WO2007032531A1 - ナノ結晶磁性合金とその製造方法、合金薄帯、及び磁性部品 - Google Patents

ナノ結晶磁性合金とその製造方法、合金薄帯、及び磁性部品 Download PDF

Info

Publication number
WO2007032531A1
WO2007032531A1 PCT/JP2006/318540 JP2006318540W WO2007032531A1 WO 2007032531 A1 WO2007032531 A1 WO 2007032531A1 JP 2006318540 W JP2006318540 W JP 2006318540W WO 2007032531 A1 WO2007032531 A1 WO 2007032531A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
magnetic
less
sample
heat treatment
Prior art date
Application number
PCT/JP2006/318540
Other languages
English (en)
French (fr)
Inventor
Motoki Ohta
Yoshihito Yoshizawa
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to CN2006800335634A priority Critical patent/CN101263240B/zh
Priority to US12/066,595 priority patent/US8177923B2/en
Priority to EP06810282.1A priority patent/EP1925686B1/en
Publication of WO2007032531A1 publication Critical patent/WO2007032531A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • the present invention relates to a nanocrystalline magnetic alloy having high saturation magnetic flux density and excellent soft magnetic properties suitable for use in various magnetic parts, particularly excellent alternating magnetic properties, a method for producing the same, and nanocrystalline magnetism
  • the present invention relates to an alloy ribbon and magnetic parts made of an alloy.
  • An inexpensive and high magnetic flux density silicon steel sheet is extremely difficult to process as thin as an amorphous ribbon, and has a large core loss at high frequencies due to a large eddy current loss. Since the saturation magnetic flux density is low, it is not suitable for high power applications that require a large operating magnetic flux density because it is magnetically saturated.
  • the Co-based amorphous alloy has a low saturation magnetic flux density of 1 T or less, so that high-power components become large and become thermally unstable.As a result, the core loss increases over time. There is also a problem that the cost is high because Co is expensive.
  • a Fe-based amorphous alloy ribbon for transformer cores that has soft magnetic properties (good square properties, low coercive force, and high magnetic flux density).
  • This Fe-based amorphous alloy has a large magnetostriction, the theoretical upper limit of the saturation magnetic flux density determined by the interatomic distance, coordination number, and Fe concentration is as low as about 1.65 T, and its characteristics deteriorate due to stress and is audible. There is a problem that the S / N ratio is bad in the frequency band.
  • Japanese Patent Laid-Open No. 1-156451 discloses (Fe Co) Cu Si B M ′ (
  • ⁇ - ⁇ -y ⁇ z- xyz (Wherein M 'is at least one element selected from the group consisting of Nb W Ta Zr Hf Ti and Mo, and axyz and ⁇ are 0 ⁇ a ⁇ 0.3 0.1 ⁇ x ⁇ 3 3 ⁇ respectively. y ⁇ 6 4 ⁇ z ⁇ 17 10 ⁇ y + z ⁇ 20 and 0.1 ⁇ a ⁇ 5)), and 50% or more of the tissue has an average particle size of 1000
  • a soft magnetic Fe-based nanocrystalline alloy having a grain strength of less than angstrom. However, the saturation flux density of this Fe-based nanocrystalline alloy is not satisfactory at about 1.5 T.
  • JP 2006-40906 has a mixed phase structure in which an ⁇ -Fe crystal phase having an average particle size of 50 nm or less is dispersed in an amorphous phase by rapidly solidifying an Fe-based alloy melt.
  • a method for producing a soft magnetic ribbon by forming a ribbon capable of being bent by 180 ° and heating the ribbon to a temperature higher than the crystallization temperature of the ⁇ -Fe crystal phase.
  • the saturation magnetic flux density of this soft magnetic ribbon was about 1.6 T, which was not satisfactory.
  • an object of the present invention is to provide a nanocrystalline magnetic alloy that is inexpensive because it does not substantially contain Co, has a high saturation magnetic flux density of 1.7 T or more, and has a low coercive force and magnetic core loss, and its production.
  • Method and means for solving the problem is to provide a ribbon and a magnetic component such as a nanocrystalline magnetic alloy
  • the first magnetic alloy of the present invention has the following general formula (1):
  • the second magnetic alloy of the present invention has the following general formula (2):
  • X is at least one element selected from the group consisting of Si, S, C, P, Al, Ge, Ga and Be, and xy and z are 0.1 ⁇ x ⁇ 3 10 ⁇ y ⁇ 20 0 ⁇ z ⁇ 10 and 10 ⁇ y + z ⁇ 24.
  • the compositional force represented by) and the structural strength of containing crystal grains with an average grain size of 60 or less in the amorphous matrix.
  • the saturation magnetic flux density is 1.7 T or more.
  • X is preferably Si and Z or P.
  • the crystal grains are preferably dispersed in an amorphous matrix by 30% by volume or more.
  • the maximum permeability of the magnetic alloy is preferably 20000 or more.
  • the first and second magnetic alloys preferably further contain Ni and Z or Co in a proportion of 10 atomic% or less of Fe.
  • the first and second magnetic alloys are Ti Zr Hf V Nb Ta Cr Mo W Mn Re, platinum group element, Au Ag Zn In Sn As Sb Bi Y N, and so on.
  • at least one element selected from the group power consisting of rare earth elements is preferably contained in a proportion of 5 atomic% or less of Fe.
  • the magnetic alloy is preferably in the form of a ribbon, powder or flakes.
  • the magnetic component of the present invention is characterized by being made of the magnetic alloy cover.
  • the method for producing a magnetic alloy of the present invention comprises rapidly cooling a molten alloy containing Fe and a metalloid element [having a composition represented by the above general formula (1) or (2)], and having an average particle size of 30 nm.
  • the following crystal grains are dispersed in the amorphous matrix at a ratio of more than 0% by volume and less than 30% by volume. It is characterized by a structure in which the following body-centered cubic crystal grains are dispersed in an amorphous matrix at a ratio of 30% by volume or more.
  • the magnetic alloy of the present invention has high, high saturation magnetic flux density, low magnetic core loss, it is possible to form a magnetic component with high performance and stable magnetic characteristics, and particularly high frequency current (especially pulse current). Suitable for flowing applications, especially for power electronics where magnetic saturation is a problem.
  • the method of the present invention since an alloy in which fine crystal grains are dispersed in an amorphous phase is subjected to heat treatment, the growth of crystal grains is suppressed, and a magnetic field in a low magnetic field with a small coercive force is obtained. A magnetic alloy with high bundle density and low hysteresis loss can be obtained.
  • FIG. 1 is a graph showing an X-ray diffraction pattern of an alloy (Fe Cu B) of Example 1.
  • FIG. 2 is a graph showing the magnetic field dependence of the magnetic flux density of the alloy of Example 1 (Fe Cu B).
  • FIG. 3 is a graph showing heat generation patterns of the magnetic alloy and the Fe—B amorphous alloy of the present invention.
  • FIG. 4 is a graph showing an X-ray diffraction pattern of the alloy of Example 2 (Fe Ni Cu B).
  • FIG. 5 is a graph showing the magnetic field dependence of the magnetic flux density of the alloy of Example 2 (Fe Ni Cu B).
  • FIG. 6 is a graph showing the magnetic field dependence of the magnetic flux density of the alloy of Example 3 (Fe Cu Si B).
  • FIG. 7 is a graph showing the magnetic field dependence of the magnetic flux density of the alloy of Example 3 (Fe Cu Si B).
  • FIG. 8 is a graph showing an X-ray diffraction pattern of the alloy [(Fe B) Cu] of Example 4.
  • FIG. 9 is a graph showing the magnetic field dependence of the magnetic flux density of the alloy [(Fe B) Cu] in Example 4.
  • FIG. 11 is a graph showing a BH curve of an alloy (Fe Cu Si B) bal. 1.6 7 13 of Sample 13-9 of Example 13 subjected to heat treatment for a short time at high temperature.
  • FIG. 13 is a transmission electron micrograph showing the microstructure of the alloy ribbon of Example 14.
  • FIG. 14 is a schematic view showing a microstructure of an alloy ribbon according to the present invention.
  • FIG. 15 is a graph showing an X-ray diffraction pattern of the magnetic alloy of Example 14.
  • FIG. 16 is a transmission electron micrograph showing the microstructure of the magnetic alloy of Example 14.
  • FIG. 17 is a schematic view showing the microstructure of the magnetic alloy of the present invention.
  • FIG. 18 is a graph showing the magnetic flux density B dependence of the core loss P at 50 Hz of the magnetic core which is the magnetic alloy force of Example 15 and the conventional magnetic core which is the directional silicon steel plate force.
  • FIG. 19 is a graph showing the frequency dependence of the core loss P at 0.2 T of the magnetic core having the magnetic alloy force of Example 16 and the magnetic core having various conventional soft magnetic materials.
  • FIG. 20 is a graph showing the heat treatment temperature dependence of the saturation magnetic flux density Bs of the magnetic alloy of the present invention of Example 18 and a comparative example.
  • FIG. 21 is a graph showing the heat treatment temperature dependence of the coercive force He of the magnetic alloys of the present invention and the comparative example of Example 18.
  • FIG. 22 is a graph showing the DC superposition characteristics of the choke coil having the magnetic alloy force of the present invention of Example 21 and the comparative example.
  • the Fe concentration of the magnetic alloy is about 75 atomic% (about 90% by mass) or more.
  • the first magnetic alloy has the following general formula (1):
  • the saturation flux density of magnetic alloys is 1.74 T or more for 0.1 ⁇ x ⁇ 33 ⁇ 4m2 ⁇ y ⁇ 17, and 1.78 T or more for 0.1 ⁇ x ⁇ 3 and 12 ⁇ y ⁇ 15. 0. l ⁇ x ⁇ 3 and When 12 ⁇ y ⁇ 15, 1.8 T or more.
  • Cu amount X is 0.1 ⁇ x ⁇ 3. If it exceeds 3 atomic%, it becomes extremely difficult to obtain a ribbon with the amorphous phase as the main phase by rapid cooling, and the soft magnetic properties deteriorate rapidly. On the other hand, if it is less than 0.1 atomic%, precipitation of fine crystal grains becomes difficult.
  • the amount of Cu is preferably l ⁇ x ⁇ 2, more preferably l ⁇ x ⁇ 1.7, and most preferably 1.2 ⁇ x ⁇ 1.6. 3 atomic% or less of Cu may be substituted with Au and Z or Ag.
  • B quantity y is 10 ⁇ y ⁇ 20. B is an indispensable element for promoting the formation of an amorphous phase.
  • the amount of B is preferably 12 ⁇ y ⁇ l 7, more preferably 14 ⁇ y ⁇ 17.
  • the second magnetic alloy has the following general formula (2):
  • X is at least one element selected from the group consisting of Si, S, C, P, Al, Ge, Ga and Be, and x, y and z are 0.1 ⁇ x ⁇ 3, 10 ⁇ y ⁇ 20 , 0 ⁇ z ⁇ 10, and 10 ⁇ y + z ⁇ 24.
  • the addition of X atoms increases the temperature at which Fe-B, which has a large magnetocrystalline anisotropy, starts to precipitate, so the heat treatment temperature can be increased.
  • the proportion of fine crystal grains increases, the saturation magnetic flux density Bs increases, and the squareness of the BH curve improves. It also has the effect of suppressing alteration and discoloration of the magnetic alloy surface.
  • Saturation magnetic flux density Bs is 1.74 T or more for 0.1 ⁇ x ⁇ 3, 12 ⁇ y ⁇ 17, 0 ⁇ z ⁇ 7, and 13 ⁇ y + z ⁇ 20, 0.1 ⁇ x ⁇ 3, 12 ⁇ y ⁇ 15 , 0 ⁇ z ⁇ 5, and 14 ⁇ y + z ⁇ 19, 1.78 T or more, 0.1 ⁇ x ⁇ 3, 12 ⁇ y ⁇ 15, 0 ⁇ z ⁇ 4, and 14 ⁇ y + z ⁇ 17 1.8 T or more.
  • the formation of microcrystalline grains not only increases the ability to form an amorphous phase.
  • Cu content can be increased and soft magnetic properties such as saturation magnetic flux density can be improved.
  • Ni is preferably 10 atomic percent or less, more preferably 5 atomic percent or less, and most preferably 2 atomic percent or less.
  • Co is preferably 10 atomic percent or less, more preferably 2 atomic percent or less, and most preferably 1 atomic percent or less.
  • part of Fe is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W ⁇ Mn ⁇ Re ⁇ Platinum group element, Au ⁇ Ag ⁇ Zn ⁇ In ⁇ Sn ⁇ As ⁇ Sb ⁇ Bi ⁇ Y ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ and rare earth element power Group force that may be substituted with at least one selected element.
  • substitution elements preferentially enter the amorphous phase together with Cu and metalloid elements, thus promoting the formation of bcc-Fe microcrystal grains and improving soft magnetic properties.
  • the content of the substitutional element is preferably 5 atomic% or less of Fe.
  • Nb and Zr it is more preferable to set it to 2 atomic% or less of Fe.
  • Ta and Hf it is more preferable to set it to 2.5 atomic% or less of Fe, and 1.2 atomic% or less is particularly preferable.
  • Mn it is more preferable to make it 2 atomic% or less of Fe.
  • the total amount of substitutional elements is more preferably 1.8 atomic percent or less, and more preferably 1 atomic percent or less.
  • the body-centered cubic (bcc) structure grains dispersed in the amorphous phase have an average grain size of 60 degrees or less.
  • the volume fraction of crystal grains is preferably 30% or more. When the average grain size exceeds 60 nm, the soft magnetic properties of the magnetic alloy deteriorate. When the volume fraction of crystal grains is less than 30%, the saturation flux density of the magnetic alloy is low.
  • the preferred average grain size of the crystal grains is 30 or less, and the more preferred volume fraction is 50% or more.
  • the crystal grains mainly composed of Fe may contain Si, B, Al, Ge, Ga, Zr and the like, and some have face-centered cubic (fee) phases such as Cu. Also good.
  • the compound phase should be as small as possible because it increases the core loss.
  • the magnetic alloy of the present invention has a high saturation magnetic flux density of 1.7 T or more (especially 1.73 T or more), 200 A / m or less (more than 100 A / m, particularly 24 A / m or less), and a low coercive force Hc. It is a soft magnetic alloy having a low core loss of 20 W / kg or less at 20 kHz and 0.2 T, and a high AC ratio initial permeability k of 3000 or more (particularly 5000 or more).
  • the magnetic alloy of the present invention has a large amount of bcc-Fe fine crystal grains in the structure, the magnetostriction caused by the magnetovolume effect is much smaller than that of an amorphous alloy having the same composition, and the noise reduction effect is also large.
  • the magnetic alloy of the present invention may be in the form of flakes, ribbons, powders or thin films.
  • a molten alloy containing Fe and a metalloid element is quenched, and fine crystal grains having an average grain size of 30 or less are greater than 0% by volume and 30% by volume in the amorphous matrix.
  • An Fe-based alloy having a structure dispersed at the following ratio is prepared, and the alloy ribbon is heat-treated, and 30 volume of crystal grains having a body-centered cubic structure with an average grain size of 60 or less are contained in the amorphous matrix.
  • % And having a structure in which the structure is dispersed at a ratio of at least%.
  • the molten alloy containing Fe and metalloid elements has the following general formula (1):
  • X is at least one element selected from the group consisting of Si, S, C, P, Al, Ge, Ga and Be, and x, y and z are 0.1 ⁇ x ⁇ 3, 10 ⁇ y ⁇ 20 , 0 ⁇ z ⁇ 10, and 10 ⁇ y + z ⁇ 24.
  • the molten metal can be rapidly cooled by a single roll method, a twin roll method, a rotating liquid prevention method, a gas atomization method, a water atomization method, or the like.
  • a flake, ribbon or powder microcrystalline alloy (intermediate alloy) is produced by quenching the molten metal.
  • the temperature of the molten metal to be quenched is preferably about 50 to 300 ° C. higher than the melting point of the alloy.
  • the quenching is performed in the atmosphere or in an inert gas atmosphere such as Ar or nitrogen, and when the molten metal contains active metals, inert gases such as Ar, He, and nitrogen are used. Perform in gas or reduced pressure.
  • the vicinity of the nozzle tip portion an inert gas atmosphere. Also, blow CO gas onto the roll or burn CO gas near the nozzle.
  • the peripheral speed of the chill roll is preferably 15 to 50 m / s.
  • the material of the chill roll is copper alloy such as pure copper, Cu-Be, Cu-Cr, Cu-Zr, Cu-Zr-Cr, etc. with good thermal conductivity. Is preferred. It is also preferable to use a water-cooled cooling roll!
  • the intermediate alloy obtained by quenching the molten alloy having the above composition has an average particle size of 30 or more.
  • the lower microcrystalline grains have a structure in which they are dispersed in the amorphous phase at a ratio of more than 0% by volume and not more than 30% by volume.
  • the resistivity of the alloy increases, and the crystal grains are refined and soft magnetic properties are improved by suppressing the crystal grain growth.
  • the average grain size of the fine grains in the intermediate alloy is more than 30 nm, the crystal grains become too coarse due to the heat treatment and the soft magnetic properties deteriorate.
  • the average grain size is preferably 20 or less.
  • the average grain diameter of the crystal grains is 0.5 or more.
  • the average distance between crystal grains is preferably 50 or less. When the average inter-grain distance is more than 50 nm, the crystal grain size distribution becomes too wide due to heat treatment.
  • the volume fraction of the crystal grains increases without causing a significant increase in the crystal grain size, and the soft magnetic properties are superior to those of Fe-based amorphous alloys and Fe-based nanocrystalline alloys.
  • the magnetic alloy which has is obtained.
  • the intermediate alloy becomes a magnetic alloy having a high saturation magnetic flux density and a low magnetostriction having 30% by volume of microcrystalline grains having an average grain size of 60 degrees or less by heat treatment.
  • a heat treatment performed at high temperature (about 430 ° C or more) for a short time is effective in obtaining a low coercive force, improving the magnetic flux density in a low magnetic field and reducing hysteresis loss.
  • Heat treatment performed for a long time at low temperatures is excellent in mass productivity!
  • use high-temperature short-time heat treatment and low-temperature long-time heat treatment It can be divided.
  • the heat treatment is preferably performed in the air, in a vacuum, in an inert gas such as Ar, He, or N.
  • the dew point of the inert gas is preferably 30 ° C or less, more preferably 60 ° C or less.
  • the heat treatment is not limited to a single stage and may be a multi-stage. Further, the alloy may be heat-treated by applying a direct current, an alternating current, or a pulsed current to generate Joule heat, or may be heat-treated under stress.
  • the maximum temperature is lower than 430 ° C, the precipitation and growth of microcrystalline grains are insufficient.
  • the maximum temperature is preferably (T — 50) ° C or higher (where T is the compound precipitation temperature).
  • the holding time is preferably 30 minutes or less, more preferably 20 minutes or less, and most preferably 15 minutes or less.
  • the average heating rate is preferably 100 ° CZ or more.
  • the temperature rise rate in the high temperature range of 300 ° C or more has a great influence on the magnetic properties, so the temperature rise rate of 300 ° C or more is preferably 150 ° CZ or more, especially at 350 ° C or more.
  • the speed is preferably at least 170 ° CZ.
  • Formation of crystal nuclei can be controlled by controlling the rate of temperature rise and changing the holding temperature stepwise.
  • a homogeneous and fine crystal structure can be obtained by holding for a sufficient time at a temperature below the crystallization temperature and then performing a heat treatment at a temperature above the crystallization temperature for 1 hour or less. This is considered to be because the crystal grains suppress each other's growth. For example, it is preferable to hold at about 250 ° C. for more than 1 hour, then increase the temperature at 300 ° C. or higher to 100 ° C. or more and hold at the maximum temperature of 430 ° C. or higher for 1 hour or less.
  • the retention time is preferably 24 hours or less, more preferably 4 hours or less.
  • the average heating rate is preferably 0.1 to 200 ° CZ, more preferably 0.1 to 100 ° CZ.
  • the heat treatment is preferably performed in a magnetic field having a strength sufficient to saturate the alloy.
