TWI624920B - 導線接合方法及半導體裝置之製造方法 - Google Patents

導線接合方法及半導體裝置之製造方法 Download PDF

Info

Publication number
TWI624920B
TWI624920B TW105127771A TW105127771A TWI624920B TW I624920 B TWI624920 B TW I624920B TW 105127771 A TW105127771 A TW 105127771A TW 105127771 A TW105127771 A TW 105127771A TW I624920 B TWI624920 B TW I624920B
Authority
TW
Taiwan
Prior art keywords
pad
semiconductor device
fab
electrode
wiring
Prior art date
Application number
TW105127771A
Other languages
English (en)
Other versions
TW201719839A (zh
Inventor
芳我基治
吉田真悟
糟谷泰正
永原斗一
木村明寬
藤井賢治
Original Assignee
羅姆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 羅姆股份有限公司 filed Critical 羅姆股份有限公司
Publication of TW201719839A publication Critical patent/TW201719839A/zh
Application granted granted Critical
Publication of TWI624920B publication Critical patent/TWI624920B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/002Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating specially adapted for particular articles or work
    • B23K20/004Wire welding
    • B23K20/005Capillary welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02123Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body inside the bonding area
    • H01L2224/02125Reinforcing structures
    • H01L2224/02126Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29113Bismuth [Bi] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29118Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • H01L2224/48453Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48477Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
    • H01L2224/48478Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball
    • H01L2224/48479Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48507Material at the bonding interface comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48717Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48724Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48739Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48747Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48817Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48824Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48839Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48847Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • H01L2224/78302Shape
    • H01L2224/78303Shape of the pressing surface, e.g. tip or head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • H01L2224/78302Shape
    • H01L2224/78305Shape of other portions
    • H01L2224/78307Shape of other portions outside the capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • H01L2224/78309Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/83138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/8314Guiding structures outside the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83439Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/85051Forming additional members, e.g. for "wedge-on-ball", "ball-on-wedge", "ball-on-ball" connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85186Translational movements connecting first outside the semiconductor or solid-state body, i.e. off-chip, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85986Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00012Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01066Dysprosium [Dy]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012066N purity grades, i.e. 99.9999%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0133Ternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04944th Group
    • H01L2924/04941TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04955th Group
    • H01L2924/04953TaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/050414th Group
    • H01L2924/05042Si3N4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/053Oxides composed of metals from groups of the periodic table
    • H01L2924/054414th Group
    • H01L2924/05442SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10162Shape being a cuboid with a square active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/183Connection portion, e.g. seal
    • H01L2924/18301Connection portion, e.g. seal being an anchoring portion, i.e. mechanical interlocking between the encapsulation resin and another package part
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20757Diameter ranges larger or equal to 70 microns less than 80 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Wire Bonding (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

本發明之半導體裝置包括:半導體晶片;電極焊墊,其包括含鋁之金屬材料且形成於上述半導體晶片之表面;電極引線,其配置於上述半導體晶片之周圍;接線,其包括呈線狀延伸之本體部、以及形成於上述本體部之兩端且分別與上述電極焊墊及上述電極引線接合之焊墊接合部及引線接合部;以及樹脂封裝體,其密封上述半導體晶片、上述電極引線及上述接線;且上述接線包含銅;整個上述電極焊墊及整個上述焊墊接合部均由不透水膜一體地被覆。

Description

導線接合方法及半導體裝置之製造方法
本發明係關於一種半導體裝置。
通常,半導體裝置係以將半導體晶片與接線一併由樹脂密封(封裝)之狀態流通。於封裝體內,將半導體晶片之電極焊墊與一部分自樹脂封裝體露出之電極引線藉由接線加以電性連接。因此,藉由將電極引線作為外部端子連接於安裝基板之佈線,而實現半導體晶片與安裝基板之電性連接。
作為連接電極焊墊與電極引線之接線,先前主要係使用金導線,但為減少使用價格昂貴之金,近年來正在研究使用價格較金導線便宜之銅導線。
[先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開平10-261664號公報
然而,當將半導體裝置放置於高濕環境下時,有時水分會滲入至封裝體內部。例如,於PCT(Pressure Cooker Test,壓力鍋測試)或HAST(Highly Accelerated temperature and humidity Stress Test,高加速溫度濕度應力測試)等耐濕評價測試之實施過程中,測試槽內之水 蒸氣容易滲入至封裝體內部。
並且,當使用銅導線作為與近年來主流之鋁製電極焊墊連接之導線時,若該滲入水分進入至電極焊墊與接線之接合界面,則於該接合界面附近,容易進行鋁之腐蝕。因此,於焊墊與導線之間有發生電性斷開之虞。
本發明之目的在於提供一種可提高包括含鋁之金屬材料之電極焊墊與含銅之接線之連接可靠性的半導體裝置。
用以達成上述目的之本發明之半導體裝置包括:半導體晶片;電極焊墊,其包括含鋁之金屬材料,且形成於上述半導體晶片之表面;電極引線,其配置於上述半導體晶片之周圍;接線,其包括呈線狀延伸之本體部、以及形成於上述本體部之兩端且分別與上述電極焊墊及上述電極引線接合之焊墊接合部及引線接合部;以及樹脂封裝體,其密封上述半導體晶片、上述電極引線及上述接線;且上述接線包含銅;整個上述電極焊墊及整個上述焊墊接合部均由不透水膜一體地被覆。
根據該構成,整個電極焊墊及整個焊墊接合部均由不透水膜一體地被覆。藉此,電極焊墊與焊墊接合部之接合界面(焊墊接合界面)之周緣由不透水膜被覆而不露出。
因此,即使水分滲入至樹脂封裝體內部,亦可藉由不透水膜攔截該水分,因此可抑制焊墊接合界面與水分之接觸。其結果為,可抑制電極焊墊之腐蝕之行進,故而可抑制焊墊與導線間之電性斷開。因此,可提高半導體裝置之連接可靠性。
1A‧‧‧半導體裝置
1B‧‧‧半導體裝置
1C‧‧‧半導體裝置
1D‧‧‧半導體裝置
1E‧‧‧半導體裝置
1F‧‧‧半導體裝置
1G‧‧‧半導體裝置
1H‧‧‧半導體裝置
1I‧‧‧半導體裝置
1J‧‧‧半導體裝置
1K‧‧‧半導體裝置
1L‧‧‧半導體裝置
1M‧‧‧半導體裝置
1N‧‧‧半導體裝置
1P‧‧‧半導體裝置
1Q‧‧‧半導體裝置
1R‧‧‧半導體裝置
1S‧‧‧半導體裝置
1T‧‧‧半導體裝置
1U‧‧‧半導體裝置
2A‧‧‧半導體晶片
2B‧‧‧半導體晶片
2C‧‧‧半導體晶片
2D‧‧‧半導體晶片
2E‧‧‧半導體晶片
2F‧‧‧半導體晶片
2G‧‧‧半導體晶片
2H‧‧‧半導體晶片
2I‧‧‧半導體晶片
2J‧‧‧半導體晶片
2K‧‧‧半導體晶片
2L‧‧‧半導體晶片
2M‧‧‧半導體晶片
2N‧‧‧半導體晶片
2P‧‧‧半導體晶片
2Q‧‧‧半導體晶片
2R‧‧‧半導體晶片
2S‧‧‧半導體晶片
2T‧‧‧半導體晶片
2U‧‧‧半導體晶片
3A‧‧‧晶片焊墊
3B‧‧‧晶片焊墊
3C‧‧‧晶片焊墊
3D‧‧‧晶片焊墊
3E‧‧‧晶片焊墊
3F‧‧‧晶片焊墊
3G‧‧‧晶片焊墊
3H‧‧‧晶片焊墊
3I‧‧‧引線框架
3J‧‧‧引線框架
3K‧‧‧晶片焊墊
3L‧‧‧晶片焊墊
3M‧‧‧晶片焊墊
3N‧‧‧晶片焊墊
3P‧‧‧晶片焊墊
3Q‧‧‧晶片焊墊
3R‧‧‧晶片焊墊
3S‧‧‧晶片焊墊(框架)
3T‧‧‧晶片焊墊
3U‧‧‧晶片焊墊
4A‧‧‧電極引線
4B‧‧‧電極引線
4C‧‧‧電極引線
4D‧‧‧電極引線
4E‧‧‧電極引線
4F‧‧‧電極引線
4G‧‧‧引線
4H‧‧‧引線
4I‧‧‧樹脂封裝體
4J‧‧‧樹脂封裝體
4K‧‧‧電極引線
4L‧‧‧引線
4M‧‧‧引線
4N‧‧‧引線
4P‧‧‧引線
4Q‧‧‧電極引線
4R‧‧‧電極引線
4S‧‧‧引線(框架)
4T‧‧‧電極引線
4U‧‧‧電極引線
5A‧‧‧接線
5B‧‧‧接線
5C‧‧‧接線
5D‧‧‧接線
5E‧‧‧接線
5F‧‧‧接線
5G‧‧‧銅導線
5H‧‧‧銅導線
5I‧‧‧晶片焊墊
5J‧‧‧島狀物
5K‧‧‧接線
5L‧‧‧銅導線
5M‧‧‧銅導線
5N‧‧‧銅導線
5P‧‧‧銅導線
5Q‧‧‧接線
5R‧‧‧接線
5S‧‧‧銅導線(第2構件)
5T‧‧‧接線
5U‧‧‧接線
6A‧‧‧樹脂封裝體
6B‧‧‧樹脂封裝體
6C‧‧‧樹脂封裝體
6D‧‧‧樹脂封裝體
6E‧‧‧樹脂封裝體
6F‧‧‧樹脂封裝體
6G‧‧‧樹脂封裝體
6H‧‧‧樹脂封裝體
6I‧‧‧引線
6J‧‧‧引線
6K‧‧‧樹脂封裝體
6L‧‧‧樹脂封裝體
6M‧‧‧樹脂封裝體
6N‧‧‧樹脂封裝體
6P‧‧‧樹脂封裝體
6Q‧‧‧樹脂封裝體
6R‧‧‧樹脂封裝體
6S‧‧‧樹脂封裝體
6T‧‧‧樹脂封裝體
6U‧‧‧樹脂封裝體
7A‧‧‧表面保護膜
7B‧‧‧表面保護膜
7C‧‧‧表面保護膜
7D‧‧‧表面保護膜
7E‧‧‧表面保護膜
7F‧‧‧表面保護膜
7G‧‧‧焊墊
7H‧‧‧背部金屬
7I‧‧‧中央部
7J‧‧‧本體部
7K‧‧‧Si基板
7L‧‧‧焊墊
7M‧‧‧焊墊
7N‧‧‧焊墊
7P‧‧‧焊墊
7Q‧‧‧類比電路
7R‧‧‧表面保護膜
7S‧‧‧鋁焊墊(第1構件)
7T‧‧‧表面保護膜
7U‧‧‧Si基板
8A‧‧‧焊墊開口
8B‧‧‧焊墊開口
8C‧‧‧焊墊開口
8D‧‧‧焊墊開口
8E‧‧‧焊墊開口
8F‧‧‧焊墊開口
8G‧‧‧背部金屬
8H‧‧‧鍍層
8I‧‧‧懸掛部
8J‧‧‧懸掛部
8K‧‧‧電極焊墊
8L‧‧‧背部金屬
8M‧‧‧背部金屬
8N‧‧‧背部金屬
8P‧‧‧背部金屬
8Q‧‧‧數位電路
8R‧‧‧焊墊開口
8S‧‧‧背部金屬
8T‧‧‧焊墊開口
8U‧‧‧電極焊墊
9A‧‧‧電極焊墊
9B‧‧‧電極焊墊
9C‧‧‧電極焊墊
9D‧‧‧電極焊墊
9E‧‧‧電極焊墊
9F‧‧‧電極焊墊(接合對象物)
9G‧‧‧鍍層
9H‧‧‧鍍層
9I‧‧‧銀薄膜(鍍銀)
9J‧‧‧貫通孔
9K‧‧‧背部金屬
9L‧‧‧鍍層
9M‧‧‧鍍層
9N‧‧‧鍍層
9P‧‧‧鍍層
9Q‧‧‧功率電晶體電路
9R‧‧‧電極焊墊
9S‧‧‧鍍層
9T‧‧‧電極焊墊
9U‧‧‧背部金屬
10A‧‧‧背面金屬
10B‧‧‧背面金屬
10C‧‧‧背面金屬
10D‧‧‧背面金屬
10E‧‧‧背面金屬
10F‧‧‧背面金屬
10G‧‧‧鍍層
10H‧‧‧接合材料
10I‧‧‧焊接劑
10J‧‧‧銀膏(接合材料)
10K‧‧‧引線框架
10L‧‧‧鍍層
10M‧‧‧鍍層
10N‧‧‧鍍層
10P‧‧‧鍍層
10Q‧‧‧電極焊墊
10R‧‧‧背部金屬
10S‧‧‧鍍層
10T‧‧‧背面金屬
10U‧‧‧引線框架
11A‧‧‧焊墊鍍層
11B‧‧‧焊墊鍍層
11C‧‧‧焊墊鍍層
11D‧‧‧焊墊鍍層
11E‧‧‧焊墊鍍層
11F‧‧‧焊墊鍍層
11G‧‧‧接合材料
11I‧‧‧表面保護膜
11J‧‧‧合金膜
11K‧‧‧接合層
11L‧‧‧接合材料
11M‧‧‧接合材料
11N‧‧‧接合材料
11P‧‧‧接合材料
11Q‧‧‧對準標記
11R‧‧‧引線框架
11S‧‧‧接合材料
11T‧‧‧焊墊鍍層
11U‧‧‧接合層
12A‧‧‧接合材料
12B‧‧‧接合材料
12C‧‧‧接合材料
12D‧‧‧接合材料
12E‧‧‧接合材料
12F‧‧‧接合材料
12G‧‧‧層間絕緣膜
12I‧‧‧焊墊
12J‧‧‧表面導線
12K‧‧‧背面鍍層
12L‧‧‧層間絕緣膜
12M‧‧‧層間絕緣膜
12N‧‧‧層間絕緣膜
12P‧‧‧層間絕緣膜
12Q‧‧‧背部金屬
12R‧‧‧密封側鍍層
12S‧‧‧層間絕緣膜
12T‧‧‧接合材料
12U‧‧‧背面鍍層
13A‧‧‧焊錫鍍層
13B‧‧‧焊錫鍍層
13C‧‧‧焊錫鍍層
13D‧‧‧焊錫鍍層
13E‧‧‧焊錫鍍層
13F‧‧‧焊錫鍍層
13G‧‧‧表面保護膜
13I‧‧‧接線
13K‧‧‧背面鍍層
13L‧‧‧表面保護膜
13M‧‧‧表面保護膜
13N‧‧‧表面保護膜
13P‧‧‧表面保護膜
13Q‧‧‧引線框架
13R‧‧‧接合材料
13S‧‧‧表面保護膜
13T‧‧‧焊錫鍍層
13U‧‧‧背面鍍層
14A‧‧‧引線鍍層
14B‧‧‧引線鍍層
14C‧‧‧引線鍍層
14D‧‧‧引線鍍層
14E‧‧‧引線鍍層
14F‧‧‧引線鍍層
14G‧‧‧焊墊開口
14J‧‧‧背面導線
14K‧‧‧接合膏
14L‧‧‧焊墊開口
14M‧‧‧焊墊開口
14N‧‧‧焊墊開口
14P‧‧‧焊墊開口
14Q‧‧‧密封側鍍層
14R‧‧‧安裝側鍍層
14S‧‧‧焊墊開口
14T‧‧‧引線鍍層
14U‧‧‧接合膏
15A‧‧‧焊錫鍍層
15B‧‧‧焊錫鍍層
15C‧‧‧焊錫鍍層
15D‧‧‧焊錫鍍層
15E‧‧‧焊錫鍍層
15F‧‧‧焊錫鍍層
15G‧‧‧第1球體部
15I‧‧‧虛設導線(非電性連接構件)
15K‧‧‧被覆層
15L‧‧‧第1球體部
15M‧‧‧第1球體部
15N‧‧‧第1球體部
15P‧‧‧第1球體部
15Q‧‧‧接合材料
15R‧‧‧密封側鍍層
15S‧‧‧第1球體部
15T‧‧‧焊錫鍍層
16A‧‧‧不透水絕緣膜
16B‧‧‧焊針
16C‧‧‧(倒角部之)側面
16D‧‧‧(倒角部之)側面
16E‧‧‧半導體基板
16F‧‧‧(倒角部之)側面
16G‧‧‧逼出部
16I‧‧‧虛設導線(非電性連接構件)
16K‧‧‧Ag層
16L‧‧‧逼出部
16M‧‧‧逼出部
16N‧‧‧逼出部
16P‧‧‧逼出部
16Q‧‧‧安裝側鍍層
16R‧‧‧安裝側鍍層
16T‧‧‧半導體基板
16U‧‧‧表面保護膜
17A‧‧‧焊墊接合界面
17B‧‧‧直孔
17C‧‧‧直孔
17D‧‧‧直孔
17E‧‧‧第1層間絕緣膜
17F‧‧‧直孔
17I‧‧‧虛設導線(非電性連接構件)
17K‧‧‧Cu層
17Q‧‧‧密封側鍍層
17R‧‧‧導線接合界面
17T‧‧‧第1層間絕緣膜
18A‧‧‧保護膜積層界面
18B‧‧‧外表面部
18C‧‧‧外表面部
18D‧‧‧外表面部
18E‧‧‧第2層間絕緣膜
18F‧‧‧外表面部
18G‧‧‧不透水絕緣膜
18H‧‧‧不透水絕緣膜
18I‧‧‧虛設導線(非電性連接構件)
18J‧‧‧不透水絕緣膜
18K‧‧‧Cu柱形凸塊(間隔件)
18Q‧‧‧安裝側鍍層
18R‧‧‧焊墊接合界面
18T‧‧‧第2層間絕緣膜
18U‧‧‧Cu柱形凸塊(間隔件)
19A‧‧‧引線接合界面
19B‧‧‧倒角部
19C‧‧‧倒角部
19D‧‧‧倒角部
19E‧‧‧第3層間絕緣膜
19F‧‧‧倒角部
19I‧‧‧不透水絕緣膜
19K‧‧‧Cu配線
19Q‧‧‧基板
19T‧‧‧第3層間絕緣膜
20A‧‧‧引線框架
20B‧‧‧(倒角部之)側面
20C‧‧‧引線框架
20D‧‧‧引線框架
20E‧‧‧夾持部
20F‧‧‧引線框架
20Q‧‧‧第1層間絕緣膜
20T‧‧‧夾持部
20U‧‧‧夾持部
21A‧‧‧(半導體晶片之)表面
21B‧‧‧(半導體晶片之)表面
21C‧‧‧(半導體晶片之)表面
21D‧‧‧(半導體晶片之)表面
21E‧‧‧(半導體晶片之)表面
21F‧‧‧(半導體晶片之)表面
21H‧‧‧層間絕緣膜
21I‧‧‧半導體裝置
21Q‧‧‧(半導體晶片之)表面
21R‧‧‧(半導體晶片之)表面
21T‧‧‧(半導體晶片之)表面
21U‧‧‧焊墊開口
22A‧‧‧(半導體晶片之)背面
22B‧‧‧(半導體晶片之)背面
22C‧‧‧(半導體晶片之)背面
22D‧‧‧(半導體晶片之)背面
22E‧‧‧(半導體晶片之)背面
22F‧‧‧(半導體晶片之)背面
22H‧‧‧層間絕緣膜
22I‧‧‧柱形凸塊(非電性連接構件)
22J‧‧‧島狀物
22Q‧‧‧(半導體晶片之)背面
22R‧‧‧(半導體晶片之)背面
22T‧‧‧(半導體晶片之)背面
23A‧‧‧焊針
23B‧‧‧層間絕緣膜
23C‧‧‧焊針
23D‧‧‧焊針
23E‧‧‧第1障壁層
23F‧‧‧焊針
23H‧‧‧佈線
23J‧‧‧本體部
23Q‧‧‧第2層間絕緣膜
23T‧‧‧第1障壁層
23U‧‧‧第1障壁層
24A‧‧‧倒角
24B‧‧‧不透水絕緣膜
24C‧‧‧FAB
24D‧‧‧FAB
24F‧‧‧FAB
24E‧‧‧第2障壁層
24H‧‧‧開口
24J‧‧‧懸掛部
24Q‧‧‧基板19Q之表面
24T‧‧‧第2障壁層
24U‧‧‧第2障壁層
25A‧‧‧(焊針之)外表面
25C‧‧‧不透水絕緣膜
25D‧‧‧不透水絕緣膜
25F‧‧‧不透水絕緣膜
25E‧‧‧第3障壁層
25H‧‧‧焊墊
25J‧‧‧貫通孔
25K‧‧‧不透水絕緣膜
25L‧‧‧不透水絕緣膜
25M‧‧‧不透水絕緣膜
25N‧‧‧不透水絕緣膜
25P‧‧‧不透水絕緣膜
25Q‧‧‧下佈線
25R‧‧‧不透水絕緣膜
25S‧‧‧不透水絕緣膜
25T‧‧‧第3障壁層
25U‧‧‧第3障壁層
26A‧‧‧針腳式接合
26C‧‧‧針腳式接合
26D‧‧‧針腳式接合
26E‧‧‧第1佈線
26F‧‧‧針腳式接合
26H‧‧‧障壁膜
26Q‧‧‧保險絲
26T‧‧‧第1佈線
26U‧‧‧第1佈線
27A‧‧‧尾線接合
27C‧‧‧尾線接合
27D‧‧‧尾線接合
27E‧‧‧第2佈線
27F‧‧‧尾線接合
27H‧‧‧表面保護膜
27Q‧‧‧第3層間絕緣膜
27T‧‧‧第2佈線
27U‧‧‧第2佈線
28A‧‧‧(半導體晶片之)側面
28B‧‧‧(半導體晶片之)側面
28C‧‧‧(半導體晶片之)側面
28D‧‧‧(半導體晶片之)側面
28E‧‧‧第3佈線
28F‧‧‧(半導體晶片之)側面
28H‧‧‧焊墊開口
28Q‧‧‧TEOS膜
28T‧‧‧第3佈線
28U‧‧‧第3佈線
29E‧‧‧直線部
29H‧‧‧接合部
29Q‧‧‧第4層間絕緣膜
29T‧‧‧直線部
29U‧‧‧直線部
30E‧‧‧關聯部
30Q‧‧‧通孔
30T‧‧‧關聯部
30U‧‧‧關聯部
31A‧‧‧(晶片焊墊之)表面
31B‧‧‧(晶片焊墊之)表面
31C‧‧‧(晶片焊墊之)表面
31D‧‧‧(晶片焊墊之)表面
31E‧‧‧(晶片焊墊之)表面
31F‧‧‧(晶片焊墊之)表面
31H‧‧‧焊墊
31I‧‧‧半導體裝置
31K‧‧‧(晶片焊墊之)表面
31Q‧‧‧(晶片焊墊之)表面
31R‧‧‧(晶片焊墊之)表面
31T‧‧‧(晶片焊墊之)表面
31U‧‧‧(晶片焊墊之)表面
32A‧‧‧(晶片焊墊之)背面
32B‧‧‧(晶片焊墊之)背面
32C‧‧‧(晶片焊墊之)背面
32D‧‧‧(晶片焊墊之)背面
32E‧‧‧(晶片焊墊之)背面
32F‧‧‧(晶片焊墊之)背面
32H‧‧‧焊墊本體部(Al層)
32I‧‧‧虛設導線(非電性連接構件)
32J‧‧‧島狀物
32K‧‧‧(晶片焊墊之)背面
32Q‧‧‧(晶片焊墊之)背面
32R‧‧‧(晶片焊墊之)背面
32T‧‧‧(晶片焊墊之)背面
32U‧‧‧(晶片焊墊之)背面
33E‧‧‧接合區域
33H‧‧‧Zn層
33I‧‧‧柱形凸塊(非電性連接構件)
33J‧‧‧本體部
33Q‧‧‧上佈線
33T‧‧‧接合區域
33U‧‧‧接合區域
34E‧‧‧直線部
34H‧‧‧障壁膜
34J‧‧‧懸掛部
34Q‧‧‧障壁膜
34T‧‧‧逼出部
34U‧‧‧逼出部
35E‧‧‧關聯部
35J‧‧‧上表面
35Q‧‧‧鈍化膜
36E‧‧‧不透水絕緣膜
36J‧‧‧背面
36Q‧‧‧焊墊開口
37E‧‧‧(半導體晶片之)側面
37Q‧‧‧氧化銅膜
37U‧‧‧第1層間絕緣膜
38Q‧‧‧籽晶膜
38U‧‧‧第3層間絕緣膜
39Q‧‧‧光阻圖案
39U‧‧‧第3層間絕緣膜
40Q‧‧‧焊針
41A‧‧‧(電極引線之)表面
41B‧‧‧(電極引線之)表面
41C‧‧‧(電極引線之)表面
41D‧‧‧(電極引線之)表面
41E‧‧‧(電極引線之)表面
41F‧‧‧(電極引線之)表面
41G‧‧‧導線插通孔
41H‧‧‧焊墊
41I‧‧‧半導體裝置
41J‧‧‧半導體裝置
41K‧‧‧(電極引線之)表面
41L‧‧‧導線插通孔
41M‧‧‧導線插通孔
41N‧‧‧導線插通孔
41P‧‧‧導線插通孔
41Q‧‧‧(電極引線之)表面
41R‧‧‧(電極引線之)表面
41T‧‧‧(電極引線之)表面
41U‧‧‧(電極引線之)表面
42A‧‧‧(電極引線之)背面
42B‧‧‧(電極引線之)背面
42C‧‧‧(電極引線之)背面
42D‧‧‧(電極引線之)背面
42E‧‧‧(電極引線之)背面
42F‧‧‧(電極引線之)背面
42G‧‧‧倒角
42I‧‧‧半導體晶片
42J‧‧‧半導體晶片
42K‧‧‧(電極引線之)背面
42L‧‧‧倒角
42M‧‧‧倒角
42N‧‧‧倒角
42P‧‧‧倒角
42Q‧‧‧(電極引線之)背面
42R‧‧‧(電極引線之)背面
42T‧‧‧(電極引線之)背面
42U‧‧‧(電極引線之)背面
43A‧‧‧不透水金屬膜
43B‧‧‧(台面部之)側面
43G‧‧‧外表面
43I‧‧‧引線框架
43J‧‧‧引線框架
43L‧‧‧外表面
43M‧‧‧外表面
43N‧‧‧外表面
43P‧‧‧外表面
44B‧‧‧(台面部之)側面
44G‧‧‧FAB
44I‧‧‧樹脂封裝體
44J‧‧‧樹脂封裝體
44L‧‧‧FAB
44M‧‧‧FAB
44N‧‧‧FAB
44P‧‧‧FAB
45B‧‧‧(台面部之)側面
45I‧‧‧晶片焊墊
45J‧‧‧島狀物
46B‧‧‧(台面部之)側面
46I‧‧‧引線
46J‧‧‧引線
47I‧‧‧銀薄膜(鍍銀)
47J‧‧‧本體部
48I‧‧‧焊接劑
48J‧‧‧懸掛部
49I‧‧‧焊墊
49J‧‧‧凹部
50A‧‧‧半導體裝置
50I‧‧‧接線
50J‧‧‧凹部
51A‧‧‧本體部
51B‧‧‧本體部
51C‧‧‧本體部
51D‧‧‧本體部
51E‧‧‧本體部
51F‧‧‧本體部
51I‧‧‧虛設導線(非電性連接構件)
51J‧‧‧銀膏(接合材料)
51Q‧‧‧導線本體
51R‧‧‧本體部
51T‧‧‧本體部
51U‧‧‧本體部
52A‧‧‧焊墊接合部
52B‧‧‧焊墊接合部
52C‧‧‧焊墊接合部
52D‧‧‧焊墊接合部
52E‧‧‧焊墊接合部
52F‧‧‧焊墊接合部
52J‧‧‧合金膜
52Q‧‧‧焊墊側端部
52R‧‧‧焊墊接合部
52T‧‧‧焊墊接合部
52U‧‧‧焊墊接合部
53A‧‧‧引線接合部
53B‧‧‧引線接合部
53C‧‧‧引線接合部
53D‧‧‧引線接合部
53E‧‧‧引線接合部
53F‧‧‧引線接合部
53Q‧‧‧引線側端部
53R‧‧‧引線接合部
53T‧‧‧引線接合部
53U‧‧‧引線接合部
54A‧‧‧基底部
54B‧‧‧基底部
54C‧‧‧基底部
54D‧‧‧基底部
54E‧‧‧基底部
54F‧‧‧基底部
54J‧‧‧表面導線
54Q‧‧‧接線
54T‧‧‧基底部
54U‧‧‧基底部
55A‧‧‧突出部
55B‧‧‧台面部
55C‧‧‧突出部
55D‧‧‧突出部
55E‧‧‧突出部
55F‧‧‧突出部
55J‧‧‧背面導線
55Q‧‧‧焊墊側端部
55T‧‧‧突出部
55U‧‧‧突出部
56B‧‧‧突出部
56D‧‧‧(基底部之)側面
56F‧‧‧(基底部之)側面
56Q‧‧‧導線本體
57B‧‧‧(基底部之)上表面
57D‧‧‧(基底部之)背面
57F‧‧‧(基底部之)背面
58B‧‧‧(台面部之)側面
59B‧‧‧(突出部之)側面
61A‧‧‧(樹脂封裝體之)表面
61R‧‧‧(樹脂封裝體之)表面
61T‧‧‧導線插通孔
61U‧‧‧導線插通孔
62A‧‧‧(樹脂封裝體之)背面
62R‧‧‧(樹脂封裝體之)背面
62T‧‧‧倒角
62U‧‧‧倒角
63A‧‧‧(樹脂封裝體之)側面
63T‧‧‧外表面
63U‧‧‧外表面
64T‧‧‧FAB
64U‧‧‧FAB
70T‧‧‧引線框架
71A‧‧‧電極引線
71K‧‧‧(Si基板之)表面
71U‧‧‧(Si基板之)表面
72A‧‧‧內部引線
72K‧‧‧(Si基板之)背面
72U‧‧‧(Si基板之)背面
73A‧‧‧外部引線
74A‧‧‧(外部引線之)背面
80A‧‧‧半導體裝置
90A‧‧‧半導體裝置
90B‧‧‧接線
91B‧‧‧焊針
91D‧‧‧接合區域
91K‧‧‧Au層
91U‧‧‧Au層
92B‧‧‧電極焊墊
92D‧‧‧周邊區域
92K‧‧‧Ni層
92U‧‧‧Ni層
93B‧‧‧外表面部
93D‧‧‧凸出部分
93K‧‧‧Cu層
93U‧‧‧Cu層
94B‧‧‧直孔
94D‧‧‧(電極焊墊之)表面
95B‧‧‧倒角部
95D‧‧‧過度濺鍍
96B‧‧‧1st接合部
97B‧‧‧(倒角部之)側面
98B‧‧‧層間絕緣膜
111K‧‧‧Bi系材料層
111U‧‧‧Bi系材料層
112K‧‧‧Cu-Sn合金層
112U‧‧‧Cu-Sn合金層
113K‧‧‧Cu-Sn合金層
113U‧‧‧Cu-Sn合金層
114K‧‧‧Cu-Sn合金層
114U‧‧‧Cu-Sn合金層
181K‧‧‧基底部
181U‧‧‧基底部
182K‧‧‧前端部
182U‧‧‧前端部
C‧‧‧焊針
CA‧‧‧角度
CD‧‧‧倒角直徑
Db‧‧‧(基底部之)直徑
Df‧‧‧(FAB)之直徑
DP‧‧‧(突出部之)直徑
Dw‧‧‧(本體部之)線徑
Dx‧‧‧(基底部之)X方向之直徑
Dy‧‧‧(基底部之)Y方向之直徑
FA‧‧‧外表面角
H‧‧‧(焊針之)孔直徑
Hb‧‧‧(基底部之)高度
HP‧‧‧(突出部之)高度
1‧‧‧間隔
L1‧‧‧間隔
L2‧‧‧距離
P1‧‧‧初始荷重
P2‧‧‧荷重
T‧‧‧(外表面之)外徑
T1‧‧‧時刻
T2‧‧‧時刻
T3‧‧‧時刻
T4‧‧‧時刻
Tz‧‧‧(基底部之)厚度
U1‧‧‧驅動電流值
U2‧‧‧驅動電流值
V‧‧‧體積
Vb‧‧‧(基底部之)體積
Vf‧‧‧(FAB之)體積
VP‧‧‧(突出部之)體積
W‧‧‧最短距離、間距
X2‧‧‧框架搬送方向
X4‧‧‧框架搬送方向
X5‧‧‧框架搬送方向
X6‧‧‧框架搬送方向
Y2‧‧‧超聲波施加方向
Y4‧‧‧超聲波施加方向
Y5‧‧‧超聲波施加方向
Y6‧‧‧超聲波施加方向
Y7‧‧‧超聲波施加方向
圖1係本發明之第1實施形態之半導體裝置之模式底視圖。
圖2係本發明之第1實施形態之半導體裝置之模式剖面圖。
圖3A係圖2之由虛線圓A包圍之部分之主要部分放大圖。
圖3B係圖2之由虛線圓B包圍之部分之主要部分放大圖。
圖4A係用以說明圖2之半導體裝置之製法之模式剖面圖。
圖4B係表示圖4A之下一步驟之圖。
圖4C係表示圖4B之下一步驟之圖。
圖4D係表示圖4C之下一步驟之圖。
圖4E係表示圖4D之下一步驟之圖。
圖5係圖2之半導體裝置之變形例之半導體裝置之模式剖面圖。
圖6A係圖5之由虛線圓A包圍之部分之主要部分放大圖。
圖6B係圖5之由虛線圓B包圍之部分之主要部分放大圖。
圖7A係用以說明圖5之半導體裝置之製法之模式剖面圖。
圖7B係表示圖7A之下一步驟之圖。
圖7C係表示圖7B之下一步驟之圖。
圖7D係表示圖7C之下一步驟之圖。
圖7E係表示圖7D之下一步驟之圖。
圖8係圖2之半導體裝置之變形例之半導體裝置之模式剖面圖。
圖9係圖2之半導體裝置之變形例之半導體裝置之模式剖面圖。
圖10係本發明之第2實施形態之半導體裝置之模式剖面圖。
圖11係已去除樹脂封裝體之圖10之半導體裝置之平面分解圖。
圖12A係圖11之電極焊墊附近之放大圖。
圖12B係圖12A之以切斷線B-B切斷時之剖面圖。
圖12C係圖12A之以切斷線C-C切斷時之剖面圖。
圖13A~C係表示圖10之半導體裝置之第1變形例之圖。
圖14係表示圖10之半導體裝置之第2變形例之圖。
圖15係表示圖10之半導體裝置之第3變形例之圖。
圖16係先前之半導體裝置中之1st接合部之主要部分放大圖。
圖17係表示圖10之半導體裝置之第4變形例之圖。
圖18係本發明之第3實施形態之半導體裝置之模式底視圖。
圖19係本發明之第3實施形態之半導體裝置之模式剖面圖。
圖20係圖19之由虛線圓包圍之部分之放大圖。
圖21係用以求出焊墊接合部之體積之概念圖。
圖22A係用以說明圖2之半導體裝置之製法之模式剖面圖。
圖22B係表示圖22A之下一步驟之圖。
圖22C係表示圖22B之下一步驟之圖。
圖22D係表示圖22C之下一步驟之圖。
圖22E係表示圖22D之下一步驟之圖。
圖23係表示圖19之半導體裝置之變形例之圖。
圖24係表示第3實施形態之實施例1~3及比較例1~3之SEM圖像以及FAB形成條件之圖。
圖25係表示第3實施形態之實施例4~7及比較例4~7之SEM圖像以及FAB形成條件之圖。
圖26係表示第3實施形態之實施例8~9及比較例8~9之SEM圖像以及FAB形成條件之圖。
圖27係本發明之第4實施形態之半導體裝置之模式底視圖。
圖28係本發明之第4實施形態之半導體裝置之模式剖面圖。
圖29係圖28之由虛線圓包圍之部分之放大圖。
圖30A係用以說明圖27之半導體裝置之製法之模式剖面圖。
圖30B係表示圖30A之下一步驟之圖。
圖30C係表示圖30B之下一步驟之圖。
圖30D係表示圖30C之下一步驟之圖。
圖30E係表示圖30D之下一步驟之圖。
圖31係表示電極焊墊上之過度濺鍍之產生狀態之圖。
圖32係表示圖28之半導體裝置之變形例之圖。
圖33係第4實施形態之實施例1中之荷重及超聲波之時序圖。
圖34係第4實施形態之比較例1中之荷重及超聲波之時序圖。
圖35係第4實施形態之實施例1之焊墊接合部之SEM圖像。
圖36係第4實施形態之比較例1之焊墊接合部之SEM圖像。
圖37係本發明之第5實施形態之半導體裝置之模式剖面圖。
圖38係半導體晶片之主要部分剖面圖,即係圖38之由虛線圓包圍之部分之放大圖。
圖39係圖38所示之電極焊墊之平面圖。
圖40係表示圖37之半導體裝置之第1變形例之圖,係對應於圖38之圖。
圖41係表示圖37之半導體裝置之第2變形例之圖,係對應於圖38之圖。
圖42係表示圖37之半導體裝置之第3變形例之圖。
圖43係第5實施形態之實施例及比較例之半導體裝置之模式剖面圖,且分別放大表示電極焊墊附近。
圖44係本發明之第6實施形態之半導體裝置之模式剖面圖。
圖45係已去除樹脂封裝體之圖44之半導體裝置之平面分解圖。
圖46係半導體晶片之主要部分剖面圖,即係圖44之由虛線圓包圍之部分之放大圖。
圖47係圖46所示之電極焊墊之放大平面圖。
圖48A係表示圖44所示之半導體裝置之製造步驟之模式剖面圖。
圖48B係表示圖48A之下一步驟之圖。
圖48C係表示圖48B之下一步驟之圖。
圖48D係表示圖48C之下一步驟之圖。
圖48E係表示圖48D之下一步驟之圖。
圖49係表示圖44之半導體裝置之變形例之圖。
圖50A係表示第6實施形態之實施例1及比較例1之基底部之大小之分佈圖,即X方向及Y方向上之基底直徑之分佈圖。
圖50B係表示第6實施形態之實施例1及比較例1之基底部之大小之分佈圖,即Z方向上之厚度之分佈圖。
圖51A係表示第6實施形態之實施例2及比較例2之基底部之大小之分佈圖,即X方向及Y方向上之基底直徑之分佈圖。
圖51B係表示第6實施形態之實施例2及比較例2之基底部之大小之分佈圖,即Z方向上之厚度之分佈圖。
圖52A係表示第6實施形態之實施例3及比較例3之基底部之大小之分佈圖,即X方向及Y方向上之基底直徑之分佈圖。
圖52B係表示第6實施形態之實施例3及比較例3之基底部之大小之分佈圖,即Z方向上之厚度之分佈圖。
圖53A係表示第6實施形態之實施例4及比較例4之基底部之大小之分佈圖,即X方向及Y方向上之基底直徑之分佈圖。
圖53B係表示第6實施形態之實施例4及比較例4之基底部之大小之分佈圖,即Z方向上之厚度之分佈圖。
圖54A係表示第6實施形態之實施例5及比較例5之基底部之大小之分佈圖,即X方向及Y方向上之基底直徑之分佈圖。
圖54B係表示第6實施形態之實施例5及比較例5之基底部之大小之分佈圖,即Z方向上之厚度之分佈圖。
圖55係表示第1週期之施加能量E1與焊墊接合部之球體直徑之關係的相關圖。
圖56係本發明之第7實施形態之半導體裝置之模式性剖面圖。
圖57係圖56所示之半導體裝置之模式性底視圖。
圖58係圖56所示之由虛線包圍之部分之放大圖。
圖59A係表示圖56所示之半導體裝置之製造過程中(打線接合之過程中)之狀態的模式性剖面圖。
圖59B係表示圖59A之下一步驟之模式性剖面圖。
圖59C係表示圖59B之下一步驟之模式性剖面圖。
圖59D係表示圖59C之下一步驟之模式性剖面圖。
圖60係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖61係標準型焊針之模式性剖面圖。
圖62係瓶頸型焊針之模式性剖面圖。
圖63係第7實施形態之測試1中所獲得之第1球體部之附近之SEM圖像。
圖64係第7實施形態之測試2中所獲得之第1球體部之附近之SEM圖像。
圖65係第7實施形態之測試3中所獲得之第1球體部之附近之SEM圖像。
圖66係第7實施形態之測試4中所獲得之第1球體部之附近之SEM圖像。
圖67係第7實施形態之測試5中所獲得之第1球體部之附近之SEM圖像。
圖68係表示圖56之半導體裝置之變形例之圖。
圖69係本發明之第8實施形態之半導體裝置之模式性剖面圖。
圖70係焊墊及銅導線中之與焊墊之接合部之模式性剖面圖。
圖71係另一結構之焊墊及銅導線中之與焊墊之接合部之模式性剖面圖。
圖72係進而另一結構之焊墊及銅導線中之與焊墊之接合部之模式性剖面圖。
圖73係表示圖69之半導體裝置之變形例之圖。
圖74係本發明之第9實施形態之半導體裝置之模式性剖面圖。
圖75係圖74所示之半導體裝置之模式性平面圖,表示已省略樹脂封裝體之圖示之狀態。
圖76係圖74所示之半導體裝置之第1變形例之模式性剖面圖。
圖77係圖74所示之半導體裝置之第2變形例之模式性剖面圖。
圖78係圖74所示之半導體裝置之第3變形例之模式性剖面圖。
圖79係圖74所示之半導體裝置之第4變形例之模式性剖面圖。
圖80係第1變形例之另一形態之半導體裝置之模式性剖面圖。
圖81係第2變形例之另一形態之半導體裝置之模式性剖面圖。
圖82係第3變形例之另一形態之半導體裝置之模式性剖面圖。
圖83係本發明之第10實施形態之半導體裝置之模式性剖面圖。
圖84係自背面側觀察圖83所示之半導體裝置時之模式性平面圖,表示已省略樹脂封裝體之圖示之狀態。
圖85係圖83所示之半導體裝置之第1變形例之模式性剖面圖。
圖86係自背面側觀察圖85所示之半導體裝置時之模式性平面圖,表示已省略樹脂封裝體之圖示之狀態。
圖87係圖83所示之半導體裝置之第2變形例之模式性剖面圖。
圖88係自背面側觀察圖87所示之半導體裝置時之模式性平面圖,表示已省略樹脂封裝體之圖示之狀態。
圖89係圖83所示之半導體裝置之第3變形例之模式性剖面圖。
圖90係自背面側觀察圖89所示之半導體裝置時之模式性平面圖,表示已省略樹脂封裝體之圖示之狀態。
圖91係圖83所示之半導體裝置之第4變形例之模式性剖面圖。
圖92係第1變形例之另一形態之半導體裝置之模式性剖面圖。
圖93係第2變形例之另一形態之半導體裝置之模式性剖面圖。
圖94係第3變形例之另一形態之半導體裝置之模式性剖面圖。
圖95係本發明之第11實施形態之半導體裝置之模式底視圖。
圖96係本發明之第11實施形態之半導體裝置之模式剖面圖。
圖97係圖96之由虛線圓包圍之部分之主要部分放大圖。
圖98A係表示圖96所示之半導體裝置之製造步驟之模式性剖面圖。
圖98B係表示圖98A之下一步驟之模式性剖面圖。
圖98C係表示圖98B之下一步驟之模式性剖面圖。
圖98D係表示圖98C之下一步驟之模式性剖面圖。
圖99係表示圖96之半導體裝置之第1變形例之圖。
圖100係表示圖96之半導體裝置之第2變形例之圖。
圖101A係圖100之由虛線圓A包圍之部分之主要部分放大圖。
圖101B係圖100之由虛線圓B包圍之部分之主要部分放大圖。
圖102係表示圖96之半導體裝置之第2變形例之圖。
圖103係表示圖96之半導體裝置之第3變形例之圖。
圖104係第1變形例之另一形態之半導體裝置之模式性剖面圖。
圖105係第2變形例之另一形態之半導體裝置之模式性剖面圖。
圖106係本發明之第12實施形態之半導體裝置之模式性剖面圖。
圖107係圖106所示之半導體裝置之模式性底視圖。
圖108係圖106所示之由虛線包圍之部分之放大圖。
圖109A係表示圖106所示之半導體裝置之製造過程中(打線接合之過程中)之狀態之模式性剖面圖。
圖109B係表示圖109A之下一步驟之模式性剖面圖。
圖109C係表示圖109B之下一步驟之模式性剖面圖。
圖109D係表示圖109C之下一步驟之模式性剖面圖。
圖110係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超 聲波振動子之驅動電流之時間變化的圖表。
圖111係表示相對於焊墊之第1球體部之接合面積與初始荷重之關係之圖表。
圖112係表示測試1中所測定之直徑(球體直徑)之時間變化之圖表。
圖113係表示測試1中所測定之厚度(球體厚度)之時間變化之圖表。
圖114係表示測試2中所測定之直徑(球體直徑)之時間變化之圖表。
圖115係表示測試2中所測定之厚度(球體厚度)之時間變化之圖表。
圖116係表示測試3中所測定之直徑(球體直徑)之時間變化之圖表。
圖117係表示測試3中所測定之厚度(球體厚度)之時間變化之圖表。
圖118係對FAB施加初始荷重之情形時所形成之第1球體部之附近之SEM圖像。
圖119係加快FAB向焊墊之移動速度之情形時所形成之第1球體部之附近之SEM圖像。
圖120係表示圖106之半導體裝置之變形例之圖。
圖121係表示於第12實施形態之實施例1中,將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖122係表示於第12實施形態之比較例1中,將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖123係表示於第12實施形態之比較例2中,將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖124係表示於第12實施形態之比較例3中,將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖125係第12實施形態之實施例1之第1球體部之附近之SEM圖像。
圖126係第12實施形態之比較例1之第1球體部之附近之SEM圖像。
圖127係第12實施形態之比較例2之第1球體部之附近之SEM圖像。
圖128係第12實施形態之比較例3之第1球體部之附近之SEM圖像。
圖129係第12實施形態之實施例1之第1球體部之接合面之SEM圖像。
圖130係第12實施形態之比較例1之第1球體部之接合面之SEM圖像。
圖131係第12實施形態之比較例2之第1球體部之接合面之SEM圖像。
圖132係第12實施形態之比較例3之第1球體部之接合面之SEM圖像。
圖133係第12實施形態之實施例1之焊墊之圖像。
圖134係第12實施形態之比較例1之焊墊之圖像。
圖135係第12實施形態之比較例2之焊墊之圖像。
圖136係第12實施形態之比較例3之焊墊之圖像。
圖137係第12實施形態之實施例1之層間絕緣膜之表面之圖像。
圖138係第12實施形態之比較例1之層間絕緣膜之表面之圖像。
圖139係第12實施形態之比較例2之層間絕緣膜之表面之圖像。
圖140係第12實施形態之比較例3之層間絕緣膜之表面之圖像。
圖141係表示於第12實施形態之實施例2及比較例4~8中,將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖142係表示第12實施形態之實施例2及比較例4~8中之龜裂產生率之圖表。
圖143係表示於第12實施形態之實施例3~7及比較例9~11中,將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖144係表示第12實施形態之實施例3~7及比較例9~11中之龜裂產生率之圖表。
圖145係第12實施形態之實施例8之第1球體部之附近之SEM圖像。
圖146係第12實施形態之比較例12之第1球體部之附近之SEM圖像。
圖147係第12實施形態之比較例13之第1球體部之附近之SEM圖像。
圖148係第12實施形態之比較例14之第1球體部之附近之SEM圖像。
圖149係第12實施形態之實施例8之破壞後之焊墊之圖像。
圖150係第12實施形態之比較例12之破壞後之焊墊之圖像。
圖151係第12實施形態之比較例13之破壞後之焊墊之圖像。
圖152係第12實施形態之比較例13之破壞後之第1球體部之底面 (與焊墊接合之面)之圖像。
圖153係第12實施形態之比較例13之破壞後之焊墊之圖像。
圖154係表示第12實施形態之實施例8及比較例12~14之第1球體部之直徑之測定結果的圖表。
圖155係表示第12實施形態之實施例8及比較例12~14之第1球體部之厚度之測定結果的圖表。
圖156係表示第12實施形態之實施例8及比較例12~14之第1球體部與焊墊之接合部分之破壞所需之力量(剪切強度)之測定結果的圖表。
圖157係本發明之第13實施形態之半導體裝置之模式性剖面圖。
圖158係圖157所示之半導體裝置之模式性底視圖。
圖159係圖157所示之由虛線包圍之部分之放大圖。
圖160A係表示圖157所示之半導體裝置之製造過程中(打線接合之過程中)之狀態之模式性剖面圖。
圖160B係表示圖160A之下一步驟之模式性剖面圖。
圖160C係表示圖160B之下一步驟之模式性剖面圖。
圖160D係表示圖160C之下一步驟之模式性剖面圖。
圖161係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖162係表示圖157之半導體裝置之變形例之圖。
圖163係表示於第13實施形態之實施例1及比較例1~5中,將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖164係表示第13實施形態之實施例1及比較例1~5中之龜裂產生率之圖表。
圖165係表示於第13實施形態之實施例2~6及比較例6~8中,將 FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖166係表示第13實施形態之實施例2~6及比較例6~8中之龜裂產生率之圖表。
圖167係表示於第13實施形態之實施例7、8及比較例9~12中,將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖168係表示第13實施形態之實施例7、8及比較例9~12中之龜裂產生率之圖表。
圖169係本發明之第14實施形態之半導體裝置之模式性剖面圖。
圖170係圖169所示之半導體裝置之模式性底視圖。
圖171係圖169所示之由虛線包圍之部分之放大圖。
圖172A係表示圖169所示之半導體裝置之製造過程中(打線接合之過程中)之狀態之模式性剖面圖。
圖172B係表示圖172A之下一步驟之模式性剖面圖。
圖172C係表示圖172B之下一步驟之模式性剖面圖。
圖172D係表示圖172C之下一步驟之模式性剖面圖。
圖173係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖174係表示測試1中所測定之直徑(球體直徑)之時間變化之圖表。
圖175係表示測試1中所測定之厚度(球體厚度)之時間變化之圖表。
圖176係表示測試2中所測定之直徑(球體直徑)之時間變化之圖表。
圖177係表示測試2中所測定之厚度(球體厚度)之時間變化之圖 表。
圖178係表示測試3中所測定之直徑(球體直徑)之時間變化之圖表。
圖179係表示測試3中所測定之厚度(球體厚度)之時間變化之圖表。
圖180係表示圖169之半導體裝置之變形例之圖。
圖181係表示於第14實施形態之實施例1~3及比較例1~4中,將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖182係表示第14實施形態之實施例1~3及比較例1~4中之龜裂產生率之圖表。
圖183係表示於第14實施形態之實施例4、5及比較例5~9中,將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖184係表示第14實施形態之實施例4、5及比較例5~9中之龜裂產生率之圖表。
圖185係表示於第14實施形態之實施例6~8及比較例10~13中,將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖186係表示第14實施形態之實施例6~8及比較例10~13中之龜裂產生率之圖表。
圖187係表示相對於焊墊之第1球體部之接合面積與超聲波振動子之驅動電流之關係之圖表。
圖188係本發明之第15實施形態之半導體裝置之模式性剖面圖。
圖189係圖188所示之半導體裝置之模式性底視圖。
圖190係圖188所示之由虛線包圍之部分之放大圖。
圖191A係表示圖188所示之半導體裝置之製造過程中(打線接合之過程中)之狀態之模式性剖面圖。
圖191B係表示圖191A之下一步驟之模式性剖面圖。
圖191C係表示圖191B之下一步驟之模式性剖面圖。
圖191D係表示圖191C之下一步驟之模式性剖面圖。
圖192係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖193係表示測試1中所測定之直徑(球體直徑)之時間變化之圖表。
圖194係表示測試1中所測定之厚度(球體厚度)之時間變化之圖表。
圖195係表示測試2中所測定之直徑(球體直徑)之時間變化之圖表。
圖196係表示測試2中所測定之厚度(球體厚度)之時間變化之圖表。
圖197係表示測試3中所測定之直徑(球體直徑)之時間變化之圖表。
圖198係表示測試3中所測定之厚度(球體厚度)之時間變化之圖表。
圖199係表示圖188之半導體裝置之變形例之圖。
圖200係表示於第15實施形態之實施例1、2及比較例1~3中,將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖201係表示第15實施形態之實施例1、2及比較例1~3中之龜裂產生率之圖表。
圖202係表示於第15實施形態之實施例3中,將FAB接合於焊墊時 施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖203係表示於第15實施形態之實施例4中,將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖204係半導體裝置之圖解性平面圖。
圖205係圖204所示之半導體裝置之A-A線剖面圖。
圖206係圖205之由虛線圓包圍之部分之主要部分放大圖。
圖207A係表示圖205所示之半導體裝置之製造過程中之狀態之模式性剖面圖。
圖207B係表示圖207A之下一步驟之模式性剖面圖。
圖207C係表示圖207B之下一步驟之模式性剖面圖。
圖207D係表示圖207C之下一步驟之模式性剖面圖。
圖207E係表示圖207D之下一步驟之模式性剖面圖。
圖207F係表示圖207E之下一步驟之模式性剖面圖。
圖208係表示圖205之半導體裝置之變形例之圖。
圖209係本發明之第17實施形態之半導體裝置之模式剖面圖。
圖210A係圖209之由虛線圓A包圍之部分之主要部分放大圖。
圖210B係圖209之由虛線圓B包圍之部分之主要部分放大圖。
圖211係表示圖209之半導體裝置之變形例之圖。
圖212係表示第17實施形態之實施例及比較例之半導體裝置之HAST測試時間與不合格率之關係之圖表。
圖213係表示第17實施形態之實施例及比較例之半導體裝置之PCT測試時間與不合格率之關係之圖表。
圖214係本發明之第18實施形態之半導體裝置之模式性剖面圖。
圖215係焊墊與銅導線之接合部分(圖214所示之由虛線包圍之部 分)之模式性剖面圖。
圖216係樹脂封裝體包含未添加有離子捕獲成分之材料的試料中之第1球體部之周緣部與鋁焊墊之接合部分(接合界面附近)之TEM圖像。
圖217係表示圖216之TEM圖像中所示之部位D0中之構成元素之分析結果之圖。
圖218係表示圖216之TEM圖像中所示之部位D1中之構成元素之分析結果之圖。
圖219係表示圖216之TEM圖像中所示之部位D2中之構成元素之分析結果之圖。
圖220係表示圖216之TEM圖像中所示之部位D3中之構成元素之分析結果之圖。
圖221係樹脂封裝體包含未添加有離子捕獲成分之材料的試料中之第1球體部之中央部與鋁焊墊之接合部分(接合界面附近)之TEM圖像。
圖222係表示圖221之TEM圖像中所示之部位C0中之構成元素之分析結果之圖。
圖223係表示圖221之TEM圖像中所示之部位C1中之構成元素之分析結果之圖。
圖224係表示圖221之TEM圖像中所示之部位C2中之構成元素之分析結果之圖。
圖225係表示圖221之TEM圖像中所示之部位C3中之構成元素之分析結果之圖。
圖226係表示圖221之TEM圖像中所示之部位C4中之構成元素之分析結果之圖。
圖227A係圖解性地表示樹脂封裝體包含未添加有離子捕獲成分 之材料的試料中之銅導線與鋁焊墊之接合部分的剖面圖(其1)。
圖227B係圖解性地表示樹脂封裝體包含未添加有離子捕獲成分之材料的試料中之銅導線與鋁焊墊之接合部分的剖面圖(其2)。
圖227C係圖解性地表示樹脂封裝體包含未添加有離子捕獲成分之材料的試料中之銅導線與鋁焊墊之接合部分的剖面圖(其3)。
圖228係表示圖214之半導體裝置之變形例之圖。
圖229係表示第18實施形態之實施例之半導體裝置及比較例之半導體裝置之超加速壽命測試之結果的表。
圖230係表示第18實施形態之實施例之半導體裝置及比較例之半導體裝置之飽和蒸氣加壓測試之結果的表。
圖231係第19實施形態之半導體裝置之模式底視圖。
圖232係第19實施形態之半導體裝置之模式剖面圖。
圖233係圖232之由虛線圓包圍之部分之放大圖。
圖234係用以求出焊墊接合部之體積之概念圖。
圖235係圖233所示之電極焊墊之平面圖。
圖236A係用以說明圖232之半導體裝置之製造方法之模式性剖面圖。
圖236B係表示圖236A之下一步驟之模式性剖面圖。
圖236C係表示圖236B之下一步驟之模式性剖面圖。
圖236D係表示圖236C之下一步驟之模式性剖面圖。
圖237係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖238係標準型焊針之模式性剖面圖。
圖239係瓶頸型焊針之模式性剖面圖。
圖240係第20實施形態之半導體裝置之模式底視圖。
圖241係第20實施形態之半導體裝置之模式剖面圖。
圖242係圖241之由虛線圓A包圍之部分之主要部分放大圖。
圖243係圖241之由虛線圓B包圍之部分之主要部分放大圖。
圖244係用以求出焊墊接合部之體積之概念圖。
圖245係圖244所示之電極焊墊之平面圖。
圖246A係用以說明圖241之半導體裝置之製造方法之模式性剖面圖。
圖246B係表示圖246A之下一步驟之模式性剖面圖。
圖246C係表示圖246B之下一步驟之模式性剖面圖。
圖246D係表示圖246C之下一步驟之模式性剖面圖。
圖246E係表示圖246D之下一步驟之模式性剖面圖。
圖246F係表示圖246E之下一步驟之模式性剖面圖。
圖246G係表示圖246F之下一步驟之模式性剖面圖。
圖246H係表示圖246G之下一步驟之模式性剖面圖。
圖247係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
圖248係標準型焊針之模式性剖面圖。
圖249係瓶頸型焊針之模式性剖面圖。
以下,參照隨附圖式,對本發明之實施形態進行詳細說明。
<第1實施形態 圖1~圖9>
圖1係本發明之第1實施形態之半導體裝置之模式底視圖。圖2係本發明之第1實施形態之半導體裝置之模式剖面圖。圖3A係圖2之由虛線圓A包圍之部分之主要部分放大圖。圖3B係圖2之由虛線圓B包圍之部分之主要部分放大圖。
半導體裝置1A係應用有QFN(Quad Flat Non-leaded,四方形扁平無引線)之半導體裝置。半導體裝置1A包括:半導體晶片2A;晶片焊 墊3A,其用以支持半導體晶片2A;複數條電極引線4A,其配置於半導體晶片2A之周圍;接線5A,其將半導體晶片2A與電極引線4A加以電性連接;以及樹脂封裝體6A,其將該等密封。
半導體晶片2A於俯視時為四角狀,且具有例如複數個佈線層經由層間絕緣膜積層而成之多層佈線結構。又,半導體晶片2A之厚度例如為220~240μm(較佳為230μm左右)。半導體晶片2A之表面21A(厚度方向其中一面)如圖3A所示,由表面保護膜7A覆蓋。
於表面保護膜7A形成有複數個用以使多層佈線結構中之最上面之佈線層露出之焊墊開口8A。
焊墊開口8A於俯視時為四角狀,於半導體晶片2A之各邊緣各設置有相同數量。各焊墊開口8A係沿著半導體晶片2A之各邊等間隔地配置。並且,佈線層之一部分自各焊墊開口8A露出作為半導體晶片2A之電極焊墊9A。
作為電極焊墊9A而露出之最上面之佈線層包括含有Al(鋁)之金屬材料,具體而言包含以Al為主成分之金屬材料(例如,Al-Cu合金等)。
另一方面,於半導體晶片2A之背面22A(厚度方向另一面),形成有含有例如Au、Ni、Ag等之背面金屬10A。
晶片焊墊3A例如包含金屬薄板(例如,Cu、42合金(含有Fe-42% Ni之合金)),於俯視時為較半導體晶片2A大之四角狀(例如,於俯視時為2.7mm見方左右)。又,晶片焊墊3A之厚度例如為190~210μm(較佳為200μm左右)。於晶片焊墊3A之表面31A(厚度方向其中一面),形成有含有Ag等之焊墊鍍層11A。
並且,半導體晶片2A與晶片焊墊3A係藉由在半導體晶片2A之背面22A與晶片焊墊3A之表面31A作為接合面而彼此對向之狀態下,使接合材料12A介插於背面22A與表面31A之間,而彼此接合。藉此,半 導體晶片2A係以將表面21A朝向上方之姿勢支持於晶片焊墊3A。
接合材料12A包含例如焊錫膏等導電膏。再者,作為接合材料12A,可應用例如銀膏、氧化鋁膏等絕緣膏,於此情形時,背面金屬10A及/或焊墊鍍層11A亦可省略。又,於半導體晶片2A與晶片焊墊3A已接合之狀態下,接合材料12A之厚度例如為10~20μm。
晶片焊墊3A之背面32A(厚度方向另一面)係自樹脂封裝體6A露出。於所露出之另一面,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層13A。
電極引線4A例如包含與晶片焊墊3A相同之金屬薄板(例如,Cu、42合金(含有Fe-42% Ni等))。電極引線4A係藉由在與晶片焊墊3A之各側面正交之各方向上之兩側分別各設置相同數量,而配置於半導體晶片2A之周圍。與晶片焊墊3A之各側面相對向之電極引線4A係沿著與其相對向之側面平行之方向等間隔地配置。各電極引線4A之與晶片焊墊3A之對向方向上之長度例如為450~500μm(較佳為500μm左右)。於電極引線4A之表面41A(厚度方向其中一面),形成有含有Ag等之引線鍍層14A。
另一方面,電極引線4A之背面42A(厚度方向另一面)係自樹脂封裝體6A露出。於所露出之背面42A,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層15A。
接線5A包含銅(例如,為純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅等,有時含有微量之雜質)。接線5A包括呈線狀延伸之圓柱狀之本體部51A、以及形成於本體部51A之兩端且分別與電極焊墊9A及電極引線4A接合之焊墊接合部52A及引線接合部53A。
本體部51A係自電極焊墊9A側之一端向半導體晶片2A之外側呈朝上方凸起之抛物線狀彎曲,並於另一端以銳角向電極引線4A之表 面41A入射。於本體部51A之最頂部的下端與半導體晶片2A之表面21A的間隔1例如為150~170μm(較佳為160μm左右)。
焊墊接合部52A於俯視時為小於電極焊墊9A。焊墊接合部52A於剖視時為凸狀,其一體地包括厚度方向另一側均等地進入至電極焊墊9A之表層部的圓板狀之基底部54A、以及自基底部54A之其中一側突出且其前端與本體部51A之一端連接之吊鐘狀之突出部55A。
引線接合部53A於剖視時為楔狀,其靠近本體部51A之一端側相對較厚,且隨著越接近遠離本體部51A之另一端側相對越薄。
並且,於該半導體裝置1A中,半導體晶片2A之整個表面21A及整個側面28A、晶片焊墊3A之整個表面31A及整個側面、電極引線4A之整個表面41A及樹脂封裝體6A內之整個側面、以及整個接線5A均由一體性之不透水絕緣膜16A被覆。
不透水絕緣膜16A包含可防止水分滲透之絕緣材料,例如包含用作層間絕緣膜材料之氧化矽、用作表面保護膜7A之材料之氮化矽等。又,不透水絕緣膜16A較表面保護膜7A更薄,例如厚度為0.5~3μm。
並且,如圖3A所示,於接線5A之焊墊接合部52A附近,不透水絕緣膜16A係將俯視時為露出於焊墊接合部52A之外側的電極焊墊9A整個區域及焊墊接合部52A之表面整個區域,與表面保護膜7A之表面一併一體地被覆。藉此,電極焊墊9A與焊墊接合部52A之接合界面(焊墊接合界面17A)之周緣及電極焊墊9A與表面保護膜7A之接合界面(保護膜積層界面18A)之周緣會由不透水絕緣膜16A被覆而完全不會露出。
另一方面,如圖3B所示,於接線5A之引線接合部53A附近,不透水絕緣膜16A係一體地被覆電極引線4A之表面41A(引線鍍層14A)整個區域及引線接合部53A之表面整個區域。藉此,電極引線4A與引線 接合部53A之接合界面(引線接合界面19A)之周緣會由不透水絕緣膜16A被覆而完全不會露出。
作為樹脂封裝體6A,可應用環氧樹脂等眾所周知之材料。樹脂封裝體6A形成半導體裝置1A之外形,形成為大致長方體狀。關於樹脂封裝體6A之大小,其平面尺寸例如為4mm見方左右,其厚度例如為0.85mm左右。
並且,於半導體裝置1A中,半導體晶片2A之表面21A與樹脂封裝體6A之表面(上表面)61A的間隔L1小於半導體晶片2A之側面28A與樹脂封裝體6A之側面63A的最短距離W。具體而言,間隔L1例如為375~425μm,較佳為400μm左右,最短距離W例如為800~1000μm,較佳為900μm左右。
又,間隔L1為半導體晶片2A之表面21A與樹脂封裝體6A之背面62A(晶片焊墊3A之背面32A)之距離L2(例如為425~475μm,較佳為450μm左右)以下。
如上所述,半導體裝置1A係設計成間隔L1相對縮小之大小,藉此形成為薄型之QFN封裝體。
圖4A~圖4E係用以按照步驟順序說明圖2之半導體裝置之製造方法之模式剖面圖。
為製造上述半導體裝置1A,例如,首先準備包含複數個單元之引線框架20A,該單元一體地包括晶片焊墊3A及電極引線4A。再者,於圖4A~圖4E中,省略引線框架20A之整體圖,僅表示搭載1個半導體晶片2A所需之1個單元份之晶片焊墊3A及電極引線4A。
其次,利用鍍敷法,對引線框架20A之表面實施Ag等之金屬鍍敷。藉此,同時形成焊墊鍍層11A及引線鍍層14A。
其次,如圖4A所示,經由接合材料12A,於引線框架20A上之所有晶片焊墊3A,晶片接合半導體晶片2A。繼而,對由打線接合機(未 圖示)之焊針23A所保持之接線5A之前端部(一端部)施加電流,藉此於前端部形成FAB(Free Air Ball,電弧燒球)。繼而,焊針23A移動至電極焊墊9A之正上方後下降,FAB與電極焊墊9A相接觸。此時,自焊針23A對FAB施加荷重(圖4A之中空箭頭)及超聲波(圖4A之鋸齒狀線),藉此FAB對應於焊針23A之倒角(chamfer)24A之形狀產生變形。如此,接線5A之一端部作為焊墊接合部52A接合於電極焊墊9A,從而形成1st接合。
1st接合後,焊針23A上升至一定高度,並向電極引線4A之正上方移動。繼而,如圖4B所示,焊針23A再次下降,接線5A與電極引線4A相接觸。此時,自焊針23A對接線5A施加荷重(圖4B之中空箭頭)及超聲波(圖4B之鋸齒狀線),藉此接線5A對應於焊針23A之外表面25A之形狀產生變形,接合於電極引線4A(形成針腳式接合(stitch bond)26A及尾線接合(tail bond)27A)。
繼而,焊針23A上升,於自焊針23A之前端確保有一定長度之尾部之狀態下,自尾線接合27A之位置扯斷接線5A。藉此,經針腳式接合26A之接線5A之另一端殘存於電極引線4A上作為引線接合部53A,從而形成2nd接合。
其後,如圖4C所示,進行與圖4B相同之步驟,藉由接線5A連接所有半導體晶片2A之各電極焊墊9A及與各電極焊墊9A相對應之電極引線4A。
於所有打線接合結束後,如圖4D所示,利用CVD(chemical vapor deposition,化學氣相沈積)法,例如於350~450℃之溫度條件下,相對於包括半導體晶片2A、接線5A及電極引線4A之半導體裝置1A之半成品沈積絕緣材料(氧化矽、氮化矽等)。藉此,形成一體地被覆半導體晶片2A之整個表面21A及整個側面28A、晶片焊墊3A之整個表面31A及整個側面、電極引線4A之整個表面41A及整個側面、以及整個 接線5A之不透水絕緣膜16A。
再者,作為CVD法,並無特別限制,例如可應用熱CVD法、電漿CVD法等眾所周知之CVD法。
其次,如圖4E所示,將引線框架20A安放於成形模具,利用樹脂封裝體6A將所有半導體晶片2A與引線框架20A一併統一密封。繼而,於自樹脂封裝體6A露出之晶片焊墊3A之背面32A及電極引線4A之背面42A形成焊錫鍍層13A、15A。最後,使用切割機(dicing saw),將引線框架20A與樹脂封裝體6A一併切斷成各半導體裝置1A之尺寸,藉此獲得圖1及圖2所示之半導體裝置1A之單片。
如上所述,根據該半導體裝置1A,半導體晶片2A之整個表面21A、晶片焊墊3A之整個表面31A、電極引線4A之整個表面41A及整個接線5A均由一體性之不透水絕緣膜16A被覆。
藉此,電極焊墊9A與焊墊接合部52A之接合界面(焊墊接合界面17A)之周緣及電極焊墊9A與表面保護膜7A之接合界面(保護膜積層界面18A)之周緣均會由不透水絕緣膜16A被覆而完全不會露出。
因此,即使水分滲入至樹脂封裝體6A內部,亦可藉由不透水絕緣膜16A攔截該水分,因此可抑制焊墊接合界面17A與水分之接觸。其結果為,可抑制電極焊墊9A之腐蝕之行進,因此可抑制焊墊與導線間之電性斷開(1st接合中之電性斷開)。因此,可提高半導體裝置1A之連接可靠性。
特別是於如半導體裝置1A之薄型封裝體中,半導體晶片2A上之焊墊接合部52A容易暴露於自樹脂封裝體6A之表面61A滲入至封裝體內部之水分。然而,於此類薄型封裝體之半導體裝置1A中,亦可藉由不透水絕緣膜16A有效地提高半導體裝置1A之連接可靠性。
具體而言,可認為1st接合中之電性斷開係藉由以下製程產生。
例如,於PCT或HAST等的耐濕評價測試之實施過程中,存在水 分(水蒸氣)自樹脂封裝體6A與晶片焊墊3A及電極引線4A之間隙等滲入至樹脂封裝體6A內部之情形。
另一方面,於焊墊接合界面17A,由於電極焊墊9A之材料中所含之Al之離子化傾向與接線5A之Cu之離子化傾向之差,而形成以含有離子化傾向較大之Al之電極焊墊9A為陽極(anode)且以含有離子化傾向較小之Cu之接線5A為陰極(cathode)的伏打電池。
並且,若水分與焊墊接合界面17A接觸,則微弱電流會流入電極焊墊9A與接線5A之間,電極焊墊9A之Al進行離子化,促進向接線5A之Cu供給電子之反應,故而會促進電極焊墊9A之腐蝕。
與此相對,於該半導體裝置1A中,如上所述,即使水分滲入至樹脂封裝體6A內部,亦可確實抑制該滲入水分與焊墊接合界面17A之接觸,因此可抑制電極焊墊9A之腐蝕之行進。
又,於該半導體裝置1A中,電極引線4A與引線接合部53A之接合界面(引線接合界面19A)之周緣會由不透水絕緣膜16A被覆而完全不會露出。因此,即使水分滲入至樹脂封裝體6A內部,亦可藉由不透水絕緣膜16A攔截該水分,因此可抑制引線接合界面19A與水分之接觸。其結果為,可保持引線與導線之間之連接可靠性。
又,因防止水分滲透之膜為絕緣膜,故即使除電極焊墊9A以外之金屬部分露出於半導體晶片2A之表面21A,該金屬部分亦會由覆蓋整個晶片表面21A之不透水絕緣膜16A所被覆。因此,可抑制該金屬部分與樹脂封裝體6A內部之滲入水分之接觸。其結果為,可抑制該金屬部分之腐蝕。又,可確保該金屬部分、電極焊墊9A及接線5A等金屬構件彼此之電性絕緣性。
此外,於不透水絕緣膜16A之形成時,可利用一種自先前有實績之薄膜形成技術即CVD法。因此,可簡單地形成不透水絕緣膜16A。
又,因CVD法之階差被覆性優異,故而即使電極焊墊9A與焊墊 接合部52A之接合形態複雜,亦可藉由適當地控制製膜條件,均勻地形成不透水絕緣膜16A。
又,於利用熱CVD法形成不透水絕緣膜16A之情形時,藉由熱CVD法之低指向性,可使不透水絕緣膜16A亦圍繞如圖3B所示之俯視時為接線5A與電極引線4A重合而被隱藏之接線5A之背面側。其結果為,可更簡單地被覆整個接線5A。
又,控制製膜條件,可簡單地擴大不透水絕緣膜16A之厚度。藉由擴大不透水絕緣膜16A之厚度,可緩和傳遞至電極焊墊9A及焊墊接合部52A之衝擊。其結果為,可抑制電極焊墊9A及焊墊接合部52A中之龜裂產生。
圖5係圖2所示之半導體裝置之變形例之半導體裝置之模式剖面圖。圖6A係圖5之由虛線圓A包圍之部分之主要部分放大圖。圖6B係圖5之由虛線圓B包圍之部分之主要部分放大圖。於圖5及圖6A、B中,對於與圖1~圖3A、B所示之各部相對應之部分標註與該等各部相同之參照符號。又,以下,省略關於標註有相同參照符號之部分之詳細說明。
於該半導體裝置50A中,整個電極焊墊9A、晶片焊墊3A之整個側面、電極引線4A之樹脂封裝體6A內之整個側面及整個接線5A均由一體性之不透水金屬膜43A被覆。
不透水金屬膜43A包含可防止水分滲透之金屬材料,包含例如鎳、鈀等,較佳為包含鎳。又,不透水金屬膜43A較表面保護膜7A更薄,例如厚度為0.5~3μm。
並且,如圖6A所示,於接線5A之焊墊接合部52A附近,不透水金屬膜43A並未覆蓋表面保護膜7A之表面,而係一體地被覆俯視時為露出於焊墊接合部52A之外側的電極焊墊9A整個區域及焊墊接合部52A之表面整個區域。藉此,電極焊墊9A與焊墊接合部52A之接合界 面(焊墊接合界面17A)之周緣會由不透水金屬膜43A被覆而完全不會露出。
另一方面,如圖6B所示,於接線5A之引線接合部53A附近,不透水金屬膜43A係一體地被覆電極引線4A之表面41A(引線鍍層14A)整個區域及引線接合部53A之表面整個區域。藉此,電極引線4A與引線接合部53A之接合界面(引線接合界面19A)之周緣會由不透水金屬膜43A被覆而完全不會露出。
其他構成係與上述第1實施形態之情形時相同。
圖7A~圖7E係用以按照步驟順序說明圖5之半導體裝置之製造方法之模式剖面圖。
首先,如圖7A~圖7C所示,進行與圖4A~圖4C相同之步驟,於引線框架20A上之所有晶片焊墊3A上晶片接合半導體晶片2A,藉由接線5A連接該等所有半導體晶片2A之各電極焊墊9A及與各電極焊墊9A相對應之電極引線4A。
於所有打線接合結束後,如圖7D所示,利用非電解鍍敷法,對包括電極焊墊9A、接線5A及電極引線4A之半導體裝置50A之半成品中所露出之金屬部分實施金屬材料(鎳、鈀等)之鍍敷。藉此形成不透水金屬膜43A,該不透水金屬膜43A一體地被覆至少整個電極焊墊9A、晶片焊墊3A之整個側面、電極引線4A之樹脂封裝體6A內之整個側面及整個接線5A等含有Cu或Al之部分。
其後,如圖7E所示,進行與圖4E相同之步驟。亦即,將引線框架20A上之所有半導體晶片2A由樹脂封裝體6A統一密封,將引線框架20A與樹脂封裝體6A一併切斷。藉此,可獲得圖5所示之半導體裝置50A之單片。
如上所述,根據該半導體裝置50A,整個電極焊墊9A、晶片焊墊3A之整個側面、電極引線4A之樹脂封裝體6A內之整個側面及整個接 線5A均由一體性之不透水金屬膜43A被覆。
藉此,電極焊墊9A與焊墊接合部52A之接合界面(焊墊接合界面17A)之周緣可由不透水金屬膜43A被覆而完全不會露出。
因此,即使水分滲入至樹脂封裝體6A內部,亦可藉由不透水金屬膜43A攔截該水分,因此可抑制焊墊接合界面17A與水分之接觸。其結果為,可抑制電極焊墊9A之腐蝕之行進,因此可抑制焊墊與導線間之電性斷開(1st接合中之電性斷開)。因此,可提高半導體裝置50A之連接可靠性。
又,於該半導體裝置50A中,電極引線4A與引線接合部53A之接合界面(引線接合界面19A)之周緣會由不透水金屬膜43A被覆而完全不會露出。因此,即使水分滲入至樹脂封裝體6A內部,亦可藉由不透水金屬膜43A攔截該水分,因而可抑制引線接合界面19A與水分之接觸。其結果為,可保持引線與導線間之連接可靠性。
又,因防止水分滲透之膜為金屬膜,故而亦取決於所使用之材料之種類,但可於電極焊墊9A及/或接線5A與不透水金屬膜43A之界面形成合金。藉由合金之形成,可提高不透水金屬膜43A之覆膜性。特別是鎳膜係有效對抗化學腐蝕之保護材料,並且成本較低。此外,容易與鋁或銅製成合金。因此,若使用鎳膜,則能夠以低成本形成覆膜性優異之不透水金屬膜43A。
以上,對本發明之第1實施形態進行了說明,但該第1實施形態亦可變更如下。
例如,於上述實施形態中,係採用QFN類型之半導體裝置,但本發明例如亦可應用於如圖8所示之QFP(Quad Flat Package,四面扁平封裝)類型之半導體裝置80A(於圖8中,71係一體地包括藉由樹脂封裝體6A密封之內部引線72A及自樹脂封裝體6A所露出之外部引線73A之電極引線71A)。於此情形時,於實施CVD法時,為防止絕緣材料沈積 於外部引線73A之背面74A,宜對外部引線73A之背面74A實施遮蔽。此外,本發明亦可應用於SOP(Small Outline Package,小外形封裝)等其他種類之封裝類型之半導體裝置。
又,不透水絕緣膜16A係除上述CVD法以外,亦可利用例如所謂旋轉塗佈法等其他薄膜形成技術而形成。
又,不透水絕緣膜16A亦可僅一體地被覆電極焊墊9A之表面整個區域及焊墊接合部52A之表面整個區域。為形成此類不透水絕緣膜16A,只要例如於所有打線接合結束後,利用眾所周知之灌注(potting)技術等方法,向焊墊接合部52A滴加絕緣材料即可。
又,於上述實施形態中,係採用利用非電解鍍敷法形成不透水金屬膜43A之情況,但不透水金屬膜43A亦可利用電解鍍敷法形成。例如,於接合材料12A包含導電膏之情形時,若利用電解鍍敷法形成不透水金屬膜43A,則如圖9所示之半導體裝置90A般,接合材料12A之側面及電極引線4A之表面41A亦由不透水金屬膜43A被覆。
與此相對,於接合材料12A包含絕緣膏之情形時,不透水金屬膜43A雖然形成於電極引線4A之表面41A,但並不形成於接合材料12A之側面。
<第2實施形態 圖10~圖17>
藉由該第2實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第2先前技術之第2問題。
(1)第2先前技術
通常,半導體裝置係以將半導體晶片與接線一併由樹脂密封(封裝)之狀態流通。於封裝體內,將半導體晶片之電極焊墊與一部分自樹脂封裝體露出之電極引線藉由接線加以電性連接。因此,藉由將電極引線作為外部端子連接於安裝基板之佈線,而實現半導體晶片與安裝基板之電性連接。
接線係例如使用具備圖16所示之焊針91B之打線接合機(未圖示)而分別連接於電極焊墊及電極引線。
焊針91B為中心形成有供接線90B插通之直孔94B之大致圓筒狀,於打線接合時,自直孔94B之前端送出接線90B。
於焊針91B之前端部,形成有與直孔94B之長度方向大致垂直之俯視時為圓環狀之外表面部93B、以及自外表面部93B沿著直孔94B之長度方向凹陷之倒角(chamfer)部95B。倒角部95B之側面97B形成為圓錐面狀,其剖面形狀係呈自外表面部93B之內周圓至直孔94B之周面之直線狀延伸。
並且,為形成接線與電極焊墊之接合即1st接合,例如,首先對由焊針91B所保持之接線90B之前端部施加電流,利用由此產生之火花之熱熔解導線材料。經熔解之導線材料藉由表面張力而成為FAB(Free Air Ball)。
其次,焊針91B移動至電極焊墊92B之正上方後下降,FAB與電極焊墊92B相接觸。此時,藉由焊針91B對FAB施加荷重,並且沿著Y7方向(以下,稱為超聲波施加方向Y7)對FAB施加超聲波。
藉此,FAB之一部分擴散至外表面部93B之下方,另一部分被壓入至直孔94B內,並且剩餘部分殘存於倒角部95B內。如此,對應於焊針91B之前端形狀,成形剖視時為凸狀之1st接合部96B。
(2)第2問題
然而,於如圖16所示之焊針91B般,倒角部95B之側面97B之剖面形狀呈直線狀延伸之情形時,於倒角部95B之側面97B與直孔94B之周面及外表面部93B之端面之間形成角度。因此,於接線90B之接合時,存在沿著超聲波施加方向Y7之方向之應力集中於1st接合部96B中之倒角部95B內之部分(具體而言,焊針91B之孔直徑H與倒角直徑CD之平面投影線之間的部分)的特定部位之情形。
因此,有可能導致應力集中於電極焊墊92B及其下方之層間絕緣膜98B中之1st接合部96B之應力集中部位之正下方之部分,從而層間絕緣膜98B產生裂縫而損傷。具體而言,於已拆除接線90B之狀態之層間絕緣膜98B中焊針91B之孔直徑H與倒角直徑CD之平面投影線間之部分,沿著超聲波施加方向Y7產生相對向之損傷(參照圖16之下側之圖)。
亦即,該第2實施形態之發明之第2目的在於提供一種於電極焊墊與接線之連接時,藉由緩和對電極焊墊施加之應力,可抑制在電極焊墊下方產生損傷之半導體裝置及其製造方法。
(3)具體實施形態之揭示
圖10係本發明之第2實施形態之半導體裝置之模式剖面圖。圖11係已去除樹脂封裝體之圖10之半導體裝置之平面分解圖。圖12A係圖11之電極焊墊附近之放大圖。圖12B係圖12A之以切斷線B-B切斷時之剖面圖。圖12C係圖12A之以切斷線C-C切斷時之剖面圖。再者,於圖12B及圖12C中,表示有已拆除接線之狀態之電極焊墊之平面圖作為補充。
半導體裝置1B係應用SON(Small Outline Non-leaded,小外形無引線)之半導體裝置。半導體裝置1B包括:半導體晶片2B;晶片焊墊3B,其用以支持半導體晶片2B;複數條電極引線4B,其配置於半導體晶片2B之周圍;接線5B,其將半導體晶片2B與電極引線4B加以電性連接;以及樹脂封裝體6B,其將該等密封。
半導體晶片2B於俯視時為四角狀,且具有例如複數個佈線層經由層間絕緣膜積層而成之多層佈線結構。又,半導體晶片2B之厚度例如為220~240μm(較佳為230μm左右)。如圖12所示,半導體晶片2B之表面21B(厚度方向其中一面)係由表面保護膜7B覆蓋。
於表面保護膜7B形成有複數個用以使多層佈線結構中之最上面 之佈線層露出之焊墊開口8B。
焊墊開口8B於俯視時為四角狀,於半導體晶片2B中彼此對向之一對緣部各設置有相同數量。各焊墊開口8B係沿著該緣部等間隔地配置。並且,佈線層之一部分自各焊墊開口8B露出作為半導體晶片2B之電極焊墊9B。
作為電極焊墊9B而露出之最上面之佈線層例如包括含有Al(鋁)之金屬材料,具體而言包含以Al為主成分之金屬材料(例如,Al-Cu合金等)。
於電極焊墊9B之下方形成有層間絕緣膜23B,該層間絕緣膜23B係用以使最上面之佈線層與較最上面之佈線層為下方之佈線層(下層佈線層)絕緣。
另一方面,於半導體晶片2B之背面22B(厚度方向另一面),形成有含有例如Au、Ni、Ag等之背面金屬10B。
晶片焊墊3B例如包含金屬薄板(例如,Cu、42合金(含有Fe-42% Ni之合金)),於俯視時為較半導體晶片2B更大之四角狀(例如,俯視時為2.7mm見方左右)。又,晶片焊墊3B之厚度例如為190~210μm(較佳為200μm左右)。於晶片焊墊3B之表面31B(厚度方向其中一面),形成有含有Ag等之焊墊鍍層11B。
並且,半導體晶片2B與晶片焊墊3B係藉由在半導體晶片2B之背面22B與晶片焊墊3B之表面31B作為接合面彼此對向之狀態下,使接合材料12B介插於背面22B與表面31B之間,而彼此接合。藉此,半導體晶片2B係以將表面21B朝向上方之姿勢支持於晶片焊墊3B。
接合材料12B包含例如焊錫膏等導電膏。再者,作為接合材料12B,可應用例如銀膏、氧化鋁膏等絕緣膏,於此情形時,亦可省略背面金屬10B及/或焊墊鍍層11B。又,於半導體晶片2B與晶片焊墊3B已接合之狀態下,接合材料12B之厚度例如為10~20μm。
晶片焊墊3B之背面32B(厚度方向另一面)係自樹脂封裝體6B露出。於所露出之另一面,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層13B。
電極引線4B例如包含與晶片焊墊3B相同之金屬薄板(例如,Cu、42合金(含有Fe-42% Ni等))。電極引線4B係藉由在與晶片焊墊3B之4個側面中之配置電極焊墊9B之側之2個側面正交之方向上之兩側,分別各設置有相同數量,而配置於半導體晶片2B之周圍。與晶片焊墊3B之各側面相對向之電極引線4B係沿著與其相對向之側面平行之方向等間隔地配置。各電極引線4B之與晶片焊墊3B之對向方向上之長度例如為240~260μm(較佳為250μm左右)。於電極引線4B之表面41B(厚度方向其中一面),形成有含有Ag等之引線鍍層14B。
另一方面,電極引線4B之背面42B(厚度方向另一面)係自樹脂封裝體6B露出。於所露出之背面42B,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層15B。
接線5B包含例如銅(例如,為純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅等,有時含有微量之雜質)、金等。接線5B包括呈線狀延伸之圓柱狀之本體部51B、以及形成於本體部51B之兩端且分別與電極焊墊9B及電極引線4B接合之焊墊接合部52B及引線接合部53B。
本體部51B係自電極焊墊9B側之一端向半導體晶片2B之外側呈朝上方凸起之抛物線狀彎曲,並於另一端以銳角向電極引線4B之表面41B入射。
焊墊接合部52B於俯視時為小於電極焊墊9B。焊墊接合部52B為凸狀,其一體地包括厚度方向另一側與電極焊墊9B之表面相接觸的大致圓板狀之基底部54B、形成於基底部54B之其中一側之作為中間部之台面部55B、以及自台面部55B之其中一側突出且其前端與本體 部51B之一端連接之吊鐘狀之突出部56B。
凸狀之焊墊接合部52B之表面(由基底部54B之上表面57B、台面部55B之側面58B及突出部56B之側面59B所形成之面)形成為無角且光滑之形狀。
具體而言,配置於焊墊接合部52B之中間之台面部55B包括側面58B,其係為使台面部55B隨著越接近其中一側直徑越小,而以遍及全周以均勻之曲率向焊墊接合部52B之內側凸起之方式彎曲,且相對於電極焊墊9B垂直地切斷時之剖面形狀為非直線狀者。
台面部55B之上側之突出部56B包括側面59B,其係以台面部55B之圓形上端作為相對於台面部55B之側面58B之變化曲線,為使突出部56B隨著越接近其中一側直徑越小,以遍及全周以均勻之曲率向焊墊接合部52B之外側凸起之方式彎曲者。
並且,台面部55B之下側之基底部54B包含與台面部55B之圓形下端連接之接線遍及全周集合而成之平面狀之上表面57B。
因此,該等面57B~59B所連接而成之焊墊接合部52B之表面形成為無角且光滑之形狀。
此種形狀之焊墊接合部52B可於半導體裝置1B之製造過程中,例如藉由使用有圖12中以虛線表示之焊針16B之打線接合法而形成。
於半導體裝置1B之製造過程中,沿著圖11之X2方向(以下,稱為框架搬送方向X2(於圖12中相同))搬送包含複數個一體地包括晶片焊墊3B及電極引線4B之單元之引線框架,且對所搬送之引線框架實施半導體晶片2B之搭載、電極焊墊9B與電極引線4B間之打線接合等處理,藉此製造半導體裝置1B。
繼而,於打線接合步驟中,使用包含焊針16B之打線接合機(未圖示)。
焊針16B為中心形成有供接線5B插通之直孔17B之大致圓筒狀, 於打線接合時,自直孔17B之前端送出接線5B。
於焊針16B之前端部,形成有相對於直孔17B之長度方向大致垂直且俯視時為與直孔17B同心之圓環狀之外表面部18B,以及自外表面部18B沿著直孔17B之長度方向凹陷之倒角部19B。
倒角部19B之側面20B係形成為自外表面部18B之內周圓至直孔17B之周面為止,遍及全周以均勻之曲率向直孔17B之內側凸起之剖視時為非直線狀之彎曲線。
並且,為使用該焊針16B而形成焊墊接合部52B,例如,首先對由焊針16B所保持之接線5B之前端部(一端部)施加電流,藉此於前端部形成FAB(Free Air Ball)。
其次,焊針16B移動至電極焊墊9B之正上方後,一面維持電極焊墊9B與外表面部18B之平行一面下降,FAB與電極焊墊9B相接觸。此時,自焊針16B對FAB施加荷重,並且沿著與框架搬送方向X2正交之Y2方向(以下,稱為超聲波施加方向Y2(於圖12中相同))施加超聲波,藉此FAB之一部分擴散至外表面部18B之下方而形成基底部54B,並且另一部分被壓入至直孔17B內而形成突出部56B。繼而,藉由殘存於倒角部19B內之剩餘部分形成台面部55B。如此,接線5B之一端部作為焊墊接合部52B接合於電極焊墊9B,從而形成1st接合。
並且,於使用焊針16B而形成之焊墊接合部52B中,台面部55B係對應於倒角部19B之側面20B之形狀而成形,故而台面部55B之側面58B係以沿著超聲波施加方向Y2切斷時之剖面形狀成為以電極焊墊9B之垂直線為對稱軸之線對稱的雙曲線(彎曲線)方式而形成。
引線接合部53B剖視時為楔狀,其靠近本體部51B之一端側相對較厚,且隨著越接近遠離本體部51B之另一端側而相對地越薄。
並且,於該半導體裝置1B中,與上述第1實施形態同樣地,半導體晶片2B之整個表面21B及整個側面28B、晶片焊墊3B之整個表面 31B及整個側面、電極引線4B之整個表面41B及樹脂封裝體6B內之整個側面、以及整個接線5B均由一體性之不透水絕緣膜24B被覆。
作為樹脂封裝體6B,可應用環氧樹脂等眾所周知之材料。樹脂封裝體6B係形成半導體裝置1B之外形,形成為大致長方體狀。關於樹脂封裝體6B之大小,其平面尺寸例如為4mm見方左右,其厚度例如為0.60~0.70mm,較佳為0.65mm左右。
如上所述,根據該半導體裝置1B,接線5B之焊墊接合部52B係使用焊針16B所形成,該焊針16B包括具有向直孔17B之內側凸起之側面20B(彎曲面)之倒角部19B。藉此,焊墊接合部52B之台面部55B之側面58B係以沿著超聲波施加方向Y2切斷時之剖面形狀成為以電極焊墊9B之垂直線為對稱軸之線對稱之雙曲線(彎曲線)之方式而形成。
例如,若焊墊接合部52B中之對應於焊針16B之倒角部19B之形狀而成形之部分之側面為圖12中以虛線a表示之平面或以虛線b表示之朝向焊墊接合部52B之外側凸起的彎曲面,則存在應力集中於台面部55B之特定部位之情況。
與此相對,若為如上所述之向焊墊接合部52B之內側凸起之側面58B般之彎曲面,則於焊墊接合部52B之形成時,可使對焊墊接合部52B之台面部55B施加之應力分散至台面部55B之整個側面58B,而不集中於台面部55B之特定部位。其結果為,可緩和對電極焊墊9B施加之應力,因此可抑制電極焊墊9B下方之層間絕緣膜23B中之損傷產生。亦即,如圖12B及圖12C所示,於半導體裝置1B中,於已拆除接線5B之狀態之層間絕緣膜23B中不產生明顯之損傷。
又,由於台面部55B之側面58B形成為遍及其全周以均勻之曲率彎曲之彎曲面,因此可使對台面部55B施加之應力有效分散至台面部55B之整個側面58B。因此,可進一步緩和對電極焊墊9B施加之應力。
並且,若考慮到接線5B包含銅之情形,則由於銅較金更硬而難以變形,因此於焊墊接合部52B之形成時,必需使荷重及超聲波大於金導線之情形。
因此,對焊墊接合部52B之台面部55B施加之應力大於使用金導線之情形時,當該較大應力施加至電極焊墊9B時,有可能不僅層間絕緣膜23B受損,而且半導體晶片2B中出現龜裂等產生較大損傷。
然而,若為如上所述之台面部55B之側面58B之形狀,則即使施加較大應力,亦可有效緩和該應力。因此,可抑制層間絕緣膜23B之損傷及半導體晶片2B中之龜裂之產生。
以上,對本發明之第2實施形態進行了說明,但該第2實施形態亦可變更如下。
例如,於上述實施形態中,倒角部19B之側面20B之剖面形狀係遍及全周為非直線狀之彎曲線,但如圖13所示,亦可一部分為彎曲線狀,剩餘部分為直線狀。於此情形時,1st接合中之超聲波只要沿著與側面20B中之彎曲線狀之部分交叉之Y4方向(以下,稱為超聲波施加方向Y4)施加即可。藉此,沿著超聲波施加方向Y4切斷時之剖面形狀為彎曲線狀之側面(彎曲面)43B以及沿著與超聲波施加方向Y4交叉之方向(例如,框架搬送方向X4)切斷時之剖面形狀為直線狀之側面(平面)44B將形成為台面部55B。
又,台面部55B中之剖視時為非直線狀之側面不必為彎曲線狀,例如,可如圖14所示,為剖面形狀為曲線波形(例如,圓弧波形、正弦波形等)之側面45B,亦可如圖15所示,為剖面形狀為直線波形(例如,三角波形等)之側面46B。該等側面45B及側面46B係可藉由包括形成有與該等之形狀相對應之側面20B之倒角部19B的焊針16B所形成。再者,於圖14及圖15中,Y5及Y6分別表示超聲波施加方向Y5及Y6,X5及X6分別表示框架搬送方向X5及X6。
又,於上述實施形態中,例示有接線5B由不透水絕緣膜24B被覆之態樣,但只要至少達成用以解決上述第2問題之第2目的,則亦可如圖17所示,不設置有不透水絕緣膜24B。
又,於上述實施形態中,係採用SON類型之半導體裝置,但本發明亦可應用於QFN(Quad Flat Non-leaded)、QFP(Quad Flat Package)、SOP(Small Outline Package)等其他種類之封裝類型之半導體裝置。
<第3實施形態 圖18~圖26>
藉由該第3實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第3先前技術之第3問題。
(1)第3先前技術
通常,半導體裝置係以將半導體晶片與接線一併由樹脂密封(封裝)之狀態流通。於封裝體內,將半導體晶片之電極焊墊與一部分自樹脂封裝體露出之電極引線藉由接線加以電性連接。因此,藉由將電極引線作為外部端子連接於安裝基板之佈線,而實現半導體晶片與安裝基板之電性連接。
作為連接電極焊墊與電極引線之接線,先前主要係使用金導線,但為減少使用價格昂貴之金,近年來正在研究使用價格較金導線便宜之銅導線。
繼而,為形成接線與電極焊墊之接合即1st接合,例如,首先對由打線接合機之焊針所保持之導線之前端部施加電流,利用由此產生之火花之熱熔解導線材料。經熔解之導線材料藉由表面張力而成為FAB(Free Air Ball)。
其次,焊針移動至電極焊墊之正上方後下降,FAB與電極焊墊相接觸。此時,藉由焊針對FAB施加荷重及超聲波。藉此,FAB對應於焊針之前端形狀產生變形,從而形成1st接合部。
(2)第3問題
因銅之導熱率及導電率較金優異,故而藉由採用銅導線,可有望降低成本以及提高接線之導熱率及導電率。
然而,於1st接合之形成時,通常係使用包含導熱率為3~5W/m‧K之陶瓷基底材料之焊針。因此,為防止導線之未熔融而穩定地形成FAB,必需以具有導線線徑之2.5倍左右之直徑之FAB為目標形成。
因此,若使用相對於窄間距之電極焊墊而言較粗之銅導線,則於接合時,會產生FAB自電極焊墊露出等之不良情況。因此,所使用之銅導線之線徑係根據電極焊墊之間距及適合於該間距之FAB直徑進行倒算而求出,於接合於窄間距之電極焊墊之情形時,必需設為相對較細。其結果為,存在無法有效利用銅導線之優異的導熱率及導電率之不良情況。
亦即,該第3實施形態之發明之第3目的在於提供一種藉由使用含銅之接線而實現低成本,且提高接線之導熱率及導電率之半導體裝置。
又,進而其他目的在於提供一種於含銅之接線與電極焊墊之接合時,可將直徑相對較小之金屬球穩定地形成於接線之前端部的半導體裝置之製造方法。
(3)具體實施形態之揭示
圖18係本發明之第3實施形態之半導體裝置之模式底視圖。圖19係本發明之第3實施形態之半導體裝置之模式剖面圖。圖20係圖19之由虛線圓包圍之部分之放大圖。圖21係用以求出焊墊接合部之體積之概念圖。
半導體裝置1C係應用有QFN(Quad Flat Non-leaded)之半導體裝置。半導體裝置1C包括:半導體晶片2C;晶片焊墊3C,其用以支持半導體晶片2C;複數條電極引線4C,其配置於半導體晶片2C之周 圍;接線5C,其將半導體晶片2C與電極引線4C加以電性連接;以及樹脂封裝體6C,其將該等密封。
半導體晶片2C於俯視時為四角狀,例如具有複數個佈線層經由層間絕緣膜積層而成之多層佈線結構。又,半導體晶片2C之厚度例如為220~240μm(較佳為230μm左右)。如圖20所示,半導體晶片2C之表面21C(厚度方向其中一面)係由表面保護膜7C覆蓋。
於表面保護膜7C形成有複數個用以使多層佈線結構中之最上面之佈線層露出之焊墊開口8C。
焊墊開口8C於俯視時為四角狀,於半導體晶片2C之各邊緣各設置有相同數量。各焊墊開口8C係沿著半導體晶片2C之各邊等間隔地配置。並且,佈線層之一部分自各焊墊開口8C露出作為半導體晶片2C之電極焊墊9C。
作為電極焊墊9C而露出之最上面之佈線層例如包括含有Al(鋁)之金屬材料,具體而言包含以Al為主成分之金屬材料(例如,Al-Cu合金等)。
另一方面,於半導體晶片2C之背面22C(厚度方向另一面),形成有含有例如Au、Ni、Ag等之背面金屬10C。
晶片焊墊3C例如包含金屬薄板(例如,Cu、42合金(含有Fe-42% Ni之合金)),於俯視時為較半導體晶片2C更大之四角狀(例如,於俯視時為2.7mm見方左右)。又,晶片焊墊3C之厚度例如為190~210μm(較佳為200μm左右)。於晶片焊墊3C之表面31C(厚度方向其中一面),形成有含有Ag等之焊墊鍍層11C。
並且,半導體晶片2C與晶片焊墊3C係藉由在半導體晶片2C之背面22C與晶片焊墊3C之表面31C作為接合面彼此對向之狀態下,使接合材料12C介插於背面22C與表面31C之間,而彼此接合。藉此,半導體晶片2C係以將表面21C朝向上方之姿勢支持於晶片焊墊3C。
接合材料12C包含例如焊錫膏等導電膏。再者,作為接合材料12C,可應用例如銀膏、氧化鋁膏等絕緣膏,於此情形時,背面金屬10C及/或焊墊鍍層11C亦可省略。又,於半導體晶片2C與晶片焊墊3C已接合之狀態下,接合材料12C之厚度例如為10~20μm。
晶片焊墊3C之背面32C(厚度方向另一面)係自樹脂封裝體6C露出。於所露出之另一面,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層13C。
電極引線4C例如包含與晶片焊墊3C相同之金屬薄板(例如,Cu、42合金(含有Fe-42% Ni等))。電極引線4C係於與晶片焊墊3C之各側面正交之各方向上之兩側分別各設置有相同數量,藉此配置於半導體晶片2C之周圍。與晶片焊墊3C之各側面相對向之電極引線4C係沿著與其相對向之側面平行之方向等間隔地配置。各電極引線4C之與晶片焊墊3C之對向方向上之長度例如為240~260μm(較佳為250μm左右)。於電極引線4C之表面41C(厚度方向其中一面),形成有含有Ag等之引線鍍層14C。
另一方面,電極引線4C之背面42C(厚度方向另一面)係自樹脂封裝體6C露出。於所露出之背面42C,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層15C。
接線5C包含銅(例如,為純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅等,有時含有微量之雜質)。接線5C包括呈線狀延伸之圓柱狀之本體部51C、以及形成於本體部51C之兩端且分別與電極焊墊9C及電極引線4C接合之焊墊接合部52C及引線接合部53C。
本體部51C係自電極焊墊9C側之一端向半導體晶片2C之外側呈朝上方凸起之抛物線狀彎曲,並於另一端以銳角向電極引線4C之表面41C入射。
焊墊接合部52C於俯視時小於電極焊墊9C。焊墊接合部52C於剖視時為凸狀,其一體地包括厚度方向另一側與電極焊墊9C之表面相接觸之大致圓柱狀之基底部54C、以及自基底部54C之其中一側突出且其前端與本體部51C之一端連接之大致傘狀之突出部55C。
又,於接線5C中,焊墊接合部52C之體積V相對於本體部51C之線徑Dw(本體部51C之直徑)之立方之比(V/(Dw)3)為1.8~5.6。
該焊墊接合部52C之體積V例如可藉由求出大致圓柱狀之基底部54C之體積Vb及大致傘狀之突出部55C之體積Vp之近似值,將該等近似值相加而求出。
如圖21所示,基底部54C之體積Vb可將基底部54C概念性地設為直徑Db、高度Hb之圓柱,根據該圓柱之體積求出近似值。因此,可表達為Vb≒π(Db/2)2‧Hb
另一方面,關於突出部55C之體積Vp,因突出部55C呈以圓錐為基礎,將圓錐之頂部形成為高度方向成為軸之圓柱狀而成之大致傘狀,故而如圖21所示,可將突出部55C概念性地設為直徑Dp、高度Hp之圓錐,根據該圓錐之體積求出近似值。因此,可表達為Vp≒π‧(Dp/2)2‧Hp/3。
引線接合部53C於剖視時為楔狀,其靠近本體部51C之一端側相對較厚,且隨著越接近遠離本體部51C之另一端側相對越薄。
並且,於該半導體裝置1C中,與上述第1實施形態同樣地,半導體晶片2C之整個表面21C及整個側面28C、晶片焊墊3C之整個表面31C及整個側面、電極引線4C之整個表面41C及樹脂封裝體6C內之整個側面、以及整個接線5C均由一體性之不透水絕緣膜25C被覆。
作為樹脂封裝體6C,可應用環氧樹脂等眾所周知之材料。樹脂封裝體6C係形成半導體裝置1C之外形,形成為大致長方體狀。關於樹脂封裝體6C之大小,其平面尺寸例如為4mm見方左右,其厚度例 如為0.60~0.70mm,較佳為0.65mm左右。
圖22A~圖22E係用以按照步驟順序說明圖19所示之半導體裝置之製造方法之模式剖面圖。
為製造上述半導體裝置1C,例如,首先準備包含複數個單元之引線框架20C,該單元一體地包括晶片焊墊3C及電極引線4C。再者,於圖22A~圖22E中,省略引線框架20C之整體圖,僅表示搭載1個半導體晶片2C所需之1個單元份之晶片焊墊3C及電極引線4C。
其次,利用鍍敷法,對引線框架20C之表面實施Ag等之金屬鍍敷。藉此,同時形成焊墊鍍層11C及引線鍍層14C。
其次,如圖22A所示,經由接合材料12C,於引線框架20C上之所有晶片焊墊3C晶片接合半導體晶片2C。
繼而,藉由包含焊針23C之打線接合機(未圖示),進行接線5C之接合。
打線接合機中所包含之焊針23C包含導熱率為15~45W/m‧K、較佳為17~43W/m‧K之材料。具體而言,包含多晶紅寶石(導熱率例如為17~19W/m‧K左右)或單晶紅寶石(導熱率例如為41~43W/m‧K左右)。
焊針23C為中心形成有供接線5C插通之直孔17C之大致圓筒狀,於打線接合時,自直孔17C之前端送出接線5C。
於焊針23C之前端部,形成有與直孔17C之長度方向大致垂直且於俯視時為與直孔17C同心之圓環狀之外表面部18C、以及自外表面部18C沿著直孔17C之長度方向凹陷之倒角部19C。
倒角部19C之側面16C係形成為將外表面部18C之內周圓與直孔17C之周面連接之圓錐面狀。因此,側面16C於剖視時為直線狀,於該實施形態中,其頂角(倒角角度)例如設為90°。
繼而,於打線接合時,首先,藉由對由焊針23C所保持之接線5C 之前端部(一端部)施加電流,於前端部形成球狀之FAB24C(Free Air Ball)。施加電流I係本體部51C之線徑Dw越大,則設定為越大值,例如於Dw=25μm時,I=40mA,於Dw=30μm時,I=60mA,於Dw=38μm時,I=120mA。再者,電流之施加時間係根據FAB24C之直徑Df而設定為適當之長度。
如此形成之FAB24C之體積Vf可使用FAB24C之直徑Df,表達為Vf=4/3‧π‧(Df/2)3
其次,如圖22B所示,焊針23C移動至電極焊墊9C之正上方後下降,FAB24C與電極焊墊9C相接觸。此時,自焊針23C對FAB24C施加荷重(圖22B之中空箭頭)及超聲波(圖22B之鋸齒狀線)。施加荷重W係根據本體部51C之線徑Dw及作為目標之基底部54C之直徑Db而設定,例如於Dw=25μm、Db=46μm時,W=80g,於Dw=30μm、Db=60μm時,W=130g,於Dw=38μm、Db=85μm時,W=240g。又,施加超聲波以裝置之輸出值計,例如為120kHz、50~120mA。
藉此,FAB24C之一部分擴散至外表面部18C之下方而形成基底部54C,並且FAB24C之剩餘部分被壓入至直孔17C內且殘存於倒角部19C內而形成突出部55C。如此,接線5C之一端部作為焊墊接合部52C接合於電極焊墊9C,從而形成1st接合。
於突出部55C,形成沿著倒角部19C之側面16C之剖視時為平面狀之圓錐面。因此,於計算上述突出部55C之體積Vp時,可使用倒角部19C之直徑(倒角直徑)CD代替圓錐之直徑Dp,又,於倒角角度為90°之情形時,可使用CD/2代替高度Hp
於1st接合後,焊針23C上升至一定高度,並向電極引線4C之正上方移動。繼而,如圖22C所示,焊針23C再次下降,接線5C與電極引線4C相接觸。此時,自焊針23C對接線5C施加荷重(圖22C之中空箭頭)及超聲波(圖22C之鋸齒狀線),藉此接線5C對應於焊針23C之外表 面部18C之形狀產生變形,接合於電極引線4C(形成針腳式接合26C及尾線接合27C)。
繼而,焊針23C上升,於自焊針23C之前端確保有一定長度之尾部之狀態下,自尾線接合27C之位置扯斷接線5C。藉此,經針腳式接合之接線5C之另一端殘存於電極引線4C上作為引線接合部53C,從而形成2nd接合。
其後,如圖22D所示,進行與圖22A~圖22C相同之步驟,藉由接線5C連接所有半導體晶片2C之各電極焊墊9C及與各電極焊墊9C相對應之電極引線4C。
於所有打線接合結束後,利用與圖4D相同之方法,形成不透水絕緣膜25C。於不透水絕緣膜25C之形成後,如圖22E所示,將引線框架20C安放於成形模具,利用樹脂封裝體6C將所有半導體晶片2C與引線框架20C一併統一密封。繼而,於自樹脂封裝體6C露出之晶片焊墊3C之背面32C及電極引線4C之背面42C形成焊錫鍍層13C、15C。最後,使用切割機,將引線框架20C與樹脂封裝體6C一併切斷成各半導體裝置1C之尺寸,藉此獲得圖19所示之半導體裝置1C之單片。
如上所述,根據上述製造方法,於含銅之接線5C之FAB24C之形成時,使用包含導熱率為15~45W/m‧K之材料之焊針23C。藉此,可穩定地形成直徑Df相對於接線5C之本體部51C之線徑Dw的大小(Df/Dw)為1.5~2.2倍等的直徑相對較小之FAB24C。例如,於線徑Dw=25μm之情形時,可更加穩定地形成Df/Dw為1.5以上之FAB24C,於線徑Dw=30μm之情形時,可更加穩定地形成Df/Dw為1.8以上之FAB24C,於線徑Dw=38μm之情形時,可更加穩定地形成Df/Dw為1.9以上之FAB24C。
並且,此種直徑Df之FAB24C之體積Vf為本體部51C之線徑Dw之立方的1.8~5.6倍(亦即,Vf/(Dw)3=1.8~5.6)。
因此,將上述直徑之FAB24C藉由焊針23C加以按壓並且加以超 聲波振動而形成之焊墊接合部52C,具有本體部51C之線徑Dw之立方的1.8~5.6倍之體積V。亦即,焊墊接合部52C之體積V相對於本體部51C之線徑Dw之立方之比(V/(Dw)3)成為1.8~5.6。
例如,於以下計算條件下,分別計算出FAB24C之體積Vf及焊墊接合部52C之體積V,藉此確認Vf≒V。
(計算條件)FAB24C之直徑Df=60μm,焊針23C之倒角直徑CD=66μm,倒角角度=90°,焊墊接合部52C之基底部54C之直徑Db=76μm,焊墊接合部52C之基底部54C之高度Hb=18μm
於此情形時,FAB24C之體積Vf成為Vf=4/3‧π‧(Df/2)3=4/3‧π‧(30)3≒113,040μm3
另一方面,因焊墊接合部52C之體積V為(基底部54C之體積Vb)+(突出部55C之體積Vp),故而V={π(Db/2)2‧Hb}+{π(Dp/2)2‧Hp/3}。如上所述,因Dp=CD、Hp=CD/2,故而V={π(76/2)2‧18}+{π(66/2)2‧(66/2)/3}≒81,615+37614=119,229μm3
根據(焊墊接合部52C之體積V)-(FAB24C之體積Vf),該等之體積之誤差為6189μm3,其係該等之體積之5%左右。並且,焊墊接合部52C之體積V為近似值。因此,藉由計算出焊墊接合部52C之體積V,可求出形成焊墊接合部52C時使用之FAB24C之體積Vf
因此,不論電極焊墊9C之間距大小如何,均可使用相對較粗之接線,故而可提高接線5C之導熱率及導電率。又,由於使用銅導線,因此較使用金導線之情形時相比,可降低成本。
又,FAB24C形成時之施加電流I係本體部51C之線徑Dw越大,則設定為越大值,故而可有效形成更接近於圓球之FAB24C。
以上,對本發明之第3實施形態進行了說明,但該第3實施形態亦可變更如下。
例如,於上述實施形態中,係採用QFN類型之半導體裝置,但本 發明亦可應用於QFP(Quad Flat Package)、SOP(Small Outline Package)等其他種類之封裝類型之半導體裝置。
又,於上述實施形態中,例示有接線5C由不透水絕緣膜25C被覆之態樣,但只要至少達成用以解決上述第3問題之第3目的,則亦可如圖23所示,不設置有不透水絕緣膜25C。
[實施例]
其次,關於該第3實施形態進行有實驗。再者,本發明並不受限於下述實施例。
<實施例1>
將線徑為38μm之銅接線由焊針(多晶紅寶石製造導熱率:17.7W/m‧K)保持,並對其前端部以650μsec施加120mA之電流,藉此製作出直徑為70μm之FAB(FAB直徑/線徑=1.84 FAB體積/(線徑)3=3.27)。分別對200條銅接線進行以上操作。
其次,對各接線之FAB,使用掃描式電子顯微鏡(SEM,scanning election microscopy)進行電子束掃描,並對由此檢測出之資訊進行圖像處理而獲得SEM圖像。藉由觀察所獲得之SEM圖像,辨別各FAB之形狀為下述哪一種模式。將各形狀模式之SEM圖像示於圖24。於圖24中,各SEM圖像之左上所示之數字表示該模式之接線之條數。例如,圓球模式之「168/200」表示在200條接線中,FAB之形狀為圓球模式之接線有168條。
(形狀模式之種類)
圓球:FAB為圓球狀,其中心位於接線之軸上。
偏心:FAB為圓球狀,但其中心相對於接線之軸上稍偏離而配置。
球桿:FAB為與高爾夫球桿之頭部類似之形狀。
未熔融:接線無法充分熔融,無法形成FAB。
<實施例2~9>
分別對線徑不同之3種銅接線(線徑=38μm、30μm及25μm),除實施例5以外,使用與實施例1相同之焊針而製作FAB。再者,於實施例5中,係使用單晶紅寶石製造之導熱率為43.0W/m‧K之焊針。
其後,利用與實施例1相同之方法觀察各接線之FAB之SEM圖像,藉此辨別各FAB之形狀為下述哪一種模式。將所獲得之SEM圖像示於圖24~圖26。再者,導線線徑、FAB直徑及電流施加條件如各圖所示。
<比較例1>
將線徑為38μm之銅接線由焊針(陶瓷製造 導熱率:4.2W/m‧K)保持,並對其前端部以650μsec施加120mA之電流,藉此製作出直徑為70μm之FAB(FAB直徑/線徑=1.84 FAB體積/(線徑)3=3.27)。分別對200條銅接線進行以上操作。
其後,利用與實施例1相同之方法觀察各接線之FAB之SEM圖像,藉此辨別各FAB之形狀為下述哪一種模式。將各形狀模式之SEM圖像示於圖24。
<比較例2~8>
分別對線徑不同之3種銅接線(線徑=38μm、30μm及25μm),使用與比較例1相同之焊針而製作FAB。
其後,利用與實施例1相同之方法觀察各接線之FAB之SEM圖像,藉此辨別各FAB之形狀為下述哪一種模式。將所獲得之SEM圖像示於圖24~圖26。再者,導線線徑、FAB直徑及電流施加條件如各圖所示。
<評價>
如實施例1~9所示,於使用導熱率為17.7W/m‧K及43.0W/m‧K之焊針,以直徑相對於導線線徑之大小(FAB直徑/線徑)為1.5~2.2倍之 FAB為目標形成之情形時,可確認能夠確實地形成圓球模式、偏心模式及球桿模式中之任一種模式之FAB,而不會產生銅接線之未熔融等之不良模式。藉此,可確認穩定地形成具有接線線徑之立方的1.8~5.6倍之體積(FAB體積/(線徑)3=1.8~5.6)的直徑相對較小之FAB。
<第4實施形態 圖27~圖36>
藉由該第4實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第4先前技術之第4問題。
(1)第4先前技術
通常,半導體裝置係以將半導體晶片與接線一併由樹脂密封(封裝)之狀態流通。於封裝體內,將半導體晶片之電極焊墊與一部分自樹脂封裝體露出之電極引線藉由接線加以電性連接。因此,藉由將電極引線作為外部端子連接於安裝基板之佈線,而實現半導體晶片與安裝基板之電性連接。
作為連接電極焊墊與電極引線之接線,先前主要係使用金導線,但為減少使用價格昂貴之金,近年來正在研究使用價格較金導線便宜之銅導線。
並且,為形成接線與電極焊墊之接合即1st接合,例如,首先對由打線接合機之焊針所保持之導線之前端部施加電流,利用由此產生之火花之熱熔解導線材料。經熔解之導線材料藉由表面張力而成為FAB(Free Air Ball)。
其次,焊針移動至電極焊墊之正上方後下降,FAB與電極焊墊相接觸。此時,藉由焊針對FAB施加一定荷重及超聲波。藉此,FAB對應於焊針之前端形狀產生變形,從而形成1st接合部。
(2)第4問題
然而,由於銅較金更硬而難以變形,因此若於與金導線相同之接合條件(荷重及超聲波之大小等)下對銅導線進行1st接合,則有可能 無法良好地接合銅導線與電極焊墊,而產生接合不良。
亦即,該第4實施形態之發明之第4目的在於提供一種可抑制銅接線與電極焊墊之接合不良的打線接合方法及利用該方法所製作之半導體裝置。
(3)具體實施形態之揭示
圖27係本發明之第4實施形態之半導體裝置之模式底視圖。圖28係本發明之第4實施形態之半導體裝置之模式剖面圖。圖29係圖28之由虛線圓包圍之部分之放大圖。
半導體裝置1D係應用有QFN(Quad Flat Non-leaded)之半導體裝置。半導體裝置1D包括:半導體晶片2D;晶片焊墊3D,其用以支持半導體晶片2D;複數條電極引線4D,其配置於半導體晶片2D之周圍;接線5D,其將半導體晶片2D與電極引線4D加以電性連接;以及樹脂封裝體6D,其將該等密封。
半導體晶片2D於俯視時為四角狀,例如具有複數個佈線層經由層間絕緣膜積層而成之多層佈線結構。又,半導體晶片2D之厚度例如為220~240μm(較佳為230μm左右)。如圖29所示,半導體晶片2D之表面21D(厚度方向其中一面)係由表面保護膜7D覆蓋。
於表面保護膜7D形成有複數個用以使多層佈線結構中之最上面之佈線層露出之焊墊開口8D。
焊墊開口8D於俯視時為四角狀,於半導體晶片2D之各邊緣各設置有相同數量。各焊墊開口8D係沿著半導體晶片2D之各邊等間隔地配置。並且,佈線層之一部分自各焊墊開口8D露出作為半導體晶片2D之電極焊墊9D。
作為電極焊墊9D所露出之最上面之佈線層例如包括含有Al(鋁)之金屬材料,具體而言包含以Al為主成分之金屬材料(例如,Al-Cu合金等)。
另一方面,於半導體晶片2D之背面22D(厚度方向另一面),形成有含有例如Au、Ni、Ag等之背面金屬10D。
晶片焊墊3D例如包含金屬薄板(例如,Cu、42合金(含有Fe-42% Ni之合金)),於俯視時為較半導體晶片2D更大之四角狀(例如,於俯視時為2.7mm見方左右)。又,晶片焊墊3D之厚度例如為190~210μm(較佳為200μm左右)。於晶片焊墊3D之表面31D(厚度方向其中一面),形成有含有Ag等之焊墊鍍層11D。
並且,半導體晶片2D與晶片焊墊3D係藉由在半導體晶片2D之背面22D與晶片焊墊3D之表面31D作為接合面彼此對向之狀態下,使接合材料12D介插於背面22D與表面31D之間,而彼此接合。藉此,半導體晶片2D係以將表面21D朝向上方之姿勢支持於晶片焊墊3D。
接合材料12D包含例如焊錫膏等導電膏。再者,作為接合材料12D,可應用例如銀膏、氧化鋁膏等絕緣膏,於此情形時,背面金屬10D及/或焊墊鍍層11D亦可省略。又,於半導體晶片2D與晶片焊墊3D已接合之狀態下,接合材料12D之厚度例如為10~20μm。
晶片焊墊3D之背面32D(厚度方向另一面)係自樹脂封裝體6D露出。於所露出之另一面,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層13D。
電極引線4D例如包含與晶片焊墊3D相同之金屬薄板(例如,Cu、42合金(含有Fe-42% Ni等))。電極引線4D係於與晶片焊墊3D之各側面正交之各方向上之兩側分別各設置有相同數量,藉此配置於半導體晶片2D之周圍。與晶片焊墊3D之各側面相對向之電極引線4D係沿著與其相對向之側面平行之方向等間隔地配置。各電極引線4D之與晶片焊墊3D之對向方向上之長度例如為390~410μm(較佳為400μm左右)。於電極引線4D之表面41D(厚度方向其中一面),形成有含有Ag等之引線鍍層14D。
另一方面,電極引線4D之背面42D(厚度方向另一面)係自樹脂封裝體6D露出。於所露出之背面42D,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層15D。
接線5D包含銅(例如,為純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅等,有時含有微量之雜質)。接線5D包括呈線狀延伸之圓柱狀之本體部51D、以及形成於本體部51D之兩端且分別與電極焊墊9D及電極引線4D接合之焊墊接合部52D及引線接合部53D。
本體部51D係自電極焊墊9D側之一端向半導體晶片2D之外側呈朝上方凸起之抛物線狀彎曲,並於另一端以銳角向電極引線4D之表面41D入射。
焊墊接合部52D於俯視時小於電極焊墊9D。焊墊接合部52D於剖視時為凸狀,其一體地包括厚度方向另一側與電極焊墊9D之表面相接觸之大致圓板狀之基底部54D、以及自基底部54D之其中一側突出且其前端與本體部51D之一端連接之大致傘狀之突出部55D。
基底部54D係以其側面56D較與電極焊墊9D相接觸之於俯視時為大致圓形之另一面(基底部54D之背面57D)之外周更向直徑方向外側凸起之方式彎曲。因此,於俯視時,基底部54D係重合於與其背面57D相接觸而接合於基底部54D之大致圓形之電極焊墊9D之接合區域91D、以及包圍接合區域91D而不與基底部54D相接觸之大致圓環狀之周邊區域92D。
於電極焊墊9D之周邊區域92D形成有露出部分93D,該露出部分93D係於接線5D之接合時,電極焊墊9D之材料被FAB24D(下述)壓展開而隆起者。該露出部分93D係與表面94D相接觸而不自電極焊墊9D之表面94D浮起。
引線接合部53D於剖視時為楔狀,其靠近本體部51D之一端側相 對較厚,且隨著越接近遠離本體部51D之另一端側相對越薄。
並且,於該半導體裝置1D中,與上述第1實施形態同樣地,半導體晶片2D之整個表面21D及整個側面28D、晶片焊墊3D之整個表面31D及整個側面、電極引線4D之整個表面41D及樹脂封裝體6D內之整個側面、以及整個接線5D均由一體性之不透水絕緣膜25D被覆。
作為樹脂封裝體6D,可應用環氧樹脂等眾所周知之材料。樹脂封裝體6D形成半導體裝置1D之外形,形成為大致長方體狀。關於樹脂封裝體6D之大小,其平面尺寸例如為4mm見方左右,其厚度例如為0.80~0.90mm,較佳為0.85mm左右。
圖30A~圖30E係用以按照步驟順序說明圖27及圖28所示之半導體裝置之製造方法之模式剖面圖。
為製造上述半導體裝置1D,例如,首先準備包含複數個單元之引線框架20D,該單元一體地包括晶片焊墊3D及電極引線4D。再者,於圖30A~圖30E中,省略引線框架20D之整體圖,僅表示搭載1個半導體晶片2D所需之1個單元份之晶片焊墊3D及電極引線4D。
其次,利用鍍敷法,對引線框架20D之表面實施Ag等之金屬鍍敷。藉此,同時形成焊墊鍍層11D及引線鍍層14D。
其次,如圖30A所示,經由接合材料12D,於引線框架20D上之所有晶片焊墊3D晶片接合半導體晶片2D。
繼而,藉由包含焊針23D之打線接合機(未圖示),進行接線5D之接合。
打線接合機中所包含之焊針23D為中心形成有供接線5D插通之直孔17D之大致圓筒狀,於打線接合時,自直孔17D之前端送出接線5D。
於焊針23D之前端部,形成有與直孔17D之長度方向大致垂直且於俯視時為與直孔17D同心之圓環狀之外表面部18D、以及自外表面 部18D沿著直孔17D之長度方向凹陷之倒角部19D。
倒角部19D之側面16D係形成為將外表面部18D之內周圓與直孔17D之周面連接之圓錐面狀。因此,側面16D於剖視時為直線狀,於該實施形態中,其頂角(倒角角度)例如設為90°。
繼而,於打線接合時,首先,藉由對由焊針23D所保持之接線5D之前端部(一端部)施加電流,於前端部形成球狀之FAB24D(Free Air Ball)。施加電流I係本體部51D之線徑(直徑)Dw越大,則設定為越大值,例如於Dw=25μm時,I=40mA,於Dw=30μm時,I=60mA,於Dw=38μm時,I=120mA。再者,電流之施加時間係根據作為目標之FAB24D之直徑Df而設定為適當之長度。
其次,如圖30B(i)所示,焊針23D移動至電極焊墊9D之正上方後下降,FAB24D與電極焊墊9D相接觸。此時,自焊針23D對FAB24D施加荷重(圖30B(i)之中空箭頭)及超聲波(圖30B(i)之鋸齒狀線)。
於施加荷重及超聲波時,如圖30B(ii)所示,以FAB24D下降而與電極焊墊9D相接觸後之按壓初期之第1時間(例如,1~5msec,較佳為3msec左右),施加相對較大荷重,其後,以較第1時間更長之第2時間(例如,2~20msec)施加相對較小之荷重。
相對較大荷重W係根據本體部51D之線徑Dw及作為目標之基底部54D之直徑Db而設定,例如於Dw=25μm、Db=58μm時,W=80g,於Dw=30μm、Db=74μm時,W=130g,於Dw=38μm、Db=104μm時,W=240g。
又,超聲波係於FAB24D之按壓初期,例如並非與相對較大荷重同時施加,而係於相對較大荷重之施加後(例如,1msec後)隨即施加,其後,於荷重之施加結束時為止之期間(例如,2~20msec),以一定之大小持續施加。所施加之超聲波以裝置之輸出值計,例如為120kHz、50~120mA。再者,超聲波係亦可於直至FAB24D之按壓初期為 止之期間(例如,FAB24D之下降過程中)施加。
繼而,荷重及超聲波之施加同時結束。或者,超聲波之施加先結束,其後,荷重之施加結束。
如此,FAB24D之一部分擴散至外表面部18D之下方而形成基底部54D,並且剩餘部分被按入至直孔17D內,而且殘存於倒角部19D內而形成突出部55D。其結果為,接線5D之一端部作為焊墊接合部52D接合於電極焊墊9D,從而形成1st接合。
於1st接合後,焊針23D上升至一定高度,並向電極引線4D之正上方移動。繼而,如圖30C所示,焊針23D再次下降,接線5D與電極引線4D相接觸。此時,自焊針23D對接線5D施加荷重(圖30C之中空箭頭)及超聲波(圖30C之鋸齒狀線),藉此接線5D對應於焊針23D之外表面部18D之形狀產生變形,接合於電極引線4D(形成針腳式接合26D及尾線接合27D)。
繼而,焊針23D上升,於自焊針23D之前端確保有一定長度之尾部之狀態下,自尾線接合27D之位置扯斷接線5D。藉此,經針腳式接合之接線5D之另一端作為引線接合部53D殘存於電極引線4D上,從而形成2nd接合。
其後,如圖30D所示,進行與圖30A~圖30C相同之步驟,藉由接線5D連接所有半導體晶片2D之各電極焊墊9D及與各電極焊墊9D相對應之電極引線4D。
所有打線接合結束後,利用與圖4D相同之方法,形成不透水絕緣膜25D。於不透水絕緣膜25D形成後,如圖30E所示,將引線框架20D安放於成形模具,利用樹脂封裝體6D將所有半導體晶片2D與引線框架20D一併統一密封。繼而,於自樹脂封裝體6D露出之晶片焊墊3D之背面32D及電極引線4D之背面42D形成焊錫鍍層13D、15D。最後,使用切割機,將引線框架20D與樹脂封裝體6D一併切斷成各半導體裝 置1D之尺寸,藉此獲得圖28所示之半導體裝置1D之單片。
如上所述,根據上述方法,於含銅之接線5D之前端部形成有FAB24D之後,向電極焊墊9D按壓FAB24D並且使其進行超聲波振動,藉此將FAB24D作為焊墊接合部52D接合於電極焊墊9D。
繼而,於FAB24D之接合時,對FAB24D並不同時施加一定之荷重及超聲波,而係如圖30B(ii)所示,於FAB24D下降而與電極焊墊9D相接觸後,以第1時間(按壓初期)施加相對較大荷重,於該第1時間中,施加相對較大荷重,並且施加超聲波。因此,於該第1時間中,可使FAB24D有效變形為焊墊接合部52D之形狀。
繼而,於第1時間後之按壓後期,以較第1時間更長之第2時間施加相對較小之荷重。因此,於該第2時間中,藉由與相對較小之荷重一併施加之超聲波,能夠以優異之強度將接線5D接合於電極焊墊9D。
然而,當將銅導線接合於電極焊墊時,若使荷重及超聲波較金導線之條件更大,並以一定之大小同時施加該較大荷重及超聲波,則存在產生因金屬球而壓展開之焊墊材料自電極焊墊之表面浮起而向外側大幅地露出之所謂過度濺鍍之情況。例如,若使用圖27~圖29之參照符號進行說明,則如圖31所示,存在產生自電極焊墊9D之周邊區域92D向外側浮起之過度濺鍍95D之情況。
然而,於上述方法中,由於按壓初期後施加至FAB24D之荷重相對減小,因此可抑制因經施加超聲波之FAB24D而壓展電極焊墊9D。其結果為,可抑制電極焊墊9D中之過度濺鍍產生。
又,因對電極焊墊9D施加相對較大荷重之期間僅為按壓初期,故而可抑制對電極焊墊9D之正下方施加較大負荷。其結果為,可抑制半導體晶片2D中之龜裂產生。
因此,於利用上述方法所獲得之半導體裝置1D中,於接線5D之 接合時,可使電極焊墊9D之材料被FAB24D壓展開而向上方露出之露出部分93D僅限於自電極焊墊9D之表面94D隆起,而防止自表面94D之浮起。
特別是於如半導體裝置1D般電極焊墊9D包括含鋁之金屬材料之半導體裝置中,於使用銅導線之情形時,容易產生過度濺鍍。然而,於此種半導體裝置1D中,只要利用本實施形態之打線接合方法,亦可有效抑制過度濺鍍。
以上,對本發明之第4實施形態進行了說明,但該第4實施形態亦可變更如下。
例如,於上述實施形態中,係採用QFN類型之半導體裝置,但本發明亦可應用於QFP(Quad Flat Package)、SOP(Small Outline Package)等其他種類之封裝類型之半導體裝置。
又,於上述實施形態中,例示有接線5D由不透水絕緣膜25D被覆之態樣,但只要至少達成用以解決上述第4問題之第4目的,則亦可如圖32所示,不設置有不透水絕緣膜25D。
[實施例]
其次,關於該第4實施形態進行有實驗。再者,本發明並不受限於下述實施例。
<實施例1>
將線徑為25μm之銅接線由焊針保持,並於其前端部製作直徑為60μm之FAB。
其次,使保持有FAB之焊針移動至鋁製之電極焊墊之正上方,並使其相對於電極焊墊一下子下降,從而使得FAB與電極焊墊碰撞。此時,如圖33所示,對FAB瞬間施加130g之荷重,並將該大小保持3msec。其後,將施加至FAB之荷重瞬間下降至30g,並將該大小保持9msec。另一方面,超聲波係直至FAB與電極焊墊相接觸之前並不施 加,而於施加130g之荷重之1msec後,以90mA瞬間施加,其後,將該大小保持11msec。然後,同時結束荷重及超聲波之施加。
藉由以上操作,將FAB作為焊墊接合部接合於電極焊墊。
<比較例1>
將線徑為25μm之銅接線由焊針保持,並於其前端部製作直徑為60μm之FAB。
其次,使保持有FAB之焊針移動至鋁製之電極焊墊之正上方,並使其相對於電極焊墊一下子下降,從而使得FAB與電極焊墊碰撞。此時,如圖34所示,對FAB瞬間施加60g之荷重,將該大小保持6msec。另一方面,超聲波係與60g之荷重之施加同時,以130mA瞬間施加,其後,將該大小保持6msec。然後,同時結束荷重及超聲波之施加。
藉由以上操作,將FAB作為焊墊接合部接合於電極焊墊。
<濺鍍評價>
使用掃描式電子顯微鏡(SEM),對實施例1及比較例1中所形成之焊墊接合部進行電子束掃描,並對由此檢測出之資訊進行圖像處理而獲得SEM圖像。藉由觀察所獲得之SEM圖像,確認於各焊墊接合部之接合時是否產生有過度濺鍍。將實施例1之SEM圖像示於圖35,並將比較例1之SEM圖像示於圖36。
如圖36所示,於焊墊接合部之接合時以相同時間施加一定之荷重及超聲波之比較例1中,已確認到產生有電極焊墊被FAB壓展開而使焊墊之材料自電極焊墊之表面浮起而向外側大幅地露出之過度濺鍍。
與此相對,如圖35所示,於FAB之按壓初期瞬間施加相對較大之130g之荷重,其後,瞬間施加相對較小之30g之荷重的實施例1中,已確認到焊墊之材料被FAB壓展開之部分僅限於隆起,而並未自電極 焊墊之表面浮起。
<第5實施形態 圖37~圖43>
藉由該第5實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第5先前技術之第5問題。
(1)第5先前技術
通常,半導體裝置係以將半導體晶片與接線一併由樹脂密封(封裝)之狀態流通。於封裝體內,將半導體晶片之電極焊墊與一部分自樹脂封裝體露出之電極引線藉由接線加以電性連接。藉由將電極引線作為外部端子連接於安裝基板之佈線,實現半導體晶片與安裝基板之電性連接。
作為連接電極焊墊與電極引線之接線,先前主要係使用金導線,但為減少使用價格昂貴之金,近年來正在研究使用價格較金導線便宜之銅導線。
並且,為形成接線與電極焊墊之接合即1st接合,例如,首先對由打線接合機之焊針所保持之導線之前端部施加能量,利用由此產生之火花之熱熔解導線材料。經熔解之導線材料藉由表面張力而成為FAB(Free Air Ball)。
其次,焊針移動至電極焊墊之正上方後下降,FAB與電極焊墊相接觸。此時,藉由焊針對FAB施加荷重及超聲波。藉此,FAB對應於焊針之前端形狀產生變形,從而形成1st接合部。
(2)第5問題
然而,於電極焊墊之正下方,通常,以與電極焊墊相對向之方式配置有由層間絕緣膜被覆之Al佈線。又,於層間絕緣膜與電極焊墊之間,介插有較Al佈線更硬之Ti/TiN層(障壁層)。
於此種結構中,當對與電極焊墊相接觸之FAB施加荷重而將障壁層按壓至Al佈線側時,因障壁層與佈線之間之硬度不同,應力容易集 中於相對較硬之障壁層。因此,根據集中於障壁層之應力之大小,有可能於障壁層中產生龜裂,且產生佈線間之短路等不良情況。
亦即,該第5實施形態之發明之第5目的在於提供一種於含銅之接線與電極焊墊之接合時,可防止電極焊墊正下方之障壁層中產生龜裂之半導體裝置。
(3)具體實施形態之揭示
圖37係本發明之第5實施形態之半導體裝置之模式剖面圖。
半導體裝置1E係應用有QFN(Quad Flat Non-leaded)之半導體裝置。半導體裝置1E包括:半導體晶片2E;晶片焊墊3E,其用以支持半導體晶片2E;複數條電極引線4E,其配置於半導體晶片2E之周圍;接線5E,其將半導體晶片2E與電極引線4E加以電性連接;以及樹脂封裝體6E,其將該等密封。
半導體晶片2E於俯視時為四角狀,其具有複數條佈線經由層間絕緣膜積層而成之多層佈線結構。關於半導體晶片2E之多層佈線結構,以下參照圖38及圖39進行詳細敍述。半導體晶片2E之厚度例如為220~240μm(較佳為230μm左右)。半導體晶片2E之表面21E(厚度方向其中一面)係由下述表面保護膜7E(參照圖38)覆蓋。
於半導體晶片2E之表面21E,多層佈線結構之佈線之一部分(下述第3佈線28E)自下述焊墊開口8E露出作為電極焊墊9E。
另一方面,於半導體晶片2E之背面22E(厚度方向另一面),形成有含有例如Au、Ni、Ag等之背面金屬10E。
晶片焊墊3E例如包含金屬薄板(例如,Cu、42合金(含有Fe-42% Ni之合金)),於俯視時為較半導體晶片2E更大之四角狀(例如,於俯視時為2.7mm見方左右)。又,晶片焊墊3E之厚度例如為190~210μm(較佳為200μm左右)。於晶片焊墊3E之表面31E(厚度方向其中一面),形成有含有Ag等之焊墊鍍層11E。
並且,半導體晶片2E與晶片焊墊3E係藉由在半導體晶片2E之背面22E與晶片焊墊3E之表面31E作為接合面彼此對向之狀態下,使接合材料12E介插於背面22E與表面31E之間,而彼此接合。藉此,半導體晶片2E係以將表面21E朝向上方之姿勢支持於晶片焊墊3E。
接合材料12E包含例如焊錫膏等導電膏。再者,作為接合材料12E,可應用例如銀膏、氧化鋁膏等絕緣膏,於此情形時,背面金屬10E及/或焊墊鍍層11E亦可省略。又,於半導體晶片2E與晶片焊墊3E已接合之狀態下,接合材料12E之厚度例如為10~20μm。
晶片焊墊3E之背面32E(厚度方向另一面)係自樹脂封裝體6E露出。於所露出之另一面,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層13E。
電極引線4E例如包含與晶片焊墊3E相同之金屬薄板(例如,Cu、42合金(含有Fe-42% Ni等))。電極引線4E係於與晶片焊墊3E之各側面正交之各方向上之兩側,配置於半導體晶片2E之周圍。與晶片焊墊3E之各側面相對向之電極引線4E係沿著與其相對向之側面平行之方向等間隔地配置。各電極引線4E之與晶片焊墊3E之對向方向上之長度例如為240~260μm(較佳為250μm左右)。於電極引線4E之表面41E(厚度方向其中一面),形成有含有Ag等之引線鍍層14E。
另一方面,電極引線4E之背面42E(厚度方向另一面)係自樹脂封裝體6E露出。於所露出之背面42E,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層15E。
接線5E包含銅(例如,為純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅等,有時含有微量之雜質)。接線5E包括呈線狀延伸之圓柱狀之本體部51E、以及形成於本體部51E之兩端且分別與電極焊墊9E及電極引線4E接合之焊墊接合部52E及引線接合部53E。
本體部51E係自電極焊墊9E側之一端向半導體晶片2E之外側呈朝上方凸起之抛物線狀彎曲,並於另一端以銳角向電極引線4E之表面41E入射。
引線接合部53E於剖視時為楔狀,其靠近本體部51E之一端側相對較厚,且隨著越接近遠離本體部51E之另一端側相對越薄。
並且,於該半導體裝置1E中,與上述第1實施形態同樣地,半導體晶片2E之整個表面21E及整個側面37E、晶片焊墊3E之整個表面31E及整個側面、電極引線4E之整個表面41E及樹脂封裝體6E內之整個側面、以及整個接線5E均由一體性之不透水絕緣膜36E被覆。
作為樹脂封裝體6E,可應用環氧樹脂等眾所周知之材料。樹脂封裝體6E形成半導體裝置1E之外形,形成為大致長方體狀。關於樹脂封裝體6E之大小,其平面尺寸例如為4mm見方左右,其厚度例如為0.60~0.70mm,較佳為0.65mm左右。
圖38係半導體晶片之主要部分剖面圖,即係圖37之由虛線圓包圍之部分之放大圖。圖39係圖38所示之電極焊墊之平面圖。
半導體晶片2E包括:半導體基板16E;第1~第3層間絕緣膜17E~19E,其依序積層於半導體基板16E上;第1~第3障壁層23E~25E,其形成於第1~第3層間絕緣膜17E~19E之各個表面;以及表面保護膜7E,其被覆半導體晶片2E之表面21E。
半導體基板16E例如包含矽。
第1~第3層間絕緣膜17E~19E例如包含氧化矽。於第1層間絕緣膜17E上,經由第1障壁層23E形成有第1佈線26E。又,於第2層間絕緣膜18E上,經由第2障壁層24E形成有第2佈線27E。又,於第3層間絕緣膜19E上,經由第3障壁層25E形成有第3佈線28E。
第1~第3佈線26E~28E包含較第1~第3障壁層23E~25E之材料更軟之金屬材料、具體而言含有Al(鋁)之金屬材料,具體而言包含以Al為 主成分之金屬材料(例如,Al-Cu合金等)。
第3佈線28E係由表面保護膜7E被覆,藉此形成於最上層之層間絕緣膜(第3層間絕緣膜19E)與表面保護膜7E之間。第3佈線28E於俯視時為四角形狀(例如,120μm×120μm之四角形狀)。又,第3佈線28E之厚度例如為5000Å以上,較佳為7000~28000Å。
於被覆第3佈線28E之表面保護膜7E,形成有用以使第3佈線28E露出作為電極焊墊9E之焊墊開口8E。
第2佈線27E係由第3層間絕緣膜19E被覆,藉此形成於第2層間絕緣膜18E與第3層間絕緣膜19E之間。第2佈線27E係由特定圖案形成。例如,由俯視時不重合於電極焊墊9E之圖案形成。又,第2佈線27E之厚度例如為3000~9000Å。
第1佈線26E係由第2層間絕緣膜18E被覆,藉此形成於第1層間絕緣膜17E與第2層間絕緣膜18E之間。第1佈線26E係由特定圖案形成。例如,於電極焊墊9E之正下方,第1佈線26E包括彼此平行地延伸之複數個直線部29E、以及將相鄰之直線部29E之一端部彼此及另一端部彼此交替關聯之關聯部30E,由彎折成大致S字狀之曲折圖案形成。藉此,一個電極焊墊9E(第3佈線28E)係與複數個直線部29E及夾持於第2層間絕緣膜18E中之直線部29E間之夾持部20E相對向。
相鄰之直線部29E彼此之間隔(直線部29E之間距W)例如全部相等,具體而言為2~10μm。又,第1佈線26E之厚度例如為3000~9000Å。
再者,第1~第3佈線26E~28E之圖案可按照半導體晶片2E之設計規則等而適當變更,並不限定於上述圖案。
第1~第3障壁層23E~25E包含例如鈦(Ti)、氮化鈦(TiN)、氮化鎢(WN)及該等之積層結構等。第1~第3障壁層23E~25E之厚度小於第1~第3佈線26E~28E之厚度,例如為500~2000Å。
與電極焊墊9E接合之接線5E之焊墊接合部52E於俯視時小於電極焊墊9E。焊墊接合部52E於剖視時為凸狀,其一體地包括厚度方向其中一側與電極焊墊9E之表面相接觸之圓板狀之基底部54E、以及自基底部54E之另一側突出且其前端與本體部51E之一端連接之吊鐘狀之突出部55E。
並且,於該半導體裝置1E中,於俯視時,重合於接線5E與電極焊墊9E之接合區域33E的第1佈線26E之面積(圖39之斜線部分之面積)係接合區域33E之面積S之26.8%以下,較佳為0~25%。
接合區域33E係焊墊接合部52E之基底部54E與電極焊墊9E之表面相接觸之於俯視時為圓形之區域,其面積S可使用基底部54E之直徑D,根據式子:S=π(D/2)2而求出。
如上所述,根據該半導體裝置1E,於俯視時,重合於接合區域33E之第1佈線26E之面積(第1佈線26E之重合面積)係接合區域33E之面積之26.8%以下,故而電極焊墊9E正下方之第2及第3障壁層24E、25E與第1佈線26E之對向面積相對減小。因此,例如於接線5E與電極焊墊9E之接合時,即使將第2及第3障壁層24E、25E按壓至第1佈線26E側,亦難以產生因該按壓所引起之第1佈線26E及第2及第3層間絕緣膜18E、19E之變形,從而可防止由於此類變形而引起應力集中於第2及第3障壁層24E、25E。其結果為,可防止第2及第3障壁層24E、25E中之龜裂產生,因此可提高半導體裝置1E之可靠性。
例如,於第1佈線26E之重合面積為接合區域33E之面積之0%之情形時,不論電極焊墊9E之厚度(第3佈線28E之厚度)如何,均可使半導體裝置1E之不合格率為0%(完全不產生龜裂)。
又,第1佈線26E包括彼此平行地延伸之複數個直線部29E,且該等係等間隔地配置。於此種構成中,複數個直線部29E(第1佈線26E)之重合面積係各直線部29E之重合面積之合計,該合計為接合區域 33E之面積之26.8%以下。因此,各直線部29E之重合面積均小於接合區域33E之面積之26.8%。
並且,一個電極焊墊9E(第3佈線28E)係與複數個直線部29E及夾持於第2層間絕緣膜18E中之直線部29E間之夾持部20E相對向。藉此,各者之重合面積小於接合區域33E之面積之26.8%的複數個直線部29E,相對於電極焊墊9E中之接合區域33E呈條紋狀分散而相對向。因此,當將第2及第3障壁層24E、25E按壓至第1佈線26E側時,可將因該按壓所引起之第1佈線26E及第2及第3層間絕緣膜18E、19E之變形量抑制得較小。其結果為,可抑制應力集中於第2及第3障壁層24E、25E中之特定部位。因此,可進一步防止第2及第3障壁層24E、25E中之龜裂產生。
以上,對本發明之第5實施形態進行了說明,但該第5實施形態亦可變更如下。
例如,較電極焊墊9E更下層之第1及第2佈線26E、27E之圖案係只要重合於接合區域33E的佈線之面積為接合區域33E之面積S之26.8%以下,即可適當變更。
例如,如圖40之第1變形例所示,第1佈線26E亦可由俯視時不與電極焊墊9E重合之圖案形成,第2佈線27E亦可包括彼此平行地延伸之複數個直線部34E、以及將相鄰之直線部34E之一端部彼此及另一端部彼此交替關聯之關聯部35E,且由彎折成大致S字狀之曲折圖案形成。
又,例如,如圖41之第2變形例所示,第1及第2佈線26E、27E之兩者亦可由曲折圖案形成。
又,於第1~第3層間絕緣膜17E~19E,亦可形成有分別與第1~第3佈線26E~28E電性連接之通道。
又,於上述實施形態中,係採用三層佈線結構之半導體裝置1E 作為一例,但半導體裝置之佈線結構亦可為雙層結構、四層結構、五層結構及五層以上之結構。
又,例如於上述實施形態中,係採用QFN類型之半導體裝置,但本發明亦可應用於SON(Small Outline Non-leaded)、QFP(Quad Flat Package)、SOP(Small Outline Package)等其他種類之封裝類型之半導體裝置。
又,於上述實施形態中,例示有接線5E由不透水絕緣膜36E被覆之態樣,但只要至少達成用以解決上述第5問題之第5目的,則亦可如圖42所示,不設置有不透水絕緣膜36E。
[實施例]
其次,關於該第5實施形態進行有實驗。再者,本發明並不受限於下述實施例。
<實施例1~3及比較例1~6>
關於各實施例及各比較例,於半導體基板上形成有圖43所示之多層佈線結構。於圖43中,以1st、2nd及3rd所表示之部分係依序積層於半導體基板上之包含氧化矽之層間絕緣膜。又,於上下相鄰之層間絕緣膜彼此之間分別介插有Ti/TiN障壁層。又,電極焊墊及佈線係使用鋁而形成。又,於所有各實施例及各比較例中,製作出電極焊墊為28000Å、15000Å及5000Å之3種。
繼而,對如上所述製作之多層佈線結構分別進行有以下測試。
首先,將線徑為25μm之銅接線由焊針保持,並於其前端部製作直徑為60μm之FAB。
其次,使保持有FAB之焊針移動至電極焊墊之正上方,並使其相對於電極焊墊一下子下降,使得FAB與電極焊墊碰撞。此時,對FAB施加130g之荷重及210mA之超聲波(120kHz)。藉此,使接線接合於電極焊墊。
關於各實施例及各比較例,對120個電極焊墊實施測試,統計出接合時障壁層中產生有龜裂之數量(不合格品數)。將結果示於表1。於表1中,所謂「佈線/接合區域(%)」,係指於俯視時,重合於接合區域之佈線之面積相對於接線與電極焊墊之接合區域之面積的比例。
<第6實施形態 圖44~圖55>
藉由該第6實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第6先前技術之第6問題。
(1)第6先前技術
半導體裝置包括形成有複數個電極焊墊之半導體晶片、以及以包圍半導體晶片之方式配置之複數條電極引線。各電極焊墊與各電極引線係藉由一條接線一對一地電性連接。並且,半導體晶片、電極引線及接線係以電極引線之一部分露出之方式,由樹脂密封(封裝)。
作為接線,先前主要係使用金導線,但為減少使用價格昂貴之金,近年來正在研究使用價格較金導線便宜之銅導線。
為藉由接線連接電極焊墊與電極引線,例如,首先藉由打線接合機識別半導體晶片上之電極焊墊之數量或配置圖案。
其次,藉由對由焊針所保持之導線之前端部施加能量,利用火花之熱熔融導線之前端部而形成FAB(Free Air Ball)。
繼而,使FAB與電極焊墊相接觸,藉由焊針對FAB施加荷重及超聲波,藉此FAB對應於焊針之前端形狀產生變形,從而形成1st接合部。
於1st接合後,焊針自電極焊墊向電極引線移動,藉此形成跨越焊墊與引線間之導線迴路。
繼而,使接線與電極引線相接觸,藉由焊針對接線施加荷重及超聲波,藉此接線對應於焊針之外表面形狀產生變形,接合於電極引線(形成針腳式接合及尾線接合)。
其後,焊針自電極引線上升,於自焊針之前端確保有一定長度之尾部之狀態下,自尾線接合之位置切斷接線。藉此,經針腳式接合之接線之另一端殘存於電極引線上,從而形成2nd接合部。經由以上步驟,實現一個電極焊墊與一條電極引線之連接。
繼而,依序連續重複包含上述形成FAB之步驟、形成1st接合部之步驟及形成2nd接合部之步驟(切斷導線之步驟)的週期,藉此連接所有焊墊與引線之間。
(2)第6問題
關於銅導線之FAB之大小(FAB直徑),於連續實施上述週期之期間(第2週期以後),自火花或加熱器所受到之熱在每個週期均為穩定,故而於所有週期中成為大致固定之大小。
另一方面,於電極焊墊之識別後之第1週期中,於電極焊墊之識別時,銅導線受到組成氣體(forming gas)(用以抑制銅氧化之氣體)等之影響而冷卻,並且遠離加熱器,故而周圍之溫度環境並不穩定,從 而形成較第2週期以後之FAB直徑更小之FAB。
因此,產生如下不良情況,即,只有第1週期所接合之接線之1st接合部之直徑或厚度小於其他接線之1st接合部之直徑或厚度。
與此相對,可考慮於電極焊墊之識別前而非電極焊墊之識別後,於銅導線周圍之溫度環境穩定之期間預先製作第1週期之FAB。例如,於連續實施相對於複數個半導體晶片之打線接合之情形時,只要為前一個打線接合之最終週期結束後緊接著,銅導線周圍之溫度環境便相對穩定。
然而,於預先製作FAB之方法中,FAB之形成至FAB之接合並非藉由一連串步驟而實施,故而直至FAB之接合為止有空閒時間。因此,有可能導致已預先製作之FAB產生氧化,從而於電極焊墊與接線之間產生連接不良。
亦即,該第6實施形態之發明之第6目的在於提供一種藉由使用含銅之接線,而可實現低成本,進而抑制金屬球之大小之偏差,並且抑制接線與複數個接合對象物之連接不良的半導體裝置及其製造方法。
(3)具體實施形態之揭示
圖44係本發明之第6實施形態之半導體裝置之模式剖面圖。圖45係已去除樹脂封裝體之圖44之半導體裝置之平面分解圖。
半導體裝置1F係應用有SON(Small Outline Non-leaded)之半導體裝置。半導體裝置1F包括:半導體晶片2F;晶片焊墊3F,其用以支持半導體晶片2F;複數條電極引線4F,其配置於半導體晶片2F之周圍;接線5F,其將半導體晶片2F與電極引線4F加以電性連接;以及樹脂封裝體6F,其將該等密封。
半導體晶片2F於俯視時為四角狀,例如具有複數個佈線層經由層間絕緣膜積層而成之多層佈線結構。又,半導體晶片2F之厚度例如 為220~240μm(較佳為230μm左右)。半導體晶片2F之表面21F(厚度方向其中一面)係由表面保護膜7F覆蓋。以下,為方便說明,於沿著半導體晶片2F之表面21F之複數個方向中,將彼此正交之任意兩個方向設為X方向及Y方向,進而將與該等方向之兩者正交之方向(亦即,與表面21F垂直之方向)設為Z方向,對本實施形態進行說明。
於表面保護膜7F形成有複數個用以使多層佈線結構中之最上面之佈線層露出之焊墊開口8F。
焊墊開口8F於俯視時為四角狀,於半導體晶片2F中彼此對向之一對緣部各設置有相同數量。各焊墊開口8F係沿著該緣部等間隔地配置。並且,佈線層之一部分自各焊墊開口8F露出作為半導體晶片2F之電極焊墊9F(接合對象物)。
作為電極焊墊9F而露出之最上面之佈線層例如包括含有Al(鋁)之金屬材料,具體而言包含以Al為主成分之金屬材料(例如,Al-Cu合金等)。
另一方面,於半導體晶片2F之背面22F(厚度方向另一面),形成有含有例如Au、Ni、Ag等之背面金屬10F。
晶片焊墊3F例如包含金屬薄板(例如,Cu、42合金(含有Fe-42% Ni之合金)),於俯視時為較半導體晶片2F更大之四角狀(例如,於俯視時為2.7mm見方左右)。又,晶片焊墊3F之厚度例如為190~210μm(較佳為200μm左右)。於晶片焊墊3F之表面31F(厚度方向其中一面),形成有含有Ag等之焊墊鍍層11F。
並且,半導體晶片2F與晶片焊墊3F係藉由在半導體晶片2F之背面22F與晶片焊墊3F之表面31F作為接合面彼此對向之狀態下,使接合材料12F介插於背面22F與表面31F之間,而彼此接合。藉此,半導體晶片2F係以將表面21F朝向上方之姿勢支持於晶片焊墊3F。
接合材料12F包含例如焊錫膏等導電膏。再者,作為接合材料 12F,可應用例如銀膏、氧化鋁膏等絕緣膏,於此情形時,背面金屬10F及/或焊墊鍍層11F亦可省略。又,於半導體晶片2F與晶片焊墊3F已接合之狀態下,接合材料12F之厚度例如為10~20μm。
晶片焊墊3F之背面32F(厚度方向另一面)係自樹脂封裝體6F露出。於所露出之另一面,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層13F。
電極引線4F例如包含與晶片焊墊3F相同之金屬薄板(例如,Cu、42合金(含有Fe-42% Ni等))。電極引線4F係於與晶片焊墊3F之4個側面中配置有電極焊墊9F之側之2個側面正交之方向上之兩側,分別各設置有相同數量,藉此配置於半導體晶片2F之周圍。與晶片焊墊3F之各側面相對向之電極引線4F係沿著與其相對向之側面平行之方向等間隔地配置。各電極引線4F之與晶片焊墊3F之對向方向上之長度例如為450~550μm(較佳為500μm左右)。於電極引線4F之表面41F(厚度方向其中一面),形成有含有Ag等之引線鍍層14F。
另一方面,電極引線4F之背面42F(厚度方向另一面)係自樹脂封裝體6F露出。於所露出之背面42F,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層15F。
接線5F包含銅(例如,為純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅等,有時含有微量之雜質)。接線5F設置為與電極焊墊9F及電極引線4F相同數量,以將各電極焊墊9F與各電極引線4F一對一地電性連接。
各接線5F包括呈線狀延伸之圓柱狀之本體部51F、以及形成於本體部51F之兩端且分別與電極焊墊9F及電極引線4F接合之焊墊接合部52F及引線接合部53F。
本體部51F係自電極焊墊9F側之一端向半導體晶片2F之外側呈朝上方凸起之抛物線狀彎曲,並於另一端以銳角向電極引線4F之表面 41F入射。
引線接合部53F於剖視時為楔狀,其靠近本體部51F之一端側相對較厚,且隨著越接近遠離本體部51F之另一端側相對越薄。
並且,於該半導體裝置1F中,與上述第1實施形態同樣地,半導體晶片2F之整個表面21F及整個側面28F、晶片焊墊3F之整個表面31F及整個側面、電極引線4F之整個表面41F及樹脂封裝體6F內之整個側面、以及整個接線5F均由一體性之不透水絕緣膜25F被覆。
作為樹脂封裝體6F,可應用環氧樹脂等眾所周知之材料。樹脂封裝體6F形成半導體裝置1F之外形,形成為大致長方體狀。關於樹脂封裝體6F之大小,其平面尺寸例如為4mm見方左右,其厚度例如為0.80~0.90mm,較佳為0.85mm左右。
圖46係半導體晶片之主要部分剖面圖,即係圖44之由虛線圓包圍之部分之放大圖。圖47係圖46所示之電極焊墊之放大平面圖。
焊墊接合部52F於俯視時小於電極焊墊9F。焊墊接合部52F於剖視時為凸狀,其一體地包括厚度方向其中一側與電極焊墊9F之表面相接觸之大致圓板狀之基底部54F、以及自基底部54F之另一側突出且其前端與本體部51F之一端連接之吊鐘狀之突出部55F。
基底部54F係以其側面56F較與電極焊墊9F相接觸之俯視時為大致圓形之另一面(基底部54F之背面57F)之外周更向直徑方向外側凸起之方式彎曲。作為接線5F與電極焊墊9F之接合部分的基底部54F中最凸出之部分的直徑(基底部54F之直徑)係分別於X方向及Y方向上大致相同,例如X方向之直徑Dx及Y方向之直徑Dy為70~80μm。又,基底部54F之厚度Tz(Z方向上之高度)例如為15~20μm。
並且,於該半導體裝置1F中,當將各基底部54F之體積設為V時,各基底部54F之體積V相對於所有基底部54F之體積V之平均AVE的偏差為±15%以內,較佳為±10%以內。具體而言,平均AVE與體積 V之差之絕對值相對於平均AVE之比率(亦即,(平均AVE-體積V)/平均AVE×100(%))為15(%)以下。
基底部54F之體積V係例如由基底部54F之直徑Dx、Dy及基底部54F之厚度Tz之乘積(亦即,V=Dx×Dy×Tz)來表示。再者,基底部54F之體積V可將基底部54F概念性地設為直徑Dx或者Dy、高度Tz之圓柱,根據該圓柱之體積求出近似值。因此,亦可表達為V=π(Dx/2)2‧Tz。
又,本體部51F之直徑Dw(接線5F之直徑)例如為28~38μm。
圖48A~圖48E係表示圖44所示之半導體裝置之製造步驟之模式剖面圖。
為製造上述半導體裝置1F,例如,首先準備包含複數個單元之引線框架20F,該單元一體地包括晶片焊墊3F及電極引線4F。再者,於圖48A~圖48E中,省略引線框架20F之整體圖,僅表示搭載1個半導體晶片2F所需之1個單元份之晶片焊墊3F及電極引線4F。
其次,利用鍍敷法,對引線框架20F之表面實施Ag等之金屬鍍敷。藉此,同時形成焊墊鍍層11F及引線鍍層14F。
再次,如圖48A所示,經由接合材料12F,於引線框架20F上之所有晶片焊墊3F晶片接合半導體晶片2F。
繼而,藉由包含焊針23F之打線接合機(未圖示),對複數個半導體晶片2F,一個個地依序進行打線接合。
打線接合機中所包含之焊針23F為中心形成有供接線5F插通之直孔17F之大致圓筒狀,於打線接合時,自直孔17F之前端送出接線5F。
於焊針23F之前端部,形成有與直孔17F之長度方向大致垂直且於俯視時為與直孔17F同心之圓環狀之外表面部18F、以及自外表面部18F沿著直孔17F之長度方向凹陷之倒角部19F。
倒角部19F之側面16F係形成為將外表面部18F之內周圓與直孔17F之周面連接之圓錐面狀。因此,側面16F於剖視時為直線狀,於該實施形態中,其頂角(倒角角度)例如設為90°。
繼而,於各半導體晶片2F之打線接合時,依序重複進行於接線5F之前端部(一端部)形成FAB(Free Air Ball)之步驟(FAB形成步驟)、將FAB接合於電極焊墊9F之步驟(1st接合步驟)、將自FAB延伸之接線5F接合於電極引線4F之步驟(2nd接合步驟)、以及自焊針23F割斷接線5F之步驟(切斷步驟)。
首先,藉由打線接合機識別進行初次進行打線接合之半導體晶片2F之電極焊墊9F之數量或配置圖案(識別步驟)。
其次,開始第1週期之FAB步驟。具體而言,藉由對由焊針23F所保持之接線5F之前端部(一端部)施加電流,於前端部形成球狀之FAB24F。施加電流I1係根據作為目標之FAB24F之直徑Df而設定。例如,於Dw=25μm時,I1=40mA,於Dw=30μm時,I1=60mA,於Dw=38μm時,I1=120mA。電流I1之施加時間t1係根據作為目標之FAB24F之直徑Df而設定。例如,於Dw=25μm時,t1=720μsec,於Dw=30μm時,t1=830μsec,於Dw=38μm時,t1=960μsec。
於第1週期之FAB步驟中,由施加電流I1乘以施加時間t1所得之值(I1×t1)所表示之能量係作為用以形成FAB24F之第1能量E1施加至接線5F。
再者,供給至打線接合機(未圖示)之組成氣體之流量係根據作為目標之FAB24F之直徑Df而設定為適當之大小。所謂組成氣體,係指用以抑制接線5F之氧化之氣體,包含例如N2、H2
其次,如圖48B所示,焊針23F移動至電極焊墊9F之正上方後下降,FAB24F與電極焊墊9F相接觸。此時,自焊針23F對FAB24F施加荷重(圖48B之中空箭頭)及超聲波(圖48B之鋸齒狀線)。施加荷重及施 加超聲波係根據本體部51F之線徑Dw、作為目標之基底部54F之直徑(Dx及Dy)及厚度(Tz)而設定為適當之大小。
藉此,FAB24F之一部分擴散至外表面部18F之下方而形成基底部54F,並且FAB24F之剩餘部分被按入至直孔17F內且殘存於倒角部19F內而形成突出部55F。如此,接線5F之一端部作為焊墊接合部52F接合於電極焊墊9F,從而形成1st接合。
於1st接合後,焊針23F上升至一定高度,並向電極引線4F之正上方移動。繼而,如圖48C所示,焊針23F再次下降,接線5F與電極引線4F相接觸。此時,自焊針23F對接線5F施加荷重(圖48C之中空箭頭)及超聲波(圖48C之鋸齒狀線),藉此接線5F對應於焊針23F之外表面部18F之形狀產生變形,接合於電極引線4F(形成針腳式接合26F及尾線接合27F),從而形成作為2nd接合之引線接合部53F。
繼而,如圖48D所示,焊針23F上升,於自焊針23F之前端確保有一定長度之尾部之狀態下,自尾線接合27F之位置扯斷接線5F。
其後,如圖48E所示,依序重複進行第2週期以後之FAB形成步驟(圖48A)、1st接合步驟(圖48B)、2nd接合步驟(圖48C)及切斷步驟(圖48D),將第一個半導體晶片2F之所有電極焊墊9F與電極引線4F藉由接線5F加以連接。
於第2週期以後之FAB形成步驟中,用以形成FAB24F之第2能量E2係以例如第1週期之第1能量E1成為第2能量E2之105~115%、較佳為成為108~112%之方式設定。例如,於Dw=25μm時,對接線5F之前端部(一端部)施加之施加電流I2=40mA、施加時間t2=792μsec,於Dw=30μm時,I2=60mA、施加時間t2=913μsec,於Dw=38μm時,I2=120mA、施加時間t2=1056μsec。
又,供給至打線接合機(未圖示)之組成氣體之流量係設定為例如與第1週期中之組成氣體之流量相同之大小。
繼而,相對於第一個半導體晶片2F之打線接合結束後,藉由打線接合機識別第二個半導體晶片2F之電極焊墊9F之數量或配置圖案(識別步驟)。其次,與第一個半導體晶片2F之情形同樣地,依序重複進行複數次(複數週期)FAB形成步驟(圖48A)、1st接合步驟(圖48B)、2nd接合步驟(圖48C)及切斷步驟(圖48D),藉此將第二個半導體晶片2F之所有電極焊墊9F與電極引線4F藉由接線5F加以連接。
其後,對剩餘之複數個半導體晶片2F(第三個以後之半導體晶片2F),分別進行識別步驟、以及重複複數次FAB形成步驟、1st接合步驟、2nd接合步驟及切斷步驟之打線接合。
於引線框架20F上之所有半導體晶片2F之打線接合結束後,利用與圖4D相同之方法,形成不透水絕緣膜25F。於不透水絕緣膜25F之形成後,將引線框架20F安放於成形模具,利用樹脂封裝體6F將所有半導體晶片2F與引線框架20F一併統一密封。繼而,於自樹脂封裝體6F露出之晶片焊墊3F之背面32F及電極引線4F之背面42F形成焊錫鍍層13F、15F。最後,使用切割機,將引線框架20F與樹脂封裝體6F一併切斷成各半導體裝置1F之尺寸,藉此獲得圖44所示之半導體裝置1F之單片。
如上所述,根據上述方法,於各半導體晶片2F之打線接合時,使第1週期之FAB形成步驟時對接線5F施加之第1能量E1(施加電流I1×施加時間t1)高於第2週期以後之FAB形成步驟時對接線5F施加之第2能量E2(施加電流I2×施加時間t2)。例如,將I1設定為與I2相同之值,而使t1長於t2。因此,於第1週期,可使接線5F之周圍之溫度環境穩定化。其結果為,於第1週期可形成相對較大之FAB24F。
因此,例如以施加時間t1成為施加時間t2之105~115%之方式調整打線接合機之輸出,藉此可使第1週期之FAB24F之直徑Df與第2週期以後之FAB24F之直徑Df大致相同。其結果為,可經過所有週期而抑 制FAB24F之直徑Df之偏差。
又,關於各半導體晶片2F,於識別步驟結束之後,以一連串步驟實施複數次FAB形成步驟、1st接合步驟、2nd接合步驟及切斷步驟,藉此進行打線接合。因此,各週期中所製作之FAB24F會迅速接合於電極焊墊9F而無需放置片刻。因此,可抑制FAB24F之氧化,故而可抑制接線與電極焊墊9F之連接不良。
以上,對本發明之第6實施形態進行了說明,但該第6實施形態亦可變更如下。
例如,於上述實施形態中,僅係採用FAB24F之接合對象物為電極焊墊9F之情況,但FAB24F之接合對象物例如亦可為電極引線4F,並且亦可為形成於電極焊墊9F或電極引線4F等上之柱形凸塊。
又,例如於上述實施形態中,係採用SON類型之半導體裝置,但本發明亦可應用於QFN(Quad Flat Non-leaded)、QFP(Quad Flat Package)、SOP(Small Outline Package)等其他種類之封裝類型之半導體裝置。
又,於上述實施形態中,例示有接線5F由不透水絕緣膜25F被覆之態樣,但只要至少達成用以解決上述第6問題之第6目的,則亦可如圖49所示,不設置有不透水絕緣膜25F。
[實施例]
其次,關於該第6實施形態進行有實驗。再者,本發明並不受限於下述實施例。
<實施例1>
於包括144條電極引線之引線框架之晶片焊墊上,晶片接合有包括144個電極焊墊之半導體晶片。
其次,將線徑為30μm之銅接線由焊針保持,一面以0.3L/min供給組成氣體,一面以913μsec(t1)對導線之前端部施加60mA之電流 I1,藉此製作出FAB(FAB形成步驟)。
其次,使保持有FAB之焊針向電極焊墊之正上方移動,並使其相對於電極焊墊一下子下降,使得FAB與電極焊墊碰撞。此時,對FAB施加荷重及超聲波。藉此,使接線作為焊墊接合部接合於電極焊墊(1st接合步驟)。
其次,使焊針上升而移動至電極引線之正上方後,使焊針相對於電極引線一下子下降,藉此使得接線與電極焊墊碰撞。此時,對接線施加荷重及超聲波。藉此,於接線形成針腳式接合及尾線接合,而接合於電極引線(2nd接合步驟)。
其次,使焊針上升,於自焊針之前端確保有一定長度之尾部之狀態下,自尾線接合之位置切斷接線(切斷步驟)。
然後,連續重複14次包含上述FAB形成步驟、1st接合步驟、2nd接合步驟及切斷步驟之週期,藉此將15個電極焊墊與15條電極引線藉由接線一對一地連接。
再者,於第2~第15週期之FAB形成步驟中,藉由以830μsec(t2)對接線之前端部施加60mA之電流I2,而製作出FAB。亦即,於第1週期中,將該施加時間t1設為第2週期之施加時間t2之110%(913(t1)=830(t2)×1.1),藉此對接線施加第2週期之第2能量E2之1.1倍之第1能量E1而形成FAB。
測定如上所述形成之各焊墊接合部之基底部之直徑Dx、Dy(X及Y方向之直徑)及基底部之厚度Tz(Z方向之高度)。將所測定之Dx、Dy及Tz之值示於下述表2。又,根據Dx、Dy及Tz,計算各基底部之體積V對所有基底部之體積V之平均的偏差。將結果示於表2。
又,將基底部之直徑Dx及Dy之分佈示於圖50(a)。又,將基底部之厚度Tz之分佈示於圖50(b)。再者,X及Y方向係沿著半導體晶片之表面之複數個方向中彼此正交之任意兩個方向,Z方向係與X及Y方向 之兩者正交之方向(亦即,與半導體晶片之表面垂直之方向)。又,於圖50(a)及圖50(b)中,由◆表示之標繪(plot)係於第1週期形成之基底部之直徑或厚度,由◇表示之標繪係於第2週期以後形成之基底部之直徑或厚度。
並且,計算第2週期以後之基底部之Dx、Dy及Tz之平均值,結果為直徑Dx:73.9μm、直徑Dy:75.2μm、厚度Tz:14.9μm。與此相對,第1週期之基底部之Dx、Dy及Tz為直徑Dx:74.1μm、直徑Dy:75.1μm、厚度Tz:15.0μm。
<比較例1>
將第1週期之FAB形成步驟中之施加電流I1與第2週期以後之FAB形成步驟中之施加電流I2設為相同,除此以外,使用與實施例1相同之半導體晶片及引線框架,藉由與實施例1相同之順序及相同之條件進行打線接合。
測定如上所述形成之各焊墊接合部之基底部之直徑Dx、Dy(X及Y方向之直徑)及基底部之厚度Tz(Z方向之高度)。將所測定之Dx、Dy及Tz之值示於下述表5。又,根據Dx、Dy及Tz,計算各基底部之體積V相對於所有基底部之體積V之平均的偏差。將結果示於表5。
又,將基底部之直徑Dx及Dy之分佈示於圖50(a)。又,將基底部之厚度Tz之分佈示於圖50(b)。於圖50(a)及圖50(b)中,由■表示之標繪係於第1週期所形成之基底部之直徑或厚度,於第2週期所形成之基底部之直徑及厚度係與實施例1相同。
並且,第1週期之基底部之Dx、Dy及Tz為直徑Dx:71.0μm、直徑Dy:71.5μm、厚度Tz:13.5μm,從而確認到小於實施例1中之第1週期之基底部之直徑及厚度。
<實施例2>
使用包括48條電極引線之引線框架及包括48個電極焊墊之半導 體晶片,除此以外,藉由與實施例1相同之順序及相同之條件進行打線接合。
測定如上所述形成之各焊墊接合部之基底部之直徑Dx、Dy(X及Y方向之直徑)及基底部之厚度Tz(Z方向之高度)。將所測定之Dx、Dy及Tz之值示於下述表2。又,根據Dx、Dy及Tz,計算各基底部之體積V相對於所有基底部之體積V之平均的偏差。將結果示於表2。
又,將基底部之直徑Dx及Dy之分佈示於圖51(a)。又,將基底部之厚度Tz之分佈示於圖51(b)。於圖51(a)及圖51(b)中,由◆表示之標繪係於第1週期所形成之基底部之直徑或厚度,由◇表示之標繪係於第2週期以後所形成之基底部之直徑或厚度。
並且,計算第2週期以後之基底部之Dx、Dy及Tz之平均值,結果為直徑Dx:75.0μm、直徑Dy:76.8μm、厚度Tz:16.7μm。與此相對,第1週期之基底部之Dx、Dy及Tz為直徑Dx:75.2μm、直徑Dy:77.1μm、厚度Tz:16.9μm。
<比較例2>
將第1週期之FAB形成步驟中之施加時間t1與第2週期以後之FAB形成步驟中之施加時間t2設為相同,除此以外,使用與實施例2相同之半導體晶片及引線框架,藉由與實施例2相同之順序及相同之條件進行打線接合。
測定如上所述形成之各焊墊接合部之基底部之直徑Dx、Dy(X及Y方向之直徑)及基底部之厚度Tz(Z方向之高度)。將所測定之Dx、Dy及Tz之值示於下述表5。又,根據Dx、Dy及Tz,計算各基底部之體積V相對於所有基底部之體積V之平均的偏差。將結果示於表5。
又,將基底部之直徑Dx及Dy之分佈示於圖51(a)。又,將基底部之厚度Tz之分佈示於圖51(b)。於圖51(a)及圖51(b)中,由■表示之標繪係於第1週期所形成之基底部之直徑或厚度,於第2週期所形成之基 底部之直徑及厚度係與實施例2相同。
並且,第1週期之基底部之Dx、Dy及Tz為直徑Dx:72.0μm、直徑Dy:72.5μm、厚度Tz:14.0μm,從而確認到小於實施例2中之第1週期之基底部之直徑及厚度。
<實施例3>
使用包括44條電極引線之引線框架及包括44個電極焊墊之半導體晶片,除此以外,藉由與實施例1相同之順序及相同之條件進行打線接合。
測定如上所述形成之各焊墊接合部之基底部之直徑Dx、Dy(X及Y方向之直徑)及基底部之厚度Tz(Z方向之高度)。將所測定之Dx、Dy及Tz之值示於下述表3。又,根據Dx、Dy及Tz,計算各基底部之體積V相對於所有基底部之體積V之平均的偏差。將結果示於表3。
又,將基底部之直徑Dx及Dy之分佈示於圖5z(a)。又,將基底部之厚度Tz之分佈示於圖52(b)。於圖52(a)及圖52(b)中,由◆表示之標繪係於第1週期所形成之基底部之直徑或厚度,由◇表示之標繪係於第2週期以後所形成之基底部之直徑或厚度。
並且,計算第2週期以後之基底部之Dx、Dy及Tz之平均值,結果為直徑Dx:74.7μm、直徑Dy:77.3μm、厚度Tz:16.5μm。與此相對,第1週期之基底部之Dx、Dy及Tz為直徑Dx:74.9μm、直徑Dy:77.6μm、厚度Tz:16.7μm。
<比較例3>
將第1週期之FAB形成步驟中之施加時間t1與第2週期以後之FAB形成步驟中之施加時間t2設為相同,除此以外,使用與實施例3相同之半導體晶片及引線框架,藉由與實施例3相同之順序及相同之條件進行打線接合。
測定如上所述形成之各焊墊接合部之基底部之直徑Dx、Dy(X及 Y方向之直徑)及基底部之厚度Tz(Z方向之高度)。將所測定之Dx、Dy及Tz之值示於下述表6。又,根據Dx、Dy及Tz,計算各基底部之體積V相對於所有基底部之體積V之平均的偏差。將結果示於表6。
又,將基底部之直徑Dx及Dy之分佈示於圖52(a)。又,將基底部之厚度Tz之分佈示於圖52(b)。於圖52(a)及圖52(b)中,由■表示之標繪係於第1週期所形成之基底部之直徑或厚度,於第2週期所形成之基底部之直徑及厚度係與實施例3相同。
並且,第1週期之基底部之Dx、Dy及Tz為直徑Dx:71.0μm、直徑Dy:73.0μm、厚度Tz:13.5μm,從而確認到小於實施例3中之第1週期之基底部之直徑及厚度。
<實施例4>
使用包括20條電極引線之引線框架及包括20個電極焊墊之半導體晶片,除此以外,藉由與實施例1相同之順序及相同之條件進行打線接合。
測定如上所述形成之各焊墊接合部之基底部之直徑Dx、Dy(X及Y方向之直徑)及基底部之厚度Tz(Z方向之高度)。將所測定之Dx、Dy及Tz之值示於下述表3。又,根據Dx、Dy及Tz,計算各基底部之體積V相對於所有基底部之體積V之平均的偏差。將結果示於表3。
又,將基底部之直徑Dx及Dy之分佈示於圖53(a)。又,將基底部之厚度Tz之分佈示於圖53(b)。於圖53(a)及圖53(b)中,由◆表示之標繪係於第1週期所形成之基底部之直徑或厚度,由◇表示之標繪係於第2週期以後所形成之基底部之直徑或厚度。
並且,計算第2週期以後之基底部之Dx、Dy及Tz之平均值,結果為直徑Dx:75.2μm、直徑Dy:77.7μm、厚度Tz:17.6μm。與此相對,第1週期之基底部之Dx、Dy及Tz為直徑Dx:75.3μm、直徑Dy:77.9μm、厚度Tz:17.8μm。
<比較例4>
將第1週期之FAB形成步驟中之施加時間t1與第2週期以後之FAB形成步驟中之施加時間t2設為相同,除此以外,使用與實施例4相同之半導體晶片及引線框架,藉由與實施例4相同之順序及相同之條件進行打線接合。
測定如上所述形成之各焊墊接合部之基底部之直徑Dx、Dy(X及Y方向之直徑)及基底部之厚度Tz(Z方向之高度)。將所測定之Dx、Dy及Tz之值示於下述表6。又,根據Dx、Dy及Tz,計算各基底部之體積V相對於所有基底部之體積V之平均的偏差。將結果示於表6。
又,將基底部之直徑Dx及Dy之分佈示於圖53(a)。又,將基底部之厚度Tz之分佈示於圖53(b)。於圖53(a)及圖53(b)中,由■表示之標繪係於第1週期所形成之基底部之直徑或厚度,於第2週期所形成之基底部之直徑及厚度係與實施例4相同。
並且,第1週期之基底部之Dx、Dy及Tz為直徑Dx:73.5μm、直徑Dy:75.0μm、厚度Tz:14.5μm,從而確認到小於實施例4中之第1週期之基底部之直徑及厚度。
<實施例5>
使用包括20條電極引線之引線框架及包括20個電極焊墊之半導體晶片(與實施例4不同之晶片),除此以外,藉由與實施例1相同之順序及相同之條件進行打線接合。
測定如上所述形成之各焊墊接合部之基底部之直徑Dx、Dy(X及Y方向之直徑)及基底部之厚度Tz(Z方向之高度)。將所測定之Dx、Dy及Tz之值示於下述表4。又,根據Dx、Dy及Tz,計算各基底部之體積V相對於所有基底部之體積V之平均的偏差。將結果示於表4。
又,將基底部之直徑Dx及Dy之分佈示於圖54(a)。又,將基底部之厚度Tz之分佈示於圖54(b)。於圖54(a)及圖54(b)中,由◆表示之標 繪係於第1週期所形成之基底部之直徑或厚度,由◇表示之標繪係於第2週期以後所形成之基底部之直徑或厚度。
並且,計算第2週期以後之基底部之Dx、Dy及Tz之平均值,結果為直徑Dx:76.1μm、直徑Dy:77.8μm、厚度Tz:17.7μm。與此相對,第1週期之基底部之Dx、Dy及Tz為直徑Dx:76.4μm、直徑Dy:78.0μm、厚度Tz:17.9μm。
<比較例5>
將第1週期之FAB形成步驟中之施加時間t1與第2週期以後之FAB形成步驟中之施加時間t2設為相同,除此以外,使用與實施例5相同之半導體晶片及引線框架,藉由與實施例5相同之順序及相同之條件進行打線接合。
測定如上所述形成之各焊墊接合部之基底部之直徑Dx、Dy(X及Y方向之直徑)及基底部之厚度Tz(Z方向之高度)。將所測定之Dx、Dy及Tz之值示於下述表7。又,根據Dx、Dy及Tz,計算各基底部之體積相對於所有基底部之體積之平均的偏差。將結果示於表7。
又,將基底部之直徑Dx及Dy之分佈示於圖54(a)。又,將基底部之厚度Tz之分佈示於圖54(b)。於圖54(a)及圖54(b)中,由■表示之標繪係於第1週期所形成之基底部之直徑或厚度,於第2週期所形成之基底部之直徑及厚度係與實施例5相同。
並且,第1週期之基底部之Dx、Dy及Tz為直徑Dx:72.0μm、直徑Dy:74.5μm、厚度Tz:15.5μm,從而確認到小於實施例5中之第1週期之基底部之直徑及厚度。
<實施例6~9及比較例6>
使用包括44條電極引線之引線框架及包括44個電極焊墊之半導體晶片,除此以外,藉由與實施例1相同之順序及相同之條件進行打 線接合。再者,實施例6~9及比較例6中之第1週期之FAB形成步驟中之施加能量E1與第2週期以後之FAB形成步驟中之施加能量E2之關係如下。
實施例6:E1=E2×104(%)/100
實施例7:E1=E2×108(%)/100
實施例8:E1=E2×112(%)/100
實施例9:E1=E2×116(%)/100
比較例6:E1=E2×100(%)/100
將實施例6~9及比較例6中之於第1週期所形成之基底部之X及Y方向之直徑、以及於第2週期以後所形成之基底部之X及Y方向之直徑示於圖55。再者,關於第2週期以後之基底部之直徑,係表示平均值。
實施例6~9及比較例6中之基底部之直徑如下。
實施例6 X方向Dx:73.0μm Y方向Dy:75.0μm
實施例7 X方向Dx:75.8μm Y方向Dy:76.8μm
實施例8 X方向Dx:75.4μm Y方向Dy:78.0μm
實施例9 X方向Dx:76.5μm Y方向Dy:79.1μm
比較例6 X方向Dx:72.2μm Y方向Dy:73.4μm
第2週期以後(實施例6~9及比較例6共同)
X方向Dx:75.2μm Y方向Dy:77.1μm
根據以上說明,於實施例6~9中,第1週期之基底部之直徑在X或Y方向上均處於第2週期以後之基底部之直徑之±1μm以內之範圍內。另一方面,於比較例6中,第1週期之基底部之直徑在X或Y方向上均為第2週期以後之基底部之直徑之±1.5μm以上。
<第7實施形態 圖56~圖68>
藉由該第7實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第7先前技術之第7問題。
(1)第7先前技術
於典型之半導體裝置中,係將半導體晶片配置於晶片焊墊上,藉由含有Au(金)之導線連接半導體晶片與配置於晶片焊墊之周圍之引線。具體而言,於半導體晶片之表面配置有含有Al(鋁)之焊墊。並且,含有Au之導線描繪著弓狀之迴路而架設於該焊墊之表面與引線之表面之間。
於導線之架設時(打線接合時),於由打線接合機之焊針所保持之導線之前端形成有FAB(Free Air Ball),該FAB抵接至焊墊之表面。此時,藉由焊針以特定之荷重將FAB向焊墊按壓,並且向設置於焊針之超聲波振動子供給特定之驅動電流,從而對FAB賦予超聲波振動。其結果為,將FAB一面與焊墊之表面發生摩擦一面按壓至焊墊之表面,從而實現導線與焊墊之表面之接合。其後,焊針朝向引線移動。繼而,將導線按壓至引線之表面,一面對導線賦予超聲波振動,一面扯斷導線。藉此,於焊墊之表面與引線之表面之間架設導線。
焊針有標準型焊針與瓶頸型焊針,其中,該標準型焊針係於FAB與焊墊之接合時與焊墊相對向之面即外表面之外徑(T尺寸)相對較大,且連接於外表面之側面與焊針之中心軸線所形成之角度相對較大,該瓶頸型焊針係外表面之外徑相對較小,且連接於外表面之側面與焊針之中心軸線所形成之角度相對較小。
(2)第7問題
最近,市場上半導體裝置之價格競爭愈演愈烈,業界要求進一步降低半導體裝置之成本。作為成本降低對策之一,正在研究用包含價格便宜之Cu(銅)之導線(銅導線)代替包含價格昂貴之Au之導線(金導線)。
然而,形成於銅導線之前端之FAB較形成於金導線之前端之FAB更硬而難以變形,故而與形成於金導線之前端之FAB相比,難以設定 可實現對焊墊之良好接合的條件。
於形成於金導線之前端之FAB中,只要其尺寸相同,則無論用於打線接合之焊針為標準型焊針還是為瓶頸型焊針,均會以相同大小之荷重及超聲波振動子之驅動電流良好地接合於焊墊。然而,於形成於銅導線之前端之FAB中,即使於用於打線接合之焊針為標準型焊針之情形時,可實現對焊墊之良好接合之荷重及超聲波振動子之驅動電流為已知,當焊針變更為瓶頸型時,亦無法以該大小之荷重及超聲波振動子之驅動電流實現對焊墊之良好接合。
亦即,該第7實施形態之發明之第7目的在於提供一種即使用於打線接合之焊針自標準型焊針變更為瓶頸型焊針,亦可簡單地設定施加至FAB之荷重及設置於焊針之超聲波振動子之驅動電流之大小,從而可實現銅導線與焊墊之良好接合的打線接合方法。
(3)具體實施形態之揭示
圖56係本發明之第7實施形態之半導體裝置之模式性剖面圖。圖57係圖56所示之半導體裝置之模式性底視圖。
半導體裝置1G係應用有QFN(Quad Flat Non-leaded Package,四方形扁平無引線封裝)之半導體裝置,其具有利用樹脂封裝體6G將半導體晶片2G與晶片焊墊3G、引線4G及銅導線5G一併密封之結構。半導體裝置1G(樹脂封裝體6G)之外形為扁平之長方體形狀。
於本實施形態中,半導體裝置1G之外形係平面形狀為4mm見方之正方形狀且厚度為0.85mm之六面體,以下列舉之半導體裝置1G之各部之尺寸係半導體裝置1G具有該外形尺寸之情形時之一例。
半導體晶片2G形成俯視時為2.3mm之正方形狀。半導體晶片2G之厚度為0.23mm。於半導體晶片2G之表面之周緣部,配置有複數個焊墊7G。各焊墊7G係與半導體晶片2G中所製作之電路電性連接。於半導體晶片2G之背面,形成有包含Au、Ni(鎳)、Ag(銀)等金屬層之背 部金屬8G。
晶片焊墊3G及引線4G係藉由對金屬薄板(例如,銅薄板)進行衝壓而形成。該金屬薄板(晶片焊墊3G及引線4G)之厚度為0.2mm。於晶片焊墊3G及引線4G之表面,形成有含有Ag之鍍層9G。
晶片焊墊3G形成俯視時為2.7mm之正方形狀,且以各側面與半導體裝置1G之側面形成平行之方式配置於半導體裝置1G之中央部。
於晶片焊墊3G之背面之周緣部,藉由自背面側之壓碎加工,遍及其全周形成有剖面為大致1/4橢圓形狀之凹處。繼而,樹脂封裝體6G進入至該凹處。藉此,將晶片焊墊3G之周緣部自其上下用樹脂封裝體6G夾住,從而防止晶片焊墊3G自樹脂封裝體6G脫落(防脫)。
又,晶片焊墊3G之背面係除其周緣部(凹陷成剖面為大致1/4橢圓形狀之部分)以外,自樹脂封裝體6G之背面露出。
引線4G係於與晶片焊墊3G之各側面相對向之位置各設置有相同數量(例如,9條)。於與晶片焊墊3G之側面相對向之各位置,引線4G沿著與其相對向之側面正交之方向延伸,且沿著與該側面平行之方向空開相等間隔而配置。引線4G之長度方向之長度為0.45mm。又,晶片焊墊3G與引線4G間之間隔為0.2mm。
於引線4G之背面之晶片焊墊3G側之端部,藉由自背面側之壓碎加工,形成有剖面為大致1/4橢圓形狀之凹處。繼而,樹脂封裝體6G進入至該凹處。藉此,將引線4G之晶片焊墊3G側之端部自其上下用樹脂封裝體6G夾住,從而防止引線4G自樹脂封裝體6G脫落(防脫)。
引線4G之背面除晶片焊墊3G側之端部(凹陷成剖面為大致1/4橢圓形狀之部分)以外,自樹脂封裝體6G之背面露出。又,引線4G之與晶片焊墊3G側為相反側之側面係自樹脂封裝體6G之側面露出。
於晶片焊墊3G及引線4G之背面中自樹脂封裝體6G露出之部分,形成有含有焊錫之鍍層10G。
繼而,半導體晶片2G係以將配置有焊墊7G之表面朝向上方之狀態,其背面經由接合材料11G接合於晶片焊墊3G之表面(鍍層9G)。作為接合材料11G,例如使用焊錫膏。接合材料11G之厚度為0.02mm。
再者,於不需要半導體晶片2G與晶片焊墊3G之電性連接之情形時,亦可省略背部金屬8G,將半導體晶片2G之背面經由包含銀膏等絕緣膏之接合材料接合於晶片焊墊3G之表面。於此情形時,半導體晶片2G之平面尺寸成為2.3mm見方。又,晶片焊墊3G之表面上之鍍層9G亦可省略。
銅導線5G例如包含純度為99.99%以上之銅。銅導線5G之一端接合於半導體晶片2G之焊墊7G。銅導線5G之另一端接合於引線4G之表面。並且,銅導線5G描繪著弓狀之迴路而架設於半導體晶片2G與引線4G之間。該銅導線5G之迴路之頂部與半導體晶片2G之表面之高低差為0.16mm。
並且,於該半導體裝置1G中,與上述第1實施形態同樣地,半導體晶片2G之整個表面、晶片焊墊3G之整個表面及整個側面、引線4G之整個表面、以及整個銅導線5G均由一體性之不透水絕緣膜18G被覆。
圖58係圖56所示之由虛線包圍之部分之放大圖。
焊墊7G包括含有Al之金屬,其形成於半導體晶片2G之最上層之層間絕緣膜12G上。於層間絕緣膜12G上形成有表面保護膜13G。焊墊7G係其周緣部由表面保護膜13G被覆,且中央部經由形成於表面保護膜13G之焊墊開口14G而露出。
銅導線5G接合於自表面保護膜13G露出之焊墊7G之中央部。銅導線5G如下所述,藉由在其前端形成FAB,並將FAB按壓至焊墊7G而接合。此時,藉由FAB產生變形,而於銅導線5G中之與焊墊7G之接合部分,形成供神用圓形年糕形狀之第1球體部15G。又,焊墊7G之 材料自第1球體部15G之下方緩慢地逼出至第1球體部15G之周圍,藉此不自焊墊7G之表面大幅浮起地形成逼出部16G。
例如,於銅導線5G之線徑為25μm之情形時,第1球體部15G之目標直徑(第1球體部15G之設計上之直徑)為74~76μm,第1球體部15G之目標厚度(第1球體部15G之設計上之厚度)為17~18μm。
圖59A~圖59D係用以說明本發明之一實施形態之打線接合方法之模式性剖面圖。
銅導線5G係於晶片焊墊3G及引線4G連接於將該等包圍之框架(未圖示)之狀態下,亦即於晶片焊墊3G及引線4G形成引線框架之狀態下,藉由打線接合機架設於半導體晶片2G與引線4G之間。
於打線接合機中包含焊針C。如圖59A所示,焊針C形成中心軸線上形成有導線插通孔41G之大致圓筒形狀。銅導線5G係插通至導線插通孔41G,而自導線插通孔41G之前端(下端)送出。
於焊針C之前端部,形成有於導線插通孔41G之下方與導線插通孔41G連通之圓錐台形狀之倒角42G。又,焊針C之前端部包括外表面43G,該外表面43G係連接於倒角42G之下端緣,並於銅導線5G與焊墊7G及引線4G之接合時(打線接合時)與焊墊7G及引線4G相對向之面。外表面43G係相對於與焊針C之中心軸線正交之平面以外側上升之方式緩緩傾斜。
首先,如圖59A所示,焊針C移動至焊墊7G之正上方。其次,於銅導線5G之前端位於倒角42G之狀態下,對銅導線5G之前端部施加電流,藉此於其前端部形成FAB44G。電流值及施加時間係根據銅導線5G之線徑及FAB44G之目標直徑(FAB44G之設計上之直徑)而適當設定。FAB44G之一部分係自倒角42G向其下方露出。
其後,如圖59B所示,焊針C朝向焊墊7G下降,藉由焊針C,將FAB44G按壓至焊墊7G。此時,藉由焊針C對FAB44G施加荷重,並且 對FAB44G賦予由設置於焊針C之超聲波振動子(未圖示)產生振盪之超聲波振動。
圖60係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
例如,如圖60所示,於自FAB44G抵接至焊墊7G之時刻T1起至經過特定時間(例如,3msec)之時刻T2為止之期間,自焊針C對FAB44G施加相對較大之初始荷重P1。於時刻T2以後,自焊針C施加至FAB44G之荷重下降,對FAB44G施加相對較小之荷重P2(例如,30g)。該荷重P2係持續施加直至焊針C上升之時刻T4為止。
再者,初始荷重P1係根據相對於焊墊7G之第1球體部15G的目標接合面積(相對於焊墊7G之第1球體部15G之設計上的接合面積)乘以一定係數(於初始荷重P1之單位為g且接合面積之單位為mm2之情形時,例如為28786)所得之值而設定。於本實施形態中,將相對於焊墊7G之第1球體部15G的目標接合面積設為0.00430mm2,從而將初始荷重P1設定為130g。
於使用標準型焊針作為焊針C之情形時,自較FAB44G抵接至焊墊7G之時刻T1之前起,對超聲波振動子施加值U1之驅動電流。驅動電流值U1例如為15mA。繼而,當FAB44G抵接至焊墊7G時,於此時之時刻T1至時刻T3為止之期間,施加至超聲波振動子之驅動電流值以一定之變化率(單調地)自值U1上升至值U2。驅動電流值U2例如為90mA。於時刻T3以後,對超聲波振動子持續施加值U2之驅動電流直至成為時刻T4為止。
標準型焊針形成如圖61所示之形狀,並具有如下之尺寸。倒角42G之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面43G之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針C所得之剖面(圖61所示之剖面)中,沿著倒角42G之側面延伸之兩條直線 所形成之角度即倒角角度為90°。外表面43G相對於與焊針C之中心軸線正交之平面所形成之角度即外表面角FA為8°。於以包括中心軸線之平面切斷焊針C所得之剖面中,自焊針C之側面之外表面43G之上端進而向上方延伸之部分與中心軸線所形成之角度CA為20°。
另一方面,於使用瓶頸型焊針作為焊針C之情形時,如圖60所示,自較FAB44G抵接至焊墊7G之時刻T1之前起,對超聲波振動子施加值U1之1.4倍之值的驅動電流。繼而,當FAB44G抵接至焊墊7G時,於此時之時刻T1起至時刻T3為止之期間,施加至超聲波振動子之驅動電流值以一定之變化率(單調地)自值U1上升至值U2之1.4倍之值。於時刻T3以後,對超聲波振動子持續施加值U2之1.4倍之值的驅動電流直至成為時刻T4為止。
瓶頸型焊針形成如圖62所示之形狀,並具有如下之尺寸。倒角42G之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面43G之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針C所得之剖面(圖62所示之剖面)中,沿著倒角42G之側面延伸之兩條直線所形成之角度即倒角角度為90°。外表面43G相對於與焊針C之中心軸線正交之平面所形成之角度即外表面角FA為8°。於以包括中心軸線之平面切斷焊針C所得之剖面中,自焊針C之側面之外表面43G之上端進而向上方延伸之部分與中心軸線所形成之角度CA為10°。
其結果為,FAB44G按焊針C之倒角42G及外表面43G之形狀變形,如圖58所示,於焊墊7G上形成供神用圓形年糕形狀之第1球體部15G,並且於其周圍形成逼出部16G。藉此,實現銅導線5G與焊墊7G之接合(第1接合)。
當自時刻T1起經過預定之接合時間而成為時刻T4時,焊針C朝向焊墊7G之上方離開。其後,焊針C朝向引線4G之表面向斜下方移動。繼而,如圖59C所示,對超聲波振動子施加驅動電流,對焊針C賦予 超聲波振動,並且藉由焊針C,將銅導線5G按壓至引線4G之表面,進而將其扯斷。藉此,於引線4G之表面上形成包含銅導線5G之另一端部之側視時為楔狀之針腳部,從而實現銅導線與引線4G之接合(第2接合)。
其後,以另一焊墊7G及與其相對應之引線4G為對象,進行圖59A~圖59C所示之步驟。繼而,藉由重複圖59A~圖59C所示之步驟,如圖59D所示,於半導體晶片2G之所有焊墊7G與引線4G之間架設銅導線5G。於所有打線接合結束後,利用與圖4D相同之方法,形成不透水絕緣膜18G。
如上所述,於形成於銅導線5G之前端的FAB44G抵接至焊墊7G後,藉由焊針C對FAB44G施加荷重。又,對設置於焊針C之超聲波振動子施加驅動電流。因此,FAB44G因荷重而產生變形,並且藉由自超聲波振動子傳輸之超聲波振動,FAB44G與焊墊7G摩擦。其結果為,實現FAB44G與焊墊7G之接合。
並且,於使用瓶頸型焊針作為焊針C之情形時,將施加至超聲波振動子之驅動電流值設定為使用標準型焊針作為焊針C之情形時之驅動電流值U1、U2之1.4倍的值。藉此,即使焊針C自標準型焊針變更為瓶頸型焊針,亦可簡單且適當地設定荷重及超聲波振動子之驅動電流之大小,從而實現銅導線5G與焊墊7G之良好接合。
於FAB44G抵接至焊墊7G後,施加至超聲波振動子之驅動電流值以一定之變化率遞增。另一方面,藉由對FAB44G施加荷重,FAB44G以壓碎之方式變形,FAB44G與焊墊7G之抵接部分之面積遞增。藉此,自超聲波振動子傳輸至FAB44G之超聲波振動之能量遞增,又,與焊墊7G摩擦之FAB44G之面積遞增。其結果為,可抑制在第1球體部15G之中央部之下方,焊墊7G及焊墊7G之下層中產生因傳輸至FAB44G之超聲波振動之能量劇增所引起之損傷,並且可獲得甚至第1 球體部15G之與焊墊7G之接合面的周緣部都良好地接合於焊墊7G之狀態。
又,自FAB44G抵接至焊墊7G之前起,對超聲波振動子施加驅動電流。因此,自FAB44G抵接至焊墊7G之瞬間起,超聲波振動傳輸至FAB44G與焊墊7G之抵接部分,該抵接部分與焊墊7G摩擦。其結果為,可獲得第1球體部15G之與焊墊7G之接合面之中央部(FAB44G與焊墊7G初次抵接之部分)良好地接合於焊墊7G之狀態。
<接合狀態確認測試>
1.測試1
使用圖61所示之標準型焊針作為焊針C。將焊針C配置於焊墊7G之上方,並於線徑為30μm之銅導線5G之前端形成有62μm之FAB44G。繼而,使焊針C朝向焊墊7G進行下降,將FAB44G按壓至焊墊7G,從而於焊墊7G上形成有第1球體部15G。第1球體部15G之目標直徑為76μm,第1球體部15G之目標厚度為18μm。
此時,於FAB44G抵接至焊墊7G後之3msec期間,藉由焊針C對FAB44G施加130g之初始荷重,並於該3msec經過之時點,使施加至FAB44G之荷重下降至30g,經9msec保持對FAB44G施加有30g之荷重的狀態。其後,使焊針C上升。
又,於FAB44G抵接至焊墊7G之前起,對設置於焊針C之超聲波振動子施加15mA之驅動電流,並於FAB44G抵接至焊墊7G後,使施加至超聲波振動子之驅動電流值於3.6msec期間內以一定之變化率自15mA上升至90mA,並經焊針上升為止之8.4msec保持對超聲波振動子施加有90mA之驅動電流的狀態。
將藉由SEM(Scanning Electron Microscope:掃描式電子顯微鏡)拍攝第1球體部15G之附近所得之SEM圖像示於圖63。
2.測試2
使用圖62所示之瓶頸型焊針作為焊針C。將焊針C配置於焊墊7G之上方,並於線徑為30μm之銅導線5G之前端形成有59μm之FAB44G。繼而,使焊針C朝向焊墊7G進行下降,將FAB44G按壓至焊墊7G,從而於焊墊7G上形成有第1球體部15G。第1球體部15G之目標直徑為74μm,第1球體部15G之目標厚度為17μm。
此時,於FAB44G抵接至焊墊7G後之3msec期間,藉由焊針C對FAB44G施加130g之初始荷重,並於該3msec經過之時點,使施加至FAB44G之荷重下降至30g,經9msec保持對FAB44G施加有30g之荷重的狀態。其後,使焊針C上升。
又,自FAB44G抵接至焊墊7G之前起,對設置於焊針C之超聲波振動子施加18mA(15mA×1.2)之驅動電流,並於FAB44G抵接至焊墊7G後,使施加至超聲波振動子之驅動電流值於3.6msec期間內以一定之變化率自18mA上升至108mA(90mA×1.2),經焊針上升為止之8.4msec保持對超聲波振動子施加有108mA之驅動電流的狀態。
將第1球體部15G附近之SEM圖像示於圖64。
3.測試3
使用圖62所示之瓶頸型焊針作為焊針C。將焊針C配置於焊墊7G之上方,並於線徑為30μm之銅導線5G之前端形成有59μm之FAB44G。繼而,使焊針C朝向焊墊7G進行下降,將FAB44G按壓至焊墊7G,從而於焊墊7G上形成有第1球體部15G。第1球體部15G之目標直徑為74μm,第1球體部15G之目標厚度為17μm。
此時,於FAB44G抵接至焊墊7G後之3msec期間,藉由焊針C對FAB44G施加130g之初始荷重,並於該3msec經過之時點,使施加至FAB44G之荷重下降至30g,經9msec保持對FAB44G施加有30g之荷重的狀態。其後,使焊針C上升。
又,自FAB44G抵接至焊墊7G之前起,對設置於焊針C之超聲波 振動子施加19.5mA(15mA×1.3)之驅動電流,並於FAB44G抵接至焊墊7G後,使施加至超聲波振動子之驅動電流值於3.6msec期間內以一定之變化率自19.5mA上升至117mA(90mA×1.3),經焊針上升為止之8.4msec保持對超聲波振動子施加有117mA之驅動電流的狀態。
將第1球體部15G附近之SEM圖像示於圖65。
4.測試4
使用圖62所示之瓶頸型焊針作為焊針C。將焊針C配置於焊墊7G之上方,並於線徑為30μm之銅導線5G之前端形成有59μm之FAB44G。繼而,使焊針C朝向焊墊7G進行下降,將FAB44G按壓至焊墊7G,從而於焊墊7G上形成有第1球體部15G。第1球體部15G之目標直徑為74μm,第1球體部15G之目標厚度為17μm。
此時,於FAB44G抵接至焊墊7G後之3msec期間,藉由焊針C對FAB44G施加130g之初始荷重,並於該3msec經過之時點,使施加至FAB44G之荷重下降至30g,經9msec保持對FAB44G施加有30g之荷重的狀態。其後,使焊針C上升。
又,自FAB44G抵接至焊墊7G之前起,對設置於焊針C之超聲波振動子施加21mA(15mA×1.4)之驅動電流,並於FAB44G抵接至焊墊7G後,使施加至超聲波振動子之驅動電流值於3.6msec期間內以一定之變化率自21mA上升至126mA(90mA×1.4),經焊針上升為止之8.4msec保持對超聲波振動子施加有126mA之驅動電流的狀態。
將第1球體部15G附近之SEM圖像示於圖66。
5.測試5
使用圖62所示之瓶頸型焊針作為焊針C。將焊針C配置於焊墊7G之上方,並於線徑為30μm之銅導線5G之前端形成有59μm之FAB44G。繼而,使焊針C朝向焊墊7G進行下降,將FAB44G按壓至焊墊7G,從而於焊墊7G上形成有第1球體部15G。第1球體部15G之目標 直徑為74μm,第1球體部15G之目標厚度為17μm。
此時,於FAB44G抵接至焊墊7G後之3msec期間,藉由焊針C對FAB44G施加130g之初始荷重,並於該3msec經過之時點,使施加至FAB44G之荷重下降至30g,經9msec保持對FAB44G施加有30g之荷重的狀態。其後,使焊針C上升。
又,自FAB44G抵接至焊墊7G之前起,對設置於焊針C之超聲波振動子施加22.5mA(15mA×1.5)之驅動電流,並於FAB44G抵接至焊墊7G後,使施加至超聲波振動子之驅動電流值於3.6msec期間內以一定之變化率自22.5mA上升至135mA(90mA×1.5),經焊針上升為止之8.4msec保持對超聲波振動子施加有135mA之驅動電流之狀態。
將第1球體部15G附近之SEM圖像示於圖67。
6.測試1~5之比較
於測試1~5之任一情形時,均形成有具有大致如目標之直徑及厚度之第1球體部15G。
若觀察測試1之SEM圖像,可知逼出部16G以不自焊墊7G之表面浮起之狀態的程度的大小逼出至第1球體部15G之周圍。
若對測試1之SEM圖像與測試2之SEM圖像進行觀察比較,可知測試2之逼出部16G之大小小於測試1之逼出部16G之大小。
若對測試1之SEM圖像與測試3~5之SEM圖像進行觀察比較,可知測試1之逼出部16G之大小與測試3~5之逼出部16G之大小大致相同,且測試1之逼出部16G之形狀與測試4之逼出部16G之形狀特別相近。
藉此,根據測試1~5之結果確認到,於使用瓶頸型焊針作為焊針C之情形時,只要將施加至超聲波振動子之驅動電流值設定為使用標準型焊針作為焊針C之情形時的驅動電流值之1.3~1.5倍的值,即可獲得與使用標準型焊針作為焊針C之情形時相近之FAB44G與焊墊7G之 接合狀態。又確認到,於使用瓶頸型焊針作為焊針C之情形時,只要將施加至超聲波振動子之驅動電流值設定為使用標準型焊針作為焊針C之情形時之驅動電流值之1.4倍之值,即可獲得與使用標準型焊針作為焊針C之情形時大致相同之FAB44G與焊墊7G之接合狀態。
以上,對本發明之第7實施形態進行了說明,但該第7實施形態亦可變更如下。
例如,於半導體裝置1G中,係應用QFN,但本發明亦可應用於應用有SON(Small Outlined Non-leaded Package,小外形無引線封裝)等其他種類之無引線封裝之半導體裝置之製造。
又,並不限定於引線之端面與樹脂封裝體之側面形成於同一平面之所謂切單類型(singulation type),亦可將本發明應用於應用有引線自樹脂封裝體之側面突出之切腳類型(lead cut type)之無引線封裝的半導體裝置之製造。
此外,並不限定於無引線封裝,亦可將本發明應用於應用有QFP(Quad Flat Package)等包括引線自樹脂封裝體突出而形成之外部引線之封裝體的半導體裝置之製造。
又,於上述實施形態中,例示有導線5G由不透水絕緣膜18G被覆銅之態樣,但只要至少達成用以解決上述第7問題之第7目的,則亦可如圖68所示,不設置有不透水絕緣膜18G。
<第8實施形態 圖69~圖73>
藉由該第8實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第8先前技術之第8問題。
(1)第8先前技術
於典型之半導體裝置中,係將半導體晶片配置於晶片焊墊上,藉由含有Au(金)之導線(金導線)連接半導體晶片與配置於晶片焊墊之周圍之引線。具體而言,於半導體晶片之表面配置有含有Al(鋁)之焊 墊。並且,金導線描繪著弓狀之迴路而架設於該焊墊之表面與引線之表面之間。
最近,市場上半導體裝置之價格競爭愈演愈烈,業界要求進一步降低半導體裝置之成本。作為成本降低對策之一,正在研究用包含價格便宜之Cu(銅)之導線(銅導線)代替價格昂貴之金導線。
(2)第8問題
然而,目前尚未達到用銅導線積極代替金導線之程度。其原因在於,銅導線本身亦容易氧化,特別是銅導線中與焊墊之接合部(第1球體部)容易氧化,故而於將半導體晶片或銅導線用樹脂封裝體密封後之耐濕性測試(例如,超加速壽命測試(HAST:Highly Accelerated Stress Test)或飽和蒸氣加壓測試(PCT:Pressure Cooker Test)等)中,存在接合部氧化,產生接合部自焊墊剝落(初次斷開)之情況。
亦即,該第8實施形態之發明之第8目的在於提供一種銅導線中與焊墊之接合部難以氧化,可防止因該氧化所引起之接合部自焊墊之剝落產生的半導體裝置。
(3)具體實施形態之揭示
圖69係本發明之第8實施形態之半導體裝置之模式性剖面圖。
半導體裝置1H係應用有QFN(Quad Flat Non-leaded Package)之半導體裝置,其具有利用樹脂封裝體6H將半導體晶片2H與晶片焊墊3H、引線4H及銅導線5H一併密封之結構。半導體裝置1H(樹脂封裝體6H)之外形為扁平之長方體形狀。
於本實施形態中,半導體裝置1H之外形係平面形狀為4mm見方之正方形狀且厚度為0.85mm之六面體,以下列舉之半導體裝置1H之各部尺寸係半導體裝置1H具有該外形尺寸之情形時之一例。
半導體晶片2H形成俯視時為2.3mm之正方形狀。半導體晶片2H之厚度為0.23mm。於半導體晶片2H之背面,形成有包含Au、 Ni(鎳)、Ag(銀)等金屬層之背部金屬7H。
晶片焊墊3H及引線4H係藉由對金屬薄板(例如,銅薄板)進行衝壓而形成。該金屬薄板(晶片焊墊3H及引線4H)之厚度為0.2mm。於晶片焊墊3H及引線4H之表面,形成有含有Ag之鍍層8H。
晶片焊墊3H形成俯視時為2.7mm之正方形狀,且以各側面與半導體裝置1H之側面形成平行之方式配置於半導體裝置1H之中央部。
於晶片焊墊3H之背面之周緣部,藉由自背面側之壓碎加工,遍及其全周形成有剖面為大致1/4橢圓形狀之凹處。繼而,樹脂封裝體6H進入至該凹處。藉此,將晶片焊墊3H之周緣部自其上下用樹脂封裝體6H夾住,從而防止晶片焊墊3H自樹脂封裝體6H脫落(防脫)。
又,晶片焊墊3H之背面係除其周緣部(呈剖面為大致1/4橢圓形狀凹陷之部分)以外,自樹脂封裝體6H之背面露出。
引線4H係於與晶片焊墊3H之各側面相對向之位置各設置有相同數量(例如,9條)。於與晶片焊墊3H之側面相對向之各位置,引線4H係沿著與其相對向之側面正交之方向延伸,且沿著與該側面平行之方向空開相等間隔而配置。引線4H之長度方向之長度為0.45mm。又,晶片焊墊3H與引線4H間之間隔為0.2mm。
於引線4H之背面之晶片焊墊3H側的端部,藉由自背面側之壓碎加工,形成有剖面為大致1/4橢圓形狀之凹處。繼而,樹脂封裝體6H進入至該凹處。藉此,將引線4H之晶片焊墊3H側之端部自其上下用樹脂封裝體6H夾住,從而防止引線4H自樹脂封裝體6H脫落(防脫)。
引線4H之背面係除晶片焊墊3H側之端部(呈剖面為大致1/4橢圓形狀凹陷之部分)以外,自樹脂封裝體6H之背面露出。又,引線4H之與晶片焊墊3H側為相反側之側面係自樹脂封裝體6H之側面露出。
於晶片焊墊3H及引線4H之背面中之自樹脂封裝體6H露出之部分,形成有含有焊錫之鍍層9H。
繼而,半導體晶片2H係以將表面朝向上方之狀態,其背面經由接合材料10H接合於晶片焊墊3H之表面(鍍層8H)。作為接合材料10H,例如使用焊錫膏。接合材料10H之厚度為0.02mm。
再者,於不需要半導體晶片2H與晶片焊墊3H之電性連接之情形時,亦可省略背部金屬7H,將半導體晶片2H之背面經由包含銀膏等絕緣膏之接合材料接合於晶片焊墊3H之表面。於此情形時,半導體晶片2H之平面尺寸成為2.3mm見方。又,晶片焊墊3H之表面上之鍍層8H亦可省略。
銅導線5H之一端接合於半導體晶片2H之表面。銅導線5H之另一端接合於引線4H之表面。並且,銅導線5H描繪著弓狀之迴路而架設於半導體晶片2H與引線4H之間。該銅導線5H之迴路之頂部與半導體晶片2H之表面之高低差為0.16mm。
並且,於該半導體裝置1H中,與上述第1實施形態同樣地,半導體晶片2H之整個表面、晶片焊墊3H之整個表面及整個側面、引線4H之整個表面、以及整個銅導線5H均由一體性之不透水絕緣膜18H被覆。
圖70係焊墊及銅導線中之與焊墊之接合部之模式性剖面圖。
半導體晶片2H包括矽基板等半導體基板(未圖示)。於半導體基板上積層有複數個層間絕緣膜21H、22H。於最上層之層間絕緣膜21H與其下層之層間絕緣膜22H之間,形成有複數條佈線23H。佈線23H包括含有Al之金屬。
於層間絕緣膜21H形成有開口24H,該開口24H係於半導體晶片2H之表面之周緣部,使各佈線23H之一部分露出。並且,於經由佈線23H之開口24H而露出之部分上,形成有焊墊25H。焊墊25H含有Zn,其係藉由濺鍍而形成。焊墊25H填滿開口24H內,其周緣部擱淺於層間絕緣膜21H上。焊墊25H之厚度於層間絕緣膜21H上為7000~28000 Å(0.7~2.8μm)。
於佈線23H與焊墊25H之間,形成有障壁膜26H。障壁膜26H具有自佈線23H側起依序積層有含有Ti之Ti層及含有TiN之TiN層之結構。
再者,於圖70中,僅表示有一個佈線23H、開口24H及焊墊25H。
於半導體晶片2H之最表面,形成有表面保護膜27H。表面保護膜27H例如包含氮化矽(SiN)。於表面保護膜27H,於與焊墊25H相對向之位置,形成有用以使焊墊25H之表面之中央部露出之焊墊開口28H。
銅導線5H例如包含純度99.99%以上之Cu。銅導線5H接合於自表面保護膜27H露出之焊墊25H之中央部。銅導線5H係藉由在其前端形成FAB,將FAB按壓至焊墊25H而接合。此時,FAB產生變形,藉此銅導線5H中之與焊墊25H之接合部(第1球體部)29H成為供神用圓形年糕形狀。繼而,於樹脂封裝體6H形成後之熱老化(aging)時,於至少接合部29H之下部及焊墊25H中之與接合部29H相對向之部分(圖70中由虛線包圍之部分),銅導線5H中所含之Cu與焊墊25H中所含之Zn進行共晶鍵結而形成Cu與Zn之合金(黃銅)。熱老化係用以使樹脂封裝體6H穩定化之處理,其係於一定溫度下經一定時間放置半導體裝置1H之處理。
再者,有時焊墊25H與接合部29H之整體會發生Zn-Cu合金化。例如,若於175℃之溫度下經6小時進行熱老化,則即使焊墊25H之最大厚度(佈線23H上之厚度)為10μm,焊墊25H及接合部29H之整體亦會發生Zn-Cu合金化。
如上所述,銅導線5H之接合部29H包含Zn-Cu合金。因此,接合部29H難以氧化。藉此,可防止因氧化所引起之接合部29H自焊墊25H之剝落產生。
又,於佈線23H與焊墊25H之間介插有障壁膜26H,該障壁膜26H係具有自佈線23H側起依序積層有含有Ti之Ti層及含有TiN之TiN層之結構。藉由介插有該障壁膜26H,可防止佈線23H中所含之Al與焊墊25H中所含之Zn之共晶鍵結。
圖71係另一結構之焊墊及銅導線中之與焊墊之接合部的模式性剖面圖。於圖71中,對相當於圖70所示之各部的部分,標註與對該等各部所標註之參照符號相同之參照符號。並且,以下,關於圖71所示之結構,以與圖70所示之結構之不同點為中心進行說明,省略關於標註有與圖70所示之各部相同之參照符號之部分的說明。
於經由佈線23H之開口24H所露出之部分上,形成有焊墊31H。焊墊31H包括焊墊本體部32H、以及形成於焊墊本體部32H之表面之Zn層33H。
焊墊本體部32H含有Al,其係藉由電解鍍敷而形成。焊墊本體部32H填滿開口24H內,其周緣部擱淺於層間絕緣膜21H上。焊墊本體部32H之厚度於層間絕緣膜21H上為7000~28000Å(0.7~2.8μm)。又,焊墊本體部32H直接與佈線23H接觸。
Zn層33H含有Zn,其係藉由非電解鍍敷而形成。Zn層33H係於形成於表面保護膜27H之焊墊開口28H內,以被覆焊墊本體部32H之自焊墊開口28H露出之部分之方式而形成。
於焊墊本體部32H與Zn層33H之間,形成有障壁膜34H。障壁膜34H具有自焊墊本體部32H側起依序積層有含有Ti之Ti層及含有TiN之TiN層之結構。
銅導線5H例如包含純度99.99%以上之Cu。銅導線5H接合於自表面保護膜27H露出之焊墊31H(Zn層33H)之中央部。銅導線5H係藉由在其前端形成FAB,將FAB按壓至焊墊31H而接合。此時,FAB產生變形,藉此銅導線5H中之與焊墊31H之接合部(第1球體部)29H成為供神 用圓形年糕形狀。繼而,於樹脂封裝體6H形成後之熱老化時,於至少接合部29H之下部及焊墊31H之Zn層33H中與接合部29H相對向之部分(圖71中由虛線包圍之部分),銅導線5H中所含之Cu與Zn層33H中所含之Zn進行共晶鍵結而形成Cu與Zn之合金(黃銅)。
再者,有時Zn層33H與接合部29H之整體會發生Zn-Cu合金化。
於此結構中,銅導線5H之接合部29H亦包含Zn-Cu合金。因此,接合部29H難以氧化。由此,可防止因氧化所引起之接合部29H自焊墊31H之剝落產生。
又,於焊墊31H之焊墊本體部32H與Zn層33H之間介插有障壁膜34H,該障壁膜34H係具有自焊墊本體部32H側起依序積層有含有Ti之Ti層及含有TiN之TiN層之結構。藉由介插有該障壁膜34H,可防止焊墊本體部32H中所含之Al與Zn層33H中所含之Zn之共晶鍵結。
圖72係進而另一結構之焊墊及銅導線中之與焊墊之接合部之模式性剖面圖。於圖72中,對相當於圖70所示之各部的部分,標註與對該等各部所標註之參照符號相同之參照符號。並且,以下,關於圖72所示之結構,以與圖70所示之結構之不同點為中心進行說明,省略關於標註有與圖70所示之各部相同之參照符號之部分的說明。
於經由佈線23H之開口24H所露出之部分上,形成有焊墊41H。焊墊41H含有Al,其係藉由電解鍍敷而形成。焊墊41H填滿開口24H內,其周緣部擱淺於層間絕緣膜21H上。焊墊41H之厚度於層間絕緣膜21H上,為7000~28000Å(0.7~2.8μm)。又,焊墊41H直接與佈線23H相接觸。
銅導線5H中,例如其整體包含Cu與Zn之合金(黃銅)。銅導線5H接合於自表面保護膜27H露出之焊墊41H之中央部。銅導線5H係藉由在其前端形成FAB,將FAB按壓至焊墊41H而接合。此時,FAB產生變形,藉此銅導線5H中之與焊墊41H之接合部(第1球體部)29H成為供 神用圓形年糕形狀。
於該結構中,銅導線5H之接合部29H亦包含Zn-Cu合金。因此,接合部29H難以氧化。由此,可防止因氧化所引起之接合部29H自焊墊31H之剝落產生。
以上,對本發明之第8實施形態進行了說明,但該第8實施形態亦可變更如下。
例如,於圖70、71所示之結構中,作為銅導線5H之一例,係舉出包含純度99.99%以上之Cu者,但作為銅導線5H,亦可使用較其更低之純度者。又,作為銅導線5H,亦可使用其整體包含Cu與Zn之合金者。
又,於上述實施形態中,例示有銅導線5H由不透水絕緣膜18H被覆之態樣,但只要至少達成用以解決上述第8問題之第8目的,則亦可如圖73所示,不設置有不透水絕緣膜18H。
<第9實施形態 圖74~圖82>
藉由該第9實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第9先前技術之第9問題。
(1)第9先前技術
樹脂密封型之半導體裝置具有將半導體晶片與引線框架一併由樹脂封裝體密封之結構。引線框架係藉由對金屬薄板進行衝壓而形成,包含晶片焊墊及配置於該晶片焊墊之周圍之複數條引線。半導體晶片係晶片接合於晶片焊墊之上表面,藉由架設於其表面與各引線之間之接線而與各引線電性連接。
於半導體裝置工作時,半導體晶片發熱。繼而,來自半導體晶片之發熱自半導體晶片與樹脂封裝體之接觸部分傳遞至樹脂封裝體,並且傳遞至晶片焊墊及引線,繼而自晶片焊墊及引線與樹脂封裝體之接觸部分傳遞至樹脂封裝體。如此傳遞至樹脂封裝體之來自半導體晶 片之發熱係自樹脂封裝體之表面散熱。
若半導體晶片之發熱量大於來自樹脂封裝體之散熱量,則有半導體裝置變成過熱狀態之虞。因此,自先前起,為提高散熱性,正在進行樹脂封裝體之材料的改良。
(2)第9問題
然而,藉由改良樹脂封裝體之材料來提高散熱性存在限度。特別是於裝入有功率系元件之半導體晶片中,來自半導體晶片之發熱量較大,從而要求進一步提高散熱性。
亦即,該第9實施形態之發明之第9目的在於提供一種可進一步提高散熱性之半導體裝置。
(3)具體實施形態之揭示
圖74係本發明之第9實施形態之半導體裝置之模式性剖面圖。圖75係圖74所示之半導體裝置之模式性平面圖,表示已省略樹脂封裝體之圖示之狀態。
半導體裝置1I具有將半導體晶片2I與引線框架3I一併由樹脂封裝體4I密封之結構。樹脂封裝體4I形成為於俯視時為四角形狀。
引線框架3I包括配置於半導體裝置1I之中央部之晶片焊墊5I、以及配置於晶片焊墊5I之周圍之複數條(於該實施形態中為10條)之引線6I。引線框架3I係例如藉由對銅(Cu)薄板進行衝壓加工及壓製加工而形成。
晶片焊墊5I一體地包括:俯視時為四角形狀之中央部7I,其於俯視時,其中心與樹脂封裝體4I之中心重合,且具有與樹脂封裝體4I之各邊平行地延伸之四條邊;以及俯視時為四角形狀之懸掛部8I,其自中央部7I之四條邊中之彼此對向之兩條邊朝向樹脂封裝體4I之側面延伸。
引線6I係相對於晶片焊墊5I之中央部7I,於與懸掛部8I延伸之方 向(以下,稱作「延伸方向」)正交之方向之兩側,以等間隔各配置有5條。
各引線6I貫通樹脂封裝體4I之側面,由該樹脂封裝體4I密封之部分形成連接有下述接線13I之內部引線部,自樹脂封裝體4I露出之部分形成用以與安裝半導體裝置1I之基板連接之外部引線部。
對晶片焊墊5I之上表面及各引線6I中之內部引線部之上表面實施鍍銀(Ag)處理,藉此黏附有銀薄膜9I、47I。
半導體晶片2I係以將作為元件形成面之表面朝向上方之狀態,其背面經由膏狀之焊接劑10I接合(晶片接合)於晶片焊墊5I。半導體晶片2I之表面係由表面保護膜11I覆蓋。又,於半導體晶片2I之表面,選擇性地去除表面保護膜11I,藉此形成有10個焊墊12I。
各焊墊12I形成為於俯視時為四角形狀,於半導體晶片2I中,沿著與晶片焊墊5I中之與引線6I相對向之邊平行地延伸之兩條邊的緣部各設置有5個。
於各焊墊12I接合有接線13I之一端。各接線13I之另一端分別接合於與焊墊12I相對應之引線6I之上表面。藉此,半導體晶片2I經由接線13I而與引線6I電性連接。
並且,於該半導體裝置1I中,與上述第1實施形態同樣地,半導體晶片2I之整個表面、晶片焊墊5I之整個表面及整個側面、引線6I之整個表面、以及整個接線13I均由一體性之不透水絕緣膜19I被覆。
於俯視時,半導體晶片2I小於晶片焊墊5I,於半導體晶片2I之周圍露出有晶片焊墊5I之表面。於在該半導體晶片2I之周圍所露出之晶片焊墊5I之表面(銀薄膜9I、47I),接合有含銅之複數條虛設導線15I、16I、17I。
具體而言,如圖75所示,於半導體晶片2I與各懸掛部8I之間,設置有沿著延伸方向延伸且沿著與延伸方向正交之方向彼此空開間隔而 配置之複數條虛設導線15I、以及與該虛設導線15I正交且沿著延伸方向彼此空開間隔而配置之複數條虛設導線16I。各虛設導線15I、16I形成為其兩端部接合於晶片焊墊5I之表面且中央部分拱起之弓狀。虛設導線15I之中央部分與虛設導線16I之中央部分亦可彼此接觸。此種虛設導線15I、16I係例如藉由在使用打線接合機形成虛設導線15I後,以跨越各虛設導線15I之方式形成虛設導線16I而形成。
又,於半導體晶片2I與引線6I之間,形成有沿著延伸方向延伸之複數條虛設導線17I。虛設導線17I形成為其兩端部接合於晶片焊墊5I之表面且中央部分拱起之弓狀。又,虛設導線17I之中央部分形成於不與各接線13I發生干擾之高度。
又,如圖74所示,於與晶片焊墊5I中之與半導體晶片2I之接合面為相反側之下表面,形成有複數條虛設導線18I。虛設導線18I係與虛設導線15I及虛設導線16I同樣地,形成為沿著延伸方向及與該方向正交之方向延伸之格子狀。
亦即,各虛設導線15I、16I、17I、18I係不與半導體晶片2I及引線6I中之任一個相接觸,從而無助於半導體晶片2I與晶片焊墊5I及引線6I之電性連接。
如上所述,於接合於晶片焊墊5I之半導體晶片2I與配置於晶片焊墊5I之周圍的引線6I之間,架設有含銅之接線13I。藉由該接線13I,將半導體晶片2I與引線6I加以電性連接。又,於半導體裝置1I,設置有無助於半導體晶片2I與晶片焊墊5I及引線6I之電性連接的虛設導線15I、16I、17I、18I。虛設導線15I、16I、17I、18I包含銅。
於半導體裝置1I工作時,來自半導體晶片2I之發熱會傳遞至晶片焊墊5I、引線6I及虛設導線15I、16I、17I、18I。繼而,所傳遞之熱於將該等統一密封之樹脂封裝體4I中傳播,並自該樹脂封裝體4I之表面釋放(散熱)。因此,藉由設置有虛設導線15I、16I、17I、18I,可 與未設置有虛設導線15I、16I、17I、18I之構成相比,提高對樹脂封裝體4I之熱傳遞效率,從而可提高半導體裝置1I之散熱性。
又,虛設導線15I、16I、17I、18I不幫助半導體晶片2I與晶片焊墊5I及引線6I之電性連接。因此,不必考慮虛設導線15I、16I、17I、18I彼此之接觸,其配置不受制約,因此可物理上儘可能稠密地配置虛設導線15I、16I、17I、18I。其結果為,可進一步提高半導體裝置1I之散熱性。
又,虛設導線15I、16I、17I、18I係其兩端部接合於晶片焊墊5I(銀薄膜9I、47I)之環狀金屬導線。藉此,可使用打線接合機形成虛設導線15I、16I、17I、18I。因此,可避免追加用以形成虛設導線15I、16I、17I、18I之裝置。
又,虛設導線15I、16I、17I、18I包含銅。因銅之價格便宜,故而可降低虛設導線15I、16I、17I、18I之材料成本。又,由於銅之導熱率較高,因此可提高半導體裝置1I之散熱量。
又,接線13I包含銅。因銅之價格便宜,故而可降低接線13I之材料成本。又,由於銅之導電率較高,因此可降低半導體晶片2I與引線6I之間之電阻。
圖76係圖74所示之半導體裝置之第1變形例之模式性剖面圖。於圖76中,對相當於圖74所示之各部之部分,標註與對該等各部所標註之參照符號相同之參照符號。並且,以下,關於圖76所示之結構,以與圖74所示之結構之不同點為中心進行說明,而省略關於標註有與圖74所示之各部相同之參照符號之部分的說明。
於圖76所示之半導體裝置21I中,配置有複數個柱形凸塊22I代替圖74所示之虛設導線15I、16I、17I、18I。
形成於晶片焊墊5I之上表面之各柱形凸塊22I係形成為朝上方為凸之供神用圓形年糕形狀,以不與接線13I相接觸之高度重疊配置有 複數段。另一方面,形成於晶片焊墊5I之下表面之各柱形凸塊22I係形成為朝下方為凸之供神用圓形年糕形狀,於半導體裝置21I之下表面以不自樹脂封裝體4I露出之高度重疊配置有複數段。
包含此種柱形凸塊22I之半導體裝置21I係例如藉由下述方式獲得,即,首先,以晶片焊墊5I之上表面朝向上方之狀態,形成上側之柱形凸塊22I之後,以將半導體裝置21I翻過來而使晶片焊墊5I之下表面朝向上方之狀態,形成下側之柱形凸塊22I。
於該半導體裝置21I之構成中,亦可發揮與圖74所示之半導體裝置1I相同之效果。
又,柱形凸塊22I可使用打線接合機而形成。因此,可避免追加用以形成柱形凸塊22I之裝置。又,由於不必考慮柱形凸塊22I彼此之接觸即可配置柱形凸塊22I,因此可使用打線接合機以儘可能形成之較小間隔形成柱形凸塊22I。
又,柱形凸塊22I係重疊設置有複數個。藉此,可按照半導體裝置21I內之死區(dead space)而變更柱形凸塊22I之高度,因此可進一步擴大柱形凸塊22I之表面積。其結果為,可進一步提高半導體裝置之散熱性。
圖77係圖74所示之半導體裝置之第2變形例之模式性剖面圖。於圖77中,對相當於圖74所示之各部之部分,標註與對該等各部所標註之參照符號相同之參照符號。並且,以下,關於圖77所示之結構,以與圖74所示之結構之不同點為中心進行說明,而省略關於標註有與圖74所示之各部相同之參照符號之部分的說明。
於圖77所示之半導體裝置31I中,係以將圖74所示之虛設導線15I、16I、17I、18I與圖76所示之柱形凸塊22I加以組合之狀態配置。
具體而言,於晶片焊墊5I之上表面及下表面,重疊配置有複數段供神用圓形年糕形狀之柱形凸塊33I。並且,以跨越該等柱形凸塊33I 之方式,配置有其兩端部連接於銀薄膜9I、47I之虛設導線32I。各虛設導線32I係形成為其兩端部接合於晶片焊墊5I之表面且中央部分拱起之弓狀。換言之,複數個柱形凸塊33I係於虛設導線32I之環狀之內側部分(虛設導線32I之中央部與晶片焊墊5I之間之部分),配合虛設導線32I之中央部之高度重疊配置有複數段。
藉由該半導體裝置31I之構成,亦可發揮與圖74所示之半導體裝置1I相同之效果。
又,由於虛設導線32I之迴路部分之間隙配置有柱形凸塊33I,因此可進一步提高虛設導線32I及柱形凸塊33I之配置密度,故可進一步提昇半導體裝置31I之散熱性。
圖78係圖74所示之半導體裝置之第3變形例之模式性剖面圖。
半導體裝置41I係晶片焊墊及引線之背面自樹脂封裝體之背面露出之所謂表面安裝型之半導體裝置。並且,半導體裝置41I具有將半導體晶片42I與引線框架43I一併由樹脂封裝體44I密封之結構。半導體裝置41I之外形形成扁平之長方體形狀(於該實施形態中,為於俯視時為正方形狀之六面體)。
引線框架43I包括配置於半導體裝置41I之中央部之晶片焊墊45I、以及配置於晶片焊墊45I之周圍之複數條引線46I。引線框架43I係例如藉由對銅薄板進行衝壓加工及壓製加工而形成。
晶片焊墊45I形成俯視時為四角形狀。晶片焊墊45I之下表面係於樹脂封裝體44I之背面露出。
於俯視時,引線46I配置於晶片焊墊45I之側方。各引線46I之下表面係於樹脂封裝體44I之背面露出,並發揮作為用以與佈線基板(未圖示)連接之外部端子的作用。
於晶片焊墊45I之上表面及各引線46I之上表面,藉由實施鍍銀處理,而黏附有銀薄膜47I。
半導體晶片42I係以將形成有功能元件之側之表面(元件形成面)朝向上方之狀態,其背面經由導電性之焊接劑48I接合(晶片接合)於晶片焊墊45I。
於半導體晶片42I之表面,對應於各引線46I,藉由使佈線層之一部分自表面保護膜露出而形成有焊墊49I。於各焊墊49I接合有含銅之接線50I之一端。接線50I之另一端接合於各引線46I之上表面。藉此,半導體晶片42I係經由接線50I而與引線46I電性連接。
於俯視時,半導體晶片42I小於晶片焊墊45I,於半導體晶片42I之周圍露出有晶片焊墊45I之表面。於該半導體晶片42I之周圍所露出之晶片焊墊45I之表面(銀薄膜47I),接合有含銅之複數條虛設導線51I。各虛設導線51I形成為其兩端部接合於晶片焊墊45I之表面且其中央部分自晶片焊墊45I空開間隔拱起之弓狀。又,各虛設導線51I未與半導體晶片42I及引線46I中之任一個相接觸,故無助於半導體晶片42I與晶片焊墊45I及引線46I之電性連接。
藉由該半導體裝置41I之構成,亦可發揮與圖74所示之半導體裝置1I相同之效果。
再者,於半導體裝置41I中,亦可與圖76所示之半導體裝置21I同樣地,設置有柱形凸塊代替虛設導線51I,且亦可與圖77所示之半導體裝置31I同樣地,採用虛設導線51I與柱形凸塊之組合。
以上,對本發明之第9實施形態進行了說明,但該第9實施形態亦可變更如下。
例如,於圖74~圖78所示之各半導體裝置1I、21I、31I、41I中,係設為將虛設導線15I、16I、17I、18I、51I及/或柱形凸塊221、33I形成於晶片焊墊5I上。然而,虛設導線15I、16I、17I、18I、51I及/或柱形凸塊22I、33I亦可形成於引線6I、46I上。
於半導體裝置1I、21I、31I中,於晶片焊墊5I之上表面及引線6I 之內部引線部之上表面形成有銀薄膜9I、47I,藉此可實現接線13I對引線6I之良好接合及虛設導線15I、16I、17I對晶片焊墊5I之良好接合。
又,於半導體裝置41I中,於晶片焊墊45I之上表面及引線46I之上表面形成有銀薄膜47I,藉此可實現接線50I對引線46I之良好接合及虛設導線51I對晶片焊墊45I之良好接合。
然而,未必需要銀薄膜9I、47I,即使省略銀薄膜9I、47I,亦可實現接線13I、50I對引線6I、46I之接合及虛設導線15I、16I、17I、51I對晶片焊墊5I、45I之接合。
藉由省略銀薄膜9I、47I,可降低材料成本。又,由於省略用以形成銀薄膜9I、47I之鍍銀處理,因此可削減半導體裝置1I、21I、31I、41I之製造步驟數。
又,於圖74之實施形態中,虛設導線15I及虛設導線16I係以形成俯視時為彼此正交之格子狀之方式設置,但各虛設導線15I、16I、17I、18I不必形成俯視時為格子狀,而可自由地變更其長度及方向。
又,於上述實施形態中,例示有由不透水絕緣膜19I被覆接線13I之態樣,但只要至少實現用以解決上述第9問題之第9目的,則亦可如圖79~圖82分別所示,不設置有不透水絕緣膜19I。
<第10實施形態 圖83~圖94>
藉由該第10實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第10先前技術之第10問題。
(1)第10先前技術
樹脂密封型之半導體裝置具有將半導體晶片與引線框架一併由樹脂封裝體密封之結構。引線框架係藉由對金屬薄板進行衝壓而形成,其包括島狀物及配置於該島狀物之周圍之複數條引線。半導體晶 片係晶片接合於島狀物上。於半導體晶片之表面配置有複數個焊墊,於各焊墊與各引線之間架設有用於該等之電性連接之導線。
於必需電性連接半導體晶片之背面與島狀物之情形時,於半導體晶片與島狀物之間介插導電性接合材料。作為該導電性接合材料,最廣泛使用的係焊錫膏。
(2)第10問題
近年來,作為針對環境保護之舉措之一環,正在研究半導體裝置中之無Pb(鉛)化。半導體裝置之外包裝部的無Pb化已完成,而只要採用高密接型之Ag(銀)膏或以Bi(鉍)或Zn(鋅)為主成分之焊錫作為介插於半導體晶片與島狀物之間之接合材料,即可實現半導體裝置之內部之無Pb化。
普遍用作接合材料之鉛焊錫係例如用以確保藉由歐姆接合之導電性。又,亦存在雖不需要歐姆接合,但為確保高散熱性而使用鉛焊錫的情況。
為實現半導體晶片與島狀物之歐姆接合,金屬(焊錫)接合不可或缺。另一方面,為實現第2目的,必需採用具有高散熱性之接合材料(膏)。為發揮高散熱性,只要增加接合材料中所含之金屬粒子(例如,Ag)之量即可。然而,若增加金屬粒子之量,則環氧樹脂等有機成分之量會減少,故而接合材料之密接性下降。
又,於使用以Bi或Zn為主成分之焊錫作為接合材料之情形時,必需於焊錫與半導體晶片及島狀物之間形成異種金屬膜,以增加該等之接著性,從而會導致半導體裝置之製造步驟數之增加或製造成本之增加。因此,關於以Bi或Zn為主成分之焊錫,仍處於世界性評價階段。
亦即,該第10實施形態之發明之第10目的在於提供一種即便使用除焊錫以外之接合材料,亦可實現半導體晶片之背面與島狀物之電 性連接(歐姆連接)的半導體裝置。
(3)具體實施形態之揭示
圖83係本發明之第10實施形態之半導體裝置之模式性剖面圖。圖84係自背面側觀察圖83所示之半導體裝置時之模式性平面圖,表示已省略樹脂封裝體之圖示之狀態。
半導體裝置1J具有將半導體晶片2J與引線框架3J一併由樹脂封裝體4J密封之結構。樹脂封裝體4J形成為於俯視時為四角形狀。
引線框架3J包括配置於半導體裝置1J之中央部之島狀物5J、以及配置於島狀物5J之周圍之複數條(於該實施形態中,10條)引線6J。引線框架3J係例如藉由對銅(Cu)薄板進行衝壓加工及壓製加工而形成。
島狀物5J一體地包括:於俯視時為四角形狀之本體部7J,其於俯視時其中心與樹脂封裝體4J之中心重合,且具有與樹脂封裝體4J之各邊平行地延伸之四條邊;以及於俯視時為四角形狀之懸掛部8J,其自本體部7J之四條邊中之彼此對向之兩條邊朝向樹脂封裝體4J之側面延伸。如圖84所示,於本體部7J,沿其厚度方向貫通形成有貫通孔9J。貫通孔9J係形成為俯視時小於半導體晶片2J之四角形狀。
引線6J係相對於島狀物5J之本體部7J,於與懸掛部8J延伸之方向正交之方向之兩側,等間隔地各配置有相同數量。
各引線6J貫通樹脂封裝體4J之側面,由該樹脂封裝體4J密封之部分形成連接下述表面導線12J之內部引線部,自樹脂封裝體4J所露出之部分形成用以與安裝半導體裝置1J之基板連接之外部引線部。
半導體晶片2J形成為於俯視時為四角形狀。於半導體晶片2J之背面之整個區域黏附有合金膜11J。合金膜11J具有自半導體晶片2J側起依序積層有例如Au(金)及Ni(鎳)之結構。
半導體晶片2J係以將其背面(合金膜11J)朝向島狀物5J之狀態,與島狀物5J對向配置。於該狀態下,島狀物5J中之貫通孔9J之周圍部分 係與半導體晶片2J之背面之周緣部相對向。於該貫通孔9J之周圍部分與半導體晶片2J之周緣部之間,介插有絕緣性之銀膏10J。藉此,半導體晶片2J之背面係經由銀膏10J而接合(晶片接合)於島狀物5J。
於半導體晶片2J之表面,與各引線6J相對應地形成有與引線6J相同數量之焊墊(未圖示)。於各焊墊接合有表面導線12J之一端。各表面導線12J之另一端分別接合於與焊墊相對應之引線6J之上表面。藉此,各焊墊係經由表面導線12J而與引線6J電性連接。
並且,於該半導體裝置1J中,與上述第1實施形態同樣地,半導體晶片2J之整個表面、島狀物5J之整個表面及整個側面、引線6J之整個表面、以及整個表面導線12J均由一體性之不透水絕緣膜18J被覆。
於半導體晶片2J之背面(合金膜11J)與島狀物5J之間,架設有複數條背面導線14J。具體而言,於半導體晶片2J之背面中與貫通孔9J毗鄰之部分,接合有各背面導線14J之一端部。各背面導線14J插通至貫通孔9J,其另一端部接合於島狀物5J之背面。例如,如圖84所示,背面導線14J係沿著四角形狀之貫通孔9J之各邊空開相等間隔而設置。藉此,半導體晶片2J之背面與島狀物5J係經由複數條背面導線14J而電性連接。
如上所述,半導體晶片2J係將其背面經由絕緣性之銀膏10J接合於島狀物5J。於島狀物5J之側方,與島狀物5J相隔配置有引線6J。在形成於半導體晶片2J之表面之焊墊與引線6J之間,架設有表面導線12J。藉此,將焊墊與引線6J電性連接。
又,於半導體晶片2J之背面與島狀物5J之間,架設有將半導體晶片2J與島狀物5J電性連接之背面導線14J。藉此,即便使用絕緣性之銀膏10J作為接合材料,亦可經由背面導線14J電性連接半導體晶片2J之背面與島狀物5J。亦即,即便使用除含有Pb之焊錫以外之接合材料,亦可不管該接合材料之電性特性,實現半導體晶片2J之背面與島 狀物5J之電性連接。
背面導線14J包含銅。銅之價格較廣泛用作導線之材料之金便宜,故而可降低背面導線14J之材料成本。又,由於銅之導電率高,因此可降低於半導體晶片2J與島狀物5J之間之電阻。
又,表面導線12J及背面導線14J均包含銅。因此,不變更安放於打線接合機之材料,即可藉由該打線接合機形成表面導線12J及背面導線14J。因此,可簡化半導體裝置1J之製造步驟。
又,於島狀物5J中,沿其厚度方向貫通形成有貫通孔9J,背面導線14J穿過貫通孔9J架設於半導體晶片2J之背面與島狀物5J之間。藉此,半導體晶片2J之背面(合金膜11J)自貫通孔9J露出,於該所露出之部分連接背面導線14J,藉此可實現半導體晶片2J之背面與島狀物5J之電性連接。於此情形時,島狀物5J中之與半導體晶片2J之背面相對向之部分之面積必然小於半導體晶片2J之背面之面積,僅於半導體晶片2J與島狀物5J之對向部分介插有絕緣性之銀膏10J。因此,於半導體晶片2J與貫通孔9J之對向部分不使用銀膏10J,因此可降低銀膏10J之使用量。其結果為,可降低半導體裝置1J之材料成本。
又,設置有複數個背面導線14J。藉此,可提高半導體晶片2J與島狀物5J之電性連接之確實性。
圖85係圖83所示之半導體裝置之第1變形例之模式性剖面圖。圖86係自背面側觀察圖85所示之半導體裝置時之模式性平面圖,表示已省略樹脂封裝體之圖示之狀態。於圖85、86中,對相當於圖83、84所示之各部之部分,標註與對該等各部所標註之參照符號相同之參照符號。並且,以下,關於圖85、86所示之結構,以與圖83、84所示之結構之不同點為中心進行說明,而省略關於標註有與圖83、84所示之各部相同之參照符號之部分的說明。
圖85所示之半導體裝置21J包括與圖83所示之島狀物5J結構不同 之島狀物22J。
島狀物22J一體地包括:於俯視時為四角形狀之本體部23J,其具有與樹脂封裝體4J之各邊平行地延伸之四條邊;以及於俯視時為四角形狀之懸掛部24J,其自本體部23J之四條邊中之彼此對向之兩條邊朝向樹脂封裝體4J之側面延伸。
如圖86所示,於本體部23J形成有沿其厚度方向貫通本體部23J之4個貫通孔25J。4個貫通孔25J係以等角度間隔配置於島狀物22J之中心之周圍。
半導體晶片2J係以使其背面(合金膜11J)朝向島狀物22J之狀態,與島狀物22J對向配置。於該狀態下,島狀物22J中之各貫通孔25J之周圍部分係與半導體晶片2J之背面之周緣部相對向。於該貫通孔25J之周圍部分與半導體晶片2J之周緣部之間,介插有絕緣性之銀膏10J。藉此,半導體晶片2J之背面經由銀膏10J接合(晶片接合)於島狀物22J。
於半導體晶片2J之背面(合金膜11J)與島狀物22J之間,架設有複數條背面導線14J。具體而言,於半導體晶片2J之背面中之與貫通孔25J毗鄰之部分,接合有各背面導線14J之一端部。各背面導線14J插通至貫通孔25J,其另一端部接合於島狀物22J之背面。背面導線14J係沿著各貫通孔25J之各邊空開相等間隔而設置。藉此,半導體晶片2J之背面與島狀物22J經由複數條背面導線14J而電性連接。
於該半導體裝置21J之構成中,亦可發揮與圖83所示之半導體裝置1J相同之效果。
圖87係圖83所示之半導體裝置之第2變形例之模式性剖面圖。圖88係自背面側觀察圖87所示之半導體裝置時之模式性平面圖,表示已省略樹脂封裝體之圖示之狀態。於圖87、88中,對相當於圖83、84所示之各部之部分,標註與對該等各部所標註之參照符號相同之參照符 號。並且,以下,關於圖87、88所示之結構,以與圖83、84所示之結構之不同點為中心進行說明,而省略關於標註有與圖83、84所示之各部相同之參照符號之部分的說明。
圖87所示之半導體裝置31J包括與圖83所示之島狀物5J結構不同之島狀物32J。又,於半導體裝置31J與半導體裝置1J中,用於半導體晶片2J之背面與島狀物5J、32J的電性連接之結構各不相同。
島狀物32J一體地包括:四角形狀之本體部33J,其具有與樹脂封裝體4J之各邊平行地延伸之四條邊,且形成為俯視時小於半導體晶片2J之尺寸;以及於俯視時為四角形狀之懸掛部34J,其自本體部33J之四條邊中之彼此對向之兩條邊朝向樹脂封裝體4J之側面延伸。
半導體晶片2J係以使其背面(合金膜11J)朝向島狀物32J之狀態,與島狀物32J對向配置。於俯視時,島狀物32J小於半導體晶片2J,於島狀物32J之周圍露出有半導體晶片2J之背面36J。亦即,島狀物32J中之與半導體晶片2J相對向之上表面35J之面積小於半導體晶片2J之背面36J之面積。
於此狀態下,於島狀物之上表面35J與半導體晶片2J之背面36J之間介插有絕緣性之銀膏10J。藉此,半導體晶片2J之背面36J經由銀膏10J接合(晶片接合)於島狀物32J之上表面35J。
於半導體晶片2J之背面36J與島狀物32J之間,架設有複數條背面導線14J。具體而言,於島狀物32J之周圍所露出之半導體晶片2J之背面36J(合金膜11J),接合有各背面導線14J之一端部。各背面導線14J係環繞島狀物32J之側方而向島狀物32J之背面側延伸,其另一端部接合於島狀物32J之背面。背面導線14J係沿著島狀物32J之各邊空開相等間隔而設置。藉此,半導體晶片2J之背面36J與島狀物32J經由複數條背面導線14J而電性連接。
於該半導體裝置31J之構成中,亦可發揮與圖83所示之半導體裝 置1J相同之效果。
圖89係圖83所示之半導體裝置之第3變形例之模式性剖面圖。圖90係自背面側觀察圖89所示之半導體裝置時之模式性平面圖,表示已省略樹脂封裝體之圖示之狀態。
半導體裝置41J係島狀物及引線之背面自樹脂封裝體之背面露出之所謂表面安裝型之半導體裝置。並且,半導體裝置41J具有將半導體晶片42J與引線框架43J一併由樹脂封裝體44J密封之結構。半導體裝置41J之外形係形成扁平之長方體形狀(於該實施形態中,為於俯視時為正方形狀之六面體)。
引線框架43J包括配置於半導體裝置41J之中央部之島狀物45J、以及配置於島狀物45J之周圍之複數條引線46J。引線框架43J係例如藉由對銅薄板進行衝壓加工及壓製加工而形成。
島狀物45J一體地包括:於俯視時為四角形狀之本體部47J,其於俯視時其中心與樹脂封裝體44J之中心重合,且具有與樹脂封裝體44J之各邊平行地延伸之四條邊;以及於俯視時為四角形狀之懸掛部48J,其自本體部47J之四條邊中之彼此對向之兩條邊朝向樹脂封裝體44J之側面延伸。本體部47J形成為俯視時小於半導體晶片42J之尺寸。又,各懸掛部48J之端面係於樹脂封裝體44J之側面,與該側面形成同一平面而露出。
於島狀物45J之背面之周緣部,藉由自背面側之壓碎加工,遍及其全周,形成有島狀物45J自該背面側下挖而成之形狀之凹部49J。此種形狀之凹部49J除壓碎加工以外,亦可藉由例如對島狀物45J之周緣部自背面側選擇性地進行蝕刻而形成。
又,島狀物45J之背面除該周緣部(凹部49J)以外,亦於樹脂封裝體44J之背面露出作為背面連接端子。例如,於島狀物45J之中央部分(自樹脂封裝體44J露出之部分)之厚度為200μm之情形時,島狀物45J 之周緣部之厚度為100μm。
引線46J係於與島狀物45J之各側面相對向之位置各設置有相同數量。於與島狀物45J之側面相對向之各位置,引線46J沿著與其相對向之側面正交之方向延伸,且沿與該側面平行之方向空開相等間隔而配置。
於引線46J之背面之島狀物45J側之端部,藉由自背面側之壓碎加工,形成有引線46J自該背面側下挖而成之形狀之凹部50J。
引線46J之背面除島狀物45J側之端部(凹部50J)以外,亦自樹脂封裝體44J之背面露出。又,引線46J之與島狀物45J側為相反側之側面係自樹脂封裝體44J之側面露出。例如,於引線46J中之自樹脂封裝體44J之背面露出之部分之厚度為200μm之情形時,引線46J之島狀物45J側之端部(形成有凹部50J之部分)之厚度為100μm。
半導體晶片42J形成為於俯視時為四角形狀。於半導體晶片42J之背面之整個區域黏附有合金膜52J。合金膜52J例如具有與圖83所示之合金膜11J相同之積層結構。
半導體晶片42J係以使其背面(合金膜52J)朝向島狀物45J之狀態,與島狀物45J對向配置。於俯視時,島狀物45J小於半導體晶片42J,於島狀物45J之周圍露出有半導體晶片2J之背面(合金膜52J)。
於此狀態下,於島狀物45J之上表面之整個區域與半導體晶片42J之背面之間,介插有絕緣性之銀膏51J。藉此,半導體晶片42J之背面經由銀膏51J接合(晶片接合)於島狀物45J之上表面。
於半導體晶片42J之表面,與各引線46J相對應地形成有與引線46J相同數量之焊墊(未圖示)。於各焊墊接合有含銅之表面導線54J之一端。各表面導線54J之另一端接合於各引線46J之上表面。藉此,各焊墊經由表面導線54J而與引線46J電性連接。
於半導體晶片42J與島狀物45J之間,架設有含銅之複數條背面導 線55J。具體而言,於島狀物45J之周圍所露出之半導體晶片42J之背面(合金膜52J),接合有各背面導線55J之一端部。各背面導線55J係環繞島狀物45J之側方而向島狀物45J之背面側延伸,其另一端部係以劃弧線之方式朝向上方後,於凹部49J內接合於島狀物45J之本體部47J之下表面。藉此,半導體晶片42J之背面與島狀物45J經由背面導線55J而電性連接。又,背面導線55J之另一端部係相對於凹部49J內之島狀物45J之本體部47J之下表面,以其頂部之高度(島狀物45J之厚度方向之寬度)例如成為70μm之方式形成。藉此,可防止背面導線55J自樹脂封裝體44J露出於半導體裝置41J之背面側。
藉由該半導體裝置41J之構成,亦可發揮與圖83所示之半導體裝置1J相同之效果。
以上,對本發明之第10實施形態進行了說明,但該第10實施形態亦可變更如下。
例如,合金膜11J、52J係設為具有自半導體晶片2J、42J側起依序積層有Au及Ni之結構,但作為合金膜11J、52J,可採用具有自半導體晶片2J、42J側起依序積層有Au、Ti(鈦)及Ni之結構之積層膜,亦可採用具有自半導體晶片2J、42J側起依序積層有Au、Ti、Ni、Au之結構之積層膜。
又,於上述實施形態中,例示有表面導線12J由不透水絕緣膜18J被覆之態樣,但只要至少實現用以解決上述第10問題之第10目的,則亦可如圖91~圖94分別所示,不設置有不透水絕緣膜18J。
<第11實施形態 圖95~圖105>
藉由該第11實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第11先前技術之第11問題。
(1)第11先前技術
先前,就環境負荷之觀點而言,要求降低半導體裝置中之鉛使用量。
於半導體裝置中,於例如SOP(Small Outline Package)、QFP(Quad Flat Package)中之外部引線之外包裝鍍敷、BGA(Ball Grid Array)中之焊錫球等用於裝置外部之外部構成材料、以及封裝體內部中之半導體晶片與引線框架之間之接合材料等用於裝置內部之內部構成材料中,均使用有鉛。
關於外部構成材料,藉由代替材料之研究已大體實現使鉛含量達到一定比率以下之無鉛化。與此相對,關於內部構成材料,則尚無適合代替之材料。因此,使用例如Pb-xSn-yAg(x及y為正數)等含鉛之金屬。
(2)第11問題
於對各種組成之金屬材料作為內部構成材料之代替材料進行評價之過程中,環境負荷較小之Bi作為代替材料之選項受到關注。Bi例如滿足對用於裝置內部之接合材料所要求之熔點或接合性,進而滿足環境負荷之諸多特性。
然而,Bi之熱膨脹係數(約13.4×10-6/℃)低於普遍使用之Pb-xSn-yAg之熱膨脹係數(例如,約28.5×10-6/℃左右)。因此,於安裝半導體裝置時之回焊時等,引線框架經熱膨脹而翹曲時,存在無法藉由接合材料緩和由於引線框架之翹曲而產生於接合材料中之應力之情況。於此情形時,未能緩和之應力會施加至半導體晶片而使半導體晶片產生翹曲,於翹曲量較大之情形時,有半導體晶片中產生龜裂(例如,水平龜裂、縱向裂痕等)之虞。
半導體晶片之翹曲量有可能可藉由增大半導體晶片或引線框架之厚度而緩和。然而,若擴大半導體晶片及引線框架之厚度,則會產生封裝體本體大型化之不良情況。
又,半導體晶片之翹曲量亦有可能可藉由增大接合材料之厚度而緩和。然而,即使增加接合材料之使用量,接合材料之厚度亦會因半導體晶片之自身重量按壓接合材料而減小。因此,難以將接合材料之厚度控制為所需大小。
此外,Bi之導熱率(約9W/m‧K)低於Pb-xSn-yAg之導熱率(例如,約35W/m‧K左右)。因此,於使用有Bi之接合材料中,會產生在半導體晶片中所產生之熱難以散發之不良情況。
亦即,該第11實施形態之發明之第11目的在於提供一種可藉由使用Bi系材料作為半導體晶片與引線框架之間之接合材料而實現無鉛化,進而,可降低因引線框架之熱膨脹所引起之半導體晶片之翹曲量,並且可充分確保半導體晶片之散熱性的半導體裝置。
(3)具體實施形態之揭示
圖95係本發明之第11實施形態之半導體裝置之模式底視圖。圖96係本發明之第11實施形態之半導體裝置之模式剖面圖。圖97係圖96之由虛線圓包圍之部分之主要部分放大圖。
半導體裝置1K係應用有QFN(Quad Flat Non-leaded)之半導體裝置。半導體裝置1K包括:半導體晶片2K;晶片焊墊3K,其用以搭載半導體晶片2K;複數條電極引線4K,其配置於晶片焊墊3K之周圍;接線5K,其將半導體晶片2K與電極引線4K加以電性連接;以及樹脂封裝體6K,其將該等密封。
以下,為方便說明,將半導體晶片2K與晶片焊墊3K之對向方向設為Z方向,並將與Z方向正交之方向設為X方向,對本實施形態進行說明。
半導體晶片2K包括於俯視時為四角狀之Si基板7K。
Si基板7K之厚度例如為220~240μm(較佳為230μm左右)。於Si基板7K之表面71K形成有複數個佈線層經由層間絕緣膜積層而成之多層 佈線結構(未圖示),該多層佈線結構之最表面係由表面保護膜(未圖示)覆蓋。並且,於表面保護膜形成有複數個用以使多層佈線結構中之最上面之佈線層露出之焊墊開口。藉此,佈線層之一部分自各焊墊開口露出作為半導體晶片2K之電極焊墊8K。
作為電極焊墊8K而露出之最上面之佈線層例如包括含有Al(鋁)之金屬材料,具體而言包含以Al為主成分之金屬材料(例如,Al-Cu合金等)。
另一方面,於Si基板7K之背面72K(與晶片焊墊3K之對向面)形成有背部金屬9K。
如圖97所示,背部金屬9K具有自Si基板7K側起依序積層有Au層91K、Ni層92K及Cu層93K之三層結構。Au層91K對於Si半導體為可通電之歐姆接觸,其與Si基板7K之背面72K相接觸。Ni層92K係形成於較形成背部金屬9K之最表面的Cu層93K更靠近Si基板7K側,且係用以防止Si基板7K中之Si析出至背部金屬9K之最表面的Si結核(nodule)之層。
晶片焊墊3K及複數條電極引線4K形成為包含相同金屬薄板之引線框架10K。構成引線框架10K之金屬薄板包含主要含有Cu之Cu系原材料,具體而言包含例如純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅、Cu與異種金屬之合金(例如,Cu-Fe-P合金等)。再者,金屬薄板亦可為例如42合金(Fe-42% Ni)等Fe系原材料等。又,引線框架10K(金屬薄板)之厚度例如為190~210μm(較佳為200μm左右)。
晶片焊墊3K於俯視時為較半導體晶片2K更大之四角狀(例如,於俯視時為2.7mm見方左右)。晶片焊墊3K之表面31K(與半導體晶片2K之對向面)係並非由藉由鍍敷或濺鍍等處理之金屬薄膜所被覆之非被覆面,構成引線框架10K之Cu系原材料露出於整個表面31K。
於晶片焊墊3K之表面31K上設置有複數個Cu柱形凸塊18K。於俯視時,Cu柱形凸塊18K係於晶片焊墊3K之各角各配置有1個,共設置有4個。各Cu柱形凸塊18K係利用眾所周知之打線接合法所形成,其於剖視時為凸狀,其一體地包括與表面31K相接觸且直徑相對較大之基底部181K、以及自基底部181K向半導體晶片2K側突出且直徑相對較小之前端部182K。
並且,半導體晶片2K係藉由在以使背部金屬9K與Cu柱形凸塊18K之前端部182K相接觸之方式支持於Cu柱形凸塊18K之狀態下,於Si基板7K之背面72K與晶片焊墊3K之表面31K之間介插接合層11K,而接合於晶片焊墊3K。
接合層11K包括作為相對較厚之主層之Bi系材料層111K、以及作為相對較薄之副層之Cu-Sn合金層112K、113K、114K。
Bi系材料層111K亦可含有Bi作為主成分,且含有不影響Bi之物性之程度的量之Sn、Zn等作為副成分。
Cu-Sn合金層112K、113K、114K包含Cu與作為與Cu不同之異種金屬之Sn的合金,Cu係作為主成分而含有。
半導體晶片2K側之Cu-Sn合金層112K係於接合層11K中之與背部金屬9K之Cu層93K之界面附近,遍及其整個區域而形成。藉此,Cu-Sn合金層112K與背部金屬9K之Cu層93K相接觸。Cu-Sn合金層112K係例如沿著Z方向,自Bi系材料層111K之側朝向半導體晶片2K側具有由Cu6Sn5/Cu3Sn表示之積層結構。
另一方面,晶片焊墊3K側之Cu-Sn合金層113K係於接合層11K中之與晶片焊墊3K之表面31K的界面附近,遍及其整個區域而形成。藉此,Cu-Sn合金層113K與晶片焊墊3K之表面31K相接觸。Cu-Sn合金層113K係例如沿著Z方向,自Bi系材料層111K之側朝向晶片焊墊3K側具有由Cu6Sn5/Cu3Sn表示之積層結構。
再者,Cu-Sn合金層112K、113K亦可形成於接合層11K中之與晶片焊墊3K之表面31K的界面附近之一部分及接合層11K中之與背部金屬9K之Cu層93K的界面附近之一部分。
Cu-Sn合金層114K係以被覆Cu柱形凸塊18K之方式形成。
並且,Bi系材料層111K及Cu-Sn合金層112K、113K於晶片焊墊3K之表面31K與背部金屬9K之Cu層93K之間,形成有自Z方向之兩側由Cu-Sn合金層112K、113K夾住Bi系材料層111K之三層結構(Cu-Sn合金層112K/Bi系材料層111K/Cu-Sn合金層113K)。
如上所述之接合層11K之熔點例如為260~280℃,較佳為265~275℃。又,於半導體晶片2K與晶片焊墊3K已接合之狀態下,接合層11K之總厚度(Bi系材料層111K之厚度與Cu-Sn合金層112K、113K之厚度之合計)T例如為30.5~53μm。關於各層之厚度,例如,Bi系材料層111K之厚度為30~50μm,Cu-Sn合金層112K、113K之厚度為0.5~3μm。
晶片焊墊3K之背面32K(對佈線基板之安裝面)係自樹脂封裝體6K露出。於所露出之背面32K,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之背面鍍層12K。
電極引線4K係藉由在與晶片焊墊3K之各側面正交之各方向上之兩側分別各設置有相同數量,而配置於晶片焊墊3K之周圍。與晶片焊墊3K之各側面相對向之電極引線4K係沿著與其相對向之側面平行之方向等間隔地配置。各電極引線4K之與晶片焊墊3K之對向方向上之長度例如為440~460μm(較佳為450μm左右)。電極引線4K之表面41K(接線5K之連接面)係並非由藉由鍍敷或濺鍍等處理之金屬薄膜所被覆之非被覆面,構成引線框架10K之Cu系原材料露出於整個表面41K。
另一方面,電極引線4K之背面42K(對佈線基板之安裝面)係自樹 脂封裝體6K露出。於所露出之背面42K,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之背面鍍層13K。
接線5K包含銅(例如,為純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅等,有時含有微量之雜質)。接線5K係將一個電極焊墊8K與一條電極引線4K一對一地連接。
繼並且,於該半導體裝置1K中,與上述第1實施形態同樣地,半導體晶片2K之整個表面及整個側面、晶片焊墊3K之整個表面31K及整個側面、電極引線4K之整個表面41K及樹脂封裝體6K內之整個側面、以及整個接線5K均由一體性之不透水絕緣膜25K被覆。
作為樹脂封裝體6K,可應用環氧樹脂等眾所周知之材料。樹脂封裝體6K形成半導體裝置1K之外形,形成為大致長方體狀。關於樹脂封裝體6K之大小,其平面尺寸例如為4mm見方左右,其厚度例如為0.80~0.90mm,較佳為0.85mm左右。
圖98A~圖98D係按照步驟順序表示圖96所示之半導體裝置之製造步驟之模式性剖面圖。
為製造上述半導體裝置1K,例如,如圖98A所示,利用鍍敷法、濺鍍法等,於半導體晶片2K之Si基板7K之背面72K依序積層Au層91K、Ni層92K及Cu層93K,藉此形成有背部金屬9K。
另一方面,如圖98A所示,準備包含複數個單元之引線框架10K,該單元一體地包括晶片焊墊3K及電極引線4K。再者,於圖98A~圖98D中,省略引線框架10K之整體圖,僅表示搭載1個半導體晶片2K所需之1個單元份之晶片焊墊3K及電極引線4K。
其次,如圖98B所示,利用眾所周知之打線接合法,於晶片焊墊3K之表面31K形成複數個Cu柱形凸塊18K。繼而,將包括含有Sn之Bi系材料之接合膏14K塗佈於晶片焊墊3K之表面31K。
接合膏14K中之Sn含量宜為例如相對於背部金屬9K之Cu層93K及 晶片焊墊3K之表面31K之Cu可擴散總量之量,例如為4wt%以下,較佳為1~3wt%,更佳為1.5~2.5wt%。
於接合膏14K塗佈後,如圖98C所示,以使背部金屬9K之Cu層93K與Cu柱形凸塊18K之前端部182K及接合膏14K相接觸之方式,由半導體晶片2K及晶片焊墊3K夾住接合膏14K。繼而,例如於250~260℃下實施回焊(熱處理)。
藉此,如圖98D所示,背部金屬9K之Cu層93K、晶片焊墊3K之表面31K的Cu及Cu柱形凸塊18K的Cu之各者與接合膏14K中之Sn發生反應,而於Cu層93K及表面31K附近形成Cu-Sn合金層112K、113K。又,Cu柱形凸塊18K由Cu-Sn合金層114K所被覆。另一方面,接合膏14K中之Bi幾乎不與Cu發生反應,因此會殘存於Cu-Sn合金層112K、113K之間作為該等所夾持之Bi系材料層111K。
其後,藉由接線5K連接所有半導體晶片2K之各電極焊墊8K及與各電極焊墊8K相對應之電極引線4K。
於所有打線接合結束後,利用與圖4D相同之方法,形成不透水絕緣膜25K。於不透水絕緣膜25K形成後,將引線框架10K安放於成形模具,利用樹脂封裝體6K將所有半導體晶片2K與引線框架10K一併統一密封。繼而,於自樹脂封裝體6K露出之晶片焊墊3K之背面32K及電極引線4K之背面42K形成背面鍍層12K、13K。最後,使用切割機,將引線框架10K與樹脂封裝體6K一併切斷成各半導體裝置1K之尺寸,藉此獲得圖96所示之半導體裝置1K之單片。
如上所述,根據該半導體裝置1K,藉由Cu柱形凸塊18K支持Si基板7K,故而可將晶片焊墊3K與半導體晶片2K之距離至少維持在Cu柱形凸塊18K之高度。因此,藉由適當地調節Cu柱形凸塊18K之高度,可使具有總厚度T之接合層11K介插於晶片焊墊3K與半導體晶片2K之間。其結果為,可充分緩和Si基板7K、接合層11K及引線框架10K之 線膨脹係數之差所引起之應力。因此,可降低Si基板7K(半導體晶片2K)之翹曲量。因此,可防止Si基板7K中產生龜裂。又,由於無需增大Si基板7K及引線框架10K之厚度,因此半導體裝置1K之封裝體本體亦不會大型化。
進而,由於支持Si基板7K之間隔件為Cu柱形凸塊18K,且Cu之導熱率(約398W/m‧K)與Bi之導熱率(約9W/m‧K)相比非常大,因此可提高引線框架10K與Si基板7K之間之導熱性。故此,可經由Cu柱形凸塊18K使半導體晶片2K中所產生之熱散出至引線框架10K。因此,可充分確保半導體晶片2K之散熱性。
又,由於設置有4個Cu柱形凸塊18K,因此可由4點支持Si基板7K。藉此,能以相對於晶片焊墊3K之表面31K不傾斜之方式,使半導體晶片2K於Cu柱形凸塊18K上穩定。因此,可將引線框架10K與半導體晶片2K之距離設為大致均等之大小。其結果為,Z方向上之接合層11K之線膨脹係數變得均勻,故而可抑制接合層11K中之應力不均,可整體地緩和應力。又,由於可利用4個Cu柱形凸塊18K發散半導體晶片2K中所產生之熱,因此可進一步提高半導體晶片2K之散熱性。
又,於引線框架10K進行熱膨脹時,引線框架10K之熱會經由Cu柱形凸塊18K傳遞至Si基板7K。因此,於安裝半導體裝置1K時之回焊時,可藉由自引線框架10K所傳遞之熱,使Si基板7K熱膨脹。其結果為,可減小引線框架10K之熱膨脹量與Si基板7K之熱膨脹量之差,因此可降低Si基板7K之翹曲量。
又,作為引線框架之材料,除引線框架10K之Cu以外,已知有例如42合金(Fe-42% Ni)等Fe系原材料。42合金之熱膨脹係數約為4.4~7.0×10-6/℃。含有42合金之引線框架中,熱膨脹量小於含有Cu(熱膨脹係數約為16.7×10-6/℃)之引線框架10K之熱膨脹量,藉此有可能可減小引線框架之翹曲量。然而,於使用42合金之情形時,較使用 Cu之情形時更耗費成本,且散熱性下降。
與此相對,於該半導體裝置1K中,即使於含有Cu之引線框架10K之情形時,亦可藉由接合層11K充分緩和因引線框架10K之翹曲所引起之應力。因此,可毫無問題地使用Cu作為引線框架10K之材料,從而可維持成本或散熱性。
又,於上述製造步驟中,塗佈於晶片焊墊3K之表面31K之接合膏14K係以與背部金屬9K之Cu層93K相接觸之方式,由半導體晶片2K及晶片焊墊3K夾住。其後,藉由實施回焊(熱處理),形成包括Bi系材料層111K及Cu-Sn合金層112K、113K、114K之接合層11K。
於接合層11K之形成時,接合膏14K中之成分(Bi系材料及Sn)不與除Cu以外之金屬元素相接觸,進而,沿著半導體晶片2K與晶片焊墊3K之對向方向,於Bi系材料層111K之兩側形成Cu-Sn合金層112K、113K。
因此,可防止背部金屬9K之Au層91K中之Au或Ni層92K中之Ni等有可能降低Bi系材料層111K之特性之阻障金屬元素擴散至Bi系材料層111K。其結果為,可防止Bi與上述阻障金屬元素之金屬間化合物的形成及Bi與上述阻障金屬元素之共晶組合物的形成。藉此,可提高接合層11K之耐溫度週期性,並且可將接合層11K之熔點維持得較高。
另一方面,Bi系材料層111K與Cu-Sn合金層112K、113K、114K相接觸,但Cu幾乎不與Bi發生反應,因此幾乎不可能導致因該等層彼此之接觸所引起之接合層11K之熔點下降或耐溫度週期性之下降。又,由於Si基板7K與Cu柱形凸塊18K之接觸成為Cu層93K與Cu柱形凸塊18K之同種金屬彼此之接觸,因此可降低因Si基板7K與Cu柱形凸塊18K之接觸所帶來之影響(例如,Cu柱形凸塊18K之高電阻化、Cu柱形凸塊18K之侵蝕等)。
又,由於接合層11K包括Bi系材料層111K及Cu-Sn合金層112K、 113K、114K,因此可實現接合層11K之無鉛化。
又,Cu-Sn合金並非如Bi-Au合金、Bi-Ag合金等般硬而脆之金屬,而係高強度之金屬。因此,藉由Cu-Sn合金層112K、113K,可提高半導體晶片2K及引線框架10K與接合層11K之接合強度。
又,Sn之導熱率約為73W/m‧K,高於Bi之導熱率(約9W/m‧K)。因此,與接合層11K僅含有Bi之情形時相比,可提高接合層11K之導熱率。其結果為,可更加提高半導體晶片2K之散熱性。
又,由於Au層91K與Si基板7K之背面72K相接觸,因此可經由該Au層91K使Cu層93K與Si基板7K導通。藉此,可電性連接Si基板7K與晶片焊墊3K。
又,晶片焊墊3K之表面31K及電極引線4K之表面41K中之任一者均係未由藉由鍍敷或濺鍍等處理之金屬薄膜所被覆之非被覆面,故而於半導體裝置1K之製造時,無需對引線框架10K進行鍍敷或濺鍍等處理,因此可降低成本。
以上,對本發明之第11實施形態進行了說明,但該第11實施形態亦可變更如下。
例如,於上述實施形態中,係採用QFN類型之半導體裝置,但本發明亦可應用於QFP(Quad Flat Package)、SOP(Small Outline Package)等其他種類之封裝類型之半導體裝置。
又,例如,Cu柱形凸塊18K之數量可為1~3個,亦可為5個以上。數量越多,越可降低接合膏14K之使用量,因此可降低成本,且可進一步提高散熱性。
又,例如,如圖99所示,支持Si基板7K之Cu間隔件亦可為藉由如下方式形成之Cu配線(wiring)19K,即,利用打線接合法,於晶片焊墊3K之表面31K形成Cu導線之球形接合(1st接合),其次,將Cu導線繞成環狀,將球形接合之相反側接合(2nd接合)於表面31K後,自2nd 接合之位置扯斷Cu導線。
又,例如,接合層11K之副層不必為Cu-Sn合金層112K、113K、114K,亦可為例如包含Cu與作為與Cu不同之異種金屬的Zn(導熱率約為120W/m‧K)之合金,Cu係作為主成分而含有之Cu-Zn合金層。
又,例如,引線框架10K之表面(晶片焊墊3K之表面31K及電極引線4K之表面41K)不必為非被覆面,如圖100所示,亦可藉由實施鍍敷或濺鍍處理而形成被覆層15K。
於此情形時,與Si基板7K之背面72K同樣地,必需使Cu露出於引線框架10K之最表面。
例如,被覆層15K於晶片焊墊3K之表面31K上,如圖101A所示,形成有自晶片焊墊3K側起依序積層有Ag層16K及Cu層17K之雙層結構。藉由在Ag層16K上積層Cu層17K,可使Cu露出於引線框架10K中之與半導體晶片2K之整個對向面(表面31K)。
另一方面,於電極引線4K之表面41K上,被覆層15K如圖101B所示,形成僅形成有Ag層16K之單層結構。藉此,可使Ag露出於接線5K之整個連接面。因此,作為連接於電極引線4K之接線5K,不僅可利用Cu導線,而且可利用Au導線等各種導線。
又,背部金屬9K係設為具有將Au層91K、Ni層92K及Cu層93K分別積層有各一層之三層結構,但並不限定於此,例如亦可將該等層之至少一種積層複數層。於此情形時,可連續積層複數層,亦可於複數層之間介插有其他種類之層。
又,背部金屬9K亦可包含與Au層、Ni層及Cu層不同之層。例如,亦可包含Ag層、Ti層等。Ti層對於Si半導體可進行歐姆接觸,因此可代替Au層91K而應用。
又,例如,如圖102所示,背部金屬9K與Cu柱形凸塊18K之前端部182K亦可相隔開。於此情形時,於半導體晶片2K與晶片焊墊3K已 接合之狀態下,接合層11K之總厚度T大於Cu柱形凸塊18K之高度。因此,可增加Z方向上之接合層11K之線膨脹,而抑制X方向上之接合層11K之線膨脹。其結果為,可有效緩和對半導體晶片2K施加之應力。
又,於上述實施形態中,例示有接線5K由不透水絕緣膜25K被覆之態樣,但只要至少實現用以解決上述第11問題之第11目的,則亦可如圖103~圖105分別所示,不設置有不透水絕緣膜25K。
<第12實施形態圖106~圖156>
藉由該第12實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第12先前技術之第12問題。
(1)第12先前技術
於典型之半導體裝置中,係將半導體晶片配置於晶片焊墊上,藉由含有Au(金)之導線連接半導體晶片與配置於晶片焊墊之周圍之引線。具體而言,於半導體晶片之表面配置有含有Al(鋁)之焊墊。並且,含有Au之導線描繪著弓狀之迴路而架設於該焊墊之表面與引線之表面之間。
於導線架設時(打線接合時),於由打線接合機之焊針所保持之導線的前端形成FAB(Free Air Ball),該FAB抵接至焊墊之表面。此時,藉由焊針以特定之荷重將FAB向焊墊按壓,並且向設置於焊針之超聲波振動子供給特定之驅動電流,從而對FAB賦予超聲波振動。其結果為,將FAB一面與焊墊之表面發生摩擦一面按壓至焊墊之表面,實現導線與焊墊之表面之接合。其後,焊針朝向引線移動。繼而,將導線按壓至引線之表面,對導線賦予超聲波振動,並且扯斷導線。藉此,於焊墊之表面與引線之表面之間架設導線。
(2)第12問題
最近,市場上半導體裝置之價格競爭愈演愈烈,業界要求進一 步降低半導體裝置之成本。作為成本降低對策之一,正在研究用包含價格便宜之Cu(銅)之導線(銅導線)代替包含價格昂貴之Au之導線(金導線)。
然而,形成於銅導線之前端之FAB較形成於金導線之前端之FAB更硬,因此若於與金導線之情形時相同之條件(荷重及超聲波振動子之驅動電流之大小等)下將銅導線接合於焊墊,則無法獲得銅導線與焊墊之良好接合。目前,尚不明確可實現銅導線與焊墊之良好接合的條件,尚無法用銅導線積極代替金導線。
亦即,該第12實施形態之發明之第12目的在於提供一種可實現銅導線與焊墊之良好接合的打線接合方法。
(3)具體實施形態之揭示
圖106係本發明之第12實施形態之半導體裝置之模式性剖面圖。圖107係圖106所示之半導體裝置之模式性底視圖。
半導體裝置1L係應用有QFN(Quad Flat Non-leaded Package)之半導體裝置,其具有利用樹脂封裝體6L將半導體晶片2L與晶片焊墊3L、引線4L及銅導線5L一併密封之結構。半導體裝置1L(樹脂封裝體6L)之外形為扁平之長方體形狀。
於本實施形態中,半導體裝置1L之外形係平面形狀為4mm見方之正方形狀且厚度為0.85mm之六面體,以下列舉之半導體裝置1L之各部之尺寸係半導體裝置1L具有該外形尺寸之情形時之一例。
半導體晶片2L形成俯視時為2.3mm之正方形狀。半導體晶片2L之厚度為0.23mm。於半導體晶片2L之表面之周緣部,配置有複數個焊墊7L。各焊墊7L係與裝入在半導體晶片2L之電路電性連接。於半導體晶片2L之背面,形成有包含Au、Ni(鎳)、Ag(銀)等金屬層之背部金屬8L。
晶片焊墊3L及引線4L係藉由對金屬薄板(例如,銅薄板)進行衝壓 而形成。該金屬薄板(晶片焊墊3L及引線4L)之厚度為0.2mm。於晶片焊墊3L及引線4L之表面,形成有含有Ag之鍍層9L。
晶片焊墊3L形成俯視時為2.7mm之正方形狀,且以各側面與半導體裝置1L之側面形成平行之方式配置於半導體裝置1L之中央部。
於晶片焊墊3L之背面之周緣部,藉由自背面側之壓碎加工,遍及其全周形成有剖面為大致1/4橢圓形狀之凹處。並且,樹脂封裝體6L進入至該凹處。藉此,晶片焊墊3L之周緣部自其上下被樹脂封裝體6L夾住,從而防止晶片焊墊3L自樹脂封裝體6L之脫落(防脫)。
又,晶片焊墊3L之背面係除其周緣部(凹陷成剖面為大致1/4橢圓形狀之部分)以外,自樹脂封裝體6L之背面露出。
引線4L係於與晶片焊墊3L之各側面相對向之位置各設置有相同數量(例如,9條)。於與晶片焊墊3L之側面相對向之各位置,引線4L係沿著與其相對向之側面正交之方向延伸,且於與該側面平行之方向空開相等間隔而配置。引線4L之長度方向之長度為0.45mm。又,晶片焊墊3L與引線4L間之間隔為0.2mm。
於引線4L之背面之晶片焊墊3L側的端部,藉由自背面側之壓碎加工,形成有剖面為大致1/4橢圓形狀之凹處。並且,樹脂封裝體6L進入至該凹處。藉此,引線4L之晶片焊墊3L側之端部自其上下被樹脂封裝體6L夾住,從而防止引線4L自樹脂封裝體6L之脫落(防脫)。
引線4L之背面係除晶片焊墊3L側之端部(凹陷成剖面為大致1/4橢圓形狀之部分)以外,自樹脂封裝體6L之背面露出。又,引線4L之與晶片焊墊3L側為相反側之側面係自樹脂封裝體6L之側面露出。
於晶片焊墊3L及引線4L之背面中自樹脂封裝體6L露出之部分,形成有含有焊錫之鍍層10L。
並且,半導體晶片2L係以將配置有焊墊7L之表面朝向上方之狀態,將其背面經由接合材料11L接合於晶片焊墊3L之表面(鍍層9L)。 作為接合材料11L,例如使用焊錫膏。接合材料11L之厚度為0.02mm。
再者,於不需要半導體晶片2L與晶片焊墊3L之電性連接之情形時,亦可省略背部金屬8L,將半導體晶片2L之背面經由包含銀膏等絕緣膏之接合材料接合於晶片焊墊3L之表面。於此情形時,半導體晶片2L之平面尺寸成為2.3mm見方。又,晶片焊墊3L之表面上之鍍層9L亦可省略。
銅導線5L例如包含純度為99.99%以上之銅。銅導線5L之一端接合於半導體晶片2L之焊墊7L。銅導線5L之另一端接合於引線4L之表面。並且,銅導線5L描繪著弓狀之迴路而架設於半導體晶片2L與引線4L之間。該銅導線5L之迴路之頂部與半導體晶片2L之表面之高低差為0.16mm。
並且,於該半導體裝置1L中,與上述第1實施形態同樣地,半導體晶片2L之整個表面及整個側面、晶片焊墊3L之整個表面及整個側面、引線4L之整個表面、以及整個銅導線5L均由一體性之不透水絕緣膜25L被覆。
圖108係圖106所示之由虛線包圍之部分之放大圖。
焊墊7L包括含有Al之金屬,其形成於半導體晶片2L之最上層之層間絕緣膜12L上。於層間絕緣膜12L上形成有表面保護膜13L。焊墊7L將其周緣部由表面保護膜13L被覆,且中央部經由形成於表面保護膜13L之焊墊開口14L而露出。
銅導線5L接合於自表面保護膜13L露出之焊墊7L之中央部。如下所述,銅導線5L係藉由在其前端形成FAB,將FAB按壓至焊墊7L而接合。此時,FAB產生變形,藉此於銅導線5L中之與焊墊7L之接合部分,形成供神用圓形年糕形狀之第1球體部15L。又,焊墊7L之材料自第1球體部15L之下方緩慢地逼出至第1球體部15L之周圍,藉此不 自焊墊7L之表面大幅度浮起地形成逼出部16L。
例如,於銅導線5L之線徑為25μm之情形時,第1球體部15L之目標直徑(第1球體部15L之設計上之直徑)為74~76μm,第1球體部15L之目標厚度(第1球體部15L之設計上之厚度)為17~18μm。
圖109A~圖109D係表示圖106所示之半導體裝置之製造過程中(打線接合之過程中)之狀態的模式性剖面圖。
銅導線5L係於將晶片焊墊3L及引線4L連接於包圍該等之框架(未圖示)之狀態下,亦即於晶片焊墊3L及引線4L形成引線框架之狀態下,藉由打線接合機架設於半導體晶片2L與引線4L之間。
於打線接合機中包含焊針C。如圖109A所示,焊針C形成中心軸線上形成有導線插通孔41L之大致圓筒形狀。銅導線5L係插通至導線插通孔41L,且自導線插通孔41L之前端(下端)送出。
於焊針C之前端部,形成有於導線插通孔41L之下方與導線插通孔41L連通之圓錐台形狀之倒角42L。又,焊針C之前端部包括外表面43L,該外表面43L係連接於倒角42L之下端緣,並於銅導線5L與焊墊7L及引線4L之接合時(打線接合時)與該等相對向之面。外表面43L係相對於與焊針C之中心軸線正交之平面,以外側上升之方式緩緩傾斜。
首先,如圖109A所示,焊針C移動至焊墊7L之正上方。其次,於銅導線5L之前端位於倒角42L之狀態下,對銅導線5L之前端部施加電流,藉此於其前端部形成FAB44L。電流值及施加時間係根據銅導線5L之線徑及FAB44L之目標直徑(FAB44L之設計上之直徑)而適當設定。FAB44L之一部分係自倒角42L向其下方露出。
其後,如圖109B所示,焊針C朝向焊墊7L下降,藉由焊針C,將FAB44L按壓至焊墊7L。此時,藉由焊針C對FAB44L施加荷重,並且對FAB44L賦予由設置於焊針C之超聲波振動子(未圖示)產生振盪之超 聲波振動。
圖110係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
具體而言,如圖110所示,於FAB44L抵接至焊墊7L之時刻T1起經過特定時間之時刻T2為止之期間,自焊針C對FAB44L施加相對較大之初始荷重P1。將特定時間設定為3msec。又,初始荷重P1係根據第1球體部15L與焊墊7L之目標接合面積(相對於焊墊7L之第1球體部15L之設計上之接合面積)乘以一定之係數(於初始荷重P1之單位為g且接合面積之單位為mm2之情形時,例如為28786)所得之值而設定。於時刻T2以後,自焊針C施加至FAB44L之荷重下降,對FAB44L施加相對較小之荷重P2。該荷重P2係持續施加直至焊針C上升之時刻T4為止。
另一方面,較FAB44L抵接至焊墊7L之時刻T1更前起,對超聲波振動子施加相對較小之值U1之驅動電流。驅動電流值U1設定為小於30mA。
當FAB44L抵接至焊墊7L時,於此時之時刻T1至時刻T3為止之期間,施加至超聲波振動子之驅動電流值以一定之變化率(單調地)自值U1上升至相對較大之值U2。該變化率設定為21mA/msec以下。又,最終施加至超聲波振動子之驅動電流值U2係以將該值U2除以第1球體部15L之目標接合面積所得之值成為0.0197mA/μm2之方式設定。進而,以於對FAB44L施加初始荷重之特定時間內施加至超聲波振動子之驅動電流之積分值成為146mA‧msec以下之方式,設定驅動電流值U1、U2。於時刻T3以後,對超聲波振動子持續施加值U2之驅動電流直至成為時刻T4為止。
其結果為,FAB44L按焊針C之倒角42L及外表面43L之形狀發生變形,如圖108所示,於焊墊7L上形成供神用圓形年糕形狀之第1球體 部15L,並且於其周圍形成逼出部16L。藉此,實現銅導線5L與焊墊7L之接合(第1接合)。
當時刻T1起經過預定之接合時間,成為時刻T4時,焊針C朝向焊墊7L之上方離開。其後,焊針C朝向引線4L之表面向斜下方移動。繼而,如圖109C所示,對超聲波振動子施加驅動電流,對焊針C賦予超聲波振動,並且藉由焊針C,將銅導線5L按壓至引線4L之表面,進而將其扯斷。藉此,於引線4L之表面上形成包含銅導線5L之另一端部之側視時為楔狀之針腳部,從而實現銅導線與引線4L之接合(第2接合)。
其後,以另一焊墊7L及與其相對應之引線4L為對象,進行圖109A~圖109C所示之步驟。繼而,藉由重複圖109A~圖109C所示之步驟,如圖109D所示,於半導體晶片2L之所有焊墊7L與引線4L之間架設銅導線5L。於所有打線接合結束後,利用與圖4D相同之方法,形成不透水絕緣膜25L。
<接合面積與初始荷重之關係>
圖111係表示相對於焊墊之與第1球體部之接合面積與初始荷重之關係之圖表。
為考察相對於焊墊7L之第1球體部15L之接合面積與初始荷重之關係,進行有以下測試1~4。
(1)測試1
於線徑為25μm之銅導線5L之前端形成45μm之FAB44L,並使焊針C朝向焊墊7L下降而將FAB44L按壓至焊墊7L,從而於焊墊7L上形成藉由FAB44L之變形而形成之第1球體部15L。繼而,使FAB44L抵接至焊墊7L後施加至FAB44L之荷重大小進行各種變化。第1球體部15L之目標直徑為58μm,相對於焊墊之第1球體部之目標接合面積為0.00264mm2
可獲得接近目標直徑及目標接合面積之第1球體部15L之荷重為80g。又,當將該荷重除以實際獲得之接合面積,求出為形成接近目標之形狀之第1球體部15L所需之每單位面積之荷重(單位面積荷重)時,該單位面積荷重為30295g/mm2
(2)測試2
於線徑為25μm之銅導線5L之前端形成59μm之FAB44L,並使焊針C朝向焊墊7L下降而將FAB44L按壓至焊墊7L,從而於焊墊7L上形成藉由FAB44L之變形而形成之第1球體部15L。繼而,使FAB44L抵接至焊墊7L後施加至FAB44L之荷重大小發生各種變化。第1球體部15L之目標直徑為74μm,相對於焊墊之第1球體部之目標接合面積為0.0043mm2
可獲得接近目標直徑及目標接合面積之第1球體部15L之荷重為130g。又,當將該荷重除以實際獲得之接合面積,求出為形成接近目標之形狀之第1球體部15L所需之每單位面積之荷重(單位面積荷重)時,該單位面積荷重為30242g/mm2
(3)測試3
於線徑為30μm之銅導線5L之前端形成59μm之FAB44L,並使焊針C朝向焊墊7L下降而將FAB44L按壓至焊墊7L,從而於焊墊7L上形成藉由FAB44L之變形而形成之第1球體部15L。繼而,使FAB44L抵接至焊墊7L後施加至FAB44L之荷重大小發生各種變化。第1球體部15L之目標直徑為74μm,相對於焊墊之第1球體部之目標接合面積為0.0043mm2
可獲得接近目標直徑及目標接合面積之第1球體部15L之荷重為130g。又,當將該荷重除以實際獲得之接合面積,求出為形成接近目標之形狀之第1球體部15L所需之每單位面積之荷重(單位面積荷重)時,該單位面積荷重為30242g/mm2
(4)測試4
於線徑為38μm之銅導線5L之前端形成84μm之FAB44L,並使焊針C朝向焊墊7L下降而將FAB44L按壓至焊墊7L,從而於焊墊7L上形成藉由FAB44L之變形而形成之第1球體部15L。繼而,使FAB44L抵接至焊墊7L後施加至FAB44L之荷重大小發生各種變化。第1球體部15L之目標直徑為104μm,相對於焊墊之第1球體部之目標接合面積為0.00849mm2
可獲得接近目標直徑及目標接合面積之第1球體部15L之荷重為240g。又,當將該荷重除以實際獲得之接合面積,求出為形成接近目標之形狀之第1球體部15L所需之每單位面積之荷重(單位面積荷重)時,該單位面積荷重為28267g/mm2
根據上述測試1~4之結果可確認,不管銅導線5L之線徑、第1球體部15L之目標直徑及目標接合面積如何,為形成接近目標之形狀之第1球體部15L所需之每單位面積之荷重(單位面積荷重)大致相同。
又,若將各測試1~4中作為可獲得接近目標直徑及目標接合面積之第1球體部15L之荷重所求出之值,設為初始荷重P1而繪製於以X軸為目標接合面積且以Y軸為初始荷重之圖表區域,則成為如圖111所示,可確認在初始荷重P1與相對於焊墊7L之第1球體部15L之接合面積之間存在大致比例關係。
<特定時間之設定>
為適當地設定將初始荷重P1施加至FAB之特定時間,進行有以下測試1~3。
(1)測試1
於線徑為25μm之銅導線5L之前端形成FAB44L,並使焊針C朝向焊墊7L下降而將FAB44L按壓至焊墊7L,對FAB44L施加一定之荷重,從而於焊墊7L上形成藉由FAB44L之變形而形成之第1球體部15L。第1 球體部15L之目標直徑為58μm,其目標厚度為10μm。繼而,對於施加至FAB44L之荷重之大小為50g、80g及110g之各情況,考察伴隨著FAB44L抵接至焊墊7L後之經過時間的第1球體部15L之直徑及厚度之變化。將直徑(球體直徑)之時間變化示於圖112,並將厚度(球體厚度)之時間變化示於圖113。
(2)測試2
於線徑為25μm之銅導線5L之前端形成FAB44L,並使焊針C朝向焊墊7L下降而將FAB44L按壓至焊墊7L,對FAB44L施加一定之荷重,從而於焊墊7L上形成藉由FAB44L之變形而形成之第1球體部15L。第1球體部15L之目標直徑為76μm,其目標厚度為18μm。繼而,對於施加至FAB44L之荷重之大小為70g、90g、110g、130g、150g及200g之各情況,考察伴隨著FAB44L抵接至焊墊7L後之經過時間的第1球體部15L之直徑及厚度之變化。將直徑(球體直徑)之時間變化示於圖114,並將厚度(球體厚度)之時間變化示於圖115。
(3)測試3
於線徑為38μm之銅導線5L之前端形成FAB44L,並使焊針C朝向焊墊7L下降而將FAB44L按壓至焊墊7L,對FAB44L施加一定之荷重,從而於焊墊7L上形成藉由FAB44L之變形而形成之第1球體部15L。第1球體部15L之目標直徑為104μm,其目標厚度為25μm。繼而,對於施加至FAB44L之荷重之大小為200g、230g、250g、300g、400g及500g之各情況,考察伴隨著FAB44L抵接至焊墊7L後之經過時間的第1球體部15L之直徑及厚度之變化。將直徑(球體直徑)之時間變化示於圖116,並將厚度(球體厚度)之時間變化示於圖117。
如參照圖112~圖117可理解般,不管銅導線5L之線徑、荷重之大小以及第1球體部15L之目標直徑及目標厚度如何,均無法於FAB44L抵接至焊墊7L起未滿2msec內完成。另一方面,當FAB44L抵接至焊 墊7L起超過4msec時,FAB44L之直徑及厚度幾乎不發生變化,從而可認為FAB44L之變形已確實完成。更詳細而言,不管銅導線5L之線徑、荷重之大小以及第1球體部15L之目標直徑及目標厚度如何,均於FAB44L抵接至焊墊7L後經過大致3msec之時點,FAB44L之直徑及厚度之變化結束,從而可認為FAB44L之變形已完成。
因此,關於將初始荷重P1施加至FAB之特定時間,可認為適當的是2~4msec之範圍內,且可認為更適當的是3msec。
如上所述,於形成於銅導線5L之前端之FAB44L抵接至焊墊後,藉由焊針C對FAB44L施加相對較大之初始荷重P1。藉此,由於包含較Au更硬之金屬即Cu之FAB44L良好地變形,因此可使施加至FAB44L之初始荷重P1藉由FAB44L之變形而適當地衰減,並且使其有助於FAB44L與焊墊7L之接合。
又,由於FAB44L抵接至焊墊7L之前起,超聲波振動子進行振盪,因此自FAB44L抵接至焊墊7L之瞬間起,超聲波振動傳輸至FAB44L與焊墊7L之抵接部分,該抵接部分與焊墊7L發生摩擦。其結果為,可獲得接合完成後之FAB44L(第1球體部15L)之與焊墊7L之接合面之中央部(FAB44L與焊墊7L初次抵接之部分)良好地接合於焊墊7L之狀態。
於FAB44L抵接至焊墊7L後,施加至超聲波振動子之驅動電流值自值U1遞增至值U2。另一方面,FAB44L以被壓碎之方式變形,FAB44L與焊墊7L之抵接部分之面積遞增。藉此,自超聲波振動子傳輸至FAB44L之超聲波振動之能量遞增,又,與焊墊7L摩擦之FAB44L之面積遞增。其結果為,可抑制在第1球體部15L之中央部之下方中,焊墊7L及焊墊7L之下層之層間絕緣膜12L中產生因傳輸至FAB44L之超聲波振動之能量劇增所引起之龜裂等損傷,並且可獲得甚至第1球體部15L之與焊墊7L之接合面之周緣部亦良好地接合於焊墊7L之狀 態。
當包含Cu之FAB44L抵接至焊墊7L後經過特定時間時,由於FAB44L按壓至焊墊7L所引起之FAB44L之變形結束。亦即,當包含Cu之FAB44L抵接至焊墊7L後經過特定時間時,第1球體部15L之形狀完成。因此,當此後對FAB44L繼續施加較大之初始荷重P1時,超聲波振動不會良好地傳輸至FAB44L與焊墊7L之抵接部分。因此,FAB44L抵接至焊墊7L後經過特定時間後,施加至FAB44L之荷重會下降至荷重P2。藉此,可使超聲波振動良好地傳輸至FAB44L與焊墊7L之抵接部分。
因此,根據本實施形態之打線接合方法,既可防止焊墊7L及焊墊7L之下層之層間絕緣膜12L中產生損傷,又可獲得相對於焊墊7L之銅導線5L之良好接合,亦即第1球體部15L之與焊墊7L之接合面之整個區域良好地接合於焊墊7L之狀態。
施加至超聲波振動子之驅動電流值係於FAB44L抵接至焊墊7L後,以一定之變化率自值U1增加至值U2。並且,將該變化率設定為21mA/msec以下。藉此,可有效防止因傳輸至FAB44L之超聲波振動之能量劇增而引起焊墊7L及層間絕緣膜12L中產生損傷。
再者,作為相對於焊墊7L之FAB44L之接合方法,可考慮於FAB44L抵接至焊墊7L後,對FAB44L持續施加一定之荷重,並且對超聲波振動子持續施加一定之驅動電流。然而,於該方法中,無論如何設定施加至FAB44L之荷重大小及施加至超聲波振動子之驅動電流值,均無法將FAB44L充分地接合於焊墊7L,或者會產生所謂濺鍍,即焊墊7L之材料呈較薄之凸緣狀向FAB44L(第1球體部15L)之側方大幅地露出。
於本實施形態之打線接合方法中,藉由適當地設定自FAB44L抵接至焊墊7L之前起施加至超聲波振動子之驅動電流值及初始荷重之大 小,而防止該濺鍍產生。
亦即,將自FAB44L抵接至焊墊7L之前起施加至超聲波振動子之驅動電流值U1設定為小於30mA。藉此,可防止FAB44L抵接至焊墊7L後隨即傳輸至FAB44L之超聲波振動之能量變得過大。其結果為,可良好地防止濺鍍產生、以及於第1球體部15L之中央部之下方的焊墊7L及層間絕緣膜12L之損傷產生。
又,因不管銅導線5L之線徑如何,初始荷重P1與相對於焊墊7L之第1球體部15L之接合面積之間均大致存在比例關係,故而初始荷重P1之大小係根據相對於焊墊7L之第1球體部15L之目標接合面積乘以一定之係數所得之值而設定。藉此,不管銅導線5L之線徑如何,均可適當地設定初始荷重P1之大小。其結果為,可良好地防止濺鍍產生、以及於第1球體部15L之中央部之下方的焊墊7L及焊墊7L之下層之損傷產生,並且可實現FAB44L之良好之變形,從而可獲得第1球體部15L之與焊墊7L之接合面之中央部良好地接合於焊墊7L之狀態。
由於不管初始荷重P1之大小、以及第1球體部15L之目標直徑及厚度如何,FAB44L之變形均於FAB44L抵接至焊墊7L起大致3msec內完成,因此FAB44L抵接至焊墊7L起經過3msec後,施加至FAB44L之荷重自初始荷重P1下降至荷重P2。
又,以特定時間內施加至超聲波振動子之驅動電流之積分值成為146mA‧msec以下之方式,設定特定時間及驅動電流值U1、U2。藉此,會於自FAB44L抵接至焊墊7L算起之特定時間內對FAB44L傳輸適當能量之超聲波振動,因此可防止於第1球體部15L之中央部之下方,焊墊7L及層間絕緣膜12L中產生損傷,並且可獲得甚至第1球體部15L之與焊墊7L之接合面之周緣部亦良好地接合於焊墊7L之狀態。
最終施加至超聲波振動子之驅動電流值U2係以將該值U2除以第1球體部15L之目標接合面積所得之值成為0.0197mA/μm2以下之方式設 定。藉此,可防止於FAB44L之變形結束後傳輸至FAB44L之超聲波振動之能量變得過大,從而可良好地防止於第1球體部15L之周緣部之下方,焊墊7L及層間絕緣膜12L中產生損傷。
再者,於本實施形態中,係於自FAB44L抵接至焊墊7L算起之特定時間內,施加較荷重P2更大之初始荷重P1。然而,於增大使FAB44L接近於焊墊7L時之焊針C之移動速度且於整個接合時間內將一定之荷重施加至FAB之情形時,亦顯然,FAB44L抵接至焊墊7L之瞬間及其後隨即施加至FAB44L之荷重會變大,故而亦可獲得與對FAB44L施加初始荷重P1之情形相同之作用效果。
於銅導線5L之前端形成FAB44L,並使焊針C以一定之速度0.4mil/msec(約10.2μm/msec)朝向焊墊7L下降,將FAB44L按壓至焊墊7L,對FAB44L經3msec施加130g之荷重作為初始荷重P1,其後經9msec將荷重P2施加至FAB44L,藉此於焊墊7L上形成藉由FAB44L之變形而形成之第1球體部15L。將藉由SEM(Scanning Electron Microscope:掃描式電子顯微鏡)拍攝此時之第1球體部之附近所得之SEM圖像示於圖118。
又,於銅導線5L之前端形成FAB44L,並使焊針C以一定之速度1.00mil/msec(約2.45m/msec)朝向焊墊7L下降,將FAB44L按壓至焊墊7L,於FAB44L抵接至焊墊7L後經12msec對FAB44L施加45g之荷重,從而於焊墊7L上形成藉由FAB44L之變形而形成之第1球體部15L。將此時之第1球體部之附近之SEM圖像示於圖119。
對圖118與圖119進行觀察比較,可知第1球體部15L之形狀及逼出部16L之形狀大致相同。
以上,對本發明之第12實施形態進行了說明,但該第12實施形態亦可變更如下。
例如,於半導體裝置1L中係應用QFN,但本發明亦可應用於應 用有SON(Small Outlined Non-leaded Package)等其他種類之無引線封裝之半導體裝置之製造。
又,並不限定於引線之端面與樹脂封裝體之側面形成於同一平面之所謂切單類型,亦可將本發明應用於應用有引線自樹脂封裝體之側面突出之切腳類型之無引線封裝的半導體裝置之製造。
此外,並不限定於無引線封裝,亦可將本發明應用於應用有QFP(Quad Flat Package)等包括引線自樹脂封裝體突出而形成之外部引線之封裝體的半導體裝置之製造。
又,於上述實施形態中,例示有銅導線5L由不透水絕緣膜25L被覆之態樣,但只要至少實現用以解決上述第12問題之第12目的,則亦可如圖120所示,不設置有不透水絕緣膜25L。
[實施例]
其次,關於該第12實施形態進行有實驗。再者,本發明並不受限於下述實施例。
1.評價測試1
使用Micro-Swiss公司製造之焊針。該焊針具有如下之尺寸。倒角之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面之外徑即T尺寸為178μm(0.178mm)。於以包含中心軸線之平面切斷焊針所得之剖面(參照圖109A所示之剖面),沿著倒角之側面延伸之兩條直線所形成之角度即倒角角度為90°。外表面相對於與焊針之中心軸線正交之平面所形成之角度即外表面角為8°。於以包含中心軸線之平面切斷焊針所得之剖面,自焊針之側面之外表面之上端進而向上方延伸之部分與中心軸線所形成之角度為20°。外表面之上端部分形成圓弧狀,其曲率半徑即OR尺寸為20μm(0.020mm)。
將焊針配置於自包含Al-Cu系合金之焊墊之表面算起高度7mil(約178μm)之位置,並於線徑為25μm之銅導線之前端形成直徑為2.33 mil(約60μm)之FAB。繼而,使焊針以速度0.4mil/msec(約10.2μm/msec)朝向焊墊下降,將FAB按壓至焊墊,從而於焊墊上形成藉由FAB之變形而形成之第1球體部。第1球體部之目標直徑為74μm,相對於焊墊之第1球體部之目標接合面積為0.0043mm2
<實施例1>
如圖121所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經9msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,自FAB抵接至焊墊之前起,對設置於焊針之超聲波振動子施加15mA之驅動電流,並於FAB抵接至焊墊後,將施加至超聲波振動子之驅動電流值,於3.6msec期間內以一定之變化率(約20.83mA/msec)自15mA上升至90mA,並經直至焊針上升為止(自焊針之下降開始起經過29.5msec為止)之8.4msec保持對超聲波振動子施加有90mA之驅動電流之狀態。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為138.75mA‧msec。又,將最終施加至超聲波振動子之驅動電流值除以第1球體部之目標直徑之平方值所得之值約為0.0164mA/μm2,小於0.0197mA/μm2
<比較例1>
如圖122所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經9msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,於FAB抵接至焊墊之前,不對設置於焊針之超聲波振動子施加驅動電流,並於FAB抵接至焊墊後,使施加至超聲波振動子之驅動 電流值,於3.6msec期間內以一定之變化率(25mA/msec)自0mA上升至90mA,並經直至焊針上升為止(自焊針之下降開始起經過29.5msec為止)之8.4msec保持對超聲波振動子施加有90mA之驅動電流之狀態。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為112.5mA‧msec。
<比較例2>
如圖123所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經9msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,自FAB抵接至焊墊之前起,對設置於焊針之超聲波振動子施加15mA之驅動電流,於FAB抵接至焊墊起經過3.6msec之時點,使施加至超聲波振動子之驅動電流值自15mA瞬間上升至90mA,並經直至焊針上升為止(自焊針之下降開始起經過29.5msec為止)之8.4msec保持對超聲波振動子施加有90mA之驅動電流之狀態。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內,不對超聲波振動子施加驅動電流。
<比較例3>
如圖124所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經9msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,於FAB抵接至焊墊之前,不對設置於焊針之超聲波振動子施加驅動電流,並於FAB抵接至焊墊起經過3.6msec之時點,使施加至超聲波振動子之驅動電流值自0mA瞬間上升至90mA,並經直至焊針上升為止(自焊針之下降開始起經過29.5msec為止)之8.4msec保持對 超聲波振動子施加有90mA之驅動電流之狀態。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內,不對超聲波振動子施加驅動電流。
(1)濺鍍評價(外觀評價)
使用SEM觀察實施例1及比較例1~3之第1球體部之附近。將實施例1之第1球體部之附近之SEM圖像示於圖125。將比較例1~3之第1球體部之附近之SEM圖像分別示於圖126~圖128。
如圖126~圖128所示,已確認到實施例1及比較例1~3中之任一者之焊墊材料均些許逼出至第1球體部之側方,並未產生濺鍍。
(2)球體背面評價
自焊墊剝離實施例1及比較例1~3之第1球體部,並使用SEM觀察第1球體部之與焊墊之接合面。將實施例1之第1球體部之接合面之SEM圖像示於圖129。將比較例1~3之第1球體部之接合面之SEM圖像示於圖130~圖132。
如圖129所示,已確認到於實施例1之第1球體部中,於其接合面之大致整個區域有因超聲波振動所造成之微細劃痕。此情況證明在自FAB抵接至焊墊之瞬間起直至第1球體部之形狀完成為止之整個期間內,超聲波振動均良好地傳輸至FAB,由於該超聲波振動,相對於焊墊之FAB之抵接部分之整個區域與焊墊發生摩擦。
如圖130所示,已確認到於比較例1之第1球體部,於其接合面之中央部之一部分中存在沒有因超聲波振動所造成之劃痕之部分Po1。可認為此種部分Po1存在之原因在於:於FAB抵接至焊墊後,超聲波振動未立即傳輸至FAB,故相對於焊墊之FAB之抵接部分未發生摩擦。
如圖131所示,已確認到於比較例2之第1球體部,於其接合面之中央部與周緣部之間存在沒有因超聲波振動所造成之劃痕之部分 Po2。可認為此種部分Po2存在之原因在於:自FAB抵接至焊墊之瞬間起,超聲波振動傳輸至FAB,但於FAB變形為第1球體部之過程中,超聲波振動不充分。
如圖132所示,確認到於比較例3之第1球體部,僅於其接合部之周緣部中有因超聲波振動所造成之微細劃痕,且於中央部中存在沒有劃痕之部分Po3。可認為此種部分Po3存在之原因在於:僅於FAB變形為第1球體部後,超聲波振動傳輸至FAB。
(3)焊墊上之評價
用發煙硝酸熔解包含實施例1及比較例1~3之第1球體部之銅導線,使用光學顯微鏡觀察焊墊之與第1球體部之接合面。將實施例1之焊墊之圖像示於圖133。將比較例1~3之焊墊之圖像示於圖134~圖136。
再者,於該評價測試之前,已進行用以檢查半導體晶片是否為合格品之EDS(Electric Die Sort,電性晶片篩選),故而於FAB之接合前,已有EDS用之檢查探針抵壓至各焊墊之表面所造成之針跡。
如圖133所示,已確認到針跡自實施例1之焊墊消失。此情況證明FAB被以針跡自焊墊消失之程度按壓至焊墊,FAB(第1球體部)已牢固地接合於焊墊。
與此相對,如圖134~圖136所示,已確認到於比較例1~3之焊墊中殘留有針跡。
(4)焊墊下之評價
用發煙硝酸熔解包含實施例1及比較例1~3之第1球體部之銅導線,進而去除焊墊,使用光學顯微鏡觀察由此所露出之層間絕緣膜之表面。將實施例1之層間絕緣膜之表面之圖像示於圖137。將比較例1~3之層間絕緣膜之表面之圖像示於圖138~圖140。
如圖137~圖140所示,已確認到實施例1及比較例1~3中之任一者 於層間絕緣膜中均未產生龜裂等損傷。
2.評價測試2
使用Micro-Swiss公司製造之焊針。該焊針具有如下之尺寸。倒角之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針所得之剖面(參照圖109A所示之剖面),沿著倒角之側面延伸之兩條直線所形成之角度即倒角角度為90°。外表面相對於與焊針之中心軸線正交之平面所形成之角度即外表面角為8°。於以包括中心軸線之平面切斷焊針所得之剖面,自焊針之側面之外表面之上端進而向上方延伸之部分與中心軸線所形成之角度為20°。外表面之上端部分形成圓弧狀,其曲率半徑即OR尺寸為20μm(0.020mm)。
將焊針配置於自包含Al-Cu系合金之焊墊之表面算起高度7mil(約178μm)之位置,並於線徑為25μm之銅導線之前端形成直徑為2.33mil(約60μm)之FAB。繼而,使焊針以速度0.4mil/msec(約10.2μm/msec)朝向焊墊下降,將FAB按壓至焊墊,從而於焊墊上形成藉由FAB之變形而形成之第1球體部。第1球體部之目標直徑為74μm,相對於焊墊之第1球體部之目標接合面積為0.00430mm2
如圖141所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經9msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,於FAB抵接至焊墊之前起,對設置於焊針之超聲波振動子施加20mA之驅動電流,並於FAB抵接至焊墊後,將施加至超聲波振動子之驅動電流值以一定之變化率自20mA上升至90mA,並保持對超聲波振動子施加有90mA之驅動電流之狀態直至焊針上升為止(自焊針之下降開始起經過29.5msec為止)。於實施例2及比較例4~8中,施加 至超聲波振動子之驅動電流值自20mA達到90mA為止所耗之時間(Ramp Up Time:緩升時間)各不相同。於實施例2及比較例4~8之任一者中,將最終施加至超聲波振動子之驅動電流值除以第1球體部之目標接合面積所得之值均約為0.0164mA/μm2,小於0.0197mA/μm2
<實施例2>
於實施例2中,將緩升時間設定為3.6msec。換言之,將自FAB抵接至焊墊起直至焊針上升為止之時間(12msec。以下稱作「接合時間」)之30%設定為緩升時間。藉此,FAB抵接至焊墊後,施加至超聲波振動子之驅動電流係以約19.44mA/msec之變化率自20mA上升至90mA。因此,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為147.5mA‧msec。
<比較例4>
於比較例4中,將緩升時間設定為3.0msec。換言之,將接合時間之25%設定為緩升時間。藉此,FAB抵接至焊墊後,施加至超聲波振動子之驅動電流係以約23.33mA/msec之變化率自20mA上升至90mA。因此,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為165mA‧msec。
<比較例5>
於比較例5中,將緩升時間設定為2.4msec。換言之,將接合時間之20%設定為緩升時間。藉此,FAB抵接至焊墊後,施加至超聲波振動子之驅動電流係以約29.17mA/msec之變化率自20mA上升至90mA。因此,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為207mA‧msec。
<比較例6>
於比較例6中,將緩升時間設定為1.8msec。換言之,將接合時間之15%設定為緩升時間。藉此,FAB抵接至焊墊後,施加至超聲波 振動子之驅動電流係以約38.89mA/msec之變化率自20mA上升至90mA。因此,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為228mA‧msec。
<比較例7>
於比較例7中,將緩升時間設定為1.2msec。換言之,將接合時間之10%設定為緩升時間。藉此,FAB抵接至焊墊後,施加至超聲波振動子之驅動電流係以約58.33mA/msec之變化率自20mA上升至90mA。因此,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為249mA‧msec。
<比較例8>
於比較例8中,將緩升時間設定為0msec。換言之,將接合時間之0%設定為緩升時間。
(1)龜裂評價
對於實施例2及比較例4~8之各者,使FAB接合於48個焊墊,而考察各焊墊之下層之層間絕緣膜中是否產生有龜裂,並計算龜裂產生率(下層之層間絕緣膜中產生有龜裂之焊墊之數量/48×100)。將該計算結果示於圖142。
如圖142所示,已確認到於緩升時間為接合時間之30%且驅動電流之變化率約為19.44mA/msec之實施例1中,未產生層間絕緣膜之龜裂。
與此相對,已確認到於緩升時間為接合時間之25%以下且驅動電流之變化率約為23.33mA/msec以上之比較例4~8中,會產生層間絕緣膜之龜裂。
3.評價測試3
使用Micro-Swiss公司製造之焊針。該焊針具有如下之尺寸。倒角之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面之外徑即T 尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針所得之剖面(參照圖109A所示之剖面),沿著倒角之側面延伸之兩條直線所形成之角度即倒角角度為90°。外表面相對於與焊針之中心軸線正交之平面所形成之角度即外表面角為8°。於以包括中心軸線之平面切斷焊針所得之剖面,自焊針之側面之外表面之上端進而向上方延伸之部分與中心軸線所形成之角度為20°。外表面之上端部分形成圓弧狀,其曲率半徑即OR尺寸為20μm(0.020mm)。
將焊針配置於自包含Al-Cu系合金之焊墊之表面算起高度7mil(約178μm)之位置,並於線徑為25μm之銅導線之前端形成直徑為2.33mil(約60μm)之FAB。繼而,使焊針以速度0.4mil/msec(約10.2μm/msec)朝向焊墊下降,將FAB按壓至焊墊,從而於焊墊上形成藉由FAB之變形而形成之第1球體部。第1球體部之目標直徑為74μm,相對於焊墊之第1球體部之目標接合面積為0.00430mm2
如圖143所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經9msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,自FAB抵接至焊墊之前起,對設置於焊針之超聲波振動子施加驅動電流,並於FAB抵接至焊墊後,使施加至超聲波振動子之驅動電流值於3.6msec期間內以一定之變化率上升至90mA,並保持對超聲波振動子施加有90mA之驅動電流之狀態直至焊針上升為止(自焊針之下降開始起經過29.5msec為止)。於實施例3~7及比較例9~11中,自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值各不相同。於實施例3~7及比較例9~11之任一者中,將最終施加至超聲波振動子之驅動電流值除以第1球體部之目標接合面積所得之值均約為0.0164mA/μm2,小於0.0197mA/μm2
<實施例3>
於實施例3中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為0mA。藉此,FAB抵接至焊墊後,施加至超聲波振動子之驅動電流係以25mA/msec之變化率自0mA上升至90mA。因此,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為112.5mA‧msec。
<實施例4>
於實施例4中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為10mA。藉此,FAB抵接至焊墊後,施加至超聲波振動子之驅動電流係以約22.22mA/msec之變化率自10mA上升至90mA。因此,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為130mA‧msec。
<實施例5>
於實施例5中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為15mA。藉此,FAB抵接至焊墊後,施加至超聲波振動子之驅動電流係以約20.83mA/msec之變化率自15mA上升至90mA。因此,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為138.75mA‧msec。
<實施例6>
於實施例6中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為20mA。藉此,FAB抵接至焊墊後,施加至超聲波振動子之驅動電流係以約19.44mA/msec之變化率自20mA上升至90mA。因此,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為147.5mA‧msec。
<實施例7>
於實施例7中,將自FAB抵接至焊墊之前起施加至超聲波振動子 之驅動電流值設定為25mA。藉此,FAB抵接至焊墊後,施加至超聲波振動子之驅動電流係以約18.06mA/msec之變化率自25mA上升至90mA。因此,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為156.25mA‧msec。
<比較例9>
於比較例9中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為30mA。藉此,FAB抵接至焊墊後施加至超聲波振動子之驅動電流係以約16.67mA/msec之變化率自30mA上升至90mA。因此,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為165mA‧msec。
<比較例10>
於比較例10中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為60mA。藉此,FAB抵接至焊墊後,施加至超聲波振動子之驅動電流係以約8.34mA/msec之變化率自60mA上升至90mA。因此,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為255mA‧msec。
<比較例11>
於比較例11中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為90mA。亦即,於FAB抵接至焊墊之前後,施加至超聲波振動子之驅動電流值均不產生變動。因此,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為270mA‧msec。
(1)龜裂評價
對於實施例3~7及比較例9~11之各者,使FAB接合於48個焊墊,考察各焊墊之下層之層間絕緣膜中是否產生有龜裂,並計算龜裂產生率(下層之層間絕緣膜中產生有龜裂之焊墊之數量/48×100)。
將該計算結果示於圖144。
如圖144所示,已確認到於自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值為25mA以下之實施例3~7中,未產生層間絕緣膜之龜裂。
與此相對,已確認到於自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值為30mA以上之比較例9~11中,產生有層間絕緣膜之龜裂。
4.評價測試4
使用Micro-Swiss公司製造之焊針。該焊針具有如下之尺寸。倒角之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針所得之剖面(參照圖109A所示之剖面),沿著倒角之側面延伸之兩條直線所形成之角度即倒角角度為90°。外表面相對於與焊針之中心軸線正交之平面所形成之角度即外表面角為8°。於以包括中心軸線之平面切斷焊針所得之剖面,自焊針之側面之外表面之上端進而向上方延伸之部分與中心軸線所形成之角度為20°。外表面之上端部分形成圓弧狀,其曲率半徑即OR尺寸為20μm(0.020mm)。
將焊針配置於自包含Al-Cu系合金之焊墊之表面算起高度7mil(約178μm)之位置,並於線徑為25μm之銅導線之前端形成直徑為2.33mil(約60μm)之FAB。繼而,使焊針以速度0.4mil/msec(約10.2μm/msec)朝向焊墊下降,將FAB按壓至焊墊,從而於焊墊上形成藉由FAB之變形而形成之第1球體部。第1球體部之目標直徑為76μm,第1球體部之目標厚度為18μm。
<實施例8>
於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至 30g,經9msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,於自FAB抵接至焊墊之時點起直至焊針上升為止(自焊針之下降開始起經過29.5msec為止),保持對超聲波振動子施加有90mA之驅動電流之狀態。將施加至超聲波振動子之驅動電流值除以第1球體部之目標接合面積所得之值約為0.0164mA/μm2,小於0.0197mA/μm2
<比較例12>
於自FAB抵接至焊墊起直至焊針上升為止之期間內,保持對FAB施加有30g之荷重之狀態。
又,於自FAB抵接至焊墊之時點起直至焊針上升為止(自焊針之下降開始起經過29.5msec為止),保持對超聲波振動子施加有130mA之驅動電流之狀態。
<比較例13>
於自FAB抵接至焊墊起直至焊針上升為止之期間內,保持對FAB施加有90g之荷重之狀態。
又,於自FAB抵接至焊墊之時點起直至焊針上升為止(自焊針之下降開始起經過29.5msec為止),保持對超聲波振動子施加有130mA之驅動電流之狀態。
<比較例14>
於自FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經9msec保持對FAB施加自30g之荷重之狀態。其後,使焊針上升。
又,於自FAB抵接至焊墊之時點起直至焊針上升為止(自焊針之下降開始起經過29.5msec為止),保持對超聲波振動子施加有70mA 之驅動電流之狀態。
(1)濺鍍評價(外觀評價1)
使用SEM觀察實施例8及比較例12~14之第1球體部之附近。將實施例8之第1球體部之附近之SEM圖像示於圖145。將比較例12~14之第1球體部之附近之SEM圖像分別示於圖146~圖148。
如圖145、148所示,已確認到於FAB抵接至焊墊後對FAB施加初始荷重之實施例8及比較例14中,焊墊之材料均些許逼出至第1球體部之側方,且均未產生濺鍍。
與此相對,如圖146、147所示,已確認到於對FAB未施加初始荷重之比較例12、13中,焊墊之材料均呈較薄之凸緣狀大幅露出至第1球體部之側方,且均產生濺鍍。
(2)剪切試驗評價1
對於實施例8及比較例12~14之各者,懸掛於剪切試驗機(接合強度測試機),以利用剪切試驗機之工具剪切第1球體部與焊墊之接合部分之方式,自其側方沿著與焊墊之表面平行之方向按壓而加以破壞。將利用光學顯微鏡觀察實施例8之破壞後之焊墊之圖像示於圖149。將利用光學顯微鏡觀察比較例12之破壞後之焊墊之圖像示於圖150。將利用光學顯微鏡觀察比較例13之破壞後之焊墊之圖像示於圖151,且將利用光學顯微鏡觀察該破壞後之第1球體部之底面(與焊墊接合之面)之圖像示於圖152。將利用光學顯微鏡觀察比較例14之破壞後之焊墊之圖像示於圖153。
如對圖149、153與圖150、151進行比較可理解般,經接合時間之整個時間對FAB施加較大荷重之比較例12及對超聲波振動子施加較大值之驅動電流之比較例13之第1球體部,與實施例8及比較例14之第1球體部相比,較強地陷入至焊墊。因此,視覺上可確認比較例12、13與實施例8及比較例14相比,第1球體部與焊墊之接合強度較大。
然而,如參照圖152可理解般,於比較例13中,傳輸至第1球體部之超聲波振動之能量過大,故而第1球體部過度陷入至焊墊,從而第1球體部之靠近銅導線之部分已切斷。由此可認為其接合強度華而不實,實質性之強度並不大。
(3)外觀評價2
對於實施例8及比較例12~14之各者,將FAB接合於80個焊墊,測定由此所形成之各第1球體部之直徑及厚度。因第1球體部於俯視時並非為完整之圓形,故而就與焊墊之表面平行之X方向及Y方向之兩個方向測定其直徑。將直徑之測定結果示於圖154。將厚度之測定結果示於圖155。
如圖154、155所示,已確認到於實施例8及比較例12~14之任一者中,均可形成目標直徑及目標厚度之第1球體部,但比較例12、13之第1球體部與實施例8及比較例14之第1球體部相比,其直徑及厚度之偏差均較大。
(4)剪切試驗評價2
於剪切試驗評價1中,將第1球體部與焊墊之接合部分自側方按壓而加以破壞時,測定該破壞所需之力(剪切強度)。將其測定結果示於圖156。
如圖156所示,已確認到比較例12、13與實施例8及比較例14相比,剪切強度較大,但其偏差亦較大。
又,已確認到實施例8與比較例14相比,剪切強度較大。
<第13實施形態圖157~圖168>
藉由該第13實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第13先前技術之第13問題。
(1)第13先前技術
於典型之半導體裝置中,係將半導體晶片配置於晶片焊墊上,藉由含有Au(金)之導線連接半導體晶片與配置於晶片焊墊之周圍之引線。具體而言,於半導體晶片之表面配置有含有Al(鋁)之焊墊。並且,含有Au之導線描繪著弓狀之迴路而架設於該焊墊之表面與引線之表面之間。
於導線之架設時(打線接合時),於由打線接合機之焊針所保持之導線之前端形成FAB(Free Air Ball),且該FAB抵接至焊墊之表面。此時,藉由焊針以特定之荷重將FAB向焊墊按壓,並且向設置於焊針之超聲波振動子供給特定之驅動電流,從而對FAB賦予超聲波振動。其結果為,將FAB一面與焊墊之表面發生摩擦一面按壓至焊墊之表面,從而實現導線與焊墊之表面之接合。其後,焊針朝向引線移動。繼而,將導線按壓至引線之表面,對導線賦予超聲波振動,並且扯斷導線。藉此,於焊墊之表面與引線之表面之間架設導線。
(2)第13問題
最近,市場上半導體裝置之價格競爭愈演愈烈,業界要求進一步降低半導體裝置之成本。作為成本降低對策之一,正在研究用包含價格便宜之Cu(銅)之導線(銅導線)代替包含價格昂貴之Au之導線(金導線)。
然而,形成於銅導線之前端之FAB較形成於金導線之前端之FAB更硬,因此若於與金導線之情形時相同之條件(荷重及超聲波振動子之驅動電流之大小等)下將銅導線接合於焊墊,則無法獲得銅導線與焊墊之良好接合。目前,尚不明確可實現銅導線與焊墊之良好接合的條件,尚無法由銅導線積極代替金導線。
亦即,該第13實施形態之發明之第13目的在於提供一種可實現銅導線與焊墊之良好接合的打線接合方法。
(3)具體實施形態之揭示
圖157係本發明之第13實施形態之半導體裝置之模式性剖面圖。圖158係圖157所示之半導體裝置之模式性底視圖。
半導體裝置1M係應用有QFN(Quad Flat Non-leaded Package)之半導體裝置,其具有利用樹脂封裝體6M將半導體晶片2M與晶片焊墊3M、引線4M及銅導線5M一併密封之結構。半導體裝置1M(樹脂封裝體6M)之外形為扁平之長方體形狀。
於本實施形態中,半導體裝置1M之外形係平面形狀為4mm見方之正方形狀且厚度為0.85mm之六面體,以下列舉之半導體裝置1M之各部之尺寸係半導體裝置1M具有該外形尺寸之情形時之一例。
半導體晶片2M形成俯視時為2.3mm之正方形狀。半導體晶片2M之厚度為0.23mm。於半導體晶片2M之表面之周緣部,配置有複數個焊墊7M。各焊墊7M係與裝入在半導體晶片2M之電路電性連接。於半導體晶片2M之背面,形成有包含Au、Ni(鎳)、Ag(銀)等金屬層之背部金屬8M。
晶片焊墊3M及引線4M係藉由對金屬薄板(例如,銅薄板)進行衝壓而形成。該金屬薄板(晶片焊墊3M及引線4M)之厚度為0.2mm。於晶片焊墊3M及引線4M之表面,形成有含有Ag之鍍層9M。
晶片焊墊3M形成俯視時為2.7mm之正方形狀,且以各側面與半導體裝置1M之側面形成平行之方式配置於半導體裝置1M之中央部。
於晶片焊墊3M之背面之周緣部,藉由自背面側之壓碎加工,遍及其全周形成有剖面為大致1/4橢圓形狀之凹處。繼而,樹脂封裝體6M進入至該凹處。藉此,晶片焊墊3M之周緣部自其上下被樹脂封裝體6M夾住,從而防止晶片焊墊3M自樹脂封裝體6M脫落(防脫)。
又,晶片焊墊3M之背面係除其周緣部(凹陷成剖面為大致1/4橢圓形狀之部分)以外,自樹脂封裝體6M之背面露出。
引線4M係於與晶片焊墊3M之各側面相對向之位置各設置有相同 數量(例如,9條)。於與晶片焊墊3M之側面相對向之各位置,引線4M沿著與其相對向之側面正交之方向延伸,且沿著與該側面平行之方向空開相等間隔而配置。引線4M之長度方向之長度為0.45mm。又,晶片焊墊3M與引線4M間之間隔為0.2mm。
於引線4M之背面之晶片焊墊3M側之端部,藉由自背面側之壓碎加工,形成有剖面為大致1/4橢圓形狀之凹處。繼而,樹脂封裝體6M進入至該凹處。藉此,引線4M之晶片焊墊3M側之端部自其上下被樹脂封裝體6M夾住,從而防止引線4M自樹脂封裝體6M之脫落(防脫)。
引線4M之背面係除晶片焊墊3M側之端部(凹陷成剖面為大致1/4橢圓形狀之部分)以外,自樹脂封裝體6M之背面露出。又,引線4M之與晶片焊墊3M側為相反側之側面自樹脂封裝體6M之側面露出。
於晶片焊墊3M及引線4M之背面中自樹脂封裝體6M露出之部分,形成有含有焊錫之鍍層10M。
並且,半導體晶片2M係以將配置有焊墊7M之表面朝向上方之狀態,其背面經由接合材料11M接合於晶片焊墊3M之表面(鍍層9M)。作為接合材料11M,例如使用焊錫膏。接合材料11M之厚度為0.02mm。
再者,於不需要半導體晶片2M與晶片焊墊3M之電性連接之情形時,亦可省略背部金屬8M,將半導體晶片2M之背面經由包含銀膏等絕緣膏之接合材料接合於晶片焊墊3M之表面。於此情形時,半導體晶片2M之平面尺寸成為2.3mm見方。又,晶片焊墊3M之表面上之鍍層9M亦可省略。
銅導線5M例如包含純度99.99%以上之銅。銅導線5M之一端接合於半導體晶片2M之焊墊7M。銅導線5M之另一端接合於引線4M之表面。並且,銅導線5M描繪著弓狀之迴路架設於半導體晶片2M與引線4M之間。該銅導線5M之迴路之頂部與半導體晶片2M之表面之高低差 為0.16mm。
並且,於該半導體裝置1M中,與上述第1實施形態同樣地,半導體晶片2M之整個表面及整個側面、晶片焊墊3M之整個表面及整個側面、引線4M之整個表面、以及整個銅導線5M均由一體性之不透水絕緣膜25M被覆。
圖159係圖157所示之由虛線包圍之部分之放大圖。
焊墊7M包括含有Al之金屬,其形成於半導體晶片2M之最上層之層間絕緣膜12M上。於層間絕緣膜12M上形成有表面保護膜13M。焊墊7M中,其周緣部由表面保護膜13M被覆,且中央部經由形成於表面保護膜13M之焊墊開口14M而露出。
銅導線5M係接合於自表面保護膜13M露出之焊墊7M之中央部。如下所述,銅導線5M係藉由在其前端形成FAB,將FAB按壓至焊墊7M而接合。此時,FAB產生變形,藉此於銅導線5M中之與焊墊7M之接合部分,形成供神用圓形年糕形狀之第1球體部15M。又,焊墊7M之材料自第1球體部15M之下方緩慢地逼出至第1球體部15M之周圍,藉此不自焊墊7M之表面大幅度浮起地形成逼出部16M。
例如,於銅導線5M之線徑為25μm之情形時,第1球體部15M之目標直徑(第1球體部15M之設計上之直徑)為74~76μm,第1球體部15M之目標厚度(第1球體部15M之設計上之厚度)為17~18μm。
圖160A~160D係用以按照步驟順序說明第13實施形態之半導體裝置之製造方法之模式性剖面圖。
銅導線5M係於晶片焊墊3M及引線4M連接於將該等包圍之框架(未圖示)之狀態下,亦即於晶片焊墊3M及引線4M形成引線框架之狀態下,藉由打線接合機架設於半導體晶片2M與引線4M之間。
於打線接合機中包含焊針C。如圖160A所示,焊針C形成中心軸線上形成有導線插通孔41M之大致圓筒形狀。銅導線5M係插通至導 線插通孔41M,而自導線插通孔41M之前端(下端)送出。
於焊針C之前端部,形成有於導線插通孔41M之下方與導線插通孔41M連通之圓錐台形狀之倒角42M。又,焊針C之前端部包括外表面43M,該外表面43M係連接於倒角42M之下端緣,並於銅導線5M與焊墊7M及引線4M之接合時(打線接合時)與該等相對向之面。外表面43M係相對於與焊針C之中心軸線正交之平面,以外側上升之方式緩緩傾斜。
首先,如圖160A所示,焊針C移動至焊墊7M之正上方。其次,於銅導線5M之前端位於倒角42M之狀態下,對銅導線5M之前端部施加電流,藉此於其前端部形成FAB44M。電流值及施加時間係根據銅導線5M之線徑及FAB44M之目標直徑(FAB44M之設計上之直徑)而適當設定。FAB44M之一部分係自倒角42M向其下方露出。
其後,如圖160B所示,焊針C朝向焊墊7M下降,藉由焊針C,將FAB44M按壓至焊墊7M。此時,藉由焊針C對FAB44M施加荷重,並且對FAB44M賦予由設置於焊針C之超聲波振動子(未圖示)產生振盪之超聲波振動。
圖161係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
例如,如圖161所示,於自FAB44M抵接至焊墊7M之時刻T1起經過特定時間之時刻T2為止之期間,自焊針C對FAB44M施加相對較大之初始荷重P1。將特定時間設定為3msec以下。又,初始荷重P1係根據第1球體部15M與焊墊7M之目標接合面積(相對於焊墊7M之第1球體部15M之設計上之接合面積)乘以一定之係數(於初始荷重P1之單位為g且接合面積之單位為mm2之情形時,例如為28786)所得之值而設定。於時刻T2以後,自焊針C施加至FAB44M之荷重下降,對FAB44M施加相對較小之荷重P2。該荷重P2係持續施加直至焊針C上升之時刻T4為 止。
另一方面,自較FAB44M抵接至焊墊7M之時刻T1更前起,對超聲波振動子施加相對較小之值U1之驅動電流。將驅動電流值U1設定為小於30mA。
當FAB44M抵接至焊墊7M時,於此時之時刻T1至時刻T3為止之期間,施加至超聲波振動子之驅動電流值以一定之變化率(單調地)自值U1上升至相對較大之值U2。又,以於對FAB44M施加初始荷重之特定時間內施加至超聲波振動子之驅動電流之積分值成為146mA‧msec以下之方式,設定驅動電流值U1、U2。於時刻T3以後,對超聲波振動子持續施加值U2之驅動電流直至成為時刻T4為止。
其結果為,FAB44M按焊針C之倒角42M及外表面43M之形狀變形,如圖159所示,於焊墊7M上形成供神用圓形年糕形狀之第1球體部15M,並且於其周圍形成逼出部16M。藉此,實現銅導線5M與焊墊7M之接合(第1接合)。
再者,亦可將驅動電流值U1設定為零,於此情形時,於較時刻T1更前,不對超聲波振動子施加驅動電流。
當自時刻T1起經過預定之接合時間而成為時刻T4時,焊針C朝向焊墊7M之上方離開。其後,焊針C朝向引線4M之表面向斜下方移動。繼而,如圖160C所示,對超聲波振動子施加驅動電流,對焊針C賦予超聲波振動,並且藉由焊針C,將銅導線5M按壓至引線4M之表面,進而將其扯斷。藉此,於引線4M之表面上形成包含銅導線5M之另一端部之側視時為楔狀之針腳部,從而實現銅導線與引線4M之接合(第2接合)。
其後,以另一焊墊7M及與其相對應之引線4M為對象,進行圖160A~圖160C所示之步驟。繼而,藉由重複圖160A~圖160C所示之步驟,如圖160D所示,於半導體晶片2M之所有焊墊7M與引線4M之間 架設銅導線5M。於所有打線接合結束後,利用與圖4D相同之方法,形成不透水絕緣膜25M。
如上所述,於形成於銅導線5M之前端之FAB44M抵接至焊墊7M後,藉由焊針對FAB44M施加相對較大之初始荷重P1。藉此,包含較Au更硬之金屬即Cu之FAB44M良好地變形,因此可使施加至FAB44M之初始荷重P1,藉由FAB44M之變形適當地衰減,並且使其有助於FAB44M與焊墊7M之接合。
又,由於對超聲波振動子施加驅動電流,因此超聲波振動自超聲波振動子傳輸至FAB44M,由於該超聲波振動,使得FAB44M與焊墊7M發生摩擦。施加至超聲波振動子之驅動電流係以自FAB44M抵接至焊墊7M算起之特定時間內之驅動電流之積分值成為小於162mA‧msec之方式控制。藉此,於自FAB44M抵接至焊墊7M算起之特定時間內對FAB44M傳輸適當能量之超聲波振動。其結果為,既可防止因超聲波振動之過剩能量而引起焊墊7M及焊墊7M之下層之層間絕緣膜12M中產生損傷,又可藉由超聲波振動使FAB44M與焊墊7M良好地接合。
當自包含Cu之FAB44M抵接至焊墊7M起經過特定時間時,由於FAB44M按壓至焊墊7M所引起之FAB44M之變形結束。亦即,當自包含Cu之FAB44M抵接至焊墊7M起經過特定時間時,第1球體部15M之形狀完成。因此,當此後對FAB44M持續施加較大荷重時,超聲波振動不會良好地傳輸至FAB44M與焊墊7M之抵接部分。因此,自FAB44M抵接至焊墊7M起經過特定時間後,施加至FAB44M之荷重下降。藉此,可使超聲波振動良好地傳輸至FAB44M與焊墊7M之抵接部分。
因此,根據本實施形態之打線接合方法,既可防止焊墊7M及層間絕緣膜12M中產生損傷,又可獲得銅導線5M與焊墊7M之良好接 合。
於FAB44M抵接至焊墊7M後,施加至超聲波振動子之驅動電流值遞增。另一方面,藉由對FAB44M施加初始荷重P1,FAB44M以壓碎之方式變形,FAB44M與焊墊7M之抵接部分之面積遞增。藉此,自超聲波振動子傳輸至FAB44M之超聲波振動之能量遞增,並且與焊墊7M摩擦之FAB44M之面積遞增。其結果為,可抑制於第1球體部15M之中央部之下方,焊墊7M及層間絕緣膜12M中產生因傳輸至FAB44M之超聲波振動之能量劇增所引起之損傷,並且可獲得甚至第1球體部15M之與焊墊7M之接合面之周緣部亦良好地接合於焊墊7M之狀態。
又,於自FAB44M抵接至焊墊7M之前起對超聲波振動子施加驅動電流之情形時,自FAB44M抵接至焊墊7M之瞬間起,超聲波振動傳輸至FAB44M與焊墊7M之抵接部分,該抵接部分與焊墊7M發生摩擦。其結果為,可獲得第1球體部15M之與焊墊7M之接合面之中央部(FAB44M與焊墊7M初次抵接之部分)良好地接合於焊墊7M之狀態。
再者,作為相對於焊墊7M之FAB44M之接合方法,可考慮於FAB44M抵接至焊墊7M後,對FAB44M持續施加一定之荷重,並且對超聲波振動子持續施加一定之驅動電流。然而,於該方法中,無論如何設定施加至FAB44M之荷重之大小及施加至超聲波振動子之驅動電流值,均無法將FAB44M充分地接合於焊墊7M,或者會產生所謂濺鍍,即焊墊7M之材料呈較薄之凸緣狀向第1球體部15M之側方大幅地露出。
於本實施形態之打線接合方法中,藉由適當地設定自FAB44M抵接至焊墊7M之前起施加至超聲波振動子之驅動電流值及初始荷重之大小,而防止該濺鍍產生。
亦即,將自FAB44M抵接至焊墊7M之前起施加至超聲波振動子之驅動電流值U1設定為小於30mA。藉此,可防止FAB44M抵接至焊 墊7M後隨即傳輸至FAB44M之超聲波振動之能量變得過大。其結果為,可良好地防止濺鍍產生、以及於第1球體部15M之中央部之下方的焊墊7M及層間絕緣膜12M之損傷產生。
又,初始荷重P1之大小係根據相對於焊墊7M之第1球體部15M之目標接合面積乘以一定之係數所得之值而設定。藉此,根據第1球體部15M之目標接合面積,可適當地設定初始荷重P1之大小。其結果為,可良好地防止濺鍍產生、以及於第1球體部15M之中央部之下方的焊墊7M及層間絕緣膜12M之損傷產生,並且可實現FAB44M之良好變形。
以上,對本發明之第13實施形態進行了說明,但該第13實施形態亦可變更如下。
例如,於半導體裝置1M中係應用QFN,但本發明亦可應用於應用有SON(Small Outlined Non-leaded Package)等其他種類之無引線封裝之半導體裝置之製造。
又,並不限定於引線之端面與樹脂封裝體之側面形成於同一平面之所謂切單類型,亦可將本發明應用於應用有引線自樹脂封裝體之側面突出之切腳類型之無引線封裝的半導體裝置之製造。
此外,並不限定於無引線封裝,亦可將本發明應用於應用有QFP(Quad Flat Package)等包括引線自樹脂封裝體突出所形成之外部引線之封裝體的半導體裝置之製造。
又,於上述實施形態中,例示有銅導線5M由不透水絕緣膜25M被覆之態樣,但只要至少實現用以解決上述第13問題之第13目的,則亦可如圖162所示,不設置有不透水絕緣膜25M。
[實施例]
其次,關於該第13實施形態進行有實驗。再者,本發明並不受限於下述實施例。
1.評價測試1
使用Micro-Swiss公司製造之焊針。該焊針具有如下之尺寸。倒角之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面之外徑即T尺寸為178μm(0.178mm)。於以包含中心軸線之平面切斷焊針所得之剖面(參照圖160A所示之剖面),沿著倒角之側面延伸之兩條直線所形成之角度即倒角角度為90°。外表面相對於與焊針之中心軸線正交之平面所形成之角度即外表面角為8°。於以包含中心軸線之平面切斷焊針所得之剖面,自焊針之側面之外表面之上端進而向上方延伸之部分與中心軸線所形成之角度為20°。外表面之上端部分形成圓弧狀,其曲率半徑即OR尺寸為20μm(0.020mm)。
將焊針配置於自包含Al-Cu系合金之焊墊之表面算起高度7mil(約178μm)之位置,並於線徑為25μm之銅導線之前端形成直徑為2.33mil(約60μm)之FAB。繼而,使焊針以速度0.4mil/msec(約10.2μm/msec)朝向焊墊下降,將FAB按壓至焊墊,從而於焊墊上形成藉由FAB之變形而形成之第1球體部。第1球體部之目標直徑為74μm,相對於焊墊之第1球體部之目標接合面積為0.00430mm2
如圖163所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經9msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,自FAB抵接至焊墊之前起,對設置於焊針之超聲波振動子施加20mA之驅動電流,並於FAB抵接至焊墊後,使施加至超聲波振動子之驅動電流值以一定之變化率自20mA上升至90mA,並保持對超聲波振動子施加有90mA之驅動電流之狀態直至焊針上升為止(自焊針之下降開始起經過29.5msec為止)。於實施例1及比較例1~5中,施加至超聲波振動子之驅動電流值自20mA達到90mA為止所耗之時間 (Ramp Up Time:緩升時間)各不相同。
<實施例1>
於實施例1中,將緩升時間設定為3.6msec。換言之,將自FAB抵接至焊墊起直至焊針上升為止之時間(12msec。以下稱作「接合時間」)之30%設定為緩升時間。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為147.5mA‧msec。
<比較例1>
於比較例1中,將緩升時間設定為3.0msec。換言之,將接合時間之25%設定為緩升時間。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為165mA‧msec。
<比較例2>
於比較例2中,將緩升時間設定為2.4msec。換言之,將接合時間之20%設定為緩升時間。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為207mA‧msec。
<比較例3>
於比較例3中,將緩升時間設定為1.8msec。換言之,將接合時間之15%設定為緩升時間。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為228mA‧msec。
<比較例4>
於比較例4中,將緩升時間設定為1.2msec。換言之,將接合時間之10%設定為緩升時間。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為249 mA‧msec。
<比較例5>
於比較例5中,將緩升時間設定為0msec。換言之,將接合時間之0%設定為緩升時間。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為270mA‧msec。
<龜裂評價>
對於實施例1及比較例1~5之各者,使FAB接合於48個焊墊而考察各焊墊之下層之層間絕緣膜中是否產生有龜裂,並計算龜裂產生率(下層之層間絕緣膜中產生有龜裂之焊墊之數量/48×100)。將該計算結果示於圖164。
如圖164所示,已確認到於緩升時間為接合時間之30%且驅動電流之積分值為147.5mA‧msec之實施例1中,未產生層間絕緣膜之龜裂。
與此相對,已確認到於緩升時間為接合時間之25%以下且驅動電流之積分值為165mA‧msec之比較例1~5中,產生有層間絕緣膜之龜裂。
2.評價測試2
使用Micro-Swiss公司製造之焊針。該焊針具有如下之尺寸。倒角之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針所得之剖面(參照圖160A所示之剖面),沿著倒角之側面延伸之兩條直線所形成之角度即倒角角度為90°。外表面相對於與焊針之中心軸線正交之平面所形成之角度即外表面角為8°。於以包括中心軸線之平面切斷焊針所得之剖面,自焊針之側面之外表面之上端進而向上方延伸之部分與中心軸線所形成之角度為20°。外表面之上端部分形成圓弧狀,其 曲率半徑即OR尺寸為20μm(0.020mm)。
將焊針配置於自包含Al-Cu系合金之焊墊之表面算起高度7mil(約178μm)之位置,並於線徑為25μm之銅導線之前端形成直徑為2.33mil(約60μm)之FAB。繼而,使焊針以速度0.4mil/msec(約10.2μm/msec)朝向焊墊下降,將FAB按壓至焊墊,從而於焊墊上形成藉由FAB之變形而形成之第1球體部。第1球體部之目標直徑為74μm,相對於焊墊之第1球體部之目標接合面積為0.00430mm2
如圖165所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經9msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,自FAB抵接至焊墊之前起,對設置於焊針之超聲波振動子施加驅動電流,並於FAB抵接至焊墊後,使施加至超聲波振動子之驅動電流值,於3.6msec期間內以一定之變化率上升至90mA,並保持對超聲波振動子施加有90mA之驅動電流之狀態直至焊針上升為止(自焊針之下降開始起經過29.5msec為止)。於實施例2~6及比較例6~8中,自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值各不相同。
<實施例2>
於實施例2中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為0mA。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為112.5mA‧msec。
<實施例3>
於實施例3中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為10mA。於此情形時,於對FAB施加有130g之初 始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為130mA‧msec。
<實施例4>
於實施例4中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為15mA。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為138.75mA‧msec。
<實施例5>
於實施例5中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為20mA。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為147.5mA‧msec。
<實施例6>
於實施例6中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為25mA。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為156.25mA‧msec。
<比較例6>
於比較例6中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為30mA。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為165mA‧msec。
<比較例7>
於比較例7中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為60mA。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為 255mA‧msec。
<比較例8>
於比較例8中,將自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值設定為90mA。亦即,於FAB抵接至焊墊之前後,施加至超聲波振動子之驅動電流值均不產生變動。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為270mA‧msec。
<龜裂評價>
對於實施例2~6及比較例6~8之各者,使FAB接合於48個焊墊而考察各焊墊之下層之層間絕緣膜中是否產生有龜裂,並計算龜裂產生率(下層之層間絕緣膜中產生有龜裂之焊墊之數量/48×100)。將該計算結果示於圖166。
如圖166所示,已確認到於自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值為25mA以下且驅動電流之積分值為156.25mA‧msec以下之實施例2~6中,未產生層間絕緣膜之龜裂。
與此相對,已確認到於自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值為30mA以上且驅動電流之積分值為255mA‧msec以上之比較例6~8中,產生有層間絕緣膜之龜裂。
3.評價測試3
使用Micro-Swiss公司製造之焊針。該焊針具有如下之尺寸。倒角之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針所得之剖面(參照圖160A所示之剖面),沿著倒角之側面延伸之兩條直線所形成之角度即倒角角度為90°。外表面相對於與焊針之中心軸線正交之平面所形成之角度即外表面角為8°。於以包括中心軸線之平面切斷焊針所得之剖面,自焊針之側面之外表面之上端進而向上方延伸之部分 與中心軸線所形成之角度為20°。外表面之上端部分形成圓弧狀,其曲率半徑即OR尺寸為20μm(0.020mm)。
將焊針配置於自包含Al-Cu系合金之焊墊之表面算起高度7mil(約178μm)之位置,並於線徑為25μm之銅導線之前端形成直徑為2.33mil(約60μm)之FAB。繼而,使焊針以速度0.4mil/msec(約10.2μm/msec)朝向焊墊下降,將FAB按壓至焊墊,從而於焊墊上形成藉由FAB之變形而形成之第1球體部。第1球體部之目標直徑為74μm,相對於焊墊之第1球體部之目標接合面積為0.00430mm2
如圖167所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經9msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,於FAB抵接至焊墊之前,不對設置於焊針之超聲波振動子施加驅動電流,並於FAB抵接至焊墊後,使施加至超聲波振動子之驅動電流值以一定之變化率自0mA上升至90mA,並保持對超聲波振動子施加有90mA之驅動電流之狀態直至焊針上升為止(自焊針之下降開始起經過29.5msec為止)。於實施例7、8及比較例9~12中,施加至超聲波振動子之驅動電流值自0mA達到90mA為止所耗之時間(Ramp Up Time:緩升時間)各不相同。
<實施例7>
於實施例7中,將緩升時間設定為3.6msec。換言之,將接合時間之30%設定為緩升時間。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為112.5mA‧msec。
<實施例8>
於實施例8中,將緩升時間設定為3.0msec。換言之,將接合時 間之25%設定為緩升時間。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為135mA‧msec。
<比較例9>
於比較例9中,將緩升時間設定為2.4msec。換言之,將接合時間之20%設定為緩升時間。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為162mA‧msec。
<比較例10>
於比較例10中,將緩升時間設定為1.8msec。換言之,將接合時間之15%設定為緩升時間。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為189mA‧msec。
<比較例11>
於比較例11中,將緩升時間設定為1.2msec。換言之,將接合時間之10%設定為緩升時間。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為216mA‧msec。
<比較例12>
於比較例12中,將緩升時間設定為0msec。換言之,將接合時間之0%設定為緩升時間。於此情形時,於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值為270mA‧msec。
<龜裂評價>
對於實施例7、8及比較例9~12之各者,使FAB接合於48個焊墊而考察各焊墊之下層之層間絕緣膜中是否產生有龜裂,並計算龜裂產生 率(下層之層間絕緣膜中產生有龜裂之焊墊之數量/48×100)。
將該計算結果示於圖168。
如圖168所示,已確認到於緩升時間為接合時間之25%以上且驅動電流之積分值為135mA‧msec之實施例7、8中,未產生層間絕緣膜之龜裂。
與此相對,已確認到於緩升時間為接合時間之20%以下且驅動電流之積分值為162mA‧msec之比較例9~12中,產生有層間絕緣膜之龜裂。
根據上述評價測試1~3之結果,已確認到只要於對FAB施加有130g之初始荷重之3msec期間內施加至超聲波振動子之驅動電流之積分值小於162mA‧msec,則不會產生層間絕緣膜之龜裂。
<第14實施形態圖169~圖187>
藉由該第14實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第14先前技術之第14問題。
(1)第14先前技術
於典型之半導體裝置中,係將半導體晶片配置於晶片焊墊上,藉由含有Au(金)之導線連接半導體晶片與配置於晶片焊墊之周圍之引線。具體而言,於半導體晶片之表面配置有含有Al(鋁)之焊墊。並且,含有Au之導線描繪著弓狀之迴路而架設於該焊墊之表面與引線之表面之間。
於導線之架設時(打線接合時),於由打線接合機之焊針所保持之導線之前端形成有FAB(Free Air Ball),該FAB抵接至焊墊之表面。此時,藉由焊針以特定之荷重將FAB向焊墊按壓,並且向設置於焊針之超聲波振動子供給特定之驅動電流,從而對FAB賦予超聲波振動。其結果為,將FAB一面與焊墊之表面發生摩擦一面按壓至焊墊之表面, 從而實現導線與焊墊之表面之接合。其後,焊針朝向引線移動。繼而,將導線按壓至引線之表面,對導線賦予超聲波振動,並且扯斷導線。藉此,於焊墊之表面與引線之表面之間架設導線。
(2)第14問題
最近,市場上半導體裝置之價格競爭愈演愈烈,業界要求進一步降低半導體裝置之成本。作為成本降低對策之一,正在研究包含價格便宜之Cu(銅)之導線(銅導線)代替包含價格昂貴之Au之導線(金導線)。
然而,形成於銅導線之前端之FAB較形成於金導線之前端之FAB更硬,因此若於與金導線之情形時相同之條件(荷重及超聲波振動子之驅動電流之大小等)下將銅導線接合於焊墊,則無法獲得銅導線與焊墊之良好接合。目前,尚不明確可實現銅導線與焊墊之良好接合的條件,尚無法由銅導線積極代替金導線。
亦即,該第14實施形態之發明之第14目的在於提供一種可實現銅導線與焊墊之良好接合的打線接合方法。
(3)具體實施形態之揭示
圖169係本發明之第14實施形態之半導體裝置之模式性剖面圖。圖170係圖169所示之半導體裝置之模式性底視圖。
半導體裝置1N係應用有QFN(Quad Flat Non-leaded Package)之半導體裝置,其具有利用樹脂封裝體6N將半導體晶片2N與晶片焊墊3N、引線4N及銅導線5N一併密封之結構。半導體裝置1N(樹脂封裝體6N)之外形為扁平之長方體形狀。
於本實施形態中,半導體裝置1N之外形係平面形狀為4mm見方之正方形狀且厚度為0.85mm之六面體,以下列舉之半導體裝置1N之各部之尺寸係半導體裝置1N具有該外形尺寸之情形時之一例。
半導體晶片2N形成俯視時為2.3mm之正方形狀。半導體晶片2N 之厚度為0.23mm。於半導體晶片2N之表面之周緣部,配置有複數個焊墊7N。各焊墊7N係與裝入在半導體晶片2N之電路電性連接。於半導體晶片2N之背面,形成有包含Au、Ni(鎳)、Ag(銀)等金屬層之背部金屬8N。
晶片焊墊3N及引線4N係藉由對金屬薄板(例如,銅薄板)進行衝壓而形成。該金屬薄板(晶片焊墊3N及引線4N)之厚度為0.2mm。於晶片焊墊3N及引線4N之表面,形成有含有Ag之鍍層9N。
晶片焊墊3N形成俯視時為2.7mm之正方形狀,且以各側面與半導體裝置1N之側面形成平行之方式配置於半導體裝置1N之中央部。
於晶片焊墊3N之背面之周緣部,藉由自背面側之壓碎加工,遍及其全周形成有剖面為大致1/4橢圓形狀之凹處。並且,樹脂封裝體6N進入至該凹處。藉此,晶片焊墊3N之周緣部自其上下被樹脂封裝體6N夾住,從而防止晶片焊墊3N自樹脂封裝體6N之脫落(防脫)。
又,晶片焊墊3N之背面係除其周緣部(凹陷成剖面為大致1/4橢圓形狀之部分)以外,自樹脂封裝體6N之背面露出。
引線4N係於與晶片焊墊3N之各側面相對向之位置各設置有相同數量(例如,9條)。於與晶片焊墊3N之側面相對向之各位置,引線4N係沿著與其相對向之側面正交之方向延伸,且於與該側面平行之方向空開相等間隔而配置。引線4N之長度方向之長度為0.45mm。又,晶片焊墊3N與引線4N間之間隔為0.2mm。
於引線4N之背面之晶片焊墊3N側之端部,藉由自背面側之壓碎加工,形成有剖面為大致1/4橢圓形狀之凹處。並且,樹脂封裝體6N進入至該凹處。藉此,引線4N之晶片焊墊3N側之端部自其上下被樹脂封裝體6N夾住,從而防止引線4N自樹脂封裝體6N之脫落(防脫)。
引線4N之背面係除晶片焊墊3N側之端部(凹陷成剖面為大致1/4橢圓形狀之部分)以外,自樹脂封裝體6N之背面露出。又,引線4N之 與晶片焊墊3N側為相反側之側面係自樹脂封裝體6N之側面露出。
於晶片焊墊3N及引線4N之背面中自樹脂封裝體6N露出之部分,形成有含有焊錫之鍍層10N。
並且,半導體晶片2N係以將配置有焊墊7N之表面朝向上方之狀態,將其背面經由接合材料11N接合於晶片焊墊3N之表面(鍍層9N)。作為接合材料11N,例如使用焊錫膏。接合材料11N之厚度為0.02mm。
再者,於不需要半導體晶片2N與晶片焊墊3N之電性連接之情形時,亦可省略背部金屬8N,將半導體晶片2N之背面經由包含銀膏等絕緣膏之接合材料接合於晶片焊墊3N之表面。於此情形時,半導體晶片2N之平面尺寸成為2.3mm見方。又,晶片焊墊3N之表面上之鍍層9N亦可省略。
銅導線5N例如包含純度99.99%以上之銅。銅導線5N之一端接合於半導體晶片2N之焊墊7N。銅導線5N之另一端接合於引線4N之表面。並且,銅導線5N描繪著弓狀之迴路而架設於半導體晶片2N與引線4N之間。該銅導線5N之迴路之頂部與半導體晶片2N之表面之高低差為0.16mm。
繼而,於該半導體裝置1N中,與上述第1實施形態同樣地,半導體晶片2N之整個表面及整個側面、晶片焊墊3N之整個表面及整個側面、引線4N之整個表面、以及整個銅導線5N均由一體性之不透水絕緣膜25N被覆。
圖171係圖169所示之由虛線包圍之部分之放大圖。
焊墊7N包括含有Al之金屬,其形成於半導體晶片2N之最上層之層間絕緣膜12N上。於層間絕緣膜12N上形成有表面保護膜13N。焊墊7N係將其周緣部由表面保護膜13N被覆,且中央部經由形成於表面保護膜13N之焊墊開口14N而露出。
銅導線5N係接合於自表面保護膜13N露出之焊墊7N之中央部。 如下所述,銅導線5N係藉由在其前端形成FAB,將FAB按壓至焊墊7N而接合。此時,FAB產生變形,藉此於銅導線5N中之與焊墊7N之接合部分,形成供神用圓形年糕形狀之第1球體部15N。又,焊墊7N之材料自第1球體部15N之下方緩慢地逼出至第1球體部15N之周圍,藉此不自焊墊7N之表面大幅度浮起地形成逼出部16N。
例如,於銅導線5N之線徑為25μm之情形時,第1球體部15N之目標直徑(第1球體部15N之設計上之直徑)為76μm,第1球體部15N之目標厚度(第1球體部15N之設計上之厚度)為17μm。
圖172A~圖172D係用以按照步驟順序說明本發明之第14實施形態之半導體裝置之製造方法之模式性剖面圖。
銅導線5N係於將晶片焊墊3N及引線4N連接於將該等包圍之框架(未圖示)之狀態下,亦即於晶片焊墊3N及引線4N形成引線框架之狀態下,藉由打線接合機架設於半導體晶片2N與引線4N之間。
於打線接合機中包含焊針C。如圖172A所示,焊針C形成中心軸線上形成有導線插通孔41N之大致圓筒形狀。銅導線5N係插通至導線插通孔41N,而自導線插通孔41N之前端(下端)送出。
於焊針C之前端部,形成有於導線插通孔41N之下方與導線插通孔41N連通之圓錐台形狀之倒角42N。又,焊針C之前端部包括外表面43N,該外表面43N係連接於倒角42N之下端緣,並於銅導線5N與焊墊7N及引線4N之接合時(打線接合時)與該等相對向之面。外表面43N係相對於與焊針C之中心軸線正交之平面,以外側上升之方式緩緩傾斜。
首先,如圖172A所示,焊針C移動至焊墊7N之正上方。其次,於銅導線5N之前端位於倒角42N之狀態下,對銅導線5N之前端部施加電流,藉此於其前端部形成FAB44N。電流值及施加時間係根據銅導 線5N之線徑及FAB44N之目標直徑(FAB44N之設計上之直徑)而適當設定。FAB44N之一部分係自倒角42N向其下方露出。
其後,如圖172B所示,焊針C朝向焊墊7N下降,藉由焊針C,將FAB44N按壓至焊墊7N。此時,藉由焊針C對FAB44N施加荷重,並且對FAB44N賦予由設置於焊針C之超聲波振動子(未圖示)產生振盪之超聲波振動。
圖173係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
例如,如圖173所示,於自FAB44N抵接至焊墊7N之時刻T1起經過特定時間之時刻T2為止之期間,自焊針C對FAB44N施加相對較大之初始荷重P1。將特定時間例如設定為3msec。又,初始荷重P1係根據第1球體部15N與焊墊7N之目標接合面積(相對於焊墊7N之第1球體部15N之設計上之接合面積)乘以一定之係數(於初始荷重P1之單位為g且接合面積之單位為mm2之情形時,例如為28786)所得之值而設定。於時刻T2以後,自焊針C施加至FAB44N之荷重下降,對FAB44N施加相對較小之荷重P2。該荷重P2係持續施加直至焊針C上升之時刻T4為止。
另一方面,當FAB44N抵接至焊墊7N時,開始對超聲波振動子供給驅動電流,於自此時之時刻T1至時刻T3為止之期間,該驅動電流值以一定之變化率(單調地)上升至值U。於時刻T3以後施加至超聲波振動子之驅動電流值U,係以將該值U除以第1球體部15N之目標接合面積所得之值成為0.0197mA/μm2以下之方式而設定。其後,對超聲波振動子持續施加值U之驅動電流直至成為時刻T4為止。
其結果為,FAB44N按焊針C之倒角42N及外表面43N之形狀變形,如圖171所示,於焊墊7N上形成供神用圓形年糕形狀之第1球體部15N,並且於其周圍形成逼出部16N。藉此,實現銅導線5N與焊墊 7N之接合(第1接合)。
當自時刻T1起經過預定之接合時間,成為時刻T4時,焊針C朝向焊墊7N之上方離開。其後,焊針C朝向引線4N之表面向斜下方移動。繼而,如圖172C所示,對超聲波振動子施加驅動電流,對焊針C賦予超聲波振動,並且藉由焊針C,將銅導線5N按壓至引線4N之表面,進而將其扯斷。藉此,於引線4N之表面上形成包含銅導線5N之另一端部之側視時為楔狀之針腳部,從而實現銅導線與引線4N之接合(第2接合)。
其後,以另一焊墊7N及與其相對應之引線4N為對象,進行圖172A~圖172C所示之步驟。繼而,藉由重複圖172A~圖172C所示之步驟,如圖172D所示,於半導體晶片2N之所有焊墊7N與引線4N之間架設銅導線5N。於所有打線接合結束後,利用與圖4D相同之方法,形成不透水絕緣膜25N。
<特定時間之設定>
為適當地設定將初始荷重P1施加至FAB之特定時間,進行有以下測試1~3。
(1)測試1
於線徑為25μm之銅導線5N之前端形成FAB44N,並使焊針C朝向焊墊7N下降而將FAB44N按壓至焊墊7N,對FAB44N施加一定之荷重,從而於焊墊7N上形成藉由FAB44N之變形而形成之第1球體部15N。第1球體部15N之目標直徑為58μm,其目標厚度為10μm。繼而,關於施加至FAB44N之荷重之大小為50g、80g及110g之各情況,考察伴隨著自FAB44N抵接至焊墊7N算起之經過時間的第1球體部15N之直徑及厚度之變化。將直徑(球體直徑)之時間變化示於圖174,並將厚度(球體厚度)之時間變化示於圖175。
(2)測試2
於線徑為25μm之銅導線5N之前端形成FAB44N,並使焊針C朝向焊墊7N下降而將FAB44N按壓至焊墊7N,對FAB44N施加一定之荷重,從而於焊墊7N上形成藉由FAB44N之變形而形成之第1球體部15N。第1球體部15N之目標直徑為76μm,其目標厚度為18μm。繼而,關於施加至FAB44N之荷重之大小為70g、90g、110g、130g、150g及200g之各情況,考察伴隨著自FAB44N抵接至焊墊7N算起之經過時間的第1球體部15N之直徑及厚度之變化。將直徑(球體直徑)之時間變化示於圖176,並將厚度(球體厚度)之時間變化示於圖177。
(3)測試3
於線徑為38μm之銅導線5N之前端形成FAB44N,並使焊針C朝向焊墊7N下降而將FAB44N按壓至焊墊7N,對FAB44N施加一定之荷重,從而於焊墊7N上形成藉由FAB44N之變形之第1球體部15N。第1球體部15N之目標直徑為104μm,其目標厚度為25μm。繼而,關於施加至FAB44N之荷重之大小為200g、230g、250g、300g、400g及500g之各情況,考察伴隨著自FAB44N抵接至焊墊7N算起之經過時間的第1球體部15N之直徑及厚度之變化。將直徑(球體直徑)之時間變化示於圖178,並將厚度(球體厚度)之時間變化示於圖179。
如參照圖174~圖179可理解般,不管銅導線5N之線徑、荷重之大小以及第1球體部15N之目標直徑及目標厚度如何,於自FAB44N抵接至焊墊7N起未滿2msec內均不會完成。另一方面,當自FAB44N抵接至焊墊7N起超過4msec時,FAB44N之直徑及厚度幾乎不產生變化,從而可認為FAB44N之變形已確實完成。更詳細而言,不管銅導線5N之線徑、荷重之大小以及第1球體部15N之目標直徑及目標厚度如何,均於自FAB44N抵接至焊墊7N起經過大致3msec之時點,FAB44N之直徑及厚度之變化結束,從而可認為FAB44N之變形已完成。
因此,關於將初始荷重P1施加至FAB之特定時間,可認為適當的 是2~4msec之範圍內,且可認為更適當的是3msec。
如上所述,於形成於銅導線5N之前端之FAB44N抵接至焊墊後,藉由焊針C對FAB44N施加荷重。又,與此同時,對設置於焊針C之超聲波振動子施加驅動電流。因此,FAB44N因荷重而產生變形,並且FAB44N因自超聲波振動子傳輸之超聲波振動而與焊墊7N發生摩擦。
繼而,於自FAB44N抵接至焊墊7N起經過特定時間後施加至超聲波振動子之驅動電流值,係以將該值除以第1球體部15N之目標接合面積所得之值成為0.0197mA/μm2以下之方式而設定。藉此,可防止於自FAB44N抵接至焊墊7N後之特定時間後將過剩能量之超聲波振動賦予至FAB44N。
因此,既可防止焊墊7N及焊墊7N之下層之層間絕緣膜12N中產生因超聲波振動之過剩能量所引起之龜裂等損傷,又可獲得銅導線5N(FAB44N)與焊墊7N之良好接合。
因荷重所引起之FAB44N之變形係於自FAB44N抵接至焊墊7N起3msec以內結束。亦即,於自FAB44N抵接至焊墊7N起3msec以內,接合結束後之FAB44N(第1球體部)之形狀完成。當FAB44N之變形結束時,賦予至FAB44N之超聲波振動幾乎不衰減地傳輸至FAB44N與焊墊7N之接合部分。因此,當FAB44N之變形結束後將過剩能量之超聲波振動賦予至FAB44N時,有可能導致於第1球體部15N之周緣部之下方,焊墊7N或層間絕緣膜12N中產生龜裂等損傷。
因此,特定時間係設定為自FAB44N抵接至焊墊7N起直至FAB44N之變形大致結束為止之時間,亦即3msec。藉此,可防止於第1球體部15N之周緣部之下方的焊墊7N及層間絕緣膜12N產生損傷。
又,當第1球體部15N之形狀完成後,對第1球體部15N持續施加較大之初始荷重P1時,超聲波振動不會良好地傳輸至該第1球體部15N與焊墊7N之抵接部分。
因此,當自FAB44N抵接至焊墊7N起經過特定時間時,藉由焊針C施加至FAB44N之荷重自初始荷重P1下降至較其更小之荷重P2。於FAB44N抵接至焊墊7N後,對FAB44N施加相對較大之初始荷重P1,藉此可使包含較Au更硬之金屬即Cu之FAB44N良好地變形。繼而,當自FAB44N抵接至焊墊7N起經過特定時間時,施加至FAB44N之荷重下降至荷重P2,因此可使超聲波振動良好地傳輸至FAB44N(第1球體部15N)與焊墊7N之抵接部分。
初始荷重P1之大小宜根據相對於焊墊7N的第1球體部15N之目標接合面積乘以一定之係數所得之值而設定。藉此,根據第1球體部15N之目標接合面積,可適當地設定初始荷重P1之大小。其結果為,可良好地防止於第1球體部15N之中央部之下方的焊墊7N及層間絕緣膜12N產生損傷,並且可實現FAB44N之良好之變形。
於FAB44N抵接至焊墊7N後,施加至超聲波振動子之驅動電流值以一定之變化率遞增。另一方面,藉由對FAB44N施加荷重,FAB44N以被壓碎之方式變形,FAB44N與焊墊7N之抵接部分之面積遞增。藉此,自超聲波振動子傳輸至FAB44N之超聲波振動之能量遞增,又,與焊墊7N摩擦之FAB44N之面積遞增。其結果為,可抑制於第1球體部15N之中央部之下方,焊墊7N及層間絕緣膜12N中產生因傳輸至FAB44N之超聲波振動之能量劇增所引起之損傷,並且可獲得甚至第1球體部15N之與焊墊7N之接合面之周緣部亦良好地接合於焊墊7N之狀態。
以上,對本發明之第14實施形態進行了說明,但該第14實施形態亦可變更如下。
例如,於半導體裝置1N中,係應用QFN,但本發明亦可應用於應用有SON(Small Outlined Non-leaded Package)等其他種類之無引線封裝之半導體裝置之製造。
又,並不限定於引線之端面與樹脂封裝體之側面形成於同一平面之所謂切單類型,亦可將本發明應用於應用有引線自樹脂封裝體之側面突出之切腳類型之無引線封裝的半導體裝置之製造。
此外,並不限定於無引線封裝,亦可將本發明應用於應用有QFP(Quad Flat Package)等包括引線自樹脂封裝體突出所形成之外部引線之封裝體的半導體裝置之製造。
又,於上述實施形態中,例示有由不透水絕緣膜25N被覆銅導線5N之態樣,但只要至少實現用以解決上述第14問題之第14目的,則亦可如圖180所示,不設置有不透水絕緣膜25N。
[實施例]
其次,關於該第14實施形態進行有實驗。再者,本發明並不受限於下述實施例。
1.評價測試1
使用Micro-Swiss公司製造之焊針。該焊針具有如下之尺寸。倒角之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針所得之剖面(參照圖172A所示之剖面),沿著倒角之側面延伸之兩條直線所形成之角度即倒角角度為90°。外表面相對於與焊針之中心軸線正交之平面所形成之角度即外表面角為8°。於以包括中心軸線之平面切斷焊針所得之剖面,自焊針之側面之外表面之上端進而向上方延伸之部分與中心軸線所形成之角度為20°。外表面之上端部分形成圓弧狀,其曲率半徑即OR尺寸為20μm(0.020mm)。
將焊針配置於自包含Al-Cu系合金之焊墊之表面算起高度7mil(約178μm)之位置,並於線徑為25μm之銅導線之前端形成直徑為45μm之FAB。繼而,使焊針以速度0.4mil/msec(約10.2μm/msec)朝向焊墊下降,將FAB按壓至焊墊,從而於焊墊上形成藉由FAB之變形而形成 之第1球體部。第1球體部之目標直徑為60μm,第1球體部之目標厚度為13μm,相對於焊墊之第1球體部之目標接合面積為2826μm2
如圖181所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加80g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經9msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,當FAB抵接至焊墊時,開始對設置於焊針之超聲波振動子供給驅動電流,其後,使驅動電流值於3.6msec期間內以一定之變化率上升至特定值,並保持對超聲波振動子施加特定值之驅動電流之狀態直至焊針上升為止(經8.4msec)。於實施例1~3及比較例1~4中,最終施加至超聲波振動子之驅動電流值即特定值各不相同。
<實施例1>
於實施例1中,將特定值設定為40mA。
<實施例2>
於實施例2中,將特定值設定為50mA。
<實施例3>
於實施例3中,將特定值設定為60mA。
<比較例1>
於比較例1中,將特定值設定為70mA。
<比較例2>
於比較例2中,將特定值設定為80mA。
<比較例3>
於比較例3中,將特定值設定為90mA。
<比較例4>
於比較例4中,將特定值設定為100mA。
<龜裂評價>
對於實施例1~3及比較例1~4之各者,使FAB接合於84個焊墊而考察各焊墊之下層之層間絕緣膜中是否產生有龜裂,並計算龜裂產生率(下層之層間絕緣膜中產生有龜裂之焊墊之數量/84×100)。將該計算結果示於圖182。
如圖182所示,已確認到於特定值為60mA以下且將該特定值除以第1球體部之目標接合面積所得之值成為0.0212mA/μm2以下之實施例1~3中,未產生層間絕緣膜之龜裂。
與此相對,已確認到於特定值為70mA以上且將該特定值除以第1球體部之目標接合面積所得之值成為0.0248mA/μm2以上之比較例1~4中,產生有層間絕緣膜之龜裂。
2.評價測試2
使用Micro-Swiss公司製造之焊針。該焊針具有如下之尺寸。倒角之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針所得之剖面(參照圖172A所示之剖面),沿著倒角之側面延伸之兩條直線所形成之角度即倒角角度為90°。外表面相對於與焊針之中心軸線正交之平面所形成之角度即外表面角為8°。於以包括中心軸線之平面切斷焊針所得之剖面,自焊針之側面之外表面之上端進而向上方延伸之部分與中心軸線所形成之角度為20°。外表面之上端部分形成圓弧狀,其曲率半徑即OR尺寸為20μm(0.020mm)。
將焊針配置於自包含Al-Cu系合金之焊墊之表面算起高度7mil(約178μm)之位置,並於線徑為30μm(或者,線徑為25μm)之銅導線之前端形成直徑為59μm之FAB。繼而,使焊針以速度0.4mil/msec(約10.2μm/msec)朝向焊墊下降,將FAB按壓至焊墊,從而於焊墊上形成藉由FAB之變形之第1球體部。第1球體部之目標直徑為76μm,第1球體部之目標厚度為17μm,相對於焊墊之第1球體部之目標接合面積為 4534.16μm2
如圖183所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經9msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,當FAB抵接至焊墊時,開始對設置於焊針之超聲波振動子供給驅動電流,其後,使驅動電流值於3.6msec期間內以一定之變化率上升至特定值,並保持對超聲波振動子施加有特定值之驅動電流之狀態直至焊針上升為止(經8.4msec)。於實施例4、5及比較例5~9中,最終施加至超聲波振動子之驅動電流值即特定值各不相同。
<實施例4>
於實施例4中,將特定值設定為90mA。
<實施例5>
於實施例5中,將特定值設定為100mA。
<比較例5>
於比較例5中,將特定值設定為110mA。
<比較例6>
於比較例6中,將特定值設定為120mA。
<比較例7>
於比較例7中,將特定值設定為130mA。
<比較例8>
於比較例8中,將特定值設定為140mA。
<比較例9>
於比較例9中,將特定值設定為150mA。
<龜裂評價>
對於實施例4、5及比較例5~9之各者,使FAB接合於84個焊墊而 考察各焊墊之下層之層間絕緣膜中是否產生有龜裂,並計算龜裂產生率(下層之層間絕緣膜中產生有龜裂之焊墊之數量/84×100)。將該計算結果示於圖184。
如圖184所示,已確認到於特定值為100mA以下且將該特定值除以第1球體部之目標接合面積所得之值成為0.0221mA/μm2以下之實施例4、5中,未產生層間絕緣膜之龜裂。
與此相對,已確認到於特定值為110mA以上且將該特定值除以第1球體部之目標接合面積所得之值成為0.0243mA/μm2以上之比較例5~9中,產生有層間絕緣膜之龜裂。
3.評價測試3
使用Micro-Swiss公司製造之焊針。該焊針具有如下之尺寸。倒角之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針所得之剖面(參照圖172A所示之剖面),沿著倒角之側面延伸之兩條直線所形成之角度即倒角角度為90°。外表面相對於與焊針之中心軸線正交之平面所形成之角度即外表面角為8°。於以包括中心軸線之平面切斷焊針所得之剖面,自焊針之側面之外表面之上端進而向上方延伸之部分與中心軸線所形成之角度為20°。外表面之上端部分形成圓弧狀,其曲率半徑即OR尺寸為20μm(0.020mm)。
將焊針配置於自包含Al-Cu系合金之焊墊之表面算起高度7mil(約178μm)之位置,並於線徑為38μm之銅導線之前端形成直徑為45μm之FAB。繼而,使焊針以速度0.4mil/msec(約10.2μm/msec)朝向焊墊下降,將FAB按壓至焊墊,從而於焊墊上形成藉由FAB之變形而形成之第1球體部。第1球體部之目標直徑為104μm,第1球體部之目標厚度為24μm,相對於焊墊之第1球體部之目標接合面積為8490.56μm2
如圖185所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加240g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經9msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,當FAB抵接至焊墊時,開始對設置於焊針之超聲波振動子供給驅動電流,其後,使驅動電流值於3.6msec期間內以一定之變化率上升至特定值,並保持對超聲波振動子施加有特定值之驅動電流之狀態直至焊針上升為止(經8.4msec)。於實施例6~8及比較例10~13中,最終施加至超聲波振動子之驅動電流值即特定值各不相同。
<實施例6>
於實施例6中,將特定值設定為90mA。
<實施例7>
於實施例7中,將特定值設定為150mA。
<實施例8>
於實施例8中,將特定值設定為160mA。
<比較例10>
於比較例10中,將特定值設定為170mA。
<比較例11>
於比較例11中,將特定值設定為180mA。
<比較例12>
於比較例12中,將特定值設定為190mA。
<比較例13>
於比較例13中,將特定值設定為200mA。
<龜裂評價>
對於實施例6~8及比較例10~13之各者,使FAB接合於84個焊墊而考察各焊墊之下層之層間絕緣膜中是否產生有龜裂,並計算龜裂產生 率(下層之層間絕緣膜中產生有龜裂之焊墊之數量/84×100)。將該計算結果示於圖186。
如圖186所示,已確認到於特定值為160mA以下且將該特定值除以第1球體部之目標接合面積所得之值成為0.0188mA/μm2以下之實施例1~3中,未產生層間絕緣膜之龜裂。
與此相對,已確認到於特定值為170mA以上且將該特定值除以第1球體部之目標接合面積所得之值成為0.0200mA/μm2以上之比較例1~4中,產生有層間絕緣膜之龜裂。
<接合面積-超聲波振動子之驅動電流>
若將實施例3、5、8中施加至超聲波振動子之驅動電流值,繪製於將X軸設為第1球體部之目標接合面積,將Y軸設為超聲波振動子之驅動電流之圖表區域,則成為如圖187所示,可確認於目標接合面積與超聲波振動子之驅動電流值之間存在由y=0.0197x所表示之比例關係。
<第15實施形態圖188~圖203>
藉由該第15實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第15先前技術之第15問題。
(1)第15先前技術
於典型之半導體裝置中,係將半導體晶片配置於晶片焊墊上,藉由含有Au(金)之導線連接半導體晶片與配置於晶片焊墊之周圍之引線。具體而言,於半導體晶片之表面配置有含有Al(鋁)之焊墊。並且,含有Au之導線描繪著弓狀之迴路而架設於該焊墊之表面與引線之表面之間。
於導線之架設時(打線接合時),於由打線接合機之焊針所保持之導線之前端形成FAB(Free Air Ball),該FAB抵接至焊墊之表面。此 時,藉由焊針以特定之荷重將FAB向焊墊按壓,並且向設置於焊針之超聲波振動子供給特定之驅動電流,從而對FAB賦予超聲波振動。其結果為,將FAB一面與焊墊之表面發生摩擦一面按壓至焊墊之表面,從而實現導線與焊墊之表面之接合。其後,焊針朝向引線移動。繼而,將導線按壓至引線之表面,對導線賦予超聲波振動,並且扯斷導線。藉此,於焊墊之表面與引線之表面之間架設導線。
(2)第15問題
最近,市場上半導體裝置之價格競爭愈演愈烈,業界要求進一步降低半導體裝置之成本。作為成本降低對策之一,正在研究用包含價格便宜之Cu(銅)之導線(銅導線)代替包含價格昂貴之Au之導線(金導線)。
然而,形成於銅導線之前端之FAB較形成於金導線之前端之FAB更硬,因此若於與金導線之情形時相同之條件(荷重及超聲波振動子之驅動電流之大小等)下將銅導線接合於焊墊,則無法獲得銅導線與焊墊之良好接合。目前,尚不明確可實現銅導線與焊墊之良好接合的條件,尚無法由銅導線積極代替金導線。
亦即,該第15實施形態之發明之第15目的在於提供一種可實現銅導線與焊墊之良好接合的打線接合方法。
(3)具體實施形態之揭示
圖188係本發明之第15實施形態之半導體裝置之模式性剖面圖。圖189係圖188所示之半導體裝置之模式性底視圖。
半導體裝置1P係應用有QFN(Quad Flat Non-leaded Package)之半導體裝置,其具有利用樹脂封裝體6P將半導體晶片2P與晶片焊墊3P、引線4P及銅導線5P一併密封之結構。半導體裝置1P(樹脂封裝體6P)之外形為扁平之長方體形狀。
於本實施形態中,半導體裝置1P之外形係平面形狀為4mm見方 之正方形狀且厚度為0.85mm之六面體,以下列舉之半導體裝置1P之各部之尺寸係半導體裝置1P具有該外形尺寸之情形時之一例。
半導體晶片2P形成俯視時為2.3mm之正方形狀。半導體晶片2P之厚度為0.23mm。於半導體晶片2P之表面之周緣部,配置有複數個焊墊7P。各焊墊7P係與裝入在半導體晶片2P之電路電性連接。於半導體晶片2P之背面,形成有包含Au、Ni(鎳)、Ag(銀)等金屬層之背部金屬8P。
晶片焊墊3P及引線4P係藉由對金屬薄板(例如,銅薄板)進行衝壓而形成。該金屬薄板(晶片焊墊3P及引線4P)之厚度為0.2mm。於晶片焊墊3P及引線4P之表面,形成有含有Ag之鍍層9P。
晶片焊墊3P形成俯視時為2.7mm之正方形狀,且以各側面與半導體裝置1P之側面形成平行之方式配置於半導體裝置1P之中央部。
於晶片焊墊3P之背面之周緣部,藉由自背面側之壓碎加工,遍及其全周形成有剖面為大致1/4橢圓形狀之凹處。並且,樹脂封裝體6P進入至該凹處。藉此,晶片焊墊3P之周緣部自其上下被樹脂封裝體6P夾住,從而防止晶片焊墊3P自樹脂封裝體6P之脫落(防脫)。
又,晶片焊墊3P之背面係除其周緣部(凹陷成剖面為大致1/4橢圓形狀之部分)以外,自樹脂封裝體6P之背面露出。
引線4P係於與晶片焊墊3P之各側面相對向之位置各設置有相同數量(例如,9條)。於與晶片焊墊3P之側面相對向之各位置,引線4P係沿著與其相對向之側面正交之方向延伸,且於與該側面平行之方向空開相等間隔而配置。引線4P之長度方向之長度為0.45mm。又,晶片焊墊3P與引線4P間之間隔為0.2mm。
於引線4P之背面之晶片焊墊3P側之端部,藉由自背面側之壓碎加工,形成有剖面為大致1/4橢圓形狀之凹處。並且,樹脂封裝體6P進入至該凹處。藉此,引線4P之晶片焊墊3P側之端部自其上下被樹脂 封裝體6P夾住,從而防止引線4P自樹脂封裝體6P之脫落(防脫)。
引線4P之背面係除晶片焊墊3P側之端部(凹陷成剖面為大致1/4橢圓形狀之部分)以外,自樹脂封裝體6P之背面露出。又,引線4P之與晶片焊墊3P側為相反側之側面係自樹脂封裝體6P之側面露出。
於晶片焊墊3P及引線4P之背面中自樹脂封裝體6P露出之部分,形成有含有焊錫之鍍層10P。
並且,半導體晶片2P係以將配置有焊墊7P之表面朝向上方之狀態,將其背面經由接合材料11P接合於晶片焊墊3P之表面(鍍層9P)。作為接合材料11P,例如使用焊錫膏。接合材料11P之厚度為0.02mm。
再者,於不需要半導體晶片2P與晶片焊墊3P之電性連接之情形時,亦可省略背部金屬8P,將半導體晶片2P之背面經由包含銀膏等絕緣膏之接合材料接合於晶片焊墊3P之表面。於此情形時,半導體晶片2P之平面尺寸成為2.3mm見方。又,晶片焊墊3P之表面上之鍍層9P亦可省略。
銅導線5P例如包含純度99.99%以上之銅。銅導線5P之一端接合於半導體晶片2P之焊墊7P。銅導線5P之另一端接合於引線4P之表面。並且,銅導線5P描繪著弓狀之迴路而架設於半導體晶片2P與引線4P之間。該銅導線5P之迴路之頂部與半導體晶片2P之表面之高低差為0.16mm。
繼而,於該半導體裝置1P中,與上述第1實施形態同樣地,半導體晶片2P之整個表面及整個側面、晶片焊墊3P之整個表面及整個側面、引線4P之整個表面、以及整個銅導線5P均由一體性之不透水絕緣膜25P被覆。
圖190係圖188所示之由虛線包圍之部分之放大圖。
焊墊7P包括含有Al之金屬,其形成於半導體晶片2P之最上層之 層間絕緣膜12P上。於層間絕緣膜12P上形成有表面保護膜13P。焊墊7P係將其周緣部由表面保護膜13P被覆,且中央部經由形成於表面保護膜13P之焊墊開口14P而露出。
銅導線5P係接合於自表面保護膜13P露出之焊墊7P之中央部。如下所述,銅導線5P係藉由在其前端形成FAB,將FAB按壓至焊墊7P而接合。此時,FAB產生變形,藉此於銅導線5P中之與焊墊7P之接合部分,形成供神用圓形年糕形狀之第1球體部15P。又,焊墊7P之材料自第1球體部15P之下方緩慢地逼出至第1球體部15P之周圍,藉此不自焊墊7P之表面大幅度浮起地形成逼出部16P。
例如,於銅導線5P之線徑為25μm之情形時,第1球體部15P之目標直徑(第1球體部15P之設計上之直徑)為76μm,第1球體部15P之目標厚度(第1球體部15P之設計上之厚度)為17μm。
圖191A~圖191D係用以按照步驟順序說明本發明之第15實施形態之半導體裝置之製造方法之模式性剖面圖。
銅導線5P係於晶片焊墊3P及引線4P連接於將該等包圍之框架(未圖示)之狀態下,亦即於晶片焊墊3P及引線4P形成引線框架之狀態下,藉由打線接合機架設於半導體晶片2P與引線4P之間。
於打線接合機中包含焊針C。如圖191A所示,焊針C形成中心軸線上形成有導線插通孔41P之大致圓筒形狀。銅導線5P係插通至導線插通孔41P,而自導線插通孔41P之前端(下端)送出。
於焊針C之前端部,形成有於導線插通孔41P之下方與導線插通孔41P連通之圓錐台形狀之倒角42P。又,焊針C之前端部包括外表面43P,該外表面43P係連接於倒角42P之下端緣,並於銅導線5P與焊墊7P及引線4P之接合時(打線接合時)與該等相對向之面。外表面43P係相對於與焊針C之中心軸線正交之平面,以外側上升之方式緩緩傾斜。
首先,如圖191A所示,焊針C移動至焊墊7P之正上方。其次,於銅導線5P之前端位於倒角42P之狀態下,對銅導線5P之前端部施加電流,藉此於其前端部形成FAB44P。電流值及施加時間係根據銅導線5P之線徑及FAB44P之目標直徑(FAB44P之設計上之直徑)而適當設定。FAB44P之一部分係自倒角42P向其下方露出。
其後,如圖191B所示,焊針C朝向焊墊7P下降,藉由焊針C,將FAB44P按壓至焊墊7P。此時,藉由焊針C對FAB44P施加荷重,並且對FAB44P賦予由設置於焊針C之超聲波振動子(未圖示)產生振盪之超聲波振動。
圖192係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
例如,如圖192所示,於自FAB44P抵接至焊墊7P之時刻T1起經過特定時間之時刻T2為止之期間,自焊針C對FAB44P施加相對較大之初始荷重P1。將特定時間例如設定為3msec。又,初始荷重P1係根據第1球體部15P與焊墊7P之目標接合面積(相對於焊墊7P之第1球體部15P之設計上之接合面積)乘以一定之係數(於初始荷重P1之單位為g且接合面積之單位為mm2之情形時,例如為28786)所得之值而設定。對FAB44P施加初始荷重,藉此FAB44P按焊針C之倒角42P及外表面43P之形狀而變形,如圖190所示,於焊墊7P上形成供神用圓形年糕形狀之第1球體部15P。
於時刻T2以後,自焊針C施加至FAB44P之荷重下降,對FAB44P施加相對較小之荷重P2。該荷重P2係持續施加直至焊針C上升之時刻T4為止。
又,當成為時刻T2以後之時刻T3時,開始對超聲波振動子供給驅動電流。供給至超聲波振動子之驅動電流值自零瞬間上升至值U。其後,對超聲波振動子持續施加值U之驅動電流直至成為時刻T4為 止。對超聲波振動子供給驅動電流,藉此由超聲波振動子發起超聲波振動,將該超聲波振動傳輸至FAB44P,藉此FAB44P與焊墊7P發生摩擦。其結果為,如圖190所示,於其周圍形成逼出部16P。藉此,實現銅導線5P與焊墊7P之接合(第1接合)。
當自時刻T1起經過預定之接合時間而成為時刻T4時,焊針C朝向焊墊7P之上方離開。其後,焊針C朝向引線4P之表面向斜下方移動。繼而,如圖191C所示,對超聲波振動子施加驅動電流,對焊針C賦予超聲波振動,並且藉由焊針C,將銅導線5P按壓至引線4P之表面,進而將其扯斷。藉此,於引線4P之表面上形成有包含銅導線5P之另一端部之側視時為楔狀之針腳部,從而實現銅導線與引線4P之接合(第2接合)。
其後,以另一焊墊7P及與其相對應之引線4P為對象,進行圖191A~圖191C所示之步驟。繼而,藉由重複圖191A~圖191C所示之步驟,如圖191D所示,於半導體晶片2P之所有焊墊7P與引線4P之間架設銅導線5P。於所有打線接合結束後,利用與圖4D相同之方法,形成不透水絕緣膜25P。
<特定時間之設定>
為適當地設定將初始荷重P1施加至FAB之特定時間,進行有以下測試1~3。
(1)測試1
於線徑為25μm之銅導線5P之前端形成FAB44P,並使焊針C朝向焊墊7P下降而將FAB44P按壓至焊墊7P,對FAB44P施加一定之荷重,從而於焊墊7P上形成藉由FAB44P之變形而形成之第1球體部15P。第1球體部15P之目標直徑為58μm,其目標厚度為10μm。繼而,關於施加至FAB44P之荷重之大小為50g、80g及110g之各情況,考察伴隨著自FAB44P抵接至焊墊7P算起之經過時間的第1球體部15P之直徑及 厚度之變化。將直徑(球體直徑)之時間變化示於圖193,並將厚度(球體厚度)之時間變化示於圖194。
(2)測試2
於線徑為25μm之銅導線5P之前端形成FAB44P,並使焊針C朝向焊墊7P下降而將FAB44P按壓至焊墊7P,對FAB44P施加一定之荷重,從而於焊墊7P上形成藉由FAB44P之變形而形成之第1球體部15P。第1球體部15P之目標直徑為76μm,其目標厚度為18μm。繼而,關於施加至FAB44P之荷重之大小為70g、90g、110g、130g、150g及200g之各情況,考察伴隨著自FAB44P抵接至焊墊7P算起之經過時間的第1球體部15P之直徑及厚度之變化。將直徑(球體直徑)之時間變化示於圖195,並將厚度(球體厚度)之時間變化示於圖196。
(3)測試3
於線徑為38μm之銅導線5P之前端形成FAB44P,並使焊針C朝向焊墊7P下降而將FAB44P按壓至焊墊7P,對FAB44P施加一定之荷重,從而於焊墊7P上形成藉由FAB44P之變形而形成之第1球體部15P。第1球體部15P之目標直徑為104μm,其目標厚度為25μm。繼而,關於施加至FAB44P之荷重之大小為200g、230g、250g、300g、400g及500g之各情況,考察伴隨著自FAB44P抵接至焊墊7P算起之經過時間的第1球體部15P之直徑及厚度之變化。將直徑(球體直徑)之時間變化示於圖197,並將厚度(球體厚度)之時間變化示於圖198。
如參照圖193~圖198可理解般,不管銅導線5P之線徑、荷重之大小以及第1球體部15P之目標直徑及目標厚度如何,均無法於自FAB44P抵接至焊墊7P起未滿2msec內完成。另一方面,當自FAB44P抵接至焊墊7P起超過4msec時,FAB44P之直徑及厚度大致不產生變化,從而可認為FAB44P之變形已確實完成。更詳細而言,不管銅導線5P之線徑、荷重之大小以及第1球體部15P之目標直徑及目標厚度如 何,均於FAB44P抵接至焊墊7P後經過大致3msec之時點,FAB44P之直徑及厚度之變化結束,從而可認為FAB44P之變形已完成。
因此,關於將初始荷重P1施加至FAB之特定時間,可認為適當的是2~4msec之範圍內,且可認為更適當的是3msec。
如上所述,於形成於銅導線5P之前端之FAB44P抵接至焊墊7P後,藉由焊針C對FAB44P施加荷重。藉此,抵接至焊墊7P之FAB44P產生變形。
當於該FAB44P之變形過程中將過剩之超聲波振動賦予至FAB44P時,有可能導致於FAB44P與焊墊7P之抵接部分(第1球體部15P之中央部)之下方,焊墊7P及/或焊墊7P之下層之層間絕緣膜12P中產生因賦予至FAB44P之超聲波振動之能量所引起之龜裂等損傷。
因此,於FAB44P之變形結束後,對設置於焊針C之超聲波振動子施加驅動電流。藉此,不會對變形過程中之FAB44P賦予超聲波振動,因此可防止於第1球體部15P之中央部之下方的焊墊7P及層間絕緣膜12P產生損傷。繼而,對變形結束後之FAB44P賦予超聲波振動,藉此可使FAB44P與焊墊7P發生摩擦,因此可實現FAB44P與焊墊7P之良好接合。
因此,既可防止於第1球體部15P之中央部之下方的焊墊7P及層間絕緣膜12P之龜裂等損傷產生,又可獲得銅導線5P(FAB44P)與焊墊7P之良好接合。
為使包含較Au更硬之金屬即Cu之FAB44P良好地變形,必需對FAB44P施加某種程度大小之荷重。然而,當FAB44P之變形結束後,對第1球體部15P持續施加較大荷重時,超聲波振動不會良好地傳輸至該第1球體部15P與焊墊7P之抵接部分。
因此,於FAB44P抵接至焊墊7P後,藉由焊針C對FAB44P施加相對較大之初始荷重P1,於自FAB44P抵接至焊墊7P起經過特定時間 後,藉由焊針C對FAB44P施加相對較小之荷重P2。於FAB44P抵接至焊墊7P後,對FAB44P施加相對較大之初始荷重P1,藉此可使包含較Au更硬之金屬即Cu之FAB44P良好地變形。繼而,當自FAB44P抵接至焊墊7P起經過特定時間時,施加至FAB44P之荷重下降至荷重P2,因此可使超聲波振動良好地傳輸至FAB44P(第1球體部15P)與焊墊7P之抵接部分。
初始荷重P1之大小宜根據相對於焊墊7P之第1球體部15P之目標接合面積乘以一定之係數所得之值而設定。藉此,根據第1球體部15P之目標接合面積,可適當地設定初始荷重P1之大小。其結果為,可良好地防止於第1球體部15P之中央部之下方的焊墊7P及層間絕緣膜12P產生損傷,並且可實現FAB44P之良好之變形。
以上,對本發明之第15實施形態進行了說明,但該第15實施形態亦可變更如下。
例如,於半導體裝置1P中,係應用QFN,但本發明亦可應用於應用有SON(Small Outlined Non-leaded Package)等其他種類之無引線封裝之半導體裝置之製造。
又,並不限定於引線之端面與樹脂封裝體之側面形成於同一平面之所謂切單類型,亦可將本發明適用於應用引線自樹脂封裝體之側面突出之切腳類型之無引線封裝的半導體裝置之製造。
此外,並不限定於無引線封裝,亦可將本發明應用於應用有QFP(Quad Flat Package)等包括引線自樹脂封裝體突出所形成之外部引線之封裝體的半導體裝置之製造。
又,於上述實施形態中,例示有銅導線5P由不透水絕緣膜25P被覆之態樣,但只要至少實現用以解決上述第15問題之第15目的,則亦可如圖199所示,不設置有不透水絕緣膜25P。
[實施例]
其次,關於該第15實施形態進行有實驗。再者,本發明並不受限於下述實施例。
1.評價測試1
使用Micro-Swiss公司製造之焊針。該焊針具有如下之尺寸。倒角之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針所得之剖面(參照圖191A所示之剖面),沿著倒角之側面延伸之兩條直線所形成之角度即倒角角度為90°。外表面相對於與焊針之中心軸線正交之平面所形成之角度即外表面角為8°。於以包括中心軸線之平面切斷焊針所得之剖面,自焊針之側面之外表面之上端進而向上方延伸之部分與中心軸線所形成之角度為20°。外表面之上端部分形成圓弧狀,其曲率半徑即OR尺寸為20μm(0.020mm)。
將焊針配置於自包含Al-Cu系合金之焊墊之表面算起高度7mil(約178μm)之位置,並於線徑為25μm之銅導線之前端形成直徑為59μm之FAB。繼而,使焊針以速度0.4mil/msec(約10.2μm/msec)朝向焊墊下降,將FAB按壓至焊墊,從而於焊墊上形成藉由FAB之變形而形成之第1球體部。第1球體部之目標直徑為76μm,第1球體部之目標厚度為17μm,相對於焊墊之第1球體部之目標接合面積為4534.16μm2
如圖200所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經13msec保持對FAB施加有30g之荷重之狀態。其後,使焊針上升。
又,於FAB抵接至焊墊後,開始對設置於焊針之超聲波振動子供給驅動電流,使驅動電流值自零瞬間上升至90mA,並保持對超聲波振動子施加有90mA之驅動電流之狀態直至焊針上升為止(自焊針之下降開始起經過33.5msec為止)。於實施例1、2及比較例1~3中,開始對 超聲波振動子供給驅動電流之時序各不相同。
<實施例1>
於實施例1中,自FAB抵接至焊墊起3msec後,開始對超聲波振動子供給驅動電流。
<實施例2>
於實施例2中,自FAB抵接至焊墊起4msec後,開始對超聲波振動子供給驅動電流。
<比較例1>
於比較例1中,自FAB抵接至焊墊起0msec後,亦即與FAB抵接至焊墊同時,開始對超聲波振動子供給驅動電流。
<比較例2>
於比較例2中,自FAB抵接至焊墊起1msec後,開始對超聲波振動子供給驅動電流。
<比較例3>
於比較例3中,自FAB抵接至焊墊起2msec後,開始對超聲波振動子供給驅動電流。
<龜裂評價>
對於實施例1、2及比較例1~3之各者,使FAB接合於48個焊墊而考察各焊墊之下層之層間絕緣膜中是否產生有龜裂,並計算龜裂產生率(下層之層間絕緣膜中產生有龜裂之焊墊之數量/48×100)。將該計算結果示於圖201。
如圖201所示,已確認到於自FAB抵接至焊墊起開始對超聲波振動子供給驅動電流為止之時間(延遲時間)為3msec以上之實施例1、2中,未產生層間絕緣膜之龜裂。
與此相對,已確認到於延遲時間為2msec以下之比較例1~3中,產生有層間絕緣膜之龜裂。
2.評價測試2
使用Micro-Swiss公司製造之焊針。該焊針具有如下之尺寸。倒角之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針所得之剖面(參照圖191A所示之剖面),沿著倒角之側面延伸之兩條直線所形成之角度即倒角角度為90°。外表面相對於與焊針之中心軸線正交之平面所形成之角度即外表面角為8°。於以包括中心軸線之平面切斷焊針所得之剖面,自焊針之側面之外表面之上端進而向上方延伸之部分與中心軸線所形成之角度為20°。外表面之上端部分形成圓弧狀,其曲率半徑即OR尺寸為20μm(0.020mm)。
將焊針配置於自包含Al-Cu系合金之焊墊之表面算起高度7mil(約178μm)之位置,並於線徑為25μm之銅導線之前端形成直徑為59μm之FAB。繼而,使焊針以速度0.4mil/msec(約10.2μm/msec)朝向焊墊下降,將FAB按壓至焊墊,從而於焊墊上形成藉由FAB之變形而形成之第1球體部。第1球體部之目標直徑為76μm,第1球體部之目標厚度為17μm,相對於焊墊之第1球體部之目標接合面積為4534.16μm2
<實施例3>
如圖202所示,於FAB抵接至焊墊後之6msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該6msec之時點,將施加至FAB之荷重下降至30g,經10msec保持對FAB施加有30g之荷重之狀態。亦即,與實施例2相比,使開始對超聲波振動子供給驅動電流之時序延遲僅2msec。其後,使焊針上升。
又,自FAB抵接至焊墊起4msec後,開始對設置於焊針之超聲波振動子供給驅動電流,使驅動電流值自零瞬間上升至90mA,並保持對超聲波振動子施加有90mA之驅動電流之狀態直至焊針上升為止(自焊針之下降開始起經過33.5msec為止)。
<實施例4>
如圖203所示,於FAB抵接至焊墊後之3msec期間內,藉由焊針對FAB施加130g之初始荷重,並於經過該3msec之時點,將施加至FAB之荷重下降至30g,經31msec保持對FAB施加有30g之荷重之狀態。亦即,與實施例2相比,將對FAB施加30g之荷重之時間延長僅28msec。其後,使焊針上升。
又,自FAB抵接至焊墊起4msec後,開始對設置於焊針之超聲波振動子供給驅動電流,使驅動電流值自零瞬間上升至90mA,並保持對超聲波振動子施加有90mA之驅動電流之狀態直至焊針上升為止(自焊針之下降開始起經過51.5msec為止)。
<龜裂評價>
對於實施例3、4之各者,使FAB接合於48個焊墊而考察各焊墊之下層之層間絕緣膜中是否產生有龜裂,結果確認到未產生層間絕緣膜之龜裂。
<第16實施形態 圖204~圖208>
該第16實施形態係關於包括含銅之電極焊墊之半導體裝置者,並非係對本發明進行說明者,而與第1實施形態之半導體裝置同樣地,係使用銅接線之實施形態。藉由該第16實施形態之揭示,可解決針對以下所示之第16先前技術之第16問題。
(1)第16先前技術
半導體裝置之佈線材料中廣泛使用有Al(鋁)。例如,於使用Al作為佈線材料之多層佈線結構中,交替積層有包括平坦表面之層間絕緣膜以及配設於該層間絕緣膜之平坦表面上之佈線。於最上層之層間絕緣膜上形成有包含SiN(氮化矽)之鈍化膜。配設於該層間絕緣膜上之佈線(最上層佈線)係由鈍化膜被覆,並且其一部分露出作為電極焊墊(Al焊墊)。於所露出之電極焊墊連接有接線,例如作為該連接方法, 係廣泛採用使用打線接合機之超聲波接合。
(2)第16問題
近年來,業界期望特別是在消耗大電力之功率半導體裝置中降低佈線電阻。因此,本申請案發明者研究採用導電性高於Al之Cu(銅)作為最上層佈線之材料。
另一方面,先前以來之Al焊墊容易與廣泛用作接線之Au(金)相互擴散。因此,有可能導致於高溫環境下,Al與Au相互擴散,接線自電極焊墊脫落。因此,必需實施用以防止此類相互擴散之對策。
亦即,該第16實施形態之發明之第16目的在於提供一種降低佈線電阻,並且高溫放置性優異,可提高電極焊墊與接線之連接可靠性的半導體裝置。
(3)具體實施形態之揭示
圖204係半導體裝置之圖解性平面圖。圖205係圖204所示之半導體裝置之A-A線剖面圖。
半導體裝置1Q包括:半導體晶片2Q;晶片焊墊3Q,其晶片接合半導體晶片2Q;多條電極引線4Q,其配置於半導體晶片2Q之周圍;接線5Q,其電性連接半導體晶片2Q與電極引線4Q;以及樹脂封裝體6Q,其將該等密封。
半導體晶片2Q於俯視時為大致四角形(例如,2.3mm見方左右),其厚度例如為230μm左右。又,半導體晶片2Q具有複數個佈線層經由層間絕緣膜積層而成之多層佈線結構。多層佈線結構之具體構成將參照圖206於下文中進行詳細敍述。
於半導體晶片2Q之表面21Q,形成有類比電路7Q、數位電路8Q及3個功率電晶體電路9Q。具體而言,於圖204所示之俯視時,於上半部分之區域左右並列形成有類比電路7Q與數位電路8Q,且於下半部分之區域左右並列形成有3個功率電晶體電路9Q。
於形成有各電路7Q~9Q之區域,在適當位置配置有用以電性連接各電路7Q~9Q與外部之複數個電極焊墊10Q。
又,於圖204中之右側之形成有功率電晶體電路9Q之區域,配置有於俯視時為L字狀之對準標記11Q。
例如,使用雷射光束對半導體裝置1Q之表面進行掃描,識別對準標記11Q,藉此可檢測出與半導體裝置1Q之表面正交之軸線周圍之半導體裝置1Q之位置(θ位置)。又,根據對準標記11Q之位置,可檢測出半導體裝置1Q之各部之位置(X位置、Y位置、Z位置)。
另一方面,於半導體晶片2Q之背面22Q(與晶片焊墊3Q之對向面),形成有含有例如Au、Ni、Ag等之背部金屬12Q。
晶片焊墊3Q及複數條電極引線4Q形成為包含相同金屬薄板之引線框架13Q。構成引線框架13Q之金屬薄板包含Cu系原材料,具體而言包含例如純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅、Cu與異種金屬之合金(例如,Cu-Fe-P合金等)。再者,金屬薄板亦可為例如42合金(Fe-42% Ni)等Fe系原材料等。又,引線框架13Q(金屬薄板)之厚度例如為200μm左右。
晶片焊墊3Q之表面31Q(與半導體晶片2Q之對向面)係由樹脂封裝體6Q密封之面,形成有含有Ag等之密封側鍍層14Q。
並且,半導體晶片2Q與晶片焊墊3Q係藉由在半導體晶片2Q之背面22Q與晶片焊墊3Q之表面31Q作為接合面而彼此對向之狀態下,使接合材料15Q介插於背面22Q與表面31Q之間,而彼此接合。藉此,半導體晶片2Q係以將表面21Q朝向上方之姿勢支持於晶片焊墊3Q。
接合材料15Q包含例如焊錫膏等導電膏。再者,作為接合材料15Q,可應用例如銀膏、氧化鋁膏等絕緣膏,於此情形時,背部金屬12Q及/或密封側鍍層14Q亦可省略。又,於半導體晶片2Q與晶片焊墊3Q已接合之狀態下,接合材料15Q之厚度例如為20μm左右。
晶片焊墊3Q之背面32Q(對佈線基板之安裝面)係自樹脂封裝體6Q露出。於所露出之背面32Q,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之安裝側鍍層16Q。
電極引線4Q係藉由在與晶片焊墊3Q之各側面正交之各方向上之兩側分別各設置相同數量,而配置於晶片焊墊3Q之周圍。與晶片焊墊3Q之各側面相對向之電極引線4Q係沿著與其相對向之側面平行之方向等間隔地配置。各電極引線4Q之與晶片焊墊3Q之對向方向上之長度(背面42Q側之長度)例如為450μm左右。
電極引線4Q之表面41Q(接線5Q之連接面)係由樹脂封裝體6Q密封之面,形成有含有Ag等之密封側鍍層17Q。
另一方面,電極引線4Q之背面42Q(對佈線基板之安裝面)係自樹脂封裝體6Q露出。於所露出之背面42Q,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之安裝側鍍層18Q。
接線5Q包含銅(例如,為純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅等,有時含有微量之雜質)。接線5Q一體地包括呈線狀延伸之圓柱狀之導線本體51Q、形成於導線本體51Q之一端且藉由針腳式接合而接合於電極焊墊10Q之焊墊側端部52Q、以及形成於導線本體51Q之另一端且藉由球形接合而接合於電極引線4Q之引線側端部53Q。
導線本體51Q係於電極引線4Q之上方彎曲,並自該彎曲位置穿過半導體晶片2Q(下述基板19Q)之上方,朝向電極焊墊10Q以成為大致直線狀之方式平滑地傾斜,其另一端一體地連接於扁平之焊墊側端部52Q。該導線本體51Q之相對於半導體晶片2Q(基板19Q)之周緣(邊緣)之高度H1例如為50~100μm。
樹脂封裝體6Q係形成半導體裝置1Q之外形,形成為大致長方體狀。關於樹脂封裝體6Q之大小,其平面尺寸例如為4mm見方左右, 其厚度例如為0.85mm左右。此種樹脂封裝體6Q包含例如環氧樹脂等眾所周知之鑄模樹脂。
圖206係圖205之由虛線圓包圍之部分之主要部分放大圖。
參照此圖206,對半導體晶片2Q之多層佈線結構進行說明。
半導體晶片2Q包括作為半導體基板之含矽(Si)之基板19Q。於基板19Q上,自基板19Q之表面24Q側起依序積層有第1層間絕緣膜20Q及第2層間絕緣膜23Q。第1層間絕緣膜20Q及第2層間絕緣膜23Q包含SiO2(氧化矽)。再者,於圖2中雖未圖示,但於第1層間絕緣膜20Q與第2層間絕緣膜23Q之間介插有複數個層間絕緣膜。
於第2層間絕緣膜23Q上,彼此空開間隔地形成有下佈線25Q及保險絲(fuse)26Q。下佈線25Q及保險絲26Q包含鋁(Al)。藉由將保險絲26Q切斷與否,可改變功率電晶體電路9Q(參照圖204)之特性(例如,電阻值等)。
於第2層間絕緣膜23Q、下佈線25Q及保險絲26Q上積層有第3層間絕緣膜27Q。第3層間絕緣膜27Q包含SiO2。於第3層間絕緣膜27Q之表面,於形成於第2層間絕緣膜23Q上之部分與形成於下佈線25Q及保險絲26Q上之部分之間,產生有與下佈線25Q及保險絲26Q之高度大致相同之階差。
於第3層間絕緣膜27Q上,形成有TEOS(Tetraethoxysilane,四乙氧基矽烷)膜28Q,以消除產生於第3層間絕緣膜27Q之表面的階差。TEOS膜28Q之表面與第3層間絕緣膜27Q中之形成於下佈線25Q及保險絲26Q上之部分之表面幾乎形成同一平面。
於第3層間絕緣膜27Q及TEOS膜28Q上積層有第4層間絕緣膜29Q。第4層間絕緣膜29Q包含SiN(氮化矽)。
又,於第3層間絕緣膜27Q及第4層間絕緣膜29Q,於沿厚度方向與下佈線25Q相對向之部分,形成有沿著厚度方向將彼等貫通之通孔 30Q。通孔30Q形成為如越朝上側開口面積越大之錐形狀。
於第4層間絕緣膜29Q上,作為最上層佈線之上佈線33Q及對準標記11Q形成於彼此空開間隔之位置。
上佈線33Q形成於俯視時包含通孔30Q之區域上,且自第4層間絕緣膜29Q向上方突出而形成。上佈線33Q例如具有自第4層間絕緣膜29Q之表面之突出量成為10μm以上,較佳為成為10μm~15μm之厚度T。上佈線33Q之下端部進入至通孔30Q內而連接於下佈線25Q。上佈線33Q包含銅(Cu)(例如,為純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅等,有時含有微量之雜質)。
於上佈線33Q與下佈線25Q、第3層間絕緣膜27Q及第4層間絕緣膜29Q之間,介插有具有針對Cu離子擴散之障壁性的障壁膜34Q。障壁膜34Q包含Ti(鈦)。
於第4層間絕緣膜29Q及上佈線33Q上形成有鈍化膜35Q。鈍化膜35Q包含SiN。於鈍化膜35Q,沿著厚度方向貫通而形成有用以使上佈線33Q之上表面一部分露出作為電極焊墊10Q(參照圖204)的焊墊開口36Q。又,鈍化膜35Q係自對準標記11Q上及其周圍之部分去除。又,對準標記11Q包含Al(鋁)。
電極焊墊10Q(上佈線33Q中之自焊墊開口36Q所露出之部分)係由氧化銅膜37Q被覆。氧化銅膜37Q係藉由將電極焊墊10Q自然氧化而化學變化成CuO(氧化銅(I))或Cu2O(氧化銅(II))所形成之薄膜,其厚度較鈍化膜35Q更薄,例如為10nm~50nm。
並且,接線5Q係其電極焊墊10Q側之端部(焊墊側端部52Q)貫通薄膜狀之氧化銅膜37Q而直接接合於電極焊墊10Q。
具體而言,於電極焊墊10Q側,配合藉由針腳式接合而變形為扁平之焊墊側端部52Q之形狀,氧化銅膜37Q產生破裂,於露出於破裂而空出之部分的電極焊墊10Q直接接合有焊墊側端部52Q。於該扁平 之焊墊側端部52Q之端部,一體地連接有接線5Q之本體(導線本體51Q)之一端。
圖207A~圖207F係表示圖205所示之半導體裝置之製造過程中之狀態的模式性剖面圖。
於半導體裝置1Q之製造步驟中,首先,於基板19Q上製作多層佈線結構。例如,首先,利用CVD(Chemical Vapor Deposition:化學氣相沈積)法,於基板19Q上積層第1層間絕緣膜20Q及第2層間絕緣膜23Q。其後,利用濺鍍法,於第2層間絕緣膜23Q上形成成為下佈線25Q及保險絲26Q之材料之鋁膜。繼而,藉由光微影及蝕刻,對鋁膜進行圖案化,藉此形成下佈線25Q及保險絲26Q。
其次,利用HDP(High Density Plasma:高密度電漿)-CVD法,於第2層間絕緣膜23Q、下佈線25Q及保險絲26Q上形成第3層間絕緣膜27Q。其後,利用CVD法,於第3層間絕緣膜27Q上形成TEOS膜28Q。繼而,利用CMP(Chemical Mechanical Polishing:化學機械拋光)法,對TEOS膜28Q自其表面進行研磨。該TEOS膜28Q之研磨係持續進行至TEOS膜28Q之表面與第3層間絕緣膜27Q中之形成於下佈線25Q及保險絲26Q上之部分之表面成為同一平面為止。
繼而,利用電漿CVD法,於第3層間絕緣膜27Q及TEOS膜28Q上形成第4層間絕緣膜29Q。其後,藉由光微影及蝕刻,如圖207A所示,選擇性地去除第3層間絕緣膜27Q及第4層間絕緣膜29Q,從而形成將彼等沿著厚度方向貫通之通孔30Q。
其次,如圖207B所示,利用濺鍍法,於包括通孔30Q之內面之第4層間絕緣膜29Q上形成障壁膜34Q。繼而,利用濺鍍法,於障壁膜34Q上形成包含Cu之籽晶膜(seed film)38Q。其後,於障壁膜34Q及籽晶膜38Q上形成光阻圖案39Q,該光阻圖案39Q係於與俯視時包括通孔30Q之區域相對向之部分具有開口。
其次,於光阻圖案39Q之開口內,使Cu鍍敷沈積。藉此,如圖207C所示,光阻圖案39Q之開口內由Cu填滿,從而形成包含Cu之上佈線33Q。於上佈線33Q形成後,去除光阻圖案39Q。
其後,如圖207D所示,藉由蝕刻,去除障壁膜34Q及籽晶膜38Q中之形成於光阻圖案39Q之下方之部分。
其次,利用濺鍍法,於第4層間絕緣膜29Q上形成鋁膜。繼而,藉由光微影及乾式蝕刻(例如,RIE(Reactive Ion Etching,反應性離子蝕刻)),選擇性地去除鋁膜,如圖207E所示,形成對準標記11Q。其後,利用CVD法,於第4層間絕緣膜29Q及對準標記11Q上形成鈍化膜(passivation film)35Q。
繼而,藉由光微影及蝕刻,於鈍化膜35Q形成焊墊開口36Q,並且自對準標記11Q上及其周圍之部分去除鈍化膜35Q。藉此,獲得半導體晶片2Q。
於半導體晶片2Q之製作後,將半導體晶片2Q晶片接合於一體地包括晶片焊墊3Q及電極引線4Q之引線框架13Q(參照圖205)。另一方面,於半導體晶片2Q中,將自焊墊開口36Q所露出之上佈線33Q之上表面(電極焊墊10Q)自然氧化,使得電極焊墊10Q由氧化銅膜37Q被覆。其次,對由打線接合機(未圖示)之焊針40Q所保持之接線5Q之前端部施加電流,藉此於前端部形成FAB(Free Air Ball)。
其次,於焊針40Q移動至電極引線4Q之正上方後下降,FAB與電極引線4Q相接觸。此時,例如經10msec~20msec,自焊針40Q對FAB施加荷重及超聲波。藉此,FAB對應於焊針40Q之形狀產生變形。如此,接線5Q之前端部作為引線側端部53Q而球形接合於電極引線4Q。
其後,焊針40Q上升至一定高度為止,並向電極焊墊10Q之正上方移動。繼而,如圖207F所示,焊針40Q再次下降,接線5Q維持著其形狀(保持著導線線徑)與電極焊墊10Q相接觸。此時,例如經10 msec~20msec,自焊針40Q對接線5Q施加荷重(圖207F之中空箭頭)及超聲波(圖207F之鋸齒狀線)。藉此,接線5Q對應於焊針40Q之形狀變形為扁平,並且藉由荷重及超聲波之作用,氧化銅膜37Q發生破裂,將接線5Q作為焊墊側端部52Q而針腳式接合於電極焊墊10Q。
繼而,焊針40Q上升,於自焊針40Q之前端確保有一定長度之尾部之狀態下,自焊墊側端部52Q之位置扯斷接線5Q。
其後,進行與圖207A~圖207F相同之步驟,藉由接線5Q連接半導體晶片2Q之各電極焊墊10Q以及與各電極焊墊10Q相對應之電極引線4Q。經由以上步驟,可獲得圖205所示之半導體裝置1Q。
根據該半導體裝置1Q,由於多層佈線結構之最上層佈線(上佈線33Q)包含Cu,因此較採用Al佈線作為最上層佈線之情形時相比,可降低佈線電阻。
又,該上佈線33Q作為電極焊墊10Q而露出,於電極焊墊10Q接合有包含Cu之接線5Q(Cu導線),故而可將電極焊墊10Q與接線5Q之連接設為同種金屬彼此之接合(Cu-Cu接合)。因此,即使將半導體裝置1Q放置於高溫環境下,於電極焊墊10Q與接線5Q之間該等成分(亦即,Cu)亦不會相互擴散,從而可維持電極焊墊10Q與接線5Q之接合。藉此,可提供一種高溫放置性及連接可靠性均優異之半導體裝置。
又,於該半導體裝置1Q中,即使由於接線5Q之荷重及超聲波之施加(參照圖207F)而導致較大應力施加至電極焊墊10Q,亦可藉由包含Cu之電極焊墊10Q來緩和該應力。
具體而言,於採用Al作為上佈線33Q之情形時,該上佈線33Q(Al佈線)之厚度藉由鍍敷法,至多可設為3μm左右。與此相對,於該半導體裝置1Q中,則利用較Al更容易增加鍍敷厚度之Cu之特性,使上佈線33Q之厚度T達到10μm以上。因此,可藉由相對較厚之上佈線 33Q,確實地緩和施加至第2層間絕緣膜23Q之應力。其結果為,可抑制第2層間絕緣膜23Q等中產生龜裂。
此外,因上佈線33Q之厚度T為10μm以上,故而可相對於基板19Q之表面24Q充分提昇接線5Q與電極焊墊10Q之接合位置(針腳式接合位置)。藉此,宛如存在柱形凸塊般,可充分提高接線5Q相對於基板19Q之表面24Q的高度H1。因此,即使將接線5Q直接針腳式接合於電極焊墊10Q,導線本體51Q之下垂部分亦幾乎不會到達基板19Q之邊緣。因此,可抑制因導線本體51Q與基板19Q之接觸所引起之邊緣短路(edge short)。
圖208係表示圖205之半導體裝置之變形例之圖。於圖208中,對於與圖206所示之各部相對應之部分,標註與彼等各部相同之參照符號。又,以下,省略關於標註有相同參照符號之部分之詳細說明。
於半導體裝置50Q中,接線54Q之電極焊墊10Q側之端部(焊墊側端部55Q)亦係貫通薄膜狀之氧化銅膜37Q而直接接合於電極焊墊10Q。但是,於上述半導體裝置1Q中,焊墊側端部52Q作為針腳式接合而直接接合於電極焊墊10Q(參照圖206),與此相對,於該變形例中,焊墊側端部55Q則係作為柱形凸塊負責與電極焊墊10Q之接合。
更具體而言,配合大致吊鐘狀(大致傘狀)之柱形凸塊(焊墊側端部55Q)之形狀,氧化銅膜37Q產生破裂,於露出於破裂而空出之部分的電極焊墊10Q直接接合有焊墊側端部55Q。
繼而,於該焊墊側端部55Q之上端部針腳式接合有接線54Q之本體(導線本體56Q)之一端。
於該變形例中,尤其是於電極焊墊10Q上形成柱形凸塊(焊墊側端部55Q)時,即使對用以形成柱形凸塊之FAB施加較強之超聲波,亦與採用Al焊墊之情形時不同,幾乎不產生電極焊墊10Q捲起之濺鍍。又,於接線54Q與電極焊墊10Q之接合時,柱形凸塊及針腳式接合之 兩次份之超聲波(應力)會作用於電極焊墊10Q,但因電極焊墊10Q包含銅,故而可承受住該應力。
以上,對本發明之第16實施形態進行了說明,但該第16實施形態亦可變更如下。
於上述實施形態中,作為相對於電極焊墊10Q之接線之接合形態之一例,已列舉針腳式接合(第1例)及柱形凸塊上之針腳式接合(第2例)之態樣,但亦可例如藉由針腳式接合於電極引線4Q,而直接進行球形接合以打破電極焊墊10Q側之氧化銅膜37Q。
又,作為障壁膜34Q之材料,例示有Ti,但障壁膜34Q之材料只要具有導電性且具有針對銅離子擴散之障壁性即可,除Ti以外,亦可例示例如TiN(氮化鈦)、WN(氮化鎢)、TaN(氮化鉭)、Ta(鉭)、W(鎢)或TiW(鈦-鎢合金)等。
<第17實施形態 圖209~圖213>
藉由該第17實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第17先前技術之第17問題。
(1)第17先前技術
通常,半導體裝置係以將半導體晶片與接線一併由樹脂密封(封裝)之狀態流通。於封裝體內,於半導體晶片之鋁製電極焊墊,電性連接有接線。
作為連接於電極焊墊之接線,先前主要係使用金導線,但為減少使用價格昂貴之金,近年來正在研究使用價格較金導線便宜之銅導線。
(2)第17問題
然而,銅導線較金導線更容易氧化。因此,例如於HAST(Highly Accelerated temperature and humidity Stress Test)測試過程中等,水分 容易滲入至封裝體內部之狀況中,因進入至該接合界面之水分,鋁焊墊(電極焊墊)之腐蝕容易進行。其結果為,於焊墊與導線之間有產生電性斷開之虞。
亦即,該第17實施形態之發明之第17目的在於提供一種可提高包括含鋁之金屬材料之電極焊墊與含銅之接線之連接可靠性的半導體裝置。
(3)具體實施形態之揭示
圖209係本發明之第17實施形態之半導體裝置之模式剖面圖。圖210A係圖209之由虛線圓A包圍之部分之主要部分放大圖。圖210B係圖209之由虛線圓B包圍之部分之主要部分放大圖。
半導體裝置1R係應用有QFN(Quad Flat Non-leaded)之半導體裝置。半導體裝置1R包括:半導體晶片2R;晶片焊墊3R,其用以搭載半導體晶片2R;複數條電極引線4R,其配置於晶片焊墊3R之周圍;接線5R,其將半導體晶片2R與電極引線4R加以電性連接;以及樹脂封裝體6R,其將該等密封。
半導體晶片2R於俯視時為四角狀(例如,2.3mm見方左右),例如具有複數個佈線層經由層間絕緣膜積層而成之多層佈線結構。又,半導體晶片2R之厚度例如為230μm左右。半導體晶片2R之表面21R係如圖210A所示,由表面保護膜7R覆蓋。
於表面保護膜7R形成有複數個用以使多層佈線結構中之最上面之佈線層露出之焊墊開口8R。
焊墊開口8R於俯視時為四角狀,於半導體晶片2R之各邊緣各設置有相同數量。各焊墊開口8R係沿著半導體晶片2R之各邊等間隔地配置。並且,佈線層之一部分自各焊墊開口8R露出作為半導體晶片2R之電極焊墊9R。
作為電極焊墊9R而露出之最上面之佈線層包括含有Al(鋁)之金屬 材料,具體而言包含以Al為主成分之金屬材料(例如,Al-Cu合金等)。
另一方面,於半導體晶片2R之背面22R(與晶片焊墊3R之對向面),形成有含有例如Au、Ni、Ag等之背部金屬10R。
晶片焊墊3R及複數條電極引線4R形成為包含相同金屬薄板之引線框架11R。構成引線框架11R之金屬薄板包含主要含有Cu之Cu系原材料,具體而言包含例如純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅、Cu與異種金屬之合金(例如,Cu-Fe-P合金等)。再者,金屬薄板亦可為例如42合金(Fe-42% Ni)等Fe系原材料等。又,引線框架11R(金屬薄板)之厚度例如為200μm左右。
晶片焊墊3R之表面31R(與半導體晶片2R之對向面)係由樹脂封裝體6R密封之面,形成有含有Ag等之密封側鍍層12R。
並且,半導體晶片2R與晶片焊墊3R係藉由在半導體晶片2R之背面22R與晶片焊墊3R之表面31R作為接合面而彼此對向之狀態下,使接合材料13R介插於背面22R與表面31R之間,而彼此接合。藉此,半導體晶片2R係以將表面21R朝向上方之姿勢支持於晶片焊墊3R。
接合材料13R包含例如焊錫膏等導電膏。再者,作為接合材料13R,可應用例如銀膏、氧化鋁膏等絕緣膏,於此情形時,背部金屬10R及/或密封側鍍層12R亦可省略,又,半導體晶片2R之平面尺寸亦可為2.4mm見方。又,於半導體晶片2R與晶片焊墊3R已接合之狀態下,接合材料13R之厚度例如為20μm左右。
晶片焊墊3R之背面32R(對佈線基板之安裝面)係自樹脂封裝體6R露出。於所露出之背面32R,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之安裝側鍍層14R。
電極引線4R係藉由在與晶片焊墊3R之各側面正交之各方向上之兩側分別各設置相同數量,而配置於晶片焊墊3R之周圍。與晶片焊 墊3R之各側面相對向之電極引線4R係沿著與其相對向之側面平行之方向等間隔地配置。各電極引線4R之與晶片焊墊3R之對向方向上之長度(背面42R側之長度)例如為450μm左右。
電極引線4R之表面41R(接線5R之連接面)係由樹脂封裝體6R密封之面,形成有含有Ag等之密封側鍍層15R。
另一方面,電極引線4R之背面42R(對佈線基板之安裝面)係自樹脂封裝體6R露出。於所露出之背面42R,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之安裝側鍍層16R。
接線5R包含銅(例如,為純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅等,有時含有微量之雜質)。接線5R包括呈線狀延伸之圓柱狀之本體部51R、以及形成於本體部51R之兩端且分別與電極焊墊9R及電極引線4R接合之焊墊接合部52R及引線接合部53R。
本體部51R係自電極焊墊9R側之一端向半導體晶片2R之外側呈朝上方凸起之抛物線狀彎曲,並於另一端以銳角向電極引線4R之表面41R入射。於本體部51R之最頂部的下端與半導體晶片2R之表面21R的間隔1例如為160μm左右。
焊墊接合部52R於剖視時為凸狀,其一體地包括與電極焊墊9R之接合側均等地進入至電極焊墊9R之表層部的圓板狀之基底部、以及自基底部之上側突出且其前端與本體部51R之一端連接之吊鐘狀之突出部。
引線接合部53R於剖視時為楔狀,其靠近本體部51R之一端側相對較厚,且隨著越接近遠離本體部51R之另一端側相對越薄。
並且,於該半導體裝置1R中,與上述第1實施形態相同地,半導體晶片2R之整個表面21R及整個側面23R、晶片焊墊3R之整個表面31R及整個側面、電極引線4R之整個表面41R及樹脂封裝體6R內之整 個側面、以及整個接線5R均由一體性之不透水絕緣膜25R被覆。
樹脂封裝體6R包括含有例如環氧樹脂、硬化劑、硬化促進劑、偶合劑、脫模劑、pH值調節劑等之材料。
作為所含之環氧樹脂,只要為可用作樹脂封裝體用環氧樹脂者即無特別限制,例如可列舉苯酚酚醛清漆型環氧樹脂、鄰甲酚酚醛清漆型環氧樹脂、具有三苯甲烷骨架之環氧樹脂(三苯甲烷型環氧樹脂)、芪基型環氧樹脂、對苯二酚型環氧樹脂、縮水甘油酯型環氧樹脂、縮水甘油胺型環氧樹脂、二環戊二烯型環氧樹脂、萘型環氧樹脂、芳烷基型苯酚樹脂之環氧化物、伸聯苯基型環氧樹脂、三羥甲基丙烷型環氧樹脂、萜烯改性環氧樹脂、線狀脂肪族環氧樹脂、脂環族環氧樹脂、含有硫原子之環氧樹脂等。該等可單獨使用或者將兩種以上併用。
作為所含之硬化劑,只要為可用作樹脂封裝體用硬化劑者即無特別限制,例如可列舉酚醛清漆型苯酚樹脂,例如可列舉苯酚‧芳烷基樹脂、萘酚‧芳烷基樹脂、聯苯‧芳烷基樹脂等芳烷基型苯酚樹脂,二環戊二烯型苯酚樹脂,萜烯改性苯酚樹脂,三苯甲烷型苯酚樹脂等。該等可單獨使用或者將兩種以上併用。
作為所含之硬化促進劑,只要為可用作樹脂封裝體用硬化促進劑者即無不特別限制,例如可列舉1,8-二氮-雙環(5,4,0)十一烯-7、1,5-二氮-雙環(4,3,0)壬烯、5,6-二丁胺基-1,8-二氮-雙環(5,4,0)十一烯-7等環脒化合物及該等化合物中加成順丁烯二酸酐,1,4-苯醌、2,5-甲醌、1,4-萘醌、2,3-二甲基苯醌、2,6-二甲基苯醌、2,3-二甲氧基-5-甲基-1,4-苯醌、2,3-二甲氧基-1,4-苯醌、苯基-1,4-苯醌等醌化合物,重氮苯基甲烷,苯酚樹脂等具有π鍵之化合物而成的具有分子內極化之化合物;二甲苄胺、三乙醇胺、二甲基胺乙醇、三(二甲胺甲基)苯酚等三級胺類及該等之衍生物;2-甲基咪唑、2-苯基咪唑、2-苯基-4-甲 基咪唑等咪唑類及該等之衍生物;三丁基膦、甲基二苯基膦、三苯基膦、三(4-甲基苯基)膦、二苯基膦、苯基膦等膦化合物及於該等膦化合物中加成順丁烯二酸酐、上述醌化合物、重氮苯基甲烷、苯酚樹脂等具有π鍵之化合物而成的具有分子內極化之磷化合物;四苯基磷四苯基硼酸鹽、三苯基膦四苯基硼酸鹽、2-乙基-4-甲基咪唑四苯基硼酸鹽、N-甲基嗎啉四苯基硼酸鹽等四苯基硼酸鹽及該等之衍生物等。該等可單獨使用或者將兩種以上併用。
作為所含之偶合劑,只要為可用作樹脂封裝體用偶合劑者即無特別限制,例如可列舉具有一級、二級及三級胺基中之至少一者之矽烷化合物,環氧矽烷、巰基矽烷、烷基矽烷、脲基矽烷、乙烯基矽烷等各種矽烷系化合物,鈦系化合物,鋁螯合物類,鋁/鋯系化合物等。該等可單獨使用或者將兩種以上併用。
作為所含之脫模劑,只要為可用作樹脂封裝體用脫模劑者即無特別限制,例如可列舉巴西棕櫚蠟,褐煤酸、硬脂酸等高級脂肪酸,高級脂肪酸金屬鹽,褐煤酸酯等酯系蠟,氧化聚乙烯、非氧化聚乙烯等聚烯烴系蠟等。該等可單獨使用或者將兩種以上併用。
作為所含之pH值調節劑,例如可列舉矽灰石(矽酸鈣)、滑石(矽酸鎂)、氫氧化鋁、碳酸鎂、碳酸鈣等無機填充材。該等可單獨使用或者將兩種以上併用。
再者,樹脂封裝體6R視需要亦可包含稀釋劑、著色劑、阻燃劑、調平劑、消沫劑等添加物。
上述組成之樹脂封裝體6R之pH值大於4.5,自將樹脂封裝體6R之pH值保持為酸性之必要性而言,較佳為大於4.5且小於7.0,更佳為6.0以上且小於7.0。又,樹脂封裝體6R形成半導體裝置1R之外形,形成為大致長方體狀。關於樹脂封裝體6R之大小,其平面尺寸例如為4mm見方左右,其厚度例如為0.85mm左右。
並且,於半導體裝置1R中,半導體晶片2R之表面21R與樹脂封裝體6R之表面(上表面)61R的間隔L1小於半導體晶片2R之側面23R與樹脂封裝體6R之側面63R的最短距離W。具體而言,間隔L1例如為375~425μm,較佳為400μm左右,最短距離W例如為800~1000μm,較佳為900μm左右。
又,間隔L1為半導體晶片2R之表面21R與樹脂封裝體6R之背面62R(晶片焊墊3R之背面32R)之距離L2(例如為425~475μm,較佳為450μm左右)以下。
半導體裝置1R係如上所述設計成間隔L1相對縮小之大小,藉此形成為薄型之QFN封裝體。
如上所述,根據該半導體裝置1R,樹脂封裝體6R之pH值大於4.5,故而可將接線5R放置於與低pH值環境(例如,pH值為4.5以下之環境)相比更高之pH值環境下。
因此,可抑制氧化銅(CuO)之形成,故而可抑制氧化銅之體積增加。其結果為,可抑制接線5R與樹脂封裝體6R之接合界面(導線接合界面17R)中產生剝離。
因此,即使將半導體裝置1R放置於PCT(Pressure Cooker Test)或HAST(Highly Accelerated temperature and humidity Stress Test)測試等水分容易滲入至封裝體內部之狀況下,亦因導線接合界面17R中不存在水分之移動路徑,故而可抑制水分滲入至電極焊墊9R與接線5R(焊墊接合部52R)之接合界面(焊墊接合界面18R)。因此,可抑制焊墊接合界面18R與水分之接觸。其結果為,可抑制電極焊墊9R(鋁焊墊)之腐蝕之行進,因此可抑制焊墊與導線間之電性斷開。藉此,可提高半導體裝置1R之連接可靠性。
特別是於對接線5R施加電流而由於內部電阻較大之氧化銅(CuO)之焦耳熱導致容易促進接線5R之氧化的HAST測試中,可有效抑制焊 墊與導線間之電性斷開。
又,於如半導體裝置1R之薄型封裝體中,半導體晶片2R上之焊墊接合部52R容易暴露於自樹脂封裝體6R之表面61R滲入至封裝體內部之水分,但是於此類薄型封裝體之半導體裝置1R中,亦可有效提高半導體裝置1R之連接可靠性。
以上,對本發明之第17實施形態進行了說明,但該第17實施形態亦可變更如下。
例如,於上述實施形態中,係採用QFN類型之半導體裝置,但本發明亦可應用於QFP(Quad Flat Package)、SOP(Small Outline Package)等其他種類之封裝類型之半導體裝置。
又,於上述實施形態中,例示有接線5R由不透水絕緣膜25R被覆之態樣,但只要至少實現用以解決上述第17問題之第17目的,則亦可如圖211所示,不設置有不透水絕緣膜25R。
[實施例]
其次,關於該第17實施形態進行有實驗。再者,本發明並不受限於下述實施例。
<實施例1~3及比較例1>
製作圖209所示之結構之半導體裝置。但是,使用Cu合金製、SOP8銷之引線框架。又,關於樹脂封裝體之組成,係自先前例示之環氧樹脂、硬化劑、硬化促進劑、偶合劑、脫模劑、pH值調節劑及阻燃劑中選擇一種,除pH值調節劑之添加量不同以外,於實施例1~3及比較例1中設為完全相同。
<評價測試>
(1)HAST測試
將實施例1~3及比較例1中所獲得之半導體裝置各10個設為測試樣品。繼而,對10個測試樣品進行了HAST測試。再者,關於所有半 導體裝置,HAST測試之條件均設為相同(130℃/85% RH(相對濕度)5V偏壓(Bias))。
於HSAT測試中,對測試開始後分別經過100小時、200小時、300小時、500小時、700小時及1000小時時附加至HAST測試之半導體裝置進行分析,對於焊墊與導線之間產生有電性斷開之半導體裝置不繼續測試,而判斷為不合格品。將伴隨著HAST測試之過程的焊墊與導線間之電性斷開之產生個數(不合格個數)及累積產生率(不合格率)示於下述表8及圖212。
(2)PCT測試
將實施例1~3及比較例1中所獲得之半導體裝置各30個設為測試樣品。繼而,對30個測試樣品進行了PCT測試。再者,關於所有半導體裝置,PCT測試之條件均設為相同(121℃/100% RH(相對濕度))。
於PCT測試中,對自測試開始後分別經過100小時、300小時、500小時、700小時及1000小時時附加至PCT測試之半導體裝置進行分析,對於焊墊與導線之間產生有電性斷開之半導體裝置不繼續測試,而判斷為不合格品。將伴隨著PCT測試之過程的焊墊與導線間之電性斷開之產生個數(不合格個數)及累積產生率(不合格率)示於下述表9及圖213。
表8及表9之評價欄之分數係表示(分子/分母)=(藉由經過各測試時間時之分析判斷為不合格品之個數/於經過各測試時間時附加至測試之半導體裝置之個數)。例如,表8之實施例2之經過500小時時之2/9這一分數,係表示於經過500小時時將9個半導體裝置附加至HAST測試,藉由經過500小時時之分析將彼等9個中之2個判斷為不合格品。
又,由於藉由經過各測試時間時之分析而判斷為合格品之半導體裝置繼續附加至測試,因此表8及表9之評價欄之分數之分母原則上與左側相鄰行之分數之分母與分子之差(分母-分子)一致。然而,例如,表8之實施例2之經過500小時時之2/9這一分數之分母9則與左側相鄰行(經過300小時時)之0/10這一分數之分母10與分子0之差(10-0=10)不一致,而存在1個之差。該差係因於經過300小時時抽出1個半 導體裝置進行合格品分析而產生者,關於其他評價欄之分數之分母與左側相鄰行之(分母-分子)不一致之情形,亦相同。
根據表8~9及圖212~圖213,已確認到於樹脂封裝體之pH值為4.5以下之半導體裝置(比較例1)中,於HAST測試中,自最遲經過100小時時起開始產生焊墊與導線接合之電性斷開,於經過500小時時,於所有半導體裝置中均產生電性斷開。又,確認到於PCT測試中,自最遲經過500小時時起開始產生電性斷開,於經過1000小時時,於幾乎所有半導體裝置中均產生電性斷開。
與此相對,於樹脂封裝體之pH值大於4.5之半導體裝置(實施例1~3)中,於HAST測試中,於經過實際應用時必需之300小時時,任一半導體裝置中均未產生電性斷開。又,於PCT測試中,即使經過1000小時,亦完全未產生電性斷開。
<第18實施形態 圖214~圖230>
藉由該第18實施形態之揭示,除上述「發明所欲解決之問題」所揭示之問題以外,亦可解決針對以下所示之第18先前技術之第18問題。
(1)第18先前技術
於典型之半導體裝置中,係將半導體晶片配置於晶片焊墊上,藉由含有Au(金)之導線(金導線)連接半導體晶片與配置於晶片焊墊之周圍之引線。具體而言,於半導體晶片之表面配置有含有Al(鋁)之鋁焊墊。並且,金導線描繪著弓狀之迴路而架設於該焊墊之表面與引線之表面之間。
最近,市場上半導體裝置之價格競爭愈演愈烈,業界要求進一步降低半導體裝置之成本。作為成本降低對策之一,正在研究用包含價格便宜之Cu(銅)之導線(銅導線)代替價格昂貴之金導線。
(2)第18問題
然而,目前尚無法由銅導線積極代替金導線。其原因在於:於將半導體晶片及銅導線由樹脂封裝體密封後之耐濕性測試(例如,超加速壽命測試(HAST:Highly Accelerated Stress Test)或飽和蒸氣加壓測試(PCT:Pressure Cooker Test)等)中,存在銅導線與鋁焊墊之間產生導通不良之情況。
亦即,該第18實施形態之發明之第18目的在於提供一種可防止包括含鋁之材料之第1構件與含銅之第2構件間產生導通不良的半導體裝置。
(3)具體實施形態之揭示
<半導體裝置之結構>
圖214係本發明之第18實施形態之半導體裝置之模式性剖面圖。
半導體裝置1S係應用有QFN(Quad Flat Non-leaded Package)之半導體裝置,其具有利用樹脂封裝體6S將半導體晶片2S與晶片焊墊3S、引線4S及銅導線5S一併密封之結構。半導體裝置1S(樹脂封裝體6S)之外形為扁平之長方體形狀。
半導體晶片2S形成例如於俯視時為正方形狀。於半導體晶片2S之表面之周緣部,配置有複數個鋁焊墊7S。各鋁焊墊7S係與裝入在半導體晶片2S之電路電性連接。於半導體晶片2S之背面,形成有包含Au、Ni(鎳)、Ag(銀)等金屬層之背部金屬8S。
晶片焊墊3S及引線4S係藉由對金屬薄板(例如,銅薄板)進行衝壓而形成。於晶片焊墊3S及引線4S之表面,形成有含有Ag之鍍層9S。
晶片焊墊3S係以各側面與半導體裝置1S之側面形成平行之方式配置於半導體裝置1S之中央部。
於晶片焊墊3S之背面之周緣部,藉由自背面側之壓碎加工,遍及其全周形成有剖面為大致1/4橢圓形狀之凹處。繼而,樹脂封裝體6S進入至該凹處。藉此,晶片焊墊3S之周緣部自其上下被樹脂封裝體 6S夾住,從而防止晶片焊墊3S自樹脂封裝體6S之脫落(防脫)。
又,晶片焊墊3S之背面係除其周緣部(凹陷成剖面為大致1/4橢圓形狀之部分)以外,自樹脂封裝體6S之背面露出。
引線4S係於與晶片焊墊3S之各側面相對向之位置各設置有相同數量(例如,9條)。於與晶片焊墊3S之側面相對向之各位置,引線4S係沿著與其相對向之側面正交之方向延伸,且於與該側面平行之方向空開相等間隔而配置。
於引線4S之背面之晶片焊墊3S側之端部,藉由自背面側之壓碎加工,形成有剖面為大致1/4橢圓形狀之凹處。繼而,樹脂封裝體6S進入至該凹處。藉此,引線4S之晶片焊墊3S側之端部自其上下被樹脂封裝體6S夾住,從而防止引線4S自樹脂封裝體6S之脫落(防脫)。
引線4S之背面係除晶片焊墊3S側之端部(凹陷成剖面為大致1/4橢圓形狀之部分)以外,自樹脂封裝體6S之背面露出。又,引線4S之與晶片焊墊3S側為相反側之側面係自樹脂封裝體6S之側面露出。
於晶片焊墊3S及引線4S之背面中自樹脂封裝體6S露出之部分,形成有含有焊錫之鍍層10S。
並且,半導體晶片2S係以將配置有鋁焊墊7S之表面朝向上方之狀態,將其背面經由接合材料11S接合於晶片焊墊3S之表面(鍍層9S)。作為接合材料11S,例如使用焊錫膏。
再者,於不需要半導體晶片2S與晶片焊墊3S之電性連接之情形時,亦可省略背部金屬8S,將半導體晶片2S之背面經由包含銀膏等絕緣膏之接合材料接合於晶片焊墊3S之表面。又,晶片焊墊3S之表面上之鍍層9S亦可省略。
銅導線5S例如包含純度99.99%以上之銅。銅導線5S之一端接合於半導體晶片2S之鋁焊墊7S。銅導線5S之另一端接合於引線4S之表面。並且,銅導線5S描繪著弓狀之迴路而架設於半導體晶片2S與引線 4S之間。
並且,於該半導體裝置1S中,與上述第1實施形態相同地,半導體晶片2S之整個表面及整個側面、晶片焊墊3S之整個表面及整個側面、引線4S之整個表面、以及整個銅導線5S均由一體性之不透水絕緣膜25S被覆。
樹脂封裝體6S包括以環氧樹脂為主成分,且添加有具有捕獲該環氧樹脂中之Cl-之性質之離子捕獲成分的材料。作為離子捕獲成分,例如可例示具有羥基之物質,具體而言可例示水滑石、銻-鉍系含水氧化物。
圖215係焊墊與銅導線之接合部分(圖214所示之由虛線包圍之部分)之模式性剖面圖。
鋁焊墊7S包括含有Al之金屬,其形成於半導體晶片2S之最上層之層間絕緣膜12S上。層間絕緣膜12S例如包含SiO2(氧化矽)。
於層間絕緣膜12S上形成有表面保護膜13S。表面保護膜13S例如包含SiN(氮化矽)。鋁焊墊7S係其周緣部由表面保護膜13S被覆,且中央部經由形成於表面保護膜13S之焊墊開口14S而露出。
銅導線5S接合於自表面保護膜13S露出之鋁焊墊7S之中央部。銅導線5S係藉由在其前端形成FAB,將FAB按壓至鋁焊墊7S而接合。此時,FAB產生變形,藉此於銅導線5S之前端形成供神用圓形年糕形狀之第1球體部15S。
<於銅導線與鋁焊墊之間產生導通不良之機理之闡明>
1.構成元素之分析
本申請案發明者等人為闡明銅導線與鋁焊墊間產生導通不良之機理,製作除與圖214所示之半導體裝置1S及樹脂封裝體6S之材料不同之方面以外具有相同結構之半導體裝置作為試料。作為該試料之樹脂封裝體之材料,係使用以環氧樹脂為主成分且未添加有離子捕獲成 分之材料。
繼而,藉由TEM(Transmission Electron Microscope:穿透式電子顯微鏡),觀察試料中之第1球體部之周緣部與鋁焊墊之接合部分(接合界面附近)。圖216係此時之TEM圖像。
又,以圖216之TEM圖像中所示之4個部位D0、D1、D2、D3為對象,使用能量分散型X射線微量分析儀分析各部位D0、D1、D2、D3中之構成元素。將各部位D0、D1、D2、D3之分析結果分別示於圖217、218、219、220。
根據圖217~圖220所示之分析結果,已明確第1球體部之周緣部與鋁焊墊之接合部分之構成元素中不包含Cl(氯)。
其次,藉由TEM觀察試料中之第1球體部之中央部與鋁焊墊之接合部分(接合界面附近)。圖221係此時之TEM圖像。
又,以圖221之TEM圖像中所示之5個部位C0、C1、C2、C3、C4為對象,使用能量分散型X射線微量分析儀分析各部位C0、C1、C2、C3、C4中所含之元素。將各部位C0、C1、C2、C3、C4之分析結果分別示於圖222、223、224、225、226。
根據圖222~圖226所示之分析結果,已明確部位C0、C1、C2中之構成元素中包含Cl。
2.伴隨著時間流逝之狀態之變遷
圖227A、227B、227C係圖解性地表示銅導線與鋁焊墊之接合部分的剖面圖。於圖227A~227C之各圖中,已省略對各部賦予影線。
此外,本申請案發明者等人對於幾個試料,錯開時間考察了第1球體部與鋁焊墊之接合部分。
如圖227A所示,於銅導線與鋁焊墊之接合後,隨即於第1球體部與鋁焊墊之接合部分產生有AlCu合金。該AlCu合金係於銅導線附近之部分形成Cu9Al4之組成,且於鋁焊墊附近之部分形成CuAl2之組 成。又,於鋁焊墊之周緣部(未接合有第1球體部之部分)之表面,產生有自然氧化膜(Al2O3)。
當自銅導線及鋁焊墊由樹脂封裝體密封起經過適當之第1時間後,去除樹脂封裝體而考察第1球體部與鋁焊墊之接合部分時,如圖227B所示,於鋁焊墊之周緣部之表面之一部分產生有相對較小之孔蝕(pitting corrosion)(因腐蝕而形成之凹部)。
當自銅導線及鋁焊墊由樹脂封裝體密封起經過較第1時間更長之第2時間後,去除樹脂封裝體而考察第1球體部與鋁焊墊之接合部分時,如圖227C所示,孔蝕進行至第1球體部與鋁焊墊之接合部分為止。又,形成Cu9Al4之組成之AlCu合金的周緣部變質成Al2O3
3.產生導通不良之機理
Cl不包含於接合前之銅導線及鋁焊墊之各構成元素中,而係存在於樹脂封裝體之材料中。因此,可認為存在於第1球體部之中央部與鋁焊墊之接合部分的Cl係於銅導線與鋁焊墊之接合後,自第1球體部之周緣部與中央部之接合部分逐漸擴散至第1球體部之中央部與鋁焊墊之接合部分。
另一方面,於第1球體部之周緣部與鋁焊墊之接合部分不存在Cl,隨著時間之流逝,形成Cu9Al4之組成之AlCu合金之周緣部變質成Al2O3
根據以上考察,本申請案發明者等人認為銅導線與鋁焊墊之間產生導通不良之機理可能為如下。
當鋁焊墊之表面之孔蝕進行至第1球體部之周緣部與鋁焊墊之接合部分為止時,於樹脂封裝體中以離子狀態存在之Cl(Cl-)到達該接合部分,產生下式(1)、(2)之反應。
Cu9Al4+12Cl→4AlCl3+9Cu...(1)
2AlCl3+3O→Al2O3+6Cl...(2)
此反應之結果為,於第1球體部之周緣部與鋁焊墊之接合部分,生成Al2O3。於式(2)之反應中,與Al2O3一併生成Cl。因此,於式(1)、(2)之反應產生一次後,由式(2)之反應所生成之Cl會朝向第1球體部之中央部與鋁焊墊之接合部分行進,而用於式(1)之反應。亦即,式(1)、(2)之反應於產生一次後,連鎖地產生。其結果為,Al2O3朝向第1球體部之中央部與鋁焊墊之接合部分迅速地擴散。
繼而,當於第1球體部與鋁焊墊之接合部分之整個區域生成Al2O3時,第1球體部與鋁焊墊會因Al2O3而絕緣分離,故而於銅導線(第1球體部)與鋁焊墊之間產生導通不良。
可認為於圖216所示之第1球體部之周緣部與鋁焊墊之接合部分不存在Cl之原因在於,在該部分,式(1)、(2)之反應已結束,並且於圖221所示之第1球體部之中央部與鋁焊墊之接合部分存在Cl之原因在於,在該部分,正處於式(1)、(2)之反應發生之過程中。
<作用效果>
如上所述,本申請案發明者等人已弄清於銅導線與鋁焊墊間產生導通不良之機理後,考慮在樹脂封裝體之材料中添加具有捕獲Cl-之性質之離子捕獲成分。藉此,可於銅導線5S與鋁焊墊7S之接合部分抑制AlCu合金(Cu9Al4)與Cl-之反應,從而可防止作為該反應生成物之Al2O3生成。其結果為,可防止銅導線5S與鋁焊墊7S因Al2O3而絕緣分離。亦即,可防止於銅導線5S與鋁焊墊7S間產生導通不良。
<變形例>
以上,對本發明之第18實施形態進行了說明,但該第18實施形態亦可變更如下。
例如,本發明可應用於具有包括含鋁之金屬之導線與含銅之焊墊接合而成之結構者、或者具有含銅之晶片焊墊或引線與包括含鋁之金屬之導線接合而成之結構者。
又,於半導體裝置1S中係應用QFN,但本發明亦可應用於應用有SON(Small Outlined Non-leaded Package)等其他種類之無引線封裝之半導體裝置之製造。
此外,並不限定於無引線封裝,亦可將本發明應用於應用有QFP(Quad Flat Package)等包括引線自樹脂封裝體突出所形成之外部引線之封裝體的半導體裝置之製造。
又,於上述實施形態中,例示有銅導線5S由不透水絕緣膜25S被覆之態樣,但只要至少實現用以解決上述第18問題之第18目的,則亦可如圖228所示,不設置有不透水絕緣膜25S。
[實施例]
其次,關於該第18實施形態進行了實驗。再者,本發明並不受限於下述實施例。
作為實施例之半導體裝置,製作40個具有與圖214所示之半導體裝置1S相同之結構(本發明之實施形態之結構)之半導體裝置。
作為比較例之半導體裝置,製作40個除與圖214所示之半導體裝置1S及樹脂封裝體6S之材料不同之方面以外具有相同結構的半導體裝置。作為比較例之半導體裝置之樹脂封裝體之材料,係使用以環氧樹脂為主成分且未添加有離子捕獲成分之材料。
繼而,對於實施例之半導體裝置及比較例之各10個半導體裝置,進行於溫度條件130℃及濕度條件85%之超加速壽命測試(HAST),自測試開始起經過100小時(100h)、200小時(200h)、300小時(300h)、500小時(500h)、700小時(700h)及1000小時(1000h)後,考察銅導線與鋁焊墊之導通狀態。將其結果示於圖229。
又,對於實施例之半導體裝置及比較例之各30個半導體裝置,進行於溫度條件121℃及濕度條件100%之飽和蒸氣加壓測試(PCT),自測試開始起經過100小時(100h)、300小時(300h)、500小時(500 h)、700小時(700h)及1000小時(1000h)後,考察銅導線與鋁焊墊之導通狀態。將其結果示於圖230。
如圖229所示,於超加速壽命測試中,於自測試開始起經過100小時之時點,比較例之10個半導體裝置中之5個產生不合格,於經過500小時之時點,比較例之所有半導體裝置均產生不合格。與此相對,於實施例之半導體裝置中,於自測試開始起經過300小時之時點均未產生不合格,於經過500小時之時點,亦僅其9個中之2個產生不合格。
再者,於自超加速壽命測試開始起經過300小時之時點,自超加速壽命測試之測試對象取消實施例之半導體裝置及比較例之半導體裝置各1個,故而此後,成為超加速壽命測試之對象的實施例之半導體裝置及比較例之半導體裝置之個數各減少1個。
如圖230所示,於飽和蒸氣加壓測試中,於自測試開始起經過300小時之時點,比較例之30個半導體裝置中之6個產生不合格,與此相對,即使於自測試開始起經過500小時,實施例之半導體裝置中亦未產生不合格。
根據超加速壽命測試及飽和蒸氣加壓測試之結果,可確認於實施例之半導體裝置、亦即包括包含環氧樹脂中添加有離子捕獲成分之材料之樹脂封裝體的半導體裝置中,在銅導線與鋁焊墊之間難以產生導通不良,從而可確認本發明之效果,並且可確認產生該導通不良之機理正確。
<第19實施形態 圖231~圖239>
該第19實施形態係用以解決上述第3~第5、第7、第12、第17及第18問題之實施形態。
圖231係第19實施形態之半導體裝置之模式底視圖。圖232係第19實施形態之半導體裝置之模式剖面圖。
半導體裝置1T係應用有QFN(Quad Flat Non-leaded)之半導體裝置。半導體裝置1T包括:半導體晶片2T;晶片焊墊3T,其用以支持半導體晶片2T;複數條電極引線4T,其配置於半導體晶片2T之周圍;接線5T,其將半導體晶片2T與電極引線4T加以電性連接;以及樹脂封裝體6T,其將該等密封。
半導體晶片2T於俯視時為四角狀,具有複數個佈線經由層間絕緣膜積層而成之多層佈線結構。半導體晶片2T之多層佈線結構將參照圖233及圖235,於下文中進行詳細敍述。半導體晶片2T之厚度例如為220~240μm(較佳為230μm左右)。半導體晶片2T之表面21T(厚度方向其中一面)係由下述表面保護膜7T(參照圖233)覆蓋。
於半導體晶片2T之表面21T,多層佈線結構之佈線之一部分(下述第3佈線28T)自下述焊墊開口8T露出作為電極焊墊9T。
另一方面,於半導體晶片2T之背面22T(厚度方向另一面),形成有含有例如Au、Ni、Ag等之背面金屬10T。
晶片焊墊3T例如包含金屬薄板(例如,Cu、42合金(含有Fe-42% Ni之合金)),於俯視時為較半導體晶片2T更大之四角狀(例如,於俯視時為2.7mm見方左右)。又,晶片焊墊3T之厚度例如為190~210μm(較佳為200μm左右)。於晶片焊墊3T之表面31T(厚度方向其中一面),形成有含有Ag等之焊墊鍍層11T。
並且,半導體晶片2T與晶片焊墊3T係藉由在半導體晶片2T之背面22T與晶片焊墊3T之表面31T作為接合面而彼此對向之狀態下,使接合材料12T介插於背面22T與表面31T之間,而彼此接合。藉此,半導體晶片2T係以將表面21T朝向上方之姿勢支持於晶片焊墊3T。
接合材料12T包含例如焊錫膏等導電膏。再者,作為接合材料12T,可應用例如銀膏、氧化鋁膏等絕緣膏,於此情形時,背面金屬10T及/或焊墊鍍層11T亦可省略。又,於半導體晶片2T與晶片焊墊3T 已接合之狀態下,接合材料12T之厚度例如為10~20μm。
晶片焊墊3T之背面32T(厚度方向另一面)係自樹脂封裝體6T露出。於所露出之另一面,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層13T。
電極引線4T例如包含與晶片焊墊3T相同之金屬薄板(例如,Cu、42合金(含有Fe-42% Ni等))。電極引線4T係於與晶片焊墊3T之各側面正交之各方向上之兩側,配置於半導體晶片2T之周圍。與晶片焊墊3T之各側面相對向之電極引線4T係沿著與其相對向之側面平行之方向等間隔地配置。各電極引線4T之與晶片焊墊3T之對向方向上之長度例如為240~260μm(較佳為250μm左右)。於電極引線4T之表面4lT(厚度方向其中一面),形成有含有Ag等之引線鍍層14T。
另一方面,電極引線4T之背面42T(厚度方向另一面)係自樹脂封裝體6T露出。於所露出之背面42T,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之焊錫鍍層15T。
接線5T包含銅(例如,為純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅等,有時含有微量之雜質)。接線5T包括呈線狀延伸之圓柱狀之本體部51T、以及形成於本體部51T之兩端且分別與電極焊墊9T及電極引線4T接合之焊墊接合部52T及引線接合部53T。
本體部51T係自電極焊墊9T側之一端向半導體晶片2T之外側呈朝上方凸起之抛物線狀彎曲,並於另一端以銳角向電極引線4T之表面41T入射。
引線接合部53T於剖視時為楔狀,其靠近本體部51T之一端側相對較厚,且隨著越接近遠離本體部51T之另一端側相對越薄。
樹脂封裝體6T包括以環氧樹脂為主成分且包含硬化劑、硬化促進劑、偶合劑、脫模劑、pH值調節劑等,進而添加有具有捕獲該環 氧樹脂中之Cl-之性質之離子捕獲成分的材料。作為離子捕獲成分,例如可例示具有羥基之物質,具體而言可例示水滑石、銻-鉍系含水氧化物。
作為所含之環氧樹脂,只要為可用作樹脂封裝體用環氧樹脂者即無特別限制,例如可列舉苯酚酚醛清漆型環氧樹脂、鄰甲酚酚醛清漆型環氧樹脂、具有三苯甲烷骨架之環氧樹脂(三苯甲烷型環氧樹脂)、芪基型環氧樹脂、對苯二酚型環氧樹脂、縮水甘油酯型環氧樹脂、縮水甘油胺型環氧樹脂、二環戊二烯型環氧樹脂、萘型環氧樹脂、芳烷基型苯酚樹脂之環氧化物、伸聯苯基型環氧樹脂、三羥甲基丙烷型環氧樹脂、萜烯改性環氧樹脂、線狀脂肪族環氧樹脂、脂環族環氧樹脂、含有硫原子之環氧樹脂等。該等可單獨使用或者將兩種以上併用。
作為所含之硬化劑,只要為可用作樹脂封裝體用硬化劑者即無特別限制,例如可列舉酚醛清漆型苯酚樹脂,例如可列舉苯酚‧芳烷基樹脂、萘酚‧芳烷基樹脂、聯苯‧芳烷基樹脂等芳烷基型苯酚樹脂,二環戊二烯型苯酚樹脂,萜烯改性苯酚樹脂,三苯甲烷型苯酚樹脂等。該等可單獨使用或者將兩種以上併用。
作為所含之硬化促進劑,只要為可用作樹脂封裝體用硬化促進劑者即無特別限制,例如可列舉1,8-二氮-雙環(5,4,0)十一烯-7、1,5-二氮-雙環(4,3,0)壬烯、5,6-二丁胺基-1,8-二氮-雙環(5,4,0)十一烯-7等環脒化合物及該等化合物中加成順丁烯二酸酐,1,4-苯醌、2,5-甲醌、1,4-萘醌、2,3-二甲基苯醌、2,6-二甲基苯醌、2,3-二甲氧基-5-甲基-1,4-苯醌、2,3-二甲氧基-1,4-苯醌、苯基-1,4-苯醌等醌化合物,重氮苯基甲烷,苯酚樹脂等具有π鍵之化合物而成的具有分子內極化之化合物;二甲苄胺、三乙醇胺、二甲基胺乙醇、三(二甲胺甲基)苯酚等三級胺類及該等之衍生物;2-甲基咪唑、2-苯基咪唑、2-苯基-4-甲 基咪唑等咪唑類及該等之衍生物;三丁基膦、甲基二苯基膦、三苯基膦、三(4-甲基苯基)膦、二苯基膦、苯基膦等膦化合物及該等膦化合物中加成順丁烯二酸酐、上述醌化合物、重氮苯基甲烷、苯酚樹脂等具有π鍵之化合物而成的具有分子內極化之磷化合物;四苯基磷四苯基硼酸鹽、三苯基膦四苯基硼酸鹽、2-乙基-4-甲基咪唑四苯基硼酸鹽、N-甲基嗎啉四苯基硼酸鹽等四苯基硼酸鹽及該等之衍生物等。該等可單獨使用或者將兩種以上併用。
作為所含之偶合劑,只要為可用作樹脂封裝體用偶合劑者即無特別限制,例如可列舉具有一級、二級及三級胺基中之至少一者之矽烷化合物,環氧矽烷、巰基矽烷、烷基矽烷、脲基矽烷、乙烯基矽烷等各種矽烷系化合物,鈦系化合物,鋁螯合物類,鋁/鋯系化合物等。該等可單獨使用或者將兩種以上併用。
作為所含之脫模劑,只要為可用作樹脂封裝體用脫模劑者即無特別限制,例如可列舉巴西棕櫚蠟,褐煤酸、硬脂酸等高級脂肪酸,高級脂肪酸金屬鹽,褐煤酸酯等酯系蠟,氧化聚乙烯、非氧化聚乙烯等聚烯烴系蠟等。該等可單獨使用或者將兩種以上併用。
作為所含之pH值調節劑,例如可列舉矽灰石(矽酸鈣)、滑石(矽酸鎂)、氫氧化鋁、碳酸鎂、碳酸鈣等無機填充材。該等可單獨使用或者將兩種以上併用。
再者,樹脂封裝體6T視需要亦可包含稀釋劑、著色劑、阻燃劑、調平劑、消沫劑等添加物。
上述組成之樹脂封裝體6T之pH值大於4.5,自將樹脂封裝體6T之pH值保持為酸性之必要性而言,較佳為大於4.5且小於7.0,更佳為6.0以上且小於7.0。又,樹脂封裝體6T形成半導體裝置1T之外形,形成為大致長方體狀。關於樹脂封裝體6T之大小,其平面尺寸例如為4mm見方左右,其厚度例如為0.85mm左右。
並且,於半導體裝置1T中,半導體晶片2T之表面21T與樹脂封裝體6T之表面(上表面)的間隔L1小於半導體晶片2T之側面與樹脂封裝體6T之側面的最短距離W。具體而言,間隔L1例如為375~425μm,較佳為400μm左右,最短距離W例如為800~1000μm,較佳為900μm左右。
又,間隔L1為半導體晶片2T之表面21T與樹脂封裝體6T之背面(晶片焊墊3T之背面32T)的距離L2(例如為425~475μm,較佳為450μm左右)以下。
圖233係圖232之由虛線圓包圍之部分之放大圖。圖234係用以求出焊墊接合部之體積之概念圖。圖235係圖233所示之電極焊墊之平面圖。
半導體晶片2T包括:半導體基板16T;第1~第3層間絕緣膜17T~19T,其依序積層於半導體基板16T上;第1~第3障壁層23T~25T,其形成於第1~第3層間絕緣膜17T~19T之各個表面;以及表面保護膜7T,其被覆半導體晶片2T之表面21T。
半導體基板16T例如包含矽。
第1~第3層間絕緣膜17T~19T例如包含氧化矽。於第1層間絕緣膜17T上,經由第1障壁層23T形成有第1佈線26T。又,於第2層間絕緣膜18T上,經由第2障壁層24T形成有第2佈線27T。又,於第3層間絕緣膜19T上,經由第3障壁層25T形成有第3佈線28T。
第1~第3佈線26T~28T包含較第1~第3障壁層23T~25T之材料更軟之金屬材料、具體而言含有Al(鋁)之金屬材料,具體而言包含以Al為主成分之金屬材料(例如,Al-Cu合金等)。
第3佈線28T係由表面保護膜7T被覆,藉此形成於最上層之層間絕緣膜(第3層間絕緣膜19T)與表面保護膜7T之間。第3佈線28T於俯視時為四角形狀(例如,120μm×120μm之四角形狀)。又,第3佈線28T 之厚度例如為5000Å以上,較佳為7000~28000Å。
於被覆第3佈線28T之表面保護膜7T,形成有用以使第3佈線28T露出作為電極焊墊9T之焊墊開口8T。
第2佈線27T係由第3層間絕緣膜19T被覆,藉此形成於第2層間絕緣膜18T與第3層間絕緣膜19T之間。第2佈線27T係由特定圖案形成。例如,由俯視時不與電極焊墊9T重合之圖案形成。又,第2佈線27T之厚度例如為3000~9000Å。
第1佈線26T係由第2層間絕緣膜18T被覆,藉此形成於第1層間絕緣膜17T與第2層間絕緣膜18T之間。第1佈線26T係由特定圖案形成。例如,於電極焊墊9T之正下方,第1佈線26T包括彼此平行地延伸之複數個直線部29T、以及將相鄰之直線部29T之一端部彼此及另一端部彼此交替關聯之關聯部30T,由彎折成大致S字狀之曲折圖案形成。藉此,一個電極焊墊9T(第3佈線28T)係與複數個直線部29T及夾持於第2層間絕緣膜18T中之直線部29T之間之夾持部20T相對向。
相鄰之直線部29T彼此之間隔(直線部29T之間距W)例如全部相等,具體而言為2~10μm。又,第1佈線26T之厚度例如為3000~9000Å。
再者,第1~第3佈線26T~28T之圖案可按照半導體晶片2T之設計規則等而適當變更,並不限定於上述圖案。
第1~第3障壁層23T~25T包含例如鈦(Ti)、氮化鈦(TiN)、氮化鎢(WN)及該等之積層結構等。第1~第3障壁層23T~25T之厚度小於第1~第3佈線26T~28T之厚度,例如為500~2000Å。
與電極焊墊9T接合之接線5T之焊墊接合部52T於俯視時為小於電極焊墊9T。焊墊接合部52T於剖視時為凸狀,其一體地包括厚度方向另一側與電極焊墊9T之表面相接觸之大致圓柱狀之基底部54T、以及自基底部54T之另一側突出且其前端與本體部51T之一端連接之大致 傘狀之突出部55T。
如下所述,接線5T係藉由在其前端形成FAB,將FAB按壓至電極焊墊9T而接合。此時,FAB產生變形,藉此於接線5T中之與電極焊墊9T之接合部分,形成於剖視時為凸狀之焊墊接合部52T。又,電極焊墊9T之材料自焊墊接合部52T之下方緩慢地逼出至焊墊接合部52T之周圍,藉此不自電極焊墊9T之表面大幅度浮起地形成逼出部34T。
又,於接線5T中,焊墊接合部52T之體積V相對於本體部51T之線徑Dw(本體部51T之直徑)之立方之比(V/(Dw)3)為1.8~5.6。
該焊墊接合部52T之體積V係例如可藉由求出大致圓柱狀之基底部54T之體積Vb及大致傘狀之突出部55T之體積Vp之近似值,並將彼等近似值相加而求出。
如圖234所示,基底部54T之體積Vb可將基底部54T概念性地設為直徑Db、高度Hb之圓柱,根據該圓柱之體積求出近似值。因此,可表達為Vb≒π(Db/2)2‧Hb
另一方面,由於突出部55T為以圓錐為基礎,將圓錐之頂部形成為高度方向成為軸之圓柱狀而成之大致傘狀,故而突出部55T之體積Vp可如圖234所示,將突出部55T概念性地設為直徑Dp、高度Hp之圓錐,根據該圓錐之體積求出近似值。因此,可表達為Vp≒π‧(Dp/2)2‧Hp/3。
又,於該半導體裝置1T中,於俯視時,與接線5T和電極焊墊9T之接合區域33T重合之第1佈線26T之面積(圖235之斜線部分之面積)為接合區域33T之面積S之26.8%以下,較佳為0~25%。
接合區域33T係焊墊接合部52T之基底部54T與電極焊墊9T之表面相接觸之於俯視時為圓形之區域,其面積S可使用基底部54T之直徑Db,根據式:S=π(Db/2)2而求出。
圖236A~圖236D係用以按照步驟順序說明圖232之半導體裝置之 製造方法之模式性剖面圖。
為製造上述半導體裝置1T,例如,首先準備包含複數個單元之引線框架70T,該單元一體地包括晶片焊墊3T及電極引線4T。再者,於圖236A~圖236D中,省略有引線框架70T之整體圖,僅表示搭載1個半導體晶片2T所需之1個單元份之晶片焊墊3T及電極引線4T。
其次,利用鍍敷法,對引線框架70T之表面實施Ag等之金屬鍍敷。藉此,同時形成焊墊鍍層11T及引線鍍層14T。
其次,如圖236A所示,經由接合材料12T,於引線框架70T上之所有晶片焊墊3T,晶片接合半導體晶片2T。
繼而,藉由包含焊針C之打線接合機(未圖示),進行接線5T之接合。
如圖236A所示,焊針C形成中心軸線上形成有導線插通孔61T之大致圓筒形狀。接線5T插通至導線插通孔61T,而自導線插通孔61T之前端(下端)送出。又,焊針C包含導熱率為15~45W/m‧K、較佳為17~43W/m‧K之材料。具體而言,包含多晶紅寶石(導熱率例如為17~19W/m‧K左右)或單晶紅寶石(導熱率例如為41~43W/m‧K左右)。
於焊針C之前端部,形成有於導線插通孔61T之下方與導線插通孔61T連通之圓錐台形狀之倒角62T。又,焊針C之前端部包括外表面63T,該外表面63T係連接於倒角62T之下端緣,並於接線5T與電極焊墊9T及電極引線4T之接合時(打線接合時)與電極焊墊9T及電極引線4T相對向之面。外表面63T係相對於與焊針C之中心軸線正交之平面,以外側上升之方式緩緩傾斜。
首先,如圖236A所示,焊針C移動至電極焊墊9T之正上方。其次,於接線5T之前端位於倒角62T之狀態下,對接線5T之前端部施加電流,藉此於其前端部形成FAB64T。電流值及施加時間係根據接線5T之線徑及FAB64T之目標直徑(FAB64T之設計上之直徑)而適當設 定。
例如,電流值I係接線5T之本體部51T之線徑Dw越大,則設定為越大值,例如於Dw=25μm時,I=40mA,於Dw=30μm時,I=60mA,於Dw=38μm時,I=120mA。再者,電流之施加時間係根據FAB64T之直徑Df而設定為適當長度。
如此形成之FAB64T之體積Vf可使用FAB64T之直徑Df,表達為Vf=4/3‧π‧(Df/2)3。又,FAB64T之一部分係自倒角62T向其下方凸出。
其後,如圖236B所示,焊針C朝向電極焊墊9T下降,藉由焊針C,將FAB64T按壓至電極焊墊9T。此時,藉由焊針C對FAB64T施加荷重,並且對FAB64T賦予由設置於焊針C之超聲波振動子(未圖示)產生振盪之超聲波振動。
圖237係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
例如,如圖237所示,於自FAB64T抵接至電極焊墊9T之時刻T1起經過特定時間(例如,3msec)之時刻T2為止之期間,自焊針C對FAB64T施加相對較大之初始荷重P1。於時刻T2以後,自焊針C施加至FAB64T之荷重下降,對FAB64T施加相對較小之荷重P2(例如,30g)。該荷重P2係持續施加直至焊針C上升之時刻T4為止。
再者,初始荷重P1係根據焊墊接合部52T與電極焊墊9T之目標接合面積(相對於電極焊墊9T之焊墊接合部52T之設計上之接合面積S=π(Db/2)2)乘以一定之係數(於初始荷重P1之單位為g且接合面積之單位為mm2之情形時,例如為28786)所得之值而設定。於本實施形態中,將焊墊接合部52T與電極焊墊9T之目標接合面積S設為0.00430mm2,從而將初始荷重P1設定為130g。
於使用標準型焊針作為焊針C之情形時,自較FAB64T抵接至電極焊墊9T之時刻T1更之前起,對超聲波振動子施加相對較小之值U1 之驅動電流。驅動電流值U1例如為15mA。繼而,當FAB64T抵接至電極焊墊9T時,於自此時之時刻T1至時刻T3為止之期間,施加至超聲波振動子之驅動電流值係以一定之變化率(單調地)自值U1上升至值U2。該變化率設定為21mA/msec以下。又,最終施加至超聲波振動子之驅動電流值U2,係以將該值U2除以焊墊接合部52T之目標接合面積所得之值成為0.0197mA/μm2以下之方式而設定。於該實施形態中,驅動電流值U2例如為90mA。進而,以於對FAB64T施加初始荷重之特定時間內施加至超聲波振動子之驅動電流之積分值成為146mA‧msec以下之方式,設定驅動電流值U1、U2。於時刻T3以後,對超聲波振動子持續施加值U2之驅動電流直至成為時刻T4為止。
標準型焊針係形成如圖238所示之形狀,並具有如下之尺寸。倒角62T之下端緣之直徑,即CD尺寸為66μm(0.066mm)。外表面63T之外徑,即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針C所得之剖面(圖238所示之剖面),沿著倒角62T之側面延伸之兩條直線所形成之角度,即倒角度為90°。外表面63T相對於與焊針C之中心軸線正交之平面所形成之角度,即外表面角FA為8°。於以包括中心軸線之平面切斷焊針C所得之剖面,自焊針C之側面之外表面63T之上端進而向上方延伸之部分,與中心軸線所形成之角度CA為20°。
另一方面,於使用瓶頸型焊針作為焊針C之情形時,如圖237所示,自較FAB64T抵接至電極焊墊9T之時刻T1更之前起,對超聲波振動子施加值U1之1.4倍之值的驅動電流。繼而,當FAB64T抵接至電極焊墊9T時,於此時之時刻T1至時刻T3為止之期間,施加至超聲波振動子之驅動電流值係以一定之變化率(單調地)自值U1上升至值U2之1.4倍之值。於時刻T3以後,對超聲波振動子持續施加值U2之1.4倍之值之驅動電流直至成為時刻T4為止。
瓶頸型焊針形成如圖239所示之形狀,並具有如下之尺寸。倒角 62T之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面63T之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針C所得之剖面(圖239所示之剖面),沿著倒角62T之側面延伸之兩條直線所形成之角度即倒角度為90°。外表面63T相對於與焊針C之中心軸線正交之平面所形成之角度即外表面角FA為8°。於以包括中心軸線之平面切斷焊針C所得之剖面,自焊針C之側面之外表面63T之上端進而向上方延伸之部分與中心軸線所形成之角度CA為10°。
其結果為,FAB64T按焊針C之倒角62T及外表面63T之形狀而變形,如圖236B所示,於電極焊墊9T上形成供神用圓形年糕形狀之焊墊接合部52T,並且於其周圍形成逼出部34T。藉此,實現接線5T與電極焊墊9T之接合(第1接合)。
當自時刻T1起經過預定之接合時間而成為時刻T4時,焊針C朝向電極焊墊9T之上方離開。其後,焊針C朝向電極引線4T之表面向斜下方移動。繼而,如圖236C所示,對超聲波振動子施加驅動電流,對焊針C賦予超聲波振動,並且藉由焊針C,將接線5T按壓至電極引線4T之表面,進而將其扯斷。藉此,於電極引線4T之表面上形成包含接線5T之另一端部之於側視時為楔狀之針腳部(引線接合部53T),從而實現銅導線與電極引線4T之接合(第2接合)。
其後,以另一電極焊墊9T及與其相對應之電極引線4T為對象,進行圖236A~圖236C所示之步驟。繼而,藉由重複圖236A~圖236C所示之步驟,如圖236D所示,於半導體晶片2T之所有電極焊墊9T與電極引線4T之間架設接線5T。
於所有打線接合結束後,將引線框架70T安放於成形模具,利用樹脂封裝體6T將所有半導體晶片2T與引線框架70T一併統一密封。繼而,於自樹脂封裝體6T露出之晶片焊墊3T之背面32T及電極引線4T之背面42T形成焊錫鍍層13T、15T。最後,使用切割機,將引線框架 70T與樹脂封裝體6T一併切斷成各半導體裝置1T之尺寸,藉此獲得圖232所示之半導體裝置1T之單片。
再者,該第19實施形態係對應於上述第3~第5、第7、第12、第17及第18實施形態,將該等實施形態之全部揭示藉由引用而編入於此者。亦即,根據該第19實施形態,可實現與上述第3~第5、第7、第12、第17及第18實施形態相同之作用及效果。
<第20實施形態 圖240~圖249>
該第20實施形態係用以解決上述第3~第5、第7、第11、第12、第17及第18問題之實施形態。
圖240係第20實施形態之半導體裝置之模式底視圖。圖241係第20實施形態之半導體裝置之模式剖面圖。圖242係圖241之由虛線圓A包圍之部分之主要部分放大圖。圖243係圖241之由虛線圓B包圍之部分之主要部分放大圖。圖244係用以求出焊墊接合部之體積之概念圖。圖245係圖244所示之電極焊墊之平面圖。
半導體裝置1U係應用有QFN(Quad Flat Non-leaded)之半導體裝置。半導體裝置1U包括:半導體晶片2U;晶片焊墊3U,其用以搭載半導體晶片2U;複數條電極引線4U,其配置於晶片焊墊3U之周圍;接線5U,其將半導體晶片2U與電極引線4U加以電性連接;以及樹脂封裝體6U,其將該等密封。
以下,為方便說明,將半導體晶片2U與晶片焊墊3U之對向方向設為Z方向,並將與Z方向正交之方向設為X方向,對本實施形態進行說明。
半導體晶片2U包括於俯視時為四角狀之Si基板7U。
Si基板7U之厚度例如為220~240μm(較佳為230μm左右)。於Si基板7U之表面71U,形成有將複數個佈線層經由層間絕緣膜積層而成之多層佈線結構(參照圖243),該多層佈線結構之最表面係由表面保護 膜16U(下述)覆蓋。
作為電極焊墊8U而露出之最上面之佈線層例如包括含有Al(鋁)之金屬材料,具體而言包括以Al為主成分之金屬材料(例如,Al-Cu合金等)。
另一方面,於Si基板7U之背面72U(與晶片焊墊3U之對向面)形成有背部金屬9U。
如圖242所示,背部金屬9U具有自Si基板7U側起依序積層有Au層91U、Ni層92U及Cu層93U之三層結構。Au層91U係相對於Si半導體可進行通電之歐姆接觸,其與Si基板7U之背面72U相接觸。Ni層92U係形成於較形成背部金屬9U之最表面之Cu層93U更靠近Si基板7U側,且係用以防止Si基板7U中之Si析出至背部金屬9U之最表面之Si結塊之層。
晶片焊墊3U及複數條電極引線4U形成為包含相同金屬薄板之引線框架10U。構成引線框架10U之金屬薄板包含主要含有Cu之Cu系原材料,具體而言包含例如純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅,Cu與異種金屬之合金(例如,Cu-Fe-P合金等)。再者,金屬薄板亦可為例如42合金(Fe-42% Ni)等Fe系原材料等。又,引線框架10U(金屬薄板)之厚度例如為190~210μm(較佳為200μm左右)。
晶片焊墊3U於俯視時為較半導體晶片2U更大之四角狀(例如,於俯視時為2.7mm見方左右)。晶片焊墊3U之表面31U(與半導體晶片2U之對向面)係並非由藉由鍍敷或濺鍍等處理之金屬薄膜被覆之非被覆面,構成引線框架10U之Cu系原材料露出於整個表面31U。
於晶片焊墊3U之表面31U上設置有複數個Cu柱形凸塊18U。於俯視時,Cu柱形凸塊18U係於晶片焊墊3U之各角各配置有1個,共設置有4個。各Cu柱形凸塊18U係利用眾所周知之打線接合法所形成,其 於剖視時為凸狀,其一體地包括與表面31U相接觸且直徑相對較大之基底部181U、以及自基底部181U向半導體晶片2U側突出且直徑相對較小之前端部182U。
並且,半導體晶片2U係於以背部金屬9U與Cu柱形凸塊18U之前端部182U相接觸之方式支持於Cu柱形凸塊18U之狀態下,於Si基板7U之背面72U與晶片焊墊3U之表面31U之間介插接合層11U,藉此接合於晶片焊墊3U。
接合層11U包括相對較厚的作為主層之Bi系材料層111U、以及相對較薄的作為副層之Cu-Sn合金層112U、113U、114U。
Bi系材料層111U亦可含有Bi作為主成分,且含有不影響Bi之物性之程度之量的Sn、Zn等作為副成分。
Cu-Sn合金層112U、113U、114U包含Cu與作為與Cu不同之異種金屬的Sn之合金,Cu係作為主成分而含有。
半導體晶片2U側之Cu-Sn合金層112U係於接合層11U中之與背部金屬9U之Cu層93U之界面附近,遍及其整個區域而形成。藉此,Cu-Sn合金層112U與背部金屬9U之Cu層93U相接觸。Cu-Sn合金層112U例如沿著Z方向,自Bi系材料層111U之側朝向半導體晶片2U側具有由Cu6Sn5/Cu3Sn所表示之積層結構。
另一方面,晶片焊墊3U側之Cu-Sn合金層113U係於接合層11U中之與晶片焊墊3U之表面31U之界面附近,遍及其整個區域而形成。藉此,Cu-Sn合金層113U與晶片焊墊3U之表面31U相接觸。Cu-Sn合金層113U例如沿著Z方向,自Bi系材料層111U之側朝向晶片焊墊3U側具有由Cu6Sn5/Cu3Sn所表示之積層結構。
再者,Cu-Sn合金層112U、113U亦可形成於接合層11U中之與晶片焊墊3U之表面31U的界面附近之一部分及接合層11U中之與背部金屬9U之Cu層93U的界面附近之一部分。
Cu-Sn合金層114U係以被覆Cu柱形凸塊18U之方式而形成。
並且,Bi系材料層111U及Cu-Sn合金層112U、113U係於晶片焊墊3U之表面31U與背部金屬9U之Cu層93U之間,形成有自Z方向之兩側由Cu-Sn合金層112U、113U夾住Bi系材料層111U之三層結構(Cu-Sn合金層112U/Bi系材料層111U/Cu-Sn合金層113U)。
如上所述之接合層11U之熔點例如為260~280℃,較佳為265~275℃。又,於半導體晶片2U與晶片焊墊3U已接合之狀態下,接合層11U之總厚度(Bi系材料層111U之厚度與Cu-Sn合金層112U、113U之厚度之合計)T例如為30.5~53μm。關於各層之厚度,例如,Bi系材料層111U之厚度為30~50μm,Cu-Sn合金層112U、113U之厚度為0.5~3μm。
晶片焊墊3U之背面32U(對佈線基板之安裝面)係自樹脂封裝體6U露出。於所露出之背面32U,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之背面鍍層12U。
電極引線4U係藉由在與晶片焊墊3U之各側面正交之各方向上之兩側分別各設置相同數量,而配置於晶片焊墊3U之周圍。與晶片焊墊3U之各側面相對向之電極引線4U係沿著與其相對向之側面平行之方向等間隔地配置。各電極引線4U之與晶片焊墊3U之對向方向上之長度例如為440~460μm(較佳為450μm左右)。電極引線4U之表面41U(接線5U之連接面)係並非由藉由鍍敷或濺鍍等處理之金屬薄膜被覆之非被覆面,構成引線框架10U之Cu系原材料露出於整個表面41U。
另一方面,電極引線4U之背面42U(對佈線基板之安裝面)係自樹脂封裝體6U露出。於所露出之背面42U,形成有包含例如錫(Sn)、錫-銀合金(Sn-Ag)等金屬材料之背面鍍層13U。
接線5U包含銅(例如,為純度99.9999%(6N)以上、純度 99.99%(4N)以上之高純度銅等,有時含有微量之雜質)。接線5U包括呈線狀延伸之圓柱狀之本體部51U、以及形成於本體部51U之兩端且分別與電極焊墊8U及電極引線4U接合之焊墊接合部52U及引線接合部53U。
本體部51U係自電極焊墊8U側之一端向半導體晶片2U之外側呈朝上方凸起之抛物線狀彎曲,並於另一端以銳角向電極引線4U之表面41U入射。
引線接合部53U於剖視時為楔狀,其靠近本體部51U之一端側相對較厚,且隨著越接近遠離本體部51U之另一端側相對越薄。
樹脂封裝體6U包括以環氧樹脂為主成分且包含硬化劑、硬化促進劑、偶合劑、脫模劑、pH值調節劑等,進而添加有具有捕獲該環氧樹脂中之Cl-之性質之離子捕獲成分的材料。作為離子捕獲成分,例如可例示具有羥基之物質,具體而言可例示水滑石、銻-鉍系含水氧化物。
作為所含之環氧樹脂,只要為可用作樹脂封裝體用環氧樹脂者即無特別限制,例如可列舉苯酚酚醛清漆型環氧樹脂、鄰甲酚酚醛清漆型環氧樹脂、具有三苯甲烷骨架之環氧樹脂(三苯甲烷型環氧樹脂)、芪基型環氧樹脂、對苯二酚型環氧樹脂、縮水甘油酯型環氧樹脂、縮水甘油胺型環氧樹脂、二環戊二烯型環氧樹脂、萘型環氧樹脂、芳烷基型苯酚樹脂之環氧化物、伸聯苯基型環氧樹脂、三羥甲基丙烷型環氧樹脂、萜烯改性環氧樹脂、線狀脂肪族環氧樹脂、脂環族環氧樹脂、含有硫原子之環氧樹脂等。該等可單獨使用或者將兩種以上併用。
作為所含之硬化劑,只要為可用作樹脂封裝體用硬化劑者即無特別限制,例如可列舉酚醛清漆型苯酚樹脂,例如可列舉苯酚‧芳烷基樹脂、萘酚‧芳烷基樹脂、聯苯‧芳烷基樹脂等芳烷基型苯酚樹脂, 二環戊二烯型苯酚樹脂,萜烯改性苯酚樹脂,三苯甲烷型苯酚樹脂等。該等可單獨使用或者將兩種以上併用。
作為所含之硬化促進劑,只要為可用作樹脂封裝體用硬化促進劑者即無特別限制,例如可列舉1,8-二氮-雙環(5,4,0)十一烯-7、1,5-二氮-雙環(4,3,0)壬烯、5,6-二丁胺基-1,8-二氮-雙環(5,4,0)十一烯-7等環脒化合物及該等化合物中加成順丁烯二酸酐,1,4-苯醌、2,5-甲醌、1,4-萘醌、2,3-二甲基苯醌、2,6-二甲基苯醌、2,3-二甲氧基-5-甲基-1,4-苯醌、2,3-二甲氧基-1,4-苯醌、苯基-1,4-苯醌等醌化合物,重氮苯基甲烷,苯酚樹脂等具有π鍵之化合物而成的具有分子內極化之化合物;二甲苄胺、三乙醇胺、二甲基胺乙醇、三(二甲胺甲基)苯酚等三級胺類及該等之衍生物;2-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑等咪唑類及該等之衍生物;三丁基膦、甲基二苯基膦、三苯基膦、三(4-甲基苯基)膦、二苯基膦、苯基膦等膦化合物及該等膦化合物中加成順丁烯二酸酐、上述醌化合物、重氮苯基甲烷、苯酚樹脂等具有π鍵之化合物而成的具有分子內極化之磷化合物;四苯基磷四苯基硼酸鹽、三苯基膦四苯基硼酸鹽、2-乙基-4-甲基咪唑四苯基硼酸鹽、N-甲基嗎啉四苯基硼酸鹽等四苯基硼酸鹽及該等之衍生物等。該等可單獨使用或者將兩種以上併用。
作為所含之偶合劑,只要為可用作樹脂封裝體用偶合劑者即無特別限制,例如可列舉具有一級、二級及三級胺基中之至少一者之矽烷化合物,環氧矽烷、巰基矽烷、烷基矽烷、脲基矽烷、乙烯基矽烷等各種矽烷系化合物,鈦系化合物,鋁螯合物類,鋁/鋯系化合物等。該等可單獨使用或者將兩種以上併用。
作為所含之脫模劑,只要為可用作樹脂封裝體用脫模劑者即無特別限制,例如可列舉巴西棕櫚蠟,褐煤酸、硬脂酸等高級脂肪酸,高級脂肪酸金屬鹽,褐煤酸酯等酯系蠟,氧化聚乙烯、非氧化聚乙烯 等聚烯烴系蠟等。該等可單獨使用或者將兩種以上併用。
作為所含之pH值調節劑,例如可列舉矽灰石(矽酸鈣)、滑石(矽酸鎂)、氫氧化鋁、碳酸鎂、碳酸鈣等無機填充材。該等可單獨使用或者將兩種以上併用。
再者,樹脂封裝體6U視需要亦可包含稀釋劑、著色劑、阻燃劑、調平劑、消沫劑等添加物。
上述組成之樹脂封裝體6U之pH值大於4.5,自將樹脂封裝體6U之pH值保持為酸性之必要性而言,較佳為大於4.5且小於7.0,更佳為6.0以上且小於7.0。又,樹脂封裝體6U形成半導體裝置1U之外形,形成為大致長方體狀。關於樹脂封裝體6U之大小,其平面尺寸例如為4mm見方左右,其厚度例如為0.85mm左右。
並且,於半導體裝置1U中,半導體晶片2U之表面與樹脂封裝體6U之表面(上表面)的間隔L1小於半導體晶片2U之側面與樹脂封裝體6U之側面的最短距離W。具體而言,間隔L1例如為375~425μm,較佳為400μm左右,最短距離W例如為800~1000μm,較佳為900μm左右。
又,間隔L1為半導體晶片2U之表面與樹脂封裝體6U之背面(晶片焊墊3U之背面32U)的距離L2(例如為425~475μm,較佳為450μm左右)以下。
於Si基板7U上依序積層有第1~第3層間絕緣膜37U~39U。於第1~第3層間絕緣膜37U~39U之各表面,形成有第1~第3障壁層23U~25U及被覆半導體晶片2U之表面之表面保護膜16U。
第1~第3層間絕緣膜37U~39U例如包含氧化矽。於第1層間絕緣膜37U上,經由第1障壁層23U形成有第1佈線26U。又,於第2層間絕緣膜38U上,經由第2障壁層24U形成有第2佈線27U。又,於第3層間絕緣膜39U上,經由第3障壁層25U形成有第3佈線28U。
第1~第3佈線26U~28U包含較第1~第3障壁層23U~25U之材料更軟之金屬材料、具體而言含有Al(鋁)之金屬材料,具體而言包含以Al為主成分之金屬材料(例如,Al-Cu合金等)。
第3佈線28U係由表面保護膜16U被覆,藉此形成於最上層之層間絕緣膜(第3層間絕緣膜39U)與表面保護膜16U之間。第3佈線28U於俯視時為四角形狀(例如,120μm×120μm之四角形狀)。又,第3佈線28U之厚度例如為5000Å以上,較佳為7000~28000Å。
於被覆第3佈線28U之表面保護膜16U,形成有用以使第3佈線28U露出作為電極焊墊8U之焊墊開口21U。
第2佈線27U係由第3層間絕緣膜39U被覆,藉此形成於第2層間絕緣膜38U與第3層間絕緣膜39U之間。第2佈線27U係由特定圖案形成。例如,由俯視時不與電極焊墊8U重合之圖案形成。又,第2佈線27U之厚度例如為3000~9000Å。
第1佈線26U係由第2層間絕緣膜38U被覆,藉此形成於第1層間絕緣膜37U與第2層間絕緣膜38U之間。第1佈線26U係由特定圖案形成。例如,於電極焊墊8U之正下方,第1佈線26U包括彼此平行地延伸之複數個直線部29U、以及將相鄰之直線部29U之一端部彼此及另一端部彼此交替關聯之關聯部30U,由彎折成大致S字狀之曲折圖案形成。藉此,一個電極焊墊8U(第3佈線28U)與複數個直線部29U及夾持於第2層間絕緣膜38U中之直線部29U間之夾持部20U相對向。
相鄰之直線部29U彼此之間隔(直線部29U之間距W)例如全部相等,具體而言為2~10μm。又,第1佈線26U之厚度例如為3000~9000Å。
再者,第1~第3佈線26U~28U之圖案係可按照半導體晶片2U之設計規則等而適當變更,並不限定於上述圖案。
第1~第3障壁層23U~25U包含例如鈦(Ti)、氮化鈦(TiN)、氮化鎢 (WN)及該等之積層結構等。第1~第3障壁層23U~25U之厚度小於第1~第3佈線26U~28U之厚度,例如為500~2000Å。
與電極焊墊8U接合之接線5U之焊墊接合部52U於俯視時小於電極焊墊8U。焊墊接合部52U於剖視時為凸狀,其一體地包括厚度方向另一側與電極焊墊8U之表面相接觸且大致圓柱狀之基底部54U,以及自基底部54U之其中一側突出且其前端與本體部51U之一端連接之大致傘狀之突出部55U。
如下所述,接線5U係藉由在其前端形成FAB,將FAB按壓至電極焊墊8U而接合。此時,FAB產生變形,藉此於接線5U中之與電極焊墊8U之接合部分,形成於剖視時為凸狀之焊墊接合部52U。又,電極焊墊8U之材料自焊墊接合部52U之下方緩慢地逼出至焊墊接合部52U之周圍,藉此不自電極焊墊8U之表面大幅度浮起地形成逼出部34U。
又,於接線5U中,焊墊接合部52U之體積V相對於本體部51U之線徑Dw(本體部51U之直徑)之立方之比(V/(Dw)3)為1.8~5.6。
該焊墊接合部52U之體積V係例如可藉由如下方式求出,即,求出大致圓柱狀之基底部54U之體積Vb及大致傘狀之突出部55U之體積Vp之近似值,將彼等近似值相加。
如圖234所示,基底部54U之體積Vb可將基底部54U概念性地設為直徑Db、高度Hb之圓柱,根據該圓柱之體積求出近似值。因此,可表達為Vb≒π(Db/2)2‧Hb
另一方面,因突出部55U為以圓錐為基礎,且將圓錐之頂部形成為高度方向成為軸之圓柱狀而成之大致傘狀,故而突出部55U之體積Vp可如圖244所示,將突出部55U概念性地設為直徑Dp、高度Hp之圓錐,根據該圓錐之體積求出近似值。因此,可表達為Vp≒π‧(Dp/2)2‧Hp/3。
又,於該半導體裝置1U中,於俯視時,與接線5U和電極焊墊8U 之接合區域33U重合之第1佈線26U之面積(圖245之斜線部分之面積)係接合區域33U之面積S之26.8%以下,較佳為0~25%。
接合區域33U係焊墊接合部52U之基底部54U與電極焊墊8U之表面相接觸之於俯視時為圓形之區域,其面積S可使用基底部54U之直徑Db,根據式:S=π(Db/2)2而求出。
圖246A~圖246H係按照步驟順序表示圖241所示之半導體裝置之製造步驟之模式性剖面圖。
為製造上述半導體裝置1U,例如,如圖246A所示,利用鍍敷法、濺鍍法等,於半導體晶片2U之Si基板7U之背面72U依序積層Au層91U、Ni層92U及Cu層93U,藉此形成背部金屬9U。
另一方面,如圖246A所示,準備包含複數個單元之引線框架10U,該單元一體地包括晶片焊墊3U及電極引線4U。再者,於圖246A~圖246H中,省略引線框架10U之整體圖,僅表示搭載1個半導體晶片2U所需之1個單元份之晶片焊墊3U及電極引線4U。
其次,如圖246B所示,利用眾所周知之打線接合法,於晶片焊墊3U之表面31U形成複數個Cu柱形凸塊18U。繼而,將包括含有Sn之Bi系材料之接合膏14U塗佈於晶片焊墊3U之表面31U。
接合膏14U中之Sn含量宜為例如相對於背部金屬9U之Cu層93U及晶片焊墊3U之表面31U之Cu可擴散總量之量,例如為4wt%以下,較佳為1~3wt%,更佳為1.5~2.5wt%。
於塗佈接合膏14U之後,如圖246C所示,以背部金屬9U之Cu層93U與Cu柱形凸塊18U之前端部182U及接合膏14U相接觸之方式,由半導體晶片2U及晶片焊墊3U夾住接合膏14U。繼而,例如於250~260℃下執行回焊(熱處理)。
藉此,如圖246D所示,背部金屬9U之Cu層93U、晶片焊墊3U之表面31U之Cu及Cu柱形凸塊18U之Cu分別與接合膏14U中之Sn發生反 應,從而於Cu層93U及表面31U附近形成Cu-Sn合金層112U、113U。又,Cu柱形凸塊18U係由Cu-Sn合金層114U被覆。另一方面,接合膏14U中之Bi由於幾乎不與Cu發生反應,因此於Cu-Sn合金層112U、113U之間,作為夾於該等間之Bi系材料層111U而殘存。
繼而,如圖246E所示,藉由包含焊針C之打線接合機(未圖示),進行接線5U之接合。
如圖246E所示,焊針C形成導線插通孔61U形成於中心軸線上之大致圓筒形狀。接線5U插通至導線插通孔61U,而自導線插通孔61U之前端(下端)送出。又,焊針C包含導熱率為15~45W/m‧K、較佳為17~43W/m‧K之材料。具體而言,包含多晶紅寶石(導熱率例如為17~19W/m‧K左右)或單晶紅寶石(導熱率例如為41~43W/m‧K左右)。
於焊針C之前端部,形成有於導線插通孔61U之下方與導線插通孔61U連通之圓錐台形狀之倒角62U。又,焊針C之前端部包括外表面63U,該外表面63U係連接於倒角62U之下端緣,並於接線5U與電極焊墊8U及電極引線4U之接合時(打線接合時)與電極焊墊8U及電極引線4U相對向之面。外表面63U係相對於與焊針C之中心軸線正交之平面,以外側上升之方式緩緩傾斜。
首先,如圖246E所示,焊針C移動至電極焊墊8U之正上方。其次,於接線5U之前端位於倒角62U之狀態下,對接線5U之前端部施加電流,藉此於其前端部形成FAB64U。電流值及施加時間係根據接線5U之線徑及FAB64U之目標直徑(FAB64U之設計上之直徑)而適當設定。
例如,電流值I係接線5U之本體部51U之線徑Dw越大,則設定為越大值,例如於Dw=25μm時,I=40mA,於Dw=30μm時,I=60mA,於Dw=38μm時,I=120mA。再者,電流之施加時間係根據FAB64U之直徑Df而設定為適當之長度。
如此形成之FAB64U之體積Vf可使用FAB64U之直徑Df,表達為Vf=4/3‧π‧(Df/2)3。又,FAB64U之一部分係自倒角62U向其下方凸出。
其後,如圖246F所示,焊針C朝向電極焊墊8U下降,藉由焊針C,將FAB64U按壓至電極焊墊8U。此時,藉由焊針C對FAB64U施加荷重,並且對FAB64U賦予自設置於焊針C之超聲波振動子(未圖示)產生振盪之超聲波振動。
圖247係表示將FAB接合於焊墊時施加至FAB之荷重及施加至超聲波振動子之驅動電流之時間變化的圖表。
例如,如圖247所示,於FAB64U抵接至電極焊墊8U之時刻T1起經過特定時間(例如,3msec)之時刻T2為止之期間,自焊針C對FAB64U施加相對較大之初始荷重P1。於時刻T2以後,自焊針C施加至FAB64U之荷重下降,對FAB64U施加相對較小之荷重P2(例如,30g)。該荷重P2係持續施加直至焊針C上升之時刻T4為止。
再者,初始荷重P1係根據焊墊接合部52U與電極焊墊8U之目標接合面積(相對於電極焊墊8U之焊墊接合部52U之設計上之接合面積S=π(Db/2)2)乘以一定之係數(於初始荷重P1之單位為g且接合面積之單位為mm2之情形時,例如為28786)所得之值而設定。於本實施形態中,將焊墊接合部52U與電極焊墊8U之目標接合面積S設為0.00430mm2,從而將初始荷重P1設定為130g。
於使用標準型焊針作為焊針C之情形時,自較FAB64U抵接至電極焊墊8U之時刻T1更前起,對超聲波振動子施加相對較小之值U1之驅動電流。驅動電流值U1例如為15mA。繼而,當FAB64U抵接至電極焊墊8U時,於此時之時刻T1至時刻T3為止之期間,施加至超聲波振動子之驅動電流值以一定之變化率(單調地)自值U1上升至值U2。該變化率設定為21mA/msec以下。又,最終施加至超聲波振動子之驅動電流值U2係以將該值U2除以焊墊接合部52U之目標接合面積所得之值 成為0.0197mA/μm2以下之方式而設定。於該實施形態中,驅動電流值U2例如為90mA。進而,以於對FAB64U施加初始荷重之特定時間內施加至超聲波振動子之驅動電流之積分值成為146mA‧msec以下之方式,設定驅動電流值U1、U2。於時刻T3以後,對超聲波振動子持續施加值U2之驅動電流直至成為時刻T4為止。
標準型焊針形成如圖248所示之形狀,並具有如下之尺寸。倒角62U之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面63U之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針C所得之剖面(圖248所示之剖面),沿著倒角62U之側面延伸之兩條直線所形成之角度即倒角度為90°。外表面63U相對於與焊針C之中心軸線正交之平面所形成之角度即外表面角FA為8°。於以包括中心軸線之平面切斷焊針C所得之剖面,自焊針C之側面之外表面63U之上端進而向上方延伸之部分與中心軸線所形成之角度CA為20°。
另一方面,於使用瓶頸型焊針作為焊針C之情形時,如圖247所示,自較FAB64U抵接至電極焊墊8U之時刻T1更前起,對超聲波振動子施加值U1之1.4倍之值之驅動電流。繼而,當FAB64U抵接至電極焊墊8U時,於自此時之時刻T1至時刻T3為止之期間,施加至超聲波振動子之驅動電流值以一定之變化率(單調地)自值U1上升至值U2之1.4倍之值。於時刻T3以後,對超聲波振動子持續施加值U2之1.4倍之值之驅動電流直至成為時刻T4為止。
瓶頸型焊針形成如圖249所示之形狀,並具有如下之尺寸。倒角62U之下端緣之直徑即CD尺寸為66μm(0.066mm)。外表面63U之外徑即T尺寸為178μm(0.178mm)。於以包括中心軸線之平面切斷焊針C所得之剖面(圖249所示之剖面),沿著倒角62U之側面延伸之兩條直線所形成之角度即倒角度為90°。外表面63U相對於與焊針C之中心軸線正交之平面所形成之角度即外表面角FA為8°。於以包括中心軸線之平面 切斷焊針C所得之剖面,自焊針C之側面之外表面63U之上端進而向上方延伸之部分與中心軸線所形成之角度CA為10°。
其結果為,FAB64U按焊針C之倒角62U及外表面63U之形狀變形,如圖246F所示,於電極焊墊8U上形成供神用圓形年糕形狀之焊墊接合部52U,並且於其周圍形成逼出部34U。藉此,實現接線5U與電極焊墊8U之接合(第1接合)。
當自時刻T1起經過預定之接合時間而成為時刻T4時,焊針C朝向電極焊墊8U之上方離開。其後,焊針C朝向電極引線4U之表面向斜下方移動。繼而,如圖246G所示,對超聲波振動子施加驅動電流,對焊針C賦予超聲波振動,並且藉由焊針C,將接線5U按壓至電極引線4U之表面,進而將其扯斷。藉此,於電極引線4U之表面上形成包含接線5U之另一端部之於側視時為楔狀之針腳部(引線接合部53U),從而實現銅導線與電極引線4U之接合(第2接合)。
其後,以另一電極焊墊8U及與其相對應之電極引線4U為對象,進行圖246E~圖246G所示之步驟。繼而,藉由重複圖246E~圖246G所示之步驟,如圖246H所示,於半導體晶片2U之所有電極焊墊8U與電極引線4U之間架設接線5U。
於所有打線接合結束後,將引線框架10U安放於成形模具,利用樹脂封裝體6U將所有半導體晶片2U與引線框架10U一併統一密封。繼而,於自樹脂封裝體6U露出之晶片焊墊3U之背面32U及電極引線4U之背面42U形成背面鍍層12U、13U。最後,使用切割機,將引線框架10U與樹脂封裝體6U一併切斷成各半導體裝置1U之尺寸,藉此獲得圖241所示之半導體裝置1U之單片。
再者,該第20實施形態係對應於上述第3~第5、第7、第11、第12、第17及第18實施形態,將該等實施形態之全部揭示藉由引用而編入於此者。亦即,根據該第20實施形態,可達成與上述第3~第5、第 7、第11、第12、第17及第18實施形態相同之作用及效果。又,亦可將上述第3~第5、第7、第11、第12、第17及第18實施形態之變形例應用於本實施形態。
以上,對本發明之實施形態進行了詳細說明,但該等僅係用以闡明本發明之技術內容之具體例,本發明不應限定於該等具體例而解釋,而本發明之精神及範圍僅由隨附之申請專利範圍而限定。
又,於本發明之半導體裝置中,較佳為上述電極引線之整個表面及整個上述引線接合部均由上述不透水膜一體地被覆。
於該構成中,電極引線之整個表面及整個引線接合部均由不透水膜一體地被覆。藉此,電極引線與引線接合部之接合界面(引線接合界面)之周緣由不透水膜被覆而不會露出。
因此,即使水分滲入至樹脂封裝體內部,亦可藉由不透水膜攔截該水分,因此可抑制引線接合界面與水分之接觸。其結果為,可保持引線與導線間之連接可靠性。
又,於上述半導體裝置中,上述不透水膜為絕緣膜,上述半導體晶片之整個表面及整個上述接線亦可均由上述絕緣膜被覆。
於該構成中,不透水膜為絕緣膜,該絕緣膜一體地被覆半導體晶片之整個表面及整個接線。藉此,即使除電極焊墊以外之金屬部分露出於半導體晶片之表面,該金屬部分亦會由覆蓋整個晶片表面之絕緣膜所被覆。因此,可抑制該金屬部分與樹脂封裝體內部之滲入水分之接觸。其結果為,可抑制該金屬部分之腐蝕。又,可確保該金屬部分、電極焊墊及接線等金屬構件彼此之電性絕緣性。
再者,作為絕緣膜,可應用例如氧化矽膜、氮化矽膜等。
又,於上述半導體裝置中,上述不透水膜為金屬膜,整個上述電極焊墊及整個上述接線亦可均由上述金屬膜被覆。
於該構成中,不透水膜為金屬膜,該金屬膜一體地被覆整個電 極焊墊及整個接線。藉此,可於電極焊墊及/或接線與金屬膜之界面形成合金,因此可提高金屬膜之覆膜性。
再者,作為金屬膜,可應用例如鎳膜、鈀膜等。
又,於上述半導體裝置中,上述半導體晶片之表面與上述樹脂封裝體之表面的間隔亦可小於上述半導體晶片之側面與上述樹脂封裝體之側面的最短距離。又,上述半導體晶片之表面與上述樹脂封裝體之表面的間隔亦可小於上述半導體晶片之表面與上述樹脂封裝體之背面的距離。
如該構成般,於半導體晶片之表面與樹脂封裝體之表面的間隔相對較小之薄型封裝體之半導體裝置中,有可能導致焊墊接合部暴露於自樹脂封裝體之表面滲入至封裝體內部之水分中。然而,因整個焊墊接合部由不透水膜被覆,故而於此類薄型封裝體之半導體裝置中,亦可有效提高半導體裝置之連接可靠性。
又,於上述半導體裝置中,上述不透水膜之厚度亦可為0.5μm~3μm。
又,於上述半導體裝置中,較佳為上述焊墊接合部包含與上述電極焊墊相接觸之基底部、形成於上述基底部上之中間部、以及自上述中間部突出且經由上述中間部而連接於上述基底部之突出部,且於剖視時為直徑大於上述本體部之直徑之凸狀,並且上述中間部包含相對於上述電極焊墊垂直切斷時之剖面形狀為非直線狀之側面。
於該構成中,於接線之接合時,可使沿著超聲波之施加方向施加至中間部之應力分散至非直線狀之側面,而不會集中於中間部之特定部位。藉此,可緩和施加至電極焊墊之應力。其結果為,可抑制於電極焊墊下方產生損傷。
又,於上述半導體裝置中,非直線狀之上述側面亦可為朝向上述焊墊接合部之內側彎曲之彎曲面。非直線狀之上述側面之剖面形狀 亦可為曲線波形。又,非直線狀之上述側面之剖面形狀亦可為直線波形。
又,於上述半導體裝置中,較佳為非直線狀之上述側面遍及上述焊墊接合部之全周而形成。
於該構成中,由於非直線狀之側面遍及全周而形成,因此可使施加至中間部之應力有效分散至中間部之整個側面。因此,可進一步緩和施加至電極焊墊之應力。
又,於上述半導體裝置中,較佳為上述焊墊接合部之體積相對於上述本體部之線徑之立方之比為1.8~5.6。
根據該構成,焊墊接合部具有相對於接線之本體部之線徑之立方為1.8~5.6倍之體積。亦即,接合部之體積相對於接線之本體部之線徑之立方之比(體積/(線徑)3)為1.8~5.6。
因此,不論電極焊墊之間距之大小如何,均可使用相對較粗之接線,故而可提高接線之導熱率及導電率。又,由於使用有銅導線,因此與使用金導線之情形時相比,可降低成本。
又,於上述半導體裝置中,上述半導體晶片亦可包括:半導體基板;佈線,其形成於上述半導體基板上;絕緣層,其被覆上述佈線;以及障壁層,其形成於上述絕緣層上。於此情形時,較佳為上述電極焊墊係於上述障壁層上形成於與上述佈線之一部分相對向之位置,並且於俯視時,與上述接線和上述電極焊墊之接合區域重合之上述佈線的面積為上述接合區域之面積之26.8%以下。
於俯視時,與接合區域重合之佈線之面積(佈線之重合面積)係接合區域之面積之26.8%以下,故而電極焊墊正下方之障壁層與佈線之對向面積相對縮小。因此,例如於接線與電極焊墊之接合時,即使將障壁層按壓至佈線側,亦難以產生因該按壓所引起之佈線及絕緣層之變形,從而可防止因此類變形所引起之朝向障壁層之應力集中。其結 果為,可防止障壁層中產生龜裂,因此可提高半導體裝置之可靠性。
上述絕緣層亦可包括第1層間絕緣膜、以及積層於第1層間絕緣膜上之第2層間絕緣膜,於此情形時,佈線由第1層間絕緣膜所被覆,於第1層間絕緣膜與第2層間絕緣膜之間亦可不存在其他佈線。
又,上述半導體裝置亦可進一步包括積層於半導體基板上之下側層間絕緣膜、以及積層於下側層間絕緣膜上之上側層間絕緣膜,於此情形時,佈線形成於上側層間絕緣膜與絕緣層之間,於上側層間絕緣膜與下側層間絕緣膜之間亦可不存在其他佈線。
又,上述佈線亦可彼此空開間隔而設置有複數條,於此情形時,電極焊墊宜與至少一條佈線以及夾於絕緣層中之佈線間的部分相對向。
於佈線彼此空開間隔而設置有複數條之構成中,複數條佈線之重合面積係各佈線之重合面積之合計,該合計為接合區域之面積之26.8%以下。因此,各佈線之重合面積均小於接合區域之面積之26.8%。
並且,電極焊墊係與至少一條佈線以及夾於絕緣層中之佈線間的部分相對向。藉此,各者之重合面積均小於接合區域之面積之26.8%之複數條佈線,相對於電極焊墊中之接合區域分散地對向。因此,於將障壁層按壓至佈線側時,可將因該按壓所引起之佈線及絕緣層之變形量抑制得較小。其結果為,可抑制應力集中至障壁層中之特定部位。因此,可進一步防止障壁層中之龜裂產生。
又,於上述半導體裝置中,較佳為上述接線之上述焊墊接合部中含有Zn。
根據該構成,焊墊接合部中含有Zn。換言之,銅導線之焊墊接合部包含Cu與Zn之合金(黃銅)。故此,焊墊接合部難以氧化。因此,可防止產生由氧化所引起之焊墊接合部自焊墊之剝落。
上述電極焊墊只要至少於表層部具有含有Zn之Zn層,則例如亦可為含有Al之Al層與Zn層之積層體。
但是,於電極焊墊包含Al層及Zn層之情形時,當彼等直接接觸時,Al與Zn進行共晶鍵結。Al之熔點為660℃,Zn之熔點為419℃,與此相對,Al與Zn進行共晶鍵結而成之Zn-Al合金之熔點較低,例如78Zn-22Al合金之熔點為275℃。因此,當電極焊墊包含Zn-Al合金時,於熱處理時有焊墊發生熔融之虞。
因此,於Al層與Zn層之間,宜介插具有自Al層側起依序積層有含有Ti之Ti層及含有TiN之TiN層而成之結構的障壁膜。
藉由介插該障壁膜,可防止Al層中所含之Al與Zn層中所含之Zn之共晶鍵結。
又,於上述半導體裝置中,亦可於整個銅導線中包含Zn。亦即,銅導線可為包含純銅之導線,亦可為包含黃銅之導線。只要銅導線為包含黃銅之導線,則即使電極焊墊不包含Zn層,焊墊接合部包含黃銅,從而亦可防止產生由氧化所引起之焊墊接合部自焊墊之剝落。
又,於上述半導體裝置中,宜進一步包括用以接合上述半導體晶片之晶片焊墊、以及配置於上述晶片焊墊之周圍之引線,上述接線係跨越上述半導體晶片與上述引線而設置,並且進一步包括包含金屬材料且無助於上述半導體晶片與上述晶片焊墊及上述引線之電性連接之非電性連接構件。
根據該構成,於接合於晶片焊墊之半導體晶片與配置於晶片焊墊之周圍之引線之間架設有接線。藉由該接線,將半導體晶片與引線加以電性連接。又,於半導體裝置中,設置有無助於半導體晶片與晶片焊墊及引線之電性連接之非電性連接構件。非電性連接構件包含金屬材料。
於半導體裝置之工作時,來自半導體晶片之發熱會傳遞至晶片 焊墊、引線及非電性連接構件。繼而,所傳遞之熱於樹脂封裝體中傳播,並自該樹脂封裝體之表面釋放(散熱)。因此,藉由設置有非電性連接構件,與未設置有非電性連接構件之構成相比,可提高對樹脂封裝體之熱傳遞效率,從而可提高半導體裝置之散熱性。
又,非電性連接構件不幫助半導體晶片與晶片焊墊及引線之電性連接。因此,不必考慮非電性連接構件彼此之接觸,其配置不受制約,因此可物理上儘可能稠密地配置非電性連接構件。其結果為,可進一步提高半導體裝置之散熱性。
又,上述非電性連接構件亦可為將其兩端部接合於上述晶片焊墊或上述引線中之任一者之環狀金屬導線。
於非電性連接構件為環狀金屬導線之情形時,可使用打線接合機形成非電性連接構件。因此,可避免追加用以形成非電性連接構件之裝置。又,可不考慮金屬導線彼此之接觸而配置非電性連接構件,因此可使用打線接合機以儘可能形成之較小間隔形成非電性連接構件。
又,上述非電性連接構件亦可為配置於上述晶片焊墊或上述引線中之任一者上之柱形凸塊。
於非電性連接構件為柱形凸塊之情形時,可使用打線接合機形成非電性連接構件。因此,可避免追加用以形成非電性連接構件之裝置。又,可不考慮柱形凸塊彼此之接觸而配置非電性連接構件,因此可使用打線接合機以儘可能形成之較小間隔形成非電性連接構件。
此外,非電性連接構件亦可為將環狀金屬導線與柱形凸塊加以組合者。於此情形時,由於可於金屬導線之迴路部分之間隙配置柱形凸塊,因此可進一步提高非電性連接構件之配置密度,從而可進一步提昇半導體裝置之散熱性。
又,上述柱形凸塊亦可重疊設置複數個。
藉此,可按照半導體裝置內之死區而變更柱形凸塊之高度,因此可進一步擴大非電性連接構件之表面積。其結果為,可進一步提高半導體裝置之散熱性。
又,上述非電性連接構件宜包含銅。因銅之價格便宜,故而可降低非電性連接構件之材料成本。又,由於銅之導熱率較高,因此可提高半導體裝置之散熱量。
又,於非電性連接構件包含銅之情形時,亦可對晶片焊墊及/或引線中之非電性連接構件之接合部分實施有鍍銀。
又,上述半導體裝置宜進一步包括與上述半導體晶片之背面相對向而配置之島狀物、介插於上述島狀物與上述半導體晶片之背面間之絕緣性接合材料、以及於上述島狀物之側方與上述島狀物相隔而配置之引線,並且包括架設於上述電極焊墊與上述引線之間而將上述電極焊墊與上述引線加以電性連接的作為上述接線之表面導線、以及架設於上述半導體晶片之背面與上述島狀物之間而將上述半導體晶片之背面與上述島狀物加以電性連接之背面導線。
根據該構成,半導體晶片係將其背面藉由絕緣性之接合材料而接合於島狀物。於島狀物之側方,與島狀物相隔而配置引線。於形成於半導體晶片之表面之焊墊與引線之間,架設有表面導線。藉此,焊墊與引線電性連接。
又,於半導體晶片之背面與島狀物之間,架設有將半導體晶片與島狀物電性連接之背面導線。藉此,即使接合材料具有絕緣性,亦可經由背面導線將半導體晶片之背面與島狀物加以電性連接。亦即,即便使用除焊錫以外之接合材料,不管該接合材料之電性特性如何,均可實現半導體晶片之背面與島狀物之電性連接。
又,上述背面導線宜包含銅。因銅之價格較被廣泛用作導線之材料之金便宜,故而可降低背面導線之材料成本。又,由於銅之導電 率較高,因此可降低半導體晶片與島狀物間之電阻。又,因含銅之背面導線之散熱性良好,故而自散熱性之觀點考慮,有效的是設置多條含銅之背面導線。於此情形時,因表面導線(接線)及背面導線為相同之材料,故而可不變更安放於打線接合機之材料,而藉由該打線接合機形成表面導線及背面導線。因此,可簡化半導體裝置之製造步驟。
又,亦可於上述島狀物中,沿其厚度方向貫通而形成有貫通孔,上述背面導線係穿過上述貫通孔而架設於上述半導體晶片之背面與上述島狀物之間。
藉此,半導體晶片之背面自貫通孔露出,於該所露出之部分連接背面導線,藉此可實現半導體晶片之背面與島狀物之電性連接。於此情形時,島狀物中之與半導體晶片之背面相對向之部分的面積必然小於半導體晶片之背面的面積,且只要僅於半導體晶片與島狀物之對向部分介插有絕緣性之接合材料即可,因此可降低接合材料之使用量。其結果為,可降低半導體裝置之材料成本。
又,上述背面導線宜設置有複數條。藉此,可提高半導體晶片與島狀物之電性連接之確實性。
又,上述島狀物中之與上述半導體晶片之背面相對向之部分的面積亦可小於上述半導體晶片之背面的面積。
又,上述半導體裝置亦可進一步包括用以接合上述半導體晶片之引線框架、介插於上述引線框架與上述半導體晶片之間且包含Bi系材料之接合材料、以及包含Cu且設置於上述引線框架中之與上述半導體晶片相對向之面上之間隔件。
根據該構成,由於用以接合引線框架與半導體晶片之接合材料包含Bi系材料,因此可實現接合材料之無鉛化。
又,因於引線框架與半導體晶片之間設置有間隔件,故而可將引線框架與半導體晶片之距離至少維持在間隔件之高度。因此,藉由 適當地調節間隔件之高度,可使具有足夠厚度之接合材料介插於引線框架與半導體晶片之間。其結果為,即使於接合材料中產生由引線框架之翹曲所引起之應力,亦可充分緩和該應力。因此,可降低半導體晶片之翹曲量。藉此,可防止半導體晶片中之龜裂產生。又,由於無需擴大半導體晶片及引線框架之厚度,因此半導體裝置之封裝體本體亦不會大型化。
此外,由於間隔件包含Cu,且Cu之導熱率(約398W/m‧K)與Bi之導熱率(約9W/m‧K)相比非常大,因此可提高引線框架與半導體晶片間之導熱性。因此,可使半導體晶片中所產生之熱經由Cu間隔件而散出至引線框架。因此,可充分確保半導體晶片之散熱性。
又,於間隔件包含Au、Ag、Ni等金屬元素等之情形時,有可能接合材料中之Bi與間隔件發生反應而與上述金屬元素形成化合物,或者形成共晶組成。並且,Bi與上述金屬元素之金屬間化合物硬而脆,故而於半導體裝置之溫度週期測試(TCY測試(Temperature Cycle Test))時,有可能成為破壞之起點。又,Bi與上述金屬元素之共晶組合物之熔點低於Bi單體之熔點。例如,Bi單體之熔點約為271℃,與此相對,Bi與Au之共晶組合物之熔點約為241℃,Bi與Ag之共晶組合物之熔點約為262℃。因此,於安裝半導體裝置時之回焊(峰值溫度約為260℃)時,有可能導致接合材料再熔融。
與此相對,由於Cu幾乎不與Bi發生反應,因此於間隔件包含Cu之該半導體裝置中,可抑制接合材料之熔點下降或耐溫度週期性之下降。
又,上述引線框架亦可包含Cu。
作為引線框架之材料,除Cu以外,已知有例如42合金(Fe-42% Ni)等Fe系原材料。42合金之熱膨脹係數約為4.4~7.0×10-6/℃。含有42合金之引線框架中,熱膨脹量小於含有Cu(熱膨脹係數約為16.7×10-6/ ℃)之引線框架之熱膨脹量,由此有可能可縮小引線框架之翹曲量。然而,於使用42合金之情形時,較使用Cu之情形時更耗費成本,並且散熱性下降。
與此相對,於上述半導體裝置中,即使於引線框架含有Cu之情形時,亦可藉由接合材料充分緩和由引線框架之翹曲所引起之應力。因此,可毫無問題地使用Cu作為引線框架之材料,從而可維持成本或散熱性。
再者,用作引線框架之材料之Cu係主要含有Cu之Cu系原材料,包含例如純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅、Cu與異種金屬之合金(例如,Cu-Fe-P合金等)等。
又,於上述半導體裝置中,上述半導體晶片亦可包含Si基板。於此情形時,上述Si基板可支持於上述間隔件。
於該構成中,由於Si基板係支持於間隔件,因此使Si基板與引線框架可經由間隔件熱交換地連接。因此,於引線框架進行熱膨脹時,引線框架之熱會傳遞至Si基板。因此,於安裝半導體裝置時之回焊時,可藉由自引線框架所傳遞之熱,使Si基板熱膨脹。其結果為,可縮小引線框架之熱膨脹量與Si基板之熱膨脹量之差,因此可降低Si基板之翹曲量。
又,於上述半導體裝置中,宜於上述半導體晶片中之與上述引線框架之對向面形成有Cu層。
於該構成中,於半導體裝置中,接合材料會接合於Cu層。如上所述,由於Cu幾乎不與Bi發生反應,因此可抑制接合材料之熔點下降或耐溫度週期性之下降。又,於半導體晶片與間隔件相接觸之情形時,該接觸成為Cu層與Cu間隔件之同種金屬彼此之接觸,因此可降低因半導體晶片與間隔件之接觸所帶來之影響(例如,Cu間隔件之高電阻化、Cu間隔件之侵蝕等)。
又,上述接合材料宜含有Sn或Zn。
於該構成中,由於接合材料含有Sn或Zn,因此可提高相對於引線框架及半導體晶片之接合材料之潤濕性。
例如,如上所述,於半導體晶片中之與引線框架之對向面形成有Cu層之情形時,可於接合材料中之與Cu層之界面附近形成包含Cu-Sn合金或Cu-Zn合金之部分。因此,藉由該合金部分,可提高半導體晶片與接合材料之接合強度。
又,Sn之導熱率約為73W/m‧K,Zn之導熱率約為120W/m‧K,均高於Bi之導熱率(約9W/m‧K)。因此,與接合材料僅含有Bi之情形時相比,可提高接合材料之導熱率。其結果為,可進一步提高半導體晶片之散熱性。
又,上述間隔件亦可利用打線接合法而形成。
於該構成中,於引線框架上形成間隔件時,係利用自先前以來有實績之打線接合法。因此,可簡單地形成間隔件。利用打線接合法所形成之間隔件例如為柱形凸塊、配線等。
又,上述間隔件宜設置有3個以上。
於該構成中,由於設置有3個以上之間隔件,因此可由至少3點支持半導體晶片。藉此,能以相對於引線框架之表面不傾斜之方式,使半導體晶片於間隔件上穩定。因此,可將引線框架與半導體晶片之距離設為大致均等之大小。其結果為,引線框架與半導體晶片之對向方向(縱向)上之接合材料之線膨脹係數變得均勻,故而可抑制接合材料中之應力不均,可整體性地緩和應力。又,由於可利用3個以上之Cu間隔件來釋放半導體晶片中所產生之熱,因此可進一步提高半導體晶片之散熱性。
又,於上述半導體裝置中,較佳為上述樹脂封裝體之pH值大於4.5。
本發明者等人對焊墊與導線間之電性斷開之主要原因進行有潛心研究,結果發現主要原因在於樹脂封裝體之pH值。
具體而言,當水分滲入至封裝體內部時,該水分會使銅產生氧化,使得導線表面由包含氧化亞銅(CuO2)及氧化銅(CuO)之皮膜被覆。此種表面皮膜係於樹脂封裝體之pH值相對較低(例如,pH值=4.2~4.5)之低pH值環境下,促進銅之氧化,增加氧化銅之體積比例。當氧化銅之體積比例增加時,有時銅導線與樹脂封裝體會剝離。並且,由於銅導線與樹脂封裝體之剝離所產生之間隙成為水分之移動路徑,故而水分容易滲入至電極焊墊與銅導線之接合界面。因此,於HAST測試過程中等,滲入至該接合界面之水分會使鋁焊墊(電極焊墊)之腐蝕行進,從而產生電性斷開。
與此相對,根據該構成,樹脂封裝體之pH值大於4.5,故而可將接線放置於與低pH值環境(例如,pH值為4.5以下之環境)相比更高之pH值環境下。
因此,可抑制氧化銅之形成,故而可抑制氧化銅之體積增加。其結果為,可抑制銅導線與樹脂封裝體間產生剝離。
因此,即使將半導體裝置放置於PCT(Pressure Cooker Test)或HAST(Highly Accelerated temperature and humidity Stress Test)等測試等水分容易滲入至封裝體內部之狀況下,亦因銅導線與樹脂封裝體之間不存在水分之移動路徑,而可抑制水分滲入至電極焊墊與銅導線之接合界面。因此,可抑制該接合界面與水分之接觸。其結果為,可抑制電極焊墊(鋁焊墊)之腐蝕之行進,因此可抑制焊墊與導線間之電性斷開。因此,可提高半導體裝置之連接可靠性。
又,上述樹脂封裝體之pH值較佳為大於4.5且小於7.0,更佳為6.0以上且小於7.0。只要樹脂封裝體之pH值處於如上所述之範圍內,即可進一步抑制銅導線與樹脂封裝體間產生剝離。
又,上述半導體裝置亦可包括引線框架,其包含用以搭載上述半導體晶片之晶片焊墊、以及配置於上述晶片焊墊之周圍之複數條電極引線。於此情形時,較佳為上述引線框架包含主要含有Cu之Cu系原材料。
於該構成中,因電極引線與接線之接合成為同種金屬彼此之接合(Cu-Cu接合),故而可於電極引線與接線之界面抑制氧化銅(CuO)之形成。因此,可抑制氧化銅之體積增加。其結果為,可抑制於接線與樹脂封裝體之接合界面產生剝離。
又,於上述半導體裝置中,較佳為上述樹脂封裝體之材料中包含具有捕獲氯離子之性質之離子捕獲成分。
根據該構成,可於電極焊墊與接線之接合部分,抑制AlCu合金(Cu9Al4)與Cl-之反應,故而可防止作為其反應生成物之Al2O3(氧化鋁)生成。其結果為,可防止電極焊墊與接線因Al2O3而絕緣分離。亦即,可防止於電極焊墊與接線間產生導通不良。
離子捕獲成分宜具有羥基。於此情形時,藉由羥基與Cl-之陰離子交換反應,離子捕獲成分可良好地捕獲Cl-
又,除申請專利範圍所揭示之特徵以外,若例示根據本申請案之揭示所應掌握之其他特徵,則為如下。
<根據第2實施形態之揭示所應掌握之特徵>
例如,根據第2實施形態之揭示,可掌握下述(1)至(7)之發明。
(1)之發明係一種半導體裝置,其包括:半導體晶片;電極焊墊,其形成於上述半導體晶片上;以及接線,其包含呈線狀延伸之本體部、以及形成於上述本體部之一端且接合於上述電極焊墊之直徑大於上述本體部之直徑之接合部;並且上述接合部於剖視時為凸狀,其包含與上述電極焊墊相接觸之基底部、形成於上述基底部上之中間部、以及自上述中間部突出且經由上述中間部而連接於上述基底部之 突出部,且上述中間部包含相對於上述電極焊墊垂直切斷時之剖面形狀為非直線狀之側面。
(1)之半導體裝置例如可藉由(7)之發明、亦即(7)如下半導體裝置之製造方法而製造,該半導體裝置之製造方法包含:球體形成步驟,於由形成有供接線插通之直孔的焊針所保持之接線之前端部,形成金屬球;以及接合步驟,向形成於半導體晶片上之電極焊墊,藉由上述焊針按壓上述金屬球並且使其進行超聲波振動,藉此將上述金屬球接合於上述電極焊墊;並且上述焊針包括倒角部,該倒角部包含沿著上述直孔之軸向切斷時之剖面形狀為非直線狀之側面;並且於上述接合步驟中,沿著與非直線狀之上述側面交叉之方向,使上述金屬球進行超聲波振動。
根據此方法,接線係藉由將金屬球按壓至電極焊墊,並且使其沿著與倒角部之非直線狀之側面交叉之方向進行超聲波振動,而接合於電極焊墊。
繼而,藉由超聲波之施加,金屬球之一部分擴散至焊針之下方而形成基底部,並且將另一部分按入至直孔內而形成突出部。繼而,藉由殘存於倒角部內之剩餘部分形成中間部。
於使用如上所述之焊針所形成之接合部,對應於倒角部之側面之形狀而形成中間部。因此,中間部包括沿著施加超聲波之方向,相對於電極焊墊垂直切斷時之剖面形狀為非直線狀之側面。
因此,於接線之接合時,可使沿著超聲波之施加方向施加至中間部之應力分散至非直線狀之側面,而不會集中於中間部之特定部位。藉此,可緩和施加至電極焊墊之應力。其結果為,可抑制於電極焊墊下方產生損傷。
非直線狀之側面亦可為例如下述(2)至(4)之發明之態樣。(2)之發明係如(1)之半導體裝置,其中非直線狀之上述側面為朝向上述接合 部之內側彎曲之彎曲面。(3)之發明係如(1)之半導體裝置,其中非直線狀之上述側面之剖面形狀為曲線波形。(4)之發明係如(1)之半導體裝置,其中非直線狀之上述側面之剖面形狀為直線波形。
又,(5)之發明係如(1)至(4)中任一項之半導體裝置,其中非直線狀之上述側面遍及上述接合部之全周而形成。
於該構成中,由於非直線狀之側面遍及全周而形成,因此可使施加至中間部之應力有效分散至中間部之整個側面。因此,可進一步緩和施加至電極焊墊之應力。
又,(6)之發明係如(1)至(5)中任一項之半導體裝置,其中上述接線包含銅。
由於銅較金更硬而難以變形,因此於1st接合之形成時,必需使荷重及超聲波大於金導線之情形時。因此,施加至接合部之中間部之應力大於使用有金導線之情形時,當將該較大應力施加至電極焊墊時,有可能於電極焊墊下方,產生半導體晶片中出現龜裂等較大損傷。
然而,只要為如上所述之中間部之形狀,即使施加較大應力,亦可有效緩和該應力。因此,可有效抑制於電極焊墊下方之損傷。
<根據第3實施形態之揭示所應掌握之特徵>
例如,根據第3實施形態之揭示,可掌握下述(1)至(5)之發明。
(1)之發明係一種半導體裝置,其包括:半導體晶片;電極焊墊,其形成於上述半導體晶片上;以及接線,其包含呈線狀延伸之本體部、以及形成於上述本體部之一端且接合於上述電極焊墊之接合部;並且上述接線包含銅,上述接合部之體積相對於上述本體部之線徑之立方之比為1.8~5.6。
又,(2)之發明係一種半導體裝置之製造方法,其包含:球體形成步驟,使由包含導熱率為15~45W/m‧K之材料之焊針所保持的含銅 之接線之前端部進行熱熔融,藉此於上述接線之前端部形成金屬球;以及接合步驟,向形成於半導體晶片上之電極焊墊,藉由上述焊針按壓上述金屬球並且使其進行超聲波振動,藉此將上述金屬球接合於上述電極焊墊。
根據此方法,於含銅之接線中的金屬球之形成時,使用包含導熱率為15~45W/m‧K之材料之焊針。藉此,可穩定地形成直徑相對於接線之本體部之線徑的大小為1.5~2.2倍的直徑相對較小之金屬球。
此種直徑之FAB之體積係相對於接線之本體部之線徑之立方為1.8~5.6倍。
因此,藉由對上述直徑之金屬球利用焊針加以按壓並且使其超聲波振動而形成之接線之接合部如(1)之半導體裝置般,具有相對於接線之本體部之線徑之立方為1.8~5.6倍之體積。亦即,接合部之體積相對於接線之本體部之線徑之立方的比(體積/(線徑)3)成為1.8~5.6。
因此,不論電極焊墊之間距之大小如何,均可使用相對較粗之接線,故而可提高接線之導熱率及導電率。又,由於係使用銅導線,因此與使用金導線之情形時相比,可降低成本。
又,(3)之發明係如(2)之半導體裝置之製造方法,其中上述焊針包含多晶紅寶石。(4)之發明係如(2)之半導體裝置之製造方法,其中上述焊針包含單晶紅寶石。
亦即,作為焊針之材料,例如可使用(3)之多晶紅寶石(導熱率例如為17~19W/m‧K左右)或(4)之單晶紅寶石(導熱率例如為41~43W/m‧K左右)。
又,(5)之發明係如(2)至(4)中任一項之半導體裝置之製造方法,其中於上述球體形成步驟中,上述接線之線徑越大,則使施加至上述接線之電流越大。
於此方法中,由於導線線徑越大,則金屬球形成時施加至導線 之電流越大,因此可有效形成更接近於圓球之金屬球。
<根據第4實施形態之揭示所應掌握之特徵>
例如,根據第4實施形態之揭示,可掌握下述(1)至(4)之發明。
(1)之發明係一種打線接合方法,其包含:球體形成步驟,使由焊針所保持之含銅之接線之前端部進行熱熔融,藉此於上述接線之前端部形成金屬球;以及接合步驟,向形成於半導體晶片上之金屬製電極焊墊,藉由上述焊針按壓上述金屬球並且使其進行超聲波振動,藉此將上述金屬球接合於上述電極焊墊;並且於上述接合步驟中,藉由上述焊針,對上述金屬球於按壓初期瞬間施加相對較大之荷重,其後施加相對較小之荷重。
又,(3)之發明係一種半導體裝置,其包括:半導體晶片;金屬製電極焊墊,其形成於上述半導體晶片上;以及接線,其包含呈線狀延伸之本體部、以及形成於上述本體部之一端且接合於上述電極焊墊之接合部;並且上述接線包含銅,於該接合時自上述電極焊墊中之與上述接合部之接合區域凸出之上述電極焊墊之材料之凸出部分係與上述電極焊墊之表面相接觸。
根據(1)之打線接合方法,於含銅之接線之前端部形成有金屬球後,向電極焊墊按壓金屬球並且使其進行超聲波振動,藉此將金屬球接合於電極焊墊。
於金屬球之接合時,並非對金屬球同時施加一定之荷重及超聲波,而係施加超聲波,並且於按壓初期施加相對較大之荷重,其後施加相對較小之荷重。
根據此種打線接合方法,於金屬球之按壓初期,藉由瞬間施加之相對較大之荷重,可使金屬球有效變形。
另一方面,於按壓初期後,施加至金屬球之荷重相對較小,故而藉由與相對較小之荷重一併施加之超聲波,能夠以優異之強度將接 線接合於電極焊墊。
然而,於較金更硬而難以變形之銅導線之1st接合形成時,若使荷重及超聲波較金導線之條件更大,則存在產生所謂過度濺鍍之情況,即,被金屬球壓展開之焊墊材料自電極焊墊之表面浮起而向外側大幅凸出。又,對電極焊墊之正下方施加較大之負荷,其結果為,有可能於半導體晶片本體中產生龜裂。
然而,於(1)之方法中,因於按壓初期後荷重縮小,故而可抑制因施加有超聲波之金屬球所引起之電極焊墊之壓展。因此,可抑制電極焊墊中產生過度濺鍍。又,因對電極焊墊施加相對較大之荷重之期間僅為按壓初期,故而可抑制對電極焊墊之正下方施加較大負荷。其結果為,可抑制半導體晶片中產生龜裂。
並且,於利用此方法所製作之半導體裝置中,例如如(3)之半導體裝置般,可使於接線之接合時自電極焊墊之接合區域凸出之焊墊材料之凸出部分與電極焊墊之表面相接觸,而不會自電極焊墊之表面浮起。
又,(4)之發明係如(3)之半導體裝置,其中上述電極焊墊包括含鋁之金屬材料。如(4)之半導體裝置般,於電極焊墊包括含鋁之金屬材料之半導體裝置中,於使用銅導線之情形時,容易產生過度濺鍍。然而,於此種半導體裝置中,若利用上述打線接合方法,亦可有效抑制過度濺鍍。
又,(2)之發明係如(1)之打線接合方法,其中於上述接合步驟中,於上述金屬球與上述電極焊墊相接觸後之第1時間,施加相對較大之荷重,其後,於較上述第1時間更長之第2時間,施加相對較小之荷重。
於此方法中,與對金屬球施加相對較大之荷重之第1時間相比,使施加相對較小之荷重之第2時間延長,藉此可提高接線與電極焊墊 之接合強度。
<根據第5實施形態之揭示所應掌握之特徵>
例如,根據第5實施形態之揭示,可掌握下述(1)至(4)之發明。
(1)之發明係一種半導體裝置,其包括:半導體基板;佈線,其形成於上述半導體基板上;絕緣層,其被覆上述佈線;障壁層,其形成於上述絕緣層上;電極焊墊,其於上述障壁層上形成於與上述佈線之一部分相對向之位置;以及接線,其包含銅且接合於上述電極焊墊;並且於俯視時,與上述接線和上述電極焊墊之接合區域重合之上述佈線的面積為上述接合區域之面積之26.8%以下。
於俯視時,與接合區域重合之佈線之面積(佈線之重合面積)為接合區域之面積之26.8%以下,故而電極焊墊正下方之障壁層與佈線之對向面積相對縮小。因此,例如於接線與電極焊墊之接合時,即使障壁層按壓至佈線側,亦難以產生因該按壓所引起之佈線及絕緣層之變形,可防止由此類變形所引起之朝向障壁層之應力集中。其結果為,可防止障壁層中之龜裂產生,因此可提高半導體裝置之可靠性。
又,(2)之發明係如(1)之半導體裝置,其中上述絕緣層包括第1層間絕緣膜、以及積層於上述第1層間絕緣膜上之第2層間絕緣膜,上述佈線由上述第1層間絕緣膜所被覆。
亦即,絕緣層亦可包括第1層間絕緣膜、以及積層於第1層間絕緣膜上之第2層間絕緣膜,於此情形時,佈線由第1層間絕緣膜所被覆,於第1層間絕緣膜與第2層間絕緣膜之間亦可不存在其他佈線。
又,(3)之發明係如(1)之半導體裝置,其中進一步包括積層於上述半導體基板上之下側層間絕緣膜、以及積層於上述下側層間絕緣膜上之上側層間絕緣膜,上述佈線形成於上述上側層間絕緣膜與上述絕緣層之間。
亦即,半導體裝置亦可進一步包括積層於半導體基板上之下側 層間絕緣膜、以及積層於下側層間絕緣膜上之上側層間絕緣膜,於此情形時,佈線形成於上側層間絕緣膜與絕緣層之間,於上側層間絕緣膜與下側層間絕緣膜之間亦可不存在其他佈線。
又,(4)之發明係如(1)至(3)中任一項之半導體裝置,其中上述佈線彼此空開間隔而設置有複數條,上述電極焊墊係與至少一條上述佈線以及夾於上述絕緣層中之上述佈線之間的部分相對向。
亦即,佈線亦可彼此空開間隔而設置有複數條,於此情形時,較佳為電極焊墊係與至少一條佈線以及夾於絕緣層中之佈線之間的部分相對向。
於佈線彼此空開間隔而設置有複數條之構成中,複數條佈線之重合面積係各佈線之重合面積之合計,該合計為接合區域之面積之26.8%以下。因此,各佈線之重合面積均小於接合區域之面積之26.8%。
並且,電極焊墊係與至少一條佈線以及夾於絕緣層中之佈線之間的部分相對向。藉此,各者之重合面積均小於接合區域之面積之26.8%之複數條佈線,相對於電極焊墊中之接合區域分散地對向。因此,於將障壁層按壓至佈線側時,可將因該按壓所引起之佈線及絕緣層之變形量抑制得較小。其結果為,可抑制應力集中至障壁層中之特定部位。因此,可進一步防止障壁層中產生龜裂。
<根據第6實施形態之揭示所應掌握之特徵>
例如,根據第6實施形態之揭示,可掌握下述(1)至(4)之發明。
(1)之發明係一種半導體裝置之製造方法,其係於複數個接合對象物連接接線而製造半導體裝置之方法,其包含:球體形成步驟,對由焊針所保持之含銅之接線之前端部賦予放電能量,藉此使上述前端部熔融而形成金屬球;接合步驟,將上述金屬球接合於包含金屬材料之上述接合對象物;以及切斷步驟,將自上述金屬球延伸之上述接 線,自上述焊針割斷;並且於依序重複複數次上述球體形成步驟、上述接合步驟及上述切斷步驟而將上述接線依序連接於各上述接合對象物之情形時,使第1週期中之上述球體形成步驟時之第1放電能量高於第2週期以後之上述球體形成步驟時之第2放電能量。
使第1週期之球體形成步驟時賦予至接線之第1放電能量高於第2週期以後之球體形成步驟時賦予至接線之第2放電能量。因此,可於第1週期中,使接線周圍之溫度環境穩定化。其結果為,可於第1週期中形成相對較大之金屬球。
因此,藉由適當調整第1放電能量,可使第1週期之金屬球之大小與第2週期以後之金屬球之大小大致相同。其結果為,可通過所有週期,抑制金屬球之大小之偏差。
又,由於以一連串步驟執行球體形成步驟、接合步驟及切斷步驟,因此所製作之金屬球無需暫時放置,便迅速接合於接合對象物。因此,可抑制金屬球之氧化,因此可抑制接線與接合對象物之連接不良。
又,(2)之發明係如(1)之半導體裝置之製造方法,其中將上述第1放電能量設為上述第2放電能量之105~115%。亦即,於上述半導體裝置之製造方法中,宜將上述第1放電能量設為上述第2放電能量之105~115%。只要第1放電能量為上述範圍內,即可進一步抑制金屬球之大小之偏差。
並且,藉由上述半導體裝置之製造方法,例如可製造(3)之半導體裝置。亦即,(3)之發明係一種半導體裝置,其包括:半導體晶片;複數個電極焊墊,其形成於上述半導體晶片上;以及複數條接線,其包含銅,於複數個上述電極焊墊之各者各連接1條,且包含接合於上述電極焊墊之焊墊接合部;並且各上述接合部分之體積相對於所有上述接線之上述接合部分之體積之平均的偏差為±15%以內。
又,(4)之發明係如(3)之半導體裝置,其中各上述接合部分之體積相對於所有上述接線之上述接合部分之體積之平均的偏差為±10%以內。亦即,於該半導體裝置中,較佳為各接合部分之體積相對於所有接線之接合部分之體積之平均的偏差為±10%以內。
<根據第7實施形態之揭示所應掌握之特徵>
例如,根據第7實施形態之揭示,可掌握下述(1)至(5)之發明。
(1)之發明係一種打線接合方法,其包含如下步驟:於由焊針所保持之銅導線之前端形成FAB;使上述焊針接近於形成於半導體晶片之表面上之焊墊,而使上述FAB抵接至上述焊墊;於上述FAB抵接至上述焊墊後,藉由上述焊針對上述FAB施加荷重;以及,對設置於上述焊針之超聲波振動子施加驅動電流。
於該打線接合方法中,於形成於銅導線之前端之FAB抵接至焊墊後,藉由焊針對FAB施加荷重。又,與對FAB施加有荷重之期間一部分重複,而對設置於焊針之超聲波振動子施加驅動電流。因此,藉由荷重,FAB產生變形,並且藉由自超聲波振動子傳輸之超聲波振動,FAB與焊墊發生摩擦。其結果為,實現FAB與焊墊之接合。
繼而,於使用瓶頸型焊針作為焊針之情形時,將施加至超聲波振動子之驅動電流值設定於使用標準型焊針作為焊針之情形時之驅動電流值的1.3倍以上1.5倍以下之範圍內。具體而言,亦可如下述(2)之發明般,設定為驅動電流值之1.4倍。
亦即,(2)之發明係如(1)之打線接合方法,其中將使用瓶頸型焊針作為上述焊針之情形時之上述驅動電流值設定為使用標準型焊針作為上述焊針之情形時之上述驅動電流值之1.4倍。
藉此,即使打線接合時所使用之焊針自標準型焊針變更為瓶頸型焊針,亦可簡單地設定施加至FAB之荷重及設置於焊針之超聲波振動子之驅動電流之大小,從而可實現銅導線與焊墊之良好接合。
又,(3)之發明係如(1)或(2)之打線接合方法,其中施加至上述超聲波振動子之驅動電流值係於上述FAB抵接至上述焊墊後,遞增至特定值。
如(3)之打線接合方法般,於FAB抵接至焊墊後,施加至超聲波振動子之驅動電流值遞增,另一方面,藉由對FAB施加荷重,FAB以壓碎之方式變形,使得FAB與焊墊之抵接部分之面積遞增。藉此,自超聲波振動子傳輸至FAB之超聲波振動之能量遞增,並且與焊墊發生摩擦之FAB之面積遞增。其結果為,可抑制於接合完成後之FAB(第1球體部)之中央部之下方,焊墊及焊墊之下層中產生因傳輸至FAB之超聲波振動之能量劇增所引起之損傷,並且可獲得甚至第1球體部之與焊墊之接合面的周緣部均良好地接合於焊墊之狀態。
又,(4)之發明係如(3)之打線接合方法,其中施加至上述超聲波振動子之驅動電流值係於上述FAB抵接至上述焊墊後,以一定之變化率增加至上述特定值。
又,(5)之發明係如(1)至(4)中任一項之打線接合方法,其中自上述FAB抵接至上述焊墊之前起,對上述超聲波振動子施加驅動電流。
於此情形時,自FAB抵接至焊墊之瞬間起,超聲波振動傳輸至FAB與焊墊之抵接部分,該抵接部分與焊墊發生摩擦。其結果為,可獲得第1球體部之與焊墊之接合面之中央部(FAB與焊墊第一次抵接之部分)良好地接合於焊墊之狀態。
<根據第8實施形態之揭示所應掌握之特徵>
例如,根據第8實施形態之揭示,可掌握下述(1)至(6)之發明。
(1)之發明係一種半導體裝置,其包括:半導體晶片,其於表面設置有焊墊;以及銅導線,其一端連接於上述焊墊,且至少與該焊墊之接合部中含有Zn(鋅)。
於銅導線中,至少與半導體晶片之焊墊之接合部(以下,於此項 中稱作「焊墊接合部」)中含有Zn。換言之,銅導線之焊墊接合部包含Cu與Zn之合金(黃銅)。因此,焊墊接合部難以氧化。因此,可防止產生因氧化所引起之焊墊接合部自焊墊之剝落。
又,(2)之發明係如(1)之半導體裝置,其中上述焊墊至少於表層部具有含有Zn之Zn層。又,(3)之發明係如(2)之半導體裝置,其中上述焊墊包含上述Zn層之單一層。又,(4)之發明係如(2)之半導體裝置,其中上述焊墊進一步包括含有Al之Al層,上述Zn層形成於上述Al層上。
亦即,焊墊只要至少於表層部具有含有Zn之Zn層,則既可由該Zn層之單一層構成,亦可為含有Al之Al層與Zn層之積層體。
但是,於焊墊包含Al層及Zn層之情形時,當彼等直接接觸時,Al與Zn會進行共晶鍵結。Al之熔點為660℃,Zn之熔點為419℃,與此相對,Al與Zn進行共晶鍵結而成之Zn-Al合金之熔點較低,例如78Zn-22Al合金之熔點為275℃。因此,當焊墊包含Zn-Al合金時,於熱處理時有焊墊發生熔融之虞。
因此,(5)之發明係如(4)之半導體裝置,其進一步包括障壁膜,其介插於上述Al層與上述Zn層之間且具有自上述Al層側起依序積層有含有Ti之Ti層及含有TiN之TiN層而成之結構。
藉由介插障壁膜,可防止Al層中所含之Al與Zn層中所含之Zn之共晶鍵結。
又,(6)之發明係如(1)至(5)中任一項之半導體裝置,其中整個上述銅導線中含有Zn。
亦即,銅導線可為包含純銅之導線,亦可為包含黃銅之導線。只要銅導線為包含黃銅之導線,則即使焊墊不包含Zn層,焊墊接合部包含黃銅,從而亦可防止產生焊墊接合部之因氧化所引起之自焊墊之剝落。
<根據第9實施形態之揭示所應掌握之特徵>
例如,根據第9實施形態之揭示,可掌握下述(1)至(7)之發明。
(1)之發明係一種半導體裝置,其包括:半導體晶片;晶片焊墊,其用以接合上述半導體晶片;引線,其配置於上述晶片焊墊之周圍;接線,其包含金屬材料,且跨越上述半導體晶片與上述引線而設置,電性連接上述半導體晶片與上述引線;以及非電性連接構件,其包含金屬材料且無助於上述半導體晶片與上述晶片焊墊及上述引線之電性連接。
於該半導體裝置中,於接合於晶片焊墊之半導體晶片與配置於晶片焊墊之周圍之引線之間,架設有包含金屬材料之接線。藉由該接線,電性連接半導體晶片與引線。又,於半導體裝置中,設置有無助於半導體晶片與晶片焊墊及引線之電性連接之非電性連接構件。非電性連接構件包含金屬材料。
於半導體裝置之工作時,來自半導體晶片之發熱傳遞至晶片焊墊、引線及非電性連接構件。並且,所傳遞之熱係於將彼等統一密封之密封樹脂中傳播,並自該密封樹脂之表面釋放(散熱)。因此,藉由設置有非電性連接構件,與未設置有非電性連接構件之構成相比,可提高對密封樹脂之熱傳遞效率,從而可提高半導體裝置之散熱性。
又,非電性連接構件不幫助半導體晶片與晶片焊墊及引線之電性連接。因此,不必考慮非電性連接構件彼此之接觸,其配置不受制約,故而可物理上儘可能稠密地配置非電性連接構件。其結果為,可進一步提高半導體裝置之散熱性。
又,(2)之發明係如(1)之半導體裝置,其中上述非電性連接構件包含其兩端部接合於上述晶片焊墊或上述引線中之任一者之環狀金屬導線。
於非電性連接構件為環狀金屬導線之情形時,可使用打線接合 機形成非電性連接構件。因此,可避免追加用以形成非電性連接構件之裝置。又,不必考慮金屬導線彼此之接觸,即可配置非電性連接構件,因此可使用打線接合機以儘可能形成之較小間隔形成非電性連接構件。
又,(3)之發明係如(1)或(2)之半導體裝置,其中上述非電性連接構件包含配置於上述晶片焊墊或上述引線中之任一者上之柱形凸塊。
於非電性連接構件為柱形凸塊之情形時,可使用打線接合機形成非電性連接構件。因此,可避免追加用以形成非電性連接構件之裝置。又,不必考慮柱形凸塊彼此之接觸即可配置非電性連接構件,因此可使用打線接合機以儘可能形成之較小間隔形成非電性連接構件。
此外,非電性連接構件亦可為將環狀金屬導線與柱形凸塊加以組合者。於此情形時,由於可於金屬導線之迴路部分之間隙配置柱形凸塊,因此可進一步提高非電性連接構件之配置密度,從而可進一步提昇半導體裝置之散熱性。
又,(4)之發明係如(3)之半導體裝置,其中上述柱形凸塊係重疊設置有複數個。
藉此,可按照半導體裝置內之死區而變更柱形凸塊之高度,因此可進一步擴大非電性連接構件之表面積。其結果為,可進一步提高半導體裝置之散熱性。
又,(5)之發明係如(1)至(4)中任一項之半導體裝置,其中上述非電性連接構件包含銅。因銅之價格便宜,故而可降低非電性連接構件之材料成本。又,由於銅之導熱率較高,因此可提高半導體裝置之散熱量。
又,(6)之發明係如(5)之半導體裝置,其中對上述晶片焊墊及/或上述引線中上述非電性連接構件之接合部分實施有鍍銀。
又,(7)之發明係如(1)至(6)中任一項之半導體裝置,其中上述接 線包含銅。亦即,接線宜包含銅。因銅之價格便宜,故而可降低接線之材料成本。又,由於銅之導電率較高,因此可降低於半導體晶片與引線間之電阻。
<根據第10實施形態之揭示所應掌握之特徵>
例如,根據第10實施形態之揭示,可掌握下述(1)至(6)之發明。
(1)之發明係一種半導體裝置,其包括:半導體晶片;島狀物,其與上述半導體晶片之背面相對向而配置;絕緣性之接合材料,其介插於上述島狀物與上述半導體晶片之背面之間;引線,其於上述島狀物之側方,與上述島狀物相隔而配置;表面導線,其架設於形成於上述半導體晶片之表面的焊墊與上述引線之間,將上述焊墊與上述引線電性連接;以及背面導線,其架設於上述半導體晶片之背面與上述島狀物之間,將上述半導體晶片之背面與上述島狀物電性連接。
於該半導體裝置中,半導體晶片係將其背面經由絕緣性之接合材料而接合於島狀物。於島狀物之側方,與島狀物相隔而配置引線。於形成於半導體晶片之表面的焊墊與引線之間,架設有表面導線。藉此,焊墊與引線電性連接。
又,於半導體晶片之背面與島狀物之間,架設有將半導體晶片與島狀物電性連接之背面導線。藉此,即使接合材料為絕緣性,亦可經由背面導線而電性連接半導體晶片之背面與島狀物。亦即,即便使用除焊錫以外之接合材料,亦可不管該接合材料之電性特性如何,而實現半導體晶片之背面與島狀物之電性連接。
又,(2)之發明係如(1)之半導體裝置,其中上述背面導線包含銅。亦即,背面導線宜包含銅。因銅之價格較廣泛用作導線之材料之金更便宜,故而可降低背面導線之材料成本。又,由於銅之導電率較高,因此可降低於半導體晶片與島狀物間之電阻。又,因含銅之背面導線之散熱性良好,故而自散熱性之觀點而言,有效的是設置多條含 銅之背面導線。
又,(3)之發明係如(1)或(2)之半導體裝置,其中上述表面導線及上述背面導線包含相同之材料。亦即,表面導線及背面導線宜包含相同之材料。若表面導線及背面導線為相同之材料,則可不變更安放於打線接合機之材料,而藉由該打線接合機形成表面導線及背面導線。因此,可簡化半導體裝置之製造步驟。
又,(4)之發明係如(1)至(3)中任一項之半導體裝置,其中於上述島狀物中,沿其厚度方向貫通而形成有貫通孔,上述背面導線係穿過上述貫通孔而架設於上述半導體晶片之背面與上述島狀物之間。
藉此,半導體晶片之背面自貫通孔露出,於該所露出之部分連接背面導線,藉此可實現半導體晶片之背面與島狀物之電性連接。於此情形時,島狀物中之與半導體晶片之背面相對向之部分的面積必然小於半導體晶片之背面的面積,只要僅於半導體晶片與島狀物之對向部分介插有絕緣性之接合材料即可,因此可降低接合材料之使用量。其結果為,可降低半導體裝置之材料成本。
又,(5)之發明係如(1)至(4)中任一項之半導體裝置,其中上述背面導線設置有複數條。藉此,可提高半導體晶片與島狀物之電性連接之確實性。
又,(6)之發明係如(1)至(5)中任一項之半導體裝置,其中上述島狀物中之與上述半導體晶片之背面相對向之部分的面積小於上述半導體晶片之背面的面積。
<根據第11實施形態之揭示所應掌握之特徵>
例如,根據第11實施形態之揭示,可掌握下述(1)至(7)之發明。
(1)之發明係一種半導體裝置,其包括:引線框架;半導體晶片,其接合於上述引線框架;接合材料,其介插於上述引線框架與上述半導體晶片之間且包含Bi系材料;以及間隔件,其包含Cu且設置於 上述引線框架中之與上述半導體晶片相對向之面上。
根據該構成,用以接合引線框架與半導體晶片之接合材料包含Bi系材料,因此可實現接合材料之無鉛化。
又,因於引線框架與半導體晶片之間設置有間隔件,故而可將引線框架與半導體晶片之距離至少維持於間隔件之高度。因此,藉由適當地調節間隔件之高度,可使具有足夠厚度之接合材料介插於引線框架與半導體晶片之間。其結果為,即使於接合材料中產生因引線框架之翹曲所引起之應力,亦可充分緩和該應力。因此,可降低半導體晶片之翹曲量。因此,可防止半導體晶片中產生龜裂。又,由於無需擴大半導體晶片及引線框架之厚度,因此半導體裝置之封裝體本體亦不會大型化。
此外,由於間隔件包含Cu,且Cu之導熱率(約398W/m‧K)與Bi之導熱率(約9W/m‧K)相比非常大,因此可提高引線框架與半導體晶片間之導熱性。因此,可使半導體晶片中所產生之熱經由Cu間隔件而散出至引線框架。因此,可充分確保半導體晶片之散熱性。
又,於間隔件包含Au、Ag、Ni等金屬元素等之情形時,有可能接合材料中之Bi與間隔件發生反應而與上述金屬元素形成化合物,或者形成共晶組成。並且,Bi與上述金屬元素之金屬間化合物硬而脆,故而於半導體裝置之溫度週期測試(TCY測試)時,有可能成為破壞之起點。又,Bi與上述金屬元素之共晶組合物之熔點低於Bi單體之熔點。例如,Bi單體之熔點約為271℃,與此相對,Bi與Au之共晶組合物之熔點約為241℃,Bi與Ag之共晶組合物之熔點約為262℃。因此,於安裝半導體裝置時之回焊(峰值溫度約為260℃)時,有可能導致接合材料再熔融。
與此相對,由於Cu幾乎不與Bi發生反應,因此於間隔件包含Cu之該半導體裝置中,可抑制接合材料之熔點下降或耐溫度週期性下 降。
又,(2)之發明係如(1)之半導體裝置,其中上述引線框架包含Cu。
作為引線框架之材料,除(2)之Cu以外,已知有例如42合金(Fe-42% Ni)等Fe系原材料。42合金之熱膨脹係數約為4.4~7.0×10-6/℃。含有42合金之引線框架中,熱膨脹量小於含有Cu(熱膨脹係數約為16.7×10-6/℃)之引線框架之熱膨脹量,由此有可能可縮小引線框架之翹曲量。然而,於使用42合金之情形時,較使用Cu之情形時更耗費成本,且散熱性下降。
與此相對,於上述半導體裝置中,即使於引線框架含有Cu之情形時,亦可藉由接合材料充分緩和因引線框架之翹曲所引起之應力。因此,可毫無問題地使用Cu作為引線框架之材料,從而可維持成本或散熱性。
再者,用作引線框架之材料之Cu係主要含有Cu之Cu系原材料,包含例如純度99.9999%(6N)以上、純度99.99%(4N)以上之高純度銅,Cu與異種金屬之合金(例如,Cu-Fe-P合金等)等。
又,(3)之發明係如(1)或(2)之半導體裝置,其中上述半導體晶片包含Si基板,上述Si基板支持於上述間隔件。
於該構成中,由於Si基板支持於間隔件,因此使Si基板與引線框架可經由間隔件進行熱交換地連接。因此,於引線框架進行熱膨脹時,引線框架之熱傳遞至Si基板。因此,於安裝半導體裝置時之回焊時,可藉由自引線框架所傳遞之熱而使Si基板進行熱膨脹。其結果為,可縮小引線框架之熱膨脹量與Si基板之熱膨脹量之差,因此可降低Si基板之翹曲量。
又,(4)之發明係如(1)至(3)中任一項之半導體裝置,其中於上述半導體晶片中之與上述引線框架之對向面形成有Cu層。
於該構成中,於半導體裝置中,接合材料係接合於Cu層。如上所述,由於Cu幾乎不與Bi發生反應,因此可抑制接合材料之熔點下降或耐溫度週期性之下降。又,於半導體晶片與間隔件相接觸之情形時,該接觸成為Cu層與Cu間隔件之同種金屬彼此之接觸,因此可降低因半導體晶片與間隔件之接觸所帶來之影響(例如,Cu間隔件之高電阻化、Cu間隔件之侵蝕等)。
又,(5)之發明係如(1)至(4)中任一項之半導體裝置,其中上述接合材料含有Sn或Zn。
於該構成中,由於接合材料含有Sn或Zn,因此可提高相對於引線框架及半導體晶片之接合材料之潤濕性。
例如,如上所述,於半導體晶片中之與引線框架之對向面形成有Cu層之情形時,可於接合材料中之與Cu層之界面附近形成包含Cu-Sn合金或Cu-Zn合金之部分。因此,藉由該合金部分,可提高半導體晶片與接合材料之接合強度。
又,Sn之導熱率約為73W/m‧K,Zn之導熱率約為120W/m‧K,均高於Bi之導熱率(約9W/m‧K)。因此,與接合材料僅含有Bi之情形時相比,可提高接合材料之導熱率。其結果為,可進一步提高半導體晶片之散熱性。
又,(6)之發明係如(1)至(5)中任一項之半導體裝置,其中上述間隔件係藉由打線接合法而形成。
於該構成中,於將間隔件形成於引線框架上時,係利用自先前以來有實績之打線接合法。因此,可簡單地形成間隔件。利用打線接合法所形成之間隔件例如為柱形凸塊、配線等。
又,(7)之發明係如(1)至(6)中任一項之半導體裝置,其中上述間隔件設置有3個以上。
於該構成中,由於設置有3個以上之間隔件,因此可由至少3點 支持著半導體晶片。藉此,能以相對於引線框架之表面不傾斜之方式,使半導體晶片於間隔件上穩定。因此,可將引線框架與半導體晶片之距離設為大致均等之大小。其結果為,引線框架與半導體晶片之對向方向(縱向)上之接合材料之線膨脹係數變得均勻,故而可抑制接合材料中之應力不均,從而可整體性地緩和應力。又,由於可利用3個以上之Cu間隔件來釋放半導體晶片中所產生之熱,因此可進一步提高半導體晶片之散熱性。
<根據第12實施形態之揭示所應掌握之特徵>
例如,根據第12實施形態之揭示,可掌握下述(1)至(7)之發明。
(1)之發明係一種打線接合方法,其包含如下步驟:於由焊針所保持之銅導線之前端形成FAB;使上述焊針接近於形成於半導體晶片之表面上之焊墊,而使上述FAB抵接至上述焊墊;於上述FAB抵接至上述焊墊後,藉由上述焊針對上述FAB施加相對較大之初始荷重,並於自上述FAB抵接至上述焊墊起經過特定時間後,藉由上述焊針對上述FAB施加相對較小之荷重;以及,自上述FAB抵接至上述焊墊之前起,對設置於上述焊針之超聲波振動子施加驅動電流,並於上述FAB抵接至上述焊墊後,使施加至上述超聲波振動子之驅動電流值遞增至特定值。
於該打線接合方法中,於形成於銅導線之前端之FAB抵接至焊墊後,藉由焊針對FAB施加相對較大之初始荷重。藉此,包含較Au更硬之金屬即Cu之FAB良好地變形,因此可使施加至FAB之初始荷重藉由FAB之變形而適當地衰減,並且使其有助於FAB與焊墊之接合。
又,由於自FAB抵接至焊墊之前起,設置於焊針之超聲波振動子進行振盪,因此自FAB抵接至焊墊之瞬間起,超聲波振動傳輸至FAB與焊墊之抵接部分,該抵接部分與焊墊發生摩擦。其結果為,可獲得接合完成後之FAB(第1球體部)之與焊墊之接合面之中央部(FAB與焊 墊第一次抵接之部分)良好地接合於焊墊之狀態。
於FAB抵接至焊墊後,施加至超聲波振動子之驅動電流值遞增。另一方面,FAB以壓碎之方式變形,使得FAB與焊墊之抵接部分之面積遞增。藉此,自超聲波振動子傳輸至FAB之超聲波振動之能量遞增,並且與焊墊發生摩擦之FAB之面積遞增。其結果為,可抑制於第1球體部之中央部之下方,焊墊及焊墊之下層中產生因傳輸至FAB之超聲波振動之能量劇增所引起之龜裂等損傷,並且可獲得甚至第1球體部之與焊墊之接合面之周緣部均良好地接合於焊墊之狀態。
當自包含Cu之FAB抵接至焊墊起經過特定時間時,因將FAB按壓至焊墊所引起之FAB之變形結束。亦即,當自包含Cu之FAB抵接至焊墊起經過特定時間時,第1球體部之形狀完成。因此,當此後對FAB持續施加較大荷重時,無法將超聲波振動良好地傳輸至FAB與焊墊之抵接部分,因此自FAB抵接至焊墊起經過特定時間後,施加至FAB之荷重下降。藉此,可使超聲波振動良好地傳輸至FAB(第1球體部)與焊墊之抵接部分。
因此,根據(1)之發明之打線接合方法,既可防止焊墊及焊墊之下層中產生損傷,又可藉由超聲波振動,獲得銅導線與焊墊之良好接合,亦即第1球體部之與焊墊之接合面之整個區域與焊墊良好地接合之狀態。
又,(2)之發明係如(1)之打線接合方法,其中施加至上述超聲波振動子之驅動電流值係於上述FAB抵接至上述焊墊後,以一定之變化率增加至上述特定值。又,(3)之發明係如(2)之打線接合方法,其中上述變化率為21mA/msec以下。
亦即,施加至超聲波振動子之驅動電流值亦可於FAB抵接至焊墊後,以一定之變化率增加至特定值。於此情形時,變化率宜為21mA/msec以下。只要變化率為21mA/msec以下,即可有效防止焊墊及 焊墊之下層中產生因傳輸至FAB之超聲波振動之能量劇增所引起之損傷。
再者,作為FAB接合於焊墊之方法,可考慮於FAB抵接至焊墊後,對FAB持續施加一定之荷重,並且對超聲波振動子持續施加一定之驅動電流。然而,於該方法中,無論如何設定施加至FAB之荷重之大小及施加至超聲波振動子之驅動電流值,均無法將FAB充分地接合於焊墊,或者會產生所謂濺鍍,即焊墊之材料呈較薄之凸緣狀向FAB(第1球體部)之側方大幅地凸出。
於(1)之發明之打線接合方法中,藉由適當地設定自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值及初始荷重之大小,可防止該濺鍍產生。
又,(4)之發明係如(1)至(3)中任一項之打線接合方法,其中自上述FAB抵接至上述焊墊之前起施加至上述超聲波振動子之上述驅動電流值小於30mA。
亦即,自FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值宜為小於30mA。藉此,可防止FAB抵接至焊墊後隨即傳輸至FAB之超聲波振動之能量變得過大。其結果為,可良好地防止濺鍍產生、以及於第1球體部之中央部之下方的焊墊及焊墊之下層之損傷產生。
又,(5)之發明係如(1)至(4)中任一項之打線接合方法,其中上述初始荷重之大小係根據相對於上述焊墊之接合完成後之上述FAB之目標接合面積乘以一定之係數所得之值而設定。
由於不管銅導線之線徑如何,初始荷重與相對於焊墊之第1球體部之接合面積(第1球體部與焊墊之接合面積)之間均存在大致比例關係,因此初始荷重之大小宜根據相對於焊墊之第1球體部之目標接合面積乘以一定之係數所得之值而設定。藉此,不管銅導線之線徑如何,均可適當地設定初始荷重之大小。其結果為,可良好地防止濺鍍 產生、以及於第1球體部之中央部之下方的焊墊及焊墊之下層之損傷產生,並且可實現FAB之良好變形,從而可獲得第1球體部之與焊墊之接合面之中央部良好地接合於焊墊之狀態。
FAB之變形係不管初始荷重之大小以及第1球體部之目標直徑及厚度如何,自FAB抵接至焊墊起未滿2msec內均不會完成。另一方面,當自FAB抵接至焊墊起超過4msec時,FAB之變形確實完成,故而即使此後對FAB持續施加相對較大之荷重,亦無意義。因此,對FAB施加初始荷重之期間,宜設定於自FAB抵接至焊墊起2msec以上4msec以下之範圍內。若藉由普遍用作初始荷重之荷重之大小,FAB之變形會於3msec內完成,因此更佳為於自FAB抵接至焊墊起經過3msec之時點,使施加至FAB之荷重下降。
又,(6)之發明係如(1)至(5)中任一項之打線接合方法,其中上述特定時間內施加至上述超聲波振動子之驅動電流之積分值小於165mA‧msec。藉此,由於自FAB抵接至焊墊起之特定時間內對FAB傳輸適當能量之超聲波振動,因此可防止於第1球體部之中央部之下方,焊墊及焊墊之下層中產生損傷,並且可獲得甚至第1球體部之與焊墊之接合面之周緣部均良好地接合於焊墊之狀態。
又,(7)之發明係如(1)至(6)中任一項之打線接合方法,其中將上述特定值除以接合完成後之上述FAB之目標接合面積所得之值為0.0197mA/μm2以下。只要如此設定,即可防止於FAB之變形結束後傳輸至FAB之超聲波振動之能量變得過大,從而可良好地防止於第1球體部之周緣部之下方,焊墊及焊墊之下層中產生損傷。
<根據第13實施形態之揭示所應掌握之特徵>
例如,根據第13實施形態之揭示,可掌握下述(1)至(6)之發明。
(1)之發明係一種打線接合方法,其包含如下步驟:於由焊針所保持之銅導線之前端形成FAB;使上述焊針接近於形成於半導體晶片 之表面上之焊墊,而使上述FAB抵接至上述焊墊;於上述FAB抵接至上述焊墊後,藉由上述焊針對上述FAB施加相對較大之初始荷重,並於上述FAB抵接至上述焊墊起經過特定時間後,藉由上述焊針對上述FAB施加相對較小之荷重;以及,對設置於上述焊針之超聲波振動子施加驅動電流。
於該打線接合方法中,於形成於銅導線之前端之FAB抵接至焊墊後,藉由焊針對FAB施加相對較大之初始荷重。藉此,包含較Au更硬之金屬即Cu之FAB良好地變形,因此可使施加至FAB之初始荷重藉由FAB之變形而適當地衰減,並且使其有助於FAB與焊墊之接合。
又,由於對設置於焊針之超聲波振動子施加驅動電流,因此超聲波振動自超聲波振動子傳輸至FAB,由於該超聲波振動,使得FAB與焊墊發生摩擦。施加至超聲波振動子之驅動電流係以自FAB抵接至焊墊起之特定時間內之驅動電流之積分值成為小於162mA‧msec之方式加以控制。藉此,於自FAB抵接至焊墊起之特定時間內對FAB傳輸適當能量之超聲波振動。其結果為,既可防止焊墊及焊墊之下層中產生因超聲波振動之過剩能量所引起之龜裂等損傷,又可藉由超聲波振動使FAB與焊墊良好地接合。
當自包含Cu之FAB抵接至焊墊起經過特定時間時,因FAB按壓至焊墊所引起之FAB之變形結束。亦即,當自包含Cu之FAB抵接至焊墊起經過特定時間時,接合完成後之FAB(第1球體部)之形狀完成。因此,當此後對FAB持續施加較大荷重時,超聲波振動不會良好地傳輸至FAB與焊墊之抵接部分,故而自FAB抵接至焊墊起經過特定時間後,施加至FAB之荷重下降。藉此,可使超聲波振動良好地傳輸至FAB(第1球體部)與焊墊之抵接部分。
因此,根據(1)之打線接合方法,既可防止焊墊及焊墊之下層中產生損傷,又可藉由超聲波振動,獲得銅導線與焊墊之良好接合。
又,(2)之發明係如(1)之打線接合方法,其中施加至上述超聲波振動子之驅動電流值係於上述FAB抵接至上述焊墊後,遞增至特定值。亦即,宜於FAB抵接至焊墊後,施加至超聲波振動子之驅動電流值遞增。另一方面,藉由對FAB施加初始荷重,FAB以壓碎之方式變形,使得FAB與焊墊之抵接部分之面積遞增。藉此,自超聲波振動子傳輸至FAB之超聲波振動之能量遞增,並且與焊墊發生摩擦之FAB之面積遞增。其結果為,可抑制於第1球體部之中央部之下方,焊墊及焊墊之下層中產生因傳輸至FAB之超聲波振動之能量劇增所引起之損傷,並且可獲得甚至第1球體部之與焊墊之接合面之周緣部均良好地接合於焊墊之狀態。
又,(3)之發明係如(2)之打線接合方法,其中施加至上述超聲波振動子之驅動電流值係於上述FAB抵接至上述焊墊後,以一定之變化率增加至上述特定值。亦即,施加至超聲波振動子之驅動電流值亦可於FAB抵接至焊墊後,以一定之變化率增加至特定值。
又,(4)之發明係如(1)至(3)中任一項之打線接合方法,其中於自上述FAB抵接至上述焊墊之前起,對上述超聲波振動子施加驅動電流。於此情形時,自FAB抵接至焊墊之瞬間起,超聲波振動傳輸至FAB與焊墊之抵接部分,該抵接部分與焊墊發生摩擦。其結果為,可獲得第1球體部之與焊墊之接合面之中央部(FAB與焊墊第一次抵接之部分)良好地接合於焊墊之狀態。
再者,作為FAB接合於焊墊之方法,可考慮於FAB抵接至焊墊後,對FAB持續施加一定之荷重,並且對超聲波振動子持續施加一定之驅動電流。然而,於該方法中,無論如何設定施加至FAB之荷重之大小及施加至超聲波振動子之驅動電流值,均無法將FAB充分地接合於焊墊,或者會產生所謂濺鍍,即,焊墊之材料呈較薄之凸緣狀向FAB(第1球體部)之側方大幅地凸出。
於(1)之打線接合方法中,藉由適當地設定FAB抵接至焊墊之前起施加至超聲波振動子之驅動電流值及初始荷重之大小,可防止該濺鍍產生。
又,(5)之發明係如(4)之打線接合方法,其中自上述FAB抵接至上述焊墊之前起施加至上述超聲波振動子之上述驅動電流值小於30mA。藉此,可防止FAB抵接至焊墊後隨即傳輸至FAB之超聲波振動之能量變得過大。其結果為,可良好地防止濺鍍產生、以及於第1球體部之中央部之下方的焊墊及焊墊之下層之損傷產生。
又,(6)之發明係如(1)至(5)中任一項之打線接合方法,其中上述初始荷重之大小係根據相對於上述焊墊之接合完成後之上述FAB之目標接合面積乘以一定之係數所得之值而設定。藉此,根據第1球體部之目標接合面積,可適當地設定初始荷重之大小。其結果為,可良好地防止濺鍍產生、以及於第1球體部之中央部之下方的焊墊及焊墊之下層之損傷產生,並且可實現FAB之良好變形。
<根據第14實施形態之揭示所應掌握之特徵>
例如,根據第14實施形態之揭示,可掌握下述(1)至(6)之發明。
(1)之發明係一種打線接合方法,其包含如下步驟:於由焊針所保持之銅導線之前端形成FAB(Free Air Ball);使上述焊針接近於形成於半導體晶片之表面之焊墊,而使上述FAB抵接至上述焊墊;於上述FAB抵接至上述焊墊後,藉由上述焊針對上述FAB施加荷重;以及,與對上述FAB施加荷重之步驟至少一部分重複,而對設置於上述焊針之超聲波振動子施加驅動電流。
於該打線接合方法中,於形成於銅導線之前端之FAB抵接至焊墊後,藉由焊針對FAB施加荷重。又,與對FAB施加荷重之期間一部分重複,而對設置於焊針之超聲波振動子施加驅動電流。因此,藉由荷重,FAB產生變形,並且藉由自超聲波振動子傳輸之超聲波振動, FAB與焊墊發生摩擦。
並且,於自FAB抵接至焊墊起經過特定時間後施加至超聲波振動子之驅動電流值係以將該值除以對焊墊之接合完成後之FAB(第1球體部)之目標接合面積所得之值成為0.0197mA/μm2以下之方式而設定。藉此,可防止於自FAB抵接至焊墊起之特定時間後過剩能量之超聲波振動賦予至FAB。
因此,既可防止焊墊及焊墊之下層中產生因超聲波振動之過剩能量所引起之龜裂等損傷,又可獲得銅導線(FAB)與焊墊之良好接合。
由荷重所引起之FAB之變形係於自FAB抵接至焊墊起經過片刻後結束。亦即,於自FAB抵接至焊墊起經過片刻後,第1球體部之形狀完成。當FAB之變形結束時,賦予至FAB之超聲波振動幾乎不衰減地傳輸至FAB與焊墊之接合部分。因此,當FAB之變形結束後將過剩能量之超聲波振動賦予至FAB時,有可能導致於第1球體部之周緣部之下方,焊墊或焊墊之下層中產生龜裂等損傷。
因此,(2)之發明係如(1)之打線接合方法,其中上述特定時間係自上述FAB抵接至上述焊墊起至上述FAB之變形大致結束為止之時間。藉此,可防止於第1球體部之周緣部之下方的焊墊及焊墊之下層產生損傷。
又,當第1球體部之形狀完成後,對第1球體部持續施加較大荷重時,超聲波振動不會良好地傳輸至FAB與焊墊之抵接部分。
因此,(3)之發明係如(2)之打線接合方法,其中於對上述FAB施加荷重之步驟中,於上述FAB抵接至上述焊墊後,藉由上述焊針對上述FAB施加相對較大之初始荷重,並自上述FAB抵接至上述焊墊起經過上述特定時間後,藉由上述焊針對上述FAB施加相對較小之荷重。
於FAB抵接至焊墊後,對FAB施加相對較大之初始荷重,藉此可 使包含較Au更硬之金屬即Cu之FAB良好地變形。繼而,當自FAB抵接至焊墊起經過特定時間時,施加至FAB之荷重下降,因此可使超聲波振動良好地傳輸至FAB(第1球體部)與焊墊之抵接部分。
又,(4)之發明係如(3)之打線接合方法,其中上述初始荷重之大小係根據相對於上述焊墊之接合完成後之上述FAB之目標接合面積乘以一定之係數所得之值而設定。藉此,根據第1球體部之目標接合面積,可適當地設定初始荷重之大小。其結果為,可良好地防止於第1球體部之中央部之下方的焊墊及焊墊之下層產生損傷,並且可實現FAB之良好變形。
又,(5)之發明係如(1)至(4)中任一項之打線接合方法,其中施加至上述超聲波振動子之驅動電流值係於上述FAB抵接至上述焊墊後,遞增至特定值。另一方面,藉由對FAB施加荷重,FAB以壓碎之方式變形,使得FAB與焊墊之抵接部分之面積遞增。藉此,自超聲波振動子傳輸至FAB之超聲波振動之能量遞增,並且與焊墊發生摩擦之FAB之面積遞增。其結果為,可抑制於第1球體部之中央部之下方,焊墊及焊墊之下層中產生因傳輸至FAB之超聲波振動之能量劇增所引起之損傷,並且可獲得甚至第1球體部之與焊墊之接合面之周緣部均良好地接合於焊墊之狀態。
又,(6)之發明係如(5)之打線接合方法,其中施加至上述超聲波振動子之驅動電流值係於上述FAB抵接至上述焊墊後,以一定之變化率增加至上述特定值。
<根據第15實施形態之揭示所應掌握之特徵>
例如,根據第15實施形態之揭示,可掌握下述(1)至(3)之發明。
(1)之發明係一種打線接合方法,其包含如下步驟:於由焊針所保持之銅導線之前端形成FAB(Free Air Ball);使上述焊針接近於形成於半導體晶片之表面的焊墊,而使上述FAB抵接至上述焊墊;於上述 FAB抵接至上述焊墊後,藉由上述焊針對上述FAB施加荷重;以及,於因對上述FAB施加荷重所引起之上述FAB之變形結束後,對設置於上述焊針之超聲波振動子施加驅動電流。
於該打線接合方法中,於形成於銅導線之前端之FAB抵接至焊墊後,藉由焊針對FAB施加荷重。藉此,抵接至焊墊之FAB產生變形。
當於該FAB之變形過程中將過剩之超聲波振動賦予至FAB時,有可能於FAB與焊墊之抵接部分(接合完成後之FAB(第1球體部)之中央部)之下方,焊墊及/或焊墊之下層中產生因賦予至FAB之超聲波振動之能量所引起之龜裂等損傷。
因此,於FAB之變形結束後,對設置於焊針之超聲波振動子施加驅動電流。藉此,不對變形過程中之FAB賦予超聲波振動,因此可防止於第1球體部之中央部之下方的焊墊及焊墊之下層產生損傷。並且,對變形結束後之FAB賦予超聲波振動,藉此可使FAB與焊墊發生摩擦,因此可實現FAB與焊墊之良好接合。
因此,既可防止於第1球體部之中央部之下方的焊墊及焊墊之下層產生龜裂等損傷,又可獲得銅導線(FAB)與焊墊之良好接合。
為使包含較Au更硬之金屬即Cu之FAB良好地變形,必需對FAB施加某種程度之大小之荷重。然而,當FAB之變形結束後,對第1球體部持續施加較大荷重時,超聲波振動不會良好地傳輸至FAB與焊墊之抵接部分。
因此,(2)之發明係如(1)之打線接合方法,其中於對上述FAB施加荷重之步驟中,於上述FAB抵接至上述焊墊後,藉由上述焊針對上述FAB施加相對較大之初始荷重,並於自上述FAB抵接至上述焊墊起經過上述特定時間後,藉由上述焊針對上述FAB施加相對較小之荷重。
於FAB抵接至焊墊後,對FAB施加相對較大之初始荷重,藉此可 使包含較Au更硬之金屬即Cu之FAB良好地變形。繼而,自FAB抵接至焊墊起經過特定時間時,施加至FAB之荷重下降,因此可使超聲波振動良好地傳輸至FAB(第1球體部)與焊墊之抵接部分。
又,(3)之發明係如(2)之打線接合方法,其中上述初始荷重之大小係根據相對於上述焊墊之接合完成後之上述FAB之目標接合面積乘以一定之係數所得之值而設定。
藉此,根據第1球體部之目標接合面積,可適當地設定初始荷重之大小。其結果為,可良好地防止於第1球體部之中央部之下方的焊墊及焊墊之下層產生損傷,並且可實現FAB之良好變形。
<根據第16實施形態之揭示所應掌握之特徵>
例如,根據第16實施形態之揭示,可掌握下述(1)至(5)之發明。
(1)之發明係一種半導體裝置,其包括:層間絕緣膜,其形成於半導體基板上;最上層佈線,其包含銅且形成於上述層間絕緣膜上;鈍化膜,其形成於上述最上層佈線上,且包含用以使上述最上層佈線之表面選擇性地露出作為電極焊墊之焊墊開口;以及接線,其包含銅且直接接合於上述電極焊墊。
根據該構成,由於最上層佈線包含Cu(銅),因此較採用Al(鋁)佈線作為最上層佈線之情形時相比,可降低佈線電阻。
又,於作為電極焊墊而露出之最上層佈線(Cu佈線)接合有包含Cu之接線(Cu導線),故而可將電極焊墊與接線之連接設為同種金屬彼此之接合(Cu-Cu接合)。因此,即使將該半導體裝置放置於高溫環境下,該等成分(亦即,Cu)亦不會於電極焊墊與接線之間相互擴散,故可維持電極焊墊與接線之接合。因此,可提供一種高溫放置性及連接可靠性均優異之半導體裝置。
又,於該發明中,即使由於Cu導線之超聲波接合導致應力施加至電極焊墊或位於其正下方之層間絕緣膜,亦可藉由Cu焊墊緩和該 應力。例如,於利用鍍敷法形成佈線之情形時,可考慮到較Al更容易增加鍍敷厚度之Cu之特性,藉由增加Cu佈線(Cu焊墊)之鍍敷厚度,而進一步降低施加至位於Cu焊墊之正下方之層間絕緣膜之應力。藉此,可抑制在位於Cu焊墊之正下方之層間絕緣膜中產生龜裂。
又,(2)之發明係如(1)之半導體裝置,其中上述接線直接針腳式接合於上述電極焊墊。
亦即,於(1)之半導體裝置中,亦可將接線直接針腳式接合於上述電極焊墊。於接線針腳式接合於電極焊墊之所謂逆向接合之態樣中,通常與接線球形接合於電極焊墊之態樣有所不同,接線(導線本體)係經由柱形凸塊接合於電極焊墊。因此,相對於半導體基板之表面的導線之高度與球形接合相同。其結果為,即使接線下垂,亦不可能導致該下垂部分與半導體基板之邊緣相接觸而產生邊緣短路。
然而,若考慮到較Al更容易增加鍍敷厚度之Cu之特性,利用鍍敷法增加Cu焊墊之厚度,則可相對於半導體基板之表面,充分提昇接線與Cu焊墊之接合位置(針腳式接合位置)。藉此,宛如存在柱形凸塊般,可充分提高Cu導線相對於半導體基板之表面之高度,因此即使將導線本體直接針腳式接合於電極焊墊,導線之下垂部分亦不會到達半導體基板之邊緣。亦即,可防止接線與半導體基板之接觸,因此可防止邊緣短路。
亦即,於針腳式接合於電極焊墊之情形時,必需將焊針荷重及超聲波之強度以普通球形接合(1st接合)之2~3倍施加,但只要電極焊墊為Cu焊墊,即可承受住施加至電極焊墊之施加部之損傷。又,作為結構上之優點,可一面避免邊緣短路,一面實現接線之低迴路,因此可實現裝置之小型化。此外,與球形接合於Cu焊墊之情形時相比,可大幅度縮短接合所需之時間。
又,(3)之發明係如(1)之半導體裝置,其中將上述接線藉由柱形 凸塊接合於上述電極焊墊。
亦即,於(1)之半導體裝置中,上述接線亦可藉由柱形凸塊接合於電極焊墊。於該態樣中,於Cu焊墊形成柱形凸塊時,即使對用以形成柱形凸塊之球體施加較強之超聲波,亦與採用Al焊墊之情形時不同,幾乎不產生電極焊墊捲起之濺鍍。
又,(4)之發明係如(1)至(3)中任一項之半導體裝置,其中上述電極焊墊之厚度為10μm以上,(5)之發明係如(1)至(4)中任一項之半導體裝置,其中上述電極焊墊之厚度為10μm~15μm。
<根據第17實施形態之揭示所應掌握之特徵>
例如,根據第17實施形態之揭示,可掌握下述(1)至(4)之發明。
(1)之發明係一種半導體裝置,其包括:半導體晶片;電極焊墊,其包括含鋁之金屬材料,且形成於上述半導體晶片之表面;接線,其包含銅且連接於上述電極焊墊;以及樹脂封裝體,其將上述半導體晶片及上述接線密封;並且上述樹脂封裝體之pH值大於4.5。
本發明者等人為實現上述第17目的,對於焊墊與導線間之電性斷開之主要原因進行有潛心研究,結果發現主要原因在於樹脂封裝體之pH值。
具體而言,當水分滲入至封裝體內部時,該水分會使銅產生氧化,使得導線表面由包含氧化亞銅(CuO2)及氧化銅(CuO)之皮膜被覆。此種表面皮膜係於樹脂封裝體之pH值相對較低(例如,pH值=4.2~4.5)之低pH值環境下,促進銅之氧化,增加氧化銅之體積比例。當氧化銅之體積比例增加時,有時銅導線與樹脂封裝體產生剝離。並且,由於銅導線與樹脂封裝體之剝離所產生之間隙成為水分之移動路徑,故而水分容易滲入至電極焊墊與銅導線之接合界面。因此,於HAST測試過程中等,滲入至該接合界面之水分會使鋁焊墊(電極焊墊)之腐蝕行進,從而產生電性斷開。
與此相對,根據(1)之半導體裝置,因樹脂封裝體之pH值大於4.5,故而可將接線放置於與低pH值環境(例如,pH值為4.5以下之環境)相比更高之pH值環境下。
因此,可抑制氧化銅之形成,故可抑制氧化銅之體積增加。其結果為,可抑制於銅導線與樹脂封裝體間產生剝離。
因此,即使將半導體裝置放置於PCT(Pressure Cooker Test)或HAST(Highly Accelerated temperature and humidity Stress Test)等測試等水分容易滲入至封裝體內部之狀況下,亦因銅導線與樹脂封裝體之間不存在水分之移動路徑,而可抑制水分滲入至電極焊墊與銅導線之接合界面。因此,可抑制該接合界面與水分之接觸。其結果為,可抑制電極焊墊(鋁焊墊)之腐蝕之行進,因此可抑制於焊墊與導線間之電性斷開。因此,可提高半導體裝置之連接可靠性。
又,(2)之發明係如(1)之半導體裝置,其中上述樹脂封裝體之pH值大於4.5且小於7.0。又,(3)之發明係如(1)或(2)之半導體裝置,其中上述樹脂封裝體之pH值為6.0以上且小於7.0。
亦即,上述樹脂封裝體之pH值較佳為如(2)之半導體裝置般,大於4.5且小於7.0,更佳為如(3)之半導體裝置般,6.0以上且小於7.0。只要樹脂封裝體之pH值處於如上所述之範圍內,即可進一步於抑制銅導線與樹脂封裝體間產生剝離。
又,(4)之發明係如(1)至(3)中任一項之半導體裝置,其包括引線框架,其包含用以搭載上述半導體晶片之晶片焊墊、以及配置於上述晶片焊墊之周圍之複數條電極引線,並且上述引線框架包含主要含有Cu之Cu系原材料。
於該構成中,因電極引線與接線之接合成為同種金屬彼此之接合(Cu-Cu接合),故而可於電極引線與接線之界面抑制氧化銅(CuO)之形成。因此,可抑制氧化銅之體積增加。其結果為,可抑制於接線與 樹脂封裝體之接合界面產生剝離。
<根據第18實施形態之揭示所應掌握之特徵>
例如,根據第18實施形態之揭示,可掌握下述(1)至(5)之發明。
(1)之發明係一種半導體裝置,其包括:第1構件,其包括含有Al之材料;第2構件,其包含Cu且接合於上述第1構件;以及樹脂封裝體,其將上述第1構件及上述第2構件密封;並且於樹脂封裝體之材料中包含具有捕獲Cl-(氯離子)之性質之離子捕獲成分。
因此,可於第1構件與第2構件之接合部分中抑制AlCu合金(Cu9Al4)與Cl-之反應,故而可防止作為該反應生成物之Al2O3(氧化鋁)生成。其結果為,可防止第1構件與第2構件因Al2O3而絕緣分離。亦即,可防止於第1構件與第2構件間產生導通不良。
又,(2)之發明係如(1)之半導體裝置,其進一步包括半導體晶片,並且上述第1構件係設置於上述半導體晶片之表面之焊墊,上述第2構件係一端部接合於上述焊墊之導線。又,(3)之發明係如(1)之半導體裝置,其進一步包括半導體晶片,並且上述第2構件係設置於上述半導體晶片之表面之焊墊,上述第1構件係一端部接合於上述焊墊之導線。此外,(4)之發明係如(1)之半導體裝置,其進一步包括半導體晶片,並且上述第2構件係設置於上述半導體晶片之周圍之框架,上述第1構件係一端部接合於上述框架之導線。
亦即,亦可為第1構件係設置於半導體晶片之表面之焊墊,第2構件係一端部接合於焊墊之導線。
又,亦可為第1構件係導線,第2構件係設置於半導體晶片之表面且接合有導線之一端部之焊墊。
此外,亦可為第1構件係導線,第2構件係設置於半導體晶片之周圍且接合有導線之一端部之框架。框架可為接合有半導體晶片之背面之晶片焊墊,亦可為配置於半導體晶片之周圍之引線。
又,(5)之發明係如(1)至(4)中任一項之半導體裝置,其中上述離子捕獲成分具有羥基。
亦即,離子捕獲成分宜具有羥基。於此情形時,藉由羥基與Cl-之陰離子交換反應,離子捕獲成分可良好地捕獲Cl-
<根據第19及第20實施形態之揭示所應掌握之特徵>
例如,根據第19及第20實施形態之揭示,可掌握下述(1)至(10)之發明。
(1)之發明係一種半導體裝置,其包括:第1構件,其包括含鋁之材料;第2構件,其包含銅且接合於上述第1構件;以及樹脂封裝體,其將上述第1構件及上述第2構件密封;並且於上述樹脂封裝體之材料中包含具有捕獲氯離子之性質之離子捕獲成分,上述樹脂封裝體之pH值大於4.5。
又,(2)之發明係如(1)之半導體裝置,其進一步包括半導體晶片,並且上述第1構件係設置於上述半導體晶片之表面上之焊墊,上述第2構件係一端部接合於上述焊墊之導線。
又,(3)之發明係如(1)之半導體裝置,其進一步包括半導體晶片,並且上述第2構件係設置於上述半導體晶片之表面上之焊墊,上述第1構件係一端部接合於上述焊墊之導線。
又,(4)之發明係如(1)之半導體裝置,其進一步包括半導體晶片,並且上述第2構件係設置於上述半導體晶片之周圍之框架,上述第1構件係一端部接合於上述框架之導線。
又,(5)之發明係如(4)之半導體裝置,其中上述半導體晶片包含形成於其上之電極焊墊,上述導線包含呈線狀延伸之本體部、以及形成於上述本體部之一端且接合於上述電極焊墊之接合部,上述接合部之體積相對於上述導線之上述本體部之線徑之立方之比為1.8~5.6。
又,(6)之發明係如(4)之半導體裝置,其中上述半導體晶片包括 半導體基板;佈線,其形成於上述半導體基板上;絕緣層,其被覆上述佈線;障壁層,其形成於上述絕緣層上;以及電極焊墊,其於上述障壁層上形成於與上述佈線之一部分相對向之位置,且接合有上述導線;並且於俯視時,與上述導線和上述電極焊墊之接合區域重合之上述佈線的面積為上述接合區域之面積之26.8%以下。
又,(7)之發明係如(4)之半導體裝置,其中上述框架包含用以支持上述半導體晶片之晶片焊墊,於上述晶片焊墊與上述半導體晶片之間介插有包含Bi系材料之接合材料,於上述晶片焊墊中之與上述半導體晶片相對向之面上設置有包含Cu之間隔件。
又,(8)之發明係一種半導體裝置,其包括:半導體晶片;電極焊墊,其形成於上述半導體晶片上;接線,其包括包含銅且呈線狀延伸之本體部、以及形成於上述本體部之一端且接合於上述電極焊墊之接合部;以及樹脂封裝體,其將上述半導體晶片及上述接線密封;並且於上述樹脂封裝體之材料中包含具有捕獲氯離子之性質之離子捕獲成分,上述接合部之體積相對於上述接線之上述本體部之線徑之立方之比為1.8~5.6。
又,(9)之發明係一種半導體裝置,其包括:半導體基板;佈線,其形成於上述半導體基板上;絕緣層,其被覆上述佈線;障壁層,其形成於上述絕緣層上;電極焊墊,其於上述障壁層上形成於與上述佈線之一部分相對向之位置;接線,其包含銅且接合於上述電極焊墊;以及樹脂封裝體,其將上述半導體基板及上述接線密封;並且於上述樹脂封裝體之材料中包含具有捕獲氯離子之性質之離子捕獲成分;並且於俯視時,與上述接線和上述電極焊墊之接合區域重合之上述佈線的面積為上述接合區域之面積之26.8%以下。
又,(10)之發明係一種半導體裝置,其包括:半導體晶片;引線框架,其包含用以支持上述半導體晶片之晶片焊墊、以及將該晶片焊 墊包圍之引線;接線,其連接上述半導體晶片之電極焊墊與上述引線;接合材料,其介插於上述晶片焊墊與上述半導體晶片之間且包含Bi系材料;間隔件,其包含Cu且設置於上述晶片焊墊中之與上述半導體晶片相對向之面上;以及樹脂封裝體,其將上述半導體晶片及上述接線密封;並且於上述樹脂封裝體之材料中包含具有捕獲氯離子之性質之離子捕獲成分。
再者,根據上述第1~第20實施形態之揭示所應掌握之上述特徵係亦可於不同實施形態之間相互組合。又,於各實施形態中所表示之構成要素可於本發明之範圍內組合。
本申請案係對應於以下申請案,將該等申請案之全部揭示藉由引用而編入於此者:
2009年6月18日向日本專利局提出申請之日本專利特願2009-145637號
2009年6月24日向日本專利局提出申請之日本專利特願2009-149856號
2009年6月29日向日本專利局提出申請之日本專利特願2009-153919號
2009年11月10日向日本專利局提出申請之日本專利特願2009-256873號
2009年9月7日已向日本專利局提出申請之日本專利特願2009-206139號
2009年10月20日向日本專利局提出申請之日本專利特願2009-241547號
2009年11月10日向日本專利局提出申請之日本專利特願2009-256874號
2009年10月20日向日本專利局提出申請之日本專利特願2009-241548號
2009年11月10日向日本專利局提出申請之日本專利特願2009-256875號
2009年10月20日向日本專利局提出申請之日本專利特願2009-241549號
2009年10月20日向日本專利局提出申請之日本專利特願2009-241591號
2009年11月10日向日本專利局提出申請之日本專利特願2009-256877號
2009年11月10日向日本專利局提出申請之日本專利特願2009-256878號
2009年11月10日向日本專利局提出申請之日本專利特願2009-256879號
2009年11月10日向日本專利局提出申請之日本專利特願2009-256880號
2010年2月25日向日本專利局提出申請之日本專利特願2010-040398號
2009年11月24日向日本專利局提出申請之日本專利特願2009-266678號
2010年1月5日向日本專利局提出申請之日本專利特願2010-000556號。

Claims (18)

  1. 一種導線接合方法,其包括以下步驟:於保持於焊針(capillary)之銅導線之前端形成FAB(Free Air Ball);使上述焊針接近形成於半導體晶片之表面之焊墊,而將上述FAB抵接於上述焊墊;在上述FAB之對上述焊墊之抵接後,藉由上述焊針對上述FAB施加荷重;及對設置於上述焊針之超聲波振動子(ultrasonic transducer)施加驅動電流;且施加於上述超聲波振動子之驅動電流之值係:於上述FAB之對上述焊墊之抵接後,漸增至特定值。
  2. 如請求項1之導線接合方法,其中使用瓶頸型焊針作為上述焊針之情形時的上述驅動電流之值係設定在:使用標準型焊針作為上述焊針之情形時的上述驅動電流之值的1.3倍以上1.5倍以下之範圍內。
  3. 如請求項2之導線接合方法,其中使用瓶頸型焊針作為上述焊針之情形時的上述驅動電流之值係設定為:使用標準型焊針作為上述焊針之情形時的上述驅動電流之值的1.4倍。
  4. 如請求項1至3任一項之導線接合方法,其中施加於上述超聲波振動子之驅動電流之值係:於上述FAB之對上述焊墊之抵接後,以一定之變化率而增加至上述特定值。
  5. 如請求項1至3任一項之導線接合方法,其中自上述FAB之對上述焊墊之抵接前,於上述超聲波振動子施加有驅動電流。
  6. 一種半導體裝置之製造方法,其包括以下步驟:於保持於焊針之銅導線之前端形成FAB;使上述焊針接近形成於半導體晶片之表面之焊墊,而將上述FAB抵接於上述焊墊;在上述FAB之對上述焊墊之抵接後,藉由上述焊針對上述FAB施加荷重;及對設置於上述焊針之超聲波振動子施加驅動電流;且施加於上述超聲波振動子之驅動電流之值係:於上述FAB之對上述焊墊之抵接後,漸增至特定值。
  7. 如請求項6之半導體裝置之製造方法,其中使用瓶頸型焊針作為上述焊針之情形時的上述驅動電流之值係設定在:使用標準型焊針作為上述焊針之情形時的上述驅動電流之值的1.3倍以上1.5倍以下之範圍內。
  8. 如請求項7之半導體裝置之製造方法,其中使用瓶頸型焊針作為上述焊針之情形時的上述驅動電流之值係設定為:使用標準型焊針作為上述焊針之情形時的上述驅動電流之值的1.4倍。
  9. 如請求項6至8任一項之半導體裝置之製造方法,其中施加於上述超聲波振動子之驅動電流之值係:於上述FAB之對上述焊墊之抵接後,以一定之變化率而增加至上述特定值。
  10. 如請求項6至8任一項之半導體裝置之製造方法,其中自上述FAB之對上述焊墊之抵接前,於上述超聲波振動子施加有驅動電流。
  11. 如請求項6至8任一項之半導體裝置之製造方法,其更包含將上述銅導線接合於上述半導體晶片之周圍之引線之步驟。
  12. 如請求項6至8任一項之半導體裝置之製造方法,其更包含以將上述焊墊全體及上述銅導線之焊墊接合部全體一體地被覆之方式形成不透水膜之步驟。
  13. 如請求項12之半導體裝置之製造方法,其中上述銅導線全體係由上述不透水膜被覆。
  14. 如請求項11之半導體裝置之製造方法,其更包含以將上述焊墊全體、上述銅導線之焊墊接合部全體、上述引線全體及上述銅導線之引線接合部全體一體地被覆之方式形成不透水膜之步驟。
  15. 如請求項12之半導體裝置之製造方法,其中上述不透水膜包含絕緣膜。
  16. 如請求項12之半導體裝置之製造方法,其中上述不透水膜包含金屬膜。
  17. 如請求項16之半導體裝置之製造方法,其中上述金屬膜包含鎳或鈀。
  18. 如請求項12之半導體裝置之製造方法,其中上述不透水膜具有0.5μm~3μm之厚度。
TW105127771A 2009-06-18 2010-06-18 導線接合方法及半導體裝置之製造方法 TWI624920B (zh)

Applications Claiming Priority (36)

Application Number Priority Date Filing Date Title
JP2009145637 2009-06-18
JP2009-145637 2009-06-18
JP2009149856 2009-06-24
JP2009-149856 2009-06-24
JP2009-153919 2009-06-29
JP2009153919 2009-06-29
JP2009-206139 2009-09-07
JP2009206139 2009-09-07
JP2009241549 2009-10-20
JP2009-241547 2009-10-20
JP2009241591 2009-10-20
JP2009-241591 2009-10-20
JP2009-241549 2009-10-20
JP2009241548 2009-10-20
JP2009-241548 2009-10-20
JP2009241547 2009-10-20
JP2009-256879 2009-11-10
JP2009256879 2009-11-10
JP2009-256877 2009-11-10
JP2009256874 2009-11-10
JP2009256877 2009-11-10
JP2009-256873 2009-11-10
JP2009-256874 2009-11-10
JP2009256875 2009-11-10
JP2009-256875 2009-11-10
JP2009256878 2009-11-10
JP2009-256880 2009-11-10
JP2009-256878 2009-11-10
JP2009256873 2009-11-10
JP2009256880 2009-11-10
JP2009266678 2009-11-24
JP2009-266678 2009-11-24
JP2010000556 2010-01-05
JP2010-000556 2010-01-05
JP2010-040398 2010-02-25
JP2010040398 2010-02-25

Publications (2)

Publication Number Publication Date
TW201719839A TW201719839A (zh) 2017-06-01
TWI624920B true TWI624920B (zh) 2018-05-21

Family

ID=43356504

Family Applications (3)

Application Number Title Priority Date Filing Date
TW099120023A TWI556392B (zh) 2009-06-18 2010-06-18 半導體裝置
TW105127771A TWI624920B (zh) 2009-06-18 2010-06-18 導線接合方法及半導體裝置之製造方法
TW107110831A TWI757463B (zh) 2009-06-18 2010-06-18 半導體裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW099120023A TWI556392B (zh) 2009-06-18 2010-06-18 半導體裝置

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW107110831A TWI757463B (zh) 2009-06-18 2010-06-18 半導體裝置

Country Status (6)

Country Link
US (2) US9780069B2 (zh)
EP (1) EP2444999A4 (zh)
JP (5) JPWO2010147187A1 (zh)
CN (2) CN102484080B (zh)
TW (3) TWI556392B (zh)
WO (1) WO2010147187A1 (zh)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484080B (zh) * 2009-06-18 2015-07-22 罗姆股份有限公司 半导体装置
KR101897015B1 (ko) * 2012-04-16 2018-09-12 엘지이노텍 주식회사 칩 패키지 부재 제조 방법 및 칩 패키지 제조방법
JP5255106B2 (ja) * 2011-10-24 2013-08-07 住友電気工業株式会社 窒化物半導体発光素子
KR101943050B1 (ko) * 2012-01-13 2019-01-28 주식회사 포벨 파장 측정 기능을 가지는 파장 가변형 레이저 장치
JP2013197531A (ja) * 2012-03-22 2013-09-30 Sharp Corp 半導体装置およびその製造方法
JP5905085B2 (ja) * 2012-04-23 2016-04-20 株式会社日立製作所 ひずみセンサチップ実装構造体、ひずみセンサチップおよびひずみセンサチップ実装構造体の製造方法
JP6129315B2 (ja) 2013-07-05 2017-05-17 ルネサスエレクトロニクス株式会社 半導体装置
US9165904B1 (en) * 2014-06-17 2015-10-20 Freescale Semiconductor, Inc. Insulated wire bonding with EFO before second bond
JP6483498B2 (ja) 2014-07-07 2019-03-13 ローム株式会社 電子装置およびその実装構造
JP6810222B2 (ja) * 2014-07-11 2021-01-06 ローム株式会社 電子装置
JP2016139711A (ja) 2015-01-28 2016-08-04 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP6364543B2 (ja) * 2015-03-30 2018-07-25 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
KR20230169471A (ko) 2015-03-31 2023-12-15 하마마츠 포토닉스 가부시키가이샤 반도체 장치
US9490195B1 (en) * 2015-07-17 2016-11-08 Invensas Corporation Wafer-level flipped die stacks with leadframes or metal foil interconnects
US9825002B2 (en) 2015-07-17 2017-11-21 Invensas Corporation Flipped die stack
US9871019B2 (en) 2015-07-17 2018-01-16 Invensas Corporation Flipped die stack assemblies with leadframe interconnects
US10159144B2 (en) * 2015-08-20 2018-12-18 Renesas Electronics Corporation Semiconductor device
US9508664B1 (en) * 2015-12-16 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device structure comprising a plurality of metal oxide fibers and method for forming the same
US9508691B1 (en) 2015-12-16 2016-11-29 Invensas Corporation Flipped die stacks with multiple rows of leadframe interconnects
US9627299B1 (en) * 2016-02-11 2017-04-18 Texas Instruments Incorporated Structure and method for diminishing delamination of packaged semiconductor devices
JP6700087B2 (ja) * 2016-03-31 2020-05-27 ローム株式会社 半導体装置および半導体装置の製造方法
US10566310B2 (en) 2016-04-11 2020-02-18 Invensas Corporation Microelectronic packages having stacked die and wire bond interconnects
TWI694569B (zh) * 2016-04-13 2020-05-21 日商濱松赫德尼古斯股份有限公司 半導體裝置
TWI637470B (zh) * 2016-04-19 2018-10-01 東芝股份有限公司 半導體封裝及其之製造方法
JP6716158B2 (ja) * 2016-05-10 2020-07-01 株式会社ディスコ チップの選別方法
US10672678B2 (en) * 2016-05-20 2020-06-02 Infineon Technologies Ag Method for forming a chip package with compounds to improve the durability and performance of metal contact structures in the chip package
DE102016109352B4 (de) 2016-05-20 2022-03-24 Infineon Technologies Ag Chipgehäuse und verfahren zum bilden eines chipgehäuses
CN115274465A (zh) * 2016-06-14 2022-11-01 三菱电机株式会社 电力用半导体装置
US9728524B1 (en) 2016-06-30 2017-08-08 Invensas Corporation Enhanced density assembly having microelectronic packages mounted at substantial angle to board
JP6931869B2 (ja) * 2016-10-21 2021-09-08 国立研究開発法人産業技術総合研究所 半導体装置
US10600756B1 (en) * 2017-02-15 2020-03-24 United States Of America, As Represented By The Secretary Of The Navy Wire bonding technique for integrated circuit board connections
JP6680239B2 (ja) * 2017-02-20 2020-04-15 日亜化学工業株式会社 発光装置の製造方法
JP7096649B2 (ja) * 2017-06-21 2022-07-06 スタンレー電気株式会社 半導体装置
US10388594B2 (en) 2017-06-28 2019-08-20 Stmicroelectronics, Inc. Protection from ESD during the manufacturing process of semiconductor chips
JP2019012755A (ja) * 2017-06-29 2019-01-24 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
KR102440119B1 (ko) 2017-08-10 2022-09-05 삼성전자주식회사 반도체 패키지 및 그 제조방법
WO2019123856A1 (ja) * 2017-12-18 2019-06-27 Dic株式会社 銅微粒子焼結体
JP7100980B2 (ja) 2018-01-22 2022-07-14 ローム株式会社 Ledパッケージ
JP7051508B2 (ja) * 2018-03-16 2022-04-11 ローム株式会社 半導体装置および半導体装置の製造方法
US10593612B2 (en) 2018-03-19 2020-03-17 Stmicroelectronics S.R.L. SMDs integration on QFN by 3D stacked solution
US20190287881A1 (en) 2018-03-19 2019-09-19 Stmicroelectronics S.R.L. Semiconductor package with die stacked on surface mounted devices
JP6888742B2 (ja) * 2018-06-06 2021-06-16 富士電機株式会社 半導体装置
KR102621753B1 (ko) * 2018-09-28 2024-01-05 삼성전자주식회사 본딩 와이어, 이를 포함하는 반도체 패키지, 및 와이어 본딩 방법
JP2020072169A (ja) * 2018-10-31 2020-05-07 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
KR102332716B1 (ko) * 2019-07-15 2021-11-30 제엠제코(주) 반도체 패키지
US11211320B2 (en) 2019-12-31 2021-12-28 Texas Instruments Incorporated Package with shifted lead neck
JP7447992B2 (ja) 2020-04-07 2024-03-12 日本電信電話株式会社 ボンディングワイヤとその製造方法
FR3109466A1 (fr) * 2020-04-16 2021-10-22 Stmicroelectronics (Grenoble 2) Sas Dispositif de support d’une puce électronique et procédé de fabrication correspondant
US20220320040A1 (en) * 2020-08-04 2022-10-06 Yamaha Robotics Holdings Co., Ltd. Wire bonding state determination method and wire bonding state determination device
US11756882B2 (en) * 2020-12-31 2023-09-12 Texas Instruments Incorporated Semiconductor die with blast shielding
US11729951B2 (en) 2022-01-13 2023-08-15 Toyota Motor Engineering & Manufacturing North America, Inc. Heat flux micro coolers having multi-stepped features and fluid wicking

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033937A (en) * 1997-12-23 2000-03-07 Vlsi Technology, Inc. Si O2 wire bond insulation in semiconductor assemblies
US6180891B1 (en) * 1997-02-26 2001-01-30 International Business Machines Corporation Control of size and heat affected zone for fine pitch wire bonding
TW200910490A (en) * 2007-08-31 2009-03-01 Shinkawa Kk Bonding device and bonding method
TW200913102A (en) * 2007-08-15 2009-03-16 Stats Chippac Ltd Wire bonding structure and method that eliminates special wire bondable finish and reduces bonding pitch on substrates
TW200923107A (en) * 2007-11-06 2009-06-01 Tanaka Electronics Ind Bonding wire

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846854B2 (ja) * 1975-08-25 1983-10-19 株式会社日立製作所 タソウハイセンコウゾウノハンドウタイソウチ
US4705204A (en) 1985-03-01 1987-11-10 Mitsubishi Denki Kabushiki Kaisha Method of ball forming for wire bonding
JPS61285743A (ja) * 1985-06-12 1986-12-16 Hitachi Ltd 電気的装置
JPS61287155A (ja) * 1985-06-14 1986-12-17 Hitachi Ltd 半導体装置及び半導体装置の製造方法
JPS62219628A (ja) * 1986-03-20 1987-09-26 Hitachi Ltd 電子装置およびその製造装置
JPS6351649A (ja) * 1986-08-21 1988-03-04 Furukawa Electric Co Ltd:The 半導体装置
JPS63128634A (ja) * 1986-11-18 1988-06-01 Nec Corp 半導体装置の製造方法
JPS63151054A (ja) * 1986-12-16 1988-06-23 Matsushita Electronics Corp 半導体装置
JPS63283137A (ja) * 1987-05-15 1988-11-21 Mitsubishi Electric Corp 半導体装置の組立方法
JPS6428634A (en) * 1987-07-23 1989-01-31 Konishiroku Photo Ind Silver halide photographic sensitive material prevented from electrification
JPS6490540A (en) * 1987-09-30 1989-04-07 Mitsubishi Electric Corp Wire bonding of semiconductor device
JPH0734449B2 (ja) * 1987-11-30 1995-04-12 三菱電機株式会社 半導体装置の電極接合部構造
JPH01201934A (ja) * 1988-02-08 1989-08-14 Mitsubishi Electric Corp ワイヤボンディング方法及びキャピラリチップ
JPH01286345A (ja) * 1988-05-12 1989-11-17 Mitsubishi Electric Corp 樹脂封止半導体装置
JPH0243747A (ja) * 1988-08-04 1990-02-14 Mitsubishi Electric Corp 半導体装置
JPH02163951A (ja) 1988-12-16 1990-06-25 Sanyo Electric Co Ltd キャピラリチップと半導体装置のワイヤボンド方法
JP2756701B2 (ja) 1989-06-02 1998-05-25 蛇の目ミシン工業株式会社 コンピュータ刺繍機
EP0423433A1 (en) * 1989-09-28 1991-04-24 International Business Machines Corporation Method and apparatus for bonding component leads to pads located on a non-rigid substrate
JPH03157448A (ja) * 1989-11-15 1991-07-05 Mitsubishi Electric Corp 半導体封止用エポキシ樹脂組成物
JPH03208355A (ja) * 1990-01-10 1991-09-11 Mitsubishi Electric Corp 半導体装置及びその製造方法
JPH0438859A (ja) * 1990-06-04 1992-02-10 Hitachi Ltd 電子部品組立構造及びその組立方法
JPH0461249A (ja) * 1990-06-28 1992-02-27 Mitsubishi Electric Corp ワイヤボンド装置
JPH0469942A (ja) * 1990-07-11 1992-03-05 Hitachi Ltd キャピラリー及び半導体装置及びワイヤーボンディング方法
JPH04258145A (ja) * 1991-02-13 1992-09-14 Toshiba Corp 半導体装置
JPH0529495A (ja) 1991-07-18 1993-02-05 Toshiba Corp 樹脂封止型半導体装置
JPH05226189A (ja) 1992-02-18 1993-09-03 Matsushita Electric Ind Co Ltd 電解コンデンサ駆動用電解液
JP3122523B2 (ja) 1992-05-19 2001-01-09 三菱電機株式会社 半導体装置の製造方法
JPH0645392A (ja) * 1992-07-22 1994-02-18 Rohm Co Ltd ワイヤーボンディング装置におけるボンディング位置の検出方法
JPH0680696A (ja) 1992-09-01 1994-03-22 Mitsubishi Kasei Corp 新規ペプチド
US5567981A (en) * 1993-03-31 1996-10-22 Intel Corporation Bonding pad structure having an interposed rigid layer
JPH07122562A (ja) 1993-10-20 1995-05-12 Tanaka Denshi Kogyo Kk バンプ形成方法及びワイヤボンディング方法並びにバンプ構造及びワイヤボンディング構造
JPH08213422A (ja) * 1995-02-07 1996-08-20 Mitsubishi Electric Corp 半導体装置およびそのボンディングパッド構造
JPH08250628A (ja) * 1995-03-07 1996-09-27 Hitachi Ltd 半導体集積回路装置およびその製造方法
JPH0934600A (ja) 1995-07-20 1997-02-07 Nippon Motorola Ltd モニタパワーセーブ回路及びモニタ装置
US5938105A (en) * 1997-01-15 1999-08-17 National Semiconductor Corporation Encapsulated ball bonding apparatus and method
JPH10261664A (ja) 1997-01-17 1998-09-29 Furukawa Electric Co Ltd:The 半導体素子、突起電極の形成方法およびワイヤボンディング方法
JPH10233408A (ja) * 1997-02-21 1998-09-02 Nec Corp 金属接合構造及び半導体装置
JPH11135542A (ja) 1997-10-31 1999-05-21 Shinkawa Ltd ワイヤボンディング装置用キャピラリ
JP3877409B2 (ja) 1997-12-26 2007-02-07 三洋電機株式会社 半導体装置の製造方法
JP4038859B2 (ja) * 1998-01-30 2008-01-30 ソニー株式会社 地図情報表示装置及び地図情報表示方法
AU2640499A (en) * 1998-02-25 1999-09-15 Citizen Watch Co. Ltd. Semiconductor device
JP2000195892A (ja) 1998-12-25 2000-07-14 Sumitomo Electric Ind Ltd ボンディングワイヤ―
US6110816A (en) * 1999-03-05 2000-08-29 Taiwan Semiconductor Manufacturing Company Method for improving bondability for deep-submicron integrated circuit package
JP2001053207A (ja) * 1999-08-16 2001-02-23 Mitsubishi Electric Corp モジュール用冷却装置
JP2001185552A (ja) 1999-12-27 2001-07-06 Hitachi Ltd 半導体集積回路装置およびその製造方法
JP2001196413A (ja) * 2000-01-12 2001-07-19 Mitsubishi Electric Corp 半導体装置、該半導体装置の製造方法、cmp装置、及びcmp方法
JP2002016069A (ja) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
US6555401B2 (en) * 2000-09-06 2003-04-29 Texas Instruments Incorporated Method of controlling bond process quality by measuring wire bond features
JP2003045910A (ja) * 2001-08-01 2003-02-14 Matsushita Electric Ind Co Ltd 半導体装置製造用のキャピラリーツール
JP4801296B2 (ja) * 2001-09-07 2011-10-26 富士通セミコンダクター株式会社 半導体装置及びその製造方法
JP3865055B2 (ja) * 2001-12-28 2007-01-10 セイコーエプソン株式会社 半導体装置の製造方法
JP4204359B2 (ja) 2002-03-26 2009-01-07 株式会社野毛電気工業 ボンディングワイヤーおよびそれを使用した集積回路デバイス
TW200414453A (en) 2002-03-26 2004-08-01 Sumitomo Electric Wintec Inc Bonding wire and IC device using the bonding wire
JP3724464B2 (ja) 2002-08-19 2005-12-07 株式会社デンソー 半導体圧力センサ
JP3851607B2 (ja) * 2002-11-21 2006-11-29 ローム株式会社 半導体装置の製造方法
JP4093165B2 (ja) 2003-09-29 2008-06-04 松下電器産業株式会社 半導体集積回路装置
JP2005347622A (ja) * 2004-06-04 2005-12-15 Seiko Epson Corp 半導体装置、回路基板及び電子機器
US7427009B2 (en) 2004-06-24 2008-09-23 Asm Technology Singapore Pte Ltd. Capillary for wire bonding
US7262123B2 (en) * 2004-07-29 2007-08-28 Micron Technology, Inc. Methods of forming wire bonds for semiconductor constructions
JP4674522B2 (ja) * 2004-11-11 2011-04-20 株式会社デンソー 半導体装置
JP4569423B2 (ja) 2005-08-31 2010-10-27 株式会社日立製作所 半導体装置の製造方法
JP4645398B2 (ja) * 2005-10-04 2011-03-09 株式会社デンソー 半導体装置およびその製造方法
JP4663510B2 (ja) * 2005-12-21 2011-04-06 パナソニック株式会社 半導体装置
JP5226189B2 (ja) 2006-03-30 2013-07-03 富士通株式会社 伝票処理プログラムおよび伝票処理装置
US8420520B2 (en) * 2006-05-18 2013-04-16 Megica Corporation Non-cyanide gold electroplating for fine-line gold traces and gold pads
US7521287B2 (en) * 2006-11-20 2009-04-21 International Business Machines Corporation Wire and solder bond forming methods
US8247911B2 (en) 2007-01-15 2012-08-21 Nippon Steel Materials Co., Ltd. Wire bonding structure and method for forming same
JP2008181908A (ja) * 2007-01-23 2008-08-07 Rohm Co Ltd 半導体装置及び半導体装置用リードフレーム
JP5070972B2 (ja) * 2007-07-26 2012-11-14 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物および半導体装置
JP2009059962A (ja) 2007-08-31 2009-03-19 Sumitomo Metal Mining Co Ltd 半導体パッケージ
JP2009071151A (ja) * 2007-09-14 2009-04-02 Yamaha Corp 半導体装置
DE102008016427B4 (de) * 2008-03-31 2018-01-25 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Drahtbonden auf reaktiven Metalloberflächen einer Metallisierung eines Halbleiterbauelements durch Vorsehen einer Schutzschicht
US7646083B2 (en) 2008-03-31 2010-01-12 Broadcom Corporation I/O connection scheme for QFN leadframe and package structures
US8076786B2 (en) * 2008-07-11 2011-12-13 Advanced Semiconductor Engineering, Inc. Semiconductor package and method for packaging a semiconductor package
JP5135164B2 (ja) * 2008-10-22 2013-01-30 株式会社東芝 ボンディング方法
JP5326650B2 (ja) 2009-02-25 2013-10-30 株式会社ノーリツ 加熱制御装置
CN102484080B (zh) * 2009-06-18 2015-07-22 罗姆股份有限公司 半导体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180891B1 (en) * 1997-02-26 2001-01-30 International Business Machines Corporation Control of size and heat affected zone for fine pitch wire bonding
US6033937A (en) * 1997-12-23 2000-03-07 Vlsi Technology, Inc. Si O2 wire bond insulation in semiconductor assemblies
TW200913102A (en) * 2007-08-15 2009-03-16 Stats Chippac Ltd Wire bonding structure and method that eliminates special wire bondable finish and reduces bonding pitch on substrates
TW200910490A (en) * 2007-08-31 2009-03-01 Shinkawa Kk Bonding device and bonding method
TW200923107A (en) * 2007-11-06 2009-06-01 Tanaka Electronics Ind Bonding wire

Also Published As

Publication number Publication date
JPWO2010147187A1 (ja) 2012-12-06
JP2019134181A (ja) 2019-08-08
TW201828434A (zh) 2018-08-01
CN102484080B (zh) 2015-07-22
CN102484080A (zh) 2012-05-30
JP6101747B2 (ja) 2017-03-22
TW201719839A (zh) 2017-06-01
EP2444999A4 (en) 2012-11-14
JP2017135392A (ja) 2017-08-03
CN105006462A (zh) 2015-10-28
US9780069B2 (en) 2017-10-03
TWI757463B (zh) 2022-03-11
CN105006462B (zh) 2019-03-01
US20180005981A1 (en) 2018-01-04
JP2018186312A (ja) 2018-11-22
US20150200181A1 (en) 2015-07-16
US10163850B2 (en) 2018-12-25
JP2015222819A (ja) 2015-12-10
WO2010147187A1 (ja) 2010-12-23
TWI556392B (zh) 2016-11-01
EP2444999A1 (en) 2012-04-25
TW201117337A (en) 2011-05-16
JP6800266B2 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
TWI624920B (zh) 導線接合方法及半導體裝置之製造方法
US20120153444A1 (en) Semiconductor device
TWI480993B (zh) Semiconductor device and method for manufacturing semiconductor device
US7271497B2 (en) Dual metal stud bumping for flip chip applications
KR100470897B1 (ko) 듀얼 다이 패키지 제조 방법
US7125745B2 (en) Multi-chip package substrate for flip-chip and wire bonding
KR20060121823A (ko) 가역 리드리스 패키지, 및 이를 제조 및 사용하기 위한방법
Manoharan et al. Advancements in silver wire bonding
US8786084B2 (en) Semiconductor package and method of forming
US7911061B2 (en) Semiconductor device
EP1367644A1 (en) Semiconductor electronic device and method of manufacturing thereof
JP2007227783A (ja) 半導体装置の製造方法
US6908788B1 (en) Method of connecting a conductive trace to a semiconductor chip using a metal base
JPH02114545A (ja) ワイヤボンディング接続方法
EP4095890A1 (en) Chip stacking structure, manufacturing method, and electronic device
TWI508248B (zh) 有機保焊之互連上之銅及加強之打線接合製程
JPS6123330A (ja) 半導体装置