WO2014038705A1 - 超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品 - Google Patents

超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品 Download PDF

Info

Publication number
WO2014038705A1
WO2014038705A1 PCT/JP2013/074351 JP2013074351W WO2014038705A1 WO 2014038705 A1 WO2014038705 A1 WO 2014038705A1 JP 2013074351 W JP2013074351 W JP 2013074351W WO 2014038705 A1 WO2014038705 A1 WO 2014038705A1
Authority
WO
WIPO (PCT)
Prior art keywords
ribbon
ultrafine crystal
alloy ribbon
ultrafine
crystal grains
Prior art date
Application number
PCT/JP2013/074351
Other languages
English (en)
French (fr)
Inventor
元基 太田
克仁 吉沢
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to EP13835325.5A priority Critical patent/EP2894236A4/en
Priority to KR1020157008940A priority patent/KR102069927B1/ko
Priority to JP2014534440A priority patent/JP6237630B2/ja
Priority to CN201380047031.6A priority patent/CN104619875A/zh
Priority to US14/426,866 priority patent/US10115509B2/en
Publication of WO2014038705A1 publication Critical patent/WO2014038705A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15391Elongated structures, e.g. wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure

Definitions

  • the present invention relates to a microcrystalline alloy ribbon that can be wound and rewinded without breaking, a microcrystalline soft magnetic alloy ribbon obtained by heat treatment thereof, and a magnetic component using the same.
  • silicon steel As a soft magnetic material used for various reactors, choke coils, pulse power magnetic components, antenna cores, transformers, motors and generator magnetic cores, current sensors, magnetic sensors, electromagnetic wave absorbing sheets, etc., silicon steel, ferrite, Co-based amorphous Soft magnetic alloys, Fe-based amorphous soft magnetic alloys, Fe-based microcrystalline soft magnetic alloys, and the like are known. Silicon steel is inexpensive and has a high magnetic flux density, but at high frequencies it has a large loss and is difficult to thin. Since ferrite has a low saturation magnetic flux density, magnetic saturation is likely to occur in high power applications where the operating magnetic flux density is large.
  • Co-based amorphous soft magnetic alloys are expensive and have a low saturation magnetic flux density of 1 T or less, so the parts become large when used for high power, and they are thermally unstable, so loss due to aging changes. To increase.
  • the Fe-based amorphous soft magnetic alloy has a high saturation magnetic flux density of about 1.5 T, but it is still not sufficient and the coercive force is not sufficiently low.
  • Fe-based microcrystalline soft magnetic alloys have high saturation magnetic flux density and excellent soft magnetic properties.
  • An example of an Fe-based microcrystalline soft magnetic alloy is disclosed in WO 2007/032531.
  • This Fe-based microcrystalline soft magnetic alloy has a composition formula: Fe 100-xyz Cu x B y X z (where X is selected from the group consisting of Si, S, C, P, Al, Ge, Ga and Be) It is at least one element, and x, y, and z are atomic%, and are numbers satisfying the conditions of 0.1 ⁇ x ⁇ 3, 8 ⁇ y ⁇ 20, 0 ⁇ z ⁇ 10, and 10 ⁇ y + z ⁇ 24.
  • This Fe-based microcrystalline soft magnetic alloy is an ultra-fine crystal alloy thin film in which fine crystal grains with an average particle size of 30 nm or less are dispersed in an amorphous material at a ratio of less than 30% by quenching the molten Fe-based alloy. It is manufactured by producing a band and subjecting the ultrafine crystal alloy ribbon to a heat treatment at a high temperature for a short time or at a low temperature for a long time. The rapidly cooled alloy ribbon is peeled off from the cooling roll and wound by winding the end portion around a reel, and rewinding is performed as necessary.
  • the ultra-fine crystal alloy ribbon is originally low in toughness and easily breaks and has poor winding properties. However, in mass production, it must be wound into a coil that is neatly laminated. For this reason, a reel having a flange is used. However, it is found that the ultrafine-crystalline alloy ribbon may be frequently broken when the side end portion contacts the flange of the take-up reel during rewinding. It was. Such a problem does not occur in an amorphous alloy ribbon having a relatively high toughness.
  • an object of the present invention is to provide a microcrystalline alloy ribbon that can be wound and rewinded without breaking frequently even when a conventional winding reel having a flange is used.
  • Another object of the present invention is to provide a microcrystalline soft magnetic alloy ribbon obtained from this ultramicrocrystalline alloy ribbon and having a high saturation magnetic flux density and excellent soft magnetic properties.
  • Still another object of the present invention is to provide a magnetic component using the microcrystalline soft magnetic alloy ribbon.
  • the inventors of the present invention have developed an ultrafine crystal grain-deficient region in which the number density of ultrafine crystal grains is small at both ends when producing an ultrafine crystal alloy ribbon by a liquid quenching method. It has been discovered that the ultrafine-crystalline alloy ribbon exhibits sufficient fracture resistance due to its toughness, and that the fracture frequency due to contact with the reel flange is significantly reduced, leading to the present invention.
  • the ultrafine crystal alloy ribbon of the present invention has a structure in which ultrafine crystal grains having an average grain size of 30 nm or less are dispersed in an amorphous matrix at a ratio of more than 0% by volume and less than 30% by volume.
  • an ultrafine crystal grain-depleted region in which the number density of ultrafine crystal grains is smaller than that of the central part is formed in a region having a width of 0.2 mm from each side edge of the ribbon,
  • the number density of ultrafine crystal grains having a diameter of 3 nm or more is less than 500 / ⁇ m 2 .
  • the number density of ultrafine crystal grains having a grain size of 3 nm or more is preferably 100 / ⁇ m 2 or less.
  • the number density of ultrafine crystal grains having a grain size of 3 nm or more is preferably 500 / ⁇ m 2 or more in the region other than the ultrafine crystal grain deficient region (central portion).
  • the upper limit of the number density of ultrafine crystal grains in the central portion is 3000 / ⁇ m 2 .
  • the total width of both ultrafine crystal grain deficient regions is preferably 5% or less of the total width of the ultrafine crystal alloy ribbon.
  • the ribbon is represented by the general formula: Fe 100-xyz A x B y X z (where A is Cu and / or Au, and X is selected from Si, S, C, P, Al, Ge, Ga and Be)
  • X, y, and z are atomic numbers that satisfy the conditions of 0 ⁇ x ⁇ 5, 8 ⁇ y ⁇ 22, 0 ⁇ z ⁇ 10, and x + y + z ⁇ 25, respectively.) It is preferable that it consists of the magnetic alloy of the composition represented by these.
  • the microcrystalline soft magnetic alloy ribbon of the present invention is obtained by heat-treating the above-mentioned ultrafine crystal alloy ribbon so that fine crystal grains having an average grain size of 60 nm or less are contained in an amorphous matrix at a ratio of 30% by volume or more.
  • a grain growth region having a dispersed structure and fine crystal grains having a grain size larger than the average grain size is formed at both end portions, and the total width of both grain growth regions is that of the microcrystalline soft magnetic alloy ribbon. It is characterized by being 5% or less of the total width.
  • the magnetic component of the present invention is characterized by comprising the above-described microcrystalline soft magnetic alloy ribbon.
  • an ultrafine crystal grain-depleted region in which the number density of ultrafine crystal grains is smaller than that in the central part is formed at each side end, and the ultrafine crystal grain-depleted region is close to an amorphous phase. Since it has toughness, it has high fracture resistance during winding and rewinding. As a result, the frequency of cracking and breaking during handling such as cutting and winding is reduced, so that it is possible to stably mass-produce ultrafine alloy ribbons.
  • FIG. 2 is a transmission electron micrograph showing the microstructure of the end of the ultrafine crystal alloy ribbon formed in Example 1.
  • FIG. 2 is a transmission electron micrograph showing the microstructure of the central portion of the ultrafine crystal alloy ribbon formed in Example 1.
  • FIG. 3 is a transmission electron micrograph showing the microstructure of the end portion of the ultrafine crystal alloy ribbon formed in Comparative Example 1.
  • Microcrystalline alloy ribbon (1) Ultrafine grain deficient region Fig. 1 shows the process of cooling the molten metal (phase state change) by the single roll method, and Fig. 2 shows how the molten metal on the cooling roll changes from the liquid phase to the solid phase.
  • the molten metal 6 ejected from the nozzle 5 onto the cooling roll 2 is kept as a paddle (molten pool) 7 and kept in the liquid phase for about 10 ⁇ 8 to 10 ⁇ 6 seconds, and then cooled. It is cooled rapidly by roll 2 and becomes supercooled (primary cooling process).
  • the fine crystal grains with an average grain size of 60 nm or less dispersed in the amorphous matrix are 30% by volume or more.
  • a magnetic alloy ribbon is obtained.
  • the term “ultrafine crystal grains” means crystal nuclei precipitated in the amorphous matrix of an ultrafine crystal alloy formed by quenching the molten alloy, and the term “fine crystal grains” means ultrafine crystal grains. Means crystal grains grown by heat treatment.
  • the “volume fraction” of the ultrafine crystal grains and the fine crystal grains is obtained from the micrograph by a line segment method, and “number density” is the number of crystal grains per unit area counted in the microphotograph.
  • the number density of ultrafine crystal grains changes depending on the cooling rate.
  • the ultrafine crystal alloy ribbon containing ultrafine crystal grains has low toughness, and is liable to break during winding and rewinding.
  • the ultrafine crystal grain-deficient region has a structure close to an amorphous phase, and is preferably substantially an amorphous phase.
  • both end portions are preferably thinner than the central portion 1a.
  • Fig. 3 shows the heat transfer when the areas 1b and 1b near both ends are thinner than the center 1a.
  • the thickness of arrows 16 and 17 indicates the amount of heat transferred, and the directions of arrows 16 and 17 indicate the heat transfer direction. Indicates.
  • the cooling efficiency of the ultrafine crystal alloy ribbon 1 near both ends 1b and 1b is better than that of the center 1a
  • the amount of heat transferred from the ribbon 1 to the cooling roll 2 is the center as shown by arrows 16 and 17
  • the side end vicinity regions 1b and 1b are larger than the portion 1a, and the side end vicinity regions 1b and 1b are cooled faster than the central portion 1a.
  • the number density of the ultrafine crystal grains 13 is lower in the side end vicinity regions 1b and 1b than in the central portion.
  • a region 15 having a width of 0.2 mm from each of the side end portions 12 and 14 is defined as an “ultrafine crystal grain deficient region”.
  • the number density of ultrafine crystal grains 13 with a grain size of 3 nm or more (size that can be visually confirmed in a TEM photograph with a magnification of 20,000 times) in the ultrafine crystal grain-deficient region 15 is Must be less than 500 / ⁇ m 2 .
  • a structure in which the number density of the ultrafine crystal grains 13 is less than 500 / ⁇ m 2 has toughness substantially similar to an amorphous phase. Since the ultrafine crystal grain deficient region 15 is formed substantially continuously in the longitudinal direction of the ultrafine crystal alloy ribbon, the fracture resistance of the ultrafine crystal alloy ribbon is improved.
  • the ultrafine crystal grain deficient region 15 where the number density of ultrafine crystal grains is small, grain growth is likely to occur by heat treatment. Accordingly, the ultrafine crystal grain deficient region 15 becomes a “grain growth region” after the heat treatment.
  • Coarse crystal grains reduce magnetic saturation in a low magnetic field. Focusing on the ratio B 80 / B 8000 with a low magnetic field (80 A / m) the magnetic flux density B 80 and high magnetic field (8000 A / m) the magnetic flux density B 8000 (approximately the same as the saturation flux density B s) in at When the crystal grains are coarsened, B 80 / B 8000 tends to be small.
  • B 80 / B 8000 is substantially the same as B 80 / B S.
  • the total width of the grain growth region with respect to the entire width of the ribbon is preferably 4% or less, more preferably 2% or less.
  • the ultrafine crystal alloy ribbon has a structure in which ultrafine crystal grains having an average grain size of 30 nm or less are dispersed in an amorphous matrix at a ratio of more than 0% by volume and 30% by volume or less. . If the average grain size of the ultrafine crystal grains exceeds 30 nm, the microcrystal grains after the heat treatment become coarse and the soft magnetic properties deteriorate.
  • the lower limit of the average grain size of the ultrafine crystal grains is about 0.5 nm from the measurement limit, but is preferably 1 nm or more, and more preferably 2 nm or more. In order to obtain excellent soft magnetic properties, the average grain size of the ultrafine crystal grains is preferably 5 to 25 nm, more preferably 5 to 20 nm.
  • the average grain size of the ultrafine crystal grains is preferably about 5 to 15 nm.
  • the volume fraction of ultrafine crystal grains in ultrafine crystal alloy ribbons exceeds 0% by volume, but if it exceeds 30% by volume, the average grain size of ultrafine crystal grains tends to exceed 30 nm.
  • the ribbon does not have sufficient toughness, and handling in the subsequent process becomes difficult.
  • there is no ultrafine crystal grain if it is completely amorphous, it is easy to form coarse crystal grains by heat treatment.
  • the volume fraction of ultrafine crystal grains in the ultrafine crystal alloy ribbon is preferably 5 to 30%, more preferably 10 to 25%.
  • the average distance between the ultrafine crystal grains (average distance between the centers of gravity) be 50 nm or less because the magnetic anisotropy of the fine crystal grains is averaged and the effective crystal magnetic anisotropy is reduced.
  • the average distance exceeds 50 nm, the effect of averaging the magnetic anisotropy is reduced, the effective magnetocrystalline anisotropy is increased, and the soft magnetic properties are deteriorated.