  • the magnetic field may be applied throughout the entire heat treatment (heating, holding at a constant temperature and cooling), or it may be applied only for a certain period of time, but not less than 200 ° C It is preferable to apply for 20 minutes or more in the temperature range. It is preferable to apply a magnetic field through the entire heat treatment to provide uniaxial induced magnetic anisotropy to achieve the desired DC or AC hysteresis loop shape.
  • a magnetic field of 8 k Am- 1 or more is applied in the width direction of the ribbon (the height direction of the core in the case of an annular magnetic core) It is preferable to apply a magnetic field of 80 Am- 1 or more in the direction (magnetic path direction in the case of an annular magnetic core).
  • a magnetic field is applied in the longitudinal direction of the alloy ribbon, a magnetic alloy exhibiting a DC hysteresis loop with a high squareness ratio is obtained.
  • a magnetic alloy exhibiting a DC hysteresis loop with a low squareness ratio can be obtained.
  • the magnetic field may be any of direct current, alternating current and pulse. A magnetic alloy with low core loss can be obtained by heat treatment in a magnetic field.
  • the magnetic alloy of the present invention may be coated with SiO, MgO, Al 0, etc.
  • the magnetic parts having the magnetic alloy power of the present invention include a high current rear tutor such as an anode rear tuttle, various transformers such as an active filter choke coil, a smooth choke coil, and a pulse transformer for communication, and a pulse for a laser power source and an accelerator. It can be used for power magnetic parts, motor cores, generator cores, magnetic sensors, current sensors, antenna cores, magnetic shields, electromagnetic shielding materials and other noise countermeasure parts, and yoke materials.
  • Example 1-0 An alloy ribbon (sample 1-0) with a width of 5 mm and a thickness of 18 m was heat-treated (temperature increase rate: 50 ° CZ) under the conditions shown in Table 1, and the magnetic properties of samples 1-1 to 1_8 An alloy was made. X-ray diffraction, grain volume fraction, and magnetic properties were measured for each sample. Measurement results of magnetic properties The results are shown in Table 1.
  • the half width of the peak on the (310) plane was about 2 °, and the average crystal grain size was about 24 nm.
  • the coercivity H was about 7.8 A / m before heat treatment.
  • the coercive force H was 7.0 A / m.
  • B was 1.82 T.
  • FIG. 3 shows the magnetic alloy (a) (composition: Fe Cu B) and Fe B amorphous alloy (b) bal. 1.5 14.78 85 15 of Sample 1-0.
  • Example 2-0 An alloy ribbon (sample 2-0) with a width of 5 mm and a thickness of 18 m was heat-treated (temperature increase rate: 50 ° CZ) under the conditions shown in Table 2 to obtain a sample 2-1 2-4 A magnetic alloy was prepared. X-ray diffraction and magnetic properties were measured for each sample. Table 2 shows the measurement results of the magnetic properties.
  • FIG. 4 shows the X-ray diffraction pattern of each sample.
  • FIG. 5 shows the BH curve of each sample obtained in the same manner as in Example 1.
  • Table 2 shows the heat treatment conditions and magnetic properties of each sample. As the heat treatment temperature T increases, the saturation magnetic flux density (B)
  • a 8000 increased, especially under the heat treatment condition of 390 ° C (Sample 2-3), the curve saturation was the best.
  • B is also large (maximum 1.54 T), and the rise of magnetic flux density in a low magnetic field was good.
  • the coercive force H was relatively low at about 7.8 A / m in a wide heat treatment temperature range of 370-390 ° C.
  • the alloy ribbon of Example 2 was harder to cut than the alloy ribbon of Example 1 containing no Ni. This is presumably because the amorphous forming ability was improved by using the composition of Example 2. In addition, since Ni dissolves in both Fe and Cu, it is considered that Ni addition is effective for thermal stability of magnetic properties.
  • the alloy ribbon (sample 3-0) having a width of 5 mm and a thickness of 20 m obtained by the method was subjected to heat treatment (temperature increase rate: 50 ° CZ) under the conditions shown in Table 3, and sample 3 -1 and 3-2 magnetic alloys were produced.
  • FIG. 7 shows a BH curve of each sample in a low magnetic field. B increases with increasing heat treatment temperature
  • the coercive force H is as small as 8.6 A / m, and the ratio B / B between B and residual magnetic flux density B is about 90%.
  • Samples 3-1 and 3-2 both contained 50% by volume or more of crystal grains (average particle size: 60 degrees or less) in the amorphous phase.
  • Sample 3-4 containing no Si has a high coercivity of about 16.4 A / m.
  • Table 4 shows the evaluation results of ribbon forming properties and soft magnetic properties of magnetic alloys having the same composition except for the presence or absence of Si.
  • the peak of the bcc phase is clearly observed.
  • FIG. 9 shows a BH curve.
  • x 0.0
  • the coercive force H is about 400 A / m
  • C 8000 was about 1.63 T, but as X increased, the grain size did not increase and H decreased and B decreased.
  • a crystallization temperature of 80 r 80 m and a good amorphous phase forming ability were exhibited. From this, it can be seen that the soft magnetic properties improve as the content of metalloid elements such as B and Si increases. In all samples, 50% by volume or more of crystal grains (average particle size: 60 nm or less) were dispersed in the amorphous phase.
  • Bal. 1.5 z y obtained from a molten alloy having a composition represented by Fe Cu Si B by a single roll quenching method
  • the alloy ribbon is heat-treated in the absence of a magnetic field under conditions of a heating rate of 50 ° CZ and a holding time of 1 hour, changing the maximum temperature, from the heat treatment temperature at which the lowest coercive force H can be obtained.
  • the range where the increase was within 5% was determined as the optimum heat treatment temperature range.
  • Table 7 shows the optimum heat treatment temperature range of an alloy having a saturation magnetic flux density Bs of 1.7 T or more.
  • Bs saturation magnetic flux density
  • the soft magnetic properties were good.
  • P and C improve the amorphous forming ability and improve the toughness of the ribbon.
  • 50 volume% or more of crystal grains were dispersed in the amorphous phase.
  • An alloy ribbon with a width of 5 mm and a thickness of 20 m obtained from a Fe-Cu-S alloy containing B, containing Ni, Co or Mn (having the composition shown in Table 10) by a single roll quenching method.
  • heat treatment was performed in the absence of a magnetic field under conditions of a heating rate of 50 ° CZ min, a maximum temperature of 410 ° C, and a holding time of 1 hour.
  • Samples 10-l to 10-5 were prepared. Table 10 shows the plate thickness, maximum temperature, and magnetic properties of these samples.
  • Nb-containing Fe-Cu-B or Fe-Cu-S to B-based alloy melt (having the composition shown in Table 11) obtained by a single roll quenching method with a width of 5 mm and a thickness of 20 to
  • the alloy ribbon of 25 / ⁇ ⁇ was heat-treated in a non-magnetic field under the conditions of a heating rate of 50 ° CZ min, a maximum temperature of 410 ° C, and a holding time shown in Table 11, and sample 11-1 ⁇ 11-4 magnetic alloys were prepared.
  • Table 11 shows the heat treatment conditions and magnetic properties of these samples. All samples exhibited good squareness (B / B). Even when a small amount of Nb, an element that promotes the formation of nanocrystal grains, was added, the ability to form ribbons improved. In each sample, 50% by volume or more of crystal grains (average particle size: 60 nm or less) were dispersed in the amorphous phase.
  • the maximum temperature of 450-480 ° C (for one hour of heat treatment) is applied to an alloy ribbon having a width of 5 mm and a thickness of 17-25 ⁇ m obtained from a molten alloy having the composition shown in Table 12 by a single roll quenching method.
  • the sample was heated rapidly at an average rate of 100 ° CZ or 200 ° CZ for 200 ° CZ, held for 2 to 10 minutes, and then cooled rapidly to room temperature. Magnetic alloys of ⁇ 13-33 were produced.
  • the rate of temperature rise above 350 ° C was about 170 ° CZ.
  • Table 12 shows the heat treatment conditions, thickness and magnetic properties of these samples.
  • This heat treatment method is effective for reducing H, especially for alloys with a low Cu content or an alloy with a Si content of 5 atomic% or more.
  • this heat treatment method not only reduces H but also increases B.
  • C 80 is found to be preferred.
  • alloys containing C or Ga 50% by volume or more of crystal grains (average particle size: 60 nm or less) were dispersed in the amorphous phase.
  • FIGS. 11 and 12 show Sample 13-9 (composition: Fe Cu Si B) and Sample 13-29 (composition: Fe Cu bal. 1.6 7 13 bal. 1).
  • Sample 13-9 has small H and good saturation.
  • Sample 13-29 has a large B
  • a 19 mm outer diameter and 15 mm inner diameter magnetic core formed from an alloy ribbon was placed in a furnace in a nitrogen gas atmosphere, and a room temperature force was applied while applying a 240 K A / m magnetic field in the height direction of the magnetic core.
  • the temperature was raised to 420 ° C in 7.5 ° CZ minutes.
  • the sample was cooled to 200 ° C at an average speed of 1.2 ° CZ, taken out of the furnace vessel, and cooled to room temperature to obtain Sample 14-1.
  • Sample 14-1 was subjected to magnetic property measurement, X-ray diffraction measurement, and transmission electron microscope (TEM) observation.
  • FIG. 15 shows the X-ray diffraction pattern of the sample 14-1 after the heat treatment
  • FIG. 16 shows the microstructure of the alloy ribbon obtained by a transmission electron microscope
  • FIG. 17 schematically shows the microstructure. From the microstructure and X-ray diffraction pattern, it was found that 60% by volume of microcrystal grains (average particle diameter: about 14 °) having a body-centered cubic (bcc) structure were dispersed in the amorphous phase. When the composition of the crystal grains was analyzed by EDX, it was found that Fe was the main component.
  • Table 13 shows the saturation magnetic flux density Bs, coercive force Hc, AC ratio initial permeability at 1 kHz, magnetic core loss P at 20 kHz and 0.2 T, and average grain size D of Sample 14-1 after heat treatment. lk cm
  • Example 14-2 Alloys crystallized by heat treatment (sample 14-2), known nanocrystalline soft magnetic alloys obtained by heat treatment of amorphous alloys (samples 14-3 and 14-4) [Fe Cu Nb Si in atomic% each B and bal. 1 3 13.5 9 and Fe Nb B composition], typical Fe-based amorphous alloy (Sample 14-5) [Composition: Fe B bal. 7 9 bal. 1
  • the crystal grain size is also shown in Table 13.
  • the saturation magnetic flux density Bs of the magnetic alloy of the present invention is 1.85 T
  • An alloy obtained by crystallizing a completely amorphous alloy by heat treatment (Sample 14-2) was extremely inferior in soft magnetic properties, and the core loss P was remarkably large.
  • Sample 14-1 of the present invention is a conventional cm
  • Figure 18 shows the dependence of magnetic core loss P on magnetic flux density B for magnetic cores made of conventional grain-oriented electrical steel sheets (Sample 14-6) and Fe-based amorphous alloys (Sample 14-5). Magnetism of the magnetic core of Sample 14-1
  • the core loss was about the same as that of the Fe-based amorphous alloy (Sample 14-5), and especially at 1.5 T or more, it showed a force that did not increase rapidly to 1.65 T, which was lower than Sample 14-5.
  • transformers and the like can be designed with a higher magnetic flux density than conventional Fe-based amorphous alloys, which can contribute to miniaturization of transformers and the like.
  • the core loss is lower than the grain-oriented electrical steel sheet (Sample 14-6) up to the high magnetic flux density region, so it is excellent in energy conservation.
  • Figure 19 shows the cm frequency dependence.
  • the magnetic alloy of Sample 14-1 has a high saturation magnetic flux density. Since the magnetic core loss is lower than that of the Fe-based amorphous alloy (Sample 14-5), it is suitable for a magnetic core such as a high frequency rear outer coil or transformer.
  • the AC ratio initial permeability of the magnetic alloy of Sample 14-1 is 6000 or more up to 100 kHz.
  • a choke coil such as a common mode choke, a transformer such as a pulse transformer, a magnetic shield material, and an antenna core.
  • a 1300 ° C molten alloy having the composition shown in Table 14 is ejected onto a 300-mm outer diameter Cu-Be alloy roll rotating at a peripheral speed of 32 m / s, resulting in a width of 5 mm and a thickness of about 21 ⁇ m.
  • An alloy ribbon was produced.
  • TEM transmission electron microscope
  • a 19 mm outer diameter and 15 mm inner diameter magnetic core formed from each alloy ribbon was heated in a furnace in a nitrogen gas atmosphere to a room temperature force of 410 ° C in 8.5 ° CZ minutes and then to 410 ° C for 60 minutes. After holding, it was cooled to room temperature. The average cooling rate was over 30 ° CZ.
  • the obtained magnetic alloy (Samples 15-1 15-33) was measured for magnetic properties, measured for X-ray diffraction, and observed with a transmission electron microscope. In the microstructure of the transmission electron microscope, every sample had fine grains with a body-centered cubic structure with an average grain size of 60 or less, accounting for 30% by volume or more of the structure.
  • Table 14 shows the core loss P at the saturation magnetic flux density Bs, coercive force Hc 20 kHz, and 0.2 T of Samples 15-1 15-33 after the heat treatment. For comparison, crystals with a particle size of 100 nm or more cm
  • Untreated Fe B alloy (Sample 15-34) with 100% strength S, and bal. 6 before the heat treatment.
  • Table 14 also shows the magnetic properties of conventional typical nanocrystalline soft magnetic alloys (samples 15-35 and 15-36) that are completely amorphous. It can be seen that the magnetic alloy of the present invention (Samples 15-115-33) has a high saturation magnetic flux density Bs, and a low coercive force He and a core loss P. This cm
  • Bs of 15-36 are 1.24 T and 1.52 T, respectively, which is lower than Sample 15-1 15-33 of the present invention o
  • the alloy ribbon was cut into 120 mm, held in a tube furnace in a nitrogen gas atmosphere heated up to the temperature shown in FIGS. 20 and 21, for 60 minutes, and then an average speed of 30 ° outside the furnace. Air-cooled for more than CZ minutes .
  • Sample 16-1 the dependence of the magnetic properties on the heat treatment temperature was examined.
  • fine body-centered cubic crystal grains with an average grain size of 50 or less are amorphous. It was found that it was dispersed in the phase at a ratio of 30% by volume or more. As a result of EDX analysis, it was found that the crystal grains were mainly Fe.
  • An alloy ribbon with a width of 5 mm and a thickness of 18 m was prepared by jetting from a nozzle onto a Cu-Be alloy roll with an outer diameter of 300 mm rotating at a peripheral speed of 33 m / s. As a result of X-ray diffraction measurement and TEM observation, it was found that this alloy ribbon was amorphous. This alloy ribbon was cut to 120 mm and subjected to the same heat treatment. ⁇ The magnetic properties of the obtained Sample 16-2 were examined for heat treatment temperature dependence.
  • Figure 20 shows the heat treatment temperature dependence of the saturation magnetic flux density Bs
  • Figure 21 shows the heat treatment temperature dependence of the coercive force He.
  • Bs increases when the heat treatment temperature exceeds 330 ° C, but he does not increase and a soft magnetic alloy exhibiting excellent soft magnetism at high Bs is obtained. It was. In particular, the best magnetic properties were obtained at a heat treatment temperature around 420 ° C. In contrast, when the amorphous alloy was heat-treated (Sample 16-2), He increased rapidly due to crystallization.
  • an alloy having a structure in which crystal grains having an average grain size of 30 ° or less are dispersed in an amorphous phase at a ratio of 30% by volume or less and an average inter-grain distance of 50 ° or less is heat-treated.
  • a magnetic alloy having a structure in which body-centered cubic structure grains with an average grain size of 60 mm or less are dispersed in a proportion of 30% by volume or more in an amorphous phase exhibits high softness at high Bs. I understand.
  • the steel ribbon was ejected onto a Cu-Be alloy roll with an outer diameter of 300 mm with different rotation speeds, and 5 mm wide alloy ribbons with different volume fractions of crystal grains in the amorphous phase were prepared.
  • the volume fraction of crystal grains was determined from a transmission electron microscope image.
  • the volume fraction of crystal grains changed with the rotation speed of the roll.
  • a magnetic core having an outer diameter of 19 mm and an inner diameter of 15 mm made from each alloy ribbon was heat-treated at 410 ° C. for 1 hour to obtain magnetic alloys of Samples 17-1 to 17-8.
  • the saturation magnetic flux density Bs and coercive force He of these alloys were measured.
  • the grain volume fraction of the magnetic alloy after heat treatment is 30% or more, and Bs Was 1.8 T ⁇ 1.87 kg.
  • Table 15 shows the coercivity He of Samples 17-1 to 17-8.
  • a magnetic alloy (sample 17-1) obtained by heat-treating an alloy without crystal grains had a remarkably large coercive force He of 750 A / m.
  • the magnetic alloy of the present invention (samples 17-2 to 17_5) obtained by heat-treating an alloy having a crystal grain volume fraction of more than 0% and not more than 30% is superior in soft magnetism at high Bs with small He. .
  • the alloy (samples 17-6 to 17-8) obtained by heat treatment of an alloy with a crystal grain volume fraction exceeding 30% the crystal grains became coarse and the He increased.
  • a high-Bs magnetic alloy obtained by heat-treating a high-Fe alloy having a microstructure in which a fine grain strength of more than 0% and less than 30% is dispersed is a completely amorphous alloy or crystal grain. More excellent soft magnetic properties than alloys made by heat-treating alloys with over 30%! /
  • the alloy ribbon was cut into 120 mm, heat-treated at 410 ° C for 1 hour in a furnace in a nitrogen gas atmosphere, and the magnetic properties were measured. As a result of microstructural observation and X-ray diffraction measurement, it was found that fine body-centered cubic crystal grains with an average grain size of about 14 occupy 60% of the structure (the rest being an amorphous phase).
  • Saturation magnetic flux density Bs of heat-treated magnetic alloy Bs is 1.85 T
  • coercive force He is 6.5 A / m
  • AC ratio initial permeability at 1 kHz is 7000
  • magnetic core loss P at 20 T and 0.2 T is 4.1 W
  • the mean crystal grain size D is 14 nm
  • the saturation magnetostriction constant e s was + 14 X 10- 6.
  • the unheated alloy ribbon was pulverized by a vibration mill and passed through a 170 mesh sieve.
  • X-ray diffraction measurement and microstructure observation it was found that the obtained powder had the same X-ray diffraction pattern and microstructure as the ribbon.
  • a part of this powder was heat-treated under the conditions of an average heating rate of 20 ° CZ, a holding temperature of 410 ° C, a holding time of 1 hour, and an average cooling rate of 7 ° CZ.
  • the obtained magnetic alloy had a coercive force of 29 A / m and a saturation magnetic flux density of 1.84 T.
  • X-ray diffraction and microstructure observation it was found that the powder after heat treatment had the same X-ray diffraction pattern and microstructure as the ribbon after heat treatment.
  • the alloy particles constituting the powder magnetic core had a structure in which nanocrystal grains were dispersed in the amorphous matrix as in the case of the alloy after heat treatment in Example 1.
  • the relative initial permeability of the dust core was 78.
  • Fe-based amorphous dust core (Sample 19 2), the sub having a composition of Fe Cu Nb Si B (atomic 0/0) bal. 1 3 13.5 9
  • the choke coil of the present invention has an Fe-based amorphous powder magnetic core (Sample 19-2), Fe-Cu-Nb-Si-B-based nanocrystalline alloy pressure. It had a larger inductance L than the choke coil using the powder magnetic core (Sample 19-3) and iron powder (Sample 19-4), and was excellent in DC superposition characteristics. Therefore, the choke coil of the present invention can cope with a large current and can be miniaturized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Continuous Casting (AREA)

