JP2008299214A - 電子写真感光体、並びにそれを用いた画像形成装置及び電子写真カートリッジ - Google Patents

電子写真感光体、並びにそれを用いた画像形成装置及び電子写真カートリッジ Download PDF

Info

Publication number
JP2008299214A
JP2008299214A JP2007147251A JP2007147251A JP2008299214A JP 2008299214 A JP2008299214 A JP 2008299214A JP 2007147251 A JP2007147251 A JP 2007147251A JP 2007147251 A JP2007147251 A JP 2007147251A JP 2008299214 A JP2008299214 A JP 2008299214A
Authority
JP
Japan
Prior art keywords
toner
weight
resin
less
electrophotographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007147251A
Other languages
English (en)
Inventor
Sunao Mizushima
直 水島
Mitsusachi Mimori
光幸 三森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007147251A priority Critical patent/JP2008299214A/ja
Publication of JP2008299214A publication Critical patent/JP2008299214A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】長期に渡り、かぶり、画質劣化のない画像品質に優れた画像形成装置、及び電子写真カートリッジを提供する。
【解決手段】電子写真感光体及びトナーを備えた画像形成装置において、電子写真感光体が、導電性支持体上に特定のトリアリールアミン構造を有する化合物を含有する感光層を有する電子写真感光体であって、かつ 、トナーのフロー式粒子像分析装置によって測定される平均円形度が、0.960以上1.000以下である。
【選択図】なし

Description

本発明は、長期に渡り優れた品質の画像を提供する画像形成装置、及び電子写真カートリッジに関するものである。
電子写真技術は、即時性、高品質の画像が得られること等から、近年では複写機の分野にとどまらず、各種プリンター、印刷機の分野でも広く使われ応用されてきている。
電子写真技術の中核となる感光体については、その光導電材料として従来からのセレン、ヒ素−セレン合金、硫化カドミウム、酸化亜鉛といった無機系の光導電体から、最近では、無公害で成膜が容易、製造が容易である等の利点を有する有機系の光導電材料を使用した感光体の使用が主流となっている。
有機感光体の層構成としては、電荷発生物質をバインダー樹脂中に分散させたいわゆる単層型感光体、電荷発生層および電荷移動層を積層した積層型感光体が知られている。積層型感光体は、効率の高い電荷発生物質、および電荷移動物質を別々の層に分けて、最適なものを組み合わせることにより高感度かつ安定な感光体が得られること、材料選択範囲が広く特性の調整が容易なことから多く使用されている。単層型感光体は、電気特性面では積層型感光体にやや劣り、材料選択性も狭いことから、限定的に使用されている。
また、電子写真感光体は、電子写真プロセスすなわち帯電、露光、現像、転写、クリーニング、除電等のサイクルで繰り返し使用されるため、その間様々なストレスを受け劣化する。これらの劣化のうち、化学的劣化としては、例えば帯電器として普通用いられるコロナ帯電器から発生する強酸化性のオゾンやNOxが感光層にダメ−ジを与えることがあげられ、繰り返し使用する場合に、帯電性の低下、残留電位の上昇等の電気的安定性の悪化、およびそれに伴う画像不良が起きることがある。これらは、感光層中に多く含まれる電荷輸送物質の化学的劣化に由来するところが大きい。
さらには、近年の電子写真プロセスの高速化に伴い、高感度化、高速応答化が必須となっている。このうち、高感度化のためには、電荷発生物質の最適化だけでなく、それとのマッチングの良好な電荷輸送物質の開発が必要であり、高速応答化のためには、高移動度かつ露光時に十分な低残留電位を示す電荷輸送物質の開発が必要である。バインダー樹脂に対する電荷輸送物質の含有量を増やせば、高感度化、高速応答化が可能となることが多いが、電荷輸送物質の含有量がバインダー樹脂に対して多い感光層は、感光層の機械的耐久性が劣ることが多く、繰り返し画像を形成する、いわゆる耐刷性が悪化することになり、問題がある。従って、感光層中に電荷輸送物質の含有量が少ない電子写真感光体であっても、高感度化、高速応答化が可能であるような、電荷輸送物質が望まれている。
電荷輸送物質の含有量が少ない感光層を有する感光体では、リークの問題は改良されているが、環境(温度、湿度等)変動により大きく電子写真感光体の特性が変動し、画像欠陥が生じることが指摘されていた(例えば、特許文献1参照)。また、従来知られた電荷輸送物質では、オゾンやNOx等に代表される酸化性ガスに対する暴露により劣化することが知られており、繰返し使用時、特に、電子写真感光体を使用する環境を変化させた場合において、耐久性が悪いことがあった。
また、近年、複写機やプリンターでは、耐久性に加えて、更なる高画質化が求められている。これを達成するため、平均粒径が3〜8μm程度で、粒度分布の狭いトナーが用い
られるようになってきた。
このようなトナーの中でも特に、形状が球に近いトナーでは、電子写真感光体表面との接触面積を小さくすることができるため、トナーの転写率を高めることができる場合があり、結果としてトナーの消費量を低減することが可能となる場合がある。更に、トナーの消費量を低減することができた場合には、カートリッジの寿命を延ばすことも可能になる場合がある。
しかしながら、 このような球形に近いトナーは、クリーニング不良、かぶり、フィルミングなど、形成した画像の品質を低下させる問題が存在した。
特開2001−056595号公報 特開平5−88409号 特開平11−143125号
本発明は、長期に渡り、かぶり、画質劣化のない画像品質に優れた画像形成装置、及び電子写真カートリッジを提供することにある。
本発明者らは、鋭意検討した結果、特定の構造を有する電荷輸送物質と、特定の円形度を有するトナーを併用することにより、長期に渡り、かぶり、画質劣化のない画像品質に優れた画像形成装置、及び電子写真カートリッジを提供できることを見出し、本発明に至った。
すなわち、本発明の要旨は、 少なくとも電子写真感光体及びトナーを備えた画像形成装置において、該電子写真感光体が、導電性支持体上に式(1)で表される化合物を含有する感光層を有する電子写真感光体であって、かつ 、該トナーのフロー式粒子像分析装
置によって測定される平均円形度が、0.960以上1.000以下であることを特徴とする画像形成装置に存する(請求項1)。
Figure 2008299214
(一般式(1)において、Arは置換基を有してもよいアリーレン基、Ar〜Arは置換基を有してもよいアリール基を表し、nは3〜6の整数を表す)
さらに、該電子写真感光体が導電性支持体上に、電荷発生層および電荷輸送層を有し、且つ該電荷発生層が、オキシチタニウムフタロシアニンを含有し、且つ該オキシチタニウムフタロシアニンがフタロシアニン結晶前駆体を化学的処理後、有機溶媒に接触して得られるものであって、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)9.5°、24.1°および27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニンであることを特徴とする画像形成装置に存する(請求項2)。
また、少なくとも電子写真感光体及びトナーを備えた電子写真カートリッジにおいて、該電子写真感光体が、導電性支持体上に式(1)で表される化合物を含有する感光層を有する電子写真感光体であって、かつ 、該トナーのフロー式粒子像分析装置によって測定
される平均円形度が、0.960以上1.000以下であることを特徴とする電子写真カ
ートリッジに存する(請求項3)。
Figure 2008299214
(一般式(1)において、Arは置換基を有してもよいアリーレン基、Ar〜Arは置換基を有してもよいアリール基を表し、nは3〜6の整数を表す)
さらに、該電子写真感光体が導電性支持体上に、電荷発生層および電荷輸送層を有し、且つ該電荷発生層が、オキシチタニウムフタロシアニンを含有し、且つ該オキシチタニウムフタロシアニンがフタロシアニン結晶前駆体を化学的処理後、有機溶媒に接触して得られるものであって、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)9.5°、24.1°および27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニンであることを特徴とする電子写真カートリッジに存する(請求項4)。
特定の構造を有する電荷輸送物質と、特定の円形度を有するトナーを併用することにより、長期に渡り、かぶり、画質劣化のない画像品質に優れた画像形成装置、及び電子写真カートリッジを提供することが可能である。
以下、本発明の実施の形態につき詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の代表例であって、本発明の趣旨を逸脱しない範囲において適宜変形して実施することができる。
本発明に係る電子写真感光体の有する電荷輸送層は、下記一般式(1)で表される電荷輸送物質を含有する。
Figure 2008299214
(一般式(1)において、Arは置換基を有してもよいアリーレン基、Ar〜Arは置換基を有してもよいアリール基を表し、nは3〜6の整数を表す)
Arで表されるアリーレン基としては、芳香族性を有する基であれば如何なる基であってもよく、例えば、最多数の非集積二重結合を含む、いわゆる芳香族環を有する基があげられる。通常、Arは、芳香族環を1〜10有する基であるが、芳香族環は3以下であることが好ましい。Arは、芳香族炭化水素基であっても芳香族複素環基であっても構わない。芳香族炭化水素基としては、フェニレン、ナフチレン、アントリレン等の芳香族環からなる基であっても、インデニレンのようなインデンの二価基、フルオレンの二
価基、テトラリンの二価基等の芳香族環と他の炭化水素環との縮合環からなる基であっても構わない。また、芳香族複素環基としては、フランの二価基、チオフェンの二価基、ピ
ロールの二価基等の単環式芳香族複素環基であっても、キノリンの二価基、クロメンの二価基、カルバゾールの二価基等の複合芳香族複素環基であっても構わない。
より具体的には、p−フェニレン、m−フェニレン、1,3−ナフチレン、1,4−ナフチレン等があげられるが、分子サイズをなるべくコンパクトにし、分子内立体反発を少なくする観点から、p−フェニレンまたはm−フェニレンが好ましい。電気特性向上の為には、p−フェニレンが好ましく、溶解性に問題がある場合は、m−フェニレンが好ましい。
Arが有してもよい置換基としては、メチル基、エチル基、プロピル基等のアルキル基;アリル基等のアルケニル基;メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;フェニル基等のアリール基等があげられる。これらの置換基は、電子供与性効果により電荷移動度を増大させる効果はあるものの、あまり置換基サイズが大きくなると、分子内の共役面の歪み、分子間立体反発によってかえって電荷移動度を減少させるため、好ましくは炭素原子数10以下、特には炭素原子数3以下のものが好ましく、中でもメチル基またはメトキシ基が好ましい。
1つのArが有する置換基の数も、多すぎると同様な理由で電荷移動度を下げるので、好ましくは3個以下、さらに好ましくは2個以下である。3〜6個のArが全体として有する置換基の総数も、多すぎると同様な理由で電荷移動度を下げるので、好ましくは8個以下、さらに好ましくは6個以下である。特に溶解性、電気特性に問題がない場合は、無置換が好ましい。また、これら置換基は、連結基により、または直接結合して、分子内で環を形成してもよい。
また、一般式(1)で表される電荷輸送物質は、同じ分子内に3〜6個のArを有するが、それぞれのArは互いに構造が異なっていてもよい。
一般式(1)中、nは3〜6の整数を表すが、nが5または6の場合、同じ分子内のArのうち少なくとも1つがm−フェニレン基を含有すること、または、Arが隣同士で環を形成して縮合多環を形成することが好ましい。nは、製造の容易さという点で、3または4が好ましい。nが3の場合には、Ar全てがp−フェニレン基であることが、特に好ましい。
一般式(1)中、Ar〜Arは、アリール基を表すが、芳香族性を有する基であれば如何なる基であってもよく、例えば、最多数の非集積二重結合を含む、いわゆる芳香族環を有する基があげられる。通常、Ar〜Arは、芳香族環を1〜10有する基であるが、芳香族環は3以下であることが好ましい。Ar〜Arは、芳香族炭化水素基であっても芳香族複素環基であっても構わない。芳香族炭化水素基としては、フェニル、ナフチル、アントリル等の芳香族環からなる基であっても、インデニルのようなインデンの一価基、フルオレニルのようなフルオレンの一価基、テトラリンの一価基等の芳香族環と他の炭化水素環との縮合環からなる基であっても構わない。また、芳香族複素環基としては、フランの一価基、チオフェンの一価基、ピロールの一価基等の単環式芳香族複素環基であっても、キノリンの一価基、クロメンの一価基、カルバゾールの一価基等の複合芳香族複素環基であっても構わない。
Ar〜Arの具体例としては、フェニル基、ナフチル基、アセナフチル基、インデニル基、フルオレニル基、ピレニル基、チエニル基等があげられる。このうち、分子内共役拡張、分子の永久双極子モーメント低減の観点からフェニル基、ナフチル基またはチエニル基が好ましい。
Ar〜Arが有してもよい置換基としては、メチル基、エチル基、プロピル基等のアルキル基;アリル基等のアルケニル基;ベンジル基等のアラルキル基;フェニル基、トリル基等のアリール基;メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基等があげられる。これらの置換基は、分子内電荷バランスを改善することにより電荷移動度を増大させる効果はあるものの、あまり置換基サイズが大きくなると、分子内の共役面の歪み、分子間立体反発によって、かえって電荷移動度を減少させるため、好ましくは炭素原子数3以下、特には炭素原子数2以下のものが好ましく、中でもメチル基またはメトキシ基が好ましい。
置換基の数も、多すぎると同様な理由で電荷移動度を下げるので、好ましくは3個以下、さらに好ましくは2個以下である。特に溶解性、電気特性に問題がない場合は、無置換が好ましい。また、これら置換基は、連結基、または直接結合して、分子内で、環を形成してもよい。また、Ar〜Arのうち、少なくとも1つ以上は、一個以上の置換基を有することが好ましい。また、これら置換基は、連結基により、または直接結合して、分子内で環を形成してもよい。
また、分子中のAr〜Arが有する置換基の数の合計は多すぎるとかぶりが発生しやすくなるため、通常8以下、好ましくは6以下、より好ましくは4以下、3以下が最も好ましい。
一般式(1)に示す電荷輸送材料の一般的な製造法としては特に限定はないが、好ましくは、二級アミンとハロゲン化アリール化合物をウルマン反応等の公知の反応を利用することによって得ることができる。
以下に本発明で使用される一般式(1)の具体例を示す。
Figure 2008299214
Figure 2008299214
Figure 2008299214
Figure 2008299214
Figure 2008299214
本発明に係る電子写真感光体の電荷輸送層は、バインダー樹脂を含有するが、バインダ
ー樹脂としては、例えば、ブタジエン、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、ビニルアルコール、エチルビニルエーテル等のビニル化合物の重合体および共重合体;ポリビニルブチラール、ポリビニルホルマール、部分変性ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリアリレート、ポリアミド、ポリウレタン、セルロースエーテル、フェノキシ樹脂、ケイ素樹脂、エポキシ樹脂、ポリ−N−ビニルカルバゾール樹脂等があげられる。このうちポリカーボネート、ポリアリレートが特に好ましい。なお、これらは適当な硬化剤等を用いて熱、光等により架橋させて用いることもできる。これらのバインダー樹脂は2種類以上をブレンドして用いることもできる。バインダー樹脂に関しては後で詳述する。
バインダー樹脂と一般式(1)で表される電荷輸送物質の割合に特に制限はないが、好ましい範囲は以下の通りである。バインダー樹脂100重量部に対し5重量部以上であり、さらに残留電位低減の観点から10重量部以上が好ましく、さらに繰り返し使用した際の安定性や電荷移動度の観点から、20重量部以上がより好ましい。また一方で、感光層の熱安定性の観点から、90重量部以下、好ましくは45重量部以下であり、さらに電荷輸送材料とバインダー樹脂の相溶性の観点から、好ましくは40重量部以下、さらに耐刷性の観点から、35重量部以下がより好ましく、耐傷性の観点からは、30重量部以下が最も好ましい。
電荷輸送層には、一般式(1)で表される電荷輸送物質が複数種含有されていても構わない。その場合には、上記「一般式(1)で表される電荷輸送物質の割合」とは、電荷輸送層中の、全ての一般式(1)で表される電荷輸送物質の総質量の割合をいうものとする。
また、一般式(1)で表される電荷輸送物質以外の他の電荷輸送物質との併用は、良好な画像形成の目的において好ましい。電荷輸送層中に、複数の電荷輸送物質が含まれる場合、電荷輸送層に含まれる総電荷輸送物質の質量は、バインダー樹脂100重量部に対し25重量部以上、さらに残留電位低減の観点から30重量部以上が好ましく、さらに繰り返し使用した際の安定性、電荷移動度の観点から、40重量部以上がより好ましい。また、一方で感光層の熱安定性の観点から、通常は150重量部以下、好ましくは55重量部以下、さらに電荷輸送材料とバインダー樹脂の相溶性の観点から好ましくは50重量部以下、さらに耐刷性の観点から45重量部以下がより好ましく、耐傷性の観点からは、35重量部以下が最も好ましい。
ここで、上記「複数の電荷輸送物質」とは、一般式(1)で表される電荷輸送物質同士が複数であっても、一般式(1)で表される電荷輸送物質以外の「他の電荷輸送物質」との併用で「複数」であっても構わない。
ここで、一般式(1)で表される電荷輸送物質と併用されうる「他の電荷輸送物質」としては、電荷輸送能を有するものであれば、どのようなものでも構わないが、好ましい例としては、以下があげられる。
Figure 2008299214

