TWI452722B - 二極體之結構與其製法 - Google Patents

二極體之結構與其製法 Download PDF

Info

Publication number
TWI452722B
TWI452722B TW099110301A TW99110301A TWI452722B TW I452722 B TWI452722 B TW I452722B TW 099110301 A TW099110301 A TW 099110301A TW 99110301 A TW99110301 A TW 99110301A TW I452722 B TWI452722 B TW I452722B
Authority
TW
Taiwan
Prior art keywords
diode
region
diode region
polar
active
Prior art date
Application number
TW099110301A
Other languages
English (en)
Other versions
TW201041183A (en
Inventor
Anthony J Lochtefeld
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Publication of TW201041183A publication Critical patent/TW201041183A/zh
Application granted granted Critical
Publication of TWI452722B publication Critical patent/TWI452722B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0814Diodes only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

二極體之結構與其製法
本發明係有關於從結晶材料之非極性面(non-polar plane)製得之元件與其製法,例如一種III-N半導體結晶材料非極性面。於一實施例中,本發明係有關於非極性LED或其製法,且特別是有關於從III-氮化物(III-nitride)半導體結晶材料製得之非極性LED與其製法。
此部分提供背景資料,且介紹有關於下述說明書所揭露之資料,這些資料並非先前技術之證明(admission)。
氮化鎵(gallium nitride,GaN),與其與鋁和銦合併組成之三元(ternary)與四元(quanternary)化合物,已被廣泛地應用於製作可見光與紫外光光電元件與高功率(high-power)電子元件上。這些元件一般係利用磊晶成長法製得,例如分子束磊晶法(molecular beam epitaxy,MBE)、化學氣相沉積法(CVD)、金屬有機化學氣相沉積法(metalorganic chemical vapor deposition,MOCVD)與氫化物氣相磊晶法(hydride vapor phase epitaxy)。
如第1圖所示,氮化鎵與其合金最穩定之狀態是六方晶系纖鋅礦結構(hexagonal wuftzite crystal structure),此結構具有兩個(或三個)相同的基準面軸(basel plane axes),其彼此(a軸)相差120°,且垂直於一特定的c軸(c-axis)。IIIA族與氮原子交互地佔據沿著晶體c軸之c平面(c-planes)。於纖鋅礦結構中的對稱性代表III-氮化物沿著c軸擁有晶體塊材(bulk)自發性極化特性(spontaneous polarization),且纖鋅礦結構展現壓電極化特性(piezoelectric polarization)。
目前應用於電子與光電元件之氮化技術係將氮化物膜沿著極性c軸成長。然而,由於很強的壓電極化(piezodielectric)與自發性(spontaneous)極化現象,以III-氮化物(III-nitride)為主的光電與電子元件之c-平面量子井結構會產生不想要之量子侷限史塔克效應(quantum-confined Stark effect,QCSE)。沿著c軸之強烈的內建電場會使III-N材料之利用價值嚴重劣化(degrade)。
消除氮化鎵光電元件中自發性極化與壓電極化效應的方法之一,係沿著非極性面成長該材料,如晶體之m-平面(m-plane)或a-平面(a-plane)成長。這些面包含相同數量的鎵與氮原子,且為電中性。再者,後續非極性層之極性會因相等而彼此抵銷,因此晶體塊材(bulk crystal)不會沿著成長方向被極化。然而,成長具有非極性表面之氮化鎵半導體晶圓仍然存在困難。因此,需要增加III-氮化物為主之光電與電子元件(例如LEDs)之效率與提升其操作特性(operating characteristics)。
本發明的目的之一就是處理相關先前技術之問題或缺點,與提供此處敘述之優點。
為達上述與其他目的,本發明之方法主要係增加結晶材料(例如六方晶系(hexagonal)或纖鋅礦結構(wurtzite)晶體)a-平面與m-平面使用於製作電子元件之使用率。
本發明之另一方面就是要增加極性結晶材料(例如III-N材料,且特別是氮化鎵)非極性平面使用於製作電子元件之使用率。
本發明之另一方面就是要增加一半導體二極體或發光二極體(LEDs)之發光效率(extraction efficiency)或內部量子效率(internal quantum efficiency)。
本發明之另一方面就是要增加發光二極體(LEDs)之發光效率(extraction efficiency)或內部量子效率(internal quantum efficiency),藉由使用III-N半導體結晶材料之非極性面(non-polar faces)。
本發明之另一方面就是要增加發光二極體(LEDs)之發光效率(extraction efficiency)或內部量子效率(internal quantum efficiency),藉由利用III-N半導體結晶材料之非極性平面(non-polar planes)。
依照本發明之實施例,本發明提供方法,結構與裝置,其提供一半導體二極體或發光二極體(LED)包括至少一主動二極體區域,其中該主動二極體區域之非極性III-N半導體材料多於極性III-N半導體材料。
依照本發明之實施例,本發明提供方法,結構與裝置,其提供一半導體二極體或發光二極體(LED)包括由III-N半導體材料製得之底部二極體、主動二極體與頂部二極體區域,其中該主動二極體區域與頂部二極體區域每單位面積具有較底部二極體區域較少之缺陷。
依照本發明之實施例,本發明提供方法,結構與裝置,其提供一半導體二極體或發光二極體(LED)包括:一空洞(cavity)於一底部二極體材料中;一主動二極體區域於該空洞之表面上;以及一頂部二極體區域於該至少一部分的空洞中。
依照本發明之實施例,本發明提供方法,結構與裝置,其利用III-N半導體材料之非極性平面應用於LED中,以增加輸出效率。
本發明之各方面應用於具有III-N半導體之元件,包括但不限定於光電元件、發光二極體、雷射二極體與光伏打裝置。
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:
以下將詳細說明本發明概念之實施例,各種實施例伴隨著圖示顯示如下,其中類似的元件使用相同的元件符號表示。為了解釋本發明之概念,藉由參考圖示描述下述之實施例。
請參見第2圖,一二極體可包括一底部二極體區域220、一主動二極體區域230、以及一頂部二極體區域240,一第一電性接觸260位於元件之頂部,以及一第二電性接觸250位於元件之底部。每一個區域220、230、240可包括多層。二極體可以耦合至一基材210。如第2圖所示,於一實施例中,基材210可以耦合至底部電性接觸250與主動二極體區域230之間。雖然,第2圖顯示一垂直式二極體結構,然而,本發明並不限於此種結構之設置,本領域人士所熟知之其他結構與方法亦包括於本發明所保護之範圍內。
為了方便起見,此處用於標示區域所述之”頂部”與”底部”並非限定於某一區域。舉例而言,一二極體形成於一基材上,其具有頂部區域位於其底部區域之上。如果此二極體覆晶(flip-chip)接合至承載晶圓(handle wafer),且之後基材被移除,則反向(flipped)觀察二極體之符號結構。在此例中,頂部區域將會視為低於底部區域。
底部二極體區域220與頂部二極體區域240較佳具有相反(opposite)之摻雜類型。例如,底部二極體區域220主要摻雜n型(電子供給者,例如磷、砷或銻),接著,頂部二極體區域240將會摻雜p型(電子接受者,例如硼或鋁),且反之亦然。底部二極體區域220與頂部二極體區域240較佳為重摻雜(heavily doped),以改善元件的特性。
底部電性接觸250電性接觸至主動二極體區域230,例如,經由一導通孔(via)(圖中未顯示)。於另一實施例中,至少一部分之基材210之摻雜,可以與頂部二極體區域240或底部二極體區域220之主要摻雜類型(例如n型或p型)相同。因此,二極體區域與基材210之間可具有良好的電性接觸。
主動二極體區域230之示範結構端視各種因素,包括二極體及/或對應元件之特定應用。於一發光二極體(LED)中,主動二極體區域230可以是本質區域(intrinsic region)。於一發光二極體(LED)中,頂部二極體區域240、主動二極體區域230與底部二極體區域220可重複多次,以包括摻雜層與薄層未摻雜量子井(thin undoped quantum well),其中電子與電洞於薄層未摻雜量子井中再次結合且產生光子(photon)。
於另一應用於雷射之實施例中,主動區域230可以類似於發光二極體(LED)之主動區域。可加入反射層以供給產生之光源一共振腔體(resonant cavity),以製作出同調(coherent)或大體上同調的光源。
於另一應用於二極體之實施例中,主動二極體區域230只要包括介於頂部二極體區域與底部二極體區域之P-N介面(P-N junction),其可以不必是獨立成長的一層(separately grown layer)。
於另一應用於太陽能電池之實施例中,主動二極體區域230可以是適當地摻雜n-型或p-型半導體材料之單層,以吸收入射光子且產生一電子-電洞對。
III-N化合物用以形成二極體區域,已為本領域人士所熟知。III-N化合物可包括二元(binary)、三元(ternary)與四元(quanternary)形式。III-N化合物包括氮化鋁(AlN)、氮化鎵(GaN)、氮化銦(InN)與其三元與四元化合物。此處應注意的是,熟知本領域之人士應能得知如何依據所需特性(例如發光波長(emitted light wavelength)、能階(bandgap)、晶格常數(lattice constant)與摻雜程度(doping level))選擇與製作(process)這些材料。
第3圖顯示製作發光二極體(LED)之製作流程。於此例中,發光二極體(LED)由氮化鎵(GaN)結晶材料製得,但本發明不限於此種材料。例如,本發明可由其他極性材料或其他極性III-N半導體材料形成而得。於此例中,主動二極體區域形成於頂部二極體區域與底部二極體區域之間,大多數或主要之表面為非極性平面表面。於另一實施例中,介於主動區域之間的表面包括非極性m-平面(non-polar m-plane)III-N半導體面多於c-平面極性(c-plane polar)半導體面。於另一實施例中,這些表面包括非極性a-平面(non-polar m-plane)III-N半導體面多於c-平面極性(c-plane polar)半導體面。於另一實施例中,在介於主動區域之間的表面中,非極性平面之表面積為極性c-平面(polar c-plane)半導體面之表面積之至少2倍、5倍、10倍、50倍,或以上。於另一實施例中,介於主動二極體區域之頂部與底部二極體區域大體上由極性結晶材料之所有非極性表面(non-polar faces)所組成(例如,氮化鎵或其他III-N半導體材料之a-平面或m-平面之一或兩者)。於又一實施例中,主動區域之表面包括非極性III-N半導體面多於c-平面極性半導體面。
第3圖顯示一製程之實施例。如第3圖所示,於步驟310中,提供氮化鎵(GaN)層。其可以是氮化鎵塊狀基材、或氮化鎵成長(或者是形成)於一支撐物理基材上。另外,作為較大面積半導體製程之一部分時,氮化鎵(GaN)可以選擇性地成長(相對於坦覆式成長(blanket growth))於基材之特定區域中。選擇性成長可以位於一侷限的面積(confined area)中,例如於ART開口或溝槽中。於此例中,提供一習知塊狀氮化鎵(GaN)基材,其表面由極性面組成(c-平面)。於此例中,氮化鎵(GaN)之第一層對應到後續形成之LED的底部二極體區域220。當進行一般成長製程時,由於III-N半導體材料特性的關係,傳統的塊狀極性基材具有平行於基材的c-平面。
於步驟320中,使氮化鎵(GaN)暴露出a-平面或m-平面之一或兩者。舉例而言,垂直蝕刻氮化鎵(GaN)以形成開口,例如,於氮化鎵(GaN)表面中形成孔洞(hole)或溝槽(trench)。此種設計之氮化鎵(GaN)即作為元件底部二極體區域。
於步驟330中,形成主動二極體區域。依據所設計出的元件,此步驟可與步驟340(如下所述)分離或成為步驟340的一部分。例如,如果一發光二極體(LED)具有本質區域(intrinsic region),步驟330可包括磊晶成長未摻雜氮化鎵於步驟320形成之氮化鎵表面上。於另一實施例中,如果形成二極體,步驟330可以是步驟340之初始步驟,以形成PN介面(例如,包括空乏區域(depletion region))。
於步驟340中,形成一頂部二極體區域。舉例而言,此步驟可包括磊晶成長氮化鎵(GaN)於步驟330之結構上,此氮化鎵之摻雜類型與步驟310之氮化鎵的摻雜類型不同。例如,如果步驟310之氮化鎵摻雜n型雜質,則步驟340之氮化鎵摻雜p型雜質。如果步驟310之氮化鎵摻雜p型雜質,則步驟340之氮化鎵摻雜n型雜質。
於步驟350中,可加上電性接觸(contact),以提供電性連接至頂部與底部二極體區域。雖然第3圖顯示步驟310~步驟350進行之程序(order),然而,本發明不應該被侷限於此進行之程序。於另一實施例中,可於製程中的任何時機點形成電性接觸(例如,可先形成於各自的基材上,之後再將二極體區域連接)。
第4圖顯示一習知極性氮化鎵層塊材(GaN layer)。如第4圖所示,極性氮化鎵層形成於藍寶石(sapphire)晶圓基材上,也可使用其他基材,例如矽或碳化矽(silicon carbide)。基材100例如可以是塊狀矽晶圓、塊狀鍺晶圓、絕緣層上覆半導體(semiconductor-on-insulator,SOI)基材、或應力絕緣層上覆半導體(strained semiconductor-on-insulator,SSOI)基材。基材100可包括第一半導體材料或主要由一第一半導體材料所組成,例如藍寶石。藍寶石晶圓基材之晶向一般為(1,0,0),然而,本發明之實施例並不限於此晶向。
成長氮化鎵於藍寶石上已為本領域人士所熟知,然而,結晶材料的缺陷(defect)程度卻很高(例如109 /cm2 ),其缺陷主要來自錯位缺陷(dislocation defect)。然而,如第4圖所示,大多數的錯位缺陷發生於垂直或大體上垂直於III-N材料的c-平面。因此,於一實施例中,於氮化鎵塊材之垂直側壁將會具有較少數目的缺陷(例如,垂直側壁之每單位表面面積會比水平平面具有較少的缺陷)。
提供氮化鎵塊材之後,移除某些特定部分(selected portions),以留下某些不朝向c-平面的結構。例如,移除特定部分,以留下從基材頂部表面延伸之平面,該平面之投影(projections)方向不朝向c-平面。於一實施例中,為了使用氮化鎵材料之m-平面或a-平面,因此設置投影部分(如步驟320)。於一實施例中,所設置的投影部分不使用氮化鎵材料之c-平面。可蝕刻氮化鎵塊材以具有指定尺寸之開口(openings),例如孔洞(holes)、凹口(recesses)或空隙(cavity)。這些溝槽(trenches)可用習知的微影技術(photolithogrphy)或反應性離子蝕刻製程(reactive ion etching,RIE)製得。如第5圖所示,結晶材料的剩餘結構520或投影(projections)可包括第一部分524(例如,平面側),其沿著非極性平面(例如,m-平面或a-平面)延伸,而特定部份522朝向c-平面。於一實施例中,側壁524之尺寸為特定部份522的2倍、5倍、10倍、20倍或100倍。於一實施例中,此設計可被設置作為鰭(fins)或柱(posts)。於一實施例中,一底部表面可具有一特定設計(例如,一特定斜率或指定的輪廓,如V型)。
如上所述,底部二極體區域220可以於磊晶成長期間原處(in situ)摻雜或非原處(ex situ)離子佈植。再者,底部二極體區域的材料較佳視元件的需求而定。
於一實施例中,可形成氮化鎵塊材內的溝槽530,其具有大體上m-平面或a-平面側壁(例如,依據結構的排列方向(orientation)不同,可以是垂直或水平側壁)。溝槽的數目視所需要的應用可以是1個或甚至是數百個。
當底部二極體區域被設置之後,形成一主動二極體區域(如步驟330)。於一實施例中,主動二極體區域可以是磊晶成長。如第6圖所示,磊晶成長的示範方向如箭頭610所示。主動二極體區域230於曝露的氮化鎵表面的投影(projections)之頂部、底部或水平面(horizontal planes)522之成長是垂直地成長。主動二極體區域230位於曝露的氮化鎵表面的投影(projections)之側壁(sides)或垂直平面(vertical planes)524之成長可以是水平地成長。示範的主動二極體區域230可以於磊晶成長期間原處(in situ)摻雜或非原處(ex situ)離子佈植。於一實施例中,主動二極體區域230可以是本質的(例如,本質摻雜(intrinsically doped))
一般而言,存在於磊晶成長表面上的缺陷將導致材料連續地長出缺陷,形成具缺陷的成長表面(defective growth surface)。於主動二極體區域磊晶成長期間,缺陷的擴張(extension of defect)並未顯示於第6圖中。然而,既然於氮化鎵中的缺陷主要是垂直的(請參見第4圖與第5圖),因此缺陷多數平行於曝露的投影之側壁。許多或大多數的缺陷並不會與投影的側壁交叉(intersect),且這些側壁將具有減少的或大體上無缺陷的表面。因此,於第6圖中成長於投影之側壁上的主動二極體區域之缺陷度(defectvity)將會降低或大體上不存在。成長於這些側壁上的主動區域的缺陷密度(defect density)會低於底部二極體區域220之缺陷密度。如第6圖所示,於主動二極體區域230中的虛線部份630a將具有低於底部二極體區域220之缺陷密度。於一實施例中,於主動二極體區域230中的缺陷度較底部二極體區域220低2倍、5倍、10倍、20倍或更多。
形成主動二極體區域230之後,再形成頂部二極體區域(步驟340)。於一實施例中,磊晶成長一示範的頂部二極體區域240。如第7圖所示,頂部二極體區域240之磊晶成長類似於主動二極體區域之磊晶成長(例如,磊晶成長的方向類似於第6圖之箭頭610)。頂部二極體區域240於曝露的氮化鎵表面的投影(projections)(例如,主動二極體區域)之頂部、底部或水平面(horizontal planes)522之成長是垂直地成長。頂部二極體區域240於曝露的氮化鎵表面的投影(projections)之側壁(sides)或垂直平面(vertical planes)524之成長是水平地成長。第7圖之特徵之一是,頂部二極體區域240可以部分(圖中並未顯示)或完全填充於一開口中,例如開口530或位於主動二極體區域230中的開口。第7圖之特徵之一是,頂部二極體區域240可以填充多層開口/溝槽,使得在多層開口/溝槽中形成頂部二極體區域240與主動二極體區域230的電性接觸。此結構特別有助於發光二極體(LED),因為其可以降低或減少底部電性接觸260的面積,以避免底部電性接觸260阻擋從主動二極體區域230中發射出的光。示範的頂部二極體區域240可以於磊晶成長期間原處(in situ)摻雜或非原處(ex situ)離子佈植。較佳地,發光二極體(LED)之頂部二極體區域240重摻雜一與底部二極體區域220相反類型的雜質。
於一實施例中,於頂部二極體區域中的缺陷程度(defect levels)少於底部二極體區域。於另一實施例中,頂部二極體區域之缺陷程度多於主動二極體區域。依據一實施例,頂部二極體區域240之缺陷度(defectivity)可以比底部二極體區域220低2倍、5倍、10倍、20倍或更多。
於一實施例中,至少主動二極體區域之成長條件可以設定或設計成傾向從m/a平面(例如,524表面)水平成長多於傾向從c-平面(例如,522表面)成長。
當頂部二極體區域完成後,可視需要的(optionally)選擇如本領域人士所熟知之額外製程步驟,以完成對應的半導體零件、半導體元件、或半導體產品(步驟350)。舉例而言,一些實施例中,可加入頂部與底部電性接觸(步驟350)。此外,示範之實施例包括接合到導電晶圓上、接合到一晶粒(die)或接合到封裝固定點(package mounting point)、移除基材與加上頂部與底部電性接觸,或類似之步驟。
當頂部二極體區域240形成之後,可形成如第8圖所示之電性接觸(步驟350)。於一實施例中,對於每一個開口/溝槽提供一頂部電性接觸814與底部電性接觸812,以分別直接接觸頂部二極體區域220與底部二極體區域240。可藉由本領域人士所熟知之各種材料/製程形成電性接觸812、814。適合用於形成電性接觸之材料,例如,可包括條狀(strip)導電金屬(如銅、銀或鋁)、反射導電材料或一層相對透明的導電材料(例如氧化銦錫)。再者,有許多方法可穿過基材電性接觸底部電性接觸812與底部二極體區域220,以達到一電性接觸,例如接觸導通孔(contact via)。電性接觸812、814可各自操作作為頂部電性接觸260與底部電性接觸250。於另一實施例中,可對於複數個頂部二極體區域240或複數個底部二極體區域220(例如,於複數個開口/溝槽中)提供單一的電性接觸(例如,812與814)。
對於特定發光二極體(LED)的應用,基材210可能降低元件的性能(例如,吸收光)。於一示範的實施例中,如第9圖所示,可移除基材210,藉由此領域已知的方法,例如磨削(grinding)、蝕刻(etching)、雷射剝離(laser ablation)或類似的方法。一示範製程(步驟350)可包括接合一”承載(handle)”基材或單元910到頂部二極體區域240,且加入電性接觸912、914。於接合承載基材910至頂部二極體區域240之前,頂部二極體區域240之對應表面藉由一合適的方法(例如化學機械研磨法(CMP))平坦化,以確保承載基材910之附著(attach)。此外,可使用一連接劑或層(圖中並未顯示)以確保承載基材910電性連接至頂部二極體區域240。再者,可使用一黏著劑或膠層(圖中未顯示)以確保承載基材910接合至頂部二極體區域240。
之後,藉由標準技術加入頂部電性接觸260與底部電性接觸250。如第9圖所示,對於2個或多個開口/溝槽或於主動區域230中的對應開口/溝槽,可提供一個頂部電性接觸914與一個底部電性接觸912。另外地,此承載基材910可以是電性導電的。於一實施例中,對於頂部二極體區域240,承載基材910可包括或整合頂部電性接觸914。再者,承載基材910可包括或電性耦合至一元件或封裝體。
於發光二極體(LED)相關領域中,限制內部量子效率(internal quantum efficiency)的一個因素在於,氮化鎵之極性c-平面面對主動區域。如第3圖顯示之示範實施例及/或第8-9圖顯示之示範實施例可以傳輸較高的內部量子效率,因為氮化鎵(GaN)的非極性m-平面或a-平面面對主動二極體區域。再者,對於一或多個底部二極體區域220、主動二極體區域230及/或頂部二極體區域240而言,此類實施例可以提供發光二極體(LED)結構具有較少的c-平面方向的氮化鎵(GaN)材料。
於一實施例中,氮化鎵(GaN)之非極性m-平面或a-平面可以形成一介面(interface)介於底部二極體區域220與主動二極體區域230之間。於一實施例中,氮化鎵(GaN)之非極性m-平面或a-平面可以形成一介面(interface)介於主動二極體區域230與頂部二極體區域240之間。
依據所應用之特定實施例,於一對應元件中,需要增加非極性平面氮化鎵(GaN)對於極性平面氮化鎵(GaN)之比例。於一示範實施例中,可以增加非極性平面氮化鎵(GaN)相對於極性氮化鎵(GaN)之部分,藉由相對增加側壁524之尺寸或降低底部表面522之尺寸。於一示範之實施例中,可以增加非極性平面氮化鎵(GaN)相對於極性氮化鎵(GaN)之部分,藉由於製程中移除極性氮化鎵(GaN)之特定部份。第10a-10b圖顯示一半導體二極體之示範結構。如第10a圖所示,可以減少或移除頂部二極體區域1040中含有極性c-平面氮化鎵的部分。如第10a圖中,底部表面之移除停止於頂部二極體區域,然而,此實施例並非用以限定本發明。例如,可連續移除氮化鎵(GaN)材料,直到進入主動二極體區域。如第10b圖所示,於頂部二極體區域1040中含有極性c-平面氮化鎵的部分可被移除或被頂部電性接觸1014a取代。參考符號1016可以指平坦層,例如絕緣層(insulator)。
於一示範實施例中,相對於極性平面氮化鎵(GaN),可以增加非極性平面氮化鎵(GaN)的部分,藉由於製程期間,減少或移除極性平面氮化鎵(GaN)材料之特定部份。第10c圖顯示一半導體二極體之示範結構,其中於形成頂部二極體區域1040之前,移除含有主動二極體區域1030之極性平面氮化鎵(GaN)的部分。第10d圖顯示一半導體二極體之示範結構,其中於形成一”承載(handle)”基板910’之前,移除底部二極體區域1020、主動二極體區域1030及/或頂部二極體區域之極性平面氮化鎵(GaN)。於一實施例中,從空乏區(depletion region)、主動二極體區域或半導體二極體中,可以刪除(例如,移除)大體上成長於且排列於c-平面之所有極性平面氮化鎵(GaN)材料。
再者,於特定實施例中,頂部電性接觸及/或底部電性接觸可以是2維或3維結構,以減少光撞擊到位於至少一底部二極體區域、主動二極體區域或頂部二極體區域之極性氮化鎵(GaN)材料。
於應用於發光二極體(LED)之一實施例中,頂部電性接觸(例如,220)可以是高度反射導電材料,其可以反射內部產生的光,使其從一特定表面或所需表面中離開發光二極體(LED)。例如,反射底部電性接觸可以由材料(例如銀)製得。於另一實施例中,可以使用此種反射底部電極並連接光穿透基材或光學半透明/透明(translucent/transparent)基材。
應用於發光二極體(LED)之一實施例中,反射層可合併於相鄰之底部二極體區域220、主動二極體區域230及/或頂部二極體區域240之一,以直接反射內部產生的光,使其從一特定表面或所需表面中離開發光二極體(LED)。例如,反射層可以直接介於頂部二極體區域220與基材210之間。反射層可由本領域人士所熟知之材料/製程製得。
應用於半導體二極體之一實施例中,其可包括一具有第一雜質(dopant)類型之第一區域、一主動區域與一具有相反於第一雜質之第二雜質類型之第二區域,其中主動區域介於第一區域與第二區域之間。主動區域位於第一或第二區域之非極性平面表面中,或介於第一與第二區域中的至少一非極性平面表面之間。因此,半導體二極體具有一水平或垂直堆疊結構。相鄰於主動區域之第一區域的非極性表面/極性表面之比率大於1。於一實施例中,至少一主動區域是III-N半導體材料。於另一實施例中,主動區域是pn介面或pn介面之空乏區(depletion region)。於又一實施例中,主動區域是介於第一區域與第二區域之間的本質(intrinsic)區域或量子井(quantum well)結構。於此說明書中,空乏區(depletion region)可以是主動二極體或主動區域其中之一的類型。形成第一電性接觸與第二電性接觸對應到第一與第二區域。
發射光的波長以及其顏色,端視所形成之發光二極體(LED)p-n介面的材料能階能量(band gap energy)。發光二極體(LEDs)合併III-N半導體材料可以發射光,包括藍光、綠光、紅外光、紫外光與白光(例如,以藍光為基礎或合併藍光)。舉例而言,藍光發光二極體(LEDs)係依據寬能階之氮化鎵(GaN)與氮化銦鎵(InGaN)半導體。於傳統的發光二極體(LEDs),限制內部量子效率(internal quantum efficiency)之因素在於,氮化鎵(GaN)的極性c-平面。可藉由發光之顏色/波長而改變主動區域或對應發光二極體(LED)元件之內部效率之降低程度。於一實施例中,預期綠光發光二極體(LED)之效率可以增加超過100倍。於另一實施例中,預期綠光發光二極體(LED)之效率可以增加超過2倍、5倍、10倍或更多。
依據應用之藍光發光二極體(LED)或白光發光二極體(LED)之一實施例中,因為非極性III-N半導體結晶材料,可以使其效率增加大於2倍、大於5倍、大於10倍、大於25倍或更多。
依據應用之紅外光(infrared light)發光二極體(LED)之一實施例中,因為非極性III-N半導體結晶材料,可以使其效率增加大於2倍、大於5倍、大於10倍、大於25倍或更多。
依據應用紫外光(ultraviolet light)發光二極體(LED)之一實施例中,因為非極性III-N半導體結晶材料,可以使其效率增加大於2倍、大於5倍、大於10倍、大於25倍或更多。
於一示範實施例中,頂部與底部二極體區域之摻雜程度可以介於1017 -1020 cm-3 ,而主動區域之摻雜程度可以低於1017 cm-3
由於使用極性材料,使得雷射發光二極體(lasers LEDs)具有下述缺點,包括至少一不想要的頻率偏移(frequency shift)及/或效率之損失。依據本發明之應用,可以降低上述缺點。
雖然示範的實施例使用氮化鎵(GaN),然而,可以了解的是,亦可使用其他III-N半導體材料。依據本發明之實施例,可以提供一III-N半導體材料(例如,選擇性磊晶成長)。於一些實施例中,可以提高沿著III-N結晶半導體材料之第一方向的成長,可以減少沿著III-N結晶半導體材料之第二方向的成長。於一些實施例中,非極性平面III-N半導體材料之成長可多於極性平面III-N半導體材料之成長。於一些實施例中,可以提高a-平面/m-平面方向的III-N結晶半導體材料之成長,及/或可以減少c-平面方向III-N結晶半導體材料之成長。
雖然此處敘述之實施例係使用非極性平面,應能了解的是,也可使用可以降低或消除c-平面III-N半導體材料之特徵缺點的任何方向(例如,半平面(semi-planar)或半極性(semi-polar))。
示範的半導體二極體可用於單一二極體或主動二極體區域中,然而,熟知本領域之人士應能了解的是,大多數的應用需要多重二極體,一般整合於單一晶片(chip)上。如果複數個此種半導體零件、元件或產品形成用於單一元件或單一晶片上,其較佳具有相同的電性結構與大體上相同的效能。
如上所述,本發明具有廣泛的應用。不限於發光二極體技術,本發明具有許多在發光二極體(LED)技術領域中的應用。
說明書中出現之用語”於一個實施例”或”於一實施例”意指一特定之結構特徵(feature)、結構(structure)或特性(characteristic)包含於至少本發明之一實施例中。因此,出現於說明書中各處之用語”於一個實施例”或”於一實施例”並不代表相同的實施例。再者,當一特定結構特徵(feature)、結構(structure)或特性(characteristic)描述於任一實施例中,熟知本領域之人士可影響此種結構特徵、結構或特性與其他實施例之連接關係。此外,為了簡化說明,某些方法步驟可以描述成獨立的製程;這些獨立的製程可以不必依特定的順序(necessarily order)呈現。另言之,一些製程步驟可以以交替的順序(alternative ordering)或同時的(simultaneously)方式進行。此外,示範的圖形用於敘述本發明之各種實施例。此處敘述之各種示範實施例,其可以對應到裝置的實施例,然而,方法的實施例並非限定於此。
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100...基材
210...基材
220...底部二極體區域
230...主動二極體區域
240...頂部二極體區域
250...底部電性接觸
260‧‧‧頂部電性接觸
310‧‧‧提供氮化鎵(GaN)層
320‧‧‧設置具有a-平面或m-平面之氮化鎵(GaN)
330‧‧‧形成一主動二極體區域
340‧‧‧形成一頂部二極體區域
350‧‧‧視需要的加上頂部電性接觸、底部電性接觸及/ 或承載基材(handle substrate),以完成元件
520‧‧‧剩餘結構
522‧‧‧特定部份
524‧‧‧第一部分
530‧‧‧溝槽
610‧‧‧箭頭
630a‧‧‧虛線部份
812‧‧‧底部電性接觸
814‧‧‧底部電性接觸
910、910’‧‧‧承載載材(handle substrate)
912‧‧‧底部電性接觸
914‧‧‧頂部電性接觸
1014、1014a‧‧‧頂部電性接觸
1016‧‧‧平坦層
1020‧‧‧底部二極體區域
1030‧‧‧主動二極體區域
1040‧‧‧頂部二極體區域
第1a-1c圖為一透視圖,用以說明包括c-平面、m-平面與a-平面之六方晶系結晶結構。
第2圖為一剖面圖,用以說明本發明半導體二極體之設置。
第3圖為一流程圖,用以說明本發明形成一半導體二極體之方法。
第4圖為一剖面圖,用以說明氮化鎵層位於基材上的結構。
第5-7圖為一剖面圖,用以說明包括非極性面之III-N主動區域之發光二極體結構。
第8圖為一剖面圖,用以說明包括朝向非極性平面的III-N主動區域之半導體二極體結構的實施例,其係應用於示範之LED元件。
第9圖為一剖面圖,用以說明包括朝向非極性平面的III-N主動區域之半導體二極體結構的實施例,其係應用於示範之LED元件。
第10a-10d圖為一剖面圖,用以說明包括非極性III-N主動區域之半導體二極體結構的實施例,其係應用於示範之LED元件。
310...提供氮化鎵(GaN)層
320...設置具有a-平面或m-平面之氮化鎵(GaN)
330...形成一主動二極體區域
340...形成一頂部二極體區域
350...視需要的加上頂部電性接觸、底部電性接觸及/或承載基材(handle substrate),以完成元件

Claims (55)

  1. 一種二極體(diode)之製作方法,包括以下步驟:形成一第一二極體區域於一基材之上,該一第一二極體區域包括具有一或多個孔洞形成於其中之一第一表面,其中該一或多個孔洞之側壁係為一極性半導體結晶材料之非極性表面;形成一第二二極體區域相對於該第一表面;以及形成一主動區域,設置於該第一二極體區域與該第二二極體區域之間,且至少部分延伸至一或多個孔洞中。
  2. 如申請專利範圍第1項所述之二極體之製作方法,其中相鄰於該主動區域之第一二極體區域之一或多個表面之一面積為非極性,且該第一二極體區域之一或多個表面之一面積為極性,且其中該非極性之面積大於該極性面積。
  3. 如申請專利範圍第1項所述之二極體之製作方法,其中至少一部分之該主動區域與該第二二極體區域對應到III-N半導體結晶材料之非極性平面(non-polar plane)。
  4. 如申請專利範圍第1項所述之二極體之製作方法,其中:該第一二極體區域包括一底部二極體區域,其中該底部二極體區域是由一III-N半導體材料所形成;該主動區域包括一主動二極體區域相鄰於該底部二極體區,其中該主動二極體區域是由一III-N半導體材料所形成;以及該第二二極體區域包括一頂部二極體區域相鄰於該主動二極體區域,其中該頂部二極體區域是由一III-N半導體材料所形成,其中該主動二極體區域與該頂部二極體區域之每單位面積相較於該底部二極體區域具有較少之缺陷(defect)。
  5. 如申請專利範圍第1項所述之二極體之製作方法,其中:該第一二極體區域,該主動區域,以及該第二二極體區域是由III-N半導體材料所形成;以及提供一非極性(non-polar)III-N半導體材料於該發光二極體中,以增加一輸出效率(output efficiency)至超過一規定量(prescribed amount)。
  6. 如申請專利範圍第1項所述之二極體之製作方法,其中:該第一二極體區域包括一III-N半導體結晶層於一極性平面(polar plane)上;該第一二極體區域包括一底部二極體區域,其中該底部二極體區域包括至少一第一表面與至少一第二表面,且其中該第一表面對準於該III-N半導體材料之一非極性表面,該第二表面對準於該III-N半導體材料之一極性表面;該主動區域相鄰於該底部二極體區域之至少該第一表面與至少該第二表面;以及該第二二極體區域包括一頂部二極體區域,其中該頂部二極體區域相鄰於該主動二極體區域。
  7. 如申請專利範圍第1項所述之二極體之製作方法,其中該主動二極體區域具有一第一部分與一第二部分,該第一部分具有一第一光輸出效率(first output light efficiency),該第二部分具有一較低之第二光輸出效率。
  8. 如申請專利範圍第1項所述之二極體之製作方法,其中該主動區域與該第一二極體區域至少之一具有比該第二二極體區域較多的線缺陷總數(total line defects)。
  9. 如申請專利範圍第1項所述之二極體之製作方法,其中於藍光LED、綠光LED、白光LED、紫外光(ultraviolet light)LED或紅外光(infrared light)LED中,該光輸出效率大於約2倍,大於約5倍,大於約10倍或大於約25倍。
  10. 如申請專利範圍第4項所述之二極體之製作方法,其中於面對主動區域之底部二極體區域中,非極性平面之表面積比極性平面之表面積大於2,大於4,大於10或大於50。
  11. 如申請專利範圍第4項所述之二極體之製作方法,其中至少一朝向III-N半導體材料之極性表面之一部分主動二極體區域、朝向III-N半導體材料之極性表面之一部分頂部二極體區域、朝向III-N半導體材料之極性表面之一部分底部二極體區域少於50%,少於25%,少於15%,少於10%,或少於5%。
  12. 如申請專利範圍第4項所述之二極體之製作方法,其中朝向III-N半導體材料之非極性表面(non-polar surface)之一部分主動二極體區域、底部二極體區域或頂部二極體區域大於50%,大於75%,大於85%,或大於95%。
  13. 如申請專利範圍第1項所述之二極體之製作方法,其中至少一該第一二極體區域,該主動區域,以及該第二二極體區域包括下述一或多個:氮化鋁(AlN)、氮化鎵(GaN)、氮化銦(InN)、或上述之三元(ternary)或四元(quaternary)化合物。
  14. 如申請專利範圍第1項所述之二極體之製作方法,其中該一或多個孔洞包括溝槽(trench)、凹口(recess)或孔洞(hole)。
  15. 如申請專利範圍第1項所述之二極體之製作方法,尚包括:一半導體元件形成於該一或多個孔洞。
  16. 如申請專利範圍第1項所述之二極體之製作方法,其中該一或多個孔洞之深度(width)大於寬度2倍,至少5倍,至少10倍,或至少100倍。
  17. 如申請專利範圍第1項所述之二極體之製作方法,其中該一或多個孔洞之長度大於寬度至少10倍,或至少100倍。
  18. 如申請專利範圍第1項所述之二極體之製作方法,其中該基材包括矽、鍺或藍寶石(sapphire)。
  19. 如申請專利範圍第1項所述之二極體之製作方法,其中曝露於該一或多個孔洞中之該基材之一表面係為該矽基材之(100)表面,且其中該基材是單晶或多晶基材。
  20. 如申請專利範圍第1項所述之二極體之製作方法,其中該第一二極體區域,該主動區域,以及該第二二極體區域為相同的半導體結晶材料。
  21. 如申請專利範圍第1項所述之二極體之製作方法,其中該第一二極體區域之半導體結晶材料至少與該主動區域或該第二二極體區域不同。
  22. 如申請專利範圍第1項所述之二極體之製作方法,其中至少二該第一二極體區域、該主動區域與該第二二極體區域摻雜不同摻雜濃度。
  23. 如申請專利範圍第1項所述之二極體之製作方法,其中該主動區域與該第二二極體區域至少之一由選擇性磊晶成長法(selective epitaxial growth)製得,其中該選擇性磊晶成長法包括:金屬有機化學氣相沉積法(metal-organic chemical vapor deposition,MOCVD)、常壓化學氣相沉積法(atmosphere-pressure CVD,APCVD)、低壓化學氣相沉積法(low-(or reduced-)pressure CVD,LPCVD)、超高真空化學氣相沉積法(ultra-high-vacuum CVD,UHCVD)、分子束磊晶法(molecular beam epitaxy,MBE)或原子層沉積法(atomic layer deposition,ALD)。
  24. 如申請專利範圍第1項所述之二極體之製作方法,其中至少二該第一二極體區域,該主動區域,與該第二二極體區域為重複排列(repeated)。
  25. 如申請專利範圍第1項所述之二極體之製作方法,其中至少一對應到一極性面之至少一部分該第一二極體區域、該主動區域與該第二二極體區域被移除。
  26. 如申請專利範圍第1項所述之二極體之製作方法,其中該主動區域包括一本質(intrinsic)主動區域或一空乏區(depletion region)。
  27. 一種二極體(diode),包括:一第一二極體區域於一基材之上,該一第一二極體區域包括具有一或多個孔洞形成於其中之一第一表面,其中該一或多個孔洞之側壁係為一極性半導體結晶材料之非極性表面;一第二二極體區域相對於該第一表面;以及一主動區域,設置於該第一二極體區域與該第二二極體區域之間,且至少部分延伸至一或多個孔洞中。
  28. 如申請專利範圍第27項所述之二極體,其中:相鄰於該主動區域之第一二極體區域之一或多個表面之一面積為非極性,且該第一二極體區域之一或多個表面之一面積為極性,且其中該非極性之面積大於該極性面積。
  29. 如申請專利範圍第27項所述之二極體,其中:該主動區域之至少一部分對應到該第一二極體區域之非極性平面(non-polar plane)。
  30. 如申請專利範圍第27項所述之二極體,其中:該第一二極體區域包括一底部二極體區域,由一III-N半導體材料形成而得;該主動區域包括一主動二極體區域,從一III-N半導體材料形成而得且相鄰於該底部二極體區域;以及該第二二極體區域包括一頂部二極體區域,從一 III-N半導體材料形成而得且相鄰於該主動二極體區域,其中該主動二極體區域與該頂部二極體區域比該底部二極體區域每單位面積具有較少之缺陷(defect)。
  31. 如申請專利範圍第30項所述之二極體,其中:該底部二極體區域、該主動二極體區域與該頂部二極體區域是由III-N半導體材料形成而得,其中於該LED中形成非極性III-N半導體材料以增加一輸出效率。
  32. 如申請專利範圍第27項所述之二極體,其中:該第一二極體區域包括一III-N半導體結晶層之一底部二極體區域,該底部二極體區域位於一極性面,其中該底部二極體區域具有至少一第一表面與一第二表面,其中該第一表面對準於III-N半導體結晶層之一非極性面,該第二表面對準於III-N半導體結晶層之極性面;該主動區域包括一主動二極體區域,相鄰於該底部二極體區域之至少一第一表面與第二表面;以及該第二二極體區域包括一頂部二極體區域,相鄰於該主動二極體區域。
  33. 如申請專利範圍第27項所述之二極體,其中:該第一二極體區域包括一III-N半導體材料之一底部二極體區域;該主動區域包括一主動二極體區域,相鄰於該底部二極體區域,且位於III-N半導體材料之非極性表面(non-polar surface)上;以及該第二二極體區域包括一頂部二極體區域,相鄰於該主動二極體區域。
  34. 如申請專利範圍第27項所述之二極體,其中:該主動區域具有一第一部分與一第二部分,該第一部分具有一第一光輸出效率,該第二部分具有低於該第一光輸出效率之第二光輸出效率。
  35. 如申請專利範圍第27項所述之二極體,其中該主動區域是III-N半導體材料,其對應到一非極性表面。
  36. 如申請專利範圍第30項所述之二極體,其中該主動區域與該頂部區域至少之一具有比該底部二極體區域較多的線缺陷總數(total line defects)。
  37. 如申請專利範圍第27項所述之二極體,其中於藍光LED、綠光LED、白光LED、紫外光(ultraviolet light)LED,或紅外光(infrared light)LED中,該光輸出效率大於約2倍,大於約5倍,大於約10倍或大於約25倍。
  38. 如申請專利範圍第30項所述之二極體,其中於面對主動區域之底部二極體區域中,非極性平面之表面積比極性平面之表面積大於2,大於4,大於10或大於50。
  39. 如申請專利範圍第31項所述之二極體,其中至少一朝向III-N半導體材料之極性表面之一部分主動二極體,朝向III-N半導體材料之極性表面之一部分頂部二極體區域,朝向III-N半導體材料之極性表面之一部分底部二極體區域少於50%,少於25%,少於15%,少於10%,或少於5%。
  40. 如申請專利範圍第31項所述之二極體,其中朝向III-N半導體材料之非極性表面之一部分主動二極體區域、底部二極體區域或頂部二極體區域大於50%,大於75%,大於85%,或大於95%。
  41. 如申請專利範圍第27項所述之二極體,其中至少一該第一二極體區域,該主動區域,以及該第二二極體區域包括下述一或多個:氮化鋁(AlN)、氮化鎵(GaN)、氮化銦(InN)、或上述之三元(ternary)或四元(quaternary)化合物。
  42. 如申請專利範圍第27項所述之二極體,其中該一或多個孔洞包括溝槽(trench)、凹口(recess)或孔洞(hole)。
  43. 如申請專利範圍第27項所述之二極體,尚包括:一半導體元件形成於該一或多個孔洞。
  44. 如申請專利範圍第27項所述之二極體,其中該一或多個孔洞之深度大於寬度(width)至少2倍,至少5倍,至少10倍,或至少100倍。
  45. 如申請專利範圍第27項所述之二極體,其中該一或多個孔洞之長度大於寬度至少10倍,或至少100倍。
  46. 如申請專利範圍第27項所述之二極體,其中該基材包括矽、鍺或藍寶石(sapphire)。
  47. 如申請專利範圍第27項所述之二極體,其中曝露於該一或多個孔洞中之該基材之一表面係為該矽基材之(100)表面,且其中該基材是單晶或多晶基材。
  48. 如申請專利範圍第27項所述之二極體,其中該第一二極體區域,該主動區域,以及該第二二極體區域為相同的半導體結晶材料。
  49. 如申請專利範圍第27項所述之二極體,其中至少二該第一二極體區域,該主動區域,以及該第二二極體區域之半導體結晶材料如申請專利範圍第27項所述之二極體不同。
  50. 如申請專利範圍第27項所述之二極體,其中至少二該第一二極體區域,該主動區域,以及該第二二極體區域摻雜不同摻雜濃度。
  51. 如申請專利範圍第27項所述之二極體,其中該第一二極體區域與該第二二極體區域摻雜不同類型之雜質(dopants)。
  52. 如申請專利範圍第27項所述之二極體,其中該第一二極體區域,該主動區域,以及該第二二極體區域為重複排列(repeated)。
  53. 如申請專利範圍第27項所述之二極體,該第一二極體區域,其中對應到一極性面之至少一部分該主動區域被移除。
  54. 如申請專利範圍第27項所述之二極體,該第一二極體區域,其中對應到一極性面之至少一部分該第一二極體區域或第二二極體區域被移除。
  55. 如申請專利範圍第27項所述之二極體,其中該主動區域包括一本質(intrinsic)主動區域或一空乏區(depletion region)。
TW099110301A 2009-04-02 2010-04-02 二極體之結構與其製法 TWI452722B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16618409P 2009-04-02 2009-04-02

Publications (2)

Publication Number Publication Date
TW201041183A TW201041183A (en) 2010-11-16
TWI452722B true TWI452722B (zh) 2014-09-11

Family

ID=42828703

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099110301A TWI452722B (zh) 2009-04-02 2010-04-02 二極體之結構與其製法

Country Status (8)

Country Link
US (3) US8629446B2 (zh)
EP (1) EP2415083B1 (zh)
JP (2) JP5705207B2 (zh)
KR (1) KR101450956B1 (zh)
CN (1) CN102379046B (zh)
SG (1) SG171987A1 (zh)
TW (1) TWI452722B (zh)
WO (1) WO2010114956A1 (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9153645B2 (en) 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US7777250B2 (en) 2006-03-24 2010-08-17 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8173551B2 (en) 2006-09-07 2012-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. Defect reduction using aspect ratio trapping
US7875958B2 (en) 2006-09-27 2011-01-25 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
WO2008051503A2 (en) 2006-10-19 2008-05-02 Amberwave Systems Corporation Light-emitter-based devices with lattice-mismatched semiconductor structures
US8304805B2 (en) 2009-01-09 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US7825328B2 (en) 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US8344242B2 (en) 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US8183667B2 (en) 2008-06-03 2012-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial growth of crystalline material
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US20100072515A1 (en) 2008-09-19 2010-03-25 Amberwave Systems Corporation Fabrication and structures of crystalline material
EP2335273A4 (en) 2008-09-19 2012-01-25 Taiwan Semiconductor Mfg FORMATION OF EQUIPMENT BY EXCESSIVE GROWTH OF THE EPITAXIAL LAYER
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
JP5705207B2 (ja) * 2009-04-02 2015-04-22 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. 結晶物質の非極性面から形成される装置とその製作方法
US20110220920A1 (en) * 2010-03-09 2011-09-15 Brian Thomas Collins Methods of forming warm white light emitting devices having high color rendering index values and related light emitting devices
US8896101B2 (en) * 2012-12-21 2014-11-25 Intel Corporation Nonplanar III-N transistors with compositionally graded semiconductor channels
US9406530B2 (en) * 2014-03-27 2016-08-02 International Business Machines Corporation Techniques for fabricating reduced-line-edge-roughness trenches for aspect ratio trapping
CN104362241B (zh) * 2014-10-10 2017-03-29 东莞市柏尔电子科技有限公司 一种方形二极管
US10139663B2 (en) 2015-05-29 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Input/output device and electronic device
DE102015217330A1 (de) * 2015-09-10 2017-03-16 Technische Universität Berlin Halbleitervorrichtung mit gegen interne Felder abgeschirmtem aktiven Gebiet
CN105734530B (zh) * 2016-03-08 2018-05-25 西安电子科技大学 在石墨烯上基于磁控溅射氮化铝的氮化镓生长方法
KR101743026B1 (ko) * 2016-04-26 2017-06-15 광주과학기술원 자외선 발광 다이오드 및 이의 제조방법
EP3373343B1 (en) 2017-03-09 2021-09-15 Technische Universität Berlin Semiconductor device having an internal-field-guarded active region
US20190058084A1 (en) * 2017-08-18 2019-02-21 Jie Piao Laser Diodes, LEDs, and Silicon Integrated sensors on Patterned Substrates
WO2019066955A1 (en) 2017-09-29 2019-04-04 Intel Corporation LATERAL EPITAXIAL OVERCROWTH IN MULTIPLE STEPS OF III-N FILMS WITH LOW DENSITY OF DEFECTS
WO2019066936A1 (en) * 2017-09-29 2019-04-04 Intel Corporation LIGHT-EMITTING DEVICES HAVING QUANTUM WELL STRUCTURES ON SEMI-POLAR OR NON-POLAR CRYSTALLINE PLANS
US10516039B2 (en) 2017-11-30 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
US11561415B1 (en) 2019-05-16 2023-01-24 Meta Platforms Technologies, Llc Moving guide actuation of fluid lenses
US11333803B2 (en) 2019-05-16 2022-05-17 Facebook Technologies, Llc Fluid lens with low energy membrane adjustment
US11867927B1 (en) 2019-05-16 2024-01-09 Meta Platforms Technologies, Llc Modified membranes for fluid lenses
US11719960B1 (en) 2019-05-16 2023-08-08 Meta Platforms Technologies, Llc Gravity sag compensation in fluid-filled lenses
US11635637B1 (en) 2019-05-16 2023-04-25 Meta Platforms Technologies, Llc Fluid lens with low energy membrane adjustment
US11506825B1 (en) 2019-10-24 2022-11-22 Meta Platforms, Inc. Elastomer based flexures for fluid lenses
US11703616B2 (en) 2019-11-05 2023-07-18 Meta Platforms Technologies, Llc Fluid lens with low gas content fluid
WO2022093926A1 (en) * 2020-10-27 2022-05-05 The Regents Of The University Of Michigan Water splitting device protection
US11740391B1 (en) 2020-12-31 2023-08-29 Meta Platforms Technologies, Llc Fluid lens operational feedback using sensor signal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040262617A1 (en) * 2003-06-24 2004-12-30 Hahm Hun Joo White light emitting diode and method for manufacturing the same
TW200532949A (en) * 2003-12-03 2005-10-01 Sumitomo Electric Industries Light emitting device
US20070102721A1 (en) * 2005-11-04 2007-05-10 Denbaars Steven P High light extraction efficiency light emitting diode (LED)

Family Cites Families (397)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307510A (en) 1980-03-12 1981-12-29 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Computer circuit card puller
EP0049286B1 (en) 1980-04-10 1988-03-02 Massachusetts Institute Of Technology Methods of producing sheets of crystalline material and devices amde therefrom
US4322253A (en) 1980-04-30 1982-03-30 Rca Corporation Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment
US4370510A (en) 1980-09-26 1983-01-25 California Institute Of Technology Gallium arsenide single crystal solar cell structure and method of making
US4545109A (en) 1983-01-21 1985-10-08 Rca Corporation Method of making a gallium arsenide field effect transistor
US4651179A (en) 1983-01-21 1987-03-17 Rca Corporation Low resistance gallium arsenide field effect transistor
US5091333A (en) 1983-09-12 1992-02-25 Massachusetts Institute Of Technology Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth
US4860081A (en) 1984-06-28 1989-08-22 Gte Laboratories Incorporated Semiconductor integrated circuit structure with insulative partitions
US4551394A (en) 1984-11-26 1985-11-05 Honeywell Inc. Integrated three-dimensional localized epitaxial growth of Si with localized overgrowth of GaAs
EP0214610B1 (en) 1985-09-03 1990-12-05 Daido Tokushuko Kabushiki Kaisha Epitaxial gallium arsenide semiconductor wafer and method of producing the same
US4774205A (en) 1986-06-13 1988-09-27 Massachusetts Institute Of Technology Monolithic integration of silicon and gallium arsenide devices
JPS6381855A (ja) 1986-09-25 1988-04-12 Mitsubishi Electric Corp ヘテロ接合バイポ−ラトランジスタの製造方法
US5236546A (en) 1987-01-26 1993-08-17 Canon Kabushiki Kaisha Process for producing crystal article
US5269876A (en) 1987-01-26 1993-12-14 Canon Kabushiki Kaisha Process for producing crystal article
US5281283A (en) 1987-03-26 1994-01-25 Canon Kabushiki Kaisha Group III-V compound crystal article using selective epitaxial growth
US5166767A (en) 1987-04-14 1992-11-24 National Semiconductor Corporation Sidewall contact bipolar transistor with controlled lateral spread of selectively grown epitaxial layer
US4876210A (en) 1987-04-30 1989-10-24 The University Of Delaware Solution growth of lattice mismatched and solubility mismatched heterostructures
US4826784A (en) 1987-11-13 1989-05-02 Kopin Corporation Selective OMCVD growth of compound semiconductor materials on silicon substrates
US5272105A (en) 1988-02-11 1993-12-21 Gte Laboratories Incorporated Method of manufacturing an heteroepitaxial semiconductor structure
US5079616A (en) 1988-02-11 1992-01-07 Gte Laboratories Incorporated Semiconductor structure
GB2215514A (en) 1988-03-04 1989-09-20 Plessey Co Plc Terminating dislocations in semiconductor epitaxial layers
US5032893A (en) 1988-04-01 1991-07-16 Cornell Research Foundation, Inc. Method for reducing or eliminating interface defects in mismatched semiconductor eiplayers
US5156995A (en) 1988-04-01 1992-10-20 Cornell Research Foundation, Inc. Method for reducing or eliminating interface defects in mismatched semiconductor epilayers
US5238869A (en) 1988-07-25 1993-08-24 Texas Instruments Incorporated Method of forming an epitaxial layer on a heterointerface
EP0352472A3 (en) 1988-07-25 1991-02-06 Texas Instruments Incorporated Heteroepitaxy of lattice-mismatched semiconductor materials
US5061644A (en) 1988-12-22 1991-10-29 Honeywell Inc. Method for fabricating self-aligned semiconductor devices
DE68915529T2 (de) 1989-01-31 1994-12-01 Agfa Gevaert Nv Integration von GaAs auf Si-Unterlage.
US5034337A (en) 1989-02-10 1991-07-23 Texas Instruments Incorporated Method of making an integrated circuit that combines multi-epitaxial power transistors with logic/analog devices
US4948456A (en) 1989-06-09 1990-08-14 Delco Electronics Corporation Confined lateral selective epitaxial growth
US5098850A (en) 1989-06-16 1992-03-24 Canon Kabushiki Kaisha Process for producing substrate for selective crystal growth, selective crystal growth process and process for producing solar battery by use of them
US5256594A (en) 1989-06-16 1993-10-26 Intel Corporation Masking technique for depositing gallium arsenide on silicon
US5093699A (en) 1990-03-12 1992-03-03 Texas A & M University System Gate adjusted resonant tunnel diode device and method of manufacture
US5164359A (en) 1990-04-20 1992-11-17 Eaton Corporation Monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate
US5158907A (en) 1990-08-02 1992-10-27 At&T Bell Laboratories Method for making semiconductor devices with low dislocation defects
US5105247A (en) 1990-08-03 1992-04-14 Cavanaugh Marion E Quantum field effect device with source extension region formed under a gate and between the source and drain regions
JP3202223B2 (ja) 1990-11-27 2001-08-27 日本電気株式会社 トランジスタの製造方法
US5403751A (en) 1990-11-29 1995-04-04 Canon Kabushiki Kaisha Process for producing a thin silicon solar cell
US5223043A (en) 1991-02-11 1993-06-29 The United States Of America As Represented By The United States Department Of Energy Current-matched high-efficiency, multijunction monolithic solar cells
US5091767A (en) 1991-03-18 1992-02-25 At&T Bell Laboratories Article comprising a lattice-mismatched semiconductor heterostructure
JPH04299569A (ja) 1991-03-27 1992-10-22 Nec Corp Soisの製造方法及びトランジスタとその製造方法
US5269852A (en) 1991-05-27 1993-12-14 Canon Kabushiki Kaisha Crystalline solar cell and method for producing the same
JP3058954B2 (ja) 1991-09-24 2000-07-04 ローム株式会社 絶縁層の上に成長層を有する半導体装置の製造方法
JP2773487B2 (ja) 1991-10-15 1998-07-09 日本電気株式会社 トンネルトランジスタ
JPH05121317A (ja) 1991-10-24 1993-05-18 Rohm Co Ltd Soi構造形成方法
JP3286920B2 (ja) 1992-07-10 2002-05-27 富士通株式会社 半導体装置の製造方法
EP0600276B1 (de) 1992-12-04 1998-08-05 Siemens Aktiengesellschaft Verfahren zur Herstellung eines seitlich begrenzten, einkristallinen Gebietes mittels selektiver Epitaxie und dessen Anwendung zur Herstellung eines Bipolartransistors sowie eines MOS-transistors
JP3319472B2 (ja) 1992-12-07 2002-09-03 富士通株式会社 半導体装置とその製造方法
US5295150A (en) 1992-12-11 1994-03-15 Eastman Kodak Company Distributed feedback-channeled substrate planar semiconductor laser
US5407491A (en) 1993-04-08 1995-04-18 University Of Houston Tandem solar cell with improved tunnel junction
DE69406049T2 (de) 1993-06-04 1998-04-16 Sharp Kk Lichtmittierende Halbleitervorrichtung mit einer dritten Begrenzungsschicht
JP3748905B2 (ja) 1993-08-27 2006-02-22 三洋電機株式会社 量子効果デバイス
US5792679A (en) 1993-08-30 1998-08-11 Sharp Microelectronics Technology, Inc. Method for forming silicon-germanium/Si/silicon dioxide heterostructure using germanium implant
US5461243A (en) 1993-10-29 1995-10-24 International Business Machines Corporation Substrate for tensilely strained semiconductor
US5405453A (en) 1993-11-08 1995-04-11 Applied Solar Energy Corporation High efficiency multi-junction solar cell
US5489539A (en) 1994-01-10 1996-02-06 Hughes Aircraft Company Method of making quantum well structure with self-aligned gate
JPH0851109A (ja) 1994-04-11 1996-02-20 Texas Instr Inc <Ti> 酸化物でパターン化されたウェーハの窓内にエピタキシャルシリコンを成長させる方法
US6011271A (en) 1994-04-28 2000-01-04 Fujitsu Limited Semiconductor device and method of fabricating the same
US5710436A (en) 1994-09-27 1998-01-20 Kabushiki Kaisha Toshiba Quantum effect device
US5825240A (en) 1994-11-30 1998-10-20 Massachusetts Institute Of Technology Resonant-tunneling transmission line technology
JP3835225B2 (ja) 1995-02-23 2006-10-18 日亜化学工業株式会社 窒化物半導体発光素子
US5528209A (en) 1995-04-27 1996-06-18 Hughes Aircraft Company Monolithic microwave integrated circuit and method
JPH08306700A (ja) 1995-04-27 1996-11-22 Nec Corp 半導体装置及びその製造方法
TW304310B (zh) 1995-05-31 1997-05-01 Siemens Ag
US5621227A (en) 1995-07-18 1997-04-15 Discovery Semiconductors, Inc. Method and apparatus for monolithic optoelectronic integrated circuit using selective epitaxy
DE69609313T2 (de) 1995-12-15 2001-02-01 Koninklijke Philips Electronics N.V., Eindhoven Halbleiterfeldeffektanordnung mit einer sige schicht
TW314621B (zh) 1995-12-20 1997-09-01 Toshiba Co Ltd
US5987590A (en) 1996-04-02 1999-11-16 Texas Instruments Incorporated PC circuits, systems and methods
CN1103124C (zh) 1996-05-17 2003-03-12 佳能株式会社 光电装置及其制造方法和太阳能电池组件
JP3719618B2 (ja) 1996-06-17 2005-11-24 松下電器産業株式会社 半導体装置及びその製造方法
US6229153B1 (en) 1996-06-21 2001-05-08 Wisconsin Alumni Research Corporation High peak current density resonant tunneling diode
JP3260660B2 (ja) 1996-08-22 2002-02-25 株式会社東芝 半導体装置およびその製造方法
JP3449516B2 (ja) 1996-08-30 2003-09-22 株式会社リコー 半導体多層膜反射鏡および半導体多層膜反射防止膜および面発光型半導体レーザおよび受光素子
US6191432B1 (en) 1996-09-02 2001-02-20 Kabushiki Kaisha Toshiba Semiconductor device and memory device
US5825049A (en) 1996-10-09 1998-10-20 Sandia Corporation Resonant tunneling device with two-dimensional quantum well emitter and base layers
JPH10126010A (ja) 1996-10-23 1998-05-15 Ricoh Co Ltd 半導体レーザ装置の製造方法
SG65697A1 (en) 1996-11-15 1999-06-22 Canon Kk Process for producing semiconductor article
US5853497A (en) 1996-12-12 1998-12-29 Hughes Electronics Corporation High efficiency multi-junction solar cells
US6348096B1 (en) 1997-03-13 2002-02-19 Nec Corporation Method for manufacturing group III-V compound semiconductors
JP3853905B2 (ja) 1997-03-18 2006-12-06 株式会社東芝 量子効果装置とblトンネル素子を用いた装置
EP0874405A3 (en) 1997-03-25 2004-09-15 Mitsubishi Cable Industries, Ltd. GaN group crystal base member having low dislocation density, use thereof and manufacturing methods thereof
JP3047852B2 (ja) 1997-04-04 2000-06-05 松下電器産業株式会社 半導体装置
CN1131548C (zh) 1997-04-04 2003-12-17 松下电器产业株式会社 半导体装置
JP3184115B2 (ja) 1997-04-11 2001-07-09 松下電器産業株式会社 オーミック電極形成方法
CN1159750C (zh) 1997-04-11 2004-07-28 日亚化学工业株式会社 氮化物半导体的生长方法
US5998781A (en) 1997-04-30 1999-12-07 Sandia Corporation Apparatus for millimeter-wave signal generation
JPH10321910A (ja) * 1997-05-16 1998-12-04 Ricoh Co Ltd 半導体発光素子
US5903170A (en) 1997-06-03 1999-05-11 The Regents Of The University Of Michigan Digital logic design using negative differential resistance diodes and field-effect transistors
US5883549A (en) 1997-06-20 1999-03-16 Hughes Electronics Corporation Bipolar junction transistor (BJT)--resonant tunneling diode (RTD) oscillator circuit and method
CA2295069A1 (en) 1997-06-24 1998-12-30 Eugene A. Fitzgerald Controlling threading dislocation densities in ge on si using graded gesi layers and planarization
US5869845A (en) 1997-06-26 1999-02-09 Texas Instruments Incorporated Resonant tunneling memory
US6015979A (en) 1997-08-29 2000-01-18 Kabushiki Kaisha Toshiba Nitride-based semiconductor element and method for manufacturing the same
JP3930161B2 (ja) 1997-08-29 2007-06-13 株式会社東芝 窒化物系半導体素子、発光素子及びその製造方法
US20010006249A1 (en) 1997-09-16 2001-07-05 Eugene A Fitzgerald Co-planar si and ge composite substrate and method of producing same
FR2769924B1 (fr) 1997-10-20 2000-03-10 Centre Nat Rech Scient Procede de realisation d'une couche epitaxiale de nitrure de gallium, couche epitaxiale de nitrure de gallium et composant optoelectronique muni d'une telle couche
CN100344004C (zh) 1997-10-30 2007-10-17 住友电气工业株式会社 GaN单晶衬底及其制造方法
JP3180743B2 (ja) 1997-11-17 2001-06-25 日本電気株式会社 窒化化合物半導体発光素子およびその製法
JP3468082B2 (ja) 1998-02-26 2003-11-17 日亜化学工業株式会社 窒化物半導体素子
US6150242A (en) 1998-03-25 2000-11-21 Texas Instruments Incorporated Method of growing crystalline silicon overlayers on thin amorphous silicon oxide layers and forming by method a resonant tunneling diode
JPH11274467A (ja) 1998-03-26 1999-10-08 Murata Mfg Co Ltd 光電子集積回路素子
US6500257B1 (en) 1998-04-17 2002-12-31 Agilent Technologies, Inc. Epitaxial material grown laterally within a trench and method for producing same
JP3338778B2 (ja) 1998-04-24 2002-10-28 日本電気株式会社 窒化物系化合物半導体レーザ素子
US6265289B1 (en) 1998-06-10 2001-07-24 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
JP4005701B2 (ja) 1998-06-24 2007-11-14 シャープ株式会社 窒素化合物半導体膜の形成方法および窒素化合物半導体素子
WO2000004615A1 (en) 1998-07-14 2000-01-27 Fujitsu Limited Semiconductor laser, semiconductor device, and method for manufacturing the same
KR100648759B1 (ko) 1998-09-10 2006-11-23 로무 가부시키가이샤 반도체발광소자 및 그 제조방법
US6252261B1 (en) 1998-09-30 2001-06-26 Nec Corporation GaN crystal film, a group III element nitride semiconductor wafer and a manufacturing process therefor
JP3868136B2 (ja) 1999-01-20 2007-01-17 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
JP3372226B2 (ja) 1999-02-10 2003-01-27 日亜化学工業株式会社 窒化物半導体レーザ素子
US7145167B1 (en) 2000-03-11 2006-12-05 International Business Machines Corporation High speed Ge channel heterostructures for field effect devices
JP3760663B2 (ja) 1999-03-31 2006-03-29 豊田合成株式会社 Iii族窒化物系化合物半導体素子の製造方法
JP3702700B2 (ja) 1999-03-31 2005-10-05 豊田合成株式会社 Iii族窒化物系化合物半導体素子及びその製造方法
DE10017137A1 (de) 1999-04-14 2000-10-26 Siemens Ag Silizium-Aufbau und Verfahren zu dessen Herstellung
US6803598B1 (en) 1999-05-07 2004-10-12 University Of Delaware Si-based resonant interband tunneling diodes and method of making interband tunneling diodes
JP3587081B2 (ja) 1999-05-10 2004-11-10 豊田合成株式会社 Iii族窒化物半導体の製造方法及びiii族窒化物半導体発光素子
JP4246400B2 (ja) 1999-05-13 2009-04-02 株式会社日立製作所 半導体記憶装置
US6252287B1 (en) 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
JP3555500B2 (ja) 1999-05-21 2004-08-18 豊田合成株式会社 Iii族窒化物半導体及びその製造方法
GB9912178D0 (en) 1999-05-25 1999-07-28 Univ Court Of The University O Improved optical modulator
US6214653B1 (en) 1999-06-04 2001-04-10 International Business Machines Corporation Method for fabricating complementary metal oxide semiconductor (CMOS) devices on a mixed bulk and silicon-on-insulator (SOI) substrate
JP2001007447A (ja) 1999-06-18 2001-01-12 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
US6635110B1 (en) 1999-06-25 2003-10-21 Massachusetts Institute Of Technology Cyclic thermal anneal for dislocation reduction
US6228691B1 (en) 1999-06-30 2001-05-08 Intel Corp. Silicon-on-insulator devices and method for producing the same
GB9919479D0 (en) 1999-08-17 1999-10-20 Imperial College Island arrays
US6339232B1 (en) 1999-09-20 2002-01-15 Kabushika Kaisha Toshiba Semiconductor device
JP2001102678A (ja) 1999-09-29 2001-04-13 Toshiba Corp 窒化ガリウム系化合物半導体素子
US6984571B1 (en) 1999-10-01 2006-01-10 Ziptronix, Inc. Three dimensional device integration method and integrated device
US6812053B1 (en) 1999-10-14 2004-11-02 Cree, Inc. Single step pendeo- and lateral epitaxial overgrowth of Group III-nitride epitaxial layers with Group III-nitride buffer layer and resulting structures
JP2001189483A (ja) 1999-10-18 2001-07-10 Sharp Corp バイパス機能付太陽電池セルおよびバイパス機能付き多接合積層型太陽電池セルおよびそれらの製造方法
EP1102327B1 (en) 1999-11-15 2007-10-03 Matsushita Electric Industrial Co., Ltd. Field effect semiconductor device
US6521514B1 (en) 1999-11-17 2003-02-18 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates
JP2001176805A (ja) 1999-12-16 2001-06-29 Sony Corp 窒化物系iii−v族化合物の結晶製造方法、窒化物系iii−v族化合物結晶基板、窒化物系iii−v族化合物結晶膜およびデバイスの製造方法
US6403451B1 (en) 2000-02-09 2002-06-11 Noerh Carolina State University Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
CA2398801C (en) 2000-02-11 2007-12-04 Novo Rps Ulc Stent delivery system and method of use
US6902987B1 (en) 2000-02-16 2005-06-07 Ziptronix, Inc. Method for low temperature bonding and bonded structure
JP3512701B2 (ja) 2000-03-10 2004-03-31 株式会社東芝 半導体装置及びその製造方法
TW504754B (en) 2000-03-24 2002-10-01 Sumitomo Chemical Co Group III-V compound semiconductor and method of producing the same
US20050184302A1 (en) 2000-04-04 2005-08-25 Toshimasa Kobayashi Nitride semiconductor device and method of manufacturing the same
US6362071B1 (en) 2000-04-05 2002-03-26 Motorola, Inc. Method for forming a semiconductor device with an opening in a dielectric layer
JP2001338988A (ja) 2000-05-25 2001-12-07 Hitachi Ltd 半導体装置及びその製造方法
US6841808B2 (en) 2000-06-23 2005-01-11 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and method for producing the same
US20020030246A1 (en) 2000-06-28 2002-03-14 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices not lattice matched to the substrate
US20020008234A1 (en) 2000-06-28 2002-01-24 Motorola, Inc. Mixed-signal semiconductor structure, device including the structure, and methods of forming the device and the structure
WO2002009187A2 (en) 2000-07-24 2002-01-31 Motorola, Inc. Heterojunction tunneling diodes and process for fabricating same
US20020011612A1 (en) 2000-07-31 2002-01-31 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
JP2002118255A (ja) 2000-07-31 2002-04-19 Toshiba Corp 半導体装置およびその製造方法
JP4269541B2 (ja) 2000-08-01 2009-05-27 株式会社Sumco 半導体基板と電界効果型トランジスタ並びにSiGe層の形成方法及びこれを用いた歪みSi層の形成方法と電界効果型トランジスタの製造方法
US6579463B1 (en) 2000-08-18 2003-06-17 The Regents Of The University Of Colorado Tunable nanomasks for pattern transfer and nanocluster array formation
US20060175601A1 (en) 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
US7301199B2 (en) 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
US6407425B1 (en) 2000-09-21 2002-06-18 Texas Instruments Incorporated Programmable neuron MOSFET on SOI
US6456214B1 (en) 2000-09-27 2002-09-24 Raytheon Company High-speed comparator utilizing resonant tunneling diodes and associated method
JP4044276B2 (ja) 2000-09-28 2008-02-06 株式会社東芝 半導体装置及びその製造方法
US7163864B1 (en) 2000-10-18 2007-01-16 International Business Machines Corporation Method of fabricating semiconductor side wall fin
JP2002164623A (ja) * 2000-11-24 2002-06-07 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体レーザ及びその製造方法
JP4595198B2 (ja) * 2000-12-15 2010-12-08 ソニー株式会社 半導体発光素子及び半導体発光素子の製造方法
US6720090B2 (en) 2001-01-02 2004-04-13 Eastman Kodak Company Organic light emitting diode devices with improved luminance efficiency
JP4084541B2 (ja) 2001-02-14 2008-04-30 豊田合成株式会社 半導体結晶及び半導体発光素子の製造方法
JP4084544B2 (ja) 2001-03-30 2008-04-30 豊田合成株式会社 半導体基板及び半導体素子の製造方法
KR20030074824A (ko) 2001-02-14 2003-09-19 도요다 고세이 가부시키가이샤 반도체 결정의 제조 방법 및 반도체 발광 소자
US6380590B1 (en) 2001-02-22 2002-04-30 Advanced Micro Devices, Inc. SOI chip having multiple threshold voltage MOSFETs by using multiple channel materials and method of fabricating same
US6475869B1 (en) 2001-02-26 2002-11-05 Advanced Micro Devices, Inc. Method of forming a double gate transistor having an epitaxial silicon/germanium channel region
JP3679720B2 (ja) 2001-02-27 2005-08-03 三洋電機株式会社 窒化物系半導体素子および窒化物系半導体の形成方法
JP2002270516A (ja) 2001-03-07 2002-09-20 Nec Corp Iii族窒化物半導体の成長方法、iii族窒化物半導体膜およびそれを用いた半導体素子
US7205604B2 (en) 2001-03-13 2007-04-17 International Business Machines Corporation Ultra scalable high speed heterojunction vertical n-channel MISFETs and methods thereof
JP3705142B2 (ja) * 2001-03-27 2005-10-12 ソニー株式会社 窒化物半導体素子及びその作製方法
WO2002080280A1 (en) 2001-03-30 2002-10-10 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
JP3956637B2 (ja) 2001-04-12 2007-08-08 ソニー株式会社 窒化物半導体の結晶成長方法及び半導体素子の形成方法
GB0110112D0 (en) 2001-04-25 2001-06-20 Univ Glasgow Improved optoelectronic device
GB0111207D0 (en) 2001-05-08 2001-06-27 Btg Int Ltd A method to produce germanium layers
US6784074B2 (en) 2001-05-09 2004-08-31 Nsc-Nanosemiconductor Gmbh Defect-free semiconductor templates for epitaxial growth and method of making same
JP3819730B2 (ja) 2001-05-11 2006-09-13 三洋電機株式会社 窒化物系半導体素子および窒化物半導体の形成方法
US20020168802A1 (en) 2001-05-14 2002-11-14 Hsu Sheng Teng SiGe/SOI CMOS and method of making the same
US7358578B2 (en) 2001-05-22 2008-04-15 Renesas Technology Corporation Field effect transistor on a substrate with (111) orientation having zirconium oxide gate insulation and cobalt or nickel silicide wiring
TW544956B (en) 2001-06-13 2003-08-01 Matsushita Electric Ind Co Ltd Nitride semiconductor, production method therefor and nitride semiconductor element
JP3515974B2 (ja) 2001-06-13 2004-04-05 松下電器産業株式会社 窒化物半導体、その製造方法及び窒化物半導体素子
US6566284B2 (en) 2001-08-07 2003-05-20 Hrl Laboratories, Llc Method of manufacture for 80 nanometer diameter resonant tunneling diode with improved peak-to-valley ratio and resonant tunneling diode therefrom
JP3785970B2 (ja) 2001-09-03 2006-06-14 日本電気株式会社 Iii族窒化物半導体素子の製造方法
JP2003077847A (ja) 2001-09-06 2003-03-14 Sumitomo Chem Co Ltd 3−5族化合物半導体の製造方法
JP2003163370A (ja) 2001-09-11 2003-06-06 Toyoda Gosei Co Ltd 半導体結晶の製造方法
TW544930B (en) 2001-09-11 2003-08-01 Toyoda Gosei Kk Method for producing semiconductor crystal
US7105865B2 (en) 2001-09-19 2006-09-12 Sumitomo Electric Industries, Ltd. AlxInyGa1−x−yN mixture crystal substrate
US6689650B2 (en) 2001-09-27 2004-02-10 International Business Machines Corporation Fin field effect transistor with self-aligned gate
US20030064535A1 (en) 2001-09-28 2003-04-03 Kub Francis J. Method of manufacturing a semiconductor device having a thin GaN material directly bonded to an optimized substrate
US6710368B2 (en) 2001-10-01 2004-03-23 Ken Scott Fisher Quantum tunneling transistor
US20030070707A1 (en) 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
JP2003142728A (ja) 2001-11-02 2003-05-16 Sharp Corp 半導体発光素子の製造方法
JP2003152220A (ja) 2001-11-15 2003-05-23 Sharp Corp 半導体発光素子の製造方法および半導体発光素子
US6835246B2 (en) 2001-11-16 2004-12-28 Saleem H. Zaidi Nanostructures for hetero-expitaxial growth on silicon substrates
US6576532B1 (en) 2001-11-30 2003-06-10 Motorola Inc. Semiconductor device and method therefor
JP4284188B2 (ja) 2001-12-20 2009-06-24 パナソニック株式会社 窒化物系半導体基板の製造方法および窒化物系半導体装置の製造方法
CA2466141C (en) 2002-01-28 2012-12-04 Nichia Corporation Nitride semiconductor device having support substrate and its manufacturing method
KR100458288B1 (ko) 2002-01-30 2004-11-26 한국과학기술원 이중-게이트 FinFET 소자 및 그 제조방법
US7411233B2 (en) 2002-08-27 2008-08-12 E-Phocus, Inc Photoconductor-on-active-pixel (POAP) sensor utilizing a multi-layered radiation absorbing structure
US6492216B1 (en) 2002-02-07 2002-12-10 Taiwan Semiconductor Manufacturing Company Method of forming a transistor with a strained channel
JP3782021B2 (ja) 2002-02-22 2006-06-07 株式会社東芝 半導体装置、半導体装置の製造方法、半導体基板の製造方法
WO2003073517A1 (en) 2002-02-27 2003-09-04 Midwest Research Institute Monolithic photovoltaic energy conversion device
JP4092927B2 (ja) 2002-02-28 2008-05-28 豊田合成株式会社 Iii族窒化物系化合物半導体、iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体基板の製造方法
US6635909B2 (en) 2002-03-19 2003-10-21 International Business Machines Corporation Strained fin FETs structure and method
KR101363377B1 (ko) 2002-04-15 2014-02-14 더 리전츠 오브 더 유니버시티 오브 캘리포니아 무극성 질화 갈륨 박막의 전위 감소
US7208393B2 (en) 2002-04-15 2007-04-24 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
US8067687B2 (en) 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US20060162768A1 (en) 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US7217882B2 (en) 2002-05-24 2007-05-15 Cornell Research Foundation, Inc. Broad spectrum solar cell
CN2550906Y (zh) 2002-05-27 2003-05-14 李映华 立体光双面结光电池
FR2840452B1 (fr) 2002-05-28 2005-10-14 Lumilog Procede de realisation par epitaxie d'un film de nitrure de gallium separe de son substrat
JP2004000375A (ja) 2002-06-03 2004-01-08 Shimizu Natsue 顔面用保冷保温具
TWI271877B (en) 2002-06-04 2007-01-21 Nitride Semiconductors Co Ltd Gallium nitride compound semiconductor device and manufacturing method
US6995430B2 (en) 2002-06-07 2006-02-07 Amberwave Systems Corporation Strained-semiconductor-on-insulator device structures
JP2004014856A (ja) 2002-06-07 2004-01-15 Sharp Corp 半導体基板の製造方法及び半導体装置の製造方法
US7074623B2 (en) 2002-06-07 2006-07-11 Amberwave Systems Corporation Methods of forming strained-semiconductor-on-insulator finFET device structures
EP1516370A1 (en) 2002-06-19 2005-03-23 Massachusetts Institute Of Technology Ge photodetectors
US6887773B2 (en) 2002-06-19 2005-05-03 Luxtera, Inc. Methods of incorporating germanium within CMOS process
US7012298B1 (en) 2002-06-21 2006-03-14 Advanced Micro Devices, Inc. Non-volatile memory device
US6617643B1 (en) 2002-06-28 2003-09-09 Mcnc Low power tunneling metal-oxide-semiconductor (MOS) device
US7335908B2 (en) 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US6982204B2 (en) 2002-07-16 2006-01-03 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
US20040012037A1 (en) 2002-07-18 2004-01-22 Motorola, Inc. Hetero-integration of semiconductor materials on silicon
AU2003274922A1 (en) 2002-08-23 2004-03-11 Amberwave Systems Corporation Semiconductor heterostructures having reduced dislocation pile-ups and related methods
US7015497B1 (en) 2002-08-27 2006-03-21 The Ohio State University Self-aligned and self-limited quantum dot nanoswitches and methods for making same
US20040043584A1 (en) 2002-08-27 2004-03-04 Thomas Shawn G. Semiconductor device and method of making same
GB0220438D0 (en) 2002-09-03 2002-10-09 Univ Warwick Formation of lattice-turning semiconductor substrates
US7122733B2 (en) 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US6830953B1 (en) 2002-09-17 2004-12-14 Taiwan Semiconductor Manufacturing Company, Ltd. Suppression of MOSFET gate leakage current
US6815241B2 (en) 2002-09-25 2004-11-09 Cao Group, Inc. GaN structures having low dislocation density and methods of manufacture
US6800910B2 (en) 2002-09-30 2004-10-05 Advanced Micro Devices, Inc. FinFET device incorporating strained silicon in the channel region
US6787864B2 (en) 2002-09-30 2004-09-07 Advanced Micro Devices, Inc. Mosfets incorporating nickel germanosilicided gate and methods for their formation
JP4546021B2 (ja) 2002-10-02 2010-09-15 ルネサスエレクトロニクス株式会社 絶縁ゲート型電界効果型トランジスタ及び半導体装置
US6902991B2 (en) 2002-10-24 2005-06-07 Advanced Micro Devices, Inc. Semiconductor device having a thick strained silicon layer and method of its formation
US6855990B2 (en) 2002-11-26 2005-02-15 Taiwan Semiconductor Manufacturing Co., Ltd Strained-channel multiple-gate transistor
US6709982B1 (en) 2002-11-26 2004-03-23 Advanced Micro Devices, Inc. Double spacer FinFET formation
US6920159B2 (en) 2002-11-29 2005-07-19 Optitune Plc Tunable optical source
WO2004054003A1 (en) 2002-12-05 2004-06-24 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US6645797B1 (en) 2002-12-06 2003-11-11 Advanced Micro Devices, Inc. Method for forming fins in a FinFET device using sacrificial carbon layer
US6876009B2 (en) * 2002-12-09 2005-04-05 Nichia Corporation Nitride semiconductor device and a process of manufacturing the same
AU2003256522A1 (en) 2002-12-16 2004-07-29 The Regents Of University Of California Growth of planar, non-polar a-plane gallium nitride by hydride vapor phase epitaxy
US7589380B2 (en) 2002-12-18 2009-09-15 Noble Peak Vision Corp. Method for forming integrated circuit utilizing dual semiconductors
US7012314B2 (en) 2002-12-18 2006-03-14 Agere Systems Inc. Semiconductor devices with reduced active region defects and unique contacting schemes
US7453129B2 (en) 2002-12-18 2008-11-18 Noble Peak Vision Corp. Image sensor comprising isolated germanium photodetectors integrated with a silicon substrate and silicon circuitry
JP2004200375A (ja) 2002-12-18 2004-07-15 Matsushita Electric Ind Co Ltd 半導体レーザ装置およびその製造方法
US6794718B2 (en) 2002-12-19 2004-09-21 International Business Machines Corporation High mobility crystalline planes in double-gate CMOS technology
US6686245B1 (en) 2002-12-20 2004-02-03 Motorola, Inc. Vertical MOSFET with asymmetric gate structure
US7098487B2 (en) 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
KR100513316B1 (ko) 2003-01-21 2005-09-09 삼성전기주식회사 고효율 반도체 소자 제조방법
US6762483B1 (en) 2003-01-23 2004-07-13 Advanced Micro Devices, Inc. Narrow fin FinFET
JP2004235190A (ja) 2003-01-28 2004-08-19 Sony Corp 光半導体装置
US7304336B2 (en) 2003-02-13 2007-12-04 Massachusetts Institute Of Technology FinFET structure and method to make the same
DE10320160A1 (de) 2003-02-14 2004-08-26 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen einer Mehrzahl von Halbleiterkörper und elektronischer Halbleiterkörper
US6815738B2 (en) 2003-02-28 2004-11-09 International Business Machines Corporation Multiple gate MOSFET structure with strained Si Fin body
EP1602125B1 (en) 2003-03-07 2019-06-26 Taiwan Semiconductor Manufacturing Company, Ltd. Shallow trench isolation process
JP4695824B2 (ja) 2003-03-07 2011-06-08 富士電機ホールディングス株式会社 半導体ウエハの製造方法
EP1609176A2 (en) 2003-03-21 2005-12-28 North Carolina State University Method and systems for single- or multi-period edge definition lithography
US6936851B2 (en) 2003-03-21 2005-08-30 Tien Yang Wang Semiconductor light-emitting device and method for manufacturing the same
US7061065B2 (en) 2003-03-31 2006-06-13 National Chung-Hsing University Light emitting diode and method for producing the same
US6900502B2 (en) 2003-04-03 2005-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel on insulator device
TWI231994B (en) 2003-04-04 2005-05-01 Univ Nat Taiwan Strained Si FinFET
US20050212051A1 (en) 2003-04-16 2005-09-29 Sarnoff Corporation Low voltage silicon controlled rectifier (SCR) for electrostatic discharge (ESD) protection of silicon-on-insulator technologies
US6867433B2 (en) 2003-04-30 2005-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor-on-insulator chip incorporating strained-channel partially-depleted, fully-depleted, and multiple-gate transistors
JP2004336040A (ja) 2003-04-30 2004-11-25 Osram Opto Semiconductors Gmbh 複数の半導体チップの製造方法および電子半導体基体
US6838322B2 (en) 2003-05-01 2005-01-04 Freescale Semiconductor, Inc. Method for forming a double-gated semiconductor device
US6909186B2 (en) 2003-05-01 2005-06-21 International Business Machines Corporation High performance FET devices and methods therefor
US7088143B2 (en) 2003-05-22 2006-08-08 The Regents Of The University Of Michigan Dynamic circuits having improved noise tolerance and method for designing same
US6849487B2 (en) 2003-05-27 2005-02-01 Motorola, Inc. Method for forming an electronic structure using etch
TWI242232B (en) 2003-06-09 2005-10-21 Canon Kk Semiconductor substrate, semiconductor device, and method of manufacturing the same
US7262117B1 (en) 2003-06-10 2007-08-28 Luxtera, Inc. Germanium integrated CMOS wafer and method for manufacturing the same
JP4105044B2 (ja) 2003-06-13 2008-06-18 株式会社東芝 電界効果トランジスタ
US6974733B2 (en) 2003-06-16 2005-12-13 Intel Corporation Double-gate transistor with enhanced carrier mobility
US6943407B2 (en) 2003-06-17 2005-09-13 International Business Machines Corporation Low leakage heterojunction vertical transistors and high performance devices thereof
JP2005011915A (ja) 2003-06-18 2005-01-13 Hitachi Ltd 半導体装置、半導体回路モジュールおよびその製造方法
US7045401B2 (en) 2003-06-23 2006-05-16 Sharp Laboratories Of America, Inc. Strained silicon finFET device
US7122392B2 (en) 2003-06-30 2006-10-17 Intel Corporation Methods of forming a high germanium concentration silicon germanium alloy by epitaxial lateral overgrowth and structures formed thereby
US20050017351A1 (en) 2003-06-30 2005-01-27 Ravi Kramadhati V. Silicon on diamond wafers and devices
US6921982B2 (en) 2003-07-21 2005-07-26 International Business Machines Corporation FET channel having a strained lattice structure along multiple surfaces
EP1519420A2 (en) 2003-09-25 2005-03-30 Interuniversitaire Microelectronica Centrum vzw ( IMEC) Multiple gate semiconductor device and method for forming same
JP2005051022A (ja) 2003-07-28 2005-02-24 Seiko Epson Corp 半導体装置およびその製造方法
US6855583B1 (en) 2003-08-05 2005-02-15 Advanced Micro Devices, Inc. Method for forming tri-gate FinFET with mesa isolation
US6835618B1 (en) 2003-08-05 2004-12-28 Advanced Micro Devices, Inc. Epitaxially grown fin for FinFET
CN100536167C (zh) 2003-08-05 2009-09-02 富士通微电子株式会社 半导体装置及其制造方法
US7101742B2 (en) 2003-08-12 2006-09-05 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel complementary field-effect transistors and methods of manufacture
US20050035410A1 (en) * 2003-08-15 2005-02-17 Yee-Chia Yeo Semiconductor diode with reduced leakage
US7355253B2 (en) 2003-08-22 2008-04-08 International Business Machines Corporation Strained-channel Fin field effect transistor (FET) with a uniform channel thickness and separate gates
US6815278B1 (en) 2003-08-25 2004-11-09 International Business Machines Corporation Ultra-thin silicon-on-insulator and strained-silicon-direct-on-insulator with hybrid crystal orientations
US6955969B2 (en) 2003-09-03 2005-10-18 Advanced Micro Devices, Inc. Method of growing as a channel region to reduce source/drain junction capacitance
US7078299B2 (en) 2003-09-03 2006-07-18 Advanced Micro Devices, Inc. Formation of finFET using a sidewall epitaxial layer
JP4439358B2 (ja) 2003-09-05 2010-03-24 株式会社東芝 電界効果トランジスタ及びその製造方法
US7579263B2 (en) 2003-09-09 2009-08-25 Stc.Unm Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer
US20050054164A1 (en) 2003-09-09 2005-03-10 Advanced Micro Devices, Inc. Strained silicon MOSFETs having reduced diffusion of n-type dopants
US7138292B2 (en) 2003-09-10 2006-11-21 Lsi Logic Corporation Apparatus and method of manufacture for integrated circuit and CMOS device including epitaxially grown dielectric on silicon carbide
US7211864B2 (en) 2003-09-15 2007-05-01 Seliskar John J Fully-depleted castellated gate MOSFET device and method of manufacture thereof
US20050056827A1 (en) 2003-09-15 2005-03-17 Agency For Science, Technology And Research CMOS compatible low band offset double barrier resonant tunneling diode
EP1676322A2 (en) 2003-09-19 2006-07-05 Spinnaker Semiconductor, Inc. Schottky barrier integrated circuit
US6919258B2 (en) 2003-10-02 2005-07-19 Freescale Semiconductor, Inc. Semiconductor device incorporating a defect controlled strained channel structure and method of making the same
US6831350B1 (en) 2003-10-02 2004-12-14 Freescale Semiconductor, Inc. Semiconductor structure with different lattice constant materials and method for forming the same
CN1868045A (zh) 2003-10-03 2006-11-22 斯平内克半导体股份有限公司 使用各向同性蚀刻工艺的肖特基势垒mosfet制造方法
US6900491B2 (en) 2003-10-06 2005-05-31 Hewlett-Packard Development Company, L.P. Magnetic memory
US7348600B2 (en) * 2003-10-20 2008-03-25 Nichia Corporation Nitride semiconductor device, and its fabrication process
WO2005038901A1 (en) 2003-10-22 2005-04-28 Spinnaker Semiconductor, Inc. Dynamic schottky barrier mosfet device and method of manufacture
US7009215B2 (en) 2003-10-24 2006-03-07 General Electric Company Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
US6977194B2 (en) 2003-10-30 2005-12-20 International Business Machines Corporation Structure and method to improve channel mobility by gate electrode stress modification
US7057216B2 (en) 2003-10-31 2006-06-06 International Business Machines Corporation High mobility heterojunction complementary field effect transistors and methods thereof
US6902965B2 (en) 2003-10-31 2005-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Strained silicon structure
GB0326321D0 (en) 2003-11-12 2003-12-17 Univ Warwick Formation of lattice-tuning semiconductor substrates
US20050104156A1 (en) 2003-11-13 2005-05-19 Texas Instruments Incorporated Forming a semiconductor structure in manufacturing a semiconductor device using one or more epitaxial growth processes
US7247534B2 (en) 2003-11-19 2007-07-24 International Business Machines Corporation Silicon device on Si:C-OI and SGOI and method of manufacture
US7176522B2 (en) 2003-11-25 2007-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having high drive current and method of manufacturing thereof
JP4473710B2 (ja) 2003-12-05 2010-06-02 株式会社東芝 半導体装置
US7198995B2 (en) 2003-12-12 2007-04-03 International Business Machines Corporation Strained finFETs and method of manufacture
US6958286B2 (en) 2004-01-02 2005-10-25 International Business Machines Corporation Method of preventing surface roughening during hydrogen prebake of SiGe substrates
US7247912B2 (en) 2004-01-05 2007-07-24 International Business Machines Corporation Structures and methods for making strained MOSFETs
US7705345B2 (en) 2004-01-07 2010-04-27 International Business Machines Corporation High performance strained silicon FinFETs device and method for forming same
US7138302B2 (en) 2004-01-12 2006-11-21 Advanced Micro Devices, Inc. Method of fabricating an integrated circuit channel region
US7268058B2 (en) 2004-01-16 2007-09-11 Intel Corporation Tri-gate transistors and methods to fabricate same
US7385247B2 (en) 2004-01-17 2008-06-10 Samsung Electronics Co., Ltd. At least penta-sided-channel type of FinFET transistor
US7198970B2 (en) 2004-01-23 2007-04-03 The United States Of America As Represented By The Secretary Of The Navy Technique for perfecting the active regions of wide bandgap semiconductor nitride devices
US7118987B2 (en) 2004-01-29 2006-10-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method of achieving improved STI gap fill with reduced stress
US7180134B2 (en) 2004-01-30 2007-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and structures for planar and multiple-gate transistors formed on SOI
DE102004005506B4 (de) 2004-01-30 2009-11-19 Atmel Automotive Gmbh Verfahren zur Erzeugung von aktiven Halbleiterschichten verschiedener Dicke in einem SOI-Wafer
US6855982B1 (en) 2004-02-02 2005-02-15 Advanced Micro Devices, Inc. Self aligned double gate transistor having a strained channel region and process therefor
US7205210B2 (en) 2004-02-17 2007-04-17 Freescale Semiconductor, Inc. Semiconductor structure having strained semiconductor and method therefor
US7492022B2 (en) 2004-02-27 2009-02-17 University Of Iowa Research Foundation Non-magnetic semiconductor spin transistor
US6995456B2 (en) 2004-03-12 2006-02-07 International Business Machines Corporation High-performance CMOS SOI devices on hybrid crystal-oriented substrates
US7160753B2 (en) 2004-03-16 2007-01-09 Voxtel, Inc. Silicon-on-insulator active pixel sensors
US6888181B1 (en) 2004-03-18 2005-05-03 United Microelectronics Corp. Triple gate device having strained-silicon channel
US20050211291A1 (en) 2004-03-23 2005-09-29 The Boeing Company Solar cell assembly
US6998684B2 (en) 2004-03-31 2006-02-14 International Business Machines Corporation High mobility plane CMOS SOI
US7154118B2 (en) 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US7087965B2 (en) 2004-04-22 2006-08-08 International Business Machines Corporation Strained silicon CMOS on hybrid crystal orientations
US7445673B2 (en) 2004-05-18 2008-11-04 Lumilog Manufacturing gallium nitride substrates by lateral overgrowth through masks and devices fabricated thereof
US7084441B2 (en) 2004-05-20 2006-08-01 Cree, Inc. Semiconductor devices having a hybrid channel layer, current aperture transistors and methods of fabricating same
JP5461773B2 (ja) 2004-06-03 2014-04-02 独立行政法人科学技術振興機構 ハイドライド気相成長法による平坦で低転位密度のm面窒化ガリウムの成長
US7125785B2 (en) 2004-06-14 2006-10-24 International Business Machines Corporation Mixed orientation and mixed material semiconductor-on-insulator wafer
US7807921B2 (en) 2004-06-15 2010-10-05 The Boeing Company Multijunction solar cell having a lattice mismatched GrIII-GrV-X layer and a composition-graded buffer layer
US7244958B2 (en) 2004-06-24 2007-07-17 International Business Machines Corporation Integration of strained Ge into advanced CMOS technology
US6991998B2 (en) 2004-07-02 2006-01-31 International Business Machines Corporation Ultra-thin, high quality strained silicon-on-insulator formed by elastic strain transfer
US7384829B2 (en) 2004-07-23 2008-06-10 International Business Machines Corporation Patterned strained semiconductor substrate and device
US7217947B2 (en) * 2004-08-06 2007-05-15 Northrop Grumman Corporation Semiconductor light source and method of making
US20060211210A1 (en) 2004-08-27 2006-09-21 Rensselaer Polytechnic Institute Material for selective deposition and etching
TWI500072B (zh) 2004-08-31 2015-09-11 Sophia School Corp 發光元件之製造方法
US20060073681A1 (en) 2004-09-08 2006-04-06 Han Sang M Nanoheteroepitaxy of Ge on Si as a foundation for group III-V and II-VI integration
US7002175B1 (en) 2004-10-08 2006-02-21 Agency For Science, Technology And Research Method of making resonant tunneling diodes and CMOS backend-process-compatible three dimensional (3-D) integration
US7846759B2 (en) 2004-10-21 2010-12-07 Aonex Technologies, Inc. Multi-junction solar cells and methods of making same using layer transfer and bonding techniques
US20060105533A1 (en) 2004-11-16 2006-05-18 Chong Yung F Method for engineering hybrid orientation/material semiconductor substrate
US20060113603A1 (en) 2004-12-01 2006-06-01 Amberwave Systems Corporation Hybrid semiconductor-on-insulator structures and related methods
US20060131606A1 (en) 2004-12-18 2006-06-22 Amberwave Systems Corporation Lattice-mismatched semiconductor structures employing seed layers and related fabrication methods
US7405436B2 (en) 2005-01-05 2008-07-29 International Business Machines Corporation Stressed field effect transistors on hybrid orientation substrate
JP2006196631A (ja) 2005-01-13 2006-07-27 Hitachi Ltd 半導体装置及びその製造方法
US7138309B2 (en) 2005-01-19 2006-11-21 Sharp Laboratories Of America, Inc. Integration of biaxial tensile strained NMOS and uniaxial compressive strained PMOS on the same wafer
US7344942B2 (en) 2005-01-26 2008-03-18 Micron Technology, Inc. Isolation regions for semiconductor devices and their formation
US7224033B2 (en) 2005-02-15 2007-05-29 International Business Machines Corporation Structure and method for manufacturing strained FINFET
JP2006253181A (ja) 2005-03-08 2006-09-21 Seiko Epson Corp 半導体装置および半導体装置の製造方法
KR100712753B1 (ko) 2005-03-09 2007-04-30 주식회사 실트론 화합물 반도체 장치 및 그 제조방법
US20070267722A1 (en) 2006-05-17 2007-11-22 Amberwave Systems Corporation Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
JP5063594B2 (ja) 2005-05-17 2012-10-31 台湾積體電路製造股▲ふん▼有限公司 転位欠陥密度の低い格子不整合半導体構造およびこれに関連するデバイス製造方法
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9153645B2 (en) 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
JP2006332295A (ja) 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd ヘテロ接合バイポーラトランジスタ及びヘテロ接合バイポーラトランジスタの製造方法
TW200703463A (en) 2005-05-31 2007-01-16 Univ California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
KR100682877B1 (ko) * 2005-07-12 2007-02-15 삼성전기주식회사 발광다이오드 및 그 제조방법
JP5481067B2 (ja) 2005-07-26 2014-04-23 台湾積體電路製造股▲ふん▼有限公司 代替活性エリア材料の集積回路への組み込みのための解決策
US7801406B2 (en) 2005-08-01 2010-09-21 Massachusetts Institute Of Technology Method of fabricating Ge or SiGe/Si waveguide or photonic crystal structures by selective growth
US7638842B2 (en) 2005-09-07 2009-12-29 Amberwave Systems Corporation Lattice-mismatched semiconductor structures on insulators
US20070054467A1 (en) 2005-09-07 2007-03-08 Amberwave Systems Corporation Methods for integrating lattice-mismatched semiconductor structure on insulators
US7358107B2 (en) 2005-10-27 2008-04-15 Sharp Laboratories Of America, Inc. Method of fabricating a germanium photo detector on a high quality germanium epitaxial overgrowth layer
CN101326646B (zh) 2005-11-01 2011-03-16 麻省理工学院 单片集成的半导体材料和器件
US7521732B2 (en) * 2005-11-18 2009-04-21 General Electric Company Vertical heterostructure field effect transistor and associated method
JP4802314B2 (ja) * 2006-01-24 2011-10-26 シャープ株式会社 窒化物半導体発光素子とその製造方法
US7629661B2 (en) 2006-02-10 2009-12-08 Noble Peak Vision Corp. Semiconductor devices with photoresponsive components and metal silicide light blocking structures
KR100790869B1 (ko) 2006-02-16 2008-01-03 삼성전자주식회사 단결정 기판 및 그 제조방법
US7691698B2 (en) 2006-02-21 2010-04-06 International Business Machines Corporation Pseudomorphic Si/SiGe/Si body device with embedded SiGe source/drain
US7777250B2 (en) 2006-03-24 2010-08-17 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8173551B2 (en) 2006-09-07 2012-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. Defect reduction using aspect ratio trapping
WO2008036256A1 (en) 2006-09-18 2008-03-27 Amberwave Systems Corporation Aspect ratio trapping for mixed signal applications
US7875958B2 (en) 2006-09-27 2011-01-25 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
WO2008039495A1 (en) 2006-09-27 2008-04-03 Amberwave Systems Corporation Tri-gate field-effect transistors formed by aspect ratio trapping
WO2008051503A2 (en) 2006-10-19 2008-05-02 Amberwave Systems Corporation Light-emitter-based devices with lattice-mismatched semiconductor structures
US20080154197A1 (en) 2006-12-20 2008-06-26 Joel Brian Derrico System and method for regulating the temperature of a fluid injected into a patient
JP2008198656A (ja) 2007-02-08 2008-08-28 Shin Etsu Chem Co Ltd 半導体基板の製造方法
JP2008198952A (ja) * 2007-02-15 2008-08-28 Rohm Co Ltd Iii族窒化物半導体発光素子
JP2008235802A (ja) * 2007-03-23 2008-10-02 Rohm Co Ltd 発光装置
US7825328B2 (en) 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US8304805B2 (en) 2009-01-09 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
KR20080102065A (ko) 2007-05-18 2008-11-24 삼성전자주식회사 에피택시얼 실리콘 구조물 형성 방법 및 이를 이용한 반도체 소자의 형성 방법
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
KR20090010284A (ko) 2007-07-23 2009-01-30 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
US8344242B2 (en) 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US7883990B2 (en) 2007-10-31 2011-02-08 International Business Machines Corporation High resistivity SOI base wafer using thermally annealed substrate
US8716836B2 (en) 2007-12-28 2014-05-06 Sumitomo Chemical Company, Limited Semiconductor wafer, semiconductor wafer manufacturing method, and electronic device
US8183667B2 (en) 2008-06-03 2012-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial growth of crystalline material
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US20100072515A1 (en) 2008-09-19 2010-03-25 Amberwave Systems Corporation Fabrication and structures of crystalline material
EP2335273A4 (en) 2008-09-19 2012-01-25 Taiwan Semiconductor Mfg FORMATION OF EQUIPMENT BY EXCESSIVE GROWTH OF THE EPITAXIAL LAYER
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
JP5705207B2 (ja) * 2009-04-02 2015-04-22 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. 結晶物質の非極性面から形成される装置とその製作方法
US8837545B2 (en) * 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
JP3202223U (ja) 2015-11-09 2016-01-28 株式会社千葉武道具 剣道用小手

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040262617A1 (en) * 2003-06-24 2004-12-30 Hahm Hun Joo White light emitting diode and method for manufacturing the same
TW200532949A (en) * 2003-12-03 2005-10-01 Sumitomo Electric Industries Light emitting device
US20070102721A1 (en) * 2005-11-04 2007-05-10 Denbaars Steven P High light extraction efficiency light emitting diode (LED)

Also Published As

Publication number Publication date
EP2415083A1 (en) 2012-02-08
US20160211260A1 (en) 2016-07-21
KR101450956B1 (ko) 2014-10-15
JP5705207B2 (ja) 2015-04-22
US9576951B2 (en) 2017-02-21
US9299562B2 (en) 2016-03-29
JP2012522402A (ja) 2012-09-20
TW201041183A (en) 2010-11-16
JP2014064011A (ja) 2014-04-10
WO2010114956A1 (en) 2010-10-07
EP2415083B1 (en) 2017-06-21
US20100252861A1 (en) 2010-10-07
US8629446B2 (en) 2014-01-14
US20140162438A1 (en) 2014-06-12
SG171987A1 (en) 2011-07-28
CN102379046A (zh) 2012-03-14
CN102379046B (zh) 2015-06-17
JP5709963B2 (ja) 2015-04-30
KR20110099782A (ko) 2011-09-08
EP2415083A4 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
TWI452722B (zh) 二極體之結構與其製法
TWI413262B (zh) 二極體
KR101629984B1 (ko) 광전 소자 제조 방법 및 광전 소자
CN102341887B (zh) 包含硼的iii族氮化物发光器件
US20110017972A1 (en) Light emitting structure with integral reverse voltage protection
JP2005217421A (ja) 改善された高電流効率を有するiii族窒化物発光デバイス
KR101552104B1 (ko) 반도체 발광소자
CN110010744B (zh) 通过在发射结构上添置转换结构的光电设备的制造方法
US9299561B2 (en) Method for fabricating nitride semiconductor thin film and method for fabricating nitride semiconductor device using the same
KR102131697B1 (ko) 정전기 방전 특성이 향상된 반도체 소자 및 그 제조 방법
US10153397B2 (en) Semiconductor light-emitting device
KR20140131695A (ko) 질화물 반도체 발광소자 및 그 제조방법