Abstract

 一般式:Fe100-x-yCuxBy(原子%)(ただしx及びyは0.1≦x≦3、及び10≦y≦20の条件を満たす数である。)、又は一般式:Fe100-x-y-zCuxByXz(原子%)(ただしXはSi,S,C,P,Al,Ge,Ga及びBeからなる群から選ばれた少なくとも一種の元素であり、x、y及びzは0.1≦x≦3、10≦y≦20、0<z≦10、及び10<y+z≦24の条件を満たす数である。)により表される組成を有し、平均粒径60 nm以下の結晶粒を非晶質母相中に含有する組織からなり、飽和磁束密度が1.7 T以上である磁性合金。

Description

明 細 書
ナノ結晶磁性合金とその製造方法、合金薄帯、及び磁性部品
技術分野
[0001] 本発明は、各種の磁性部品に用いるのに好適な高飽和磁束密度及び優れた軟磁 気特性、特に優れた交流磁気特性を有するナノ結晶磁性合金、及びその製造方法 、及びナノ結晶磁性合金カゝらなる合金薄帯及び磁性部品に関する。
背景技術
[0002] 各種のトランス、リアタトル 'チョークコイル、ノイズ対策部品、レーザ電源や加速器 等用のパルスパワー磁性部品、モータ、発電機等に用いられる磁性材料は高い飽和 磁束密度及び優れた交流磁気特性を必要とするので、珪素鋼、フェライト、 Co基非 晶質合金、 Fe基非晶質合金、 Fe基ナノ結晶合金等が用いられている。
[0003] 安価で高磁束密度の珪素鋼板は、非晶質薄帯並に薄く加工するのが極めて難しく 、また渦電流損失が大きいために高周波における磁心損失が大きい。フ ライトは飽 和磁束密度が低いので、大きな動作磁束密度が必要なハイパワー用には磁気的に 飽和するため適さない。 Co基非晶質合金は、飽和磁束密度が 1 T以下と低いために ハイパワー用部品が大きくなつてしまうだけでなぐ熱的に不安定であるために経時 的に磁心損失が増加し、さらに Coが高価であるためコスト高であるという問題もある。
[0004] Fe基非晶質合金として、特開平 5-140703号は、 (Fe Si B C ) Sn (原子%) (a=0.
a b e d 100-x x
80〜0.86、 b = 0.01〜0.12、 c=0.06〜0.16、 d=0.001〜0.04、 a+b + c+d= l、及び x = 0.05〜1.0)により表される組成を有し、優れた軟磁気特性(良好な角型特性、低い 保磁力及び大きな磁束密度)を有するトランス磁心用 Fe基非晶質合金薄帯を開示し ている。この Fe基非晶質合金は、原子間距離、配位数及び Fe濃度により決まる飽和 磁束密度の理論的上限値が 1.65 T程度と低ぐ大きな磁歪を有し、応力により特性が 劣化し、可聴周波数帯では S/N比が悪いという問題を有する。 Fe基非晶質合金の飽 和磁束密度を増加させるため、 Feの一部を Co、 Ni等で置換することも提案されたが、 高コストの割に効果が小さい。
[0005] Fe基ナノ結晶合金として、特開平 1-156451号は、(Fe Co ) Cu Si B M' (
1 a a ΙΟΟ-χ-y^z- x y z 原子%) (ただし M'は Nb W Ta Zr Hf Ti及び Moからなる群から選ばれた少なくと も 1種の元素であり、 a x y z及び αはそれぞれ 0≤a≤0.3 0.1≤x≤3 3≤y≤6 4 ≤z≤17 10≤y+z≤20、及び 0.1≤ a≤ 5の条件を満たす数である。)により表される 組成を有し、組織の 50%以上が平均粒径 1000オングストローム以下の結晶粒力もな る軟磁性 Fe基ナノ結晶合金を開示して 、る。しかしこの Fe基ナノ結晶合金の飽和磁 束密度は 1.5 T程度と満足ではない。
[0006] 特開 2006-40906号は、 Fe基合金溶湯を急冷凝固して、平均粒径が 50 nm以下の α -Fe結晶相が非晶質相中に分散された混相組織を有し、 180° 曲げが可能な薄帯 を形成し、前記薄帯を α -Fe結晶相の結晶化温度より高い温度に加熱することにより 軟磁性薄帯を製造する方法を開示して!/ヽる。しかしこの軟磁性薄帯の飽和磁束密度 は 1.6 T程度と満足ではな力つた。
発明の開示
発明が解決しょうとする課題
[0007] 従って、本発明の目的は、 Coを実質的に含まないために安価であり、かつ飽和磁 束密度が 1.7 T以上と高ぐ保磁力及び磁心損失が低いナノ結晶磁性合金及びその 製造方法、及びナノ結晶磁性合金カゝらなる薄帯及び磁性部品を提供することである 課題を解決するための手段
[0008] 優れた軟磁気特性を得るには完全に非晶質な合金を熱処理して結晶化させるのが 良いと考えられていたが、本発明者等は、 Fe量が多い合金の場合には非晶質相中 に微細な結晶粒が分散した合金をまず作製し、それを熱処理することにより、高飽和 磁束密度で低保磁力及び低磁心損失のナノ結晶磁性合金が得られることを発見し た。本発明は力かる発見に基づき完成した。
[0009] すなわち、本発明の第一の磁性合金は、下記一般式 (1) :
Fe Cu B (原子%) · · ·(1)
ΙΟΟ-χ-y χ y
(ただし χ及び yは 0.1≤x≤3、及び 10≤y≤20の条件を満たす数である。)により表さ れる組成を有し、平均粒径 60 以下の結晶粒を非晶質母相中に含有する組織から なり、飽和磁束密度が 1.7 T以上であることを特徴とする。 [0010] 本発明の第二の磁性合金は、下記一般式 (2):
Fe Cu B X (原子0 /0) · · ·(2)
ΙΟΟ-χ-y-z χ y ζ
(ただし Xは Si, S, C, P, Al, Ge, Ga及び Beからなる群から選ばれた少なくとも一種の 元素であり、 x y及び zは 0.1≤x≤3 10≤y≤20 0<z≤10、及び 10<y+z≤24の条 件を満たす数である。 )により表される組成を有し、平均粒径 60 以下の結晶粒を 非晶質母相中に含有する組織力もなり、飽和磁束密度が 1.7 T以上であることを特徴 とする。 Xは Si及び Z又は Pであるのが好ましい。
[0011] 前記結晶粒は非晶質母相中に 30体積%以上分散しているのが好ましい。磁性合 金の最大透磁率は 20000以上であるのが好ま
[0012] 第一及び第二の磁性合金はさらに Ni及び Z又は Coを Feの 10原子%以下の割合で 含有するのが好ましい。また第一及び第二の磁性合金はさらに Ti Zr Hf V Nb T a Cr Mo W Mn Re、白金族元素、 Au Ag Zn In Sn As Sb Bi Y N、。及び 希土類元素からなる群力 選ばれた少なくとも一種の元素を Feの 5原子%以下の割 合で含有するのが好ましい。磁性合金は薄帯状、粉末状又はフレーク状であるのが 好ましい。
[0013] 本発明の磁性部品は前記磁性合金カゝらなることを特徴とする。
[0014] 本発明の磁性合金の製造方法は、 Fe及び半金属元素を含む合金溶湯 [上記一般 式 (1)又は (2)により表される組成を有する]を急冷し、平均粒径 30 nm以下の結晶粒 が非晶質母相中に 0体積%超かつ 30体積%以下の割合で分散した組織力もなる Fe 基合金を作製し、前記 Fe基合金を熱処理して、平均粒径 60 nm以下の体心立方構 造の結晶粒が非晶質母相中に 30体積%以上の割合で分散した組織とすることを特 徴とする。
発明の効果
[0015] 本発明の磁性合金は高 、飽和磁束密度及び低 、磁心損失を有するため、高性能 で磁気特性が安定した磁性部品を形成することができ、中でも高周波電流 (特にパ ルス電流)が流れる用途に適し、特に磁気飽和が問題となるパワーエレクトロニクス用 に好適である。本発明の方法では非晶質相中に微細な結晶粒が分散した合金に対 して熱処理を施すので、結晶粒の成長が抑制され、保磁力が小さぐ低磁界での磁 束密度が高ぐヒステリシス損失が少ない磁性合金が得られる。
図面の簡単な説明
[図 1]実施例 1の合金 (Fe Cu B )の X線回折パターンを示すグラフである。
83.72 1.5 14.78
[図 2]実施例 1の合金 (Fe Cu B )の磁束密度の磁場依存性を示すグラフである
83.72 1.5 14.78
[図 3]本発明の磁性合金及び Fe-B非晶質合金の発熱パターンを示すグラフである。
[図 4]実施例 2の合金 (Fe Ni Cu B )の X線回折パターンを示すグラフである。
82.72 1 1.5 14.78
[図 5]実施例 2の合金 (Fe Ni Cu B )の磁束密度の磁場依存性を示すグラフで
82.72 1 1.5 14.78
ある。
[図 6]実施例 3の合金 (Fe Cu Si B )の磁束密度の磁場依存性を示すグラフで
83. 5 1.25 1 14.25
ある。
[図 7]実施例 3の合金 (Fe Cu Si B )の磁束密度の磁場依存性を示すグラフで
83. 5 1.25 1 14.25
ある。
[図 8]実施例 4の合金 [(Fe B ) Cu ]の X線回折パターンを示すグラフである。
0.85 0.15 100
[図 9]実施例 4の合金 [(Fe B ) Cu ]の磁束密度の磁場依存性を示すグラフで
0.85 0.15 100- ある。
[図 10]熱処理時の昇温速度に依存する実施例 13の試料 13-19 (昇温速度 200°CZ分 )及び 13-20 (昇温速度 100°CZ分)の合金(Fe Cu Si B )の B-H曲線を示すグラフ bal. 1.5 4 14
である。
[図 11]高温短時間の熱処理を施した実施例 13の試料 13-9の合金(Fe Cu Si B ) bal. 1.6 7 13 の B-H曲線を示すグラフである。
[図 12]高温短時間の熱処理を施した実施例 13の試料 13- 29の合金(Fe Cu Si B
BA1 1.35 2 12
P )の B-H曲線を示すグラフである。
2
[図 13]実施例 14の合金薄帯のミクロ組織を示す透過電子顕微鏡写真である。
[図 14]本発明の合金薄帯のミクロ組織を示す模式図である。
[図 15]実施例 14の磁性合金の X線回折パターンを示すグラフである。
[図 16]実施例 14の磁性合金のミクロ組織を示す透過電子顕微鏡写真である。
[図 17]本発明の磁性合金のミクロ組織を示す模式図である。 [図 18]実施例 15の磁性合金力 なる卷磁心及び従来の方向性珪素鋼板力 なる卷 磁心の 50 Hzにおける磁心損失 P の磁束密度 B依存性を示すグラフである。
cm m
[図 19]実施例 16の磁性合金力もなる卷磁心及び従来の各種の軟磁性材カもなる卷 磁心の 0.2 Tにおける磁心損失 P の周波数依存性を示すグラフである。
cm
[図 20]実施例 18の本発明及び比較例の磁性合金の飽和磁束密度 Bsの熱処理温度 依存性を示すグラフである。
[図 21]実施例 18の本発明及び比較例の磁性合金の保磁力 Heの熱処理温度依存性 を示すグラフである。
[図 22]実施例 21の本発明及び比較例の磁性合金力 なるチョークコイルの直流重畳 特性を示すグラフである。
発明を実施するための最良の形態
[0017] [1]磁性合金
(1)組成
(a)第一の磁性合金
1.7 T以上の飽和磁束密度 Bsを有するために bcc-Feの微細結晶を有する組織とな る必要があり、そのためには Fe濃度が高いことが必要である。具体的には、磁性合金 の Fe濃度は約 75原子% (約 90質量%)以上である。
[0018] 従って、第一の磁性合金は、下記一般式 (1):
Fe Cu B (原子%) · · ·(1)
ΙΟΟ-χ-y χ y
(ただし χ及び yは 0.1≤x≤3、及び 10≤y≤20の条件を満たす数である。)により表さ れる組成を有する必要がある。磁性合金の飽和磁束密度は、 0.1≤x≤3¾m2≤y ≤ 17の場合 1.74 T以上となり、 0.1≤x≤3及び 12≤y≤15の場合 1.78 T以上となり、 0. l≤x≤3及び 12≤y≤15の場合 1.8 T以上となる。
[0019] Cu量 Xは 0.1≤x≤3である。 3原子%を超えると、急冷により非晶質相を主相とする 薄帯を得るのが極めて困難になり、軟磁気特性も急激に悪ィ匕する。一方、 0.1原子% 未満であると微結晶粒の析出が困難になる。 Cu量は好ましくは l≤x≤2であり、より好 ましくは l≤x≤1.7であり、最も好ましくは 1.2≤x≤1.6である。 Cuの 3原子%以下を Au 及び Z又は Agで置換しても良 、。 [0020] B量 yは 10≤y≤20である。 Bは非晶質相の形成を促進するために不可欠な元素で ある。 10原子%未満であると、非晶質相を主相とする薄帯を得るのが極めて困難であ り、 20原子%を超えると飽和磁束密度が 1.7 T以下となる。 B量は好ましくは 12≤y≤l 7であり、より好ましくは 14≤y≤17である。
[0021] Cu及び Bの量を上記範囲にすることにより、保磁力が 12 A/m以下の軟磁性微結晶 磁性合金が得られる。
[0022] (b)第二の磁性合金
第二の磁性合金は、下記一般式 (2) :
Fe Cu B X (原子0 /0) · · ·(2)
ΙΟΟ-χ-y-z χ y ζ
(ただし Xは Si, S, C, P, Al, Ge, Ga及び Beからなる群から選ばれた少なくとも一種の 元素であり、 x、 y及び zは 0.1≤x≤3、 10≤y≤20、 0< z≤10、及び 10<y+z≤24の条 件を満たす数である。 )により表される組成を有する。 X原子の添カ卩により、結晶磁気 異方性の大きい Fe-Bが析出し始める温度が高まるため、熱処理温度を高温にできる 。高温の熱処理を施すことにより微結晶粒の割合が増え、飽和磁束密度 Bsが増加し 、 B-H曲線の角形性が改善される。また磁性合金表面の変質及び変色を抑える効果 もある。飽和磁束密度 Bsは、 0.1≤x≤3、 12≤y≤17、 0< z≤7、及び 13≤y+z≤20の 場合 1.74 T以上となり、 0.1≤x≤3、 12≤y≤15、 0< z≤5、及び 14≤y+z≤ 19の場合 1.78 T以上となり、 0.1≤x≤3、 12≤y≤15、 0< z≤4、及び 14≤y+z≤ 17の場合 1.8 T 以上となる。
[0023] (c) Ni及び Coの含有量
第一及び第二の磁性合金において、 Feの一部を Fe及び Cuと固溶する Ni及び/又 は Coで置換すると、非晶質相の形成能が高くなるだけでなぐ微結晶粒の析出を促 進する Cuの含有量を増加させることができ、飽和磁束密度等の軟磁気特性を改善す ることができる。しかし、これらの元素を多く含有するとコストが高くなるため、 Niは 10原 子%以下が好ましぐ 5原子%以下がより好ましぐ 2原子%以下が最も好ましい。また Coは 10原子%以下が好ましぐ 2原子%以下がより好ましぐ 1原子%以下が最も好ま しい。
[0024] (d)その他の元素 第一及び第二の磁性合金において、 Feの一部を Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 Mo、 Wゝ Mnゝ Reゝ白金族元素、 Auゝ Agゝ Znゝ Inゝ Snゝ Asゝ Sbゝ Biゝ Yゝ Νゝ Ο及び希土類元素 力 なる群力 選ばれた少なくとも一種の元素で置換しても良い。これらの置換元素 は Cuやメタロイド元素とともに非晶質相に優先的に入るため、 bcc-Fe微結晶粒の生 成を促進し、軟磁気特性を改善させる。これらの原子量の大きい置換元素を多くし過 ぎると Feの質量比が低くなりすぎ、磁性合金の磁気特性が低下するので、置換元素 の含有量を Feの 5原子%以下とするのが好ましい。特に Nb及び Zrの場合、 Feの 2原 子%以下とするのがより好ましい。 Ta及び Hfの場合、 Feの 2.5原子%以下とするのが より好ましぐ 1.2原子%以下が特に好ましい。 Mnの場合、 Feの 2原子%以下とするの 力 り好ましい。高い飽和磁束密度を得るためには、置換元素の総量を 1.8原子%以 下とするのがより好ましぐ 1原子%以下とするのが特に好ましい。
[0025] (2)組織及び特性
非晶質相中に分散した体心立方 (bcc)構造の結晶粒は 60 應以下の平均粒径を有 する。結晶粒の体積分率は 30%以上であるのが好ましい。結晶粒の平均粒径が 60 n mを超えると磁性合金の軟磁気特性が劣化する。結晶粒の体積分率が 30%未満で あると、磁性合金の飽和磁束密度が低い。結晶粒の好ましい平均粒径は 30 應以下 であり、より好ましい体積分率は 50%以上である。
[0026] Feを主体とする結晶粒は、 Si, B, Al, Ge, Ga, Zr等を含有しても良ぐまた一部に C u等の面心立方 (fee)相を有しても良い。化合物相は磁心損失が高めるためできるだ け少ない方が良い。
[0027] 本発明の磁性合金は、 1.7 T以上 (特に 1.73 T以上)と高い飽和磁束密度、 200 A/ m以下(さらに 100 A/m以下、特に 24 A/m以下)と低い保磁力 Hc、 20 kHz及び 0.2 T において 20 W/kg以下と低い磁心損失、及び 3000以上 (特に 5000以上)と高い交流 比初透磁率 kを有する軟磁性合金である。本発明の磁性合金は、組織中に多量の bcc-Fe微結晶粒を有するため、同組成の非晶質合金に比べて磁気体積効果により 生じる磁歪がはるかに小さぐノイズ低減効果も大きい。なお本発明の磁性合金は、 薄片状、薄帯状、粉末状又は薄膜状のいずれでも良い。
[0028] [2]製造方法 本発明の磁性合金を製造する方法は、 Fe及び半金属元素を含む合金溶湯を急冷 し、平均粒径 30應以下の微結晶粒が非晶質母相中に 0体積%超かつ 30体積%以 下の割合で分散した組織からなる Fe基合金を作製し、前記合金薄帯を熱処理して、 平均粒径 60 應以下の体心立方構造の結晶粒が非晶質母相中に 30体積%以上の 割合で分散した組織とする工程を有する。
[0029] (1)合金溶湯
Fe及び半金属元素を含む合金溶湯は、下記一般式 (1) :
Fe Cu B (原子%) · · ·(1)
ΙΟΟ-χ-y χ y
(ただし χ及び yは 0.1≤x≤3、及び 10≤y≤20の条件を満たす数である。)、又は下記 一般式 (2) :
Fe Cu B X (原子0 /0) · · ·(2)
ΙΟΟ-χ-y-z χ y ζ
(ただし Xは Si, S, C, P, Al, Ge, Ga及び Beからなる群から選ばれた少なくとも一種の 元素であり、 x、 y及び zは 0.1≤x≤3、 10≤y≤20、 0< z≤10、及び 10<y+z≤24の条 件を満たす数である。 )により表される組成を有する。
[0030] (2)溶湯の急冷