Figure 2008299214
上記に例示した「他の電荷輸送物質」の全ての構造式中、Rはそれぞれ独立して水素原子または置換基を示す。置換基としては、アルキル基、アルコキシ基、フェニル基等が好ましい。特に好ましくはメチル基である。
[VII.トナー]
本発明の電子写真感光体を用いて画像形成を行なう場合、潜像を現像するための現像剤であるトナーとしては、特定の円形度を有するトナー(以下適宜、「本発明のトナー」という)を用いることが好ましい。このように特定の円形度を有するトナーを用いることにより、本発明の画像形成装置は高画質の画像を形成することができるようになっている。
<トナーの円形度>
本発明のトナーの形状は、トナーを構成する粒子群に含まれる各粒子の形状が、互いに近いものであって、球形に近いほどトナーの粒子内での帯電量の局在化が起こりにくく、現像性が均一になる傾向にあり、画像品質を高める上で好ましい。特に、トナーの形状が完全な球形に近い形状となれば、電子写真感光体との接触面積が小さくなり、トナーの転写率が高まり、トナーの消費量を低減することが可能となる場合がある。一方で、完全な球状トナーを作ることは製造上困難であり、トナーが高コスト化するため、一定以上の条件で球に近ければよく、完全な球である必要は無い。
したがって、具体的には、本発明のトナーは、フロー式粒子像分析装置によって測定される平均円形度が、通常0.960以上、好ましくは0.970以上、より好ましくは0.975以上、特に好ましくは0.980以上である。また、前記平均円形度の上限は1.000以下であれば制限は無いが、生産の容易さの観点から、好ましくは0.998以下、より好ましくは0.995以下である。
なお、前記の平均円形度は、トナーの粒子の形状を定量的に表現する簡便な方法として用いたものであり、本発明ではシスメックス社製フロー式粒子像分析装置FPIA−2000を用いて測定を行ない、測定された粒子の円形度〔a〕を下式(X)により求めるものとする。
円形度a=L0/L ・・・・・・(X)
(式(X)中、L0は粒子像と同じ投影面積を持つ円の周囲長を示し、Lは画像処理したときの粒子像の周囲長を示す。)
前記の円形度は、トナー粒子の凹凸の度合いの指標であり、トナーが完全な球形の場合1.00を示し、表面形状が複雑になるほど円形度は小さな値となる。
平均円形度の具体的な測定方法としては、以下の通りである。即ち、予め容器中の不純物を除去した水20mL中に分散剤として界面活性剤(好ましくはアルキルベンゼンスルホン酸塩)を加え、更に測定試料(トナー)を0.05g程度加える。この試料を分散した懸濁液に超音波を30秒照射し、分散液濃度を3.0〜8.0千個/μL(マイクロリットル)として、上記フロー式粒子像測定装置を用い、0.60μm以上160μm未満の円相当径を有する粒子の円形度分布を測定する。
<トナーの種類>
本発明のトナーは、上記の平均円形度を有する限り他に制限は無い。トナーの種類は、通常はその製造方法に応じて様々なものが得られるが、本発明のトナーとしては、いずれを用いることも可能である。
以下、トナーの製造方法とともに、そのトナーの種類を説明する。
本発明のトナーは、従前公知のどのような方法で製造しても構わず、例えば重合法や溶融懸濁法などにより製造されるトナーが挙げられ、更には、いわゆる粉砕トナーを熱などの処理により球形化したものも用いることができるが、水系媒体中でトナー粒子を生成する、いわゆる重合法により製造されるトナーが好ましい。
いわゆる重合法によるトナーの方法としては、特公昭36−10231号公報、特開昭59−53856号公報、特開昭59−61842号公報に述べられている懸濁重合方法を用いて直接トナーを生成する方法や、単量体には可溶で得られる重合体が不溶な水系有機溶剤を用い直接トナーを生成する分散重合方法または水溶性極性重合開始剤存在下で直接重合しトナーを生成するソープフリー重合方法に代表される乳化重合方法等を用いトナーを製造することが可能である。
重合法トナーとしては、例えば、懸濁重合法トナー、乳化重合凝集法トナーなどが挙げられる。
また、トナーの離型性、低温定着性、高温オフセット性、耐フィルミング性などを改良するために、トナーに低軟化点物質(いわゆるワックス)を含有させる方法が提案されている。溶融混練粉砕法では、トナーに含まれるワックスの量を増やすのは難しく、重合体(バインダ樹脂)に対して5重量%程度が限界とされている。それに対して、重合トナーでは、低軟化点物質を多量(5〜30重量%)に含有させることが可能である。なお、ここでいう重合体は、トナーを構成する材料の一つであり、例えば後述する乳化重合凝集法により製造されるトナーの場合、重合性単量体が重合して得られるものである。
トナーの平均円形度を0.960以上にコントロールでき、比較的容易に粒度分布がシャープで3〜8μm粒径の微粒子トナーを得る方法として、例えば、常圧下での、または、加圧下での懸濁重合方法や、乳化重合凝集法があげられる。
懸濁重合法を用いて本発明に係るトナーを製造する場合、低軟化点物質を内包化せしめ
る具体的方法としては、水系媒体中での物質の極性を主要単量体より低軟化点物質の方を小さく設定し、さらに少量の極性の大きな樹脂または単量体を添加せしめることで低軟化点物質を外殻樹脂で被覆したいわゆるコア/シェル構造を有するトナーを得ることができる。トナーの粒度分布制御や粒径の制御は、難水溶性の無機塩や保護コロイド作用をする分散剤の種類や添加量を変える方法や機械的装置条件たとえばローターの周速・パス回数・撹拌羽根形状等の攪拌条件や容器形状または、水溶液中での固形分濃度等を制御することにより所定の本発明のトナーを得ることができる。
本発明に用いられるトナーの外殻樹脂としては、一般的に用いられているスチレン−(メタ)アクリル共重合体、ポリエステル樹脂、エポキシ樹脂、スチレン−ブタジエン共重合体を利用することができる。重合法により直接トナーを得る方法においては、それらの単量体が好ましく用いられる。
具体的には、スチレン、o(m−、p−)−メチルスチレン、m(p−)−エチルスチレン等のスチレン系単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベヘニル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル等の(メタ)アクリル酸エステル系単量体;ブタジエン、イソプレン、シクロヘキセン、(メタ)アクリロニトリル、アクリル酸アミド等のエン系単量体が好ましく用いられる。
これらは、単独または一般的には出版物ポリマーハンドブック第2版III −P139〜192(JohnWiley&Sons社製)に記載の理論ガラス転移温度(Tg)が、40〜75℃を示すように単量体を適宜混合し用いられる。理論ガラス転移温度が40℃未満の場合には、トナ−の保存安定性や現像剤の耐久安定性の面から問題が生じ、一方75℃を越える場合は定着点の上昇をもたらし、特にフルカラートナーの場合においては各色トナーの混色が不十分となり色再現性に乏しく、さらにOHP画像の透明性を著しく低下させ高画質の面から好ましくない。
外殻樹脂の分子量は、GPC(ゲルパーミエーションクロマトグラフィー)により測定される。具体的なGPCの測定方法としては、予めトナーをソックスレー抽出器を用いトルエン溶剤で20時間抽出を行った後、ロータリーエバポレーターでトルエンを留去せしめ、さらに低軟化点物質は溶解するがシェル用樹脂は溶解し得ない有機溶剤、たとえばクロロホルム等を加え十分洗浄を行った後、THF(テトラヒドロフラン)に可溶した溶液をポア径が0.3μmの耐溶剤性メンブランフィルターでろ過したサンプルをウォーターズ社製150Cを用い、カラム構成は昭和電工製A−801,802,803,804,805,806,807を連結し標準ポリスチレン樹脂の検量線を用い分子量分布を測定し得る。
得られた樹脂成分の数平均分子量(Mn)は、5000〜1000000であり、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、2〜100を示す外殻樹脂が本発明には好ましい。
本発明においては、コア/シェル構造を有するトナーを製造する場合、外殻樹脂で低軟化点物質を内包化せしめるため外殻樹脂の他にさらに極性樹脂を添加せしめることが特に好ましい。本発明に用いられる極性樹脂としては、スチレンと(メタ)アクリル酸の共重合体、マレイン酸共重合体、飽和ポリエステル樹脂、エポキシ樹脂が好ましく用いられる。該極性樹脂は、シェル樹脂または単量体と反応しうる不飽和基を分子中に含まないものが特に好ましい。仮に不飽和基を有する極性樹脂を含む場合においてはシェル樹脂層を形成する単量体と架橋反応が起き、特に、フルカラー用トナーとしては、極めて高分子量になり四色トナーの混色には不利となり好ましくない。
また、本発明においては、外殻構造を有するトナーの表面にさらに重ねて重合法により最外殻樹脂層を設けても良い。
上述の最外殻樹脂層のガラス転移温度は、耐ブロックキング性のさらなる向上のため外殻樹脂層のガラス転移温度以上に設計されること、さらに定着性を損なわない程度に架橋されていることが好ましい。また、該外殻樹脂層には帯電性向上のため極性樹脂や荷電制御剤が含有されていることが好ましい。
また、外殻樹脂層を設ける方法としては、特に限定されるものではないがたとえば以下のような方法が挙げられる。
1.重合反応後半、または終了後、反応系中に必要に応じて、極性樹脂、荷電制御剤、架橋剤等を溶解、分散したモノマーを添加し重合粒子に吸着させ、重合開始剤を添加し重合を行う方法。
2.必要に応じて、極性樹脂、荷電制御剤、架橋剤等を含有したモノマーからなる乳化重合粒子またはソープフリー重合粒子を反応系中に添加し、重合粒子表面に凝集、必要に応じて熱等により固着させる方法。
3.必要に応じて、極性樹脂、荷電制御剤、架橋剤等を含有したモノマーからなる乳化重合粒子 またはソープフリー重合粒子を乾式で機械的にトナー粒子表面に固着させる方法。
本発明に用いられる着色剤は、黒色着色剤としてカーボンブラック、磁性体、以下に示すイエロー/マゼンタ/シアン着色剤を用い黒色に調色されたものが利用される。イエロー着色剤としては、縮合アゾ化合物、イソインドリノン化合物、アンスラキノン化合物、アゾ金属錯体、メチン化合物、アリルアミド化合物に代表される化合物が用いられる。具体的には、C.I.ピグメントイエロー12,13,14,15,17,62,74,83,93,94,95,109,110,111,128,129,147、168、等が好適に用いられる。
マゼンタ着色剤としては、縮合アゾ化合物、ジケトピロロピロール化合物、アンスラキノン、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物が用いられる。具体的には、C.I.ピグメントレット2,3,5,6,7,23,48;2,48;3、48;4,57;1,81;1,144,146,166,169,177,184,185,202,206,220,221,254が特に好ましい。
本発明に用いられるシアン着色剤としては、銅フタロシアニン化合物およびその誘導体、アンスラキノン化合物、塩基染料レーキ化合物等が利用できる。具体的には、C.I.ピグメントブルー1,7,15,15:1,15:2,15;3,15:4,60,62,66等が特に好適に利用できる。これらの着色剤は、単独または混合しさらには固溶体の状態で用いることができる。
本発明の着色剤は、カラートナーの場合、色相角、彩度、明度、耐候性、OHP透明性、トナー中への分散性の点から選択される。該着色剤の添加量は、樹脂100重量部に対し1〜20重量部添加して用いられる。黒色着色剤として磁性体を用いた場合には、他の着色剤と異なり樹脂100重量部に対し40〜150重量部添加して用いられる。
本発明に用いられる荷電制御剤としては、公知のものが利用できるが、カラートナーの場合は、特に、無色でトナーの帯電スピードが速ぐ且つ一定の帯電量を安定して維持できる荷電制御剤が好ましい。さらに本発明において直接重合方法を用いる場合には、重合阻害性が無く水系への可溶化物の無い荷電制御剤が特に好ましい。
具体的化合物としては、ネガ系としてサリチル酸、ナフトエ酸、ダイカルボン酸の金属化合物、スルホン酸、カルボン酸を側鎖に持つ高分子型化合物、ホウ素化合物、尿素化合物、ケイ素化合物、カリークスアレーン等が利用でき、ポジ系として四級アンモニウム塩、該四級アンモニウム塩を側鎖に有する高分子型化合物、グアニジン化合物、イミダゾール化合物等が好ましく用いられる。該荷電制御剤は樹脂100重量部に対し0.5〜10重量部が好ましい。しかしながら、本発明において荷電制御剤の添加は必須ではない。
本発明で直接重合方法を利用する場合には、重合開始剤として、たとえば、2,2′−アゾビス−(2,4−ジメチルバレロニトリル)、2,2′−アゾビスイソブチロニトリル、1,1′−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2′−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリル等のアゾ系重合開始剤、ベンゾイルペルオキシド、メチルエチルケトンペルオキシド、ジイソプロピルペルオキシカーボネート、クメンヒドロペルオキシド、2,4−ジクロロベンゾイルペルオキシド、ラウロイルペルオキシド等の過酸化物系重合開始剤が用いられる。
該重合開始剤の添加量は、目的とする重合度により変化するが一般的には単量体に対し0.5〜20重量%添加され用いられる。開始剤の種類は、重合方法により若干異なるが、十時間半減期温度を参考に、単独または混合し利用される。重合度を制御するため公知の架橋剤・連鎖移動剤・重合禁止剤等をさらに添加し用いる事も可能である。
本発明に用いられるトナー製造方法として懸濁重合を利用する場合には、用いる分散剤としてたとえば無機系酸化物として、リン酸三カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウム、ベントナイト、シリカ、アルミナ、磁性体、フェライト等が挙げられる。有機系化合物としてはたとえばポリビニルアルコール、ゼラチン、メチルセルロース、メチルヒドロキシプロピルセルロース、エチルセルロース Cカルボキシメチルセルロースのナ
トリウム塩、デンプン等が水相に分散させて使用される。これら分散剤は、重合性単量体100重量部に対して0.2〜10.0重量部を使用する事が好ましい。
これら分散剤は、市販のものをそのまま用いても良いが、細かい均一な粒度を有す分散粒子を得るために、分散媒体中にて高速撹拌下にて該無機化合物を生成させる事もできる。たとえば、リン酸三カルシウムの場合、高速撹拌下において、リン酸ナトリウム水溶液と塩化カルシウム水溶液を混合する事で懸濁重合方法に好ましい分散剤を得る事ができる。またこれら分散剤の微細化のため0.001〜0.1重量部の界面活性剤を併用しても良い。具体的には市販のノニオン、アニオン、カチオン型の界面活性剤が利用でき、たとえばドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸カリウム、オレイン酸カルシウム等が好ましく用いられる。
本発明に用いられるトナーの製造方法として直接重合方法を用いる場合には、以下の如き製造方法によって具体的にトナーを製造する事が可能である。単量体中に低軟化物質からなる離型剤、着色剤、荷電制御剤、重合開始剤その他の添加剤を加え、ホモジナイザー・超音波分散機等によって均一に溶解または分散せしめた単量体組成物を、分散安定剤を含有する水相中に通常の撹拌機またはホモミキサー、ホモジナイザー等により分散せしめる。好ましくは単量体組成物からなる液滴が所望のトナー粒子のサイズを有するように撹拌速度・時間を調整し、造粒する。その後は分散安定剤の作用により、粒子状態が維持され、且つ粒子の沈降が防止される程度の撹拌を行えば良い。重合温度は40℃以上、一般的には50〜90℃の温度に設定して重合を行う。また、重合反応後半に昇温しても良く、さらに、耐久特性向上の目的で、未反応の重合性単量体、副生成物等を除去するために反応後半、または、反応終了後に一部水系媒体を留去しても良い。反応終了後、生成したトナー粒子を洗浄・ろ過により回収し、乾燥する。懸濁重合法においては、通常単量体系100重量部に対して水300〜3000重量部を分散媒体として使用するのが好ましい。
また、本発明におけるトナーは分級して粒度分布を制御しても良く、その方法として好ましくは、慣性力を利用した多分割分級装置を用いる。この装置を用いることにより、本発明の粒度分布を有するトナーを効率的に製造できる。
乳化重合凝集法によりトナーを製造する場合、その製造工程としては、通常、重合工程、混合工程、凝集工程、融合工程、洗浄・乾燥工程を行なう。即ち、一般的には乳化重合により重合体一次粒子を得て(重合工程)、その重合体一次粒子を含む分散液に、必要に応じ、着色剤(顔料)、ワックス、帯電制御剤等の分散体を混合し(混合工程)、この分散液中に凝集剤を加えて一次粒子を凝集させて粒子凝集体とし(凝集工程)、必要に応じて微粒子等を付着する操作を行ない、その後に融合させて粒子を得て(融合工程)、得られた粒子を洗浄、乾燥することにより(洗浄・乾燥工程)、母粒子が得られる。
<重合工程>
重合体の微粒子(重合体一次粒子)としては、特に限定されない。したがって、液状媒体中で重合性単量体を、懸濁重合法、乳化重合法等により重合させて得られる微粒子、樹脂等の重合体の塊を粉砕することによって得られる微粒子のいずれを重合体一次粒子として用いてもよい。ただし、重合法、特に乳化重合法、なかでも乳化重合におけるシードとしてワックスを用いたものが好ましい。乳化重合におけるシードとしてワックスを用いると、重合体がワックスを包み込んだ構造の微粒子を重合体一次粒子として製造することができる。この方法によれば、ワックスをトナーの表面に露出させず、トナー内に含有させることができる。このため、ワックスによる装置部材の汚染がなく、また、トナーの帯電性を損なうこともなく、かつ、トナーの低温定着性や高温オフセット性、耐フィルミング性、離型性等を向上させることができる。
以下、ワックスをシードとして乳化重合を行ない、これにより重合体一次粒子を得る方法について説明する。
乳化重合法としては、従来より知られている方法に従って行えばよい。通常は、ワックスを乳化剤の存在下で液状媒体に分散してワックス微粒子とし、これに重合開始剤、重合により重合体を与える重合性単量体(即ち、重合性の炭素−炭素二重結合を有する化合物)、並びに、必要に応じて連鎖移動剤、pH調整剤、重合度調節剤、消泡剤、保護コロイド、及び内添剤等を混合、攪拌して重合を行なう。これにより、重合体がワックスを包み込んだ構造を有する重合体の微粒子(即ち、重合体一次粒子)が液状媒体に分散したエマルジョンが得られる。なお、重合体がワックスを包み込んだ構造としては、コアシェル型、相分離型、オクルージョン型などが挙げられるが、コアシェル型が好ましい。
(i.ワックス)
ワックスとしては、この用途に用い得ることが知られている任意のものを用いることができる。例えば、低分子量ポリエチレン、低分子量ポリプロピレン、共重合ポリエチレン等のオレフィン系ワックス;パラフィンワックス;アルキル基を有するシリコーンワックス;低分子量ポリテトラフルオロエチレン等のフッ素樹脂系ワックス;ステアリン酸等の高級脂肪酸;エイコサノール等の長鎖脂肪族アルコール;ベヘン酸ベヘニル、モンタン酸エステル、ステアリン酸ステアリル等の長鎖脂肪族基を有するエステル系ワックス;ジステアリルケトン等の長鎖アルキル基を有するケトン類;水添ひまし油、カルナバワックス等の植物系ワックス;グリセリン、ペンタエリスリトール等の多価アルコールと長鎖脂肪酸より得られるエステル類または部分エステル類;オレイン酸アミド、ステアリン酸アミド等の高級脂肪酸アミド;低分子量ポリエステルなどが挙げられる。なかでも、示差熱分析(DSC)による吸熱ピークを50〜100℃に少なくとも1つ有するものが好ましい。
また、ワックスの中でも、例えば、エステル系ワックス、パラフィンワックス、低分子量ポリプロピレン、共重合ポリエチレン等のオレフィン系ワックス、シリコーンワックス等は、少量で離型性の効果が得られるので好ましい。特に、パラフィンワックスが好ましい。
なお、ワックスは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
ワックスを用いる場合、その使用量は任意である。ただし、重合体100重量部に対して、ワックスを通常3重量部以上、好ましくは5重量部以上、また、通常40重量部以下、好ましくは30重量部以下とすることが望ましい。ワックスが少なすぎると定着温度幅が不十分となる可能性があり、多すぎると装置部材を汚染して画質の低下が生じる可能性がある。
(ii.乳化剤)
乳化剤に制限は無く、本発明の効果を著しく損なわない範囲で任意のものを使用することができる。例えば、非イオン性、アニオン性、カチオン性、及び両性のいずれの界面活性剤も用いることができる。
非イオン性界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル等のポリオキシアルキレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル等のポリオキシアルキレンアルキルフェニルエーテル類、ソルビタンモノラウレート等のソルビタン脂肪酸エステル類等が挙げられる。
また、アニオン性界面活性剤としては、例えば、ステアリン酸ナトリウム、オレイン酸ナトリウム等の脂肪酸塩類、ドデシルベンゼンスルホン酸ナトリウム等のアルキルアリールスルホン酸塩類、ラウリル硫酸ナトリウム等のアルキル硫酸エステル塩類等が挙げられる。
さらに、カチオン系界面活性剤としては、例えば、ラウリルアミンアセテート等のアルキルアミン塩類、ラウリルトリメチルアンモニウムクロリド等の4級アンモニウム塩類等が挙げられる。
また、両性界面活性剤としては、例えば、ラウリルベタイン等のアルキルベタイン類等が挙げられる。
これらの中でも、非イオン性界面活性剤、アニオン系界面活性剤が好ましい。
なお、乳化剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
さらに、乳化剤の配合量も本発明の効果を著しく損なわない限り任意であるが、重合性モノマー100重量部に対して、乳化剤を、通常1〜10重量部の割合で用いる。
(iii.液状媒体)
液状媒体としては、通常は水系媒体を用い、特に好ましくは水を用いる。ただし、液状媒体の質は液状媒体中の粒子の再凝集による粗大化にも関係し、液状媒体の導電率が高いと経時の分散安定性が悪化する傾向がある。したがって、液状媒体として水等の水系媒体を使用する場合、導電率を、通常10μS/cm以下、好ましくは5μS/cm以下となるように脱塩処理されたイオン交換水あるいは蒸留水を用いることが好ましい。なお、導電率の測定は、導電率計(横河電機社製のパーソナルSCメータモデルSC72と検出器SC72SN−11)を用いて25℃下で測定を行なう。
また、液状媒体の使用量に制限は無いが、重合性単量体に対して、通常1〜20重量倍程度の量を用いる。
この液状媒体に、乳化剤の存在下で前記ワックスを分散させることにより、ワックス微粒子を得る。乳化剤及びワックスを液状媒体に配合する順は任意であるが、通常は、まず乳化剤を液状媒体に配合し、その後、ワックスを混合する。また、乳化剤は連続的に液状媒体に配合してもよい。
(iv.重合開始剤)
上記のワックス微粒子を調製した後、液状媒体に、重合開始剤を配合する。重合開始剤としては本発明の効果を著しく損なわない限り任意のものを用いることができる。その例を挙げると、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩類;t−ブチルヒドロパーオキシド、クメンヒドロパーオキシド、p−メンタンヒドロパーオキシド等の有機過酸化物類;過酸化水素等の無機過酸化物類などが挙げられる。中でも、無機過酸化物類が好ましい。なお、重合開始剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
さらに、重合開始剤の他の例としては、過硫酸塩類、有機又は無機過酸化物類と、アスコルビン酸、酒石酸、クエン酸等の還元性有機化合物類、チオ硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウム等の還元性無機化合物類などとを併用して、レドックス系開始剤とすることもできる。この場合、還元性無機化合物類は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、重合開始剤の使用量にも制限は無く任意である。ただし、重合開始剤は、重合性単量体100重量部に対して、通常0.05〜2重量部の割合で用いられる。
(v.重合性単量体)
上記のワックス微粒子を調製した後、液状媒体には、前記の重合開始剤の他に、重合性単量体を配合する。重合性単量体に特に制限は無いが、例えば、スチレン類、(メタ)アクリル酸エステル、アクリルアミド類、ブレンステッド酸性基を有する単量体(以下、単に「酸性モノマー」と略記することがある)、ブレンステッド塩基性基を有する単量体(以下、単に「塩基性モノマー」と略記することがある)等の単官能性モノマーが主として用いられる。また、単官能性のモノマーに多官能性のモノマーを併用することもできる。
スチレン類としては、例えば、スチレン、メチルスチレン、クロロスチレン、ジクロロスチレン、p−tert−ブチルスチレン、p−n−ブチルスチレン、p−n−ノニルスチレン等が挙げられる。
また、(メタ)アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸ヒドロキシエチル、アクリル酸−2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸ヒドロキシエチル、メタクリル酸−2−エチルヘキシル等が挙げられる。
アクリルアミド類としては、アクリルアミド、N−プロピルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジプロピルアクリルアミド、N,N−ジブチルアクリルアミド等が挙げられる。
さらに、酸性モノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、ケイ皮酸等のカルボキシル基を有するモノマー;スルホン化スチレン等のスルホン酸基を有するモノマー;ビニルベンゼンスルホンアミド等のスルホンアミド基を有するモノマーなどが挙げられる。
また、塩基性モノマーとしては、例えば、アミノスチレン等のアミノ基を有する芳香族ビニル化合物、ビニルピリジン、ビニルピロリドン等の含窒素複素環含有モノマー;ジメチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート等のアミノ基を有
する(メタ)アクリル酸エステルなどが挙げられる。
なお、酸性モノマー及び塩基性モノマーは、対イオンを伴って塩として存在していてもよい。
さらに、多官能性モノマーとしては、例えば、ジビニルベンゼン、ヘキサンジオールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ネオペンチルグリコールジアクリレート、ジアリルフタレート等が挙げられる。また、グリシジルメタクリレート、N−メチロールアクリルアミド、アクロレイン等の反応性基を有するモノマーを用いることも可能である。中でもラジカル重合性の二官能性モノマー、特に、ジビニルベンゼン、ヘキサンジオールジアクリレートが好ましい。
これらのなかでも、重合性単量体としては、少なくともスチレン類、(メタ)アクリル酸エステル、カルボキシル基を有する酸性モノマーから構成されるのが好ましい。特に、スチレン類としてはスチレンが好ましく、(メタ)アクリル酸エステル類としてはアクリル酸ブチルが好ましく、カルボキシル基を有する酸性モノマーとしてはアクリル酸が好ましい。
なお、重合性単量体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
ワックスをシードとして乳化重合を行なう際には、酸性モノマー又は塩基性モノマーと、これら以外のモノマーとを併用するのが好ましい。酸性モノマー又は塩基性モノマーを併用することにより、重合体一次粒子の分散安定性を向上させることができるからである。
この際、酸性モノマー又は塩基性モノマーの配合量は任意であるが、全重合性単量体100重量部に対する酸性モノマー又は塩基性モノマーの使用量を、通常0.05重量部以上、好ましくは0.5重量部以上、より好ましくは1重量部以上、また、通常10重量部以下、好ましくは5重量部以下となるようにすることが望ましい。酸性モノマー又は塩基性モノマーの配合量が上記範囲を下回ると重合体一次粒子の分散安定性が悪化する可能性があり、上限を上回るとトナーの帯電性に悪影響を及ぼす可能性がある。
また、多官能性モノマーを併用する場合、その配合量は任意であるが、重合性単量体100重量部に対する多官能性モノマーの配合量は、通常0.005重量部以上、好ましくは0.1重量部以上、より好ましくは0.3重量部以上、また、通常5重量部以下、好ましくは3重量部以下、より好ましくは1重量部以下である。多官能性モノマーを使用することにより、トナーの定着性を向上させることができる。この際、多官能性モノマーの配合量が上記範囲を下回ると耐高温オフセット性が劣る可能性があり、上限を上回ると低温定着性が劣る可能性がある。
液状媒体へ重合性単量体を配合する方法は特に限定されず、例えば、一括添加、連続添加、間欠添加のいずれでもよいが、反応制御の点からは連続的に配合するのが好ましい。また、複数の重合性単量体を併用する場合、各重合性単量体は、別々に配合してもよく、また予め混合してから配合してもよい。更には、単量体混合物の組成を変化させながら配合してもよい。
(vi.連鎖移動剤等)
上記のワックス微粒子を調製した後、液状媒体には、前記の重合開始剤及び重合性単量体の他に、必要に応じて、連鎖移動剤、pH調整剤、重合度調節剤、消泡剤、保護コロイ
ド、内添剤などの添加剤を配合する。これらの添加剤は本発明の効果を著しく損なわない限り任意のものを用いることができる。また、これらの添加剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
連鎖移動剤としては、公知の任意のものを使用することができる。具体例を挙げると、t−ドデシルメルカプタン、2−メルカプトエタノール、ジイソプロピルキサントゲン、四塩化炭素、トリクロロブロモメタン等が挙げられる。また、連鎖移動剤は、重合性単量体100重量部に対して、通常5重量部以下の割合で用いられる。
さらに、保護コロイドとしては、この用途に用い得ることが知られている任意のものを使用することができる。具体例を挙げると、部分又は完全ケン化ポリビニルアルコール等のポリビニルアルコール類、ヒドロキシエチルセルロース等のセルロース誘導体類等などが挙げられる。
また、内添剤としては、例えば、シリコーンオイル、シリコーンワニス、フッ素系オイル等のトナーの粘着性、凝集性、流動性、帯電性、表面抵抗等を改質するためのものが挙げられる。
(vii.重合体一次粒子)
ワックス微粒子を含む液状媒体に重合開始剤及び重合性単量体、並びに、必要に応じて添加剤を混合し、攪拌し、重合させることにより、重合体一次粒子を得る。この重合体一次粒子は、液状媒体中にエマルションの状態で得ることができる。
重合開始剤、重合性単量体、添加剤などを液状媒体に混合する順番に制限は無い。また、混合、攪拌の方法なども制限は無く、任意である。
さらに、重合(乳化重合反応)の反応温度も反応が進行する限り任意である。但し、重合温度は、通常50℃以上、好ましくは60℃以上、より好ましくは70℃以上、また、通常120℃以下、好ましくは100℃以下、より好ましくは90℃以下である。
重合体一次粒子の体積平均粒径に特に制限は無いが、通常0.02μm以上、好ましくは0.05μm以上、より好ましくは0.1μm以上、また、通常3μm以下、好ましくは2μm以下、より好ましくは1μm以下である。体積平均粒径が小さすぎると、凝集速度の制御が困難となる場合があり、また、体積平均粒径が大きすぎると、凝集して得られるトナーの粒径が大きくなり易く、目的とする粒径のトナーを得ることが困難となる場合がある。なお、体積平均粒径は、後述する動的光散乱法を用いた粒度分析計で測定することができる。
本発明においては、体積粒度分布は動的光散乱法により測定される。この方式は、微小に分散された粒子のブラウン運動の速さを、粒子にレーザー光を照射してその速度に応じた位相の異なる光の散乱(ドップラーシフト)を検出して粒度分布を求めるものである。実際の測定では、上記の体積粒径については、動的光散乱方式を用いた超微粒子粒度分布測定装置(日機装社製、UPA−EX150、以下UPA−EXと略す)を用いて、以下の設定にて行なう。
測定上限 :6.54μm
測定下限 :0.0008μm
チャンネル数:52
測定時間 :100sec.
測定温度 :25℃
粒子透過性 :吸収
粒子屈折率 :N/A(適用しない)
粒子形状 :非球形
密度 :1g/cm3
分散媒種類 :WATER
分散媒屈折率:1.333
なお、測定時は、サンプル濃度指数が0.01〜0.1の範囲になるように粒子の分散体を液状媒体で希釈し、超音波洗浄器で分散処理した試料で測定する。そして、本発明にかかわる体積平均粒子径は、上記の体積粒度分布の結果を算術平均値として計測される。
また、重合体一次粒子を構成する重合体は、ゲルパーミエーションクロマトグラフィーにおけるピーク分子量のうち少なくとも1つが、通常3000以上、好ましくは1万以上、より好ましくは3万以上、また、通常10万以下、好ましくは7万以下、より好ましくは6万以下に存在することが望ましい。ピーク分子量が前記範囲にある場合、トナーの耐久性、保存性、定着性が良好となる傾向がある。ここで、前記のピーク分子量とは、ポリスチレン換算した値を用いるものとし、測定に際しては溶媒に不溶の成分を除くものとする。ピーク分子量は、後述するトナーの場合と同様に測定することが可能である。
特に、前記の重合体がスチレン系樹脂である場合には、重合体のゲルパーミエーションクロマトグラフィーにおける数平均分子量は、下限が通常2000以上、好ましくは2500以上、より好ましくは3000以上、また上限は、通常5万以下、好ましくは4万以下、より好ましくは3.5万以下である。さらに、重合体の重量平均分子量は、下限が通常2万以上、好ましくは3万以上、より好ましくは5万以上、また上限は、通常100万以下、好ましくは50万以下である。数平均分子量、重量平均分子量の少なくとも一方、好ましくは双方が前記の範囲に収まるスチレン系樹脂を重合体として用いた場合、えられるトナーは、耐久性、保存性、定着性が良好となるからである。さらに分子量分布において、メインピークが2つあるものでもよい。なお、スチレン系樹脂とは、スチレン類が全重合体中の通常50重量%以上、好ましくは65重量%以上を占めるものを指す。
また、重合体の軟化点(以下「Sp」と略記することがある)は、通常150℃以下、好ましくは140℃以下であることが低エネルギー定着の点から好ましく、また、通常80℃以上、好ましくは100℃以上であることが耐高温オフセット性、耐久性の点で好ましい。ここで重合体の軟化点は、フローテスターにおいて、試料1.0gをノズル1mm×10mm、荷重30kg、予熱時間50℃で5分、昇温速度3℃/分の条件下で測定を行なったときの、フロー開始から終了までのストランドの中間点での温度として求めることができる。
さらに、重合体のガラス転移温度〔Tg〕は、通常80℃以下、好ましくは70℃以下である。重合体のガラス転移温度〔Tg〕が高すぎると低エネルギー定着ができなくなる可能性がある。また、重合体のガラス転移温度〔Tg〕の下限は、通常40℃以上、好ましくは50℃以上である。重合体のガラス転移温度〔Tg〕が低すぎると耐ブロッキング性が低下する可能性がある。ここで重合体のガラス転移温度〔Tg〕は、示差走査熱量計において、昇温速度10℃/分の条件で測定した曲線の転移(変曲)開始部に接線を引き、2つの接線の交点の温度として求めることができる。
重合体の軟化点及びガラス転移温度〔Tg〕は、重合体の種類およびモノマー組成比、分子量等を調整することによって前記範囲とすることができる。
<混合工程及び凝集工程>
前記の重合体一次粒子が分散したエマルジョンに、顔料粒子を混合し、凝集させることにより、重合体、顔料を含む凝集体(凝集粒子)のエマルジョンを得る。この際、顔料は、予め液状媒体に界面活性剤等を用いて均一に分散させた顔料粒子分散体を用意し、これを重合体一次粒子のエマルジョンに混合することが好ましい。この際、顔料粒子分散体の液状媒体として通常は水等の水系溶媒を使用し、顔料粒子分散体を水系分散体として用意する。また、その際には、必要に応じてワックス、帯電制御剤、離型剤、内添剤等をエマルジョンに混合してもよい。また、顔料粒子分散体の安定性を保持するために、上述した乳化剤を加えてもよい。
重合体一次粒子としては、乳化重合により得た前記の重合体一次粒子を使用することができる。この際、重合体一次粒子は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。さらに、上述した乳化重合とは異なる原料や反応条件で製造した重合体一次粒子(以下適宜「併用重合体粒子」という)を併用してもよい。
併用重合体粒子としては、例えば、懸濁重合や粉砕で得られた微粒子などが挙げられる。このような併用重合体粒子の材料としては樹脂を使用できるが、この樹脂としては、上述の乳化重合に供する単量体の(共)重合体の他に、例えば、酢酸ビニル、塩化ビニル、ビニルアルコール、ビニルブチラール、ビニルピロリドン等のビニル系単量体の単独重合体または共重合体、飽和ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリフェニレンエーテル樹脂などの熱可塑性樹脂、及び、不飽和ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、ウレタン樹脂、ロジン変性マレイン酸樹脂などの熱硬化性樹脂などが挙げられる。なお、これらの併用重合体粒子も、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。ただし、併用重合体粒子の割合は、重合体一次粒子及び併用重合体粒子の重合体の合計に対して、通常5重量%以下、好ましくは4重量%以下、より好ましくは3重量%以下である。
また、顔料に制限は無く、その用途に応じて任意のものを用いることができる。ただし、顔料は通常は着色剤粒子として粒子状で存在するが、この顔料の粒子は、乳化重合凝集法における重合体一次粒子との密度差が小さい方が好ましい。前記の密度差が小さいほうが、重合体一時粒子と顔料とを凝集させた場合に均一な凝集状態が得られ、従って得られるトナーの性能が向上するからである。なお、重合体一次粒子の密度は、通常は1.1〜1.3g/cmである。
前記の観点から、JIS K 5101−11−1:2004に規定されるピクノメーター法で測定される顔料粒子の真密度は、通常1.2g/cm以上、好ましくは1.3g/cm以上、また、通常2.0g/cm未満、好ましくは1.9g/cm以下、より好ましくは1.8g/cm以下である。顔料の真密度が大きい場合は、特に液状媒体中での沈降性が悪化する傾向にある。加えて、保存性、昇華性などの課題も考慮すると、顔料はカーボンブラックあるいは有機顔料であるのが好ましい。
以上の条件を満たす顔料の例示としては、以下に示すイエロー顔料、マゼンタ顔料及びシアン顔料などが挙げられる。また、黒色顔料としては、カーボンブラック、又は、以下に示すイエロー顔料/マゼンタ顔料/シアン顔料を混合して黒色に調色されたものが利用される。
このうち、黒色顔料として使用されるカーボンブラックは、非常に微細な一次粒子の凝集体として存在し、顔料粒子分散体として分散させたときに、再凝集によるカーボンブラック粒子の粗大化が発生しやすい。カーボンブラック粒子の再凝集の程度は、カーボンブラック中に含まれる不純物量(未分解有機物量の残留程度)の大小と相関が見られ、不純物が多いと分散後の再凝集による粗大化が顕著となる傾向を示す。
不純物量の定量的な評価としては、以下の測定方法で測定されるカーボンブラックのトルエン抽出物の紫外線吸光度が、通常0.05以下、好ましくは0.03以下である。一般に、チャンネル法のカーボンブラックは不純物が多い傾向を示すので、本発明のトナーに使用するカーボンブラックとしては、ファーネス法で製造されたものが好ましい。
なお、カーボンブラックの紫外線吸光度(λc)は、次の方法で求める。即ち、まずカ
ーボンブラック3gをトルエン30mLに充分に分散、混合させて、続いてこの混合液をNo.5C濾紙を使用して濾過する。その後、濾液を吸光部が1cm角の石英セルに入れて市販の紫外線分光光度計を用いて波長336nmの吸光度を測定した値(λs)と、同じ方法でリファレンスとしてトルエンのみの吸光度を測定した値(λo)とから、紫外線吸光度はλc=λs−λoで求める。市販の分光光度計としては、例えば島津製作所製紫外可視分光光度計(UV−3100PC)などがある。
また、イエロー顔料としては、例えば、縮合アゾ化合物、イソインドリノン化合物などに代表される化合物が用いられる。具体的には、C.I.ピグメントイエロー12、13、14、15、17、62、74、83、93、94、95、109、110、111、128、129、147、168、180、185等が好適に用いられる。
さらに、マゼンタ顔料としては、例えば、縮合アゾ化合物、ジケトピロロピロール化合物、アンスラキノン、キナクリドン化合物、塩基染料レーキウ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物などが用いられる。具体的には、C.I.ピグメントレッド2、3、5、6、7、23、48:2、48:3、48:4、57:1、81:1、122、144、146、166、169、177、184、185、202、206、207、209、220、221、238、254、C.I.ピグメントバイオレット19等が好適に用いられる。
中でもC.I.ピグメントレッド122、202、207、209、C.I.ピグメントバイオレット19で示されるキナクリドン系顔料が特に好ましい。このキナクリドン系顔料は、その鮮明な色相や高い耐光性などからマゼンタ顔料として好適である。キナクリドン系顔料の中でも、C.I.ピグメントレッド122で示される化合物が、特に好ましい。
また、シアン顔料としては、例えば、銅フタロシアニン化合物及びその誘導体、アンスラキノン化合物、塩基染料レーキ化合物などが利用できる。具体的には、C.I.ピグメントブルー1、7、15、15:1、15:2、15:3、15:4、60、62、66等が特に好適に利用できる。
なお、顔料は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
上記の顔料は、液状媒体に分散させ、顔料粒子分散体としてから重合体一次粒子を含有するエマルションと混合する。この際、顔料粒子分散体中における顔料粒子の使用量は、液状媒体100重量部に対して、通常3重量部以上、好ましくは5重量部以上、また、通常50重量部以下、好ましくは40重量部以下である。着色剤の配合量が前記範囲を上回る場合には顔料濃度が濃いので分散中で顔料粒子が再凝集する確率が高まり、前記範囲未満の場合には分散が過剰となって適切な粒度分布を得ることが困難になる可能性がある。
また、重合体一次粒子に含まれる重合体に対する顔料の使用量の割合は、通常1重量%以上、好ましくは3重量%以上、また、通常20重量%以下、好ましくは15重量%以下である。顔料の使用量が少なすぎると画像濃度が薄くなる可能性があり、多すぎると凝集制御が困難となる可能性がある。
さらに、顔料粒子分散体には、界面活性剤を含有させても良い。この界面活性剤に特に制限は無いが、例えば、乳化重合法の説明において乳化剤として例示した界面活性剤と同様のものが挙げられる。中でも、非イオン系界面活性剤、ドデシルベンゼンスルホン酸ナトリウム等のアルキルアリールスルホン酸塩類等のアニオン系活性剤、ポリマー系界面活性剤等が好ましく用いられる。また、この際、界面活性剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
なお、顔料粒子分散体に占める顔料の割合は、通常10〜50重量%である。
また、顔料粒子分散体の液状媒体としては、通常は水系媒体を用い、好ましくは水を用いる。この際、重合体一次粒子及び顔料粒子分散体の水質は各粒子の再凝集による粗大化にも関係し、導電率が高いと経時の分散安定性が悪化する傾向がある。したがって、導電率を、通常10μS/cm以下、好ましくは5μS/cm以下となるように脱塩処理されたイオン交換水あるいは蒸留水を用いることが好ましい。なお、導電率の測定は、導電率計(横河電機社製のパーソナルSCメータモデルSC72と検出器SC72SN−11)を用いて25℃下で測定を行なう。
また、重合体一次粒子を含有するエマルションに顔料を混合させる際、エマルションにワックスを混合しても良い。ワックスとしては、乳化重合法の説明において述べたものを同様のものを使用することができる。なお、ワックスは、重合体一次粒子を含有するエマルションに顔料を混合する前、混合中、後のいずれにおいて混合しても良い。
また、重合体一次粒子を含有するエマルションに顔料を混合させる際、エマルションに帯電制御剤を混合しても良い。
帯電制御剤としては、この用途に用いられ得ることが知られている任意のものを使用することができる。正荷電性帯電制御剤としては、例えば、ニグロシン系染料、4級アンモニウム塩、トリフェニルメタン系化合物、イミダゾール系化合物、ポリアミン樹脂などが挙げられる。また、負荷電性帯電制御剤としては、例えば、Cr、Co、Al、Fe、B等の原子を含有するアゾ錯化合物染料;サリチル酸若しくはアルキルサリチル酸の金属塩又は金属錯体;カーリックスアレン化合物、ベンジル酸の金属塩又は金属錯体、アミド化合物、フェノール化合物、ナフトール化合物、フェノールアミド化合物などが挙げられる。中でも、トナーとしての色調障害を回避するため、無色ないしは淡色のものを選択することが好ましく、特に正荷電性帯電制御剤としては4級アンモニウム塩、イミダゾール系化合物が好ましく、負荷電性帯電制御剤としてはCr、Co、Al、Fe、B等の原子を含有するアルキルサリチル酸錯化合物、カーリックスアレン化合物が好ましい。なお、帯電制御剤は1種を用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
帯電制御剤の使用量に制限は無いが、重合体100重量部に対し、通常0.01重量部以上、好ましくは0.1重量部以上、また、10重量部以下、好ましくは5重量部以下である。帯電制御剤の使用量が少なすぎても多すぎても所望の帯電量が得られなくなる可能性がある。
帯電制御剤は、重合体一次粒子を含有するエマルションに顔料を混合する前、混合中、後のいずれにおいて混合しても良い。
また、帯電制御剤は、前記顔料粒子と同様に、液状媒体(通常は、水系媒体)に乳化した状態として、凝集時に混合することが望ましい。
上記の重合体一次粒子を含有するエマルションに顔料を混合した後、重合体一次粒子と顔料とを凝集させる。なお、上述したとおり、混合の際には、通常、顔料は顔料粒子分散体とした状態で混合させる。
凝集方法に制限は無く任意であるが、例えば、加熱、電解質の混合、pHの調整等が挙げられる。なかでも、電解質を混合する方法が好ましい。
電解質を混合して凝集を行なう場合の電解質としては、例えば、NaCl、KCl、LiCl、MgCl、CaCl等の塩化物;NaSO、KSO、LiSO、MgSO、CaSO、ZnSO、Al(SO、Fe(SO等の硫酸塩などの無機塩;CHCOONa、CSONa等の有機塩などが挙げられる。これらのうち、2価以上の多価の金属カチオンを有する無機塩が好ましい。
なお、電解質は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
電解質の使用量は、電解質の種類によって異なるが、エマルジョン中の固形成分100重量部に対して、通常0.05重量部以上、好ましくは0.1重量部以上、また、通常25重量部以下、好ましくは15重量部以下、より好ましくは10重量部以下である。電解質を混合して凝集を行なう場合において、電解質の使用量が少なすぎると、凝集反応の進行が遅くなり凝集反応後も1μm以下の微粉が残ったり、得られる凝集体の平均粒径が目的の粒径に達しないなどの可能性があり、また、電解質の使用量が多すぎると、凝集反応が急速に起こるため粒径の制御が困難となり、得られる凝集体中に粗粉や不定形のものが含まれる可能性がある。
得られた凝集体は、後述する二次凝集体(溶融工程を経た凝集体)と同じく、引き続き液状媒体中で加熱して球形化するのが好ましい。加熱は二次凝集体の場合と同様の条件(融合工程の説明において述べるのと同様の条件)で行えばよい。
一方、加熱により凝集を行なう場合、温度条件は凝集が進行する限り任意である。具体的な温度条件を挙げると、通常15℃以上、好ましくは20℃以上、また、重合体一次粒子の重合体のガラス転移温度〔Tg〕以下、好ましくは55℃以下の温度条件で凝集を行なう。凝集を行なう時間も任意であるが、通常10分以上、好ましくは60分以上、また、通常300分以下、好ましくは180分以下である。
また、凝集を行なう際には、攪拌を行なうことが好ましい。攪拌に使用する装置は特に限定されないが、ダブルヘリカル翼を有するものが好ましい。
得られた凝集体は、そのまま次工程の樹脂被覆層を形成する工程(カプセル化工程)に進んでもよいし、引き続き液状媒体中で加熱による融合処理を行なった後に、カプセル化工程に進んでもよい。そして、望ましくは、凝集工程の後に、カプセル化工程を行ない、カプセル化樹脂微粒子のガラス転移温度〔Tg〕以上の温度で加熱して融合工程を行なうのが、工程を簡略化でき、トナーの性能劣化(熱劣化など)を生じないので好ましい。
<カプセル化工程>
凝集体を得た後、当該凝集体には、必要に応じて樹脂被覆層を形成することが好ましい。凝集体に樹脂被覆層を形成させるカプセル化工程とは、凝集体の表面に樹脂被覆層を形成することにより、凝集体を樹脂により被覆する工程である。これにより、製造されるトナーは樹脂被覆層を備えることになる。カプセル化工程では、トナー全体が完全に被覆されない場合もあるが、顔料は、実質的にトナー粒子の表面に露出していないトナーを得ることができるようになる。この際の樹脂被覆層の厚さに制限は無いが、通常は0.01〜0.5μmの範囲である。
前記樹脂被覆層を形成する方法としては、特に制限はないが、例えば、スプレードライ法、機械式粒子複合法、in−situ重合法、液中粒子被覆法などが挙げられる。
上記スプレードライ法により樹脂被覆層を形成する方法としては、例えば、内層を形成する凝集体と樹脂被覆層を形成する樹脂微粒子とを水媒体中に分散して分散液を作製し、分散液をスプレー噴出し、乾燥することによって、凝集体表面に樹脂被覆層を形成することができる。
また、前記機械式粒子複合法により樹脂被覆層を形成する方法としては、例えば、内層を形成する凝集体と樹脂被覆層を形成する樹脂微粒子とを気相中に分散させ、狭い間隙で機械的な力を加えて凝集体表面に樹脂微粒子を成膜化する方法であり、例えばハイブリダイゼーションシステム(奈良機械製作所社製)、メカノフュージョンシステム(ホソカワミクロン社製)などの装置が使用できる。
さらに、前記in−situ重合法としては、例えば、凝集体を水中に分散させ、単量体及び重合開始剤を混合して、凝集体表面に吸着させ、加熱して、単量体を重合させて、内層である凝集体表面に樹脂被覆層を形成する方法である。
また、前記液中粒子被覆法としては、例えば、内層を形成する凝集体と外層を形成する樹脂微粒子とを、水媒体中で反応あるいは結合させ、内層を形成する凝集体の表面に樹脂被覆層を形成させる方法である。
外層を形成させる場合に用いる樹脂微粒子は、凝集体よりも粒径が小さく樹脂成分を主体とする粒子である。この樹脂微粒子は、重合体で構成された粒子であれば特に制限はない。ただし、外層の厚みがコントロールできるという観点から、上述した重合体一次粒子、凝集体、又は、前記の凝集体を融合した融合粒子と同様の樹脂微粒子を用いることが好ましい。なお、これらの重合体一次粒子等と同様の樹脂微粒子は、内層に使用する凝集体における重合体一次粒子等と同様に製造することができる。
また、樹脂微粒子の使用量は任意であるが、トナー粒子に対して通常1重量%以上、好ましくは5重量%以上、また、通常50重量%以下、好ましくは25重量%以下の範囲で用いることが望ましい。
さらに、凝集体に対する樹脂微粒子の固着又は融合を効果的に行なうためには、樹脂微粒子の粒径は、通常は、0.04〜1μm程度のものが好ましく用いられる。
樹脂被覆層に用いられる重合体成分(樹脂成分)のガラス転移温度〔Tg〕としては、通常60℃以上、好ましくは70℃以上、また、通常110℃以下が望ましい。さらに、樹脂被覆層に用いられる重合体成分のガラス転移温度〔Tg〕は、重合体一次粒子のガラス転移温度〔Tg〕より5℃以上高いものであることが好ましく、10℃以上高いものであることがより好ましい。ガラス転移温度〔Tg〕が低すぎると、一般環境での保存が困難であり、また高すぎては充分な溶融性が得られないので好ましくない。
さらに、樹脂被覆層中にはポリシロキサンワックスを含有させることが好ましい。これにより、耐高温オフセット性の向上という利点を得ることができる。ポリシロキサンワックスの例を挙げると、アルキル基を有するシリコーンワックスなどが挙げられる。
ポリシロキサンワックスの含有量に制限は無いが、トナー中、通常0.01重量%以上、好ましくは0.05重量%以上、より好ましくは0.08重量%以上、また、通常2重量%以下、好ましくは1重量%以下、より好ましくは0.5重量%以下とする。樹脂被覆層中のポリシロキサンワックスの量が少なすぎると耐高温オフセット性が不十分となる可能性があり、多すぎると耐ブロッキング性が低下する可能性がある。
樹脂被覆相中にポリシロキサンワックスを含有させる方法は任意であるが、例えば、ポリシロキサンワックスをシードとして乳化重合を行ない、得られた樹脂微粒子と、内層を形成する凝集体とを、水系媒体中で反応あるいは結合させ、内層を形成する凝集体の表面にポリシロキサンワックスを含有する樹脂被覆層を形成させることにより含有させることが可能である。
<融合工程>
融合工程では、凝集体を加熱処理することにより、凝集体を構成する重合体の溶融一体化を行なう。
また、凝集体に樹脂被覆層を形成してカプセル化樹脂微粒子とした場合には、加熱処理をすることにより、凝集体を構成する重合体及びその表面の樹脂被覆層の融合一体化がなされることになる。これにより、顔料粒子は実質的に表面に露出しない形態で得られる。