  • the magnetic alloy used in the present invention has a general formula: Fe 100-xyz A x B y X z (where A is Cu and / or Au, X is Si, S, C, P, Al, At least one element selected from Ge, Ga, and Be, and x, y, and z are atomic percentages of 0 ⁇ x ⁇ 5, 8 ⁇ y ⁇ 22, 0 ⁇ z ⁇ 10, and x + y + z ⁇ 25, respectively. It is preferable to have a composition represented by: Of course, the magnetic alloy may contain inevitable impurities.
  • the Fe content is 75 atomic% or more, preferably 77 atomic% or more, more preferably 78 atomic% or more.
  • the saturation magnetic flux density Bs is 1.7sT or more.
  • the saturation magnetic flux density Bs is 1.741.7T or more.
  • the saturation magnetic flux density Bs is 1.781.7T or more.
  • the saturation magnetic flux density Bs is 1.8sT or more.
  • soft magnetic characteristics and productivity can be improved by appropriately using the preferable composition ranges of the respective elements described below.
  • the microcrystalline alloy has a high Fe content.
  • Fe and the basic composition of the Fe-B system in which an amorphous phase is stably obtained contain Fe and a non-solid solution nucleation element A (Cu and / or Au). Specifically, by adding Cu and / or Au, which is insoluble in Fe, to Fe-B alloys that have an amorphous main phase that can be stably obtained and whose Fe content is 88 atomic% or less. Crystal grains are precipitated. The ultrafine crystal grains grow uniformly by the subsequent heat treatment.
  • the element A is preferably Cu. If it exceeds 3 atomic%, the soft magnetic properties tend to deteriorate, so the Cu content x is preferably 0.3 to 2 atomic%, more preferably 1 to 1.7 atomic%, and most preferably 1.2 to 1.6 atoms. %. When it contains Au, it is preferable to set it as 1.5 atomic% or less.
  • B (Boron) is an element that promotes the formation of an amorphous phase.
  • B is less than 8 atomic%, it is difficult to obtain a microcrystalline alloy ribbon having an amorphous phase as a main phase.
  • the saturation magnetic flux density of the obtained alloy ribbon is 1.7 T. Less than. Therefore, the B content y needs to satisfy the condition of 8 ⁇ y ⁇ 22.
  • the content y of B is preferably 11 to 20 atomic%, more preferably 12 to 18 atomic%, and most preferably 12 to 17 atomic%.
  • the X element is at least one element selected from Si, S, C, P, Al, Ge, Ga, and Be, and Si is particularly preferable. Since the temperature at which Fe—B or Fe—P (when P is added) having a large magnetocrystalline anisotropy is precipitated increases by the addition of the X element, the heat treatment temperature can be increased. By applying a heat treatment at a high temperature, the proportion of fine crystal grains increases, Bs increases, the squareness of the BH curve is improved, and alteration or discoloration of the surface of the ribbon can also be suppressed.
  • the lower limit of the content z of X element may be 0 atomic%, but if it is 1 atomic% or more, an oxide layer of X element is formed on the surface of the ribbon, and the internal oxidation can be sufficiently suppressed. Further, when the content z of element X exceeds 10 atomic%, Bs becomes less than 1.7 T.
  • the content z of the X element is preferably 2 to 9 atomic%, more preferably 3 to 8 atomic%, and most preferably 4 to 7 atomic%.
  • P of the X element is an element that improves the ability to form an amorphous phase, and suppresses the growth of microcrystalline grains and suppresses segregation of B into the oxide film. Therefore, P is preferable for realizing high toughness, high Bs, and good soft magnetic properties.
  • S, C, Al, Ge, Ga, or Be is used as the X element, magnetostriction and magnetic characteristics can be adjusted.
  • a part of Fe may be replaced with at least one D element selected from Ni, Mn, Co, V, Cr, Ti, Zr, Nb, Mo, Hf, Ta and W.
  • the content of element D is preferably 0.01 to 10 atomic%, more preferably 0.01 to 3 atomic%, and most preferably 0.01 to 1.5 atomic%.
  • Ni, Mn, Co, V, and Cr have the effect of moving the region with a high B concentration to the surface side. From the region close to the surface to the structure close to the parent phase, the soft magnetic alloy ribbon Improve soft magnetic properties (permeability, coercivity, etc.).
  • the Ni content is preferably 0.1 to 2 atom%, more preferably 0.5 to 1 atom%.
  • the Co content is also preferably 0.1 to 2 atomic%, and more preferably 0.5 to 1 atomic%.
  • Ti, Zr, Nb, Mo, Hf, Ta, and W also preferentially enter the amorphous phase that remains after heat treatment together with the A element and metalloid element, contributing to improvement of the saturation magnetic flux density Bs and soft magnetic properties. To do. On the other hand, if there are too many of these elements with a large atomic weight, the content of Fe per unit weight decreases and the soft magnetic properties deteriorate.
  • the total amount of these elements is preferably 3 atomic% or less. Particularly in the case of Nb and Zr, the total content is preferably 2.5 atomic percent or less, and more preferably 1.5 atomic percent or less. In the case of Ta and Hf, the total content is preferably 1.5 atomic percent or less, and more preferably 0.8 atomic percent or less.
  • a part of Fe may be substituted with at least one element selected from Re, Y, Zn, As, Ag, In, Sn, Sb, platinum group elements, Bi, N, O, and rare earth elements.
  • the total content of these elements is preferably 5 atomic percent or less, and more preferably 2 atomic percent or less.
  • the total amount of these elements is preferably 1.5 atomic percent or less, and more preferably 1.0 atomic percent or less.
  • the temperature of the molten alloy is preferably 50 to 300 ° C higher than the melting point of the alloy.
  • a ribbon with a thickness of several tens of ⁇ m on which ultrafine crystal grains are deposited is produced.
  • a molten metal of about 1300 to 1400 ° C. is ejected from the nozzle onto the cooling roll.
  • the atmosphere in the single roll method is air or an inert gas (Ar, nitrogen, etc.) when the alloy does not contain an active metal, and an inert gas (Ar, He, nitrogen, etc.) It is a vacuum.
  • an oxygen-containing atmosphere for example, air
  • the cooling roll As the material of the cooling roll, pure copper having a high thermal conductivity or a copper alloy such as Cu-Be, Cu-Cr, Cu-Zr, or Cu-Zr-Cr is suitable.
  • the cooling roll is preferably water-cooled. Since the water cooling of the cooling roll affects the volume fraction of the ultrafine crystal grains, it is effective to maintain the cooling capacity (which may be referred to as the cooling rate) of the cooling roll from the beginning to the end of casting. In a mass production line, the cooling capacity of the cooling roll correlates with the temperature of the cooling water, and it is effective to keep the cooling water at a predetermined temperature or higher.
  • the ribbon In the central part of the ultrafine-crystalline alloy ribbon, the ribbon needs to be exposed to a temperature of 300 ° C to 500 ° C for 0.01 seconds or more in the secondary cooling process. If the ribbon temperature is lower than the above temperature range or the cooling time is shorter than the above before the secondary cooling process, the number density of ultrafine crystal grains is lowered due to excessive cooling. This occurs when the width of the cooling roll is too wide for the width of the ribbon as shown in FIG. If the number density of ultrafine crystal grains in the central portion of the ribbon is too low, the soft magnetic properties of the entire ribbon are insufficient.
  • the distance S between the side edges 12, 14 of the ribbon 1 and the corresponding edge of the cooling roll 2 (the shorter distance if the distance S is different at both ends of the ribbon). It is important to.
  • the surface properties of the cooling roll 2 change, so that the position on the cooling roll 2 is changed and poured to avoid the influence of this change. Therefore, the pouring width on the cooling roll 2 (the width of the entire region to be poured) is larger than the width of the ribbon 1. Therefore, the distance S is not simply obtained from the width L of the cooling roll 2 and the width W of the thin ribbon 1, and the pouring width must be taken into consideration.
  • the width L of the cooling roll 2 is determined from the width W of the ribbon 1 to be manufactured, the required distance S and the pouring width.
  • the distance S is 30 to 150 mm.
  • the region 1 mm wide from the side edges 12 and 14 of the ribbon 1 is cooled by about 100 to 300 ° C. lower than the central portion of the ribbon, and a good ultrafine crystal grain deficient region 15 is formed. I found out.
  • the temperature rise of the entire cooling roll 2 becomes remarkable.
  • the distance S must be 50 to 200 mm.
  • the width W of the ribbon 1 is preferably 5 to 75% with respect to the width L of the cooling roll 2.
  • control of plate thickness, cross-sectional shape, surface undulation, etc. can be performed by paddle control.
  • the paddle it is effective to control the distance (gap) between the nozzle and the cooling roll and adjust the tapping pressure and the weight of the molten metal.
  • the control of the tapping pressure relating to the pressure and the weight of the molten metal vary depending on parameters such as the remaining amount of the molten metal and the molten metal temperature, and thus are difficult to control.
  • the gap control can be controlled relatively easily by monitoring the distance between the cooling roll and the nozzle and always applying feedback. Therefore, it is preferable to adjust the plate thickness, cross-sectional shape, surface undulation, etc. of the ultrafine crystal alloy ribbon by gap control.
  • the wider the gap the better the hot water flow, which is effective for thickening the ribbon 1 and preventing the paddle from collapsing.
  • the ribbon 1 has a cross-sectional shape (kamaboko-like) with a thick central portion and a thin end portion, and the amount of ultrafine crystal grains precipitated varies depending on the cooling rate due to the plate thickness difference.
  • the gap is more preferably 200 to 300 ⁇ m.
  • Peripheral speed of chill roll In order to control the cooling speed of the ribbon 1 closely related to the formation of ultrafine crystal grains, it is preferable to control the peripheral speed of the chill roll 2. As the peripheral speed of the cooling roll 2 increases, the number of ultrafine crystal grains decreases, and increases as the peripheral speed decreases. In order to promote the formation of ultrafine crystal grains in the central portion 1a of the ribbon 1, the peripheral speed of the cooling roll is preferably 15 to 50 m / s, more preferably 20 to 40 m / s, and more preferably 25 to 35 m. / s is most preferred. It has also been found that the peripheral speed of the cooling roll 2 affects the formation of the ultrafine crystal grain deficient region 15.
  • the peripheral speed of the cooling roll 2 When the peripheral speed of the cooling roll 2 is increased, the cooling speed of the ribbon 1 is increased, so that the formation of the ultrafine crystal grain deficient region 15 is promoted.
  • the peripheral speed of the cooling roll 2 having a width satisfying the above requirements is preferably 15 to 50 m / sec. 20 to 40 m / sec is more preferable.
  • peeling temperature By blowing an inert gas (such as nitrogen) from the nozzle between the ultrafine crystal alloy ribbon obtained by rapid cooling and the cooling roll, the ribbon is peeled from the cooling roll.
  • the strip stripping temperature (which correlates with the cooling time) also affects the volume fraction of ultrafine grains.
  • the stripping temperature of the ribbon can be adjusted by changing the position (peeling position) of the nozzle that blows the inert gas, and is generally 170 to 350 ° C, preferably 200 to 340 ° C, more preferably 250 to 330 ° C. is there. When the peeling temperature is less than 170 ° C., the alloy structure becomes almost amorphous due to excessive cooling.
  • the peeled microcrystalline alloy ribbon is often directly wound on a reel by a synchronous winder. However, since the inside of the ribbon is still relatively hot, it is desirable to cool the ribbon sufficiently before winding to prevent further crystallization. For example, it is preferable to wind an inert gas (nitrogen or the like) on the peeled ribbon after cooling to substantially room temperature.
  • an inert gas nitrogen or the like
  • Microcrystalline soft magnetic alloy ribbon By heat-treating the ultrafine crystal alloy ribbon, the body-centered cubic (bcc) structure fine crystal grains with an average grain size of 60 nm or less are 30% or more, preferably 50% or more A microcrystalline soft magnetic alloy ribbon having a structure dispersed in an amorphous phase at a volume fraction of 5% is obtained.
  • the average grain size of the fine crystal grains is larger than the average grain size of the ultrafine crystal grains before the heat treatment.
  • the average grain size of the fine crystal grains is preferably 15 to 40 nm.
  • Heat treatment method (a) High-temperature and short-time heat treatment
  • the ribbon is heated to the maximum temperature at a heating rate of 100 ° C./min or more and held at the maximum temperature for 1 hour or less.
  • the average heating rate up to the maximum temperature is preferably 100 ° C./min or more. Since the rate of temperature increase in a high temperature region of 300 ° C. or higher greatly affects the magnetic properties, the average temperature increase rate of 300 ° C. or higher is preferably 100 ° C./min or higher.
  • the maximum temperature of the heat treatment is preferably (T X2 -50) ° C.
  • T X2 is the precipitation temperature of the compound), specifically 430 ° C. or higher.
  • the upper limit of the maximum temperature is preferably 500 ° C. (T X2 ) or less. Even when the maximum temperature holding time exceeds 1 hour, microcrystallization does not change much and the productivity is low.
  • the holding time is preferably 30 minutes or less, more preferably 20 minutes or less, and most preferably 15 minutes or less. Even in such a high temperature heat treatment, crystal grain growth and compound formation can be suppressed for a short time, the coercive force is lowered, the magnetic flux density in a low magnetic field is improved, and the hysteresis loss is reduced.
  • (b) Low-temperature long-time heat treatment As another heat treatment mode, there is a low-temperature low-speed heat treatment in which the ribbon is held at a maximum temperature of about 350 ° C. or higher and lower than 430 ° C. for 1 hour or longer. From the viewpoint of mass productivity, the holding time is preferably 24 hours or less, and more preferably 4 hours or less. In order to suppress an increase in coercive force, the average rate of temperature rise is preferably 0.1 to 200 ° C./min, and more preferably 0.1 to 100 ° C./min. By this heat treatment, a microcrystalline soft magnetic alloy ribbon with high squareness can be obtained.