溶湯の急冷は、単ロール法、双ロール法、回転液中防止法、ガスアトマイズ法、水 アトマイズ法等により行うことができる。溶湯の急冷により薄片状、薄帯状又は粉末状 の微結晶合金(中間合金)を製造する。急冷すべき溶湯の温度は合金の融点より 50 〜300°C程度高いのが好ましい。溶湯の急冷は、溶湯が活性な金属を含まない場合 は大気中又は Arや窒素等の不活性ガス雰囲気中で行 ヽ、溶湯が活性な金属を含む 場合は Ar、 He、窒素等の不活性ガス中又は減圧中で行う。
[0031] 例えば単ロール法の場合、ノズル先端部付近を不活性ガス雰囲気にするのが好ま しい。また COガスをロールに吹き付けたり、 COガスをノズル近傍で燃焼させたりして
2
も良い。冷却ロールの周速は 15〜50 m/sが好ましぐ冷却ロールの材質は、熱伝導 が良好な純銅、 Cu-Be、 Cu-Cr、 Cu-Zr、 Cu-Zr- Cr等の銅合金が好ましい。また冷却 ロールを水冷式とするのが好まし!/、。
[0032] (3)微結晶合金 (中間合金)
上記組成の合金溶湯を急冷することにより得られた中間合金は、平均粒径 30應以 下の微結晶粒が非晶質相中に 0体積%超かつ 30体積%以下の割合で分散した組織 を有する。結晶粒の周囲に非晶質相が存在すると、合金の抵抗率が高くなり、結晶 粒成長の抑制により、結晶粒が微細化され、軟磁気特性が改善される。中間合金中 の微結晶粒の平均粒径が 30 nm超の場合、熱処理により結晶粒が粗大化しすぎて軟 磁気特性が劣化する。優れた軟磁気特性を得るためには、結晶粒の平均粒径は 20 應以下が好ましい。非晶質相中に核となる微結晶粒が存在する必要があるので、結 晶粒の平均粒径は 0.5 應以上であるのか好ましい。平均結晶粒間距離 (結晶重心間 の距離)は 50 應以下が好ましい。平均結晶粒間距離が 50 nm超であると、熱処理に より結晶粒の結晶粒径分布が広くなりすぎる。
[0033] (4)熱処理
Fe量の多い中間合金を熱処理すると、結晶粒径の著しい増加が起こらずに結晶粒 の体積分率が増加し、 Fe基非晶質合金及び Fe基ナノ結晶合金より優れた軟磁気特 性を有する磁性合金が得られる。具体的には、中間合金は熱処理により、 60 應以下 の平均粒径を有する微結晶粒を 30体積%有する高飽和磁束密度及び低磁歪の磁 性合金となる。熱処理温度及び時間を調整することにより、結晶核の生成及び結晶 粒の成長を制御できる。高温 (約 430°C以上)で短時間行う熱処理は、低保磁力を得 るのに有効であり、低磁界での磁束密度を向上させ、ヒステリシス損失も減少させる。 低温 (約 350°C以上〜 430°C未満)で長時間行う熱処理は量産性に優れて!/、る。所望 の磁気特性により、高温短時間の熱処理と低温長時間の熱処理とを使!ヽ分けても良 い。
[0034] 熱処理は、大気中、真空中、 Ar、 He、 N等の不活性ガス中等で行うのが好ましい。
2
雰囲気中に水分があると、得られる磁性合金の磁気特性にばらつきが生じるため、 不活性ガスの露点を 30°C以下とするのが好ましぐ 60°C以下とするのがより好ま しい。
[0035] 熱処理は単段に限らず、多段でも良い。さらに合金に直流、交流又はパルス電流 を流してジュール熱を発生させることにより熱処理しても良ぐまた応力下で熱処理し ても良い。
[0036] (a)高温熱処理 非晶質相に微結晶粒を有する Fe基中間合金 (約 75原子%以上の Feを含有)を 100 °CZ分以上の最大昇温速度で 430°C以上の最高温度まで加熱し、最高温度に 1時 間以下保持する熱処理を施すことにより、平均粒径 60 nm以下の微結晶粒を有する 組織を含有し、低保磁力で、低磁界での磁束密度が高ぐかつヒステリシス損失が少 ない磁性合金が得られる。
[0037] 最高温度が 430°C未満であると、微結晶粒の析出及び成長が不十分である。最高 温度は (T — 50) °C以上 (ただし T は化合物析出温度)とすることが好ましい。
X2 X2
[0038] 最高温度の保持時間力 1時間超であると結晶粒が成長しすぎ、軟磁気特性が劣化 する。保持時間は好ましくは 30分以下であり、より好ましくは 20分以下であり、最も好 ましくは 15分以下である。
[0039] 平均昇温速度も 100°CZ分以上が好ましい。 300°C以上の高温域での昇温速度が 磁気特性に大きな影響を与えるため、 300°C以上での昇温速度は 150°CZ分以上が 好ましぐ特に 350°C以上での昇温速度は 170°CZ分以上が好ましい。
[0040] 昇温速度の制御及び保持温度の段階的変化により、結晶核の生成を制御すること ができる。また結晶化温度未満の温度に十分な時間保持した後、結晶化温度以上 の温度で 1時間以下と短い時間保持する熱処理を行うと、均質で微細な結晶組織が 得られる。これは、結晶粒同士が互いの成長を抑制しあうためであると考えられる。例 えば、約 250°Cに 1時間超保持した後、 300°C以上では 100°CZ分以上で昇温し、 430 °C以上の最高温度で 1時間以下保持するのが好ましい。
[0041] (b)低温熱処理
中間合金を約 350°C以上〜 430°C未満の最高温度に 1時間以上保持する。量産性 の観点から、保持時間は 24時間以下が好ましぐ 4時間以下がより好ましい。保磁力 の増加を抑制するため、平均昇温速度は 0.1〜200°CZ分が好ましぐ 0.1〜100°CZ 分がより好ましい。
[0042] (c)磁界中熱処理
誘導磁気異方性を付与するために、合金が飽和するのに十分な強さを有する磁界 中で熱処理を行うのが好ましい。磁界は熱処理全体 (昇温、一定温度に保持中及び 冷却中)を通して印可しても良いし、一定期間のみ印可しても良いが、 200°C以上の 温度域で 20分以上印加するのが好ま 、。所望の直流又は交流ヒステリシスループ 形状を実現するために一軸の誘導磁気異方性を付与するために、熱処理全体を通 してを通じて磁界を印加するのが好ましい。合金薄帯からなる磁心の場合、その形状 にも依存するが、一般に薄帯の幅方向(環状磁心の場合は磁心の高さ方向)には 8 k Am— 1以上の磁界を印加し、長手方向(環状磁心の場合は磁路方向)には 80 Am— 1以 上の磁界を印加するのが好ましい。磁界を合金薄帯の長手方向に印可する場合、高 角形比の直流ヒステリシスループを示す磁性合金が得られる。また合金薄帯の幅方 向に印可する場合、低角形比の直流ヒステリシスループを示す磁性合金が得られる 。磁界は直流、交流及びパルスのいずれでも良い。磁界中熱処理により低磁心損失 の磁性合金が得られる。
[0043] (5)表面処理
本発明の磁性合金に対して、必要に応じて SiO、 MgO、 Al 0等の被覆 (含浸、コー
2 2 3
ティング等)、化成処理、アノード酸化処理等による絶縁層の形成等を施しても良い。 これらの処理により、高周波による渦電流を低減し、磁心損失が低減する。この効果 は、表面が平滑で広幅の合金薄帯力もなる磁心に特に顕著である。
[0044] [3]磁性部品
本発明の磁性合金力もなる磁性部品は、アノードリアタトル等の大電流用のリアタト ル、アクティブフィルタ用チョークコイル、平滑チョークコイル、通信用パルストランス等 の各種トランス、レーザ電源や加速器等用のパルスパワー磁性部品、モータ磁心、 発電機磁心、磁気センサ、電流センサ、アンテナ磁心、磁気シールド、電磁シールド 材料等のノイズ対策部品、ヨーク材等に使用可能である。
[0045] 本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定さ れるものではない。
[0046] 実施例 1
Fe Cu B (原子%)の組成を有する合金溶湯から単ロール急冷法により得た
83.72 1.5 14.78
幅 5 mm及び厚さ 18 mの合金薄帯 (試料 1-0)に対して、表 1に示す条件で熱処理( 昇温速度: 50°CZ分)を行い、試料 1-1〜1_8の磁性合金を作製した。各試料に対し て X線回折、結晶粒の体積分率及び磁気特性の測定を行った。磁気特性の測定結 果を表 1に示す。
[0047] (1) X線回折の測定
図 1は各試料の X線回折パターンを示す。いずれの熱処理条件でも α -Feの回折パ ターンが観測されたが、 X線回折測定で得られた (310)面のピークの半値幅力も格子 歪みがないと確認し、 ScHerrerの式により平均結晶粒径を求めた。特に熱処理温度( 最高温度) T力 350°C以上でピークが明瞭であった。例えば試料 1-7 (T =390°C)は
A A
(310)面のピークの半値幅が約 2° であり、平均結晶粒径は約 24 nmであった。
[0048] (2)結晶粒の体積分率
各試料の TEM写真に長さ Ltの任意の線分を引き、結晶粒と交差する部分の長さの 合計 Lcを求め、 Lc/Ltを結晶粒の体積分率とした。その結果、各試料には平均粒径 が 60 以下の結晶粒が 50体積%以上の割合で非晶質相に分散していることが分 かった。
[0049] (3)磁気特性の測定
磁気特性は、各試料を長さ 12 cmの単板状に加工し、 B-Hトレーサにより測定した。 図 2は各試料の B-H曲線を示す。熱処理温度の上昇とともに飽和性が良くなり、 B
8000 も高くなつた。 350°C以上の熱処理温度 Tで B は 1.80 T以上であった。表 1に熱処
A 8000
理条件、保磁力 H、残留磁束密度 B 80 A/m及び 8000 A/mにおける磁束密度 B
C r 80 及び B 、及び最大透磁率 を示す。保磁力 Hは熱処理前に約 7.8 A/mであった
8000 m C
力 熱処理には 7 10 A/mとなった。 T =390°C及び 1.5時間の熱処理 (試料 1-7)で
A
は、保磁力 Hは 7.0 A/mであった。また試料 1-7の B は 1.82 Tであった。磁場中熱
C 8000
処理により最大透磁率 は増加した。
m
[0050] [表 1] 熱処理条
試料 組成 He Br Bso Ββοοο
温度
No. 時間
(原子%) 磁場 ( AJm) (T) (Τ) (τ) (103)
ra (h)
1-0* Fe83.72Cui.5Bl4 未処理 ― ― 7.8 0.67 0.80 1.60 10
1-1 FeB3.72Cui.5B 310 3.50 有 13.1 0.83 0.95 1.71 24
1-2 Fe83.72Cui.5Bl4.78 330 3.50 有 9.0 0.93 1.06 1.80 45
1-3 Fe83 .5Bl4 350 1.00 9.4 0.91 1.06 1.83 31
1-4 Fe83.72Cui.5Bl4.78 350 1.00 有 8.8 0.92 1.09 1.79 48
1-5 Fe83.72Cui.5l3l4.78 350 3.00 13.8 0.92 1.17 1.82 26
1-6 Fe83.72CUl.5Bl4. 370 1.50 有 7.9 1.04 1.28 1.81 79
1-7 Fe83 .5B14 390 1.50 無 7.0 1.29 1.52 1.82 60
1-8 .5B14 400 1.50 有 9.8 1.41 1.54 1.81 71 注: *熱処理前。
[0051] 図 3は、試料 1-0の磁性合金 (a) (組成: Fe Cu B )、及び Fe B 非晶質合金 (b) bal. 1.5 14.78 85 15
の示差走査熱量分析結果 (昇温速度 1°CZ分)を示す。試料 1-0の磁性合金 (a)では 、低温にブロードな発熱ピークが現れた後に、高温で Fe-B系化合物の析出に伴うシ ヤープな発熱ピークが現れた。これは本発明の軟磁性合金の典型的な発熱パターン である。ブロードな発熱ピークを示す低温側では、微結晶の析出及び成長が広い温 度範囲にわたって起きていると考えられる。その結果、粒径が小さく粒径分布が狭い 結晶粒が得られ、軟磁性合金の保磁力の低減、及び飽和磁束密度の向上に寄与す る。これに対して、 Fe B 非晶質合金 (b)では、ややブロードな発熱ピークを示す低
85 15
温側で急激な結晶化が起こり、軟磁気特性に不利な結晶粒の粗大化及び粒径分布 の拡大が起こった。
[0052] 実施例 2
Fe Ni Cu B (原子%)の組成を有する合金溶湯から単ロール急冷法により得
82.72 1 1.5 14.78
た幅 5 mm及び厚さ 18 mの合金薄帯 (試料 2-0)に対して、表 2に示す条件で熱処理 (昇温速度: 50°CZ分)を行い、試料 2-1 2-4の磁性合金を作製した。各試料に対し て X線回折及び磁気特性の測定を行った。磁気特性の測定結果を表 2に示す。
[0053] 図 4は各試料の X線回折パターンを示す。熱処理温度 Tが低い場合には、非晶質
A
相のハローと体心立方構造 (bcc)の結晶粒のピークが重なった回折パターンとなるが Tの上昇とともに非晶質相が減少し、結晶粒のピークが主になることが分力つた。 (3 10)面のピークの半値幅(=約 1.5° )力 求めた平均結晶粒径は約 32 nmと、実施例 1の Niを含まない Fe Cu B の組成を有する磁性合金よりやや大きかった。
83.72 1.5 14.78
[0054] 実施例 1と同様に求めた各試料の B-H曲線を図 5に示す。表 2に各試料の熱処理条 件及び磁気特性を示す。熱処理温度 Tが高くなるにつれて飽和磁束密度 (B )が
A 8000 増加し、特に 390°Cの熱処理条件 (試料 2-3)では曲線の飽和性が最も良くなつた。ま た B も大きく(最大 1.54 T)、低磁場における磁束密度の立ち上がりが良好であった
80
。 370〜390°Cと広い熱処理温度範囲で保磁力 Hは約 7.8 A/mと比較的低かった。ま
C
た実施例 2の合金薄帯は、 Niを含まない実施例 1の合金薄帯より作製時に切れにくか つた。これは、実施例 2の組成にすることにより非晶質形成能が向上したためと考えら れる。また Niは Fe及び Cuの双方に固溶するので、 Niの添カ卩は磁気特性の熱的安定 性に効果があると考えられる。
[0055] [表 2]
Figure imgf000016_0001
注: *熱処理前。
[0056] 実施例 3
Fe Cu Si B (原子%)の組成を有する合金溶湯から大気中で単ロール急冷
83.5 1.25 1 14.25
法により得た幅 5 mm及び厚さ 20 mの合金薄帯 (試料 3-0)に対して、表 3に示す条 件で熱処理 (昇温速度: 50°CZ分)を行 ゝ、試料 3-1及び 3-2の磁性合金を作製した 。同様に、 Fe Cu B の組成を有する合金薄帯 (試料 3- 3)力 試料 3- 4の磁性合
83.5 1.25 15.25
金を作製し、 Fe Cu Si B の組成を有する合金薄帯 (試料 3-5)から試料 3-6の磁
83.25 1.5 1 14.25
性合金を作製した。各試料に対して X線回折、結晶粒の体積分率及び磁気特性の 測定を行った。磁気特性の測定結果を表 3に示す。
[0057] 図 6に試料 3-1及び 3-2の B-H曲線を示す。熱処理温度 Tの上昇とともに B は増 加し、 T =410°C (試料 3-2)で 1.85 Tであり、 Fe Cu B の組成を有する実施例 1
A 83.5 1.25 15.25
の各試料より高力つた。これから、 Fe Cu Si B の組成を有する磁性合金は良好
83.5 1.25 1 14.25
な飽和性を有することが分かる。
[0058] 図 7に低磁場における各試料の B-H曲線を示す。 B は熱処理温度の上昇とともに
80
増加することが分かる。熱処理温度 T =410°C (試料 3-2)の場合、 B は 1.65 Tであり
A 80
、保磁力 Hは 8.6 A/mと小さく、 B と残留磁束密度 Bとの比 B /B は約 90%であった
C 80 r r 80
。試料 3-1及び 3-2は 、ずれも非晶質相中に 50体積%以上の結晶粒 (平均粒径: 60 應以下)を含有していた。
[0059] Siを含まない試料 3-4 (Fe Cu B の組成を有する)は約 16.4 A/mと高い保磁
83.5 1.25 15.25
力 Hを有し、 Siを含む試料 3-1及び 3-2より軟磁気特性に劣っていた。
C
[0060] [表 3]
Figure imgf000017_0001
注: *熱処理前。
[0061] Siの有無以外同じ組成を有する磁性合金について、薄帯形成性及び軟磁気特性 の評価結果を表 4に示す。 Siを含む磁性合金(Fe Cu Si B 及び Fe Cu Si B
83.5 1.25 1 14.25 83.25 1 1.5 1
)の方が薄帯形成性及び軟磁気特性が良いことが分かる。これは、 Siの含有により
4.25
非晶質相形成能が改善されたためと考えられる。
[0062] [表 4] 合金組成 (原子%) 薄帯形成性 軟磁気特性
非常に良い 良レ、
Figure imgf000018_0001
非常に良い 非常に良い
Fe83.25し 11^.58x5.25 良い 良い
Fe83.25CuiSil.5Bl4.25 非常に良い 非常に良い
[0063] 実施例 4
一般式: (Fe B ) Cu (原子%)において Cu濃度 Xが 0.0、 0.5、 1.0及び 1.5の 4種
0.85 0.15 100
類の合金溶湯から単ロール急冷法により得た幅 5 mm及び厚さ 18〜22 /z mの合金薄 帯に対して、昇温速度 50°CZ分、最高温度 350°C、及び保持時間 1時間の条件で無 磁場中で熱処理を行った。得られた各磁性合金に対して実施例 1と同様に X線回折 及び磁気特性の測定を行った。図 8に X線回折パターンを示す。図中、「roll」は薄帯 のロール側を示し、「free」は自由面側を示す。自由面側の方がピーク強度がやや大 きいが、半値幅に差はな力 た。 Cu濃度 Xの増加とともに非晶質によるハローは減少 し、 bcc構造の結晶のピークが明瞭になった。 Cu濃度 x= 1.5の磁性合金の平均結晶 粒径は約 24 nmであった。 bcc相のピークが明瞭に観測される x= 1.0及び 1.5を比較し た結果、 x= 1.5の方がピークが広ぐ x= 1.5における結晶粒の平均粒径は x= 1.0に おけるものの約半分であつた。
[0064] 図 9は B-H曲線を示す。 x=0.0のとき保磁力 Hは約 400 A/mで、飽和磁束密度 B
C 8000 は約 1.63 Tであったが、 Xの増加とともに結晶粒径が大きくならず Hは減少し、 B は
C 8000 増加し、 x= 1.5のとき Hは約 10 A/mとなり、 B が約 1.80 Tとなった。 Fe濃度が 80%
C 8000
以上の合金でも、 Cuの添加により結晶粒径が小さくなり、保磁力が低下することが分 つた o
[0065] 実施例 5
