行われる。形成された静電潜像は、次に現像手段5でトナー現像され、そのトナー現像像がコロナ転写手段6により給紙部から給送された転写体(紙など)7に順次転写されていく。像転写された転写体はついで定着手段8に送られ、像定着され、機外へプリントアウトされる。像転写後の感光体1の表面はクリーニング手段9により転写残りのトナーが除去され、除電手段10により除電されて次の画像形成のために清浄化される。
本発明の電子写真感光体を使用するのにあたって、帯電器としては、図−1記載のコロトロン、スコロトロンなどのコロナ帯電器の他に、電圧印加された直接帯電部材を感光体表面に接触させて帯電させる直接帯電手段を用いてもよい。直接帯電手段の例としては、帯電ローラー、帯電ブラシ等の接触帯電器などが挙げられる。直接帯電手段として、気中放電を伴うもの、あるいは気中放電を伴わない注入帯電いずれも可能である。また、帯電時に印可する電圧としては、直流電圧だけの場合、および直流に交流を重畳させて用いることもできる。
露光はハロゲンランプ、蛍光灯、レーザー(半導体、He−Ne)、LED、感光体内部露光方式等が用いられるが、デジタル式電子写真方式として、レーザー、LED、光シャッターアレイ等を用いることが好ましい。波長としては780nmの単色光の他、600〜700nm領域のやや短波長寄りの単色光を用いることができる。
現像行程はカスケード現像、1成分絶縁トナー現像、1成分導電トナー現像、二成分磁気ブラシ現像などの乾式現像方式や湿式現像方式などが用いられる。トナーとしては、粉砕トナーの他に、懸濁造粒、懸濁重合、乳化重合凝集法等のケミカルトナーを用いることができる。特に、ケミカルトナーの場合には、4〜8μ程度の小粒径のものが用いられ、形状も球形に近いものから、ポテト状の球形から外れたものも使用することができる。重合トナーは、帯電均一性、転写性に優れ、高画質化には好適に用いられる。
転写行程はコロナ転写、ローラー転写、ベルト転写などの静電転写法、圧力転写法、粘着転写法が用いられる。定着は熱ローラー定着、フラッシュ定着、オーブン定着、圧力定着、IH定着、ベルト定着、IHF定着などが用いられ、これら定着方式は単独で用いて
も良く、複数の定着方式を組み合わせた形で使用してもよい。
クリーニングにはブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラークリーナー、ブレードクリーナー、などが用いられる。
除電工程は、省略される場合も多いが、使用される場合には、蛍光灯、LED等が使用さ
れ、強度としては露光光の3倍以上の露光エネルギーが使用される場合が多い。
これらのプロセスのほかに、前露光工程、補助帯電工程のプロセスを有してもよい。
本発明においては、上記ドラム状感光体1、帯電手段3、現像手段5及びクリーニング手段9等の構成要素の内の複数のものをドラムカートリッジとして一体に結合して構成し、このドラムカートリッジを複写機やレーザービームプリンタ等の電子写真装置本体に対して着脱可能な構成にしてもよい。例えば、帯電手段3、現像手段5及びクリーニング手段9の内、少なくとも1つをドラム状感光体1と共に一体に支持してカートリッジ化とすることが出来る。
以下、製造例、実施例及び比較例を挙げて、本発明を更に詳細に説明する。なお、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその趣旨に反しない限り以下の実施例に限定されるものではない。
<電子写真感光体の製造>
<感光体シートの製造>
[実施例1]
以下の手順に従い、電子写真感光体の1形態である感光体シートを作製した。初めに、下引き層用分散液は、次のようにして製造した。即ち、平均一次粒子径40nmのルチル型酸化チタン(石原産業社製「TTO55N」)と、該酸化チタンに対して3質量%のメチルジメトキシシラン(東芝シリコーン社製「TSL8117」)とを、高速流動式混合混練機((株)カワタ社製「SMG300」)に投入し、回転周速34.5m/秒で高速混合して得られた表面処理酸化チタンを、メタノール/1−プロパノールの混合溶媒中でボールミルにより分散させることにより、疎水化処理酸化チタンの分散スラリーとした。該分散スラリーと、メタノール/1−プロパノール/トルエンの混合溶媒、および、ε−カプロラクタム/ビス(4−アミノ−3−メチルシクロヘキシル)メタン/ヘキサメチレンジアミン/デカメチレンジカルボン酸/オクタデカメチレンジカルボン酸の組成モル比率が、60%/15%/5%/15%/5%からなる共重合ポリアミドのペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた後、超音波分散処理を行なうことにより、メタノール/1−プロパノール/トルエンの質量比が7/1/2で、疎水性処理酸化チタン/共重合ポリアミドを質量比3/1で含有する、固形分濃度18.0%の下引き層用分散液とした。
このようにして得られた下引き層形成用塗布液を、表面にアルミ蒸着したポリエチレンテレフタレートシート上に、乾燥後の膜厚が1.2μmになるようにワイヤーバーで塗布、乾燥して下引き層を設けた。
次に、CuKα線によるX線回折においてブラッグ角(2θ±0.2)が27.3゜に強い回折ピークを示し、図2に示す粉末X線回折スペクトルを有するオキシチタニウムフタロシアニン10質量部を1,2−ジメトキシエタン150質量部に加え、サンドグラインドミルにて粉砕分散処理を行い、顔料分散液を作製した。こうして得られた160質量部の顔料分散液をテレフタル酸/イソフタル酸/エチレングリコール/ネオペンチルグリコール/ヒドロキシピバル酸(一般式[1])の組成モル比率が、27%/19%/28%
/19%/7%からなる共重合ポリエステルXの15質量%1,2−ジメトキシエタン溶液100質量部に加え、適量の1,2−ジメトキシエタンを加えて、最終的に固形分濃度4.0質量%の電荷発生層形成用塗布液を作製した。
Figure 0005783104
この電荷発生層形成用塗布液を、上述の下引き層上に乾燥後の膜厚が0.4μmとなるようにワイヤーバーで塗布した後、乾燥して電荷発生層を形成した。
次に、電荷輸送物質として特開2002−80432号公報中の実施例1に示された、下記式[14]で表わされる構造を主成分とする、幾何異性体の化合物群からなる混合物を50質量部、下記繰り返し構造からなるポリアリレートA(PAR-A、粘度平均分子量41,
000)100質量部、およびレベリング剤としてシリコーンオイル0.05質量部を、テトラヒドロフランとトルエンとの混合溶媒(テトラヒドロフラン80質量%、トルエン20質量%)640質量部に混合し、電荷輸送層形成用塗布液を調製した。
Figure 0005783104
この電荷輸送層形成用塗布液を上述の電荷発生層上に、乾燥後の膜厚が20μmとなるようにアプリケーターを用いて塗布し、125℃で20分間乾燥して電荷輸送層を形成して、感光体シートSE1を作製した。
<感光体の電気特性の評価>
電子写真学会測定標準に従って作製された電子写真特性評価装置(続電子写真技術の基礎と応用、電子写真学会編、コロナ社、404−405頁記載)を使用し、上記感光体をアルミニウム製ドラムに貼り付けて円筒状にし、アルミニウム製ドラムと感光体のアルミニウム基体との導通を取った上で、ドラムを一定回転数で回転させ、帯電、露光、電位測定、除電のサイクルによる電気特性評価試験を行った。
その際、初期表面電位を−700Vとし、露光は780nm、除電は660nmの単色光を用いた。780nmの光を1.0μJ/cm照射した時点の表面電位(VL)、および感度を表す指標として、表面電位を−350Vまで半減させるのに必要な露光量(半減露光量)を測定した。VL測定に際しては、露光−電位測定に要する時間を100msとした。測定環境は、温度25℃、相対湿度50%下で行った。感度(半減露光量)およ
びVLの値の絶対値が小さいほど電気特性が良好であることを示す。電気特性の結果を表−1に示す。
<接着性試験>
前記<感光体シートの製造>で基体として用いた、表面にアルミ蒸着したポリエチレンテレフタレートシートの代わりに、厚さ0.5mmのアルミ板を使用した以外は、前記<感光体シートの製造>と同様にして接着性試験用電子写真感光体PE1を作製した。
この接着性試験用電子写真感光体上に、NTカッターを用いて、5mm間隔で縦に3本、横に4本切り込みを入れ、2×3の6マスを作製した。その上からセロテープ(登録商標)(ニチバン製)を貼り付け、接着面に対し90゜に引き上げることで、感光層の接着性を試験した。これを5箇所行い、計30マスのうち、支持体上に残存した感光層のマス数の割合を残存率として評価した。残存したマス数が多いほど残存率は高く、良好である。結果を表−2に示す。
[実施例2]
実施例1の電荷発生層形成用塗布液に用いた結着樹脂を、共重合ポリエステルX(PES-X)を50質量部とし、ポリビニルブチラール(電気化学工業(株)製、商品名デンカブチ
ラール#6000C)を50質量部とした以外は、実施例1と同様にして感光体シートSE2および接着性試験用感光体PE2を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[実施例3]
実施例1の電荷発生層形成用塗布液に用いた結着樹脂を、共重合ポリエステルX(PES-X)を50質量部とし、テレフタル酸/イソフタル酸/エチレングリコール/ネオペンチル
グリコールの組成モル比率が、25%/23%/26%/26%からなる共重合ポリエステルY(PES-Y)を50質量部とした以外は、実施例1と同様にして感光体シートSE3および接着性試験用感光体PE3を作製した。この感光体シートおよび接着性試験用感光体を実施
例1と同様に評価し、結果を表−1および表−2に示した。
[実施例4]
実施例1の電荷発生層形成用塗布液に用いた結着樹脂を、共重合ポリエステルX(PES-X)を50質量部とし、テレフタル酸/イソフタル酸/エチレングリコール/ビスフェノー
ルAエチレンオキシドの組成モル比率が、25%/25%/23%/27%からなる共重合ポリエステルZ(PES-Z)を50質量部とした以外は、実施例1と同様にして感光体シー
トSE4および接着性試験用感光体PE4を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[実施例5]
実施例1の電荷輸送層形成用塗布液に用いた結着樹脂のポリアリレートA(PAR-A)の代
わりに、ポリカーボネートB(PCR-B)を100質量部とした以外は、実施例1と同様にし
て感光体シートSE5および接着性試験用感光体PE5を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
Figure 0005783104
[実施例6]
実施例2の電荷輸送層形成用塗布液に用いた結着樹脂のポリアリレートA(PAR-A)の代
わりに、ポリカーボネートB(PCR-B)を100質量部とした以外は、実施例2と同様にし
て感光体シートSE6および接着性試験用感光体PE6を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[実施例7]
実施例3の電荷輸送層形成用塗布液に用いた結着樹脂のポリアリレートA(PAR-A)の代
わりに、ポリカーボネートB(PCR-B)を100質量部とした以外は、実施例3と同様にし
て感光体シートSE7および接着性試験用感光体PE7を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[実施例8]
実施例4の電荷輸送層形成用塗布液に用いた結着樹脂のポリアリレートA(PAR-A)の代
わりに、ポリカーボネートB(PCR-B)を100質量部とした以外は、実施例4と同様にし
て感光体シートSE8および接着性試験用感光体PE8を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[実施例9]
実施例1のオキシチタニルフタロシアニンの代わりに、A型のオキシチタニルフタロシアニンを用いた以外は、実施例1と同様にして感光体シートSE9および接着性試験用感光
体PE9を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価
し、結果を表−1および表−2に示した。
[実施例10]
実施例5のオキシチタニルフタロシアニンの代わりに、A型のオキシチタニルフタロシアニンを用いた以外は、実施例5と同様にして感光体シートSE10および接着性試験用感光体PE10を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[実施例11]
実施例1のオキシチタニルフタロシアニンの代わりに、ヒドロキシガリウムフタロシアニンを用いた以外は、実施例1と同様にして感光体シートSE11および接着性試験用感光体PE11を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[実施例12]
実施例1の電荷輸送層形成用塗布液に用いた結着樹脂のポリアリレートA(PAR-A)の代
わりに、ポリアリレートC(PAR-C)を100質量量部とした以外は、実施例1と同様にし
て感光体シートSE12および接着性試験用感光体PE12を作製した。この感光体シートおよび
接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
Figure 0005783104
[実施例13]
実施例1の電荷輸送層形成用塗布液に用いた結着樹脂のポリアリレートA(PAR-A)の代
わりに、ポリカーボネートD(PCR-D)を100質量部とした以外は、実施例1と同様にし
て感光体シートSE13および接着性試験用感光体PE13を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
Figure 0005783104
[実施例14]
実施例1で用いた電荷発生用塗布液の電荷発生物質と結着樹脂の割合を電荷発生物質100質量部に対して、結着樹脂を100質量部とした以外は、実施例1と同様にして感光体シートSE14および接着性試験用感光体PE14を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[実施例15]
実施例5で用いた電荷発生用塗布液の電荷発生物質と結着樹脂の割合を電荷発生物質100質量部に対して、結着樹脂を100質量部とした以外は、実施例5と同様にして感光体シートSE15および接着性試験用感光体PE15を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[実施例16]
実施例1で用いた電荷発生用塗布液の電荷発生物質と結着樹脂の割合を電荷発生物質100質量部に対して、結着樹脂を200質量部とした以外は、実施例1と同様にして感光体シートSE16および接着性試験用感光体PE16を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[実施例17]
実施例5で用いた電荷発生用塗布液の電荷発生物質と結着樹脂の割合を電荷発生物質100質量部に対して、結着樹脂を200質量部とした以外は、実施例5と同様にして感光体シートSE17および接着性試験用感光体PE17を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[比較例1]
実施例1の電荷発生層形成用塗布液に用いた結着樹脂を、ポリビニルブチラール(電気化学工業(株)製、商品名デンカブチラール#6000C)を100質量部とした以外は、実施例1と同様にして感光体シートSP1および接着性試験用感光体PP1を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[比較例2]
実施例1の電荷発生層形成用塗布液に用いた結着樹脂を、共重合ポリエステルY(PES-Y)を100質量部とした以外は、実施例1と同様にして感光体シートSP2および接着性試験用感光体PP2を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様
に評価し、結果を表−1および表−2に示した。
[比較例3]
実施例1の電荷発生層形成用塗布液に用いた結着樹脂を、共重合ポリエステルZ(PES-Z)を100質量部とした以外は、実施例1と同様にして感光体シートSP3および接着性試験用感光体PP3を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様
に評価し、結果を表−1および表−2に示した。
[比較例4]
実施例5の電荷発生層形成用塗布液に用いた結着樹脂を、ポリビニルブチラール(電気化学工業(株)製、商品名デンカブチラール#6000C)を100質量部とした以外は、実施例5と同様にして感光体シートSP4および接着性試験用感光体PP4を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[比較例5]
実施例5の電荷発生層形成用塗布液に用いた結着樹脂を、共重合ポリエステルY(PES-Y)を100質量部とした以外は、実施例5と同様にして感光体シートSP5および接着性試験用感光体PP5を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様
に評価し、結果を表−1および表−2に示した。
[比較例6]
実施例5の電荷発生層形成用塗布液に用いた結着樹脂を、共重合ポリエステルZ(PES-Z)を100質量部とした以外は、実施例5と同様にして感光体シートSP6および接着性試験用感光体PP6を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様
に評価し、結果を表−1および表−2に示した。
[比較例7]
実施例1のオキシチタニルフタロシアニンの代わりに、X型無金属フタロシアニンを用いた以外は、実施例1と同様にして感光体シートSP7および接着性試験用感光体PP7を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[比較例8]
実施例1のオキシチタニルフタロシアニンの代わりに、X型無金属フタロシアニンを用い、さらに実施例1の電荷発生層形成用塗布液に用いた結着樹脂を、ポリビニルブチラール(電気化学工業(株)製、商品名デンカブチラール#6000C)を100質量部とした以外は、実施例1と同様にして感光体シートSP8および接着性試験用感光体PP8を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[比較例9]
実施例1のオキシチタニルフタロシアニンの代わりに、X型無金属フタロシアニンを用い、さらに実施例1の電荷発生層形成用塗布液に用いた結着樹脂を、共重合ポリエステルY(PES-Y)を100質量部とした以外は、実施例1と同様にして感光体シートSP9および接着性試験用感光体PP9を作製した。この感光体シートおよび接着性試験用感光体を実施例
1と同様に評価し、結果を表−1および表−2に示した。
[比較例10]
実施例1のオキシチタニルフタロシアニンの代わりに、X型無金属フタロシアニンを用い、さらに実施例1の電荷発生層形成用塗布液に用いた結着樹脂を、共重合ポリエステルZ(PES-Z)を100質量部とした以外は、実施例1と同様にして感光体シートSP10および
接着性試験用感光体PP10を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[比較例11]
実施例5のオキシチタニルフタロシアニンの代わりに、X型無金属フタロシアニンを用いた以外は、実施例5と同様にして感光体シートSP11および接着性試験用感光体PP11を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[比較例12]
実施例1で用いた電荷発生用塗布液の電荷発生物質と結着樹脂の割合を電荷発生物質100質量部に対して、結着樹脂を50質量部とした以外は、実施例1と同様にして感光体シートSP12および接着性試験用感光体PP12を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
[比較例13]
実施例5で用いた電荷発生用塗布液の電荷発生物質と結着樹脂の割合を、電荷発生物質100質量部に対して、結着樹脂を50質量部とした以外は、実施例1と同様にして感光体シートSP13および接着性試験用感光体PP13を作製した。この感光体シートおよび接着性試験用感光体を実施例1と同様に評価し、結果を表−1および表−2に示した。
Figure 0005783104
Figure 0005783104
Figure 0005783104
表−1および表−2の結果から、金属含有フタロシアニンを電荷発生物質として、また一般式[1]の部分構造を持つポリエステルを電荷発生層に含有し、且つ電荷発生層の結着
樹脂がフタロシアニンに対して100wt%以上の場合、高感度、低残留電位を実現しながら、良好な接着性も実現できることがわかる。実施例1及び比較例1の比較から金属フタロシアニンを用いた場合には、該ポリエステルを含んでも電気特性の変化はなく、比較例7及び比較例8の比較から無金属フタロシアニンを用いた場合には、該ポリエステルを含むと
電気特性が低下することがわかる。
<感光体ドラムの製造>
[実施例18]
表面が鏡面仕上げされた外径30mm、長さ260.5mm、肉厚0.75mmのアルミニウム製シリンダー上に、実施例1で用いた下引き層形成用塗布液、電荷発生層用塗布液および電荷輸送層用塗布液を、浸漬塗布法により順次塗布し、乾燥後の膜厚がそれぞれ、0.15μm、0.4μm、21μmとなるように、下引き層、電荷発生層、電荷輸送層を形成し、感光体ドラム(DE1)を得た。
ここで、作製した感光体ドラムを用いて、画像特性試験を行った。
画像特性試験は、ヒューレットパッカード社製カラープリンターHP Color LaserJet 4650dn(クリーニングブレード、カウンター当接方式)を用いて行った。
作製した感光体ドラムとトナーとをシアン色用のプロセスカートリッジに装着し、このカートリッジをプリンターに装着した。温度10℃、湿度15%環境下(LL環境下と称することがある)で、10000枚の画像形成を行い、ゴースト、かぶり、濃度低下、フィルミング(FLと略することがある)、クリーニング不良(CLと略することがある)、膜減り性の評価を行った。結果を表−3に示す。
[耐膜減り性試験]
初期感光体ドラムの膜厚をFisher Scope膜厚計にて測定し、10000枚印刷後の膜厚を同じくFisher Scope膜厚計にて測定し、その差を測ることにより、1000枚あたりの膜減りを求めた。
[その他の評価]
また、クリーニング不良(CL)、フィルミング(FL)、画像品質について、以下の通りランク付けを行った。なお、カブリは目視評価により行った。
「クリーニング不良」項目
◎:まったくクリーニング不良が発生していない。
○:うっすらとクリーニング不良の発生が確認できるが、実用上使用可能なレベル。
△:クリーニング不良の発生が確認できるが、実用上使用可能なレベル。
×:全面にクリーニング不良が発生しており、実用上問題のあるレベル。
「フィルミング」項目
◎:まったくフィルミングが発生していない。
○:うっすらとフィルミングの発生が確認できるが、実用上使用可能なレベル。
△:フィルミングの発生が確認できるが、実用上使用可能なレベル。
×:全面にフィルミングが発生しており、実用上問題のあるレベル。
「画像品質」項目
◎:画像異常が全く観察されず良好である。
○:ゴースト、LL環境下での濃度不良、地肌部の汚れなどがわずかに観察されるが、実用上問題なく良好である。
△:ゴースト、LL環境下での濃度不良、地肌部の汚れなどが観察されるが、実用上使用可能なレベルである。
×:ゴースト、LL環境下での濃度不良、地肌部の汚れなどが明らかで、実用上問題がある。
[実施例19]
表面が鏡面仕上げされた外径30mm、長さ260.5mm、肉厚0.75mmのアルミニウム製シリンダー上に、実施例5で用いた下引き層形成用塗布液、電荷発生層用塗布液および電荷輸送層用塗布液を、浸漬塗布法により順次塗布し、乾燥後の膜厚がそれぞれ
、0.15μm、0.4μm、21μmとなるように、下引き層、電荷発生層、電荷輸送層を形成し、感光体ドラム(DE5)を得た。
Figure 0005783104
表−3の結果から、電荷輸送層にポリアリレートA(PAR-A)を用いた場合、ポリカーボ
ネートB(PCR-B)を使用したときよりも、膜減り性が良好であることがわかる。またクリ
ーニング、フィルミングに関しても、良好であることがわかる。
1 感光体(電子写真感光体)
2 帯電装置(帯電ローラ;帯電部)
3 露光装置(露光部)
4 現像装置(現像部)
5 転写装置
6 クリーニング装置(クリーニング部)
7 定着装置
41 現像槽
42 アジテータ
43 供給ローラー
44 現像ローラー
45 規制部材
71 上部定着部材(加圧ローラー)
72 下部定着部材(定着ローラー)
73 加熱装置
T トナー
P 記録紙(用紙,媒体)

Claims (7)

  1. 導電性支持体上に感光層を有し、該感光層が電荷発生物質と結着樹脂とを含む電子写真感光体において、該電荷発生物質が金属含有フタロシアニンであり、且つ、感光層中における電荷発生物質と同一層中に存在する結着樹脂の電荷発生物質に対する質量比が80wt%以上300wt%以下であり、且つ、該結着樹脂が、下記一般式[1]で表される部分構造を
    有するポリエステルを含有することを特徴とする電子写真感光体。
    Figure 0005783104
  2. 導電性支持体上に少なくとも電荷発生層及び電荷輸送層を有する積層型電子写真感光体であって、該電荷発生層に一般式[1]で表される部分構造を有するポリエステルを含有す
    ることを特徴とする請求項1に記載の電子写真感光体。
  3. 前記電荷輸送層がポリアリレート樹脂を含有することを特徴とする請求項2に記載の電子写真感光体。
  4. 前記結着樹脂中における、上記一般式[1]で表される部分構造のモル比が10mol%以下で
    あることを特徴とする請求項1〜3のいずれか1項に記載の電子写真感光体。
  5. 前記電荷輸送層中が下記一般式[2]で表されるポリアリレート樹脂を含有することを特
    徴とする請求項1〜4のいずれか1項に記載の電子写真感光体。
    Figure 0005783104
    (式[2]中、Ar1〜Ar4はそれぞれ独立に置換基を有していてもよいアリーレン基を表し、Xは単結合、酸素原子、硫黄原子、下記式[3]で表される基、又は下記式[4]で表される基であって、式[3]中のR及びRは、それぞれ独立に、水素原子、アルキル基、又はアリール基を表し、RとRとが結合して環を形成していてもよく、式[4]中のRは、アルキレン基、アリーレン基、又は下記式[5]で表される基であって、式[5]中のR及びRは、それぞれ独立に、アルキレン基を表し、Arはアリーレン基を表す。kは0〜5の整数を表す。但し、k = 0の場合、Ar3とAr4のうちいずれか一
    方は置換基を有するアリーレン基である。)
    Figure 0005783104
    (式[2]中、Yは、単結合、酸素原子、硫黄原子、又は下記式[6]表される基であって、式[6]中、R及びRは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、又はアリール基を表し、RとRとが結合して環を形成していてもよい。)
    Figure 0005783104
  6. 請求項1〜5のいずれか1項に記載の電子写真感光体と、該電子写真感光体を帯電させる帯電部、帯電した該電子写真感光体を露光させ静電潜像を形成する露光部、該電子写真感光体上に形成された静電潜像を現像する現像部、該電子写真感光体上をクリーニングするクリーニング部のうち、少なくとも一つとを備えることを特徴とする電子写真感光体カートリッジ。
  7. 請求項1〜5のいずれか1項に記載の電子写真感光体と、該電子写真感光体を帯電させる帯電部、帯電した該電子写真感光体を露光させ静電潜像を形成する露光部、及び該電子写真感光体上に形成された静電潜像を現像する現像部とを備えることを特徴とする画像形成装置。
JP2012067861A 2012-03-23 2012-03-23 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 Active JP5783104B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067861A JP5783104B2 (ja) 2012-03-23 2012-03-23 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067861A JP5783104B2 (ja) 2012-03-23 2012-03-23 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2013200395A JP2013200395A (ja) 2013-10-03
JP5783104B2 true JP5783104B2 (ja) 2015-09-24

Family

ID=49520698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067861A Active JP5783104B2 (ja) 2012-03-23 2012-03-23 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置

Country Status (1)

Country Link
JP (1) JP5783104B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06175379A (ja) * 1992-12-03 1994-06-24 Fuji Photo Film Co Ltd 電子写真感光体
EP0677544A1 (en) * 1994-03-24 1995-10-18 Shell Internationale Researchmaatschappij B.V. Epoxy powder coating compositions
JP4809465B2 (ja) * 2009-07-27 2011-11-09 シャープ株式会社 電子写真感光体およびそれを搭載した画像形成装置

Also Published As

Publication number Publication date
JP2013200395A (ja) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5900547B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5585060B2 (ja) 電子写真感光体、並びにそれを用いた電子写真カートリッジ及び画像形成装置
JP5549263B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5671195B2 (ja) フタロシアニン結晶、電子写真感光体、並びにそれを用いた電子写真感光体カートリッジ及び画像形成装置
JP2013092760A (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5446299B2 (ja) 電子写真感光体、それを用いた電子写真カートリッジ及び画像形成装置
JP5659452B2 (ja) 電子写真感光体、画像形成装置、及び電子写真カートリッジ
JP5617192B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5521336B2 (ja) 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP5663835B2 (ja) 電子写真感光体、電子写真カートリッジ、および、画像形成装置
JP5157438B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP5783104B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2008299215A (ja) 電子写真感光体、電子写真カートリッジ、および画像形成装置
JP5119733B2 (ja) 電子写真感光体、該電子写真感光体を備える感光体カートリッジ及び画像形成装置
JP2008151876A (ja) 画像形成装置及び電子写真感光体カートリッジ
JP5835053B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5659454B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および、画像形成装置
JP2008299214A (ja) 電子写真感光体、並びにそれを用いた画像形成装置及び電子写真カートリッジ
JP5481952B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP2009020506A (ja) 画像形成装置及び電子写真感光体カートリッジ
JP2009128587A (ja) 電子写真感光体、画像形成装置及び電子写真感光体カートリッジ
JP2009020177A (ja) 電子写真感光体、該電子写真感光体を備える感光体カートリッジ及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5783104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350