  • the heat treatment atmosphere may be air, but in order to form an oxide film having a desired layer structure by diffusing Si, Fe, B and Cu to the surface side, the oxygen concentration of the heat treatment atmosphere is 6 to 18% is preferred, 8-15% is more preferred, and 9-13% is most preferred.
  • the heat treatment atmosphere is preferably a mixed gas of an inert gas such as nitrogen, Ar, or helium and oxygen.
  • the dew point of the heat treatment atmosphere is preferably ⁇ 30 ° C. or lower, more preferably ⁇ 60 ° C. or lower.
  • (d) Heat treatment in a magnetic field In order to impart good induction magnetic anisotropy to a microcrystalline soft magnetic alloy ribbon by heat treatment in a magnetic field, the temperature is raised while the heat treatment temperature is 200 ° C. or higher (preferably 20 minutes or longer). It is preferable to apply a magnetic field having a strength sufficient to saturate the soft magnetic alloy, both during the holding of the medium, at the maximum temperature, and during the cooling.
  • the magnetic field strength varies depending on the shape of the ribbon, but it is 8 kA when applied in either the width direction (height direction in the case of an annular core) or the longitudinal direction (circumferential direction in the case of an annular core). / m or more is preferable.
  • the magnetic field may be a direct magnetic field, an alternating magnetic field, or a pulsed magnetic field.
  • a microcrystalline soft magnetic alloy ribbon having a DC hysteresis loop with a high squareness ratio or a low squareness ratio can be obtained by heat treatment in a magnetic field.
  • the microcrystalline soft magnetic alloy ribbon has a direct current hysteresis loop with a medium squareness ratio.
  • An oxide film such as SiO 2 , MgO, Al 2 O 3 may be formed on the microcrystalline soft magnetic alloy ribbon as necessary.
  • the bond strength of the oxide increases.
  • the magnetic core made of the ribbon may be impregnated with resin.
  • the amorphous matrix after heat treatment has a volume fraction of 30% or more of body-centered cubic (bcc) crystallites with an average grain size of 60 nm or less. And has a structure dispersed in the amorphous phase.
  • bcc body-centered cubic
  • the average grain size of the fine crystal grains after the heat treatment is preferably 40 nm or less, and more preferably 30 nm or less.
  • the lower limit of the average grain size of the microcrystalline grains is generally 12 nm, preferably 15 nm, and more preferably 18 nm.
  • the volume fraction of the fine crystal grains after the heat treatment is preferably 50% or more, more preferably 60% or more. With an average particle size of 60 nm or less and a volume fraction of 30% or more, an alloy ribbon having lower magnetostriction and superior soft magnetism than an Fe-based amorphous alloy can be obtained.
  • the Fe-based amorphous alloy ribbon with the same composition has a relatively large magnetostriction due to the magnetovolume effect, but the microcrystalline soft magnetic alloy in which microcrystalline grains mainly composed of bcc-Fe are dispersed has a magnetostriction caused by the magnetovolume effect. It is much smaller and the noise reduction effect is great.
  • Magnetic components using microcrystalline soft magnetic alloy ribbons are suitable for high-power applications where magnetic saturation is a problem because of their high saturation magnetic flux density.
  • reactors for large currents such as anode reactors.
  • a plurality of alloy ribbons can be laminated to form a laminated body, and these laminated bodies can be further laminated to form a laminated structure, and then applied as an iron core for a transformer wound in a step wrap or an overlap.
  • the strip stripping temperature, the average grain size and volume fraction of fine crystal grains, the number density, and the distance that can be cut with scissors from the side edge without occurrence of cracks (cut crack test) ) was determined by the following method.
  • the average grain size of microcrystal grains was arbitrarily selected from transmission electron microscope (TEM) photographs of each sample.
  • the major axis D L and minor axis D S of n (more than 30) crystallite grains were measured and obtained by averaging according to the formula ⁇ (D L + D S ) / 2n.
  • A crack occurred at a distance r c of 0.1 to 0.2 mm from the side edge at at least one cut portion.
  • crack distance r c of less than 0.1 mm from the side edge portion in at least one of the cut has occurred.
  • Example 1 A molten alloy (1300 ° C) with a composition (atomic%) of Fe bal Cu 1.4 Si 5 B 13 is cooled with a copper alloy cooling roll (width: 168 mm, peripheral speed: 27 m / s, cooling water inlet temperature: With a single roll method using a temperature of about 60 ° C and an outlet temperature of about 70 ° C, the gap between the nozzle and the cooling roll is set to 200 ⁇ m, and it is super-cooled in the atmosphere and peeled off from the cooling roll at a ribbon temperature of 250 ° C.
  • a microcrystalline alloy ribbon having a thickness of about 25 mm, a thickness of about 23 ⁇ m, and a length of about 10 km was wound without breaking. The pouring position was almost in the center of the cooling roll, and the distance between the side edge of the ribbon and the side edge of the cooling roll was about 72 mm, which was sufficiently large.
  • Fig. 7 is a TEM photograph (magnification: 20,000 times) showing the microstructure of the ultrafine crystal grain-depleted region 0.2 mm wide from one end of the ribbon
  • Fig. 8 is a TEM photograph showing the microstructure of the ribbon. (Magnification: 20,000 times).
  • the number of ultrafine crystal grains (3 nm or more) that can be visually confirmed in an arbitrary field of view in the TEM photographs of FIGS. 7 and 8 was counted.
  • the ultrafine crystal grains had an average grain size of about 5 nm and a number density of 100 / ⁇ m 2 or less. Therefore, it can be said that the ultrafine crystal grain deficient region is substantially amorphous.
  • the number density of the ultrafine crystal grains was 100 / ⁇ m 2 or less even in the ultrafine crystal grain deficient region on the other end side of the ribbon.
  • the ultrafine crystal grains had an average grain size of about 10 nm and a number density of about 1000 / ⁇ m 2 . This number density corresponds to 10% by volume.
  • the ribbon After cooling, the ribbon was re-wound with the same equipment and conditions as before, but the ribbon did not break even when it contacted the flange of the take-up reel. It is considered that the toughness of the ultrafine crystal grain-deficient regions at both ends contributed to the improvement of the fracture resistance of the ribbon.
  • FIG. 9 is a TEM photograph showing the structure in a region having a width of 0.2 mm from one end of the ribbon.
  • the number density of ultrafine crystal grains having a grain size of 3 nm or more in this region was about 500 / ⁇ m 2 .
  • 1000 pieces / ⁇ m 2 of ultrafine crystal grains having an average grain size of 12 nm were formed in the central portion of the ribbon.
  • the ribbon was re-rolled in the same manner as in Example 1, but the ribbon was broken several times by contact with the flange of the take-up reel. This is presumably because good ultrafine crystal grain deficient regions are not formed at both end portions of the ribbon.
  • Examples 2 to 12 and Comparative Examples 2 to 5 A molten alloy (1300 ° C) with the composition (atomic%) of Fe bal.
  • Cu 1.3 Si 4 B 14 shown in Table 1 is used as a copper alloy cooling roll (width: 168 mm or 280 mm, peripheral speed: 23 to 36 m). / s, cooling water inlet temperature: 25 to 60 ° C., outlet temperature: 30 to 70 ° C.), the gap between the nozzle and the cooling roll was set to 180 to 250 ⁇ m, and ultra-rapid cooling was performed in the atmosphere. At this time, by changing the pouring position with respect to the cooling roll, the distance S (the shorter one) between the side end of the ribbon and the side end of the cooling roll was changed as shown in FIG.
  • the film was peeled from the cooling roll at a ribbon temperature of 250 ° C. to obtain a microcrystalline alloy ribbon having a width of 5 to 100 mm and a thickness of about 23 ⁇ m. In addition, the thickness of each ribbon was uniformly 23 ⁇ m by adjusting the gap.
  • Each ultrafine crystal alloy ribbon was confirmed to have a structure in which ultrafine crystal grains having an average grain size of 30 nm or less were dispersed in an amorphous matrix at a ratio of 30% by volume or less.
  • the number density ⁇ 0.2 of ultrafine crystal grains having a grain size of 3 nm or more in a region having a width of 0.2 mm from the side edge, and the grain size in the central part was measured.
  • the number density of the ultrafine crystal grains is the number density of the ultrafine crystal grains in the central portion from the distribution of Vickers hardness in the width direction of the ribbon. It sought 1/2 a position of the [rho c (represented by the distance r 1/2 from the side end portion).
  • the ribbon was re-wound onto a flanged reel, and the number of breaks ⁇ (number of times to break and reconnect and wind) per 1 km length of the ribbon was examined. If the number of breaks is 5 or less, the effect on production efficiency is small.
  • a cut crack test was performed on the wound ribbon, and the distance from the side end that could be cut with scissors without occurrence of cracks was measured.
  • a 120-mm long single plate sample taken from each ultrafine crystal alloy ribbon is put into a heat treatment furnace, heated to 410 ° C in about 15 minutes, and then subjected to a low-temperature long-time heat treatment that is held for 1 hour.
  • a crystalline soft magnetic alloy ribbon was prepared.
  • it is a structure in which microcrystalline grains having an average grain diameter of 60 mm or less are dispersed at a ratio of 30% by volume or more. confirmed.
  • Gap between nozzle and cooling roll Notes: (1) Number density of ultrafine crystal grains with a grain size of 3 nm or more in the ultrafine crystal grain deficient region 0.2 mm wide from one end of the ribbon. (2) Number density of ultrafine crystal grains with a grain size of 3 nm or more in the center of the ribbon.
  • an ultrafine crystal grain deficient region (substantially amorphous phase) was formed at the end of the ribbon at 0.2 mm, and it was confirmed that this was formed at both ends. .
  • the ribbon in which the ultrafine crystal grain deficient region having the number density ⁇ 0.2 of ultrafine crystal grains of less than 500 pieces / ⁇ m 2 is formed in the region of 0.2 mm from both ends is as follows. The work efficiency was good within 5 times without breakage even after rewinding. Moreover, it was hard to enter a crack in the cutting crack test, and high toughness was recognized.
  • the width of the fine grain-deficient region was within 5% of the entire width of the ribbon.
  • the value of B 80 / B 8000 was relatively good, although several breaks occurred. It has been found that the presence of an ultrafine crystal grain-deficient region having a width of 0.1 mm or more can significantly reduce cracks during rewinding.
  • the structure after the heat treatment is a structure in which ultrafine crystal grains with an average grain size of 40-60 nm are dispersed at a ratio of about 50% by volume in the amorphous matrix at the 0.2 mm position. It was confirmed that the average crystal grain size at the end corresponding to the ultrafine crystal grain deficient region was larger. This is considered to be because the grain growth was promoted by the heat treatment at the end portion having a smaller number density (low density). However, the region having a larger grain size was not spread more than the ultrafine crystal grain deficient region. Coarse crystal grains affect the coercive force and should be the same as the structure in the center, and should be at least within 5% of the ultrafine crystal grain-depleted region.
  • a molten alloy (1300 ° C) with the composition shown in Table 2 (1300 ° C) is a copper alloy cooling roll (width: 168 mm or 280 mm, peripheral speed: 23 to 36 m / s, cooling water inlet temperature: 25 to Using a single roll method using 60 ° C. and outlet temperature: 30 to 70 ° C., the gap between the nozzle and the cooling roll was set to 180 to 250 ⁇ m, and ultra-rapid cooling was performed in the atmosphere. At this time, by changing the pouring position with respect to the cooling roll, the distance S (the shorter one) between the side end of the ribbon and the side end of the cooling roll was changed as shown in FIG.
  • Table 2 shows the distance S between the side end portion and the side end portion of the cooling roll for each ultrafine crystal alloy ribbon.
  • the film was peeled off from the cooling roll at a ribbon temperature of 250 ° C. to obtain a microcrystalline alloy ribbon having a width of 25 to 100 mm and a thickness of about 23 ⁇ m.
  • Each ultrafine crystal alloy ribbon was confirmed to have a structure in which ultrafine crystal grains having an average grain size of 30 nm or less were dispersed in an amorphous matrix at a ratio of 30% by volume or less.
  • an ultrafine crystal grain-deficient region where the number density of ultrafine crystal grains is less than 500 pieces / ⁇ m 2 is formed in a region 0.2 mm wide from both ends of each ultrafine crystal alloy ribbon. confirmed.
  • the ribbon was re-wound onto a flanged reel, and the number of breaks ⁇ (number of times to break and reconnect) per 1 km length of the ribbon was examined. If the number of breaks is 5 or less, the effect on production efficiency is small. Further, it disconnects cracking test for each super microcrystalline alloy ribbon was measured distance r c from the side end Kirikomeru without cracks with scissors.
  • a 120-mm long single plate sample taken from each ultrafine crystal alloy ribbon is put into a heat treatment furnace, heated to 410 ° C in about 15 minutes, and then subjected to a low-temperature long-time heat treatment that is held for 1 hour.
  • a crystalline soft magnetic alloy ribbon was prepared.
  • it is a structure in which microcrystalline grains having an average grain diameter of 60 mm or less are dispersed at a ratio of 30% by volume or more. confirmed.
  • the number of breaks at the time of rewinding was within an allowable range in any of the examples, and B 80 / B 8000 was also good. This is considered to be a result of obtaining a preferable heat transfer model at the time of manufacturing the ribbon and forming an appropriate ultrafine crystal grain deficient region at both ends of the ribbon.
  • the present invention can be applied to any composition that can be ultrafinely crystallized by utilizing non-uniform formation in the amorphous matrix, not limited to the composition of the above-described embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、8≦y≦22、0≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成を有し、かつ平均粒径30 nm以下の超微細結晶粒が非晶質母相中に0体積%を超え、30体積%未満の割合で分散した組織を有し、前記薄帯の各側端部から0.2 mmの幅の領域における超微細結晶粒の数密度が500個/μm2未満である超微細結晶粒欠乏領域が形成されている超微結晶合金薄帯。

Description

超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品
 本発明は、破断することなく巻取り及び再巻取りができる超微結晶合金薄帯、その熱処理により得られる微結晶軟磁性合金薄帯、及びこれを用いた磁性部品に関する。
 各種のリアクトル、チョークコイル、パルスパワー磁性部品、アンテナ、トランス、モータ及び発電機の磁心、電流センサ、磁気センサ、電磁波吸収シート等に用いる軟磁性材として、珪素鋼、フェライト、Co基非晶質軟磁性合金、Fe基非晶質軟磁性合金及びFe基微結晶軟磁性合金等が知られている。珪素鋼は安価で磁束密度が高いが、高周波では損失が大きく、かつ薄くしにくい。フェライトは飽和磁束密度が低いので、動作磁束密度が大きなハイパワー用途では磁気飽和しやすい。Co基非晶質軟磁性合金は高価な上に、飽和磁束密度が1 T以下と低いので、ハイパワー用に使用すると部品が大きくなり、また熱的に不安定であるため経時変化により損失が増加する。Fe基非晶質軟磁性合金は飽和磁束密度が1.5 T程度と高いがまだ十分ではなく、また保磁力も十分低いとは言えない。
 これらに対して、Fe基微結晶軟磁性合金は高飽和磁束密度及び優れた軟磁気特性を有する。Fe基微結晶軟磁性合金の一例はWO 2007/032531に開示されている。このFe基微結晶軟磁性合金は、組成式:Fe100-x-y-zCuxByXz(但し、XはSi,S,C,P,Al,Ge,Ga及びBeからなる群から選ばれた少なくとも一種の元素であり、x,y及びzはそれぞれ原子%で、0.1≦x≦3、8≦y≦20、0<z≦10、及び10<y+z≦24の条件を満たす数である。)により表され、平均粒径60 nm以下の結晶粒が非晶質母相中に30体積%の割合で以上分散した組織を有し、1.7 T以上の高い飽和磁束密度と低い保磁力を有する。
 このFe基微結晶軟磁性合金は、Fe基合金の溶湯を急冷することにより非晶質中に平均粒径30 nm以下の微結晶粒が30体積%未満の割合で分散した超微結晶合金薄帯を作製し、この超微結晶合金薄帯に高温短時間又は低温長時間の熱処理を施すことにより製造される。急冷した合金薄帯は冷却ロールから剥離され、端部をリールに巻き付けて巻取られるが、必要に応じて再巻取りを行う。
 超微結晶合金薄帯はもともと靭性が低いために破断し易く巻取り性が悪いが、量産ではきれいに積層されたコイル状に巻き取る必要がある。そのために、フランジを有するリールを使用するが、再巻取りの際に側端部が巻取りリールのフランジに接触することにより、超微結晶合金薄帯が頻繁に破断する虞があることが分った。このような問題は、靭性が比較的高いアモルファス合金薄帯では起こらない。
 従って、本発明の目的は、フランジを有する従来の巻取りリールを利用しても頻繁に破断することなく巻取り及び再巻取りができる超微結晶合金薄帯を提供することである。
 本発明のもう一つの目的は、この超微結晶合金薄帯から得られ、高飽和磁束密度及び優れた軟磁気特性を有する微結晶軟磁性合金薄帯を提供することである。
 本発明のさらにもう一つの目的は、上記微結晶軟磁性合金薄帯を用いた磁性部品を提供することである。
 上記目的に鑑み鋭意研究の結果、本発明者等は、液体急冷法により超微結晶合金薄帯を製造する際に、両側端部に超微細結晶粒の数密度が少ない超微細結晶粒欠乏領域を形成すると、その靭性により超微結晶合金薄帯が十分な耐破断性を発揮し、もってリールフランジとの接触による破断頻度が著しく低下することを発見し、本発明に想到した。
 すなわち、本発明の超微結晶合金薄帯は、平均粒径30 nm以下の超微細結晶粒が非晶質母相中に0体積%を超え30体積%未満の割合で分散した組織を有し、前記薄帯の各側端部から0.2 mmの幅の領域に超微細結晶粒の数密度が中央部より少ない超微細結晶粒欠乏領域が形成されており、前記超微細結晶粒欠乏領域における粒径3 nm以上の超微細結晶粒の数密度が500個/μm2未満であることを特徴とする。
 前記超微細結晶粒欠乏領域では、粒径3 nm以上の超微細結晶粒の数密度は100個/μm2以下であるのが好ましい。一方、前記超微細結晶粒欠乏領域以外の(中央部)では、粒径3 nm以上の超微細結晶粒の数密度は500個/μm2以上が好ましい。なお、中央部における超微細結晶粒の数密度の上限は3000個/μm2であるのが好ましい。
 両超微細結晶粒欠乏領域の合計幅は超微結晶合金薄帯の全幅の5%以下であるのが好ましい。
 前記薄帯は、一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、8≦y≦22、0≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成の磁性合金からなるのが好ましい。
 本発明の微結晶軟磁性合金薄帯は、上記超微結晶合金薄帯を熱処理することにより、非晶質母相中に平均粒径60 nm以下の微細結晶粒が30体積%以上の割合で分散した組織を有し、両側端部に平均粒径より大きい粒径の微細結晶粒を有する粒成長領域が形成されており、両粒成長領域の合計幅が前記微結晶軟磁性合金薄帯の全幅の5%以下であることを特徴とする。
 本発明の磁性部品は、上記微結晶軟磁性合金薄帯からなることを特徴とする。
 本発明の超微結晶合金薄帯は各側端部に超微細結晶粒の数密度が中央部より少ない超微細結晶粒欠乏領域が形成されており、超微細結晶粒欠乏領域はアモルファス相に近い靱性を有するので、巻取りや再巻取り時の耐破断性が高い。その結果、切断や巻回等のハンドリング時に割れや破断の頻度が少なくなるので、超微結晶合金薄帯を安定的に量産することができる。
単ロールを用いた液体急冷法による冷却過程を示すグラフである。 液体急冷法において冷却ロール上に噴出された合金溶湯のパドルを示す概略図である。 合金溶湯のパドルの詳細を示す拡大図である。 冷却ロールの中央部で形成されている超微結晶合金薄帯を示す部分断面図である。 冷却ロールの一方の端部に片寄った位置で形成されている超微結晶合金薄帯を示す部分断面図である。 冷却ロールの幅に対して超微結晶合金薄帯の幅が狭すぎる場合を示す部分断面図である。 実施例1において形成された超微結晶合金薄帯の端部の微細組織を示す透過型電子顕微鏡写真である。 実施例1において形成された超微結晶合金薄帯の中央部の微細組織を示す透過型電子顕微鏡写真である。 比較例1において形成された超微結晶合金薄帯の端部の微細組織を示す透過型電子顕微鏡写真である。
[1] 超微結晶合金薄帯
(1) 超微細結晶粒欠乏領域
 図1は単ロール法による溶湯の冷却過程(相状態の変化)を示し、図2は冷却ロール上の溶湯が液相から固相に変化する様子を示す。液体急冷法、好ましくは単ロール法では、ノズル5から冷却ロール2上に噴出された溶湯6はパドル(溶湯溜まり)7として液相状態を10-8~10-6秒程度保った後、冷却ロール2により急激に冷却され、過冷却状態となる(一次冷却過程)。極めて短時間で冷却されるため、原子が規則的に配列した結晶状態にならず、ランダムな原子配列であるアモルファス状態の薄帯8(固相)になる。固相では冷却速度が低下し、二次冷却過程に入る。二次冷却過程ではFe-Bに非固溶なCu原子は凝集してCuクラスターを形成し、それを核とする超微細結晶粒が生成される。その後薄帯8を冷却ロール2から剥離し、三次冷却過程を経て超微結晶合金薄帯とする。
 超微結晶合金薄帯に熱処理を施し、超微細結晶粒の粒成長を促すことにより、非晶質母相中に平均粒径60 nm以下の微細結晶粒が30体積%以上分散した微結晶軟磁性合金薄帯を得る。ここで、用語「超微細結晶粒」は、合金溶湯を急冷してなる超微結晶合金の非晶質母相中に析出した結晶核を意味し、用語「微細結晶粒」は超微細結晶粒の熱処理により成長した結晶粒を意味する。
 微結晶軟磁性合金薄帯の軟磁気特性を左右するのは微細結晶粒の粒径及び体積分率であり、これらは熱処理過程である程度調整できるが、所望の粒径及び体積分率を得るのに重要なことは二次冷却過程で超微細結晶粒の数密度を調整することである。なお、超微細結晶粒及び微細結晶粒の「体積分率」は顕微鏡写真から線分法で求め、「数密度」は顕微鏡写真でカウントした単位面積当たりの結晶粒の数である。
 上述のように二次冷却過程でCuクラスタリングが起こり、特に約300~500℃の範囲では、冷却速度に依存して超微細結晶粒の数密度が変化する。従来は超微細結晶粒の数密度は薄帯全体に均質に分布しているのが望ましいと考えられていた。しかし、超微細結晶粒を含有する超微結晶合金薄帯は低靭性であり、巻取り及び再巻取り時に破断が起きやすい。鋭意研究の結果、破断の起点が実質的に両側端部であることに注目し、側端部における超微細結晶粒の数密度を低減させると、すなわち側端部を超微細結晶粒欠乏領域とすると、巻取り及び再巻取り時の破断を防止できることが分った。超微細結晶粒欠乏領域はアモルファス相に近い組織を有し、実質的にアモルファス相であるのが好ましい。
 冷却速度が速い(冷却効率が良い)とアモルファス相が形成され、超微細結晶粒の数密度は低くなる。図3及び図4に示すように、超微結晶合金薄帯1の両側端部12,14の近傍領域1b,1bにおける冷却速度を中央部1aにおける冷却速度より速くするためには、両側端部近傍領域1b,1bを中央部1aより薄くするのが好ましい。図3は両側端部近傍領域1b,1bが中央部1aより薄い場合の熱量の伝達を示し、矢印16,17の太さは伝達される熱量を示し、矢印16,17の方向は熱伝達方向を示す。超微結晶合金薄帯1の両側端部近傍領域1b,1bは中央部1aより冷却効率が良いので、矢印16,17に示すように薄帯1の熱の冷却ロール2への伝達量は中央部1aより側端部近傍領域1b,1bの方が多く、側端部近傍領域域1b,1bの方が中央部1aより速く冷却される。その結果、側端部近傍領域1b,1bでは超微細結晶粒13の数密度が中央部より低い。
 超微細結晶粒の数密度が低下した領域1b,1bの幅は長手方向に一定であるとは限らないので、領域1b,1bの範囲内で超微細結晶粒の数密度の低下がはっきり認められる、各側端部12,14から0.2 mmの幅の領域15を「超微細結晶粒欠乏領域」と定義する。量産に必要な靱性を確保するために、超微細結晶粒欠乏領域15において粒径3 nm以上(倍率20,000倍のTEM写真において、目視で確認できる大きさ)の超微細結晶粒13の数密度は500個/μm2未満である必要がある。超微細結晶粒13の数密度が500個/μm2未満の組織は実質的にアモルファス相に近い靱性を有する。超微細結晶粒欠乏領域15は超微結晶合金薄帯の長手方向にほぼ連続的に形成されているので、超微結晶合金薄帯の耐破断性は向上する。
 超微細結晶粒の数密度が少ない超微細結晶粒欠乏領域15では、熱処理により粒成長が起こり易い。従って、超微細結晶粒欠乏領域15は熱処理後に「粒成長領域」となる。粗大な結晶粒は低磁場での磁気飽和性を低下させる。低磁場(80 A/m)での磁束密度B80と高磁場(8000 A/m)での磁束密度B8000(ほぼ飽和磁束密度Bsと同じ)との比B80/B8000に着目すると、結晶粒が粗大化するとB80/B8000は小さくなる傾向がある。B80/B8000は実質的にB80/BSと同じである。磁気飽和性が悪い領域が薄帯全体の5%以下であれば、B80/B8000は95%と高く、磁気飽和性が良いと言える。従って、薄帯の全幅に対する超微細結晶粒欠乏領域15の合計幅の割合が5%以下であれば、薄帯の磁気飽和性は許容範囲内である。例えば、薄帯の幅が25 mmであれば、各超微細結晶粒欠乏領域(粒成長領域)15の幅は25×0.05÷2=0.625 mm以下とすれば良い。薄帯の全幅に対する粒成長領域の合計幅は好ましくは4%以下であり、より好ましくは2%以下である。このような幅の粒成長領域の幅を形成することにより、低周波域での磁気飽和性を確保しつつ、再巻取り等に必要な薄帯の耐破断性(靭性)を向上させることができる。
(2) 組織
 超微結晶合金薄帯は、平均粒径が30 nm以下の超微細結晶粒が非晶質母相中に0体積%を超え、30体積%以下の割合で分散した組織を有する。超微細結晶粒の平均粒径が30 nm超であると、熱処理後の微結晶粒が粗大化し、軟磁気特性が劣化する。超微細結晶粒の平均粒径の下限は測定限界から0.5 nm程度であるが、1 nm以上が好ましく、2 nm以上がより好ましい。優れた軟磁気特性を得るためには、超微細結晶粒の平均粒径は5~25 nmが好ましく、5~20 nmがより好ましい。ただ、Ni含有組成では、超微細結晶粒の平均粒径は5~15 nm程度が好ましい。超微結晶合金薄帯における超微細結晶粒の体積分率は0体積%を超えるものであるが、30体積%を超えると超微細結晶粒の平均粒径も30 nm超となる傾向があり、薄帯は十分な靭性を有さず、後工程でのハンドリングが難しくなる。一方、超微細結晶粒がないと(完全に非晶質であると)、熱処理により粗大結晶粒ができ易い。超微結晶合金薄帯における超微細結晶粒の体積分率は5~30%が好ましく、10~25%がより好ましい。
 超微細結晶粒間の平均距離(重心間の平均距離)が50 nm以下であると、微結晶粒の磁気異方性が平均化され、実効結晶磁気異方性が低下するので好ましい。平均距離が50 nmを超えると、磁気異方性の平均化の効果が薄れ、実効結晶磁気異方性が高くなり、軟磁気特性が悪化する。
(3) 組成
 本発明で用いる磁性合金は、一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、8≦y≦22、0≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成を有するのが好ましい。勿論、磁性合金は不可避的不純物を含んでも良い。1.7 T以上の飽和磁束密度Bsを有するためには、bcc-Feの微細結晶(ナノ結晶)を有する組織となる必要があり、そのためにはFe含有量が高いことが必要である。具体的には、Fe含有量は75原子%以上であり、好ましくは77原子%以上であり、より好ましくは78原子%以上である。
 上記組成範囲内で、0.1≦x≦3、10≦y≦20、0≦z≦10、及び10<y+z≦24の場合、飽和磁束密度Bsは1.7 T以上である。0.1≦x≦3、12≦y≦17、0<z≦7、及び13≦y+z≦20の場合、飽和磁束密度Bsは1.74 T以上である。また、0.1≦x≦3、12≦y≦15、0<z≦5、及び14≦y+z≦19の場合、飽和磁束密度Bsは1.78 T以上である。さらに、0.1≦x≦3、12≦y≦15、0<z≦4、及び14≦y+z≦17の場合、飽和磁束密度Bsは1.8 T以上である。但し、下記する各元素の好ましい組成範囲を適宜用いることで軟磁気特性や生産性を向上させることができる。
 良好な軟磁気特性、具体的には24 A/m以下、好ましくは12 A/m以下の保磁力と1.7 T以上の飽和磁束密度Bsを有するために、超微結晶合金は、高いFe含有量でも安定的に非晶質相が得られるFe-B系の基本組成に、Feと非固溶の核生成元素A(Cu及び/又はAu)を含有する。具体的には、非晶質の主相が安定的に得られるFeが88原子%以下のFe-B系合金に、Feと非固溶であるCu及び/又はAuを添加することにより超微細結晶粒を析出させる。超微細結晶粒はその後の熱処理により均質に成長する。
 A元素の量xが少なすぎると超微細結晶粒の析出が困難であり、5原子%を超えると急冷により非晶質相を主相とする薄帯が脆化する。コスト的にA元素はCuが好ましい。3原子%を超えると軟磁気特性が悪化する傾向にあるのでCuの含有量xは好ましくは0.3~2原子%であり、より好ましくは1~1.7原子%であり、最も好ましくは1.2~1.6原子%である。Auを含有する場合、1.5原子%以下とするのが好ましい。
 B(ボロン)は非晶質相の形成を促進する元素である。Bが8原子%未満であると非晶質相を主相とする超微結晶合金薄帯を得るのが困難であり、22原子%を超えると得られる合金薄帯の飽和磁束密度が1.7T未満となる。従って、Bの含有量yは8≦y≦22の条件を満たす必要がある。Bの含有量yは好ましくは11~20原子%であり、より好ましくは12~18原子%であり、最も好ましくは12~17原子%である。
 X元素はSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、特にSiが好ましい。X元素の添加により結晶磁気異方性の大きいFe-B又はFe-P(Pを添加した場合)が析出する温度が高くなるため、熱処理温度を高くできる。高温の熱処理を施すことにより微結晶粒の割合が増え、Bsが増加し、B-H曲線の角形性が改善され、薄帯表面の変質又は変色を抑えることもできる。X元素の含有量zの下限は0原子%でも良いが、1原子%以上であると薄帯の表面にX元素による酸化物層が形成され、内部の酸化を十分に抑制できる。またX元素の含有量zが10原子%を超えるとBsが1.7 T未満となる。X元素の含有量zは好ましくは2~9原子%であり、より好ましくは3~8原子%であり、最も好ましくは4~7原子%である。
 X元素のうちPは非晶質相の形成能を向上させる元素であり、微結晶粒の成長を抑えるとともに、Bの酸化皮膜への偏析を抑える。そのため、Pは高靭性、高Bs及び良好な軟磁気特性の実現に好ましい。X元素としてS,C,Al,Ge,Ga又はBeを用いると、磁歪及び磁気特性を調整できる。
 Feの一部をNi,Mn,Co,V,Cr,Ti,Zr,Nb,Mo,Hf,Ta及びWから選ばれた少なくとも一種のD元素で置換しても良い。D元素の含有量は好ましくは0.01~10原子%であり、より好ましくは0.01~3原子%であり、最も好ましくは0.01~1.5原子%である。D元素のうち、Ni,Mn,Co,V及びCrはB濃度の高い領域を表面側に移動させる効果を有し、表面に近い領域から母相に近い組織とし、もって軟磁性合金薄帯の軟磁気特性(透磁率、保磁力等)を改善する。またA元素及びB、Si等のメタロイド元素とともに熱処理後も残留する非晶質相に優先的に入るため、Fe含有量の高い微結晶粒の成長を抑制し、微結晶粒の平均粒径を低下させ、もって飽和磁束密度Bs及び軟磁気特性を改善する。
 特にFeの一部をA元素とともにFeに固溶するCo又はNiで置換すると、添加し得るA元素の量が増加し、もって結晶組織の微細化が促進され、軟磁気特性が改善される。Niの含有量は0.1~2原子%が好ましく、0.5~1原子%がより好ましい。Niの含有量が0.1原子%未満ではハンドリング性(切断や巻回の加工性)の向上効果が不十分であり、2原子%を超えるとBs、B80及びHcが低下する。Coの含有量も0.1~2原子%が好ましく、0.5~1原子%がより好ましい。
 Ti,Zr,Nb,Mo,Hf,Ta及びWも同様にA元素及びメタロイド元素とともに熱処理後も残留する非晶質相に優先的に入るため、飽和磁束密度Bs及び軟磁気特性の改善に寄与する。一方、原子量の大きいこれらの元素が多すぎると、単位重量当たりのFeの含有量が低下して軟磁気特性が悪化する。これらの元素は総量で3原子%以下とするのが好ましい。特にNb及びZrの場合、含有量は合計で2.5原子%以下が好ましく、1.5原子%以下がより好ましい。Ta及びHfの場合、含有量は合計で1.5原子%以下が好ましく、0.8原子%以下がより好ましい。
 Feの一部をRe、Y、Zn、As、Ag、In、Sn、Sb、白金族元素、Bi、N、O、及び希土類元素から選ばれた少なくとも一種の元素で置換しても良い。これらの元素の含有量は総量で5原子%以下が好ましく、2原子%以下がより好ましい。特に高い飽和磁束密度を得るためには、これらの元素の総量は1.5原子%以下が好ましく、1.0原子%以下がより好ましい。
[2] 超微結晶合金薄帯の製造方法
(1) 合金溶湯
 超微結晶合金薄帯の製造に用いる合金溶湯は、上記一般式Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、8≦y≦22、0≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成を有するのが好ましい。上記組成においてA元素としてCuを使用した場合を例にとって、超微結晶合金薄帯を単ロール法により製造する方法を以下詳細に説明するが、本発明は勿論それに限定されるものではない。
(2) 溶湯の急冷
 急冷は単ロール法の場合、合金溶湯の温度は合金の融点より50~300℃高いのが好ましく、例えば超微細結晶粒が析出した厚さ数十μmの薄帯を製造する場合、約1300~1400℃の溶湯をノズルから冷却ロール上に噴出させるのが好ましい。単ロール法における雰囲気は、合金が活性な金属を含まない場合は大気又は不活性ガス(Ar、窒素等)であり、活性な金属を含む場合は不活性ガス(Ar、He、窒素等)又は真空である。表面に酸化皮膜を形成するためには、溶湯の急冷を酸素含有雰囲気(例えば大気)中で行うのが好ましい。
 冷却ロールの材質は、高熱伝導率の純銅、又はCu-Be、Cu-Cr、Cu-Zr、Cu-Zr-Cr等の銅合金が適している。大量生産の場合、又は厚い及び/又は広幅の薄帯を製造する場合、冷却ロールは水冷式が好ましい。冷却ロールの水冷は超微細結晶粒の体積分率に影響するので、冷却ロールの冷却能力(冷却速度と言っても良い)を鋳造当初から終了まで維持することが有効である。量産ラインにおいては、冷却ロールの冷却能力は冷却水の温度に相関しており、冷却水を所定の温度以上に保つのが効果的である。
(3) 冷却ロール上の超微結晶合金薄帯の幅及び位置
 超微結晶合金薄帯の中央部に十分な数密度の超微細結晶粒を生成するとともに、両側端部に数密度の低い超微細結晶粒欠乏領域15を形成するには、(a) 超微細結晶粒の体積分率に影響を与える冷却条件(冷却ロールの材質、冷却水路の構造、冷却水量等)を最適化するとともに、(b) 冷却ロールの幅と薄帯の幅との関係、及び冷却ロール上の薄帯の位置を最適化する必要がある。
 超微結晶合金薄帯の中央部においては、二次冷却過程で薄帯が300℃~500℃の温度に0.01秒以上曝される必要がある。二次冷却過程の前に薄帯の温度が上記温度範囲より低くなったり、冷却時間が上記より短かったりすると、急冷すぎて超微細結晶粒の数密度が低下する。これは、図6に示すように薄帯の幅に対して冷却ロールの幅が広すぎる場合に起こる。薄帯中央部における超微細結晶粒の数密度が低すぎると、薄帯全体の軟磁気特性が不十分である。
 また、図4に示すように適切な幅の薄帯1が冷却ロール2のほぼ中央域に位置している場合、図3に示す熱伝達が起こり、薄帯1の両側端部12,14の近傍に超微細結晶粒の数密度が低下した領域1b,1bが形成される。超微細結晶粒欠乏領域15は領域1b,1bの範囲内にある。図5に示すように同じ幅でも薄帯1が冷却ロール2の一側端に片寄る場合、冷却ロール2の一側端に近い薄帯の一端側14bで良好な超微細結晶粒欠乏領域が得られない。従って、薄帯1の各側端部12,14と冷却ロール2の対応する側端部との距離S(薄帯の両側端部で距離Sが異なる場合には、短い方の距離)を調整することが重要である。注湯が繰り返されると冷却ロール2の表面性状に変化が生じるので、この変化の影響を避けるために冷却ロール2上の位置を変えて注湯する。そのため、冷却ロール2上の注湯幅(注湯される全領域の幅)は薄帯1の幅より大きくなる。従って、距離Sは冷却ロール2の幅Lと薄帯1の幅Wとから単純に求まる訳ではなく、注湯幅を考慮しなければならない。換言すれば、製造する薄帯1の幅W、及び必要な距離S及び注湯幅から、冷却ロール2の幅Lを決める。
 鋭意研究の結果、薄帯1の幅Wが5~250 mmで、かつ薄帯1の幅Wが冷却ロール2の幅Lの50%以下の場合、距離Sが30~150 mmであると、一次冷却過程で薄帯1の各側端部12,14から幅1 mmの領域が薄帯の中央部より約100~300℃低く冷却され、良好な超微細結晶粒欠乏領域15が形成されることが分った。また、薄帯1の幅Wが5~250 mmで、かつ冷却ロール2の幅Lに対して50%超の幅Wを有する薄帯1では、冷却ロール2全体の温度上昇が顕著となるので、距離Sを50~200 mmとする必要がある。
 図6に示すように薄帯1の幅Wに対して冷却ロール2の幅Lが広すぎると、薄帯1の中央部でも急冷すぎて超微細結晶粒の数密度が低下する。一方、冷却ロール2に対して薄帯1が広すぎると、十分な距離Sが取れない。従って、冷却ロール2の幅Lに対して、薄帯1の幅Wは5~75%であるのが好ましい。
(4) ギャップ調整
 単ロール法を用いた薄帯の鋳造では、板厚、断面形状、表面起伏などの制御をパドル制御で行うことができる。パドルの制御には、ノズルと冷却ロール間の距離(ギャップ)を制御したり、出湯圧力、溶湯の自重を調節する方法が有効である。ただし圧力に関する出湯圧力の制御と溶湯の自重は、溶湯の残量、溶湯温度などのパラメータにより変化するため、制御が難しい。一方、ギャップ制御は冷却ロールとノズル間距離をモニタリングし、常にフィードバックをかけることで比較的簡単に制御できる。従って、ギャップ制御により超微結晶合金薄帯の板厚、断面形状、表面起伏等を調整するのが好ましい。
 一般に、ギャップが広いほど湯流れが良く、薄帯1を厚くしたりパドルの崩壊を防いだりするのに有効である。しかし、ギャップが広すぎると薄帯1は中央部が厚く端部が薄い断面形状(カマボコ状)となり、板厚差による冷却速度の差によって超微細結晶粒の析出量に差が生じる。両側端部に良好な超微細結晶粒欠乏領域を形成するために、ギャップを150~400μmと比較的広くし、合金溶湯の冷却ロール2上への噴出圧力を低下させるのが好ましい。ギャップはより好ましくは200~300μmである。
(5) 冷却ロールの周速
 超微細結晶粒の生成に密接に関連する薄帯1の冷却速度を制御するために、冷却ロール2の周速を制御するのが好ましい。冷却ロール2の周速が速くなると超微細結晶粒が減少し、遅くなると増加する。薄帯1の中央部1aにおける超微細結晶粒の生成を促進するためには、冷却ロールの周速は15~50 m/sが好ましく、20~40 m/sがより好ましく、25~35 m/sが最も好ましい。また、冷却ロール2の周速は超微細結晶粒欠乏領域15の形成にも影響することが分った。冷却ロール2の周速を高めると、薄帯1の冷却速度が上がるので、超微細結晶粒欠乏領域15の形成が促進される。単ロール法により厚さ10~40μmで幅5~250 mmの超微結晶合金薄帯1を形成する場合、上記要件を満たす幅を有する冷却ロール2の周速は15~50 m/秒が好ましく、20~40 m/秒がより好ましい。
(6) 剥離温度
 急冷により得られた超微結晶合金薄帯と冷却ロールとの間にノズルから不活性ガス(窒素等)を吹き付けることにより、薄帯を冷却ロールから剥離する。薄帯の剥離温度(冷却時間に相関する)も超微細結晶粒の体積分率に影響する。薄帯の剥離温度は不活性ガスを吹き付けるノズルの位置(剥離位置)を変えることにより調整でき、一般に170~350℃であり、好ましくは200~340℃であり、より好ましくは250~330℃である。剥離温度が170℃未満であると、急冷し過ぎて合金組織がほぼ非晶質となる。一方、剥離温度が350℃超であると、Cuによる結晶化が進み過ぎ、脆くなりすぎる。適正な冷却速度であると、薄帯の表面域は急冷によりCu量が減って超微細結晶粒が生成されないが、内部では冷却速度が比較的遅いために超微細結晶粒が多く析出する。
 剥離した超微結晶合金薄帯は、同期する巻取り機により直接リールに巻取りされることが多い。ただ薄帯の内部はまだ比較的高温であるので、さらなる結晶化を防止するために、巻き取る前に薄帯を十分に冷却するのが望ましい。例えば、剥離した薄帯に不活性ガス(窒素等)を吹き付けて、実質的に室温まで冷却した後巻き取るのが好ましい。
[3] 微結晶軟磁性合金薄帯
 超微結晶合金薄帯を熱処理することにより、平均粒径60 nm以下の体心立方(bcc)構造の微結晶粒が30%以上、好ましくは50%以上の体積分率で非晶質相中に分散した組織を有する微結晶軟磁性合金薄帯が得られる。勿論、微結晶粒の平均粒径は熱処理前の超微細結晶粒の平均粒径より大きい。微結晶粒の平均粒径は15~40 nmが好ましい。
(1) 熱処理方法
(a) 高温短時間熱処理
 本発明の超微結晶合金薄帯に施す熱処理の態様には、薄帯を100℃/分以上の昇温速度で最高温度まで加熱し、最高温度に1時間以下保持する高温高速熱処理がある。最高温度までの平均昇温速度は100℃/分以上が好ましい。300℃以上の高温域での昇温速度は磁気特性に大きな影響を与えるため、300℃以上での平均昇温速度は100℃/分以上が好ましい。熱処理の最高温度は(TX2-50)℃以上(TX2は化合物の析出温度である。)とするのが好ましく、具体的には430℃以上が好ましい。430℃未満であると、微結晶粒の析出及び成長が不十分である。最高温度の上限は500℃(TX2)以下であるのが好ましい。最高温度の保持時間が1時間超でも微結晶化はあまり変わらず、生産性が低い。保持時間は好ましくは30分以下であり、より好ましくは20分以下であり、最も好ましくは15分以下である。このような高温熱処理でも、短時間であれば結晶粒成長を抑制するとともに化合物の生成を抑えることができ、保磁力が低下し、低磁場での磁束密度が向上し、ヒステリシス損失が減少する。
(b) 低温長時間熱処理
 他の熱処理の態様として、薄帯を約350℃以上~430℃未満の最高温度に1時間以上保持する低温低速熱処理がある。量産性の観点から、保持時間は24時間以下が好ましく、4時間以下がより好ましい。保磁力の増加を抑制するため、平均昇温速度は0.1~200℃/分が好ましく、0.1~100℃/分がより好ましい。この熱処理により角形性の高い微結晶軟磁性合金薄帯が得られる。
(c) 熱処理雰囲気
 熱処理雰囲気は空気でもよいが、Si,Fe,B及びCuを表面側に拡散させることにより所望の層構成を有する酸化皮膜を形成するために、熱処理雰囲気の酸素濃度は6~18%が好ましく、8~15%がより好ましく、9~13%が最も好ましい。熱処理雰囲気は窒素、Ar、ヘリウム等の不活性ガスと酸素との混合ガスが好ましい。熱処理雰囲気の露点は-30℃以下が好ましく、-60℃以下がより好ましい。
(d) 磁場中熱処理
 磁場中熱処理により微結晶軟磁性合金薄帯に良好な誘導磁気異方性を付与するために、熱処理温度が200℃以上である間(20分以上が好ましい)、昇温中、最高温度の保持中及び冷却中のいずれでも、軟磁性合金を飽和させるのに十分な強さの磁場を印加するのが好ましい。磁場強度は薄帯の形状に応じて異なるが、薄帯の幅方向(環状磁心の場合、高さ方向)及び長手方向(環状磁心の場合、円周方向)のいずれに印加する場合でも8 kA/m以上が好ましい。磁場は直流磁場、交流磁場、パルス磁場のいずれでも良い。磁場中熱処理により高角形比又は低角形比の直流ヒステリシスループを有する微結晶軟磁性合金薄帯が得られる。磁場を印加しない熱処理の場合、微結晶軟磁性合金薄帯は中程度の角形比の直流ヒステリシスループを有する。
(2) 表面処理
 微結晶軟磁性合金薄帯に、必要に応じてSiO2、MgO、Al2O3等の酸化物被膜を形成しても良い。表面処理を熱処理工程中に行うと酸化物の結合強度が上がる。必要に応じてこの薄帯からなる磁心に樹脂を含浸させても良い。
(3) 微結晶軟磁性合金薄帯の母相組織
 熱処理後の非晶質母相は、平均粒径60 nm以下の体心立方(bcc)構造の微結晶粒が30%以上の体積分率で非晶質相中に分散した組織を有する。微結晶粒の平均粒径が60 nmを超えると軟磁気特性が低下する。微結晶粒の体積分率が30%未満では、非晶質の割合が多すぎ、飽和磁束密度が低い。熱処理後の微結晶粒の平均粒径は40 nm以下が好ましく、30 nm以下がより好ましい。微結晶粒の平均粒径の下限は一般に12 nmであり、好ましくは15 nmであり、より好ましくは18 nmである。また熱処理後の微結晶粒の体積分率は50%以上が好ましく、60%以上がより好ましい。60 nm以下の平均粒径及び30%以上の体積分率で、Fe基非晶質合金より磁歪が低く軟磁性に優れた合金薄帯が得られる。同組成のFe基非晶質合金薄帯は磁気体積効果により比較的大きな磁歪を有するが、bcc-Feを主体とする微結晶粒が分散した微結晶軟磁性合金は磁気体積効果により生じる磁歪がはるかに小さく、ノイズ低減効果が大きい。
[4] 磁性部品
 微結晶軟磁性合金薄帯を用いた磁性部品は、飽和磁束密度が高いので、磁気飽和が問題となるハイパワーの用途に好適であり、例えばアノードリアクトル等の大電流用リアクトル、アクティブフィルタ用チョークコイル、平滑用チョークコイル、レーザ電源や加速器等に用いられるパルスパワー磁性部品、トランス、通信用パルストランス、モータ又は発電機の磁心、ヨーク材、電流センサ、磁気センサ、アンテナ磁心、電磁波吸収シート等が挙げられる。また、合金薄帯を複数積層して積層体となし、これらの積層体をさらに積層して一旦積層構造としたのち、ステップラップやオーバラップ状に巻いた変圧器用の鉄心としても適用できる。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。なお、各実施例及び比較例において、薄帯の剥離温度、微結晶粒の平均粒径及び体積分率、数密度、及び割れの発生なしに側端部からハサミで切り込める距離(切断割れ試験)を下記の方法により求めた。
(1) 薄帯の剥離温度の測定
 ノズルから吹き付ける窒素ガスにより冷却ロールから剥離するときの超微結晶合金薄帯の温度を放射温度計(アピステ社製、型式:FSV-7000E)により測定し、剥離温度とした。
(2) 微結晶粒の平均粒径及び体積分率の測定
 微結晶粒(超微細結晶粒も同じ)の平均粒径は、各試料の透過型電子顕微鏡(TEM)写真等から任意に選択したn個(30個以上)の微結晶粒の長径DL及び短径DSを測定し、Σ(DL+DS)/2nの式に従って平均することにより求めた。また各試料のTEM写真等に長さLtの任意の直線を引き、各直線が微結晶粒と交差する部分の長さの合計Lcを求め、各直線に沿った結晶粒の割合LL=Lc/Ltを計算した。この操作を5回繰り返し、LLを平均することにより微結晶粒の体積分率を求めた。ここで、体積分率VL=Vc/Vt(Vcは微結晶粒の体積の総和であり、Vtは試料の体積である。)は、VL≒Lc3/Lt3=LL 3と近似的に扱った。
(3) 超微細結晶粒の数密度の測定
 各薄帯表面の側端部から0.2 mmの幅の超微細結晶粒欠乏領域及び中央部のTEM写真(倍率:20,000倍)において、目視で確認できる3 nm以上の粒径の超微細結晶粒の数をカウントし、超微細結晶粒欠乏領域における単位面積(μm2)当たりの超微細結晶粒の数密度ρ0.2、及び中央部における単位面積(μm2)当たりの超微細結晶粒の数密度ρcを算出した。
(4) 切断割れ試験
 アモルファス相をハサミで切断しても脆性破壊的な割れが発生しないが、超微細結晶粒を含有する相をハサミで切断すると脆性破壊的な割れが発生するので、超微結晶合金薄帯をハサミで切断したときに発生する割れの端部からの距離から、超微細結晶粒欠乏領域の幅を推定できる。そこで、超微結晶合金薄帯の側端部の10箇所にハサミで切り込みを入れて、端部からの割れ発生距離を測定し、それらの平均値rcから、下記基準により超微細結晶粒欠乏領域の幅を評価した。
◎:全ての切断部で側端部から0.2 mmの距離rcまで割れが発生しなかった。
○:少なくとも一つの切断部で側端部から0.1~0.2 mmの距離rcで割れが発生した。
×:少なくとも一つの切断部で側端部から0.1 mm未満の距離rcで割れが発生した。
(6)直流磁気特性の測定
 120 mm単板試料を直流磁化自動記録装置(メトロン技研株式会社製)により、80 A/mにおける磁束密度 B80 と8000 A/m における磁束密度 B8000(ほぼ飽和磁束密度Bsと同じ)測定し、その比B80/B8000を求めた。
実施例1
 FebalCu1.4Si5B13の組成(原子%)を有する合金溶湯(1300℃)を、銅合金製の冷却ロール(幅:168 mm、周速:27 m/s、冷却水の入口温度:約60℃、出口温度:約70℃)を用いる単ロール法により、ノズルと冷却ロール間のギャップを200μmとして、大気中で超急冷し、250℃の薄帯温度で冷却ロールから剥離し、幅25 mm、厚さ約23μm及び長さ約10 kmの超微結晶合金薄帯を破断させることなく巻取った。出湯位置は冷却ロールのほぼ中央で、薄帯の側端部と冷却ロールの側端部との距離は約72 mmと十分に大きかった。
 図7は薄帯の一端部側から0.2 mmの幅の超微細結晶粒欠乏領域の組織を示すTEM写真(倍率:20,000倍)であり、図8は薄帯の中央部の組織を示すTEM写真(倍率:20,000倍)である。図7及び図8のTEM写真の任意の視野において目視で確認できる超微細結晶粒(3 nm以上)の数をカウントした。その結果、超微細結晶粒欠乏領域では超微細結晶粒は5 nm程度の平均粒径及び100個/μm2以下の数密度を有していた。従って、超微細結晶粒欠乏領域は実質的にアモルファスと言える。勿論、薄帯の他端部側の超微細結晶粒欠乏領域でも超微細結晶粒の数密度は100個/μm2以下であった。これに対して、薄帯の中央部では超微細結晶粒は10 nm程度の平均粒径及び1000個/μm2程度の数密度を有していた。この数密度は10体積%に相当する。
 冷却後薄帯を従来と同じ装置及び条件で再巻取りしたが、巻取りリールのフランジに接触しても薄帯は破断しなかった。薄帯の耐破断性の向上には両側端部の超微細結晶粒欠乏領域の靭性が寄与したものと考えられる。
比較例1
 薄帯の側端部と冷却ロールの側端部との距離Sが約30 mmとなるように出湯位置を片寄らせた以外、実施例1と同じ合金溶湯から同じ製造条件で薄帯を作製した。出湯中の巻取りでは破断は起こらなかった。図9は薄帯の一側端部から0.2 mmの幅の領域における組織を示すTEM写真である。図9から明らかなように、この領域における粒径3 nm以上の超微細結晶粒の数密度は約500個/μm2であった。また5 nm程度の微細結晶粒子が凝集している箇所が多くみられた。従って、上記領域は超微細結晶粒欠乏領域とは言えないものであった。なお、薄帯の中央部には平均粒径12 nmの超微細結晶粒が1000個/μm2ほど形成されていた。
 冷却後、実施例1と同様に薄帯の再巻取りを行ったが、薄帯は巻取りリールのフランジとの接触により数回破断した。これは、薄帯の両側端部に良好な超微細結晶粒欠乏領域が形成されていないためであると考えられる。
実施例2~12及び比較例2~5
 表1に示すFebal.Cu1.3Si4B14の組成(原子%)の合金溶湯(1300℃)を、銅合金製の冷却ロール(幅:168 mm又は280 mm、周速:23~36 m/s、冷却水の入口温度:25~60℃、出口温度:30~70℃)を用いる単ロール法により、ノズルと冷却ロール間のギャップを180~250μmとして、大気中で超急冷した。このとき、冷却ロールに対する出湯位置を変えることにより、図5に示すように薄帯の側端部と冷却ロールの側端部との距離S(短い方)を変化させた。250℃の薄帯温度で冷却ロールから剥離し、幅5~100 mm及び厚さ約23μmの超微結晶合金薄帯を得た。なお、ギャップ調整により各薄帯の厚さを一律23μmとした。各超微細結晶合金薄帯について、平均粒径30 nm以下の超微細結晶粒が非晶質母相中に30体積%以下の割合で分散した組織を有することを確認した。
 実施例1~12及び比較例1~5の各薄帯について、側端部から0.2 mmの幅の領域における粒径3 nm以上の超微細結晶粒の数密度ρ0.2、及び中央部における粒径3 nm以上の超微細結晶粒の数密度ρcを測定した。
 超微細結晶粒の数密度が高くなるほど薄帯のビッカース硬度は高くなるので、薄帯の幅方向におけるビッカース硬度の分布から、超微細結晶粒の数密度が中央部における超微細結晶粒の数密度ρcの1/2になる位置(側端部からの距離r1/2で表す)を求めた。
 冷却後にフランジ付きリールへの薄帯の再巻取りを行い、薄帯の長さ1 km当たりの破断回数ν(破断してつなぎ直して巻く回数)を調べた。破断回数が5回以下なら製造効率への影響は小さい。巻き取った薄帯について切断割れ試験を行い、割れの発生なしにハサミで切り込める側端部からの距離を測定した。
 各超微結晶合金薄帯から採取した長さ120 mmの単板試料を熱処理炉に投入し、約15分で410℃まで昇温した後、1時間保持する低温長時間の熱処理を施し、微結晶軟磁性合金薄帯を作製した。各微結晶軟磁性合金薄帯について微結晶粒の平均粒径及び体積分率を測定した結果、平均粒径60 nm以下の微結晶粒が30体積%以上の割合で分散した組織であることが確認された。
 各単板試料のB80/B8000を測定した。以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
注:(1) ノズルと冷却ロール間のギャップ。
Figure JPOXMLDOC01-appb-T000002
注:(1) 薄帯の一側端部から0.2 mmの幅の超微細結晶粒欠乏領域における粒径3 nm以上の超微細結晶粒の数密度。
  (2) 薄帯の中央部における粒径3 nm以上の超微細結晶粒の数密度。
 実施例2~12では、薄帯の端部0.2 mm位置には超微細結晶粒欠乏領域(実質的なアモルファス相)が形成されており、これは両端部に形成されていることが確認された。また、実施例2~10の結果から、両端部から0.2 mmの領域に超微細結晶粒の数密度ρ0.2が500個/μm2未満の超微細結晶粒欠乏領域が形成されている薄帯は、再巻取りでも破断することなく、またあっても5回以内で作業効率が良かった。また、切断割れ試験でも割れが入り難く、高い靭性が認められた。切断割れ試験により0.2 mm以上切り込めた実施例でも微細結晶粒欠乏領域の幅は薄帯全幅の5%以内であった。0.1~0.2 mm切り込めた実施例では、数回破断は発生したもののB80/B8000の値は比較的良好である。0.1 mm以上の幅の超微細結晶粒欠乏領域が存在すると、再巻取り時の割れを著しく減少させることができることが分った。
 実施例11及び12では、両端部に完全なアモルファス相が形成されており、再巻取り時の破断は皆無であった。しかし、割れの発生位置は全幅に対し5%を超えており、熱処理後の組織には粗大結晶粒の領域が形成され、B80/B8000比は比較的低かった。但し、チョークコイルやリアクトルなど高周波用途では、これは特に問題とならない。
 熱処理後の組織は、0.2 mm位置で概ね平均粒径40~60 nmの超微細結晶粒が非晶質母相中に50体積%程度の割合で分散した組織で、中央部の平均結晶粒径より超微細結晶粒欠乏領域に相当する端部の平均結晶粒径の方が大きいことが確認された。数密度が小さい(低密度の)端部の方が熱処理により粒成長が促進されたためであると考える。但し、より粒径の大きい領域は、超微細結晶粒欠乏領域より広がっていなかった。粗大な結晶粒は保磁力に影響を与えるので中央部の組織と同様とすべきであり、少なくとも超微細結晶粒欠乏領域と同じ5%以内に収めるのが良い。
 一方、比較例2~5ではいずれも、側端部から0.2 mmの幅の領域において超微細結晶粒の数密度ρ0.2が500個/μm2以上で、必要な超微細結晶粒欠乏領域が形成されなかった。その結果、再巻取りは破断回数が数十回を数える結果となり、効率的な巻取り作業はできなかった。また、切断割れ試験でも切り込みがほとんどできずに割れが発生し、距離r1/2も0.1 mm程度で超微細結晶粒の脆性が影響していると言える。この原因は、薄帯端部と冷却ロール端部との距離Sが十分に確保されていないか、冷却ロール幅に対して薄帯幅が大きいために、適正な端部冷却を伴う熱伝達が得られなかったためであると考えられる。
実施例13~40
 表2に示す組成(原子%)の合金溶湯(1300℃)を銅合金製の冷却ロール(幅:168 mm又は280 mm、周速:23~36 m/s、冷却水の入口温度:25~60℃、出口温度:30~70℃)を用いる単ロール法により、ノズルと冷却ロール間のギャップを180~250μmとして、大気中で超急冷した。このとき、冷却ロールに対する出湯位置を変えることにより、図5に示すように薄帯の側端部と冷却ロールの側端部との距離S(短い方)を変化させた。各超微細結晶合金薄帯について、側端部と冷却ロールの側端部との距離Sを表2に示す。250℃の薄帯温度で冷却ロールから剥離し、幅25~100 mm及び厚さ約23μmの超微結晶合金薄帯を得た。各超微細結晶合金薄帯について、平均粒径30 nm以下の超微細結晶粒が非晶質母相中に30体積%以下の割合で分散した組織を有することを確認した。また、各超微細結晶合金薄帯の両側端部から0.2 mmの幅の領域に、超微細結晶粒の数密度が500個/μm2未満の超微細結晶粒欠乏領域が形成されていることを確認した。
 冷却後にフランジ付きリールへの薄帯の再巻取りを行い、薄帯の長さ1 km当たりの破断回数ν(破断してつなぎ直して巻く回数)を調べた。破断回数が5回以下なら製造効率への影響は小さい。また、各超微結晶合金薄帯に対して切断割れ試験を行い、割れの発生なしにハサミで切り込める側端部からの距離rcを測定した。
 各超微結晶合金薄帯から採取した長さ120 mmの単板試料を熱処理炉に投入し、約15分で410℃まで昇温した後、1時間保持する低温長時間の熱処理を施し、微結晶軟磁性合金薄帯を作製した。各微結晶軟磁性合金薄帯について微結晶粒の平均粒径及び体積分率を測定した結果、平均粒径60 nm以下の微結晶粒が30体積%以上の割合で分散した組織であることが確認された。
 各微結晶軟磁性合金薄帯の単板試料に対して、B80/B8000を測定した。以上の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2に示すように、いずれの実施例において再巻取り時の破断回数は許容範囲内であり、B80/B8000も良好であった。これは薄帯製造時に好ましい熱伝達モデルが得られ、薄帯の両側端部に適切な超微細結晶粒欠乏領域が形成されている結果であると考える。
 なお、上記実施例の組成に限らず、非晶質母相中の不均一生成を利用して超微細結晶化し得る組成であれば本発明を適用することができる。

Claims (5)

  1. 平均粒径30 nm以下の超微細結晶粒が非晶質母相中に0体積%を超え、30体積%未満の割合で分散した組織を有する超微結晶合金薄帯であって、各側端部から0.2 mmの幅の領域に超微細結晶粒の数密度が中央部より少ない超微細結晶粒欠乏領域が形成されており、前記超微細結晶粒欠乏領域における粒径3 nm以上の超微細結晶粒の数密度が500個/μm2未満であることを特徴とする超微結晶合金薄帯。
  2. 請求項1に記載の超微結晶合金薄帯において、両超微細結晶粒欠乏領域の合計幅が前記超微結晶合金薄帯の全幅の5%以下であることを特徴とする超微結晶合金薄帯。
  3. 請求項1又は2に記載の超微結晶合金薄帯において、一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、8≦y≦22、0≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成の磁性合金からなることを特徴とする超微結晶合金薄帯。
  4. 請求項1~3のいずれかに記載の超微結晶合金薄帯を熱処理してなる微結晶軟磁性合金薄帯であって、非晶質母相中に平均粒径60 nm以下の微細結晶粒が30体積%以上の割合で分散した組織を有し、両側端部に平均粒径より大きい粒径の微細結晶粒を有する粒成長領域が形成されており、両粒成長領域の合計幅が前記微結晶軟磁性合金薄帯の全幅の5%以下であることを特徴とする微結晶軟磁性合金薄帯。
  5. 請求項4に記載の微結晶軟磁性合金薄帯からなることを特徴とする磁性部品。
PCT/JP2013/074351 2012-09-10 2013-09-10 超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品 WO2014038705A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13835325.5A EP2894236A4 (en) 2012-09-10 2013-09-10 ULTRA FINE CRYSTALLINE ALLOY TAPE, FINE CRYSTALLINE TEMPORARY TEMPERATURE MAGNETIC ALLOY TAPE AND MAGNETIC ELEMENTS USING THE SAME
KR1020157008940A KR102069927B1 (ko) 2012-09-10 2013-09-10 초미결정 합금 박대, 미결정 연자성 합금 박대 및 이것을 사용한 자성 부품
JP2014534440A JP6237630B2 (ja) 2012-09-10 2013-09-10 超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品
CN201380047031.6A CN104619875A (zh) 2012-09-10 2013-09-10 超微晶合金薄带、微晶软磁合金薄带及使用其的磁性部件
US14/426,866 US10115509B2 (en) 2012-09-10 2013-09-10 Ultrafine-crystalline alloy ribbon, fine-crystalline, soft-magnetic alloy ribbon, and magnetic device comprising it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012198087 2012-09-10
JP2012-198087 2012-09-10

Publications (1)

Publication Number Publication Date
WO2014038705A1 true WO2014038705A1 (ja) 2014-03-13

Family

ID=50237309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074351 WO2014038705A1 (ja) 2012-09-10 2013-09-10 超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品

Country Status (6)

Country Link
US (1) US10115509B2 (ja)
EP (1) EP2894236A4 (ja)
JP (1) JP6237630B2 (ja)
KR (1) KR102069927B1 (ja)
CN (1) CN104619875A (ja)
WO (1) WO2014038705A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097163A (zh) * 2014-05-08 2015-11-25 Lg伊诺特有限公司 软磁合金、含其的无线电力传送装置和无线电力接收装置
JP2015228713A (ja) * 2014-05-30 2015-12-17 日立金属株式会社 回転電機用コアの製造方法
EP2985881A1 (en) * 2014-07-29 2016-02-17 LG Innotek Co., Ltd. Wireless charging apparatus
WO2016112010A1 (en) 2015-01-07 2016-07-14 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
CN107109562A (zh) * 2014-12-22 2017-08-29 日立金属株式会社 Fe基软磁性合金薄带以及使用其的磁心
WO2017150441A1 (ja) * 2016-02-29 2017-09-08 日立金属株式会社 積層ブロックコア、積層ブロック、及び積層ブロックの製造方法
WO2017150440A1 (ja) * 2016-02-29 2017-09-08 日立金属株式会社 ナノ結晶合金リボンの製造方法
CN112008053A (zh) * 2020-08-27 2020-12-01 燕山大学 一种合金的制备装置及电流施加方法
US11264156B2 (en) 2015-01-07 2022-03-01 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3447158B1 (de) * 2017-08-25 2020-09-30 Universität des Saarlandes Schwefelhaltige metallische gläser bildende legierung
CN107904508B (zh) * 2017-11-16 2019-09-17 南京信息工程大学 一种合金带材料及其制备方法
US11972884B2 (en) * 2018-01-12 2024-04-30 Tdk Corporation Soft magnetic alloy and magnetic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283920A (ja) * 1995-04-11 1996-10-29 Nippon Steel Corp 軟磁気特性に優れた急冷金属薄帯およびその製造方法
WO2007032531A1 (ja) 2005-09-16 2007-03-22 Hitachi Metals, Ltd. ナノ結晶磁性合金とその製造方法、合金薄帯、及び磁性部品
WO2011122589A1 (ja) * 2010-03-29 2011-10-06 日立金属株式会社 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品
WO2013051380A1 (ja) * 2011-10-03 2013-04-11 日立金属株式会社 初期超微結晶合金薄帯及びその切断方法、並びにナノ結晶軟磁性合金薄帯及びこれを用いた磁性部品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2130936A4 (en) * 2007-03-22 2015-10-28 Hitachi Metals Ltd SOFT MAGNETIC TAPE, MAGNETIC CORE, MAGNETIC PART AND METHOD FOR PRODUCING A SOFT MAGNETIC TAPE
EP2149616B1 (en) * 2007-04-25 2017-01-11 Hitachi Metals, Ltd. Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
US9222145B2 (en) * 2009-01-20 2015-12-29 Hitachi Metals, Ltd. Soft magnetic alloy ribbon and its production method, and magnetic device having soft magnetic alloy ribbon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283920A (ja) * 1995-04-11 1996-10-29 Nippon Steel Corp 軟磁気特性に優れた急冷金属薄帯およびその製造方法
WO2007032531A1 (ja) 2005-09-16 2007-03-22 Hitachi Metals, Ltd. ナノ結晶磁性合金とその製造方法、合金薄帯、及び磁性部品
WO2011122589A1 (ja) * 2010-03-29 2011-10-06 日立金属株式会社 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品
WO2013051380A1 (ja) * 2011-10-03 2013-04-11 日立金属株式会社 初期超微結晶合金薄帯及びその切断方法、並びにナノ結晶軟磁性合金薄帯及びこれを用いた磁性部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2894236A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097163A (zh) * 2014-05-08 2015-11-25 Lg伊诺特有限公司 软磁合金、含其的无线电力传送装置和无线电力接收装置
JP2015228713A (ja) * 2014-05-30 2015-12-17 日立金属株式会社 回転電機用コアの製造方法
US9973026B2 (en) 2014-07-29 2018-05-15 Lg Innotek Co., Ltd. Wireless charging apparatus
EP2985881A1 (en) * 2014-07-29 2016-02-17 LG Innotek Co., Ltd. Wireless charging apparatus
US10790708B2 (en) 2014-07-29 2020-09-29 Lg Innotek Co., Ltd. Wireless charging apparatus
CN107109562A (zh) * 2014-12-22 2017-08-29 日立金属株式会社 Fe基软磁性合金薄带以及使用其的磁心
US10546674B2 (en) 2014-12-22 2020-01-28 Hitachi Metals, Ltd. Fe-based soft magnetic alloy ribbon and magnetic core comprising same
EP3239318A4 (en) * 2014-12-22 2018-05-09 Hitachi Metals, Ltd. Fe-BASED SOFT MAGNETIC ALLOY RIBBON AND MAGNETIC CORE COMPRISING SAME
US11264156B2 (en) 2015-01-07 2022-03-01 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy
EP3242961A4 (en) * 2015-01-07 2018-07-11 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
US11230754B2 (en) 2015-01-07 2022-01-25 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
WO2016112010A1 (en) 2015-01-07 2016-07-14 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
EP3441993A4 (en) * 2016-02-29 2019-09-25 Hitachi Metals, Ltd. CORE FOR MULTILAYER BLOCK, MULTILAYER BLOCK AND METHOD FOR PRODUCING A MULTILAYER BLOCK
WO2017150440A1 (ja) * 2016-02-29 2017-09-08 日立金属株式会社 ナノ結晶合金リボンの製造方法
JPWO2017150440A1 (ja) * 2016-02-29 2018-12-27 日立金属株式会社 ナノ結晶合金リボンの製造方法
JPWO2017150441A1 (ja) * 2016-02-29 2018-12-27 日立金属株式会社 積層ブロックコア、積層ブロック、及び積層ブロックの製造方法
WO2017150441A1 (ja) * 2016-02-29 2017-09-08 日立金属株式会社 積層ブロックコア、積層ブロック、及び積層ブロックの製造方法
US11322281B2 (en) 2016-02-29 2022-05-03 Hitachi Metals, Ltd. Multilayer block core, multilayer block, and method for producing multilayer block
CN112008053A (zh) * 2020-08-27 2020-12-01 燕山大学 一种合金的制备装置及电流施加方法

Also Published As

Publication number Publication date
EP2894236A4 (en) 2016-05-18
US20150243421A1 (en) 2015-08-27
JPWO2014038705A1 (ja) 2016-08-12
EP2894236A1 (en) 2015-07-15
KR102069927B1 (ko) 2020-01-23
KR20150054912A (ko) 2015-05-20
CN104619875A (zh) 2015-05-13
US10115509B2 (en) 2018-10-30
JP6237630B2 (ja) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6237630B2 (ja) 超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品
JP5720674B2 (ja) 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品
JP6191908B2 (ja) ナノ結晶軟磁性合金及びこれを用いた磁性部品
JP5327074B2 (ja) 軟磁性合金薄帯及びその製造方法、並びに軟磁性合金薄帯を有する磁性部品
JP5327075B2 (ja) 軟磁性合金薄帯及びその製造方法、並びに軟磁性合金薄帯を有する磁性部品
KR101162080B1 (ko) 연자성 박대, 자심, 자성 부품, 및 연자성 박대의 제조 방법
JP5455041B2 (ja) 軟磁性薄帯、その製造方法、磁性部品、およびアモルファス薄帯
JP6080094B2 (ja) 巻磁心およびこれを用いた磁性部品
JP6041207B2 (ja) ナノ結晶軟磁性合金及びこれを用いた磁性部品
JP6044549B2 (ja) 超微結晶合金薄帯の製造方法
WO2013051380A1 (ja) 初期超微結晶合金薄帯及びその切断方法、並びにナノ結晶軟磁性合金薄帯及びこれを用いた磁性部品
JP2008231463A (ja) Fe基軟磁性合金、アモルファス合金薄帯、および磁性部品
JP5445891B2 (ja) 軟磁性薄帯、磁心、および磁性部品
JP6003899B2 (ja) Fe基初期超微結晶合金薄帯及び磁性部品
JP2000328206A (ja) 軟磁性合金薄帯ならびにそれを用いた磁心、装置およびその製造方法
JP4257629B2 (ja) ナノ結晶軟磁性合金用Fe基アモルファス合金薄帯及び磁性部品
JP5445924B2 (ja) 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
JP4217038B2 (ja) 軟磁性合金
JP2008150637A (ja) 磁性合金、アモルファス合金薄帯、および磁性部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534440

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14426866

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013835325

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013835325

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157008940

Country of ref document: KR

Kind code of ref document: A