表 5に示す組成を有する合金溶湯から単ロール急冷法により得た幅 5 mm及び厚さ 19〜25 /ζ πιの合金薄帯に対して、昇温速度 50°CZ分、最高温度 410°C及び 420°C、 及び保持時間 1時間の条件で無磁場中で熱処理を行!ヽ、試料 5-1〜5-4の磁性合金 を作製した。表 5にこれらの試料の熱処理条件及び磁気特性を示す。いずれの試料 も、高い B 、良好な角形性 (B /B : 90%以上)、及び非常に高い最大透磁率 、高
80 r 80 m い結晶化温度、及び良好な非晶質相形成能を示した。これから、 B、 Si等のメタロイド 元素の含有量が多くなると、軟磁気特性が向上することが分かる。いずれの試料も、 非晶質相に 50体積%以上の結晶粒 (平均粒径: 60 nm以下)が分散して 、た。
[表 5]
Figure imgf000019_0001
[0067] 実施例 6
表 6に示す組成を有する合金溶湯から単ロール急冷法により得た幅 5 mm及び厚さ 19〜25 /z mの合金薄帯に対して、昇温速度 50°CZ分、最高温度 410°C、及び保持時 間 1時間の条件で無磁場中で熱処理を行い、試料 6-1〜6-30の磁性合金を作製した 。表 6にこれらの試料の板厚及び磁気特性を示す。 V、ずれの試料も、 B 力 l.7 T以
8000 上であり、最大透磁率 力 30000以上と非常に高ぐ軟磁気特性が良好であった。メ m
タロイド元素の含有量が変化とともに Cuの最適量も変化することが分かる。またメタ口 イド元素の増加とともに薄帯を厚くすることが容易になった。いずれの試料も、非晶質 相に 50体積%以上の結晶粒 (平均粒径: 60 nm以下)が分散していた。
[0068] [表 6]
試料 組成 板厚 Ββοοο Bso He μ m
No. (原子%) ( μ m) (T) (τ) (A/m) (103)
6-1 Febal.Cui.35Si4Bl2 19.9 1.81 1.57 15.8 41
6-2 Febal.Cui.5Si4Bl2 16.0 1.81 1.67 7.6 121
6-3 Febai.Cui.5SisBi2 17.0 1.78 1.65 7.8 92
6-4 Febal.O i.5C516Bl2 17.3 1.76 1.64 9.9 80
6-5 J,ebal.Cui.55Sl7Bl2 16.8 1.75 1.62 9.8 74
6-6 Febal.Cui.6Sl8Bl2 17.3 1.74 1.60 8.2 75
6-7 Febal.Cui.35Si3Bl3 21.0 1.84 1.67 7.9 96
6-8 Febal.Cui.3eSi4Bl3 21.2 1.82 1.66 6.6 100
6-9 Febai.Cui.eSi5Bi3 17.2 1.79 1.67 6.2 127
6-10 FebaI.Cui.6Si7Bl3 19.3 1.74 1.60 5.8 130
6 11 FebaI.Cui.6SisBl3 18.8 1.71 1.58 6.9 62
6- 12 Febai.Cui.6SiaBi3 19.7 1.70 1.27 5.8 61
6-13 Febal.Cui.35Si2Bl4 18.0 1.85 1.71 6.5 120
6-14 Febal Cui 3eSl3Bl 20.8 1.81 1.64 8.0 100
6-15 Febal.Cui.35Si4B 14 21.8 1.77 1.62 7.1 109
6 16 Febal.Cui.5Si4Bl4 20.0 1.79 1.61 5.7 97
6 17 Feba].Cui.5Si5Bl4 17.3 1.79 1.63 8.8 105
6-18 Febal.Cui.5Si6Bl4 18.4 1.74 1.54 6.4 80
6 19 Febal.Cui.25Bl5 16.2 1.83 1.41 8.0 72
6-20 Febal.Cui.35Sl2iil5 16.1 1.84 1.67 8.8 98
6-21 Febal.Cui.35Sl3iil5 19.3 1.79 1.62 7.1 100
6-22 Febai.Cui 5S13B15 16.5 1.79 1.68 5.2 66
6-23 Febal.Cui.35Si4Bl5 21.7 1.79 1.65 6.8 117
6-24 Febal.Cui 5Si5Bl5 17.6 1.74 1.45 9.6 66
6-25 Febal.C i.6Si6Bl5 19.5 1.70 1.55 8.2 63
6.26 Febal.Cui.5Si2Bl6 21.5 1.77 1.59 9.7 60
6.27 Febal. Cu 1.35Sl3jJ 16 19.9 1.76 1.60 16.6 45
6-28 Febai.Cui eSisBie 19.3 1.70 1.52 9.5 51
6-29 Febai.Cui.5S12B18 21.3 1.71 1.37 13.6 33
6-30 Febal.Cui.6Si2B20 21.5 1.70 1.48 14.6 46
[0069] 実施例 7
Fe Cu Si Bにより表される組成を有する合金溶湯から単ロール急冷法により得た bal. 1.5 z y
合金薄帯に対して、最高温度を変えて、昇温速度 50°CZ分及び保持時間 1時間の 条件で無磁場中で熱処理を行い、最も低い保磁力 Hが得られる熱処理温度から H c c の増加が 5%以内である範囲を最適熱処理温度範囲とした。
[0070] 表 7に 1.7 T以上の飽和磁束密度 Bsが得られた合金の最適熱処理温度範囲を示す 。熱処理温度が高いと、微結晶粒の析出量が増えて高磁束密度となり、飽和性及び 角形性が良好になる。保磁力 Hは結晶磁気異方性が大きい Fe-B化合物の析出とと
C
もに増加する傾向がある。 B量が多いほど Fe-B化合物は低温力 析出しやすい。 Si は Fe-B化合物の析出を抑制する。従って、低保磁力を求める場合、 Siが含まれてい るのが望ましい。 [0071] [表 7] 最適熱処理温度範囲 cc)
Figure imgf000021_0001
注:空欄は未測定。
[0072] 実施例 8
P又は Cを含有する Fe-Cu-B系合金溶湯 (表 8に示す組成を有する。 )から単ロール 急冷法により得た幅 5 mm及び厚さ 18〜22 /ζ πιの合金薄帯に対して、昇温速度 50°C Z分、最高温度 370°C及び 390°C、及び保持時間 1時間の条件で、無磁場中で熱処 理を行い、試料 8-1〜8-4の磁性合金を作製した。表 8にこれらの試料の板厚及び磁 気特性を示す。いずれの試料も 1.7 T超の B 及び 30000超の最大透磁率 を有し
8000 m
、軟磁気特性が良好であった。 P及び Cは非晶質形成能を向上させ、薄帯の靱性を 改善する。いずれの試料も、非晶質相に 50体積%以上の結晶粒 (平均粒径: 60應 以下)が分散していた。
[0073] [表 8] 試料 組成 板厚 TA Beooo B8o He m
No. (原子%) ( μ m) (°C) (T) (T) (A/m) (103)
8-1 Febal.Cui.35Bl6Pl 21.5 370 1.71 1.06 12.2 38
8-2 Febal.Cui.35Bl4P3 19.7 370 1.73 1.28 8.2 60
8-3 Febal.Cui.35Bl6Cl 18.2 390 1.74 1.27 13.8 38
8-4 Febal.Cui.35Bl4 3 17.9 390 1.73 1.30 17.5 40
[0074] 実施例 9
P、 C又は Gaを含有する Fe-Cu-Si-B系合金溶湯 (表 9に示す組成を有する。)から 単ロール急冷法により得た幅 5 mm及び厚さ 20 mの合金薄帯に対して、昇温速度 50 °CZ分、最高温度 410°C又は 430°C、及び保持時間 1時間の条件で、無磁場中で熱 処理を行い、試料 9-1〜9-5の磁性合金を作製した。表 9にこれらの試料の板厚、最 高温度及び磁気特性を示す。 Vヽずれの試料も 1.8 T超の B 及び 100000以上の最
8000
大透磁率 mを有し、軟磁気特性が良好であった。非晶質形成能を向上させる P及び
Cの含有により、 P又は C以外同じ組成を有する試料 6-13の合金 (組成: Fe Cu Si bal. 1.35 2
B 、板厚:18.0 m)より厚く高靱性の薄帯が得られた。 Gaには保磁力を減少させる
14
効果があると考えられる。いずれの試料も、非晶質相に 50体積%以上の結晶粒 (平 均粒径: 60 nm以下)が分散して 、た。
[0075] [表 9]
Figure imgf000022_0001
実施例 10
Ni、 Co又は Mnを含有する Fe-Cu-Sト B系合金溶湯 (表 10に示す組成を有する。)か ら単ロール急冷法により得た幅 5 mm及び厚さ 20 mの合金薄帯に対して、昇温速度 50°CZ分、最高温度 410°C、及び保持時間 1時間の条件で、無磁場中で熱処理を行 い、試料 10-l〜10-5の磁性合金を作製した。表 10にこれらの試料の板厚、最高温度 及び磁気特性を示す。 Feを Niで置換すると非晶質形成能が向上し、 Ni以外同じ組成 を有する試料 6- 13の合金 (組成: Fe Cu Si B 、板厚: 18.0 m)より厚い薄帯が得 bal. 1.35 2 14
られ易くなつた。いずれの試料も、非晶質相に 50体積%以上の結晶粒 (平均粒径: 60 應以下)が分散していた。
[0077] [表 10]
Figure imgf000023_0001
[0078] 実施例 11
Nbを含有する Fe-Cu-B系又は Fe-Cu-Sト B系の合金溶湯 (表 11に示す組成を有す る。)から単ロール急冷法により得た幅 5 mm及び厚さ 20〜25 /ζ πιの合金薄帯に対して 、昇温速度 50°CZ分、最高温度 410°C、及び表 11に示す保持時間の条件で、無磁 場中で熱処理を行い、試料 11-1〜 11-4の磁性合金を作製した。表 11にこれらの試 料の熱処理条件及び磁気特性を示す。いずれの試料も良好な角形性 (B /B )を示 r 80 した。ナノ結晶粒の形成を促進する元素である Nbを少量添加しただけでも、薄帯の 形成能は向上した。いずれの試料も、非晶質相に 50体積%以上の結晶粒 (平均粒 径: 60 nm以下)が分散して ヽた。
[0079] [表 11] 熱処理条件
組成 He Br Ββο Ββοοο β m
No. 温度
(原子%) 時間 A/m) (τ) (τ) (Τ) (103)
(K) (h)
11-1 Fe82.25Cui.25Nbo.5Si2Bl 410 1.50 13.2 1.42 1.51 1.74 59
11-2 Fe8i.75Cui.25NbiSi2Bi4 410 1.50 10.7 1.13 1.43 1.74 45
11-3 Fe82.25CUL25Nbo.5B16 410 0.75 10.1 1.22 1.44 1.73 70
11-4 Fesi.75Cui.25NblBl6 410 1.50 9.0 1.26 1.51 1.75 77 [0080] 実施例 13
表 12に示す組成を有する合金溶湯から単ロール急冷法により得た幅 5 mm及び厚 さ 17〜25 μ mの合金薄帯に対して、 450〜480°Cの最高温度(1時間の熱処理の場合 の最適熱処理温度より高 、)まで 100°CZ分又は 200°CZ分の平均昇温速度で急激 に昇温し、 2〜10分間保持した後、室温まで急激に冷却し、試料 13-1〜13-33の磁性 合金を作製した。 350°C以上での昇温速度は約 170°CZ分であった。表 12にこれらの 試料の熱処理条件、板厚及び磁気特性を示す。
[0081] いずれの試料も 1.7 T以上の B を有していた。図 10に Fe Cu Si B の組成を有
8000 bal. 1.5 4 14
する試料 13-19 (昇温速度 200°CZ分)及び 13-20 (昇温速度 100°CZ分)の B-H曲線 を示す。同じ組成の合金でも、昇温速度が高まると、 B-H曲線の形が変わり、最大透 磁率が増加し、ヒステリシス損失が大きく減少することが分った。これは、急激な加熱 により結晶核が均一に生成され、非晶質相の残留割合が減少するためと考えられる 。また急激な加熱により B 力 l.70 T以上となる組成範囲が拡大する。従って、用途
8000
や熱処理環境に応じて熱処理パターンを変えるのが有効である。特に Cuが少な ヽ組 成や Siが 5原子%以上の組成を有する合金では、 Hの低減のためこの熱処理法が有
C
効である。 Pを含む合金では、この熱処理法により Hの低減だけでなく B の増加も見
C 80 られ、好適であることが分かる。 C又は Gaを含む合金も同様である。いずれの試料も、 非晶質相に 50体積%以上の結晶粒 (平均粒径: 60 nm以下)が分散して 、た。
[0082] [表 12]
試料 組成 TA 昇温速度 板厚 Ββοοο Ββο He m
No. (原子%) (°C) (。C/分) ( μ m) (Τ) (τ) (A/m) (103)
13-1 Febai Cui.3SieBi2 450 200 20.9 1.78 1.64 15.8 34
13-2 Febal Cui 3Si6Bl2 450 100 20.9 1.78 1.61 22.3 30
13-3 Febai Cm 3S18B12 450 200 20.2 1.78 1.62 15.6 54
13-4 Febal.Cui.3Si8Bl2 450 100 20.2 1.78 1.52 20.7 45
13-5 Febai Cui 3S18B12 480 200 20.2 1.79 1.63 10.0 62
13-6 Febal.Cui.oSi2Bl4 450 200 18.0 1.84 1.70 23.0 27
13-7 Febal.Cui.5Si6Bl2 450 200 17.2 1.78 1.68 9.6 64
13-8 Febal.Cui.5Si5Bl3 450 200 17.0 1.78 1.70 6.4 65
13-9 Febai Cui.6Si7Bl3 450 200 18.2 1.74 1.64 4.6 80
13-10 Febal.Cui.6Si7Bl3 470 200 18.2 1.74 1.56 6.2 54
13-11 Fehai Cui eSiaBi3 450 200 18.4 1.72 1.57 5.9 65
13 12 Febai Cui eSigBi3 470 200 18.4 1.72 1.56 7.0 40
13-13 Febal.Cui.6Si9Bl3 450 200 19.6 1.70 1.45 9.9 68
13-14 Febai CU1.6S19B13 470 200 19.6 1.70 1.44 8.7 70
13-15 Febai. CU1.25OI2B14 450 200 24.1 1.87 1.65 14.8 46
13-16 Febai. C 1.25S13B14 450 200 19.5 1.77 1.58 20.0 33
13-17 Febai Cui.35Si3B 14 450 200 24.7 1.82 1.61 8.7 49
13-18 Febai. CU1.35S13B14 450 100 24.7 1.82 1.60 9.7 44
13-19 Febai CU1.5S14B14 450 200 19.5 1.84 1.63 6.7 56
13-20 Febai CU1 5S14B14 450 100 19.5 1.81 1.61 6.8 51
13-21 Febai Cui.5Si5Bl4 450 200 17.4 1.76 1.52 8.2 43
13-22 Febai Cui.eSieBn 450 200 18.4 1.74 1.59 6.5 72
13-23 Febal.Cui.6Si7Bl4 450 200 19.2 1.72 1.57 8.0 45
13-24 Febai. Cui.eSigB 450 200 22.6 1.70 1.41 7.7 43
13-25 Febai. Cui.5Si5Bl5 450 200 17.6 1.73 1.51 8.8 55
13-26 Febai. Cui.6Si6Bi5 450 200 19.5 1.70 1.53 8.5 52
13-27 Febai. CU1.6S15B16 450 200 19.3 1.70 1.53 9.6 51
13-28 Febai. Cui.35Si2Bl4Pl 450 200 20.8 1.79 1.70 5.2 68
13-29 Febai. Cui 35Si2Bl2P2 450 200 20.4 1.82 1.74 6.2 69
13-30 Fe a].Cui. Si3Bl2P2 450 200 20.4 1.79 1.70 5.9 82
13-31 Fe al.Cui. Si3Bl3P2 450 200 20.9 1.77 1.64 5.7 77
13-32 Febal.Cui.5Si3Bl3P2 450 200 19.9 1.72 1.41 10.8 36
13-33 Febal.Cui.5Si3Bl4P2 450 200 19.9 1.71 1.42 9.8 53
[0083] 図 11及び図 12は、試料 13- 9 (組成: Fe Cu Si B )及び試料 13- 29 (組成: Fe Cu bal. 1.6 7 13 bal. 1
Si B P )の B- H曲線(それぞれ 8000 A/m及び 80 A/mの最大磁場で測定)を示す。
.35 2 12 2
試料 13-9は Hが小さぐ飽和性が良好であることが分かる。試料 13- 29は B が大きく
C 80
、飽和性が良好である。これらの B-H曲線は、高温短時間熱処理を施した場合に典 型的である。
[0084] 実施例 14
Fe Cu B Si (原子。 /0)の組成を有する 1250°Cの合金溶湯を、スリット状ノズルか bal. 1.35 14 2
ら周速 30 m/sで回転する外径 300 mmの Cu-Be合金ロールに噴出し、幅 5 mm及び厚 さ 18 mの合金薄帯を作製した。 X線回折及び透過電子顕微鏡 (TEM)観察の結果、 この合金薄帯の非晶質相中に結晶粒が分散していることが分力つた。図 13は観察し た合金薄帯のミクロ組織を示す透過電子顕微鏡であり、図 14はそのミクロ組織の模式 図である。ミクロ組織から、 4.8体積%の微結晶粒 (平均粒径:約 5.5 應)が非晶質相 中に分散して 、ることが分力つた。