融合工程の加熱処理の温度は、凝集体を構成する重合体一次粒子のガラス転移温度〔Tg〕以上の温度とする。また、樹脂被覆層を形成した場合には、樹脂被覆層を形成する重合体成分のガラス転移温度〔Tg〕以上の温度とする。具体的な温度条件は任意であるが、樹脂被覆層を形成する重合体成分のガラス転移温度〔Tg〕よりも、通常5(℃)以上高温であることが好ましい。その上限に制限は無いが、「樹脂被覆層を形成する重合体成分のガラス転移温度〔Tg〕よりも50(℃)高い温度」以下が好ましい。
なお、加熱処理の時間は処理能力、製造量にもよるが、通常0.5〜6時間である。
<洗浄・乾燥工程>
上述した各工程を液状媒体中で行なっていた場合には、融合工程の後、得られたカプセル化樹脂粒子を洗浄し、乾燥して液状媒体を除去することにより、トナーを得ることができる。洗浄及び乾燥の方法に制限は無く任意である。
<トナーの粒径に関する物性値>
本発明のトナーの体積平均粒径〔Dv〕に制限は無く、本発明の効果を著しく損なわない限り任意であるが、通常4μm以上、好ましくは5μm以上、また、通常10μm以下、好ましくは8μm以下である。トナーの体積平均粒径〔Dv〕が小さすぎると画質の安定性が低下する可能性があり、大きすぎると解像度が低下する可能性がある。
また、本発明のトナーは、体積平均粒径〔Dv〕を個数平均粒径〔Dn〕で除した値〔Dv/Dn〕が、通常1.0以上、また、通常1.25以下、好ましくは1.20以下、より好ましくは1.15以下であることが望ましい。〔Dv/Dn〕の値は、粒度分布の状態を表わし、この値が1.0に近い方ほど粒度分布がシャープであることを表わす。粒度分布がシャープであるほど、トナーの帯電性が均一となるので望ましい。
さらに、本発明のトナーは、粒径25μm以上の体積分率が、通常1%以下、好ましくは0.5%以下、より好ましくは0.1%以下、更に好ましくは0.05%以下である。この値は小さいほど好ましい。これは、トナーに含まれる粗粉の割合が少ないことを意味しており、粗粉が少ないと、連続現像の際のトナーの消費量が少なく、画質が安定するので好ましいのである。なお、粒径25μm以上の粗粉は全く存在しないのが最も好ましいが、実際の製造上は困難であり、通常は0.005%以下にしなくとも構わない。
また、本発明のトナーは、粒径15μm以上の体積分率が、通常2%以下、好ましくは1%以下、より好ましくは0.1%以下である。粒径15μm以上の粗粉も全く存在しないのが最も好ましいが、実際の製造上は困難であり、通常は0.01%以下にしなくとも構わない。
さらに、本発明のトナーは、粒径5μm以下の個数分率が、通常15%以下、好ましくは10%以下であることが、画像カブリの改善に効果があるので、望ましい。
ここで、トナーの体積平均粒径〔Dv〕、個数平均粒径〔Dn〕、体積分率、個数分率などは、以下のようにして測定することができる。即ち、トナーの粒子径の測定装置としては、コールターカウンターのマルチサイザーII型あるいはIII型(ベックマン・コール
ター社製)を用い、個数分布・体積分布を出力するインターフェイス及び一般的なパーソナルコンピューターを接続して使用する。また、電解液はアイソトンIIを用いる。測定法としては、前記電解液100〜150mL中に分散剤として界面活性剤(好ましくはアルキルベンゼンスルホン酸塩)を0.1〜5mL加え、更に測定試料(トナー)を2〜20mg加える。そして、試料を懸濁した電解液は超音波分散器で約1〜3分間分散処理を行ない、前記コールターカウンターのマルチサイザーII型あるいはIII型により、100μ
mアパーチャーを用いて測定する。このようにしてトナーの個数及び体積を測定して、それぞれ個数分布、体積分布を算出し、それぞれ、体積平均粒径〔Dv〕、個数平均粒径〔
Dn〕を求める。
<トナーの分子量に関する物性値>
本発明のトナーのTHF可溶分のゲルパーミエーションクロマトグラフィー(以下、GPCと略す場合がある)におけるピーク分子量のうち少なくとも1つは、通常1万以上、好ましくは2万以上、より好ましくは3万以上であり、通常15万以下、好ましくは10万以下、より好ましくは7万以下であることが好ましい。なお、THFはテトラヒドロフランのことを言う。ピーク分子量が何れも前記範囲より低い場合は、非磁性一成分現像方式における機械的耐久性が悪化する場合があり、ピーク分子量が何れも前記範囲より高い場合は、低温定着性や定着強度が悪化する場合がある。
さらに、トナーのTHF不溶分は後述するセライト濾過による重量法で測定した場合、通常10%以上、好ましくは20%以上であり、また、通常60%以下、好ましくは50%以下である。前記範囲にない場合は、機械的耐久性と低温定着性の両立が困難となる場合がある。
なお、本発明のトナーのピーク分子量は、測定装置:HLC−8120GPC(東ソー株式会社製)を用いて次の条件で測定される。
即ち、40℃のヒートチャンバー中でカラムを安定化させ、この温度におけるカラムに、溶媒としてテトラヒドロフラン(THF)を毎分1mL(ミリリットル)の流速で流す。次いで、トナーをTHFに溶解後0.2μmフィルターで濾過し、その濾液を試料として用いる。
測定は、試料濃度(樹脂の濃度)を0.05〜0.6重量%に調整した樹脂のTHF溶液を測定装置に50〜200μL注入して行なう。試料(トナー中の樹脂成分)の分子量測定にあたっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出する。検量線作成用の標準ポリスチレン試料としては、例えば、Pressure Chemical Co.製あるいは、東洋ソーダ工業社製の、分子量が6×10、2.1×10、4×10、1.75×10、5.1×10、1.1×10、3.9×10、8.6×10、2×10、4.48×10のものを用い、少なくとも10点程度の標準ポリスチレン試料を用いるのが適当である。また、検出器にはRI(屈折率)検出器を用いる。
さらに、前記の測定方法で用いるカラムとしては、10〜2×10の分子量領域を適確に測定するために、市販のポリスチレンゲルカラムを複数組合せるのが良く、例えば、Waters社製のμ−styragel 500,103,104,105の組合せや、昭和電工社製のshodex KA801,802,803,804,805,806,807の組合せが好ましい。
また、トナーのテトラヒドロフラン(THF)不溶分の測定は、以下のようにして行なうことができる。即ち、試料(トナー)1gをTHF100gに加え25℃で24時間静置溶解し、セライト10gを用いて濾過し、濾液の溶媒を留去してTHF可溶分を定量し、1gから差し引いてTHF不溶分を算出することができる。
<トナーの軟化点及びガラス転移温度>
本発明のトナーの軟化点〔Sp〕に制限は無く、本発明の効果を著しく損なわない限り任意であるが、低エネルギーで定着する観点から、通常150℃以下、好ましくは140℃以下である。また、耐高温オフセット性、耐久性の点からは、軟化点は、通常80℃以上、好ましくは100℃以上である。
なお、トナーの軟化点〔Sp〕は、フローテスターにおいて、試料1.0gをノズル1mm×10mm、荷重30kg、予熱時間50℃で5分、昇温速度3℃/分の条件下で測
定を行なったときの、フロー開始から終了までのストランドの中間点での温度として求めることができる。
また、本発明のトナーのガラス転移温度〔Tg〕に制限は無く、本発明の効果を著しく損なわない限り任意であるが、通常80℃以下、好ましくは70℃以下であると、低エネルギーで定着できるので望ましい。また、ガラス転移温度〔Tg〕は、通常40℃以上、好ましくは50℃以上であると、耐ブロッキング性の点で好ましい。
なお、トナーのガラス転移温度〔Tg〕は、示差走査熱量計において、昇温速度10℃/分の条件で測定した曲線の転移(変曲)開始部に接線を引き、2つの接線の交点の温度として求めることができる。
トナーの軟化点〔Sp〕及びガラス転移温度〔Tg〕は、トナーに含まれる重合体の種類および組成比に大きく影響を受ける。このため、トナーの軟化点〔Sp〕及びガラス転移温度〔Tg〕は、前記の重合体の種類及び組成を適宜最適化することにより調整することができる。また、重合体の分子量、ゲル分、ワックス等の低融点成分の種類および配合量によっても、調整することが可能である。
<トナー中のワックス>
本発明のトナーがワックスを含有する場合、トナー粒子中のワックスの分散粒径は、平均粒径として、通常0.1μm以上、好ましくは0.3μm以上であり、また、上限は通常3μm以下、好ましくは1μm以下である。分散粒径が小さすぎるとトナーの耐フィルミング性改良の効果が得られない可能性があり、また、分散粒径が大きすぎるとトナーの表面にワックスが露出しやすくなり帯電性や耐熱性が低下する可能性がある。
なお、ワックスの分散粒径は、トナーを薄片化して電子顕微鏡観察する方法の他、ワックスが溶解しない有機溶剤等でトナーの重合体を溶出した後にフィルターで濾過し、フィルター上に残ったワックス粒子を顕微鏡により計測する方法などにより確認することができる。
また、トナーに占めるワックスの割合は本発明の効果を著しく損なわない限り任意であるが、通常0.05重量%以上、好ましくは0.1重量%以上であり、また通常20重量%以下、好ましくは15重量%以下である。ワックスが少なすぎると定着温度幅が不十分となる可能性があり、多すぎると装置部材を汚染して画質が低下する可能性がある。
<外添微粒子>
トナーの流動性、帯電安定性、高温下での耐ブロッキング性などを向上させるために、トナー粒子表面に外添微粒子を添着させてもよい。
外添微粒子をトナー粒子表面に添着させる方法としては、例えば、上述したトナーの製造方法において、液状媒体中で二次凝集体と外添微粒子を混合した後、加熱してトナー粒子上に外添微粒子を固着させる方法;二次凝集体を液状媒体から分離、洗浄、乾燥させて得られたトナー粒子に乾式で外添微粒子を混合又は固着させる方法などが挙げられる。
乾式でトナー粒子と外添微粒子とを混合する場合に用いられる混合機としては、例えば、ヘンシェルミキサー、スーパーミキサー、ナウターミキサー、V型ミキサー、レディゲミキサー、ダブルコーンミキサー、ドラム型ミキサーなどが挙げられる。中でもヘンシェルミキサー、スーパーミキサー等の高速攪拌型の混合機を用い、羽根形状、回転数、時間、駆動−停止の回数等を適宜設定して均一に攪拌、混合することにより混合することが好ましい。
また、乾式でトナー粒子と外添微粒子を固着させる場合に用いられる装置としては、圧縮剪断応力を加えることの出来る圧縮剪断処理装置や、粒子表面を溶融処理することのできる粒子表面溶融処理装置などが挙げられる。
圧縮剪断処理装置は、一般に、間隔を保持しながら相対的に運動するヘッド面とヘッド面、ヘッド面と壁面、あるいは壁面と壁面によって構成される狭い間隙部を有し、被処理粒子が該間隙部を強制的に通過させられることによって、実質的に粉砕されることなく、粒子表面に対して圧縮応力及び剪断応力が加えられるように構成されている。このような圧縮剪断処理装置としては、例えば、ホソカワミクロン社製のメカノフュージョン装置等が挙げられる。
一方、粒子表面溶融処理装置は、一般に、熱風気流等を利用し、母体微粒子と外添微粒子との混合物を母体微粒子の溶融開始温度以上に瞬時に加熱し外添微粒子を固着できるように構成される。このような粒子表面溶融処理装置としては、例えば、日本ニューマチック社製のサーフュージングシステム等が挙げられる。
また、外添微粒子としては、この用途に用い得ることが知られている公知のものが使用できる。例えば、無機微粒子、有機微粒子などが挙げられる。
無機微粒子としては、例えば、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウム、炭化タンタル、炭化ニオブ、炭化タングステン、炭化クロム、炭化モリブデン、炭化カルシウム等の炭化物、窒化ホウ素、窒化チタン、窒化ジルコニウム、窒化珪素等の窒化物、ホウ化ジルコニウム等のホウ化物、シリカ、コロイダルシリカ、酸化チタン、酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化銅、酸化ジルコニウム、酸化セリウム、タルク、ハイドロタルサイト等の酸化物や水酸化物、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ストロンチウム、チタン酸バリウム等の各種チタン酸化合物、リン酸三カルシウム、リン酸二水素カルシウム、リン酸一水素カルシウム、リン酸イオンの一部が陰イオンによって置換された置換リン酸カルシウム等のリン酸化合物、二硫化モリブデン等の硫化物、フッ化マグネシウム、フッ化炭素等のフッ化物、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の金属石鹸、滑石、ベントナイト、導電性カーボンブラックをはじめとする種々のカーボンブラック等を用いることができる。さらには、マグネタイト、マグへマタイト、マグネタイトとマグヘマタイトの中間体等の磁性物質などを用いてもよい。
一方、有機微粒子としては、例えば、スチレン系樹脂、ポリアクリル酸メチルやポリメタクリル酸メチル等のアクリル系樹脂、エポキシ系樹脂、メラミン系樹脂、テトラフロロエチレン樹脂、トリフロロエチレン樹脂、ポリ塩化ビニル、ポリエチレン、ポリアクリロニトリルなどの微粒子を用いることができる。
これら外添微粒子の中では、特に、シリカ、酸化チタン、アルミナ、酸化亜鉛、カーボンブラック等が好適に使用される。
なお、外添微粒子は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、これらの無機または有機微粒子の表面は、シランカップリング剤、チタネート系カップリング剤、シリコーンオイル、変性シリコーンオイル、シリコーンワニス、フッ素系シランカップリング剤、フッ素系シリコーンオイル、アミノ基や第4級アンモニウム塩基を有するカップリング剤等の処理剤によって疎水化などの表面処理が施されていてもよい。なお、処理剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
さらに、外添微粒子の数平均粒径は本発明の効果を著しく損なわない限り任意であるが、通常0.001μm以上、好ましくは0.005μm以上、また、通常3μm以下、好ましくは1μm以下であり、異なる平均粒径のものを複数配合してもよい。なお、外添微粒子の平均粒径は、電子顕微鏡観察やBET比表面積の値からの換算等により求めることができる。
また、トナーに対する外添微粒子の割合は本発明の効果を著しく損なわない限り任意である。ただし、トナーと外添微粒子との合計重量に対する外添微粒子の割合として、通常0.1重量%以上、好ましくは0.3重量%以上、より好ましくは0.5重量%以上、また、通常10重量%以下、好ましくは6重量%以下、より好ましくは4重量%以下が望ましい。外添微粒子が少なすぎると流動性、帯電安定性が不足する可能性があり、多すぎると定着性が悪化する可能性がある。
<トナーその他>
本発明のトナーの帯電特性は、負帯電性であっても、正帯電性であっても良く、用いる画像形成装置の方式に応じて設定することができる。なお、トナーの帯電特性は、帯電制御剤などのトナー母粒子構成物の選択および組成比、外添微粒子の選択および組成比等により調整することができる。
また、本発明のトナーは、一成分現像剤として用いることも、キャリアと混合して二成分現像剤として用いることも可能である。
二成分現像剤として用いる場合には、トナーと混合して現像剤を形成するキャリアとしては、例えば、公知の鉄粉系、フェライト系、マグネタイト系キャリア等の磁性物質、または、それらの表面に樹脂コーティングを施したものや磁性樹脂キャリアを用いることができる。
キャリアの被覆樹脂としては、例えば、一般的に知られているスチレン系樹脂、アクリル樹脂、スチレンアクリル共重合樹脂、シリコーン系樹脂、変性シリコーン系樹脂、フッ素系樹脂等が利用できるが、これらに限定されるものではない。
また、キャリアの平均粒径は特に制限はないが、10〜200μmの平均粒径を有するものが好ましい。これらのキャリアは、トナー1重量部に対して5〜100重量部の割合で用いるのが好ましい。
なお、電子写真方式によるフルカラー画像の形成は、マゼンタ、シアン、イエローの各カラートナーおよび必要に応じてブラックトナーを用いて常法により実施することができる。
<本発明のトナーを用いる利点>
本発明の感光体は、上述した特定の円形度のトナーを用いて画像形成しても、カブリの発現しにくい高品質の画像を得ることができる。以下、この点について、従来の技術と対比しながら説明する。
複写機やプリンターでは、画像欠陥が少ないという画像形成上の安定性に加えて、更なる高解像度や高階調性能などの高画質化が求められている。これを達成するため、平均粒径が3〜8μm程度で、粒度分布の狭いトナーが用いられるようになってきた。
従来からトナーは、主としてバインダー樹脂と着色剤とを均一になるまで溶融混練したのち粉砕する溶融混練粉砕法により製造されている。しかしながら、溶融混練粉砕法では、高画質化に対応できるトナーを効率よく製造することが難しい。
そこで、水系媒体中でトナー粒子を生成する、いわゆる重合法トナーが提案されている。例えば、特開平5−88409号公報には懸濁重合法トナーが開示されている。また、下記の特開平11−143125号公報には乳化重合凝集法トナーが開示されている。特に、乳化重合凝集法は、液状媒体中でポリマー樹脂微粒子と着色剤とを凝集させてトナーを製造する方法であり、凝集条件を制御することによってトナーの粒径および円形度を調整することができるので、トナーに要求されるとされている各種性能を最適化しやすいと
いう利点がある。
また、離型性、低温定着性、高温オフセット性、耐フィルミング性などを改良するために、トナーに低軟化点物質(いわゆるワックス)を含有させる方法が提案されている。溶融混練粉砕法では、トナーに含まれるワックスの量を増やすのは難しく、バインダー樹脂に対して5%程度が限界とされている。それに対して、重合トナーでは、特開平5−88409号公報及び特開平11−143125号公報に記載のごとく、低軟化点物質を多量(5〜30%)に含有することができる。
しかしながら、特開平5−88409号公報及び特開平11−143125号公報に記載のようなトナーを用いて画像形成すると、高画質となる一方で、画像のカブリ現象も発現しやすくなるために、高い解像度や高い階調性能と低いカブリとを、高いレベルで両立することは困難であった。
これに対し、本発明に係る電子写真感光体で画像形成を行なう場合に本発明のトナーを用いるようにすれば、高解像度、高階調性などに代表される高品質な画像であって、しかも低いカブリであることなどに代表される欠陥の少ない画像を、同時に達成した高品質の画像を形成することができる。
<導電性支持体>
導電性支持体としては、例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や、金属、カーボン、酸化錫等の導電性粉体を添加して導電性を付与した樹脂材料や、アルミニウム、ニッケル、ITO(酸化インジウム酸化錫合金)等の導電性材料をその表面に蒸着または塗布した樹脂、ガラス、紙等が主として使用される。形態としては、ドラム状、シート状、ベルト状等のものが用いられる。金属材料の導電性支持体の上に、導電性・表面性等の制御のためや欠陥被覆のため、適当な抵抗値を持つ導電性材料を塗布したものでもよい。
導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化処理を施してから用いてもよい。陽極酸化処理を施した場合、公知の方法により封孔処理を施すのが望ましい。支持体表面は、平滑であってもよいし、特別な切削方法を用いたり、研磨処理を施したりすることにより、粗面化されていてもよい。また、支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものでもよい。また、安価化のためには、切削処理を施さず、引き抜き管をそのまま使用することも可能である。
導電性支持体と感光層との間には、接着性・ブロッキング性等の改善のため、下引き層を設けてもよい。下引き層としては、樹脂、樹脂に金属酸化物等の粒子を分散したもの等が用いられる。
下引き層に用いる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子があげられる。一種類の粒子のみを用いてもよいし複数の種類の粒子を混合して用いてもよい。これらの金属酸化物粒子の中で、酸化チタンおよび酸化アルミニウムが好ましく、特に酸化チタンが好ましい。酸化チタン粒子は、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、またはステアリン酸、ポリオール、シリコーン等の有機物による処理を施されていてもよい。酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。複数の結晶状態のものが含まれていてもよい。
また、金属酸化物粒子の粒径としては、種々のものが利用できるが、中でも特性および液の安定性の面から、SEM写真により観察される任意の10個の粒子の最大径の平均値
を平均一次粒径とした場合に、その平均一次粒径は、10nm以上100nm以下が好ましく、特に好ましくは、10nm以上50nm以下である。
下引き層は、金属酸化物粒子をバインダー樹脂に分散した形で形成するのが望ましい。下引き層に用いられるバインダー樹脂としては、フェノキシ、エポキシ、ポリビニルピロリドン、ポリビニルアルコール、カゼイン、ポリアクリル酸、セルロース類、ゼラチン、デンプン、ポリウレタン、ポリイミド、ポリアミド等が単独あるいは硬化剤とともに硬化した形で使用できるが、中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド等は良好な分散性、塗布性を有するため好ましい。
下引き層に用いられるバインダー樹脂に対する無機粒子の配合比は任意に選べるが、バインダー樹脂全体に対して、10重量%から500重量%の範囲で使用することが、分散液の安定性、塗布性の面で好ましい。
下引き層の膜厚は、任意に選ぶことができるが、感光体特性および塗布性から、0.1μmから20μmの範囲が好ましい。また下引き層には、公知の酸化防止剤等が含有されていてもよい。
<感光層>
本発明に係る電子写真感光体が有する感光層の構成は、電荷輸送物質を含有する電荷輸送層を有する、公知の電子写真感光体に適用可能な如何なる構成も採用することが可能であるが、電荷発生物質を含有する電荷発生層と、電荷輸送物質を含有する電荷輸送層を積層してなる複数の層からなる感光層を有する、いわゆる積層型感光体等があげられる。より好ましくは、導電性支持体上に電荷発生層と電荷輸送層をこの順に積層した順積層型感光体が好ましい。
<電荷発生物質>
電荷発生物質としては、例えば、セレンおよびその合金、硫化カドミウム、その他無機系光導電材料;フタロシアニン顔料、アゾ顔料、ジチオケトピロロピロール顔料、スクアレン(スクアリリウム)顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料等の有機顔料等、各種光導電材料が使用でき、特に有機顔料、さらには、フタロシアニン顔料、アゾ顔料が好ましい。
これらの光導電材料の微粒子を、例えば、ポリエステル樹脂、ポリビニルアセテート、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリエステル、ポリカーボネート
、ポリビニルアセトアセタール、ポリビニルプロピオナール、ポリビニルブチラール、
フェノキシ樹脂、エポキシ樹脂、ウレタン樹脂、セルロースエステル、セルロースエーテル等の各種バインダー樹脂で結着した形で使用される。積層型感光体の光導電材料の場合の使用比率は、バインダー樹脂100重量部に対して、30重量部から500重量部の範囲より使用され、その膜厚は、通常0.1μmから1μmの範囲であり、好ましくは0.15μmから0.6μmの範囲が好適である。
[フタロシアニン化合物]
電荷発生物質としてフタロシアニン化合物を用いる場合、具体的には、無金属フタロシアニン、銅、インジウム、ガリウム、錫、チタン、亜鉛、バナジウム、シリコン、ゲルマニウム等の金属、またはその酸化物、ハロゲン化物、水酸化物、アルコキシド等の配位したフタロシアニン類の各種結晶型が使用される。特に、感度の高い結晶型であるX型、τ型無金属フタロシアニン、A型(別称β型)、B型(別称α型)、D型(別称Y型)等のオキシチタニウムフタロシアニン、バナジルフタロシアニン、クロロインジウムフタロシアニン、II型等のクロロガリウムフタロシアニン、V型等のヒドロキシガリウムフタロシアニン、G型、I型等のμ−オキソ−ガリウムフタロシアニン二量体、II型等のμ−オキソ−アルミニウムフタロシアニン二量体が好適である。
これらのフタロシアニン化合物のうち、A型(β型)、B型(α型)、および、CuKα特性X線のブラッグ角(2θ±0.2゜)が、27.3゜に明瞭なピークを示すことを特徴とするD型(Y型)オキシチタニウムフタロシアニン、II型クロロガリウムフタロシアニン、V型ヒドロキシガリウムフタロシアニン、G型μ−オキソ−ガリウムフタロシアニン二量体等が特に好ましい。中でも、CuKα特性X線に対するX線回折スペクトルのブラッグ角(2θ±0.2゜)が、9.5°、24.1°、27.3°にピークを有するD型のオキシチタニウムフタロシアニンが、種々の電荷輸送物質との組み合わせ上の相性に優れているという点でより好ましい。
この中でも、本発明においては、D型オキシチタニウムフタロシアニンが、好ましく、特に硫酸による酸ペースト処理をへて、作製されたものが好ましい。D型オキシチタニウムフタロシアニン中に含有されるクロロオキシチタニウムフタロシアニンは少ないものが好ましく、特開2001−115054号公報に記載の手法(マススペクトル法)の強度比において、クロロオキシチタニウムフタロシアニンが、オキシチタニウムフタロシアニンに対する強度比で、0.005以下にあるものが、好ましい。また、非ハロゲン化合物を使用して、合成された原料を使用することが好ましい。
フタロシアニン化合物は、単一の化合物のもののみを用いてもよいし、いくつかの化合物の混合あるいは混晶状態のものであっても構わない。ここでのフタロシアニン化合物、および結晶状態における混合状態としては、それぞれの構成要素を単独で製造した後に混合して用いてもよいし、合成、顔料化、結晶化等のフタロシアニン化合物の製造・処理工程中において、混合状態を生じせしめたものでもよい。このような処理としては、酸ペースト処理・磨砕処理・溶剤処理等が知られている。混晶状態を生じさせるためには、特開平10−48859号公報に記載の方法のように、2種類の結晶を混合後に機械的に摩砕、不定形化した後に、溶剤処理によって特定の結晶状態に変換する方法があげられる。
[[化学的処理後、有機溶媒に接触して得られるオキシチタニウムフタロシアニン]]
本発明に係る電子写真感光体の電荷発生層は、特定のオキシチタニウムフタロシアニンを含有することが好ましい。当該オキシチタニウムフタロシアニンは、フタロシアニン前駆体を、化学的処理後に有機溶媒に接触して得られる。以下、かかるオキシチタニウムフタロシアニンを「特定オキシチタニウムフタロシアニン」という。
本発明において化学的処理とは、アモルファスオキシチタニウムフタロシアニン、低結晶性オキシチタニウムフタロシアニンを調製する段階で用いられる処理である。化学的処理とは、単に物理的な力(例えば、機械的磨砕等)を用いてアモルファスオキシチタニウムフタロシアニン、または低結晶性オキシチタニウムフタロシアニンを得る方法ではなく、溶解、反応等の化学的現象を用いてアモルファス、もしくは低結晶性オキシチタニウムフタロシアニンを得る処理方法のことである。
化学的処理の具体的な例としては、フタロシアニン前駆体を強酸中に溶解して行うアシッドペースティング法(本明細書においては、「アシッドペースティング法」を、単に「アシッドペースト法」という場合がある。)、強酸中で分散状態を経るアシッドスラリー法、ジクロロチタニルフタロシアニンにフェノール、アルコールを付加させた後に脱離させてオキシチタニウムフタロシアニンを得る方法等の化学的処理方法があげられ、より安定的なアモルファス、低結晶性オキシチタニウムフタロシアニンを得るには、アシッドペースト法またはアシッドスラリー法が好ましく、アシッドペースト法がより好ましい。
アシッドペースト法、アシッドスラリー法とは、顔料を強酸に溶解もしくは、懸濁、分散させた溶液を調製し、その調製した溶液を、強酸と均一に混じり、顔料がほとんど溶解
しない媒体中(例えば、オキシチタニウムフタロシアニンの場合は、例えば、水、メタノール、エタノール、プロパノール、エチレングリコール等のアルコール類;エチレングリコールモノメチエーテル、エチレングリコールジエチルエーテル、テトラヒドロフラン等のエーテル類等)に放出し、再顔料化させることにより顔料を改質する方法である。
アシッドスラリー法、アシッドペースト法には濃硫酸、有機スルホン酸、有機ホスホン酸、トリハロゲン化酢酸等の強酸が使用される。これら強酸は、強酸単独、もしくは強酸同士の混合使用、または強酸と有機溶媒の組み合わせ等で用いることが可能である。強酸の種類はフタロシアニン前駆体の溶解性を考慮すると、トリハロゲン化酢酸、濃硫酸が好ましく、生産コストを考慮すると、濃硫酸がより好ましい。
濃硫酸の濃度は、フタロシアニン前駆体の溶解性を考慮すると、90重量%以上の濃硫酸が好ましく、さらに濃硫酸の含有量が低いと生産効率が低下することから、より好ましくは95重量%以上の濃硫酸である。
強酸にフタロシアニン前駆体を溶解させる温度は、公知文献に掲載されている温度条件で溶解させることが可能であるが、温度が高すぎると前駆体のフタロシアニン環が開環し、分解してしまうことから、5℃以下が好ましく、得られる電子写真感光体に及ぼす影響を考慮すると0℃以下がより好ましい。
強酸は任意の量で用いることが可能であるが、少なすぎるとフタロシアニン前駆体の溶解性が悪くなることから、強酸の量は、フタロシアニン前駆体1重量部に対して5重量部以上、溶液中の固形分濃度が高すぎると撹拌効率が低下することから15重量部以上が好ましく、より好ましくは20重量部以上である。また、強酸使用量が多すぎると、廃棄酸量が増えることから、100重量部以下が好ましく、また生産効率を考慮すると50重量部以下がより好ましい。
得られたフタロシアニン前駆体の酸溶液を放出する媒体の種類としては、例えば、水;メタノール、エタノール、1−プロパノール、2−プロパノール等の1価アルコール;エチレングリコール、グリセリン等の多価アルコール;テトラヒドロフラン、ジオキサン、ジオキソラン、テトラヒドロピラン等の環状エーテル;エチレングリコールモノメチルエーテル、エチレングリコールジエチルエーテル等の鎖状エーテル等があげられ、公知の方法同様に、放出媒体は単一種で用いても、2種類以上を混合して使用してもよい。用いる媒体種により再顔料化された際の粒子形状、結晶状態等が変化し、この履歴が後に得られる最終結晶の電子写真感光体特性に影響を与えることから、水、または、メタノール、エタノール、1−プロパノール、2−プロパノール等の低級アルコール類が好ましく、生産性、コストの面から水がより好ましい。
フタロシアニン前駆体の濃硫酸溶液を放出媒体に放出し、再顔料化されたオキシチタニウムフタロシアニンは、ウエットケーキとして濾別されるが、このウエットケーキは放出媒体中に存在する濃硫酸の硫酸イオン等の不純物を多く含むことから、再顔料化された後に、洗浄媒体で洗浄を行う。洗浄を行う媒体は、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸水素ナトリウム水溶液、炭酸ナトリウム水溶液、炭酸カリウム水溶液、酢酸ナトリウム水溶液、アンモニア水溶液等のアルカリ性水溶液、希塩酸、希硝酸、希酢酸等の酸性水溶液、イオン交換水等の水等があげられるが、顔料中に残存したイオン性物質は電子写真感光体特性に悪影響を与える場合が多いことから、イオン交換水等のイオン性の物質を取り除いた水が好ましい。
通常、アシッドペースト法やアシッドスラリー法により得られるオキシチタニウムフタロシアニンは明確な回折ピークを有さないアモルファスか、ピークは有するが、その強度が非常に弱く、半値幅の非常に大きいピークを有する低結晶性のものである。
通常、アシッドペースト法やアシッドスラリー法により得られたアモルファスオキシチタニウムフタロシアニン、または低結晶性オキシチタニウムフタロシアニンを有機溶媒に接触させることにより、本発明の電子写真感光体に用いることができるCuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)9.5°、24.1°および27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニン、または、9.5°、9.7°、24.2°および27.2°に主たる回折ピークを有する「特定オキシチタニウムフタロシアニン」を得ることができる。
特定オキシチタニウムフタロシアニンは、化学的処理後、有機溶媒に接触することにより得られるが、化学的処理後のアモルファスオキシチタニウムフタロシアニン、および低結晶性オキシチタニウムフタロシアニンを纏めて「低結晶性フタロシアニン類」という。
本発明において「低結晶性フタロシアニン類」とは、粉末X線回折(X−ray diffraction:以下「XRD」と省略する場合がある。)スペクトルにおいて、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)0〜40°の範囲内に、半値幅が0.30°以下のピークを有さないフタロシアニン類をいう。この半値幅が小さ過ぎると、固体中でフタロシアニン分子がある程度一定の規則性や長期的秩序を有している状態になっており、有機溶媒に接触することにより、特定オキシチタニウムフタロシアニンを得る際に、結晶型の制御性が低下する場合がある。このため、本発明において用いる低結晶性フタロシアニン類は、その半値幅が、通常0.35°以下、さらには0.40°以下、特に0.45°以下のピークを有さないものであることが好ましい。
なお、本明細書において、フタロシアニン類の粉末X線回折スペクトルの測定、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)の決定、およびピーク半値幅の算出は、以下の条件で行なうものとする。
粉末X線回折スペクトルの測定装置としては、CuKα(CuKα1+CuKα2)線をX線源とした集中光学系の粉末X線回折計(例えばPANalytical社製PW1700)を使用する。粉末X線回折スペクトルの測定条件は、走査範囲(2θ)3.0〜40.0°、スキャンステップ幅0.05°、走査速度3.0°/min、発散スリット1 °、散乱スリット1°、受光スリット0.2mmとする。
ピーク半値幅は、プロファイルフィッティング法により算出することができる。プロファイルフィッティングは、例えばMDI社製粉末X線回折パターン解析ソフトJADE5.0+を用いて行なうことができる。その算出条件は、以下の通りである。まず、バックグランドは、全測定範囲(2θ=3.0〜40.0°)から理想的な位置に固定する。フィッティング関数としては、CuKα2の寄与を考慮したPeason−VII関数を用いる。フィッティング関数の変数としては、回折角(2θ)、ピーク高さ、およびピーク半値幅(βo)の3つを精密化する。CuKα2の影響を除去し、CuKα1由来の回折角( 2θ)、ピーク高さ、およびピーク半値幅(βo)を計算する。そして、非対称は0に、形定数は1.5に固定する。
上記のプロファイルフィッティング法により算出したピーク半値幅(β)を、同測定条件、同プロファイルフィッティング条件により算出した標準Si(NIST Si 640b)の111ピーク(2θ=28.442°)のピーク半値幅(βSi)に より、下式に従って補正することにより、試料由来のピーク半値幅(β)が求められる。
Figure 2008299214
なお、アモルファスオキシチタニウムフタロシアニンと、低結晶性オキシチタニウムフタロシアニンとの境界は明確ではないが、本発明においては何れを原料としても、特定オキシチタニウムフタロシアニンを得ることが可能である。
後述のように、特定オキシチタニウムフタロシアニンの結晶は、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)9.5°、24.1°および27.2°、または、9.5°、9.7°、24.2°および27.2°に主たる回折ピークを有するが、27.2°付近にピークを有する低結晶性フタロシアニン類は、上記特定オキシチタニウムフタロシアニンとある程度類似した規則性を有しており、上記特定結晶型への結晶型制御性に優れる。この場合における低結晶性フタロシアニン類は、その半値幅が通常0.30°以下のピークを有さないものであり、好ましくは0.35°以下のピークを有さないものであり、より好ましくは、その半値幅が0.40°以下のピークを有さないものであり、さらに好ましくは、その半値幅が0.45°以下のピークを有さないものである。
一方、27.2°付近にピークを有さない低結晶性フタロシアニン類を、特定オキシチタニウムフタロシアニンの原料として用いる場合には、上記特定結晶型を有する特定オキシチタニウムフタロシアニンへの結晶型制御性が低いことから、より結晶性が低いことが望ましい。この場合における低結晶性フタロシアニンは、その半値幅が通常0.30°以下のピークを有さないものであり、好ましくはその半値幅が0.50°以下のピークを有さないものであり、より好ましくはその半値幅が0.70°以下のピークを有さないものであり、さらに好ましくはその半値幅が0.90°以下のピークを有さないものである。
通常、低結晶性フタロシアニン類と有機溶媒との接触は水の存在下で行われる。水は、アシッドペースト法、アシッドスラリー法により得られた含水ケーキ中に含まれる水を用いても、含水ケーキ中に含まれる水以外にさらに後から水を添加して用いてもよい。また、アシッドペースト法、アシッドスラリー法後に得られた含水ケーキを一旦乾燥させ、結晶変換時に新たに水を追加して用いてもよいが、乾燥させてしまうと顔料と水との親和性が低下することから、乾燥させずにアシッドペースト法、アシッドスラリー法により得られた含水ケーキ中に含まれる水を用いるか、または含水ケーキ中に含まれる水にさらに後から水を添加することが好ましい。
結晶変換に用いることができる溶媒としては、水と相溶性のある溶媒、水と非相溶の溶媒のいずれも可能である。水と相溶性のある溶媒の好適な例としては、例えば、テトラヒドロフラン、1,4−ジオキサン、および1,3−ジオキソラン等の環状エーテルがあげられる。また、水と非相溶の溶媒の好適な例としては、例えば、トルエン、ナフタレン、およびメチルナフタレン等の芳香族炭化水素系溶媒、モノクロロベンゼン、ジクロロベンゼン、クロロトルエン、ジクロロトルエン、ジクロロフルオロベンゼン、および1,2−ジクロロエタン等のハロゲン化炭化水素系溶媒、ニトロベンゼン、1,2−メチレンジオキシベンゼン、およびアセトフェノン等の置換芳香族系溶媒があげられ、中でも環状エーテル、モノクロロベンゼン、1,2−ジクロロベンゼン、ジクロロフルオロベンゼン、ジクロロトルエン等のハロゲン化炭化水素系溶媒、および芳香族炭化水素系溶媒が得られた結晶の電子写真特性が良好であり好ましく、テトラヒドロフラン、モノクロロベンゼン、1,2−ジクロロベンゼン、2,4−ジクロロトルエン、ジクロロフルオロベンゼン、トルエン、およびナフタレンが、得られた結晶の分散時の安定性という点でより好ましい。
結晶変換後得られた結晶は、乾燥工程を行うことになるが、乾燥方法は、例えば、送風乾燥、加熱乾燥、真空乾燥、および凍結乾燥等の公知の方法で乾燥することが可能である。
前記製造法により得られた特定オキシチタニウムフタロシアニンの結晶は、CuKα特
性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)9.5°、24.1°および27.2°、または、9.5°、9.7°、24.2°および27.2°に主たる回折ピークを有する結晶である。他の回折ピークとしては、26.2°付近にピークを有する結晶は分散時の結晶安定性に劣ることから、26.2°付近にはピークを有さない結晶であることが好ましい。中でも、7.3°、9.5°、11.6°、14.2°、18.0°、24.1°および27.2°、または、7.3°、9.5°、9.7°、11.6°、14.2°、18.0°、24.2°および27.2°に主たる回折ピークを有する結晶が電子写真感光体として用いた場合の暗減衰、残留電位の観点からより好ましい。なお、ブラック角は、2θ±0.2°で示される通り、±0.2°の誤差を有する。このため、例えば、「ブラッグ角(2θ±0.2°)9.5°」という場合は、9.3〜9.7°の範囲を意味している。この誤差範囲は、他の角度においても同様である。
[アゾ化合物]
電荷発生物質としてアゾ化合物を使用する場合には、各種公知のビスアゾ顔料、トリスアゾ顔料が好適に用いられる。本発明で好適な、アゾ化合物としては、オキサジアゾール環構造を持つ化合物も好ましい。好適なアゾ化合物の具体例を下に記す。
Figure 2008299214
<バインダー樹脂>
感光層形成に際しては、膜強度確保のために、バインダー樹脂が使用される。この場合、感光層は前記の電荷発生物質等とともにバインダー樹脂を溶剤に溶解あるいは分散して得られる塗布液を、導電性支持体上(下引き層を有する場合は下引き層上)に塗布、乾燥して得ることができる。
特に好ましく使用されるバインダー樹脂としては、ポリカーボネート樹脂、ポリエステル樹脂等があげられる。これらは一般的に、ジオール成分の部分構造を有する。これらの構造を形成するジオール成分としては、ビスフェノール残基、ビフェノール残基等があげられる。
その具体例としては、ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、ビス−(4−ヒドロキシフェニル)メタン、ビス−(4−ヒドロキシ−3−メチルフェニル)メタン、1,1−ビス−(4−ヒドロキシフェニル)エタン、1,1−ビス−(4−ヒドロキシフェニル)プロパン、2,2−ビス−(4−ヒドロキシフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス−(4−ヒドロキシフェニル)ブタン、2,2−ビス−(4−ヒドロキシフェニル)ペンタン、2,2−ビス−(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス−(4−ヒドロキシフェニル)ヘキサン、2,2−ビス−(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス−(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス−(4−ヒドロキシフェニル)シクロヘキサン、ビス−(3−フェニル−4−ヒドロキシフェニル)メタン、1,1−ビス−(3−フェニル−4−ヒドロキシフェニル)エタン、1,1−ビス−(3−フェニル−4−ヒドロキシフェニル)プロパン、2,2−ビス−(3−フェニル−4−ヒドロキシフェニル)プロパン、1,1−ビス−(4−ヒドロキシ−3−メチルフェニル)エタン、2,2−ビス−(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−エチルフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−sec−ブチルフェニル)プロパン、1,1−ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)エタン、2,2−ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)シクロヘキサン、1,1−ビス−(4−ヒドロキシ−3,6−ジメチルフェニル)エタン、ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)メタン、1,1−ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)エタン、2,2−ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)プロパン、ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルメタン、1,1−ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルエタン、1,1−ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)シクロヘキサン、ビス−(4−ヒドロキシフェニル)フェニルメタン、1,1−ビス−(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス−(4−ヒドロキシフェニル)−1−フェニルプロパン、ビス−(4−ヒドロキシフェニル)ジフェニルメタン、ビス−(4−ヒドロキシフェニル)ジベンジルメタン、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビス−[フェノール]、4,4’−[1,4−フェニレンビスメチレン]ビス−[フェノール]、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビス−[2,6−ジメチルフェノール]、4,4’−[1,4−フェニレンビスメチレン]ビス−[2,6−ジメチルフェノール]、4,4’−[1,4−フェニレンビスメチレン]ビス−[2,3,6−トリメチルフェノール]、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビス−[2,3,6−トリメチルフェノール]、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビス−[2,3,6−トリメチルフェノール]、4,4'−ジヒドロキシジフェニルエーテル、4,4−ビス(4−ヒドロキシフェニル)吉草酸ステアリルエステル、4,4'−ジヒドロキシジフェニルスルホン、4,4'−ジヒドロキシジフェニルスルフィド、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルエーテル、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルホン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルフィド、フェノールフタルレイン、4,4'−[1,4−フェニレンビス(1−メチルビニリデン)]ビスフェノール、4,4'−[1,4−フェニレンビス(1−メチルビニリデン)]ビス[2−メチルフェノール]、(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)メタン、(2−ヒドロキシ−5−メチルフェニル)(4−ヒドロキシ−3−メチルフェニル)メタン、1,1−(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)エタン、2,2−(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)プロパン、1,1−(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)プロパン、等のビスフェノール成分、4,4’−ビフェノール、2,4’−ビフェノール、3,3’−ジメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジメチル−2,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジ−(t−ブチル)−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’,5,5’−テトラ−(t−ブチル)−4,4’−ジヒドロキシ−1,1’−ビフェニル、2,2’,3,3’,5,5’−ヘキサメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル等のビフェノール成分等があげられる。
これらの中で好ましい化合物としては、ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、ビス−(4−ヒドロキシフェニル)メタン、ビス−(4−ヒドロキシ−3−メチルフェニル)メタン、2,2−ビス−(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス−(4−ヒドロキシフェニル)エタン、2,2−ビス−(4−ヒドロキシフェニル)プロパン、2−ヒドロキシフェニル(4−ヒドロキシフェニル)メタン、2,2−(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)プロパン等のビスフェノール成分があげられる。
具体的に、好適に用いることのできるポリカーボネート樹脂のジオール成分(ビスフェノール、ビフェノール等)を以下に例示する。本例示は、本発明の趣旨を明確にするために行うものであり、本発明の趣旨に反しない限りは例示される構造に限定されるものではない。
Figure 2008299214
特に、本発明の効果を最大限に発揮するためには、以下の構造を示すジオール成分であることが好ましい。
Figure 2008299214
また、ポリエステル樹脂を形成する酸成分としては、以下の構造を有するものを用いることが好ましい。
Figure 2008299214
特に好ましい酸成分は、以下の構造を有するものである。
Figure 2008299214
これらのジカルボン酸成分やジオール成分は、複数種組み合わせて用いることも可能である。
バインダー樹脂の分子量は、低すぎると機械的強度が不足し、逆に分子量が高すぎると感光層形成のための塗布液の粘度が高すぎて生産性が低下するといった不具合が生じる場合があるため、ポリカーボネート樹脂、ポリエステル樹脂(ポリアリレート樹脂を含む)の場合、粘度平均分子量で10,000以上が好ましく、特に好ましくは20,000以上である。また、70,000以下が好ましく、特に好ましくは50,000以下である。粘度平均分子量は、実施例に記載されている測定方法で測定し、それによって定義される。
本発明の電子写真感光体が有する感光層は、ポリアリレート樹脂を含有していることも好ましい。特に、電荷輸送層がポリアリレート樹脂を含有していることが好ましい。該ポリアリレート樹脂は結着樹脂として機能する。ポリアリレート樹脂はポリエステルの一種であり、芳香族性を有する環を持つ2価アルコールと、芳香族性を有する環を持つ2価カルボン酸との縮合によりなるものである。本発明の電子写真感光体において、一般式(1)で表される電荷輸送物質と組み合わせて機械特性向上等のためには、ポリアリレート樹脂を使用することが好ましい。以下、本発明に用いられるポリアリレート樹脂について詳述する。
芳香族性を有する環を持つ2価アルコールとしては、通常ポリアリレート樹脂の製造に用いられる如何なるものも使用可能であるが、好ましくはビスフェノール類および/またはビフェノール類が用いられる。これらのビスフェノール類やビフェノール類はそれらが有する芳香族環上に各々独立に置換基を有していてもよい。より具体的には、アルキル基、アリール基、ハロゲン基またはアルコキシ基を有していることも好ましい。感光層用バインダー樹脂としての機械的特性と、感光層形成用塗布液を調製する際の溶媒に対する溶解性を勘案すると、アルキル基としては炭素数6以下のアルキル基が好ましく、より好ましくはメチル基、エチル基、プロピル基があげられる。アリール基としては芳香族環数が3以下のアリール基が好ましく、より好ましくはフェニル基、ナフチル基があげられる。ハロゲン基としてフッ素原子、塩素原子、臭素原子、ヨウ素原子等が好ましい。アルコキシ基としては、アルコキシ基中のアルキル基部分の炭素数が1〜10のアルコキシ基が好ましく、更に好ましくは炭素数が1〜8のアルコキシ基であり、特に好ましくは炭素数が1〜2のアルコキシ基であって、具体的には、メトキシ基、エトキシ基、ブトキシ基等が特に好ましい。
ポリアリレート樹脂に用いられる2価アルコールとしては、前記したポリカーボネート樹脂やポリエステル樹脂に用いられるものがあげられるが、特に、ポリアリレート樹脂に好適に用いられる2価アルコールとしては、具体的には、ビス(4−ヒドロキシフェニル)メタン、(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)メタン、ビス(2−ヒドロキシフェニル)メタン、ビス(4−ヒドロキシ−3−メチルフェニル)メタン、ビス(4−ヒドロキシ−3−エチルフェニル)メタン、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)メタン;1,1−ビス(4−ヒドロキシフェニル)エタン、1−(2−ヒドロキシフェニル)−1−(4−ヒドロキシフェニル)エタン、1,1−ビス(2−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)エタン、1,1−ビス(4−ヒドロキシ−3−エチルフェニル)エタン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)エタン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)エタン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)エタン;3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェニル、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン;1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン;ビス(4−ヒドロキシフェニル)ケトン;ビス(4−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)エーテル、(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)エーテル、ビス(2−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシ−3−メチルフェニル)エーテル、ビス(4−ヒドロキシ−3−エチルフェニル)エーテルがあげられる。これらの2価アルコール成分は、複数組み合わせて用いることも可能である。
これらの中でも特に、下記構造の2価アルコールを繰り返し単位構造として有するポリアリレート樹脂であることが好ましい。
Figure 2008299214

芳香族性を有する環を持つ2価カルボン酸としては、通常ポリアリレート樹脂の製造に用いられる如何なるものも使用可能であるが、より具体的には、フタル酸、イソフタル酸、ナフタレン−1,4−ジカルボン酸、ナフタレン−2,6−ジカルボン酸、ビフェニル−2,2’−ジカルボン酸、ビフェニル−4,4’−ジカルボン酸、ジフェニルエーテル−2,2’−ジカルボン酸、ジフェニルエーテル−2,3’−ジカルボン酸、ジフェニルエーテル−2,4’−ジカルボン酸、ジフェニルエーテル−3,3’−ジカルボン酸、ジフェニルエーテル−3,4’−ジカルボン酸、ジフェニルエーテル−4,4’−ジカルボン酸があげられる。好ましくは、イソフタル酸、テレフタル酸、ジフェニルエーテル−2,2’−ジカルボン酸、ジフェニルエーテル−2,4’−ジカルボン酸、ジフェニルエーテル−4,4’−ジカルボン酸があげられ、特に好ましくは、イソフタル酸、テレフタル酸、ジフェニルエーテル−4,4’−ジカルボン酸、ビフェニル−4,4’−ジカルボン酸があげられる。これらのジカルボン酸は、複数組み合わせて用いることも可能である。
ポリアリレート樹脂の製造方法としては、特に限定されず、例えば、界面重合法、溶融重合法、溶液重合法等の公知の重合方法を用いることができる。界面重合法による製造の場合は、例えば、二価フェノール成分をアルカリ水溶液に溶解した溶液と、芳香族ジカルボン酸クロライド成分を溶解したハロゲン化炭化水素の溶液とを混合する。この際、触媒として、四級アンモニウム塩もしくは四級ホスホニウム塩を存在させることも可能である。重合温度は0〜40℃の範囲、重合時間は2〜20時間の範囲であるのが生産性の点で好ましい。重合終了後、水相と有機相を分離し、有機相中に溶解しているポリマーを公知の方法で、洗浄、回収することにより、目的とするポリアリレート樹脂が得られる。
界面重合法で用いられるアルカリ成分としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物等をあげることができる。アルカリの使用量としては、反応系中に含まれるフェノール性水酸基の1.01〜3倍当量の範囲が好ましい。ハロゲン化炭化水素としては、例えば、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、トリクロロエタン、テトラクロロエタン、ジクロルベンゼン等をあげることができる。触媒として用いられる四級アンモニウム塩もしくは四級ホスホニウム塩としては、例えば、トリブチルアミンやトリオクチルアミン等の三級アルキルアミンの塩酸、臭素酸、ヨウ素酸等の塩;ベンジルトリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド、ベンジルトリブチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラブチルアンモニウムクロライド、テトラブチルアンモニウムブロマイド、トリオクチルメチルアンモニウムクロライド、テトラブチルホスホニウムブロマイド、トリエチルオクタデシルホスホニウムブロマイド、N−ラウリルピリジニウムクロライド、ラウリルピコリニウムクロライド等があげられる。
また、界面重合法では、分子量調節剤を使用することができる。分子量調節剤としては、例えば、フェノール、o,m,p−クレゾール、o,m,p−エチルフェノール、o,m,p−プロピルフェノール、o,m,p−(tert−ブチル)フェノール、ペンチルフェノール、ヘキシルフェノール、オクチルフェノール、ノニルフェノール、2,6−ジメチルフェノール誘導体、2−メチルフェノール誘導体等のアルキルフェノール類;o,m,p−フェニルフェノール等の一官能性のフェノール;酢酸クロリド、酪酸クロリド、オクチル酸クロリド、塩化ベンゾイル、ベンゼンスルフォニルクロリド、ベンゼンスルフィニルクロリド、スルフィニルクロリド、ベンゼンホスホニルクロリドまたはそれらの置換体等の一官能性酸ハロゲン化物等があげられる。これら分子量調節剤の中でも、分子量調節能が高く、かつ溶液安定性の点で好ましいのは、o,m,p−(tert−ブチル)フェノール、2,6−ジメチルフェノール誘導体、2−メチルフェノール誘導体である。特に好ましくは、p−(tert−ブチル)フェノール、2,3,6−テトラメチルフェノール、2,3,5−テトラメチルフェノールである。
該ポリアリレート樹脂の粘度平均分子量は、特に限定されないが、通常、10,000以上、好ましくは15,000以上、更に好ましくは20,000以上であり、通常、300,000以下、好ましくは200,000以下、より好ましくは100,000以下、特に好ましくは70,000以下である。粘度平均分子量が過度に小さいと、感光層の機械的強度が低下し実用的ではない。また、粘度平均分子量が過度に大きいと、感光層を適当な膜厚に塗布形成する事が困難である。粘度平均分子量は、実施例に記載されている測定方法で測定し、それによって定義される。
本発明の電子写真感光体が有する電荷輸送層がポリアリレート樹脂を含有している場合には、バインダー樹脂と一般式(1)で表される電荷輸送物質との重量割合はどのような比であっても構わないが、バインダー樹脂一般の箇所で前記した範囲が好ましい。特に、バインダー樹脂がポリアリレート樹脂を含有する場合には、電荷輸送層に含まれる、一般式(1)で表される電荷輸送物質の総重量の、ポリアリレート樹脂を含む全バインダー樹脂の含有重量に対する比、すなわち電荷輸送層中における一般式(1)で表される電荷輸送物質の重量部(一般式(1)で表される電荷輸送物質が複数種含有されている場合にはその総重量部)は、全バインダー樹脂の含有量を100重量部としたときに、電子写真感光体の残留電位を下げる観点からすれば、20重量部以上であることが好ましく、繰り返し使用した際の安定性と、電荷移動度の観点からすれば、25重量部以上であることがより好ましい。また、一方で感光層の熱安定性の観点からは90重量部以下であって、感光層中での一般式(1)の化合物の安定性の観点から、好ましくは80重量部以下、更に画像形成の際の耐久性の観点から、より好ましくは65重量部以下で、更に好ましくは60重量部以下で、耐傷性の観点からは、40重量部以下が特に好ましい。ここで、「全バインダー樹脂の含有重量」とは、ポリアリレート樹脂以外のバインダー樹脂も含む場合は、それらも含めた全てのバインダー樹脂の含有重量をいう。
また、電荷輸送層中に、一般式(1)で表される電荷輸送物質以外の「他の電荷輸送物質」も含有されていて、それも含めて複数の電荷輸送物質が含有されている場合、電荷輸送層に含まれる総電荷輸送物質の含有量については、ポリアリレート樹脂を含む全バインダー樹脂の含有量100重量部に対し25重量部以上、さらに残留電位低減の観点から30重量部以上が好ましく、さらに繰り返し使用した際の安定性、電荷移動度の観点から、40重量部以上がより好ましい。また、一方で感光層の熱安定性の観点から、通常は55重量部以下、さらに電荷輸送材料とバインダー樹脂の相溶性の観点から好ましくは50重量部以下、さらに耐刷性の観点から35重量部以下がより好ましく、耐傷性の観点からは、45重量部以下が最も好ましい。ここで、上記「総電荷輸送物質」とは、一般式(1)で表される電荷輸送物質と「他の電荷輸送物質」の両方を示す。
<酸化防止剤>
本発明の電子写真感光体には、酸化防止剤が含まれていていることが好ましい。酸化防止剤は、電子写真感光体に含まれる部材の酸化を防止するために含有される安定剤の一種である。通常、電子写真感光体に含まれる部材の酸化は、表面から起こるため、酸化防止剤は電子写真感光体の最表面層に含まれることが好ましい。
酸化防止剤は、ラジカル補足剤としての機能があり、具体的には、フェノール誘導体、アミン化合物、ホスホン酸エステル、硫黄化合物、ビタミン、ビタミン誘導体等があげられる。この中でも、フェノール誘導体、アミン化合物、ビタミン等が好ましい。嵩高い置換基をヒドロキシ基近辺に有するヒンダードフェノール、トリアルキルアミン誘導体等が特に好ましい。更には、ヒドロキシ基のo位に、t−ブチル基を有するアリール化合物誘導体が好ましく、ヒドロキシ基のo位に、t−ブチル基を2つ有するアリール化合物誘導体が更に好ましい。
また、該酸化防止剤のゲルパーミエーションクロマトグラフィにより測定される平均分子量は、大きすぎると酸化防止能に問題が生じる場合があり、1500以下が好ましく、1000以下が特に好ましい。下限は、100以上が好ましく、150以上がより好ましく、200以上が特に好ましい。
以下、本発明に使用できる酸化防止剤を示す。本発明に使用できる酸化防止剤としては、プラスチック、ゴム、石油、油脂類に使用されている酸化防止剤;紫外線吸収剤;光安定剤として公知の材料すべてを用いることができるが、とりわけ次に示す化合物群より選ばれる材料が好ましく使用できる。
(1)特開昭57−122444号公報に記載のフェノール類、特開昭60−188956号公報に記載のフェノール誘導体および特開昭63−18356号公報に記載のビンダードフェノール類。
(2)特開昭57−122444号公報に記載のパラフェニレンジアミン類、特開昭60−188956号公報に記載のパラフェニレンジアミン誘導体および特開昭63−18356号公報に記載のパラフェニレンジアミン類。
(3)特開昭57−122444号公報に記載のハイドロキノン類、特開昭60−188956号公報に記載のハイドロキノン誘導体および特開昭63−18356号公報に記載のハイドロキノン類。
(4)特開昭57−188956号公報に記載のイオウ化合物および特開昭63−18356号公報に記載の有機イオウ化合物類。
(5)特開昭57−122444号公報に記載の有機リン化合物および特開昭63−18356号公報に記載の有機リン化合物類。
(6)特開昭57−122444号公報に記載のヒドロキシアニソール類。
(7)特開昭63−18355号公報に記載の特定の骨格構造を有するピペリジン誘導体およびオキソピペラジン誘導体。
(8)特開昭60−188956号公報に記載のカロチン類、アミン類、トコフェロール類、Ni(II)錯体、スルフィド類。
具体的には、以下に示すヒンダードフェノール類が特に好ましい。ヒンダードフェノールとは、嵩高い置換基をヒドロキシ基近辺に有するフェノール類をいう。すなわち、3,5−ジ−t−ブチル−4−ヒドロキシトルエン、2,6−ジ−t−ブチルフェノール、2,6−ジ−t−ブチル−4−エチルフェノール、2,6−ジ−t−ブチル−4−メチルフェノール、2,2′−メチレンビス(6−t−ブチル−4−メチルフェノール)、4,4′−ブチリデンビス(6−t−ブチル−3−メチルフェノール)、4,4′−チオビス(6−t−ブチル−3−メチルフェノール)、2,2′−ブチリデンビス(6−t−ブチル−4−メチルフェノール)、α−トコフェロール、β−トコフェロール、2,2,4−トリメチル−6−ヒドロキシ−7−t−ブチルクロマン、ペンタエリスリチルテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,2′−チオエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオールビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ブチルヒドロキシアニソール、ジブチルヒドロキシアニソール、1−[2−{(3,5−ジ−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]−4−[3−(3,5−ジ−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−2,2,6,6−テトラメチルピペラジル、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、1−[2−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]−4−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}−2,2,6,6−テトラメチルピペリジン、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートが特に好ましい。これらの化合物は、ゴム、プラスチック、油脂類等の酸化防止剤として知られており、市販品として手に入るものもある。
上記、ヒンダードフェノール類の中でも、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートが特に好ましい。これは、商品名Irganox1076として市販されているの で、それを用いることも特に好ましい。
本発明の電子写真感光体において最表面層中に酸化防止剤が含まれる場合の当該酸化防止剤の量は、特に制限されないが、バインダー樹脂100重量部当り0.1重量部以上、20重量部以下が好ましい。この範囲外の場合、良好な電気特性が得られない。特に好ましくは1重量部以上である。また、多すぎると、電気特性だけでなく、耐刷性にも問題を起こすので、好ましくは15重量部以下であり、さらに好ましくは10重量部以下である。
なお、感光層には、成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向上させるために、周知の可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤等の添加物を含有させてもよい。
<その他の層>
感光層の上に、感光層の損耗を防止したり、帯電器等から発生する放電生成物等による感光層の劣化を防止・軽減したりする目的でオーバーコート層を設けてもよい。またオーバーコート層は、感光体表面の摩擦抵抗や摩耗を軽減する目的で、フッ素系樹脂、シリコーン樹脂等を含んでいてもよい。また、これらの樹脂からなる粒子や無機化合物の粒子を含んでいてもよい。
<層形成方法>
これらの感光体を構成する各層は、含有させる物質を溶剤に溶解または分散させて得られた塗布液を、支持体上に浸漬塗布、スプレー塗布、ノズル塗布、バーコート、ロールコート、ブレード塗布等の公知の方法により順次塗布して形成される。
塗布液の作製に用いられる溶媒あるいは分散媒としては、例えば、メタノール、エタノール、プロパノール、2−メトキシエタノール等のアルコール類;テトラヒドロフラン、1,4−ジオキサン、ジメトキシエタン等のエーテル類;ギ酸メチル、酢酸エチル等のエステル類;アセトン、メチルエチルケトン、シクロヘキサノン、4−メトキシ−4−メチル−2−ペンタノン等のケトン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、テトラクロロエタン、1,2−ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類;n−ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン等の含窒素化合物類;アセトニトリル、N−メチルピロリドン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等があげられ、これらは単独でまたは2種以上を併用して用いられる。
なお、塗布液あるいは分散液の作製において、積層型感光層の電荷発生層の場合には、固形分濃度は、好ましくは15重量%以下、さらに好ましくは1〜10重量%にする。また、粘度は、好ましくは0.1〜10mPa・sとする。
<画像形成装置>
次に、本発明の電子写真感光体を用いた画像形成装置(本発明の画像形成装置)の実施の形態について、装置の要部構成を示す図1を用いて説明する。但し、実施の形態は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない限り任意に変形して実施することができる。
図1に示すように、画像形成装置は、電子写真感光体1、帯電装置2、露光装置3および現像装置4を備えて構成され、さらに、必要に応じて転写装置5、クリーニング装置6および定着装置7が設けられる。
電子写真感光体1は、上述した本発明の電子写真感光体であれば特に制限はないが、図1ではその一例として、円筒状の導電性支持体の表面に上述した感光層を形成したドラム状の感光体を示している。この電子写真感光体1の外周面に沿って、帯電装置2、露光装置3、現像装置4、転写装置5およびクリーニング装置6がそれぞれ配置されている。
帯電装置2は、電子写真感光体1を帯電させるもので、電子写真感光体1の表面を所定電位に均一帯電させる。帯電装置としては、コロトロンやスコロトロン等のコロナ帯電装置、電圧印加された直接帯電部材を感光体表面に接触させて帯電させる直接帯電装置(接触型帯電装置)、帯電ブラシ等の接触型帯電装置等が用いられる。直接帯電手段の例としては、帯電ローラ、帯電ブラシ等の接触帯電器等があげられる。なお、図1では、帯電装置2の一例としてローラ型の帯電装置(帯電ローラ)を示している。直接帯電手段として、気中放電を伴う帯電、あるいは気中放電を伴わない注入帯電いずれも可能である。また、帯電時に印可する電圧としては、直流電圧だけの場合、および直流に交流を重畳させて用いることもできる。
このうち、電圧印加された直接帯電部材を電子写真感光体表面に接触させて帯電させる直接帯電装置(接触型帯電装置)が好ましい。すなわち、電子写真感光体を該電子写真感光体に接触配置する帯電器により帯電して画像を形成することが、電子写真感光体に与える各種の劣化原因となる負荷を低減するという点で好ましい。
露光装置3は、電子写真感光体1に露光を行なって電子写真感光体1の感光面に静電潜像を形成することができるものであれば、その種類に特に制限はない。具体例としては、ハロゲンランプ、蛍光灯、半導体レーザーやHe−Neレーザー等のレーザー、LED等があげられる。また、感光体内部露光方式によって露光を行なうようにしてもよい。露光を行なう際の光は任意であるが、例えば波長が780nmの単色光、波長600nm〜700nmのやや短波長寄りの単色光、波長380nm〜500nmの単色光等で露光を行なうことが好ましい。そのうちでも、波長380nm〜500nmの単色光により露光をして画像を形成することが、画像欠陥の少ない高解像度の画像を形成することができるという点で特に好ましい。
現像装置4は、その種類に特に制限はなく、カスケード現像、一成分絶縁トナー現像、一成分導電トナー現像、二成分磁気ブラシ現像等の乾式現像方式や、湿式現像方式等の任
意の装置を用いることができる。図1では、現像装置4は、現像槽41、アジテータ42、供給ローラ43、現像ローラ44、および、規制部材45からなり、現像槽41の内部にトナーTを貯留している構成となっている。また、必要に応じ、トナーTを補給する補給装置(図示せず)を現像装置4に付帯させてもよい。この補給装置は、ボトル、カートリッジ等の容器からトナーTを補給することが可能に構成される。
供給ローラ43は、導電性スポンジ等から形成される。現像ローラ44は、鉄,ステンレス鋼,アルミニウム,ニッケル等の金属ロール、またはこうした金属ロールにシリコン樹脂,ウレタン樹脂,フッ素樹脂等を被覆した樹脂ロール等からなる。この現像ローラ44の表面には、必要に応じて、平滑加工や粗面加工を加えてもよい。
現像ローラ44は、電子写真感光体1と供給ローラ43との間に配置され、電子写真感光体1および供給ローラ43に各々当接している。供給ローラ43および現像ローラ44は、回転駆動機構(図示せず)によって回転される。供給ローラ43は、貯留されているトナーTを担持して、現像ローラ44に供給する。現像ローラ44は、供給ローラ43によって供給されるトナーTを担持して、電子写真感光体1の表面に接触させる。
規制部材45は、シリコン樹脂やウレタン樹脂等の樹脂ブレード、ステンレス鋼、アルミニウム、銅、真鍮、リン青銅等の金属ブレード、またはこうした金属ブレードに樹脂を被覆したブレード等により形成されている。この規制部材45は、現像ローラ44に当接し、ばね等によって現像ローラ44側に所定の力で押圧(一般的なブレード線圧は5〜500g/cm)される。必要に応じて、この規制部材45に、トナーTとの摩擦帯電によりトナーTに帯電を付与する機能を具備させてもよい。
アジテータ42は、回転駆動機構によってそれぞれ回転されており、トナーTを攪拌するとともに、トナーTを供給ローラ43側に搬送する。アジテータ42は、羽根形状、大きさ等を違えて複数設けてもよい。
転写装置5は、その種類に特に制限はなく、コロナ転写、ローラ転写、ベルト転写等の静電転写法、圧力転写法、粘着転写法等、任意の方式を用いた装置を使用することができる。ここでは、転写装置5が電子写真感光体1に対向して配置された転写チャージャー、転写ローラ、転写ベルト等から構成されるものとする。この転写装置5は、トナーTの帯電電位とは逆極性で所定電圧値(転写電圧)を印加し、電子写真感光体1に形成されたトナー像を記録紙(用紙,媒体)Pに転写するものである。
クリーニング装置6について特に制限はなく、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラクリーナー、ブレードクリーナー等、任意のクリーニング装置を用いることができる。クリーニング装置6は、感光体1に付着している残留トナーをクリーニング部材で掻き落とし、残留トナーを回収するものである。但し、感光体表面に残留するトナーが少ないか、殆ど無い場合には、クリーニング装置6は無くても構わない。
定着装置7は、上部定着部材(定着ローラ)71および下部定着部材(定着ローラ)72から構成され、定着部材71または72の内部には加熱装置73が備えられている。なお、図1では、上部定着部材71の内部に加熱装置73が備えられた例を示す。上部および下部の各定着部材71,72は、ステンレス,アルミニウム等の金属素管にシリコンゴムを被覆した定着ロール、さらにフッ素樹脂で被覆した定着ロール、定着シート等が公知の熱定着部材を使用することができる。さらに、各定着部材71,72は、離型性を向上させる為にシリコーンオイル等の離型剤を供給する構成としてもよく、バネ等により互いに強制的に圧力を加える構成としてもよい。
記録紙P上に転写されたトナーは、所定温度に加熱された上部定着部材71と下部定着
部材72との間を通過する際、トナーが溶融状態まで熱加熱され、通過後冷却されて記録紙P上にトナーが定着される。
なお、定着装置についてもその種類に特に限定はなく、ここで用いたものをはじめ、熱ローラ定着、フラッシュ定着、オーブン定着、圧力定着等、任意の方式による定着装置を設けることができる。
以上のように構成された電子写真装置では、次のようにして画像の記録が行なわれる。即ち、まず感光体1の表面(感光面)が、帯電装置2によって所定の電位(例えば−600V)に帯電される。この際、直流電圧により帯電させても良く、直流電圧に交流電圧を重畳させて帯電させてもよい。
続いて、帯電された感光体1の感光面を、記録すべき画像に応じて露光装置3により露光し、感光面に静電潜像を形成する。そして、その感光体1の感光面に形成された静電潜像の現像を、現像装置4で行なう。
現像装置4は、供給ローラ43により供給されるトナーTを、規制部材(現像ブレード)45により薄層化するとともに、所定の極性(ここでは感光体1の帯電電位と同極性であり、負極性)に摩擦帯電させ、現像ローラ44に担持しながら搬送して、感光体1の表面に接触させる。
現像ローラ44に担持された帯電トナーTが感光体1の表面に接触すると、静電潜像に対応するトナー像が感光体1の感光面に形成される。そしてこのトナー像は、転写装置5によって記録紙Pに転写される。この後、転写されずに感光体1の感光面に残留しているトナーが、クリーニング装置6で除去される。
トナー像の記録紙P上への転写後、定着装置7を通過させてトナー像を記録紙P上へ熱定着することで、最終的な画像が得られる。
なお、画像形成装置は、上述した構成に加え、例えば除電工程を行なうことができる構成としてもよい。除電工程は、電子写真感光体に露光を行なうことで電子写真感光体の除電を行なう工程であり、除電装置としては、蛍光灯、LED等が使用される。また除電工程で用いる光は、強度としては露光光の3倍以上の露光エネルギーを有する光である場合が多い。
また、画像形成装置はさらに変形して構成してもよく、例えば、前露光工程、補助帯電工程等の工程を行なうことができる構成としたり、オフセット印刷を行なう構成としたり、さらには複数種のトナーを用いたフルカラータンデム方式の構成としてもよい。
なお、電子写真感光体1を、帯電装置2、露光装置3、現像装置4、転写装置5、クリーニング装置6、および定着装置7のうち1つまたは2つ以上と組み合わせて、一体型のカートリッジ(以下適宜「電子写真感光体カートリッジ」という)として構成し、この電子写真感光体カートリッジを複写機やレーザービームプリンタ等の電子写真装置本体に対して着脱可能な構成にしてもよい。この場合、例えば電子写真感光体1やその他の部材が劣化した場合に、この電子写真感光体カートリッジを画像形成装置本体から取り外し、別の新しい電子写真感光体カートリッジを画像形成装置本体に装着することにより、画像形成装置の保守・管理が容易となる。
以下本発明の実施例、比較例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、これらに限定されるものではない。なお、本実施例で用いる「部」は特に断りがない限り「重量部」を示し、「%」は特に断りがない限り「重量%」を示す。
<電荷輸送物質の製造>
製造例1(電荷輸送物質(1)の製造法)
p−メチルジフェニルアミン40g、4,4’−ジヨードーp−ターフェニル48gをニトロベンゼン300mL中、200℃に加熱攪拌し、これに銅粉46g、炭酸カリウム
100gを添加し、窒素フロー下、200℃で5時間反応後、50℃まで冷却し、テトラヒドロフラン200mLを添加し、固形物を濾過した。濾液をメタノール2000mL中に注ぎ、沈殿物をろ過し、シリカゲルカラムクロマトグラフィーにより精製し、電荷輸送物質(4)45gを得た。質量分析(m/z):M=592(理論値:592)および元素分析(C4436):C,89.20;H,6.20;N,4.70(理論値:C,89.15;H,6.12;N,4.73)より構造を確認した。
Figure 2008299214
製造例2(電荷輸送物質(2)の製造法)
m、p’−ジメチルジフェニルアミン40g、4,4’−ジヨードーp−ターフェニル48gをニトロベンゼン300mL中、200℃に加熱攪拌し、これに銅粉46g、炭酸カリウム100gを添加し、窒素フロー下、200℃で5時間反応後、50℃まで冷却し、テトラヒドロフラン200mLを添加し、固形物を濾過した。濾液をメタノール2000mL中に注ぎ、沈殿物をろ過し、シリカゲルカラムクロマトグラフィーにより精製し、電荷輸送物質(2)40gを得た。質量分析(m/z):M=620(理論値:620)および元素分析(C4640):C,89.00;H,6.57;N,4.50(理論値:C,88.99;H,6.49;N,4.51)より構造を確認した。
Figure 2008299214
製造例3(電荷輸送物質(3)の製造法)
製造例1で使用したp−メチルジフェニルアミンの代わりに、p−メトキシジフェニルアミンを使用し、電荷輸送物質(3)42gを得た。質量分析(m/z):M=624(理論値:624)および元素分析(C4436):C,84.50;H,5.95; N,4.50(理論値:C,84.59;H,5.81;N,4.48;)より構造を確認した。
Figure 2008299214
<電荷発生物質の製造例>
製造例4(CG1の製造)
特開平10−007925号公報に記載の「粗TiOPcの製造例」、「実施例1」の順に従って、β型オキシチタニウムフタロシアニンを調整した。得られたオキシチタニウムフタロシアニン18部を、−10℃以下に冷却した95%濃硫酸720部中に添加した。このとき硫酸溶液の内温が−5℃を超えないようにゆっくりと添加した。添加終了後、濃硫酸溶液を−5℃以下で2時間撹拌した。撹拌後、濃硫酸溶液をガラスフィルターで濾過し、不溶分を濾別後、濃硫酸溶液を氷水10800部中に放出することにより、オキシチタニウムフタロシアニンを析出させ、放出後1時間撹拌した。撹拌後、溶液を濾別し、得られたウエットケーキを再度水900部中で1時間洗浄し、濾過を行った。この洗浄操作を濾液のイオン伝導度が0.5mS/mになるまで繰り返すことにより、低結晶性オキシチタニウムフタロシアニンのウエットケーキを185部得た(オキシチタニウムフタロシアニン含有率9.5%)。
得られた低結晶性オキシチタニウムフタロシアニンのウエットケーキ93部を水190部中に添加し、室温で30分撹拌した。その後、o−ジクロロベンゼン39部を添加し、さらに室温で1時間撹拌した。撹拌後、水を分離し、MeOH134部を添加し、室温で1時間撹拌洗浄した。洗浄後、濾別し、再度MeOH134部を用いて1時間撹拌洗浄後、濾別し、真空乾燥機で加熱乾燥することにより、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)9.5°、24.1°および27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニン(以下、「CG1」ということがある)を7.8部得た。得られたオキシチタニウムフタロシアニンに含まれるクロロオキシチタニウムフタロシアニンの含有量を、特開2001−115054号公報に記載の手法(マススペクトル法)を用いて調べたところ、オキシチタニウムフタロシアニンに対し、強度比0.003以下であることを確認した。
製造例5(CG2の製造)
製造例4で得られた低結晶性オキシチタニウムフタロシアニンのウエットケーキ50部をテトラヒドロフラン(以下、THFと略記することがある)500部中に分散し、室温で1時間攪拌する以外は、製造例4と同様に、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)9.5°、24.1°および27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニン(以下、「CG2」ということがある)を3部得た。得られたオキシチタニウムフタロシアニンに含まれるクロロオキシチタニウムフタロシアニンの含有量を、特開2001−115054に記載の手法(マススペクトル)を用いて調べたところ、オキシチタニウムフタロシアニンに対し、強度比0.003以下であることを確認した。
製造例6(CG3の製造)
特開平2001−115054、実施例1に記載の手法で作製されたβ型オキシチタニ
ウムフタロシアニンを使用する以外は、製造例4と同様にしてCuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)9.5°、24.1°および27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニン(以下、「CG3」ということがある)を3部得た。得られたオキシチタニウムフタロシアニンに含まれるクロロオキシチタニウムフタロシアニンの含有量を、特開2001−115054号に記載の手法(マススペクトル)を用いて調べたところ、オキシチタニウムフタロシアニンに対し、強度比0.05であることを確認した。
<バインダー樹脂の粘度平均分子量の測定>
バインダー樹脂の粘度平均分子量の測定について説明する。すなわち、バインダー樹脂をジクロロメタンに溶解し、濃度Cが6.00g/Lの溶液を調製する。溶媒(ジクロロメタン)の流下時間t0が136.16秒のウベローデ型毛細管粘度計を用いて、20.
0℃に設定した恒温水槽中で試料溶液の流下時間t(秒)を測定する。以下の式に従って 粘度平均分子量を算出する。
a=0.438×ηsp+1 ηsp=(t/t0)−1
b=100×ηsp/C C=6.00(g/L)
η=b/a
粘度平均分子量=3207×η1.205
<感光体ドラムの製造>
[感光体1]
電荷発生物質として、製造例4で得られたオキシチタニウムフタロシアニン(CG1)2
0重量部と、1,2−ジメトキシエタン280重量部とを混合し、サンドグラインドミルで2時間分散処理を行ない、分散液を作製した。 続いて、この分散液と、10重量部の
ポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)、487重量部の1,2−ジメトキシエタン、85重量部の4−メトキシ−4−メチル−2−ペンタノンを混合して電荷発生層形成用塗布液を作製した。
次に、表面が鏡面仕上げされた外径30mm、長さ376mm、肉厚0.75mmのアルミニウム製シリンダーの表面に、陽極酸化処理を行ない、その後、酢酸ニッケルを主成分とする封孔剤によって封孔処理を行なうことにより、約6μmの陽極酸化被膜(アルマイト被膜)を形成した。このシリンダーを、先に作製した電荷発生層塗布形成用分散液に浸漬塗布して、その乾燥後の膜厚が約0.4μmとなるように電荷発生層を形成した。
次に、製造例1で製造した電荷輸送物質(1)50重量部、下記繰り返し構造のバインダー樹脂(1)(m:n=51:49,粘度平均分子量30,000)100重量部、下記構造式(A)で表される酸化防止剤を2重量部、レベリング剤としてシリコーンオイル0.05重量部を、テトラヒドロフランとトルエンとの混合溶媒(テトラヒドロフラン80重量%、トルエン20重量%)640重量部に混合し、電荷輸送層形成用塗布液を調製した。
Figure 2008299214
この電荷輸送層形成用塗布液に、先に電荷発生層を形成したシリンダーを浸漬塗布して、乾燥後の膜厚18μmの電荷輸送層を形成した。このようにして得られた感光体ドラムを感光体1とする。
[感光体2]
感光体1の作製において電荷輸送層形成用塗布液に用いた電荷輸送物質(1)を40重量部とし、加えて、下記式で表される電荷輸送物質(4)を10重量部用いた他は、感光体1と同様の方法で感光体ドラムを作製した。このようにして得られた感光体ドラムを感光体2とする。
Figure 2008299214
[感光体3]
感光体1の作製において電荷輸送層形成用塗布液に用いた電荷輸送物質(1)を25重
量部とし、加えて、下記式で表される電荷輸送物質(5)化合物を25重量部用いた他は、感光体1と同様の方法で感光体ドラムを作製した。このようにして得られた感光体ドラムを感光体3とする。
Figure 2008299214
[感光体4]
感光体1の作製において電荷輸送層形成用塗布液に用いた電荷輸送物質(1)を45重量部とし、加えて、電荷輸送物質(5)を5重量部用いた他は、感光体1と同様の方法で感光体ドラムを作製した。このようにして得られた感光体ドラムを感光体4とする。
[感光体5]
感光体1の作製において電荷輸送層形成用塗布液に用いた電荷輸送物質(1)の代わりに電荷輸送物質(3)を用いた他は、感光体1と同様の方法で感光体ドラムを作製した。このようにして得られた感光体ドラムを感光体5とする。
[感光体6]
感光体1の作製において電荷輸送層形成用塗布液に用いた電荷輸送物質(1)の代わりに電荷輸送物質(2)を用いた他は、感光体1と同様の方法で感光体ドラムを作製した。このようにして得られた感光体ドラムを感光体6とする。
[感光体7]
感光体1の作製において電荷発生層形成用塗布液に用いた電荷発生物質CG1の代わりにCG2を用いた他は、感光体1と同様の方法で感光体ドラムを作製した。このようにして得られた感光体ドラムを感光体7とする。
[感光体8]
感光体1の作製において電荷発生層形成用塗布液に用いた電荷発生物質CG1の代わりにCG3を用いた他は、感光体1と同様の方法で感光体ドラムを作製した。このようにして得られた感光体ドラムを感光体8とする。
[感光体9]
感光体1の作製において電荷輸送層形成用塗布液に用いた電荷輸送物質(1)の代わりに下記式で表される電荷輸送物質(6)25重量部と電荷輸送物質(5)25重量部を用いた他は、感光体1と同様の方法で感光体ドラムを作製した。このようにして得られた感光体ドラムを感光体9とする。
Figure 2008299214
[感光体10]
感光体1の作製において電荷輸送層形成用塗布液に用いた電荷輸送物質(1)の代わりに電荷輸送物質(6)を用いた他は、感光体1と同様の方法で感光体ドラムを作製した。このようにして得られた感光体ドラムを感光体10とする。
[感光体11]
感光体1の作製において電荷輸送層形成用塗布液に用いた電荷輸送物質(1)の代わりに下記式で表される電荷輸送物質(7)を用いた他は、感光体1と同様の方法で感光体ドラムを作製した。このようにして得られた感光体ドラムを感光体11とする。
Figure 2008299214
[感光体12]
感光体1の作製において用いたアルミニウム製シリンダーを、外径30mm、長さ351mm、肉厚1.0mmのものに代えた他は、感光体1と同様の方法で感光体ドラムを作製した。このようにして得られた感光体ドラムを感光体12とする。
<現像用トナーの製造>
・ワックス・長鎖重合性単量体分散液T1の調製
パラフィンワックス(日本精鑞社製HNP−9、表面張力23.5mN/m、融点82℃、融解熱量220J/g、融解ピーク半値幅8.2℃、結晶化ピーク半値幅13.0℃)27部(540g)、ステアリルアクリレート(東京化成社製)2.8部、20重量%ドデシルベンゼンスルホン酸ナトリウム水溶液(第一工業製薬社製、ネオゲンS20A、以下適宜「20%DBS水溶液」と略称する)1.9部、脱塩水68.3部を90℃に加熱してホモミキサー(特殊機化工業社製 マークII fモデル)で8000rpmの回転数で10分間攪拌した。
次いで、この分散液を90℃に加熱し、ホモジナイザー(ゴーリン社製、15−M−8PA型)を用いて約25MPaの加圧条件で循環乳化を開始し、体積平均粒径をUPA−EXで測定しながら体積平均粒径を250nmまで分散してワックス・長鎖重合性単量体分散液T1(エマルション固形分濃度=30.2重量%)を作製した。
・シリコーンワックス分散液T2の調製
アルキル変性シリコーンワックス(融点72℃)27部(540g)、20%DBS水溶液1.9部、脱塩水71.1部を3Lのステンレス容器に入れ90℃に加熱してホモミキサー(特殊機化工業社製 マークII fモデル)で8000rpmの回転数で10分間攪拌した。
次いで、この分散液を99℃に加熱し、ホモジナイザー(ゴーリン社製、15−M−8PA型)を用いて約45MPaの加圧条件で循環乳化を開始し、体積平均粒径をUPA−EXで測定しながら体積平均粒径が240nmになるまで分散してシリコーンワックス分散液T2(エマルション固形分濃度=27.4重量%)を作製した。
・重合体一次粒子分散液T1の調製
攪拌装置(3枚翼)、加熱冷却装置、濃縮装置、及び各原料・助剤仕込み装置を備えた反応器(内容積21リットル、内径250mm、高さ420mm)に、ワックス・長鎖重合性単量体分散液T1を35.6重量部(712.12g)と、脱塩水259部とを仕込み、回転数103rpmで攪拌しながら窒素気流下で90℃に昇温した。
その後、下記のモノマー類及び乳化剤水溶液の混合物を重合開始から5時間かけて添加した。このモノマー類及び乳化剤水溶液の混合物を滴下開始した時間を重合開始とし、下記の開始剤水溶液を重合開始30分後から4.5時間かけて添加し、更に重合開始5時間後から下記の追加開始剤水溶液を2時間かけて添加し、更に回転数103rpm、内温90℃のまま1時間保持した。
[モノマー類]
スチレン 76.8部 (1535.0g)
アクリル酸ブチル 23.2部
アクリル酸 1.5部
トリクロロブロモメタン 1.0部
ヘキサンジオールジアクリレート 0.7部
[乳化剤水溶液]
20%DBS水溶液 1.0部
脱塩水 67.1部
[開始剤水溶液]
8%過酸化水素水溶液 15.5部
8%L(+)−アスコルビン酸水溶液 15.5部
[追加開始剤水溶液]
8%L(+)−アスコルビン酸水溶液 14.2部
重合反応終了後冷却し、乳白色の重合体一次粒子分散液T1を得た。UPA−EXで測定した体積平均粒子径は280nmであり、固形分濃度は21.1重量%であった。
・重合体一次粒子分散液T2の調製
攪拌装置(3枚翼)、加熱冷却装置、濃縮装置、及び各原料・助剤仕込み装置を備えた反応器(内容積21リットル、内径250mm、高さ420mm)に、シリコーンワックス分散液T2を23.6重量部(472.3g)と、20%DBS水溶液1.5重量部と、脱塩水324部とを仕込み、窒素気流下で90℃に昇温し、103rpmで攪拌しながら8%過酸化水素水溶液3.2部、8%L(+)−アスコルビン酸水溶液3.2部を一括添加した。
その5分後、下記のモノマー類・乳化剤水溶液の混合物を重合開始(8%過酸化水素水溶液3.2部、8%L(+)−アスコルビン酸水溶液3.2部を一括添加した時から5分後)から5時間かけて、下記の開始剤水溶液を重合開始から6時間かけて添加し、更に回転数103rpm、内温90℃のまま1時間保持した。
[モノマー類]
スチレン 92.5部 (1850.0g)
アクリル酸ブチル 7.5部
アクリル酸 1.5部
トリクロロブロモメタン 0.6部
[乳化剤水溶液]
20%DBS水溶液 1.5部
脱塩水 66.2部
[開始剤水溶液]
8%過酸化水素水溶液 18.9部
8%L(+)−アスコルビン酸水溶液 18.9部
重合反応終了後冷却し、乳白色の重合体一次粒子分散液T2を得た。UPA−EXで測定した体積平均粒子径は290nmであり、固形分濃度は19.0重量%であった。
・着色剤分散液Tの調製
攪拌機(プロペラ翼)を備えた内容積300Lの容器に、トルエン抽出液の紫外線吸光度が0.02であり、真密度が1.8g/cmのファーネス法で製造されたカーボンブラック(三菱化学社製、三菱カーボンブラックMA100S)20部(40kg)、20%DBS水溶液1部、非イオン界面活性剤(花王社製、エマルゲン120)4部、電気伝導度が2μS/cmのイオン交換水75部を加えて予備分散して顔料プレミックス液を得た。導電率の測定は、導電率計(横河電機社製のパーソナルSCメータモデルSC72と検出器SC72SN−11)を用いて行なった。
プレミックス後の分散液中カーボンブラックの体積累積50%径Dv50は約90μmであった。上記プレミックス液を原料スラリーとして湿式ビーズミルに供給し、ワンパス分散を行なった。なお、ステータの内径はφ75mm、セパレータの径がφ60mm、セパレータとディスク間の間隔は15mmとし、分散用のメディアとして直径が50μmのジルコニアビーズ(真密度6.0g/cm)を用いた。ステータの有効内容積は約0.5リットルであり、メデイアの充填容積は0.35リットルとしたので、メディア充填率は70%である。ロータの回転速度を一定(ロータ先端の周速が約11m/sec)として、供給口より前記プレミックススラリを無脈動定量ポンプにより供給速度約50リットル/hrで連続的に供給し、排出口より連続的に排出する事により黒色の着色剤分散体Tを得た。UPA−EXで測定した体積平均粒子径は150nmであり、固形分濃度は24.2重量%であった。
・現像用母粒子T1の製造
重合体一次粒子分散液T1 固形分として95部 (固形分として998.2g)
重合体一次粒子分散液T2 固形分として5部
着色剤微粒子分散液T 着色剤固形分として6部
20%DBS水溶液 固形分として0.1部
上記の各成分を用いて、以下の手順によりトナーを製造した。
攪拌装置(ダブルヘリカル翼)、加熱冷却装置、濃縮装置、及び各原料・助剤仕込み装置を備えた混合器(容積12リットル、内径208mm、高さ355mm)に重合体一次粒子分散液T1と20%DBS水溶液を仕込み、内温12℃40rpmで5分間均一に混
合した。続いて、内温12℃で攪拌回転数を250rpmに上げ第一硫酸鉄の5%水溶液をFeSO・7HOとして0.52部を5分かけて添加してから着色剤微粒子分散液Tを5分かけて添加し、内温12℃で250rpmのまま均一に混合し、更に同一の条件のまま0.5%硫酸アルミニウム水溶液を滴下した(樹脂固形分に対しての固形分が0.10部)。その後250rpmのまま75分かけて内温53℃に昇温して、その後170分かけて56℃まで昇温した。
ここでアパーチャー径を100μmとした精密粒度分布測定装置(マルチサイザーIII
:ベックマン・コールター社製;以下適宜「マルチサイザー」と略称する)にて粒径測定を測定したところ50%体積径が6.7μmであった。
その後、250rpmのまま重合体一次粒子分散液T2を3分かけて添加してそのまま60分保持し、回転数を168rpmに落としてすぐに20%DBS水溶液(固形分として6部)を10分かけて添加した。更に内温を、168rpmのまま30分かけて98℃に昇温して90分保持した(以下、この工程を融合工程と呼ぶことがある)。
その後20分かけて30℃まで冷却して得られたスラリーを抜き出し、5種C(東洋濾紙株式会社製 No5C)のろ紙を用いてアスピレーターにより吸引ろ過をした。ろ紙上に残ったケーキを攪拌機(プロペラ翼)を備えた内容積10L(リットル)のステンレス容器に移し、電気伝導度が1μS/cmのイオン交換水8kgを加え50rpmで攪拌する事により均一に分散させ、その後30分間攪拌したままとした。
その後、再度5種C(東洋濾紙株式会社製 No5C)のろ紙を用いてアスピレーターにより吸引ろ過をし、再度ろ紙上に残った固形物を攪拌機(プロペラ翼)を備え電気伝導度が1μS/cmのイオン交換水8kgの入った内容積10Lの容器に移し、50rpmで攪拌する事により均一に分散させ30分間攪拌したままとした。この工程を5回繰り返したところ、ろ液の電気伝導度は2μS/cmとなった。導電率の測定は、導電率計(横河電機社製のパーソナルSCメータモデルSC72と検出器SC72SN−11)を用いて行なった。
ここで得られたケーキをステンレス製バッドに高さ20mm程度となるように敷き詰め、40℃に設定された送風乾燥機内で48時間乾燥することにより、現像用母粒子T1を得た。
・現像用トナーT1の製造
攪拌機(Z/A羽根)と上部より壁面に対し直角に向いたディフレクターを備えた内容積10L(直径230mm高さ240mm)のヘンシェルミキサー内に、現像用母粒子T1を100部(1000g)投入し、続いてシリコーンオイルで疎水化処理された体積平均一次粒径0.04μmのシリカ微粒子0.5部と、シリコーンオイルで疎水化処理された体積平均一次粒径0.012μmのシリカ微粒子2.0部とを添加し、3000rpmで10分間攪拌・混合して150メッシュを通し篩別する事により現像用トナーT1を得た。マルチサイザーIIで測定したトナーT1の体積平均粒径は6.95μm、Dv/Dnは1.15、FPIA2000で測定した平均円形度は0.991であった。
・現像用トナーT2の製造
現像用母粒子T1の製造における融合工程を、98℃に昇温して90分保持することから、96℃に昇温して90分保持することに変更した以外は、現像用母粒子T1と同様の方法で現像用母粒子T2を作製した。現像用トナーT1の製造において用いた現像用母粒子T1の代わりに、現像用母粒子T2を用いた以外は現像用トナーT1と同様の方法で、現像用トナーT2を製造した。マルチサイザーIIで測定したトナーT2の体積平均粒径は6.98μm、Dv/Dnは1.14、FPIA2000で測定した平均円形度は0.981であった。
・現像用トナーT3の製造
現像用母粒子T1の製造における融合工程を、98℃に昇温して90分保持することから、96℃に昇温して40分保持することに変更した以外は、現像用母粒子T1と同様の方法で現像用母粒子T3を作製した。現像用トナーT1の製造において用いた現像用母粒子T1の代わりに、現像用母粒子T3を用いた以外は現像用トナーT1と同様の方法で、現像用トナーT3を製造した。マルチサイザーIIで測定したトナーT3の体積平均粒径は6.99μm、Dv/Dnは1.14、FPIA2000で測定した平均円形度は0.972であった。
・現像用トナーT4の製造
現像用母粒子T1の製造における融合工程を、98℃に昇温して90分保持することから、90℃に昇温して60分保持することに変更した以外は、現像用母粒子T1と同様の方法で現像用母粒子T4を作製した。現像用トナーT1の製造において用いた現像用母粒子T1の代わりに、現像用母粒子T4を用いた以外は現像用トナーT1と同様の方法で、現像用トナーT4を製造した。マルチサイザーIIで測定したトナーT4の体積平均粒径は7.05μm、Dv/Dnは1.14、FPIA2000で測定した平均円形度は0.963であった。
・現像用トナーT5の製造
現像用母粒子T1の製造における融合工程を、98℃に昇温して90分保持することから、90℃に昇温して30分保持することに変更した以外は、現像用母粒子T1と同様の方法で現像用母粒子T5を作製した。現像用トナーT1の製造において用いた現像用母粒子T1の代わりに、現像用母粒子T5を用いた以外は現像用トナーT1と同様の方法で、現像用トナーT5を製造した。マルチサイザーIIで測定したトナーT5の体積平均粒径は7.12μm、Dv/Dnは1.14、FPIA2000で測定した平均円形度は0.948であった。
[実施例1]
先に作製した感光体1、及び、上記現像用トナーT1を(株)沖データ社製カラープリンターMICROLINE Pro 9800PS−E用のブラックドラムカートリッジ、及び、ブラックトナーカートリッジにそれぞれ搭載し、該カートリッジを上記プリンターに装着した。
MICROLINE Pro 9800PS−Eの仕様
4連タンデム
カラー36ppm、モノクロ40ppm
1200dpi
接触ローラ帯電(直流電圧印加)
LED露光
除電光あり
この画像形成装置を用いて、白地画像およびQEA社製のTestTarget(rev4)、ハーフトーン、黒ベタ画像をプリントアウトし、白地画像のカブリ値、TestTarget画像の細線、ドット、階調性等の画像品質、及び、ハーフトーン、黒べた画像の濃度、及び画像品質を評価した。画像形成初期と、温度25℃、湿度50%の条件下、約5%の印字面積を有するテキスト文書を20,000枚の画像形成後で評価した結果を表1に示す。
カブリ値は、標準サンプルの白度が94.4となるように白度計を調節し、この白度計を用いて画像形成前の紙の白度を測定し、その同じ紙に対し、全面白色となる信号を上述のレーザープリンタに入力することにより画像を形成し、その後この紙の白度を再度測定
し、画像形成前後の白度の差を測定することにより求めた。
実施例2
実施例1において用いた現像用トナーT1の代わりに現像用トナーT2を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
実施例3
実施例1において用いた現像用トナーT1の代わりに現像用トナーT3を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
実施例4
実施例1において用いた現像用トナーT1の代わりに現像用トナーT4を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
実施例5
実施例1において用いた感光体1の代わりに感光体2を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
実施例6
実施例1において用いた感光体1の代わりに感光体3を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
実施例7
実施例1において用いた感光体1の代わりに感光体4を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
実施例8
実施例1において用いた感光体1の代わりに感光体5を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
実施例9
実施例1において用いた感光体1の代わりに感光体6を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
実施例10
実施例1において用いた感光体1の代わりに感光体7を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
実施例11
実施例1において用いた感光体1の代わりに感光体8を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
比較例1
実施例1において用いた感光体1の代わりに感光体9を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
比較例2
実施例1において用いた感光体1の代わりに感光体10を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
比較例3
実施例1において用いた感光体1の代わりに感光体11を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
比較例4
実施例1において用いた現像用トナーT1の代わりに現像用トナーT5を用いた以外は実施例1と同様にして評価を行った。結果を同様に表1に示す。
比較例5
先に作製した感光体1を(株)沖データ社製カラープリンターMICROLINE 3050cのブラックドラムカートリッジに装着し、上記プリンターに装着した。トナーには上記プリンター用の溶融混練粉砕法により製造された市販のトナーを使用した。当該トナーのマルチサイザ−IIで測定した体積平均粒径は7.35μm、Dv/Dnは1.27、FPIA2000で測定した平均円形度は0.935であった。
MICROLINE 3050cの仕様
4連タンデム
カラー21ppm、モノクロ26ppm
1200dpi
接触ローラ帯電(直流電圧印加)
LED露光
除電光なし
実施例1と同様の画像を形成し、画像評価を行った。結果を表1に示す。
Figure 2008299214
以上のように、本発明に係る電子写真感光体とトナーを共に用いた場合には、いずれの評価用画像においても良好な結果が得られた。
実施例4で形成した初期画像は、細線、ドットの形状が他の実施例のものと比較すると僅かに劣るものであったが、評価上は許容レベルであると共に、他の項目についてはいずれも良好な画像結果であり、20,000枚画像形成後も良好な画像を得ることが可能で、比較例で形成されたいずれの画像より優れていた。
実施例6で形成した20,000枚画像形成時の画像には、若干かぶり値の上昇が見られたが評価上は許容レベルであり、他の項目についてはいずれも良好な画像結果であった。
一方、本発明に係る化合物を含有しない感光層を有する電子写真感光体を用いた比較例1では20,000枚画像形成後に、目視でかぶりが確認され、比較例4,5のように本発明外のトナーを用いた場合、かぶりは見られないが20,000枚画像形成後は、トナーの飛び散りによる画像ボケが発生した。また、本発明に係る化合物を含有しない感光層を有する電子写真感光体を用いた比較例2、3では、いずれも初期から良好な画像は得られなかった。
以上のように、本発明に係る電子写真感光体とトナーとを共に用いた場合には、長期にわたり優れた品質の画像を提供することができることがわかる。
本発明の電子写真感光体は、電気特性や画像特性に優れ、環境の変動による特性の変化
が小さく、高耐久性を有するため、複写機、プリンター、普通紙ファックス、印刷機等
、電子写真感光体が使用されるあらゆる分野に広く利用されるものである。
本発明の画像形成装置の一例を示す図である。
符号の説明
1 感光体
2 帯電装置(帯電ローラ)
3 露光装置
4 現像装置
5 転写装置
6 クリーニング手段
7 定着手段
41 現像槽
42 アジテータ
43 供給ローラ
44 現像ローラ
45 規制部材
71 上部定着部材
72 下部定着部材
73 加熱装置
T トナー
P 記録媒体

Claims (4)

  1. 少なくとも電子写真感光体及びトナーを備えた画像形成装置において、該電子写真感光体が、導電性支持体上に式(1)で表される化合物を含有する感光層を有する電子写真感光体であって、かつ 、該トナーのフロー式粒子像分析装置によって測定される平均円形
    度が、0.960以上1.000以下であることを特徴とする画像形成装置。
    Figure 2008299214
    (一般式(1)において、Arは置換基を有してもよいアリーレン基、Ar〜Arは置換基を有してもよいアリール基を表し、nは3〜6の整数を表す)
  2. 請求項1に記載の画像形成装置において、該電子写真感光体が導電性支持体上に、電荷発生層および電荷輸送層を有し、且つ該電荷発生層が、オキシチタニウムフタロシアニンを含有し、且つ該オキシチタニウムフタロシアニンがフタロシアニン結晶前駆体を化学的処理後、有機溶媒に接触して得られるものであって、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)9.5°、24.1°および27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニンであることを特徴とする画像形成装置。
  3. 少なくとも電子写真感光体及びトナーを備えた電子写真カートリッジにおいて、該電子写真感光体が、導電性支持体上に式(1)で表される化合物を含有する感光層を有する電子写真感光体であって、かつ 、該トナーのフロー式粒子像分析装置によって測定される
    平均円形度が、0.960以上1.000以下であることを特徴とする電子写真カートリッジ。
    Figure 2008299214
    (一般式(1)において、Arは置換基を有してもよいアリーレン基、Ar〜Arは置換基を有してもよいアリール基を表し、nは3〜6の整数を表す)
  4. 請求項3に記載の電子写真カートリッジにおいて、該電子写真感光体が導電性支持体上に、電荷発生層および電荷輸送層を有し、且つ該電荷発生層が、オキシチタニウムフタロシアニンを含有し、且つ該オキシチタニウムフタロシアニンがフタロシアニン結晶前駆体を化学的処理後、有機溶媒に接触して得られるものであって、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)9.5°、24.1°および27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニンであることを特徴とする電子写真カートリッジ。
JP2007147251A 2007-06-01 2007-06-01 電子写真感光体、並びにそれを用いた画像形成装置及び電子写真カートリッジ Pending JP2008299214A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147251A JP2008299214A (ja) 2007-06-01 2007-06-01 電子写真感光体、並びにそれを用いた画像形成装置及び電子写真カートリッジ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147251A JP2008299214A (ja) 2007-06-01 2007-06-01 電子写真感光体、並びにそれを用いた画像形成装置及び電子写真カートリッジ

Publications (1)

Publication Number Publication Date
JP2008299214A true JP2008299214A (ja) 2008-12-11

Family

ID=40172764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147251A Pending JP2008299214A (ja) 2007-06-01 2007-06-01 電子写真感光体、並びにそれを用いた画像形成装置及び電子写真カートリッジ

Country Status (1)

Country Link
JP (1) JP2008299214A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283808A (zh) * 2017-07-21 2019-01-29 京瓷办公信息系统株式会社 电子照相感光体、处理盒及图像形成装置
JP2019020672A (ja) * 2017-07-21 2019-02-07 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007011312A (ja) * 2005-06-01 2007-01-18 Mitsubishi Chemicals Corp 電子写真感光体、プロセスカートリッジ、および画像形成装置
JP2007179038A (ja) * 2005-12-02 2007-07-12 Mitsubishi Chemicals Corp 電子写真感光体、および画像形成装置
JP2007334335A (ja) * 2006-05-18 2007-12-27 Mitsubishi Chemicals Corp 電子写真感光体、画像形成装置及び電子写真カートリッジ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007011312A (ja) * 2005-06-01 2007-01-18 Mitsubishi Chemicals Corp 電子写真感光体、プロセスカートリッジ、および画像形成装置
JP2007179038A (ja) * 2005-12-02 2007-07-12 Mitsubishi Chemicals Corp 電子写真感光体、および画像形成装置
JP2007334335A (ja) * 2006-05-18 2007-12-27 Mitsubishi Chemicals Corp 電子写真感光体、画像形成装置及び電子写真カートリッジ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283808A (zh) * 2017-07-21 2019-01-29 京瓷办公信息系统株式会社 电子照相感光体、处理盒及图像形成装置
JP2019020673A (ja) * 2017-07-21 2019-02-07 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2019020672A (ja) * 2017-07-21 2019-02-07 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
CN109283808B (zh) * 2017-07-21 2022-03-29 京瓷办公信息系统株式会社 电子照相感光体、处理盒及图像形成装置

Similar Documents

Publication Publication Date Title
JP5365077B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP5708601B2 (ja) フタロシアニン結晶、電子写真感光体、並びにそれを用いた電子写真感光体カートリッジ及び画像形成装置
JP5347245B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
WO2007078006A1 (ja) 電子写真感光体並びにそれを用いた画像形成装置及び電子写真感光体カートリッジ
JP5585060B2 (ja) 電子写真感光体、並びにそれを用いた電子写真カートリッジ及び画像形成装置
JP5672107B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP5549263B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2013092760A (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5446299B2 (ja) 電子写真感光体、それを用いた電子写真カートリッジ及び画像形成装置
JP2008019417A (ja) フタロシアニン結晶、電子写真感光体、並びにそれを用いた電子写真感光体カートリッジ及び画像形成装置
JP5659452B2 (ja) 電子写真感光体、画像形成装置、及び電子写真カートリッジ
JP5521336B2 (ja) 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP2007213050A (ja) 画像形成装置
JP5617192B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5663835B2 (ja) 電子写真感光体、電子写真カートリッジ、および、画像形成装置
JP5157438B2 (ja) 電子写真感光体、電子写真カートリッジ、及び画像形成装置
JP2008299214A (ja) 電子写真感光体、並びにそれを用いた画像形成装置及び電子写真カートリッジ
JP2008299215A (ja) 電子写真感光体、電子写真カートリッジ、および画像形成装置
JP5119733B2 (ja) 電子写真感光体、該電子写真感光体を備える感光体カートリッジ及び画像形成装置
JP5365175B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2008151876A (ja) 画像形成装置及び電子写真感光体カートリッジ
JP5659454B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および、画像形成装置
JP2009020506A (ja) 画像形成装置及び電子写真感光体カートリッジ
JP5835053B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5783104B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710