TWI559584B - 記憶體單元、半導體結構、半導體裝置及其製造方法 - Google Patents

記憶體單元、半導體結構、半導體裝置及其製造方法 Download PDF

Info

Publication number
TWI559584B
TWI559584B TW104111482A TW104111482A TWI559584B TW I559584 B TWI559584 B TW I559584B TW 104111482 A TW104111482 A TW 104111482A TW 104111482 A TW104111482 A TW 104111482A TW I559584 B TWI559584 B TW I559584B
Authority
TW
Taiwan
Prior art keywords
species
magnetic
precursor
region
trapping
Prior art date
Application number
TW104111482A
Other languages
English (en)
Other versions
TW201543725A (zh
Inventor
高提傑S 珊得胡
蘇密特C 潘迪
Original Assignee
美光科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美光科技公司 filed Critical 美光科技公司
Publication of TW201543725A publication Critical patent/TW201543725A/zh
Application granted granted Critical
Publication of TWI559584B publication Critical patent/TWI559584B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Description

記憶體單元、半導體結構、半導體裝置及其製造方法 優先權主張
本申請案主張於2014年4月9日提出申請的標題為「MEMORY CELLS,SEMICONDUCTOR STRUCTURES,SEMICONDUCTOR DEVICES,AND METHODS OF FABRICATION」之序號為14/249,183之美國專利申請案之申請日期之權益。
在各種實施例中,本發明大體而言係關於記憶體裝置設計及製造之領域。更特定而言,本發明係關於表徵為自旋扭矩轉移磁性隨機存取記憶體(STT-MRAM)單元之記憶體單元之設計及製造,係關於此等記憶體單元中採用之半導體結構,且係關於併入有此等記憶體單元之半導體裝置。
磁性隨機存取記憶體(MRAM)是基於磁阻之一非揮發性電腦記憶體技術。一種類型之MRAM單元係包含由一基板支撐之一磁性單元核心之一自旋扭矩轉移MRAM(STT-MRAM)單元。磁性單元核心包含至少兩個磁性區(舉例而言,一「固定區」及一「自由區」)及介於其間之一非磁性區。自由區及固定區可展現相對於區之寬度為水平定向(「平面內」)或垂直定向(「平面外」)之磁性定向。固定區包含具有 一實質上固定(例如,一非可切換)磁性定向之一磁性材料。另一方面,自由區包含具有可在單元之操作期間在一「平行」組態與一「反平行」組態之間切換之一磁性定向之一磁性材料。在平行組態中,固定區及自由區之磁性定向係以相同方向(例如,分別北與北、東與東、南與南或西與西)引導。在「反平行」組態中,固定區及自由區之磁性定向係以相反方向(例如,分別北與南、東與西、南與北或西與東)引導。在平行組態中,STT-MRAM單元展現跨越磁阻元件(例如,固定區及自由區)之一較低電阻。此低電阻狀態可定義為MRAM單元之一「0」邏輯狀態。在反平行組態中,STT-MRAM單元展現跨越磁阻元件之一較高電阻。此高電阻狀態可定義為STT-MRAM單元之一「1」邏輯狀態。
切換自由區之磁性定向可藉由將一程式化電流傳遞穿過磁性單元核心及其中之固定區及自由區而完成。固定區極化程式化電流之電子自旋,且扭矩形成為通過核心之自旋極化電流。自旋極化電子電流將扭矩施加於自由區上。在通過核心之自旋極化電子電流之扭矩大於自由區之一臨界切換電流密度(J c )時,自由區之磁性定向之方向得以切換。因此,程式化電流可用於跨越磁性區變更電阻。跨越磁阻元件之所得高或低電阻狀態實現MRAM單元之寫入及讀取操作。在切換自由區之磁性定向以達成與一所要邏輯狀態相關聯之平行組態及反平行組態中之一者之後,通常期望在一「儲存」階段維持自由區之磁性定向直至將MRAM單元重新寫入至一不同組態(亦即,至一不同邏輯狀態)為止。
一磁性區之磁各向異性(「MA」)係材料之磁性性質之方向相依性之一指示。因此,MA亦係材料之磁性定向之強度及其對其定向之變更之抵抗的一指示。某些非磁性材料(例如,氧化物材料)與磁性材料之間的互動可沿著磁性材料之一表面引起MA(例如,增加MA強 度),從而添加至磁性材料及MRAM單元之整體MA強度。呈現具有一高MA強度之一磁性定向之一磁性材料可比呈現具有一低MA強度之一磁性定向之一磁性材料較不易於變更其磁性定向。因此,具有一高MA強度之一自由區在儲存期間可比具有一低MA強度之一自由區更穩定。
自由區之其他有益性質通常與自由區之微結構相關聯。舉例而言,此等性質包含單元之穿隧磁阻(「TMR」)。TMR係單元在反平行組態(Rap)中之電阻與其在平行組態(Rp)中之電阻之間的差對Rp之一比率(亦即,TMR=(Rap-Rp)/Rp)。通常,在其磁性材料之微結構中具有較少結構缺陷之具有一一致晶體結構(例如,一bcc(001)晶體結構)之一自由區具有比具有結構缺陷之一薄自由區高之一TMR。具有高TMR之一單元可具有一高讀出信號,該高讀出信號可在操作期間加速MRAM單元之讀取。高TMR亦可實現低程式化電流之使用。
已努力形成具有高MA強度且具有有益於高TMR之微結構之自由區。然而,由於促進一所要特性(諸如實現高MA、高TMR或兩者之一特性)之組合物及製造條件通常抑制MRAM單元之其他特性或效能,從而形成具有高MA強度及高TMR之MRAM單元具有所呈現挑戰。
舉例而言,在一所要晶體結構處形成磁性材料之努力包含:將所要晶體結構自一鄰近材料(本文中稱作為「晶種材料」)傳播至磁性材料(本文中稱作為「目標磁性材料」)。然而,傳播晶體結構可在以下情況下經抑制或可導致目標磁性材料中之微結構缺陷:在晶種材料在其晶體結構中具有缺陷之情況下,在目標磁性材料具有與晶體材料之晶體結構競爭之一晶體結構,或在競爭晶體結構亦自除晶種材料外之材料傳播至目標磁性材料之情況下。
確保晶種材料具有可成功傳播至一目標磁性材料之一一致無缺陷晶體結構之努力已包含:對晶種材料進行退火。然而,由於晶種材 料及目標磁性材料兩者通常同時曝露於退火溫度,因此在退火改良晶種材料之晶體結構時,退火可亦開始其他材料(包含目標磁性材料及其他鄰近材料)之結晶。此其他結晶可與來自晶種材料之所要晶體結構之傳播競爭並抑制該傳播。
延遲目標磁性材料之結晶直至在晶種材料結晶成一所要晶體結構之後為止的努力已包含:在初始形成時,將一添加劑併入至目標磁性材料中,使得目標磁性材料初始係非晶的。舉例而言,在目標磁性材料係一鈷鐵(CoFe)磁性材料之情況下,可添加硼(B)使得一鈷鐵硼(CoFeB)磁性材料可用作一前驅物材料且形成處於一初始非晶狀態。添加劑可在退火期間自目標磁性材料擴散出,使得目標磁性材料能夠在晶種材料已結晶成所要晶體結構之後在來自晶種材料之傳播下結晶。雖然此等努力可減少目標磁性材料將初始形成有將與欲自晶種材料傳播之晶體結構競爭之一微結構的可能性,但該等努力並未抑制競爭晶體結構自除晶種材料以外之鄰近材料之傳播。此外,自目標磁性材料擴散之添加劑可擴散至結構內之區,其中添加劑干擾結構之其他特性,例如,MA強度。因此,形成具有一所要微結構(例如,實現一高TMR)之一磁性材料而不惡化磁性材料或所得結構之其他特性(諸如MA強度)可提出挑戰。
本發明揭示一種記憶體單元。該記憶體單元包括一磁性單元核心,該磁性單元核心包括一磁性區、另一磁性區、一個氧化物區及一非晶區。該磁性區包括由一前驅物磁性材料形成之一空乏磁性材料,該前驅物磁性材料包括至少一個擴散物種及至少一個其他物種。該空乏磁性材料包括該至少一個其他物種。該氧化物區在磁性區與另一磁性區之間。該非晶區接近於該磁性區且係由包括至少一個吸子物種之一前驅物陷獲材料形成,該至少一個吸子物種具有至少一個陷獲位點 且對該至少一個擴散物種之一化學親和力高於該至少一個其他物種對該至少一個擴散物種之一化學親和力。該非晶區包括該至少一個吸子物種,該至少一個吸子物種鍵結至來自該前驅物磁性材料之該至少一個擴散物種。
本發明亦揭示一種包括一磁性區及一陷獲區之半導體結構。該磁性區位於一基板上方且包括一前驅物磁性材料,該前驅物磁性材料包括一擴散物種。該陷獲區包括至少一個吸子物種,該至少一個吸子物種包括至少一個陷獲位點。該至少一個吸子物種經配製以展現對該前驅物材料之該擴散物種之一化學親和力高於該擴散物種與該前驅物磁性材料之另一物種之間的一化學親和力。
本發明亦揭示一種形成一磁性記憶體單元之方法。該方法包括:形成一前驅物結構。形成該前驅物結構包括:在一基板上方形成包括陷獲位點之一前驅物陷獲材料。毗鄰於該前驅物陷獲材料形成包括一擴散物種之一前驅物磁性材料。該擴散物種自該前驅物材料轉移至該前驅物陷獲材料以將該前驅物磁性材料之至少一部分轉換成一空乏磁性材料且將該前驅物陷獲材料之至少一部分轉換成一濃化陷獲材料。在該轉移之後,由該前驅物結構形成一磁性單元核心結構。
本發明亦揭示一種形成一半導體結構之方法。該方法包括:在一基板上方形成包括至少一個擴散物種之一非晶前驅物磁性材料。接近該非晶前驅物磁性材料形成一前驅物陷獲材料。該前驅物陷獲材料包括具有至少一個陷獲位點之一吸子物種。該非晶前驅物磁性材料及該前驅物陷獲材料經退火以使該擴散物種與該吸子物種之該至少一個陷獲位點發生反應。
本發明亦揭示一種半導體裝置。該半導體裝置包括一自旋扭矩轉移磁性隨機存取記憶體(STT-MRAM)陣列。該STT-MRAM陣列包括STT-MRAM單元。該等STT-MRAM單元中之至少一個STT-MRAM單元 包括在一基板上方之一結晶磁性區。結晶磁性區展現一可切換磁性定向。一結晶氧化物區毗鄰該結晶磁性區。一磁性區展現一實質上固定之磁性定向且藉由該結晶氧化物區與該結晶磁性區間隔開。一非晶陷獲區毗鄰該結晶磁性區。該非晶陷獲區包括自該結晶磁性區之一前驅物磁性材料擴散且鍵結至該非晶陷獲區之一前驅物陷獲材料之一吸子物種的一物種。該前驅物磁性材料具有自該前驅物磁性材料擴散之該物種鍵結至該非晶陷獲區中之該吸子物種之陷獲位點。
100‧‧‧磁性單元結構
101‧‧‧磁性單元核心
102‧‧‧基板
104‧‧‧上部電極
105‧‧‧下部電極
110‧‧‧固定區
110'‧‧‧固定區
110"‧‧‧固定區
112‧‧‧箭頭/垂直磁性定向
113‧‧‧毗鄰氧化物部分
114‧‧‧毗鄰氧化物部分
115‧‧‧中間部分
117‧‧‧毗鄰電極部分
118‧‧‧磁性子區
119‧‧‧耦合劑子區
120‧‧‧自由區
122‧‧‧雙頭箭頭/垂直磁性定向
130‧‧‧中間氧化物區
131‧‧‧介面
132‧‧‧介面
140‧‧‧下部中間區
150‧‧‧上部中間區
180‧‧‧陷獲區
182‧‧‧陷獲區
200‧‧‧磁性單元結構
201‧‧‧磁性單元核心
260‧‧‧基礎區
270‧‧‧次級氧化物區
280‧‧‧陷獲區
290‧‧‧中間區
310‧‧‧固定區
312‧‧‧箭頭/水平磁性定向
320‧‧‧自由區
322‧‧‧雙頭箭頭/水平磁性定向
400‧‧‧磁性單元結構
400'‧‧‧磁性單元結構
401‧‧‧磁性單元核心
401'‧‧‧磁性單元核心
410‧‧‧固定區
410'‧‧‧固定區
414‧‧‧空乏毗鄰氧化物部分
417‧‧‧毗鄰電極部分
420‧‧‧自由區
480‧‧‧陷獲區
480'‧‧‧離散陷獲子區
482‧‧‧陷獲區
500‧‧‧磁性單元結構/記憶體單元結構
501‧‧‧磁性單元核心
570‧‧‧次級氧化物區
570'‧‧‧離散次級氧化物區
578‧‧‧陷獲氧化物區
600‧‧‧中間結構
600'‧‧‧中間結構
600"‧‧‧中間結構
600'''‧‧‧中間結構
605‧‧‧導電材料
621‧‧‧所擴散物種
621'‧‧‧所擴散物種
640‧‧‧下部中間材料
680‧‧‧前驅物陷獲材料
680'‧‧‧前驅物陷獲材料
680"‧‧‧吸子材料
680 IV ‧‧‧前驅物陷獲材料
680 V ‧‧‧前驅物陷獲材料
681‧‧‧濃化前驅物陷獲材料
682‧‧‧非晶陷獲材料/濃化陷獲材料/濃化非晶陷獲材料
682'‧‧‧非晶濃化陷獲材料/濃化陷獲材料
684‧‧‧吸子物種
684'‧‧‧原子
685‧‧‧介面
686‧‧‧吸子物種
686'‧‧‧原子
686"‧‧‧原子
687‧‧‧陷獲位點
688‧‧‧箭頭/轟擊
700‧‧‧中間結構
713‧‧‧磁性材料
713'‧‧‧前驅物磁性材料
720‧‧‧前驅物磁性材料
730‧‧‧氧化物材料
800‧‧‧退火中間結構/中間結構
820‧‧‧空乏磁性材料
820'‧‧‧空乏磁性材料
900‧‧‧前驅物結構
900'‧‧‧前驅物結構
900"‧‧‧退火結構分段
904‧‧‧導電材料
915‧‧‧中間材料
917‧‧‧材料
918‧‧‧磁性材料
919‧‧‧耦合劑材料
950‧‧‧上部中間材料
1000‧‧‧自旋扭矩轉移磁性隨機存取記憶體系統
1002‧‧‧磁性單元核心
1003‧‧‧存取電晶體
1004‧‧‧資料/感測線
1005‧‧‧存取線
1006‧‧‧源極線
1007‧‧‧讀取/寫入電路
1008‧‧‧位元線參考
1009‧‧‧感測放大器
1012‧‧‧周邊裝置
1014‧‧‧自旋扭矩轉移磁性隨機存取記憶體單元
1100‧‧‧半導體裝置
1102‧‧‧記憶體陣列
1104‧‧‧控制邏輯組件
1200‧‧‧基於處理器之系統
1202‧‧‧處理器
1204‧‧‧電源供應器
1206‧‧‧使用者介面
1208‧‧‧顯示器
1210‧‧‧RF子系統/基頻處理器
1212‧‧‧通信埠
1214‧‧‧周邊裝置
1216‧‧‧系統記憶體
1218‧‧‧非揮發性記憶體
圖1係根據本發明之一實施例之一磁性單元結構之一剖面、立面示意性圖解說明,其中該磁性單元結構包含上覆一自由區之一固定區、一單一氧化物區及接近於該自由區之一陷獲區。
圖1A係根據本發明之一替代實施例之圖1之框1AB之一放大圖,其中固定區包含一毗鄰氧化物部分、一中間部分及一毗鄰電極部分。
圖1B係根據本發明之另一替代實施例之圖1之框1AB之一放大圖,其中固定區包含一毗鄰氧化物部分、一中間陷獲部分及一毗鄰電極部分。
圖2係根據本發明之一實施例之一磁性單元結構之一剖面、立面示意性圖解說明,其中該磁性單元結構包含上覆一自由區之一固定區、接近於該自由區之雙重氧化物區及亦接近於該自由區之一陷獲區。
圖2A係根據本發明之一替代實施例之圖2之框2A之一放大圖,其中一陷獲區藉由一中間區與一磁性區間隔開。
圖3係根據本發明之一實施例之一磁性單元結構之一區段之一剖面、立面示意性圖解說明,其中一自由區及一固定區展現平面內磁性定向。
圖4A係根據本發明之一實施例之一磁性單元結構之一剖面、立 面示意性圖解說明,其中該磁性單元結構包含下伏一自由區之一固定區、接近於該自由區之一單一氧化物區及亦接近於該自由區之一陷獲區。
圖4B係根據本發明之一實施例之一磁性單元結構之一剖面、立面示意性圖解說明,其中該磁性單元結構包含下伏一自由區之一固定區、接近於該自由區之一單一氧化物區、亦接近於該自由區之一陷獲區,及接近於該固定區之另一陷獲區。
圖5係根據本發明之一實施例之一磁性單元結構之一剖面、立面示意性圖解說明,其中該磁性單元結構包含下伏一自由區之一固定區、雙重氧化物區、接近於該等雙重氧化物區中之一者且亦接近於該自由區之一陷獲區,及接近於該固定區之另一陷獲區。
圖5A係根據本發明之一替代實施例之圖5之框5A之一放大圖,其中離散陷獲子區與離散次級氧化物子區交替。
圖6至圖9C係根據本發明之實施例用以製造圖1、圖1A及圖1B之磁性單元結構之各種處理階段期間之剖面、立面示意性圖解說明,其中:圖6係在一處理階段期間之一結構之一剖面、立面示意性圖解說明,該結構包含一前驅物陷獲材料;圖6A係根據本發明之一實施例之其中進一步詳細圖解說明前驅物陷獲材料之圖6之結構之一剖面、立面示意性圖解說明,其中該前驅物陷獲材料經形成以具有替代吸子物種之一結構;圖6B係在圖6之處理階段之前進行之一處理階段之一剖面、立面示意性圖解說明,其中一吸子材料經轟擊以形成圖6之前驅物陷獲材料;圖6C係在圖6之處理階段之前且在圖6A之處理階段之後的一處理階段之一剖面、立面示意性圖解說明,其中替代吸子物種之結構經轟 擊以形成圖6之前驅物陷獲材料;圖6D係根據圖6A或圖6C之實施例之圖6之框6D之一放大圖,其中簡化圖解說明圖6之前驅物陷獲材料之陷獲位點;圖6E係在繼圖6D之處理階段之後的一處理階段期間之圖6之框6D之一放大圖,其中一擴散物種已與圖6D之陷獲位點發生反應以形成一濃化中間陷獲材料;圖6F係在繼圖6E之處理階段之後的一處理階段期間之圖6之框6D之一放大圖,其中圖6E之濃化中間陷獲材料中之該吸子物種及擴散物種已經互混以形成一非晶陷獲材料;圖6G係根據一實施例之在圖6之處理階段期間的框6D之一放大圖,其中前驅物陷獲材料包括鈷(Co)、鐵(Fe)及鎢(W);圖6H係根據另一實施例之圖6之處理階段期間之框6D之一放大圖,其中前驅物陷獲材料包括釕(Ru)及鎢(W);圖7係在繼圖6及圖6D之處理階段之後且在圖6E之處理階段之前的一處理階段期間之一結構之一剖面、立面示意性圖解說明;圖7A係圖7之框7A之一放大圖,其中簡化圖解說明毗鄰於圖6及圖6D之前驅物陷獲材料之一前驅物磁性材料中之一擴散物種;圖8係在繼圖7及圖7A之處理階段之後且與圖6F之處理階段同時之一處理階段期間之一經退火結構之一剖面、立面示意性圖解說明;圖8A係圖8之框8A之一放大圖,其中簡化圖解說明來自圖7A之前驅物磁性材料之現在為圖6F之非晶陷獲材料中之擴散物種之擴散物種;圖9A係根據本發明之一實施例之在繼圖8之處理階段之後的一處理階段期間之一前驅物結構之一剖面、立面示意性圖解說明;圖9B係根據本發明之一交替實施例之在繼圖8之處理階段之後的一處理階段期間之一前驅物結構之一剖面、立面示意性圖解說明;且 圖9C係圖解說明繼圖9B之處理階段之後的一處理階段之圖9B之框9C之一放大圖。
圖10係根據本發明之一實施例之包含具有一磁性單元結構之一記憶體單元之一STT-MRAM系統之一示意圖。
圖11係根據本發明之一實施例之包含具有一磁性單元結構之記憶體單元之一半導體裝置結構之一簡化方塊圖。
圖12係根據本發明之一或多個實施例實施之一系統之一簡化方塊圖。
本發明揭示記憶體單元、半導體結構、半導體裝置、記憶體系統、電子系統、形成記憶體單元之方法及形成半導體結構之方法。在記憶體單元之製造期間,將一「擴散物種」自一磁性材料(其亦可稱為一「前驅物磁性材料」)至少部分地移除,此歸因於前驅物磁性材料接近於包含至少一個吸子物種之一「前驅物陷獲材料」。該至少一個吸子物種具有至少一個陷獲位點,且和擴散物種與該前驅物磁性材料中之其他物種之間的一化學親和力相比,對該擴散物種具有較高之一化學親和力。擴散物種可自前驅物磁性材料擴散至前驅物陷獲材料。其中,所擴散物種可與吸子物種鍵結於陷獲位點處。擴散物種自前驅物磁性材料(其形成可稱為一「空乏磁性材料」之材料)之移除促進空乏磁性材料結晶成一所要晶體結構(例如,一bcc(001)結構)。此外,所擴散物種存在於在前驅物陷獲材料(其形成可稱為一「濃化前驅物陷獲材料」之材料)中且互混濃化前驅物陷獲材料之物種可形成具有一微結構(例如,一非晶微結構)之一濃化陷獲材料,該微結構不會不利地影響磁性材料之結晶成所要晶體結構之能力。因此,空乏磁性材料可結晶成一微結構,該微結構使包含空乏磁性材料之一記憶體單元能夠展現高穿隧磁阻(「TMR」)且具有由一或多個鄰近氧化物材 料沿著磁性材料(例如,空乏磁性材料)介面感應之磁各向異性(「MA」)。
如本文中所使用,術語「基板」意指且包含一基底材料或其上形成有諸如記憶體單元內之彼等組件之組件之其他構造。基板可係一半導體基板、在一支撐結構上之一基底半導體材料、一金屬電極或其上形成有一或多個材料、結構或區之一半導體基板。基板可係一習用矽基板或包含一半導電材料之其他塊體基板。如本文中所使用,術語「塊體基板」不僅意指且包含矽晶圓,而且意指且包含絕緣體上矽(「SOI」)基板(例如藍寶石上矽(「SOS」)基板或玻璃上矽(「SOG」)基板)、在一基底半導體基礎上之矽磊晶層或其他半導體或光電材料(例如矽-鍺(Si1-xGex,其中x是(舉例而言)介於0.2與0.8之間的一莫耳分數)、鍺(Ge)、砷化鎵(GaAs)、氮化鎵(GaN)或磷化銦(InP)以及其他)。此外,當在以下說明中提及一「基板」時,可能已利用先前處理階段在基底半導體結構或基礎中形成材料、區或接面。
如本文中所使用,術語「STT-MRAM單元」意指且包含一磁性單元結構,該磁性單元結構包含一磁性單元核心,該磁性單元核心包含安置於一自由區與一固定區之間的一非磁性區。非磁性區可係處於一磁穿隧接面(「MTJ」)組態中之一電絕緣(例如,電介質)區。舉例而言,介於自由區與固定區之間的非磁性區可係一個氧化物區(本文中稱作為「中間氧化物區」)。
如本文中所使,術語「次級氧化物區」係指一STT-MRAM單元之一個氧化物區而非中間氧化物區。次級氧化物區可經配製且經定位以用一鄰近磁性材料感應磁各向異性(「MA」)。
如本文中所使用,術語「磁性單元核心」意指且包含包括自由區及固定區之一記憶體單元結構且在記憶體單元之使用及操作期間電流可通過(亦即,流動)該磁性單元核心以影響自由區及固定區之磁性 定向之一平行組態或反平行組態。
如本文中所使用,術語「磁性區」意指展現磁力之一區。一磁性區包含一磁性材料且亦可包含一或多個非磁性材料。
如本文中所使用,術語「磁性材料」意指且包含鐵磁性材料、次鐵磁性材料、反鐵磁性及順磁性材料。
如本文中所使用,術語「CoFeB材料」及「CoFeB前驅物材料」意指且包含包括鈷(Co)、鐵(Fe)及硼(B)之一材料(例如,CoxFeyBz,其中x=10至80,y=10至80,且z=0至50)。一CoFeB材料或CoFeB前驅物材料可展現或可不展現磁力,此取決於其組態(例如,其厚度)。
如本文中所使用,術語「物種」意指且包含來自構成一材料之元素週期表之一元素或多個元素。舉例而言,且非限制性,在一CoFeB材料中,Co、Fe及B中之每一者可稱為CoFeB材料之物種。
如本文中所使用,術語「擴散物種」意指且包含一材料之一化學物種,其在材料中之存在並非材料之功能性所必需或(在至少一個例項中)期望。舉例而言,且非限制性,在一磁性區之一CoFeB材料中,在B(硼)結合Co及Fe之存在並非為Co及Fe充當一磁性材料(亦即,展現磁性)所必需之條件下,B可稱作為一擴散物種。在擴散之後,「擴散物種」可稱作為一「所擴散物種」。
如本文中所使用,術語「空乏」在用於闡述一材料時闡述由一擴散物種自一前驅物材料整體或部分移除所致之一材料。
如本文中所使用,術語「濃化」在用於闡述一材料時闡述所擴散物種已添加(例如,轉移)至之一材料。
如本文中所使用,術語「前驅物」在係指一材料、區或結構時意指且係指欲轉變成一所得材料、區或結構之一材料、區或結構。舉例而言,且非限制性,一「前驅物材料」可係指一物種欲自其擴散以將前驅物材料轉變成一空乏材料之一材料;一「前驅物材料」可係指 一物種欲擴散至其以將前驅物材料轉變成一濃化材料之一材料;一「前驅物材料」可係指具有陷獲位點之一不飽和材料,藉助該等陷獲位點而化學鍵結一物種以將該「前驅物材料」轉換成其中一次可用陷獲位點現在由物種佔據之一材料;且「一前驅物結構」可係指欲圖案化以將前驅物結構轉變成一所得經圖案化結構之材料或區之一結構。
如本文中所使用,除非內容脈絡另有指示,否則術語「由...形成」在闡述一材料或區時係指已由產生一前驅物材料或前驅物區之一轉變之一動作產生之一材料或區。
如本文中所使用,術語「化學親和力」意指且係指不同化學物種往往藉以形成化學化合物之電子性質。化學親和力可由化學化合物之生成熱指示。舉例而言,經闡述為對一第二材料之擴散物種具有較高之一化學親和力(和擴散物種與第二材料之其他物種之間的化學親和力相比)之一第一材料意指且包含:包含擴散物種及來自第一材料之至少一個物種之一化學化合物之一生成熱低於包含擴散物種及第二材料之其他物種之一化學化合物之一生成熱。
如本文中所使用,術語「不飽和材料」意指且係指包括具有至少一個陷獲位點之原子之材料。
如本文中所使用,術語「陷獲位點」意指且係指包括陷獲位點之材料之一原子或結構之一配位不足、不穩態或懸空鍵或點缺陷中之至少一者。舉例而言,且非限制性,一「陷獲位點」在一原子上包含一未滿足價。由於未滿足配位或價,陷獲位點高反應性,且在共價鍵結之情形中,懸空鍵之未配對電子與其他原子中之電子發生反應以便填充原子之價殼。具有一陷獲位點之原子可係一固定化材料(例如,一固體)中之一自由基。
如本文中所使用,術語「非晶」在係指一材料時意指且係指具有一非結晶結構之一材料。舉例而言,且非限制性,一「非晶」材料 包含玻璃。
如本文中所使用,術語「固定區」意指且包含STT-MRAM單元內之包含一磁性材料且在STT-MRAM單元之使用及操作期間具有一固定磁性定向之一磁性區,其中影響單元核心之一個磁性區(例如,自由區)之磁化方向之一改變之一電流或所施加場可不影響固定區之磁化方向之一改變。固定區可包含一或多個磁性材料及視情況一或多個非磁性材料。舉例而言,固定區可經組態為包含由磁性子區鄰接之一釕(Ru)子區之一合成反鐵磁體(SAF)。另一選擇係,固定區可經組態有交替的磁性材料子區與耦合劑材料子區之結構。磁性子區中之每一者其中可包含一或多個材料及一或多個區。作為另一實例,固定區可經組態為一單個均質磁性材料。因此,固定區可具有均勻磁化或不同磁化之子區,總而言之,此影響在STT-MRAM單元之使用及操作期間具有一固定磁性定向之固定區。
如本文中所使用,術語「耦合劑」在係指一材料、區或子區時意指且包含經配製或以其他方式經組態以反鐵磁性耦合鄰近磁性材料、區或子區之一材料、區或子區。
如本文中所使用,術語「自由區」意指且包含STT-MRAM單元內之包含一磁性材料且在STT-MRAM單元之使用及操作期間具有一可切換磁性定向之一磁性區。磁性定向可藉由一電流或所施加場之施加而在一平行組態與一反平行組態之間切換。
如本文中所使用,「切換」意指且包含記憶體單元之使用及操作之一階段,在該階段期間程式化電流通過STT-MRAM單元之磁性單元核心以影響自由區及固定區之磁性定向之一平行或反平行組態。
如本文中所使用,「儲存」意指且包含記憶體單元之使用及操作之一階段,在該階段期間程式化電流不通過STT-MRAM單元之磁性單元核心且其中並不有目的地更改自由區及固定區之磁性定向之平行 或反平行組態。
如本文中所使用,術語「垂直」意指且包含垂直於各別區之寬度及長度之一方向。「垂直」亦可意指且包含垂直於其上定位有STT-MRAM單元之基板之一主要表面之一方向。
如本文中所使用,術語「水平」意指且包含平行於各別區之寬度及長度中之至少一者之一方向。「水平」亦可意指且包含平行於STT-MRAM單元位於其上之基板之一主要表面之一方向。
如本文中所使用,術語「子區」意指且包含包含於另一區中之一區。因此,一個磁性區可包含一或多個磁性子區(亦即,磁性材料子區)以及非磁性子區(亦即,非磁性材料子區)。
如本文中所使用,術語「在...之間」係用以闡述一種材料、區或子區相對於至少兩種其他材料、區或子區之相對安置之一空間相對術語。術語「在...之間」可囊括一種材料、區或子區直接毗鄰於其他材料、區或子區之一安置及一種材料、區或子區間接毗鄰於其他材料、區或子區之一安置兩者。
如本文中所使用,術語「接近於」係用以闡述一種材料、區或子區靠近另一材料、區或子區之安置之空間相對術語。術語「接近」包含間接毗鄰於、直接毗鄰於及在內部安置。
如本文中所使用,將一元件提及為在另一元件「上」或「上方」意指且包含該元件直接在該另一元件之頂部上、毗鄰於該另一元件、在該另一元件下方或與該另一元件直接接觸。其亦包含元件間接在另一元件之頂部上、毗鄰於另一元件、在另一元件之下方或在另一元件附近,而其之間存在其他元件。相比而言,當稱一元件「直接在」另一元件「上」或「直接鄰近於」另一元件時,那麼不存在介入元件。
如本文中所使用,為便於說明,可使用其他空間相對術語(諸 如,「下面」、「下部」、「底部」、「上面」、「上部」、「頂部」及諸如此類)來闡述一個元件或特徵與另一元件或特徵之關係,如各圖中所圖解說明。除非另有明確指定,否則空間相對術語意欲除圖中所繪示之定向之外亦囊括材料之不同定向。舉例而言,若倒置諸圖中之材料,則闡述為在其他元件或特徵之「下面」或「下方」或「底部上」之元件將被定向為在該等其他元件或特徵之「上面」或「頂部上」。因此,術語「在...下面」取決於其中使用術語之內容脈絡而可囊括在...上面及在...下面之定向兩者,此對熟習此項技術者將係顯而易見的。材料可以其他方式定向(旋轉90度、倒置等)且因此解釋本文中所使用之空間相對描述符。
如本文中所使用,術語「包括(comprise/comprising)」及/或「包含(include/including)」指示存在規定特徵、區、階段、操作、元件、材料、組件及/或群組,但不排除存在或添加一或多個其他特徵、區、階段、操作、元件、材料、組件及/或其群組。
如本文中所使用,「及/或」包含相關聯所列舉項目中之一或多者之任何及全部組合。
如本文中所使用,單數形式「一(a)」、「一(an)」及「該(the)」意欲亦包含複數形式,除非上下文另有明確指示。
本文中所呈現之圖解說明並非意欲作為任一特定材料、物種、結構、裝置或系統之實際視圖,而僅僅係用於闡述本發明之實施例之理想化表示。
本文中參考為示意性圖解說明之剖面圖解說明來闡述實施例。因此,預期圖解說明之形狀會由於(舉例而言)製作技術及/或容限而有所變化。因此,本文中所闡述之實施例不應視為限於如所圖解說明之特定形狀或區,而可包含因(舉例而言)製作技術而引起之形狀偏差。舉例而言,圖解說明或闡述為盒形之一區可具有粗糙及/或非線性特 徵。此外,所圖解說明之銳角可經修圓。因此,各圖中所圖解說明之材料、特徵及區在本質上係示意性的,且其形狀並非意欲圖解說明材料、特徵或區之精確形狀且並非限制本申請專利範圍之範疇。
以下闡述提供特定細節(例如材料類型及處理條件),以便提供對所揭示裝置及方法之實施例之一透徹闡述。然而,熟習此項技術者應理解,可在不採用此等特定細節之情況下實踐裝置及方法之實施例。實際上,可結合業內採用之習用半導體製造技術來實踐裝置及方法之實施例。
本文中所闡述之製造程序並不形成用於處理半導體裝置結構之一完整程序流程。熟習此項技術者已知程序流程之其餘部分。因此,本文中僅闡述理解本發明裝置之實施例所需的方法及半導體裝置結構。
除非內容脈絡另外指示,否則本文中所闡述之材料可藉由包含但不限於旋塗、毯覆式塗佈、化學汽相沈積(「CVD」)、原子層沈積(「ALD」)、電漿增強型ALD、物理汽相沈積(「PVD」)(例如,濺鍍)或磊晶生長之任何適合技術而形成。取決於待形成之特定材料,可由熟習此項技術者選擇用於沈積或生長材料之技術。
除非內容脈絡另外指示,否則本文中所闡述的材料之移除可藉由包含但不限於蝕刻、離子研磨、磨料平坦化或其他已知方法之任何適合技術而完成。
現在將提及圖式,其中在通篇中相似編號係指相似組件。該等圖式未必按比例繪製。
本發明揭示一種記憶體單元。該記憶體單元包含包含接近於一磁性區之一非晶區之一磁性單元核心。該非晶區係由包括具有至少一個陷獲位點之至少一個吸子物種之一前驅物陷獲材料形成。吸子物種對形成磁性區之一前驅物磁性材料之一擴散物種具有一化學親和力。 因此,選擇吸子物種以自前驅物磁性材料吸引擴散物種,且前驅物陷獲材料及其陷獲位點經組態提供所擴散物種可與吸子物種發生反應且鍵結至該吸子物種之位點。
為促進陷獲位點存在於前驅物陷獲材料中,前驅物陷獲材料可經組態以包含複數個吸子物種之交替子區,使得陷獲位點在子區之間的多個介面處係普遍的。另一選擇係或另外,可藉由(例如)用一「轟擊物種」來轟擊前驅物陷獲材料來在材料中形成額外陷獲位點來促進陷獲位點之存在。前驅物陷獲材料中之一或多個吸子物種之陷獲位點之增加濃度組態前驅物陷獲材料以自前驅物磁性材料吸引擴散物種且將所擴散物種至少實質上保留於濃化陷獲材料中。
擴散物種自前驅物磁性材料之移除可實現並改良空乏磁性材料之結晶。舉例而言,一旦擴散物種已自前驅物磁性材料移除,一結晶結構可自一鄰近結晶材料(例如,一結晶氧化物材料)傳播至空乏磁性材料。此外,一旦所擴散物種與濃化陷獲材料之至少一個吸子物種及任何其他物種(若存在)互混,濃化陷獲材料可保持或變成非晶的。濃化陷獲材料之非晶本質可不競爭或以其他方式消極地影響晶體結構自毗鄰結晶材料材料至空乏磁性材料之傳播。在某些實施例中,濃化陷獲材料甚至在高溫(例如,大於約300℃,例如,大於約500℃)下可係非晶的。因此,一高溫退火可用於促進空乏磁性材料之結晶而不使濃化陷獲材料結晶。空乏磁性材料之結晶可實現一高TMR(例如,大於約100%,例如,大於約200%)。此外,所擴散物種經由一次可用陷獲位點保留於濃化陷獲材料中可抑制所擴散物種干擾沿著磁性區與一毗鄰中間氧化物區之間的介面之MA感應。在不限於任何一種理論之情況下,預期非磁性材料與磁性材料之間的鍵結(例如,磁性區中之鐵(Fe)與非磁性區中之氧(O),亦即,鐵氧(Fe-O)鍵結)可促進MA強度。介面處較少或無擴散物種可使得能夠形成更多MA感應鍵結。因此, 不存在所擴散物種對MA感應鍵結之干擾可實現高MA強度。因此,具有由具有陷獲位點之一前驅物陷獲材料形成之一非晶、濃化陷獲區之一磁性記憶體單元可形成有高TMR及高MA強度。
圖1圖解說明根據本發明之一磁性單元結構100之一實施例。磁性單元結構100包含在一基板102上方之一磁性單元核心101。磁性單元核心101可安置於一上部電極104與一下部電極105之間。磁性單元核心101分別包含一磁性區及另一磁性區,舉例而言,一「固定區」110及一「自由區」120,其間具有一個氧化物區(例如,一「中間氧化物區」130)。中間氧化物區130可經組態為一穿隧區且可沿著介面131接觸固定區110且可沿著介面132接觸自由區120。
固定區110及自由區120中之任一者或兩者可均質形成,或視情況可經形成以包含一個以上子區。舉例而言,參考圖1A,在某些實施例中,磁性單元核心101之一固定區110'(圖1)可包含多個部分。舉例而言,固定區110'可包含一磁性子區作為一毗鄰氧化物部分113。一中間部分115(諸如,一導電子區)可將毗鄰氧化物部分113與一毗鄰電極部分117分離。毗鄰電極部分117可包含磁性子區118及耦合劑子區119之一交替結構。
繼續參考圖1,一或多個下部中間區140可視情況安置於磁性區(例如,固定區110及自由區120)下方,且一或多個上部中間區150可視情況安置於磁性單元結構100之磁性區上方。下部中間區140及上部中間區150(若包含)可經組態以在記憶體單元之操作期間抑制物種分別在下部電極105與上覆材料之間以及在上部電極104與下伏材料之間擴散。
自由區120經形成接近於一陷獲區180。陷獲區180係由包括具有陷獲位點之至少一個吸子物種之一前驅物陷獲材料形成。前驅物陷獲材料在本文中亦稱作為一「不飽和吸子材料」。陷獲位點可係由於(舉 例而言且非限制性)吸子物種之交替子區之一不匹配晶格結構、用一轟擊物種(例如,離子及電漿)轟擊一吸子材料以形成陷獲位點(亦即,藉由使現有鍵結斷裂)或兩者而形成。
吸子物種經配製以對來自一鄰近前驅物磁性材料之一擴散物種之一化學親和力高於該鄰近前驅物磁性材料之其他物種與該擴散物種之間的化學親和力。擴散物種在前驅物磁性材料中之初始存在可抑制前驅物磁性材料之結晶,但陷獲區180接近於前驅物磁性材料可實現擴散物種自前驅物磁性材料至陷獲區180之材料之擴散。一旦經擴散,所擴散物種可在陷獲位點處與吸子物種起化學反應。
擴散物種自前驅物磁性材料之移除留下能夠結晶成一所要晶體結構(例如,一bcc(001))之一空乏磁性材料(亦即,具有與擴散之前的一濃度相比較低之一濃度之擴散物種之一磁性材料)。所要晶體結構可自一或多個鄰近材料(例如,中間氧化物區130之氧化物)傳播。經結晶之空乏磁性材料(具有所要晶體結構)可展現高TMR(例如,大於約100%(約1.00),例如,大於約200%(約2.00))。
在某些實施例中,陷獲區180可經配製成非晶且在鄰近空乏磁性材料結晶時保持非晶。在某些此等實施例中,陷獲區180之前驅物材料可在初始形成時係非非晶的(亦即,結晶的),但一旦來自前驅物磁性材料之所擴散物種已經接收且與陷獲區180之前驅物材料互混(例如,在一退火期間),前驅物材料即可轉換成一非晶結構。在其他實施例中,陷獲區180之前驅物材料可在初始形式時係非晶的且可甚至在高溫下(例如,在一退火期間)且甚至一旦濃化有所擴散物種仍保持非晶的。因此陷獲區180之材料可並不抑制鄰近空乏磁性材料之結晶。
陷獲區180之厚度、組合物及結構可經選擇以在陷獲區180中提供充足量之不飽和吸子材料(亦即,充足數目個陷獲位點)以具有自鄰 近前驅物磁性材料接收所擴散物種並與其鍵結之一所要能力。與一較薄陷獲區相比,一較厚陷獲區可具有對所擴散物種之一相對較高能力。根據諸如圖1中所圖解說明之實施例之一實施例,陷獲區180之厚度可介於約10Å(約1.0nm)至約100Å(約10.0nm)之間。
參考圖1B,在某些實施例中,可存在額外陷獲區。舉例而言,另一陷獲區182可包含於磁性單元核心101(圖1)中。另一陷獲區182可接近於一固定區110"之磁性材料(例如,初始為前驅物磁性材料,且隨後為空乏磁性材料)。在某些實施例中,另一陷獲區182可在一毗鄰氧化物部分114與毗鄰電極部分117之間形成固定區110"之一中間部分。
另一陷獲區182亦包含至少一個吸子物種,該至少一個吸子物種可相同於或不同於毗鄰自由區120之陷獲區180之吸子物種。另一陷獲區182之至少一個吸子物種在接收一所擴散物種之前亦包含陷獲位點。因此,另一陷獲區182可經配製、結構化及安置以便自(例如,毗鄰氧化物部分114之)一鄰近前驅物磁性材料吸引一擴散物種且與所擴散物種發生反應以促進空乏磁性材料之結晶。例如,一旦所擴散物種已鍵結至吸子物種且吸子與所擴散物種已互混,另一陷獲區182可係非晶的。因此濃化有所擴散物種之另一陷獲區182可在鄰近空乏磁性材料結晶時保持非晶,以便不干擾結晶。
繼續參考圖1,在陷獲區180接近於自由區120之實施例中,陷獲區180可藉由一或多個其他區(例如,藉由自由區120及中間氧化物區130)與固定區110實體隔離。因此,陷獲區180之物種可不與固定區110之物種起化學反應。
在諸如圖1B之實施例之實施例中,接近於固定區110"之另一陷獲區182可藉由一或多個其他區(例如,藉由固定區110"之毗鄰氧化物部分114且藉由中間氧化物區130)與自由區120實體隔離。因此,另一 陷獲區182之物種可不與自由區120之物種起化學反應。
圖1之磁性單元結構100經組態為一「頂釘紮式」記憶體單元,亦即,其中固定區110安置於自由區120上方之一記憶體單元。磁性單元結構100亦包含一單一氧化物區(亦即,中間氧化物區130),該單一氧化物區可經組態以在自由區120中感應MA且充當由自由區120、中間氧化物區130及固定區110之互動實現之一磁穿隧接面(MTJ)之一穿隧區。
另一選擇係,參考圖2,根據本發明之一實施例,一磁性單元結構200可經組態為具有含有雙重MA感應氧化物區(例如,中間氧化物區130及一次級氧化物區270)之一磁性單元核心201的一頂釘紮式記憶體單元。在某些實施例(諸如圖2中所圖解說明之實施例)中,次級氧化物區270可形成於一基礎區260上方(例如,直接在其上),使得基礎區260之一上部表面及次級氧化物區270之一下部表面可彼此接觸。
基礎區260可提供其上形成有上覆材料(諸如次級氧化物區270之材料)之一平滑模板。在某些實施例中,基礎區260經配製且經組態以實現次級氧化物區270之形成以在次級氧化物區270上方展現具有一所要晶體結構(例如,一bcc(001)晶體結構)之實現自由區120之形成之一晶體結構。舉例而言,且非限制性,基礎區260可使次級氧化物區270能夠以bcc(001)晶體結構形成於其上或稍後結晶成bcc(001)晶體結構,該結構可傳播至欲形成自由區120之一空乏磁性材料。
在某些實施例中,基礎區260可直接形成於下部電極105上。在其他實施例(諸如圖2中所圖解說明之實施例)中,基礎區260可形成於一或多個下部中間區140上。
在磁性單元核心201中,雙重氧化物區中之第二者(亦即,次級氧化物區270)可經安置接近於自由區120,例如,毗鄰於自由區120之與自由區120接近於中間氧化物區130之一表面相對之一表面。因此,次 級氧化物區270可藉由自由區120與中間氧化物區130間隔開。
陷獲區280可將自由區120與次級氧化物區270分離。然而,預期,陷獲區280可形成至實現自由區120與次級氧化物區270之間的MA感應的一厚度一,甚至而不需自由區120與次級氧化物區270直接實體接觸。舉例而言,陷獲區280之厚度可係較薄的(例如,小於約6Å(1小於約0.6nm)(例如,高度介於約2.5Å(約0.25nm)與約5Å(約0.5nm))。因此,陷獲區280可不使氧化物區(例如,次級氧化物區270)與磁性區(例如,自由區120)之間的MA感應實質上降級。因此,一磁性區可結晶成在一毗鄰氧化物區促進高MA強度時促進高TMR之一結構。
在圖2之頂釘紮式、雙重氧化物區組態中,另一選擇係,固定區110可經組態為圖1A之固定區110'或圖1B之固定區110",如上文所論述。因此,關於圖1B之固定區110",磁性單元結構200可包含一個以上陷獲區(例如,陷獲區280(圖2)及另一陷獲區182(圖1B))。
關於圖2A,在此實施例中或在本文中所揭示之任何其他磁性單元結構實施例中,陷獲區280可藉由一或多個中間區290與一鄰近磁性區(例如,自由區120)間隔開。此中間區290可經配製且經組態以擴散物種自磁性區(例如,自由區120)至陷獲區280之擴散。
本發明之實施例之記憶體單元可經組態為平面外STT-MRAM單元(如圖1及圖2中),或組態為平面內STT-MRAM單元(如圖3中所圖解說明)。「平面內」STT-MRAM單元包含展現主要沿一水平方向定向之一磁性定向之磁性區,而「平面外」STT-MRAM單元包含展現主要沿一垂直方向定向之一磁性定向之磁性區。舉例而言,如圖1中所圖解說明,STT-MRAM單元可經組態以在磁性區(例如,固定區110及自由區120)中之至少一者中展現一垂直磁性定向。所展現之垂直磁性定向可由垂直磁各向異性(「PMA」)強度來表徵。如圖1中藉由箭頭112及 雙頭箭頭122所指示,在某些實施例中,固定區110及自由區120中之每一者可展現一垂直磁性定向。固定區110之磁性定向可貫穿STT-MRAM單元之操作保持沿基本上相同方向引導,舉例而言,沿由圖1之箭頭112指示之方向。另一方向,自由區120之磁性定向可在單元之操作期間在一平行組態與一反平行組態之間切換,如由圖1之雙頭箭頭122指示。作為另一實例,如圖3中所圖解說明,一平面內STT-MRAM單元可經組態以磁性區(例如,一固定區310及一自由區320)中至少一者中展現一水平磁性定向,如由固定區310中之箭頭312及自由區320中之雙頭箭頭322所指示。儘管圖3僅圖解說明固定區310、中間氧化物區130及自由區320,但上覆區可係上覆圖1及圖2之固定區110之彼等區且下伏區可係下伏圖1及圖2中之自由區120之彼等區。
儘管在某些實施例(諸如圖1及圖2之實施例)中,固定區110可上覆自由區120,但在其他實施例(諸如圖4A、圖4B及圖5中之實施例)中,固定區110可下伏自由區120。舉例而言,且非限制性,在圖4A中,圖解說明具有一磁性單元核心401之一磁性單元結構400,其中一固定區410上覆下部電極105及(若存在)下部中間區140。基礎區260(圖2)(圖4A中未圖解說明)可視情況包含於(例如)下部電極105(或下部中間區140,若存在)與固定區410之間。固定區410可(舉例而言且非限制性)經組態為一多子區固定區410,其中一毗鄰電極部分417可經組態為一交替結構(如在圖1A及圖1B之毗鄰電極部分117中)。(例如)一均質磁性材料之毗鄰氧化物部分113可上覆毗鄰電極部分417。一子區(諸如圖1A之中間部分115)可安置於毗鄰電極部分417與毗鄰氧化物部分113之間。中間氧化物區130可上覆固定區410,且一自由區420可上覆中間氧化物區130。
一陷獲區480可接近於固定區410及自由區420中之至少一者。舉例而言,如圖4A中所圖解說明,陷獲區480可上覆自由區420。在其 他實施例中(圖4A中未圖解說明),陷獲區480或另一陷獲區可(另一選擇係或另外)下伏自由區420或安置於自由區420內部。
無論如何,陷獲區480係由一前驅物陷獲材料形成,接近於一前驅物磁性材料(例如,形成自由區420之材料)。前驅物陷獲材料包含至少一個吸子物種,該至少一個吸子物種具有陷獲位點,經配製及結構化以自前驅物磁性材料吸引一所擴散物種且與其發生反應以促進空乏磁性材料結晶成實現高TMR之一所要晶體結構。
上部電極104及(若存在)上部中間區150可上覆陷獲區480及自由區420。因此,磁性單元結構400經組態為具有一單一MA感應氧化物區(例如,中間氧化物區130)之一「底釘紮式」記憶體單元。
參考圖4B,經組態為具有一單一MA感應氧化物區之一底釘紮式記憶體單元的一磁性單元結構400'之一交替實施例可包含與圖4A之磁性單元結構400實質上相同之結構,但其中一磁性單元核心401'之一固定區410'包含另一陷獲區482而非圖4A之固定區410之中間部分115。因此,磁性單元核心401'可亦包含一空乏毗鄰氧化物部分414而非圖4A之非空乏、毗鄰氧化物部分113。
參考圖5,圖解說明亦經組態為一底釘紮式記憶體單元之一磁性單元結構500。所圖解說明記憶體單元結構500包含具有雙重氧化物區(例如,中間氧化物區130及一次級氧化物區570)之一磁性單元核心501。次級氧化物區570可在上部電極104下面且在自由區420及陷獲區480兩者上方。
在此實施例中,或在本文中所闡述之任何其他實施例中,陷獲區480可與次級氧化物區570合併,例如,作為次級氧化物區570之一或多個子區。此一併入陷獲及氧化物之區可在本文中稱作為一「陷獲氧化物區」。舉例而言,如圖5A中所圖解說明,一陷獲氧化物區578可包含與離散次級氧化物區570'相互安置之離散陷獲子區480'。然 而,離散陷獲子區480'可由具有含有已自前驅物磁性材料擴散之所擴散物種可鍵結至陷獲位點之吸子物種之前驅物陷獲材料形成。
本文中所揭示之實施例中之任一者之陷獲區(例如,陷獲區180(圖1))可係實質上連續(亦即,區之材料中無間隙)。然而,在其他實施例中,根據本文中所揭示之實施例中之任一者之一陷獲區可係不連續的(亦即,可在區之材料之間具有間隙)。
在本文中所闡述之實施例中之任一者中,以下各項之相對安置可分別顛倒:固定區110(圖1及圖2)、110'(圖1A)、110"(圖1B)、310(圖3)、410(圖4A)、410'(圖4B及圖5),中間氧化物區130(圖1至圖2及圖3至圖5),自由區120(圖1及圖2)、320(圖3)、420(圖4A、圖4B及圖5),陷獲區180(圖1)、182(圖1B)、280(圖2)、480(圖4A、圖4B及圖5)、482(圖4B及圖5),次級氧化物區270(圖2)、570(圖5)(若存在),陷獲氧化物區578(圖5A)(若存在)以及任何子區(若存在)。即使顛倒,中間氧化物區130仍安置於自由區120(圖1及圖2)、320(圖3)、420(圖4A、圖4B及圖5)與固定區110(圖1及圖2)、110'(圖1A)、110"(圖1B)、310(圖3)、410(圖4A)、410'(圖4B及圖5)之間,其中至少一個陷獲區(例如,陷獲區180(圖1)、另一陷獲區182(圖1B)、陷獲區280(圖2)、陷獲區480(圖4A、圖4B及圖5)、另一陷獲區482(圖4B及圖5)、陷獲氧化物區578(圖5A))接近於磁性區中之至少一者(例如,自由區120(圖1及圖2)、320(圖3)、420(圖4A、圖4B及圖5)與固定區110(圖1及圖2)、110'(圖1A)、110"(圖1B)、310(圖3)、410(圖4A)、410'(圖4B及圖5)中之至少一者)之前驅物磁性材料。
在其他實施例中(為圖解說明),一陷獲區可包含側向毗鄰於一磁性區(例如,自由區120)之一部分。側向毗鄰部分可係一垂直毗鄰部分之一添加或一替代方案。
因此,揭示包括一磁性單元核心之一記憶體單元。磁性單元核 心包括一磁性區,該磁性區包括由包括至少一個擴散物種及至少一個其他物種之一前驅物磁性材料形成的一空乏磁性材料。該空乏磁性材料包括該至少一個其他物種。該磁性單元核心亦包括另一磁性區及介於磁性區與另一磁性區之間的一個氧化物區。一非晶區接近於磁性區。非晶區係由包括至少一個吸子物種之一前驅物陷獲材料形成,該至少一個吸子物種具有至少一個陷獲位點且對至少一個擴散物種之一化學親和力高於至少一個其他物種對至少一個擴散物種之一化學親和力。該非晶區包括該至少一個吸子物種,該至少一個吸子物種鍵結至來自該前驅物磁性材料之該至少一個擴散物種。
參考圖6至圖9C,圖解說明製造磁性單元結構(諸如圖1之磁性單元結構100)之一方法中且根據圖1A及圖1B之實施例之階段。如圖6中所圖解說明,一中間結構600可形成有形成於基板102上方之一導電材料605及在導電材料605上方之一前驅物陷獲材料680。視情況,一或多個下部中間材料640可形成於導電材料605上方,然後於該一或多個下部中間材料上方形成前驅物陷獲材料680。
在其他實施例中,諸如可用於形成圖2之磁性單元結構200,或包括一基底次級氧化物區(例如,次級氧化物區270(圖2))之另一結構,一基礎材料(未展示)可形成於導電材料605及下部中間材料640(若存在)上方。一種氧化物材料(未展示)可形成於基礎材料上方,然後於該氧化物材料上方形成前驅物陷獲材料680。
形成下部電極105(圖1、圖2、圖4A、圖4B及圖5)之導電材料605可包括以下各項、基本上由以下各項組成,或由以下各項組成:(舉例而言且非限制性)一金屬(例如,銅、鎢、鈦、鉭)、一金屬合金,或其一組合。
在其中選用下部中間區140(圖1、圖2、圖4A、圖4B及圖5)形成於下部電極105上方之實施例中,形成下部中間區140之下部中間材料 640可包括以下各項,基本上由以下各項組成,或由以下各項組成:(舉例而言且非限制性)鉭(Ta)、鈦(Ti)、氮化鉭(TaN)、氮化鈦(TiN)、釕(Ru)、鎢(W)或其一組合。在某些實施例中,下部中間材料640(若被包含)可併入有形成下部電極105(圖1、圖2、圖4A、圖4B及圖5)之導電材料605。舉例而言,下部中間材料640可係導電材料605之一最上部子區。
在其中一基礎材料形成於導電材料上方(猶如形成圖2之磁性單元結構200)之實施例中,基礎材料可包括以下各項,基本上由以下各項組成,或由以下各項組成:(舉例而言且非限制性)包括鈷(Co)及鐵(Fe)中之至少一者的一材料(例如,一CoFeB材料)、包括一非磁性材料之一材料(例如,一非磁性導電材料(例如,一基於鎳之材料))或其一組合。基礎材料可經配製且經組態以提供實現將一材料(例如,一個氧化物材料)以一所要晶體結構(例如,一bcc(001)晶體結構)形成於其上方之一模板。
亦在用以形成圖2之磁性單元結構200之實施例中,形成次級氧化物區270(圖2)之氧化物材料可包括以下各項、基本上由以下各項組成,或由以下各項組成:(舉例而言且非限制性)一非磁性氧化物材料(例如,氧化鎂(MgO)、氧化鋁(Al2O3)、氧化鈦(TiO2)或習用MTJ區之其他氧化物材料)。氧化物材料可直接形成(例如,生長、沈積)於基礎材料(若存在)上。在其中基礎材料在初始形成時為非晶之實施例中,所得氧化物材料可在初始形成於基礎材料上方時係結晶的(例如,具有一bcc(001)晶體結構)。
前驅物陷獲材料680可藉由(舉例而言且非限制性)將至少一個吸子物種濺鍍於先前所形成材料上方而形成。前驅物陷獲材料680經配製(亦即,選擇至少一個吸子物種)以與來自欲毗鄰前驅物陷獲材料680形成之一前驅物磁性材料之一擴散物種與前驅物磁性材料之一其 他物種之間的一化學親和力相比,對該擴散物種具有一較高化學親和力。因此,前驅物陷獲材料680經配製以自前驅物磁性材料吸引擴散物種。
在某些實施例中,前驅物陷獲材料680中之每一物種可經配製以對來自前驅物磁性材料之所擴散物種具有一化學親和力(亦即,和與該擴散物種化學鍵結相容)。在其他實施例中,並非全部的前驅物陷獲材料680之物種可經配製以對擴散物種具有所要化學親和力。因此,前驅物陷獲材料680可包含不與所擴散物種發生反應之物種或可由與所擴散物種發生反應之物種組成或基本上由與所擴散物種發生反應之物種組成。
參考圖6至圖6F,前驅物陷獲材料680經結構化且經配製以提供至少一個吸子物種684、686(圖6A及圖6C至圖6F)之至少一個陷獲位點687(圖6D)。陷獲位點687(圖6D)使擴散物種(一旦自前驅物磁性材料擴散)能夠與至少一個吸子物種684、686中之至少一者鍵結使得所擴散物種可保留於本文中稱作為一「濃化前驅物陷獲材料」681(圖6E)中。
結構化前驅物陷獲材料680以包含陷獲位點687(圖6D)可包含:以吸子物種684、686之鄰近子區之間不匹配晶體晶格之一結構形成前驅物陷獲材料680。如本文中所使用,術語「不匹配晶體晶格」係指彼此未對準之鄰近物種之晶體晶格結構使得欲使物種完全飽和之物種之間的1:1鍵結可不容易達成。舉例而言,參考圖6A及圖6D,複數個吸子物種684、686可形成於彼此上方,以形成具有形成於吸子物種684、686中之兩者彼此毗鄰處之介面685之一交替結構。參考圖6D,此一不匹配晶體晶格結構可在吸子物種684、686之原子684'、686'、686"上留下陷獲位點687。陷獲位點687可至少部分地由於吸子物種684、686之晶體晶格結構之間的不匹配而特別佔據物種之間的介面 685。
並不限於任何特定理論,預期介面685之數目愈大,且因此吸子物種684、686之交替子區之數目愈大、可包含於前驅物陷獲材料680中之陷獲位點687之數目愈大。每一個別子區之厚度可係最小的(例如,大約一個原子厚或數個原子厚),其中此一中間結構600'之總厚度經修整以提供最大數目個陷獲位點687(亦即,在後續處理動作期間,用於所擴散物種之潛在鍵結位點)而不使欲形成之單元之其他特性(例如,電阻率)降級。
在某些實施例中,前驅物陷獲材料680可包含一過渡金屬(例如,鎢(W)、鉿(Hf)、鉬(Mo)及鋯(Zr))作為吸子物種684、686(例如,圖6A及圖6C至圖6F之吸子物種684)中之至少一者且包含鐵(Fe)、鈷(Co)、釕(Ru)及鎳(Ni)中之至少一者作為吸子化學品(例如,圖6A及圖6C至圖6F之吸子物種686)中之至少另一者。
在一項特定實施例(並非限制性)中,前驅物陷獲材料680可包括以下各項、基本上由以下各項組成或由以下各項組成:鈷及鐵(作為吸子物種(例如,吸子物種686)之一個類型)及鎢(W)(作為另一吸子物種(例如,吸子物種684))。鈷-鐵及鎢中之每一者可對經配製為一CoFeB磁性材料之一鄰近前驅物磁性材料之一擴散物種(諸如硼(B))具有一化學親和力。至少鎢對硼之化學親和力可大於硼與前驅物磁性材料之其他物種(例如,鈷及鐵)之間的一化學親和力。
在另一特定實例(並非限制性)中,前驅物陷獲材料680可包括以下各項、基本上由以下各項組成或由以下各項組成:釕(Ru)(作為一個吸子物種)及鎢(W)(作為另一吸子物種)。此外,釕及鎢中之每一者可對擴散物種(例如,硼(B))具有一化學親和力。
參考圖6B,用於結構化前驅物陷獲材料680以包含陷獲位點687(圖6D)之另一方法係:在基板102上方形成一吸子材料680"(其在初始 形成時可未必係不飽和的),且然後用來自電漿之(例如)一或多個離子或自由基作為轟擊物種來轟擊吸子材料680"以感應吸子材料680"之微結構中之點缺陷、不穩態鍵結、配位不足位點或懸空鍵(亦即,陷獲位點)。舉例而言,轟擊物種(諸如氬(Ar)、氮(N)、氦(He)、氙(Xe))可如由箭頭688所指示經驅動至中間結構600"之吸子材料680"中以使經佔據鍵結斷裂且形成陷獲位點687(圖6D)。在此等實施例中,轟擊物種可保留於前驅物陷獲材料680(圖6及圖6D)中。
參考圖6C,一技術組合可用於結構化前驅物陷獲材料680以包含陷獲位點687(圖6D)。舉例而言,具有不匹配晶體晶格結構之圖6A之中間結構600'可經受圖6B之轟擊688程序。一經轟擊不匹配晶體晶格中間結構600'''可包含多於可僅由圖6A及圖6B之技術產生之陷獲位點之陷獲位點687(圖6D)。
在隨後處理期間,諸如在一退火階段期間,一擴散物種621'(圖7A)可自一鄰近前驅物磁性材料轉移(例如,擴散)至前驅物陷獲材料680。隨著上述情況發生,如圖6E中所圖解說明,陷獲位點687(圖6D)可接收所擴散物種621並與其發生反應以形成一濃化前驅物陷獲材料681。所擴散物種621之原子可鍵結吸子物種684、686之原子684'、686'、686"中之一或多者(參見圖6E)。
在某些實施例(諸如圖6A及圖6C亦及(視情況)圖6B之實施例)中,前驅物陷獲材料680可在初始形成於基板102上方時係結晶的。隨著所擴散物種621開始擴散至陷獲位點687(圖6D)中且與其發生反應,前驅物陷獲材料680可(至少初始地)保持結晶。然而,隨著濃化前驅物陷獲材料681之組合物改變,亦即,隨著所擴散物種621之大部分由陷獲位點687(圖6D)陷獲,且隨著退火之高溫促進材料移動,濃化前驅物陷獲材料681之物種(例如,所擴散物種621及吸子物種684、686)可互混且將濃化前驅物陷獲材料681轉換成一非晶陷獲材料682(在本文 中亦稱作為一「濃化陷獲材料682」及一「濃化非晶陷獲材料682」),如圖6F中所圖解說明。
在其他實施例(諸如圖6G及6H之彼等實施例)中,前驅物陷獲材料680(圖6)可經配製以在初始形成於基板102上時係非晶的且貫穿(例如)一退火保持非晶的。舉例而言,參考圖6G,一前驅物陷獲材料680 IV 可包括以下各項、基本上由以下各項組成或由以下各項組成:鐵(Fe)、鈷(Co)及鎢(W),且可在初始形成於基板102上方(圖6)時係非晶的。Fe、Co及W之原子中之至少一者可係配位不足、不穩態或具有懸空鍵或點缺陷使得原子包含陷獲位點687(參見圖6D)(圖6G中未圖解說明)。作為另一實例,參考圖6H,一前驅物陷獲材料680 V 可包括以下各項,基本上由以下各項組成或由以下各項組成:釕(Ru)及鎢(W),且可在初始形成於基板102上方(圖6)時係非晶的。Ru及W之原子中之至少一者可係配位不足、不穩態或具有懸空鍵或點缺陷使得原子包含陷獲位點687(參見圖6D)(圖6H中未圖解說明)。在任一此類實施例中,陷獲位點687(參見圖6D)可非沿著所界定介面對準,而是可貫穿前驅物陷獲材料680 IV (圖6G)、680 V (圖6H)分佈。此外,濃化前驅物陷獲材料681可亦係非晶的。在此等實施例中,前驅物陷獲材料680 IV (圖6G)、680 V (圖6H)之物種之原子率可經選擇以使前驅物陷獲材料680 IV (圖6G)、680 V (圖6H)能夠係非晶的且甚至在高退火溫度(例如,大於約500℃)下保持非晶。
在任何情形中,前驅物陷獲材料680中之吸子物種684、686之原子率可經選擇以將最終、濃化陷獲材料682中之原子率修整成將係非晶的且在高退火溫度下保持非晶的之一組合物。舉例而言,在其中前驅物陷獲材料680包括以下各項、基本上由以下各項組成或由以下各項組成:鐵(Fe)、鈷(Co)及鎢(W)且其中硼(B)係擴散物種621之實施例中,前驅物陷獲材料680之組合物可經選擇使得包含所擴散物種621及 (視情況)轟擊物種之濃化陷獲材料682之組合物包括至少約35at.%鎢(W)(其可保持非晶的直至約700℃之溫度)。
此外,前驅物陷獲材料680可經配製使得前驅物陷獲材料680在用於使空乏磁性材料結晶之退火期間所使用之高溫下係穩定的(例如,物種將不向外擴散)。因此,可使用促進自一前驅物磁性材料導出之空乏磁性材料結晶成一所要晶體結構(例如,一bcc(001)結構)之高溫而無需前驅物陷獲材料680抑制結晶。在不限於任何一種理論之情況下,預期濃化陷獲材料682之非晶本質避免空乏磁性材料中之微結構缺陷,該微結構缺陷可原本在濃化陷獲材料682具有不同於所要晶體結構(例如,bcc(001)結構)之微結構且隨晶體結構自一鄰近材料傳播至空乏磁性材料而與該晶體結構之微結構競爭之一微結構之情況下形成。
因此,揭示包括在一基板上方之一磁性區之一半導體結構。磁性區包括一前驅物磁性材料,該前驅物磁性材料包括一擴散物種。一陷獲區包括至少一個吸子物種,該至少一個吸子物種包括至少一個陷獲位點。至少一個吸子物種經配製以展現對磁性前驅物材料之擴散物種之一化學親和力高於擴散物種與前驅物磁性材料之一其他物種之間的一化學親和力。
參考圖7,在已形成圖6之前驅物陷獲材料680之後,且在擴散擴散物種621'以與陷獲位點687發生反應(圖6D及圖6E)之前,可將至少一個前驅物磁性材料720形成於前驅物陷獲材料680上方,如圖7中所圖解說明。最終形成自由區120(圖1)之前驅物磁性材料720可包括以下各項、基本上由以下各項組成或由以下各項組成:(舉例而言且非限制性)一鐵磁材料(包含鈷(Co)及鐵(Fe)(例如,CoxFey,其中x=10至80且y=10至80)且在某些實施例中亦包含硼(B)(例如,CoxFeyBz,其中x=10至80,y=10至80且z=0至50))。因此,前驅物磁性材料 720可包括Co、Fe及B中之至少一者(例如,一CoFeB材料、一FeB材料、一CoB材料)。在其他實施例中,前驅物磁性材料720可(另一選擇係或另外)包含鎳(Ni)(例如,一NiB材料)。在某些實施例中,前驅物磁性材料720可包括與基礎材料相同之材料(在包含於基板102上之導電材料605上方之條件下)或具有基礎材料相同之元素但具有彼等元素之不同原子率之一材料。前驅物磁性材料720可形成為一均質區。在其他實施例中,前驅物磁性材料720可包含(例如)CoFeB材料之一或多個子區,其中子區具有不同相對原子率之Co、Fe及B。
參考圖7A,前驅物磁性材料720包含至少一個擴散物種621'及至少一個其他物種。擴散物種621'之存在對前驅物磁性材料720或由其形成之一空乏磁性材料展現磁性而言並非必需的。然而,擴散物種621'在前驅物磁性材料720中之存在可使前驅物磁性材料720能夠以一非晶狀態形成(例如,藉由濺鍍)。
前驅物陷獲材料680接近於前驅物磁性材料720且前驅物陷獲材料680對擴散物種621'(圖7A)之較高化學親和力(與前驅物磁性材料720之其他物種相比)可實現擴散物種621'(圖7A)自前驅物磁性材料720之移除。參考圖8及圖8A,移除形成一空乏磁性材料820及濃化陷獲材料682,如圖8中所圖解說明。舉例而言,且參考圖8B,擴散物種621'(圖7A)可擴散至前驅物陷獲材料680中,其中所擴散物種621可化學鍵結至前驅物陷獲材料680之吸子物種684、686。所擴散物種621藉由前驅物陷獲材料680自前驅物磁性材料720之此移除可在一中間結構700(圖7)之一退火以形成一退火中間結構800期間發生,如圖8中所圖解說明。
在退火中間結構800中,空乏磁性材料820具有一較低濃度之所擴散物種621(圖8A),而濃化陷獲材料682包含所擴散物種621,如圖8A中所圖解說明。磁性單元結構100(圖1)、200(圖2)、400(圖4A)、 400'(圖4B)及500(圖5)可因此包含空乏磁性材料820(例如,在自由區120(圖1及圖2)、320(圖3)、420(圖4A、圖4B及圖5中);在固定區110"之毗鄰氧化物部分114(圖1B)中;及在固定區410'之毗鄰氧化物部分414(圖4及圖5)中)及包含擴散物種之濃化陷獲材料682(例如,在陷獲區180(圖1)、280(圖2及圖2A),480(圖4A、圖4B及圖5)中;在另一陷獲區182(圖1B)、482(圖4B及圖5)中;在陷獲氧化物區578離散陷獲子區480'(圖5A)中)。
舉例而言,且非限制性,在其中前驅物磁性材料720(圖7)係一CoFeB材料之實施例中,空乏磁性材料820可係一CoFe材料(亦即,包括鈷及鐵之一磁性材料)。在其中前驅物陷獲材料680(圖7)係一鈷-鐵(CoFe)吸子物種之子區與一鎢(W)吸子物種子區之一交替結構之此等實施例中,濃化陷獲材料682可係鈷、鐵、鎢及硼(B)之一非晶混合物(亦即,一CoFeWB混合物或合金)。
在不限於任何一種理論之情況下,預期藉助具有對硼具有一親和力之吸子物種之陷獲位點687(圖6D)之一前驅物陷獲材料680將硼之擴散物種621'(圖7A)自CoFeB前驅物磁性材料720移除可實現空乏磁性材料820在低於包含擴散物種621'之前驅物磁性材料720(圖7)之結晶溫度之一溫度下結晶。因此,所使用之一退火溫度(例如,大於約500℃)可實現空乏磁性材料820之結晶(例如,藉由傳播來自一鄰近材料(例如,中間氧化物區130(圖1)之材料)之所要晶體結構)而無需較高以致於使鄰近材料降級(例如,無需使鎢(W)自濃化陷獲材料682向外擴散)。因此,空乏磁性材料820可結晶成實現無實質結構缺陷之一磁性單元結構(例如,磁性單元結構100(圖1)、200(圖2)、400(圖4A)、400'(圖4B)、500(圖5))之形成之一所要晶體結構(例如,一bcc(001)晶體結構)。不存在實質結構缺陷可實現一高TMR。
在不限於任何一種理論之情況下,進一步預期擴散物種621'(圖 7A)自前驅物磁性材料720(及/或自另一前驅物磁性材料713'(圖9B))之移除亦可促進沿著空乏磁性材料820與一鄰近氧化物材料(例如,次級氧化物區270(圖2)或中間氧化物區130(圖1)之氧化物材料)之間的一介面之MA感應。舉例而言,在不存在擴散物種621'(圖7A)之情況下,空乏磁性材料820之其他物種可與氧化物材料具有比在擴散物種621'仍併入於前驅物磁性材料720中之條件下其他物種原本具有之互動多之互動。此外,所擴散物種621(圖8A)經由化學鍵結保留於濃化陷獲材料682中之一次可用陷獲位點687(圖6D)處可避免所擴散物種621擴散至磁性區(例如,自由區120)與其鄰近MA感應氧化物區(例如,中間氧化物區130(圖1))之間的介面(例如,介面132(圖1))。此可沿著介面(例如,介面132(圖1))實現比原本可達成互動多之MA感應互動。因此,甚至在其中僅包含一單一MA感應氧化物區(例如,中間氧化物區130)之實施例中,MA強度可大於不具有前驅物陷獲材料680(或確切地說,濃化陷獲材料682)之相同結構之MA強度,此歸因於存在前驅物陷獲材料680(或確切地說,濃化陷獲材料682)。
雖然自由區120(例如,圖1)經闡述為係由包括擴散物種621'(圖7A)之前驅物磁性材料720(例如,一CoFeB材料)「形成」,但所製造磁性單元核心101(圖1)(或本發明之任何單元核心)之自由區120可包括比在前驅物磁性材料720初始形成時實質上少之擴散物種621'(例如,硼(B))。同樣地,在其中固定區110(圖1)之磁性材料受一陷獲材料之一鄰近區影響之實施例中,固定區110可包括比其在無附近陷獲材料之情況下原本包括之擴散物種實質上少之擴散物種621'。相反,所製造磁性單元核心101之陷獲區180(圖1)可包括前驅物陷獲材料680之物種及已自前驅物磁性材料720擴散之所擴散物種621(例如,硼(B))兩者。
繼續參考圖7及圖8,形成中間氧化物區130(圖1)之一個氧化物材 料730可形成於前驅物磁性材料720上,例如,在使空乏磁性材料820結晶的退火之前。氧化物材料730可包括以下各項、基本上由以下各項組成或由以下各項組成:(舉例而言且非限制性)一非磁性氧化物材料(例如,氧化鎂(MgO)、氧化鋁(Al2O3)、氧化鈦(TiO2)或習用MTJ非磁性區之其他氧化物材料)。在其中另一氧化物材料形成於前驅物陷獲材料680之前的實施例中,另一氧化物材料可係與氧化物材料730相同之材料或包括與氧化物材料730相同之元素但其具有不同原子率之一材料。舉例而言,且非限制性,氧化物材料730及另一氧化物材料中之兩者在一雙氧化物實施例中可包括以下各項,基本上由以下各項組成或由以下各項組成:MgO。
氧化物材料730可直接形成(例如,生長、沈積)於前驅物磁性材料720上。氧化物材料730可在初始形成時係結晶的(例如,具有bcc(001)結構)或可稍後在退火期間係結晶的。氧化物材料730可經定位使得在退火期間所要晶體結構可傳播至一鄰近磁性材料(例如,空乏磁性材料820(圖8))以使磁性材料(例如,空乏磁性材料820(圖8))能夠結晶成相同晶體結構(例如,bcc(001)結構)。
退火中間結構800之其他材料亦可由於退火而結晶。退火程序可在自約300℃至約700℃(例如,約500℃)之一退火溫度下進行且可在該退火溫度下保持自約一分鐘(約1分鐘)至約一小時(約1小時)。退火溫度及時間可基於中間結構700之材料、(例如)空乏磁性材料820之所要晶體結構及所擴散物種621自前驅物磁性材料720之所要量之空乏而修整。
在某些實施例(諸如圖7及圖8中所圖解說明之實施例)中,形成固定區110'(圖1A)之毗鄰氧化物部分113之另一磁性材料713可直接形成(例如,生長、沈積)於氧化物材料730上,例如,使空乏磁性材料820結晶之退火階段之前或之後。另一磁性材料713可包括以下各項、基 本上由以下各項組成或由以下各項組成:(舉例而言且非限制性)包含鈷(Co)及鐵(Fe)之鐵磁材料(例如,CoxFey,其中x=10至80且y=10至80)且在某些實施例中亦包含硼(B)(例如,CoxFeyBz,其中x=10至80、y=10至80及z=0至50)。因此,另一磁性材料713可包括一CoFeB材料。在某些實施例中,另一磁性材料713可係與前驅物磁性材料720及基礎材料(若包含於中間結構800中)中之任一者或兩者相同之材料,或具有相同元素但處於不同原子率之一材料。
參考圖9A,根據用以根據圖1至圖1A形成磁性單元結構100之一實施例中,一非陷獲中間材料915可在已形成退火中間結構800(圖8)之後形成於另一磁性材料713上。因此,中間材料915可包括以下各項,基本上由以下各項組成或由以下各項組成:一導電材料(例如,鉭(Ta))。
另一選擇係,參考圖9B,根據用以根據圖1及圖1B形成磁性單元結構100之一實施例,可形成另一前驅物陷獲材料680'而非圖9A之中間材料915。在此等實施例中,另一磁性材料713可表徵為包含一擴散物種621'(圖7A)(例如,硼(B))之另一前驅物磁性材料713',該擴散物種可藉由另一前驅物陷獲材料680'自另一前驅物磁性材料713'移除。另一前驅物陷獲材料680'可在退火之前形成於另一前驅物磁性材料713'上,使得一退火結構分段900"(圖9C)可包含由另一前驅物磁性材料713'形成之另一空乏磁性材料820'(圖9C)。退火結構分段900"亦包含接近於另一空乏磁性材料820'之另一非晶濃化陷獲材料682'
磁性單元結構(例如,磁性單元結構100(圖1、圖1A、圖1B))之剩餘材料可經製造於中間材料915上方(根據圖9A之實施例)或製造於另一濃化陷獲材料682'上方(根據圖9B及圖9C之實施例)以分別形成一前驅物結構900(圖9A)或900'(圖9B)。舉例而言,材料917(諸如交替磁性材料918及耦合劑材料919)可形成於中間材料915(圖9A)上或另一 濃化陷獲材料682'(圖9C)上。舉例而言,且非限制性,材料917可包括以下各項,基本上由以下各項組成或由以下各項組成:鈷/鈀(Co/Pd)多子區;鈷/鈀(Co/Pt)多子區;鈷/鎳(Co/Ni)多子區;習用固定區之基於鈷/鐵/鋱(Co/Fe/Tb)之材料、L10材料、耦合劑材料或其他磁性材料。因此,固定區110'(圖1A)或110"(圖1B)分別可包含由材料917形成之毗鄰電極部分117(圖1A及圖1B)。固定區110'(圖1A)或110"(圖1B)亦可包含分別由中間材料915或另一濃化陷獲材料682'形成之中間部分115(圖1A)或另一陷獲區182(圖1B)以及分別由另一前驅物磁性材料713(圖9A)或另一空乏磁性材料820'(圖9C)形成之毗鄰氧化物部分113(圖1A)或114(圖1B)。
在某些實施例中,視情況,一或多個上部中間材料950可形成於用於固定區110'(圖1A)、110"(圖1B)之毗鄰電極部分117之材料917上方。上部中間材料950(若經包含,其形成選用上部中間區150(圖1))可包括以下各項,基本上由以下各項組成或由以下各項組成:經組態以確保鄰近材料中之一所要晶體結構之材料。上部中間材料950可(另一選擇係或另外)包含經組態以在習用STT-MRAM單元核心結構之磁性單元、障壁材料或其他材料之製造期間輔助圖案化程序之金屬材料。在某些實施例中,上部中間材料950可包含欲形成為一導電封端區之一導電材料(例如,諸如銅、鉭、鈦、鎢、釕、氮化鉭或氮化鈦之一或多個材料)。
可形成上部電極104(圖1)之另一導電材料904形成於可形成於用於固定區110'(圖1A)、110"(圖1B)之毗鄰電極部分117之材料917及(若存在)上部中間材料950上方。在某些實施例中,另一導電材料904及上部中間材料950(若存在)可彼此整合,例如,其中上部中間材料950係導電材料904之下部子區。
分別根據圖1及圖1A或圖1及圖1B中所圖解說明之實施例,可然 後在一或多個階段中圖案化前驅物結構900(圖9A)、900'(圖9B)以形成磁性單元結構100。用於圖案化諸如前驅物結構900(圖9A)、900'(圖9B)之結構以形成諸如磁性單元結構100(圖1、圖1A及圖1B)之結構的技術為此項技術中所習知且因此本文中不詳細闡述。
在圖案化之後,磁性單元結構100包含磁性單元核心101,該磁性單元核心包含接近於自由區120之陷獲區180且在圖1B之實施例中接近於固定區110"之另一陷獲區182。自由區120包含由前驅物磁性材料720(圖7)形成之空乏磁性材料820(圖8)且包括低於由前驅物磁性材料720(圖7)形成但接近其無陷獲區180之一自由區之一濃度之擴散物種621'(圖7A)。此外,根據圖1B之實施例,包含由另一前驅物磁性材料713'(圖9B)形成之毗鄰氧化物部分114中之另一空乏磁性材料820'(圖9C)的固定區110"包括低於由另一前驅物磁性材料713'(圖9B)形成但接近其無另一陷獲區182之一固定區之一濃度之擴散物種621'(圖7A)。
在某些實施例中,接近於陷獲區(例如,陷獲區180、另一陷獲區182(圖1B))之磁性區(例如,自由區120、固定區110"(圖1B))可實質上或完全空乏擴散物種621'。在其他實施例中,磁性區可部分空乏擴散物種621'。在此等實施例中,磁性區貫穿其中可具有一擴散物種621'(例如,硼)梯度,其中,彼此相對,一低濃度之擴散物種621'毗鄰於陷獲區180且一高濃度之擴散物種621'與陷獲區180對置。擴散物種621'之濃度可在某些實施例中在退火之後或其之間平衡。
形成有一結晶、空乏磁性材料820(圖8)或其他空乏磁性材料之自由區120或其他磁性區(例如,固定區110"(圖1B)之毗鄰氧化物部分114)可具有可實質上無缺陷之一所要晶體結構,至少部分地歸因於擴散物種621'之移除及所擴散物種621至陷獲位點687(圖6D)之鍵結且至少部分地歸因於陷獲區180(或另一陷獲區182)之非晶微結構。
自由區120之結晶度可使磁性單元結構100能夠在使用及操作期間展現一高TMR。此外,自由區120之空乏磁性材料820可促進與一鄰近氧化物區(例如,次級氧化物區270及中間氧化物區130)之MA感應。
此外,在其中自由區120安置於雙重氧化物區(例如,圖2之中間氧化物區130及次級氧化物區270)之間之實施例中,可由於來自雙重氧化物區中之兩者之MA感應而進一步促進高MA強度。在此等實施例中,可沿著接近於次級氧化物區270之自由區120之表面感應MA,甚至其中陷獲區180安置於自由區120與次級氧化物區270之間。用於形成陷獲區180之前驅物陷獲材料680(圖7)之量可經修整成足以將擴散物種621'(圖7A)中之至少某些擴散物種自前驅物磁性材料720(圖7A)有效移除之一量同時亦修整亦成實質上不至於抑制次級氧化物區270與自由區120之間的MA感應之一量。
因此,揭示形成一磁性記憶體單元之一方法。該方法包括:形成一前驅物結構。形成前驅物結構包括:在一基板上方形成包括陷獲位點之一前驅物陷獲材料。形成前驅物結構亦包括:毗鄰於前驅物陷獲材料形成包括一擴散物種之一前驅物磁性材料。使擴散物種自前驅物磁性材料轉移至前驅物陷獲材料以將前驅物磁性材料之至少一部分轉換成一空乏磁性材料及將前驅物陷獲材料之至少一部分轉換成一濃化陷獲材料。在該轉移之後,由該前驅物結構形成一磁性單元核心結構。
圖4A之磁性單元結構400包含可表徵為圖1及圖1A之磁性單元核心101之一倒置之磁性單元核心401。圖4A之磁性單元結構400可藉由自基板102向上形成磁性單元結構400之材料並圖案化該等材料而製造,其中繼形成用於上覆自由區420之陷獲區480之前驅物陷獲材料680(圖6)之後係至少一個退火。
圖4B之磁性單元結構400'包含可表徵為圖1及圖1B之磁性單元核心101之一倒置之磁性單元核心401'。圖4B之磁性單元結構400'可藉由自基板102向上形成磁性單元結構400'之材料並圖案化該等材料來製造,其中繼形成用於上覆自由區420之陷獲區480之前驅物陷獲材料680(圖6)之後係至少一個退火。視情況,可在形成用於固定區410'之毗鄰氧化物部分414之另一前驅物磁性材料713'(圖9B)之後執行一中間退火。
圖5之磁性單元結構500包含可表徵為圖2之磁性單元核心201之一倒置之磁性單元核心501。圖5之磁性單元結構500可藉由自基板102向上形成磁性單元結構500之材料並圖案化該等材料來製造,其中繼形成用於陷獲區480之前驅物陷獲材料680(圖6)之後係至少一個退火。視情況,可在形成固定區410'之毗鄰氧化物部分414之另一前驅物磁性材料713'(圖9B)之後執行一中間退火。
因此揭示形成一半導體結構之一方法。該方法包括:在一基板上方形成包括至少一個擴散物種之一非晶前驅物磁性材料。接近非晶前驅物磁性材料形成包括具有至少一個陷獲位點之一吸子物種之一前驅物陷獲材料。該非晶前驅物磁性材料及該前驅物陷獲材料經退火以使該擴散物種與該吸子物種之該至少一個陷獲位點發生反應。
參考圖10,圖解說明包含與一STT-MRAM單元1014可操作通信之周邊裝置1012之一STT-MRAM系統1000,STT-MRAM單元1014之一分組可取決於系統要求及製造技術而經製造以形成呈包含若干個列及行之一柵格圖案或呈各種其他配置之一記憶體單元陣列。STT-MRAM單元1014包含一磁性單元核心1002、一存取電晶體1003、可充當一資料/感測線1004(例如,一位元線)之一導電材料、可充當一存取線1005(例如,一字線)之一導電材料及可充當一源極線1006之一導電材料。STT-MRAM系統1000之周邊裝置1012可包含讀取/寫入電路 1007、一位元線參考1008及一感測放大器1009。單元核心1002可係上文所闡述之磁性單元核心(例如,磁性單元核心101(圖1)、201(圖2)、401(圖4A)、401'(圖4B)、501(圖5))中之任何一者。由於單元核心1002之結構、製造方法或兩者,STT-MRAM單元1014因此可具有一高TMR及一高MA強度。
在使用及操作中,在選擇程式化一STT-MRAM單元1014時,將一程式化電流施加至STT-MRAM單元1014,且該電流由單元核心1002之固定區自旋極化且將一扭矩施加於單元核心1002之自由區上,此將自由區之磁化切換成「寫入至」或「程式化」STT-MRAM單元1014。在STT-MRAM單元1014之一讀取操作中,使用一電流來偵測單元核心1002之電阻狀態。
為起始STT-MRAM單元1014之程式化,讀取/寫入電路1007可產生一寫入電流(亦即,一程式化電流)至資料/感測線1004及源極線1006。資料/感測線1004與源極線1006之間的電壓之極性判定單元核心1002中之自由區之磁性定向之切換。藉由隨自旋極性而改變自由區之磁性定向,根據程式化電流之自旋極性磁化自由區,且將經程式化邏輯狀態寫入至STT-MRAM單元1014。
為讀取STT-MRAM單元1014,讀取/寫入電路1007產生穿過單元核心1002及存取電晶體1003至資料/感測線1004及源極線1006之一讀取電壓。STT-MRAM單元1014之程式化狀態與跨越單元核心1002之電阻相關,電阻可由資料/感測線1004與源極線1006之間的電壓差來判定。在某些實施例中,電壓差可與位線參考1008進行比較且藉由感測放大器1009來放大。
圖10圖解說明一可操作STT-MRAM系統1000之一項實例。然而,預期併入具有磁性區之一磁性單元核心之任何STT-MRAM系統內可併入有且利用磁性單元核心101(圖1)、201(圖2)、401(圖4A)、 401'(圖4B)、501(圖5)。
因此,揭示包括一自旋扭矩轉移磁性隨機存取記憶體(STT-MRAM)陣列(包括STT-MRAM單元)之一半導體裝置。該等STT-MRAM單元中之至少一個STT-MRAM單元包括在一基板上方之一結晶磁性區。結晶磁性區展現一可切換磁性定向。一結晶氧化物區毗鄰該結晶磁性區。展現一實質上固定磁性定向之一磁性區藉由結晶氧化物區與結晶磁性區間隔開。一非晶陷獲區毗鄰該結晶磁性區。該非晶陷獲區包括自該結晶磁性區之一前驅物磁性材料擴散且鍵結至該非晶陷獲區之一前驅物陷獲材料之一吸子物種的一物種。前驅物磁性材料具有陷獲位點,在該等陷獲位點處自前驅物磁性材料擴散之物種鍵結至非晶陷獲區中之吸子物種。
參考圖11,圖解說明根據本文中所闡述之一或多個實施例實施之一半導體裝置1100之一簡化方塊圖。半導體裝置1100包含一記憶體陣列1102及一控制邏輯組件1104。記憶體陣列1102可包含複數個STT-MRAM單元1014(圖10)(包含上文所論述之磁性單元核心101(圖1)、201(圖2)、401(圖4A)、401'(圖4B)、501(圖5)中之任一者),該等磁性單元核心101(圖1)、201(圖2)、401(圖4A)、401'(圖4B)、501(圖5)可已根據上文所闡述之一方法形成且可根據上文所闡述之一方法操作。控制邏輯組件1104可經組態以與記憶體陣列1102以操作方式互動以便自記憶體陣列1102內之任何或所有記憶體單元(例如,STT-MRAM單元1014(圖10))讀取或寫入至任何或所有記憶體單元。
參考圖12,繪示一基於處理器之系統1200。基於處理器之系統1200可包含根據本發明之實施例所製作之各種電子裝置。基於處理器之系統1200可係多種類型中之任一者,例如一電腦、傳呼機、蜂巢式電話、個人記事薄、控制電路或其他電子裝置。基於處理器之系統1200可包含諸如一微處理器之一或多個處理器1202以控制基於處理器 之系統1200中之系統功能及請求之處理。基於處理器之系統1200之處理器1202及其他子組件可包含根據本發明之實施例所製作之磁性記憶體裝置。
基於處理器之系統1200可包含與處理器1202可操作通信之一電源供應器1204。舉例而言,若基於處理器之系統1200係一可攜式系統,則電源供應器1204可包含一燃料電池、一電力收集裝置、永久電池、可替換電池及可再充電電池中之一或多者。舉例而言,電源供應器1204亦可包含一AC配接器;因此基於處理器之系統1200可插入至一牆式插座中。舉例而言,電源供應器1204亦可包含一DC配接器使得基於處理器之系統1200可插入至一車載點煙器或一車載電力埠中。
取決於基於處理器之系統1200執行之功能,各種其他裝置可耦合至處理器1202。舉例而言,一使用者介面1206可耦合至處理器1202。使用者介面1206可包含輸入裝置,諸如按鈕、開關、一鍵盤、一光筆、一滑鼠、一數位化器及手寫筆、一觸控螢幕、一語音辨識系統、一麥克風或其一組合。一顯示器1208亦可耦合至處理器1202。顯示器1208可包含一LCD顯示器、一SED顯示器、一CRT顯示器、一DLP顯示器、一電漿顯示器、一OLED顯示器、一LED顯示器、一個三維投影、一音訊顯示器或其一組合。此外,一RF子系統/基頻處理器1210亦可耦合至處理器1202。RF子系統/基頻處理器1210可包含耦合至一RF接收器並耦合至一RF發射器之一天線(未展示)。一通信埠1212或一個以上通信埠1212亦可耦合至處理器1202。舉例而言,通信埠1212可經調適以耦合至諸如一數據機、一印表機、一電腦、一掃描器或一相機之一或多個周邊裝置1214,或耦合至諸如一區域網路、遠端區域網路、內部網路或網際網路之一網路。
處理器1202可藉由實施儲存於記憶體中之軟體程式而控制基於處理器之系統1200。舉例而言,軟體程式可包含一作業系統、資料庫 軟體、製圖軟體、文書處理軟體、媒體編輯軟體或媒體播放軟體。記憶體可操作地耦合至處理器1202以儲存並促進各種程式之執行。舉例而言,處理器1202可耦合至系統記憶體1216,系統記憶體1216可包含自旋扭矩轉移磁性隨機存取記憶體(STT-MRAM)、磁性隨機存取記憶體(MRAM)、動態隨機存取記憶體(DRAM)、靜態隨機存取記憶體(SRAM)、賽道記憶體及其他已知記憶體類型中之一或多者。系統記憶體1216可包含揮發性記憶體、非揮發性記憶體或其一組合。系統記憶體1216通常較大,以使得其可儲存動態加載之應用程式及資料。在某些實施例中,系統記憶體1216可包含半導體裝置(例如圖11之半導體裝置1100)、包含上文所闡述之磁性單元核心101(圖1)、201(圖2)、401(圖4A)、401'(圖4B)、501(圖5)或其一組合中之任一者之記憶體單元。
處理器1202亦可耦合至非揮發性記憶體1218,此並不暗示系統記憶體1216必須為揮發性。非揮發性記憶體1218可包含STT-MRAM、MRAM、唯讀記憶體(ROM)(諸如一EPROM、電阻式唯讀記憶體(RROM))及快閃記憶體中之一或多者以與系統記憶體1216結合使用。非揮發性記憶體1218之大小通常經選擇以恰好足夠大來儲存任何必需作業系統、應用程式及固定資料。另外,舉例而言,非揮發性記憶體1218可包含一高容量記憶體,諸如磁碟機記憶體,諸如包含電阻式記憶體或其他類型之非揮發性固態記憶體之一混合式硬碟機。非揮發性記憶體1218可包含半導體裝置(例如圖11之半導體裝置1100)、包含上文所闡述之磁性單元核心結構101(圖1)、201(圖2)、401(圖4A)、401'(圖4B)、501(圖5)或其一組合中之任一者之記憶體單元。
雖然易於對本發明之實施方案做出各種修改及替代形式,但特定實施例已以實例方式展示於圖示中並已在本文中進行詳細闡述。然而,本發明並不意欲限於所揭示之特定形式。而是,本發明囊括歸屬 於由一下所附申請專利範圍及其合法等效內容所界定之本發明之範疇內之所有修改、組合、等效形式、變化形式及替代形式。
100‧‧‧磁性單元結構
101‧‧‧磁性單元核心
102‧‧‧基板
104‧‧‧上部電極
105‧‧‧下部電極
110‧‧‧固定區
112‧‧‧箭頭/垂直磁性定向
120‧‧‧自由區
122‧‧‧雙頭箭頭/垂直磁性定向
130‧‧‧中間氧化物區
131‧‧‧介面
132‧‧‧介面
140‧‧‧下部中間區
150‧‧‧上部中間區
180‧‧‧陷獲區

Claims (20)

  1. 一種記憶體單元,其包括:一磁性單元核心,其包括:一磁性區,其包括由一前驅物磁性材料形成之一空乏磁性材料,該前驅物磁性材料包括至少一個擴散物種及至少一個其他物種,該空乏磁性材料包括該至少一個其他物種;另一磁性區;一個氧化物區,其介於該磁性區與該另一磁性區之間;及一非晶區,其實體接觸該磁性區,該非晶區由一前驅物陷獲材料形成,該前驅物陷獲材料包括至少一個吸子物種,該至少一個吸子物種具有至少一個陷獲位點且對該至少一個擴散物種之一化學親和力高於該至少一個其他物種對該至少一個擴散物種之一化學親和力,該非晶區包括鍵結至來自該前驅物磁性材料之該至少一個擴散物種之該至少一個吸子物種。
  2. 如請求項1之記憶體單元,其中該磁性區具有實質上匹配該氧化物區之一晶體結構之一晶體結構。
  3. 如請求項1之記憶體單元,其中該磁性區及該另一磁性區展現垂直磁性定向。
  4. 如請求項1之記憶體單元,其中:該至少一個擴散物種包括硼;且該至少一個其他物種包括鈷及鐵。
  5. 如請求項1之記憶體單元,其中該至少一個吸子物種包括鈷、鐵及鎢,該非晶區包括大於約三十五原子百分比(35at.%)之鎢。
  6. 如請求項1之記憶體單元,其中該記憶體單元展現大於約1.00 (100%)之一穿隧磁阻。
  7. 一種記憶體單元,其包括:一磁性單元核心,其包括:一磁性區,其包括由一前驅物磁性材料形成之一空乏磁性材料,該前驅物磁性材料包括至少一個擴散物種及至少一個其他物種,該空乏磁性材料包括該至少一個其他物種;另一磁性區;一個氧化物區,其介於該磁性區與該另一磁性區之間;一非晶區,其接近於該磁性區,該非晶區由一前驅物陷獲材料形成,該前驅物陷獲材料包括至少一個吸子物種,該至少一個吸子物種具有至少一個陷獲位點且對該至少一個擴散物種之一化學親和力高於該至少一個其他物種對該至少一個擴散物種之一化學親和力,該非晶區包括鍵結至來自該前驅物磁性材料之該至少一個擴散物種之該至少一個吸子物種;及藉由該非晶區與該磁性區間隔開之一次級氧化物區。
  8. 如請求項1之記憶體單元,其中該前驅物磁性材料係非晶的。
  9. 如請求項1之記憶體單元,其中該至少一個吸子物種包括一吸子物種及另一吸子物種。
  10. 如請求項9之記憶體單元,其中該前驅物陷獲材料包括與該另一吸子物種之子區交替的該吸子物種之子區。
  11. 一種形成一磁性記憶體單元之方法,其包括:形成一前驅物結構,包括:在一基板上方形成包括陷獲位點之一前驅物陷獲材料;毗鄰於該前驅物陷獲材料形成包括一擴散物種之一前驅物磁性材料;及將該擴散物種自該前驅物磁性材料轉移該前驅物陷獲材料 以將該前驅物磁性材料之至少一部分轉換成一空乏磁性材料且將該前驅物陷獲材料之至少一部分轉換成一濃化陷獲材料;及在該轉移之後,由該前驅物結構形成一磁性單元核心結構。
  12. 如請求項11之方法,其中:在一基板上方形成包括陷獲位點之一前驅物陷獲材料包括:形成包括與至少一個其他吸子物種之子區交替的一吸子物種之子區之一材料結構,該材料結構包括該吸子物種及該至少一個其他吸子物種中之一或多者之該等陷獲位點,該等陷獲位點係至少沿著介於該吸子物種之該等子區與該至少一個其他吸子物種之該等子區之間的介面安置;且將該擴散物種自該前驅物磁性材料轉移至該前驅物陷獲材料包括:使該擴散物種與該吸子物種及該至少一個其他吸子物種中之至少一者之該等陷獲位點發生反應。
  13. 如請求項12之方法,其進一步包括:轟擊該材料結構以使該材料結構之附接鍵破裂且形成額外陷獲位點。
  14. 如請求項11之方法,其中:在一基板上方形成包括陷獲位點之一前驅物陷獲材料包括:在該基板上方形成一吸子物種;及轟擊該吸子物種以使該吸子物種之附接鍵破裂且形成該等陷獲位點;且將該擴散物種自該前驅物磁性材料轉移至該前驅物陷獲材料包括:將該擴散物種擴散至該前驅物陷獲材料中且使該擴散物種與該等陷獲位點發生反應。
  15. 如請求項11之方法,其中:在一基板上方形成一前驅物陷獲材料包括:在該基板上之一 導電材料上方形成該前驅物陷獲材料;及毗鄰於該前驅物陷獲材料形成一前驅物磁性材料包括:在該前驅物陷獲材料上方形成該前驅物磁性材料。
  16. 如請求項11之方法,其進一步包括:在該轉移之前,在該前驅物磁性材料上方形成一個氧化物材料。
  17. 如請求項16之方法,其進一步包括:在形成該氧化物材料之後,在該氧化物材料上方形成另一磁性材料。
  18. 如請求項11之方法,其中轉移該擴散物種包括:使該前驅物磁性材料及該前驅物陷獲材料在大於500℃之一溫度下退火。
  19. 如請求項18之方法,其中使該前驅物磁性材料及該前驅物陷獲材料退火包括:將該前驅物陷獲材料之一微結構自一結晶微結構轉換成一非晶微結構。
  20. 如請求項11之方法,其中在一基板上方形成包括陷獲位點之一前驅物陷獲材料包括:形成複數個吸子物種之交替子區,該複數個吸子物種包括該等陷獲位點。
TW104111482A 2014-04-09 2015-04-09 記憶體單元、半導體結構、半導體裝置及其製造方法 TWI559584B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/249,183 US9281466B2 (en) 2014-04-09 2014-04-09 Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication

Publications (2)

Publication Number Publication Date
TW201543725A TW201543725A (zh) 2015-11-16
TWI559584B true TWI559584B (zh) 2016-11-21

Family

ID=54265785

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104111482A TWI559584B (zh) 2014-04-09 2015-04-09 記憶體單元、半導體結構、半導體裝置及其製造方法

Country Status (7)

Country Link
US (5) US9281466B2 (zh)
EP (1) EP3130014B1 (zh)
JP (1) JP6400118B2 (zh)
KR (1) KR101960148B1 (zh)
CN (1) CN106415868B (zh)
TW (1) TWI559584B (zh)
WO (1) WO2015157080A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10811294B2 (en) 2016-09-20 2020-10-20 Wonik Ips Co., Ltd. Substrate transfer apparatus and control method thereof

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9054030B2 (en) 2012-06-19 2015-06-09 Micron Technology, Inc. Memory cells, semiconductor device structures, memory systems, and methods of fabrication
US9379315B2 (en) 2013-03-12 2016-06-28 Micron Technology, Inc. Memory cells, methods of fabrication, semiconductor device structures, and memory systems
US9368714B2 (en) 2013-07-01 2016-06-14 Micron Technology, Inc. Memory cells, methods of operation and fabrication, semiconductor device structures, and memory systems
US9461242B2 (en) 2013-09-13 2016-10-04 Micron Technology, Inc. Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems
US9608197B2 (en) 2013-09-18 2017-03-28 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
US10454024B2 (en) * 2014-02-28 2019-10-22 Micron Technology, Inc. Memory cells, methods of fabrication, and memory devices
US9281466B2 (en) 2014-04-09 2016-03-08 Micron Technology, Inc. Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication
US9269888B2 (en) 2014-04-18 2016-02-23 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
US10026888B2 (en) * 2014-08-06 2018-07-17 Toshiba Memory Corporation Magnetoresistive effect element and magnetic memory
US9349945B2 (en) 2014-10-16 2016-05-24 Micron Technology, Inc. Memory cells, semiconductor devices, and methods of fabrication
US9768377B2 (en) 2014-12-02 2017-09-19 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
KR102376480B1 (ko) * 2014-12-17 2022-03-21 삼성전자주식회사 자기 메모리 장치 및 그의 형성방법
US10439131B2 (en) 2015-01-15 2019-10-08 Micron Technology, Inc. Methods of forming semiconductor devices including tunnel barrier materials
US9461240B2 (en) * 2015-02-26 2016-10-04 Kabushiki Kaisha Toshiba Magnetoresistive memory device
US9502642B2 (en) 2015-04-10 2016-11-22 Micron Technology, Inc. Magnetic tunnel junctions, methods used while forming magnetic tunnel junctions, and methods of forming magnetic tunnel junctions
US9960346B2 (en) 2015-05-07 2018-05-01 Micron Technology, Inc. Magnetic tunnel junctions
US9590010B1 (en) * 2016-03-24 2017-03-07 Qualcomm Incorporated Perpendicular magnetic tunnel junction (pMTJ) devices employing a thin pinned layer stack and providing a transitioning start to a body-centered cubic (BCC) crystalline / amorphous structure below an upper anti-parallel (AP) layer
US9680089B1 (en) * 2016-05-13 2017-06-13 Micron Technology, Inc. Magnetic tunnel junctions
KR102567975B1 (ko) 2016-07-12 2023-08-17 삼성전자주식회사 자기 소자
JP2018032805A (ja) * 2016-08-26 2018-03-01 ソニー株式会社 磁気抵抗素子及び電子デバイス
US10453895B2 (en) 2017-01-05 2019-10-22 Micron Technology, Inc. Magnetic memory device with a common source having an array of openings, system, and method of fabrication
US10014345B1 (en) 2017-01-05 2018-07-03 Micron Technology, Inc. Magnetic memory device with grid-shaped common source plate, system, and method of fabrication
US10727271B2 (en) 2017-01-05 2020-07-28 Micron Trechnology, Inc. Memory device having source contacts located at intersections of linear portions of a common source, electronic systems, and associated methods
US11770979B2 (en) * 2018-06-29 2023-09-26 Intel Corporation Conductive alloy layer in magnetic memory devices and methods of fabrication
US11763972B2 (en) 2018-08-12 2023-09-19 HeFeChip Corporation Limited Magnetic tunnel junction element with a robust reference layer
US20200052191A1 (en) * 2018-08-12 2020-02-13 HeFeChip Corporation Limited Magnetic tunnel junction element with a robust reference layer
US11018229B2 (en) 2018-09-05 2021-05-25 Micron Technology, Inc. Methods of forming semiconductor structures
US10790145B2 (en) 2018-09-05 2020-09-29 Micron Technology, Inc. Methods of forming crystallized materials from amorphous materials
US10707298B2 (en) 2018-09-05 2020-07-07 Micron Technology, Inc. Methods of forming semiconductor structures
JP2021044369A (ja) * 2019-09-11 2021-03-18 キオクシア株式会社 磁気装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164548A1 (en) * 2006-02-25 2008-07-10 Yadav Technology Low resistance high-tmr magnetic tunnel junction and process for fabrication thereof
US20120012952A1 (en) * 2010-07-16 2012-01-19 Qualcomm Incorporated Magnetic Storage Element Utilizing Improved Pinned Layer Stack
US20130154038A1 (en) * 2007-10-31 2013-06-20 Magic Technologies, Inc. High Performance MTJ Element for Conventional MRAM and for STT-RAM and a Method for Making the Same
US20140015076A1 (en) * 2010-12-10 2014-01-16 Avalanche Technology Inc. Perpendicular sttmram device with balanced reference layer

Family Cites Families (341)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760745A (en) 1986-12-05 1988-08-02 Mag Dev Inc. Magnetoelastic torque transducer
EP0459413B1 (en) 1990-05-29 1996-02-28 Oki Electric Industry Company, Limited Method for fabricating a magnetic recording medium
US5565266A (en) 1993-06-14 1996-10-15 Eastman Kodak Company Multilayer magnetooptic recording media
JP3260921B2 (ja) 1993-08-25 2002-02-25 株式会社デンソー 可動体変位検出装置
US5563000A (en) 1994-03-11 1996-10-08 Eastman Kodak Company Multilayer magnetooptic recording media
US5583725A (en) 1994-06-15 1996-12-10 International Business Machines Corporation Spin valve magnetoresistive sensor with self-pinned laminated layer and magnetic recording system using the sensor
US5768069A (en) 1996-11-27 1998-06-16 International Business Machines Corporation Self-biased dual spin valve sensor
US6256224B1 (en) 2000-05-03 2001-07-03 Hewlett-Packard Co Write circuit for large MRAM arrays
US6468856B2 (en) 1997-07-24 2002-10-22 Texas Instruments Incorporated High charge storage density integrated circuit capacitor
US6258470B1 (en) 1998-01-16 2001-07-10 Matsushita Electric Industrial Co., Ltd. Exchange coupling film, magnetoresistance effect device, magnetoresistance effective head and method for producing exchange coupling film
JP2000020937A (ja) 1998-07-03 2000-01-21 Hitachi Ltd 磁気記録媒体およびこれを用いた磁気記憶装置
GB2343308B (en) 1998-10-30 2000-10-11 Nikolai Franz Gregor Schwabe Magnetic storage device
JP4568926B2 (ja) 1999-07-14 2010-10-27 ソニー株式会社 磁気機能素子及び磁気記録装置
US6275363B1 (en) 1999-07-23 2001-08-14 International Business Machines Corporation Read head with dual tunnel junction sensor
US6166948A (en) 1999-09-03 2000-12-26 International Business Machines Corporation Magnetic memory array with magnetic tunnel junction memory cells having flux-closed free layers
US6611405B1 (en) 1999-09-16 2003-08-26 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory device
JP2001084756A (ja) 1999-09-17 2001-03-30 Sony Corp 磁化駆動方法、磁気機能素子および磁気装置
US6979586B2 (en) 2000-10-06 2005-12-27 Headway Technologies, Inc. Magnetic random access memory array with coupled soft adjacent magnetic layer
US6710987B2 (en) 2000-11-17 2004-03-23 Tdk Corporation Magnetic tunnel junction read head devices having a tunneling barrier formed by multi-layer, multi-oxidation processes
FR2817999B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a empilement(s) tri-couche(s) et memoire utilisant ce dispositif
US6955857B2 (en) 2000-12-29 2005-10-18 Seagate Technology Llc Exchange decoupled cobalt/noble metal perpendicular recording media
US6603678B2 (en) 2001-01-11 2003-08-05 Hewlett-Packard Development Company, L.P. Thermally-assisted switching of magnetic memory elements
JP2002208682A (ja) 2001-01-12 2002-07-26 Hitachi Ltd 磁気半導体記憶装置及びその製造方法
JP2002314164A (ja) 2001-02-06 2002-10-25 Sony Corp 磁気トンネル素子及びその製造方法、薄膜磁気ヘッド、磁気メモリ、並びに磁気センサ
JP2002314049A (ja) 2001-04-18 2002-10-25 Nec Corp 磁性メモリ及びその製造方法
JP2004179668A (ja) 2001-05-15 2004-06-24 Matsushita Electric Ind Co Ltd 磁気抵抗素子
KR100886602B1 (ko) 2001-05-31 2009-03-05 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 터널자기저항소자
US6667861B2 (en) 2001-07-16 2003-12-23 International Business Machines Corporation Dual/differential GMR head with a single AFM layer
JP2003031870A (ja) 2001-07-19 2003-01-31 Alps Electric Co Ltd 交換結合膜及び前記交換結合膜を用いた磁気検出素子
JP4198900B2 (ja) 2001-07-19 2008-12-17 アルプス電気株式会社 交換結合膜及び前記交換結合膜を用いた磁気検出素子
JP4189146B2 (ja) 2001-07-19 2008-12-03 アルプス電気株式会社 交換結合膜及び前記交換結合膜を用いた磁気検出素子
US6347049B1 (en) 2001-07-25 2002-02-12 International Business Machines Corporation Low resistance magnetic tunnel junction device with bilayer or multilayer tunnel barrier
TW554398B (en) 2001-08-10 2003-09-21 Semiconductor Energy Lab Method of peeling off and method of manufacturing semiconductor device
US6805710B2 (en) 2001-11-13 2004-10-19 Edwards Lifesciences Corporation Mitral valve annuloplasty ring for molding left ventricle geometry
US6829157B2 (en) 2001-12-05 2004-12-07 Korea Institute Of Science And Technology Method of controlling magnetization easy axis in ferromagnetic films using voltage, ultrahigh-density, low power, nonvolatile magnetic memory using the control method, and method of writing information on the magnetic memory
DE10202903B4 (de) 2002-01-25 2009-01-22 Qimonda Ag Magnetoresistive Speicherzelle mit polaritätsabhängigem Widerstand und Speicherzelle
US7095933B2 (en) 2002-04-09 2006-08-22 Barth Phillip W Systems and methods for designing and fabricating multi-layer structures having thermal expansion properties
US6866255B2 (en) 2002-04-12 2005-03-15 Xerox Corporation Sputtered spring films with low stress anisotropy
US6815248B2 (en) 2002-04-18 2004-11-09 Infineon Technologies Ag Material combinations for tunnel junction cap layer, tunnel junction hard mask and tunnel junction stack seed layer in MRAM processing
JP2003332649A (ja) 2002-05-14 2003-11-21 Alps Electric Co Ltd 磁気検出素子
US6849464B2 (en) 2002-06-10 2005-02-01 Micron Technology, Inc. Method of fabricating a multilayer dielectric tunnel barrier structure
JP3678213B2 (ja) 2002-06-20 2005-08-03 ソニー株式会社 磁気抵抗効果素子及び磁気メモリ装置、磁気抵抗効果素子及び磁気メモリ装置の製造方法
JP4252353B2 (ja) 2002-07-16 2009-04-08 株式会社日立製作所 半導体レーザ素子の製造方法
US6653704B1 (en) 2002-09-24 2003-11-25 International Business Machines Corporation Magnetic memory with tunnel junction memory cells and phase transition material for controlling current to the cells
JP2004128229A (ja) 2002-10-02 2004-04-22 Nec Corp 磁性メモリ及びその製造方法
US6985338B2 (en) 2002-10-21 2006-01-10 International Business Machines Corporation Insulative in-stack hard bias for GMR sensor stabilization
US6980468B1 (en) 2002-10-28 2005-12-27 Silicon Magnetic Systems High density MRAM using thermal writing
US7394626B2 (en) 2002-11-01 2008-07-01 Nec Corporation Magnetoresistance device with a diffusion barrier between a conductor and a magnetoresistance element and method of fabricating the same
US6756128B2 (en) 2002-11-07 2004-06-29 International Business Machines Corporation Low-resistance high-magnetoresistance magnetic tunnel junction device with improved tunnel barrier
US6771534B2 (en) 2002-11-15 2004-08-03 International Business Machines Corporation Thermally-assisted magnetic writing using an oxide layer and current-induced heating
US6841395B2 (en) 2002-11-25 2005-01-11 International Business Machines Corporation Method of forming a barrier layer of a tunneling magnetoresistive sensor
JP2004200245A (ja) 2002-12-16 2004-07-15 Nec Corp 磁気抵抗素子及び磁気抵抗素子の製造方法
US6845038B1 (en) 2003-02-01 2005-01-18 Alla Mikhailovna Shukh Magnetic tunnel junction memory device
US6952364B2 (en) 2003-03-03 2005-10-04 Samsung Electronics Co., Ltd. Magnetic tunnel junction structures and methods of fabrication
US6998150B2 (en) 2003-03-12 2006-02-14 Headway Technologies, Inc. Method of adjusting CoFe free layer magnetostriction
KR100544690B1 (ko) 2003-04-25 2006-01-24 재단법인서울대학교산학협력재단 비휘발성 자기 메모리 셀, 동작 방법 및 이를 이용한다진법 비휘발성 초고집적 자기 메모리
US6964819B1 (en) 2003-05-06 2005-11-15 Seagate Technology Llc Anti-ferromagnetically coupled recording media with enhanced RKKY coupling
US20040224243A1 (en) 2003-05-08 2004-11-11 Sony Corporation Mask, mask blank, and methods of producing these
US6865109B2 (en) 2003-06-06 2005-03-08 Seagate Technology Llc Magnetic random access memory having flux closure for the free layer and spin transfer write mechanism
US6806096B1 (en) 2003-06-18 2004-10-19 Infineon Technologies Ag Integration scheme for avoiding plasma damage in MRAM technology
US7189583B2 (en) 2003-07-02 2007-03-13 Micron Technology, Inc. Method for production of MRAM elements
JP4169663B2 (ja) 2003-07-25 2008-10-22 Hoya株式会社 垂直磁気記録媒体
US7092220B2 (en) 2003-07-29 2006-08-15 Hitachi Global Storage Technologies Apparatus for enhancing thermal stability, improving biasing and reducing damage from electrostatic discharge in self-pinned abutted junction heads having a first self-pinned layer extending under the hard bias layers
US7282277B2 (en) 2004-04-20 2007-10-16 Seagate Technology Llc Magnetic recording media with Cu-containing magnetic layers
KR100548997B1 (ko) 2003-08-12 2006-02-02 삼성전자주식회사 다층박막구조의 자유층을 갖는 자기터널 접합 구조체들 및이를 채택하는 자기 램 셀들
JP2005064050A (ja) 2003-08-14 2005-03-10 Toshiba Corp 半導体記憶装置及びそのデータ書き込み方法
US7274080B1 (en) 2003-08-22 2007-09-25 International Business Machines Corporation MgO-based tunnel spin injectors
US7298595B2 (en) 2003-09-26 2007-11-20 Hitachi Global Storage Technologies Netherlands B.V. Differential GMR sensor with multi-layer bias structure between free layers of first and second self-pinned GMR sensors
US7195927B2 (en) 2003-10-22 2007-03-27 Hewlett-Packard Development Company, L.P. Process for making magnetic memory structures having different-sized memory cell layers
US7282755B2 (en) 2003-11-14 2007-10-16 Grandis, Inc. Stress assisted current driven switching for magnetic memory applications
US7105372B2 (en) 2004-01-20 2006-09-12 Headway Technologies, Inc. Magnetic tunneling junction film structure with process determined in-plane magnetic anisotropy
US7083988B2 (en) 2004-01-26 2006-08-01 Micron Technology, Inc. Magnetic annealing sequences for patterned MRAM synthetic antiferromagnetic pinned layers
US7564152B1 (en) 2004-02-12 2009-07-21 The United States Of America As Represented By The Secretary Of The Navy High magnetostriction of positive magnetostrictive materials under tensile load
US6992359B2 (en) 2004-02-26 2006-01-31 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
US7130167B2 (en) 2004-03-03 2006-10-31 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having improved synthetic free layer
JP2005251990A (ja) 2004-03-04 2005-09-15 Nec Electronics Corp 不揮発性半導体記憶装置
US20050211973A1 (en) 2004-03-23 2005-09-29 Kiyotaka Mori Stressed organic semiconductor
JP2007531180A (ja) 2004-04-02 2007-11-01 Tdk株式会社 低磁歪を有する磁気抵抗ヘッドを安定化させる積層フリー層
US7190557B2 (en) 2004-04-14 2007-03-13 Hitachi Global Storage Technologies Netherlands B.V. Current-in-the-plane spin valve magnetoresistive sensor with dual metal oxide capping layers
JP3863536B2 (ja) 2004-05-17 2006-12-27 株式会社東芝 磁気ランダムアクセスメモリ及びその磁気ランダムアクセスメモリのデータ書き込み方法
US7449345B2 (en) 2004-06-15 2008-11-11 Headway Technologies, Inc. Capping structure for enhancing dR/R of the MTJ device
JP2006005286A (ja) 2004-06-21 2006-01-05 Alps Electric Co Ltd 磁気検出素子
JP4868198B2 (ja) 2004-08-19 2012-02-01 日本電気株式会社 磁性メモリ
US20060042930A1 (en) 2004-08-26 2006-03-02 Daniele Mauri Method for reactive sputter deposition of a magnesium oxide (MgO) tunnel barrier in a magnetic tunnel junction
US7355884B2 (en) 2004-10-08 2008-04-08 Kabushiki Kaisha Toshiba Magnetoresistive element
US7351483B2 (en) 2004-11-10 2008-04-01 International Business Machines Corporation Magnetic tunnel junctions using amorphous materials as reference and free layers
JP5093747B2 (ja) 2004-11-16 2012-12-12 日本電気株式会社 磁気メモリ
JP2006156608A (ja) 2004-11-29 2006-06-15 Hitachi Ltd 磁気メモリおよびその製造方法
JP2006165059A (ja) 2004-12-02 2006-06-22 Sony Corp 記憶素子及びメモリ
JP2006165327A (ja) 2004-12-08 2006-06-22 Toshiba Corp 磁気ランダムアクセスメモリ
JP5077802B2 (ja) 2005-02-16 2012-11-21 日本電気株式会社 積層強磁性構造体、及び、mtj素子
US7230265B2 (en) 2005-05-16 2007-06-12 International Business Machines Corporation Spin-polarization devices using rare earth-transition metal alloys
US8068317B2 (en) 2005-07-22 2011-11-29 Hitachi Global Storage Technologies Netherlands B.V. Magnetic tunnel transistor with high magnetocurrent
US7372674B2 (en) 2005-07-22 2008-05-13 Hitachi Global Storage Technologies Netherlands B.V. Magnetic tunnel transistor with high magnetocurrent and stronger pinning
US7862914B2 (en) 2005-07-26 2011-01-04 Seagate Technology Llc Heatsink films for magnetic recording media
JP2007035139A (ja) 2005-07-26 2007-02-08 Hitachi Global Storage Technologies Netherlands Bv 垂直磁気記録媒体及び磁気記録再生装置
US7349187B2 (en) 2005-09-07 2008-03-25 International Business Machines Corporation Tunnel barriers based on alkaline earth oxides
FR2892231B1 (fr) 2005-10-14 2008-06-27 Commissariat Energie Atomique Dispositif magnetique a jonction tunnel magnetoresistive et memoire magnetique a acces aleatoire
JP4444241B2 (ja) 2005-10-19 2010-03-31 株式会社東芝 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
JP4768427B2 (ja) 2005-12-12 2011-09-07 株式会社東芝 半導体記憶装置
US7791844B2 (en) 2005-12-14 2010-09-07 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having a magnetically stable free layer with a positive magnetostriction
JP4786331B2 (ja) 2005-12-21 2011-10-05 株式会社東芝 磁気抵抗効果素子の製造方法
US7479394B2 (en) 2005-12-22 2009-01-20 Magic Technologies, Inc. MgO/NiFe MTJ for high performance MRAM application
US8058696B2 (en) * 2006-02-25 2011-11-15 Avalanche Technology, Inc. High capacity low cost multi-state magnetic memory
US7732881B2 (en) 2006-11-01 2010-06-08 Avalanche Technology, Inc. Current-confined effect of magnetic nano-current-channel (NCC) for magnetic random access memory (MRAM)
CN101395732A (zh) 2006-03-03 2009-03-25 佳能安内华股份有限公司 磁阻效应元件的制造方法以及制造设备
JP2007250094A (ja) 2006-03-16 2007-09-27 Fujitsu Ltd 磁気記録媒体、磁気記録媒体の製造方法、及び磁気記録装置
TWI309411B (en) 2006-04-21 2009-05-01 Nat Univ Tsing Hua Perpendicular magnetic recording media
US8120949B2 (en) 2006-04-27 2012-02-21 Avalanche Technology, Inc. Low-cost non-volatile flash-RAM memory
JP4731393B2 (ja) * 2006-04-28 2011-07-20 株式会社日立製作所 磁気再生ヘッド
US7486550B2 (en) 2006-06-06 2009-02-03 Micron Technology, Inc. Semiconductor magnetic memory integrating a magnetic tunneling junction above a floating-gate memory cell
US20070297220A1 (en) 2006-06-22 2007-12-27 Masatoshi Yoshikawa Magnetoresistive element and magnetic memory
JP2008010590A (ja) 2006-06-28 2008-01-17 Toshiba Corp 磁気抵抗素子及び磁気メモリ
US7595520B2 (en) 2006-07-31 2009-09-29 Magic Technologies, Inc. Capping layer for a magnetic tunnel junction device to enhance dR/R and a method of making the same
JP4496189B2 (ja) 2006-09-28 2010-07-07 株式会社東芝 磁気抵抗効果型素子および磁気抵抗効果型ランダムアクセスメモリ
JP2008098523A (ja) 2006-10-13 2008-04-24 Toshiba Corp 磁気抵抗効果素子および磁気メモリ
US20080168548A1 (en) 2007-01-04 2008-07-10 O'brien Amanda Jean Method For Automatically Controlling Access To Internet Chat Rooms
US20080170329A1 (en) 2007-01-11 2008-07-17 Seagate Technology Llc Granular perpendicular magnetic recording media with improved corrosion resistance by SUL post-deposition heating
JP4751344B2 (ja) 2007-01-26 2011-08-17 株式会社東芝 垂直磁気記録媒体、及び磁気記録再生装置
US7598579B2 (en) 2007-01-30 2009-10-06 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) to reduce spin transfer magnetization switching current
CN101669168A (zh) 2007-02-03 2010-03-10 西部数据传媒公司 具有改进的磁各向异性场的垂直磁记录介质
JP2008192926A (ja) 2007-02-06 2008-08-21 Tdk Corp トンネル型磁気検出素子及びその製造方法
US8623452B2 (en) 2010-12-10 2014-01-07 Avalanche Technology, Inc. Magnetic random access memory (MRAM) with enhanced magnetic stiffness and method of making same
US8593862B2 (en) 2007-02-12 2013-11-26 Avalanche Technology, Inc. Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy
US20090218645A1 (en) 2007-02-12 2009-09-03 Yadav Technology Inc. multi-state spin-torque transfer magnetic random access memory
JP5143444B2 (ja) * 2007-02-13 2013-02-13 株式会社日立製作所 磁気抵抗効果素子、それを用いた磁気メモリセル及び磁気ランダムアクセスメモリ
JP2008204539A (ja) 2007-02-20 2008-09-04 Fujitsu Ltd 垂直磁気記録媒体およびその製造方法、磁気記録装置
US20080205130A1 (en) 2007-02-28 2008-08-28 Freescale Semiconductor, Inc. Mram free layer synthetic antiferromagnet structure and methods
JP4682998B2 (ja) 2007-03-15 2011-05-11 ソニー株式会社 記憶素子及びメモリ
US20080242088A1 (en) 2007-03-29 2008-10-02 Tokyo Electron Limited Method of forming low resistivity copper film structures
JP2008263031A (ja) 2007-04-11 2008-10-30 Toshiba Corp 磁気抵抗効果素子とその製造方法、磁気抵抗効果素子を備えた磁気記憶装置とその製造方法
US8097175B2 (en) 2008-10-28 2012-01-17 Micron Technology, Inc. Method for selectively permeating a self-assembled block copolymer, method for forming metal oxide structures, method for forming a metal oxide pattern, and method for patterning a semiconductor structure
US7682841B2 (en) 2007-05-02 2010-03-23 Qimonda Ag Method of forming integrated circuit having a magnetic tunnel junction device
US7486552B2 (en) 2007-05-21 2009-02-03 Grandis, Inc. Method and system for providing a spin transfer device with improved switching characteristics
US7602033B2 (en) 2007-05-29 2009-10-13 Headway Technologies, Inc. Low resistance tunneling magnetoresistive sensor with composite inner pinned layer
EP2015307B8 (en) 2007-07-13 2013-05-15 Hitachi Ltd. Magnetoresistive device
US7750421B2 (en) 2007-07-23 2010-07-06 Magic Technologies, Inc. High performance MTJ element for STT-RAM and method for making the same
TW200907964A (en) 2007-08-09 2009-02-16 Ind Tech Res Inst Structure of magnetic memory cell and magnetic memory device
JP5397926B2 (ja) 2007-08-31 2014-01-22 昭和電工株式会社 垂直磁気記録媒体、その製造方法および磁気記録再生装置
JP4649457B2 (ja) 2007-09-26 2011-03-09 株式会社東芝 磁気抵抗素子及び磁気メモリ
US8497559B2 (en) 2007-10-10 2013-07-30 Magic Technologies, Inc. MRAM with means of controlling magnetic anisotropy
JP2009116930A (ja) 2007-11-02 2009-05-28 Hitachi Global Storage Technologies Netherlands Bv 垂直磁気記録媒体およびそれを用いた磁気記録再生装置
US7488609B1 (en) 2007-11-16 2009-02-10 Hitachi Global Storage Technologies Netherlands B.V. Method for forming an MgO barrier layer in a tunneling magnetoresistive (TMR) device
JP4488375B2 (ja) 2007-11-22 2010-06-23 株式会社森精機製作所 工作機械の主軸装置
KR20090074396A (ko) 2008-01-02 2009-07-07 삼성전자주식회사 강유전체를 이용한 정보저장매체, 그 제조방법, 및 이를채용한 정보저장장치
US7919794B2 (en) 2008-01-08 2011-04-05 Qualcomm, Incorporated Memory cell and method of forming a magnetic tunnel junction (MTJ) of a memory cell
JP4703660B2 (ja) * 2008-01-11 2011-06-15 株式会社東芝 スピンmos電界効果トランジスタ
JP5150284B2 (ja) 2008-01-30 2013-02-20 株式会社東芝 磁気抵抗効果素子およびその製造方法
US7727834B2 (en) 2008-02-14 2010-06-01 Toshiba America Electronic Components, Inc. Contact configuration and method in dual-stress liner semiconductor device
JP2009194210A (ja) 2008-02-15 2009-08-27 Renesas Technology Corp 半導体装置及び半導体装置の製造方法
US8545999B1 (en) 2008-02-21 2013-10-01 Western Digital (Fremont), Llc Method and system for providing a magnetoresistive structure
CN101960631B (zh) 2008-03-07 2013-05-01 佳能安内华股份有限公司 制造磁阻元件的制造方法和磁阻元件的制造设备
US9021685B2 (en) 2008-03-12 2015-05-05 Headway Technologies, Inc. Two step annealing process for TMR device with amorphous free layer
JP4724196B2 (ja) 2008-03-25 2011-07-13 株式会社東芝 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
US7885105B2 (en) 2008-03-25 2011-02-08 Qualcomm Incorporated Magnetic tunnel junction cell including multiple vertical magnetic domains
US8057925B2 (en) 2008-03-27 2011-11-15 Magic Technologies, Inc. Low switching current dual spin filter (DSF) element for STT-RAM and a method for making the same
US8164862B2 (en) 2008-04-02 2012-04-24 Headway Technologies, Inc. Seed layer for TMR or CPP-GMR sensor
JP2009252878A (ja) 2008-04-03 2009-10-29 Renesas Technology Corp 磁気記憶装置
US7948044B2 (en) 2008-04-09 2011-05-24 Magic Technologies, Inc. Low switching current MTJ element for ultra-high STT-RAM and a method for making the same
FR2931011B1 (fr) 2008-05-06 2010-05-28 Commissariat Energie Atomique Element magnetique a ecriture assistee thermiquement
JP4774082B2 (ja) 2008-06-23 2011-09-14 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
US8274818B2 (en) 2008-08-05 2012-09-25 Tohoku University Magnetoresistive element, magnetic memory cell and magnetic random access memory using the same
KR101435590B1 (ko) 2008-08-18 2014-08-29 삼성전자주식회사 자기 기억 소자 및 그 형성방법
JP5182631B2 (ja) 2008-09-02 2013-04-17 富士電機株式会社 垂直磁気記録媒体
KR101607356B1 (ko) 2008-09-03 2016-03-29 아이아이아이 홀딩스 3, 엘엘씨 자기 메모리 소자 및 그것을 이용하는 기억 장치
WO2010026667A1 (en) 2008-09-03 2010-03-11 Canon Anelva Corporation Ferromagnetic preferred grain growth promotion seed layer for amorphous or microcrystalline mgo tunnel barrier
KR101004506B1 (ko) 2008-09-09 2010-12-31 주식회사 하이닉스반도체 공통 소스라인을 갖는 수직 자기형 비휘발성 메모리 장치 및 그 제조 방법
US8138561B2 (en) 2008-09-18 2012-03-20 Magic Technologies, Inc. Structure and method to fabricate high performance MTJ devices for spin-transfer torque (STT)-RAM
US7940551B2 (en) 2008-09-29 2011-05-10 Seagate Technology, Llc STRAM with electronically reflective insulative spacer
US8102700B2 (en) 2008-09-30 2012-01-24 Micron Technology, Inc. Unidirectional spin torque transfer magnetic memory cell structure
US8310861B2 (en) 2008-09-30 2012-11-13 Micron Technology, Inc. STT-MRAM cell structure incorporating piezoelectric stress material
JP2010087355A (ja) 2008-10-01 2010-04-15 Fujitsu Ltd トンネル磁気抵抗効果膜の製造方法及びトンネル磁気抵抗効果膜
US8487390B2 (en) 2008-10-08 2013-07-16 Seagate Technology Llc Memory cell with stress-induced anisotropy
JP2010093157A (ja) 2008-10-10 2010-04-22 Fujitsu Ltd 磁気抵抗効果素子、磁気再生ヘッド、磁気抵抗デバイスおよび情報記憶装置
US7939188B2 (en) 2008-10-27 2011-05-10 Seagate Technology Llc Magnetic stack design
KR101178767B1 (ko) 2008-10-30 2012-09-07 한국과학기술연구원 이중 자기 이방성 자유층을 갖는 자기 터널 접합 구조
US9165625B2 (en) 2008-10-30 2015-10-20 Seagate Technology Llc ST-RAM cells with perpendicular anisotropy
US7835173B2 (en) 2008-10-31 2010-11-16 Micron Technology, Inc. Resistive memory
US7944738B2 (en) 2008-11-05 2011-05-17 Micron Technology, Inc. Spin torque transfer cell structure utilizing field-induced antiferromagnetic or ferromagnetic coupling
US8043732B2 (en) 2008-11-11 2011-10-25 Seagate Technology Llc Memory cell with radial barrier
US7929370B2 (en) 2008-11-24 2011-04-19 Magic Technologies, Inc. Spin momentum transfer MRAM design
US8378438B2 (en) 2008-12-04 2013-02-19 Grandis, Inc. Method and system for providing magnetic elements having enhanced magnetic anisotropy and memories using such magnetic elements
KR101255474B1 (ko) 2008-12-10 2013-04-16 가부시키가이샤 히타치세이사쿠쇼 자기 저항 효과 소자, 그것을 이용한 자기 메모리 셀 및 자기 랜덤 액세스 메모리
FR2939955B1 (fr) 2008-12-11 2011-03-11 Commissariat Energie Atomique Procede pour la realisation d'une jonction tunnel magnetique et jonction tunnel magnetique ainsi obtenue.
US20100148167A1 (en) 2008-12-12 2010-06-17 Everspin Technologies, Inc. Magnetic tunnel junction stack
US8089137B2 (en) 2009-01-07 2012-01-03 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
US8553449B2 (en) 2009-01-09 2013-10-08 Micron Technology, Inc. STT-MRAM cell structures
US7957182B2 (en) 2009-01-12 2011-06-07 Micron Technology, Inc. Memory cell having nonmagnetic filament contact and methods of operating and fabricating the same
JP4952725B2 (ja) 2009-01-14 2012-06-13 ソニー株式会社 不揮発性磁気メモリ装置
JP4738499B2 (ja) 2009-02-10 2011-08-03 株式会社東芝 スピントランジスタの製造方法
US8587993B2 (en) 2009-03-02 2013-11-19 Qualcomm Incorporated Reducing source loading effect in spin torque transfer magnetoresisitive random access memory (STT-MRAM)
US8120126B2 (en) 2009-03-02 2012-02-21 Qualcomm Incorporated Magnetic tunnel junction device and fabrication
JP5150531B2 (ja) 2009-03-03 2013-02-20 ルネサスエレクトロニクス株式会社 磁気抵抗素子、磁気ランダムアクセスメモリ、及びそれらの製造方法
US7969774B2 (en) 2009-03-10 2011-06-28 Micron Technology, Inc. Electronic devices formed of two or more substrates bonded together, electronic systems comprising electronic devices and methods of making electronic devices
US7863060B2 (en) 2009-03-23 2011-01-04 Magic Technologies, Inc. Method of double patterning and etching magnetic tunnel junction structures for spin-transfer torque MRAM devices
US8362482B2 (en) 2009-04-14 2013-01-29 Monolithic 3D Inc. Semiconductor device and structure
US7936598B2 (en) 2009-04-28 2011-05-03 Seagate Technology Magnetic stack having assist layer
EP2249350B1 (en) 2009-05-08 2012-02-01 Crocus Technology Magnetic memory with a thermally assisted spin transfer torque writing procedure using a low writing current
JP5435026B2 (ja) 2009-05-19 2014-03-05 富士電機株式会社 磁気メモリ素子およびそれを用いる記憶装置
JP5579175B2 (ja) 2009-05-28 2014-08-27 株式会社日立製作所 磁気抵抗効果素子及びそれを用いたランダムアクセスメモリ
US8381391B2 (en) 2009-06-26 2013-02-26 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer
US20100327248A1 (en) 2009-06-29 2010-12-30 Seagate Technology Llc Cell patterning with multiple hard masks
US8750028B2 (en) 2009-07-03 2014-06-10 Fuji Electric Co., Ltd. Magnetic memory element and driving method for same
US8159856B2 (en) 2009-07-07 2012-04-17 Seagate Technology Llc Bipolar select device for resistive sense memory
US8273582B2 (en) 2009-07-09 2012-09-25 Crocus Technologies Method for use in making electronic devices having thin-film magnetic components
US7999338B2 (en) 2009-07-13 2011-08-16 Seagate Technology Llc Magnetic stack having reference layers with orthogonal magnetization orientation directions
US8125746B2 (en) 2009-07-13 2012-02-28 Seagate Technology Llc Magnetic sensor with perpendicular anisotrophy free layer and side shields
US8609262B2 (en) 2009-07-17 2013-12-17 Magic Technologies, Inc. Structure and method to fabricate high performance MTJ devices for spin-transfer torque (STT)-RAM application
US20110031569A1 (en) 2009-08-10 2011-02-10 Grandis, Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
US10446209B2 (en) 2009-08-10 2019-10-15 Samsung Semiconductor Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
US8779538B2 (en) 2009-08-10 2014-07-15 Samsung Electronics Co., Ltd. Magnetic tunneling junction seed, capping, and spacer layer materials
JP5527649B2 (ja) 2009-08-28 2014-06-18 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US8284594B2 (en) 2009-09-03 2012-10-09 International Business Machines Corporation Magnetic devices and structures
US8445979B2 (en) 2009-09-11 2013-05-21 Samsung Electronics Co., Ltd. Magnetic memory devices including magnetic layers separated by tunnel barriers
US8072800B2 (en) 2009-09-15 2011-12-06 Grandis Inc. Magnetic element having perpendicular anisotropy with enhanced efficiency
US9082534B2 (en) 2009-09-15 2015-07-14 Samsung Electronics Co., Ltd. Magnetic element having perpendicular anisotropy with enhanced efficiency
US8766341B2 (en) 2009-10-20 2014-07-01 The Regents Of The University Of California Epitaxial growth of single crystalline MgO on germanium
US8169821B1 (en) 2009-10-20 2012-05-01 Avalanche Technology, Inc. Low-crystallization temperature MTJ for spin-transfer torque magnetic random access memory (SSTTMRAM)
US8184411B2 (en) 2009-10-26 2012-05-22 Headway Technologies, Inc. MTJ incorporating CoFe/Ni multilayer film with perpendicular magnetic anisotropy for MRAM application
KR101740040B1 (ko) 2010-07-16 2017-06-09 삼성전자주식회사 패턴 구조물, 패턴 구조물 형성 방법 및 이를 이용한 반도체 소자의 제조 방법
US8334148B2 (en) 2009-11-11 2012-12-18 Samsung Electronics Co., Ltd. Methods of forming pattern structures
JP2011123923A (ja) 2009-12-08 2011-06-23 Hitachi Global Storage Technologies Netherlands Bv 磁気抵抗効果ヘッド、磁気記録再生装置
KR101658394B1 (ko) 2009-12-15 2016-09-22 삼성전자 주식회사 자기터널접합 소자 및 그 제조방법과 자기터널접합 소자를 포함하는 전자소자
KR101608671B1 (ko) 2009-12-16 2016-04-05 삼성전자주식회사 휴대 단말기의 프로세서 간 데이터 통신 방법 및 장치
US8238151B2 (en) 2009-12-18 2012-08-07 Micron Technology, Inc. Transient heat assisted STTRAM cell for lower programming current
KR20110071702A (ko) 2009-12-21 2011-06-29 삼성전자주식회사 그라핀을 이용한 스핀밸브소자 및 그 제조방법과 스핀밸브소자를 포함하는 자성소자
KR20110071710A (ko) 2009-12-21 2011-06-29 삼성전자주식회사 수직 자기터널접합과 이를 포함하는 자성소자 및 그 제조방법
US8254162B2 (en) 2010-01-11 2012-08-28 Grandis, Inc. Method and system for providing magnetic tunneling junctions usable in spin transfer torque magnetic memories
US9093163B2 (en) 2010-01-14 2015-07-28 Hitachi, Ltd. Magnetoresistive device
US8223539B2 (en) 2010-01-26 2012-07-17 Micron Technology, Inc. GCIB-treated resistive device
JP4903277B2 (ja) 2010-01-26 2012-03-28 株式会社日立製作所 磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
JP5732827B2 (ja) 2010-02-09 2015-06-10 ソニー株式会社 記憶素子および記憶装置、並びに記憶装置の動作方法
US8149614B2 (en) 2010-03-31 2012-04-03 Nanya Technology Corp. Magnetoresistive random access memory element and fabrication method thereof
SG175482A1 (en) 2010-05-04 2011-11-28 Agency Science Tech & Res Multi-bit cell magnetic memory with perpendicular magnetization and spin torque switching
US9287321B2 (en) 2010-05-26 2016-03-15 Samsung Electronics Co., Ltd. Magnetic tunnel junction device having amorphous buffer layers that are magnetically connected together and that have perpendicular magnetic anisotropy
US8920947B2 (en) 2010-05-28 2014-12-30 Headway Technologies, Inc. Multilayer structure with high perpendicular anisotropy for device applications
US8922956B2 (en) 2010-06-04 2014-12-30 Seagate Technology Llc Tunneling magneto-resistive sensors with buffer layers
US8604572B2 (en) 2010-06-14 2013-12-10 Regents Of The University Of Minnesota Magnetic tunnel junction device
US8324697B2 (en) 2010-06-15 2012-12-04 International Business Machines Corporation Seed layer and free magnetic layer for perpendicular anisotropy in a spin-torque magnetic random access memory
JP5502627B2 (ja) 2010-07-09 2014-05-28 株式会社東芝 磁気ランダムアクセスメモリ及びその製造方法
US20120015099A1 (en) 2010-07-15 2012-01-19 Everspin Technologies, Inc. Structure and method for fabricating a magnetic thin film memory having a high field anisotropy
US8546896B2 (en) 2010-07-16 2013-10-01 Grandis, Inc. Magnetic tunneling junction elements having magnetic substructures(s) with a perpendicular anisotropy and memories using such magnetic elements
KR101652006B1 (ko) 2010-07-20 2016-08-30 삼성전자주식회사 자기 기억 소자 및 그 제조 방법
KR101746615B1 (ko) 2010-07-22 2017-06-14 삼성전자 주식회사 자기 메모리 소자 및 이를 포함하는 메모리 카드 및 시스템
KR101684915B1 (ko) 2010-07-26 2016-12-12 삼성전자주식회사 자기 기억 소자
US8772886B2 (en) 2010-07-26 2014-07-08 Avalanche Technology, Inc. Spin transfer torque magnetic random access memory (STTMRAM) having graded synthetic free layer
JP5652075B2 (ja) * 2010-09-13 2015-01-14 ソニー株式会社 記憶素子及びメモリ
JP2012064624A (ja) * 2010-09-14 2012-03-29 Sony Corp 記憶素子、メモリ装置
JP5123365B2 (ja) * 2010-09-16 2013-01-23 株式会社東芝 磁気抵抗素子及び磁気メモリ
JP5214691B2 (ja) 2010-09-17 2013-06-19 株式会社東芝 磁気メモリ及びその製造方法
US8310868B2 (en) 2010-09-17 2012-11-13 Micron Technology, Inc. Spin torque transfer memory cell structures and methods
US8374020B2 (en) 2010-10-29 2013-02-12 Honeywell International Inc. Reduced switching-energy magnetic elements
US20120104522A1 (en) 2010-11-01 2012-05-03 Seagate Technology Llc Magnetic tunnel junction cells having perpendicular anisotropy and enhancement layer
JP2012099741A (ja) 2010-11-04 2012-05-24 Toshiba Corp 磁気ランダムアクセスメモリ及びその製造方法
US8470462B2 (en) 2010-11-30 2013-06-25 Magic Technologies, Inc. Structure and method for enhancing interfacial perpendicular anisotropy in CoFe(B)/MgO/CoFe(B) magnetic tunnel junctions
WO2012086183A1 (ja) 2010-12-22 2012-06-28 株式会社アルバック トンネル磁気抵抗素子の製造方法
US8675317B2 (en) 2010-12-22 2014-03-18 HGST Netherlands B.V. Current-perpendicular-to-plane (CPP) read sensor with dual seed and cap layers
JP5609652B2 (ja) * 2011-01-05 2014-10-22 富士通株式会社 磁気トンネル接合素子、その製造方法、及びmram
JP2012151213A (ja) 2011-01-18 2012-08-09 Sony Corp 記憶素子、メモリ装置
US8786036B2 (en) 2011-01-19 2014-07-22 Headway Technologies, Inc. Magnetic tunnel junction for MRAM applications
JP5367739B2 (ja) 2011-02-03 2013-12-11 株式会社東芝 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ
US9006704B2 (en) 2011-02-11 2015-04-14 Headway Technologies, Inc. Magnetic element with improved out-of-plane anisotropy for spintronic applications
KR101739952B1 (ko) 2011-02-25 2017-05-26 삼성전자주식회사 자기 메모리 장치
JP2012182219A (ja) 2011-02-28 2012-09-20 Toshiba Corp 磁気ランダムアクセスメモリ
US8947914B2 (en) 2011-03-18 2015-02-03 Samsung Electronics Co., Ltd. Magnetic tunneling junction devices, memories, electronic systems, and memory systems, and methods of fabricating the same
US20120241878A1 (en) 2011-03-24 2012-09-27 International Business Machines Corporation Magnetic tunnel junction with iron dusting layer between free layer and tunnel barrier
JP2012204432A (ja) * 2011-03-24 2012-10-22 Toshiba Corp 磁気ランダムアクセスメモリ及びその製造方法
US8790798B2 (en) 2011-04-18 2014-07-29 Alexander Mikhailovich Shukh Magnetoresistive element and method of manufacturing the same
US20120267733A1 (en) 2011-04-25 2012-10-25 International Business Machines Corporation Magnetic stacks with perpendicular magnetic anisotropy for spin momentum transfer magnetoresistive random access memory
US8592927B2 (en) 2011-05-04 2013-11-26 Magic Technologies, Inc. Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications
US8541855B2 (en) 2011-05-10 2013-09-24 Magic Technologies, Inc. Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications
US8508006B2 (en) 2011-05-10 2013-08-13 Magic Technologies, Inc. Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications
US9245563B2 (en) 2011-05-17 2016-01-26 Showa Denko K.K. Magnetic medium with an orientation control layer
WO2012160937A1 (ja) 2011-05-20 2012-11-29 日本電気株式会社 磁気メモリ素子および磁気メモリ
JP5768498B2 (ja) 2011-05-23 2015-08-26 ソニー株式会社 記憶素子、記憶装置
JP5177256B2 (ja) 2011-06-03 2013-04-03 富士電機株式会社 垂直磁気記録媒体およびその製造方法
JP2013008868A (ja) 2011-06-24 2013-01-10 Toshiba Corp 半導体記憶装置
EP2541554B1 (en) 2011-06-30 2015-12-30 Hitachi, Ltd. Magnetic functional device
KR20130008929A (ko) * 2011-07-13 2013-01-23 에스케이하이닉스 주식회사 개선된 자성층의 두께 마진을 갖는 자기 메모리 디바이스
KR20130015929A (ko) 2011-08-05 2013-02-14 에스케이하이닉스 주식회사 자기 메모리 소자 및 그 제조 방법
KR101831931B1 (ko) 2011-08-10 2018-02-26 삼성전자주식회사 외인성 수직 자화 구조를 구비하는 자기 메모리 장치
US8492169B2 (en) 2011-08-15 2013-07-23 Magic Technologies, Inc. Magnetic tunnel junction for MRAM applications
US20130059168A1 (en) 2011-08-31 2013-03-07 Agency Fo Science, Technology And Research Magnetoresistance Device
US8704320B2 (en) 2011-09-12 2014-04-22 Qualcomm Incorporated Strain induced reduction of switching current in spin-transfer torque switching devices
JP5767925B2 (ja) 2011-09-21 2015-08-26 株式会社東芝 磁気記憶素子及び不揮発性記憶装置
US8878318B2 (en) 2011-09-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for a MRAM device with an oxygen absorbing cap layer
JP5971927B2 (ja) 2011-11-29 2016-08-17 デクセリアルズ株式会社 光学体、窓材、建具、日射遮蔽装置および建築物
JP5867030B2 (ja) 2011-12-01 2016-02-24 ソニー株式会社 記憶素子、記憶装置
US9058885B2 (en) 2011-12-07 2015-06-16 Agency For Science, Technology And Research Magnetoresistive device and a writing method for a magnetoresistive device
US8823117B2 (en) 2011-12-08 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetic device fabrication
US8823118B2 (en) 2012-01-05 2014-09-02 Headway Technologies, Inc. Spin torque transfer magnetic tunnel junction fabricated with a composite tunneling barrier layer
JP5999543B2 (ja) 2012-01-16 2016-09-28 株式会社アルバック トンネル磁気抵抗素子の製造方法
JP5923999B2 (ja) 2012-01-30 2016-05-25 富士通株式会社 ストレージ管理方法およびストレージ管理装置
US9679664B2 (en) 2012-02-11 2017-06-13 Samsung Electronics Co., Ltd. Method and system for providing a smart memory architecture
US8871365B2 (en) 2012-02-28 2014-10-28 Headway Technologies, Inc. High thermal stability reference structure with out-of-plane aniotropy to magnetic device applications
US8698260B2 (en) 2012-02-29 2014-04-15 Headway Technologies, Inc. Engineered magnetic layer with improved perpendicular anisotropy using glassing agents for spintronic applications
US8710603B2 (en) 2012-02-29 2014-04-29 Headway Technologies, Inc. Engineered magnetic layer with improved perpendicular anisotropy using glassing agents for spintronic applications
US8617644B2 (en) * 2012-03-08 2013-12-31 HGST Netherlands B.V. Method for making a current-perpendicular-to-the-plane (CPP) magnetoresistive sensor containing a ferromagnetic alloy requiring post-deposition annealing
JP5956793B2 (ja) 2012-03-16 2016-07-27 株式会社東芝 磁気抵抗効果素子、磁気ヘッドアセンブリ、磁気記録再生装置及び磁気メモリ
US9007818B2 (en) 2012-03-22 2015-04-14 Micron Technology, Inc. Memory cells, semiconductor device structures, systems including such cells, and methods of fabrication
KR101287370B1 (ko) 2012-05-22 2013-07-19 고려대학교 산학협력단 반전구조를 갖는 코발트(Co) 및 플래티늄(Pt) 기반의 다층박막 및 이의 제조방법
US8941950B2 (en) 2012-05-23 2015-01-27 WD Media, LLC Underlayers for heat assisted magnetic recording (HAMR) media
US9054030B2 (en) 2012-06-19 2015-06-09 Micron Technology, Inc. Memory cells, semiconductor device structures, memory systems, and methods of fabrication
US8923038B2 (en) 2012-06-19 2014-12-30 Micron Technology, Inc. Memory cells, semiconductor device structures, memory systems, and methods of fabrication
KR101446338B1 (ko) 2012-07-17 2014-10-01 삼성전자주식회사 자기 소자 및 그 제조 방법
US9214624B2 (en) 2012-07-27 2015-12-15 Qualcomm Incorporated Amorphous spacerlattice spacer for perpendicular MTJs
JP5961490B2 (ja) 2012-08-29 2016-08-02 昭和電工株式会社 磁気記録媒体及び磁気記録再生装置
US8860156B2 (en) 2012-09-11 2014-10-14 Headway Technologies, Inc. Minimal thickness synthetic antiferromagnetic (SAF) structure with perpendicular magnetic anisotropy for STT-MRAM
US8836056B2 (en) 2012-09-26 2014-09-16 Intel Corporation Perpendicular MTJ stacks with magnetic anisotropy enhancing layer and crystallization barrier layer
US8865008B2 (en) 2012-10-25 2014-10-21 Headway Technologies, Inc. Two step method to fabricate small dimension devices for magnetic recording applications
WO2014097520A1 (ja) 2012-12-20 2014-06-26 キヤノンアネルバ株式会社 酸化処理装置、酸化方法、および電子デバイスの製造方法
US10522589B2 (en) * 2012-12-24 2019-12-31 Shanghai Ciyu Information Technologies Co., Ltd. Method of making a magnetoresistive element
US9287323B2 (en) 2013-01-08 2016-03-15 Yimin Guo Perpendicular magnetoresistive elements
US20140242419A1 (en) 2013-02-28 2014-08-28 Showa Denko Hd Singapore Pte Ltd. Perpendicular recording medium for hard disk drives
US9379315B2 (en) 2013-03-12 2016-06-28 Micron Technology, Inc. Memory cells, methods of fabrication, semiconductor device structures, and memory systems
US9499899B2 (en) 2013-03-13 2016-11-22 Intermolecular, Inc. Systems, methods, and apparatus for production coatings of low-emissivity glass including a ternary alloy
US9206078B2 (en) 2013-03-13 2015-12-08 Intermolecular, Inc. Barrier layers for silver reflective coatings and HPC workflows for rapid screening of materials for such barrier layers
KR102131812B1 (ko) 2013-03-13 2020-08-05 삼성전자주식회사 소스라인 플로팅 회로, 이를 포함하는 메모리 장치 및 메모리 장치의 독출 방법
JP6199618B2 (ja) 2013-04-12 2017-09-20 昭和電工株式会社 磁気記録媒体、磁気記憶装置
KR102099879B1 (ko) 2013-05-03 2020-04-10 삼성전자 주식회사 자기 소자
US9341685B2 (en) 2013-05-13 2016-05-17 HGST Netherlands B.V. Antiferromagnetic (AFM) grain growth controlled random telegraph noise (RTN) suppressed magnetic head
KR20140135002A (ko) 2013-05-15 2014-11-25 삼성전자주식회사 자기 기억 소자 및 그 제조방법
JP6182993B2 (ja) 2013-06-17 2017-08-23 ソニー株式会社 記憶素子、記憶装置、記憶素子の製造方法、磁気ヘッド
US9466787B2 (en) 2013-07-23 2016-10-11 Micron Technology, Inc. Memory cells, methods of fabrication, semiconductor device structures, memory systems, and electronic systems
JP5689932B2 (ja) 2013-08-06 2015-03-25 キヤノンアネルバ株式会社 トンネル磁気抵抗素子の製造方法
US20150041933A1 (en) * 2013-08-08 2015-02-12 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions using bcc cobalt and suitable for use in spin transfer torque memories
US20150069556A1 (en) 2013-09-11 2015-03-12 Kabushiki Kaisha Toshiba Magnetic memory and method for manufacturing the same
US9461242B2 (en) 2013-09-13 2016-10-04 Micron Technology, Inc. Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems
US9608197B2 (en) 2013-09-18 2017-03-28 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
US9082927B1 (en) 2013-12-20 2015-07-14 Intermolecular, Inc. Catalytic growth of Josephson junction tunnel barrier
US10454024B2 (en) 2014-02-28 2019-10-22 Micron Technology, Inc. Memory cells, methods of fabrication, and memory devices
US9214625B2 (en) 2014-03-18 2015-12-15 International Business Machines Corporation Thermally assisted MRAM with increased breakdown voltage using a double tunnel barrier
US9269893B2 (en) 2014-04-02 2016-02-23 Qualcomm Incorporated Replacement conductive hard mask for multi-step magnetic tunnel junction (MTJ) etch
US9281466B2 (en) 2014-04-09 2016-03-08 Micron Technology, Inc. Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication
US9269888B2 (en) 2014-04-18 2016-02-23 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
US9496489B2 (en) 2014-05-21 2016-11-15 Avalanche Technology, Inc. Magnetic random access memory with multilayered seed structure
US9559296B2 (en) 2014-07-03 2017-01-31 Samsung Electronics Co., Ltd. Method for providing a perpendicular magnetic anisotropy magnetic junction usable in spin transfer torque magnetic devices using a sacrificial insertion layer
US9799382B2 (en) 2014-09-21 2017-10-24 Samsung Electronics Co., Ltd. Method for providing a magnetic junction on a substrate and usable in a magnetic device
US9349945B2 (en) 2014-10-16 2016-05-24 Micron Technology, Inc. Memory cells, semiconductor devices, and methods of fabrication
US9768377B2 (en) 2014-12-02 2017-09-19 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
US10439131B2 (en) 2015-01-15 2019-10-08 Micron Technology, Inc. Methods of forming semiconductor devices including tunnel barrier materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164548A1 (en) * 2006-02-25 2008-07-10 Yadav Technology Low resistance high-tmr magnetic tunnel junction and process for fabrication thereof
US20130154038A1 (en) * 2007-10-31 2013-06-20 Magic Technologies, Inc. High Performance MTJ Element for Conventional MRAM and for STT-RAM and a Method for Making the Same
US20120012952A1 (en) * 2010-07-16 2012-01-19 Qualcomm Incorporated Magnetic Storage Element Utilizing Improved Pinned Layer Stack
US20140015076A1 (en) * 2010-12-10 2014-01-16 Avalanche Technology Inc. Perpendicular sttmram device with balanced reference layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10811294B2 (en) 2016-09-20 2020-10-20 Wonik Ips Co., Ltd. Substrate transfer apparatus and control method thereof

Also Published As

Publication number Publication date
JP6400118B2 (ja) 2018-10-03
CN106415868A (zh) 2017-02-15
US20200119260A1 (en) 2020-04-16
US20160181513A1 (en) 2016-06-23
EP3130014B1 (en) 2020-12-02
EP3130014A4 (en) 2017-11-29
US10026889B2 (en) 2018-07-17
KR101960148B1 (ko) 2019-07-04
TW201543725A (zh) 2015-11-16
JP2017513232A (ja) 2017-05-25
US12052929B2 (en) 2024-07-30
WO2015157080A1 (en) 2015-10-15
US10505104B2 (en) 2019-12-10
US20180226570A1 (en) 2018-08-09
US20150295164A1 (en) 2015-10-15
US20220158086A1 (en) 2022-05-19
CN106415868B (zh) 2019-05-28
US11251363B2 (en) 2022-02-15
EP3130014A1 (en) 2017-02-15
KR20160143740A (ko) 2016-12-14
US9281466B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
TWI559584B (zh) 記憶體單元、半導體結構、半導體裝置及其製造方法
US10680036B2 (en) Magnetic devices with magnetic and getter regions
US10454024B2 (en) Memory cells, methods of fabrication, and memory devices
EP3044816B1 (en) Memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems
US9608197B2 (en) Memory cells, methods of fabrication, and semiconductor devices
US20150028439A1 (en) Memory cells, methods of fabrication, semiconductor device structures, memory systems, and electronic systems