[0085] 合金薄帯から形成した外径 19 mm及び内径 15 mmの卷磁心を窒素ガス雰囲気の 炉に載置し、卷磁心の高さ方向に 240K A/mの磁界を印加しながら室温力も 420°Cま で 7.5°CZ分で昇温した。 420°Cに 60分保持後、平均速度 1.2°CZ分で 200°Cまで冷 却し、炉カゝら取り出して室温まで冷却し、試料 14-1を得た。試料 14-1に対して磁気特 性の測定、 X線回折測定及び透過電子顕微鏡 (TEM)観察を行った。熱処理後の試 料 14-1について、図 15は X線回折パターンを示し、図 16は透過電子顕微鏡による合 金薄帯のミクロ組織を示し、図 17はそのミクロ組織を模式的に示す。ミクロ組織及び X 線回折パターンから、 60体積%の体心立方 (bcc)構造の微結晶粒 (平均粒径:約 14 應)が非晶質相中に分散していることが分力つた。結晶粒の組成を EDXにより分析し たところ、 Feを主体とすることが分力つた。
[0086] 表 13に熱処理後の試料 14-1の飽和磁束密度 Bs、保磁力 Hc、 1 kHzにおける交流 比初透磁率 、 20 kHz及び 0.2 Tにおける磁心損失 P 、及び平均結晶粒径 Dを示 lk cm
す。比較のために、 Fe B Si (原子%)の組成を有する完全に非晶質な合金を熱処 bal. 14 2
理により結晶化させた合金 (試料 14-2)、非晶質合金の熱処理により得られた公知の ナノ結晶軟磁性合金 (試料 14-3及び 14-4) [それぞれ原子%で Fe Cu Nb Si B及 bal. 1 3 13.5 9 び Fe Nb Bの組成を有する]、典型的な Fe基非晶質合金 (試料 14- 5) [組成: Fe B bal. 7 9 bal. 1
Si合金 (原子%) ]、及び厚さ 50 μ mの 6.5質量%珪素鋼帯 (試料 14-6)の磁気特性
3 9
及び結晶粒径を併せて表 13に示す。
[0087] 本発明の磁性合金 (試料 14-1)の飽和磁束密度 Bsは 1.85 Tであり、従来の Fe基ナ ノ結晶合金 (試料 14-3及び 14-4)及び従来の Fe基非晶質合金 (試料 14-5)の より 高かった。完全な非晶質合金を熱処理により結晶化させた合金 (試料 14-2)は軟磁 性が著しく劣っており、磁心損失 P が著しく大き力つた。本発明の試料 14-1は、従来 cm
の珪素鋼帯 (試料 14-6)より 1 kHzにおける交流比初透磁率; z が高ぐ磁心損失 P lk cm が低いため、パワーチョークコイル、高周波トランス等に適している。 [0088] [表 13]
Figure imgf000027_0001
注: *比較例
[0089] Fe基非晶質合金 (試料 14-4)の飽和磁歪定数 λ s = + 27 X 10— bに対して、試料 14- 1の飽和磁歪定数え sは + 10 X 10— 6〜 + 5 X 10— 6と 1/2未満であった。このため、含浸、 接着等を行っても Fe基非晶質合金より軟磁気特性の劣化を抑えることができ、パワー チョークコイル用カットコアやモータ磁心に好適である。
[0090] 本発明の磁性合金からなるパワーチョークを評価した結果、圧粉磁心や Fe基非晶 質合金製チョークコイルより優れた直流重畳特性を示し、高性能なチョークコイルが 実現できることが分力つた。
[0091] 試料 14-1の磁性合金からなる卷磁心の 50 Hzにおける単位重量当たりの磁心損失 P を測定した。磁心損失 P の磁束密度 B依存性を図 18に示す。比較のために、従 cm cm m
来の方向性電磁鋼板 (試料 14-6)及び Fe基非晶質合金 (試料 14-5)からなる磁心に ついても、磁心損失 P の磁束密度 B依存性を図 18に示す。試料 14-1の卷磁心の磁
cm m
心損失は、 Fe基非晶質合金 (試料 14-5)と同程度であり、特に 1.5 T以上では試料 14 -5より低ぐ 1.65 T程度まで急激な増加が起こらな力つた。このため、従来の Fe基非 晶質合金より高い磁束密度でトランス等を設計でき、トランス等の小型化に寄与でき る。また高磁束密度領域まで方向性電磁鋼板 (試料 14-6)より磁心損失が低 、ため、 省エネノレギーに優れて 、る。
[0092] 試料 14-1の磁性合金からなる卷磁心、 Fe基非晶質合金 (試料 14-5)及び 6.5質量 %珪素鋼帯 (試料 14-6)について、 0.2 Tにおける単位重量当たりの磁心損失 P の
cm 周波数依存性を図 19に示す。試料 14-1の磁性合金は高飽和磁束密度を有しながら Fe基非晶質合金 (試料 14- 5)より低い磁心損失を示すため、高周波用リア外ル 'チヨ ークコイル、トランス等の磁心に好適である。
[0093] 試料 14-1の磁性合金の交流比初透磁率は 100 kHzまで 6000以上であり、試料 14-
5及び試料 14-6より高かった。このため、コモンモードチョーク等のチョークコイル、パ ルストランス等のトランス、磁気シールド材、アンテナ磁心等に好適である。
[0094] 実施例 15
表 14に示す組成を有する 1300°Cの合金溶湯を、周速 32 m/sで回転する外径 300 m mの Cu-Be合金ロールに噴出することにより幅 5 mm及び厚さ約 21 μ mの合金薄帯を 作製した。 X線回折測定及び透過電子顕微鏡 (TEM)観察の結果、各合金薄帯の非 晶質相中に 30体積%以下の結晶粒が分散して 、ることが分力つた。
[0095] 各合金薄帯から形成した外径 19 mm及び内径 15 mmの卷磁心を窒素ガス雰囲気 の炉内で室温力 410°Cまで 8.5°CZ分で昇温し、 410°Cに 60分保持後、室温まで空 冷した。平均冷却速度は 30°CZ分以上であった。得られた磁性合金 (試料 15-1 15 -33)の磁気特性の測定、 X線回折の測定及び透過電子顕微鏡観察を行った。透過 電子顕微鏡によるミクロ構造では、どの試料も平均粒径 60 以下の体心立方構造 の微細な結晶粒が組織の 30体積%以上を占めて 、た。
[0096] 表 14に熱処理後の試料 15-1 15-33の飽和磁束密度 Bs、保磁力 Hc 20 kHz及び 0.2 Tにおける磁心損失 P を示す。比較のために、 100 nm以上の粒径を有する結晶 cm
力 S 100%を占める未熱処理の Fe B合金 (試料 15-34)、及び熱処理前の段階では完 bal. 6
全に非晶質である従来の典型的なナノ結晶軟磁性合金 (試料 15-35及び 15-36)の 磁気特性も表 14に併せて示す。本発明の磁性合金 (試料 15- 1 15- 33)は、高い飽 和磁束密度 Bs、並びに低い保磁力 He及び磁心損失 P を有することが分かる。これ cm
に対して、試料 15- 34は Heが大きすぎて、 P の測定ができなかった。試料 15-35及び cm
15-36の Bsはそれぞれ 1.24 T及び 1.52 Tであり、本発明の試料 15-1 15-33より低か つた o
[0097] [表 14] 試料 組成 Bs He Pcm
No. (原子%) (T) (A/m) (W kg)
15-1 Febal Cui.25Bl5Sil 1.81 56.4 7.8
15-2 1.79 28.9 6.9
15-3 Febal.cul.2B16 1.73 23.5 6.6
15-4 Febai Cui 5B12 1.81 15.8 6.5
15-5 Febai. Cu1.0Au0.25B 15S11 1.84 10.2 6.4
15-6 Febal. CU1 25B15S11 1.84 8.8 6.3
15-7 Febal. Cul.25Bl5C311 1.79 6.8 4.8
15-8 Febal.Cui.25Bl5Sil 1.85 6.5 4.1
15-9 Febai.Ni2Cu 1.25B14S12 1.81 6.5 4.2
15-10 Febal.C02Cui.25Bl4Si2 1.82 6.8 4.7
15-11 Febal. Cui.35Bl4Si3Alo.6 1.80 8.5 6.1
15-12 Febai. CU1.35B 14S13P0.5 1.79 8.0 5.8
15-13 Febal.Cui.35Bl40l3Geo.5 1.80 7.9 5.3
15-14 Febal.Cui.35Bl4Si3Co.5 1.80 8.5 6.2
15 15 Febai Cui 35B14S13AU0 5 1.81 7.0 4.4
15-16 Febal.Cui.35Bl4»13Pto.5 1.81 7.1 4.5
15-17 Febai Cui.35B14S13W0.5 1.79 7.2 4.7
15-18 Febal.Cui.35Bl4Si3Sno.5 1.80 7.2 4.8
15-19 Febal.Cui.35Bl4Si3lno.5 1.80 7.3 4.5
15-20 Feb i.Cui.35BuSi3Gao.5 1.81 7.1 4.4
15-21 Febai Cui 35Bl4Sl3Nio 5 1.81 7.0 4.3
15-22 Febai Cui 35Bl4Sl3Hfo 5 1.78 7.2 4.6
15-23 Febai Cui 35Bl4Si3Nbo.5 1.78 6.9 4.3
15-24 Febai Cui 35Bl4Sl3Zro.5 1.78 7.0 4.7
15-25 Febal. Cu .35B 14Sl3Tao.5 1.78 7.0 4.5
15-26 Febai Cui 35B 14S13M005 1.78 7.1 4.8
15-27 Febal. Cu 25B 。 1.74 6.5 4.2
15-28 Febal.Cui.5Bl5Si3 1.81 55.2 7.6
15-29 Febal.Cul.35Bl2k3lB 1.79 27.5 6.8
15-30 Febai.Cu1.35B i6Si3Geo.5 1.80 8.2 6.0
15-31 Febai.Cui.4Nbo.o25Bi4Sii 1.85 8.8 6.4
15-32 Febal.cul.a5VO.2si 14.5B8 1.77 7.8 5.2
15-33 Febai.Cui.8Si Bi3Zro.2 1.81 6.5 4.3
15-34* Febai.Be 1.95 4000 測定不能
15-35* Febai Cui oNb3Sii3.sB9 1.24 0.5 2.1
15-36* Febai Nb7B9 1.52 5.8 8.1 注: *比較例
[0098] 実施例 16
Fe Cu Si B (原子0 /0)の組成を有する 1250。Cの合金溶湯を、スリット状のノズル bal. 1.35 2 14
から周速 30 m/sで回転する外径 300 mmの Cu-Be合金ロールに噴出し、幅5 mm及び 厚さ 18 mの合金薄帯を作製した。 X線回折測定及び透過電子顕微鏡 (TEM)観察 の結果、この合金薄帯の非晶質相中に結晶粒が分散していることが分力つた。電子 顕微鏡観察によるミクロ組織から、平均粒径 5.5 匿程度の微細な結晶粒が、平均結 晶粒間距離 24 應で非晶質相中に分散して 、ることが分力つた。
[0099] 合金薄帯を 120 mmに切断し、図 20及び 21に示す温度にあら力じめ昇温した窒素ガ ス雰囲気の管状炉内に 60分保持した後、炉外で平均速度 30°CZ分以上で空冷した 。得られた試料 16-1に対して、磁気特性の熱処理温度依存性を調べた。試料 16-1の X線回折測定及び TEM観察から、 330°C以上の熱処理温度で得られた磁性合金で は、平均粒径 50 應以下の微細な体心立方構造の結晶粒が非晶質相中に 30体積% 以上の割合で分散していることが分力つた。 EDX分析の結果、結晶粒が Feを主体と することが分力つた。
[0100] 比較として、 Fe Si B (原子0 /0)の組成を有する 1250°Cの合金溶湯を、スリット状の bal. 2 14
ノズルから周速 33 m/sで回転する外径 300 mmの Cu-Be合金ロールに噴出し、幅 5 m m及び厚さ 18 mの合金薄帯を作製した。 X線回折測定及び TEM観察の結果、この 合金薄帯は非晶質であることが分力つた。この合金薄帯を 120 mmに切断し、同様な 熱処理を行! \得られた試料 16-2の磁気特性の熱処理温度依存性を調べた。
[0101] 図 20に飽和磁束密度 Bsの熱処理温度依存性を示し、図 21に保磁力 Heの熱処理 温度依存性を示す。本発明の製造方法 (試料 16-1)では、熱処理温度が 330°C以上 になると Bsが上昇するが、 Heの増加は起こらず、高 Bsで優れた軟磁性を示す軟磁性 合金が得られた。特に 420°C付近の熱処理温度で最も優れた磁気特性が得られた。 これに対して、非晶質合金を熱処理した場合 (試料 16-2)、結晶化により急激に Heが 増加した。
[0102] 以上のように、平均粒径 30 應以下の結晶粒が非晶質相中に 30体積%以下の割合 でかつ 50 應以下の平均結晶粒間距離で分散した組織を有する合金を熱処理し、平 均粒径 60 應以下の体心立方構造の結晶粒が非晶質相中に 30体積%以上の割合 で分散した組織とした磁性合金は、高 Bsで優れた軟磁性を示すことが分かる。
[0103] 実施例 17
Fe Cu Si B (原子0 /0)の組成を有する 1250°Cの合金溶湯を、スリット状のノズル bal. 1.25 2 14
から回転速度を変えた外径 300 mmの Cu-Be合金ロールに噴出し、非晶質相中の結 晶粒の体積分率が異なる幅 5 mmの合金薄帯を作製した。結晶粒の体積分率を透過 電子顕微鏡像より求めた。結晶粒の体積分率はロールの回転速度により変化した。 各合金薄帯から作製した外径 19 mm及び内径 15 mmの卷磁心を 410°Cで 1時間熱処 理し、試料 17-1〜 17-8の磁性合金を得た。これらの合金の飽和磁束密度 Bs及び保 磁力 Heを測定した。熱処理後の磁性合金の結晶粒体積分率は 30%以上であり、 Bs は 1.8 T〜1.87 Τであった。
[0104] 表 15に試料 17-1〜17-8の保磁力 Heを示す。結晶粒が存在しない合金を熱処理し てなる磁性合金 (試料 17-1)は、 750 A/mと著しく大きな保磁力 Heを有した。結晶粒 の体積分率が 0%超 30%以下の合金を熱処理してなる本発明の磁性合金 (試料 17- 2〜17_5)は Heが小さぐ高 Bsで軟磁性に優れていることが分かる。これに対して、結 晶粒の体積分率が 30%超の合金を熱処理してなる合金 (試料 17-6〜 17-8)は、結晶 粒が粗大化し、 Heが増加した。
[0105] 以上のように、微細な結晶粒力0%超 30%以下分散した組織を有する Fe量の多 、 合金を熱処理してなる高 Bs磁性合金は、完全な非晶質合金又は結晶粒が 30%超存 在する合金を熱処理してなる合金より、軟磁性特性に優れて!/、る。
[0106] [表 15]
Figure imgf000031_0001
[0107] 実施例 18
Fe Cu B Si (原子0 /0)の組成を有する 1250°Cの合金溶湯をスリット状のノズルか bal. 1.35 14 2
ら、周速 30 m/sで回転する外径 300 mmの Cu-Be合金ロールに噴出し、幅 5 mm及び 厚さ 18 mの合金薄帯を作製した。この合金薄帯を 180° 曲げたところ破断し、脆い ことが分力ゝつた。 X線回折測定及び TEM観察の結果、合金薄帯は非晶質相中に結 晶粒が分布した組織を有することが分力 た。電子顕微鏡観察によるミクロ組織から 、平均粒径 5.5 nm程度の微細な結晶粒が非晶質相中に 4.8体積%分散していること が分力つた。組成分析の結果、結晶粒は Feを主体とすることが分力つた。
[0108] 合金薄帯を 120 mmに切断し、窒素ガス雰囲気の炉内で 410°Cで 1時間熱処理し、 磁気特性を測定した。ミクロ組織観察及び X線回折測定の結果、平均粒径約 14應 の微細な体心立方構造の結晶粒が組織の 60%を占めている (残余は非晶質相)こと が分かった。
[0109] 熱処理後の磁性合金の飽和磁束密度 Bsは 1.85 T、保磁力 Heは 6.5 A/m、 1 kHzに おける交流比初透磁率 は 7000、 20 kHz及び 0.2 Tにおける磁心損失 P は 4.1 W
lk cm
/kg、平均結晶粒径 Dは 14 nm、飽和磁歪定数え sは + 14 X 10— 6であった。
[0110] 未熱処理合金薄帯を振動ミルにより粉砕し、 170メッシュのふるいにかけた。 X線回 折測定及びミクロ組織観察の結果、得られた粉末は薄帯と同様の X線回折パターン 及びミクロ組織を有することが分った。この粉末の一部を平均昇温速度 20°CZ分、保 持温度 410°C、保持時間 1時間及び平均冷却速度 7°CZ分の条件で熱処理した。保 磁力及び飽和磁束密度を測定した結果、得られた磁性合金は保 29 A/mの磁力及び 1.84 Tの飽和磁束密度を有していた。 X線回折及びミクロ組織観察の結果、熱処理 後の粉末は熱処理後の薄帯と同様の X線回折パターン及びミクロ組織を有すること が分った。
[0111] 実施例 19
実施例 18で作製した未熱処理合金粉末と、平均粒径 0.5 μ mの SiO粒子との 95: 5 (
2
体積比)の混合粉末 100質量部に対して、 6.6質量部のポリビュルアルコール水溶液( 3質量%)を混合し、 100°Cで 1時間攪拌しながら完全に乾燥させ、 115メッシュのふる いにかけた。得られた複合粒子をボロンナイトライド潤滑剤を塗布した金型に装入し、 500 MPaの圧力を印加して内径 12 mm、外径 21.5 mm及び高さ 6.5 mmのリング状圧 粉磁心 (試料 19-1)を作製した。この圧粉磁心を窒素雰囲気中で 410°Cで 1時間熱処 理した。 TEM観察の結果、圧粉磁心を構成する合金粒子は、実施例 1の熱処理後の 合金と同様に、非晶質母相中にナノ結晶粒が分散した組織を有することが分力 た 。この圧粉磁心の比初透磁率は 78であった。
[0112] Fe基非晶質圧粉磁心 (試料 19- 2)、 Fe Cu Nb Si B (原子0 /0)の組成を有する従 bal. 1 3 13.5 9
来の Fe基ナノ結晶合金粉末 (試料 19-3)、及び鉄粉 (試料 19-4)から試料 19-1と同じ 形状のリング状圧粉磁心を作製した。各リング状圧粉磁心に 30ターンのコイルを卷 ヽ てチョークコイルを作製し、直流重畳特性を測定した。結果を図 22に示す。図 22から 明らかなように、高い直流重畳電流まで、本発明のチョークコイルは、 Fe基非晶質圧 粉磁心 (試料 19-2)、 Fe-Cu-Nb-Si-B系ナノ結晶合金圧粉磁心 (試料 19-3)及び鉄 粉 (試料 19-4)を用いたチョークコイルより大きなインダクタンス Lを有し、直流重畳特 性に優れていた。このため、本発明のチョークコイルは大電流に対応できるほか、小 型化も可能である。

Claims

請求の範囲
[1] 下記一般式 (1) :
Fe Cu B (原子%) · · ·(1)
ΙΟΟ-χ-y χ y
(ただし χ及び yは 0.1≤x≤3、及び 10≤y≤20の条件を満たす数である。)により表さ れる組成を有し、平均粒径 60 以下の結晶粒を非晶質母相中に含有する組織から なり、飽和磁束密度が 1.7 T以上であることを特徴とする磁性合金。
[2] 下記一般式 (2) :
Fe Cu B X (原子0 /0) · · ·(2)
ΙΟΟ-χ-y-z χ y ζ
(ただし Xは Si, S, C, P, Al, Ge, Ga及び Beからなる群から選ばれた少なくとも一種の 元素であり、 x y及び zはそれぞれ 0.1≤x≤3 10≤y≤20 0< z≤10、及び 10<y+z ≤ 24の条件を満たす数である。 )により表される組成を有し、平均粒径 60 nm以下の 結晶粒を非晶質母相中に含有する組織力もなり、飽和磁束密度が 1.7 T以上である ことを特徴とする磁性合金。
[3] 請求項 2に記載の磁性合金において、前記 Xは Si及び Z又は Pであることを特徴とす る磁性合金。
[4] 請求項 1 3の 、ずれかに記載の磁性合金にぉ 、て、前記結晶粒が前記非晶質母 相中に 30体積%以上分散して ヽることを特徴とする磁性合金。
[5] 請求項 1 4の 、ずれかに記載の磁性合金にぉ 、て、最大透磁率が 20000以上であ ることを特徴とする磁性合金。
[6] 請求項 1 5のいずれかに記載の磁性合金において、さらに Ni及び Z又は Coを Feの
10原子%以下の割合で含有することを特徴とする磁性合金。
[7] 請求項 1 6のいずれかに記載の磁性合金において、さらに Ti Zr Hf V Nb Ta
Cr Mo W Mn Re、白金族元素、 Au Ag Zn In Sn As Sb Bi Y N O及び希 土類元素からなる群力 選ばれた少なくとも一種の元素を Feの 5原子%以下の割合 で含有することを特徴とする磁性合金。
[8] 請求項 1 7の 、ずれかに記載の磁性合金にぉ 、て、粉末形状又はフレーク形状で あることを特徴とする磁性合金。
[9] 下記一般式 (1) : Fe Cu B (原子%) · · ·(1)
ΙΟΟ-χ-y x y
(ただし x及び yは 0.1≤x≤3、及び 10≤y≤20の条件を満たす数である。)により表さ れる組成を有し、平均粒径 30 nm以下の微結晶粒を非晶質母相中に含有する組織 からなることを特徴とする合金薄帯。
[10] 下記一般式 (2) :
Fe Cu B X (原子0 /0) · · ·(2)
ΙΟΟ-χ-y-z χ y ζ
(ただし Xは Si, S, C, P, Al, Ge, Ga及び Beからなる群から選ばれた少なくとも一種の 元素であり、 x、 y及び zは 0.1≤x≤3、 10≤y≤20、 0< z≤10、及び 10<y+z≤24の条 件を満たす数である。 )により表される組成を有し、平均粒径 30 應以下の微結晶粒 を非晶質母相中に含有する組織からなることを特徴とする合金薄帯。
[11] 請求項 10に記載の合金薄帯において、前記 Xは Si及び Z又は Pであることを特徴とす る合金薄帯。
[12] 請求項 9〜11のいずれかに記載の合金薄帯において、前記微結晶粒が前記非晶質 母相中に 0体積%超かつ 30体積%以下の割合で分散した組織力ゝらなることを特徴と する合金薄帯。
[13] 請求項 9〜12のいずれかに記載の合金薄帯において、さらに Ni及び Z又は Coを Fe の 10原子%以下の割合で含有することを特徴とする合金薄帯。
[14] 請求項 9〜13のいずれかに記載の合金薄帯において、さらに Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 Mo、 W、 Mn、 Re、白金族元素、 Au、 Ag、 Zn、 In、 Sn、 As、 Sb、 Biゝ Y、 N、 O及び希 土類元素からなる群力 選ばれた少なくとも一種の元素を Feの 5原子%以下の割合 で含有することを特徴とする合金薄帯。
[15] 請求項 1〜8のいずれかに記載の磁性合金力 なることを特徴とする磁性部品。
[16] Fe及び半金属元素を含む合金溶湯を急冷し、平均粒径 30 應以下の結晶粒が非晶 質母相中に 0体積%超かつ 30体積%以下の割合で分散した組織力ゝらなる Fe基合金 を作製し、前記 Fe基合金を熱処理して、平均粒径 60 應以下の体心立方構造の結 晶粒が非晶質母相中に 30体積%以上の割合で分散した組織とすることを特徴とする 磁性合金の製造方法。
PCT/JP2006/318540 2005-09-16 2006-09-19 ナノ結晶磁性合金とその製造方法、合金薄帯、及び磁性部品 WO2007032531A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800335634A CN101263240B (zh) 2005-09-16 2006-09-19 纳米结晶磁性合金及其制造方法、合金薄带及磁性部件
US12/066,595 US8177923B2 (en) 2005-09-16 2006-09-19 Nano-crystalline, magnetic alloy, its production method, alloy ribbon and magnetic part
EP06810282.1A EP1925686B1 (en) 2005-09-16 2006-09-19 Nanocrystalline magnetic alloy, method for producing same, alloy thin band, and magnetic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-270432 2005-09-16
JP2005270432 2005-09-16

Publications (1)

Publication Number Publication Date
WO2007032531A1 true WO2007032531A1 (ja) 2007-03-22

Family

ID=37865108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318540 WO2007032531A1 (ja) 2005-09-16 2006-09-19 ナノ結晶磁性合金とその製造方法、合金薄帯、及び磁性部品

Country Status (6)

Country Link
US (3) US8177923B2 (ja)
EP (2) EP2339043B1 (ja)
JP (5) JP5288226B2 (ja)
CN (2) CN101906582A (ja)
ES (1) ES2611853T3 (ja)
WO (1) WO2007032531A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114665A1 (ja) * 2007-03-16 2008-09-25 Hitachi Metals, Ltd. Fe基軟磁性合金、アモルファス合金薄帯、および磁性部品
WO2008114605A1 (ja) * 2007-03-22 2008-09-25 Hitachi Metals, Ltd. 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
WO2008133302A1 (ja) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. 軟磁性薄帯、その製造方法、磁性部品、およびアモルファス薄帯
WO2008133301A1 (ja) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. 軟磁性合金、その製造方法、および磁性部品
JP2008294411A (ja) * 2007-04-25 2008-12-04 Hitachi Metals Ltd 軟磁性粉末、圧粉磁心の製造方法、圧粉磁心、及び磁性部品
EP2128291A1 (en) * 2007-03-16 2009-12-02 Hitachi Metals, Ltd. Magnetic alloy, amorphous alloy ribbon, and magnetic part
WO2011122589A1 (ja) * 2010-03-29 2011-10-06 日立金属株式会社 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品
US8277579B2 (en) 2006-12-04 2012-10-02 Tohoku Techno Arch Co., Ltd. Amorphous alloy composition
US8287665B2 (en) * 2007-03-20 2012-10-16 Nec Tokin Corporation Soft magnetic alloy, magnetic part using soft magnetic alloy, and method of manufacturing same
WO2013051729A1 (ja) 2011-10-06 2013-04-11 日立金属株式会社 Fe基初期超微結晶合金薄帯及び磁性部品
WO2013051380A1 (ja) 2011-10-03 2013-04-11 日立金属株式会社 初期超微結晶合金薄帯及びその切断方法、並びにナノ結晶軟磁性合金薄帯及びこれを用いた磁性部品
WO2013094690A1 (ja) 2011-12-20 2013-06-27 日立金属株式会社 超微結晶合金薄帯の製造方法
US8491731B2 (en) 2008-08-22 2013-07-23 Akihiro Makino Alloy composition, Fe-based nano-crystalline alloy and forming method of the same and magnetic component
WO2013146887A1 (ja) * 2012-03-30 2013-10-03 日新製鋼株式会社 Ipmモータのロータ鉄心用鋼板及びその製造方法
CN103469118A (zh) * 2013-07-20 2013-12-25 南通万宝实业有限公司 节能电机的非晶铁合金铁芯及其制备方法
WO2014038705A1 (ja) 2012-09-10 2014-03-13 日立金属株式会社 超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品
WO2016009696A1 (ja) * 2014-07-14 2016-01-21 愛知時計電機株式会社 電磁流量計およびコア
WO2016112010A1 (en) 2015-01-07 2016-07-14 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
WO2017022594A1 (ja) * 2015-07-31 2017-02-09 株式会社村田製作所 軟磁性材料およびその製造方法
RU2697837C1 (ru) * 2017-12-28 2019-08-22 Тойота Дзидося Кабусики Кайся Магнит из редкоземельных металлов и способ его изготовления
US11264156B2 (en) 2015-01-07 2022-03-01 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy
WO2023190886A1 (ja) * 2022-03-30 2023-10-05 株式会社プロテリアル ナノ結晶合金薄帯及び磁性シート

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5288226B2 (ja) * 2005-09-16 2013-09-11 日立金属株式会社 磁性合金、アモルファス合金薄帯、および磁性部品
JP5412425B2 (ja) * 2008-04-15 2014-02-12 東邦亜鉛株式会社 複合磁性材料およびその製造方法
CN102264938B (zh) * 2009-01-23 2013-05-15 阿尔卑斯绿色器件株式会社 Fe基软磁性合金和使用了所述Fe基软磁性合金的压粉磁芯
CN101834046B (zh) * 2009-03-10 2012-10-10 苏州宝越新材料科技有限公司 高饱和磁化强度铁基纳米晶软磁合金材料及其制备方法
WO2010109561A1 (ja) * 2009-03-27 2010-09-30 株式会社 東芝 コアシェル型磁性材料、コアシェル型磁性材料の製造方法、デバイス装置、およびアンテナ装置
CN102471857B (zh) 2009-08-07 2013-11-06 阿尔卑斯绿色器件株式会社 Fe基非晶态合金及使用所述Fe基非晶态合金的压粉磁芯、以及线圈内嵌式压粉磁芯
RU2483135C1 (ru) 2009-08-24 2013-05-27 Нек Токин Корпорейшн СОСТАВ СПЛАВА, НАНОКРИСТАЛЛИЧЕСКИЙ СПЛАВ НА ОСНОВЕ Fe И СПОСОБ ЕГО ФОРМИРОВАНИЯ
JP5175884B2 (ja) 2010-03-05 2013-04-03 株式会社東芝 ナノ粒子複合材料、それを用いたアンテナ装置及び電磁波吸収体
JP6181346B2 (ja) * 2010-03-23 2017-08-16 株式会社トーキン 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
CN102199737B (zh) * 2010-03-26 2012-09-19 宝山钢铁股份有限公司 一种600hb级耐磨钢板及其制造方法
DE102010060740A1 (de) * 2010-11-23 2012-05-24 Vacuumschmelze Gmbh & Co. Kg Weichmagnetisches Metallband für elektromechanische Bauelemente
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
CN102129907B (zh) * 2010-12-30 2012-05-30 上海世路特种金属材料有限公司 一种具有高初始磁导率和低剩磁的纳米晶软磁合金铁心及其制备方法
JP6107140B2 (ja) 2011-01-28 2017-04-05 日立金属株式会社 Fe基アモルファスの製造方法及び鉄心の製造方法
CN102496450B (zh) * 2011-12-28 2017-03-15 天津三环奥纳科技有限公司 一种超微晶铁芯强磁退火工艺及其专用设备
CN102543348B (zh) * 2012-01-09 2016-06-01 上海米创电器有限公司 一种铁基纳米晶软磁合金及其制备方法
JP5929401B2 (ja) 2012-03-26 2016-06-08 Tdk株式会社 平面コイル素子
CN102737799A (zh) * 2012-06-20 2012-10-17 浙江科达磁电有限公司 磁导率μ=60的纳米晶磁粉芯的制备方法
CN102737800A (zh) * 2012-06-20 2012-10-17 浙江科达磁电有限公司 磁导率μ=60的纳米晶磁粉芯
CN102861920B (zh) * 2012-10-17 2015-07-15 厦门大学 一种晶体/非晶复合粉体及其制备方法
CN102899591B (zh) * 2012-10-24 2014-05-07 华南理工大学 一种高含氧量的铁基非晶复合粉末及其制备方法
CN102936685A (zh) * 2012-11-29 2013-02-20 浙江大学 具有高饱和磁通密度的Fe基软磁合金及其制备方法
JP6041207B2 (ja) * 2012-12-27 2016-12-07 日立金属株式会社 ナノ結晶軟磁性合金及びこれを用いた磁性部品
JP6191908B2 (ja) * 2013-06-12 2017-09-06 日立金属株式会社 ナノ結晶軟磁性合金及びこれを用いた磁性部品
WO2015013585A1 (en) * 2013-07-26 2015-01-29 University Of Florida Research Foundation, Incorporated Nanocomposite magnetic materials for magnetic devices and systems
JP6402107B2 (ja) * 2013-08-13 2018-10-10 日立金属株式会社 Fe基アモルファストランス磁心及びその製造方法、並びにトランス
CN103692705B (zh) * 2013-12-16 2015-06-03 杨全民 一种复合磁性材料及其制备方法与用途
CN103668009B (zh) * 2013-12-19 2015-08-19 南京信息工程大学 一种低矫顽力纳米晶合金丝材料及其制备方法
JP6530164B2 (ja) * 2014-03-04 2019-06-12 株式会社トーキン ナノ結晶軟磁性合金粉末およびそれを用いた圧粉磁芯
JP6408559B2 (ja) * 2014-03-24 2018-10-17 株式会社東芝 磁性材料および電波吸収体
KR20150128031A (ko) * 2014-05-08 2015-11-18 엘지이노텍 주식회사 연자성 합금, 이를 포함하는 무선 전력 송신 장치 및 무선 전력 수신 장치
CN105088107B (zh) * 2014-05-09 2017-08-25 中国科学院宁波材料技术与工程研究所 具有高饱和磁感应强度和强非晶形成能力的铁基非晶合金
CN104036904A (zh) * 2014-05-28 2014-09-10 浙江大学 高饱和磁感应强度铁基非晶软磁复合材料及其制备方法
JP2016003366A (ja) * 2014-06-17 2016-01-12 Necトーキン株式会社 軟磁性合金粉末並びにそれを用いた圧粉磁芯及びその製造方法
JP5932907B2 (ja) * 2014-07-18 2016-06-08 国立大学法人東北大学 合金粉末及び磁性部品
KR102203689B1 (ko) 2014-07-29 2021-01-15 엘지이노텍 주식회사 연자성 합금, 이를 포함하는 무선 전력 송신 장치 및 무선 전력 수신 장치
JP6522462B2 (ja) 2014-08-30 2019-05-29 太陽誘電株式会社 コイル部品
JP6688373B2 (ja) * 2014-08-30 2020-04-28 太陽誘電株式会社 コイル部品
CN104233121B (zh) * 2014-09-26 2016-06-29 华南理工大学 一种Fe基非晶纳米晶软磁材料及其制备方法
JP6554278B2 (ja) * 2014-11-14 2019-07-31 株式会社リケン 軟磁性合金および磁性部品
CN105655079B (zh) * 2014-12-03 2018-07-20 宁波中科毕普拉斯新材料科技有限公司 一种铁基纳米晶软磁合金材料及其制备方法
WO2016117201A1 (ja) * 2015-01-22 2016-07-28 アルプス・グリーンデバイス株式会社 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
US10316396B2 (en) 2015-04-30 2019-06-11 Metglas, Inc. Wide iron-based amorphous alloy, precursor to nanocrystalline alloy
KR20160140153A (ko) 2015-05-29 2016-12-07 삼성전기주식회사 코일 전자부품 및 그 제조방법
KR101905412B1 (ko) * 2016-01-06 2018-10-08 한양대학교 에리카산학협력단 연자성 합금, 이의 제조방법 및 이를 통한 자성부품
KR101906914B1 (ko) * 2016-01-06 2018-10-11 한양대학교 에리카산학협력단 Fe계 연자성 합금 및 이를 통한 자성부품
EP3401416B1 (en) * 2016-01-06 2021-08-11 Amogreentech Co., Ltd. Fe-based soft magnetic alloy, manufacturing method therefor, and magnetic parts using fe-based soft magnetic alloy
KR101905411B1 (ko) * 2016-01-06 2018-10-08 한양대학교 에리카산학협력단 Fe계 연자성 합금 제조방법
CN105755356A (zh) * 2016-03-15 2016-07-13 梁梅芹 一种铁基纳米晶软磁合金的制备方法
CN106011660A (zh) * 2016-05-31 2016-10-12 南通华禄新材料科技有限公司 一种高饱和纳米金合金及其制备方法
KR101783553B1 (ko) * 2016-08-08 2017-10-10 한국생산기술연구원 질소가 첨가된 비정질 연자성 합금 및 이의 제조 방법
JP6862743B2 (ja) * 2016-09-29 2021-04-21 セイコーエプソン株式会社 軟磁性粉末、圧粉磁心、磁性素子および電子機器
JP6729705B2 (ja) * 2016-09-29 2020-07-22 日立金属株式会社 ナノ結晶合金磁心、磁心ユニットおよびナノ結晶合金磁心の製造方法
CN106373690A (zh) * 2016-10-10 2017-02-01 大连理工大学 一种具有良好工艺性能、高饱和磁感应强度的纳米晶软磁合金及其制备方法
JP6256647B1 (ja) 2016-10-31 2018-01-10 Tdk株式会社 軟磁性合金および磁性部品
JP6761742B2 (ja) 2016-11-24 2020-09-30 山陽特殊製鋼株式会社 高周波で用いる磁性粉末およびこれを含有する磁性樹脂組成物
US20180171444A1 (en) * 2016-12-15 2018-06-21 Samsung Electro-Mechanics Co., Ltd. Fe-based nanocrystalline alloy and electronic component using the same
KR101719970B1 (ko) * 2017-01-03 2017-04-05 삼성전기주식회사 코일 전자부품 및 그 제조방법
US11814707B2 (en) 2017-01-27 2023-11-14 Tokin Corporation Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic component and dust core
JP6744238B2 (ja) * 2017-02-21 2020-08-19 株式会社トーキン 軟磁性粉末、磁性部品及び圧粉磁芯
JP2018167298A (ja) * 2017-03-30 2018-11-01 Bizyme有限会社 Fe−Si−B系ナノ結晶合金の製造方法
US11037711B2 (en) 2017-07-05 2021-06-15 Panasonic Intellectual Property Management Co., Ltd. Soft magnetic alloy powder, method for producing same, and dust core using soft magnetic alloy powder
JP6941766B2 (ja) * 2017-07-05 2021-09-29 パナソニックIpマネジメント株式会社 軟磁性合金粉末とその製造方法、および、それを用いた圧粉磁心
EP3441990B1 (en) 2017-08-07 2023-05-31 TDK Corporation Soft magnetic alloy and magnetic device
CN111246952B (zh) * 2017-08-07 2023-02-17 日立金属株式会社 结晶质Fe基合金粉末及其制造方法
JP6460276B1 (ja) 2017-08-07 2019-01-30 Tdk株式会社 軟磁性合金および磁性部品
CN107686946A (zh) * 2017-08-23 2018-02-13 东莞市联洲知识产权运营管理有限公司 一种非晶纳米晶合金的制备及其应用
JP6981199B2 (ja) * 2017-11-21 2021-12-15 Tdk株式会社 軟磁性合金および磁性部品
JP6881269B2 (ja) 2017-12-06 2021-06-02 トヨタ自動車株式会社 軟磁性材料の製造方法
CN111491753A (zh) 2017-12-19 2020-08-04 株式会社村田制作所 非晶质合金粒子和非晶质合金粒子的制造方法
JP6867965B2 (ja) * 2018-03-09 2021-05-12 Tdk株式会社 軟磁性合金粉末、圧粉磁心および磁性部品
JP6867966B2 (ja) * 2018-03-09 2021-05-12 Tdk株式会社 軟磁性合金粉末、圧粉磁心および磁性部品
JP6981536B2 (ja) * 2018-03-23 2021-12-15 株式会社村田製作所 鉄合金粒子、及び、鉄合金粒子の製造方法
CN111971136B (zh) 2018-03-23 2022-11-29 株式会社村田制作所 铁合金粒子和铁合金粒子的制造方法
JP7024859B2 (ja) * 2018-03-29 2022-02-24 新東工業株式会社 鉄基軟磁性粉末及びその製造方法、並びに鉄基軟磁性合金粉末を含む物品及びその製造方法
JP7099035B2 (ja) * 2018-04-27 2022-07-12 セイコーエプソン株式会社 軟磁性粉末、圧粉磁心、磁性素子および電子機器
WO2019208768A1 (ja) * 2018-04-27 2019-10-31 日立金属株式会社 磁心用粉末、それを用いた磁心及びコイル部品
JP6680309B2 (ja) * 2018-05-21 2020-04-15 Tdk株式会社 軟磁性粉末、圧粉体および磁性部品
JP7143635B2 (ja) * 2018-05-30 2022-09-29 トヨタ自動車株式会社 軟磁性材料及びその製造方法
KR102241959B1 (ko) * 2018-10-25 2021-04-16 엘지전자 주식회사 Fe 기지 연자성 합금 및 그 제조 방법
JP6737318B2 (ja) * 2018-10-31 2020-08-05 Tdk株式会社 軟磁性合金粉末、圧粉磁心、磁性部品および電子機器
CN109440023B (zh) * 2018-12-26 2019-10-18 中国科学院宁波材料技术与工程研究所 一种高磁感氮耦合铁基非晶纳米晶合金及其制备方法
EP3908683A4 (en) * 2019-01-11 2022-11-02 Monash University IRON-BASED ALLOY
JP7318219B2 (ja) * 2019-01-30 2023-08-01 セイコーエプソン株式会社 軟磁性粉末、圧粉磁心、磁性素子および電子機器
JP7100833B2 (ja) * 2019-03-07 2022-07-14 株式会社村田製作所 磁心コアとその製造方法、及びコイル部品
CN113365764B (zh) * 2019-03-26 2023-06-16 株式会社博迈立铖 非晶质合金薄带、非晶质合金粉末及纳米晶体合金压粉磁芯以及纳米晶体合金压粉磁芯的制造方法
JP7421742B2 (ja) * 2019-07-04 2024-01-25 大同特殊鋼株式会社 ナノ結晶軟磁性材料
DE102019123500A1 (de) * 2019-09-03 2021-03-04 Vacuumschmelze Gmbh & Co. Kg Metallband, Verfahren zum Herstellen eines amorphen Metallbands und Verfahren zum Herstellen eines nanokristallinen Metallbands
CN111534764A (zh) * 2020-04-23 2020-08-14 华南理工大学 一种高铁型非晶纳米晶软磁材料及其制备方法
DE102020120430A1 (de) 2020-08-03 2022-02-03 Florian Geling Drossel für Leistungselektronik
JP2022157035A (ja) * 2021-03-31 2022-10-14 Tdk株式会社 軟磁性合金および磁性部品。
CN115747418B (zh) * 2022-11-15 2023-12-08 北京科技大学 一种去除铁基非晶合金熔体中硫杂质的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156451A (ja) 1987-12-11 1989-06-20 Hitachi Metals Ltd 高飽和磁束密度軟磁性合金
JPH05140703A (ja) 1991-07-30 1993-06-08 Nippon Steel Corp 磁束密度の大きなトランス鉄心用非晶質合金薄帯
JPH0617204A (ja) * 1991-03-20 1994-01-25 Tdk Corp 軟磁性合金およびその製造方法ならびに磁心
JP2004353090A (ja) * 1999-04-15 2004-12-16 Hitachi Metals Ltd 合金薄帯並びにそれを用いた部材
JP2006040906A (ja) 2001-03-21 2006-02-09 Teruhiro Makino 高透磁率かつ高飽和磁束密度の軟磁性成形体の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2095699A (en) * 1981-03-25 1982-10-06 Nat Res Dev Magnetic metallic glass alloy
JPS6479342A (en) 1986-12-15 1989-03-24 Hitachi Metals Ltd Fe-base soft magnetic alloy and its production
JPH01242755A (ja) 1988-03-23 1989-09-27 Hitachi Metals Ltd Fe基磁性合金
JPH0222445A (ja) * 1988-07-08 1990-01-25 Nippon Steel Corp 超微細結晶組織を有する合金およびその製造方法
EP0435680B1 (en) * 1989-12-28 1995-04-05 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy, method of producing same and magnetic core made of same
JPH05222494A (ja) * 1992-02-13 1993-08-31 Nippon Steel Corp 磁束密度の大きなトランス鉄心用非晶質合金薄帯
JP3279399B2 (ja) * 1992-09-14 2002-04-30 アルプス電気株式会社 Fe基軟磁性合金の製造方法
JP3434844B2 (ja) * 1993-01-28 2003-08-11 新日本製鐵株式会社 低鉄損・高磁束密度非晶質合金
JP3460763B2 (ja) * 1995-10-31 2003-10-27 アルプス電気株式会社 軟磁性合金の製造方法
US6261386B1 (en) * 1997-06-30 2001-07-17 Wisconsin Alumni Research Foundation Nanocrystal dispersed amorphous alloys
EP1045402B1 (en) * 1999-04-15 2011-08-31 Hitachi Metals, Ltd. Soft magnetic alloy strip, manufacturing method and use thereof
JP3594123B2 (ja) * 1999-04-15 2004-11-24 日立金属株式会社 合金薄帯並びにそれを用いた部材、及びその製造方法
JP3494371B2 (ja) * 2001-02-14 2004-02-09 日立金属株式会社 アモルファス合金薄帯の製造方法、およびこれを用いたナノ結晶合金薄帯の製造方法
CN100435244C (zh) * 2003-04-10 2008-11-19 同济大学 一种纳米晶软磁合金超薄带及其制备方法
CN1234901C (zh) * 2003-12-31 2006-01-04 山东大学 一种淬态纳米巨磁阻抗薄带材料及其制备方法
DE102005008987B3 (de) * 2005-02-28 2006-06-01 Meiko Maschinenbau Gmbh & Co.Kg Mehrtankgeschirrspülmaschine mit Rückspülvorrichtung
JP5288226B2 (ja) * 2005-09-16 2013-09-11 日立金属株式会社 磁性合金、アモルファス合金薄帯、および磁性部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156451A (ja) 1987-12-11 1989-06-20 Hitachi Metals Ltd 高飽和磁束密度軟磁性合金
JPH0617204A (ja) * 1991-03-20 1994-01-25 Tdk Corp 軟磁性合金およびその製造方法ならびに磁心
JPH05140703A (ja) 1991-07-30 1993-06-08 Nippon Steel Corp 磁束密度の大きなトランス鉄心用非晶質合金薄帯
JP2004353090A (ja) * 1999-04-15 2004-12-16 Hitachi Metals Ltd 合金薄帯並びにそれを用いた部材
JP2006040906A (ja) 2001-03-21 2006-02-09 Teruhiro Makino 高透磁率かつ高飽和磁束密度の軟磁性成形体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1925686A4

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277579B2 (en) 2006-12-04 2012-10-02 Tohoku Techno Arch Co., Ltd. Amorphous alloy composition
US8298355B2 (en) 2007-03-16 2012-10-30 Hitachi Metals, Ltd. Magnetic alloy, amorphous alloy ribbon, and magnetic part
WO2008114665A1 (ja) * 2007-03-16 2008-09-25 Hitachi Metals, Ltd. Fe基軟磁性合金、アモルファス合金薄帯、および磁性部品
EP2128291A1 (en) * 2007-03-16 2009-12-02 Hitachi Metals, Ltd. Magnetic alloy, amorphous alloy ribbon, and magnetic part
EP2128291A4 (en) * 2007-03-16 2010-09-08 Hitachi Metals Ltd MAGNETIC ALLOY, AMORPHAL ALLOY TAPE AND MAGNETIC ELEMENT
US8287665B2 (en) * 2007-03-20 2012-10-16 Nec Tokin Corporation Soft magnetic alloy, magnetic part using soft magnetic alloy, and method of manufacturing same
WO2008114605A1 (ja) * 2007-03-22 2008-09-25 Hitachi Metals, Ltd. 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
EP2130936A4 (en) * 2007-03-22 2015-10-28 Hitachi Metals Ltd SOFT MAGNETIC TAPE, MAGNETIC CORE, MAGNETIC PART AND METHOD FOR PRODUCING A SOFT MAGNETIC TAPE
US7935196B2 (en) 2007-03-22 2011-05-03 Hitachi Metals, Ltd. Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
WO2008133301A1 (ja) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. 軟磁性合金、その製造方法、および磁性部品
JP5455041B2 (ja) * 2007-04-25 2014-03-26 日立金属株式会社 軟磁性薄帯、その製造方法、磁性部品、およびアモルファス薄帯
US8007600B2 (en) 2007-04-25 2011-08-30 Hitachi Metals, Ltd. Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
WO2008133302A1 (ja) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. 軟磁性薄帯、その製造方法、磁性部品、およびアモルファス薄帯
JP2008294411A (ja) * 2007-04-25 2008-12-04 Hitachi Metals Ltd 軟磁性粉末、圧粉磁心の製造方法、圧粉磁心、及び磁性部品
JP5455040B2 (ja) * 2007-04-25 2014-03-26 日立金属株式会社 軟磁性合金、その製造方法、および磁性部品
US8491731B2 (en) 2008-08-22 2013-07-23 Akihiro Makino Alloy composition, Fe-based nano-crystalline alloy and forming method of the same and magnetic component
JP5720674B2 (ja) * 2010-03-29 2015-05-20 日立金属株式会社 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品
WO2011122589A1 (ja) * 2010-03-29 2011-10-06 日立金属株式会社 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品
WO2013051380A1 (ja) 2011-10-03 2013-04-11 日立金属株式会社 初期超微結晶合金薄帯及びその切断方法、並びにナノ結晶軟磁性合金薄帯及びこれを用いた磁性部品
WO2013051729A1 (ja) 2011-10-06 2013-04-11 日立金属株式会社 Fe基初期超微結晶合金薄帯及び磁性部品
WO2013094690A1 (ja) 2011-12-20 2013-06-27 日立金属株式会社 超微結晶合金薄帯の製造方法
CN104010748A (zh) * 2011-12-20 2014-08-27 日立金属株式会社 超微晶合金薄带的制造方法
US9224527B2 (en) 2011-12-20 2015-12-29 Hitachi Metals, Ltd. Production method of ultrafine crystalline alloy ribbon
CN104010748B (zh) * 2011-12-20 2016-02-10 日立金属株式会社 超微晶合金薄带的制造方法
WO2013146887A1 (ja) * 2012-03-30 2013-10-03 日新製鋼株式会社 Ipmモータのロータ鉄心用鋼板及びその製造方法
WO2014038705A1 (ja) 2012-09-10 2014-03-13 日立金属株式会社 超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品
US10115509B2 (en) 2012-09-10 2018-10-30 Hitachi Metals, Ltd. Ultrafine-crystalline alloy ribbon, fine-crystalline, soft-magnetic alloy ribbon, and magnetic device comprising it
CN103469118A (zh) * 2013-07-20 2013-12-25 南通万宝实业有限公司 节能电机的非晶铁合金铁芯及其制备方法
JP2016020835A (ja) * 2014-07-14 2016-02-04 愛知時計電機株式会社 電磁流量計およびコア
WO2016009696A1 (ja) * 2014-07-14 2016-01-21 愛知時計電機株式会社 電磁流量計およびコア
WO2016112010A1 (en) 2015-01-07 2016-07-14 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
US11230754B2 (en) 2015-01-07 2022-01-25 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
US11264156B2 (en) 2015-01-07 2022-03-01 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy
WO2017022594A1 (ja) * 2015-07-31 2017-02-09 株式会社村田製作所 軟磁性材料およびその製造方法
US11851738B2 (en) 2015-07-31 2023-12-26 Murata Manufacturing Co., Ltd. Soft magnetic material and method for manufacturing the same
RU2697837C1 (ru) * 2017-12-28 2019-08-22 Тойота Дзидося Кабусики Кайся Магнит из редкоземельных металлов и способ его изготовления
WO2023190886A1 (ja) * 2022-03-30 2023-10-05 株式会社プロテリアル ナノ結晶合金薄帯及び磁性シート
JP7424549B1 (ja) 2022-03-30 2024-01-30 株式会社プロテリアル ナノ結晶合金薄帯及び磁性シート

Also Published As

Publication number Publication date
CN101263240A (zh) 2008-09-10
ES2611853T3 (es) 2017-05-10
CN101263240B (zh) 2011-06-15
JP5445888B2 (ja) 2014-03-19
JP2007107095A (ja) 2007-04-26
US20110108167A1 (en) 2011-05-12
US20090266448A1 (en) 2009-10-29
JP5664935B2 (ja) 2015-02-04
JP2013067863A (ja) 2013-04-18
JP5445889B2 (ja) 2014-03-19
US8182620B2 (en) 2012-05-22
US8287666B2 (en) 2012-10-16
CN101906582A (zh) 2010-12-08
JP2007107096A (ja) 2007-04-26
US20110085931A1 (en) 2011-04-14
JP2013060665A (ja) 2013-04-04
US8177923B2 (en) 2012-05-15
JP5288226B2 (ja) 2013-09-11
EP2339043A1 (en) 2011-06-29
JP2007107094A (ja) 2007-04-26
EP1925686B1 (en) 2013-06-12
JP5664934B2 (ja) 2015-02-04
EP1925686A4 (en) 2010-08-11
EP2339043B1 (en) 2016-11-09
EP1925686A1 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
WO2007032531A1 (ja) ナノ結晶磁性合金とその製造方法、合金薄帯、及び磁性部品
JP5720674B2 (ja) 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品
US8007600B2 (en) Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
JP5455040B2 (ja) 軟磁性合金、その製造方法、および磁性部品
JP5445890B2 (ja) 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
US7935196B2 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
JP5316920B2 (ja) 軟磁性合金、アモルファス相を主相とする合金薄帯、および磁性部品
JP5445891B2 (ja) 軟磁性薄帯、磁心、および磁性部品
JP5912239B2 (ja) Fe基合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP6080094B2 (ja) 巻磁心およびこれを用いた磁性部品
JP5916983B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JPH01156451A (ja) 高飽和磁束密度軟磁性合金
JP3231149B2 (ja) ノイズフィルタ
JP5445924B2 (ja) 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
JP4217038B2 (ja) 軟磁性合金
JP2000144349A (ja) Fe基軟磁性合金
JPH06158239A (ja) Fe基軟磁性合金及びその製造方法
JP2008150637A (ja) 磁性合金、アモルファス合金薄帯、および磁性部品
JP2878472B2 (ja) 高飽和磁束密度Fe系軟磁性合金
JP2000073150A (ja) Fe基軟磁性合金

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033563.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006810282

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12066595

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2251/DELNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE