KR20180041775A - 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법 - Google Patents

마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법 Download PDF

Info

Publication number
KR20180041775A
KR20180041775A KR1020187010783A KR20187010783A KR20180041775A KR 20180041775 A KR20180041775 A KR 20180041775A KR 1020187010783 A KR1020187010783 A KR 1020187010783A KR 20187010783 A KR20187010783 A KR 20187010783A KR 20180041775 A KR20180041775 A KR 20180041775A
Authority
KR
South Korea
Prior art keywords
bending
layer
flexible display
region
traces
Prior art date
Application number
KR1020187010783A
Other languages
English (en)
Other versions
KR101936109B1 (ko
Inventor
손해준
류중호
최시혁
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Publication of KR20180041775A publication Critical patent/KR20180041775A/ko
Application granted granted Critical
Publication of KR101936109B1 publication Critical patent/KR101936109B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H01L51/5253
    • H01L27/323
    • H01L27/3262
    • H01L27/3276
    • H01L27/3288
    • H01L51/0097
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

어셈블된 플렉서블 디스플레이의 명백한 경계 사이즈를 감소시키고 그리고/또는 측 표면을 활용하기 위해 일부분 또는 일부분들의 벤딩을 허용하도록 구성된 복수의 혁신점들을 갖는 플렉서블 디스플레이가 제공된다. 디스플레이 장치는, 베이스층의 제 1 부분과 제 2 부분 사이에 벤딩 허용 부분을 갖는 베이스층, 베이스층의 제 1 부분 상에 배치된 복수의 OLED (organic light-emitting diode) 소자들, OLED 소자들 위의 봉지층, 베이스층의 제 2 부분에 부착된 인쇄 회로 막, 및 베이스층의 벤딩 허용 부분 위에 배치된 마이크로-코팅층을 포함한다.

Description

마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법{DISPLAY DEVICE WITH MICRO COVER LAYER AND MANUFACTURING METHOD FOR THE SAME}
본 출원은 일반적으로 전자 디바이스들에 관한 것이고, 보다 구체적으로, 디스플레이를 갖는 전자 디바이스들에 관한 것이다.
전자 디바이스들은 종종 디스플레이들을 포함한다. 예를 들어, 휴대 전화들 및 휴대용 컴퓨터들은 사용자에게 정보를 제공하기 위한 디스플레이들을 포함한다. 이로 제한되는 것은 아니지만, 디스플레이를 포함하는, 전자 디바이스용 컴포넌트들은 플라스틱 또는 금속으로 이루어진 하우징에 장착될 수도 있다.
조립된 (assembled) 디스플레이는 디스플레이 패널 및 다양한 기능들을 제공하기 위한 다수의 컴포넌트들을 포함할 수도 있다. 예를 들어, 디스플레이 패널을 제어하기 위한 하나 이상의 디스플레이 구동 회로들이 디스플레이 어셈블리에 포함될 수도 있다. 구동 회로들의 예들은 게이트 드라이버들, 발광 (소스) 드라이버들, 전력 (VDD) 라우팅, ESD (electrostatic discharge) 회로들, mux (multiplex) 회로들, 데이터 신호 라인들, 캐소드 컨택들, 및 다른 기능성 엘리먼트들을 포함한다. 다양한 종류들의 부가 기능들, 예를 들어 터치 센싱 또는 지문 식별 기능들을 제공하기 위한 다수의 주변 회로들이 디스플레이 어셈블리에 포함될 수도 있다.
일부 컴포넌트들은 디스플레이 패널 자체 상에 배치될 수도 있고, 종종 본 개시에서 비디스플레이 영역 및/또는 인액티브 영역 (inactive area) 으로 지칭되는, 디스플레이 영역 주변 영역들 내에 배치될 수도 있다. 이러한 컴포넌트들이 디스플레이 패널 내에 제공될 때, 이들은 디스플레이 패널의 상당한 부분을 차지한다. 큰 인액티브 영역은 디스플레이 패널의 부피를 크게 하는 경향이 있고, 이는 디스플레이 패널을 전자 디바이스들의 하우징 내로 통합하는 것을 어렵게 한다. 큰 인액티브 영역은 또한 디스플레이 패널의 상당한 부분이 과도하게 큰 마스킹 (예를 들어, 베젤, 테두리, 커버링 재료) 에 의해 커버될 것을 요구할 수도 있어 디바이스가 미적으로 매력적이지 않게 한다.
최신 전자 디바이스들의 설계시 사이즈 및 중량이 중요한 문제이다. 또한, 때때로 스크린 대 베젤 비로 지칭되는, 인액티브 영역의 사이즈에 대한 액티브 영역 사이즈의 높은 비율은 가장 중요한 특징 중 하나이다. 디스플레이 패널에 대한 연결 컴포넌트들로 별도의 FPC (flexible printed) 을 차용하는 것 만으로는 보다 높은 스크린-대-베젤 비에 있어서 인액티브 영역의 사이즈의 얼마나 많은 감소가 구현될 수 있는지에 대해서 제한이 있다. 신호 케이블들을 신뢰할 수 있게 부착하고 디스플레이 패널의 에지들을 따라 배선들을 팬아웃 (fan out) 하기 위해 필요한 공간은 여전히 디스플레이 패널의 인액티브 영역 내에 배치되어야 한다.
그 위에 픽셀들을 갖는 액티브 영역 및 인액티브 영역이 형성된 베이스 기판을 벤딩시키는 것이 매우 바람직할 것이다. 이는 마스킹 또는 디바이스 하우징 아래에 가려져야 하는 디스플레이 패널의 인액티브 영역을 정확히 최소화한다. 베이스 기판의 벤딩은 시야에서 가려져야 하는 인액티브 영역의 사이즈를 최소화할 뿐만 아니라, 다양한 새로운 디스플레이 설계들에 대한 가능성을 열 것이다.
그러나, 이러한 플렉서블 디스플레이들을 제공할 때 해결되어야 하는 다양한 새로운 과제들이 있다. 디스플레이 픽셀들과 함께 베이스 기판 바로 위에 형성된 컴포넌트들은 허용되지 않는 에러 마진을 갖는 상당히 작은 치수를 갖는 경향이 있다. 또한, 이들 컴포넌트들은 가요성을 제공하기 위해 매우 얇은 시트 상에 형성되어야 하고, 이는 디스플레이들의 제조 및/또는 사용 동안 유발된 다양한 기계적 응력들 및 환경적 응력들에 이들 컴포넌트들이 매우 취약하게 한다.
또한, 디스플레이 픽셀들을 갖는 베이스 기판 바로 위에 제조된 컴포넌트들은 종종 이들 픽셀들의 동작과 밀접하게 연결된다는 (link) 사실로 인해 문제가 발생한다. 관리가 이루어지지 않으면, 플렉서블 디스플레이의 벤딩으로부터의 기계적 응력들은 신뢰성에 부정적 영향을 줄 수 있거나 심지어 완성된 컴포넌트의 고장을 발생시킬 수 있다. 심지어 컴포넌트 내에서의 마이크로-스케일 (micro-scale) 의 결함은 리페어 옵션을 갖지 않는 전체 디스플레이 패널의 폐기에 이르는, 디스플레이 픽셀들의 퍼포먼스 및/또는 신뢰성에 치명적인 영향을 줄 수 있다.
예를 들어, 전기 배선들 내의 수 마이크로미터 스케일 크랙들은 다양한 비정상적인 디스플레이 문제들을 유발할 수 있고 심지어 디스플레이 패널의 몇몇 행들 또는 부분들 내의 픽셀들이 전혀 활성화되지 않게 할 수도 있다. 이와 같이, 디스플레이 패널들을 따라 플렉서블 베이스 기판 상에 제조될 전기 배선 스킴들을 설계할 때 다양한 특수한 파라미터들이 고려되어야 한다. 벤딩 반경을 단순히 증가시키는 것은 디스플레이 패널의 베이스 기판을 구부리는 (flex) 것의 모든 상당한 이점들을 획득하는 것을 어렵게 할 수도 있다. 따라서, 극단의 벤딩 반경으로부터의 벤딩 응력들 하에서도 신뢰할 수 있게 동작할 수 있는 플렉서블 디스플레이를 제공하는 것이 바람직할 것이다.
본 개시의 일 양태는, 플렉서블 디스플레이의 신뢰할 수 있는 동작을 위해 벤딩 응력을 견디기 위한 배선 트레이스들의 구성들을 포함하는, 플렉서블 디스플레이에 관련된다.
일 실시예에서, 디스플레이 장치는 제 1 부분과 제 2 부분 사이에 벤딩 허용 부분을 갖는 베이스층을 포함한다. 디스플레이 장치의 제 1 부분은 복수의 OLED (organic light-emitting diode) 소자들이 배치되는 액티브 영역을 포함한다. 디스플레이 장치는 OLED 소자들 위에 봉지층을 더 포함한다. 봉지층은 막의 형태로 제공될 수도 있다. 디스플레이 장치의 제 2 부분 내에 인쇄 회로 막이 제공될 수도 있다. 인쇄 회로 막은 OLED 소자들을 동작시키기 위한 구동 회로일 수도 있다. 디스플레이 장치는 디스플레이 장치의 벤딩 허용 부분 위에 배치되는, 마이크로-코팅층을 더 포함한다.
일부 실시예들에서, 디스플레이 장치는 베이스층의 제 1 부분과 제 2 부분 사이에서 라우팅된 복수의 배선 트레이스들을 포함한다. 이 경우, 벤딩 허용 부분의 복수의 도전 라인 트레이스들은 마이크로-코팅층으로 덮인다.
일부 실시예들에서, 마이크로-코팅층은 봉지층의 적어도 일부 위에 배치될 수 있다. 보다 구체적으로, 디스플레이 장치는 봉지층 상에 편광층을 포함할 수도 있다. 편광층의 에지는 봉지층의 에지로부터 액티브 영역을 향해 시프트된다. 이는 마이크로-코팅층이 편광층의 에지와 봉지층의 에지 사이에서 노출된 봉지층의 상부 표면의 적어도 일부를 덮을 수 있도록, 봉지층의 상부 표면의 일부를 개방된 채로 남겨둔다. 마이크로-코팅층과 봉지층의 표면 사이의 부가적인 접촉 영역은 마이크로-코팅층과 봉지층의 표면 사이에 보다 강한 본딩을 제공할 수 있다. 봉지층과 마이크로-코팅층 사이의 향상된 시일링은 수분 및 다른 외래 재료들이 마이크로-코팅층 아래 배선 트레이스들을 부식시키는 것을 억제할 수 있다.
일부 실시예들에서, 봉지층의 상부 표면을 덮는 마이크로-코팅층은 편광층의 측벽으로부터 이격되는 부분을 포함할 수도 있다. 일부 실시예들에서, 봉지층의 상부 표면을 덮는 마이크로-코팅층은 편광층의 측벽과 접촉하는 부분을 포함할 수도 있다.
일부 실시예들에서, 디스플레이 장치는 마이크로-코팅층이 편광층의 측벽으로부터 이격되는 부분뿐만 아니라 마이크로-코팅층이 편광층의 측벽과 접촉하는 부분을 포함한다. 마이크로-코팅층과 편광층이 서로 접촉하는 부분은 플렉서블 디스플레이의 노치된 에지를 향해 위치될 수도 있다. 마이크로-코팅층과 편광층 간의 접촉은 인쇄 회로 막을 제자리에 홀딩하게 할 수도 있고, 인쇄 회로 막의 원치 않은 이동으로부터 가능한 크랙 생성을 감소시킬 수도 있다.
일부 실시예들에서, 마이크로-코팅층은 인쇄 회로 막을 향하는 마이크로-코팅층보다 봉지층을 향해 보다 높은 프로파일을 가질 수도 있다. 인쇄 회로 막을 향하는 마이크로-코팅층의 보다 낮은 프로파일은 벤딩 후 디스플레이 장치의 후면측에서 원치 않은 공간을 감소시키기 위해 유리할 수 있다.
마이크로-코팅층의 두께는 봉지층과 인쇄 회로 막 사이에서 실질적으로 균일할 수도 있다. 특히, 이 영역에서 가장 두꺼운 마이크로-코팅층과 가장 얇은 마이크로-코팅층 사이의 마이크로-코팅층의 두께 차는 50 μm 미만일 수도 있다.
마이크로-코팅층의 두께는 벤딩 부분에서 디스플레이 장치의 중립면을 조정할 수도 있다. 마이크로-코팅층에 의해 디스플레이 장치의 벤딩 부분에 추가된 두께는 배선 트레이스들에 감소된 양의 벤딩 응력이 인가되도록 배선 트레이스들의 평면을 향해 중립면을 시프트할 수 있다.
또 다른 양태에서, 디스플레이를 제조하는 방법이 제공된다. 일 실시예에서, 베이스층 상에 버퍼층이 형성된다. 버퍼층의 상단부 상에, 스트레인 감소 패턴을 갖는 도전 라인 트레이스들이 형성된다. 도전 라인 트레이스가 버퍼층 상에 형성된 후, 노치된 인액티브 영역을 생성하도록 베이스층이 챔퍼링된다. 노치된 인액티브 영역은 벤딩 허용 부분을 포함할 수 있다. 플렉서블 디스플레이의 챔퍼링되거나 스크라이빙된 에지로부터 크랙들이 시작되고 전파될 수 있기 때문에, 버퍼층은 스트레인 감소 패턴을 따라 그리고 노치된 라인을 따라 베이스층을 노출하도록 버퍼층이 에칭된다. 노치된 라인 근방의 무기층을 제거하는 것은 벤딩 응력으로부터 크랙 시작을 억제할 수 있지만, 이는 수분들 및 다른 외래 재료들에 취약한 도전 라인들을 형성할 수 있다. 따라서, 마이크로-코팅층이 노치된 인액티브 영역에 디스펜싱된다. 마이크로-코팅층은 수지 형태로 디스펜싱될 수도 있다. 이어서 마이크로-코팅층은 광 조사에 의해 경화된다.
일부 실시예들에서, 마이크로-코팅층은 젯팅 밸브를 사용함으로써 디스펜싱될 수 있다. 젯팅 밸브로부터의 디스펜싱 속도는 타깃팅된 표면에서 마이크로-코팅층의 두께 및 확산 사이즈의 정확한 제어를 위해 디스펜싱 프로세스 동안 조정될 수도 있다. 또한, UV 조사를 통해 마이크로-코팅층이 경화되기 전에 디스펜싱 시간을 감소시키고 확산량을 제한하도록 부가적인 수의 젯팅 밸브들이 사용될 수도 있다.
도 1a 내지 도 1c는 본 개시의 실시예들에 따른 예시적인 플렉서블 디스플레이 디바이스의 개략도를 예시한다.
도 2a 및 도 2b는 본 개시의 실시예들에 따른 예시적인 플렉서블 디스플레이 디바이스의 개략도를 예시한다.
도 3은 본 개시의 실시예들에서 채용될 수도 있는, 벤딩 패턴의 개략적인 평면도 및 대응하는 단면도를 예시한다.
도 4a 및 도 4b는 본 개시의 실시예들에 따른 플렉서블 디스플레이 디바이스에서 사용할 수 있는 예시적인 복수-적층된 도전 라인들의 개략도를 예시한다.
도 5a 내지 도 5b는 본 개시의 실시예들에 따른 예시적인 구성의 복수-적층된 도전층들 및 절연층들의 개략도를 예시한다.
도 6a는 본 개시의 실시예들에 따른 예시적인 구성의 리세스된 채널 및 크랙 편향 굴절/절연 트레이스의 개략도를 예시한다.
도 6b 및 도 6c는 노치된 라인과 벤딩 허용 부분 사이에 제공된 예시적인 구성의 버퍼 에칭된 영역의 개략도를 예시한다.
도 7은 본 개시의 실시예에 따른 플렉서블 디스플레이들에 사용할 수 있는 단일 라인 배선 트레이스 설계의 개략도이다.
도 8a 내지 도 8d는 본 개시의 실시예들에 따른 일정한 간격으로 분할 및 병합하는 복수의 서브-트레이스들을 갖는 예시적인 배선 트레이스들의 개략도를 예시한다.
도 9a 및 도 9b는 본 개시의 실시예들에 따른, 플렉서블 디스플레이의 예시적인 배선 트레이스들이 교차하는 리세스된 영역의 개략도를 예시한다.
도 10a 내지 도 10c는 본 개시의 실시예들에 따른, 마이크로-코팅층이 구비된 플렉서블 디스플레이의 개략도들을 예시한다.
도 11a 및 도 11b는 본 개시의 실시예들에 따른 마이크로-코팅층이 구비된 벤딩 상태의 플렉서블 디스플레이의 실시예들의 개략도들을 예시한다.
도 1a 내지 도 1c는 전자 디바이스들 내에 통합될 수도 있는 예시적인 플렉서블 디스플레이 (100) 를 예시한다. 도 1a를 참조하면, 플렉서블 디스플레이 (100) 는 내부에 디스플레이 픽셀들의 어레이가 형성된, 적어도 하나의 액티브 영역 (즉, 디스플레이 영역) 을 포함한다. 하나 이상의 인액티브 영역들은 액티브 영역의 주변부에 제공될 수도 있다. 즉, 인액티브 영역은 액티브 영역의 하나 이상의 측들에 인접할 수도 있다. 도 1a에서, 인액티브 영역은 직사각형 형상의 액티브 영역을 둘러싼다. 그러나, 액티브 영역의 형상들 및 액티브 영역에 인접한 인액티브 영역의 배열은 도 1에 예시된 예시적인 플렉서블 디스플레이 (100) 로 특정적으로 제한되는 것은 아니라는 것이 아니라는 것이 이해될 것이다. 액티브 영역 및 인액티브 영역은 플렉서블 디스플레이 (100) 를 채용하는 전자 디바이스의 설계에 적합한 임의의 형상일 수도 있다. 플렉서블 디스플레이 (100) 의 액티브 영역의 형상들의 비제한적인 예들은 오각형 형상, 육각형 형상, 원형 형상, 계란형 형상 등을 포함한다.
액티브 영역의 픽셀 각각은, 적어도 하나의 스위칭 TFT (thin-film transistor) 및 적어도 하나의 구동 TFT를 포함하는, 픽셀 회로와 연관될 수도 있다. 픽셀 회로 각각은 구동 회로들, 예를 들어, 플렉서블 디스플레이 (100) 의 인액티브 영역 내에 위치되는 게이트 드라이버 및 데이터 드라이버와 통신하도록 게이트 배선 및 데이터 배선에 전기적으로 연결될 수도 있다.
예를 들어, 하나 이상의 구동 회로들은 도 1a에 도시된 바와 같이, 인액티브 영역 내에 형성된 TFT들을 사용하여 구현될 수도 있다. 이러한 게이트 드라이버들은 GIP (gate-in-panel) 로 지칭될 수도 있다. 또한 일부 컴포넌트들, 예를 들어, 데이터 드라이브-IC는 별도의 인쇄 회로에 장착될 수도 있고, 인쇄 회로 막, 예를 들어, 플렉서블 인쇄 회로 기판 (FPCB), COF (chip-on-film), TCP (tape-carrier-package) 또는 임의의 다른 적합한 기술들을 사용하여, 인액티브 영역 내에 배치된 연결 인터페이스 (패드들/범프들) 에 커플링될 수도 있다. 이하에 보다 상세히 설명될 바와 같이, 연결 인터페이스를 갖는 인액티브 영역은, 베젤에 의해 감춰질 인액티브 영역의 사이즈를 감소시키기 위해, 인쇄 회로 막 예를 들어, COF, FPCB 등이 플렉서블 디스플레이 (100) 의 백플레인 측에 위치되도록 중앙 부분으로부터 벤딩될 수 있다.
플렉서블 디스플레이 (100) 는 다양한 신호들을 생성하거나 그렇지 않으면 액티브 영역 내 픽셀들을 동작시키기 위한 다양한 부가적인 컴포넌트들을 포함할 수도 있다. 예를 들어, 인버터 회로, 멀티플렉서, ESD (electro static discharge) 회로 등이 플렉서블 디스플레이 (100) 의 인액티브 영역 내에 위치될 수도 있다.
플렉서블 디스플레이 (100) 는 또한 플렉서블 디스플레이 (100) 의 픽셀들을 동작시키는 것 외의 기능들과 연관된 컴포넌트들을 포함할 수도 있다. 예를 들어, 플렉서블 디스플레이 (100) 는 터치 센싱 기능, 사용자 인증 기능 (예를 들어, 핑거 프린트 스캔), 멀티-레벨 압력 센싱 기능, 촉각 피드백 기능 및/또는 플렉서블 디스플레이 (100) 를 채용하는 전자 디바이스를 위한 다양한 다른 기능들을 제공하기 위한 컴포넌트들을 포함할 수도 있다. 이들 컴포넌트들은 인액티브 영역 내에 배치될 수도 있고 또는 플렉서블 디스플레이 (100) 의 연결 인터페이스에 연결된 별도의 인쇄 회로 상에 제공될 수 있다.
일부 실시예들에서, 플렉서블 디스플레이 (100) 의 백플레인은 액티브층으로서 LTPS (low-temperature poly-silicon) 반도체층을 사용하는 TFT들을 사용하여 구현될 수 있다. 따라서, 픽셀 회로 및 구동 회로들 (예를 들어, GIP) 은 NMOS LTPS TFT들을 사용하여 구현된다. 일부 다른 실시예들에서, 플렉서블 디스플레이 (100) 의 백플레인은 N-타입 LTPS TFT들 및 P-타입 LTPS TFT들의 조합으로 구현될 수도 있다. 예를 들어, 플렉서블 디스플레이 (100) 는 N-타입 LTPS TFT들 및 P-타입 LTPS TFT들 양자를 사용하여 구현된 CMOS GIP를 구비할 수도 있다.
또한, 일부 실시예들에서, 플렉서블 디스플레이 (100) 는 인액티브 영역에 구동 회로들 및/또는 액티브 영역에 픽셀 회로들을 구현하기 위해 복수의 종류의 TFT들을 채용할 수도 있다. 즉, 산화물 반도체 TFT 및 LTPS TFT의 조합이 플렉서블 디스플레이 (100) 의 백플레인을 구현하도록 사용될 수도 있다. 백플레인에서, TFT들의 타입은 대응하는 회로 내에서 TFT들의 동작 조건들 및/또는 요건들에 따라 선택될 수도 있다.
LTPS (Low-temperature-poly-silicon) TFT들은 일반적으로 작은 프로파일 (profile) 에서도 우수한 캐리어 이동도를 나타내어, 조밀한 구동 회로들을 구현하기 적합하게 한다. LTPS TFT의 우수한 캐리어 이동도는 고속 동작을 필요로 하는 컴포넌트들에 대해 이상적이다. 전술한 장점들에도 불구하고, 초기 문턱값 전압들은 폴리-결정화된 (poly-crystalized) 실리콘 반도체층의 입자 경계로 인해 LTPS TFT들 마다 상이할 수도 있다.
한편, IGZO (indium-gallium-zinc-oxide) 반도체층과 같은 산화물 재료계 반도체층을 채용하는 TFT (이하 “산화물 TFT”로 지칭됨) 는 여러 측면에서 LTPS TFT와 상이하다. 산화물 TFT가 LTPS TFT보다 낮은 이동도를 갖지만 산화물 TFT는 일반적으로 오프 상태 동안 누설 전류 감소 면에서 LTPS TFT보다 유리하다. 즉, 산화물 TFT는 일반적으로 LTPS TFT의 전압홀딩비 (VHR: voltage-holding ratio) 보다 높은 VHR을 나타낸다. 산화물 TFT의 보다 높은 VHR은 픽셀들의 고 프레임 레이트 구동이 필요하지 않을 때 감소된 프레임 레이트로 픽셀들을 구동하기 위해 엄청난 장점이 될 수 있다.
일부 실시예들에서, 플렉서블 디스플레이 (100) 는 전체 액티브 영역 또는 액티브 영역의 선택된 부분의 픽셀들이 특정한 조건 하에서 감소된 프레임 레이트로 구동되는 구성을 구비할 수도 있다. 예로서, 픽셀들은 플렉서블 디스플레이 (100) 로부터 디스플레이된 콘텐츠에 따라 감소된 리프레시 레이트로 리프레시될 수 있다. 또한, 정지 이미지 데이터 (예를 들어, 사용자 인터페이스, 텍스트) 를 디스플레이하는 액티브 영역의 일부는 고속으로 변화하는 이미지 데이터 (예를 들어, 영화) 를 디스플레이하는 액티브 영역의 다른 부분보다 낮은 레이트로 리프레시될 수도 있다. 감소된 리프레시 레이트로 구동된 픽셀들은 증가된 블랭크 기간을 가질 수도 있고, 여기서 블랭크 기간은 데이터 신호가 픽셀들에 제공되지 않는 기간이다. 이는 동일한 이미지 데이터를 픽셀들에 제공하는 것에 의해 낭비되는 전력을 최소화할 것이다. 이러한 실시예들에서, 블랭크 기간 동안 누설 전류를 최소화하기 위해 플렉서블 디스플레이 (100) 의 픽셀 회로들 및/또는 구동 회로들을 구현하는 일부 TFT들에 산화물 TFT가 사용될 수 있다. 픽셀 회로들 및/또는 구동 회로들로부터 누설 전류를 감소시킴으로써, 픽셀들이 감소된 레이트로 리프레시될 때에도 이 픽셀들로부터 보다 안정한 레벨의 휘도가 달성될 수 있다.
안정성 면에서, 산화물 TFT들은 LTPS TFT들만큼 많은 트랜지스터-대-트랜지스터 (transistor-to-transistor) 초기 문턱값 전압 변동 문제를 겪지 않는다. 이러한 특성은 플렉서블 디스플레이 (100) 가 대형이라면 엄청난 장점이 될 수 있다. 한편, 플렉서블 디스플레이 (100) 의 사용 동안 원치 않은 문턱값 전압 시프트를 유발할 수도 있는 PBTS (positive bias temperature stress) 및 NBTS (negative bias temperature stress) 의 면에서 LTPS TFT가 산화물 TFT보다 우수할 수도 있다.
LTPS TFT 및 산화물 TFT의 장단점들을 고려하면, 본 명세서에 개시된 플렉서블 디스플레이 (100) 의 일부 실시예들은 LTPS TFT 및 산화물 TFT의 조합을 채용할 수도 있다. 특히, 플렉서블 디스플레이 (100) 의 일부 실시예들은 인액티브 영역에 구동 회로들 (예를 들어, GIP) 을 구현하기 위해 LTPS TFT들을 채용할 수 있고, 액티브 영역에 픽셀 회로들을 구현하기 위해 산화물 TFT들을 채용할 수 있다. LTPS TFT의 우수한 캐리어 이동도로 인해, LTPS TFT들로 구현된 구동 회로들은 산화물 TFT들로 구현된 구동 회로들보다 고속으로 동작할 수도 있다. 부가적으로, 보다 조밀한 구동 회로들은 LTPS TFT를 구비할 수 있고, 이는 플렉서블 디스플레이 (100) 에서 인액티브 영역의 사이즈를 감소시킨다. 픽셀 회로들에 사용된 산화물 TFT들의 우수한 전압 홀딩비로, 픽셀들로부터의 누설이 감소될 수 있다. 이는 또한 액티브 영역의 선택된 부분의 픽셀들을 리프레시하거나 누설 전류로 인한 디스플레이 결점들을 최소화하는 동안, 미리 결정된 조건 (예를 들어, 정지 이미지들을 디스플레이할 때) 하에서 감소된 프레임 레이트로 픽셀들을 구동할 수 있게 한다.
일부 실시예들에서, 플렉서블 디스플레이 (100) 의 인액티브 영역의 구동 회로들은 픽셀 회로들이 산화물 TFT들로 구현되는 동안 N형 LTPS TFT들 및 P형 LTPS TFT들의 조합으로 구현될 수도 있다. 예를 들어, N형 LTPS TFT들 및 P형 LTPS TFT들은 CMOS 게이트 드라이버 (예를 들어, CMOS GIP) 를 구현하기 위해 사용될 수 있는 반면, 산화물 TFT들은 픽셀 회로들의 적어도 일부분에 채용된다. 전체가 P형 LTPS TFT들 또는 N형 LTPS TFT들로 형성된 GIP와 달리, CMOS 게이트 드라이버로부터의 게이트 출력 노드는 DC 신호들에 의해 제어될 수 있고, 이는 블랭크 기간 동안 게이트 출력 노드의 보다 안정한 제어를 가능하게 한다.
CMOS 게이트 드라이버는 LTPS TFT들 및 산화물 TFT들의 조합을 사용함으로써 구현될 수 있다는 것을 주의해야 한다. 유사하게, 일부 실시예들에서, 액티브 영역의 픽셀 회로들은 LTPS TFT들 및 산화물 TFT들 둘 모두를 사용함으로써 구현될 수 있다. 픽셀 회로 및/또는 구동 회로에 이 두 종류의 TFT들을 채용할 때, LTPS TFT는 연장된 기간의 바이어스 스트레스 (예를 들어, PBTS, NBTIS) 를 겪는, 회로의 TFT들로사용될 수 있다. 부가적으로, 저장 커패시터에 연결된 회로의 TFT들은 누설을 최소화하기 위해 산화물 TFT의 형태일 수 있다.
플렉서블 디스플레이 (100) 의 부분들은 중앙 부분 및 벤딩 부분으로 규정될 수도 있다. 벤딩 라인 (BL) 을 참조하면, 실질적으로 평탄하게 남아 있는 플렉서블 디스플레이 (100) 의 부분은 중앙 부분 또는 실질적으로 평탄한 부분으로 지칭되는 한편, 벤딩 라인 (BL) 의 다른 측면에서 플렉서블 디스플레이 (100) 의 다른 부분은 벤딩 부분으로 지칭된다. 플렉서브 디스플레이 (100) 의 중앙 부분이 완전히 평탄할 필요는 없다는 것을 주의해야 한다. 플렉서블 디스플레이 (100) 의 중앙 부분이 벤딩 부분보다 상대적으로 보다 평탄하지만, 중앙 부분은 도 1b에 도시된 바와 같이 안쪽으로 커브되거나 (curved-in) 바깥쪽으로 커브될 (curved-out) 수 있다. 즉, 하나 이상의 벤딩 부분들이 오목하거나 볼록한 중앙 부분 옆에 존재하고, 벤딩 축에 대한 벤딩 각도로 벤딩 라인을 따라 내측으로 또는 외측으로 벤딩된다. 벤딩 부분 내에서, 실질적으로 평탄한 부분으로부터 상승하는 각도 또는 하강하는 각도의 굽혀진 부분 (curvature) 을 갖는 부분은 벤딩 부분의 벤딩 허용 부분으로 명시될 수도 있다.
플렉서블 디스플레이 (100) 의 복수의 부분들은 벤딩 라인 (BL) 을 따라 벤딩될 수 있다. 플렉서블 디스플레이 (100) 의 벤딩 라인 (BL) 은 수평으로 (예를 들어, 도 1a에 도시된 X-축), 수직으로 (예를 들어, 도 1a에 도시된 Y-축) 또는 사선으로 연장할 수도 있다. 따라서, 플렉서블 디스플레이 (100) 는 플렉서블 디스플레이 (100) 의 목표된 설계에 기초하여 수평, 수직 및/또는 사선 방향들의 임의의 조합으로 벤딩할 수 있다.
플렉서블 디스플레이 (100) 의 하나 이상의 에지들은 벤딩 라인 (BL) 을 따라 중앙 부분의 평면으로부터 벤딩될 수 있다. 벤딩 라인 (BL) 이 플렉서블 디스플레이 (100) 의 에지들 근방에 위치되는 것으로 도시되지만, 벤딩 라인들 (BL) 은 중앙 부분을 가로질러 연장하거나 플렉서블 디스플레이 (100) 의 하나 이상의 코너부들에서 사선으로 연장할 수 있다는 것이 이해될 것이다. 이러한 구성들은 플렉서블 디스플레이 (100) 로 하여금 폴더블 디스플레이 또는 폴딩된 디스플레이의 양 외측 측들 상에 디스플레이 픽셀들을 갖는 양면 디스플레이를 제공하게 한다.
도 1c는 벤딩 상태의 예시적인 플렉서블 디스플레이 (100) 의 간략화된 단면도이다. 도 1c에 예시된 바와 같이, 플렉서블 디스플레이 (100) 의 중앙 부분은 실질적으로 평탄할 수도 있고, 하나 이상의 벤딩 부분들은 벤딩 축에 대한 일정한 벤딩 각도 및 벤딩 반경에서 굽혀진 부분의 접선 벡터로부터 벤딩될 수도 있다. 중앙 부분으로부터 벤딩된 벤딩 부분 각각의 사이즈가 동일할 필요는 없다. 즉, 벤딩 부분 각각에서, 벤딩 라인 (BL) 으로부터 베이스층 (106) 의 외측 에지로의 베이스층 (106) 의 길이는 다른 벤딩 부분들과 상이할 수 있다. 또한, 벤딩 축에 대한 벤딩 각도 및 벤딩 축으로부터의 벤딩 반경은 벤딩 부분들 사이에서 가변할 수 있다.
도 1c에 도시된 예에서, 벤딩 부분 중 하나 (우측) 는 90°의 벤딩 각도 θ을 갖고, 벤딩 부분은 실질적으로 평탄한 부분을 포함한다. 벤딩 부분은, 벤딩 부분의 적어도 일부가 플렉서블 디스플레이 (100) 의 벤딩 부분 중 하나 (좌측) 로서 플렉서블 디스플레이 (100) 의 중앙 부분의 평면 밑에 오도록, 보다 큰 벤딩 각도 θ으로 벤딩할 수 있다. 또한, 벤딩 부분은 90°보다 작은 벤딩 각도 θ으로 벤딩할 수 있다.
일부 실시예들에서, 플렉서블 디스플레이 (100) 의 벤딩 부분들에 대한 곡률 반경 (즉, 벤딩 반경) 은 약 0.1 mm 내지 약 10 mm, 보다 바람직하게, 약 0.1 mm 내지 약 5 mm, 보다 바람직하게 약 0.1 mm 내지 약 1 mm, 보다 바람직하게, 약 0.1 mm 내지 약 0.5 mm일 수도 있다. 플렉서블 디스플레이 (100) 의 벤딩 부분의 가장 낮은 벤딩 반경은 0.5 mm 미만일 수도 있다.
도 1c에 도시된 바와 같이, OLED (organic light-emitting diode) 소자층 (102) 이 베이스층 (106) 상에 배치되고, 봉지층 (104) 이 OLED 소자층 (102) 상에 배치된다. 플렉서블 디스플레이 (100) 는 또한 “맨드릴 (mandrel)”로 지칭될 수도 있는, 지지 부재 (116) 를 포함한다. 지지 부재 (116) 는 연장된 바디부 및 라운딩된 단부를 갖는다. 지지 부재 (116) 의 라운딩된 단부가 베이스층 (106) 의 벤딩 부분 내에 위치되도록 베이스층 (106) 및 지지 부재 (116) 이 배열된다. 지지 부재 (116) 의 라운딩된 단부는 벤딩 부분에서 베이스층 (106) 에 대한 지지를 제공한다. 도 1c에 도시된 바와 같이, 베이스층 (106) 의 일부는 지지 부재 (116) 의 라운딩된 단부 둘레가 될 수도 있고, 지지 부재 (116) 의 하측에 위치될 수도 있다. 이러한 방식으로, COF (chip-on-flex) 케이블 및/또는 PCB (printed circuit board) 상에 장착된 회로들이 플렉서블 디스플레이 (100) 후면에 위치될 수 있다.
플렉서블 디스플레이 (100) 는 플렉서블 디스플레이 (100) 의 선택적인 부분에서 강도를 제공하기 위해 하나 이상의 지지층들 (108) 을 포함한다. 지지층 (108) 은 상부에 OLED 소자층 (102) 이 배치되는 표면으로부터 반대되는, 베이스층 (106) 의 내측 표면 상에 부착된다. 플렉서블 디스플레이 (100) 의 선택적인 부분들에서 강도의 증가는 플렉서블 디스플레이 (100) 의 컴포넌트들의 정확한 구성 및 배치를 보장하는 것을 도울 수도 있다.
베이스층 (106) 및 지지층 (108) 은 각각 폴리이미드, 폴리에틸렌 나프탈레이트 (PEN), 폴리에틸렌 테레프탈레이트 (PET), 다른 적합한 폴리머들, 이들 폴리머들의 조합 등으로 형성된 플라스틱 박막으로 이루어질 수도 있다. 그러나, 지지층 (108) 이 베이스층 (106) 보다 견고해야 한다. 베이스층 (106) 및 지지층 (108) 을 형성하기 위해 사용될 수도 있는 다른 적합한 재료들은, 얇은 유리, 유전체 재료로 커버된 금속 호일, 다층 폴리머 스택 및 내부에 분산된 나노 입자들 또는 마이크로 입자들과 결합된 폴리머 재료를 포함하는 폴리머 합성 필름 등을 포함한다.
베이스층 (106) 의 과도하게 높은 두께는 플렉서블 디스플레이 (100) 의 일부 벤딩 부분에서 목표된 극히 작은 벤딩 반경으로 벤딩하는 것이 어렵게 한다. 베이스층 (106) 의 과도하게 높은 두께는 또한 베이스층 (106) 상에 배치된 컴포넌트들로의 기계적 응력을 증가시킬 수도 있다. 이와 같이, 베이스층 (106) 의 두께는 베이스층 (106) 의 벤딩 부분에서 벤딩 반경에 따를 수도 있다. 한편, 일정한 레벨 이하의 두께를 갖는 베이스층 (106) 은 그 위에 배치된 다양한 컴포넌트들을 신뢰할 수 있게 지지하기에 충분히 강하지 않을 수도 있다.
따라서, 베이스층 (106) 은 약 5 μm 내지 약 50 μm의 범위 내, 보다 바람직하게, 약 5 μm 내지 약 30 μm의 범위 내, 보다 바람직하게, 약 5 μm 내지 약 16 μm의 범위 내의 두께를 가질 수도 있다. 지지층 (108) 은 약 100 μm 내지 약 125 μm, 약 50 μm 내지 약 150 μm, 약 75 μm 내지 200 μm, 150 μm 미만, 또는 100 μm 초과의 두께를 가질 수도 있다. 일 적합한 예시적인 구성에서, 베이스층 (106) 은 약 10 μm의 두께로 폴리이미드 층으로 형성되고, 지지층 (108) 은 약 100 μm 내지 약 125 μm의 두께로 PET (polyethylene terephthalate) 로 형성된다.
베이스층 (106) 은 투명 층일 수도 있다. 플렉서블 디스플레이 (100) 의 일부는 베이스층 (106) 을 통과하는 외부 광에 노출될 수도 있다. 베이스층 (106) 상에 배치된 컴포넌트들 중 일부 또는 컴포넌트들의 제조시 사용된 재료들은 플렉서블 디스플레이 (100) 의 제조 동안 노광으로 인해 바람직하지 않은 상태 변화들을 겪을 수도 있다. 플렉서블 디스플레이 (100) 의 일부 부분들은 다른 부분들보다 강하게 외부 광에 노출될 수도 있고, 이는 디스플레이 불균일성 (예를 들어, 얼룩, 섀도우 결함들 등) 을 야기할 수 있다. 이러한 문제들을 최소화하기 위해, 플렉서블 디스플레이 (100) 의 일부 실시예들에서 베이스층 (106) 및/또는 지지층 (108) 은 통과하는 외부 광의 양을 감소시킬 수 있는 하나 이상의 재료들을 포함할 수도 있다.
예로서, 베이스층 (106) 이 차광 기능을 제공하도록 차광 재료, 예를 들어, 클로라이드 개질된 카본 블랙이 베이스층 (106) 의 구성 재료 (예를 들어, 폴리이미드) 에 혼합될 수도 있다. 이러한 방식으로, 베이스층(106) 은 음영 (shade) 을 갖는 폴리이미드로 형성될 수도 있다. 이러한 음영처리된 (shaded) 베이스층 (106) 은 또한 플렉서블 디스플레이 (100) 의 전면측으로부터 나오는 외부 광의 반사를 감소시킴으로써 플렉서블 디스플레이 (100) 상에 디스플레이된 이미지 콘텐츠의 가시성을 개선할 수 있다.
베이스층 (106) 대신, 지지층 (108) 이 플렉서블 디스플레이 (100) 의 백플레인측 (즉, 지지층 (108) 부착측) 으로부터 나오는 광의 양을 감소시키도록 차광 재료를 포함할 수도 있다. 지지층 (108) 의 구성 재료는 베이스층 (106) 과 관련하여 상술한 바와 유사한 방식으로, 하나 이상의 차광 재료들과 혼합될 수도 있다. 또한, 베이스층 (106) 및 지지층 (108) 둘 모두는 하나 이상의 차광 재료들을 포함할 수 있다. 여기서, 베이스층 (106) 및 지지층 (108) 에 사용된 차광 재료들이 동일할 필요는 없다.
상술한 바와 같이, 베이스층 (106) 및 지지층 (108) 이 원치 않는 외부 광을 차단하게 하는 것은, 디스플레이 균일성을 개선할 수도 있고 반사를 감소시킬 수도 있지만, 플렉서블 디스플레이 (100) 의 제조 동안 다수의 어려움들을 생성할 수 있다. 베이스층 (106) 및 지지층 (108) 이 과도한 범위의 파장들의 광에 투명하지 않을 때, 이들 층들의 정렬 프로세스 동안 이들 층들 상의 정렬 마크들 (alignment mark) 을 인식하는 것이 쉽지 않을 수도 있다. 특히, 플렉서블 디스플레이 (100) 의 벤딩 동안의 베이스층 (106) 상에서 컴포넌트들의 정확한 배치 또는 정렬은, 층들의 배치가 이 층(들)의 중첩하는 부분들의 외측 에지들과 비교하여 결정되어야 할 수도 있기 때문에, 어려워 질 수 있다. 또한, 플렉서블 디스플레이 (100) 내에서 원치 않는 잔해물 또는 다른 이물질을 검사하는 것은 베이스층 (106) 및/또는 지지층 (108) 이 과도한 범위(들)의 광 스펙트럼 (즉, 가시광, 자외선 및 적외선 스펙트럼의 파장) 을 차단한다면 문제가 될 수 있다.
따라서, 일부 실시예들에서, 베이스층 (106) 및/또는 지지층 (108) 에 포함될 수도 있는 차광 재료는 플렉서블 디스플레이 (100) 의 하나 이상의 제조 프로세스들 및/또는 테스트 프로세스들에서 사용될 수 있는 일정한 편광의 광 및/또는 특정한 파장 범위들 내의 광을 통과시키도록 구성된다. 예로서, 지지층 (108) 은 플렉서블 디스플레이 (100) 의 제조 동안, 품질 검사 및/또는 정렬 프로세스들에 사용될 광 (예를 들어, UV, IR 스펙트럼 광) 을 통과시킬 수도 있지만, 가시광 파장 범위의 광은 필터링한다. 제한된 범위의 파장들은, 특히 베이스층 (106) 이 상술한 바와 같은 차광 재료를 포함한다면, 베이스층 (106) 에 부착된 인쇄 회로 막에 의해 생성된 섀도우들에 의해 유발될 수도 있는, 디스플레이 불균일성 문제를 감소시키는 것을 도울 수 있다.
베이스층 (106) 및 지지층 (108) 은 특정한 타입들의 광을 차단 및 통과시 함께 동작할 수 있다는 것을 주의해야 한다. 예를 들어, 지지층 (108) 은, 광이 베이스층 (106) 을 통과할 수 없도록 광의 편광을 변경할 수 있다. 이러한 방식으로, 플렉서블 디스플레이 (100) 의 제조 동안 다양한 목적들을 위해 특정한 타입의 광이 지지층 (108) 을 통과할 수 있지만, 베이스층 (106) 의 반대 측에 배치된 컴포넌트들에 원치 않는 효과들을 유발하도록 베이스층 (106) 을 관통할 수는 없다.
도 1b에 도시된 바와 같이, 플렉서블 디스플레이 (100) 는 또한 플렉서블 디스플레이 (100) 의 디스플레이 특성들 (예를 들어, 외부 광 반사, 컬러 정확도, 휘도, 등) 을 제어하기 위한 편광층 (110) 을 포함할 수도 있다. 유리층일 수도 있는 커버층 (114) 이 플렉서블 디스플레이 (100) 를 보호하도록 사용될 수도 있다.
사용자로부터의 터치 입력을 센싱하기 위한 전극들이 커버층 (114) 의 내부 표면 및/또는 편광층 (110) 의 적어도 하나의 표면 상에 형성될 수도 있다.
플렉서블 디스플레이 (100) 는 터치 센서 전극들을 및/또는 터치 입력의 센싱과 연관된 다른 컴포넌트들 (이하 터치 센서층 (112) 으로 지칭됨) 을 포함하는 별도의 층을 더 포함할 수도 있다. 터치 센서 전극들 (예를 들어, 터치 구동/센싱 전극들) 은 투명 도전성 재료, 예를 들어 인듐 주석 산화물, 그래핀 또는 탄소 나노튜브와 같은 탄소계 재료들, 도전성 폴리머, 다양한 도전성 재료들 및 비도전성 재료들의 혼합물로 이루어진 하이브리드 재료로 형성될 수도 있다. 또한, 금속 메시 (예를 들어, 알루미늄 메시, 실버 메시, 등) 는 또한 터치 센서 전극들로서 사용될 수 있다.
터치 센서층 (112) 은 하나 이상의 변형가능한 유전체 재료들로 형성된 층을 포함할 수도 있다. 하나 이상의 전극들은 터치 센서층 (112) 과 인터페이싱하거나 근방에 위치될 수도 있고, 터치 센서층 (112) 의 변형 시 하나 이상의 전극들 상의 전기적 변화들을 측정하는 것을 용이하게 하도록 하나 이상의 신호들이 로딩될 수도 있다. 플렉서블 디스플레이 (100) 상에서 복수의 개별 레벨들 및/또는 레벨들의 범위들에서 압력량을 측정하기 위해 측정치들이 분석될 수도 있다.
일부 실시예들에서, 터치 센서 전극들은 사용자 입력들의 위치를 식별할뿐만 아니라 사용자 입력의 압력을 측정하는데 활용될 수 있다. 플렉서블 디스플레이 (100) 상에서 터치 입력의 위치를 식별하고 터치 입력의 압력을 측정하는 것은 터치 센서층 (112) 의 일 측 상의 터치 센서 전극들로부터 캐패시턴스의 변화들을 측정함으로써 달성될 수도 있다. 또한, 터치 센서 전극들로부터 터치 신호와 동시에 획득되거나 상이한 타이밍에 획득될 수도 있는, 적어도 하나의 다른 신호를 측정하기 위해 터치 센서 전극들 대신 적어도 하나의 전극을 활용할 수도 있다.
터치 센서층 (112) 에 포함된 변형가능한 재료는, 변형의 크기 및/또는 빈도가 전기 신호 및/또는 전기장에 의해 제어되는, 전기-활성 재료일 수도 있다. 이러한 변형가능한 재료들의 예들은 피에조 세라믹, 전기-활성-폴리머 (electro-active-polymer; EAP) 등을 포함한다. 따라서, 터치 센서 전극들 및/또는 별도로 제공된 전극은 목표된 방향들로 플렉서블 디스플레이 (100) 를 벤딩하기 위해 변형가능한 재료를 활성화할 수 있다. 부가적으로, 이러한 전기-활성 재료들은 목표된 주파수들로 진동하도록 활성화될 수 있어서, 플렉서블 디스플레이 (100) 상에 촉각 및/또는 질감 (texture) 피드백을 제공한다. 플렉서블 디스플레이 (100) 는 플렉서블 디스플레이 (100) 의 벤딩 및 진동이 동시에 또는 상이한 타이밍에 제공될 수 있도록 복수의 전기-활성 재료층들을 채용할 수도 있다. 이러한 조합은 플렉서블 디스플레이 (100) 로부터 음파들을 생성할 때 사용될 수 있다.
상기 언급된 바와 같이, 인액티브 영역을 벤딩하는 것은 조립된 플렉서블 디스플레이 (100) 의 전면 측에서 볼 때 인액티브 영역을 최소화 또는 제거하게 한다. 전면에서 보이게 남아 있는 인액티브 영역의 일부는 베젤로 커버될 수 있다. 베젤은, 예를 들어, 플렉서블 디스플레이 (100) 의 커버층 (114), 하우징 또는 다른 적합한 컴포넌트들에 장착된 독립형 베젤 구조로 형성될 수도 있다. 전면 측에서 보이게 남아 있는 인액티브 영역은 또한 불투명한 마스킹층, 예를 들어, 블랙 잉크 (예를 들어, 카본 블랙으로 충진된 폴리머) 또는 불투명 금속층 아래에 숨겨질 수도 있다. 이러한 불투명 마스킹층은 플렉서블 디스플레이 (100) 에 포함된 층들, 예를 들어 터치 센서층 (112), 편광층 (110), 커버층 (114), 및 다른 적합한 층들의 일부 상에 제공될 수도 있다.
도 1a를 다시 참조 하면, 플렉서블 디스플레이 (100) 의 벤딩 부분은, 이하에서 보조 액티브 영역으로 지칭되는, 벤딩 부분으로부터 이미지를 디스플레이할 수 있는 액티브 영역을 포함할 수도 있다. 즉, 벤딩 라인 (BL) 은, 액티브 영역의 적어도 일부의 디스플레이 픽셀들이 플렉서블 디스플레이 (100) 의 벤딩 부분에 포함되도록 액티브 영역에 위치될 수 있다. 이 경우, 벤딩 부분의 보조 액티브 영역 내 픽셀들의 매트릭스는 도 2a에 도시된 바와 같이 중앙 부분의 액티브 영역의 픽셀들의 매트릭스로부터 계속해서 연장할 수도 있다. 대안적으로, 플렉서블 디바이스 (100) 의 벤딩 부분 내 보조 액티브 영역 및 중앙 부분 내 액티브 영역은 도 2b에 도시된 바와 같이 벤딩 허용 부분에 의해 서로 이격될 수도 있다.
벤딩 부분의 보조 액티브 영역은 플렉서블 디스플레이 (100) 의 보조 디스플레이 영역으로서 기능할 수도 있다. 보조 액티브 영역의 사이즈는 특별히 제한되지 않는다. 보조 액티브 영역의 사이즈는 전자 디바이스에서의 기능에 따라 결정될 수도 있다. 예를 들어, 보조 액티브 영역은 그래픽 사용자 인터페이스, 텍스트 메시지들 등과 같은 이미지들 및/또는 텍스트들을 제공하도록 사용될 수도 있다. 일부 경우들에서, 보조 액티브 영역은 다양한 목적들을 위해 다양한 컬러들의 광을 제공하기 위해 사용될 수도 있고 (예를 들어, 상태 표시등), 따라서, 보조 액티브 영역의 사이즈는 플렉서블 디스플레이 (100) 의 중앙 부분의 액티브 영역만큼 클 필요는 없다.
보조 액티브 영역의 픽셀들 및 중앙 액티브 영역의 픽셀들은, 단일 매트릭스 내에 있다면, 구동 회로들 (예를 들어, 게이트 드라이버, 데이터 드라이버, 등) 에 의해 어드레싱될 수도 있다. 이 경우, 중앙 액티브 영역의 픽셀들 및 보조 액티브 영역의 픽셀들은 동일한 세트의 구동 회로들에 의해 동작될 수도 있다. 예로서, 중앙 액티브 영역의 제 N 행의 픽셀들 및 보조 액티브 영역의 제 N 행의 픽셀들은 동일한 게이트 드라이버로부터 게이트 신호를 수신하도록 구성될 수도 있다. 도 2b에 도시된 바와 같이, 벤딩 허용 부분 (즉, 벤딩 허용 구역) 위에 교차하는 게이트 배선의 일부 또는 2개의 액티브 영역들의 게이트 배선들을 연결하기 위한 브릿지는 이하에 더 상세히 설명될 벤딩 스트레스 감소 설계를 가질 수도 있다.
보조 액티브 영역의 기능에 따라, 보조 액티브 영역의 픽셀들은 중앙 액티브 영역의 픽셀들과 개별적으로 구동될 수 있다. 즉, 보조 액티브 영역의 픽셀들은 중앙 액티브 영역의 픽셀들의 매트릭스로부터 분리된 픽셀들의 독립된 매트릭스로서 디스플레이 구동 회로들에 의해 인식될 수도 있다. 이런 경우들에서, 중앙 액티브 영역의 픽셀들 및 보조 액티브 영역의 픽셀들 각각은 적어도 하나의 개별 구동 회로로부터 그리고 중앙 액티브 영역에 의해 채용된 구동 회로들로부터 신호들을 수신할 수도 있다.
플렉서블 디스플레이 (100) 의 컴포넌트들은 벤딩 라인 (BL) 을 따라 플렉서블 디스플레이 (100) 를 벤딩하기 어렵게 할 수도 있다. 지지층 (108), 터치 센서층 (112), 편광층 (110) 등과 같은 일부 엘리먼트들은 플렉서블 디스플레이 (100) 에 매우 큰 강도를 제공할 수도 있다. 또한, 이러한 엘리먼트들의 두께는 플렉서블 디스플레이 (100) 의 중립면을 시프트하고 따라서 일부 컴포넌트들은 다른 컴포넌트들보다 큰 벤딩 응력들을 받을 수도 있다.
벤딩을 보다 용이하게 하고 플렉서블 디스플레이 (100) 의 신뢰성을 향상시키기 위해, 플렉서블 디스플레이 (100) 의 벤딩 부분의 컴포넌트들의 구성은 플렉서블 디스플레이 (100) 의 실질적으로 평탄한 부분과 상이하다. 실질적으로 평탄한 부분에 존재하는 일부 컴포넌트들은 플렉서블 디스플레이 (100) 의 벤딩 부분들에 배치되지 않을 수도 있거나, 상이한 두께로 제공될 수도 있다. 벤딩 부분은 지지층 (108), 편광층 (110), 터치 센서층 (112), 컬러 필터층 및/또는 플렉서블 디스플레이 (100) 의 벤딩을 방해할 수도 있는 다른 컴포넌트들이 없을 수도 있다. 이러한 컴포넌트들은, 벤딩 부분이 시야에서 숨겨지거나 플렉서블 디스플레이 (100) 의 사용자들에게 액세스가능하지 않으면, 벤딩 부분에 필요하지 않을 수도 있다.
보조 액티브 영역이 사용자들에게 정보를 제공하기 위해 벤딩 부분에 있더라도, 보조 액티브 영역은 보조 액티브 영역에 의해 제공된 정보의 용도 및/또는 타입에 따라 이들 컴포넌트를 필요로 하지 않을 수도 있다. 예를 들어, 편광층 (110) 및/또는 컬러 필터층은, 보조 액티브 영역이 단순히 컬러링된 광을 방출하거나 대조되는 컬러 조합으로 텍스트들 또는 단순한 GUI들을 (예를 들어, 백색 바탕에 검정색 텍스트들 또는 아이콘들) 디스플레이하기 위해 사용된다면 벤딩 부분에 필요하지 않을 수도 있다. 또한, 벤딩 부분에 플렉서블 디스플레이 (100) 의 벤딩 부분에는 터치 센서층 (112) 이 없을 수도 있다. 원한다면, 벤딩 부분은 터치 센서층 (112) 및/또는 전기-활성 재료층을 구비할 수도 있지만, 정보를 디스플레이하기 위한 보조 액티브 영역은 벤딩 부분에 제공되지 않는다.
벤딩 허용 부분이 벤딩 응력에 의해 가장 많이 영향을 받기 때문에, 다양한 벤딩 응력 감소 특징들이 벤딩 허용 부분의 베이스층 (106) 의 컴포넌트들에 적용된다. 이를 위해, 중앙 부분의 일부 엘리먼트들은 벤딩 부분의 적어도 일부에 형성되지 않을 수도 있다. 중앙 부분의 컴포넌트들과 벤딩 부분의 컴포넌트들 사이의 분리는 벤딩 허용 부분에 각각의 엘리먼트들이 없도록, 플렉서블 디스플레이 (100) 의 벤딩 허용 부분의 엘리먼트들을 선택적으로 제거함으로써 생성될 수도 있다.
도 2a 및 도 2b에 도시된 바와 같이, 중앙 부분의 지지층 (108A) 및 벤딩 부분의 지지층 (108B) 은 벤딩 허용 부분에서 베이스층 (106) 아래에 지지층 (108) 의 부재로 인해 서로 분리될 수 있다. 베이스층 (106) 에 부착된 지지층 (108) 을 사용하는 대신, 상기 기술된 바와 같이, 지지 부재 (116) 의 라운드된 단부 가 벤딩 허용 부분에서 베이스층 (106) 아래쪽에 위치될 수 있다. 다양한 다른 컴포넌트들, 예를 들어 편광층 (110) 및 터치 센서층 (112) 등은 또한 플렉서블 디스플레이 (100) 의 벤딩 허용 부분에 없을 수도 있다. 엘리먼트들의 제거는 절단, 습식 에칭, 건식 에칭, 스크라이빙 및 브레이킹, 또는 다른 적합한 재료 제거 방법들에 의해 행해질 수도 있다. 엘리먼트를 절단하거나 달리 제거하는 대신, 엘리먼트의 분리된 부분들이 이러한 엘리먼트가 없는 벤딩 허용 부분을 남기도록 중앙 부분 및 벤딩 부분에 형성될 수도 있다. 중앙 부분 및 벤딩 부분의 일부 컴포넌트들은 플렉서블 디스플레이 (100) 의 벤딩 허용 부분에 걸쳐 놓인 하나 이상의 도전 라인 트레이스 (120) 를 통해 전기적으로 연결될 수 있다.
벤딩 부분으로부터 완전히 제거되는 대신, 벤딩 응력을 감소시키기 위해 일부 엘리먼트들에 벤딩 허용 부분 내의 벤딩 라인들 을 따라 그렇지 않으면 벤딩 허용 부분 내에 벤딩 패턴이 제공될 수도 있다. 도 3은 예시적인 벤딩 패턴들 (300) 의 단면도 및 평면도를 예시한다. 플렉서블 디스플레이 (100) 의 평면도에 예시된 벤딩 패턴들의 순서가 도 3의 플렉서블 디스플레이 (100) 의 단면도에 예시된 벤딩 패턴들의 순서와 매칭할 필요는 없다는 것을 주의해야 한다. 상술한 벤딩 패턴들 (300) 은 지지층 (108), 편광층 (110), 터치 센서층 (112) 및 플렉서블 디스플레이 (100) 의 다양한 다른 엘리먼트들에 사용될 수도 있다.
플렉서블 디스플레이 (100) 는 2 이상의 타입들의 벤딩 패턴들 (300) 을 활용할 수도 있다. 컴포넌트들에 의해 활용된 벤딩 패턴들의 개수 및 벤딩 패턴들의 타입들은 제한되지 않는다는 것이 이해될 것이다. 원한다면, 패턴들의 깊이는 컴포넌트를 완전히 관통할만큼 충분히 깊지 않을 수도 있지만, 각각의 층을 부분적으로 관통할 수도 있다. 부가적으로, 베이스층 (106) 과 TFT 사이에 위치된 버퍼층뿐만 아니라 도전 라인 트레이스를 커버하는 패시베이션층에 벤딩 응력을 감소시키기 위해, 벤딩 패턴이 또한 제공될 수도 있다.
몇몇 도전 라인들이 플렉서블 디스플레이 내의 다양한 컴포넌트들 간의 전기적 상호 연결들을 위해 플렉서블 디스플레이 (100) 에 포함된다. 액티브 영역 및 인액티브 영역 내에 제조된 회로들은 플렉서블 디스플레이 (100) 에서 다수의 기능들을 제공하기 위해 하나 이상의 도전 라인들을 통해 다양한 신호들을 송신할 수도 있다. 간략히 설명된 바와 같이, 일부 도전 라인들은 플렉서블 디스플레이 (100) 의 중앙 부분 및 벤딩 부분의 회로들 및/또는 다른 컴포넌트들 간의 상호 연결들을 제공하도록 사용될 수도 있다.
본 명세서에 사용된 바와 같이, 도전 라인은 일반적으로 플렉서블 디스플레이 (100) 의 일 지점으로부터 또 다른 지점으로 임의의 타입의 전기적 신호들, 전력 및/또는 전압들을 송신하기 위한 도전성 경로를 지칭한다. 이와 같이, 도전 라인들은 TFT들의 소스 전극/드레인 전극뿐만 아니라 인액티브 영역의 일부 디스플레이 구동 회로들 (예를 들어, 게이트 드라이버, 데이터 드라이버) 로부터 액티브 영역 내의 픽셀 회로들로 신호들을 송신시 사용되는 게이트 배선/데이터 배선들을 포함할 수도 있다. 유사하게, 터치 센서 전극들, 압력 센서 전극들 및/또는 지문 센서 전극들과 같은, 일부 도전 라인들은 플렉서블 디스플레이 (100) 상에서 터치 입력을 센싱하거나 지문을 인식하기 위한 신호들을 제공할 수도 있다. 도전 라인들은 또한 플렉서블 디스플레이 (100) 의 중앙 부분의 액티브 영역의 픽셀들과 벤딩 부분의 보조 액티브 영역의 픽셀들 간의 상호연결을 제공할 수 있다. 플렉서블 디바이스 (100) 의 도전 라인들의 상술한 기능들은 단지 예시 이다.
일부 도전 라인들은 플렉서블 디스플레이 (100) 의 실질적으로 평탄한 부분으로부터 플렉서블 디스플레이 (100) 의 벤딩 부분으로 연장될 수도 있다. 이러한 경우들에서, 도전 라인들의 일부분들은 벤딩 응력을 견디도록 다른 부분들과 상이하게 구성될 수도 있다. 특히, 플렉서블 디스플레이 (100) 의 벤딩 허용 부분 위에 놓인 도전 라인들의 일부는 적절한 상호 연결을 유지하기 위해 도전 라인들의 크랙들 및 균열을 감소시키기 위한 몇몇 특징들을 포함할 수도 있다.
먼저, 플렉서블 디스플레이 (100) 의 일부 도전 라인들은 보다 적은 파손 위험으로 보다 큰 가요성을 허용할 수도 있는, 다층 구조를 가질 수도 있다. 도 4a 및 도 4b는 각각 도전 라인 트레이스 (120) 의 예시적인 스택 구조를 예시한다.
도 4a에서, 도전 라인 트레이스 (120) 는 주 도전층 (122) 이 보조 도전층들 (124) 사이에 샌드위치된 (sandwiched) 다층 구조를 가질 수도 있다. 주 도전층 (122) 은 보조 도전층 (124) 보다 낮은 전기 저항을 갖는 재료로 형성될 수도 있다. 주 도전층 (122) 을 위한 비한정적인 예들은 구리, 알루미늄, 투명 도전성 산화물 또는 다른 플렉서블 도전체들을 포함한다. 보조 도전층 (124) 은 주 도전층 (122) 위의 스택에 형성될 때 충분히 낮은 접촉 저항을 나타낼 수 있는 도전성 재료로 형성되어야 한다. 도전층들 간의 낮은 접촉 저항은 다층 도전 라인 (120) 의 도전층들을 위한 재료들의 선택시 유일한 팩터는 아니다.
이러한 조합의 예들은, 티타늄층들 사이에 샌드위치된 알루미늄층 (Ti/Al/Ti), 상부 몰리브덴층과 하부 몰리브덴층 사이에 샌드위치된 알루미늄층 (Mo/Al/Mo), 티타늄층들 사이에 샌드위치된 구리층 (Ti/Cu/Ti) 및 상부 몰리브덴층과 하부 몰리브덴층 사이에 샌드위치된 구리층 (Mo/Cu/Mo) 을 포함한다. 그러나, 도전층 스택의 낮은 접촉 저항이 플렉서블 디바이스 (100) 에 사용된 도전 라인 트레이스 (120) 용 재료들로서 선택하기 위한 유일한 인자는 아니다.
도전 라인 트레이스 (120) 를 형성하기 위한 재료들은 최소 영률 (Young’s modulus) 요건을 충족해야 하는 한편, 플렉서블 디스플레이 (100) 의 엄격한 전기 및 열적 요건들 (예를 들어, 저항, 열 생성, 등) 을 충족해야 한다. 따라서, 주 도전층 (122) 및 보조 도전층 (124) 양자는 저 취약성 (brittleness) (E)을 나타내는 재료로 형성되어야 한다. 이러한 관점에서, Al은 약 71 GPa의 모듈러스를 갖고, Ti는 116 GPa의 모듈러스를 갖고, Mo는 329 GPa의 모듈러스를 갖는다. 이와 같이, Al의 취약성 (E) 은 Mo의 취약성의 약 1/4이고, Ti의 취약성 (E) 은 Mo의 취약성의 약 1/3이다. 따라서, 일부 실시예들에서, 플렉서블 디스플레이 (100) 의 도전 라인들 (120) 중 적어도 일부는 Al 및 Ti를 포함하는 스택으로 형성된다. Mo와 달리, Al 및 Ti 양자는 0.5 mm의 벤딩 반경에서 크랙을 나타내지 않는다.
주 도전 층 (122) 은 보조 도전층 (124) 보다 낮은 전기 저항을 가져야 하기 때문에, 도전 라인 트레이스 (120) 는 Ti/Al/Ti의 스택으로 형성될 수도 있다. 특히, 벤딩 허용 부분에 배치된 도전 라인들 (120) 중 적어도 일부는 Ti/Al/Ti의 스택으로 형성될 수도 있다.
일부 실시예들에서, 플렉서블 디스플레이 (100) 는 웨어러블 전자 디바이스에 채용될 수도 있다. 이러한 경우들에서, 플렉서블 디스플레이 (100) 는 고습도 환경에서 사용될 수도 있다. 일부 경우들에서, 수분들이 도전 라인 트레이스 (120) 에 도달할 수 있다. 다른 금속들 및 합금들은 상이한 전극 전위들을 갖고, 전해질에서 2 이상의 금속들 또는 합금들이 접촉할 때, 하나의 금속은 애노드로서 기능하고 다른 금속은 캐소드로서 기능한다. 다른 금속들 간의 전기-전위 차는, Ti/Al/Ti 스택에서 주 도전층 (122) 인 애노드 부재의 갈바닉 커플링에 대한 가속화된 공격을 위한 구동력이다. 애노드 금속은 전해질에 용해되고, 캐소드성 금속 상에서 침전물이 수집된다. Al층 부식으로 인해, 도전 라인 트레이스 (120) 의 전기 특성들은 열화되거나 완전히 손실될 수도 있다.
통상적으로, 다층 도전 라인 (120) 의 단면 측에서 접촉하는 전해질에 의해 갈바닉 부식이 개시된다. 따라서, 일부 실시예들에서, 적어도 일부 도전 라인들 (120) 은 도 4b에 도시된 바와 같이 주 도전층 (122) 이 보조 도전층 (124) 으로 커버되도록 주 도전층 (122) 은 보조 도전층 (124) 에 의해 둘러싸인 구조로 제공된다. 이는 갈바닉 부식에 의한 주 도전층 (122) 의 손실을 최소화할 수 있고, 전기 전도도의 단절 확률을 더 감소시킨다.
이러한 다층 도전 라인들 (120) 은 보조 도전층 (124) (예를 들어, Ti) 위에 주 도전층 (122) (예를 들어, Al) 을 위한 재료를 먼저 증착함으로써 생성될 수 있다. 여기서, 주 도전층 (122) 아래의 보조 도전층 (124) 은 보다 큰 폭을 가질 수도 있다. 목표된 도전 라인 트레이스 (예를 들어, 다이아몬드 트레이스 설계) 를 형성하기 위해 에칭 내성 재료가 이들 두 층들의 스택 위에 형성되고 에칭된다 (예를 들어, 건식 에칭, 습식 에칭 등). 에칭 내성 재료를 스트립한 후, 보조 도전층 (124) 의 또 다른 층 (즉, Ti) 이 패터닝된 구조체 위에 증착된다 (즉, Ti/Al). 다시, 주 도전층 (122) 의 상단 상의 보조 도전층 (124) 은 주 도전층 (122) 이 제 2 도전층 (124) 내에 둘러싸이도록 보다 큰 폭을 가질 수도 있다. 에칭 내성 재료의 또 다른 건식 에칭 및 스트립은 목표된 도전 라인 트레이스 설계의 다층 구조 (즉, Ti/Al/Ti) 의 스택을 형성하도록 수행된다.
다양한 절연층들, 예컨대 버퍼층 (126), 패시베이션층 (128), 게이트 절연층 (GI 층) 및 층간 유전체 층 (ILD 층) 은 도전 라인 트레이스 (120) 의 하부 측 및/또는 상부 측에 형성될 수도 있다. 이들 절연층들은 유기 재료 및/또는 무기 재료로 형성될 수도 있고 또는 무기 재료들로 형성된 서브-층을 포함할 수도 있다.
무기 재료층은 일반적으로 도전 라인들 (120) 의 금속들보다 덜 연성 (ductile) 이다. 동일한 양의 벤딩 응력이 주어지면, 일반적으로 도전 라인 트레이스 (120) 에 대한 절연층들로부터 크랙들이 개시된다. 도전 라인 트레이스 (120) 가 크랙 없이 벤딩 응력을 견디기에 충분한 모듈러스를 갖더라도, 절연층으로부터 개시된 크랙들은 성장하고 도전 라인들 (120) 내로 전파하는 경향이 있고, 플렉서블 디스플레이 (100) 를 사용할 수 없게 할 수 있는 불량한 전기 접촉들의 스팟들을 생성한다. 따라서, 다양한 벤딩 응력 감소 기법들은 절연층들과 도전 라인들 (120) 양자에 활용된다.
크랙들은 무기 절연층들을 통해 주로 시작된다는 것을 주의해야 한다. 따라서, 크랙들의 전파는 크랙되기 쉬운 영역들에서 무기 절연층들을 선택적으로 제거함으로써 억제될 수 있다. 따라서, 무기 절연층들 및/또는 무기 재료층을 포함하는 절연층들의 스택은 플렉서블 디스플레이 (100) 의 특정한 부분들에서 선택적으로 에칭될 수 있다.
예를 들어, 도 5a에 도시된 바와 같이, 도전 라인 트레이스 (120) 아래의 절연층은 에칭될 수 있다. 도전 라인 트레이스 (120) 아래의 절연층은, 무기 재료층들 중 하나 이상의 층들을 포함할 수도 있는, 버퍼층 (126) 일 수도 있다. 버퍼층 (126) 은 SiNx 층 및 SiO2 층의 하나 이상의 층들로 형성될 수도 있다. 하나의 적합한 구성에서, 버퍼층 (126) 은 SiNx 층 및 SiO2 층의 교번하는 스택들로 형성될 수도 있다. 버퍼층 (126) 은 베이스층 (106) 위, 그러나 TFT 아래에 배치된다.
베이스층 (106) 의 실질적으로 평탄한 부분 상에 형성된 버퍼층 (126) 은 베이스층 (106) 의 벤딩 부분 위의 버퍼층 (126) 보다 두꺼울 수도 있다. 플렉서블 디스플레이 (100) 의 보다 용이한 벤딩을 가능하게 하도록, 버퍼층 (126) 의 일부는 플렉서블 디스플레이 (100) 의 벤딩 부분에서 에칭될 수도 있다. 이와 같이, 플렉서블 플레이 (100) 의 실질적으로 평탄한 부분의 버퍼층 (126) 은 플렉서블 디스플레이 (100) 의 밴딩 부분의 버퍼층 대신 적어도 하나의 부가적인 서브층을 갖는다.
예를 들어, 실질적으로 평탄한 부분의 버퍼층 (126) 은 SiNx 층 및 SiO2 층의 복수의 스택들을 포함할 수도 있고, 벤딩 부분의 버퍼층 (126) 은 SiNx 층 및 SiO2 층의 단일 스택을 포함한다. 벤딩 부분의 일부분에 SiNx 층 또는 SiO2 층의 단일 층만을 갖는 것도 가능하다.
스택된 버퍼 (126) 의 SiNx 층 및 SiO2 층 각각은 약 1000 A의 두께를 가질 수도 있다. 이와 같이, 플렉서블 디스플레이의 벤딩 부분의 버퍼층의 두께는 약 100 A 내지 약 2000 A의 범위일 수도 있다. 플렉서블 디스플레이 (100) 의 실질적으로 평탄한 부분에서, 부가적인 무기층은 TFT의 반도체층 바로 아래에 제공될 수도 있다. TFT의 액티브층 아래에 가장 근접하게 위치된 무기층은 버퍼층 (126) 의 개별 무기층들보다 훨씬 보다 두꺼울 수도 있다.
벤딩 허용 부분에서, 버퍼층 (126) 은, 도전 라인 트레이스 (120) 아래에 버퍼층 (126) 을 손대지 않고 남기면서, 베이스층 (106) 을 노출시키기 위해 더 에칭될 수도 있다. 즉, 리세스된 영역 및 돌출된 영역이 플렉서블 디스플레이 (100) 의 벤딩 부분에 제공된다. 돌출된 영역은 베이스층 (106) 상에 제공된 버퍼층 (126) 을 포함하는 한편, 리세스된 영역은 그 위에 버퍼층 (126) 을 갖지 않는 노출된 베이스층 (106) 을 갖는다.
도전 라인 트레이스 (120) 는 돌출된 영역 상에 위치되고, 패시베이션층 (128) 은 돌출된 영역 상의 도전 라인 트레이스 (120) 위에 위치된다. 패시베이션층 (128) 은 리세스된 영역 위에 일시적으로 증착될 수도 있지만, 패시베이션층 (128) 은 건식 에칭 또는 습식 에칭 프로세스에 의해 리세스된 영역으로부터 제거된다. 이와 같이, 리세스된 영역에는 패시베이션층 (128) 이 실질적으로 없을 수도 있다. 리세스된 영역으로부터 패시베이션층 (128) 을 에칭할 때, 베이스층 (106) 의 일부가 또한 에칭될 수 있다. 따라서, 리세스된 영역에서 베이스층 (106) 의 두께는 플렉서블 디스플레이 (100) 의 다른 위치에서 베이스층 (106) 의 두께보다 작을 수 있다. 도 5a에 도시된 바와 같이 버퍼층 (126) 이 에칭될 때, 리세스된 영역으로 인해 버퍼층 (126) 으로부터 도전 라인 트레이스 (120) 로의 크랙 전파가 감소될 수 있다.
도 5b에 예시된 바와 같이, 일부 실시예들에서, 리세스된 영역은 특정한 깊이로 에칭된 베이스층 (106) 을 포함하고, 도전 라인 트레이스 (120) 는 리세스된 영역의 베이스층 (106) 상에 증착된다. 이러한 구성에서, 도전 라인 트레이스 (120) 의 일부는 베이스층 (106) 내에 배치된다. 도전 라인 트레이스 (120) 는 또한 돌출된 영역을 제공하는 버퍼층 (126) 의 일부 상에 증착된다. 패시베이션층 (128) 은 도전 라인 트레이스 (120) 위에 증착될 수 있고, 이어서 리세스된 영역의 도전 라인 트레이스 (120) 를 노출시키도록 리세스된 영역으로부터 에칭된다.
따라서, 패시베이션층 (128) 은 돌출된 영역 상에 위치된 도전 라인 트레이스 (120) 상에 남아 있게 된다. 이 구성에서, 버퍼층 (126) 상에 남아 있는 패시베이션층 (128) 은 다층 도전 라인 트레이스 (120) 의 측면들을 덮기 때문에 갈바닉 부식을 억제한다. 따라서, 리세스된 영역 내 도전 라인 트레이스 (120) 는 패시베이션층 (128) 에 의해 덮일 필요가 없다. 이러한 구성에서, 버퍼층 (126) 으로부터 생성된 크랙들은, 베이스층 (106) 내에 위치된 도전 라인 트레이스 (120) 의 일부가 아니라 버퍼층 (126) 의 측표면 상의 도전 라인 트레이스 (120) 를 관통할 수도 있으나,
리세스된 영역의 도전 라인 트레이스 (120) 의 표면으로부터 패시베이션층 (128) 을 제거하여, 패시베이션층 (128) 으로부터의 크랙 전파가 또한 방지될 수 있다. 갈바닉 부식은 버퍼층 상의 도전 라인 트레이스 (120) 의 에지로부터 시작되기 때문에, 버퍼층 (126) 상의 도전 라인들 (120) 의 에지를 덮는 패시베이션층 (128) 은, 버퍼층 (126) 상의 도전 라인 트레이스 (120) 와 베이스층 (106) 내의 도전 라인 트레이스 (120) 사이의 거리가 충분히 멀다면 필요하지 않을 수도 있다.
크랙은 또한 플렉서블 디스플레이 (100) 의 일부 부분을 스크라이빙하고 그리고/또는 챔퍼링하는 동안 절연층 내에서 발생할 수 있다. 이러한 제조 프로세스들 동안 플렉서블 디스플레이 (100) 의 에지에서 생성된 크랙들은 플렉서블 디스플레이 (100) 의 중앙 부분을 향해 전파될 수 있다. 일부 경우들에서, 측면 인액티브 영역들의 에지에서의 크랙들은 액티브 영역을 향해 전파되고 인액티브 영역들 내 GIP들을 손상시킨다.
따라서, 상단 에지 및 하단 에지의 무기층들은 플렉서블 디스플레이 (100) 의 스크라이빙 라인으로부터의 크랙 개시를 최소화한다. 보다 구체적으로, 버퍼층 (126) 은 도 6a에서 “스크라이빙 라인 에칭 영역”으로 표기된 영역에서, 상단 에지 및 하단 에지를 따라 에칭될 수 있다. 이들 영역들에서, 베이스층 (106) 이 노출될 수도 있고 또는 최소 두께의 무기층만이 플렉서블 디스플레이 (100) 의 스크라이빙 라인을 따라 남아 있을 수도 있다.
몇몇 측 크랙 스토퍼 구조체들이 또한 액티브 영역의 측면들에 제공될 수도 있다. 예를 들어, 리세스된 채널은 도 6a의 액티브 영역의 좌측 에지 상에 도시된 바와 같이 절연층들을 에칭함으로써 인액티브 영역 내에 형성될 수 있다. 일부 실시예들에서, 크랙의 방향을 변경할 수 있는 금속 및 절연 층 패턴은 인액티브 영역에 위치된 회로와 인액티브 영역의 외측 에지 사이에 형성될 수 있다. 예를 들어, 스트레인 감소 패턴을 갖는 금속 트레이스 및 금속 트레이스를 커버하는 절연층은 도 6a에서 플렉서블 디스플레이 (100) 의 우측과 같은 플렉서블 디스플레이 (100) 의 에지 사이에 형성될 수 있다.
액티브 영역의 좌측 상의 리세스된 채널은 또한 액티브 영역의 우측 상에 제공될 수 있다는 것을 주의해야 한다. 유사하게, 인액티브 영역의 우측 상에 제공된 스트레인 감소 패턴을 갖는 금속 트레이스는 또한 인액티브 영역의 좌측에 제공될 수 있다. 일부 실시예들에서, 리세스된 채널 및 스트레인 감소 패턴을 갖는 금속 트레이스는 액티브 영역의 양측면들 상에 제공될 수 있다. 이 구성에서, GIP를 향하는 방향에서 인액티브 영역의 외측 에지로부터 전파되는 크랙들은 GIP 전에 형성된 다이아몬드/절연 트레이스의 각도에 의해 코스를 변경할 수도 있다.
절연층들의 에칭은, 또한 액티브 영역과 벤딩 허용 부분 간의 라우팅 영역뿐만 아니라 COF 영역과 벤딩 허용 부분 간의 라우팅 영역에서 수행될 수 있다. 또한, 무기층들은 크랙들이 챔퍼 라인측으로부터 도전 라인들 (120) 을 향해 전파되지 않도록 챔퍼 라인 옆 영역들로부터 제거될 수도 있다.
도 6b는 챔퍼 라인 근방의 벤딩 허용 부분의 확대도이다. 챔퍼 라인 근방의 무기층들로부터 크랙 시작 및 전파를 감소시키기 위해, 절연층은 VSS 라인으로부터 챔퍼 라인까지 에칭된다. 특히, 버퍼층 (126) 은 벤딩 허용 부분의 가장 가까운 도전 라인 (120) (예를 들어, VSS) 과 챔퍼 라인 사이의 영역에 배치된 베이스층 (106) 은 에칭될 수 있다. 이 영역에서, 베이스층 (106) (예를 들어, PI) 은 노출될 수도 있고 또는 최소량의 버퍼층 (126) 만이 남아 있을 수도 있다. 따라서, 챔퍼 라인으로부터 크랙 시작 및 전파는 감소될 수 있다.
챔퍼 라인 근방의 버퍼층 (126) 을 에칭할 때, 버퍼층 (126) 의 스트라이프는 챔퍼 라인과 가장 가까운 도전 라인 트레이스 (120) (예를 들어, VSS) 사이에 남아 있을 수도 있다. 이러한 버퍼층의 스트라이프는 플렉서블 디스플레이 (100) 의 챔퍼링된 측으로부터 도전 라인 트레이스 (120) 에 다른 이질적인 재료 또는 수분들이 도달하는 것을 억제하기 위한 댐 (dam) 으로서 역할을 할 수 있다.
버퍼층 (126) 의 제거는 또한 챔퍼 라인과 가장 가까운 도전 라인 (120) 사이의 라우팅 영역에 적용될 수 있다. 버퍼층 (126) 의 선은 또한 라우팅 영역에 적용될 수도 있다. 또한, 도전 라인들 (120) 아래의 버퍼층 (126) 및 도전 라인들 (120) 상의 패시베이션층 (128) 은 라우팅 영역의 무기층들에 의한 크랙 전파 가능성을 더 감소시키도록 라우팅 영역 전체에서 에칭될 수 있다. 따라서, 도 5a 및 도 5b에 도시된 구조는 또한 라우팅 영역의 도전 라인 트레이스들 (120) 에 적용될 수도 있다.
도 6c는 또 다른 크랙 스토퍼 구조체가 구비된, 챔퍼 라인 근방의 벤딩 허용 부분의 확대도이다. 이 실시예에서, 다이아몬드 트레이스 패턴을 갖는 보조 도전 라인 (130) 이 챔퍼 라인과 도전 라인 트레이스 (120) (예를 들어, VSS) 사이에 제공된다. 보조 도전 라인 (130) 아래의 버퍼층 (126) 및 보조 도전 라인 (130) 상의 패시베이션층 (128) 은 도 5a 및 도 5b에 도시된 것과 유사한 방식으로 에칭될 수 있다. 따라서, 보조 도전 라인 (130) 은 챔퍼 라인으로부터 도전 라인 트레이스 (120) 로 크랙들의 전파를 억제할 수도 있다. 보조 도전 라인 (130) 은 플로팅하는 라인일 수도 있다. 필요한 경우, 보조 도전 라인 (130) 은 플렉서블 디스플레이 (100) 의 바텀 에지를 향해 더 연장할 수도 있다. 일부 실시예들에서, 보조 도전 라인 (130) 은 인접한 도전 라인 (120) 과 접촉할 수도 있다. 보조 도전 라인 (130) 에 부가하여, 버퍼층 (126) 의 스트라이프는 또한 보조 도전 라인 (130) 을 향해 수분 또는 다른 이질적인 재료들이 이동하는 것을 중단시키도록 제공될 수도 있다.
플렉서블 디스플레이 (100) 의 TFT들 근방의 무기 절연층들의 제거는 플렉서블 디스플레이 (100) 내 컴포넌트들의 전기 특성에 영향을 줄 수도 있다. 예를 들어, TFT들의 문턱값 전압의 원치 않은 시프트는 SiNx 층들이 버퍼층 (126) 으로부터 제거될 때 관찰된다. TFT들의 안정성을 유지하기 위해, 부가적인 쉴딩 금속층이 TFT들의 반도체층 아래에 형성될 수 있다. 쉴딩 금속층은 버퍼층 (126) 아래에 있을 수도 있고 또는 버퍼층 (126) 의 무기층들 사이에 개재될 수도 있다. 일부 실시예들에서, 쉴딩 금속층은 TFT들의 소스 전극 또는 게이트 전극에 전기적으로 연결될 수도 있다.
트레이스 설계들은 도전 라인 트레이스 (120) 및 절연층들 모두에서 벤딩 응력을 감소시키는 중요한 역할을 한다. 예시의 편의를 위해, 도전 라인 트레이스 (120) 및 도전 라인 트레이스 (120) 의 적어도 일부를 덮는 절연층 (즉, 패시베이션층 (128)) 의 트레이스는 이하의 기술에서 집합적으로 “배선 트레이스”로 지칭된다.
트레이스 설계는 도전 라인 트레이스 (120) 의 전기적 요건들 뿐만 아니라 도전 라인 트레이스 (120) 상에 송신된 신호들의 타입을 고려함으로써 결정되어야 한다. 또한, 도전 라인 트레이스 (120) 및 절연층들의 형성에 사용된 재료들의 특성들 (예를 들어, 영률) 이 트레이스들의 설계시 고려될 수 있다. 두께, 폭, 길이, 부분 뿐만 아니라 전체 도전 라인 트레이스 (120) 및 절연층들에 대한 레이아웃 각도와 같은 다양한 다른 인자들이 플렉서블 디스플레이 (100) 에 사용하기에 충분한 전기적 및 기계적 신뢰도를 갖는 트레이스 설계를 제공하기 위해 고려되어야 할 수도 있다는 것을 주의해야 한다.
배선 트레이스 설계는 플렉서블 디스플레이 (100) 의 벤딩 방향 (즉, 커브의 접선 벡터를 참조하여 도전 라인 트레이스 (120) 및 절연층들의 배치 및 배향에 기초하여 이들을 위해 특별히 맞춰질 (tailored) 수도 있다. 배선 트레이스가 연장하는 방향이 굽혀진 부분의 접선 벡터에 대해 보다 정렬되기 때문에 배선 트레이스는 보다 많은 벤딩 응력을 받을 것이다. 즉, 굽혀진 부분의 접선 벡터에 대해 정렬된 배선 트레이스의 길이가 감소될 때 배선 트레이스는 벤딩 응력에 보다 잘 견딜 것이다.
굽혀진 부분의 접선 벡터에 대해 정렬된 배선 트레이스 부분의 길이를 감소시키기 위해, 플렉서블 디스플레이 (100) 의 배선 트레이스들은 도 7에 예시된 사인파, 구형파, 사형 (serpentine), 톱니형 및 슬랜티드 라인 (slanted line) 트레이스 설계들 중 임의의 하나 이상을 채용할 수도 있다. 이러한 구성들에서, 벤딩 응력은 굽혀진 부분의 접선 벡터로부터 시프트되는 각도로 배향된 트레이스 부분들에 분배될 수도 있다. 도 7에 예시된 스트레인 감소 트레이스 설계들은 단지 예시이고, 플렉서블 디스플레이 (100) 의 실시예들에서 사용될 수 있는 트레이스 설계들에 대한 제한들로서 해석되지 않아야 한다.
일부 도전 라인 트레이스 (120) 는 플렉서블 디스플레이 (100) 의 다른 도전 라인 트레이스 (120) 와 상이한 스트레인 감소 트레이스 설계들을 채택할 수도 있다. 일부 실시예들에서, 도전 라인 트레이스 (120) 는 도전 라인들 사이에 타이트한 간격을 가능하게 하도록 치수들을 가변할 수 있다. 예를 들어, 제 1 배선 트레이스의 볼록한 측면이 제 1 배선 트레이스 옆의 제 2 배선 트레이스의 오목한 측면에 위치될 수도 있다.
도전 라인 트레이스 (120) 내 크랙들에 의한 상호 연결들의 단절을 방지하거나 최소화하기 위해, 배선 트레이스는 복수의 서브트레이스들로 분할되고, 특정한 간격을 두고 단일 트레이스로 다시 수렴 (converge) 될 수도 있다. 도 8a의 예에서, 도전 라인 트레이스 (120) 의 단일 트레이스는 서브트레이스 A 및 서브트레이스 B를 포함하고, 이들은 조인트 X마다 다시 병합될 수도 있어, 다이아몬드 체인을 닮는다. 이 트레이스 설계는 이하 다이아몬드 트레이스 설계로 지칭될 수도 있다. 서브트레이스들이 굽혀진 부분의 접선 벡터로부터 멀어지는 각도의 벡터로 연장하도록 배열되기 때문에, 굽혀진 부분의 접선 벡터와 정렬되는 배선 트레이스의 길이의 감소는 도 7에 예시된 트레이스 설계들과 유사한 방식으로 실현된다.
도 8에 도시된 다이아몬드 트레이스 설계는 도 7의 단일 라인 배선 트레이스 설계들에 대한 상당한 전기적 이점을 제공한다. 첫째로, 동일한 폭, 두께 및 커브의 접선 벡터로부터 시프팅되는 각도가 주어지면, 마운틴형 (mountain) 트레이스 설계를 채용하는 배선 트레이스와 비교하여 다이아몬드 트레이스 설계를 채용하는 배선 트레이스로부터 거의 1/2의 전기 저항이 관찰된다 (즉, 4.4 Ω : 8.6 Ω). 이에 더하여, 복수의 서브트레이스들로의 트레이스의 분할은 서브트레이스들 중 하나가 크랙들에 의해 손상되는 경우 백업 전기 경로를 제공할 수도 있다. 이와 같이, 다이아몬드 트레이스 설계는 벤딩 부분의 배선 트레이스들에 사용될 수 있고, 벤딩 허용 부분이 심각한 벤딩 응력을 겪는 배선 트레이스들에 특히 도움이 될 수도 있다.
언급된 바와 같이, 벤딩 응력의 분포는 벤딩 방향에 대한 벤딩 트레이스들의 벡터 (즉, 분할 각도) 에 의존한다. 벤딩 방향으로부터 보다 큰 분할 각도 (즉, 굽혀진 부분의 접선 벡터) 를 갖는 서브트레이스는 보다 적은 벤딩 응력을 겪을 것이다. 그러나, 복수의 서브 트레이스들로의 배선 트레이스의 분할은 굽혀진 부분의 접선 벡터로부터의 각도로 배선 트레이스의 배향에 의해 실현된 벤딩 응력 감소되지 않는 것처럼 스스로 서브트레이스 각각에 대한 벤딩 응력 감소를 제공하지 않는다는 것을 주의해야 한다. 실제로, 동일한 도전 라인 폭 및 굽혀진 부분의 접선 벡터로부터의 편향 각도가 주어지면, 다이아몬드 트레이스 설계에서 서브트레이스들 중 하나의 형상을 거의 미러링하는 마운틴형 배선 트레이스에서 벤딩 응력 시뮬레이션 결과는 다이아몬드 트레이스 설계의 서브트레이스 각각에서 나타난 벤딩 응력 시뮬레이션 결과와 거의 동일하였다.
그러나, 다이아몬드 트레이스 설계로부터 실현된 부가적인 이점들 중 하나는, 이 설계가 전기적 저항의 증가가 상대적으로 거의 없는 굽혀진 부분의 접선 벡터에 대해 정렬되는 (즉, 병렬로 진행하는) 절연층 트레이스의 길이를 최소화하거나 없애게 한다는 것이다. 크랙들이 일반적으로 절연층으로부터 시작되기 때문에, 굽혀진 부분의 접선 벡터와 정렬되는 절연 트레이스의 길이가 최소화되는 것이 필수적이다. 다이아몬드 트레이스 설계를 사용할 때, 응력 지점 A에서 도전 라인 트레이스 (120) 의 위치와 응력 지점 B에서 도전 라인 트레이스 (120) 의 위치 사이에서 오프셋이 생성되고, 따라서, 굽혀진 부분의 접선 벡터와 정렬되는 도전 라인 트레이스 (120) 의 길이를 감소시킨다.
도전 라인 트레이스 (120) 아래 버퍼층 (126) 뿐만 아니라 도전 라인 트레이스 (120) 상의 패시베이션층 (128) 에 동일하게 적용된다. 즉, 무기 버퍼층 (126) 은 응력 지점 A와 응력 지점 B의 버퍼층 (126) 사이의 영역에서 에칭되어 2 개의 지점들 사이에 버퍼층 (126) 의 연속적인 직선 경로가 존재하지 않는다. 유사하게, 패시베이션층 (128) 은 응력 지점 A와 응력 지점 B의 패시베이션층 (128) 사이의 영역에서 에칭되어, 2 개의 지점들 사이에 패시베이션층 (128) 의 연속적인 직선 경로가 존재하지 않는다. 다이아몬드 트레이스 설계는 훨씬 보다 낮은 크랙 개시 레이트를 제공할 뿐만 아니라, 도전 라인 트레이스 (120) 로의 크랙들의 전파를 방해한다.
굽혀진 부분의 접선 벡터에 대해 정렬된 절연층 트레이스의 감소가 도전 라인 트레이스 (120) 및 도전 라인 트레이스 (120) 을 덮는 절연층의 폭을 감소시킴으로써 이루어질 수 있다. 커브의 접선 벡터에 대해 정렬된 절연층 트레이스가 도전 라인 폭 및 절연 트레이스 폭의 감소에 의해 제거될 때, 크랙들의 평균 사이즈는 3.79 μm로부터 2.69 μm로 감소되었다. 옴 접촉 저항은 3.15 Ω로부터 4.51 Ω로 증가되지만, 이러한 증가는 플렉서블 디스플레이 (100) 의 동작에 최소의 영향을 갖는다.
도전 라인 트레이스 (120) 의 폭의 감소량은 도전 라인 트레이스 (120) 의 전기 저항이 플렉서블 디스플레이 (100) 에 사용되기에 너무 높아질 수 있기 때문에 도 7에 도시된 단일 라인 트레이스 설계로 제한된다. 그러나, 도전 라인 트레이스 (120) 의 분할 및 병합에 의해 생성된 부가적인 전기 경로는 비분할 스트레인 감소 트레이스 설계들과 비교하여 도전 라인 트레이스 (120) 에서 훨씬 보다 낮은 전기 저항을 산출한다.
서브트레이스들의 분할 각도는 다이아몬드 트레이스 설계 (800) 에서 인접한 2 개의 조인트들 X 간의 거리에 영향을 준다는 것을 주의해야 한다. 조인트들 X 간의 거리는 전체 배선 트레이스 전반에서 균일할 필요는 없다. 트레이스가 분할하고 병합하는 간격들은 배선 트레이스의 부분들에 부가된 벤딩 응력의 레벨에 기초하여 단일 트레이스의 배선에서 가변할 수 있다. 조인트들 X 간의 거리는, 보다 높은 벤딩 응력을 겪는 플렉서블 디스플레이 (100) 의 영역 (예를 들어, 보다 낮은 반경의 굽혀진 부분을 갖는 영역, 보다 큰 벤딩 각도를 갖는 영역) 을 향해 배선 트레이스의 부분들에 대해 계속해서 단축될 수도 있다. 반대로, 조인트들 X 간의 거리들은 보다 낮은 벤딩 응력을 겪는 영역을 향해 계속해서 확대될 수 있다.
도 8b의 예시적인 트레이스 설계에서, 단부 부분들의 트레이스의 조인트들 X 간의 거리는 제 1 거리 (예를 들어, 27 μm) 이지만, 이 거리는 트레이스의 중간 부분을 향해 계속해서 보다 짧아진다. 중간 부분에서, 조인트들 X 간의 거리는 1/2만큼 감소된다. 도 8b에 도시된 트레이스의 단부 부분들은 벤딩 허용 부분의 시작부분 근방의 배선 트레이스의 일부일 수도 있고, 트레이스의 중간 부분은 플렉서블 디스플레이 (100) 의 벤딩 허용 부분의 중간 또는 중간 근방에 위치된 부분일 수도 있다.
고 벤딩 응력 영역들에서 배선 트레이스의 서브트레이스들의 각도를 선택적으로 증가시킴으로써 보다 낮은 크랙 시작 기회가 배선 트레이스에 제공된다. 벤딩 방향으로부터 보다 큰 각도로 분할하고 병합하는 서브트레이스들을 사용하여, 굽혀진 부분의 접선 벡터를 따라 연장하는 도전 라인 트레이스 (120) 의 길이 및 절연층의 길이가 보다 철저히 감소된다. 이러한 방식으로, 전기 저항에서의 불필요한 증가가 방지될 수 있다.
배선 트레이스는 부가적인 수의 서브트레이스들로 분할될 수도 있고, 도 8c에 예시된 바와 같이, 플렉서블 디스플레이 (100) 의 벤딩 영역에서 그리드-형 배선 트레이스를 생성한다. 예로서, 서브트레이스들은 다이아몬드 트레이스 형상들로 형성된 복수의 웹 (web) 을 형성하도록 구성될 수 있다. 이러한 트레이스 설계는 공통 신호, 예를 들어, VSS 및 VDD를 송신하는 배선 트레이스들에 유용할 수도 있다. 그리드-형 트레이스 설계를 형성하는 서브트레이스들의 수 또는 서브트레이스들의 형상이 도 8c에 도시된 예로서 특히 제한되는 것은 아니다. 일부 실시예들에서, 서브트레이스들은 플렉서블 디스플레이 (100) 의 벤딩 허용 부분을 통과하는 단일 트레이스 내로 수렴할 수도 있다.
상기 논의된 스트레인 감소 트레이스 설계들은 도전 라인 트레이스 (120) 의 전부 또는 일부에 사용될 수도 있다. 일부 실시예들에서, 플렉서블 디스플레이 (100) 의 벤딩 부분의 도전 라인 트레이스 (120) 의 일부는 이러한 스트레인 감소 트레이스 설계를 채택할 수도 있다. 스트레인 감소 트레이스 설계 이전 또는 이후의 도전 라인 트레이스 (120) 의 일부는 동일한 트레이스 설계를 가질 수도 있다. 원한다면, 스트레인 감소 트레이스 설계들은 도전 라인 트레이스 (120) 의 복수의 부분들에 적용될 수도 있다.
스트레인 감소 트레이스 설계를 사용하여도, 불가피한 벤딩 응력은 트레이스의 특정한 지점들 (즉, 응력 지점) 에서 유지된다. 응력 지점의 위치는 트레이스의 형상뿐만 아니라 벤딩 방향에 매우 의존적이다. 주어진 벤딩 방향에 대해, 배선 및/또는 절연층의 트레이스는, 남아 있는 벤딩 응력이 이들의 트레이스의 목표된 부분들에 집중되도록 설계될 수 있다는 것을 따른다. 따라서, 벤딩 응력이 집중되는 배선 트레이스의 일부를 보강하도록 트레이스 설계시 크랙 내성 영역이 제공될 수 있다.
다시 도 8a를 참조하면, 다이아몬드 트레이스 설계를 갖는 배선 트레이스가 벤딩 방향으로 벤딩될 때, 벤딩 응력은 응력 지점 A 및 응력 지점 B로 표기된,기울어진 코너부들에 포커싱되는 경향이 있다. 이들 기울어진 코너부들에 크랙이 형성되면, 크랙은 일반적으로 이 벤딩 방향으로 가로지르는 방향으로 성장한다. 예를 들어, 응력 지점들 A에서, 크랙은 외측 트레이스 라인 (820) 으로부터 시작할 수도 있고, 내측 트레이스 라인 (830) 을 향해 성장한다. 유사하게, 크랙은 외측 트레이스 라인 (830) 으로부터 시작하여 응력 지점들 B에서 내측 트레이스 라인 (820) 을 향해 성장할 수도 있다.
따라서, 응력 지점들 A에서 도전 라인 트레이스 (120) 의 폭은 벤딩 방향을 가로지르는 방향으로 선택적으로 증가할 수 있다. 즉, 크랙 성장 방향에서 측정된, 응력 지점 A 및 응력 지점 B에서 도전 라인 트레이스 (120) 의 폭들 (WA, WB) 은 도 8a에 도시된 바와 같이 다른 부분들에서 도전 라인 트레이스 (120) 의 폭 (W) 보다 길 수도 있다. 응력 지점들에서 크랙 성장 방향에서 부가적인 폭은 완전한 연결해제 (disconnection) 가 일어나기 전에 도전 라인 트레이스 (120) 가 보다 길게 지속되게 한다.
테스트시, 배선들은 3 층 구조 (Mo 200 Å / Al 3000 Å / Mo 200 Å) 를 갖고, 이는 17 μm 두께 PI 베이스 층 (106) 상에 형성된다. 1000 Å 두께 SiNx 층은 베이스 층 (106) 과 다층 도전 라인 트레이스 (120) 사이에 형성된다. 또한, SiO2 층은 다층 도전 라인 트레이스 (120) 위에 형성된다. 도전 라인 트레이스 (120) 상의 SiO2의 가장 두꺼운 부분은 3000 Å였다. 도전 라인들 1 내지 4 각각은 응력 지점들 A에서 각각 8.5 μm, 2.5 μm, 3.5 μm 및 4.5 μm의 상이한 폭을 갖는다.
배선 트레이스 각각에 대해, 전기 저항은 벤딩 시 처음으로 측정되고 다시 15 시간 후에 측정된다. 크랙이 도전 라인 트레이스 (120) 에서 생성되면, 도전 라인 트레이스 (120) 의 저항이 또한 상승될 것이다. 응력 지점들 A에서 가장 긴 폭을 갖는 배선 트레이스 1은 가장 낮은 평균 저항 상승 레이트를 갖는 한편, 응력 지점들 A에서 가장 짧은 폭을 갖는 배선 2는 가장 큰 평균 저항 상승 레이트를 나타낸다. 또한, 배선 트레이스 2의 3 개의 샘플들 및 배선 트레이스 3의 2 개의 샘플들에서 완전한 단절이 관찰된다. 배선 트레이스 4에서 단절이 완료되는 동안, 저항의 상당한 상승이 15 시간 후에 관찰되었다. 따라서, 배선의 신뢰도를 유지하기 위해 응력 지점들 A에서 충분한 폭이 필요하다.
예를 들어, 응력 지점들 A에서 배선의 폭은 4.0 μm보다 클 수도 있다. 크랙 성장 방향에서 측정된 배선의 폭은 신뢰도의 추가 개선을 위해 5.0 μm 보다 클 수도 있다. 심지어 벤딩 방향에 대해 가로지르는 방향에서 도전 라인 트레이스 (120) 의 폭이 상승하여도, 벤딩 방향에 대해 정렬되는 절연층의 연속적인 부분에 대한 길이는 최소로 유지되어야 한다. 따라서, 일 실시예에서, 응력 지점들 A에서 배선의 폭은 약 2.5 μm 내지 약 8 μm, 보다 바람직하게, 약 3.5 μm 내지 약 6 μm, 보다 바람직하게, 약 4.5 μm 내지 약 8.5 μm, 그리고 보다 바람직하게 약 4.0 μm의 범위이다.
응력 지점들 B에서 크랙 성장 방향에서 측정된 도전 라인 트레이스 (120) 의 폭은 또한 응력 지점들 A에서 도전 라인 트레이스 (120) 의 폭과 유사한 방식으로 유지되어야 한다. 응력 지점들 B에서 베선의 폭은 약 2.5 μm 내지 약 8 μm, 보다 바람직하게, 약 3.5 μm 내지 약 6 μm, 보다 바람직하게 약 4.5 μm 내지 약 8.5 μm, 그리고 보다 바람직하게 약 4.0 μm의 범위일 수도 있다. 기울어진 코너들의 근방에 근접하고 응력 지점들 B에서 크랙 성장 방향으로 인해, 응력 지점들 B에서 도전 라인 트레이스 (120) 의 폭은 응력 지점들 A에서의 폭보다 길 수도 있다.
내측 트레이스 라인 (820) 및 외측 트레이스 라인 (830) 양자로부터 크랙이 시작할 기회를 최소화하기 위해, 트레이스 라인들 중 적어도 하나는 응력 지점들 A에서 다른 트레이스 라인들만큼 날카롭게 기울어지지 않을 수도 있다. 도 8a에 도시된 실시예에서, 응력 지점들 A에서 내측 트레이스 라인 (820) 은 기울어진 코너부를 갖고, 응력 지점들 A에서 외측 트레이스 라인 (830) 은 벤딩 방향에 실질적으로 (예를 들어, ± 5°) 평행하다. 그러나, 벤딩 방향으로 과도하게 연장하는 외측 트레이스 라인 (830) 의 길이 L은 제 1 위치에서 스트레인 감소 트레이스 설계를 활용할 목적을 제거할 (defeat) 수도 있다. 이와 같이, 벤딩 방향에 실질적으로 평행하게 연장하는 외측 트레이스 라인 (830) 의 부분에 대한 길이 L은 배선 트레이스의 폭 W과 동일하거나 배선 트레이스의 폭 W로부터 약간 벗어날 수도 있다 (예를 들어, ± 2.5 μm 이내). 대안적으로, 날카롭게 기울어진 코너부가 외측 트레이스 라인 (830) 과 형성될 수도 있지만, 응력 지점들 A에서의 내측 트레이스 라인 (820) 은 벤딩 방향에 실질적으로 평행하다. 두 경우들에서, 도 8a에 도시된 바와 같이, 보다 덜 날카롭게 기울어진 트레이스 라인이 직선 트레이스를 갖는 대신 단순히 보다 라운딩될 수 있다.
상기에 논의된 바와 같이, 배선의 분할 및 병합은 미리 결정된 양의 벤딩 응력을 공유하는 응력 지점들을 생성한다. 응력 지점 각각에서 상대적으로 저 벤딩 응력을 가지면, 크랙이 시작될 기회가 보다 적다. 그러나, 일부 경우들에서, 플렉서블 디스플레이 (100) 상의 가용 공간은 트레이스의 조인트들 X의 수를 제한할 수도 있다. 즉, 배선 트레이스에서 과잉 조인트들은 플렉서블 디스플레이 (100) 에서 훨씬 많은 공간을 취할 수도 있다. 한편, 트레이스 내 제한된 수의 조인트들 X은 응력 지점들에서 시작되는 크랙을 최소화하거나 방지하기에 충분하지 않을 수도 있다.
따라서, 서브트레이스 상 벤딩 응력이 마이크로-응력 지점들 (810) 사이에서 분배되도록 하나 이상의 서브트레이스들을 따라 전략적으로 위치된 다수의 마이크로-응력 지점들 (810) 이 트레이스에 제공될 수도 있다. 도 8d에 도시된 예에서, 절연 트레이스는 다수의 마이크로-응력 지점들 (810) 을 포함한다. 논의된 바와 같이, 기울어진 코너부들은 트레이스 설계 시 응력 지점들이 되는 경향이 있다. 따라서, 복수의 기울어진 컷아웃들은 마이크로-응력 지점들 (810) 로서 기능하도록 절연층 트레이스를 따라 형성될 수 있다. 이러한 구성에서, 서브트레이스들 각각 상의 벤딩 응력의 적어도 일부 단편은 마이크로-응력 지점들 (810) 각각에 대해 포커싱될 것이다. 마이크로-응력 지점들 (810) 각각이 서브트레이스들에 대한 미리 결정된 벤딩 응력의 단편을 차지하여, 마이크로-응력 지점들 (810) 각각에서의 크랙의 사이즈는 마이크로-응력 지점들 (810) 이 없는 절연층 트레이스를 발생시키는 크랙 사이즈보다 작을 수도 있다. 따라서, 이는 도전 라인 트레이스 (120) 의 단절 완료 기회를 감소시킬 수 있다.
도 8에 도시된 바와 같이 마이크로-응력 지점들 (810) 의 위치 및 수는 제한되지 않는다는 것이 이해되어야 한다. 부가적인 마이크로-응력 지점들 (810) 은 크랙 시작의 기회를 더 감소시키도록 각각의 절연 트레이스들에서 목표된 위치에 형성될 수 있다.
상기에 논의된 바와 같이, 벤딩을 용이하게 하도록 일부 구조적 엘리먼트들은 플렉서블 디스플레이 (100) 의 일부 영역들에 존재하지 않을 수도 있다. 예를 들어, 터치 센서층 (112), 편광층 (110) 등과 같은 소자들은 플렉서블 디스플레이 (100) 가 없을 수도 있다. 또한, 일부 절연층들, 예를 들어 버퍼층 (126) 은 절연층이 플렉서블 디스플레이 (100) 의 다른 영역들과 비교하여 일 영역에서 감소된 두께를 갖거나 보다 적은 수의 서브층들을 갖도록 어느 정도 에칭될 수도 있다. 이들 컴포넌트들 및 층들의 부재 또는 단순화는 배선 트레이스 및/또는 절연층 트레이스가 교차해야 하는 리세스된 영역을 생성할 것이다.
리세스된 영역 위에 놓인 배선 트레이스에 벤딩 응력이 부가되는 방향 및 벤딩 응력 양은 벤딩 부분의 다른 부분들에 부가된 벤딩 응력과 상이할 수도 있다. 이 차이를 수용하기 위해, 리세스된 영역에서 배선 트레이스에 대한 스트레인 감소 트레이스 설계는 다른 곳에서 사용된 스트레인 감소 트레이스 설계와 또한 상이할 수 있다.
도 9a는 보다 신뢰할 수 있는 벤딩을 가능하게 하도록 몇몇 절연층들이 벤딩 부분으로부터 제거되는 예시적인 플렉서블 디스플레이 (100) 의 백플레인의 에지에서의 단면도를 예시한다.
도시된 바와 같이, 몇몇 유기 층 및 무기 층이 베이스 층 (106) 과 OLED 소자층 (102) 사이에 형성된다. 이 특정한 예에서, SiNx 층 및 SiO2 층이 교번하는 스택들이 버퍼층 (126) 으로 기능하도록 베이스 층 (106) 상에 배치될 수 있다. TFT의 반도체층은 액티브 버퍼층과 SiO2 층으로 형성된 게이트 절연층에 샌드위치될 수도 있다. TFT의 게이트는 ILD (interlayer dielectric layer) 상에 배치되고, 상기 논의된 바와 같이 다층 구조를 갖는 TFT의 소스/드레인은 ILD와 패시베이션층 사이에 샌드위치된다. 여기서, ILD는 SiNx 및 SiO2의 스택으로 형성될 수도 있고, 패시베이션층은 SiNx로 형성된다. 이어서, 패시베이션층 위에 평탄화층이 배치되어, OLED를 위한 애노드가 패시베이션층 위에 배치될 수 있다.
상기 언급된 바와 같이, 스트레인 감소 트레이스 설계의 사용은 벤딩 부분 내 배선 트레이스들의 부분으로만 제한되지 않는다. 즉, 스트레인 감소 트레이스 설계는 벤딩 허용 부분 외부 라우팅 영역들의 배선 트레이스들의 일부에 적용될 수 있다. 이러한 라우팅 영역의 배선 트레이스에 스트레인 감소 트레이스 설계를 사용하는 것은 벤딩 응력에 대하여 배선 트레이스에 증가된 보호를 제공할 수 있다.
그러나, 이러한 라우팅 영역에서, 베이스 층 (106) 과 OLED 소자층 (102) 사이의 몇몇 층들은 플렉서블 디스플레이 (100) 의 벤딩을 용이하게 하도록 부재된다. 예를 들어, ILD 및 게이트 절연층은 제 1 에칭 프로세스에 의해 트리밍된 영역에서 에칭되고, 이어서 제 2 에칭에 의해 액티브 버퍼 및 버퍼층 (126) 의 일부 (예를 들어, SiNx 층 및 SiO2 층의 스택) 를 에칭한다. 이들 에칭 프로세스들은 수직으로 기울어진 표면들 상에 배치된 배선 트레이스와 수평으로 평탄화된 (leveled) 표면들 상에 배치된 배선 트레이스 사이에서 발생하는 복수의 단차들을 생성한다. 즉, 배선 트레이스는 EB1 및 EB2와 같은 몇몇 벤딩 스팟들을 가질 것이다.
플렉서블 디스플레이 (100) 가 벤딩 방향으로 벤딩할 때, 배선 트레이스는 단차들 근방 또는 단차들에서 보다 많은 스트레인을 경험할 수도 있다. 다수의 테스트들 및 실험들은 EB1 영역과 EB2 영역 사이의 단차 위에서 교차하는 배선 트레이스에서 크랙 기회가 특히 높다는 것을 나타낸다. 따라서, 일부 실시예들에서, 배선 트레이스에 대한 스트레인 감소 트레이스 설계는 플렉서블 디스플레이의 절연층들에 의해 제공된 고레벨 표면과 저레벨 표면 사이의 단차 근방 또는 단차에서 보강된 부분을 갖는다.
도 9b에 도시된 예에서, 배선 트레이스는 시작 시 단순한 직선 라인 트레이스 설계를 갖고, 제약된 영역에서 분할 및 병합 스트레인 감소 트레이스 설계로 변화된다. 이에 더하여, 벤딩 스팟들 EB1 및 EB2 전후하여 교차하는 도전 라인의 일부는 부가적인 폭 WR으로 보강된다. 즉, 도전 라인의 보강된 부분을 덮는 절연층으로부터 크랙들이 시작되어도, 도전 라인 트레이스 (120) 의 보존을 보장하도록 벤딩 스팟들 EB1 및 EB2 근방에서 도전 라인 트레이스 (120) 를 보강하기 위한 실질적으로 보다 넓은 폭을 갖는다. 도전 라인이 보다 넓은 증가된 폭 WR으로 보강된 도전 라인의 보강된 부분의 거리 DR은 에칭 프로세스들에 의해 생성된 단차들의 사이즈뿐만 아니라 벤딩 스팟들 EB1 및 EB2 간 거리에 따른다. 보강된 부분을 지나, 배선 트레이스는 상기 논의된 다이아몬드 체인형 트레이스 설계로 계속된다. 보강된 부분 전후로 오는 배선 트레이스에 대한 스트레인 감소 트레이스 설계는 도 9b에 도시된 바와 같은 트레이스 설계로 특별히 제한되지 않고, 상기 논의된 임의의 다른 스트레인 감소 트레이스 설계가 사용될 수도 있다.
항상 그렇지 않을 수도 있지만, 벤딩 허용 부분에 인접한 라우팅 영역들은 플렉서블 디스플레이 (100) 의 실질적으로 편평한 부분들일 수도 있다. 이러한 경우들에서, 벤딩 스팟들 EB1 및 EB2는 벤딩 부분에서 벤딩 허용 부분의 시작부 또는 시작부 바로 외부에 위치될 것이다.
보강된 도전 라인 트레이스 (120) 부분의 증가된 폭 WR은 굽혀진 부분이 상대적으로 작은 벤딩 허용 부분의 에지들 또는 에지들 근방에서 또한 이 목적을 위해 기능할 수도 있다. 그러나, 배선 트레이스의 보다 넓은 폭 WR은 벤딩 방향에 대해 선형인 배선 트레이스의 길이를 증가시킬 것이다. 이는 보다 큰 벤딩 반경을 갖는 영역에서 벤딩 응력에 대해 지속되도록 배선 트레이스를 보다 단단하게 할 것이다. 이러한 이유로, 보강된 도전 라인 부분이 벤딩 허용 부분을 향해 훨씬 넘어 연장하지 않도록, 보강된 부분이 사용되는 거리 DR은 제한되어야 한다. 즉, 보강된 도전 라인 부분의 트레이스 설계가 문턱값 벤딩 각도보다 큰 벤딩 허용 부분을 넘어 연장하지 않도록 보강된 도전 라인 부분의 거리 DR은 제한될 수도 있다. 예로서, 보강된 도전 라인 부분은 굽혀진 부분의 접선 평면으로부터 30° 굽혀진 지점을 넘어 연장하지 않을 수도 있다. 문턱값 벤딩 각도는 20° 미만, 예를 들어 10°, 그리고 보다 바람직하게 7° 미만일 수도 있다.
보강된 부분을 갖는 배선 트레이스는 플렉서블 디스플레이 (100) 의 COF 또는 다른 컴포넌트들을 위한 패드들로 라우팅된 벤딩 허용 영역을 넘어 연장할 수도 있다. 이러한 예들에서, 벤딩 허용 부분의 단부 또는 단부 근방에 부가적인 벤딩 스팟들 (EB1 및 EB2와 유사) 이 있을 수도 있다. 이러한 벤딩 스팟들 또는 스팟들 근방의 도전 라인은 벤딩 스팟들 EB1 및 EB2에서 배선 트레이스 부분과 유사한 방식으로 보강될 수도 있다. 원한다면, 도 9b에 도시된 바와 같이 벤딩 허용 부분의 다른 단부에서 벤딩 스팟들 또는 벤딩 스팟들 근방의 보강된 도전 라인 부분은 상이할 수도 있다.
플렉서블 디스플레이 (100) 의 벤딩 부분으로부터 무기 절연층들이 에칭되어, 벤딩 부분 내 배선 트레이스들은 수분들 및 다른 외래 재료들에 취약할 수 있다. 특히, 플렉서블 디스플레이 (100) 의 제조 동안 컴포넌트들을 테스트하기 위한 다양한 패드들 및 도전 라인들이 챔퍼링될 수도 있고, 이는 플렉서블 디스플레이 (100) 의 노치된 에치에서 나오는 도전 라인들을 남길 수 있다. 이러한 도전 라인들은 수분들에 의해 쉽게 부식될 수 있고, 또한 다른 근방의 도전 라인 트레이스들의 부식을 유발할 수 있다.
따라서, “마이크로-코팅층”으로 지칭될 수도 있는 보호층은 수분들 및 다른 외래 재료들에 대한 부가된 보호를 제공하기 위해 벤딩 부분 내 배선 트레이스들 위에 제공될 수 있다. 우수한 방수성을 갖는 것에 부가하여, 마이크로-코팅층은 플렉서블 디스플레이 (100) 의 벤딩 부분에 사용될 수 있도록 충분한 가요성을 가져야 한다. 또한, 마이크로-코팅층의 재료는 마이크로-코팅층 아래 컴포넌트들이 경화 프로세스 동안 손상되지 않도록, 제한된 시간 내에 저 에너지로 경화될 수 있어야 한다.
도 10a는 플렉서블 디스플레이 (100) 의 실시예에서 마이크로-코팅층 (132) 의 적합한 예시적인 구성의 개략적인 예시이다. 마이크로-코팅층 (132) 은 광-경화성 (예를 들어, UV 광, 가시 광, UV LED) 수지로서 제공될 수도 있고, 플렉서블 디스플레이 (100) 의 목표된 영역들 위에 코팅될 수도 있다. 이 점에서, 마이크로-코팅층 (132) 은 봉지층 (104 ) 과 인액티브 영역에 부착된 COF (134) 사이의 영역 위에 코팅된다. 그러나, 마이크로-코팅층 (132) 의 접착성에 따라, 마이크로-코팅층 (132) 은 봉지층 (104) 및/또는 COF (134) 로부터 탈착될 수 있다. 마이크로-코팅층 (132) 과 봉지층 (104) 또는 COF (134 ) 사이의 모든 개방 영역은 수분이 침투할 수 있는 결함 지점이 될 수도 있다.
따라서, 봉지층 (104) 과 마이크로-코팅층 (132) 사이의 향상된 시일링 (sealing) 을 위해 봉지층 (104) 의 상단 표면 내로 오버플로우하도록 (overflow) 마이크로-코팅층 (132) 이 코팅될 수도 있다. 마이크로-코팅층 (132) 과 봉지층 (104) 의 표면 사이의 부가적인 접촉 영역은 둘 사이에 보다 강력한 본딩을 제공할 수 있고, 플렉서블 디스플레이 (100) 의 벤딩 부분에서 배선 트레이스들의 크랙들 및 부식을 감소시킬 수 있다. 유사하게, 마이크로-코팅층 (132) 과 COF (134) 사이의 보다 강력한 본딩을 위해 마이크로-코팅층 (132) 은 COF (134) 의 적어도 일부분 상에 코팅될 수 있다.
도 10b 및 도 10c를 참조하면, 마이크로-코팅층 (132 ) 으로 코팅된 봉지층 (104) 의 폭 (오버플로우 W1로 표기됨) 및 마이크로-코팅층 (132) 으로 코팅된 COF (134) 의 폭 (오버플로우 W2로 표기됨) 은 특별히 제한되지 않고, 마이크로-코팅층 (132) 의 접착도에 따라 가변할 수도 있다. 도 10b에 도시된 바와 같이, 플렉서블 디스플레이 (100) 는 봉지층 (104) 상의 마이크로-코팅층 (132) 이 편광층 (110) 의 측벽으로부터 이격되는 부분을 포함할 수도 있다. 일부 실시예들에서, 도 10c에 도시된 바와 같이, 플렉서블 디스플레이 (100) 는 봉지층 (104) 상의 마이크로-코팅층 (132) 이 봉지층 (104) 상에 배치된 편광층 (110) 과 접촉하는 부분을 포함할 수도 있다. 일 적합한 구성에서, 마이크로-코팅층 (132) 이 2 개의 마주보는 코너부들 (“POL_CT”로 표기됨) 사이의 영역들의 봉지층 (104) 의 어떤 부분까지만 커버하는 동안, 마이크로-코팅층 (132) 은 2 개의 마주보는 코너부들에서 편광층 (110) 과 접촉할 수도 있다. 벤딩 프로세스 후에, 마이크로-코팅층 (132) 이 편광층 (110) 으로부터 이격되는 플렉서블 디스플레이 (100) 의 일부는 도 11a에 도시된 바와 같이 구성될 수도 있다. 마이크로-코팅층 (132) 이 편광층 (110) 과 접촉되도록 구성되는 영역에서, 플렉서블 디스플레이 (100) 는 도 11b에 도시된 바와 같이 구성될 수도 있다.
마이크로-코팅층 (132) 은 수지 형태로 디스펜싱되고, 디스펜싱된 표면 상에 확산될 수도 있다는 것을 주의해야 한다. 확산 다이나믹은 마이크로-코팅층 (132) 의 점도뿐만 아니라 마이크로-코팅층 (132) 이 디스펜싱되는 표면 에너지에 의존한다. 이와 같이, 봉지층 (104) 내로 오버플로우된 마이크로-코팅층 (132) 은 편광층 (110) 에 도달할 수도 있다. 마이크로-코팅층 (132) 이 편광층 (110 ) 의 측벽에 도달할 때, 마이크로-코팅층 (132) 은 편광층 (110) 의 측벽을 타고 넘을 수도 있다 (climb over). 마이크로-코팅층 (132) 의 이러한 측벽 웨팅 (wetting) 은 마이크로-코팅층 (132) 의 표면 위에 고르지 않은 에지들을 형성할 수 있고, 이는 이 위에 또 다른 층을 배치할 때 다양한 문제들을 유발할 수도 있다. 따라서, 타깃된 표면 상에 디스펜싱된 마이크로-코팅층 (132 ) 의 양은 봉지층 (104) 상의 마이크로-코팅층 (132) 의 폭을 제어하도록 조정될 수 있다.
마이크로-코팅층 (132) 은 벤딩 부분에서 플렉서블 디스플레이 (100) 의 중립면을 조정하도록 미리 결정된 두께로 코팅될 수도 있다. 보다 구체적으로, 마이크로-코팅층 (132) 에 의해 플렉서블 디스플레이 (100) 의 벤딩 부분에 부가된 두께는 배선 트레이스들의 평면이 중립면에 보다 가깝게 시프팅되도록 중립면을 변화시킬 수 있다.
일부 실시예들에서, 베이스층 (106) 의 표면으로부터 측정된, 봉지층 (104) 과 COF (134) 사이의 영역에서 마이크로-코팅층 (132) 의 두께는 베이스층 (106) 의 표면과 봉지층 (104) 의 상단 표면 사이의 거리와 실질적으로 동일할 수도 있다. 이러한 실시예들에서, 벤딩 허용 부분의 마이크로-코팅층 (132) 의 상단 표면과 봉지층 (104) 의 상단 표면 사이의 수직 거리는 25 μm 미만일 수도 있다.
슬릿 코팅, 젯팅 (jetting) 등과 같은, 다양한 수지 디스펜싱 방법들은 타깃된 표면에 마이크로-코팅층 (132) 의 디스펜싱을 위해 사용될 수도 있다. 예로서, 마이크로-코팅층 (132) 은 젯팅 밸브를 사용함으로써 디스펜싱될 수 있다. 젯팅 밸브(들)로부터의 디스펜싱 속도는 타깃된 표면에서 마이크로-코팅층 (132) 의 두께 및 확산 사이즈의 정확한 제어를 위해 코팅 프로세스 동안 조정될 수도 있다. 또한, 부가적인 수의 젯팅 밸브들 이 마이크로-코팅층 (132) 이 UV 조사를 통해 경화되기 전에 확산량을 제한하고 디스펜싱 시간을 감소시키도록 사용될 수도 있다.본 개시의 개념들 및 교시들이 OLED 디스플레이 기술을 참조하여 앞에서 설명되었지만, 몇몇 특징들이 전기영동, 액정, 일렉트로크로믹, 플렉서블 기판들 상에 별도의 무기 LED 에미터들을 포함하는 디스플레이들, 전기유체 (electrofluidic), 및 일렉트로키네틱스 (electrokinetic) 디스플레이들과 같은 임의의 형태의 플렉서블 디스플레이 기술뿐만 아니라 임의의 다른 적합한 형태의 디스플레이 기술로 확장가능할 수도 있다는 것이 이해될 것이다.
상술한 바와 같이, 보더 사이즈를 감소시키고/시키거나 조립된 및/또는 플렉서블 디스플레이 (100) 의 측면을 활용하기 위해, 플렉서블 디스플레이 (100) 는, 부분 또는 부분들의 벤딩을 허용하도록 구성된 복수의 혁신들을 포함할 수도 있다. 일부 실시예들에서, 벤딩은, 액티브 디스플레이 컴포넌트들 또는 주변 회로들보다는 도전 라인 트레이스 (120) 만을 갖는 벤딩 부분 및/또는 벤딩 허용 부분에서만 수행될 수도 있다. 일부 실시예들에서, 베이스층 (106) 및/또는 벤딩될 다른 층들 및 기판들은 파손없이 벤딩을 촉진하도록 가열될 수도 있고, 이어서 벤딩 후에 냉각될 수도 있다. 일부 실시예들에서, 패시브 유전체층을 갖는 스테인레스 스틸과 같은 금속들은 상기 논의된 폴리머 재료들 대신 베이스층 (106) 으로서 사용될 수도 있다. 감지 컴포넌트들의 파손 없이 적절한 벤딩을 보장하기 위해 몇몇 식별 및 정렬 프로세스 단계들에서 광학적 마커들이 사용될 수도 있다. 플렉서블 디스플레이 (100) 의 컴포넌트들은 컴포넌트들 및 상호연결부들에 대한 손상을 모니터링하기 위해 디바이스 어셈블리 및 벤딩 동작들 동안 능동적으로 모니터링될 수도 있다.
도전 라인 트레이스 (120) 및/또는 절연층들의 구성 재료들은 벤딩 영역에서 파손하는 대신 스트레칭 및/또는 압축을 촉진하도록 최적화될 수도 있다. 도전 라인 트레이스 (120) 의 두께는 플렉서블 디스플레이 (100) 의 벤딩 허용 부분 또는 벤딩 부분에 대한 응력들을 최소화하도록 벤딩 영역 및/또는 벤딩 허용 부분에 걸쳐 가변할 수도 있다. 도전 라인 트레이스 (120) 및 절연층들의 트레이스 설계는 벤딩 방향 (즉, 굽혀진 부분의 접선 벡터), 미엔더링 (meandering), 너울 (waving) 로부터 기울어질 수도 있고, 그렇지 않으면 벤딩 동안 단절 가능성을 감소시키기도록 배열될 수도 있다. 도전 라인 트레이스 (120), 절연층들 및 다른 컴포넌트들의 두께는 벤딩 동안 파손을 감소시키도록 플렉서블 디스플레이 (100) 의 벤딩 부분에서 변경되거나 최적화될 수도 있다. 개시된 봉지층들에 부가하여 컴포넌트들 위에 보호 마이크로 코팅층(들)을 부가함으로써 벤딩 응력들이 감소될 수도 있다. 도전필름들은 벤딩 전, 벤딩 동안, 또는 벤딩 후에 리페어 프로세스에서 도전 라인 트레이스 (120) 에 적용될 수도 있다. 게다가, 플렉서블 디스플레이 (100) 의 실질적으로 평탄한 영역의 도전 라인 트레이스 (120) 를 위한 구성 재료 및/또는 구조는 벤딩 부분 및/또는 벤딩 허용 부분의 도전 라인 트레이스 (120) 와 상이할 수도 있다.
이들 다양한 양태들, 실시예들, 구현예들 또는 설명된 실시예들의 특징들은 개별적으로 또는 임의의 조합으로 사용될 수 있다. 전술한 바는 본 발명의 원리들의 단순한 예시이고, 다양한 수정들이 본 발명의 범위로부터 벗어나지 않고 당업자에 의해 이루어질 수 있다.

Claims (19)

  1. 디스플레이 장치에 있어서,
    상기 디스플레이 장치의 제 1 부분과 제 2 부분 사이에 벤딩 허용 부분을 갖는 베이스층;
    상기 베이스층 위의 버퍼층;
    상기 버퍼층 위의 OLED (organic light-emitting diode) 소자;
    상기 제1 부분과 제2 부분 사이의 벤딩 허용 부분을 가로지르는 스트레인 감소 트레이스 설계를 가지는 배선 트레이스; 및
    상기 배선 트레이스 및 상기 벤딩 허용 부분 위에 배치되는 유기-코팅층을 포함하고,
    상기 벤딩 허용 부분의 보다 용이한 벤딩을 가능하게 하도록 상기 벤딩 허용 부분이 에칭된 버퍼층 부분을 가지는, 디스플레이 장치.
  2. 제1항에 있어서,
    상기 유기-코팅층은 상기 에칭된 버퍼층 부분에서 상기 버퍼층 없이 상기 벤딩 허용 부분의 베이스층 위에 위치하는, 디스플레이 장치.
  3. 제2항에 있어서,
    상기 벤딩 허용 부분으로 확장되고, 상기 베이스층의 제1 부분 위에 배치되는 커버를 더 포함하는, 디스플레이 장치.
  4. 제2항에 있어서,
    상기 제1 부분은 액티브 영역 및 제1 라우팅 영역을 가지고,
    상기 제2 부분은 제2 라우팅 영역 및 패드 영역을 가지는, 디스플레이 장치.
  5. 제4항에 있어서,
    상기 배선 트레이스는 상기 제1 라우팅 영역 및 상기 제2 라우팅 영역 사이의 벤딩 허용 부분을 가로지르는, 디스플레이 장치.
  6. 제5항에 있어서,
    상기 유기-코팅층은 상기 제1 라우팅 영역 및 상기 제2 라우팅 영역 상에 위치하는, 디스플레이 장치.
  7. 제6항에 있어서,
    상기 유기-코팅층은 상기 제1 라우팅 영역에서 상기 제2 라우팅 영역 보다 두꺼운 프로파일을 갖는, 디스플레이 장치.
  8. 제6항에 있어서,
    상기 유기-코팅층은 고르지 않은 표면은 갖는, 디스플레이 장치.
  9. 디스플레이 장치에 있어서,
    상기 디스플레이 장치의 제1 부분과 제2 부분 사이에 벤딩 허용 부분을 가지고, 상기 제1 부분이 액티브 영역 및 제1 라우팅 영역을 가지며, 상기 제2 부분이 제2 라우팅 영역 및 패드 영역을 가지는 베이스층;
    상기 베이스층 위의 버퍼층;
    상기 버퍼층 위의 OLED (organic light-emitting diode) 소자;
    상기 제1 라우팅 영역 및 상기 제2 라우팅 영역 사이의 벤딩 허용 부분을 가로지르는 스트레인 감소 트레이스 설계를 가지고, 제약된 영역에서 보강된 부분에 병합되는 복수의 배선 트레이스들;
    상기 복수의 배선 트레이스들 및 상기 벤딩 허용 부분 위에 배치되는 유기-코팅층을 포함하고,
    상기 벤딩 허용 부분의 보다 용이한 벤딩을 가능하게 하도록 상기 벤딩 허용 부분이 에칭된 버퍼층 부분을 가지는, 디스플레이 장치.
  10. 제9항에 있어서,
    상기 유기-코팅층은 상기 에칭된 버퍼층 부분에서 상기 버퍼층 없이 상기 벤딩 허용 부분의 베이스층 위에 위치하는, 디스플레이 장치.
  11. 제10항에 있어서,
    상기 베이스층의 액티브 영역 위의 버퍼층은 SiNx 층 및 SiO2 층의 복수의 스택들을 포함하는, 디스플레이 장치.
  12. 제10항에 있어서,
    상기 제약된 영역은 상기 베이스층이 벤딩되는 벤딩 스팟에 인접하게 위치하는, 디스플레이 장치.
  13. 제12항에 있어서,
    상기 벤딩 스팟이 상기 벤딩 허용 부분의 시작부 또는 시작부 바로 외부에 위치하는, 디스플레이 장치.
  14. 제10항에 있어서,
    상기 보강된 부분은 상기 스트레인 감소 트레이스 설계를 가지는 복수의 배선 트레이스들의 폭보다 넓은 폭을 가지는, 디스플레이 장치.
  15. 디스플레이 장치에 있어서,
    상기 디스플레이 장치의 제1 부분과 제2 부분 사이에 벤딩 허용 부분을 가지고, 상기 제1 부분이 액티브 영역 및 제1 라우팅 영역을 가지며, 상기 제2 부분이 제2 라우팅 영역 및 패드 영역을 가지는 베이스층;
    상기 베이스층 위의 버퍼층;
    상기 버퍼층 위의 OLED (organic light-emitting diode) 소자;
    상기 제1 라우팅 영역 및 상기 제2 라우팅 영역 사이의 벤딩 허용 부분을 가로지르는 스트레인 감소 트레이스 설계를 가지고, 상기 벤딩 허용 부분이 벤딩되면 벤딩 응력에 대해 지속되도록 상기 복수의 배선 트레이스들을 보다 단단하게 하기 위해 제약된 영역에서 보강된 부분에 병합되는 복수의 배선 트레이스들;
    수분들 및 다른 외래 재료들에 대한 보호를 제공하기 위해 상기 복수의 배선 트레이스 및 상기 베이스층의 벤딩 허용 부분 위에 배치되는 유기-코팅층을 포함하고,
    상기 벤딩 허용 부분의 보다 용이한 벤딩을 가능하게 하도록 상기 벤딩 허용 부분이 에칭된 버퍼층 부분을 가지는, 디스플레이 장치.
  16. 제15항에 있어서,
    상기 유기-코팅층은 상기 에칭된 버퍼층 부분에서 상기 버퍼층 없이 상기 벤딩 허용 부분의 베이스층 위에 위치하는, 디스플레이 장치.
  17. 제16항에 있어서,
    상기 스트레인 감소 트레이스 설계를 갖는 복수의 배선 트레이스들은 상기 벤딩 응력에 대하여 상기 복수의 배선 트레이스들에 증가된 보호를 제공하는, 디스플레이 장치.
  18. 제16항에 있어서,
    상기 제약된 영역은 벤딩 스팟 또는 상기 벤딩 허용 부분의 시작부 바로 외부에 인접하게 위치하는, 디스플레이 장치.
  19. 제16항에 있어서,
    상기 보강된 부분은 상기 스트레인 감소 트레이스 설계를 가지는 복수의 배선 트레이스들의 폭보다 넓은 폭을 가지는, 디스플레이 장치.
KR1020187010783A 2014-08-31 2015-08-28 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법 KR101936109B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/474,154 US9276055B1 (en) 2014-08-31 2014-08-31 Display device with micro cover layer and manufacturing method for the same
US14/474,154 2014-08-31
PCT/KR2015/009075 WO2016032286A1 (en) 2014-08-31 2015-08-28 Display device with micro cover layer and manufacturing method for the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020177035514A Division KR101882159B1 (ko) 2014-08-31 2015-08-28 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법

