WO2011122589A1 - 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品 - Google Patents

初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品 Download PDF

Info

Publication number
WO2011122589A1
WO2011122589A1 PCT/JP2011/057714 JP2011057714W WO2011122589A1 WO 2011122589 A1 WO2011122589 A1 WO 2011122589A1 JP 2011057714 W JP2011057714 W JP 2011057714W WO 2011122589 A1 WO2011122589 A1 WO 2011122589A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
exothermic peak
soft magnetic
temperature
initial
Prior art date
Application number
PCT/JP2011/057714
Other languages
English (en)
French (fr)
Inventor
元基 太田
克仁 吉沢
卓 宮本
敏男 三原
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US13/580,820 priority Critical patent/US20120318412A1/en
Priority to CN2011800172676A priority patent/CN102822372A/zh
Priority to JP2012508327A priority patent/JP5720674B2/ja
Priority to EP11762813.1A priority patent/EP2557190A4/en
Publication of WO2011122589A1 publication Critical patent/WO2011122589A1/ja
Priority to US14/873,349 priority patent/US20160027566A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to a nanocrystalline soft magnetic alloy having a high saturation magnetic flux density suitable for various magnetic parts and excellent soft magnetic properties, and an initial ultrafine crystalline alloy as an intermediate alloy for producing the same, nanocrystalline soft magnetic
  • the present invention relates to an alloy manufacturing method and a magnetic component made of a nanocrystalline soft magnetic alloy.
  • Soft magnetic materials used for various reactors, choke coils, pulse power magnetic components, transformers, motors or generator magnetic cores, current sensors, magnetic sensors, antenna cores, electromagnetic wave absorbing sheets, etc. silicon steel, ferrite, amorphous There are alloys and nanocrystalline alloys. Silicon steel is inexpensive and has a high magnetic flux density, but at high frequencies it has a large loss and is difficult to thin. Since ferrite has a low saturation magnetic flux density, magnetic saturation is likely to occur in high power applications where the operating magnetic flux density is large. Co-based amorphous alloys are expensive and have a low saturation magnetic flux density of 1 T or less, so the parts become large when used for high power, and the loss increases with time due to thermal instability. . Therefore, Fe-based nanocrystalline alloys are promising.
  • JP 2007-107095 discloses a composition formula: Fe 100-xyz Cu x B y X z (where X is at least one selected from the group consisting of Si, S, C, P, Al, Ge, Ga, and Be) X, y, and z are atomic%, and are numbers satisfying the conditions of 0.1 ⁇ x ⁇ 3.0, 10 ⁇ y ⁇ 20, 0 ⁇ z ⁇ 10.0, and 10 ⁇ y + z ⁇ 24).
  • a soft magnetic alloy is disclosed.
  • This nanocrystalline soft magnetic alloy is an Fe-based amorphous alloy thin film in which fine crystal grains with an average grain size of 30 nm or less are precipitated in an amorphous material by quenching the molten Fe-based alloy at a ratio of less than 30% by volume. It is manufactured by preparing a band and subjecting the Fe-based amorphous alloy ribbon to heat treatment at high temperature for a short time or at low temperature for a long time. Since this Fe-based amorphous alloy has initial microcrystals that become the core of the nanocrystalline structure, it exhibits a unique heat generation pattern.
  • DSC differential scanning calorimetry
  • JP 2008-231533 describes a composition formula: Fe 100-xy A x X y (where A is Cu and / or Au, X is B, Si, S, C, P, Al, Ge, Ga and And at least one element selected from the group consisting of Be, and x and y are each atomic% and are numbers satisfying the conditions of 0 ⁇ x ⁇ 5 and 10 ⁇ y ⁇ 24).
  • an Fe-based soft magnetic alloy ribbon having an amorphous layer in a layer portion having a depth of 120 nm or less from the surface of the ribbon.
  • a nanocrystal layer is formed on the surface side, an amorphous layer is formed inside the nanocrystal layer, and a coarse grain layer is formed between the amorphous layer and the parent phase. May be.
  • the coarse grain layer exhibits good squareness in a low magnetic field region.
  • the crystal grain size of the coarse crystal grain layer is preferably not more than twice the average crystal grain size of the parent phase.
  • the nanocrystalline soft magnetic alloy disclosed in JP 2007-107095 and the amorphous alloy ribbon (also referred to as initial microcrystalline alloy) disclosed in JP 2008-231533 having high saturation magnetic flux density and low coercive force are stable.
  • the amorphous alloy ribbon also referred to as initial microcrystalline alloy
  • Hysteresis remains at 1.5 T or more, which adversely affects magnetic saturation and AC magnetic characteristics.
  • an object of the present invention is to improve the nanocrystalline soft magnetic alloys disclosed in Japanese Patent Application Laid-Open No. 2007-107095 and Japanese Patent Application Laid-Open No. 2008-231533.
  • the object is to provide a nanocrystalline soft magnetic alloy in which crystallization properties are adjusted and a nanocrystalline soft magnetic alloy in which the initial microcrystalline alloy is heat-treated to improve toughness and have both magnetic properties and handling properties.
  • Another object of the present invention is to provide a method capable of mass-producing an excellent nanocrystalline soft magnetic alloy by setting optimum heat treatment conditions for the initial ultrafine crystal alloy even if the manufacturing conditions fluctuate. That is.
  • the initial microcrystalline alloy of the present invention has the general formula: Fe 100-xyz A x B y X z (where A is Cu and / or Au, X is Si, S, C, P, Al, Ge, It is at least one element selected from Ga and Be, and x, y, and z are in atomic percent and satisfy the conditions of 0 ⁇ x ⁇ 5, 10 ⁇ y ⁇ 22, 0 ⁇ z ⁇ 10, and x + y + z ⁇ 25, respectively. And a differential scan of the composition represented by (2) and a structure in which initial ultrafine crystal grains having an average grain size of 30 nm or less are dispersed in an amorphous matrix at a ratio of 5 to 30% by volume.
  • the calorific value (DSC) curve has a first exothermic peak and a second exothermic peak smaller than the first exothermic peak between the crystallization start temperature T X1 and the compound precipitation temperature T X3 ,
  • the ratio of the calorific value of the second exothermic peak to the total calorific value of the exothermic peak and the second exothermic peak is 3% or less.
  • the nanocrystalline soft magnetic alloy of the present invention has a general formula: Fe 100-xyz A x B y X z (where A is Cu and / or Au, X is Si, S, C, P, Al, Ge, It is at least one element selected from Ga and Be, and x, y, and z are in atomic percent and satisfy the conditions of 0 ⁇ x ⁇ 5, 10 ⁇ y ⁇ 22, 0 ⁇ z ⁇ 10, and x + y + z ⁇ 25, respectively.
  • the nanocrystalline soft magnetic alloy can be obtained by heat-treating the initial microcrystalline alloy.
  • a method of the present invention for producing a nanocrystalline soft magnetic alloy having a structure in which fine crystal grains having an average particle size of 60 nm or less are dispersed in an amorphous matrix at a ratio of 30% by volume or more By spraying the molten alloy having the above composition onto a rotating cooling roll and quenching, the initial ultrafine crystal grains having an average grain size of 30 nm or less are dispersed at a rate of 5 to 30% by volume in the amorphous matrix.
  • An initial microcrystalline alloy having the above-described structure, wherein the differential scanning calorimetry (DSC) curve of the initial microcrystalline alloy has a first exotherm between the crystallization start temperature T X1 and the compound precipitation temperature T X3.
  • a peak and a second exothermic peak smaller than the first exothermic peak, and a ratio of a calorific value of the second exothermic peak to a total calorific value of the first exothermic peak and the second exothermic peak is Maintain the surface temperature of the chill roll at a temperature of 3% or less, and then heat treatment to raise the temperature to the maximum temperature of (T X3 -50 ° C) to (T X3 -30 ° C). It is characterized by being applied for 5 to 30 minutes including time.
  • the cooling roll is water-cooled, and the inlet temperature of the cooling water (temperature immediately before entering the cooling roll) is controlled to 30 to 70 ° C., and the outlet temperature of the cooling water (temperature immediately after exiting the cooling roll) is 40 to It is preferable to hold at 80 ° C.
  • the temperature rise of the cooling water in the cooling roll is preferably about 10 to 30 ° C. Further, it is preferable to control the surface temperature of the ribbon during peeling to 170 to 350 ° C.
  • the start temperature T X2S and the end temperature T X2E of the second exothermic peak of the DSC curve are between 400 ° C. and 460 ° C.
  • the target temperature for the heat treatment is preferably set to T X2E ⁇ 20 ° C.
  • a part of Fe may be substituted with 0.1 to 2 atomic% of Ni.
  • the magnetic component of the present invention is characterized by using the nanocrystalline soft magnetic alloy.
  • the nanocrystalline soft magnetic alloy can be stably mass-produced.
  • the nanocrystalline soft magnetic alloy of the present invention has a sufficient amorphous layer because the formation of a coarse crystal grain layer is suppressed, so that a high saturation magnetic flux density and squareness are low and the handling property is not substantially reduced. Excellent soft magnetic properties such as coercive force and core loss.
  • the initial microcrystalline alloy and nanocrystalline soft magnetic alloy of the present invention having such characteristics can be used for various magnetic parts (winding cores, etc.), and since the saturation magnetic flux density is particularly high, magnetic saturation becomes a problem.
  • High power applications such as high current reactors such as anode reactors, choke coils for active filters, smoothing choke coils, pulse power magnetic components for laser power supplies and accelerators, transformers, pulse transformers for communication, magnetic cores of motors or generators It is suitable for current sensors, magnetic sensors, antenna cores, electromagnetic wave absorbing sheets and the like.
  • Cu 1.4 Si 4 B 14 It is a graph which shows the heat processing pattern of high temperature short time, and the heat processing pattern of low temperature long time.
  • 2 is a graph showing BH curves when a nanocrystalline soft magnetic alloy ribbon having a composition of Fe bal.
  • Cu 1.4 Si 4 B 14 is subjected to a high-temperature short-time heat treatment and a low-temperature long-time heat treatment.
  • the magnetic flux density B 80 in the 80 A / m is a graph showing the relationship between the ratio of the second exothermic peak.
  • 4 is a TEM photograph showing a cross section in the vicinity of a roll contact surface of a nanocrystalline soft magnetic alloy ribbon of Example 3-7.
  • 4 is a TEM photograph showing a cross section in the vicinity of a roll contact surface of a nanocrystalline soft magnetic alloy ribbon of Comparative Example 3-1.
  • 4 is a graph showing the relationship between the coercive force Hc and the ratio of the second exothermic peak in the nanocrystalline soft magnetic alloy ribbon of Example 4.
  • 6 is a graph showing the relationship between the coercive force Hc and the ratio of the second exothermic peak in the nanocrystalline soft magnetic alloy ribbon of Example 5.
  • the initial microcrystalline alloy and nanocrystalline soft magnetic alloy of the present invention are usually in the form of a ribbon, but may be in the form of powder or flakes. These alloys will be described in detail below, taking the case of a ribbon as an example, but of course not limited to the ribbon.
  • the term “initial ultrafine crystal grains” used here is an amorphous alloy formed by quenching the molten alloy (the initial ultrafine crystal grains that form the core of the fine crystal grains are precipitated. Means the crystal nuclei precipitated in the alloy, and grows into fine crystal grains by heat treatment, and the term “microcrystal grains” refers to microcrystal grains grown by heat treatment from the initial ultrafine crystal grains. means.
  • FIG. 1 (a) shows the microstructure of the contact surface of the initial microcrystalline alloy near the cooling roll when a cooling roll with low cooling capacity (low cooling efficiency) is used.
  • FIG. 1 (b) shows the structure in the vicinity of the cooling roll contact surface of the initial microcrystalline alloy when a cooling roll having a high cooling capacity (high cooling efficiency) is used.
  • Cu clusters are diffused by the diffusion of Cu atoms in the cooling process to form Cu clusters (regular lattices of several nm), and the initial ultrafine crystal grains are precipitated with the Cu clusters as nuclei.
  • the initial ultrafine crystal grains are also deposited in the area near the roll contact surface and are present in a relatively high density without being biased in the cross-sectional direction of the alloy, thereby suppressing coarsening.
  • the Fe content of the remaining amorphous phase is greatly reduced, the compound precipitation temperature T X3 is high.
  • the number density of the initial ultrafine crystal grains is extremely low because Cu diffusion is suppressed near the roll contact surface and Cu clusters are not easily formed. Although this tendency is also on the free surface side, it appears more remarkably on the roll contact surface side.
  • the DSC curve shows a broad first value indicating the exotherm due to nanocrystallization between the nanocrystallization start temperature T X1 and the compound precipitation temperature T X3 between 300 ° C. and 500 ° C.
  • One exothermic peak P1 appears.
  • the initial ultrafine crystal grain-deficient region crystallization of the amorphous phase occurs rapidly by heat treatment, so that not only does the crystal grain grow coarser than the microcrystal grains of the parent phase, but the initial ultrafine crystal grain-deficient region is deep. It was found that a deep coarse crystal grain layer was formed, the effective magnetocrystalline anisotropy was increased, and the magnetic saturation was deteriorated.
  • the nanocrystalline soft magnetic alloy of the present invention has a composite structure having a nanocrystal layer, an amorphous layer, and a nanocrystal grain layer in order from the surface. It can be said that the grain layer has coarse crystal grains precipitated in the amorphous layer.
  • the term “layer” is not divided by a clear boundary, but means a range in the thickness direction that satisfies a predetermined condition.
  • the nanocrystal layer is a very thin range where fine crystal grains of about 20 nm are deposited, and the coarse crystal grain layer is a coarse crystal having an average grain size that is at least twice the average grain size of the microcrystal grains in the parent phase. It is a range in the thickness direction including grains.
  • the depth from the surface of the coarse crystal grain layer is 2.9 ⁇ m or less, preferably 2.7 ⁇ m or less, and more preferably 0.5 to 2.5 ⁇ m.
  • the ratio B 80 / B 8000 to 8000 (approximately the same as the saturation magnetic flux density B s ) is large, and the soft magnetic characteristics are good.
  • B 80 / B 8000 is small as shown in the BH curve shown in FIG. 4 (b).
  • B 80 / B 8000 is preferably 0.85 or more, and more preferably 0.88 or more.
  • the coercive force H c depends not only on the average crystal grain size of the matrix structure but also on the ratio of the second exothermic peak. As described above, since the initial ultrafine-crystalline alloy produced by using a cooling roll of high cooling capacity reaches quenching effect deeper portion of the alloy, the initial super-fine crystal grains depletion region is large, the coercive force H c is increased .
  • the DSC curve shown in Fig. 5 (a) is a straight line that passes through the curve from T X1 to T X3. This corresponds to the area S of the enclosed region.
  • the calorific value of the second exothermic peak P2 is a region surrounded by a curve from the start temperature T X2S to the end temperature T X2E of the second exothermic peak P2 and a straight line passing through both points. It corresponds to the area S 2.
  • the ratio of the calorific value of the second exothermic peak P2 to the total calorific value of nanocrystallization is 3% or less
  • B 80 / B 8000 is 0.85 or more
  • the ratio of the second exothermic peak decreases.
  • the ratio of the second exothermic peak is 1.5% or less
  • the coercive force Hc is sufficiently small. Therefore, the ratio of the second exothermic peak is preferably 0 to 3%, more preferably 0 to 1.5%, and more preferably 0 to 1.3%.
  • the size of the second exothermic peak that occurs with the formation of coarse crystal grains depends on the cooling capacity of the cooling roll, but the cooling capacity depends on the surface temperature and peripheral speed of the cooling roll, the peeling temperature from the cooling roll, etc. Determined. In general, if the cooling capacity is too high, the region where the initial ultrafine crystal grains are insufficient increases, and coarse crystal grains increase due to heat treatment. In addition, since the second exothermic peak is expressed by continuous operation for a long time, it is estimated that the surface temperature of the cooling roll changes during the continuous operation for a long time. Therefore, in addition to the peripheral speed and peeling temperature of the cooling roll, it is necessary to adjust the temperature of the cooling water that determines the surface temperature of the cooling roll.
  • the nanocrystalline magnetic alloy of the present invention has a general formula: Fe 100-xyz A x B y X z (where A is Cu and / or Au, and X is Si, S, C, P, Al , Ge, Ga, and Be, and x, y, and z are atomic percentages of 0 ⁇ x ⁇ 5, 10 ⁇ y ⁇ 22, 0 ⁇ z ⁇ 10, and x + y + z ⁇ 25, respectively. It is a number that satisfies the condition).
  • the Fe content needs to be 75 atomic% or more, preferably 77 atomic% or more.
  • the saturation magnetic flux density is 1.74 T or more.
  • the saturation magnetic flux density is 1.781.7T or more.
  • the saturation magnetic flux density is 1.8 T or more.
  • this alloy has a basic composition of Fe-B-Si system that can stably obtain an amorphous phase even with high Fe content.
  • the nucleation element A is contained.
  • Cu and / or Au, which is insoluble in Fe, is Fe-B-Si alloy with Fe content of 88 atomic% or less, which can stably obtain a ribbon with the amorphous phase as the main phase.
  • the initial ultrafine crystal grains are precipitated by adding (nucleation element A), and are then grown uniformly into fine crystal grains by a subsequent heat treatment.
  • the amount x of element A is preferably 0.3 to 2 atomic%, more preferably 0.5 to 1.6 atomic%, most preferably 1 to 1.5 atomic%, and particularly preferably 1.2 to 1.5 atomic%.
  • element A Cu is preferable in terms of cost.
  • it contains Au it is preferable to set it as 1.5 atomic% or less of the amount of Fe.
  • B (Boron) is an element that promotes the formation of an amorphous phase.
  • B is less than 10 atomic%, it is difficult to obtain a ribbon having an amorphous phase as a main phase, and when it exceeds 22 atomic%, the saturation magnetic flux density is less than 1.7 T. Therefore, when the condition of 10 ⁇ y ⁇ 22 (atomic%) is satisfied, an amorphous phase can be stably obtained while maintaining a high saturation magnetic flux density.
  • the amount y of B is preferably 12 to 20 atomic%, more preferably 12 to 18 atomic%, and most preferably 12 to 16 atomic%.
  • the heat treatment temperature can be increased.
  • the lower limit of the amount z of X element may be 0 atomic%, but if it is 1 atomic% or more, an oxide layer of X element is formed on the surface of the ribbon and the internal oxidation can be sufficiently suppressed. If it exceeds 10 atomic%, Bs is less than 1.7 ⁇ ⁇ T.
  • the amount z of element X is preferably 2 to 9 atomic%, more preferably 3 to 8 atomic%, and most preferably 4 to 7 atomic%. Si is preferable as the X element.
  • P of the X element is an element that improves the ability to form an amorphous phase, and suppresses the growth of microcrystalline grains and suppresses segregation of B into the oxide film. Therefore, P is preferable for realizing high toughness, high Bs, and good soft magnetic properties.
  • P is preferable for realizing high toughness, high Bs, and good soft magnetic properties.
  • P for example, even when a soft magnetic alloy ribbon is wound around a round bar having a radius of 1 mm, cracks do not occur. This effect can be obtained regardless of the heating rate of the nanocrystallization heat treatment.
  • Other elements S, C, Al, Ge, Ga, and Be can also be used as the X element. Magnetostriction and magnetic properties can be adjusted by the inclusion of these elements.
  • X element is also easily segregated on the surface and is effective in forming a strong oxide film.
  • a part of Fe may be substituted with at least one element D selected from Ni, Mn, Co, V, Cr, Ti, Zr, Nb, Mo, Hf, Ta and W.
  • the amount of element D is preferably 0.01 to 10 atomic%, more preferably 0.01 to 3 atomic%, and most preferably 0.01 to 1.5 atomic%.
  • Ni, Mn, Co, V, and Cr have the effect of moving the region with a high B concentration to the surface side, and have a structure close to the parent phase from the region close to the surface. Improve the soft magnetic properties (permeability, coercivity, etc.) of the band.
  • the amount of A element that can be added is increased, so that the refinement of the crystal structure is promoted and the soft magnetic characteristics are improved.
  • the Ni substitution amount is preferably 0.1 to 2 atomic%, more preferably 0.5 to 1 atomic%. When the Ni substitution amount is less than 0.1 atomic%, the effect of improving the handling property is insufficient, and when it exceeds 2 atomic%, B s , B 80 and H c decrease.
  • Ti, Zr, Nb, Mo, Hf, Ta and W also preferentially enter the amorphous phase remaining after heat treatment together with the A element and metalloid element, so that the saturation magnetic flux density Bs and soft magnetic properties are improved. Contribute.
  • the total amount of these elements is preferably 3 atomic% or less. Particularly in the case of Nb and Zr, the total content is preferably 2.5 atomic percent or less, and more preferably 1.5 atomic percent or less. In the case of Ta and Hf, the total content is preferably 1.5 atomic percent or less, and more preferably 0.8 atomic percent or less.
  • the matrix is a structure in which microcrystal grains with a body-centered cubic (bcc) structure with an average grain size of 60 nm or less are dispersed in the amorphous phase at a volume fraction of 30% or more.
  • bcc body-centered cubic
  • the average grain size of the fine crystal grains after the heat treatment is preferably 40 nm or less, and more preferably 30 nm or less.
  • the lower limit of the average grain size of the microcrystalline grains is generally 12 nm, preferably 15 nm, and more preferably 18 nm.
  • the volume fraction of the fine crystal grains after the heat treatment is preferably 50% or more, more preferably 60% or more. With an average particle size of 60 nm or less and a volume fraction of 30% or more, an alloy ribbon having lower magnetostriction and superior soft magnetism than an Fe-based amorphous alloy can be obtained.
  • the Fe-based amorphous alloy ribbon of the same composition has a relatively large magnetostriction due to the magnetovolume effect, but the nanocrystalline soft magnetic alloy of the present invention in which fine crystal grains mainly composed of bcc-Fe are dispersed is due to the magnetovolume effect. The generated magnetostriction is much smaller and the noise reduction effect is great.
  • Alloy melt The alloy melt is Fe 100-xyz A x B y X z (where A is Cu and / or Au, and X is selected from Si, S, C, P, Al, Ge, Ga and Be) X, y, and z are numbers that satisfy the conditions of 0 ⁇ x ⁇ 5, 10 ⁇ y ⁇ 22, 0 ⁇ z ⁇ 10, and x + y + z ⁇ 25, respectively, in atomic percent.) It has the composition represented by these. Taking the case of using Cu as the element A as an example, the manufacturing method will be described.
  • the molten metal temperature is preferably 50 to 300 ° C higher than the melting point of the alloy.
  • the atmosphere in the single roll method is air or an inert gas (Ar, nitrogen, etc.) when the alloy does not contain an active metal, and an inert gas (Ar, He, nitrogen, etc.) It is a vacuum.
  • an oxygen-containing atmosphere for example, air
  • the initial ultrafine crystal grain formation is closely related to the cooling rate and time of the alloy ribbon.
  • Cu agglomerates by thermal diffusion to form clusters, forming initial ultrafine crystal grains. Therefore, in the surface region where the cooling rate is high, thermal diffusion hardly occurs and initial ultrafine crystal grains are hardly generated, so that a coarse crystal grain layer is formed (a second exothermic peak appears). Therefore, it is important to control the volume fraction of the initial ultrafine crystal grains.
  • One of the means for controlling the volume fraction of the initial ultrafine crystal grains is the control of the peripheral speed of the cooling roll. When the peripheral speed of the cooling roll increases, the volume fraction of the initial ultrafine crystal grains decreases, and increases when it decreases.
  • the peripheral speed of the cooling roll is preferably 15 to 50 m / s, more preferably 20 to 40 m / s, and most preferably 25 to 35 m / s.
  • pure copper having a high thermal conductivity or a copper alloy such as Cu—Be, Cu—Cr, Cu—Zr, or Cu—Zr—Cr is suitable.
  • the cooling roll is preferably water-cooled.
  • the water cooling of the cooling roll has a great influence on the volume fraction of the initial ultrafine crystal grains (expression of the second exothermic peak).
  • the cooling capacity of the cooling roll correlates with the temperature of the cooling water, and it is effective to keep the cooling water at a predetermined temperature or higher.
  • FIG. 6 shows a cross-sectional structure of a cooling roll used in the method of the present invention.
  • a nozzle 2 for ejecting molten alloy is provided in the vicinity of the upper surface of the cooling roll 1, and the molten alloy is rapidly cooled by the cooling roll 1 to obtain an initial ultracrystalline alloy ribbon 3.
  • an inlet 11 and an outlet 12 for cooling water are provided, and the cooling water flows through a flow path between the inlet 11 and the outlet 12.
  • Fig. 7 shows the distribution of cooling rate in the thickness direction of the ribbon.
  • the cooling rate of the ribbon is the fastest at the part in contact with the surface of the cooling roll 1, decreases as it goes inward, and slightly increases again by air cooling on the free surface.
  • curve B since the cooling rate is high when the cooling water inlet temperature is low, there is a deep initial ultrafine crystal grain-deficient region (the number density of the initial ultrafine crystal grains is low and the volume fraction is insufficient). Formed, and the ratio of the second exothermic peak is large. As a result, the soft magnetic properties of the nanocrystalline soft magnetic alloy deteriorate.
  • the cooling rate of the ribbon can be controlled by adjusting the cooling water inlet temperature, thereby reducing the ratio of the second exothermic peak and improving the soft magnetic properties of the resulting nanocrystalline soft magnetic alloy. can do.
  • the inlet temperature of the cooling water is preferably 30 to 70 ° C, more preferably 40 to 70 ° C, and most preferably 50 to 70 ° C.
  • the outlet temperature of the cooling water is preferably 40 to 80 ° C, more preferably 50 to 80 ° C.
  • the alloy ribbon is peeled from the cooling roll by blowing an inert gas (nitrogen, etc.) from the nozzle between the rapidly cooled alloy ribbon and the cooling roll. It is thought that the peeling temperature of the alloy ribbon at this time also affects the volume fraction of the initial ultrafine crystal grains.
  • the stripping temperature of the ribbon can be adjusted by changing the position (peeling position) of the nozzle that sprays the inert gas.
  • the peeling temperature is 170 to 350 ° C., preferably 200 to 340 ° C., more preferably 250 to 330 ° C.
  • the peeling temperature is less than 170 ° C.
  • rapid cooling proceeds and the alloy structure becomes almost amorphous, Cu aggregation, formation of Cu clusters, and precipitation of initial ultrafine crystal grains do not lead to the initial ultrafine crystal alloy. I can't get it.
  • the cooling rate with the above-described cooling roll is appropriate, the surface area of the ribbon is reduced in Cu amount due to rapid cooling, and no initial ultrafine crystal grains are generated. Grains are distributed more than the surface area, and the initial ultrafine crystal grains are generated uniformly. As a result, a layer having a higher B concentration (a larger ratio of B to Fe) than the inner matrix is formed in the surface region (depth 30 to 130 nm).
  • the initial ultrafine crystal alloy ribbon can have good toughness. If the peeling temperature is higher than 350 ° C., crystallization with Cu proceeds excessively, and a high B concentration amorphous layer is not formed in the vicinity of the surface, so that it is difficult to obtain sufficient toughness.
  • the inside of the peeled initial ultrafine crystal alloy ribbon is still at a relatively high temperature, so the initial ultrafine alloy ribbon is sufficiently cooled before winding to prevent further crystallization.
  • an inert gas nitrogen or the like
  • winding is performed.
  • the ribbon of the initial ultrafine crystal alloy is composed of 5-30% by volume of initial ultrafine crystal grains with an average grain size of 30 nm or less in the amorphous matrix. Has a distributed organization.
  • the average grain size of the initial ultrafine crystal grains is more than 30 nm, the fine crystal grains are excessively coarsened even if the heat treatment described below is performed, and the soft magnetic properties are deteriorated.
  • the average grain size of the initial ultrafine crystal grains is preferably 25 nm or less, more preferably 20 nm or less, most preferably 10 nm or less, and particularly preferably 5 nm or less.
  • the lower limit of the average grain size of the initial ultrafine crystal grains is preferably about 0.5 nm in consideration of the measurement limit. However, since it is necessary for the initial ultrafine crystal grains to be present in the amorphous matrix, the average grain size of the initial ultrafine crystal grains is preferably 1 nm or more, more preferably 2 nm or more. .
  • the volume fraction of initial ultrafine crystal grains in the initial ultrafine alloy ribbon is in the range of 5-30%. When the volume fraction of the initial ultrafine crystal grains exceeds 30%, the average grain size of the initial ultrafine crystal grains also tends to exceed 30 nm, and the alloy ribbon does not have sufficient toughness. Handling becomes difficult. On the other hand, if there are no initial ultrafine crystal grains (if they are completely amorphous), they tend to grow into coarse crystal grains by heat treatment.
  • the volume fraction of the initial ultrafine crystal grains is preferably 10 to 30%, more preferably 15 to 30%.
  • the average distance between the initial ultrafine crystal grains is 50 nm or less because the magnetic anisotropy of the fine crystal grains is averaged and the effective crystal magnetic anisotropy is reduced.
  • the average distance exceeds 50 nm, the effect of averaging the magnetic anisotropy is reduced, the effective magnetocrystalline anisotropy is increased, and the soft magnetic properties are deteriorated.
  • the heat treatment temperature needs to be not less than the crystallization start temperature T X1 and not more than the compound precipitation temperature T X3 , and is preferably in the range of 400 to 500 ° C., for example.
  • the temperature is raised to a temperature of (T X1 + 50 ° C.) to (T X1 + 100 ° C.), and the heat treatment time is about 30 to 120 minutes including the temperature rise time.
  • (T X3 -50 The temperature is raised to a relatively high temperature (° C.) to (T X3 -30 ° C.), and the heat treatment time is made relatively short to 5 to 30 minutes including the temperature raising time. Thereby improving the magnetic flux density B 80 in the 80 A / m.
  • the heat treatment temperature is preferably 430 to 470 ° C., and the heat treatment time including the temperature raising time is preferably 10 to 25 minutes.
  • the heat treatment atmosphere may be air, but in order to form an oxide film having a desired layer structure by diffusing Si, Fe, B and Cu to the surface side, the oxygen concentration of the heat treatment atmosphere is 6 to 18% is preferred, 8-15% is more preferred, and 9-13% is most preferred.
  • the heat treatment atmosphere is preferably a mixed gas of an inert gas such as nitrogen, Ar, or helium and oxygen.
  • the dew point of the heat treatment atmosphere is preferably ⁇ 30 ° C. or lower, more preferably ⁇ 60 ° C. or lower.
  • the magnetic field may be a direct magnetic field, an alternating magnetic field, or a pulsed magnetic field.
  • a soft magnetic alloy ribbon having a DC hysteresis loop with a high squareness ratio or a low squareness ratio can be obtained by heat treatment in a magnetic field.
  • the soft magnetic alloy ribbon has a direct current hysteresis loop with a medium squareness ratio.
  • An oxide film such as SiO 2 , MgO, and Al 2 O 3 may be formed on the nanocrystalline soft magnetic alloy as necessary. When the surface treatment is performed during the heat treatment step, the bond strength of the oxide increases. If necessary, a magnetic core made of a soft magnetic alloy ribbon may be impregnated with resin.
  • Magnetic parts (winding cores, etc.) using the nanocrystalline soft magnetic alloy of the present invention have a high saturation magnetic flux density, and are therefore suitable for high power applications where magnetic saturation is a problem.
  • anode reactors etc.
  • the peeling temperature of the initial ultrafine crystal alloy ribbon, the ratio of the second exothermic peak, and the average grain size and volume fraction of the microcrystal grains were determined by the following methods.
  • Handling properties were evaluated according to the following criteria based on the presence or absence of fracture when fixing both ends in the longitudinal direction of a 25 mm wide and 125 mm long strip specimen and twisting it while applying tension. . In actual handling, even if it is twisted 180 °, it does not have to be destroyed. (Double-circle): Even if it twisted 180 degrees, it did not destroy. ⁇ : It did not break even when twisted by 90 °, but it broke when twisted by 180 °.
  • Example 1 The composition of Fe bal. Cu 1.4 Si 4 B 14 alloy melt having (atomic%), using a cooling roll made of copper alloy shown in FIG. 6, quenched in air by a single roll method under the following conditions, 250 ° C. Is peeled from the cooling roll at a temperature of 25 mm in width and 20 ⁇ m in thickness with a structure in which initial ultrafine crystal grains having an average particle diameter of 3 nm are dispersed in an amorphous matrix at a volume fraction of 25%, and An initial ultra-crystalline alloy ribbon with a length of 1 km was obtained. Cooling roll peripheral speed: 28 m / s Cooling water inlet temperature to cooling roll: 50 ° C Outlet temperature from cooling roll of cooling water: 60 ° C
  • FIG. 8 shows the DSC curve of the initial ultrafine crystal alloy ribbon.
  • the broad first exothermic peak P1 derived from nanocrystallization appears over a wide temperature range from the crystallization onset temperature T X1 of about 350 ° C to the compound precipitation temperature T X3 of about 500 ° C, and Fe-B above 500 ° C
  • a sharp third exothermic peak P3 with the precipitation of the system compound appeared.
  • There was a small second exothermic peak P2 in the middle of the first exothermic peak the start temperature T X2S was 420 ° C.
  • the end temperature T X2E was 440 ° C.
  • the ratio [PC3 / (PC1 + PC3)] of the calorific value (PC3) of the second exothermic peak to the total calorific value (PC1 + PC3) of the first exothermic peak P1 and the second exothermic peak P2 was 1.0%.
  • a 25 mm x 120 mm single plate sample cut out from this initial microcrystalline alloy ribbon was put into a heat treatment furnace and rapidly heated to 460 ° C in about 15 minutes (average heating rate: about 30 ° C / min) ), And after the temperature reached 460 ° C., it was removed from the furnace and subjected to heat treatment A (shown in FIG. 9) for air cooling to produce a nanocrystalline soft magnetic alloy ribbon.
  • the time when the sample was put into the furnace was defined as the heat treatment start time.
  • the nanocrystalline soft magnetic alloy ribbon is a microcrystalline grain having an average grain size of 20 nm in an amorphous phase. Was found to be distributed with a volume fraction of 45%.
  • nanocrystalline soft magnetic alloy has a nanocrystal layer with an average crystal grain size of 20 mm or less in order from the surface side, and coarse crystal grains with an average grain diameter of 50 mm in the amorphous phase. It was confirmed that the layer was comprised of a matrix layer containing nanocrystal grains having an average grain size of 20 nm. The coarse crystal grain layer was within 1 ⁇ m depth from the surface and was hardly enlarged. As a result, the ratio of the second exothermic peak was small.
  • Comparative Example 1 Using the copper alloy cooling roll shown in FIG. 6, the same molten alloy as in Example 1 was rapidly cooled in the atmosphere at a cooling roll peripheral speed of 28 m / s, an inlet temperature of 25 ° C. of cooling water and an outlet temperature of 35 ° C. 25 mm in width and thickness having a structure in which initial ultrafine crystal grains having an average grain size of 1 nm are dispersed at a volume fraction of 4% in an amorphous matrix at a temperature of 250 ° C. An initial microcrystalline alloy ribbon of 20 ⁇ m was obtained. The temperatures of the cooling roll and the cooling water were both lower than in Example 1. Although the second exothermic peak P2 was also observed in the DSC curve of this initial ultrafine crystal alloy, the ratio of the calorific value of the second exothermic peak to the nanocrystallization total calorific value was 3.1%.
  • the initial ultrafine crystal alloy ribbon was subjected to the same heat treatment as in Example 1 to produce a nanocrystalline soft magnetic alloy ribbon.
  • This nanocrystalline soft magnetic alloy ribbon had a structure in which microcrystalline grains having an average grain size of 26 nm were dispersed at a volume fraction of 40% in an amorphous phase.
  • TEM observation revealed that a coarse crystal grain layer having an average grain diameter of 50 nm was formed in the alloy layer to a depth of about 3.0 ⁇ m. For this reason, the effective magnetocrystalline anisotropy is increased, and good soft magnetic properties cannot be obtained.
  • Example 2 In order to investigate the dependence of soft magnetic properties on heat treatment conditions, a molten alloy having the composition (atomic%) of Fe bal. Cu 1.4 Si 4 B 14 was used as a copper alloy cooling roll (peripheral speed: 28 m) as shown in FIG. / s, cooling water inlet temperature: 50 ° C, outlet temperature: 60 ° C), rapidly cooled in the atmosphere, peeled off from the cooling roll at a temperature of 250 ° C, and the initial microcrystalline alloy thin film with a width of 25 mm and a thickness of 20 ⁇ m A strip was made. In the amorphous matrix of the initial ultrafine crystal alloy, initial ultrafine crystal grains having an average grain size of 2 nm were dispersed at a volume fraction of 25%.
  • the nanocrystalline soft magnetic alloy A was obtained by subjecting this initial microcrystalline alloy to a heat treatment A for a short time at a high temperature as shown in FIG. Further, the same initial ultrafine crystal alloy was heated to 410 ° C. in 15 minutes and held for 45 minutes, and then subjected to heat treatment B for a long time at low temperature as shown in FIG. 9 to obtain nanocrystalline soft magnetic alloy B.
  • fine crystal grains having an average grain size of 20 nm were dispersed in an amorphous matrix at a volume fraction of 40%. Both BH curves are shown in FIG. Both curves have hysteresis between the magnetization and demagnetization curves in the magnetic flux density region of 1.5 T or more.
  • This hysteresis is considered to be caused by a coarse crystal grain layer that has high magnetocrystalline anisotropy and is difficult to saturate.
  • This hysteresis varies depending on the heat treatment conditions.Although the hysteresis remains up to about 800 A / m in alloy B that has been subjected to heat treatment B at low temperature and long time, the hysteresis is 300 in alloy A that has undergone heat treatment A at high temperature and short time. It was eliminated at around A / m, and the saturation in a low magnetic field was remarkably improved.
  • Example 3 Using the copper alloy cooling rolls shown in Fig. 6 (peripheral speed: 27-32 m / s, cooling water inlet temperature: 25-60 ° C, outlet temperature: 33-72 ° C), the compositions (atomic %) was rapidly cooled in the air and peeled off from the cooling roll at a ribbon temperature of 250 ° C. to prepare an initial ultracrystalline alloy ribbon having a width of 25 mm and a thickness of 16 to 25 ⁇ m.
  • Table 1 shows the alloy composition of each of the initial ultrafine crystal alloy ribbons, the inlet and outlet temperatures of the cooling water, the average particle diameter and volume fraction of the initial ultrafine crystal grains, and the ratio of the second exothermic peak.
  • initial ultrafine crystal grains having an average grain size of 1 to 5 nm were dispersed at a volume fraction of 3 to 30%.
  • the ratio of the second exothermic peak to the total amount of heat generated by nanocrystallization was determined in the same manner as in Example 1.
  • the nanocrystalline soft magnetic alloy ribbon is subjected to a nanocrystallization heat treatment for 15 to 30 minutes at a temperature in the range of 400 to 460 ° C so that the maximum B 80 can be obtained for each initial microcrystalline alloy ribbon.
  • Average crystal grain size and volume fraction of each nanocrystalline soft magnetic alloy, coarse crystal grain layer [average grain size more than twice the average grain size of microcrystal grains in the parent phase (about 50-100 nm)
  • the depth, coercive force, B 80 and B 8000 , and handling properties of the layer containing coarse crystal grains having the same were measured. Table 1 shows the measurement results.
  • Each soft magnetic alloy ribbon had a structure in which fine crystal grains having an average particle diameter of 15 to 30 nm were dispersed at a volume fraction of 30 to 50%.
  • FIG. 12 shows the relationship between B 80 / B 8000 and the ratio of the calorific value of the second exothermic peak with respect to the total calorific value of nanocrystallization.
  • FIG. 11 and FIG. 12 when the ratio of the calorific value of the second exothermic peak with respect to the total calorific value of nanocrystallization decreases, the coarse grain layer becomes shallow (the coarse grain decreases), and the second It can be seen that as the ratio of the exothermic peak increases, B 80 / B 8000 decreases and the magnetic saturation characteristics deteriorate. As shown in Table 1, the ratio of the second exothermic peak corresponds to the depth of the coarse crystal grain layer, and as the coarse crystal grain layer becomes deeper, the ratio of components that are hard to be magnetically saturated increases to 80 A / m. Magnetic flux density at low magnetic field is reduced.
  • the ratio of the second exothermic peak is 3% or less, the coarse crystal grain layer is less than 3 ⁇ m, and the B 80 / B 8000 ratio is almost 85% or more. Since the coercive force H c reflects the properties of the parent phase having good soft magnetic properties, the value depends on the average crystal grain size of the parent phase. As a general tendency, when the cooling capacity of the roll is increased, the depth of the coarse crystal grain layer is increased and the average crystal grain size of the parent phase is increased. In other words, B 80 tends to decrease and H c tends to increase, but if the amount of Cu is increased, the initial ultra fine crystal grains of the parent ultra fine crystal alloy can be increased, and H c can be reduced. I understood that. On the other hand, the second exothermic peak appeared in any sample, but the handling property was not a problem. Even if the ratio of the second exothermic peak is relatively large, the handling characteristics are good.
  • FIG. 13 shows a cross section in the vicinity of the surface on the roll contact surface side of the samples after heat treatment in Example 3-7 and Comparative Example 3-1.
  • the average crystal grain size of the parent phase is about 15 nm, and the depth from the alloy surface of the layer containing coarse crystal grains having an average grain size more than twice this is indicated by a double arrow.
  • the white layer on the surface is a carbon-based surface protective film provided for taking a TEM photograph.
  • FIG. 13 (a) shows Example 3-7. When the ratio of the second exothermic peak was 0.7%, the depth of the coarse crystal grain layer was about 0.7 ⁇ m. On the other hand, in Comparative Example 3-1 in FIG. 13 (b), the coarse crystal grain layer was 3.0 ⁇ m when the ratio of the second exothermic peak was 3.1%.
  • Example 4 To alter the expression level of the second exothermic peak to control the outlet temperature to 35 ° C. ⁇ 70 ° C. by varying the inlet temperature of the cooling water to 60 ° C. from 25 ° C., the composition of Fe bal. Cu 1.4 Si 4 B 14 (Atom%) The molten alloy having (atomic%) was quenched in the air at a cooling roll peripheral speed of 28 m / s in the same manner as in Example 1, and peeled off from the cooling roll at a strip temperature of 250 ° C., and had a width of 25 mm and a thickness. A 20 ⁇ m initial ultra-crystalline alloy ribbon was prepared.
  • FIG. 14 shows the relationship between the coercive force Hc of this nanocrystalline soft magnetic alloy and the ratio of the calorific value of the second exothermic peak to the total nanocrystallized calorific value.
  • the coercive force Hc was 15 A / m when the ratio of the second exothermic peak was 1.5%, but decreased to 10 A / m at about 1.3%.
  • the coercive force Hc was 6 to 8 A / m.
  • Example 5 The inlet temperature of the cooling water of the roll is set to 35 to 70 ° C., the outlet temperature is controlled to 44 to 82 ° C., and the molten alloy having the composition of Fe bal. Ni 1 Cu 1.5 Si 4 B 14 is 28 as in Example 1. It was quenched in the atmosphere at a peripheral speed of a cooling roll of m / s and peeled off from the cooling roll at a ribbon temperature of 250 ° C. to prepare an initial ultracrystalline alloy ribbon having a width of 25 mm and a thickness of 20 ⁇ m. Table 2 shows the alloy composition of each initial ultrafine alloy ribbon, the inlet and outlet temperatures of cooling water, the average grain size and volume fraction of the initial ultrafine crystal grains, and the ratio of the second exothermic peak. The initial ultrafine crystal grains having an average grain size of 2 to 5 nm were dispersed in the amorphous matrix of the initial ultrafine crystal alloy at a volume fraction of 18 to 26%.
  • Each initial microcrystalline alloy was heated to 430 ° C. in about 15 minutes and then heat-treated for 15 minutes to obtain a nanocrystalline soft magnetic alloy.
  • the average grain size and volume fraction of the fine crystal grains of each nanocrystalline soft magnetic alloy, the depth of the coarse crystal grain layer, the coercive force, B 80 and B 8000 , and handling properties were measured. The measurement results are shown in Table 2.
  • FIG. 15 shows the relationship between the coercive force Hc and the ratio of the second exothermic peak. Second 1.57 ratio of the exothermic peak even 2.6% T and higher B 80 is obtained, the second coercive force Hc ratio of the exothermic peak even 1.5% or more was less than 10 A / m. This is presumably because the growth of crystal grains in the region where the number density of the initial microcrystals was low was suppressed by containing Ni.
  • Example 3 Compared with the alloy of Example 3 not containing Ni shown in Table 1, not deep coarse crystal grain layer even when the ratio of the second exothermic peak is high, the increase in the coercive force H c is suppressed. It can be seen that the inclusion of Ni suppresses the expansion of the coarse crystal grain layer, making it easy to achieve both handling characteristics and soft magnetic characteristics. From the above, it can be seen that inclusion of an appropriate amount of Ni can reduce the dependence of soft magnetic properties on manufacturing conditions and improve production efficiency.
  • Example 6 A molten alloy having a composition shown in Table 3 in which a part of Fe was substituted with various elements was set in the atmosphere with a cooling water inlet temperature of 50 ° C. at a peripheral speed of a cooling roll of 28 m / s as in Example 1. It was quenched (exit temperature: 59 to 63 ° C.) and peeled from the cooling roll at a strip temperature of 250 ° C. to produce an initial ultracrystalline alloy ribbon having a width of 25 mm and a thickness of 20 ⁇ m. In the amorphous matrix of the initial ultrafine crystal alloy, the initial ultrafine crystal grains having an average grain size of 1 to 10 nm were dispersed at a volume fraction of 5 to 30%.
  • the ratio of the second exothermic peak of each initial microcrystalline alloy was measured while changing the cooling water temperature of the roll.
  • Table 3 shows the alloy composition, the cooling water inlet temperature and outlet temperature, the average grain size and volume fraction of the initial ultrafine crystal grains, and the ratio of the second exothermic peak.
  • Each initial microcrystalline alloy was subjected to a heat treatment in which the temperature was raised to 430 ° C. in about 15 minutes and then held for 15 minutes to obtain a nanocrystalline soft magnetic alloy.
  • the average grain size and volume fraction of the fine crystal grains of each nanocrystalline soft magnetic alloy, the depth of the coarse crystal grain layer, the coercive force, B 80 and B 8000 , and handling properties were measured. Table 3 shows the measurement results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)

Abstract

 一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、10≦y≦22、0≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成を有し、平均粒径30 nm以下の初期超微結晶粒が非晶質母相中に5~30体積%の割合で分散した組織を有し、その示差走査熱量(DSC)曲線は結晶化開始温度TX1と化合物析出温度TX3との間に第一の発熱ピークと前記第一の発熱ピークより小さい第二の発熱ピークとを有し、前記第一の発熱ピーク及び前記第二の発熱ピークの総発熱量に対する前記第二の発熱ピークの発熱量の割合が3%以下である初期超微結晶合金。

Description

初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品
 本発明は、各種の磁性部品に好適な高飽和磁束密度及び優れた軟磁気特性を有するナノ結晶軟磁性合金、及びそれを製造するための中間合金としての初期超微結晶合金、ナノ結晶軟磁性合金の製造方法、並びにナノ結晶軟磁性合金からなる磁性部品に関する。
 各種のリアクトル、チョークコイル、パルスパワー磁性部品、トランス、モータ又は発電機の磁心、電流センサ、磁気センサ、アンテナ磁心、電磁波吸収シート等に用いる軟磁性材としては、珪素鋼、フェライト、非晶質合金及びナノ結晶合金がある。珪素鋼は安価で磁束密度が高いが、高周波では損失が大きく、かつ薄くしにくい。フェライトは飽和磁束密度が低いので、動作磁束密度が大きなハイパワー用途では磁気飽和しやすい。Co基非晶質合金は高価な上に、飽和磁束密度が1 T以下と低いので、ハイパワー用に使用すると部品が大きくなり、また熱的に不安定であるため経時変化により損失が増加する。従って、Fe基ナノ結晶合金が有望である。
 特開2007-107095号は、組成式:Fe100-x-y-zCuxByXz(但し、XはSi,S,C,P,Al,Ge,Ga,Beからなる群から選ばれた少なくとも一種の元素であり、x,y及びzはそれぞれ原子%で、0.1≦x≦3.0、10≦y≦20、0<z≦10.0、及び10<y+z≦24の条件を満たす数である。)により表され、組織の少なくとも一部が結晶粒径60 nm以下の結晶粒を非晶質母相中に30体積%以上有し、もって1.7 T以上の高い飽和磁束密度と低い保磁力を有するナノ結晶軟磁性合金を開示している。このナノ結晶軟磁性合金は、Fe基合金の溶湯を急冷することにより非晶質中に平均粒径30 nm以下の微結晶粒が30体積%未満の割合で析出したFe基非晶質合金薄帯を作製し、Fe基非晶質合金薄帯に高温短時間又は低温長時間の熱処理を施すことにより製造される。このFe基非晶質合金はナノ結晶組織の核となる初期微結晶を有するので、特有の発熱パターンを示す。すなわち、示差走査型熱量分析(DSC)において、低温側の結晶化開始温度TX1以降に現れる結晶化を示すブロードな第一の発熱ピークは、高温側の化合物析出温度TX3以降に現れる微結晶の析出及び成長を示す第三の発熱ピークまで継続する。
 特開2008-231533号は、組成式:Fe100-x-yAxXy(ただし、AはCu及び/又はAuであり、XはB,Si,S,C,P,Al,Ge,Ga及びBeからなる群から選ばれた少なくとも一種の元素であり、x及びyはそれぞれ原子%で、0≦x≦5、及び10≦y≦24の条件を満たす数である。)により表される組成を有し、薄帯の表面から120 nm超の深さの層部分に、平均粒径が60 nm以下の体心立方構造の結晶粒が非晶質中に30体積%以上分散した母相組織を有し、かつ薄帯の表面から120 nm以内の深さの層部分に非晶質層を有するFe基軟磁性合金薄帯を開示している。この合金薄帯では、表面側にナノ結晶層が形成され、ナノ結晶層の内側に非晶質層が形成されること、また非晶質層と母相との間に粗大結晶粒層が形成されることがある。粗大結晶粒層は低磁場領域で良好な角形性を示す。鉄損の低減のために、粗大結晶粒層の結晶粒径は母相の平均結晶粒径の2倍以下であるのが望ましいと記載されている。
 しかし、高飽和磁束密度及び低保磁力を有する特開2007-107095号のナノ結晶軟磁性合金及び特開2008-231533号の非晶質合金薄帯(初期超微結晶合金とも言う。)を安定的に量産するため種々検討した結果、実験用の小型装置で製造していた時には遭遇しない問題があることが分った。例えば、広幅の薄帯を大量に長時間製造すると薄帯が切れ易くなり、歩留まりが低下するだけでなく、出荷時のリールの巻き直し、コアへの加工等のハンドリング性が悪い。また1.5 T以上でヒステリシスが残り、磁気飽和性及び交流磁気特性に悪影響を与える。これらの問題は長時間の製造中に初期微結晶の密度や薄帯表面の組織が変化するために起こると考えられる。しかし、ナノ結晶軟磁性合金を製造するための非晶質合金薄帯(初期超微結晶合金)の特性は十分に評価されておらず、また粗大結晶粒層の軟磁気特性に対する影響も十分に検討されていない。
 従って本発明の目的は、特開2007-107095号及び特開2008-231533号のナノ結晶軟磁性合金に改善を加えるものであって、微結晶の核を有する初期超微結晶合金において、その後の結晶化の性状を調整した初期超微結晶合金と、この初期超微結晶合金を熱処理して靭性を改善し、磁気特性とハンドリング性が両立したナノ結晶軟磁性合金を提供することである。
 本発明のもう一つの目的は、不可避的に製造条件が変動しても初期超微結晶合金に最適な熱処理条件を設定することにより、優れたナノ結晶軟磁性合金を量産し得る方法を提供することである。
 本発明の初期超微結晶合金は、一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、10≦y≦22、0≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成、及び平均粒径30 nm以下の初期超微結晶粒が非晶質母相中に5~30体積%の割合で分散した組織を有し、その示差走査熱量(DSC)曲線は結晶化開始温度TX1と化合物析出温度TX3との間に第一の発熱ピークと前記第一の発熱ピークより小さい第二の発熱ピークとを有し、前記第一の発熱ピーク及び前記第二の発熱ピークの総発熱量に対する前記第二の発熱ピークの発熱量の割合が3%以下であることを特徴とする。
 本発明のナノ結晶軟磁性合金は、一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、10≦y≦22、0≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成を有し、非晶質母相中に平均粒径60 nm以下の微結晶粒が30体積%以上の割合で分散した組織を有し、前記微結晶粒の平均結晶粒径の2倍以上の平均粒径を有する粗大結晶粒を含む層の表面からの深さが2.9μm以下であることを特徴とする。
 前記ナノ結晶軟磁性合金は、前記初期超微結晶合金を熱処理することにより得られる。
 一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、10≦y≦22、0≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成を有し、非晶質母相中に平均粒径60 nm以下の微結晶粒が30体積%以上の割合で分散した組織を有するナノ結晶軟磁性合金を製造する本発明の方法は、
 前記組成を有する合金溶湯を回転する冷却ロール上に噴出して急冷することにより、平均粒径30 nm以下の初期超微結晶粒が非晶質母相中に5~30体積%の割合で分散した組織を有する初期超微結晶合金を製造し、その際前記初期超微結晶合金の示差走査熱量(DSC)曲線が結晶化開始温度TX1と化合物析出温度TX3との間に第一の発熱ピークと前記第一の発熱ピークより小さい第二の発熱ピークとを有し、前記第一の発熱ピーク及び前記第二の発熱ピークの総発熱量に対する前記第二の発熱ピークの発熱量の割合が3%以下となるような温度に前記冷却ロールの表面温度を保持し、次いで
 (TX3-50℃)~(TX3-30℃)の最高温度まで昇温する熱処理を、昇温時間及び保持時間を含めて5~30分間施すことを特徴とする。
 前記冷却ロールを水冷式とし、冷却水の入口温度(冷却ロールに入る直前の温度)を30~70℃に制御して前記冷却水の出口温度(冷却ロールから出た直後の温度)を40~80℃に保持するのが好ましい。冷却ロール中での冷却水の温度上昇は10~30℃程度が好ましい。また剥離時の薄帯表面温度を170~350℃に制御するのが好ましい。
 前記DSC曲線の第二の発熱ピークの開始温度TX2S及び終了温度TX2Eは400℃と460℃との間にある。前記熱処理の目標温度をTX2E±20℃に設定するのが好ましい。
 前記初期超微結晶合金及び前記ナノ結晶軟磁性合金の製造方法において、Feの一部を0.1~2原子%のNiで置換しても良い。
 本発明の磁性部品は上記ナノ結晶軟磁性合金を用いることを特徴とする。
 本発明により、製造条件の変動等にも係わらず初期超微結晶粒の粒径を均一化できるので、ナノ結晶軟磁性合金を安定的に量産することができる。本発明のナノ結晶軟磁性合金は、粗大結晶粒層の形成が抑制されたために十分な非晶質層を有するので、ハンドリング性を実質的に低下させることなく高い飽和磁束密度及び角形性並びに低い保磁力及び磁心損失という優れた軟磁気特性を有する。本発明の方法により、粗大結晶粒の形成を抑制しつつ安定した品質のナノ結晶軟磁性合金を効率よく製造することができる。
 このような特徴を有する本発明の初期超微結晶合金及びナノ結晶軟磁性合金は、各種磁性部品(巻磁心等)に利用可能であり、特に飽和磁束密度が高いので、磁気飽和が問題となるハイパワーの用途、例えばアノードリアクトル等の大電流用リアクトル、アクティブフィルタ用チョークコイル、平滑用チョークコイル、レーザ電源や加速器用のパルスパワー磁性部品、トランス、通信用パルストランス、モータ又は発電機の磁心、電流センサ、磁気センサ、アンテナ磁心、電磁波吸収シート等に好適である。
低い冷却能力の冷却ロールを用いて製造された初期超微結晶合金のロール接触面近傍の断面を示す概略図である。 高い冷却能力の冷却ロールを用いて製造された初期超微結晶合金のロール接触面近傍の断面を示す概略図である。 非晶質母相のナノ結晶化による第一の発熱ピーク及び化合物析出による第三の発熱ピークを有するDSC曲線を示すグラフである。 粗大結晶粒の生成による第二の発熱ピークを有するDSC曲線を示すグラフである。 粗大結晶粒層が薄い場合のB-H曲線を示すグラフである。 粗大結晶粒層が厚い場合のB-H曲線を示すグラフである。 DSC曲線における第一の発熱ピーク及び第二の発熱ピークの総発熱量を求める方法を示す概略図である。 DSC曲線における第二の発熱ピークの発熱量を求める方法を示す概略図である。 本発明の方法に用いる冷却ロールを示す概略断面図である。 冷却水の入口温度が低い場合及び高い場合における薄帯の厚さ方向の冷却速度分布を示すグラフである。 Febal.Cu1.4Si4B14の組成を有する実施例1のナノ結晶軟磁性合金薄帯のDSC曲線を示すグラフである。 高温短時間の熱処理パターン及び低温長時間の熱処理パターンを示すグラフである。 Febal.Cu1.4Si4B14の組成を有するナノ結晶軟磁性合金薄帯に高温短時間の熱処理をした場合と低温長時間の熱処理をした場合のB-H曲線を示すグラフである。 80 A/mにおける磁束密度B80と第二の発熱ピークの割合との関係を示すグラフである。 B80/B8000と第二の発熱ピークの割合との関係を示すグラフである。 実施例3-7のナノ結晶軟磁性合金薄帯のロール接触面近傍の断面を示すTEM写真である。 比較例3-1のナノ結晶軟磁性合金薄帯のロール接触面近傍の断面を示すTEM写真である。 実施例4のナノ結晶軟磁性合金薄帯において、保磁力Hcと第二の発熱ピークの割合との関係を示すグラフである。 実施例5のナノ結晶軟磁性合金薄帯において、保磁力Hcと第二の発熱ピークの割合との関係を示すグラフである。
 本発明の初期超微結晶合金及びナノ結晶軟磁性合金は通常薄帯状であるが、粉末状又はフレーク状でも良い。薄帯状の場合を例にとって、これらの合金を以下詳細に説明するが、勿論薄帯に限定されるものではない。ここで使用する用語「初期超微結晶粒」は、合金溶湯を急冷してなる非晶質合金(微結晶粒の核となる初期超微結晶粒が析出しているので、「初期超微結晶合金」と呼ぶ。)に析出した結晶核であって、熱処理により微結晶粒に成長するものを意味し、用語「微結晶粒」は前記初期超微結晶粒から熱処理により成長した微結晶粒を意味する。
[1] 初期超微結晶合金の結晶化と発熱ピーク
 図1(a) は冷却能力が低い(冷却効率が悪い)冷却ロールを用いた場合の初期超微結晶合金の冷却ロール接触面近傍の組織を示し、図1(b) は冷却能力が高い(冷却効率が良い)冷却ロールを用いた場合の初期超微結晶合金の冷却ロール接触面近傍の組織を示す。ロール面から離れた位置では、冷却過程でCu原子の拡散により凝集してCuクラスター(数 nm程度の規則的な格子)が形成され、Cuクラスターを核として初期超微結晶粒が析出する。実験室レベルの冷却能力の低い冷却ロールの場合、初期超微結晶粒はロール接触面近傍の領域にも析出し、合金の断面方向に偏りなく比較的高密度で存在するので、粗大化が抑制され、また残留する非晶質相のFe含有量が大きく低減するので化合物析出温度TX3が高い。一方、冷却能力が高い量産用の冷却ロールの場合、ロール接触面近傍ではCuの拡散が抑えられてCuクラスターが形成されにくいので、初期超微結晶粒の数密度は著しく低い。この傾向はフリー面側にもあるが、ロール接触面側により顕著に現れる。
 初期超微結晶合金を熱処理すると、初期超微結晶粒から微結晶粒への成長(ナノ結晶化)速度は遅いので、ナノ結晶化開始温度TX1から化合物析出温度TX3までの100℃以上の範囲にわたって、ナノ結晶化はゆっくり進む。その結果、図2に示すように、DSC曲線には300℃~500℃の間のナノ結晶化開始温度TX1と化合物析出温度TX3との間に、ナノ結晶化による発熱を表すブロードな第一の発熱ピークP1が現れる。
 ナノ結晶化過程では、残留非晶質相はFeを奪われてボロン濃度が高くなるために安定化し、結晶粒の成長を抑制すると考えられていた。ところが初期超微結晶合金を連続的に製造すると、図3に示すように第一の発熱ピークP1の途中に、例えば約400~460℃と狭い温度範囲の第二の発熱ピークP2が現れた。第二の発熱ピークP2は、初期超微結晶粒が少ないロール接触面近傍領域(初期超微結晶粒欠乏領域)における非晶質相の結晶化に伴う発熱により発生することが分った。初期超微結晶粒欠乏領域では熱処理により非晶質相の結晶化が急激に起こるので、母相の微結晶粒より粗大な結晶粒に成長するだけでなく、初期超微結晶粒欠乏領域が深いと深い粗大結晶粒層が形成され、実効結晶磁気異方性が大きくなり、磁気飽和性が悪化することが分った。
[2] 軟磁気特性に対する粗大結晶粒層の影響
 本発明のナノ結晶軟磁性合金は、表面から順にナノ結晶層、非晶質層、及びナノ結晶粒層を有する複合組織を有するが、粗大結晶粒層は非晶質層の中に粗大結晶粒が析出したものと言える。ここで使用する用語「層」は明瞭な境界で区分されたものではなく、所定の条件を満たす厚さ方向の範囲を意味する。例えば、ナノ結晶層は20 nm程度の微結晶粒が析出した極薄い範囲であり、粗大結晶粒層は母相中の微結晶粒の平均粒径の2倍以上の平均粒径を有する粗大結晶粒を含む厚さ方向の範囲である。具体的には、粗大結晶粒層の表面からの深さは2.9μm以下であり、好ましくは2.7μm以下であり、より好ましくは0.5~2.5μmである。
 粗大結晶粒層が薄い場合には、図4(a) に示すB-H曲線のように低磁場(80 A/m)での磁束密度B80と高磁場(8000 A/m)での磁束密度B8000(ほぼ飽和磁束密度Bsと同じ)との比B80/B8000が大きく、軟磁気特性が良好である。一方、粗大結晶粒層が厚い場合には、図4(b) に示すB-H曲線のようにB80/B8000が小さい。一般に、B80/B8000が大きいほど飽和磁化特性が良好である。B80/B8000は0.85以上が好ましく、0.88以上がより好ましい。
 保磁力Hcは、母相組織の平均結晶粒径だけでなく第二の発熱ピークの割合にも依存する。上記の通り、高い冷却能力の冷却ロールを用いて作製した初期超微結晶合金では急冷効果が合金のより深い部分まで届くので、初期超微結晶粒欠乏領域は広く、保磁力Hcは大きくなる。
 高いB80/B8000及び低い保磁力Hcの両方の条件を満たすには、粗大結晶粒層の形成が抑制された初期超微結晶合金を得る必要がある。このような初期超微結晶合金を熱処理することにより得られるDSC曲線では、ナノ結晶化総発熱量に対する第二の発熱ピークの割合が小さい。ナノ結晶化総発熱量は第一の発熱ピーク及び第二の発熱ピークの総発熱量であり、図5(a) に示すDSC曲線においてTX1からTX3までの曲線と両点を通る直線で囲まれた領域の面積Sに相当する。第二の発熱ピークP2の発熱量は、図5(b) に示すように第二の発熱ピークP2の開始温度TX2Sから終了温度TX2Eまでの曲線と両点を通る直線で囲まれた領域の面積S2に相当する。第一の発熱ピークP1の発熱量は面積S1(=S-S2)に相当する。従って、ナノ結晶化総発熱量に対する第二の発熱ピークの割合はS2/Sにより求められる。
 具体的には、ナノ結晶化総発熱量に対する第二の発熱ピークP2の発熱量の割合が3%以下であるとB80/B8000は0.85以上であり、第二の発熱ピークの割合が低下するにつれてB80/B8000は増加する。第二の発熱ピークの割合が1.5%以下になると、保磁力Hcは十分に小さくなる。このため、第二の発熱ピークの割合は0~3%が好ましく、0~1.5%がより好ましく、0~1.3%がより好ましい。
 粗大結晶粒の生成に伴って発生する第二の発熱ピークの大きさは冷却ロールの冷却能力に依存するが、冷却能力は、冷却ロールの表面温度及び周速、冷却ロールからの剥離温度等により決まる。一般に、冷却能力が高すぎると初期超微結晶粒が不足した領域が増え、熱処理により粗大結晶粒が増える。その上、第二の発熱ピークは長時間の連続運転により発現するので、冷却ロールの表面温度が長時間の連続運転中に変化していると推定される。そのため、冷却ロールの周速及び剥離温度の他に、冷却ロールの表面温度を決める冷却水の温度を調整する必要がある。
[3] 磁性合金
(1) 組成
 本発明のナノ結晶磁性合金は、一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、10≦y≦22、0≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成を有する。1.7 T以上の飽和磁束密度Bsを有するためには、bcc-Feの微細結晶(ナノ結晶)を有する組織となる必要があり、そのためにはFe含有量が高いことが必要である。具体的には、Fe含有量は75原子%以上が必要であり、好ましくは77原子%以上である。
 上記組成範囲内で、0.3≦x≦2.0、10≦y≦20、及び1≦z≦10で表される領域では、飽和磁束密度は1.74 T以上である。また、0.5≦x≦1.5、10≦y≦18、及び2≦z≦9で表される領域では、飽和磁束密度は1.78 T以上である。さらに、0.5≦x≦1.5、10≦y≦16、及び3≦z≦9で表される領域では、飽和磁束密度が1.8 T以上である。
 良好な軟磁気特性と1.7 T以上の飽和磁束密度Bsを両立させるために、この合金は、高いFe含有量でも安定的に非晶質相が得られるFe-B-Si系を基本組成を有し、核生成元素Aを含有する。具体的には、非晶質相を主相とする薄帯が安定的に得られるFeが88原子%以下のFe-B-Si系合金に、Feと非固溶であるCu及び/又はAu(核生成元素A)を添加することにより初期超微結晶粒を析出させ、その後の熱処理により均質に微結晶粒に成長させる。
 A元素の量xが少なすぎると微結晶化が難しく、逆に5原子%を超えると溶湯の急冷により得られる非晶質相を主相とする薄帯が脆化する。A元素の量xは0.3~2原子%が好ましく、0.5~1.6原子%がより好ましく、1~1.5原子%が最も好ましく、1.2~1.5原子%が特に好ましい。A元素としてはコスト的にCuが好ましい。Auを含有する場合、Fe量の1.5原子%以下とするのが好ましい。
 B(ボロン)は非晶質相の形成を促進する元素である。Bが10原子%未満であると非晶質相を主相とする薄帯を得るのが困難であり、22原子%を超えると飽和磁束密度が1.7 T未満となる。従って、10≦y≦22(原子%)の条件を満たすと、飽和磁束密度を高く維持しつつ非晶質相が安定して得られる。Bの量yは好ましくは12~20原子%であり、より好ましくは12~18原子%であり、最も好ましくは12~16原子%である。
 X元素(特にSi)の添加により結晶磁気異方性の大きいFe-B又はFe-P(Pを添加した場合)が析出する温度が高くなるため、熱処理温度を高くできる。高温の熱処理を施すことにより微微結晶粒の割合が増え、Bsが増加し、B-H曲線の角形性が改善されるとともに、薄帯表面の変質又は変色を抑えることもできる。X元素の量zの下限は0原子%でも良いが、1原子%以上であると薄帯の表面にX元素による酸化物層が形成され、内部の酸化を十分に抑制できる。また10原子%を超えるとBsが1.7 T未満となる。X元素の量zは好ましくは2~9原子%であり、より好ましくは3~8原子%であり、最も好ましくは4~7原子%である。X元素としてはSiが好ましい。
 X元素のうちPは非晶質相の形成能を向上させる元素であり、微結晶粒の成長を抑えるとともに、Bの酸化皮膜への偏析を抑える。そのため、Pは高靭性、高Bs及び良好な軟磁気特性の実現に好ましい。Pの含有により、例えば軟磁性合金薄帯を半径1 mmの丸棒に巻きつけても割れが発生しなくなる。この効果はナノ結晶化熱処理の昇温速度に係わらず得られる。X元素として他の元素S,C,Al,Ge,Ga及びBeも用いることができる。これらの元素の含有により磁歪及び磁気特性を調整できる。X元素はまた表面に偏析しやすく、強固な酸化皮膜の形成に有効である。
 Feの一部をNi,Mn,Co,V,Cr,Ti,Zr,Nb,Mo,Hf,Ta及びWから選ばれた少なくとも一種の元素Dで置換しても良い。元素Dの量は好ましくは0.01~10原子%であり、より好ましくは0.01~3原子%であり、最も好ましくは0.01~1.5原子%である。これらの元素Dのうち、Ni,Mn,Co,V及びCrはB濃度の高い領域を表面側に移動させる効果を有し、表面に近い領域から母相に近い組織とし、もって軟磁性合金薄帯の軟磁気特性(透磁率、保磁力等)を改善する。またA元素及びメタロイド元素とともに熱処理後も残留する非晶質相に優先的に入るため、Fe含有量の高い微結晶粒の成長を抑制し、微結晶粒の平均粒径を低下させ、もって飽和磁束密度Bs及び軟磁気特性を改善する。
 特にFeの一部をA元素とともにFeに固溶するCo又はNiで置換すると、添加し得るA元素の量が増加し、もって結晶組織の微細化が促進され、軟磁気特性が改善される。Ni置換量は0.1~2原子%が好ましく、0.5~1原子%がより好ましい。Ni置換量が0.1原子%未満ではハンドリング性の向上効果が不十分であり、2原子%を超えるとBs、B80及びHcが低下する。
 またTi,Zr,Nb,Mo,Hf,Ta及びWも同様にA元素及びメタロイド元素とともに熱処理後も残留する非晶質相に優先的に入るため、飽和磁束密度Bs及び軟磁気特性の改善に寄与する。一方、原子量の大きいこれらの元素が多すぎると、単位重量当たりのFeの含有量が低下して軟磁気特性が悪化する。これらの元素は総量で3原子%以下とするのが好ましい。特にNb及びZrの場合、含有量は合計で2.5原子%以下が好ましく、1.5原子%以下がより好ましい。Ta及びHfの場合、含有量は合計で1.5原子%以下が好ましく、0.8原子%以下がより好ましい。
(2) 母相の組織
 熱処理後の母相は、平均粒径60 nm以下の体心立方(bcc)構造の微結晶粒が30%以上の体積分率で非晶質相中に分散した組織を有する。微結晶粒の平均粒径が60 nmを超えると軟磁気特性が低下する。微結晶粒の体積分率が30%未満では、非晶質の割合が多すぎ、飽和磁束密度が低い。熱処理後の微結晶粒の平均粒径は40 nm以下が好ましく、30 nm以下がより好ましい。微結晶粒の平均粒径の下限は一般に12 nmであり、好ましくは15 nmであり、より好ましくは18 nmである。また熱処理後の微結晶粒の体積分率は50%以上が好ましく、60%以上がより好ましい。60 nm以下の平均粒径及び30%以上の体積分率で、Fe基非晶質合金より磁歪が低く軟磁性に優れた合金薄帯が得られる。同組成のFe基非晶質合金薄帯は磁気体積効果により比較的大きな磁歪を有するが、bcc-Feを主体とする微結晶粒が分散した本発明のナノ結晶軟磁性合金は磁気体積効果により生じる磁歪がはるかに小さく、ノイズ低減効果が大きい。
[4] 製造方法
(1) 合金溶湯
 合金溶湯はFe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、10≦y≦22、0≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成を有する。A元素としてCuを使用した場合を例にとって、製造方法を説明する。
(2) 溶湯の急冷
 合金溶湯の急冷は単ロール法により行うことができる。溶湯温度は合金の融点より50~300℃高いのが好ましく、例えば初期超微結晶粒が析出した厚さ数十μmの薄帯を製造する場合、1300℃の溶湯をノズルから冷却ロール上に噴出させるのが好ましい。単ロール法における雰囲気は、合金が活性な金属を含まない場合は大気又は不活性ガス(Ar、窒素等)であり、活性な金属を含む場合は不活性ガス(Ar、He、窒素等)又は真空である。表面に酸化皮膜を形成するためには、溶湯の急冷を酸素含有雰囲気(例えば大気)中で行うのが好ましい。
 初期超微結晶粒の生成は合金薄帯の冷却速度と時間に密接に関連する。冷却過程でCuは熱拡散により凝集してクラスターを形成し、初期超微結晶粒となる。従って、冷却速度が高い表面域では熱拡散が起きにくく、初期超微結晶粒が生成しにくいので、粗大結晶粒層が形成される(第二の発熱ピークが発現する)。そのため、初期超微結晶粒の体積分率を制御するのが重要である。初期超微結晶粒の体積分率を制御する手段の一つは、冷却ロールの周速の制御である。冷却ロールの周速が速くなると初期超微結晶粒の体積分率が低減し、遅くなると増加する。冷却ロールの周速は15~50 m/sが好ましく、20~40 m/sがより好ましく、25~35 m/sが最も好ましい。冷却ロールの材質は、高熱伝導率の純銅、又はCu-Be、Cu-Cr、Cu-Zr、Cu-Zr-Cr等の銅合金が適している。
 大量生産の場合、又は厚い及び/又は広幅の薄帯を製造する場合、冷却ロールは水冷式が好ましい。冷却ロールの水冷は初期超微結晶粒の体積分率(第二の発熱ピークの発現)に大きな影響を有する。第二の発熱ピークを制御するには、冷却ロールの冷却能力(冷却速度と言っても良い)を維持することが有効である。そこで量産ラインにおいては、冷却ロールの冷却能力は冷却水の温度に相関しており、冷却水を所定の温度以上に保つのが効果的である。
 図6は本発明の方法に用いる冷却ロールの断面構造を示す。冷却ロール1の上面に近接して合金溶湯を噴出するノズル2が設けられており、合金溶湯は冷却ロール1により急冷されて初期超微結晶合金薄帯3が得られる。冷却ロール1の両端には、冷却水の入口11及び出口12が設けられており、入口11と出口12の間の流路を冷却水が流れる。
 図7は薄帯の厚さ方向の冷却速度の分布を示す。薄帯の冷却速度は冷却ロール1の表面に接している部分で最も速く、内部に向かうにつれて低下し、フリー面で再び空冷により若干高い。曲線Bに示すように冷却水の入口温度が低いと冷却速度が高いため、深い初期超微結晶粒欠乏領域(初期超微結晶粒の数密度が低く、体積分率が不足している)が形成され、第二の発熱ピークの割合が大きい。その結果、ナノ結晶軟磁性合金の軟磁気特性は悪化する。一方、曲線Aに示すように冷却水の入口温度が高いと冷却速度が低いために、浅い初期超微結晶粒欠乏領域が形成され、第二の発熱ピークの割合が小さい。その結果、ナノ結晶軟磁性合金は優れた軟磁気特性を有する。このように冷却水の入口温度を調節することにより薄帯の冷却速度を制御することができ、もって第二の発熱ピークの割合を低減し、得られるナノ結晶軟磁性合金の軟磁気特性を改善することができる。合金組成及び製造ライン条件に依存するが、冷却水の入口温度は30~70℃が好ましく、40~70℃がより好ましく、50~70℃が最も好ましい。また冷却水の出口温度は40~80℃が好ましく、50~80℃がより好ましい。
(3) 剥離温度
 急冷した合金薄帯と冷却ロールとの間にノズルから不活性ガス(窒素等)を吹き付けることにより、合金薄帯を冷却ロールから剥離する。このときの合金薄帯の剥離温度も初期超微結晶粒の体積分率に影響を与えると考えられる。薄帯の剥離温度は不活性ガスを吹き付けるノズルの位置(剥離位置)を変えることにより調整できる。剥離温度は170~350℃であり、好ましくは200~340℃であり、より好ましくは250~330℃である。剥離温度が170℃未満であると、急冷が進んで合金組織がほぼ非晶質となり、Cuの凝集、Cuクラスターの形成、及び初期超微結晶粒の析出に至らず、初期超微結晶合金が得られない。上記した冷却ロールでの冷却速度が適正な場合、薄帯の表面域は急冷によりCu量が減って初期超微結晶粒が生成されないが、内部では冷却速度が比較的遅いために初期超微結晶粒が表面域より多く分布し、初期超微結晶粒が均質に生成される。その結果、内部の母相より高いB濃度の(Feに対するBの割合が大きい)層が表面域(深さ30~130 nm)に形成される。表面近傍の高B濃度の非晶質層により、初期超微結晶合金薄帯は良好な靭性を有することができる。剥離温度が350℃超であると、Cuによる結晶化が進み過ぎ、表面近傍に高B濃度非晶質層が形成されないので、十分な靭性が得られにくい。
 剥離した初期超微結晶合金薄帯の内部はまだ比較的高温であるので、さらなる結晶化を防止するために、巻き取る前に初期超微結晶合金薄帯を十分に冷却する。例えば、剥離した初期超微結晶合金薄帯に不活性ガス(窒素等)を吹き付けて、実質的に室温まで冷却した後巻き取る。
(4) 初期超微結晶合金の薄帯
 初期超微結晶合金の薄帯は、平均粒径が30 nm以下の初期超微結晶粒が非晶質母相中に5~30体積%の割合で分散した組織を有する。初期超微結晶粒の平均粒径が30 nm超であると、下記する熱処理を施しても微結晶粒が粗大化しすぎ、軟磁気特性が劣化する。優れた軟磁気特性を得るためには、初期超微結晶粒の平均粒径は25 nm以下が好ましく、20 nm以下がより好ましく、10 nm以下が最も好ましく、5 nm以下が特に好ましい。初期超微結晶粒の平均粒径の下限は、測定限界を考慮して0.5 nm程度が好ましい。ただし、非晶質母相中に初期超微結晶粒が存在する必要があるので、初期超微結晶粒の平均粒径は1 nm以上であるのが好ましく、2 nm以上であるのがより好ましい。初期超微結晶合金薄帯における初期超微結晶粒の体積分率は5~30%の範囲内にある。初期超微結晶粒の体積分率が30%を超えると初期超微結晶粒の平均粒径も30 nm超となる傾向があり、合金薄帯は十分な靭性を有さず、後工程でのハンドリングが困難となる。一方、初期超微結晶粒がないと(完全に非晶質であると)、かえって熱処理により粗大結晶粒に成長し易い。初期超微結晶粒の体積分率は10~30%が好ましく、15~30%がより好ましい。
 初期超微結晶粒間の平均距離(重心間の距離)が50 nm以下であると、微結晶粒の磁気異方性が平均化され、実効結晶磁気異方性が低下するので好ましい。平均距離が50 nmを超えると、磁気異方性の平均化の効果が薄れ、実効結晶磁気異方性が高くなり、軟磁気特性が悪化する。
(5) 熱処理
 初期超微結晶合金を高磁束密度の軟磁性合金とするために、結晶化温度以上で短時間熱処理を施す必要がある。初期超微結晶粒が少ない領域では結晶間距離が大きいために初期超微結晶粒が粗大化し易いが、高温短時間の熱処理では初期超微結晶粒の成長過程で熱処理が終了するため、初期超微結晶粒が粗大化しにくい。高温短時間の熱処理は、昇温速度、最高到達温度及び熱処理時間を調整することにより行うことができる。
 熱処理温度は結晶化開始温度TX1以上、化合物析出温度TX3以下である必要があり、例えば400~500℃の範囲が良い。従来の熱処理では(TX1+50℃)~(TX1+100℃)の温度まで昇温し、熱処理時間は昇温時間を含めて約30~120分間とするが、本発明では(TX3-50℃)~(TX3-30℃)と比較的高い温度まで昇温し、熱処理時間を昇温時間を含めて5~30分間と比較的短くする。これにより80 A/mにおける磁束密度B80を向上できる。熱処理温度は430~470℃が好ましく、昇温時間を含めた熱処理時間は10~25分間が好ましい。
(a) 熱処理雰囲気
 熱処理雰囲気は空気でもよいが、Si,Fe,B及びCuを表面側に拡散させることにより所望の層構成を有する酸化皮膜を形成するために、熱処理雰囲気の酸素濃度は6~18%が好ましく、8~15%がより好ましく、9~13%が最も好ましい。熱処理雰囲気は窒素、Ar、ヘリウム等の不活性ガスと酸素との混合ガスが好ましい。熱処理雰囲気の露点は-30℃以下が好ましく、-60℃以下がより好ましい。
(b) 磁場中熱処理
 磁場中熱処理により軟磁性合金薄帯に良好な誘導磁気異方性を付与するために、熱処理温度が200℃以上である間(20分以上が好ましい)、昇温中、最高温度の保持中及び冷却中のいずれでも、軟磁性合金を飽和させるのに十分な強さの磁場を印加するのが好ましい。磁場強度は軟磁性合金薄帯の形状に応じて異なるが、薄帯の幅方向(環状磁心の場合、高さ方向)及び長手方向(環状磁心の場合、円周方向)のいずれに印加する場合でも8 kAm-1以上が好ましい。磁場は直流磁場、交流磁場、パルス磁場のいずれでも良い。磁場中熱処理により高角形比又は低角形比の直流ヒステリシスループを有する軟磁性合金薄帯が得られる。磁場を印加しない熱処理の場合、軟磁性合金薄帯は中程度の角形比の直流ヒステリシスループを有する。
(6) 表面処理
 ナノ結晶軟磁性合金に、必要に応じてSiO2、MgO、Al2O3等の酸化物被膜を形成しても良い。表面処理を熱処理工程中に行うと酸化物の結合強度が上がる。必要に応じて軟磁性合金薄帯からなる磁心に樹脂を含浸させても良い。
[5] 磁性部品
 本発明のナノ結晶軟磁性合金を用いた磁性部品(巻磁心等)は飽和磁束密度が高いので、磁気飽和が問題となるハイパワーの用途に好適であり、例えばアノードリアクトル等の大電流用リアクトル、アクティブフィルタ用チョークコイル、平滑用チョークコイル、レーザ電源や加速器等に用いられるパルスパワー磁性部品、トランス、通信用パルストランス、モータ又は発電機の磁心、ヨーク材、電流センサ、磁気センサ、アンテナ磁心、電磁波吸収シート等が挙げられる。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。各実施例及び比較例において、初期超微結晶合金薄帯の剥離温度、第二の発熱ピークの割合、及び微結晶粒の平均粒径及び体積分率は下記の方法により求めた。
(1) 剥離温度の測定
 ノズルから吹き付ける窒素ガスにより冷却ロールから剥離するときの初期超微結晶合金薄帯の温度を放射温度計(アピステ社製、型式:FSV-7000E)により測定し、剥離温度とした。
(2) 第二の発熱ピークの割合の測定
 示差走査熱量計(株式会社リガク製DSC-8230)を用いて得た図5(a) に示すDSC曲線において、温度TX1,TX3,TX2S及びTX2Eを求めた。各温度は、前後の曲線の変曲点から延ばした接線の交点における温度とした。ナノ結晶化に伴う第一の発熱ピークP1と第二の発熱ピークP2との総発熱量(図5(a) に示す面積S)に対する第二の発熱ピークの発熱量(図5(b) に示す面積S2)の割合を、S2/Sの式により求めた。
(3) 微結晶粒の平均粒径及び体積分率の測定
 微結晶粒(初期超微結晶粒も同じ)の平均粒径は、各試料のTEM写真から任意に選択したn個(30個以上)の微結晶粒の長径DL及び短径DSを測定し、Σ(DL+DS)/2nの式に従って平均することにより求めた。また各試料のTEM写真に長さLtの任意の直線を引き、各直線が微結晶粒と交差する部分の長さの合計Lcを求め、各直線に沿った結晶粒の割合LL=Lc/Ltを計算した。この操作を5回繰り返し、LLを平均することにより微結晶粒の体積分率を求めた。ここで、体積分率VL=Vc/Vt(Vcは微結晶粒の体積の総和であり、Vtは試料の体積である。)は、VL≒Lc3/Lt3=LL 3と近似的に扱った。
(4) ハンドリング性の評価
 幅25 mm及び長さ125 mmの薄帯状試料片の長手方向両端を固定し、張力をかけながら捻ったときの破壊の有無により、下記の基準でハンドリング性を評価した。実際のハンドリングでは、180°捻っても破壊しなければ良い。
  ◎:180°捻っても破壊しなかった。
  ○:90°捻っても破壊しなかったが、180°捻ったときには破壊した。
実施例1
 Febal.Cu1.4Si4B14の組成(原子%)を有する合金溶湯を、図6に示す銅合金製の冷却ロールを用いて、下記条件の単ロール法により大気中で急冷し、250℃の温度で冷却ロールから剥離することにより、非晶質母相中に平均粒径3 nmの初期超微結晶粒が25%の体積分率で分散した組織を有する幅25 mm、厚さ20μm及び長さ1 kmの初期超微結晶合金薄帯を得た。
 冷却ロールの周速:28 m/s
 冷却水の冷却ロールへの入口温度:50℃
 冷却水の冷却ロールからの出口温度:60℃
 この初期超微結晶合金薄帯のDSC曲線を図8に示す。約350℃の結晶化開始温度TX1から約500℃の化合物析出温度TX3までの広い温度範囲にわたってナノ結晶化に由来するブロードな第一の発熱ピークP1が現れ、500℃以上にFe-B系化合物の析出にともなうシャープな第三の発熱ピークP3が現れた。第一の発熱ピークの途中に小さな第二の発熱ピークP2があり、その開始温度TX2Sは420℃で、終了温度TX2Eは440℃であった。第一の発熱ピークP1と第二の発熱ピークP2の総発熱量(PC1+PC3)に対する第二の発熱ピークの発熱量(PC3)の割合[PC3/(PC1+PC3)]は1.0%であった。
 この初期超微結晶合金薄帯から切り出した25 mm×120 mmの単板試料を熱処理炉に投入し、約15分で460℃まで急速に昇温し(平均昇温速度:約30℃/分)、460℃に到達後直ちに炉から取り出して空冷する熱処理A(図9に示す)を施し、ナノ結晶軟磁性合金薄帯を作製した。試料を炉に投入した時を熱処理開始時間とした。このナノ結晶軟磁性合金薄帯における微結晶粒の平均粒径及び体積分率を測定した結果、このナノ結晶軟磁性合金薄帯は非晶質相中に平均粒径が20 nmの微結晶粒が45%の体積分率で分散していることが分った。
 透過型電子顕微鏡(TEM)写真から、ナノ結晶軟磁性合金は表面側から順に平均結晶粒径が20 nm以下のナノ結晶層、非晶質相の中に平均粒径50 nmの粗大結晶粒を含有する層、平均粒径が20 nmのナノ結晶粒を含有する母相層により構成されていることが確認された。粗大結晶粒層は表面から深さ1μm以内にあり、ほとんど拡大されていなかった。その結果、第二の発熱ピークの割合は小さかった。
比較例1
 図6に示す銅合金製冷却ロールを用いて、実施例1と同じ合金溶湯を28 m/sの冷却ロール周速、冷却水の25℃の入口温度及び35℃の出口温度で大気中で急冷し、250℃の温度で冷却ロールから剥離し、非晶質母相中に平均粒径1 nmの初期超微結晶粒が4%の体積分率で分散した組織を有する幅25 mm及び厚さ20μmの初期超微結晶合金薄帯を得た。冷却ロール及び冷却水の温度はいずれも実施例1より低かった。この初期超微結晶合金のDSC曲線にも第二の発熱ピークP2が認められたが、ナノ結晶化総発熱量に対する第二の発熱ピークの発熱量の割合は3.1%であった。
 この初期超微結晶合金薄帯に実施例1と同じ熱処理を施し、ナノ結晶軟磁性合金薄帯を作製した。このナノ結晶軟磁性合金薄帯は、非晶質相中に平均粒径が26 nmの微結晶粒が40%の体積分率で分散した組織を有していた。しかし、TEM観察により、合金層内に平均粒径が50 nmの粗大結晶粒の層が約3.0μmの深さまで形成されていることが分った。そのため、実効結晶磁気異方性が大きくなり、良好な軟磁気特性が得られなかった。
実施例2
 軟磁気特性の熱処理条件への依存性を調べるために、Febal.Cu1.4Si4B14の組成(原子%)を有する合金溶湯を図6に示す銅合金製冷却ロール(周速:28 m/s、冷却水の入口温度:50℃、出口温度:60℃)で大気中で急冷し、250℃の温度で冷却ロールから剥離し、幅25 mm及び厚さ20μmの初期超微結晶合金薄帯を作製した。この初期超微結晶合金の非晶質母相中には、平均粒径2 nmの初期超微結晶粒が25%の体積分率で分散していた。
 この初期超微結晶合金に、15分で460℃まで昇温後直ちに空冷する図9に示す高温短時間の熱処理Aを施し、ナノ結晶軟磁性合金Aを得た。また、同じ初期超微結晶合金に、15分で410℃まで昇温後45分保持し、空冷する図9に示す低温長時間の熱処理Bを施し、ナノ結晶軟磁性合金Bを得た。両ナノ結晶軟磁性合金A及びBとも、非晶質母相中に平均粒径が20 nmの微結晶粒が40%の体積分率で分散してした。両者のB-H曲線を図10に示す。両曲線とも1.5 T以上の磁束密度領域で昇磁曲線と減磁曲線の間にヒステリシスが生じている。このヒステリシスは、結晶磁気異方性が高く、飽和しにくい粗大結晶粒層に起因すると考えられる。このヒステリシスは熱処理条件により異なり、低温長時間の熱処理Bを施した合金Bには800 A/m程度までヒステリシスが残るのに対して、高温短時間の熱処理Aを施した合金Aではヒステリシスは300 A/m付近で解消され、低磁場での飽和性が著しく改善された。
実施例3
 図6に示す銅合金製冷却ロール(周速:27~32 m/s、冷却水の入口温度:25~60℃、出口温度:33~72℃)を用いて、表1に示す組成(原子%)を有する合金溶湯を大気中で急冷し、250℃の薄帯温度で冷却ロールから剥離し、幅25 mm及び厚さ16~25μmの初期超微結晶合金薄帯を作製した。各初期超微結晶合金薄帯の合金組成、冷却水の入口温度及び出口温度、初期超微結晶粒の平均粒径及び体積分率、並びに第二の発熱ピークの割合を表1に示す。これらの初期超微結晶合金の非晶質母相中には、平均粒径1~5 nmの初期超微結晶粒が3~30%の体積分率で分散していた。ナノ結晶化総発熱量に対する第二の発熱ピークの割合を実施例1と同様に求めた。
 各初期超微結晶合金薄帯に対して最大のB80が得られるように400~460℃の範囲内の温度で15~30分間のナノ結晶化熱処理を施し、ナノ結晶軟磁性合金薄帯を作製した。各ナノ結晶軟磁性合金の微結晶粒の平均粒径及び体積分率、粗大結晶粒層[母相中の微結晶粒の平均粒径の2倍以上の平均粒径(約50~100 nm)を有する粗大結晶粒を含む層]の深さ、保磁力、B80及びB8000、並びにハンドリング性を測定した。測定結果を表1に示す。各軟磁性合金薄帯は、平均粒径15~30 nmの微結晶粒が30~50%の体積分率で分散した組織を有していた。
 大量生産では軟磁気特性とハンドリング性の両立を図ることは非常に重要であり、例えば180°まで捻じれても軟磁気特性(B80/B8000)が悪いと製品としては不満足であり、また軟磁気特性が良くても90°まで捻れないとハンドリングが困難で、生産性が低い。本実施例では、軟磁気特性とハンドリング性の両立が達成された。
 図11は、Febal.CuxSi4B14合金(x=1.4、1.5)のB80と、ナノ結晶化総発熱量に対する第二の発熱ピークの発熱量の割合との関係を示す。x=1.4の場合及びx=1.5の場合ともに同じ線上に載った。また、B80/B8000とナノ結晶化総発熱量に対する第二の発熱ピークの発熱量の割合との関係を図12に示す。
Figure JPOXMLDOC01-appb-T000001
表1(続き)
Figure JPOXMLDOC01-appb-I000002
 表1、図11及び図12から、ナノ結晶化総発熱量に対する第二の発熱ピークの発熱量の割合が減少すると粗大結晶粒層が浅くなり(粗大結晶粒が減少し)、また第二の発熱ピークの割合が増加するとB80/B8000が減少し、磁気的飽和特性が悪化することが分る。表1に示すように、第二の発熱ピークの割合は粗大結晶粒層の深さに対応し、粗大結晶粒層が深くなると磁気的に飽和しにくい成分の割合が増え、80 A/mという低磁場での磁束密度が低下する。第二の発熱ピークの割合が3%以下の場合、粗大結晶粒層は3μm未満となり、B80/B8000比はほぼ85%以上となる。保磁力Hcは軟磁気特性が良好な母相の性質を反映するため、母相の平均結晶粒径の大小で値が左右される。全体的な傾向としては、ロールの冷却能力を上げると、粗大結晶粒層の深さが深くなり、母相の平均結晶粒径は大きくなる。すなわち、B80が減少し、Hcが増加する傾向にあるが、Cu量を増やすと、初期超微結晶合金の母相の初期超微結晶粒を増やすことができ、Hcを減少させられることが分かった。一方、いずれの試料でも第二の発熱ピークが現れているが、ハンドリング性は概ね問題はなかった。第二の発熱ピークの割合が比較的大きくてもハンドリング特性は良好である。
 図13は、実施例3-7と比較例3-1の熱処理後の試料のロール接触面側の表面近傍の断面を示す。母相の平均結晶粒径は15 nm程度であり、この2倍以上の平均粒径を有する粗大結晶粒を含む層の合金表面からの深さを両矢印で示す。なお、表面にある白い層はTEM写真を撮るために設けたカーボン系の表面保護膜である。図13(a) は実施例3-7を示し、第二の発熱ピークの割合が0.7%であるとき粗大結晶粒層の深さは0.7μm程度であった。一方、図13(b) の比較例3-1では、第二の発熱ピークの割合が3.1%であるとき粗大結晶粒層は3.0μmであった。
実施例4
 第二の発熱ピークの発現量を変えるために、冷却水の入口温度を25℃から60℃まで変えて出口温度を35℃~70℃に制御し、Febal.Cu1.4Si4B14の組成(原子%)を有する合金溶湯を実施例1と同様に28 m/sの冷却ロール周速で大気中で急冷し、250℃の薄帯温度で冷却ロールから剥離し、幅25 mm及び厚さ20μmの初期超微結晶合金薄帯を作製した。この初期超微結晶合金の非晶質母相中に、平均粒径1~5 nmの初期超微結晶粒が5~25%の体積分率で分散していた。この初期超微結晶合金に、430℃まで約15分で昇温した後15分保持する熱処理を施してナノ結晶軟磁性合金を得た。このナノ結晶軟磁性合金の保磁力Hcとナノ結晶化総発熱量に対する第二の発熱ピークの発熱量の割合との関係を図14に示す。図14から明らかなように、保磁力Hcは第二の発熱ピークの割合が1.5%では15 A/mであったが、約1.3%では10 A/mまで減少した。第二の発熱ピークの割合が1.1%以下では、保磁力Hcは6~8 A/mになった。
実施例5
 ロールの冷却水の入口温度を35~70℃として、出口温度を44~82℃に制御し、Febal.Ni1Cu1.5Si4B14の組成を有する合金溶湯を実施例1と同様に28 m/sの冷却ロールの周速で大気中で急冷し、250℃の薄帯温度で冷却ロールから剥離し、幅25 mm及び厚さ20μmの初期超微結晶合金薄帯を作製した。各初期超微結晶合金薄帯の合金組成、冷却水の入口温度及び出口温度、初期超微結晶粒の平均粒径及び体積分率、並びに第二の発熱ピークの割合を表2に示す。初期超微結晶合金の非晶質母相中に平均粒径2~5 nmの初期超微結晶粒が18~26%の体積分率で分散していた。
 各初期超微結晶合金に約15分で430℃まで昇温した後15分間保持する熱処理を施してナノ結晶軟磁性合金を得た。各ナノ結晶軟磁性合金の微結晶粒の平均粒径及び体積分率、粗大結晶粒層の深さ、保磁力、B80及びB8000、並びにハンドリング性を測定した。測定結果を表2に示す。
 保磁力Hcと第二の発熱ピークの割合との関係を図15に示す。第二の発熱ピークの割合が2.6%でも1.57 Tと高いB80が得られ、第二の発熱ピークの割合が1.5%以上でも保磁力Hcは10 A/m以下であった。これは、Niを含有することにより初期微結晶の数密度が低い領域での結晶粒の成長が抑制されたためと考えられる。
 表1に示すNiを含有しない実施例3の合金と比べて、第二の発熱ピークの割合が高い場合でも粗大結晶粒層が深くならず、保磁力Hcの増加が抑えられた。Niを含有することにより粗大結晶粒層の拡大が抑えられ、ハンドリング特性と軟磁気特性の両立が容易になることが分かる。以上より、適度な量のNiの含有により軟磁気特性の製造条件依存性を低減し、生産効率を改善できることが分る。
Figure JPOXMLDOC01-appb-T000003
表2(続き)
Figure JPOXMLDOC01-appb-I000004
実施例6
 Feの一部を各種元素で置換した表3に示す組成を有する合金溶湯を、実施例1と同様に28 m/sの冷却ロールの周速で冷却水の入口温度を50℃として大気中で急冷し(出口温度:59~63℃)、250℃の薄帯温度で冷却ロールから剥離し、幅25 mm及び厚さ20μmの初期超微結晶合金薄帯を作製した。初期超微結晶合金の非晶質母相中に平均粒径1~10 nmの初期超微結晶粒が5~30%の体積分率で分散していた。ロールの冷却水温度を変えて、各初期超微結晶合金の第二の発熱ピークの割合を測定した。合金組成、冷却水の入口温度及び出口温度、初期超微結晶粒の平均粒径及び体積分率、並びに第二の発熱ピークの割合を表3に示す。
 各初期超微結晶合金に、約15分で430℃まで昇温し後15分間保持する熱処理を施して、ナノ結晶軟磁性合金を得た。各ナノ結晶軟磁性合金の微結晶粒の平均粒径及び体積分率、粗大結晶粒層の深さ、保磁力、B80及びB8000、並びにハンドリング性を測定した。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
表3(続き)
Figure JPOXMLDOC01-appb-I000006
    

Claims (7)

  1. 一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、10≦y≦22、0≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成を有し、平均粒径30 nm以下の初期超微結晶粒が非晶質母相中に5~30体積%の割合で分散した組織を有する初期超微結晶合金であって、その示差走査熱量(DSC)曲線は結晶化開始温度TX1と化合物析出温度TX3との間に第一の発熱ピークと前記第一の発熱ピークより小さい第二の発熱ピークとを有し、前記第一の発熱ピーク及び前記第二の発熱ピークの総発熱量に対する前記第二の発熱ピークの発熱量の割合が3%以下であることを特徴とする初期超微結晶合金。
  2. 請求項1に記載の初期超微結晶合金において、前記初期超微結晶合金において、Feの一部を0.1~2原子%のNiで置換したことを特徴とする初期超微結晶合金。
  3. 一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0≦x≦5、10≦y≦22、10≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成を有し、非晶質母相中に平均粒径60 nm以下の微結晶粒が30体積%以上の割合で分散した組織を有するナノ結晶軟磁性合金であって、前記微結晶粒の平均粒径の2倍以上の平均粒径を有する粗大結晶粒を含む層の表面からの深さが2.9μm以下であることを特徴とするナノ結晶軟磁性合金。
  4. 請求項3に記載のナノ結晶軟磁性合金において、請求項1又は2に記載の初期超微結晶合金を熱処理して得たものであることを特徴とするナノ結晶軟磁性合金。
  5. 一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、10≦y≦22、10≦z≦10、及びx+y+z≦25の条件を満たす数である。)により表される組成を有し、非晶質母相中に平均粒径60 nm以下の微結晶粒が30体積%以上の割合で分散した組織を有するナノ結晶軟磁性合金の製造方法において、
     前記組成を有する合金溶湯を回転する冷却ロール上に噴出して急冷することにより、平均粒径30 nm以下の初期超微結晶粒が非晶質母相中に5~30体積%の割合で分散した組織を有する初期超微結晶合金を製造し、その際前記初期超微結晶合金の示差走査熱量(DSC)曲線が結晶化開始温度TX1と化合物析出温度TX3との間に第一の発熱ピークと前記第一の発熱ピークより小さい第二の発熱ピークとを有し、前記第一の発熱ピーク及び前記第二の発熱ピークの総発熱量に対する前記第二の発熱ピークの発熱量の割合が3%以下となるような温度に前記冷却ロールの表面温度を保持し、次いで
     (TX3-50℃)~(TX3-30℃)の最高温度まで昇温する熱処理を、昇温時間及び保持時間を含めて5~30分間施すことを特徴とする方法。
  6. 請求項5に記載のナノ結晶軟磁性合金の製造方法において、前記冷却ロールを水冷式とし、冷却水の入口温度を30~70℃としてロール通過後の冷却水の出口温度を40~80℃に制御することを特徴とする方法。
  7. 請求項3又は4に記載のナノ結晶軟磁性合金からなることを特徴とする磁性部品。
PCT/JP2011/057714 2010-03-29 2011-03-28 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品 WO2011122589A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/580,820 US20120318412A1 (en) 2010-03-29 2011-03-28 Primary ultrafine-crystalline alloy, nano-crystalline, soft magnetic alloy and its production method, and magnetic device formed by nano-crystalline, soft magnetic alloy
CN2011800172676A CN102822372A (zh) 2010-03-29 2011-03-28 初期超微晶合金、纳米结晶软磁合金及其制造方法、以及由纳米结晶软磁合金构成的磁性部件
JP2012508327A JP5720674B2 (ja) 2010-03-29 2011-03-28 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品
EP11762813.1A EP2557190A4 (en) 2010-03-29 2011-03-28 ULTRAFINE INITIATIVE CRYSTAL ALLOY, NANOCRYSTALLINE SOFT MAGNETIC ALLOY AND METHOD OF MANUFACTURING THEREOF AND MAGNETIC COMPONENT SHAPED FROM NANOCRYSTALLINE SOFT MAGNETIC ALLOY
US14/873,349 US20160027566A1 (en) 2010-03-29 2015-10-02 Primary ultrafine-crystalline alloy, nano-crystalline, soft magnetic alloy and its production method, and magnetic device formed by nano-crystalline, soft magnetic alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010074623 2010-03-29
JP2010-074623 2010-03-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/580,820 A-371-Of-International US20120318412A1 (en) 2010-03-29 2011-03-28 Primary ultrafine-crystalline alloy, nano-crystalline, soft magnetic alloy and its production method, and magnetic device formed by nano-crystalline, soft magnetic alloy
US14/873,349 Division US20160027566A1 (en) 2010-03-29 2015-10-02 Primary ultrafine-crystalline alloy, nano-crystalline, soft magnetic alloy and its production method, and magnetic device formed by nano-crystalline, soft magnetic alloy

Publications (1)

Publication Number Publication Date
WO2011122589A1 true WO2011122589A1 (ja) 2011-10-06

Family

ID=44712284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057714 WO2011122589A1 (ja) 2010-03-29 2011-03-28 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品

Country Status (5)

Country Link
US (2) US20120318412A1 (ja)
EP (1) EP2557190A4 (ja)
JP (1) JP5720674B2 (ja)
CN (1) CN102822372A (ja)
WO (1) WO2011122589A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065827A (ja) * 2011-08-31 2013-04-11 Hitachi Metals Ltd 巻磁心およびこれを用いた磁性部品
WO2013094690A1 (ja) 2011-12-20 2013-06-27 日立金属株式会社 超微結晶合金薄帯の製造方法
WO2014038705A1 (ja) * 2012-09-10 2014-03-13 日立金属株式会社 超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品
JP2015167183A (ja) * 2014-03-04 2015-09-24 Necトーキン株式会社 ナノ結晶軟磁性合金粉末およびそれを用いた圧粉磁芯
CN105705224A (zh) * 2013-11-01 2016-06-22 优美科股份公司及两合公司 同轴转子-定子分散器和反应工艺
TWI595100B (zh) * 2015-01-07 2017-08-11 梅葛拉斯公司 奈米晶粒磁性合金及其熱處理方法
JP2019065382A (ja) * 2017-09-29 2019-04-25 サムソン エレクトロ−メカニックス カンパニーリミテッド. Fe系ナノ結晶粒合金及びこれを用いた電子部品
WO2019102667A1 (ja) * 2017-11-21 2019-05-31 Tdk株式会社 軟磁性合金および磁性部品
WO2019102666A1 (ja) * 2017-11-21 2019-05-31 Tdk株式会社 軟磁性合金および磁性部品
JP2019094552A (ja) * 2017-11-28 2019-06-20 Tdk株式会社 軟磁性圧粉磁心の製造方法および軟磁性圧粉磁心
JP2019094551A (ja) * 2017-11-28 2019-06-20 Tdk株式会社 軟磁性圧粉磁心の製造方法および軟磁性圧粉磁心
JP2020070468A (ja) * 2018-10-31 2020-05-07 Tdk株式会社 軟磁性合金粉末、圧粉磁心、磁性部品および電子機器
JP2020158831A (ja) * 2019-03-26 2020-10-01 Tdk株式会社 軟磁性合金および磁性部品
WO2021132254A1 (ja) 2019-12-25 2021-07-01 株式会社東北マグネットインスティテュート ナノ結晶軟磁性合金
WO2021132272A1 (ja) 2019-12-25 2021-07-01 株式会社東北マグネットインスティテュート 合金
US11264156B2 (en) 2015-01-07 2022-03-01 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy
WO2023043288A1 (ko) * 2021-09-17 2023-03-23 주식회사 아모그린텍 Fe계 연자성 합금 및 이의 제조방법

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260086B2 (ja) * 2013-03-04 2018-01-17 新東工業株式会社 鉄基金属ガラス合金粉末
CN105580095B (zh) * 2013-08-13 2017-07-18 日立金属株式会社 Fe基非晶变压器磁芯和其制造方法、以及变压器
WO2015095398A1 (en) 2013-12-17 2015-06-25 Kevin Hagedorn Method and apparatus for manufacturing isotropic magnetic nanocolloids
KR102203689B1 (ko) * 2014-07-29 2021-01-15 엘지이노텍 주식회사 연자성 합금, 이를 포함하는 무선 전력 송신 장치 및 무선 전력 수신 장치
CN106796835B (zh) * 2014-08-12 2019-05-21 Abb瑞士股份有限公司 具有不同磁性质的区域的磁体以及用于形成这种磁体的方法
US10133428B2 (en) * 2015-05-29 2018-11-20 Samsung Display Co., Ltd. Flexible display device including a flexible substrate having a bending part and a conductive pattern at least partially disposed on the bending part
KR101905411B1 (ko) * 2016-01-06 2018-10-08 한양대학교 에리카산학협력단 Fe계 연자성 합금 제조방법
KR101906914B1 (ko) * 2016-01-06 2018-10-11 한양대학교 에리카산학협력단 Fe계 연자성 합금 및 이를 통한 자성부품
US20180171444A1 (en) * 2016-12-15 2018-06-21 Samsung Electro-Mechanics Co., Ltd. Fe-based nanocrystalline alloy and electronic component using the same
KR102333098B1 (ko) * 2016-12-15 2021-12-02 삼성전기주식회사 Fe계 나노결정립 합금 및 이를 이용한 전자부품
JP6460276B1 (ja) * 2017-08-07 2019-01-30 Tdk株式会社 軟磁性合金および磁性部品
KR101963291B1 (ko) * 2017-09-04 2019-03-28 삼성전기주식회사 자성체 시트 및 전자기기
JP6338001B1 (ja) * 2017-09-15 2018-06-06 Tdk株式会社 軟磁性合金および磁性部品
JP6631658B2 (ja) * 2018-06-13 2020-01-15 Tdk株式会社 軟磁性合金および磁性部品
JP7099339B2 (ja) 2019-01-18 2022-07-12 株式会社デンソー 電池システム
WO2021010714A1 (ko) * 2019-07-12 2021-01-21 주식회사 아모그린텍 Fe계 연자성 합금 제조방법 및 이를 통해 제조된 fe계 연자성 합금
CN110284082B (zh) * 2019-07-19 2020-08-11 横店集团东磁股份有限公司 非晶纳米晶软磁材料及其制备方法和用途
DE102019123500A1 (de) * 2019-09-03 2021-03-04 Vacuumschmelze Gmbh & Co. Kg Metallband, Verfahren zum Herstellen eines amorphen Metallbands und Verfahren zum Herstellen eines nanokristallinen Metallbands
CN114365241A (zh) * 2019-09-10 2022-04-15 株式会社东芝 磁性薄带及使用了其的磁芯
CN114515822A (zh) * 2020-11-18 2022-05-20 安泰非晶科技有限责任公司 一种非晶纳米晶合金带材及其制备方法
CN113035484B (zh) * 2021-03-01 2023-02-24 青岛云路先进材料技术股份有限公司 一种纳米晶软磁合金及其制备方法和设备
CN115351429A (zh) * 2022-09-15 2022-11-18 宁波中益赛威材料科技有限公司 铁基非晶、纳米晶制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252749A (ja) * 2000-01-06 2001-09-18 Hitachi Metals Ltd ナノ結晶材料用Fe基アモルファスリボンの製造方法、およびナノ結晶材料の製造方法
WO2007032531A1 (ja) * 2005-09-16 2007-03-22 Hitachi Metals, Ltd. ナノ結晶磁性合金とその製造方法、合金薄帯、及び磁性部品
WO2008114605A1 (ja) * 2007-03-22 2008-09-25 Hitachi Metals, Ltd. 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
JP2008231533A (ja) 2007-03-22 2008-10-02 Hitachi Metals Ltd 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2095699A (en) * 1981-03-25 1982-10-06 Nat Res Dev Magnetic metallic glass alloy
JP3357386B2 (ja) * 1991-03-20 2002-12-16 ティーディーケイ株式会社 軟磁性合金およびその製造方法ならびに磁心
US5690752A (en) * 1993-06-14 1997-11-25 Santoku Metal Industry Co., Ltd. Permanent magnet containing rare earth metal, boron and iron
DE4329178B4 (de) * 1993-08-30 2006-11-09 EMO Oberflächentechnik GmbH Dampfphasenreinigung
US6648994B2 (en) * 2000-01-06 2003-11-18 Hitachi Metals, Ltd. Methods for producing iron-based amorphous alloy ribbon and nanocrystalline material
JP5450085B2 (ja) * 2006-12-07 2014-03-26 エルジー エレクトロニクス インコーポレイティド オーディオ処理方法及び装置
EP2149616B1 (en) * 2007-04-25 2017-01-11 Hitachi Metals, Ltd. Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252749A (ja) * 2000-01-06 2001-09-18 Hitachi Metals Ltd ナノ結晶材料用Fe基アモルファスリボンの製造方法、およびナノ結晶材料の製造方法
WO2007032531A1 (ja) * 2005-09-16 2007-03-22 Hitachi Metals, Ltd. ナノ結晶磁性合金とその製造方法、合金薄帯、及び磁性部品
JP2007107095A (ja) 2005-09-16 2007-04-26 Hitachi Metals Ltd 磁性合金、アモルファス合金薄帯、および磁性部品
WO2008114605A1 (ja) * 2007-03-22 2008-09-25 Hitachi Metals, Ltd. 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
JP2008231533A (ja) 2007-03-22 2008-10-02 Hitachi Metals Ltd 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2557190A4

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065827A (ja) * 2011-08-31 2013-04-11 Hitachi Metals Ltd 巻磁心およびこれを用いた磁性部品
US9224527B2 (en) 2011-12-20 2015-12-29 Hitachi Metals, Ltd. Production method of ultrafine crystalline alloy ribbon
CN104010748B (zh) * 2011-12-20 2016-02-10 日立金属株式会社 超微晶合金薄带的制造方法
CN104010748A (zh) * 2011-12-20 2014-08-27 日立金属株式会社 超微晶合金薄带的制造方法
US20150000862A1 (en) * 2011-12-20 2015-01-01 Hitachi Metals, Ltd. Production method of ultrafine crystalline alloy ribbon
JPWO2013094690A1 (ja) * 2011-12-20 2015-04-27 日立金属株式会社 超微結晶合金薄帯の製造方法
EP2796223A4 (en) * 2011-12-20 2015-09-30 Hitachi Metals Ltd METHOD FOR PRODUCING A THIN RIBBON FROM A MICROCRYSTALLINE ALLOY
WO2013094690A1 (ja) 2011-12-20 2013-06-27 日立金属株式会社 超微結晶合金薄帯の製造方法
KR20150054912A (ko) * 2012-09-10 2015-05-20 히타치 긴조쿠 가부시키가이샤 초미결정 합금 박대, 미결정 연자성 합금 박대 및 이것을 사용한 자성 부품
US20150243421A1 (en) * 2012-09-10 2015-08-27 Hitachi Metals, Ltd. Ultrafine-crystalline alloy ribbon, fine-crystalline, soft-magnetic alloy ribbon, and magnetic device comprising it
EP2894236A4 (en) * 2012-09-10 2016-05-18 Hitachi Metals Ltd ULTRA FINE CRYSTALLINE ALLOY TAPE, FINE CRYSTALLINE TEMPORARY TEMPERATURE MAGNETIC ALLOY TAPE AND MAGNETIC ELEMENTS USING THE SAME
JPWO2014038705A1 (ja) * 2012-09-10 2016-08-12 日立金属株式会社 超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品
US10115509B2 (en) 2012-09-10 2018-10-30 Hitachi Metals, Ltd. Ultrafine-crystalline alloy ribbon, fine-crystalline, soft-magnetic alloy ribbon, and magnetic device comprising it
KR102069927B1 (ko) * 2012-09-10 2020-01-23 히타치 긴조쿠 가부시키가이샤 초미결정 합금 박대, 미결정 연자성 합금 박대 및 이것을 사용한 자성 부품
WO2014038705A1 (ja) * 2012-09-10 2014-03-13 日立金属株式会社 超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品
CN105705224A (zh) * 2013-11-01 2016-06-22 优美科股份公司及两合公司 同轴转子-定子分散器和反应工艺
CN105705224B (zh) * 2013-11-01 2019-02-22 优美科股份公司及两合公司 同轴转子-定子分散器和反应工艺
JP2015167183A (ja) * 2014-03-04 2015-09-24 Necトーキン株式会社 ナノ結晶軟磁性合金粉末およびそれを用いた圧粉磁芯
US11230754B2 (en) 2015-01-07 2022-01-25 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
TWI595100B (zh) * 2015-01-07 2017-08-11 梅葛拉斯公司 奈米晶粒磁性合金及其熱處理方法
US11264156B2 (en) 2015-01-07 2022-03-01 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy
JP2019065382A (ja) * 2017-09-29 2019-04-25 サムソン エレクトロ−メカニックス カンパニーリミテッド. Fe系ナノ結晶粒合金及びこれを用いた電子部品
JP7368053B2 (ja) 2017-09-29 2023-10-24 サムソン エレクトロ-メカニックス カンパニーリミテッド. Fe系ナノ結晶粒合金及びこれを用いた電子部品
WO2019102666A1 (ja) * 2017-11-21 2019-05-31 Tdk株式会社 軟磁性合金および磁性部品
JP2019094532A (ja) * 2017-11-21 2019-06-20 Tdk株式会社 軟磁性合金および磁性部品
JP2019094531A (ja) * 2017-11-21 2019-06-20 Tdk株式会社 軟磁性合金および磁性部品
US11508502B2 (en) 2017-11-21 2022-11-22 Tdk Corporation Soft magnetic alloy and magnetic component
WO2019102667A1 (ja) * 2017-11-21 2019-05-31 Tdk株式会社 軟磁性合金および磁性部品
JP2019094552A (ja) * 2017-11-28 2019-06-20 Tdk株式会社 軟磁性圧粉磁心の製造方法および軟磁性圧粉磁心
JP2019094551A (ja) * 2017-11-28 2019-06-20 Tdk株式会社 軟磁性圧粉磁心の製造方法および軟磁性圧粉磁心
JP2020070468A (ja) * 2018-10-31 2020-05-07 Tdk株式会社 軟磁性合金粉末、圧粉磁心、磁性部品および電子機器
JP2020158831A (ja) * 2019-03-26 2020-10-01 Tdk株式会社 軟磁性合金および磁性部品
WO2021132272A1 (ja) 2019-12-25 2021-07-01 株式会社東北マグネットインスティテュート 合金
WO2021132254A1 (ja) 2019-12-25 2021-07-01 株式会社東北マグネットインスティテュート ナノ結晶軟磁性合金
KR20220093218A (ko) 2019-12-25 2022-07-05 가부시키가이샤 토호쿠 마그네토 인스티튜트 나노 결정 연자성 합금
KR20220115577A (ko) 2019-12-25 2022-08-17 가부시키가이샤 무라타 세이사쿠쇼 합금
WO2023043288A1 (ko) * 2021-09-17 2023-03-23 주식회사 아모그린텍 Fe계 연자성 합금 및 이의 제조방법

Also Published As

Publication number Publication date
US20120318412A1 (en) 2012-12-20
JP5720674B2 (ja) 2015-05-20
EP2557190A4 (en) 2014-02-19
US20160027566A1 (en) 2016-01-28
CN102822372A (zh) 2012-12-12
EP2557190A1 (en) 2013-02-13
JPWO2011122589A1 (ja) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5720674B2 (ja) 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品
JP5455041B2 (ja) 軟磁性薄帯、その製造方法、磁性部品、およびアモルファス薄帯
JP5327074B2 (ja) 軟磁性合金薄帯及びその製造方法、並びに軟磁性合金薄帯を有する磁性部品
JP5327075B2 (ja) 軟磁性合金薄帯及びその製造方法、並びに軟磁性合金薄帯を有する磁性部品
JP5455040B2 (ja) 軟磁性合金、その製造方法、および磁性部品
JP6191908B2 (ja) ナノ結晶軟磁性合金及びこれを用いた磁性部品
US7935196B2 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
JP6080094B2 (ja) 巻磁心およびこれを用いた磁性部品
JP6237630B2 (ja) 超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品
WO2007032531A1 (ja) ナノ結晶磁性合金とその製造方法、合金薄帯、及び磁性部品
KR20090113314A (ko) Fe 기재의 연자성 합금, 비정질 합금의 얇은 리본, 및 자성 부품
JP5445891B2 (ja) 軟磁性薄帯、磁心、および磁性部品
WO2013094690A1 (ja) 超微結晶合金薄帯の製造方法
JP6041207B2 (ja) ナノ結晶軟磁性合金及びこれを用いた磁性部品
JP2003213331A (ja) Fe基軟磁性合金の製造方法及びFe基軟磁性合金
JP6003899B2 (ja) Fe基初期超微結晶合金薄帯及び磁性部品
JP2001295005A (ja) ナノ結晶軟磁性合金用Fe基アモルファス合金薄帯及び磁性部品
JP5445924B2 (ja) 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
JP4217038B2 (ja) 軟磁性合金
JP2008150637A (ja) 磁性合金、アモルファス合金薄帯、および磁性部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017267.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508327

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011762813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011762813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13580820

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE