WO2013051729A1 - Fe基初期超微結晶合金薄帯及び磁性部品 - Google Patents

Fe基初期超微結晶合金薄帯及び磁性部品 Download PDF

Info

Publication number
WO2013051729A1
WO2013051729A1 PCT/JP2012/076138 JP2012076138W WO2013051729A1 WO 2013051729 A1 WO2013051729 A1 WO 2013051729A1 JP 2012076138 W JP2012076138 W JP 2012076138W WO 2013051729 A1 WO2013051729 A1 WO 2013051729A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy ribbon
alloy
crystal grains
atomic
thickness
Prior art date
Application number
PCT/JP2012/076138
Other languages
English (en)
French (fr)
Inventor
昌武 直江
道弘 長尾
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US14/349,808 priority Critical patent/US20140239220A1/en
Priority to CN201280049184.XA priority patent/CN103842548A/zh
Priority to JP2013537584A priority patent/JP6003899B2/ja
Priority to IN2865DEN2014 priority patent/IN2014DN02865A/en
Priority to EP12838966.5A priority patent/EP2757172A4/en
Publication of WO2013051729A1 publication Critical patent/WO2013051729A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Definitions

  • the present invention relates to an Fe-based initial ultracrystalline alloy ribbon that can be divided into a desired width without breaking by slit processing, and a magnetic component using an Fe-based nanocrystalline soft magnetic alloy ribbon that has been heat-treated.
  • Fe-based nanocrystalline soft magnetic alloy ribbons are used in magnetic cores such as common mode choke coils, high frequency transformers, and pulse transformers because they exhibit excellent soft magnetic properties.
  • the Fe-based nanocrystalline soft magnetic alloy ribbon is obtained by quenching from the liquid phase or the gas phase, and then obtaining an amorphous alloy, followed by heat treatment at a temperature above the crystallization temperature, resulting in an average particle size of about 100 nm or less. It is obtained by producing
  • an amorphous alloy ribbon is manufactured by rapid solidification by a single roll method, wound into a magnetic core shape, and then heat treated.
  • JP-B-74419 has a general formula: (Fe 1-a M a ) 100-xyz- ⁇ - ⁇ Cu x Si y B z M ′ ⁇ X ⁇ (atomic%) (where M is Co and / or Ni, M ′ is at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo, and X is C, Ge, P, Ga, Sb, In, Be And at least one element selected from the group consisting of As, a, x, y, z, ⁇ and ⁇ are 0 ⁇ a ⁇ 0.5, 0.1 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 30, 0 ⁇ , respectively.
  • a method for producing an Fe-based soft magnetic alloy comprising grains and the balance being substantially amorphous, comprising a step of forming an amorphous alloy having the above composition by a molten metal quenching method or a vapor phase quenching method, In order to form fine crystal grains whose average grain size is 1000 ⁇ or less, the amorphous Discloses a process for producing an Fe-based soft magnetic alloy, characterized in that it comprises a step of performing heat treatment of holding for 5 minutes to 24 hours gold 405 ⁇ 700 ° C..
  • This Fe-based nanocrystalline magnetic alloy has high relative permeability and low loss, but when used as a magnetic core for noise components in wind power generators or high-speed train inverters through which a large current flows, it has a high relative permeability and therefore has a large current range. It was found that there was a problem that magnetic saturation was easy.
  • an Fe-based soft magnetic alloy in which fine crystal grains are precipitated by heat treatment of an Fe-based amorphous alloy
  • an Fe-based ultrafine crystal alloy in which ultrafine microcrystals are precipitated is produced and heat-treated.
  • a method for obtaining nanocrystalline magnetic alloys with high saturation magnetic flux density and excellent soft magnetic properties has been proposed.
  • WO 2007/032531 is a general formula: Fe 100-xyz Cu x B y X z (where X is at least one element selected from the group consisting of Si, S, C, P, Al, Ge, Ga and Be) And x, y, and z are numbers expressed in atomic percent satisfying the conditions of 0.1 ⁇ x ⁇ 3, 10 ⁇ y ⁇ 20, 0 ⁇ z ⁇ 10, and 10 ⁇ y + z ⁇ 24).
  • a nanocrystalline magnetic alloy having a composition and having a structure containing crystal grains having an average grain size of 60 nm or less in an amorphous matrix and having a saturation magnetic flux density of 1.7 T or more is disclosed.
  • This nanocrystalline magnetic alloy rapidly cools the molten alloy containing Fe and metalloid elements, and crystal grains with an average grain size of 30 nm or less are dispersed in the amorphous matrix at a ratio of more than 0% and 30% or less.
  • a Fe-based alloy composed of the above-described structure is prepared, and the Fe-based alloy is heat-treated, so that a body-centered cubic crystal grain having an average grain size of 60 nm or less is dispersed in an amorphous matrix at a ratio of 30% by volume or more Manufactured by the method of making the structure.
  • WO 2007/032531 discloses that in this nanocrystalline magnetic alloy, 10 atomic% or less of Fe may be substituted with Ni and / or Co, and 5 atomic% or less of Fe is Ti, Zr, Hf, V, Nb. , Ta, Cr, Mo, W, Mn, Re, platinum group element, Au, Ag, Zn, In, Sn, As, Sb, Bi, Y, N, O and at least one selected from the group consisting of rare earth elements It describes that it may be substituted with these elements.
  • the Ni content is as low as 2 atomic% at the maximum, and none of them contains both Ni and Nb.
  • the width of the nanocrystalline magnetic alloy ribbon was also as narrow as 5 mm.
  • the nanocrystalline magnetic alloy ribbon is formed as wide as possible with a uniform thickness and is divided into a desired width by slitting.
  • a nanocrystalline magnetic alloy ribbon with a Ni content of 2 atomic% or less is not only difficult to form with a uniform thickness and wide by a single roll method, but is also very brittle, so it frequently breaks when slitting I found that there was a problem to do. This is because the center part in the width direction of the cooling roll expands by heating with the molten alloy, so that the gap between the nozzle and the cooling roll becomes smaller in the center part in the width direction, and the center part in the width direction of the obtained alloy ribbon is the both end parts. This is because it becomes thinner.
  • an alloy ribbon with a low Ni content has a high volume fraction of fine crystal grains, so it has low toughness and is easily broken by slit processing.
  • an object of the present invention is to form an Fe-based initial ultrafine crystal alloy ribbon that can be formed into a uniform thickness even at a wide width and can be divided into a desired width without being broken by slit processing, and heat treatment thereof. And providing a magnetic component using the Fe-based nanocrystalline soft magnetic alloy ribbon.
  • the alloy melt formed by adding a relatively large amount of Ni and an appropriate amount of Nb to an alloy composed of Fe, Cu, Si and B was ultra-quenched under the condition that fine crystal grains were formed.
  • the alloy ribbon can be formed to a uniform thickness even if it is wide by adjusting the Ni content and thickness to the desired range, and can be divided into the desired width without breaking by slit processing The present invention has been discovered.
  • the Fe-based initial ultrafine crystal alloy ribbon of the present invention is The following general formula: Fe 100-xyzab Ni x Cu y Nb z Si a B b (However, x, y, z, a, and b are atomic% and satisfy 4 ⁇ x ⁇ 6, 0.1 ⁇ y ⁇ 2, 0.1 ⁇ z ⁇ 4, 7 ⁇ a ⁇ 18, and 4 ⁇ b ⁇ 12, respectively.
  • composition represented by: It has a structure in which fine crystal grains having a particle size distribution of 300 nm or less in the amorphous matrix are dispersed in a proportion of more than 0% by volume and 7% by volume or less in an as-cast state, and 13 to 23 ⁇ m It has a thickness.
  • the average grain size of the fine crystal grains in the Fe-based initial ultrafine alloy ribbon is preferably 80 nm or less.
  • X preferably satisfies the condition of 4.5 ⁇ x ⁇ 5.3.
  • the ratio of the fine crystal grains to the entire alloy structure is preferably more than 0% by volume and not more than 3.5% by volume.
  • the thickness of the alloy ribbon is preferably 14 to 22 ⁇ m.
  • the magnetic component of the present invention is a Fe-based nanocrystalline soft magnetic alloy ribbon obtained by slitting the Fe-based initial ultrafine crystal alloy ribbon to a desired width and then heat-treating at a temperature equal to or higher than the crystallization temperature.
  • the Fe-based nanocrystalline soft magnetic alloy ribbon has a structure in which fine crystal grains having an average particle size of 20 to 100 nm are dispersed in an amorphous matrix at a ratio of 50% by volume or more.
  • the Fe-based initial microcrystalline alloy ribbon of the present invention is made of a FeNiCuNbSiB alloy containing 4 to 6 atomic% Ni and 0.1 to 4 atomic% Nb, and is in an amorphous matrix in an as-cast state. Since the fine crystal grains having a particle size distribution of 300 nm or less have a structure dispersed in a proportion of more than 0% by volume and not more than 7% by volume and have a thickness of 13 to 23 ⁇ m, It can be divided into a desired width without breaking by slit processing, and the productivity is high. Moreover, since the Fe-based nanocrystalline soft magnetic alloy ribbon obtained by heat-treating the Fe-based initial ultrafine crystal alloy ribbon divided into a desired width has a high saturation magnetic flux density, it can be used for various magnetic parts.
  • Fe-based soft magnetic alloy ribbon (1) Composition
  • the Fe-based initial ultrafine crystal alloy ribbon of the present invention is The following general formula: Fe 100-xyzab Ni x Cu y Nb z Si a B b (However, x, y, z, a, and b are atomic% and satisfy 4 ⁇ x ⁇ 6, 0.1 ⁇ y ⁇ 2, 0.1 ⁇ z ⁇ 4, 7 ⁇ a ⁇ 18, and 4 ⁇ b ⁇ 12, respectively. It is the number to satisfy.
  • the above composition may contain inevitable impurities.
  • the Fe-based initial ultrafine crystal alloy ribbon according to the present invention is characterized by containing 4 to 6 atomic% of Ni. Addition of Ni promotes refinement of the crystal structure, improves handling properties (winding properties), and improves soft magnetic properties. Furthermore, by increasing the Ni content to 4 to 6 atomic%, it is possible to prevent breakage during slit processing. A preferable Ni content is 4.5 to 5.3 atomic%.
  • Cu is an element necessary for the precipitation of fine crystal grains. If the Cu content is less than 0.1 atomic%, the required amount of fine crystal grains does not precipitate due to the rapid cooling of the molten alloy, and even if heat-treated, fine crystal grains with an average grain size of 20-100 nm are 50% by volume. A dispersed nanocrystal structure cannot be obtained. On the other hand, if the Cu content exceeds 2 atomic%, the cast alloy ribbon is brittle and cannot be slit without breaking. Therefore, the Cu content is 0.1 to 2 atomic%. A preferable Cu content is 0.1 to 1 atomic%.
  • Nb is an element necessary for obtaining a nanocrystalline structure in which fine crystal grains having an average particle diameter of 20 to 100 nm are dispersed by 50% or more by volume ratio after heat treatment. If the Nb content is 0.1 atomic%, the above effect cannot be obtained. On the other hand, if the Nb content is more than 4 atomic%, the Fe content is relatively lowered and the soft magnetic properties are deteriorated. Therefore, the Nb content is 0.1-4 atomic%. A preferable Nb content is 0.3 to 3 atomic%.
  • the Si content of Si as an amorphous forming element is 7 atomic% or more, amorphous can be stably formed by rapid cooling.
  • the Si content exceeds 18 atomic%, the saturation magnetic flux density of the obtained alloy ribbon is lowered. Therefore, the Si content is 7 to 18 atomic%.
  • the preferred Si content is 10.5 to 11.5 atomic%.
  • the content of B which is an amorphous forming element
  • B is 4 atomic% or more
  • amorphous can be stably formed by rapid cooling.
  • the B content exceeds 12 atomic%
  • the saturation magnetic flux density of the obtained alloy ribbon is lowered. Therefore, the B content is 4 to 12 atomic%.
  • a preferable B content is 8 to 11 atomic%.
  • fine crystal grains having a grain size distribution of 300 nm or less in the amorphous matrix in the as-cast state are more than 0% by volume and 7%. It has a structure dispersed at a volume percent or less.
  • the volume ratio of the fine crystal grains is more than 7% by volume, the alloy ribbon becomes brittle, and the frequency of breakage based on the fine crystal grains becomes high during the slit processing. Fracture can also occur by rewinding the alloy ribbon.
  • the volume ratio of the fine crystal grains is preferably 3.5% by volume or less, more preferably 3% by volume or less.
  • the preferred particle size distribution of the fine crystal grains is 0 to 150 nm.
  • the average grain size of the fine crystal grains is preferably 80 nm or less, and more preferably 50 nm or less. When the average grain size of the fine crystal grains exceeds 80 nm, the frequency of breakage due to slit processing increases.
  • a more preferable average particle diameter of the fine crystal grains is 10 to 50 nm.
  • the particle size and volume ratio of the fine crystal grains are obtained by image analysis with a transmission electron micrograph (1000 ⁇ m ⁇ 1000 ⁇ m field of view) of the cast alloy ribbon, and averaged for any three fields of view.
  • the area ratio of fine crystal grains in each field of view is defined as a volume ratio. In observation with a transmission electron microscope, the fine crystal grains are almost spherical.
  • the Fe-based initial microcrystalline alloy ribbon that satisfies the conditions of Ni content in the range of 4 to 6 atom% and thickness in the range of 13 to 23 ⁇ m has a thickness of 30 mm or more. The uniformity of the thickness can be substantially maintained. Practically, the width of the Fe-based initial ultrafine crystal alloy ribbon is preferably 50 mm or more.
  • the gap between the nozzle and the cooling roll during casting is effective in reducing the thickness distribution in the width direction of the Fe-based initial ultrafine crystal alloy ribbon. That is, when the gap between the nozzle and the roll is too wide, the cross section of the alloy ribbon is thick at the center and thin at the end. Since a difference in cooling rate occurs due to a difference in plate thickness, a difference also occurs in the density of fine crystal grains, resulting in a hardness distribution in the width direction. Specifically, when casting a Fe-base initial microcrystalline alloy ribbon having a width of 40 mm or more and a thickness of 13 to 23 ⁇ m, the thickness in the width direction can be increased by setting the gap between the nozzle and the cooling roll to 200 to 300 ⁇ m. Distribution (maximum thickness-minimum thickness) is 2 ⁇ m or less. In order to make the thickness distribution in the width direction smaller, the gap between the nozzle and the cooling roll is preferably 150 to 270 ⁇ m.
  • Alloy melt is Fe 100-xyzab Ni x Cu y Nb z Si a B b (where x, y, z, a, and b are atomic%, respectively 4 ⁇ x ⁇ 6, 0.1 ⁇ y ⁇ 2 , 0.1 ⁇ z ⁇ 4, 7 ⁇ a ⁇ 18, and 4 ⁇ b ⁇ 12).
  • the molten metal temperature is preferably 50 to 300 ° C. higher than the melting point of the alloy. Specifically, it is preferable that a molten metal of about 1300 to 1400 ° C. is ejected from the nozzle onto the cooling roll.
  • the atmosphere in the single roll method is air or an inert gas (Ar, nitrogen, etc.) when the alloy does not contain an active metal, and an inert gas (Ar, He, nitrogen, etc.) It is a vacuum. In order to form an oxide film on the surface, it is preferable to quench the molten metal in an oxygen-containing atmosphere (for example, air).
  • one of the means for controlling the volume fraction of fine crystal grains is the control of the peripheral speed (casting speed) of the cooling roll.
  • the peripheral speed of the roll is preferably 20 to 45 m / s, more preferably 25 to 40 m / s. If the peripheral speed of the cooling roll is less than 20 m / s, the cooling rate is too slow and crystallization proceeds too much.
  • the peripheral speed of the cooling roll is more than 45 mm / s, the molten metal (paddle) between the nozzle and the cooling roll becomes unstable, and the molten metal is likely to be scattered.
  • the material of the cooling roll pure copper having a high thermal conductivity or a copper alloy such as Cu-Be, Cu-Cr, Cu-Zr, or Cu-Zr-Cr is suitable.
  • the cooling roll is preferably water-cooled. Since the water cooling of the cooling roll affects the volume fraction of fine crystal grains, it is effective to keep the cooling water at a predetermined temperature.
  • the thickness, cross-sectional shape, etc. can be adjusted by paddle control.
  • the paddle can be controlled by adjusting the gap between the nozzle and the cooling roll, the tapping pressure, the weight of the molten metal, and the like.
  • the tapping pressure and the own weight of the molten metal vary depending on the remaining amount of molten metal, the molten metal temperature, etc., and are difficult to adjust.
  • the gap control can be easily performed by monitoring the distance between the nozzle and the cooling roll and always applying feedback. Accordingly, it is preferable to adjust the thickness, cross-sectional shape, and the like of the Fe-based initial ultrafine crystal alloy ribbon by gap control.
  • the wider the gap the better the hot water flow, and it is effective in increasing the thickness of the Fe-based initial microcrystalline alloy ribbon and preventing the collapse of the paddle.
  • the alloy ribbon has a cross-sectional shape with a thick central portion and a thin end portion, resulting in a difference in plate thickness.
  • the gap is preferably 200 to 300 ⁇ m. If the gap is narrowed, the thickness distribution in the width direction can be suppressed, but the nozzle slit is likely to close. When the gap exceeds 300 ⁇ m, the paddle becomes unstable.
  • the nozzle slit width is preferably 0.4 to 0.6 mm.
  • the width of the nozzle slit is less than 0.4 mm, the nozzle slit is likely to be blocked.
  • the nozzle slit width exceeds 0.6 mm, the discharge of the molten metal becomes unstable and the molten metal is likely to be scattered.
  • the discharge pressure of the molten metal is preferably 200 to 300 g / cm 2 .
  • the discharge pressure of the molten metal is less than 200 g / cm 2 , the nozzle slit is likely to be clogged, the molten metal supply is unstable, and the surface of the ribbon tends to be rough.
  • the discharge pressure of the molten metal exceeds 300 g / cm 2 , the molten metal between the nozzle and the cooling roll becomes unstable and the molten metal is likely to be scattered.
  • the peeling temperature of the Fe-based initial ultrafine crystal alloy ribbon can be adjusted by changing the position (peeling position) of the nozzle that blows the inert gas, and is generally 170 to 350 ° C., preferably 200 to 340 ° C. When the peeling temperature is less than 170 ° C., the alloy structure becomes almost amorphous due to excessive cooling. On the other hand, when the peeling temperature is higher than 350 ° C., the number of fine crystal grains is excessive.
  • the Fe-based initial ultrafine crystal alloy ribbon Since the inside of the peeled Fe-based initial ultrafine crystal alloy ribbon is still relatively hot, the Fe-based initial ultrafine crystal alloy ribbon is sufficiently cooled before winding to prevent further crystallization. For example, an inert gas (nitrogen or the like) is blown onto the peeled Fe-based initial ultrafine crystal alloy ribbon, and the film is wound after being cooled to substantially room temperature.
  • an inert gas nitrogen or the like
  • Fe-based nanocrystalline soft magnetic alloy ribbon The heat treatment of the Fe-based initial microcrystalline alloy ribbon of the present invention at a temperature higher than the crystallization temperature results in an average grain size of 20-100 in the amorphous matrix.
  • the fine crystal grains (nanocrystalline grains) of nm are precipitated at a ratio of 50% by volume or more to form Fe-based nanocrystalline soft magnetic alloy ribbons.
  • the Fe-based nanocrystalline soft magnetic alloy ribbon has a relative magnetic permeability of about 4000 to 6000 and has excellent soft magnetic properties.
  • the heat treatment temperature is generally preferably 500 to 580 ° C.
  • the heat treatment time is preferably 30 minutes or less, more preferably 10 to 20 minutes.
  • Magnetic components using Fe-based nanocrystalline soft magnetic alloy ribbons are suitable for high-power applications where magnetic saturation is a problem because of their high saturation magnetic flux density.
  • large currents such as anode reactors Reactors, active filter choke coils, smoothing choke coils, pulse power magnetic components used in laser power supplies and accelerators, transformers, pulse transformers for communication, current transformers for current detection circuits used in wind power generation, motors or power generation Examples include the magnetic core of the machine.
  • Example 1 Fe 75.7-x Ni x Cu 0.8 Nb 2.8 Si 10.9 B 9.8- inch Fe-based microcrystalline alloy ribbon with a width of 53 mm, a thickness of 10-24 ⁇ m, and a length of 5000 m was formed by the single roll method under the following conditions: It was cast, peeled off from the cooling roll by a nitrogen gas flow (air knife), and wound on a roll. Nozzle and cooling roll gap: 250 ⁇ m Nozzle slit width: 0.45 mm Molten metal discharge pressure: 280 g / cm 2 Cooling roll peripheral speed: 30 m / s
  • each of the Fe-based initial ultrafine crystal alloy ribbons 1 having a thickness of 10 to 24 ⁇ m three disc-shaped grinding wheels rotating at substantially the same peripheral speed as the alloy ribbon 1 Slit processing was performed using 2a, 2b, and 2c.
  • Each disk-shaped grindstone 2a, 2b, 2c had a diameter of 50 mm, and the cutting edge cross section at the circumferential end had an angle of 30 °.
  • Three disc-shaped grindstones 2a, 2b, 2c arranged at intervals shown in FIG. 1 were rotated to form three cutting lines 3a, 3b, 3c.
  • Both ends of the alloy ribbon 1 are removed with a width of 1.5 mm by slitting with the disc-shaped grindstone 2a, 2c (cut lines 3a, 3c), and the alloy thin by slitting with the disc-shaped grindstone 2b (cutting line 3b)
  • the central part of the belt 1 was divided into two 25 mm wide.
  • the rupture frequency (number of ruptures occurring during a length of 5000 m) of the two obtained 25 ⁇ mm alloy strips was examined. The results are shown in Table 1.
  • the fracture frequency was 2 times or less. In particular, no fracture was observed when the Ni content was in the range of 4.5 to 5.3 atomic% and the thickness was in the range of 14 to 22 ⁇ m. From now on, in order to enable slit processing without breakage, the Ni content must be in the range of 4 to 6 atomic%, and the thickness of the alloy ribbon must be in the range of 13 to 23 ⁇ m. I understand. On the other hand, when it was out of the above range, the fracture frequency was high even if one of the requirements for Ni content and thickness was satisfied, and satisfactory slit workability was not obtained.
  • each alloy ribbon shown in Table 1 was observed with a transmission electron microscope (magnification: 100,000 times), and the volume ratio of fine crystal grains was measured. In any alloy ribbon, fine crystal grains having a grain size exceeding 300 nm were not observed. The results are shown in Table 2.
  • the volume ratio of fine crystal grains is 7.0% or less in any alloy ribbon. there were.
  • the volume ratio of the fine crystal grains is 3.5% or less.
  • Example 2 Of the alloy ribbons slit to a width of 25 mm in Example 1, the Ni content is 4.0 atomic%, 4.5 atomic%, 5.0 atomic%, 5.3 atomic% and 6.0 atomic%, respectively, and the thickness is 16 ⁇ m.
  • the core was wound into a toroidal shape having an outer diameter of 24.5 mm and an inner diameter of 21 mm. Each magnetic core is held in a nitrogen atmosphere at 550 ° C. for 20 minutes and heat-treated in a magnetic field of 319.1 kA / m (4000 Gauss) to generate nanocrystal grains having an average grain size of 20 to 100 nm in the alloy ribbon.
  • a toroidal core consisting of Fe-based nanocrystalline soft magnetic alloy ribbon was obtained.
  • the nanocrystalline grains in each alloy ribbon are almost spherical, have an average grain size of 20 to 100 nm, and the volume ratio to the whole structure is All were 60 to 80%.
  • a coated copper wire with a diameter of 0.5 mm was wound around each toroidal magnetic core for one turn, the inductance was measured in a magnetic field with a frequency of 10 kHz and 0.05 A / m, and the relative permeability ⁇ r was calculated from the measured inductance value. As the Ni content increased from 4 atomic% to 6 atomic%, the relative permeability ⁇ r decreased from 6000 to 4000.
  • the relative permeability ⁇ r of the toroidal cores made of alloy ribbons with Ni contents of 4.5 atomic%, 5.0 atomic% and 5.3 atomic% were 5500, 5000 and 4500, respectively.
  • Example 3 Of the alloy ribbon that was slit to a width of 25 mm in Example 1, a Ni content of 5.0 atomic% and a thickness of 16 ⁇ m was wound into a toroidal shape with an outer diameter of 150 mm and an inner diameter of 100 mm, and the magnetic core was Obtained. A coated copper wire was wound around this toroidal magnetic core to produce a common mode choke coil. When this common mode choke coil was inserted into an inverter circuit for a train, the noise removal effect was confirmed.
  • Example 4 When the toroidal magnetic core of Example 3 in which the coated copper wire was wound was used as a current transformer of a current detection circuit for wind power generation, the current value detection capability was confirmed.
  • Example 5 In the same manner as in Example 1, a 53 mm wide alloy ribbon having the composition and thickness shown in Table 3 was cast by the single roll method. When the structure of the as-cast alloy ribbon was observed with a transmission electron microscope, the volume ratio of the fine crystal grains was 3.2% or less as shown in Table 3. Further, fine crystal grains having a grain size exceeding 300 nm were not observed.
  • the slit processing shown in FIG. 1 was performed on each alloy ribbon, and the fracture frequency was examined. As a result, the fracture frequency of all the alloy ribbons was zero. From this, it can be seen that none of the alloy ribbons have any breakage due to slitting.
  • Example 6 The thickness was 16 ⁇ m in the same manner as in Example 1 except that the composition was changed to Fe 72.5 Ni 5.0 Cu 0.8 Nb 1.0 Si 10.9 B 9.8 (Ni content was 5.0 atomic% and Nb content was 1.0 atomic%). And an Fe-based initial ultrafine crystal alloy ribbon with a width of 53 mm was prepared. When the slit processing shown in FIG. 1 was performed on the alloy ribbon, no fracture occurred.
  • Example 7 The thickness was 16 ⁇ m in the same manner as in Example 1 except that the composition was changed to Fe 73.0 Ni 5.0 Cu 0.8 Nb 0.5 Si 10.9 B 9.8 (Ni content was 5.0 atomic% and Nb content was 0.5 atomic%). And an Fe-based initial ultrafine crystal alloy ribbon with a width of 53 mm was prepared. When the slit processing shown in FIG. 1 was performed on the alloy ribbon, no fracture occurred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)

Abstract

 下記一般式:Fe100-x-y-z-a-bNixCuyNbzSiaBb (ただし、x,y,z,a,bはそれぞれ原子%で4≦x≦6、0.1≦y≦2、0.1≦z≦4、7≦a≦18、及び4≦b≦12の条件を満たす数である。)により表される組成を有し、鋳造したままの状態で非晶質母相中に300 nm以下の粒径分布を有する微細結晶粒が0体積%超かつ7体積%以下の割合で分散した組織を有し、かつ13~23μmの厚さを有するFe基初期超微結晶合金薄帯。

Description

Fe基初期超微結晶合金薄帯及び磁性部品
 本発明は、スリット加工により破断することなく所望の幅に分割できるFe基初期超微結晶合金薄帯、及びそれを熱処理したFe基ナノ結晶軟磁性合金薄帯を用いた磁性部品に関する。
 Fe基ナノ結晶軟磁性合金薄帯は優れた軟磁気特性を示すため、コモンモードチョークコイル、高周波トランス、パルストランス等の磁心に使用されている。Fe基ナノ結晶軟磁性合金薄帯は、液相又は気相から急冷することにより非晶質合金を得た後、結晶化温度以上の温度で熱処理を施すことにより、平均粒径約100 nm以下の微結晶を生成することにより得られる。量産的には、単ロール法による急冷凝固により非晶質合金薄帯を製造し、磁心形状に巻回した後、熱処理することにより製造されている。
 例えば特公平-74419号は、一般式:(Fe1-aMa)100-x-y-z-α-γCuxSiyBzM′αγ(原子%)(ただし、MはCo及び/又はNiであり、M′はNb,W,Ta,Zr,Hf,Ti及びMoからなる群から選ばれた少なくとも1種の元素であり、XはC,Ge,P,Ga,Sb,In,Be及びAsからなる群から選ばれた少なくとも1種の元素であり、a,x,y,z,α及びγはそれぞれ0≦a≦0.5,0.1≦x≦3,0≦y≦30,0≦z≦25,5≦y+z≦30,0.1≦α≦30,及びγ≦10を満たす。)により表される組成を有し、組織の少なくとも50%が1000Å以下の平均粒径を有する微細な結晶粒からなり、残部が実質的に非晶質であるFe基軟磁性合金を製造する方法であって、溶湯急冷法又は気相急冷法により前記組成の非晶質合金とする工程と、これにその平均粒径が1000Å以下の微細な結晶粒を形成するために前記非晶質合金を405~700℃に5分~24時間保持する熱処理を施す工程とを含むことを特徴とするFe基軟磁性合金の製造方法を開示している。このFe基ナノ結晶磁性合金は高い比透磁率及び低い損失を有するが、大電流が流れる風力発電又は高速電車用のインバータにおけるノイズ部品の磁心として用いる場合、比透磁率が高いために大電流域で磁気飽和しやすいという問題があることが分った。
 Fe基非晶質合金の熱処理により微結晶粒が析出したFe基軟磁性合金を製造する代わりに、超微細な微結晶が析出したFe基超微結晶合金を作製し、それを熱処理することにより高飽和磁束密度及び優れた軟磁気特性を有するナノ結晶磁性合金を得る方法が提案された。WO 2007/032531号は、一般式:Fe100-x-y-zCuxByXz(ただしXはSi,S,C,P,Al,Ge,Ga及びBeからなる群から選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0.1≦x≦3、10≦y≦20、0<z≦10、及び10<y+z≦24の条件を満たす数である。)により表される組成を有し、平均粒径60 nm以下の結晶粒を非晶質母相中に含有する組織からなり、飽和磁束密度が1.7 T以上であるナノ結晶磁性合金を開示している。このナノ結晶磁性合金は、Fe及び半金属元素を含む合金溶湯を急冷し、平均粒径30 nm以下の結晶粒が非晶質母相中に0体積%超かつ30体積%以下の割合で分散した組織からなるFe基合金を作製し、前記Fe基合金を熱処理して、平均粒径60 nm以下の体心立方構造の結晶粒が非晶質母相中に30体積%以上の割合で分散した組織とする方法により製造される。
 WO 2007/032531号は、このナノ結晶磁性合金では、Feの10原子%以下をNi及び/又はCoで置換しても良く、かつFeの5原子%以下をTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、白金族元素、Au、Ag、Zn、In、Sn、As、Sb、Bi、Y、N、O及び希土類元素からなる群から選ばれた少なくとも一種の元素で置換しても良いと記載している。しかし、WO 2007/032531号の実施例で製造されたナノ結晶磁性合金では、Ni含有量は最大でも2原子%と少なく、かつNiとNbを両方含有するものはない。また、ナノ結晶磁性合金薄帯の幅も5 mmと狭かった。
 生産性の観点から、ナノ結晶磁性合金薄帯を均一な厚さでできるだけ幅広に形成し、スリット加工により所望の幅に分割するのが好ましい。しかし、2原子%以下のNi含有量のナノ結晶磁性合金薄帯は、単ロール法により均一な厚さで幅広に形成するのが難しいだけでなく、非常に脆いためにスリット加工すると頻繁に破断するという問題があることが分った。これは、冷却ロールの幅方向中央部が合金溶湯による加熱により膨張するために、ノズルと冷却ロールのギャップが幅方向中央部で小さくなり、もって得られる合金薄帯の幅方向中央部が両端部より薄くなるためである。また、Ni含有量が少ない合金薄帯では微細結晶粒の体積率が高いので、靱性が低く、スリット加工により破断し易い。
 従って、本発明の目的は、幅広でも均一な厚さに形成することができ、スリット加工により破断することなく所望の幅に分割し得るFe基初期超微結晶合金薄帯、及びそれを熱処理してなるFe基ナノ結晶軟磁性合金薄帯を用いた磁性部品を提供することである。
 上記目的に鑑み鋭意研究の結果、Fe、Cu、Si及びBからなる合金に比較的多量のNiと適量のNbを添加してなる合金の溶湯を微細結晶粒が形成される条件で超急冷した合金薄帯は、Ni含有量及び厚さを所望の範囲に調整することにより、幅広でも均一な厚さに形成することができ、かつスリット加工により破断することなく所望の幅に分割し得ることを発見し、本発明に想到した。
 すなわち、本発明のFe基初期超微結晶合金薄帯は、
 下記一般式:Fe100-x-y-z-a-bNixCuyNbzSiaBb
(ただし、x,y,z,a,bはそれぞれ原子%で4≦x≦6、0.1≦y≦2、0.1≦z≦4、7≦a≦18、及び4≦b≦12の条件を満たす数である。)により表される組成を有し、
 鋳造したままの状態で非晶質母相中に300 nm以下の粒径分布を有する微細結晶粒が0体積%超かつ7体積%以下の割合で分散した組織を有し、かつ
 13~23μmの厚さを有することを特徴とする。
 前記Fe基初期超微結晶合金薄帯における微細結晶粒の平均粒径は80 nm以下であるのが好ましい。
 xは4.5≦x≦5.3の条件を満たすのが好ましい。前記微細結晶粒の合金組織全体に対する割合は0体積%超かつ3.5体積%以下であるのが好ましい。前記合金薄帯の厚さは14~22μmであるのが好ましい。
 本発明の磁性部品は、上記Fe基初期超微結晶合金薄帯を所望の幅にスリット加工した後、結晶化温度以上の温度で熱処理することにより得られたFe基ナノ結晶軟磁性合金薄帯を用いたもので、前記Fe基ナノ結晶軟磁性合金薄帯は非晶質母相中に平均粒径20~100 nmの微結晶粒が50体積%以上の割合で分散した組織を有することを特徴とする。
 本発明のFe基初期超微結晶合金薄帯は、4~6原子%のNi及び0.1~4原子%のNbを含有するFeNiCuNbSiB系合金からなり、鋳造したままの状態で非晶質母相中に300 nm以下の粒径分布を有する微細結晶粒が0体積%超かつ7体積%以下の割合で分散した組織を有し、かつ13~23μmの厚さを有するので、幅広に鋳造した後でスリット加工により破断することなく所望の幅に分割することができ、生産性が高い。また、所望の幅に分割したFe基初期超微結晶合金薄帯を熱処理してなるFe基ナノ結晶軟磁性合金薄帯は高飽和磁束密度を有するので、各種の磁性部品に用いることができる。
Fe基初期超微結晶合金薄帯のスリット加工の一例を示す概略図である。
[1] Fe基軟磁性合金薄帯
(1) 組成
 本発明のFe基初期超微結晶合金薄帯は、
 下記一般式:Fe100-x-y-z-a-bNixCuyNbzSiaBb
(ただし、x,y,z,a,bはそれぞれ原子%で4≦x≦6、0.1≦y≦2、0.1≦z≦4、7≦a≦18、及び4≦b≦12の条件を満たす数である。)により表される組成を有する。勿論、上記組成は不可避的不純物を含んでも良い。
 本発明のFe基初期超微結晶合金薄帯は4~6原子%のNiを含有することを特徴とする。Niの添加により結晶組織の微細化が促進され、ハンドリング性(巻回性)が向上し、軟磁気特性が改善される。さらに、Ni含有量を4~6原子%と多くすることにより、スリット加工の際の破断を防止することができる。好ましいNi含有量は4.5~5.3原子%である。
 Cuは微細結晶粒の析出に必要な元素である。Cu含有量が0.1原子%未満であると、合金溶湯の急冷により必要量の微細結晶粒が析出せず、もって熱処理しても平均粒径20~100 nmの微結晶粒が体積比で50%以上分散したナノ結晶組織が得られない。一方、Cu含有量が2原子%超であると、鋳造された合金薄帯は脆く、破断なしにスリット加工をすることができない。従って、Cu含有量は0.1~2原子%とする。好ましいCu含有量は0.1~1原子%である。
 Nbは、熱処理後に平均粒径20~100 nmの微結晶粒が体積比で50%以上分散したナノ結晶組織を得るの必要な元素である。Nb含有量が0.1原子%であると、上記効果が得られない。一方、Nb含有量が4原子%超であると、Feの含有量が相対的に低下して軟磁気特性が悪化する。従って、Nb含有量は0.1~4原子%とする。好ましいNb含有量は0.3~3原子%である。
 非晶質形成元素であるSiの含有量が7原子%以上であると、急冷により非晶質が安定的に形成できる。しかし、Si含有量が18原子%超であると、得られる合金薄帯の飽和磁束密度が低下する。そのため、Si含有量は7~18原子%とする。好ましいSi含有量は10.5~11.5原子%である。
 非晶質形成元素であるBの含有量が4原子%以上であると、急冷により非晶質が安定的に形成できる。しかし、B含有量が12原子%超であると、得られる合金薄帯の飽和磁束密度が低下する。そのため、B含有量は4~12原子%とする。好ましいB含有量は8~11原子%である。
(2) 組織
 本発明のFe基初期超微結晶合金薄帯は、鋳造したままの状態で非晶質母相中に300 nm以下の粒径分布を有する微細結晶粒が0体積%超かつ7体積%以下の割合で分散した組織を有する。微細結晶粒の体積比率が7体積%超であると合金薄帯は脆化し、スリット加工の際に微細結晶粒を基点とした破断の頻度が高くなる。破断は合金薄帯の巻き替えによっても起こり得る。一方、微細結晶粒が全くないと非晶質合金となるので、高い飽和磁束密度のような軟磁気特性が得られない。微細結晶粒の体積比率は好ましくは3.5体積%以下であり、より好ましくは3体積%以下である。
 粒径分布については、粒径が300 nm超の結晶粒が存在すると、軟磁気特性が低下するだけでなく、スリット加工による破断の頻度が高くなる。微細結晶粒の好ましい粒径分布は0~150 nmである。微細結晶粒の平均粒径は80 nm以下が好ましく、50 nm以下がより好ましい。微細結晶粒の平均粒径が80 nmを超えると、スリット加工による破断の頻度が高くなる。微細結晶粒のより好ましい平均粒径は10~50 nmである。
 微細結晶粒の粒径及び体積比率は、鋳造した合金薄帯の透過型電子顕微鏡写真(1000 nm×1000 nmの視野)で画像分析により求め、任意の3つの視野について平均する。各視野における微細結晶粒の面積比率を体積比率とする。透過型電子顕微鏡観察では、微細結晶粒はほぼ球状である。
(3) 厚さ
 スリット加工の際の合金薄帯の破断し易さは、Ni含有量及び合金薄帯の厚さに依存する。鋭意検討の結果、Ni含有量が4~6原子%の範囲内であって、厚さが13~23μmの範囲内のときにスリット加工による合金薄帯の破断頻度が低いことが分った。合金薄帯の厚さが14~22μmであると、スリット加工による破断頻度は更に低くなる。
(4) 幅
 4~6原子%の範囲内のNi含有量及び13~23μmの範囲内の厚さの条件を満たすFe基初期超微結晶合金薄帯は、30 mm以上の幅としても、厚さの均一性を実質的に保つことができる。実用的には、Fe基初期超微結晶合金薄帯の幅は50 mm以上が好ましい。
 Fe基初期超微結晶合金薄帯の幅方向の厚さ分布を低減するためには、鋳造時のノズルと冷却ロールとの間のギャップを調整するのが有効であることが分った。即ち、ノズルとロールのギャップが広すぎると、合金薄帯の断面は中央部が厚く端部が薄くなる。板厚の違いによって冷却速度の差が生じるので、微細結晶粒の密度にも差が生じ、幅方向の硬さ分布が生じる。具体的には幅40 mm以上で厚さ13~23μmのFe基初期超微結晶合金薄帯を鋳造する場合、ノズルと冷却ロールとの間のギャップを200~300μmにすると、幅方向の厚さ分布(最大厚さ-最小厚さ)が2μm以下となる。幅方向の厚さ分布をより小さくするために、ノズルと冷却ロールとの間のギャップは150~270μmが好ましい。
[2] Fe基初期超微結晶合金薄帯の製造方法
(1) 合金溶湯
 合金溶湯はFe100-x-y-z-a-bNixCuyNbzSiaBb(ただし、x,y,z,a,bはそれぞれ原子%で4≦x≦6、0.1≦y≦2、0.1≦z≦4、7≦a≦18、及び4≦b≦12の条件を満たす数である。)により表される組成を有する。
(2) 溶湯の急冷
 合金溶湯の急冷は単ロール法により行うことができる。溶湯温度は合金の融点より50~300℃高いのが好ましく、具体的には約1300~1400℃の溶湯をノズルから冷却ロール上に噴出させるのが好ましい。単ロール法における雰囲気は、合金が活性な金属を含まない場合は大気又は不活性ガス(Ar、窒素等)であり、活性な金属を含む場合は不活性ガス(Ar、He、窒素等)又は真空である。表面に酸化皮膜を形成するためには、溶湯の急冷を酸素含有雰囲気(例えば大気)中で行うのが好ましい。
 微細結晶粒の生成は合金薄帯の冷却速度と時間に密接に関連する。そのため、微細結晶粒の体積分率を制御する手段の一つは冷却ロールの周速(鋳造速度)の制御である。ロールの周速が速くなると微細結晶粒の体積分率が低減し、遅くなると増加する。ロールの周速は20~45 m/sが好ましく、25~40 m/sがより好ましい。冷却ロールの周速が20 m/s未満であると、冷却速度が遅すぎ、結晶化が進み過ぎる。また冷却ロールの周速が45 m/s超であると、ノズルと冷却ロールとの間の溶湯(パドル)が不安定になり、溶湯が飛散し易い。
 冷却ロールの材質は、高熱伝導率の純銅、又はCu-Be、Cu-Cr、Cu-Zr、Cu-Zr-Cr等の銅合金が適している。冷却ロールは水冷式が好ましい。冷却ロールの水冷は微細結晶粒の体積分率に影響するので、冷却水を所定の温度に保つのが効果的である。
(3) ギャップの調整
 合金溶湯を高速で回転する冷却ロールに吹き付けて鋳造する単ロール法では、溶湯はロール上で直ちには固まらず、液相状態を10-8~10-6秒程度保つ。この状態の溶湯をパドルと呼ぶ。パドル制御により板厚、断面形状等を調整できる。ノズルと冷却ロールとの間のギャップ、出湯圧力、溶湯の自重等を調節することにより、パドルを制御することができる。このうち、出湯圧力及び溶湯の自重は溶湯の残量、溶湯温度等により変化するため、調節が困難である。これに対して、ギャップ制御は、ノズルと冷却ロールとの間の距離をモニタリングし、常にフィードバックをかけることにより簡単に行うことができる。従って、ギャップ制御によりFe基初期超微結晶合金薄帯の板厚、断面形状等を調整するのが好ましい。
 一般に、ギャップが広いほど湯流れが良く、Fe基初期超微結晶合金薄帯を厚くしたりパドルの崩壊を防いだりするのに有効である。しかし、ギャップが広すぎると合金薄帯は中央部が厚く端部が薄い断面形状となり、板厚差が生じる。幅方向の厚さ分布を2μm以下に抑えるために、ギャップを200~300μmにするのが好ましい。なお、ギャップを狭くすると幅方向の厚さ分布は抑制できるが、ノズルスリットが閉塞し易くなる。またギャップが300μm超になると、パドルが不安定になる。
(4) 溶湯の吐出条件
 溶湯の吐出条件として、ノズルスリットの幅は0.4~0.6 mmが好ましい。ノズルスリットの幅が0.4 mm未満であると、ノズルスリットが閉塞し易い。またノズルスリットの幅が0.6 mm超になると、溶湯の吐出が不安定になり、溶湯が飛散し易くなる。溶湯の吐出圧力は200~300 g/cm2が好ましい。溶湯の吐出圧力が200 g/cm2未満であると、ノズルスリットが閉塞し易く、溶湯の供給が不安定で、薄帯の表面が荒れる傾向がある。また溶湯の吐出圧力が300 g/cm2超になると、ノズルと冷却ロールとの間の溶湯が不安定になり、溶湯が飛散し易くなる。
(5) 剥離温度
 急冷により得られたFe基初期超微結晶合金薄帯と冷却ロールとの間にノズルから不活性ガス(窒素等)を吹き付けることにより、Fe基初期超微結晶合金薄帯を冷却ロールから剥離する。Fe基初期超微結晶合金薄帯の剥離温度(冷却時間に相関する)も微細結晶粒の体積分率に影響する。Fe基初期超微結晶合金薄帯の剥離温度は不活性ガスを吹き付けるノズルの位置(剥離位置)を変えることにより調整でき、一般に170~350℃であり、好ましくは200~340℃である。剥離温度が170℃未満であると、急冷し過ぎて合金組織がほぼ非晶質となる。一方、剥離温度が350℃超であると、微細結晶粒が多くなりすぎる。
 剥離したFe基初期超微結晶合金薄帯の内部はまだ比較的高温であるので、さらなる結晶化を防止するために、巻き取る前にFe基初期超微結晶合金薄帯を十分に冷却する。例えば、剥離したFe基初期超微結晶合金薄帯に不活性ガス(窒素等)を吹き付けて、実質的に室温まで冷却した後巻き取る。
[3] Fe基ナノ結晶軟磁性合金薄帯
 本発明のFe基初期超微結晶合金薄帯を結晶化温度以上の温度で熱処理することにより、非晶質母相中に平均粒径20~100 nmの微結晶粒(ナノ結晶粒)を50体積%以上の割合で析出させ、Fe基ナノ結晶軟磁性合金薄帯とする。Fe基ナノ結晶軟磁性合金薄帯は4000~6000程度の比透磁率を有し、優れた軟磁気特性を有する。組成により結晶化温度は異なるが、熱処理温度は一般に500~580℃であるのが好ましい。また、熱処理時間は30分以下が好ましく、10~20分がより好ましい。
[4] 磁性部品
 Fe基ナノ結晶軟磁性合金薄帯を用いた磁性部品は、飽和磁束密度が高いので、磁気飽和が問題となるハイパワーの用途に好適であり、例えばアノードリアクトル等の大電流用リアクトル、アクティブフィルタ用チョークコイル、平滑用チョークコイル、レーザ電源や加速器等に用いられるパルスパワー磁性部品、トランス、通信用パルストランス、風力発電で使用される電流検出回路のカレントトランス、モータ又は発電機の磁心等が挙げられる。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
実施例1
 Fe75.7-xNixCu0.8Nb2.8Si10.9B9.8の組成を有する幅53 mm、厚さ10~24μm及び長さ5000 mのFe基初期超微結晶合金薄帯を下記条件の単ロール法により鋳造し、窒素ガス流(エアナイフ)により冷却ロールから剥離し、ロールに巻取った。
  ノズルと冷却ロールとのギャップ:250 μm
  ノズルスリットの幅:0.45 mm
  溶湯の吐出圧力:280 g/cm2
  冷却ロールの周速:30 m/s
 厚さが10μmの場合、ロールに巻き取る際に引っ張り応力により頻繁に破断し、長尺の合金薄帯が得られなかった。そのため、スリット加工の実験を行わなかった。
 厚さが10~24μmのFe基初期超微結晶合金薄帯1の各々に対して、図1に示すように、合金薄帯1と実質的に同じ周速で回転する3つの円板状砥石2a,2b,2cによりスリット加工を行った。各円板状砥石2a,2b,2cは50 mmの直径を有し、円周端の切刃断面は30°の角度の有していた。図1に示す間隔で配置された3つの円板状砥石2a,2b,2cを回転させて、三本の切断線3a,3b,3cを形成した。円板状砥石2a,2cによるスリット加工(切断線3a,3c)により合金薄帯1の両端部を1.5 mmの幅で除去し、円板状砥石2bによるスリット加工(切断線3b)により合金薄帯1の中央部を幅25 mmに二分割した。得られた2本の幅25 mmの合金薄帯片の破断頻度(長さ5000 mの間に起こった破断の回数)を調べた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
注:(1) 巻き取る際に破断が頻繁に起こり、長尺の合金薄帯が得られなかった。
 
 表1から明らかなように、Ni含有量が4~6原子%の範囲内で厚さが13~23μmの範囲内では、破断頻度は2回以下であった。特にNi含有量が4.5~5.3原子%の範囲内で厚さが14~22μmの範囲内では、破断は全く認められなかった。これから、破断のないスリット加工を可能にするためには、Ni含有量は4~6原子%の範囲内であり、かつ合金薄帯の厚さは13~23μmの範囲内である必要があることが分かる。これに対して、上記範囲外の場合、たとえNi含有量及び厚さの一方の要件が満たされても破断頻度が高く、満足なスリット加工性は得られなかった。
 表1に示す各合金薄帯の組織を透過型電子顕微鏡(倍率:100,000倍)により観察し、微細結晶粒の体積比率を測定した。いずれの合金薄帯でも粒径が300 nm超の微細結晶粒は観察されなかった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、Ni含有量が4~6原子%の範囲内で、厚さが13~23μmの範囲内では、いずれの合金薄帯でも微細結晶粒の体積比率は7.0%以下であった。特にNi含有量が4.5~5.3原子%の範囲内で、厚さが14~22μmの範囲内では、微細結晶粒の体積比率は3.5%以下であった。
実施例2
 実施例1で幅25 mmにスリット加工した合金薄帯のうち、Ni含有量がそれぞれ4.0原子%、4.5原子%、5.0原子%、5.3原子%及び6.0原子%で、厚さが16μmのものを、外径24.5 mm及び内径21 mmのトロイダル形状に巻回し、磁心とした。各磁心を550℃の窒素雰囲気中に20分間保持し、319.1 kA/m(4000 Gauss)の磁場中で熱処理し、合金薄帯中に平均粒径20~100 nmのナノ結晶粒を生成させ、Fe基ナノ結晶軟磁性合金薄帯からなるトロイダル磁心を得た。透過型電子顕微鏡写真(1000 nm×1000 nmの視野)観察の結果、各合金薄帯におけるナノ結晶粒はほぼ球状であり、20~100 nmの平均粒径を有し、組織全体に対する体積比率はいずれも60~80%であった。
 各トロイダル磁心に直径0.5 mmの被覆銅線を1ターン巻回し、周波数10 kHz、及び0.05 A/mの磁場中でインダクタンスを測定し、インダクタンスの測定値から比透磁率μrを算出した。Ni含有量が4原子%から6原子%に増加するについて、比透磁率μrは6000から4000に低下した。Ni含有量がそれぞれ4.5原子%、5.0原子%及び5.3原子%の合金薄帯からなるトロイダル磁心の比透磁率μrは、それぞれ5500、5000及び4500であった。
実施例3
 実施例1で幅25 mmにスリット加工した合金薄帯のうち、Ni含有量が5.0原子%で、厚さが16μmのものを外径150 mm及び内径100 mmのトロイダル形状に巻回し、磁心を得た。このトロイダル磁心に被覆銅線を巻回し、コモンモードチョークコイルを作製した。このコモンモードチョークコイルを電車用インバータ回路に装入したところ、ノイズ除去効果が確認できた。
実施例4
 被覆銅線を巻回した実施例3のトロイダル磁心を風力発電用の電流検出回路のカレントトランスとして使用したところ、の電流値検知能力が確認できた。
実施例5
 実施例1と同様にして、単ロール法により表3に示す組成及び厚さを有する幅53 mmの合金薄帯を鋳造した。鋳造したままの合金薄帯の組織を透過型電子顕微鏡により観察したところ、表3に示すように微細結晶粒の体積比率はいずれも3.2%以下であった。また、粒径が300 nm超の微細結晶粒は観察されなかった。
 各合金薄帯に対して図1に示すスリット加工を行い、破断頻度を調べた。その結果、いずれの合金薄帯も破断頻度が0回であった。これから、いずれの合金薄帯にもスリット加工による破断が全くないことが分る。
Figure JPOXMLDOC01-appb-T000003
実施例6
 組成をFe72.5Ni5.0Cu0.8Nb1.0Si10.9B9.8に変更した(Ni含有量を5.0原子%とし、Nb含有量を1.0原子%とした)以外、実施例1と同様にして、厚さ16μm及び幅53 mmのFe基初期超微結晶合金薄帯を作製した。この合金薄帯に対して図1に示すスリット加工を施したところ、破断は起こらなかった。
実施例7
 組成をFe73.0Ni5.0Cu0.8Nb0.5Si10.9B9.8に変更した(Ni含有量を5.0原子%とし、Nb含有量を0.5原子%とした)以外、実施例1と同様にして、厚さ16μm及び幅53 mmのFe基初期超微結晶合金薄帯を作製した。この合金薄帯に対して図1に示すスリット加工を施したところ、破断は起こらなかった。

Claims (4)

  1. 下記一般式:Fe100-x-y-z-a-bNixCuyNbzSiaBb
    (ただし、x,y,z,a,bはそれぞれ原子%で4≦x≦6、0.1≦y≦2、0.1≦z≦4、7≦a≦18、及び4≦b≦12の条件を満たす数である。)により表される組成を有し、
     鋳造したままの状態で非晶質母相中に300 nm以下の粒径分布を有する微細結晶粒が0体積%超かつ7体積%以下の割合で分散した組織を有し、かつ
     13~23μmの厚さを有することを特徴とするFe基初期超微結晶合金薄帯。
  2. 請求項1に記載のFe基初期超微結晶合金薄帯において、前記微細結晶粒の平均粒径が80 nm以下であることを特徴とするFe基初期超微結晶合金薄帯。
  3. 請求項1又は2に記載のFe基初期超微結晶合金薄帯において、xが4.5≦x≦5.3の条件を満たし、前記微細結晶粒の合金組織全体に対する割合が0体積%超かつ3.5体積%以下であり、かつ前記合金薄帯の厚さが14~22μmであることを特徴とするFe基初期超微結晶合金薄帯。
  4. 請求項1~3のいずれかに記載のFe基初期超微結晶合金薄帯を所望の幅にスリット加工した後、結晶化温度以上の温度で熱処理することにより得られたFe基ナノ結晶軟磁性合金薄帯を用いた磁性部品であって、前記Fe基ナノ結晶軟磁性合金薄帯は非晶質母相中に平均粒径20~100 nmの微結晶粒が50体積%以上の割合で分散した組織を有することを特徴とする磁性部品。
PCT/JP2012/076138 2011-10-06 2012-10-09 Fe基初期超微結晶合金薄帯及び磁性部品 WO2013051729A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/349,808 US20140239220A1 (en) 2011-10-06 2012-10-09 Fe-based, primary, ultrafine crystalline alloy ribbon and magnetic device
CN201280049184.XA CN103842548A (zh) 2011-10-06 2012-10-09 Fe基初期超微结晶合金薄带和磁性部件
JP2013537584A JP6003899B2 (ja) 2011-10-06 2012-10-09 Fe基初期超微結晶合金薄帯及び磁性部品
IN2865DEN2014 IN2014DN02865A (ja) 2011-10-06 2012-10-09
EP12838966.5A EP2757172A4 (en) 2011-10-06 2012-10-09 INITIAL IRON (FE) ULTRA FINE CRYSTAL ALLOY RUBBER RUBBER AND MAGNETIC COMPONENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011222057 2011-10-06
JP2011-222057 2011-10-06

Publications (1)

Publication Number Publication Date
WO2013051729A1 true WO2013051729A1 (ja) 2013-04-11

Family

ID=48043882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076138 WO2013051729A1 (ja) 2011-10-06 2012-10-09 Fe基初期超微結晶合金薄帯及び磁性部品

Country Status (6)

Country Link
US (1) US20140239220A1 (ja)
EP (1) EP2757172A4 (ja)
JP (1) JP6003899B2 (ja)
CN (1) CN103842548A (ja)
IN (1) IN2014DN02865A (ja)
WO (1) WO2013051729A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520944A (zh) * 2017-03-31 2019-11-29 日立金属株式会社 Fe基纳米晶合金用的Fe基非晶合金带及其制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105074843B (zh) * 2013-02-15 2018-06-08 日立金属株式会社 使用了Fe基纳米晶体软磁性合金的环状磁芯、以及使用其的磁性部件
US10316396B2 (en) * 2015-04-30 2019-06-11 Metglas, Inc. Wide iron-based amorphous alloy, precursor to nanocrystalline alloy
CN106636981A (zh) * 2016-10-28 2017-05-10 上海理工大学 一种软磁铁基非晶合金制品
JPWO2019124224A1 (ja) * 2017-12-19 2020-12-17 株式会社村田製作所 非晶質合金粒子、及び、非晶質合金粒子の製造方法
JP6429055B1 (ja) * 2018-03-09 2018-11-28 Tdk株式会社 軟磁性金属粉末、圧粉磁心および磁性部品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774419B2 (ja) 1986-12-15 1995-08-09 日立金属株式会社 Fe基軟磁性合金の製造方法
JP2000277357A (ja) * 1999-03-23 2000-10-06 Hitachi Metals Ltd 可飽和磁心ならびにそれを用いた電源装置
JP2006525655A (ja) * 2003-04-02 2006-11-09 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 鉄心とその製造および使用方法
WO2007032531A1 (ja) 2005-09-16 2007-03-22 Hitachi Metals, Ltd. ナノ結晶磁性合金とその製造方法、合金薄帯、及び磁性部品
WO2010021130A1 (ja) * 2008-08-22 2010-02-25 Makino Akihiro 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479342A (en) * 1986-12-15 1989-03-24 Hitachi Metals Ltd Fe-base soft magnetic alloy and its production
JP2713711B2 (ja) * 1987-11-17 1998-02-16 日立金属株式会社 防犯センサ用マーカ
JP5455040B2 (ja) * 2007-04-25 2014-03-26 日立金属株式会社 軟磁性合金、その製造方法、および磁性部品
US9773595B2 (en) * 2011-04-15 2017-09-26 Vacuumschmelze Gmbh & Co. Kg Alloy, magnetic core and process for the production of a tape from an alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774419B2 (ja) 1986-12-15 1995-08-09 日立金属株式会社 Fe基軟磁性合金の製造方法
JP2000277357A (ja) * 1999-03-23 2000-10-06 Hitachi Metals Ltd 可飽和磁心ならびにそれを用いた電源装置
JP2006525655A (ja) * 2003-04-02 2006-11-09 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 鉄心とその製造および使用方法
WO2007032531A1 (ja) 2005-09-16 2007-03-22 Hitachi Metals, Ltd. ナノ結晶磁性合金とその製造方法、合金薄帯、及び磁性部品
WO2010021130A1 (ja) * 2008-08-22 2010-02-25 Makino Akihiro 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520944A (zh) * 2017-03-31 2019-11-29 日立金属株式会社 Fe基纳米晶合金用的Fe基非晶合金带及其制造方法

Also Published As

Publication number Publication date
CN103842548A (zh) 2014-06-04
US20140239220A1 (en) 2014-08-28
IN2014DN02865A (ja) 2015-05-15
JPWO2013051729A1 (ja) 2015-03-30
EP2757172A1 (en) 2014-07-23
EP2757172A4 (en) 2015-01-14
JP6003899B2 (ja) 2016-10-05

Similar Documents

Publication Publication Date Title
JP5720674B2 (ja) 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品
JP6191908B2 (ja) ナノ結晶軟磁性合金及びこれを用いた磁性部品
JP6237630B2 (ja) 超微結晶合金薄帯、微結晶軟磁性合金薄帯及びこれを用いた磁性部品
JP5455040B2 (ja) 軟磁性合金、その製造方法、および磁性部品
JP6003899B2 (ja) Fe基初期超微結晶合金薄帯及び磁性部品
JP6044549B2 (ja) 超微結晶合金薄帯の製造方法
JP2008231463A (ja) Fe基軟磁性合金、アモルファス合金薄帯、および磁性部品
JP6080094B2 (ja) 巻磁心およびこれを用いた磁性部品
JP2011149045A (ja) 軟磁性合金薄帯及びその製造方法、並びに軟磁性合金薄帯を有する磁性部品
TWI685578B (zh) 軟磁性合金薄帶及磁性部件
JP6041207B2 (ja) ナノ結晶軟磁性合金及びこれを用いた磁性部品
JP2008231533A (ja) 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
JP3594123B2 (ja) 合金薄帯並びにそれを用いた部材、及びその製造方法
JP2008231534A (ja) 軟磁性薄帯、磁心、および磁性部品
JP2003213331A (ja) Fe基軟磁性合金の製造方法及びFe基軟磁性合金
JP2868121B2 (ja) Fe基磁性合金磁心の製造方法
JP2000328206A (ja) 軟磁性合金薄帯ならびにそれを用いた磁心、装置およびその製造方法
JP2004353090A (ja) 合金薄帯並びにそれを用いた部材
JP2001295005A (ja) ナノ結晶軟磁性合金用Fe基アモルファス合金薄帯及び磁性部品
JP2020158831A (ja) 軟磁性合金および磁性部品
JP4217038B2 (ja) 軟磁性合金
JP6845205B2 (ja) 軟磁性合金薄帯および磁性部品
JP4212820B2 (ja) Fe基軟磁性合金とその製造方法
JP2001300697A (ja) ナノ結晶材用アモルファスリボンの製造方法及びこれを用いたナノ結晶軟磁性材料の製造方法
JPH049453A (ja) アモルファス合金リボン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537584

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14349808

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012838966

Country of ref document: EP