Publications (2)

Publication Number Publication Date
KR20180041775A true KR20180041775A (ko) 2018-04-24
KR101936109B1 KR101936109B1 (ko) 2019-01-08

Family

ID=54932482

Family Applications (5)

Application Number Title Priority Date Filing Date
KR1020177006519A KR101866705B1 (ko) 2014-08-31 2015-08-28 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법
KR1020187010783A KR101936109B1 (ko) 2014-08-31 2015-08-28 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법
KR1020187036952A KR101992452B1 (ko) 2014-08-31 2015-08-28 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법
KR1020187012349A KR20180049226A (ko) 2014-08-31 2015-08-28 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법
KR1020177035514A KR101882159B1 (ko) 2014-08-31 2015-08-28 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020177006519A KR101866705B1 (ko) 2014-08-31 2015-08-28 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020187036952A KR101992452B1 (ko) 2014-08-31 2015-08-28 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법
KR1020187012349A KR20180049226A (ko) 2014-08-31 2015-08-28 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법
KR1020177035514A KR101882159B1 (ko) 2014-08-31 2015-08-28 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법

Country Status (5)

Country Link
US (10) US9276055B1 (ko)
EP (2) EP3848974A3 (ko)
KR (5) KR101866705B1 (ko)
CN (4) CN108538897B (ko)
WO (1) WO2016032286A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023177124A1 (ko) * 2022-03-16 2023-09-21 삼성전자 주식회사 평면 영역 및 변형 영역을 포함하는 디스플레이 장치

Families Citing this family (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879831B1 (ko) * 2012-03-21 2018-07-20 삼성디스플레이 주식회사 플렉시블 표시 장치, 유기 발광 표시 장치 및 플렉시블 표시 장치용 원장 기판
US9564455B2 (en) 2014-04-10 2017-02-07 Innolux Corporation Display panel
TWI613580B (zh) * 2017-01-25 2018-02-01 財團法人工業技術研究院 感測顯示裝置
US10411078B2 (en) * 2014-04-14 2019-09-10 Industrial Technology Research Institute Sensing display apparatus
US9276055B1 (en) 2014-08-31 2016-03-01 Lg Display Co., Ltd. Display device with micro cover layer and manufacturing method for the same
EP3174034A4 (en) * 2014-09-02 2018-04-04 Shenzhen Royole Technologies Co. Ltd. Display module and electronic device having said display module
KR101641424B1 (ko) * 2014-09-11 2016-07-20 엘지전자 주식회사 단말기 및 그 동작 방법
KR102218649B1 (ko) * 2014-09-16 2021-02-23 삼성디스플레이 주식회사 롤러블 디스플레이 장치
US9425418B2 (en) * 2014-09-30 2016-08-23 Lg Display Co., Ltd. Flexible display device with bend stress reduction member and manufacturing method for the same
JP2016081051A (ja) * 2014-10-10 2016-05-16 株式会社半導体エネルギー研究所 機能パネル、装置、情報処理装置
US9627463B2 (en) 2014-11-28 2017-04-18 Lg Display Co., Ltd. Flexible display device with space reducing wire configuration
US9706607B2 (en) * 2014-12-10 2017-07-11 Lg Display Co., Ltd. Flexible display device with multiple types of micro-coating layers
US9490312B2 (en) * 2014-12-22 2016-11-08 Lg Display Co., Ltd. Organic light emitting diode display device with flexible printed circuit film
KR102352284B1 (ko) * 2015-02-02 2022-01-18 삼성디스플레이 주식회사 롤러블 디스플레이 장치
KR102345004B1 (ko) * 2015-02-26 2021-12-29 삼성디스플레이 주식회사 유기 발광 표시 장치
JP6404158B2 (ja) 2015-03-30 2018-10-10 株式会社ジャパンディスプレイ 表示装置
WO2017010329A1 (ja) * 2015-07-10 2017-01-19 シャープ株式会社 エレクトロルミネッセンス装置
US10181504B2 (en) * 2015-10-14 2019-01-15 Apple Inc. Flexible display panel with redundant bent signal lines
KR102577239B1 (ko) * 2015-12-16 2023-09-08 엘지디스플레이 주식회사 플렉서블 디스플레이 장치
US10361385B2 (en) 2016-02-12 2019-07-23 Samsung Display Co., Ltd. Display device
KR102643637B1 (ko) * 2016-03-02 2024-03-06 삼성디스플레이 주식회사 디스플레이 장치
CN107180808B (zh) * 2016-03-09 2019-07-19 昆山工研院新型平板显示技术中心有限公司 一种导线及制作导线的方法
KR101821782B1 (ko) * 2016-03-11 2018-01-25 삼성디스플레이 주식회사 디스플레이 장치 제조방법 및 디스플레이 장치
KR102505879B1 (ko) * 2016-03-24 2023-03-06 삼성디스플레이 주식회사 디스플레이 장치
KR102479508B1 (ko) * 2016-03-31 2022-12-20 삼성디스플레이 주식회사 표시 장치
JP6756508B2 (ja) 2016-04-04 2020-09-16 株式会社ジャパンディスプレイ 表示装置
JP6930007B2 (ja) * 2016-04-04 2021-09-01 株式会社ジャパンディスプレイ フレキシブル基板
CN105870152A (zh) * 2016-04-06 2016-08-17 昆山工研院新型平板显示技术中心有限公司 柔性amoled显示装置及柔性显示基板
JP6695727B2 (ja) * 2016-04-08 2020-05-20 株式会社ジャパンディスプレイ 表示装置
US10670892B2 (en) 2016-04-22 2020-06-02 E Ink Corporation Foldable electro-optic display apparatus
CN106024832A (zh) * 2016-05-30 2016-10-12 刘华英 显示装置及制备方法、电子设备
KR102610025B1 (ko) * 2016-06-02 2023-12-06 삼성디스플레이 주식회사 디스플레이 장치
JP6684167B2 (ja) * 2016-06-27 2020-04-22 株式会社ジャパンディスプレイ 表示装置
KR102487061B1 (ko) * 2016-06-30 2023-01-12 삼성디스플레이 주식회사 표시 장치
CN107621665B (zh) * 2016-07-13 2020-09-22 群创光电股份有限公司 显示设备
JP2018010216A (ja) * 2016-07-15 2018-01-18 株式会社ジャパンディスプレイ 表示装置及びその製造方法
CN105977400B (zh) * 2016-07-21 2018-01-26 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
JP6774243B2 (ja) 2016-07-21 2020-10-21 株式会社ジャパンディスプレイ 表示装置の製造方法、及び表示装置
US10153322B2 (en) * 2016-07-29 2018-12-11 Lg Display Co., Ltd. Organic light emitting display device
KR20180023155A (ko) 2016-08-24 2018-03-07 삼성디스플레이 주식회사 유기발광 표시장치
KR102603654B1 (ko) * 2016-08-24 2023-11-17 삼성디스플레이 주식회사 표시 장치
JP6962673B2 (ja) * 2016-09-12 2021-11-05 株式会社ジャパンディスプレイ 樹脂基板
KR102289734B1 (ko) * 2016-09-22 2021-08-12 애플 인크. 언더컷 플라스틱 프레임을 갖는 디스플레이 모듈 및 유리
WO2018057645A1 (en) 2016-09-22 2018-03-29 Apple Inc. Battery architecture in an electronic device
KR102611455B1 (ko) * 2016-09-23 2023-12-08 삼성디스플레이 주식회사 표시 장치
JP2018054736A (ja) * 2016-09-27 2018-04-05 株式会社ジャパンディスプレイ 表示装置
US20180090720A1 (en) * 2016-09-27 2018-03-29 Universal Display Corporation Flexible OLED Display Module
JP6775376B2 (ja) * 2016-10-14 2020-10-28 株式会社ジャパンディスプレイ 表示装置
JP6815159B2 (ja) * 2016-10-14 2021-01-20 株式会社ジャパンディスプレイ 表示装置
JP6789058B2 (ja) * 2016-10-14 2020-11-25 株式会社ジャパンディスプレイ 表示装置、および表示装置の作製方法
KR102496467B1 (ko) * 2016-11-23 2023-02-06 엘지디스플레이 주식회사 플렉서블 표시장치
KR102609533B1 (ko) * 2016-11-30 2023-12-05 엘지디스플레이 주식회사 표시장치
JP6945994B2 (ja) * 2016-12-05 2021-10-06 株式会社ジャパンディスプレイ 表示装置
CN108172174B (zh) 2016-12-07 2020-04-07 元太科技工业股份有限公司 像素阵列基板
KR20180067754A (ko) * 2016-12-12 2018-06-21 삼성디스플레이 주식회사 표시 장치
KR102588423B1 (ko) * 2016-12-22 2023-10-12 삼성전자주식회사 벤디드 디스플레이를 통한 부품 실장 구조를 갖는 전자 장치
KR20180073349A (ko) * 2016-12-22 2018-07-02 엘지디스플레이 주식회사 유기 발광 표시 장치
CN113534522A (zh) * 2016-12-23 2021-10-22 群创光电股份有限公司 显示设备
KR20180075733A (ko) * 2016-12-26 2018-07-05 엘지디스플레이 주식회사 플렉서블 표시장치
CN206322700U (zh) * 2017-01-09 2017-07-11 昆山工研院新型平板显示技术中心有限公司 柔性显示器
KR102329830B1 (ko) 2017-01-10 2021-11-23 삼성디스플레이 주식회사 유기 발광 표시 장치
US10312228B2 (en) * 2017-01-25 2019-06-04 Innolux Corporation Display device
JP2018124501A (ja) * 2017-02-03 2018-08-09 株式会社ジャパンディスプレイ 表示装置
JP2018155999A (ja) * 2017-03-21 2018-10-04 株式会社ジャパンディスプレイ 表示装置
DE112018001677T5 (de) * 2017-03-31 2019-12-19 Semiconductor Energy Laboratory Co., Ltd. Anzeigevorrichtung und Herstellungsverfahren dieser
CN110459527A (zh) * 2017-04-28 2019-11-15 京东方科技集团股份有限公司 走线结构、显示基板及显示装置
CN107039397B (zh) * 2017-04-28 2019-11-01 京东方科技集团股份有限公司 走线结构、显示基板及显示装置
CN107103843B (zh) 2017-05-15 2019-09-06 京东方科技集团股份有限公司 一种柔性显示器的制备方法、柔性显示器和显示设备
JP6983537B2 (ja) * 2017-05-16 2021-12-17 株式会社ジャパンディスプレイ フレキシブル基板
JP2018194632A (ja) * 2017-05-16 2018-12-06 株式会社ジャパンディスプレイ 表示装置、及び表示装置の製造方法
KR102381286B1 (ko) * 2017-05-18 2022-03-31 삼성디스플레이 주식회사 표시 장치
KR102343794B1 (ko) * 2017-05-24 2021-12-28 삼성디스플레이 주식회사 표시 장치
TWI766655B (zh) * 2017-06-08 2022-06-01 美商谷歌有限責任公司 具有薄且高模數層之折疊式顯示器中性軸管理
US10693087B2 (en) * 2017-06-23 2020-06-23 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel with a metal wire array disposed on the bending region of a flexible substrate
CN107331686A (zh) * 2017-06-30 2017-11-07 武汉华星光电半导体显示技术有限公司 Oled显示面板、线路结构及oled显示设备
JP6843710B2 (ja) * 2017-07-12 2021-03-17 株式会社ジャパンディスプレイ 表示装置、および表示装置の製造方法
EP3655816A4 (en) * 2017-07-18 2021-01-13 BOE Technology Group Co., Ltd. DISPLAY PANEL, DISPLAY DEVICE, METHOD OF DETECTING Cracks IN THE SEALING LAYER OF A DISPLAY PANEL, AND METHOD OF MANUFACTURING A DISPLAY PANEL
US10649267B2 (en) * 2017-07-19 2020-05-12 Innolux Corporation Display device and manufacturing method thereof
CN107425041B (zh) * 2017-07-27 2020-01-31 上海天马微电子有限公司 一种触控显示面板、装置及制作方法
US10721825B2 (en) 2017-08-18 2020-07-21 Google Llc Bent display panel with electrical lines for a sensor
KR102369730B1 (ko) * 2017-08-31 2022-03-02 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102411537B1 (ko) * 2017-09-06 2022-06-22 삼성디스플레이 주식회사 디스플레이 장치 제조방법 및 디스플레이 장치
TWI696059B (zh) * 2017-10-05 2020-06-11 廣州印芯半導體技術有限公司 電子裝置以及指紋感測方法
CN107705716B (zh) * 2017-10-27 2019-08-06 京东方科技集团股份有限公司 一种oled模组以及显示装置
KR102588343B1 (ko) 2017-10-27 2023-10-11 엘지디스플레이 주식회사 터치 디스플레이 장치
KR102401414B1 (ko) 2017-10-31 2022-05-23 엘지디스플레이 주식회사 디스플레이 장치
JP7028616B2 (ja) * 2017-11-22 2022-03-02 株式会社ジャパンディスプレイ 表示装置
KR102430794B1 (ko) * 2017-11-30 2022-08-08 엘지디스플레이 주식회사 디스플레이 장치
KR102421528B1 (ko) * 2017-11-30 2022-07-14 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102441783B1 (ko) * 2017-12-05 2022-09-08 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN108054188B (zh) * 2017-12-20 2020-11-20 上海天马微电子有限公司 柔性显示装置
US10643523B2 (en) * 2018-01-24 2020-05-05 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display module and electronic apparatus
KR102550504B1 (ko) * 2018-02-09 2023-07-03 삼성전자주식회사 복수개의 배선층을 벤딩 영역에 포함하는 디스플레이
KR102524340B1 (ko) * 2018-02-22 2023-04-25 삼성디스플레이 주식회사 플렉서블 표시 장치 및 이의 제조 방법
CN108493212A (zh) * 2018-03-13 2018-09-04 武汉华星光电半导体显示技术有限公司 柔性显示结构及电子设备
US10720589B2 (en) * 2018-04-03 2020-07-21 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Flexible display device and manufacturing method thereof
KR102640726B1 (ko) * 2018-04-18 2024-02-27 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102652997B1 (ko) * 2018-05-02 2024-04-01 삼성디스플레이 주식회사 디스플레이 장치
CN108511503B (zh) * 2018-05-28 2020-11-24 京东方科技集团股份有限公司 一种电致发光显示面板、其制作方法及显示装置
CN108735103B (zh) * 2018-05-31 2019-09-17 京东方科技集团股份有限公司 一种显示背板
CN108875662B (zh) * 2018-06-26 2021-07-27 武汉天马微电子有限公司 一种显示面板及显示装置
KR102578423B1 (ko) * 2018-07-03 2023-09-13 엘지디스플레이 주식회사 다중패널 유기발광 표시장치
CN108932922B (zh) * 2018-07-03 2021-05-14 京东方科技集团股份有限公司 一种修复能力测试装置及方法
KR102577674B1 (ko) 2018-07-04 2023-09-15 삼성디스플레이 주식회사 전자 장치
CN108766245B (zh) * 2018-07-18 2023-10-20 昆山国显光电有限公司 柔性显示屏和显示装置
CN108985248B (zh) * 2018-07-26 2020-10-30 武汉天马微电子有限公司 一种显示面板
CN109037295A (zh) * 2018-08-03 2018-12-18 武汉华星光电半导体显示技术有限公司 柔性阵列基板和显示面板
KR102538829B1 (ko) * 2018-09-18 2023-06-02 삼성디스플레이 주식회사 전자 장치
KR102652076B1 (ko) * 2018-10-05 2024-03-27 엘지디스플레이 주식회사 표시장치
CN111048549B (zh) * 2018-10-11 2022-08-16 上海和辉光电股份有限公司 显示面板、显示装置及显示面板的制备方法
CN109545823A (zh) * 2018-10-23 2019-03-29 武汉华星光电半导体显示技术有限公司 阵列基板、该阵列基板的制备方法及显示面板
KR102563783B1 (ko) * 2018-11-13 2023-08-04 엘지디스플레이 주식회사 표시장치
CN109389906B (zh) * 2018-11-26 2020-05-12 云谷(固安)科技有限公司 柔性显示面板和显示装置
CN111262965A (zh) * 2018-11-30 2020-06-09 北京小米移动软件有限公司 电子设备
CN109696991A (zh) * 2018-12-06 2019-04-30 信利光电股份有限公司 一种oled触控显示模组的制作方法
KR20200069527A (ko) * 2018-12-07 2020-06-17 엘지디스플레이 주식회사 플렉서블 표시장치
CN109546006B (zh) * 2018-12-17 2020-09-08 武汉华星光电半导体显示技术有限公司 柔性oled显示面板及其制作方法
KR102612390B1 (ko) * 2018-12-19 2023-12-12 엘지디스플레이 주식회사 표시 패널 및 표시 장치
TWI816727B (zh) * 2018-12-26 2023-10-01 晶元光電股份有限公司 發光二極體顯示器
CN109614012A (zh) * 2019-01-25 2019-04-12 武汉华星光电半导体显示技术有限公司 偏光触控构件及制备方法、柔性显示装置
CN109817097A (zh) * 2019-01-31 2019-05-28 武汉华星光电半导体显示技术有限公司 柔性显示面板
US11056630B2 (en) * 2019-02-13 2021-07-06 Samsung Electronics Co., Ltd. Display module having glass substrate on which side wirings are formed and manufacturing method of the same
KR102604070B1 (ko) 2019-02-14 2023-11-20 삼성디스플레이 주식회사 표시 장치
US11087661B2 (en) 2019-03-05 2021-08-10 Innolux Corporation Display device having curved portion
KR20200110494A (ko) 2019-03-13 2020-09-24 삼성디스플레이 주식회사 표시 장치 및 표시 장치 제조 방법
KR20200115772A (ko) 2019-03-26 2020-10-08 삼성디스플레이 주식회사 표시모듈
KR102441330B1 (ko) * 2019-03-27 2022-09-13 삼성디스플레이 주식회사 가요성 표시 장치
WO2020204553A1 (ko) 2019-03-29 2020-10-08 삼성전자 주식회사 윈도우의 보호를 위한 코팅을 포함하는 전자 장치
CN110046611B (zh) * 2019-04-29 2021-05-07 上海天马微电子有限公司 一种显示面板和显示装置
CN113744650B (zh) * 2019-04-29 2023-06-16 昆山工研院新型平板显示技术中心有限公司 一种阵列基板及柔性显示装置
WO2020227940A1 (zh) * 2019-05-14 2020-11-19 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN110164874B (zh) * 2019-06-04 2021-06-22 上海天马微电子有限公司 柔性显示模组、显示装置及柔性显示模组的制作方法
CN110246882B (zh) * 2019-06-24 2021-04-20 昆山国显光电有限公司 显示面板、显示装置及显示面板的制造方法
US11256353B2 (en) * 2019-06-25 2022-02-22 Dongwoo Fine-Chem Co., Ltd. Touch sensor, and window laminate and image display device including the same
CN110276187B (zh) * 2019-06-26 2022-01-18 Oppo广东移动通信有限公司 控制方法、电子设备及非易失性计算机可读存储介质
CN110444679B (zh) * 2019-06-27 2021-12-07 昆山国显光电有限公司 一种显示面板和显示装置
KR20210005368A (ko) * 2019-07-03 2021-01-14 삼성디스플레이 주식회사 표시장치
CN110335548B (zh) * 2019-07-17 2020-11-10 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
KR20210018700A (ko) 2019-08-09 2021-02-18 삼성디스플레이 주식회사 접착 부재 및 이를 포함한 표시장치
KR20210035959A (ko) 2019-09-24 2021-04-02 삼성디스플레이 주식회사 디스플레이 장치
TWI712166B (zh) * 2019-10-09 2020-12-01 承洺股份有限公司 微發光二極體顯示器之光學貼合方法
KR20210049326A (ko) * 2019-10-25 2021-05-06 엘지디스플레이 주식회사 플렉서블 표시 장치
CN110767730A (zh) * 2019-10-31 2020-02-07 云谷(固安)科技有限公司 显示面板及其制备方法、显示装置
CN110764302A (zh) * 2019-10-31 2020-02-07 京东方科技集团股份有限公司 一种显示面板及其制备方法、对位系统
CN110854292B (zh) * 2019-11-08 2022-06-17 京东方科技集团股份有限公司 一种显示装置及制作方法
KR20210059329A (ko) 2019-11-15 2021-05-25 엘지디스플레이 주식회사 표시 장치
CN110942720B (zh) * 2019-11-21 2022-01-04 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN210489620U (zh) * 2019-12-02 2020-05-08 京东方科技集团股份有限公司 显示基板和显示装置
CN110993664B (zh) * 2019-12-05 2022-05-31 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
US11417257B2 (en) * 2019-12-26 2022-08-16 Lg Display Co., Ltd. Display device
KR20210085356A (ko) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 터치 디스플레이 장치
CN111258453A (zh) * 2020-01-15 2020-06-09 京东方科技集团股份有限公司 一种触控面板、其制作方法及显示装置
KR20210103027A (ko) 2020-02-12 2021-08-23 삼성디스플레이 주식회사 폴더블 표시 장치
KR20210119001A (ko) * 2020-03-23 2021-10-05 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR20210122955A (ko) 2020-04-01 2021-10-13 삼성디스플레이 주식회사 표시 장치
CN111725265B (zh) * 2020-05-29 2022-05-31 武汉天马微电子有限公司 显示模组和显示装置
WO2022025311A1 (ko) * 2020-07-29 2022-02-03 엘지전자 주식회사 이동 단말기
KR20220020090A (ko) * 2020-08-11 2022-02-18 엘지디스플레이 주식회사 표시패널 및 이를 포함하는 표시장치
US11502107B2 (en) 2020-08-19 2022-11-15 Innolux Corporation Crack stopper structure in electronic device
KR20220022926A (ko) * 2020-08-19 2022-03-02 삼성디스플레이 주식회사 표시 장치
KR20220029015A (ko) * 2020-09-01 2022-03-08 엘지디스플레이 주식회사 표시 장치
CN112116879A (zh) * 2020-10-14 2020-12-22 武汉华星光电半导体显示技术有限公司 多曲面显示装置
WO2022141003A1 (zh) * 2020-12-28 2022-07-07 昆山国显光电有限公司 一种柔性显示面板以及显示设备
CN113534516A (zh) * 2021-06-16 2021-10-22 北海惠科光电技术有限公司 阵列基板、显示装置及显示装置的制作方法
CN113937241B (zh) * 2021-10-15 2024-05-10 京东方科技集团股份有限公司 一种柔性显示基板、其制作方法及显示面板
KR20230065438A (ko) * 2021-11-04 2023-05-12 삼성디스플레이 주식회사 표시 장치 및 그것을 포함하는 전자 장치
JP7293437B1 (ja) 2022-03-11 2023-06-19 レノボ・シンガポール・プライベート・リミテッド ディスプレイアセンブリ及び電子機器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273476A (ja) * 2002-03-12 2003-09-26 Seiko Epson Corp 実装構造体及びその製造方法、電気光学装置、並びに電子機器
JP2008076803A (ja) * 2006-09-22 2008-04-03 Seiko Epson Corp 発光装置および電子機器
KR20140085956A (ko) * 2012-12-28 2014-07-08 엘지디스플레이 주식회사 플렉서블 표시 장치 및 플렉서블 표시 장치 제조 방법
KR20140099174A (ko) * 2013-02-01 2014-08-11 엘지디스플레이 주식회사 플렉서블 유기 발광 표시 장치 및 플렉서블 유기 발광 표시 장치의 제조 방법
KR20140099164A (ko) * 2013-02-01 2014-08-11 엘지디스플레이 주식회사 플렉서블 디스플레이 기판, 플렉서블 유기 발광 표시 장치 및 플렉서블 유기 발광 표시 장치 제조 방법
KR20140103025A (ko) * 2013-02-15 2014-08-25 엘지디스플레이 주식회사 플렉서블 유기 발광 표시 장치 및 플렉서블 유기 발광 표시 장치 제조 방법

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW453449U (en) * 1995-11-16 2001-09-01 Hitachi Ltd LCD display panel with buckling driving multi-layer bendable PCB
EP1604347A1 (en) * 2003-03-12 2005-12-14 Koninklijke Philips Electronics N.V. Light emissive active matrix display devices with optical feedback effective on the timing, to counteract ageing
JP2004356568A (ja) * 2003-05-30 2004-12-16 Optrex Corp フレキシブル回路基板
US6927344B1 (en) * 2004-02-27 2005-08-09 Motorola, Inc. Flexible circuit board assembly
JP4776393B2 (ja) * 2006-02-20 2011-09-21 株式会社 日立ディスプレイズ 有機el表示装置
KR101100999B1 (ko) * 2009-01-13 2011-12-29 삼성모바일디스플레이주식회사 씨모스 박막트랜지스터 및 그 제조방법과 이를 구비한 유기전계발광 표시장치
KR101048965B1 (ko) * 2009-01-22 2011-07-12 삼성모바일디스플레이주식회사 유기 전계발광 표시장치
KR20110068169A (ko) 2009-12-15 2011-06-22 엘지디스플레이 주식회사 플렉서블 표시장치의 제조방법
JP5720222B2 (ja) 2010-12-13 2015-05-20 ソニー株式会社 表示装置及び電子機器
KR20130076399A (ko) * 2011-12-28 2013-07-08 삼성디스플레이 주식회사 디스플레이 장치
US9419065B2 (en) * 2012-08-07 2016-08-16 Apple Inc. Flexible displays
KR101965257B1 (ko) * 2012-10-08 2019-04-04 삼성디스플레이 주식회사 플렉시블 표시 장치
KR101956917B1 (ko) * 2012-11-22 2019-03-12 엘지디스플레이 주식회사 터치 센싱장치 내장형 유기 발광 다이오드 표시장치
US9349969B2 (en) 2013-02-01 2016-05-24 Lg Display Co., Ltd. Electronic devices with flexible display and method for manufacturing the same
KR102222680B1 (ko) 2013-02-01 2021-03-03 엘지디스플레이 주식회사 플렉서블 디스플레이 기판, 플렉서블 유기 발광 표시 장치 및 플렉서블 유기 발광 표시 장치 제조 방법
US9740035B2 (en) 2013-02-15 2017-08-22 Lg Display Co., Ltd. Flexible organic light emitting display device and method for manufacturing the same
US9287336B2 (en) 2013-02-26 2016-03-15 Apple Inc. Displays with shared flexible substrates
KR102009670B1 (ko) * 2013-02-28 2019-08-13 엘지디스플레이 주식회사 플렉서블 디스플레이 장치 및 그 제조 방법
KR102081650B1 (ko) * 2013-04-10 2020-02-26 엘지디스플레이 주식회사 플렉서블 디스플레이 장치 및 그 제조 방법
KR102095013B1 (ko) * 2013-04-11 2020-03-31 삼성디스플레이 주식회사 플렉서블 장치
US10582612B2 (en) * 2014-06-30 2020-03-03 Lg Display Co., Ltd. Flexible display device with reduced bend stress wires and manufacturing method for the same
US9544994B2 (en) * 2014-08-30 2017-01-10 Lg Display Co., Ltd. Flexible display device with side crack protection structure and manufacturing method for the same
US9276055B1 (en) * 2014-08-31 2016-03-01 Lg Display Co., Ltd. Display device with micro cover layer and manufacturing method for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273476A (ja) * 2002-03-12 2003-09-26 Seiko Epson Corp 実装構造体及びその製造方法、電気光学装置、並びに電子機器
JP2008076803A (ja) * 2006-09-22 2008-04-03 Seiko Epson Corp 発光装置および電子機器
KR20140085956A (ko) * 2012-12-28 2014-07-08 엘지디스플레이 주식회사 플렉서블 표시 장치 및 플렉서블 표시 장치 제조 방법
KR20140099174A (ko) * 2013-02-01 2014-08-11 엘지디스플레이 주식회사 플렉서블 유기 발광 표시 장치 및 플렉서블 유기 발광 표시 장치의 제조 방법
KR20140099164A (ko) * 2013-02-01 2014-08-11 엘지디스플레이 주식회사 플렉서블 디스플레이 기판, 플렉서블 유기 발광 표시 장치 및 플렉서블 유기 발광 표시 장치 제조 방법
KR20140103025A (ko) * 2013-02-15 2014-08-25 엘지디스플레이 주식회사 플렉서블 유기 발광 표시 장치 및 플렉서블 유기 발광 표시 장치 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023177124A1 (ko) * 2022-03-16 2023-09-21 삼성전자 주식회사 평면 영역 및 변형 영역을 포함하는 디스플레이 장치

Also Published As

Publication number Publication date
EP3186834A4 (en) 2018-01-03
KR20180049226A (ko) 2018-05-10
KR101882159B1 (ko) 2018-08-27
US10103354B2 (en) 2018-10-16
EP3848974A3 (en) 2021-09-08
KR20170138592A (ko) 2017-12-15
US20160064466A1 (en) 2016-03-03
CN108538897B (zh) 2022-09-09
KR20190000374A (ko) 2019-01-02
KR20170047269A (ko) 2017-05-04
US10020464B2 (en) 2018-07-10
CN108538897A (zh) 2018-09-14
CN106796947B (zh) 2020-03-13
US20180212190A1 (en) 2018-07-26
CN108695369B (zh) 2023-04-07
CN107978627B (zh) 2019-10-11
CN108695369A (zh) 2018-10-23
KR101936109B1 (ko) 2019-01-08
CN106796947A (zh) 2017-05-31
US10381597B2 (en) 2019-08-13
KR101992452B1 (ko) 2019-06-24
KR101866705B1 (ko) 2018-07-04
US20170373272A1 (en) 2017-12-28
US9768415B2 (en) 2017-09-19
EP3186834A1 (en) 2017-07-05
US20160087024A1 (en) 2016-03-24
CN107978627A (zh) 2018-05-01
US20180219179A1 (en) 2018-08-02
US9385175B2 (en) 2016-07-05
EP3848974A9 (en) 2021-10-27
US10121991B2 (en) 2018-11-06
US10305066B2 (en) 2019-05-28
US20180342699A1 (en) 2018-11-29
US20160285046A1 (en) 2016-09-29
EP3848974A2 (en) 2021-07-14
US9276055B1 (en) 2016-03-01
US10115928B2 (en) 2018-10-30
US20180219181A1 (en) 2018-08-02
US10381598B2 (en) 2019-08-13
WO2016032286A1 (en) 2016-03-03
US20180331322A1 (en) 2018-11-15
EP3186834B1 (en) 2021-04-21
US20180219180A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
KR101936109B1 (ko) 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법
KR101864563B1 (ko) 보강된 부분을 갖는 배선을 포함하는 플렉서블 디스플레이 디바이스 및 이의 제조 방법
KR101920446B1 (ko) 플렉서블 디스플레이 디바이스
KR102530485B1 (ko) 분할된 배선 패턴을 갖는 디스플레이 디바이스
KR101869669B1 (ko) 복수 타입들의 마이크로 코팅층들을 갖는 플렉서블 디스플레이 디바이스
KR102414003B1 (ko) 브리지된 배선 트레이스들 갖는 플렉서블 디스플레이 디바이스
KR102492828B1 (ko) 플렉서블 디스플레이 디바이스
KR102668243B1 (ko) 보강된 부분을 갖는 배선을 포함하는 플렉서블 디스플레이 디바이스 및 이의 제조 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant