JP5585060B2 - 電子写真感光体、並びにそれを用いた電子写真カートリッジ及び画像形成装置 - Google Patents

電子写真感光体、並びにそれを用いた電子写真カートリッジ及び画像形成装置 Download PDF

Info

Publication number
JP5585060B2
JP5585060B2 JP2009274786A JP2009274786A JP5585060B2 JP 5585060 B2 JP5585060 B2 JP 5585060B2 JP 2009274786 A JP2009274786 A JP 2009274786A JP 2009274786 A JP2009274786 A JP 2009274786A JP 5585060 B2 JP5585060 B2 JP 5585060B2
Authority
JP
Japan
Prior art keywords
toner
resin
less
group
usually
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009274786A
Other languages
English (en)
Other versions
JP2010164951A (ja
Inventor
直 水島
大輔 山崎
光央 和田
章照 藤井
渉 宮下
孝行 庄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2009274786A priority Critical patent/JP5585060B2/ja
Publication of JP2010164951A publication Critical patent/JP2010164951A/ja
Application granted granted Critical
Publication of JP5585060B2 publication Critical patent/JP5585060B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)

Description

本発明は、電子写真感光体、電子写真カートリッジ、及び画像形成装置に関する。
近年、電子写真複写機等の画像形成装置の用途は拡大しており、画像品質への市場の要望は一段と高い水準を求めるものになってきている。特に、事務用の書類等においても、入力における写像技術、潜像形成技術の発展に加え、出力時においても、文字の象形の種類はより豊富に、より微細化されており、またプレゼンテーションソフトウェアの普及と発達により、印刷画像に欠陥や不鮮明さの少ない、極めて高画質な潜像の再現性が求められている。特に、画像形成装置を構成する潜像担持体上の静電潜像が100μm以下(凡そ300dpi以上)の線画像の場合に用いる現像剤としては、従来の粒径の大きなトナーでは、細線再現性が一般に悪く、線画像の鮮明さがいまだに十分とはいえないものとなっている。
高画質対応にはトナーの小粒径化が有効であり、この技術はケミカルトナーが得意とするところであり、種々のトナーが開発されている(特許文献1〜12)。特に、ケミカルトナーの場合、粒度分布の狭いトナーを作製することが可能であり、帯電特性を均一にすることが可能で、電子写真プロセス上有利である。
特開平2−284158号公報 特開平5−119530号公報 特開平1−221755号公報 特開平6−289648号公報 特開2001−134005号公報 特開平11−174731号公報 特開平11−362389号公報 特開平2−000877号公報 特開2004−045948号公報 特開2003−255567号公報 国際公開WO2004−088431号パンフレット 特開平3−75660号公報
従来のケミカルトナーを用いた場合の課題として、トナー形状が球形に近くなることにより、トナーが感光体とブレードとの間をすり抜けて、クリーニング不良を発生することが言及されている。そのため、ケミカルトナーを用いた場合、クリーニングブレードの当接圧を高くし、クリーニング不良を抑制する方法が取られることが多い。しかし、この場合、ブレード反転、摺擦音の発生等の別の課題が発生しやすかった。この課題は、円形度の大きい、懸濁重合トナーを用いた場合、特に顕著であった。
以上のように、従来技術では、ケミカルトナーのポテンシャルを十分に引き出せていなかったというのが現状である。
本発明は上記の課題に鑑みてなされたものであり、本発明の目的は、クリーニング不良、フィルミング、汚れ、残像(ゴースト)、濃度低下等が少ない電子写真感光体を提供することにある。また、この電子写真感光体を用いて、印刷時において、ブレード反転、摺擦音の発生しない電子写真カートリッジ及び画像形成装置を提供することにある。
本発明者らは、上記課題を解決すべく鋭意検討した結果、感光層中に、ポリアリレート樹脂と、特定の分子量及び最高被占軌道のエネルギーレベルを有する電荷輸送物質とを含有させることにより、クリーニング不良、フィルミング、汚れ、残像(ゴースト)、濃度低下等が少ない電子写真感光体を提供することができ、また、この電子写真感光体を用いることにより、印刷時において、ブレード反転、摺擦音の発生しない電子写真カートリッジ及び画像形成装置を提供することができることを見出し、本発明を完成させた。
即ち、本発明の要旨は、導電性支持体と、該導電性支持体上に形成された感光層とを有する電子写真感光体において、該感光層が少なくともポリアリレート樹脂と電荷輸送物質とを含有するとともに、該電荷輸送物質の分子量が460以下であり、且つ、該電荷輸送物質における密度汎関数計算B3LYP/6−31G(d,p)による構造最適化計算の結果得られた最高被占軌道のエネルギーレベルE_homoが、−4.67eV以上であることを特徴とする、電子写真感光体に存する(請求項1)。
この時、該エネルギーレベルE_homoが、−4.65eV以上であることが好ましい(請求項2)。
また、該電荷輸送物質が、下記式(A)で表されることが好ましい(請求項3)。
Figure 0005585060
(式(A)中、R〜Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、又は置換基を有してもよいアリール基を表し、Rは置換基を有してもよいアルキル基、又は置換基を有してもよいアリール基を表し、nは0以上3以下の整数を表し、環Zはインドリン環の2つの炭素原子と共に形成される飽和の5〜8員環を表し、且つ、該2つの炭素原子上に存在する2つの水素原子がcisの立体配置にある。)
さらに、該ポリアリレート樹脂が、下記式(1)で表される繰返し構造を有することが好ましい(請求項4)。
Figure 0005585060
(式(1)中、Ar〜Arは、それぞれ独立に、置換基を有してもよいアリーレン基を表し、X及びYは、それぞれ独立に、単結合又は二価の連結基を表し、kは0以上の整数を表す。)
この時、該式(1)において、Ar及びArの少なくとも一方が置換基を有するアリーレン基であることが好ましい(請求項5)。
また、該式(1)において、Yが酸素原子であり、且つk=1であることが好ましい(請求項6)。
また、前記R がp−トリル基であることが好ましい(請求項7)
また、前記式(A)で表される電荷輸送物質が下記式で表わされる化合物の混合物であることが好ましい(請求項8)。
Figure 0005585060
また、本発明の別の要旨は、上記の電子写真感光体と、該電子写真感光体を帯電させる帯電手段、帯電した該電子写真感光体に対し像露光を行い静電潜像を形成する像露光手段、該静電潜像をトナーで現像する現像手段、該トナーを該電子写真感光体から被転写体に転写する転写手段、及び転写後の該電子写真感光体上に残留するトナーを除去するクリーニング手段のうち、少なくとも一つとを備えることを特徴とする、電子写真カートリッジに存する(請求項)。
この時、ブレードクリーニング機構を有することが好ましい(請求項10
らに、フロー式粒子像分析装置によって測定される該トナーの平均円形度が、0.960以上1.000以下であることが好ましい(請求項11)。
また、本発明の別の要旨は、上記の電子写真感光体と、少なくとも該電子写真感光体を帯電させる帯電手段と、帯電した該電子写真感光体に対し像露光を行ない静電潜像を形成する像露光手段と、該静電潜像をトナーで現像する現像手段と、該トナーを被転写体に転写する転写手段とを備えることを特徴とする、画像形成装置に存する(請求項12)。
この時、ブレードクリーニング機構を有することが好ましい(請求項13)。
らに、フロー式粒子像分析装置によって測定される該トナーの平均円形度が、0.960以上1.000以下であることが好ましい(請求項14)。
本発明によれば、クリーニング不良、フィルミング、汚れ、残像(ゴースト)、濃度低下等が少ない電子写真感光体を提供することができる。また、この電子写真感光体を用いることにより、印刷時において、ブレード反転、摺擦音の発生しない電子写真カートリッジ及び画像形成装置を提供することができる。
押込み深さに対する荷重曲線を示したグラフである。 本発明の画像形成装置の一実施態様の要部構成を示す概略図である。 本発明の実施例及び比較例で用いたオキシチタニウムフタロシアニンの粉末X線回折スペクトルを示すX線回折図である。 本発明の実施例及び比較例で用いたオキシチタニウムフタロシアニンの粉末X線回折スペクトルを示すX線回折図である。
以下、本発明の実施の形態につき詳細に説明するが、本発明は以下の内容に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施できる。
[1.電子写真感光体]
本発明の電子写真感光体は、導電性支持体と、該導電性支持体上に形成された感光層とを有する電子写真感光体において、該感光層が少なくともポリアリレート樹脂と電荷輸送物質とを含有するとともに、該電荷輸送物質の分子量が460以下であり、且つ、該電荷輸送物質における密度汎関数計算B3LYP/6−31G(d,p)による構造最適化計算の結果得られた最高被占軌道(以下、適宜「HOMO」と言う。)のエネルギーレベルE_homoが、−4.67eV以上であるものである。
[1−1.導電性支持体]
本発明の電子写真感光体に用いる導電性支持体としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料;金属、カーボン、酸化錫等の導電性粉体を添加して導電性を付与した樹脂材料;アルミニウム、ニッケル、ITO(酸化インジウム酸化錫)等の導電性材料をその表面に蒸着又は塗布した樹脂、ガラス、紙;等が主として使用される。なお、導電性支持体は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
形態としては、例えば、ドラム状、シート状、ベルト状等のものが用いられる。金属材料の導電性支持体に、導電性、表面性等の制御、欠陥被覆等のために、適当な抵抗値を有する導電性材料を塗布したものでもよい。
導電性支持体としてアルミニウム合金等の金属材料を用いた場合、導電性支持体表面に陽極酸化被膜を施したものを用いてもよい。陽極酸化被膜を施す場合、公知の方法により封孔処理を施すことが好ましい。陽極酸化処理の方法としては、例えば、クロム酸、硫酸、シュウ酸、ホウ酸、スルファミン酸等の酸性浴中で、陽極酸化処理することにより陽極酸化被膜が形成されるが、中でも、硫酸中での陽極酸化処理がより良好な結果を与える。
硫酸中での陽極酸化の場合、各種条件は所望の陽極酸化処理を行える限り任意であるが、中でも、硫酸濃度は通常100g/L以上、また、通常300g/L以下、溶存アルミニウム濃度は通常2g/L以上、また、通常15g/L以下、液温は通常15℃以上、また、通常30℃以下、電解電圧は通常10V以上、また、通常20V以下、電流密度は通常0.5A/dm以上、また、通常2A/dm以下が望ましい。
このようにして形成された陽極酸化被膜に対して、封孔処理を行なうことが好ましい。封孔処理は、公知の方法で行うことができるが、封孔処理方法として、例えば、主成分としてフッ化ニッケルを含有する水溶液(フッ化ニッケル水溶液)中に浸漬させる低温封孔処理、又は主成分として酢酸ニッケルを含有する水溶液(酢酸ニッケル水溶液)中に浸漬させる高温封孔処理が好ましい。
上記低温封孔処理の場合に使用されるフッ化ニッケル水溶液中のフッ化ニッケルの濃度は、本発明の効果を著しく損なわない限り任意であるが、通常3g/L以上、また、通常6g/L以下の濃度となるように使用した場合に、より好ましい結果が得られる。
また、封孔処理をスムーズに進めるために、処理温度は、通常25℃以上、好ましくは30℃以上、また、その上限は、通常40℃以下、好ましくは35℃以下である。
また、フッ化ニッケル水溶液のpHは、通常4.5以上、好ましくは5.5以上、また、その上限は、通常6.5以下、好ましくは6.0以下であることが望ましい。pH調整剤としては、公知の任意の物質を用いることができるが、例えば、シュウ酸、ホウ酸、ギ酸、酢酸、水酸化ナトリウム、酢酸ナトリウム、アンモニア水等を用いることができる。なお、pH調整剤は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
処理時間は、被膜の膜厚1μmあたり、通常1分以上、また、通常3分以下の範囲で処理することが好ましい。なお、被膜物性を更に改良するために、例えばフッ化コバルト、酢酸コバルト、硫酸ニッケル、界面活性剤等をフッ化ニッケル水溶液に混合してもよい。上記の処理の後、必要に応じて、水洗、乾燥等を行うことにより、低温封孔処理を完了させることができる。
また、上記の高温封孔処理の場合の封孔剤としては、例えば酢酸ニッケル、酢酸コバルト、酢酸鉛、酢酸ニッケル−コバルト、硝酸バリウム等の金属塩水溶液を用いることができるが、特に酢酸ニッケルの水溶液を用いることが好ましい。酢酸ニッケル水溶液を用いる場合、酢酸ニッケル水溶液中の酢酸ニッケルの濃度は、通常5g/L以上、また、通常20g/L以下の濃度範囲内で使用することが好ましい。
さらに、処理温度は通常80℃以上、好ましくは90℃以上、また、その上限は、通常100℃以下、好ましくは98℃以下である。
また、酢酸ニッケル水溶液のpHは、通常5.0以上、また、通常6.0以下の範囲が好ましい。
pH調整剤としては、アンモニア水、酢酸ナトリウム等を用いることができる。なお、pH調整剤は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
処理時間は通常10分以上、好ましくは20分以上処理することが好ましい。なお、この場合も、被膜物性を改良するために、酢酸ナトリウム、有機カルボン酸、アニオン系、ノニオン系界面活性剤等を酢酸ニッケル水溶液に混合してもよい。
上記の処理の後、必要に応じて、水洗、乾燥等を行うことにより、高温封孔処理を完了させることができる。
平均膜厚が厚い場合には、封孔処理液の高濃度化、高温・長時間処理により強い封孔条件を必要とする場合がある。従って、生産性が悪くなると共に、被膜表面にシミ、汚れ、粉ふきといった表面欠陥を生じやすくなる。このような観点から、陽極酸化被膜の平均膜厚は、通常20μm以下、特に7μm以下で形成されることが好ましい。
導電性支持体表面は、平滑であってもよいし、特別な切削方法を用いたり、研磨処理したりすることにより、粗面化されていてもよい。また、導電性支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものであってもよい。また、安価化のためには切削処理を施さず、引き抜き管をそのまま使用することも可能である。特に引き抜き加工、インパクト加工、しごき加工等の非切削アルミニウム支持体を用いる場合、処理により、表面に存在した汚れ、異物等の付着物、小さな傷等が無くなり、均一で清浄な支持体が得られるので好ましい。
[1−2.下引き層]
導電性支持体と後述する感光層との間には、接着性、ブロッキング性等の改善のため、下引き層を設けてもよい。下引き層としては、例えば、樹脂、樹脂に金属酸化物等の粒子を分散したもの等が用いられる。また、下引き層は、単一層であっても、複数層を設けてもよい。
下引き層に用いる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
これらの金属酸化物粒子の中でも、酸化チタン及び酸化アルミニウムが好ましく、特に酸化チタンが好ましい。
酸化チタン粒子は、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、又はステアリン酸、ポリオール、シリコーン等の有機物による処理が施されていてもよい。これらの処理は何れか1種でもよく、2種以上が施されていてもよい。
酸化チタン粒子の結晶型としては、例えば、ルチル、アナターゼ、ブルッカイト、アモルファスの何れを用いることができる。なお、酸化チタン粒子は、その結晶型が1種のみであってもよく、2種以上の結晶型が任意の比率及び組み合わせで含まれていてもよい。
金属酸化物粒子の粒径は本発明の効果を著しく損なわない限り任意であるが、下引き層の原料であるバインダー樹脂等の特性及び溶液の安定性の観点から、平均一次粒径が、通常10nm以上、また、通常100nm以下、好ましくは50nm以下のものが望ましい。この平均一次粒径は、例えば透過型電子顕微鏡(TEM)写真により測定できる。
下引き層は、金属酸化物粒子をバインダー樹脂に分散したもので形成することが好ましい。このような下引き層は、例えば、バインダー樹脂を溶解した溶液に金属酸化物粒子を分散させ、この金属酸化物粒子を分散した溶液(以下、適宜「下引き層形成用塗布液」と言う。)を塗布することにより形成することが好ましい。下引き層に用いられるバインダー樹脂としては、例えば、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリイミド樹脂、塩化ビニリデン樹脂、ポリビニルアセタール樹脂、塩化ビニル−酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリウレタン樹脂、ポリアクリル酸樹脂、ポリアクリルアミド樹脂、ポリビニルピロリドン樹脂、ポリビニルピリジン樹脂、水溶性ポリエステル樹脂、ニトロセルロース等のセルロースエステル樹脂、セルロースエーテル樹脂、カゼイン、ゼラチン、ポリグルタミン酸、澱粉、スターチアセテート、アミノ澱粉、ジルコニウムキレート化合物、ジルコニウムアルコキシド化合物等の有機ジルコニウム化合物、チタニルキレート化合物、チタニルアルコキシド化合物等の有機チタニル化合物、シランカップリング剤等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。また、硬化剤とともに硬化した形状で使用してもよい。中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド等は、良好な分散性及び塗布性を示し、好ましい。
金属酸化物粒子の使用量は、本発明の効果を著しく損なわない限り任意であるが、下引き層形成用塗布液の安定性、塗布性の観点から、バインダー樹脂100重量部に対して、通常10重量部以上、また、通常500重量部以下が望ましい。
下引き層形成用塗布液に金属酸化物粒子を含有する場合、通常、金属酸化物粒子は塗布液中に分散されて存在する。下引き層形成用塗布液中に金属酸化物粒子を分散させる方法としては、例えば、ボールミル、サンドグラインドミル、遊星ミル、ロールミル等の公知の機械的な粉砕装置を用い、有機溶媒中にて湿式分散することができる。中でも、分散メディアを利用して分散することが好ましい。
分散メディアを利用して分散する際の分散装置としては、公知のどのような分散装置を用いて分散しても構わないが、例えば、ペブルミル、ボールミル、サンドミル、スクリーンミル、ギャップミル、振動ミル、ペイントシェーカー、アトライター等が挙げられる。これらの中でも塗布液を循環させて分散できるものが好ましく、分散効率、到達粒径の細かさ、連続運転の容易さ等の観点から、サンドミル、スクリーンミル、ギャップミルが好ましく用いられる。サンドミルは、縦型、横型いずれのものでもよい。サンドミルのディスク形状は、平板型、垂直ピン型、水平ピン型等任意のものを使用できる。
分散メディアは、通常、真球に近い形状をしているため、平均粒子径は、例えばJIS
8801:2000等に記載のふるいによりふるい分けする方法、例えば(株)ニレコ製のLUZEX50等の画像解析装置を用いた画像解析等により求めることができる。
また、密度は、例えばアルキメデス法により測定することができる。
さらに、真球度は、例えば(株)ニレコ製のLUZEX50等の画像解析装置により、求めることができる。
分散メディアの平均粒子径としては、通常5μm以上、好ましくは10μm以上、また、その上限は、通常200μm以下、好ましくは100μm以下である。一般的には、小さな粒径の分散メディアを用いることにより、短時間で均一な分散液を与える傾向があるが、粒径が小さくなりすぎる場合、分散メディアの質量が小さくなり、効率の良い分散が行えない可能性がある。
例えば酸化チタン粒子を下引き層形成用塗布液に分散させるには、各種の平均粒子径を有する分散メディアを用いることができるが、中でも、平均粒子径が上記範囲にある分散メディアを用いることが好ましい。
分散メディアの密度としては、通常5.5g/cm以上、好ましくは5.9g/cm以上、より好ましくは6.0g/cm以上のものが用いられる。一般に、より高密度の分散メディアを使用して分散した方が、短時間で均一な分散液が得られる傾向にある。
また、分散メディアの真球度としては、好ましくは1.08以下、より好ましくは1.07以下である。
分散メディアとしては、本発明の効果を著しく損なわない限り任意のものを用いることができるが、下引き層形成用塗布液に不溶、且つ、比重が下引き層形成用塗布液より大きなものであって、下引き層形成用塗布液と反応したり、下引き層形成用塗布液を変質させたりしないものであることが好ましい。分散メディアの具体例としては、クローム球(玉軸受用鋼球)、カーボン球(炭素鋼球)等のスチール球;ステンレス球;窒化珪素球、炭化珪素、ジルコニア、アルミナ等のセラミック球;窒化チタン、炭窒化チタン等の膜でコーティングされた球等が挙げられるが、これらの中でもセラミック球が好ましく、特にはジルコニア焼成ボールが好ましい。より具体的には、特許第3400836号公報に記載のジルコニア焼成ビーズを用いることが特に好ましい。これらは1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
また、下引き層をメタノールと1−プロパノールとを7:3の重量比で混合した溶媒に分散した液(以下、適宜「下引き層測定用分散液」と言う。)中において、金属酸化物粒子は、動的光散乱法により測定された体積平均粒子径が、通常20nm以上、また、その上限は、通常0.1μm以下、好ましくは95nm以下、より好ましくは90nm以下であることが望ましい。
なお、動的光散乱法による具体的な測定方法としては、例えば、特開2007−334335号公報に記載の方法を用いることができる。
また、下引き層測定用分散液中の金属酸化物粒子は、動的光散乱法により測定された累積90%粒子径が、通常10nm以上、好ましくは20nm以上、より好ましくは50nm以上、また、その上限は、通常0.3μm以下、好ましくは0.25μm以下、より好ましくは0.2μm以下であることが望ましい。
従来の電子写真感光体では、下引き層に、金属酸化物粒子が凝集することによってなる、下引き層の表裏を貫通できるほど大きい金属酸化物粒子凝集体が含有され、当該大きな金属酸化物粒子凝集体によって、画像形成時に欠陥が生じる可能性があった。さらに、帯電手段として接触式のものを用いた場合には、感光層に帯電を行なう際に当該金属酸化物粒子を通って感光層から導電性支持体に電荷が移動し、適切に帯電を行なうことができなくなる可能性もあった。しかし、本発明の電子写真感光体においては、累積90%粒子径が非常に小さいため、上記のように欠陥の原因となりうる大きな金属酸化物粒子が非常に少なくなる。この結果、本発明の電子写真感光体を用いた画像形成装置においては、欠陥の発生、及び、適切に帯電できなくなることを抑制でき、高品質な画像形成が可能となる。
下引き層の膜厚は、本発明の効果を著しく損なわない限り任意であるが、電子写真感光体の電気特性、強露光特性、画像特性、繰り返し特性、及び製造時の塗布性を向上させる観点から、通常は0.01μm以上、好ましくは0.1μm以上、また、通常30μm以下、好ましくは20μm以下である。
[1−3.感光層]
感光層の構成は、公知の電子写真感光体に適用可能な如何なる構成も採用することが可能である。具体例を挙げると、光導電性材料をバインダー樹脂中に溶解又は分散させた単層の感光層(即ち、単層型感光層)を有する、いわゆる単層型感光体;電荷発生物質を含有する電荷発生層と、電荷輸送物質を含有する電荷輸送層とを積層してなる複数の層からなる感光層(即ち、積層型感光層)を有する、いわゆる積層型感光体等が挙げられる。一般に光導電性材料は、単層型でも積層型でも、機能としては同等の性能を示すことが知られている。
本発明の電子写真感光体が有する感光層は、公知のいずれの形態であっても構わないが、電子写真感光体の機械的物性、電気特性、製造安定性等を総合的に勘案して、積層型の電子写真感光体が好ましい。特に、導電性支持体上に電荷発生層と電荷輸送層とをこの順に積層した順積層型感光体がより好ましい。
また、本発明の電子写真感光体における感光層は、少なくともポリアリレート樹脂と特定の電荷輸送物質とを含有する。
[1−3−1.ポリアリレート樹脂]
本発明の電子写真感光体における感光層は、ポリアリレート樹脂を含有する。ポリアリレート樹脂としては、公知の任意のものを用いることができるが、中でも、下記式(1)で表される繰返し構造を有するもの(以下、適宜「ポリアリレート樹脂(1)」と言う。)を用いることが好ましい。なお、ポリアリレート樹脂は、1種を単独で用いてもよく、2種以上を任意の比率及び組みあわせで用いてもよい。
Figure 0005585060
(式(1)中、Ar〜Arは、それぞれ独立に、置換基を有してもよいアリーレン基を表し、X及びYは、それぞれ独立に、単結合又は二価の連結基を表し、kは0以上の整数を表す。)
<A.構造>
上記式(1)中、Ar〜Arは、それぞれ独立に、置換基を有してもよいアリーレン基を表す。アリーレン基は、本発明の効果を著しく損なわない限り任意である。アリーレン基が有する炭素数としては、通常6以上、また、その上限は、通常20以下、好ましくは10以下である。炭素数が多すぎる場合、電気特性が悪化する可能性がある。
アリーレン基の具体例としては、1,2−フェニレン基、1,3−フェニレン基、1,4−フェニレン基、ナフチレン基、アントリレン基、フェナントリレン基等が挙げられる。中でも、アリーレン基としては、電気特性の観点から、1,4−フェニレン基が好ましい。アリーレン基は1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
また、Ar〜Arは、それぞれ独立に、置換基を有していてもよい。置換基の具体例を挙げると、アルキル基、アリール基、ハロゲン基、アルコキシ基等が挙げられる。中でも、感光層用のバインダー樹脂としての機械的特性と感光層形成用塗布液(即ち、感光層を形成する際に用いる溶液)に対する溶解性とを勘案すれば、アルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基が好ましく、アリール基としてはフェニル基、ナフチル基が好ましく、ハロゲン基としてフッ素原子、塩素原子、臭素原子、ヨウ素原子が好ましく、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基が好ましい。
なお、置換基がアルキル基である場合、そのアルキル基の炭素数は通常1以上、また、通常10以下、好ましくは8以下、より好ましくは2以下である。
Ar及びArは、それぞれ独立に、置換基の数は0以上2以下が好ましく、接着性の観点から置換基を有することがより好ましく、中でも、耐磨耗性の観点から置換基の数は1個であることが特に好ましい。また、置換基としてはアルキル基が好ましく、メチル基が特に好ましい。
上記の観点から、Ar及びArの少なくとも一方が置換基を有するアリーレン基であることが好ましい。
一方、Ar及びArは、それぞれ独立して、置換基の数は0以上2以下が好ましく、耐磨耗性の観点から置換基を有さないことがより好ましい。
また、上記式(1)において、X及びYは、それぞれ独立に、単結合又は二価の連結基を表す。好適なX及びYとしては、硫黄原子、酸素原子、スルホニル基、シクロペンチリデン、シクロヘキシリデン等のシクロアルキリデン基、−CR−が挙げられる。
ここで、R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、ハロゲン基、又はアルコキシ基を表す。また、R及びRのうち、感光層用のバインダー樹脂としての機械的特性と感光層形成用塗布液に対する溶解性とを勘案すれば、アルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基が好ましく、アリール基としてはフェニル基、ナフチル基が好ましく、ハロゲン基としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が好ましく、アルコキシ基としてはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基が好ましい。
なお、R又はRがアルキル基である場合、そのアルキル基の炭素数は、通常1以上、また、通常10以下、好ましくは8以下、より好ましくは2以下である。
さらに、ポリアリレート樹脂(1)を製造する際に通常用いられる二価ヒドロキシ化合物を製造する際の簡便性を勘案すれば、Xとしては、硫黄原子、酸素原子、シクロヘキシリデン、−CR−が好ましい。中でも、Xが−CR−であることが好ましく、R及びRが水素原子又はメチル基等のアルキル基であることがより好ましく、耐磨耗性の観点から、R及びRのうち少なくとも一方が水素原子であることが特に好ましい。
一方、ポリアリレート樹脂(1)を製造する際に通常用いられる二価ヒドロキシ化合物を製造する際の簡便性を勘案すれば、Yとしては、単結合;酸素原子、硫黄原子、メチレン基等の原子数3以下の2価の連結基;が好ましく、耐磨耗性の観点から、原子数3以下の2価の連結基が好ましく、中でも酸素原子が特に好ましい。
また、kは0以上の整数である。中でも、ポリアリレート樹脂(1)を製造する際の簡便性を勘案すれば、kは0又は1が好ましく、耐磨耗性の観点から、kは1であることが特に好ましい。
即ち、上記式(1)において、Yが酸素原子であり、且つk=1であることが好ましい。
ポリアリレート樹脂(1)が有する繰返し構造として好ましいものは、以下に記載するものが挙げられる。ただし、ポリアリレート樹脂(1)が有しうる繰返し構造は、以下に記載する繰返し構造に限定されない。また、下記構造の1種を単独で含んでもよく、2種以上を任意の比率及び組み合わせで含んでもよい。
・kが0の場合の繰返し構造
Figure 0005585060
・kが1の場合の繰り返し構造
Figure 0005585060
Figure 0005585060
ポリアリレート樹脂(1)が有する、式(1)で表される繰返し構造の量は、本発明の効果を著しく損なわない限り、任意である。ただし、繰返し構造部分の重量比率が多いほど、電気特性、耐磨耗性の観点から好ましい。具体的には、ポリアリレート樹脂(1)に対して、式(1)で表される繰返し構造が、好ましくは50重量%以上、より好ましくは70重量%以上、更に好ましくは80重量%以上、特に好ましくはポリアリレート樹脂(1)が有する繰返し構造の全てが、式(1)で表される構造であることが望ましい。
また、ポリアリレート樹脂(1)を形成する酸成分の具体例としては、以下の構造を有するジカルボン酸成分を用いることが好ましい。
Figure 0005585060
上記のものの中でも、電気特性、耐磨耗性の観点から、以下の構造を有する酸成分が好ましい。
Figure 0005585060
一方、ポリアリレート樹脂(1)を形成するジオール成分としては、例えば、ビスフェノール化合物、ビフェノール化合物等が挙げられる。ジオール成分も、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
その具体例としては、4,4’−ビフェノール、3,3’−ジメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジ(t−ブチル)−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’,5,5’−テトラ(t−ブチル)−4,4’−ジヒドロキシ−1,1’−ビフェニル、2,2’,3,3’,5,5’−ヘキサメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル、2,4’−ビフェノール、3,3’−ジメチル−2,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジ(t−ブチル)−2,4’−ジヒドロキシ−1,1’−ビフェニル、2,2’−ビフェノール、3,3’−ジメチル−2,2’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジ(t−ブチル)−2,2’−ジヒドロキシ−1,1’−ビフェニル等のビフェノール化合物;
ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、1,1−ビス(4−ヒドロキシフェニル)ヘキサン、2,2−ビス(4−ヒドロキシフェニル)ヘキサン、3,3−ビス(4−ヒドロキシフェニル)ヘキサン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン等の芳香族環上に置換基を有しないビスフェノール化合物;
ビス(3−フェニル−4−ヒドロキシフェニル)メタン、1,1−ビス(3−フェニル−4−ヒドロキシフェニル)エタン、1,1−ビス(3−フェニル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−フェニル−4−ヒドロキシフェニル)プロパン等の芳香族環上に置換基としてアリール基を有するビスフェノール化合物;
ビス(4−ヒドロキシ−3−メチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)エタン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロヘキサン等、
ビス(4−ヒドロキシ−3−エチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3−エチルフェニル)エタン、1,1−ビス(4−ヒドロキシ−3−エチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−エチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3−エチルフェニル)シクロヘキサン等、
2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−(sec−ブチル)フェニル)プロパン、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)エタン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)シクロヘキサン、ビス(4−ヒドロキシ−3,6−ジメチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3,6−ジメチルフェニル)エタン、2,2−ビス(4−ヒドロキシ−3,6−ジメチルフェニル)プロパン、ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)エタン、2,2−ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)プロパン、ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルメタン、1,1−ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルエタン、1,1−ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)シクロヘキサン等の芳香族環上に置換基としてアルキル基を有するビスフェノール化合物;
ビス(4−ヒドロキシフェニル)(フェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルプロパン、ビス(4−ヒドロキシフェニル)(ジフェニル)メタン、ビス(4−ヒドロキシフェニル)(ジベンジル)メタン等の芳香族環を連結する2価基が置換基としてアリール基を有するビスフェノール化合物;等が挙げられる。
上記のものの中でも、ジオール成分としては、以下の構造を有するものが好ましい。
Figure 0005585060
<B.物性>
ポリアリレート樹脂の粘度平均分子量は、本発明の効果を著しく損なわない限り任意であるが、好ましくは10000以上、より好ましくは20000以上、また、その上限は、好ましくは70000以下、より好ましくは50000以下であることが望ましい。粘度平均分子量の値が小さすぎる場合、ポリアリレート樹脂の機械的強度が不足する可能性があり、大きすぎる場合、感光層形成のための塗布液の粘度が高すぎて生産性が低下する可能性がある。なお、粘度平均分子量は、例えばウベローデ型毛細管粘度計等を用いて、実施例に記載の方法で測定することができる。
ポリアリレート樹脂の末端に存在するカルボキシル基(末端カルボキシル基)の量は、本発明の効果を著しく損なわない限り任意であるが、ポリアリレート樹脂に対して、通常30μeq/g以下、好ましくは15μeq/g以下、より好ましくは10μeq/g以下、特に好ましくは5μeq/g以下である。末端カルボキシル基量が多すぎる場合、表面電位の上昇等電気特性が悪くなる可能性がある。また、末端カルボキシル基量が少ないほど、電荷輸送物質の分解を抑制することが可能となる。
なお、末端カルボキシル基量は、例えば精秤したポリアリレート樹脂をベンジルアルコールに加熱溶解し、0.01規定の水酸化ナトリウム−ベンジルアルコール溶液で滴定することにより、定量することができる。
ポリアリレート樹脂の分子鎖中に含まれる窒素量は、ポリアリレート樹脂に対して、通常100ppm以下、好ましくは50ppm以下、より好ましくは20ppm以下である。窒素量が多すぎる場合、表面電位の上昇等電気特性が悪くなる可能性がある。
なお、ポリアリレート樹脂中の窒素量は、例えば(株)三菱化学製全窒素分析計(TN−10)により測定できる。
また、ポリアリレート樹脂の末端に残存する酸クロライド基(−COCl)(末端酸クロライド基)量は、ポリアリレート樹脂に対して、通常1μeq/g以下、好ましくは0.3μeq/g以下、特に好ましくは0.1μeq/g以下である。酸クロライド基量が多すぎる場合、保存安定性が低下する可能性がある。
なお、末端酸クロライド基量は、例えば精秤したポリアリレート樹脂を塩化メチレンに溶解し、4−(p−ニトロベンジル)ピリジンの1重量%塩化メチレン溶液を加え発色させ、440nmの波長の吸光度を測定する。そして、別途塩化ベンゾイルの塩化メチレン溶液を用いて吸光係数を求めることにより、ポリアリレート樹脂中の酸クロライド基量を定量することができる。
さらに、ポリアリレート樹脂の末端に存在する水酸基(末端水酸基)量は、本発明の効果を著しく損なわない限り任意であるが、好ましくは50μeq/g以下、より好ましくは20μeq/g以下である。水酸基量が多すぎる場合、表面電位の上昇等電気特性が悪くなる可能性がある。
なお、末端水酸基量は、例えば酢酸酸性化で四塩化チタンにより発色させ、480nmの波長の吸光度を測定することにより、定量することができる。
[1−3−2.電荷輸送物質]
本発明の電荷輸送物質の分子量は、通常250以上、好ましくは300以上、より好ましくは320以上、特に好ましくは350以上、またその上限は、460以下、好ましくは450以下、より好ましくは430以下、特に好ましくは410以下である。分子量が小さすぎる場合、塗布後の乾燥時に電荷輸送物質が昇華し、感光層内の電荷輸送物質の含有量を制御することが難しくなる可能性があり、大きすぎる場合、クリーニングブレードとの摺擦による異音が発生しやすくなる可能性がある。
また、本発明の電荷輸送物質のB3LYP/6−31G(d,p)を用いた構造最適化計算によるHOMOのエネルギーレベルE_homoは、−4.67eV以上、好ましくは−4.65eV以上、より好ましくは−4.63eV以上、特に好ましくは−4.61eV以上である。
E_homoが高いほど、露光後電位が低く優れた電子写真感光体が得られる。特に、バインダー樹脂としてポリアリレート樹脂を用いた場合、ポリカーボネート樹脂を用いた場合と比較して、露光後電位が高くなる傾向にあるため、本発明においてE_homoを上記の範囲に設定することが重要である。ただし、E_homoが高すぎる場合、耐ガス性の低下、ゴーストの発生等の不具合が生じる可能性があるため、上限が、好ましくは−4.30eV以下、より好ましくは−4.50eV以下、特に好ましくは−4.56eV以下であることが望ましい。
本発明の電子写真感光体において、E_homoは、密度汎関数法の一種であるB3LYP(A.D. Becke, J.Chem.Phys. 98,5648(1993), C.Lee, W.Yang, and R.G. Parr, Phys.Rev.B37,785(1988)及び B. Miehlich, A.Savin, H.Stoll, and H.Preuss, Chem.Phys.Lett. 157,200(1989))参照)を用い構造最適化計算により安定構造を求めて得ることができる。この際、基底関数系として、6−31Gに分極関数を加えた6−31G(d,p)を用いた(R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971), W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972), P. C. Hariharan and J. A. Pople, Mol. Phys. 27, 209 (1974), M. S. Gordon, Chem. Phys. Lett. 76, 163 (1980), P. C. Hariharan and J. A. Pople, Theo. Chim. Acta 28, 213 (1973), J.−P. Blaudeau, M. P. McGrath, L. A. Curtiss, and L. Radom, J.Chem. Phys. 107, 5016 (1997), M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, and M. S. Gordon, J. Chem. Phys. 77, 3654 (1982), R. C. Binning Jr. and L. A. Curtiss, J. Comp. Chem. 11, 1206 (1990), V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, J. Chem. Phys. 109, 1223 (1998), 及びV. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. Curtiss, J. Comp. Chem. 22, 976 (2001)を参照)。
本発明においては、6−31G(d,p)を用いたB3LYP計算を、「B3LYP/6−31G(d,p)」と記述する。
B3LYP/6−31G(d,p)計算に用いたプログラムは、Gaussian 03, Revision D.01( M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador,J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al−Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.)である。
通常、バインダー樹脂としてポリアリレート樹脂を用いた場合、クリーニングブレードとの摺擦による異音が発生しやすい。しかし、ポリアリレート樹脂、並びに上記の分子量及びE_homoを有する電荷輸送物質を組み合わせて用いることにより、これを抑制することが可能となる。また、これらを組み合わせて感光層に含有させると、クリーニング不良、フィルミング、汚れ、残像(ゴースト)、濃度低下等が少なく、耐摩耗性に優れる電子写真感光体を製造することができる。この理由は定かではないが、分子量が小さい電荷輸送物質ほど、ポリアリレート樹脂と組み合わせた場合に感光体表面の滑り性を改善する効果があり、さらに電荷輸送物質として高いE_homoを有するものを適用したことで、露光後の電位を実用的なレベルにできたためであると考えられる。
電荷輸送物質は、上記の分子量及びE_homoを有する限り、任意の化合物を用いることができる。電荷輸送物質の具体例としては、エナミン誘導体、カルバゾール誘導体、アニリン誘導体、ヒドラゾン誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、及びこれらの化合物の複数種が結合したもの等が挙げられる。なお、電荷輸送物質は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
これらの中でも、本発明の効果が特に発揮されやすいという観点から、下記式(A)で表される電荷輸送物質が好ましい。
Figure 0005585060
(式(A)中、R〜Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、又は置換基を有してもよいアリール基を表し、Rは置換基を有してもよいアルキル基、又は置換基を有してもよいアリール基を表し、nは0以上3以下の整数を表し、環Zはインドリン環の2つの炭素原子と共に形成される飽和の5〜8員環を表し、且つ、該2つの炭素原子上に存在する2つの水素原子がcisの立体配置にある。)
〜Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、又は置換基を有してもよいアリール基を表し、Rは置換基を有してもよいアルキル基、又は置換基を有してもよいアリール基を表す。
〜Rがアルキル基である場合、当該アルキル基が有する炭素数は、本発明の効果を著しく損なわない限り任意であるが、通常1以上、また、その上限は、通常10以下、好ましくは6以下、より好ましくは3以下である。炭素数が多すぎる場合、電気特性が悪化する場合がある。
アルキル基の具体例としては、メチル基、エチル基、プロピル基等が挙げられる。
〜Rがアリール基である場合、当該アリール基が有する炭素数は、本発明の効果を著しく損なわない限り任意であるが、通常6以上、また、その上限は、通常14以下、好ましくは13以下、より好ましくは10以下である。炭素数が多すぎる場合、電気特性が悪化する場合がある。
アリール基の具体例としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基等が挙げられる。これらの中でも、電子写真感光体の特性を考慮すると、フェニル基、ナフチル基が好ましく、フェニル基が特に好ましい。
また、上記のアルキル基及びアリール基が有していてもよい置換基としては、本発明の効果を著しく損なわない限り任意であるが、例えば、アルキル基、アリール基、アルコキシ基、アリールオキシ基等が挙げられる。なお、置換基も、1種が単独で置換されてもよく、2種以上が任意の比率及び組み合わせで置換されてもよい。
上記の中でも、Rとしては、置換基を有してもよいアリール基が好ましく、置換基を有するアリール基がより好ましい。
アリール基が有する置換基としては、メチル基、エチル基、プロピル基等のアルキル基;メトキシ基、エトキシ基、プロポキシ基のアルコキシ基;が好ましく、中でもアルキル基、メトキシ基がより好ましく、メチル基が特に好ましい。
即ち、Rとしてp−トリル基であることが、電気特性のバランスが良く、特に好ましい。p−トリル基を用いることにより、E_homoを高く設定し、好ましい電気特性を容易に得ることができる。
また、Rとしては、水素原子、又は置換基を有してもよいアルキル基が好ましく、製造の容易さの観点から、水素原子が好ましい。
及びRとしては、置換基を有してもよいアルキル基、又は置換基を有してもよいアリール基が好ましく、電気特性の観点から、中でも置換基を有してもよいアリール基が好ましい。
アリール基としては、フェニル基が好ましい。アリール基が有する置換基としては、メチル基、エチル基、プロピル基等のアルキル基、又は、メトキシ基、エトキシ基、プロポキシ基のアルコキシ基が好ましく、アルキル基、メトキシ基がより好ましく、メチル基がさらに好ましい。
ただし、上記のものの中でも、無置換のフェニル基が特に好ましい。
としては、無置換の状態(即ち、n=0)、又は置換基を有してもよいアルキル基が好ましく、製造の観点から、無置換の状態が好ましい。
nは0以上3以下の整数であるが、n=0が特に好ましい。
環Zはインドリン環の2つの炭素原子と共に形成される飽和の5〜8員環を表す。
中でも、製造の容易さの点から、環Zは5又は6員環が好ましく、5員環が特に好ましい。環Zとインドリン環とで共有される2つの炭素原子上に存在する2つの水素原子は、cis配置、又はtrans配置の立体配置を取りうる。本発明者らの検討によると、trans配置は5員環にひずみが生じ、E_homoが低くなるのに対し、cis配置ではE_homoが高く、好ましい電気特性が得られることを見出した。
以下にcis配置とtrans配置とのE_homoの一例を示す。ただし、以下に示す化合物は、電荷輸送物質の一例であり、本発明の電子写真感光体における電荷輸送物質は、以下に記載する化合物に限定されない。
Figure 0005585060
以下に、式(A)で表される化合物の具体例を例示する。
Figure 0005585060
Figure 0005585060
上記の分子量及びE_homoを有する本発明の電荷輸送物質は、上記の分子量及びE_homoの範囲を満たさない電荷輸送物質と併用しても構わないが、本発明の効果を十分に発揮するためには、感光層に含まれる全電荷輸送物質中、本発明の電荷輸送物質の量は、通常30重量%以上、好ましくは50重量%以上、より好ましくは80重量%以上、特に好ましくは100重量%であることが望ましい。
また、本発明の電荷輸送物質は、本発明の効果を十分に発揮するためには、バインダー樹脂100重量部に対して、通常30重量部以上、好ましくは40重量部以上、より好ましくは50重量部以上、また、その上限は、好ましくは120重量部以下、より好ましくは100重量部以下、特に好ましくは80重量部以下である。
また、本発明の電荷輸送物質は、上記のポリアリレート樹脂と共に感光層中に含有される場合に、特に優れた効果を奏する。ポリアリレート樹脂を用いた場合、ポリカーボネート樹脂を用いた場合に比べて、通常は電気特性が悪化するが、本発明の電荷輸送物質とポリアリレート樹脂とを組み合わせて用いた場合、優れた耐磨耗性と電気特性とを両立することが出来る。
以下に、本発明の電荷輸送物質の具体例を、分子量及びE_homoとともに示す。なお、「Me」は、メチル基を表す。
Figure 0005585060
Figure 0005585060
[1−3−3.その他の成分]
<ポリアリレート樹脂以外のバインダー樹脂>
本発明の電子写真感光体における感光層は、少なくともポリアリレート樹脂と特定の電荷輸送物質とを含有する。ただし、バインダー樹脂として、ポリアリレート樹脂の他に、ポリアリレート樹脂以外の樹脂を含んでもよい。この場合、積層型感光体の電荷輸送層及び単層型感光体の感光層に使用される全バインダー樹脂中、ポリアリレート樹脂が通常30重量%以上、好ましくは50重量%以上、より好ましくは80重量%以上、特に好ましくは100重量%であることが望ましい。
電荷発生層と電荷輸送層とを有する機能分離型感光体(即ち、積層型感光体)の電荷輸送層及び単層型感光体の感光層形成の際は、膜強度確保のため、通常、化合物を分散させるためバインダー樹脂が使用される。機能分離型感光体の電荷輸送層は、電荷輸送物質と各種バインダー樹脂とを溶剤に溶解、あるいは分散して得られる塗布液を塗布、乾燥して得ることができる。また、単層型感光体は、電荷発生物質、電荷輸送物質及び各種バインダー樹脂を溶剤に溶解、あるいは分散して得られる塗布液を塗布、乾燥して得ることができる。
ポリアリレート樹脂と組み合わせて使用できるバインダー樹脂としては、例えばブタジエン樹脂、スチレン樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、アクリル酸エステル樹脂、メタクリル酸エステル樹脂、ビニルアルコール樹脂、エチルビニルエーテル等のビニル化合物の重合体及び共重合体、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、部分変性ポリビニルアセタール、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、セルロースエステル樹脂、フェノキシ樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、ポリ−N−ビニルカルバゾール樹脂等が挙げられる。これらの樹脂は珪素試薬等で修飾されていてもよい。上記バインダー樹脂のうち、ポリカーボネート樹脂が好ましい。なお、バインダー樹脂は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
ポリアリレート樹脂と併用しうるポリカーボネート樹脂としては、下記式(2)で表される繰返し構造を有するポリカーボネート樹脂を用いることが好ましい。
Figure 0005585060
(式(2)中、Ar21及びAr22は、それぞれ独立に、置換基を有してもよいアリーレン基を表し、Xは単結合又は二価の連結基を表す。)
上記式(2)において、Ar21及びAr22は、それぞれ独立に、置換基を有してもよいアリーレン基を表す。
アリーレン基としては、例えば1,2−フェニレン基、1,3−フェニレン基、1,4−フェニレン基、ナフチレン基、アントリレン基、フェナントリレン基が挙げられるが、電気特性の観点から1,4−フェニレン基が好ましい。
また、Ar21及びAr22は、それぞれ独立に、置換基を有していてもよい。置換基の具体例を挙げると、アルキル基、アリール基、ハロゲン基、アルコキシ基等が挙げられる。これらの中でも、感光層用のバインダー樹脂としての機械的特性と感光層形成用塗布液に対する溶解性とを勘案すれば、アルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基が好ましく、アリール基としてはフェニル基、ナフチル基が好ましく、ハロゲン基としてフッ素原子、塩素原子、臭素原子、ヨウ素原子が好ましく、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基が好ましく例示される。
なお、置換基がアルキル基である場合、そのアルキル基の炭素数は通常1以上、また、通常10以下、好ましくは8以下、より好ましくは2以下である。
Ar21及びAr22は、それぞれ独立に、置換基を有さないか、1個又は2個の置換基を有することが好ましく、接着性の観点から、1個又は2個の置換基を有することがより好ましく、滑り性の観点から、1個の置換基を有することが特に好ましい。置換基としてはアルキル基が好ましく、メチル基が特に好ましい。
また、上記式(2)において、Xは単結合又は二価の連結基を表す。好適なXの具体例を挙げると、硫黄原子、酸素原子、スルホニル基、カルボニル基、シクロペンチリデン、シクロヘキシリデン等のシクロアルキリデン基、−CR−が挙げられる。
ここで、R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、ハロゲン基、又はアルコキシ基を表す。また、R及びRのうち、感光層用のバインダー樹脂としての機械的特性と感光層形成用塗布液に対する溶解性とを勘案すれば、アルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基が好ましく、アリール基としてはフェニル基、ナフチル基が好ましく、ハロゲン基としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が好ましく、アルコキシ基としてはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基が好ましい。
なお、R又はRがアルキル基である場合、そのアルキル基の炭素数は、通常1以上、また、通常10以下、好ましくは8以下、より好ましくは2以下である。
さらに、ポリカーボネート樹脂を製造する際に通常用いられる二価ヒドロキシ化合物を製造する際の簡便性を勘案すれば、Xとしては、硫黄原子、酸素原子、シクロヘキシリデン、−CR−が好ましい。中でも、Xが−CR−であることが好ましく、R及びRが水素原子又はメチル基等のアルキル基であることがより好ましく、耐磨耗性の観点から、R及びRのうち少なくとも一方が水素原子であることが特に好ましい。
これらの構造を形成するジオール成分としては、ビスフェノール化合物、ビフェノール化合物等が挙げられる。
その具体例としては、4,4’−ビフェノール、3,3’−ジメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジ(t−ブチル)−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’,5,5’−テトラ(t−ブチル)−4,4’−ジヒドロキシ−1,1’−ビフェニル、2,2’,3,3’,5,5’−ヘキサメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル、2,4’−ビフェノール、3,3’−ジメチル−2,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジ(t−ブチル)−2,4’−ジヒドロキシ−1,1’−ビフェニル、2,2’−ビフェノール、3,3’−ジメチル−2,2’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジ(t−ブチル)−2,2’−ジヒドロキシ−1,1’−ビフェニル等のビフェノール化合物;
ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、1,1−ビス(4−ヒドロキシフェニル)ヘキサン、2,2−ビス(4−ヒドロキシフェニル)ヘキサン、3,3−ビス(4−ヒドロキシフェニル)ヘキサン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン等の芳香族環上に置換基を有しないビスフェノール化合物;
ビス(3−フェニル−4−ヒドロキシフェニル)メタン、1,1−ビス(3−フェニル−4−ヒドロキシフェニル)エタン、1,1−ビス(3−フェニル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−フェニル−4−ヒドロキシフェニル)プロパン等の芳香族環上に置換基としてアリール基を有するビスフェノール化合物;
ビス(4−ヒドロキシ−3−メチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)エタン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロヘキサン等、
ビス(4−ヒドロキシ−3−エチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3−エチルフェニル)エタン、1,1−ビス(4−ヒドロキシ−3−エチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−エチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3−エチルフェニル)シクロヘキサン等、
2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−(sec−ブチル)フェニル)プロパン、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)エタン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)シクロヘキサン、ビス(4−ヒドロキシ−3,6−ジメチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−3,6−ジメチルフェニル)エタン、2,2−ビス(4−ヒドロキシ−3,6−ジメチルフェニル)プロパン、ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)メタン、1,1−ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)エタン、2,2−ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)プロパン、ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルメタン、1,1−ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルエタン、1,1−ビス(4−ヒドロキシ−2,3,5−トリメチルフェニル)シクロヘキサン等の芳香族環上に置換基としてアルキル基を有するビスフェノール化合物;
ビス(4−ヒドロキシフェニル)(フェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルプロパン、ビス(4−ヒドロキシフェニル)(ジフェニル)メタン、ビス(4−ヒドロキシフェニル)(ジベンジル)メタン等の芳香族環を連結する2価基が置換基としてアリール基を有するビスフェノール化合物;等が挙げられる。なお、ジオール成分は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
中でも以下に示されるビスフェノール又はビフェノールから形成されるポリカーボネート樹脂が好適に使用される。
Figure 0005585060
特に、以下の構造を有するビスフェノールから形成されるポリカーボネート樹脂が好ましい。
Figure 0005585060
なお、ポリカーボネート樹脂は、部分構造として上記式(2)で表される以外のポリカーボネート構造を含んでもよい。更に、部分構造として、ポリカーボネート樹脂以外の構造を含んでもよい。
上記のポリカーボネート樹脂において、式(2)で表される部分構造の重量比率は、電気特性及び耐磨耗性の観点から、多いほど好ましい。具体的には、ポリカーボネート樹脂の全重量に対して、式(2)で表される部分構造が、好ましくは50重量%以上、より好ましくは70重量%以上、更に好ましくは80重量%以上であって、特に好ましくは100重量%であることが望ましい。
ポリアリレート樹脂と組み合わせて使用できるバインダー樹脂の粘度平均分子量は、本発明の効果を著しく損なわない限り任意であるが、好ましくは10000以上、より好ましくは20000以上、また、その上限は、好ましくは70000以下、より好ましくは50000以下であることが望ましい。粘度平均分子量の値が小さすぎる場合、バインダー樹脂の機械的強度が不足する可能性があり、大きすぎる場合、感光層形成のための塗布液の粘度が高すぎて生産性が低下する可能性がある。なお、粘度平均分子量は、ポリアリレート樹脂(1)の場合と同様に測定することができる。
積層型感光体の電荷輸送層並びに単層型感光体の感光層に使用されるバインダー樹脂と電荷輸送物質との使用割合は、単層型、積層型共に、バインダー樹脂100重量部に対して、電荷輸送物質の量が、通常20重量部以上、残留電位低減の観点から、好ましくは30重量部以上、繰り返し使用時の安定性、電荷移動度の観点から、より好ましくは40重量部以上、また、感光層の熱安定性の観点から、通常150重量部以下、電荷輸送物質とバインダー樹脂との相溶性の観点から、好ましくは120重量部以下、耐刷性の観点から、より好ましくは100重量部以下、耐傷性の観点から特に好ましくは80重量部以下である。
単層型感光体の場合には、上記の感光層に、更に後述する電荷発生物質が分散される。その場合の電荷発生物質の粒子径は十分小さいことが重要であり、好ましくは1μm以下、より好ましくは0.5μm以下で使用される。
また、電荷発生物質の使用量は、好ましくは0.1重量%以上、より好ましくは1重量%以上、また、その上限は、好ましくは50重量%以下、より好ましくは20重量%以下の範囲で使用される。電荷発生物質の使用量が少なすぎる場合、十分な感度が得られない可能性があり、多すぎる場合、帯電性の低下、感度の低下等の弊害が生じる可能性がある。
<その他の電荷輸送物質>
本発明の電荷輸送物質以外にも、上記の分子量及びE_homoの範囲外にある電荷輸送物質を併用することもできる。
併用しうる電荷輸送物質の例としては、2,4,7−トリニトロフルオレノン等の芳香族ニトロ化合物、テトラシアノキノジメタン等のシアノ化合物、ジフェノキノン等のキノン化合物等の電子吸引性物質、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体、及びこれらの化合物の複数種が結合したもの、あるいはこれらの化合物からなる基を主鎖又は側鎖に有する重合体等の電子供与性物質等が挙げられる。これらの中でも、カルバゾール誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、ヒドラゾン誘導体、エナミン誘導体、及びこれらの化合物の複数種が結合したものが好ましい。これらの電荷輸送物質は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
併用しうる電荷輸送物質の好適な具体例を以下に示す。下記の化合物において、Rは同一でも、それぞれ異なっていてもよい。具体的には、水素原子、アルキル基、アルコキシ基、フェニル基、アリールアルキル等が好ましい。特に好ましくは、メチル基、エチル基又はベンジル基である。また、nは0以上2以下の整数である。
なお、以下の例示物は、電荷輸送物質の具体例であり、併用しうる電荷輸送物質は以下のものに限定されない。
Figure 0005585060
Figure 0005585060
Figure 0005585060
<電荷発生物質>
本発明においては、必要に応じて、電荷発生物質を使用することが好ましい。電化発生物質は、通常、単層型感光層では当該単層型感光層に含有され、積層型感光層では電荷発生層に含有される。
電化発生物質の具体例としては、例えば、セレニウム及びその合金、硫化カドミウム、その他無機系光導電材料、フタロシアニン顔料、アゾ顔料、ジチオケトピロロピロール顔料、スクアレン(スクアリリウム)顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料等の有機顔料等各種光導電材料が使用でき、特に有機顔料、更にはフタロシアニン顔料、アゾ顔料が好ましい。なお、電荷発生物質は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
使用されるフタロシアニンとしては、具体的には、無金属フタロシアニン、銅、インジウム、ガリウム、錫、チタン、亜鉛、バナジウム、シリコーン、ゲルマニウム等の金属、又はその酸化物、ハロゲン化物、水酸化物、アルコキシド等の配位したフタロシアニン類の各種結晶型が使用される。特に、感度の高い結晶型であるX型、τ型無金属フタロシアニン、A型(別称β型)、B型(別称α型)、D型(別称Y型)等のチタニルフタロシアニン(別称:オキシチタニウムフタロシアニン)、バナジルフタロシアニン、クロロインジウムフタロシアニン、II型等のクロロガリウムフタロシアニン、V型等のヒドロキシガリウムフタロシアニン、G型,I型等のμ−オキソ−ガリウムフタロシアニン二量体、IIS型等のμ−オキソ−アルミニウムフタロシアニン二量体が好適である。なお、これらのフタロシアニンのうち、A型(β型)、B型(α型)、D型(Y型)オキシチタニウムフタロシアニン、II型クロロガリウムフタロシアニン、V型ヒドロキシガリウムフタロシアニン、G型μ−オキソ−ガリウムフタロシアニン二量体等が特に好ましい。特に、オキシチタニウムフタロシアニンは、CuKα特性X線による粉末X線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)27.3°に主たる明瞭な回折ピークを有するものが好ましい。
また、上記オキシチタニウムフタロシアニンは、CuKα特性X線による粉末X線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)9.0°〜9.7°に、明瞭な回折ピークを有することが好ましい。
また、上記オキシチタニウムフタロシアニンにおいては、結晶内の塩素含有量が1.5重量%以下であることが好ましい。なお、塩素含有量は、例えば元素分析により求めることができる。
また、上記オキシチタニウムフタロシアニン結晶内においては、下記式(3)で表される塩素化オキシチタニウムフタロシアニンの割合が、下記式(4)で表される無置換オキシチタニウムフタロシアニンに対して、マススペクトル強度比で、0.070以下であるものである。また、好ましくはマススペクトル強度比が0.060以下であり、より好ましくは0.055以下である。製造の際、非晶質化に乾式摩砕法を用いる場合は、0.02以上が好ましく、非晶質化にアシッドペースト法を用いる場合は、0.03以下が好ましい。塩素置換量は、特開2001−115054号公報の手法に基づいて測定することができる。
Figure 0005585060
これらオキシチタニルフタロシアニンの粒子径は、製法、結晶変換方法によって大きく異なるが、分散性を考慮すると、1次粒子径として、500nm以下が好ましく、塗布成膜性の面からは300nm以下であることがより好ましい。
また、上記のオキシチタニウムフタロシアニンは、塩素原子以外に、例えば、フッ素原子、ニトロ基、シアノ基、スルホン基等の置換基で置換された、各種オキシチタニウムフタロシアニン誘導体を含有しても構わない。なお、これらの置換基は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
アゾ顔料としては、各種公知のビスアゾ顔料、トリスアゾ顔料が好適に用いられる。好ましいアゾ顔料の例を下記式(5)に示す。下記式(5)において、Cp〜Cpはカップラーを表す。
Figure 0005585060
中でも、上記式(5)において、カップラーCp〜Cpとしては、以下の構造が好ましい。
Figure 0005585060
フタロシアニン及びアゾ顔料を併用することによって、高感度かつゴーストのない電子写真感光体を作製することが可能である。
機能分離型感光体における電荷発生層に通常用いられるバインダー樹脂の例としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールや、アセタール等で変性された部分アセタール化ポリビニルブチラール樹脂等のポリビニルアセタール系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼインや、塩化ビニル−酢酸ビニル共重合体、ヒドロキシ変性塩化ビニル−酢酸ビニル共重合体、カルボキシル変性塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体等の塩化ビニル−酢酸ビニル系共重合体、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、スチレン−アルキッド樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂等の絶縁性樹脂や、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルペリレン等の有機光導電性ポリマーの中から選択し、用いることができるが、これらポリマーに限定されるものではない。また、これらバインダー樹脂は1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
機能分離型感光体の電荷発生層において、上記バインダー樹脂と電荷発生物質との混合比は、バインダー樹脂100重量部に対して、電荷発生物質が通常10重量部以上、好ましくは30重量部以上、また、その上限は、通常1000重量部以下、好ましくは500重量部以下である。使用量が少なすぎる場合、電子写真感光体としての感度が低下する可能性があり、多すぎる場合、電荷発生物質の凝集等により塗布液の安定性が低下する可能性がある。
また、その膜厚は通常0.1μm以上、好ましくは0.15μm以上、また、その上限は、通常4μm以下、好ましくは0.6μm以下である。
電荷発生層の形成方法は、本発明の効果を著しく損なわない限り任意であるが、積層型感光体の場合、通常は電荷発生物質を分散させた電荷発生層形成用塗布液を塗布・乾燥させることにより、形成することができる。
上記電荷発生物質を分散させる方法としては、ボールミル分散法、アトライター分散法、サンドミル分散法、超音波分散法等の公知の分散方法を用いることができる。この際粒子を通常0.5μm以下、好ましくは0.3μm以下、より好ましくは0.15μm以下の粒子サイズに微細化することが望ましい。
<その他の成分>
また、感光層には、例えば成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向上させるために、酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤、増感剤等の添加剤を含有させてもよい。添加剤は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
酸化防止剤の例としては、ヒンダードフェノール化合物、ヒンダードアミン化合物等が挙げられる。また染料、顔料の例としては、各種の色素化合物、アゾ化合物等が挙げられ、レベリング剤の例としては、シリコ−ンオイル、フッ素系オイル等が挙げられる。
ヒンダードフェノール系酸化防止剤としては、例えば、2,6−ジ−t−ブチルフェノール、2,6−ジ−t−ブチル−4−エチルフェノール、2,6−ジ−t−ブチル−4−メチルフェノール、2,2’−メチレンビス(6−t−ブチル−4−メチルフェノール)、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)、4,4’−チオビス(6−t−ブチル−3−メチルフェノール)、2,2’−ブチリデンビス(6−t−ブチル−4−メチルフェノール)、α−トコフェロール、β−トコフェロール、2,2,4−トリメチル−6−ヒドロキシ−7−t−ブチルクロマン、ペンタエリスリチルテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,2’−チオエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオールビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ブチルヒドロキシアニソール、ジブチルヒドロキシアニソール、1−[2−{(3,5−ジ−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]−4−[3−(3,5−ジ−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−2,2,6,6−テトラメチルピペラジル、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、1−[2−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]−4−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}−2,2,6,6−テトラメチルピペリジン、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、等を挙げることができる。
中でも、分子中のフェノール環にt−ブチル基を1個以上有するものが好ましく、中でも、当該t−ブチル基がフェノール性水酸基の隣接した位置に結合したもの(即ち、水酸基に対してオルト位にt−ブチル基が結合したもの)がより好適である。それらの中でも、そのt−ブチル基がフェノール性水酸基の隣接した位置に2個結合したもの(即ち、水酸基に対して2位及び6位の位置にt−ブチル基が結合したもの)が特に好ましい。その具体例を挙げると、2,6−ジ−t−ブチルフェノール、2,6−ジ−t−ブチル−4−エチルフェノール、2,6−ジ−t−ブチル−4−メチルフェノール、n−オクタデシル−3−(4’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)プロピオネート等のモノフェノール系酸化防止剤、2,2’−メチレンビス(6−t−ブチル−4−メチルフェノール)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、ペンタエリスリチルテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]等のポリフェノール系酸化防止剤等が好適である。これらを用いることにより、繰返し使用してもかぶりのない電子写真感光体を容易に製造することができる。
また、耐酸性ガス性を向上させるために、公知の置換基を有しても良いアルキルアミン化合物を用いることが可能である。例えば、特開平3−172852号公報、特開2007−52408号公報等に示される化合物を用いることが好ましい。それらの中でも、例えば、トリベンジルアミンを好適に用いることができる。
<保護層等>
感光体の最表面層には、感光層の損耗を防止したり、帯電器等から発生する放電物質等による感光層の劣化を防止、軽減等したりする目的で保護層を設けてもよい。保護層は、例えば導電性材料を適当なバインダー樹脂中に含有させて形成するか、特開平9−190004号公報の記載のようなトリフェニルアミン骨格等の電荷輸送能を有する化合物を用いた共重合体を用いることができる。導電性材料としては、TPD(N,N’−ジフェニ
ル−N,N’−ビス−(m−トリル)ベンジジン)等の芳香族アミノ化合物、酸化アンチ
モン、酸化インジウム、酸化錫、酸化チタン、酸化錫−酸化アンチモン、酸化アルミニウム、酸化亜鉛等の金属酸化物等を用いることが可能であるが、これに限定されるものではない。なお、これらは、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
保護層に用いるバインダー樹脂としては、例えばポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート樹脂、ポリビニルケトン樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂、シロキサン樹脂等の公知の樹脂を用いることができ、また、特開平9−190004号公報に記載のような、トリフェニルアミン骨格等の電荷輸送能を有する骨格と上記樹脂との共重合体を用いることもできる。なお、保護層に用いるバインダー樹脂も、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
上記保護層は、電気抵抗が通常10Ω・cm以上1014Ω・cm以下となるように形成することが望ましい。電気抵抗が小さすぎる場合、画像のボケ、解像度の低下が生じる可能性があり、電気抵抗が大きすぎる場合、残留電位が上昇しカブリの多い画像となる可能性がある。また、保護層は、像露光に照射される光の透過を実質上妨げないように形成することが好ましい。
また、例えば、感光体表面の摩擦抵抗、摩耗を低減、トナーの感光体から転写ベルト、紙への転写効率を高める等の目的で、表面層にフッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂、ポリスチレン樹脂等を含んでいてもよい。また、これらの樹脂からなる粒子、無機化合物の粒子等を表面層に含んでいてもよい。
[1−4.層形成方法]
感光体を構成する各層は、通常、各層を構成する材料を含有する塗布液を、導電性支持体上に公知の塗布方法を用い、各層ごとに塗布、乾燥工程を繰り返し、順次塗布していくことにより形成される。
バインダー樹脂を溶解させ、塗布液の作製に用いられる溶媒、分散媒としては例えば、ペンタン、ヘキサン、オクタン、ノナン等の飽和脂肪族系溶媒、
トルエン、キシレン、アニソール等の芳香族系溶媒、
クロロベンゼン、ジクロロベンゼン、クロロナフタレン等のハロゲン化芳香族系溶媒、
ジメチルホルムアミド、N−メチル−2−ピロリドン等のアミド系溶媒、
メタノール、エタノール、イソプロパノール、n−ブタノール、ベンジルアルコール等のアルコール系溶媒、
グリセリン、ポリエチレングリコール等の脂肪族多価アルコール類、
アセトン、シクロヘキサノン、メチルエチルケトン、4−メトキシ−4−メチル−2−ペンタノン等の鎖状、分岐及び環状ケトン系溶媒、
ギ酸メチル、酢酸エチル、酢酸n−ブチル等のエステル系溶媒、
塩化メチレン、クロロホルム、1,2−ジクロロエタン等のハロゲン化炭化水素系溶媒、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン(以下、適宜「THF」と言う。)、1,4−ジオキサン、メチルセルソルブ、エチルセルソルブ等の鎖状及び環状エーテル系溶媒、
アセトニトリル、ジメチルスルホキシド、スルフォラン、ヘキサメチルリン酸トリアミド等の非プロトン性極性溶媒、
n−ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン、トリエチルアミン等の含窒素化合物、
リグロイン等の鉱油、

等が挙げられ、前述した下引き層を溶解しないものが好ましく用いられる。なお、これらは1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
層形成用の塗布液は、単層型感光体及び積層型感光体の電荷輸送層の場合には、固形分濃度が、通常5重量%以上、好ましくは10重量%以上、また、その上限は、通常40重量%以下、好ましくは35重量%以下である。
また、塗布液の粘度は、通常10mPa・s以上、好ましくは50mPa・s以上、また、その上限は、通常500mPa・s以下、好ましくは400mPa・s以下である。
積層型感光体の電荷発生層の場合には、固形分濃度を、通常0.1重量%以上、好ましくは1重量%以上、また、その上限は、通常15重量%以下、好ましくは10重量%以下である。
また、塗布液の粘度は、通常0.01mPa・s以上、好ましくは0.1mPa・s以上、また、その上限は、通常20mPa・s以下、好ましくは10mPa・s以下である。
塗布液の塗布方法としては、例えば浸漬コーティング法、スプレーコーティング法、スピナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、エアーナイフコーティング法、カーテンコーティング法等が挙げられるが、他の公知のコーティング法を用いることも可能である。なお、これらの方法は、1種を単独で利用してもよく、2種以上を任意に組み合わせて利用してもよい。
塗布液の乾燥は室温(通常25℃)における指触乾燥後、通常30℃以上200℃以下の温度範囲で、通常1分以上2時間以下の間、無風、又は送風下で加熱乾燥させることが好ましい。また加熱温度は一定であっても、乾燥時に変更させながら行なってもよい。
単層型感光体の感光層の膜厚は、通常5μm以上、好ましくは10μm以上、また、その上限は、通常100μm以下、好ましくは50μm以下である。
また、順積層型感光体の電荷輸送層の膜厚は、通常5μm以上50μm以下の範囲で用いられるが、長寿命、画像安定性の観点からは、好ましくは10μm以上45μm以下、高解像度の観点からは、より好ましくは10μm以上30μm以下である。
[1−5.物性]
<弾性変形率及びユニバーサル硬度>
本発明の電子写真感光体表面の弾性変形率は、通常44.0%以上、好ましくは45.0%以上、より好ましくは46.0%以上、また、その上限は、通常60.0%以下、好ましくは50.0%以下である。弾性変形率が大きいほど、感光層の耐傷性が改善され、トナーの外添剤に使用されるシリカ等がクリーニングブレードに押圧されることによって生じるフィルミングが改善される傾向にある。ただし、弾性変形率が大きすぎる場合、クリーニングブレードとの摺擦音が発生しやすくなる可能性がある。
また、本発明のユニバーサル硬度は通常180N/mm以上、好ましくは200N/mm以上、より好ましくは210N/mm以上、また、その上限は、通常300N/mm以下、好ましくは270N/mm以下、より好ましくは240N/mm以下である。
本発明における弾性変形率及びユニバーサル硬度は、Fischer社製微小硬度計FISCHERSCOPE H100Cを用いて、温度25℃、相対湿度50%の環境下で測定した値である。測定には対面角136°のビッカース四角錐ダイヤモンド圧子を用いる。測定条件は以下の通りに設定して行い、圧子にかかる荷重とその荷重下における押し込み深さとを連続的に読み取り、それぞれY軸、X軸にプロットした図1に示すようなプロファイルを取得する。
・測定条件
最大押込み加重 5mN
負荷所要時間 10秒
除荷所要時間 10秒
上記の弾性変形率は下記式により定義される値であり、押し込みに要した全仕事量に対して、除荷の際に膜が弾性によって行う仕事の割合である。
弾性変形率(%)=(We/Wt)×100
上記式中、全仕事量Wt(nJ)は図1中のA−B−D−Aで囲まれる面積を示し、弾性変形仕事量We(nJ)はC−B−D−Cで囲まれる面積を示す。弾性変形率が大き
いほど、負荷に対する変形が残留しにくく、弾性変形率が100の場合には変形が残らないことを意味する。
また、上記のユニバーサル硬度は、押込み加重5mNまで押し込んだ時の値であり、その時の押込み深さから以下の式により定義される値である。
ユニバーサル硬度(N/mm)=試験荷重(N)/試験荷重下でのビッカース圧子の表面積(mm
ポリアリレート樹脂として、上記のポリアリレート樹脂(1)を用いることにより、上記の弾性率、ユニバーサル硬度を容易に得ることができる。中でも、上記式(1)において、Yが酸素原子であり、且つk=1のポリアリレート樹脂(1)を用いた場合、弾性変形率が特に好ましい特性を示す。
[2.トナー]
本発明の電子写真感光体を用いて画像形成を行なう場合、潜像を現像するための現像剤であるトナーとしては、任意のトナーを用いることができるが、中でも、特定の平均円形度を有するトナー(以下、適宜「本発明のトナー」と言う。)を用いることが特に好ましい。このように特定の平均円形度を有するトナーを用いることにより、本発明の画像形成装置はより高画質な画像を形成することができる。
[2−1.物性]
<平均円形度>
本発明のトナーの形状は、トナーを構成する粒子群に含まれる各粒子の形状が、互いに近いものであって、球形に近いほどトナーの粒子内での帯電量の局在化が起こりにくく、現像性が均一になる傾向にあり、画像品質を高めるうえで好ましい。特に、トナーの形状が完全な球形に近い形状となれば、電子写真感光体との接触面積が小さくなり、トナーの転写率が高まり、トナーの消費量を低減することが可能となる場合がある。一方で、完全な球形状のトナーを製造することは製造上困難であり、トナーが高コスト化するため、一定以上の条件で球形に近ければよく、完全な球形である必要は無い。
具体的には、本発明のトナーは、フロー式粒子像分析装置によって測定される平均円形度が、通常0.960以上、好ましくは0.970以上、より好ましくは0.975以上、特に好ましくは0.980以上である。また、上記平均円形度の上限は通常1.000以下であり、生産の容易さの観点から、好ましくは0.998以下、より好ましくは0.995以下である。
なお、上記の平均円形度は、トナーの粒子の形状を定量的に表現する簡便な方法として用いたものであり、本発明ではシスメックス社製フロー式粒子像分析装置FPIA−2000を用いて測定を行ない、測定された粒子の円形度〔a〕を下記式(X)により求めるものとする。
円形度a=L0/L (X)
(式(X)中、L0は粒子像と同じ投影面積を持つ円の周囲長を示し、Lは画像処理したときの粒子像の周囲長を示す。)
上記の円形度は、トナー粒子の凹凸の度合いの指標であり、トナーが完全な球形の場合1.000を示し、表面形状が複雑になるほど円形度は小さな値となる。
平均円形度の具体的な測定方法としては、以下の通りである。即ち、予め容器中の不純物を除去した水20mL中に分散剤として界面活性剤(好ましくはアルキルベンゼンスルホン酸塩)を加え、更に測定試料(トナー)を0.05g程度加える。この試料を分散した懸濁液に超音波を30秒照射し、分散液濃度を3000個/μL以上8000個/μL以下として、上記フロー式粒子像測定装置を用い、0.60μm以上160μm未満の円相当径を有する粒子の円形度分布を測定する。
本発明のトナーの体積平均粒径〔Dv〕に制限は無く、本発明の効果を著しく損なわない限り任意であるが、通常4μm以上、好ましくは5μm以上、また、通常10μm以下、好ましくは8μm以下である。トナーの体積平均粒径〔Dv〕が小さすぎる場合、画質の安定性が低下する可能性があり、大きすぎる場合、解像度が低下する可能性がある。
また、本発明のトナーは、体積平均粒径〔Dv〕を個数平均粒径〔Dn〕で除した値〔Dv/Dn〕が、通常1.0以上、また、通常1.25以下、好ましくは1.20以下、より好ましくは1.15以下であることが望ましい。〔Dv/Dn〕の値は、粒度分布の状態を表し、この値が1.0に近い方ほど粒度分布がシャープであることを表す。粒度分布がシャープであるほど、トナーの帯電性が均一となるので望ましい。
さらに、本発明のトナーは、粒径25μm以上の体積分率が、通常1%以下、好ましくは0.5%以下、より好ましくは0.1%以下、更に好ましくは0.05%以下である。この値は小さいほど好ましい。これは、トナーに含まれる粗粉の割合が少ないことを意味しており、粗粉が少ないと、連続現像の際のトナーの消費量が少なく、画質が安定するため好ましい。なお、粒径25μm以上の粗粉は、理想的には全く存在しないことが特に好ましいが、実際の製造上は困難であり、通常は0.05%以下にしなくとも構わない。
また、本発明のトナーは、粒径15μm以上の体積分率が、通常2%以下、好ましくは1%以下、より好ましくは0.1%以下である。粒径15μm以上の粗粉も理想的には全く存在しないことが特に好ましいが、実際の製造上は困難であり、通常は0.1%以下にしなくとも構わない。
さらに、本発明のトナーは、粒径5μm以下の個数分率が、通常15%以下、好ましくは10%以下であることが、画像カブリの改善に効果があるため望ましい。
ここで、トナーの体積平均粒径〔Dv〕、個数平均粒径〔Dn〕、体積分率、個数分率等は、以下のようにして測定することができる。即ち、トナーの粒子径の測定装置としては、コールターカウンターのマルチサイザーII型あるいはIII型(ベックマン・コールター社製)を用い、個数分布・体積分布を出力するインターフェイス及び一般的なパーソナルコンピューターを接続して使用する。また、電解液はアイソトンIIを用いる。測定法としては、上記電解液100〜150mL中に分散剤として界面活性剤(好ましくはアルキルベンゼンスルホン酸塩)を0.1〜5mL加え、更に測定試料(トナー)を2〜20mg加える。そして、試料を懸濁した電解液は超音波分散器で約1〜3分間分散処理を行ない、上記コールターカウンターのマルチサイザーII型あるいはIII型により、100μmアパーチャーを用いて測定する。このようにしてトナーの個数及び体積を測定して、それぞれ個数分布、体積分布を算出し、それぞれ、体積平均粒径〔Dv〕、個数平均粒径〔Dn〕を求める。
本発明のトナーのTHF可溶分のゲルパーミエーションクロマトグラフィー(以下、適宜「GPC」と言う。)におけるピーク分子量のうち少なくとも1つは、通常10000以上、好ましくは20000以上、より好ましくは30000以上であり、通常150000以下、好ましくは100000以下、より好ましくは70000以下であることが望ましい。ピーク分子量が低すぎる場合、非磁性一成分現像方式における機械的耐久性が悪化する可能性があり、高すぎる場合、低温定着性や定着強度が悪化する可能性がある。
さらに、トナーのTHF不溶分は後述するセライト濾過による重量法で測定した場合、通常10%以上、好ましくは20%以上であり、また、通常60%以下、好ましくは50%以下である。上記範囲にない場合は、機械的耐久性と低温定着性との両立が困難となる可能性がある。
なお、本発明のトナーのピーク分子量は、測定装置:HLC−8120GPC(東ソー株式会社製)を用いて次の条件で測定される。
即ち、40℃のヒートチャンバー中でカラムを安定化させ、この温度におけるカラムに、溶媒としてTHFを毎分1mLの流速で流す。次いで、トナーをTHFに溶解後0.2μmフィルターで濾過し、その濾液を試料として用いる。
測定は、試料濃度(樹脂の濃度)を0.05〜0.6重量%に調整した樹脂のTHF溶液を測定装置に50〜200μL注入して行なう。試料(トナー中の樹脂成分)の分子量測定にあたっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出する。検量線作成用の標準ポリスチレン試料としては、例えば、Pressure Chemical Co.製あるいは、東洋ソーダ工業社製の、分子量が6×10、2.1×10、4×10、1.75×10、5.1×10、1.1×10、3.9×10、8.6×10、2×10、4.48×10のものを用い、少なくとも10点程度の標準ポリスチレン試料を用いることが好ましい。また、検出器にはRI(屈折率)検出器を用いる。
さらに、上記の測定方法で用いるカラムとしては、10以上2×10以下の分子量領域を適確に測定するために、市販のポリスチレンゲルカラムを複数組合せることが良く、例えば、Waters社製のμ−styragel 500、103、104、105の組合せや、昭和電工社製のshodex KA801、802、803、804、805、806、807の組合せが好ましい。
また、トナーのTHF不溶分の測定は、以下のようにして行なうことができる。即ち、試料(トナー)1gをTHF100gに加え25℃で24時間静置溶解し、セライト10gを用いて濾過し、濾液の溶媒を留去してTHF可溶分を定量し、1gから差し引いてTHF不溶分を算出することができる。
<トナーの軟化点及びガラス転移温度>
本発明のトナーの軟化点〔Sp〕に制限は無く、本発明の効果を著しく損なわない限り任意であるが、耐高温オフセット性、耐久性の観点からは、軟化点は、通常80℃以上、好ましくは100℃以上、また、低エネルギーで定着する観点から、通常150℃以下、好ましくは140℃以下である。
なお、トナーの軟化点〔Sp〕は、フローテスターにおいて、試料1.0gをノズル1mm×10mm、荷重30kg、予熱時間50℃で5分、昇温速度3℃/分の条件下で測定を行なったときの、フロー開始から終了までのストランドの中間点での温度として求めることができる。
また、本発明のトナーのガラス転移温度〔Tg〕に制限は無く、本発明の効果を著しく損なわない限り任意であるが、通常80℃以下、好ましくは70℃以下であると、低エネルギーで定着できるので望ましい。また、ガラス転移温度〔Tg〕は、通常40℃以上、好ましくは50℃以上であると、耐ブロッキング性の点で好ましい。
なお、トナーのガラス転移温度〔Tg〕は、示差走査熱量計において、昇温速度10℃/分の条件で測定した曲線の転移(変曲)開始部に接線を引き、2つの接線の交点の温度として求めることができる。
トナーの軟化点〔Sp〕及びガラス転移温度〔Tg〕は、トナーに含まれる重合体の種類及び組成比に通常は大きく影響を受ける。このため、トナーの軟化点〔Sp〕及びガラス転移温度〔Tg〕は、後述する重合体の種類及び組成を適宜最適化することにより調整することができる。また、例えば重合体の分子量、ゲル分、ワックス等の低融点成分の種類及び混合量によっても、調整することが可能である。
<トナー中のワックス>
本発明のトナーがワックスを含有する場合、トナー粒子中のワックスの分散粒径は、平均粒径として、通常0.1μm以上、好ましくは0.3μm以上であり、また、上限は通常3μm以下、好ましくは1μm以下である。分散粒径が小さすぎる場合、トナーの耐フィルミング性改良の効果が得られない可能性があり、大きすぎる場合、トナーの表面にワックスが露出しやすくなり帯電性や耐熱性が低下する可能性がある。
なお、ワックスの分散粒径は、トナーを薄片化して電子顕微鏡観察する方法の他、ワックスが溶解しない有機溶剤等でトナーの重合体を溶出した後にフィルターで濾過し、フィルター上に残ったワックス粒子を顕微鏡により計測する方法等により確認することができる。
また、トナーに占めるワックスの割合は本発明の効果を著しく損なわない限り任意であるが、通常0.05重量%以上、好ましくは0.1重量%以上であり、また通常20重量%以下、好ましくは15重量%以下である。ワックスが少なすぎる場合、定着温度幅が不十分となる可能性があり、多すぎる場合、装置部材を汚染して画質が低下する可能性がある。
[2−2.製造方法]
本発明のトナーは、上記の平均円形度を有する限り他に制限は無い。トナーの種類は、通常はその製造方法に応じて様々なものが得られるが、本発明のトナーとしては、いずれを用いることも可能である。
以下、トナーの製造方法の一例を説明するが、本発明のトナーの製造方法は以下の方法に限定されない。
本発明のトナーは、公知のどのような方法で製造しても構わず、例えば重合法や溶融懸濁法等により製造されるトナーが挙げられ、更には、粉砕トナーを熱等の処理により球形化したものも用いることができるが、水系媒体中でトナー粒子を生成する、いわゆる重合法により製造されるトナー(重合法トナー)が好ましい。
重合法によるトナーの方法としては、例えば、特公昭36−10231号公報、特開昭59−53856号公報、特開昭59−61842号公報に記載されている懸濁重合方法を用いて直接トナーを生成する方法、単量体は可溶であるが、得られる重合体が不溶である水系有機溶剤を用い直接トナーを生成する分散重合方法、水溶性極性重合開始剤存在下で直接重合しトナーを生成するソープフリー重合方法に代表される乳化重合方法等を用いトナーを製造することが可能である。
重合法トナーとしては、例えば、懸濁重合法トナー、乳化重合凝集法トナー等が挙げられる。
また、トナーの離型性、低温定着性、高温オフセット性、耐フィルミング性等を改良するために、トナーに低軟化点物質(ワックス)を含有させる方法が提案されている。溶融混練粉砕法では、トナーに含まれるワックスの量を増やすことが難しく、重合体(バインダー樹脂)に対して5重量%程度が限界とされている。それに対して、重合法トナーでは、低軟化点物質を多量(具体的には、通常5重量%以上30重量%以下)に含有させることが可能である。なお、ここでいう重合体は、トナーを構成する材料の一つであり、例えば後述する乳化重合凝集法により製造されるトナーの場合、重合性単量体が重合して得られるものである。
トナーの平均円形度を0.960以上にコントロールでき、比較的容易に粒度分布がシャープで3μm以上8μm以下の粒径の微粒子トナーを得る方法として、例えば、常圧(通常1気圧)下での、又は、加圧下での懸濁重合方法、乳化重合凝集法等が挙げられる。
懸濁重合法を用いて本発明のトナーを製造する場合、低軟化点物質を内包化する具体的方法としては、水系媒体中での物質の極性を主要単量体より低軟化点物質の方を小さく設定し、さらに少量の極性の大きな樹脂又は単量体を混合することで、低軟化点物質を外殻樹脂で被覆した、いわゆるコア/シェル構造を有するトナーを得ることができる。トナーの粒度分布制御及び粒径の制御は、例えば、難水溶性の無機塩及び保護コロイド作用を示す分散剤の種類及び混合量を変える方法、機械的装置条件(例えばローターの周速、パス回数、撹拌羽根形状等の攪拌条件)、容器形状、水溶液中での固形分濃度等を制御することにより所定の本発明のトナーを得ることができる。
本発明のトナーの外殻樹脂としては、一般的に用いられているスチレン−(メタ)アクリル共重合体、ポリエステル樹脂、エポキシ樹脂、スチレン−ブタジエン共重合体を利用することができる。重合法により直接トナーを得る方法においては、それらの単量体が好ましく用いられる。なお、外殻樹脂は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
具体的には、スチレン、o−,m−,p−メチルスチレン、m−,p−エチルスチレン等のスチレン系単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベヘニル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル等の(メタ)アクリル酸エステル系単量体;ブタジエン、イソプレン、シクロヘキセン、(メタ)アクリロニトリル、アクリル酸アミド等のエン系単量体が好ましく用いられる。
これらは、単独、又は一般的には出版物ポリマーハンドブック第2版III−139〜192頁(JohnWiley&Sons社製)に記載の理論ガラス転移温度(Tg)が、40℃以上75℃以下を示すように単量体を適宜混合し用いられる。理論ガラス転移温度が40℃未満の場合、トナーの保存安定性や現像剤の耐久安定性に課題が生じる可能性がある。一方、75℃を越える場合、定着点の上昇をもたらし、特にフルカラートナーの場合においては各色トナーの混色が不十分となり色再現性に乏しく、さらにOHP(Over Head Projector)画像の透明性を著しく低下させる可能性がある。
外殻樹脂の分子量は、例えばGPCにより測定できる。具体的なGPCの測定方法としては、予めトナーをソックスレー抽出器を用いトルエン溶剤で20時間抽出を行った後、ロータリーエバポレーターでトルエンを留去し、さらに低軟化点物質は溶解するがシェル用樹脂は溶解しない有機溶剤(例えばクロロホルム等)を加え十分洗浄を行った後、THFに可溶した溶液をポア径が0.3μmの耐溶剤性メンブランフィルターでろ過したサンプルをウォーターズ社製150Cを用いる。カラム構成は、例えば昭和電工製A−801、802、803、804、805、806、807を連結し、標準ポリスチレン樹脂の検量線を用いることにより、分子量分布を測定し得る。
得られた外殻樹脂の数平均分子量(Mn)は、通常5000以上、1000000以下である。中でも、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が、通常2以上100以下の外殻樹脂が望ましい。
本発明においては、コア/シェル構造を有するトナーを製造する場合、外殻樹脂で低軟化点物質を内包化するため外殻樹脂の他にさらに極性樹脂を混合することが特に好ましい。本発明に好適に用いられる極性樹脂としては、スチレンと(メタ)アクリル酸との共重合体、マレイン酸共重合体、飽和ポリエステル樹脂、エポキシ樹脂が好ましく用いられる。中でも、極性樹脂は、シェル樹脂又は単量体と反応しうる不飽和結合を分子中に含まないものが特に好ましい。仮に不飽和結合を有する極性樹脂を含む場合においてはシェル樹脂層を形成する単量体と架橋反応が起き、特に、フルカラー用トナーとしては、極めて高分子量になり四色トナーの混色には不利となる可能性がある。
また、外殻構造を有するトナーの表面に、さらに重ねて重合法により最外殻樹脂層を設けても良い。
上記の最外殻樹脂層のガラス転移温度は、耐ブロックキング性のさらなる向上のため外殻樹脂層のガラス転移温度以上に設計されること、さらに定着性を損なわない程度に架橋されていることが好ましい。また、該外殻樹脂層には帯電性向上のため極性樹脂や荷電制御剤が含有されていることが好ましい。
また、外殻樹脂層を設ける方法としては、特に限定されるものではないが、例えば以下のような方法が挙げられる。
1.重合反応後半、又は終了後、反応系中に必要に応じて、極性樹脂、荷電制御剤、架橋剤等を溶解、分散したモノマーを混合し重合粒子に吸着させ、重合開始剤を混合し重合を行う方法。
2.必要に応じて、極性樹脂、荷電制御剤、架橋剤等を含有したモノマーからなる乳化重合粒子又はソープフリー重合粒子を反応系中に混合し、重合粒子表面に凝集、必要に応じて熱等により固着させる方法。
3.必要に応じて、極性樹脂、荷電制御剤、架橋剤等を含有したモノマーからなる乳化重合粒子又はソープフリー重合粒子を乾式で機械的にトナー粒子表面に固着させる方法。
本発明に好適に用いられる着色剤は、例えば黒色着色剤としてカーボンブラック、磁性体、以下に示すイエロー/マゼンタ/シアン着色剤を用い黒色に調色されたもの等が利用される。イエロー着色剤としては、例えば縮合アゾ化合物、イソインドリノン化合物、アンスラキノン化合物、アゾ金属錯体、メチン化合物、アリルアミド化合物に代表される化合物が用いられる。具体的には、C.I.ピグメントイエロー12、13、14、15、17、62、74、83、93、94、95、109、110、111、128、129、147、168が好適に用いられる。なお、着色剤は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
マゼンタ着色剤としては、例えば縮合アゾ化合物、ジケトピロロピロール化合物、アンスラキノン、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物等が用いられる。具体的には、C.I.ピグメントレット2、3、5、6、7、23、48:2、48:3、48:4、57:1、81:1、144、146、166、169、177、184、185、202、206、220、221、254が特に好ましい。
本発明に用いられるシアン着色剤としては、例えば銅フタロシアニン化合物及びその誘導体、アンスラキノン化合物、塩基染料レーキ化合物等が利用できる。具体的には、C.I.ピグメントブルー1、7、15、15:1、15:2、15:3、15:4、60、62、66等が特に好適に利用できる。これらの着色剤は、単独又は混合し、さらには固溶体の状態で用いることができる。
本発明の着色剤は、カラートナーの場合、色相角、彩度、明度、耐候性、OHP透明性、トナー中への分散性の観点から、適切なものを選択して用いればよい。該着色剤の混合量は、樹脂100重量部に対し通常1重量部以上20重量部以下が望ましい。
また、黒色着色剤として磁性体を用いた場合には、他の着色剤と異なり、樹脂100重量部に対し、磁性体の量は、通常40重量部以上150重量部以下が望ましい。
本発明に用いられる荷電制御剤としては、公知のものが利用できるが、カラートナーの場合は、特に、無色でトナーの帯電スピードが速く、且つ一定の帯電量を安定して維持できる荷電制御剤が好ましい。さらに本発明において直接重合方法を用いる場合には、重合阻害性が無く水系への可溶化物の無い荷電制御剤が特に好ましい。
具体的化合物としては、ネガ系としてサリチル酸、ナフトエ酸、ジカルボン酸の金属化合物、スルホン酸、カルボン酸を側鎖に持つ高分子型化合物、ホウ素化合物、尿素化合物、ケイ素化合物、カリークスアレーン等が利用でき、ポジ系として四級アンモニウム塩、該四級アンモニウム塩を側鎖に有する高分子型化合物、グアニジン化合物、イミダゾール化合物等が好ましく用いられる。荷電制御剤は、樹脂100重量部に対し、通常0.5重量部以上10重量部以下が望ましい。
本発明で直接重合方法を利用する場合には、重合開始剤として、例えば、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリル等のアゾ系重合開始剤、ベンゾイルペルオキシド、メチルエチルケトンペルオキシド、ジイソプロピルペルオキシカーボネート、クメンヒドロペルオキシド、2,4−ジクロロベンゾイルペルオキシド、ラウロイルペルオキシド等の過酸化物系重合開始剤が用いられる。なお、重合開始剤は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
該重合開始剤の混合量は、目的とする重合度により異なるが、単量体に対し通常0.5重量%以上20重量%以下用いられる。重合開始剤の種類は、重合方法により若干異なるが、十時間半減期温度を参考に、単独又は混合し利用される。重合度を制御するため公知の架橋剤、連鎖移動剤、重合禁止剤等をさらに混合することも可能である。
本発明のトナーの製造方法として懸濁重合を利用する場合には、分散剤の具体例としては、例えば無機系化合物として、リン酸三カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウム、ベントナイト、シリカ、アルミナ、磁性体、フェライト等が挙げられる。有機系化合物としては例えばポリビニルアルコール、ゼラチン、メチルセルロース、メチルヒドロキシプロピルセルロース、エチルセルロース又はカルボキシメチルセルロースのナトリウム塩、デンプン等が水相に分散させて使用される。なお、分散剤は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
これら分散剤は、重合性単量体100重量部に対して通常0.2重量部以上10.0重量部以下を使用する事が好ましい。これら分散剤は、市販のものをそのまま用いても良いが、細かい均一な粒度を有する分散粒子を得るために、分散媒体中にて高速撹拌下にて無機系化合物を生成させる事もできる。例えば、リン酸三カルシウムの場合、高速撹拌下において、リン酸ナトリウム水溶液と塩化カルシウム水溶液とを混合することで、懸濁重合方法に好ましい分散剤を得る事ができる。
また、これら分散剤の微細化のため、通常0.001重量部以上0.1重量部以下の界面活性剤を併用しても良い。具体的には市販のノニオン、アニオン、カチオン型の界面活性剤が利用でき、例えばドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸カリウム、オレイン酸カルシウム等が好ましく用いられる。なお、界面活性剤も、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
本発明のトナーの製造方法として直接重合方法を用いる場合には、例えば以下のような製造方法によって製造する事が可能である。
単量体中に低軟化物質からなる離型剤、着色剤、荷電制御剤、重合開始剤その他の添加剤を加え、ホモジナイザー、超音波分散機等によって均一に溶解又は分散した単量体組成物を、分散安定剤を含有する水相中に通常の撹拌機又はホモミキサー、ホモジナイザー等により分散する。この際、好ましくは単量体組成物からなる液滴が、所望のトナーのサイズを有するように撹拌速度、時間等を調整し、造粒する。その後は分散安定剤の作用により、粒子状態が維持され、且つ粒子の沈降が防止される程度の撹拌を行えば良い。
重合温度は通常40℃以上、一般的には50℃以上90℃以下の温度に設定して重合を行う。また、重合反応後半に昇温しても良く、さらに、耐久特性向上の目的で、未反応の重合性単量体、副生成物等を除去するために反応後半、又は、反応終了後に一部水系媒体を留去しても良い。反応終了後、生成したトナー粒子を洗浄、ろ過することにより回収し、乾燥する。懸濁重合法においては、単量体100重量部に対して、水の量が通常300重量部以上3000重量部以下を分散媒体として使用することが好ましい。
また、本発明におけるトナーは分級して粒度分布を制御しても良く、その方法として好ましくは、慣性力を利用した多分割分級装置を用いる。この装置を用いることにより、所望の粒度分布を有するトナーを効率的に製造できる。
乳化重合凝集法によりトナーを製造する場合、その製造工程としては、通常、重合工程、混合工程、凝集工程、融合工程、洗浄・乾燥工程を行なう。即ち、一般的には乳化重合により重合体一次粒子を得て(重合工程)、その重合体一次粒子を含む分散液に、必要に応じ、着色剤(顔料)、ワックス、帯電制御剤等の分散体を混合し(混合工程)、この分散液中に凝集剤を加えて一次粒子を凝集させて粒子凝集体とし(凝集工程)、必要に応じて微粒子等を付着する操作を行ない、その後に融合させて粒子を得て(融合工程)、得られた粒子を洗浄、乾燥することにより(洗浄・乾燥工程)、母粒子が得られる。
以下、各工程をより詳細に説明するが、本発明のトナーの製造方法は以下の方法に限定されない。
<重合工程>
重合体の微粒子(重合体一次粒子)としては、特に限定されない。従って、液状媒体中で重合性単量体を、懸濁重合法、乳化重合法等により重合させて得られる微粒子、樹脂等の重合体の塊を粉砕することによって得られる微粒子のいずれを重合体一次粒子として用いてもよい。ただし、重合法、特に乳化重合法、なかでも乳化重合におけるシードとしてワックスを用いたものが好ましい。乳化重合におけるシードとしてワックスを用いると、重合体がワックスを包み込んだ構造の微粒子を重合体一次粒子として製造することができる。この方法によれば、ワックスをトナーの表面に露出させず、トナー内に含有させることができる。このため、ワックスによる装置部材の汚染がなく、また、トナーの帯電性を損なうこともなく、かつ、トナーの低温定着性や高温オフセット性、耐フィルミング性、離型性等を向上させることができる。
以下、ワックスをシードとして乳化重合を行ない、これにより重合体一次粒子を得る方法について説明する。
乳化重合法としては、従来より知られている方法に従って行えばよい。通常は、ワックスを乳化剤の存在下で液状媒体に分散してワックス微粒子とし、これに重合開始剤、重合により重合体を与える重合性単量体(即ち、重合性の炭素−炭素二重結合を有する化合物)、並びに、必要に応じて連鎖移動剤、pH調整剤、重合度調節剤、消泡剤、保護コロイド、及び内添剤等を混合、攪拌して重合を行なう。これにより、重合体がワックスを包み込んだ構造を有する重合体の微粒子(即ち、重合体一次粒子)が液状媒体に分散したエマルションが得られる。なお、重合体がワックスを包み込んだ構造としては、コアシェル型、相分離型、オクルージョン型等が挙げられるが、コアシェル型が好ましい。
(i.ワックス)
ワックスとしては、任意のものを用いることができる。例えば、低分子量ポリエチレン、低分子量ポリプロピレン、共重合ポリエチレン等のオレフィン系ワックス;パラフィンワックス;アルキル基を有するシリコーンワックス;低分子量ポリテトラフルオロエチレン等のフッ素樹脂系ワックス;ステアリン酸等の高級脂肪酸;エイコサノール等の長鎖脂肪族アルコール;ベヘン酸ベヘニル、モンタン酸エステル、ステアリン酸ステアリル等の長鎖脂肪族基を有するエステル系ワックス;ジステアリルケトン等の長鎖アルキル基を有するケトン類;水添ひまし油、カルナバワックス等の植物系ワックス;グリセリン、ペンタエリスリトール等の多価アルコールと長鎖脂肪酸より得られるエステル類又は部分エステル類;オレイン酸アミド、ステアリン酸アミド等の高級脂肪酸アミド;低分子量ポリエステル等が挙げられる。なかでも、示差熱分析(DSC)による吸熱ピークを50℃以上100℃以下に少なくとも1つ有するものが好ましい。なお、ワックスは、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
また、ワックスの中でも、例えば、エステル系ワックス、パラフィンワックス、低分子量ポリプロピレン、共重合ポリエチレン等のオレフィン系ワックス、シリコーンワックスは、少量で離型性の効果が得られるので好ましい。特に、パラフィンワックスが好ましい。
ワックスを用いる場合、その使用量は任意である。ただし、重合体100重量部に対して、ワックスを通常3重量部以上、好ましくは5重量部以上、また、通常40重量部以下、好ましくは30重量部以下とすることが望ましい。使用量が少なすぎる場合、定着温度幅が不十分となる可能性があり、多すぎる場合、装置部材を汚染して画質の低下が生じる可能性がある。
(ii.乳化剤)
乳化剤に制限は無く、本発明の効果を著しく損なわない範囲で任意のものを使用することができる。例えば、非イオン性、アニオン性、カチオン性、及び両性のいずれの界面活性剤も用いることができる。なお、乳化剤も、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
非イオン性界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル等のポリオキシアルキレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル等のポリオキシアルキレンアルキルフェニルエーテル類、ソルビタンモノラウレート等のソルビタン脂肪酸エステル類等が挙げられる。
また、アニオン性界面活性剤としては、例えば、ステアリン酸ナトリウム、オレイン酸ナトリウム等の脂肪酸塩類、ドデシルベンゼンスルホン酸ナトリウム等のアルキルアリールスルホン酸塩類、ラウリル硫酸ナトリウム等のアルキル硫酸エステル塩類等が挙げられる。
さらに、カチオン系界面活性剤としては、例えば、ラウリルアミンアセテート等のアルキルアミン塩類、ラウリルトリメチルアンモニウムクロリド等の四級アンモニウム塩類等が挙げられる。
また、両性界面活性剤としては、例えば、ラウリルベタイン等のアルキルベタイン類等が挙げられる。
これらの中でも、非イオン性界面活性剤、アニオン系界面活性剤が好ましい。
さらに、乳化剤の使用量も本発明の効果を著しく損なわない限り任意であるが、重合性モノマー100重量部に対して、乳化剤を、通常1重量部以上10重量部以下の割合で用いる。
(iii.液状媒体)
液状媒体としては、通常は水系媒体を用い、特に好ましくは水を用いる。ただし、液状媒体の質は液状媒体中の粒子の再凝集による粗大化にも関係し、液状媒体の導電率が高いと経時の分散安定性が悪化する傾向がある。従って、液状媒体として水等の水系媒体を使用する場合、導電率を、通常10μS/cm以下、好ましくは5μS/cm以下となるように脱塩処理されたイオン交換水又は蒸留水を用いることが好ましい。なお、導電率は、導電率計(横河電機社製のパーソナルSCメータモデルSC72及び検出器SC72SN−11)を用いて25℃下で測定を行なうことができる。
また、液状媒体の使用量に制限は無いが、重合性単量体に対して、通常1重量倍以上20重量倍以下程度の量を用いる。
この液状媒体に、乳化剤の存在下で上記ワックスを分散させることにより、ワックス微粒子を得る。乳化剤及びワックスを液状媒体に混合する順序は任意であるが、通常は、まず乳化剤を液状媒体に混合し、その後、ワックスを混合する。また、乳化剤は連続的に液状媒体に混合してもよい。
(iv.重合開始剤)
上記のワックス微粒子を調製した後、液状媒体に、重合開始剤を混合する。重合開始剤としては、本発明の効果を著しく損なわない限り任意のものを用いることができる。その例を挙げると、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩類;t−ブチルヒドロペルオキシド、クメンヒドロペルオキシド、p−メンタンヒドロペルオキシド等の有機過酸化物類;過酸化水素等の無機過酸化物類等が挙げられる。中でも、無機過酸化物類が好ましい。なお、重合開始剤は1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい
さらに、重合開始剤の他の例としては、過硫酸塩類、有機又は無機過酸化物類と、アスコルビン酸、酒石酸、クエン酸等の還元性有機化合物類、チオ硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウム等の還元性無機化合物類等とを併用して、レドックス系開始剤とすることもできる。この場合、還元性無機化合物類は1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
また、重合開始剤の使用量にも制限は無く任意である。ただし、重合開始剤は、重合性単量体100重量部に対して、通常0.05重量部以上2重量部以下の割合で用いられる。
(v.重合性単量体)
上記のワックス微粒子を調製した後、液状媒体には、上記の重合開始剤の他に、重合性単量体を混合する。重合性単量体に特に制限は無いが、例えば、スチレン類、(メタ)アクリル酸エステル、アクリルアミド類、ブレンステッド酸性基を有する単量体(以下、適宜、単に「酸性モノマー」と略記する。)、ブレンステッド塩基性基を有する単量体(以下、適宜、単に「塩基性モノマー」と略記する。)等の単官能性モノマーが主として用いられる。また、単官能性のモノマーに多官能性のモノマーを併用することもできる。なお、重合性単量体は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
スチレン類としては、例えば、スチレン、メチルスチレン、クロロスチレン、ジクロロスチレン、p−tert−ブチルスチレン、p−n−ブチルスチレン、p−n−ノニルスチレン等が挙げられる。
また、(メタ)アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸ヒドロキシエチル、アクリル酸−2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸ヒドロキシエチル、メタクリル酸−2−エチルヘキシル等が挙げられる。
アクリルアミド類としては、例えば、アクリルアミド、N−プロピルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジプロピルアクリルアミド、N,N−ジブチルアクリルアミド等が挙げられる。
さらに、酸性モノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、ケイ皮酸等のカルボキシル基を有するモノマー;スルホン化スチレン等のスルホン酸基を有するモノマー;ビニルベンゼンスルホンアミド等のスルホンアミド基を有するモノマー等が挙げられる。
また、塩基性モノマーとしては、例えば、アミノスチレン等のアミノ基を有する芳香族ビニル化合物、ビニルピリジン、ビニルピロリドン等の含窒素複素環含有モノマー;ジメチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート等のアミノ基を有する(メタ)アクリル酸エステル等が挙げられる。
なお、酸性モノマー及び塩基性モノマーは、対イオンを伴って塩として存在していてもよい。
さらに、多官能性モノマーとしては、例えば、ジビニルベンゼン、ヘキサンジオールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ネオペンチルグリコールジアクリレート、ジアリルフタレート等が挙げられる。また、グリシジルメタクリレート、N−メチロールアクリルアミド、アクロレイン等の反応性基を有するモノマーを用いることも可能である。中でもラジカル重合性の二官能性モノマー、特に、ジビニルベンゼン、ヘキサンジオールジアクリレートが好ましい。
これらのなかでも、重合性単量体としては、スチレン類、(メタ)アクリル酸エステル、カルボキシル基を有する酸性モノマーからなる群より選ばれる少なくとも1種が好ましい。特に、スチレン類としてはスチレンが好ましく、(メタ)アクリル酸エステル類としてはアクリル酸ブチルが好ましく、カルボキシル基を有する酸性モノマーとしてはアクリル酸が好ましい。
ワックスをシードとして乳化重合を行なう際には、酸性モノマー又は塩基性モノマーと、これら以外のモノマーとを併用することが好ましい。酸性モノマー又は塩基性モノマーを併用することにより、重合体一次粒子の分散安定性を向上させることができるからである。
この際、酸性モノマー又は塩基性モノマーの混合量は任意であるが、全重合性単量体100重量部に対する酸性モノマー又は塩基性モノマーの混合量を、通常0.05重量部以上、好ましくは0.5重量部以上、より好ましくは1重量部以上、また、通常10重量部以下、好ましくは5重量部以下となるようにすることが望ましい。酸性モノマー又は塩基性モノマーの混合量が少なすぎる場合、重合体一次粒子の分散安定性が悪化する可能性があり、多すぎる場合、トナーの帯電性に悪影響を及ぼす可能性がある。
また、多官能性モノマーを併用する場合、その混合量は任意であるが、重合性単量体100重量部に対する多官能性モノマーの混合量は、通常0.005重量部以上、好ましくは0.1重量部以上、より好ましくは0.3重量部以上、また、通常5重量部以下、好ましくは3重量部以下、より好ましくは1重量部以下である。多官能性モノマーを使用することにより、トナーの定着性を向上させることができる。この際、多官能性モノマーの混合量が少なすぎる場合、耐高温オフセット性が劣る可能性があり、多すぎる場合、低温定着性が劣る可能性がある。
液状媒体へ重合性単量体を混合する方法は特に限定されず、例えば、一括混合、連続混合、間欠混合のいずれでもよいが、反応制御の点からは連続的に混合することが好ましい。また、複数の重合性単量体を併用する場合、各重合性単量体は、別々に混合してもよく、また予め混合したものを用いてもよい。更には、単量体混合物の組成を変化させながら混合してもよい。
(vi.連鎖移動剤等)
上記のワックス微粒子を調製した後、液状媒体に、上記の重合開始剤及び重合性単量体の他に、必要に応じて、連鎖移動剤、pH調整剤、重合度調節剤、消泡剤、保護コロイド、内添剤等の添加剤を混合する。これらの添加剤は本発明の効果を著しく損なわない限り任意のものを用いることができる。また、これらの添加剤は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
連鎖移動剤としては、公知の任意のものを使用することができる。具体例を挙げると、t−ドデシルメルカプタン、2−メルカプトエタノール、ジイソプロピルキサントゲン、四塩化炭素、トリクロロブロモメタン等が挙げられる。また、連鎖移動剤は、重合性単量体100重量部に対して、通常5重量部以下の割合で用いられる。
さらに、保護コロイドとしては、任意のものを使用することができる。具体例を挙げると、部分又は完全ケン化ポリビニルアルコール等のポリビニルアルコール類、ヒドロキシエチルセルロース等のセルロース誘導体類等等が挙げられる。
また、内添剤としては、例えば、シリコーンオイル、シリコーンワニス、フッ素系オイル等のトナーの粘着性、凝集性、流動性、帯電性、表面抵抗等を改質するためのものが挙げられる。
(vii.重合体一次粒子)
ワックス微粒子を含む液状媒体に重合開始剤及び重合性単量体、並びに、必要に応じて添加剤を混合し、攪拌し、重合させることにより、重合体一次粒子を得る。この重合体一次粒子は、液状媒体中にエマルションの状態で得ることができる。
重合開始剤、重合性単量体、添加剤等を液状媒体に混合する順番に制限は無い。また、混合、攪拌の方法等も制限は無く、任意である。
さらに、重合(乳化重合反応)の反応温度も反応が進行する限り任意である。但し、重合温度は、通常50℃以上、好ましくは60℃以上、より好ましくは70℃以上、また、通常120℃以下、好ましくは100℃以下、より好ましくは90℃以下である。
重合体一次粒子の体積平均粒径に特に制限は無いが、通常0.02μm以上、好ましくは0.05μm以上、より好ましくは0.1μm以上、また、通常3μm以下、好ましくは2μm以下、より好ましくは1μm以下である。体積平均粒径が小さすぎる場合、凝集速度の制御が困難となる可能性があり、また、体積平均粒径が大きすぎる場合、凝集して得られるトナーの粒径が大きくなり易く、目的とする粒径のトナーを得ることが困難となる可能性がある。
なお、体積平均粒径は、後述する動的光散乱法を用いた粒度分析計で測定することができる。
本発明においては、体積粒度分布は動的光散乱法により測定される。この方式は、微小に分散された粒子のブラウン運動の速さを、粒子にレーザー光を照射してその速度に応じた位相の異なる光の散乱(ドップラーシフト)を検出して粒度分布を求めるものである。実際の測定では、上記の体積粒径については、動的光散乱方式を用いた超微粒子粒度分布測定装置(日機装社製、UPA−EX150、以下、適宜「UPA−EX」と言う。)を用いて、以下の設定にて行なう。
測定上限 :6.54μm
測定下限 :0.0008μm
チャンネル数:52
測定時間 :100秒
測定温度 :25℃
粒子透過性 :吸収
粒子屈折率 :N/A(適用しない)
粒子形状 :非球形
密度 :1g/cm
分散媒種類 :水
分散媒屈折率:1.333
なお、測定時は、サンプル濃度指数が0.01以上0.1以下の範囲になるように粒子の分散体を液状媒体で希釈し、超音波洗浄器で分散処理した試料で測定する。そして、上記の体積平均粒径は、上記の体積粒度分布の結果を算術平均値として計測される。
また、重合体一次粒子を構成する重合体は、GPCにおけるピーク分子量のうち少なくとも1つが、通常3000以上、好ましくは10000以上、より好ましくは30000以上、また、通常100000以下、好ましくは70000以下、より好ましくは60000以下に存在することが望ましい。ピーク分子量が上記範囲にある場合、トナーの耐久性、保存性、定着性が良好となる傾向がある。
ここで、上記のピーク分子量とは、ポリスチレン換算した値を用いるものとし、測定に際しては溶媒に不溶の成分を除くものとする。ピーク分子量は、後述するトナーの場合と同様に測定することが可能である。
特に、上記の重合体がスチレン系樹脂である場合には、重合体のGPCにおける数平均分子量は、下限が通常2000以上、好ましくは2500以上、より好ましくは3000以上、また上限は、通常50000以下、好ましくは40000以下、より好ましくは35000以下である。
さらに、重合体の重量平均分子量は、通常20000以上、好ましくは30000以上、より好ましくは50000以上、また上限は、通常1000000以下、好ましくは500000以下である。数平均分子量、重量平均分子量の少なくとも一方、好ましくは双方が上記の範囲に収まるスチレン系樹脂を重合体として用いた場合、得られるトナーは、耐久性、保存性、定着性が良好となる。さらに分子量分布において、メインピークが2つあるものでもよい。なお、スチレン系樹脂とは、スチレン類が全重合体中の通常50重量%以上、好ましくは65重量%以上を占めるものを指す。
また、重合体の軟化点(以下、適宜「Sp」と略記する。)は、通常80℃以上、耐高温オフセット性、耐久性の観点から、好ましくは100℃以上、また、その上限は、通常150℃以下、低エネルギー定着の観点から、好ましくは140℃以下である。ここで、重合体の軟化点は、フローテスターにおいて、試料1.0gをノズル1mm×10mm、荷重30kg、予熱時間50℃で5分、昇温速度3℃/分の条件下で測定を行なったときの、フロー開始から終了までのストランドの中間点での温度として求めることができる。
さらに、重合体のガラス転移温度〔Tg〕は、通常40℃以上、好ましくは50℃以上、また、その上限は、通常80℃以下、好ましくは70℃以下である。重合体のガラス転移温度〔Tg〕が低すぎる場合、耐ブロッキング性が低下する可能性があり、高すぎる場合、低エネルギー定着ができなくなる可能性がある。
ここで重合体のガラス転移温度〔Tg〕は、示差走査熱量計において、昇温速度10℃/分の条件で測定した曲線の転移(変曲)開始部に接線を引き、2つの接線の交点の温度として求めることができる。
重合体の軟化点及びガラス転移温度〔Tg〕は、例えば重合体の種類及びモノマー組成比、分子量等を調整することによって、上記範囲とすることができる。
<混合工程及び凝集工程>
上記の重合体一次粒子が分散したエマルションに、顔料粒子を混合し、凝集させることにより、重合体、顔料を含む凝集体(凝集粒子)のエマルションを得る。この際、顔料は、予め液状媒体に界面活性剤等を用いて均一に分散させた顔料粒子分散体を用意し、これを重合体一次粒子のエマルションに混合することが好ましい。この際、顔料粒子分散体の液状媒体として通常は水等の水系溶媒を使用し、顔料粒子分散体を水系分散体として用意する。また、その際には、必要に応じてワックス、帯電制御剤、離型剤、内添剤等をエマルションに混合してもよい。また、顔料粒子分散体の安定性を保持するために、上記した乳化剤を加えてもよい。
重合体一次粒子としては、乳化重合により得た上記の重合体一次粒子を使用することができる。この際、重合体一次粒子は1種を用いてもよく、2種以上を任意の比率及び組み合わせで用いても良い。さらに、上記した乳化重合とは異なる原料や反応条件で製造した重合体一次粒子(以下、適宜「併用重合体粒子」と言う。)を併用してもよい。
併用重合体粒子としては、例えば、懸濁重合や粉砕で得られた微粒子等が挙げられる。このような併用重合体粒子の材料としては例えば樹脂を使用できるが、この樹脂としては、上記の乳化重合に供する単量体の(共)重合体の他に、例えば、酢酸ビニル、塩化ビニル、ビニルアルコール、ビニルブチラール、ビニルピロリドン等のビニル系単量体の単独重合体又は共重合体、飽和ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリフェニレンエーテル樹脂等の熱可塑性樹脂、及び、不飽和ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、ウレタン樹脂、ロジン変性マレイン酸樹脂等の熱硬化性樹脂等が挙げられる。なお、これらの併用重合体粒子も、1種を用いてもよく、2種以上を任意の比率及び組み合わせで用いても良い。ただし、併用重合体粒子の割合は、重合体一次粒子及び併用重合体粒子の重合体の合計に対して、通常5重量%以下、好ましくは4重量%以下、より好ましくは3重量%以下である。
また、顔料に制限は無く、その用途に応じて任意のものを用いることができる。ただし、顔料は通常は着色剤粒子として粒子状で存在するが、この顔料の粒子は、乳化重合凝集法における重合体一次粒子との密度差が小さい方が好ましい。上記の密度差が小さいほうが、重合体一時粒子と顔料とを凝集させた場合に均一な凝集状態が得られ、従って得られるトナーの性能が向上するからである。なお、重合体一次粒子の密度は、通常は1.1g/cm以上1.3g/cm以下である。
上記の観点から、JIS K 5101−11−1:2004に規定されるピクノメーター法で測定される顔料粒子の真密度は、通常1.2g/cm以上、好ましくは1.3g/cm以上、また、通常2.0g/cm未満、好ましくは1.9g/cm以下、より好ましくは1.8g/cm以下である。顔料の真密度が大きい場合は、特に液状媒体中での沈降性が悪化する傾向にある。加えて、保存性、昇華性等の課題も考慮すると、顔料はカーボンブラックあるいは有機顔料であるのが好ましい。
以上の条件を満たす顔料の例示としては、以下に示すイエロー顔料、マゼンタ顔料及びシアン顔料等が挙げられる。また、黒色顔料としては、カーボンブラック、又は、以下に示すイエロー顔料/マゼンタ顔料/シアン顔料を混合して黒色に調色されたものが利用される。なお、顔料は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
このうち、黒色顔料として使用されるカーボンブラックは、非常に微細な一次粒子の凝集体として存在し、顔料粒子分散体として分散させたときに、再凝集によるカーボンブラック粒子の粗大化が発生しやすい。カーボンブラック粒子の再凝集の程度は、カーボンブラック中に含まれる不純物量(未分解有機物量の残留程度)の大小と相関が見られ、不純物が多いと分散後の再凝集による粗大化が顕著となる傾向を示す。
不純物量の定量的な評価としては、以下の測定方法で測定されるカーボンブラックのトルエン抽出物の紫外線吸光度(λc)が、通常0.05以下、好ましくは0.03以下である。一般に、チャンネル法のカーボンブラックは不純物が多い傾向を示すので、本発明のトナーに使用するカーボンブラックとしては、ファーネス法で製造されたものが好ましい。
なお、カーボンブラックの紫外線吸光度は、次の方法で求めることができる。即ち、まずカーボンブラック3gをトルエン30mLに十分に分散、混合させて、続いてこの混合液をNo.5C濾紙を使用して濾過する。その後、濾液を吸光部が1cm角の石英セルに入れて市販の紫外線分光光度計を用いて波長336nmの吸光度を測定した値(λs)と、同じ方法でリファレンスとしてトルエンのみの吸光度を測定した値(λo)とから、紫外線吸光度はλc=λs−λoの式により求められる。市販の分光光度計としては、例えば島津製作所製紫外可視分光光度計(UV−3100PC)等がある。
また、イエロー顔料としては、例えば、縮合アゾ化合物、イソインドリノン化合物等に代表される化合物が用いられる。具体的には、C.I.ピグメントイエロー12、13、14、15、17、62、74、83、93、94、95、109、110、111、128、129、147、168、180、185等が好適に用いられる。
さらに、マゼンタ顔料としては、例えば、縮合アゾ化合物、ジケトピロロピロール化合物、アンスラキノン、キナクリドン化合物、塩基染料レーキウ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物等が用いられる。具体的には、C.I.ピグメントレッド2、3、5、6、7、23、48:2、48:3、48:4、57:1、81:1、122、144、146、166、169、177、184、185、202、206、207、209、220、221、238、254、C.I.ピグメントバイオレット19等が好適に用いられる。
中でもC.I.ピグメントレッド122、202、207、209、C.I.ピグメントバイオレット19で示されるキナクリドン系顔料が特に好ましい。このキナクリドン系顔料は、その鮮明な色相や高い耐光性等からマゼンタ顔料として好適である。キナクリドン系顔料の中でも、C.I.ピグメントレッド122で示される化合物が、特に好ましい。
また、シアン顔料としては、例えば、銅フタロシアニン化合物及びその誘導体、アンスラキノン化合物、塩基染料レーキ化合物等が利用できる。具体的には、C.I.ピグメントブルー1、7、15、15:1、15:2、15:3、15:4、60、62、66等が特に好適に利用できる。
上記の顔料は、液状媒体に分散させ、顔料粒子分散体としてから重合体一次粒子を含有するエマルションと混合する。この際、顔料粒子分散体中における顔料粒子の使用量は、液状媒体100重量部に対して、通常3重量部以上、好ましくは5重量部以上、また、通常50重量部以下、好ましくは40重量部以下である。使用量が少なすぎる場合、分散が過剰となって適切な粒度分布を得ることが困難になる可能性があり、多すぎる場合、顔料濃度が濃いので分散中で顔料粒子が再凝集する可能性がある。
また、重合体一次粒子に含まれる重合体に対する顔料の使用量の割合は、通常1重量%以上、好ましくは3重量%以上、また、通常20重量%以下、好ましくは15重量%以下である。顔料の使用量が少なすぎる場合、画像濃度が薄くなる可能性があり、多すぎる場合、凝集制御が困難となる可能性がある。
さらに、顔料粒子分散体には、界面活性剤を含有させても良い。この界面活性剤に特に制限は無いが、例えば、乳化重合法の説明において乳化剤として例示した界面活性剤と同様のものが挙げられる。中でも、非イオン系界面活性剤、ドデシルベンゼンスルホン酸ナトリウム等のアルキルアリールスルホン酸塩類等のアニオン系活性剤、ポリマー系界面活性剤等が好ましく用いられる。また、この際、界面活性剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
なお、顔料粒子分散体に占める顔料の割合は、通常10重量%以上50重量%以下である。
また、顔料粒子分散体の液状媒体としては、通常は水系媒体を用い、好ましくは水を用いる。この際、重合体一次粒子及び顔料粒子分散体の水質は各粒子の再凝集による粗大化にも関係し、導電率が高いと経時の分散安定性が悪化する傾向がある。従って、導電率を、通常10μS/cm以下、好ましくは5μS/cm以下となるように脱塩処理されたイオン交換水あるいは蒸留水を用いることが好ましい。なお、導電率の測定は、導電率計(横河電機社製のパーソナルSCメータモデルSC72及び検出器SC72SN−11)を用いて25℃下で測定を行なう。
また、重合体一次粒子を含有するエマルションに顔料を混合させる際、エマルションにワックスを混合しても良い。ワックスとしては、乳化重合法の説明において述べたものを同様のものを使用することができる。なお、ワックスは、重合体一次粒子を含有するエマルションに顔料を混合する前、混合中、後のいずれにおいて混合しても良い。
また、重合体一次粒子を含有するエマルションに顔料を混合させる際、エマルションに帯電制御剤を混合しても良い。
帯電制御剤としては、この用途に用いられ得ることが知られている任意のものを使用することができる。正荷電性帯電制御剤としては、例えば、ニグロシン系染料、四級アンモニウム塩、トリフェニルメタン系化合物、イミダゾール系化合物、ポリアミン樹脂等が挙げられる。また、負荷電性帯電制御剤としては、例えば、Cr、Co、Al、Fe、B等の原子を含有するアゾ錯化合物染料;サリチル酸若しくはアルキルサリチル酸の金属塩又は金属錯体;カーリックスアレン化合物、ベンジル酸の金属塩又は金属錯体、アミド化合物、フェノール化合物、ナフトール化合物、フェノールアミド化合物等が挙げられる。中でも、トナーとしての色調障害を回避するため、無色ないしは淡色のものを選択することが好ましく、特に正荷電性帯電制御剤としては四級アンモニウム塩、イミダゾール系化合物が好ましく、負荷電性帯電制御剤としてはCr、Co、Al、Fe、B等の原子を含有するアルキルサリチル酸錯化合物、カーリックスアレン化合物が好ましい。なお、帯電制御剤は1種を用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
帯電制御剤の使用量に制限は無いが、重合体100重量部に対し、通常0.01重量部以上、好ましくは0.1重量部以上、また、その上限は、通常10重量部以下、好ましくは5重量部以下である。帯電制御剤の使用量が少なすぎても多すぎても所望の帯電量が得られない可能性がある。
なお、帯電制御剤は、重合体一次粒子を含有するエマルションに顔料を混合する前、混合中、後のいずれにおいて混合しても良い。
また、帯電制御剤は、上記顔料粒子と同様に、液状媒体(通常は、水系媒体)に乳化した状態として、凝集時に混合することが望ましい。
上記の重合体一次粒子を含有するエマルションに顔料を混合した後、重合体一次粒子と顔料とを凝集させる。なお、上記のとおり、混合の際には、通常、顔料は顔料粒子分散体とした状態で混合させる。
凝集方法に制限は無く任意であるが、例えば、加熱、電解質の混合、pHの調整等が挙げられる。中でも、電解質を混合する方法が好ましい。
電解質を混合して凝集を行なう場合の電解質としては、例えば、NaCl、KCl、LiCl、MgCl、CaCl等の塩化物;NaSO、KSO、LiSO、MgSO、ZnSO、Al(SO、Fe(SO等の硫酸塩等の無機塩;CHCOONa、CSONa等の有機塩等が挙げられる。これらのうち、2価以上の多価の金属カチオンを有する無機塩が好ましい。
なお、電解質は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
電解質の使用量は、電解質の種類によって異なるが、エマルション中の固形成分100重量部に対して、通常0.05重量部以上、好ましくは0.1重量部以上、また、通常25重量部以下、好ましくは15重量部以下、より好ましくは10重量部以下である。電解質を混合して凝集を行なう場合において、電解質の使用量が少なすぎる場合、凝集反応の進行が遅くなり凝集反応後も1μm以下の微粉が残ったり、得られる凝集体の平均粒径が目的の粒径に達しなかったりする等の可能性があり、また、電解質の使用量が多すぎる場合、凝集反応が急速に起こるため粒径の制御が困難となり、得られる凝集体中に粗粉や不定形のものが含まれる可能性がある。
得られた凝集体は、後述する二次凝集体(溶融工程を経た凝集体)と同じく、引き続き液状媒体中で加熱して球形化することが好ましい。加熱は二次凝集体の場合と同様の条件(融合工程の説明において述べるのと同様の条件)で行えばよい。
一方、加熱により凝集を行なう場合、温度条件は凝集が進行する限り任意である。具体的な温度条件としては、通常15℃以上、好ましくは20℃以上、また、重合体一次粒子の重合体のガラス転移温度〔Tg〕以下、好ましくは55℃以下の温度条件で凝集を行なう。凝集を行なう時間も任意であるが、通常10分以上、好ましくは60分以上、また、通常300分以下、好ましくは180分以下である。
また、凝集を行なう際には、攪拌を行なうことが好ましい。攪拌に使用する装置は特に限定されないが、ダブルヘリカル翼を有するものが好ましい。
得られた凝集体は、そのまま次工程の樹脂被覆層を形成する工程(カプセル化工程)に進んでもよいし、引き続き液状媒体中で加熱による融合処理を行なった後に、カプセル化工程に進んでもよい。そして、望ましくは、凝集工程の後に、カプセル化工程を行ない、カプセル化樹脂微粒子のガラス転移温度〔Tg〕以上の温度で加熱して融合工程を行なうことが、工程を簡略化でき、トナーの性能劣化(例えば熱劣化等)を生じないので好ましい。
<カプセル化工程>
凝集体を得た後、当該凝集体には、必要に応じて樹脂被覆層を形成することが好ましい。凝集体に樹脂被覆層を形成させるカプセル化工程とは、凝集体の表面に樹脂被覆層を形成することにより、凝集体を樹脂により被覆する工程である。これにより、製造されるトナーは樹脂被覆層を備えることになる。カプセル化工程では、トナー全体が完全に被覆されない場合もあるが、顔料がトナー粒子の表面に露出していないトナーを得ることができるようになる。この際の樹脂被覆層の厚さに制限は無いが、通常は0.01μm以上0.5μm以下の範囲である。
上記樹脂被覆層を形成する方法としては、特に制限はないが、例えば、スプレードライ法、機械式粒子複合法、in−situ重合法、液中粒子被覆法等が挙げられる。
上記スプレードライ法により樹脂被覆層を形成する方法としては、例えば、内層を形成する凝集体と樹脂被覆層を形成する樹脂微粒子とを水媒体中に分散して分散液を作製し、分散液をスプレー噴出し、乾燥することによって、凝集体表面に樹脂被覆層を形成することができる。
また、上記機械式粒子複合法により樹脂被覆層を形成する方法としては、例えば、内層を形成する凝集体と樹脂被覆層を形成する樹脂微粒子とを気相中に分散させ、狭い間隙で機械的な力を加えて凝集体表面に樹脂微粒子を成膜化する方法があり、例えばハイブリダイゼーションシステム(奈良機械製作所社製)、メカノフュージョンシステム(ホソカワミクロン社製)等の装置が使用できる。
さらに、上記in−situ重合法としては、例えば、凝集体を水中に分散させ、単量体及び重合開始剤を混合して、凝集体表面に吸着させ、加熱して、単量体を重合させて、内層である凝集体表面に樹脂被覆層を形成する方法である。
また、上記液中粒子被覆法としては、例えば、内層を形成する凝集体と外層を形成する樹脂微粒子とを、水媒体中で反応あるいは結合させ、内層を形成する凝集体の表面に樹脂被覆層を形成させる方法である。
外層を形成させる場合に用いる樹脂微粒子は、凝集体よりも粒径が小さく樹脂成分を主体とする粒子である。この樹脂微粒子は、重合体で構成された粒子であれば特に制限はない。ただし、外層の厚みがコントロールできるという観点から、上記した重合体一次粒子、凝集体、又は、上記の凝集体を融合した融合粒子と同様の樹脂微粒子を用いることが好ましい。なお、これらの重合体一次粒子等と同様の樹脂微粒子は、内層に使用する凝集体における重合体一次粒子等と同様に製造することができる。
また、樹脂微粒子の使用量は任意であるが、トナー粒子に対して通常1重量%以上、好ましくは5重量%以上、また、通常50重量%以下、好ましくは25重量%以下の範囲で用いることが望ましい。
さらに、凝集体に対する樹脂微粒子の固着又は融合を効果的に行なうためには、樹脂微粒子の粒径は、通常は、0.04μm以上1μm以下程度のものが好ましく用いられる。
樹脂被覆層に用いられる重合体成分(樹脂成分)のガラス転移温度〔Tg〕としては、通常60℃以上、好ましくは70℃以上、また、通常110℃以下が望ましい。さらに、樹脂被覆層に用いられる重合体成分のガラス転移温度〔Tg〕は、重合体一次粒子のガラス転移温度〔Tg〕より5℃以上高いものであることが好ましく、10℃以上高いものであることがより好ましい。ガラス転移温度〔Tg〕が低すぎる場合、一般環境での保存が困難となる可能性があり、高すぎる場合、十分な溶融性が得られない可能性がある。
さらに、樹脂被覆層中にはポリシロキサンワックスを含有させることが好ましい。これにより、耐高温オフセット性の向上という利点を得ることができる。ポリシロキサンワックスの例を挙げると、アルキル基を有するシリコーンワックス等が挙げられる。
ポリシロキサンワックスの含有量に制限は無いが、トナー中、通常0.01重量%以上、好ましくは0.05重量%以上、より好ましくは0.08重量%以上、また、通常2重量%以下、好ましくは1重量%以下、より好ましくは0.5重量%以下とする。樹脂被覆層中のポリシロキサンワックスの量が少なすぎる場合、耐高温オフセット性が不十分となる可能性があり、多すぎる場合、耐ブロッキング性が低下する可能性がある。
樹脂被覆相中にポリシロキサンワックスを含有させる方法は任意であるが、例えば、ポリシロキサンワックスをシードとして乳化重合を行ない、得られた樹脂微粒子と、内層を形成する凝集体とを、水系媒体中で反応あるいは結合させ、内層を形成する凝集体の表面にポリシロキサンワックスを含有する樹脂被覆層を形成させることにより含有させることが可能である。
<融合工程>
融合工程では、凝集体を加熱処理することにより、凝集体を構成する重合体の溶融一体化を行なう。また、凝集体に樹脂被覆層を形成してカプセル化樹脂微粒子とした場合には、加熱処理をすることにより、凝集体を構成する重合体及びその表面の樹脂被覆層の融合一体化がなされることになる。これにより、顔料粒子は実質的に表面に露出しない形態で得られる。
融合工程の加熱処理の温度は、通常は凝集体を構成する重合体一次粒子のガラス転移温度〔Tg〕以上の温度とする。また、樹脂被覆層を形成した場合には、通常樹脂被覆層を形成する重合体成分のガラス転移温度〔Tg〕以上の温度とする。具体的な温度条件は任意であるが、樹脂被覆層を形成する重合体成分のガラス転移温度〔Tg〕よりも、通常5℃以上高温であることが好ましい。その上限に制限は無いが、「樹脂被覆層を形成する重合体成分のガラス転移温度〔Tg〕よりも50℃高い温度」以下が好ましい。
なお、加熱処理の時間は処理能力、製造量にもよるが、通常0.5時間以上6時間以下である。
<洗浄・乾燥工程>
上記の各工程を液状媒体中で行なっていた場合には、融合工程の後、得られたカプセル化樹脂粒子を洗浄し、乾燥して液状媒体を除去することにより、トナーを得ることができる。洗浄及び乾燥の方法に制限は無く任意である。
<その他の工程>
<外添微粒子の添着>
トナーの流動性、帯電安定性、高温下での耐ブロッキング性等を向上させるために、トナー粒子表面に外添微粒子を添着させてもよい。
外添微粒子をトナー粒子表面に添着させる方法としては、例えば、上記のトナーの製造方法において、液状媒体中で二次凝集体と外添微粒子とを混合した後、加熱してトナー粒子上に外添微粒子を固着させる方法;二次凝集体を液状媒体から分離、洗浄、乾燥させて得られたトナー粒子に乾式で外添微粒子を混合又は固着させる方法等が挙げられる。
乾式でトナー粒子と外添微粒子とを混合する場合に用いられる混合機としては、例えば、ヘンシェルミキサー、スーパーミキサー、ナウターミキサー、V型ミキサー、レディゲミキサー、ダブルコーンミキサー、ドラム型ミキサー等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意に組みあわせて用いてもよい。中でもヘンシェルミキサー、スーパーミキサー等の高速攪拌型の混合機を用い、羽根形状、回転数、時間、駆動−停止の回数等を適宜設定して均一に攪拌、混合することにより混合することが好ましい。
また、乾式でトナー粒子と外添微粒子を固着させる場合に用いられる装置としては、圧縮剪断応力を加えることの出来る圧縮剪断処理装置や、粒子表面を溶融処理することのできる粒子表面溶融処理装置等が挙げられる。
圧縮剪断処理装置は、一般に、間隔を保持しながら相対的に運動するヘッド面とヘッド面、ヘッド面と壁面、あるいは壁面と壁面によって構成される狭い間隙部を有し、被処理粒子が該間隙部を強制的に通過させられることによって、実質的に粉砕されることなく、粒子表面に対して圧縮応力及び剪断応力が加えられるように構成されている。このような圧縮剪断処理装置としては、例えば、ホソカワミクロン社製のメカノフュージョン装置等が挙げられる。
一方、粒子表面溶融処理装置は、一般に、熱風気流等を利用し、母体微粒子と外添微粒子との混合物を母体微粒子の溶融開始温度以上に瞬時に加熱し外添微粒子を固着できるように構成される。このような粒子表面溶融処理装置としては、例えば、日本ニューマチック社製のサーフュージングシステム等が挙げられる。
また、外添微粒子としては、この用途に用い得ることが知られている公知のものが使用できる。例えば、無機微粒子、有機微粒子等が挙げられる。なお、外添微粒子は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
無機微粒子としては、例えば、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウム、炭化タンタル、炭化ニオブ、炭化タングステン、炭化クロム、炭化モリブデン、炭化カルシウム等の炭化物、窒化ホウ素、窒化チタン、窒化ジルコニウム、窒化珪素等の窒化物、ホウ化ジルコニウム等のホウ化物、シリカ、コロイダルシリカ、酸化チタン、酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化銅、酸化ジルコニウム、酸化セリウム、タルク、ハイドロタルサイト等の酸化物や水酸化物、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ストロンチウム、チタン酸バリウム等の各種チタン酸化合物、リン酸三カルシウム、リン酸二水素カルシウム、リン酸一水素カルシウム、リン酸イオンの一部が陰イオンによって置換された置換リン酸カルシウム等のリン酸化合物、二硫化モリブデン等の硫化物、フッ化マグネシウム、フッ化炭素等のフッ化物、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の金属石鹸、滑石、ベントナイト、導電性カーボンブラックをはじめとする種々のカーボンブラック等を用いることができる。さらには、マグネタイト、マグへマタイト、マグネタイトとマグヘマタイトの中間体等の磁性物質等を用いてもよい。
一方、有機微粒子としては、例えば、スチレン系樹脂、ポリアクリル酸メチルやポリメタクリル酸メチル等のアクリル系樹脂、エポキシ系樹脂、メラミン系樹脂、テトラフロロエチレン樹脂、トリフロロエチレン樹脂、ポリ塩化ビニル樹脂、ポリエチレン樹脂、ポリアクリロニトリル樹脂等の微粒子を用いることができる。
これら外添微粒子の中では、特に、シリカ、酸化チタン、アルミナ、酸化亜鉛、カーボンブラック等が好適に使用される。
また、これらの無機又は有機微粒子の表面は、シランカップリング剤、チタネート系カップリング剤、シリコーンオイル、変性シリコーンオイル、シリコーンワニス、フッ素系シランカップリング剤、フッ素系シリコーンオイル、アミノ基や第四級アンモニウム塩基を有するカップリング剤等の処理剤によって疎水化等の表面処理が施されていてもよい。なお、処理剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
さらに、外添微粒子の数平均粒径は本発明の効果を著しく損なわない限り任意であるが、通常0.001μm以上、好ましくは0.005μm以上、また、通常3μm以下、好ましくは1μm以下であり、異なる平均粒径のものを複数配合してもよい。なお、外添微粒子の数平均粒径は、電子顕微鏡観察やBET比表面積の値からの換算等により求めることができる。
また、トナーに対する外添微粒子の割合は本発明の効果を著しく損なわない限り任意である。ただし、トナーと外添微粒子との合計重量に対する外添微粒子の割合として、通常0.1重量%以上、好ましくは0.3重量%以上、より好ましくは0.5重量%以上、また、通常10重量%以下、好ましくは6重量%以下、より好ましくは4重量%以下が望ましい。外添微粒子が少なすぎると流動性、帯電安定性が不足する可能性があり、多すぎると定着性が悪化する可能性がある。
<トナーに関するその他の事項>
本発明のトナーの帯電特性は、負帯電性であっても、正帯電性であっても良く、用いる画像形成装置の方式に応じて設定することができる。なお、トナーの帯電特性は、帯電制御剤等のトナー母粒子構成物の選択及び組成比、外添微粒子の選択及び組成比等により調整することができる。
また、本発明のトナーは、一成分現像剤として用いることも、キャリアと混合して二成分現像剤として用いることも可能である。
二成分現像剤として用いる場合には、トナーと混合して現像剤を形成するキャリアとしては、例えば、公知の鉄粉系、フェライト系、マグネタイト系キャリア等の磁性物質、又は、それらの表面に樹脂コーティングを施したものや磁性樹脂キャリアを用いることができる。
キャリアの被覆樹脂としては、例えば、一般的に知られているスチレン系樹脂、アクリル樹脂、スチレンアクリル共重合樹脂、シリコーン系樹脂、変性シリコーン系樹脂、フッ素系樹脂等が利用できるが、これらに限定されるものではない。樹脂被膜は、1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
また、キャリアの平均粒径は特に制限はないが、10μm以上200μm以下の平均粒径を有するものが好ましい。これらのキャリアは、トナー1重量部に対して5重量部以上100重量部以下の割合で用いることが好ましい。
なお、電子写真方式によるフルカラー画像の形成は、マゼンタ、シアン、イエローの各カラートナー及び必要に応じてブラックトナーを用いて常法により実施することができる。
[3.画像形成装置及び電子写真カートリッジ]
次に、本発明の電子写真感光体(以下、適宜「感光体」と言う。)を用いた画像形成装置(以下、適宜「本発明の画像形成装置」と言う。)の実施の形態について、装置の要部構成を示す図2を用いて説明する。但し、実施の形態は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない限り任意に変更して実施することができる。
図2に示すように、画像形成装置は、感光体1、帯電装置2、露光装置3及び現像装置4を備えて構成され、更に、必要に応じて転写装置5、クリーニング装置6及び定着装置7が設けられる。
感光体1は、上記した本発明の感光体であれば特に制限はないが、図2ではその一例として、円筒状の導電性支持体の表面に上記した感光層を形成したドラム状の感光体を示している。この感光体1の外周面に沿って、帯電装置2、露光装置3、現像装置4、転写装置5及びクリーニング装置6がそれぞれ配置されている。
帯電装置2は、感光体1を帯電させるもので、感光体1の表面を所定電位に均一帯電させる。帯電装置としては、コロトロンやスコロトロン等のコロナ帯電装置、電圧印加された直接帯電部材を感光体表面に接触させて帯電させる直接帯電装置(接触型帯電装置)帯電ブラシ等の接触型帯電装置等がよく用いられる。直接帯電手段の例としては、帯電ローラ、帯電ブラシ等の接触帯電器等が挙げられる。なお、図2では、帯電装置2の一例としてローラ型の帯電装置(帯電ローラ)を示している。直接帯電手段として、気中放電を伴う帯電、あるいは気中放電を伴わない注入帯電いずれも可能である。また、帯電時に印可する電圧としては、直流電圧だけの場合、及び直流に交流を重畳させて用いることもできる。
露光装置3は、感光体1に露光を行なって感光体1の感光面に静電潜像を形成することができるものであれば、その種類に特に制限はない。具体例としては、ハロゲンランプ、蛍光灯、半導体レーザーやHe−Neレーザー等のレーザー、LED等が挙げられる。また、感光体内部露光方式によって露光を行なうようにしてもよい。露光を行なう際の光は任意であるが、例えば波長が780nmの単色光、波長600nm〜700nmのやや短波長寄りの単色光、波長380nm〜500nmの短波長の単色光等で露光を行なえばよい。これらの中で380〜500nmの短波長光を用いると解像度が高くなり好ましい。中でも405nmの単色光が好適である。また、書き込み解像度は、現在は600dpi以上が主流であるが、高性能機種では1200dpiのものも存在する。書き込み解像度により、静電潜像、トナー像の解像度が決定され、解像度が高いほど鮮明な画像が得られるので、1200dpi以上の解像度が好ましい。例えば、600dpi、1200dpiの解像度を持つLEDで書き込んだ場合、最小ドット形成間隔は、それぞれ、42μm、21μmとなる。
現像装置4は、その種類に特に制限はなく、カスケード現像、一成分絶縁トナー現像、一成分導電トナー現像、二成分磁気ブラシ現像等の乾式現像方式や、湿式現像方式等の任意の装置を用いることができる。図2では、現像装置4は、現像槽41、アジテータ42、供給ローラ43、現像ローラ44、及び、規制部材45からなり、現像槽41の内部にトナーTを貯留している構成となっている。また、必要に応じ、トナーTを補給する補給装置(図示せず)を現像装置4に付帯させてもよい。この補給装置は、ボトル、カートリッジ等の容器からトナーTを補給することが可能に構成される。なお、本実施形態では、トナーTとして、上記の本発明のトナーを使用することが好ましい。即ち、本発明の画像形成装置で用いられるトナーTは、フロー式粒子像分析装置によって測定される該トナーの平均円形度が、0.960以上1.000以下であるトナーであることが好ましい。
供給ローラ43は、導電性スポンジ等から形成される。現像ローラ44は、鉄、ステンレス鋼、アルミニウム、ニッケル等の金属ロール、又はこうした金属ロールにシリコーン樹脂、ウレタン樹脂、フッ素樹脂等を被覆した樹脂ロール等からなる。この現像ローラ44の表面には、必要に応じて、平滑加工や粗面加工を加えてもよい。
現像ローラ44は、感光体1と供給ローラ43との間に配置され、感光体1及び供給ローラ43に各々当接している。供給ローラ43及び現像ローラ44は、回転駆動機構(図示せず)によって回転される。供給ローラ43は、貯留されているトナーTを担持して、現像ローラ44に供給する。現像ローラ44は、供給ローラ43によって供給されるトナーTを担持して、感光体1の表面に接触させる。
規制部材45は、シリコーン樹脂やウレタン樹脂等の樹脂ブレード、ステンレス鋼、アルミニウム、銅、真鍮、リン青銅等の金属ブレード、又はこうした金属ブレードに樹脂を被覆したブレード等により形成されている。この規制部材45は、現像ローラ44に当接し、ばね等によって現像ローラ44側に所定の力で押圧(一般的なブレード線圧は5〜500g/cm)される。必要に応じて、この規制部材45に、トナーTとの摩擦帯電によりトナーTに帯電を付与する機能を具備させてもよい。
アジテータ42は、回転駆動機構によってそれぞれ回転されており、トナーTを攪拌するとともに、トナーTを供給ローラ43側に搬送する。アジテータ42は、羽根形状、大きさ等を違えて複数設けてもよい。
転写装置5は、その種類に特に制限はなく、コロナ転写、ローラ転写、ベルト転写等の静電転写法、圧力転写法、粘着転写法等、任意の方式を用いた装置を使用することができる。ここでは、転写装置5が感光体1に対向して配置された転写チャージャー、転写ローラ、転写ベルト等から構成されるものとする。この転写装置5は、トナーTの帯電電位とは逆極性で所定電圧値(転写電圧)を印加し、感光体1に形成されたトナー像を記録紙(用紙、媒体)Pに転写するものである。
クリーニング装置6について特に制限はなく、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラクリーナー、ブレードクリーナー等、任意のクリーニング装置を用いることができる。クリーニング装置6は、感光体1に付着している残留トナーをクリーニング部材で掻き落とし、残留トナーを回収するものである。感光体表面に残留するトナーが少ないか、殆ど無い場合には、クリーニング装置6は無くても構わない。
中でも、構成が簡易で小型且つ低コストであり、クリーニング性能及び信頼性に優れていることから、ブレードクリーニング機構を有するブレードクリーニング方式であることが好ましい。ブレードクリーニング方式において、当接法と加圧法で分類することが可能である(第57回日本画像学会技術講習会 予稿集 p.196〜211)。当接法においては、カウンター当接、順方向当接に分類され、加圧法においては、低変位方式と低荷重方式に分類される。
本発明において、トナーを効果的に除去するためにブレードクリーニング方式が好ましく、特に、円形度の高いトナーを使用する場合、ブレードと感光体との間をトナーがすり抜けしやすいため、中でも、カウンター当接方式が好ましい。また、ブレードの感光体に対する線圧は、好ましくは20g/cm以上、また、好ましくは60g/cm以下が望ましい。
以上のような条件にブレードを設定すると、感光体とブレードとの間における摺擦音が発生する可能性があるが、本発明の感光体を使用することにより、回避することが可能である。
定着装置7は、上部定着部材(定着ローラ)71及び下部定着部材(定着ローラ)72から構成され、定着部材71又は72の内部には加熱装置73が備えられている。なお、図2では、上部定着部材71の内部に加熱装置73が備えられた例を示す。上部及び下部の各定着部材71及び72は、ステンレス、アルミニウム等の金属素管にシリコーンゴムを被覆した定着ロール、更にテフロン(登録商標)樹脂で被覆した定着ロール、定着シート等が公知の熱定着部材を使用することができる。更に、各定着部材71及び72は、離型性を向上させる為にシリコーンオイル等の離型剤を供給する構成としてもよく、バネ等により互いに強制的に圧力を加える構成としてもよい。
記録紙P上に転写されたトナーは、所定温度に加熱された上部定着部材71と下部定着部材72との間を通過する際、トナーが溶融状態まで熱加熱され、通過後冷却されて記録紙P上にトナーが定着される。
なお、定着装置についてもその種類に特に限定はなく、ここで用いたものをはじめ、熱ローラ定着、フラッシュ定着、オーブン定着、圧力定着等、任意の方式による定着装置を設けることができる。
以上のように構成された画像形成装置では、次のようにして画像の記録が行なわれる。即ち、まず感光体1の表面(感光面)が、帯電装置2によって所定の電位(例えば−600V)に帯電される。この際、直流電圧により帯電させても良く、直流電圧に交流電圧を重畳させて帯電させてもよい。
続いて、帯電された感光体1の感光面を、記録すべき画像に応じて露光装置3により露光し、感光面に静電潜像を形成する。そして、その感光体1の感光面に形成された静電潜像の現像を、現像装置4で行なう。
現像装置4は、供給ローラ43により供給されるトナーTを、規制部材(現像ブレード)45により薄層化するとともに、所定の極性(ここでは感光体1の帯電電位と同極性であり、負極性)に摩擦帯電させ、現像ローラ44に担持しながら搬送して、感光体1の表面に接触させる。
現像ローラ44に担持された帯電トナーTが感光体1の表面に接触すると、静電潜像に対応するトナー像が感光体1の感光面に形成される。そしてこのトナー像は、転写装置5によって記録紙Pに転写される。この後、転写されずに感光体1の感光面に残留しているトナーが、クリーニング装置6で除去される。この際、上記のクリーニング装置を用いることにより、本発明の電子写真感光体を感光体1として用いた場合、異音発生の抑制とともに、効率良くトナーTを回収できる等の利点が得られる。
トナー像の記録紙P上への転写後、定着装置7を通過させてトナー像を記録紙P上へ熱定着することで、最終的な画像が得られる。
なお、画像形成装置は、上記した構成に加え、例えば除電工程を行なうことができる構成としても良い。除電工程は、感光体に露光を行なうことで感光体の除電を行なう工程であり、除電装置としては、蛍光灯、LED等が使用される。また除電工程で用いる光は、強度としては露光光の3倍以上の露光エネルギーを有する光である場合が多い。
また、画像形成装置は更に変更して構成してもよく、例えば、前露光工程、補助帯電工程等の工程を行なうことができる構成としたり、オフセット印刷を行なう構成としたり、更には複数種のトナーを用いたフルカラータンデム方式の構成としてもよい。
なお、感光体1と、帯電装置2、露光装置3、現像装置4、転写装置5及びクリーニング装置6のうち、少なくとも一つとを組み合わせて、一体型のカートリッジ(以下、適宜「電子写真カートリッジ」と言う。)として構成し、この電子写真カートリッジを複写機やレーザービームプリンタ等の画像形成装置本体に対して着脱可能な構成にしてもよい。この場合、例えば感光体1やその他の部材が劣化した場合に、この電子写真カートリッジを画像形成装置本体から取り外し、別の新しい電子写真カートリッジを画像形成装置本体に装着することにより、画像形成装置の保守及び管理が容易となる。
電子写真カートリッジとして構成し、当該電子写真カートリッジがクリーニング装置6を有する場合、クリーニング装置6はブレードクリーニング機構を有するものであることが好ましい。また、中でも、当該ブレードクリーニング機構がカウンター当接方式であることがより好ましい。
さらに、電子写真カートリッジに用いられるトナーは、上記の本発明のトナーを使用することが好ましい。即ち、本発明の画像形成装置で用いられるトナーTは、フロー式粒子像分析装置によって測定される該トナーの平均円形度が、0.960以上1.000以下であるトナーであることが好ましい。
以下、製造例、実施例及び比較例を挙げて、本発明を更に詳細に説明する。なお、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。なお、本実施例で用いる「部」は特に断りがない限り「重量部」を示す。
[粘度平均分子量の算出方法]
電荷輸送層に含まれるポリアリレート樹脂の粘度平均分子量は、以下のようにして算出した。
ポリアリレート樹脂をジクロロメタンに溶解し、濃度Cが6.00[g/L]の溶液を調製した。溶媒(ジクロロメタン)の流下時間t[s]が136.16秒のウベローデ型毛細管粘度計を用いて、20.0℃に設定した恒温水槽中で試料溶液の流下時間t[s]を測定した。そして、以下の式に従って粘度平均分子量Mvを算出した。
a=0.438×ηsp+1
ηsp=(t/t)−1
=136.16[s]
b=100×ηsp/C
C=6.00[g/L]
η=b/a
Mv=3207×η1.205
<製造例1>
下記の繰返し構造を有するポリアリレート樹脂100部(樹脂1、粘度平均分子量43000)、電荷輸送物質として下記式で表される化合物(CTM1)を80部、及びレベリング剤としてシリコーンオイル0.05部を、THF/トルエン(8/2(重量比))の混合溶媒640部に溶解させて電荷輸送層形成用塗布液を調製した。
Figure 0005585060
Figure 0005585060
<製造例2>
製造例1の電荷輸送層形成用塗布液に用いたCTM1の代わりに、下記式で表される化合物(CTM2)を用い、酸化防止剤として下記式で表される化合物(AOX1)8部を用いた以外は、製造例1と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
Figure 0005585060
<製造例3>
製造例1の電荷輸送層形成用塗布液に用いたCTM1の代わりに、下記式で表される化合物(CTM3)を用い、酸化防止剤としてAOX1を8部用いた以外は、製造例1と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
<製造例4>
製造例2の電荷輸送層形成用塗布液に用いたポリアリレート樹脂(樹脂1)の代わりに、下記の繰返し構造を有するポリアリレート樹脂(樹脂2、粘度平均分子量43200)を用いた以外は、製造例2と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
<製造例5>
製造例2の電荷輸送層形成用塗布液に用いたポリアリレート樹脂(樹脂1)の代わりに、下記の繰返し構造を有するポリアリレート樹脂(樹脂3、粘度平均分子量43,200)を用いた以外は、製造例2と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
<製造例6>
製造例2の電荷輸送層形成用塗布液に用いたポリアリレート樹脂(樹脂1)を50重量部とし、更に、下記の繰返し構造を有するポリカーボネート樹脂(樹脂4、粘度平均分子量50000)50重量部を用いた以外は、製造例2と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
<製造例7>
製造例1の電荷輸送層形成用塗布液に用いたポリアリレート樹脂(樹脂1)の代わりに、下記の繰返し構造を有するポリアリレート樹脂(樹脂5、粘度平均分子量41000)を用いた以外は、製造例1と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
<製造例8>
製造例2の電荷輸送層形成用塗布液に用いたポリアリレート樹脂(樹脂1)の代わりに、ユニチカ社製U−ポリマーを用い、THF/トルエン(8/2)混合溶媒の代わりに、ジクロロエタンを用いた(THF/トルエン混合溶媒では塗布液のゲル化が発生したため)以外は、製造例2と同様にして電荷輸送層形成用塗布液を調製した。
<製造例9>
製造例2の電荷輸送層形成用塗布液に用いたCTM2の代わりに、下記式で表される化合物(CTM9)を用いた以外は、製造例2と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
※ 混合比は、重量比で、(左の化合物):(右の化合物)=8:2
なお、上記左の化合物のE_homo値が−4.59eV、上記右の化合物のE_homo値が−4.69eVであるため、これらの値を8:2で加重平均した値である−4.61eVを、CTM9のE_homo値とした。
<製造例10>
製造例2の電荷輸送層形成用塗布液に用いたCTM2の代わりに、下記式で表される化合物(CTM10)を用いた以外は、製造例2と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
※ 混合比は、重量比で、(左の化合物):(右の化合物)=8:2
なお、上記左の化合物のE_homo値が−4.57eV、上記右の化合物のE_homo値が−4.69eVであるため、これらの値を8:2で加重平均した値である−4.59eVを、CTM10のE_homo値とした。
<製造例11>
製造例2の電荷輸送層形成用塗布液に用いたCTM2の代わりに、下記式で表される化合物(CTM11)を用いた以外は、製造例2と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
<製造例12>
製造例2の電荷輸送層形成用塗布液に用いたCTM2の代わりに、下記式で表される化合物(CTM12)を用いた以外は、製造例2と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
<比較製造例1>
製造例2の電荷輸送層形成用塗布液に用いたポリアリレート樹脂(樹脂1)の代わりに、下記の繰返し構造を有するポリカーボネート樹脂(樹脂6、粘度平均分子量40000)を用いた以外は、製造例2と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
<比較製造例2>
製造例2の電荷輸送層形成用塗布液に用いたポリアリレート樹脂(樹脂1)の代わりに、下記の繰返し構造を有するポリカーボネート樹脂(樹脂7、粘度平均分子量40000)を用いた以外は、製造例2と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
<比較製造例3>
製造例2の電荷輸送層形成用塗布液に用いたCTM2の代わりに、下記式で表される化合物(CTM4)を用いた以外は、製造例2と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
<比較製造例4>
製造例2の電荷輸送層形成用塗布液に用いたCTM2の代わりに、下記式で表される化合物(CTM5)を用いた以外は、製造例2と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
<比較製造例5>
製造例4の電荷輸送層形成用塗布液に用いたCTM2の代わりに、電荷輸送物質として下記式で表されるCTM6を90部、及びCTM7を10部用いた以外は、製造例4と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
Figure 0005585060
<比較製造例6>
製造例2の電荷輸送層形成用塗布液に用いたCTM2の代わりに、下記式で表される化合物(CTM8)を用いた以外は、製造例2と同様にして電荷輸送層形成用塗布液を調製した。
Figure 0005585060
<比較製造例7>
製造例2の電荷輸送層形成用塗布液に用いたCTM2の代わりに、下記式で表される化合物(CTM13)を用いた以外は、製造例2と同様にして電荷輸送層形成用塗布液を調整した。
Figure 0005585060
<実施例1>
表面が鏡面仕上げされた外径30mm、長さ260.5mm、肉厚0.75mmのアルミニウム製シリンダー上に、以下に示す下引き層形成用塗布液、電荷発生層形成用塗布液、電荷輸送層形成用塗布液を浸漬塗布法により順次塗布し、乾燥後の膜厚がそれぞれ、1.3μm、0.4μm、25μmとなるように、下引き層、電荷発生層、電荷輸送層を形成し、感光体ドラムを得た。
下引き層形成用塗布液は以下のように作製した。平均一次粒子径40nmのルチル型酸化チタン(石原産業社製「TTO55N」)と、該酸化チタンに対して3質量%のメチルジメトキシシラン(東芝シリコーン社製「TSL8117」)とを、ヘンシェルミキサーにて混合して得られた表面処理酸化チタンを、メタノール/1−プロパノールの重量比が7/3の混合溶媒中でボールミルにより分散させることにより、表面処理酸化チタンの分散スラリーとした。該分散スラリーと、メタノール/1−プロパノール/トルエンの混合溶媒及び、ε−カプロラクタム[下記式(A)で表される化合物]/ビス(4−アミノ−3−メチルシクロヘキシル)メタン[下記式(B)で表される化合物]/ヘキサメチレンジアミン[下記式(C)で表される化合物]/デカメチレンジカルボン酸[下記式(D)で表される化合物]/オクタデカメチレンジカルボン酸[下記式(E)で表される化合物]の組成モル比率が、60%/15%/5%/15%/5%からなる共重合ポリアミドのペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた後、超音波分散処理を行なうことにより、メタノール/1−プロパノール/トルエンの重量比が7/1/2で、表面処理酸化チタン/共重合ポリアミドを重量比3/1で含有する、固形分濃度18.0%の下引き層形成用塗布液を作製した。
Figure 0005585060
電荷発生層形成用塗布液は以下のように作製した。電荷発生物質として、図3のCuKα特性X線によるX線回折スペクトルを示すオキシチタニウムフタロシアニン20部と1,2−ジメトキシエタン280部とを混合し、サンドグラインドミルで1時間粉砕して微粒化分散処理を行なった。続いてこの微細化処理液に、ポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)10部を、1,2−ジメトキシエタンの255部と4−メトキシ−4−メチル−2−ペンタノンの85部との混合液に溶解させて得られたバインダー液、及び230部の1,2−ジメトキシエタンを混合して電荷発生層形成用塗布液Aを調製した。
電荷発生物質として、図4のCuKα特性X線によるX線回折スペクトルを示すオキシチタニウムフタロシアニン20部と1,2−ジメトキシエタン280部とを混合し、サンドグラインドミルで4時間粉砕して微粒化分散処理を行なった。続いてこの微細化処理液に、ポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)10部を、1,2−ジメトキシエタンの255部と4−メトキシ−4−メチル−2−ペンタノンの85部との混合液に溶解させて得られたバインダー液、及び230部の1,2−ジメトキシエタンを混合して電荷発生層形成用塗布液Bを調製した。
電荷発生層形成用塗布液Aと電荷発生層形成用塗布液Bとを8:2の重量比で混合し、本実施例で用いる電荷発生層形成用塗布液を作製した。
電荷輸送層形成用塗布液は、製造例1で作製した塗布液を用いた。
ここで、作製した感光体ドラムと平均円形度0.990のトナーAとを用いて、画像特性試験を行った。
画像特性試験は、ヒューレットパッカード社製カラープリンターHP Color LaserJet 4700dn(クリーニングブレード、カウンター当接方式)を用いて行った。
作製した感光体ドラムとトナーとをシアン色用のプロセスカートリッジに装着し、このカートリッジをプリンターに装着した。温度25℃、湿度50%環境下で、10000枚の画像形成を行い、ゴースト、かぶり、濃度低下、フィルミング、クリーニング不良の評価を行った。
実施例1の電子写真感光体を用いた画像形成装置においては、画像形成前及び10000枚画像形成後においても、ゴースト、カブリ、濃度低下、フィルミング、クリーニング不良等の画像劣化のない良好な画像が得られた。また、印刷時の異音の発生もなかった。
結果を、電荷輸送物質の分子量、HOMOのエネルギーレベル(E_homo)と共に、表4に示した。なお、表4中、「CTM」は、「電荷輸送物質」を表す。
<実施例2〜12>
実施例1において用いた製造例1で作製した電荷輸送層形成用塗布液の代わりに、製造例2〜12で作製した電荷輸送層形成用塗布液を用いた以外は、実施例1と同様にして感光体を製造した。また、画像特性試験も、実施例1と同様に行った。結果を表4に示す。
<比較例1〜7>
実施例1において用いた製造例1で作製した電荷輸送層形成用塗布液の代わりに、比較製造例1〜7で作製した電荷輸送層形成用塗布液を用いた以外は、実施例1と同様にして感光体を製造した。また、画像特性試験も、実施例1と同様に行った。結果を表4に示す。
<実施例13>
実施例2において用いたトナーAの代わりに平均円形度0.931のトナーBを用いた以外は、実施例2と同様にして画像特性試験を行った。結果を表4に示す。
Figure 0005585060
表4の実施例1〜12と比較例1〜2との比較から分かるように、ポリアリレート樹脂と特定の分子量及びE_homoを有する電荷輸送物質とを組み合わせて用いることにより、クリーニング不良がなく良好な画像を得られることがわかった。中でも、バインダー樹脂としてのポリアリレート樹脂(1)中のAr、Arが置換基を有することが、剥離性の観点から特に好ましいこともわかった(実施例1〜6及び9〜12参照)。
さらに、表4の結果より、分子量が460以下の電荷輸送物質を用いた場合、印刷時の異音が抑えられることが明らかとなった。比較例3、4では異音が発生している。
また、ポリアリレート樹脂を用いた場合、一般的に、ポリカーボネート樹脂を用いた場合よりも電気特性が悪くなる。しかし、ポリアリレート樹脂とE_homoが−4.67eVよりも小さい電荷輸送物質とを組み合わせて用いた比較例5〜7において濃度不良が発生する一方、ポリアリレート樹脂と特定の分子量及びE_homoが−4.67eV以上の電荷輸送物質とを組み合わせて用いた実施例1〜6及び9〜12においては良好な特性を示すとともに、置換基を有さないポリアリレート樹脂を用いた実施例7及び8においても、感光体の端部が剥離したものの、それ以外は良好な特性を示した。
また、本発明においてはトナーの平均円形度は任意であるが、トナーの平均円形度が上記の好適な範囲外にあるトナーB(平均円形度0.931)を用いた場合、画質は若干低下したものの、それ以外は良好であった(実施例13)。
本発明は電子写真感光体を使用する任意の分野で使用することが可能であり、特に、プリンターや複写機等の画像形成装置に用いて好適である。
1 感光体
2 帯電装置(帯電ローラ)
3 露光装置
4 現像装置
5 転写装置
6 クリーニング装置
7 定着装置
41 現像槽
42 アジテータ
43 供給ローラ
44 現像ローラ
45 規制部材
71 上部定着部材(加圧ローラ)
72 下部定着部材(定着ローラ)
73 加熱装置
T トナー
P 記録紙

Claims (14)

  1. 導電性支持体と、該導電性支持体上に形成された感光層とを有する電子写真感光体において、
    該感光層が少なくともポリアリレート樹脂と電荷輸送物質とを含有するとともに、
    該電荷輸送物質の分子量が460以下であり、且つ、該電荷輸送物質における密度汎関数計算B3LYP/6−31G(d,p)による構造最適化計算の結果得られた最高被占軌道のエネルギーレベルE_homoが、−4.67eV以上である
    ことを特徴とする、電子写真感光体。
  2. 該エネルギーレベルE_homoが、−4.65eV以上である
    ことを特徴とする、請求項1に記載の電子写真感光体。
  3. 該電荷輸送物質が、下記式(A)で表される
    ことを特徴とする、請求項1又は2に記載の電子写真感光体。
    Figure 0005585060
    (式(A)中、R〜Rは、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、又は置換基を有してもよいアリール基を表し、Rは置換基を有してもよいアルキル基、又は置換基を有してもよいアリール基を表し、nは0以上3以下の整数を表し、環Zはインドリン環の2つの炭素原子と共に形成される飽和の5〜8員環を表し、且つ、該2つの炭素原子上に存在する2つの水素原子がcisの立体配置にある。)
  4. 該ポリアリレート樹脂が、下記式(1)で表される繰返し構造を有する
    ことを特徴とする、請求項1〜3のいずれか1項に記載の電子写真感光体。
    Figure 0005585060
    (式(1)中、Ar〜Arは、それぞれ独立に、置換基を有してもよいアリーレン基を表し、X及びYは、それぞれ独立に、単結合又は二価の連結基を表し、kは0以上の整数を表す。)
  5. 該式(1)において、Ar及びArの少なくとも一方が置換基を有するアリーレン基である
    ことを特徴とする、請求項4に記載の電子写真感光体。
  6. 該式(1)において、Yが酸素原子であり、且つk=1である
    ことを特徴とする、請求項4又は5に記載の電子写真感光体。
  7. 前記Rがp−トリル基である
    ことを特徴とする、請求項に記載の電子写真感光体。
  8. 前記式(A)で表される電荷輸送物質が下記式で表わされる化合物の混合物である
    ことを特徴とする、請求項3又は7に記載の電子写真感光体。
    Figure 0005585060
  9. 請求項1〜8のいずれか1項に記載の電子写真感光体と、
    該電子写真感光体を帯電させる帯電手段、帯電した該電子写真感光体に対し像露光を行い静電潜像を形成する像露光手段、該静電潜像をトナーで現像する現像手段、該トナーを該電子写真感光体から被転写体に転写する転写手段、及び転写後の該電子写真感光体上に残留するトナーを除去するクリーニング手段のうち、少なくとも一つとを備える
    ことを特徴とする、電子写真カートリッジ。
  10. ブレードクリーニング機構を有する
    ことを特徴とする、請求項9に記載の電子写真カートリッジ。
  11. フロー式粒子像分析装置によって測定される該トナーの平均円形度が、0.960以上1.000以下である
    ことを特徴とする、請求項9又は10に記載の電子写真カートリッジ。
  12. 請求項1〜8のいずれか1項に記載の電子写真感光体と、少なくとも該電子写真感光体を帯電させる帯電手段と、帯電した該電子写真感光体に対し像露光を行ない静電潜像を形成する像露光手段と、該静電潜像をトナーで現像する現像手段と、該トナーを被転写体に転写する転写手段とを備える
    ことを特徴とする、画像形成装置。
  13. ブレードクリーニング機構を有する
    ことを特徴とする、請求項11に記載の画像形成装置。
  14. フロー式粒子像分析装置によって測定される該トナーの平均円形度が、0.960以上1.000以下である
    ことを特徴とする、請求項12又は13に記載の画像形成装置。
JP2009274786A 2008-12-15 2009-12-02 電子写真感光体、並びにそれを用いた電子写真カートリッジ及び画像形成装置 Active JP5585060B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009274786A JP5585060B2 (ja) 2008-12-15 2009-12-02 電子写真感光体、並びにそれを用いた電子写真カートリッジ及び画像形成装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008318408 2008-12-15
JP2008318408 2008-12-15
JP2009274786A JP5585060B2 (ja) 2008-12-15 2009-12-02 電子写真感光体、並びにそれを用いた電子写真カートリッジ及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2010164951A JP2010164951A (ja) 2010-07-29
JP5585060B2 true JP5585060B2 (ja) 2014-09-10

Family

ID=42581114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009274786A Active JP5585060B2 (ja) 2008-12-15 2009-12-02 電子写真感光体、並びにそれを用いた電子写真カートリッジ及び画像形成装置

Country Status (1)

Country Link
JP (1) JP5585060B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103333A (ja) * 2010-11-08 2012-05-31 Mitsubishi Chemicals Corp 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5786520B2 (ja) * 2011-07-26 2015-09-30 三菱化学株式会社 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5884459B2 (ja) * 2011-12-15 2016-03-15 三菱化学株式会社 電子写真感光体の製造方法
JP5942601B2 (ja) * 2012-05-28 2016-06-29 三菱化学株式会社 電子写真感光体、電子写真カートリッジ、及び画像形成装置
US10454040B2 (en) 2012-09-18 2019-10-22 Merck Patent Gmbh Materials for electronic devices
JP6331630B2 (ja) * 2013-04-16 2018-05-30 三菱ケミカル株式会社 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2015052734A (ja) * 2013-09-09 2015-03-19 三菱化学株式会社 電子写真感光体及び画像形成装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812729B2 (ja) * 1989-08-17 1998-10-22 三菱製紙株式会社 電子写真感光体
JP2003202684A (ja) * 2002-01-09 2003-07-18 Canon Inc 画像形成装置及びプロセスカートリッジ
JP4517964B2 (ja) * 2004-07-16 2010-08-04 三菱化学株式会社 電子写真感光体
JP4506623B2 (ja) * 2005-09-07 2010-07-21 三菱化学株式会社 電子写真感光体
JP2007079405A (ja) * 2005-09-16 2007-03-29 Konica Minolta Business Technologies Inc 電子写真感光体、画像形成装置、プロセスカートリッジ、カラー画像形成装置

Also Published As

Publication number Publication date
JP2010164951A (ja) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5640801B2 (ja) 画像形成装置および電子写真カートリッジ
JP5900547B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5365077B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP5347245B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5585060B2 (ja) 電子写真感光体、並びにそれを用いた電子写真カートリッジ及び画像形成装置
JP5549263B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2013092760A (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5671195B2 (ja) フタロシアニン結晶、電子写真感光体、並びにそれを用いた電子写真感光体カートリッジ及び画像形成装置
JP5446299B2 (ja) 電子写真感光体、それを用いた電子写真カートリッジ及び画像形成装置
JP5157438B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP5521336B2 (ja) 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP5617192B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5663835B2 (ja) 電子写真感光体、電子写真カートリッジ、および、画像形成装置
JP2008299215A (ja) 電子写真感光体、電子写真カートリッジ、および画像形成装置
JP5589412B2 (ja) 電子写真感光体、画像形成装置、及び電子写真カートリッジ
JP5365175B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5119733B2 (ja) 電子写真感光体、該電子写真感光体を備える感光体カートリッジ及び画像形成装置
JP2008151876A (ja) 画像形成装置及び電子写真感光体カートリッジ
JP5515369B2 (ja) 画像形成装置、電子写真カートリッジ、画像形成方法
JP5659454B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および、画像形成装置
JP5835053B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5481952B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP2008299214A (ja) 電子写真感光体、並びにそれを用いた画像形成装置及び電子写真カートリッジ
JP5783104B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5565504B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5585060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350