WO2020227940A1 - 指纹识别装置和电子设备 - Google Patents

指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2020227940A1
WO2020227940A1 PCT/CN2019/086908 CN2019086908W WO2020227940A1 WO 2020227940 A1 WO2020227940 A1 WO 2020227940A1 CN 2019086908 W CN2019086908 W CN 2019086908W WO 2020227940 A1 WO2020227940 A1 WO 2020227940A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingerprint
polarization
polarization unit
optical
identification device
Prior art date
Application number
PCT/CN2019/086908
Other languages
English (en)
French (fr)
Inventor
肖瑜
程雷刚
易福建
凌伟
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201980002385.6A priority Critical patent/CN110770747B/zh
Priority to PCT/CN2019/086908 priority patent/WO2020227940A1/zh
Publication of WO2020227940A1 publication Critical patent/WO2020227940A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses

Definitions

  • This application relates to the field of fingerprint identification technology, and more specifically, to a fingerprint identification device and electronic equipment.
  • the fingerprint identification device not only receives the fingerprint light signal with fingerprint information reflected by the finger, but also receives a large number of natural light signals of the screen, and the light intensity of the natural light signal of the screen is much greater than that of the fingerprint light signal. As a result, the fingerprint light signal is weak in the light signal received by the fingerprint recognition device.
  • the screen structure and touch indium tin oxide (ITO) pattern information carried by the natural light signal of the screen further affect the performance of fingerprint recognition and bring users Bad experience.
  • ITO indium tin oxide
  • the embodiments of the present application provide a fingerprint identification device and electronic equipment, which can improve fingerprint identification performance.
  • a fingerprint identification device including:
  • Optical fingerprint sensor including: multiple pixel unit groups;
  • a plurality of polarization unit groups are arranged above the plurality of pixel unit groups, wherein each polarization unit group corresponds to a pixel unit group; the polarization direction of the polarization unit in each polarization unit group is different;
  • the quarter wave plate is arranged above the plurality of polarization unit groups;
  • Each pixel unit group in the plurality of pixel unit groups is used to receive a group of polarized light signals after the optical signal passes through the quarter-wave plate and a corresponding polarization unit group to obtain a group of electrical signals.
  • the signal includes the fingerprint polarized light signal returned by the reflection of the finger, and the set of electrical signals is used for processing to obtain the fingerprint electrical signal.
  • the fingerprint identification solution provided by this application, by arranging a quarter-wave plate and multiple polarization unit groups above multiple pixel unit groups, the polarization direction of the polarization unit in each polarization unit group is different, so different polarization units The fingerprint light signal received by the corresponding pixel unit is different from the converted electrical signal. By processing the electrical signals of different pixel units, the fingerprint electrical signal corresponding to the polarized light of the fingerprint is obtained, thereby improving the fingerprint recognition performance of the fingerprint recognition device.
  • the fingerprint polarized light signal becomes linearly polarized light after passing through the quarter wave plate.
  • the multiple polarization unit groups are the same.
  • the plurality of polarization unit groups include a first polarization unit group and a second polarization unit group, and the first polarization unit group is different from the second polarization unit group.
  • the polarization direction of the polarization unit in the first polarization unit group is different from the polarization direction of the polarization unit in the second polarization unit group.
  • the arrangement of the polarization units in the first polarization unit group is different from the arrangement of the polarization units in the second polarization unit group.
  • any one of the plurality of polarization unit groups includes at least two polarization units, and any one of the plurality of pixel unit groups includes at least two pixel units, wherein , One polarization unit corresponds to at least one pixel unit.
  • At least one polarization unit group of the plurality of polarization unit groups includes a first polarization unit and a second polarization unit, and the polarization direction of the first polarization unit and the second polarization unit is different The difference is 90°.
  • the set of electrical signals is used to subtract any two different electrical signals among them to obtain the fingerprint electrical signal.
  • the set of electrical signals is used for convolution calculation to obtain the fingerprint electrical signals.
  • At least one polarization unit group in the plurality of polarization unit groups includes a first polarization unit, a second polarization unit, a third polarization unit, and a fourth polarization unit;
  • the difference between the polarization directions of the first polarization unit and the second polarization unit is 90°, and the difference between the polarization directions of the third polarization unit and the fourth polarization unit is 90°.
  • the set of electrical signals includes a first electrical signal, a second electrical signal, a third electrical signal, and a fourth electrical signal, and is used to calculate the fingerprint electrical signal according to a formula.
  • the formula is:
  • S is the fingerprint electrical signal
  • A is the first electrical signal, corresponding to the first polarization unit
  • B is the second electrical signal, corresponding to the second polarization unit
  • C is the third electrical signal, corresponding to In the third polarization unit
  • D is a fourth electrical signal, corresponding to the fourth polarization unit.
  • the fingerprint identification device further includes:
  • the first optical component is arranged above the optical fingerprint sensor
  • the first optical component includes: at least one light blocking layer and a micro lens array;
  • the at least one light blocking layer is located under the micro lens array and is provided with a plurality of light-passing holes;
  • the optical fingerprint sensor is used for receiving light signals that are converged to the plurality of light-passing holes via the micro lens array and passed through the plurality of light-passing holes.
  • the first optical component further includes:
  • the first filter layer is arranged above the first optical component or in the optical path between the first optical component and the optical fingerprint sensor, and is used to filter out light signals in the non-target wavelength band and pass through The optical signal of the target band.
  • the first filter layer is disposed above the plurality of polarization unit groups, and the first optical component is disposed above the first filter layer.
  • the fingerprint identification device further includes:
  • the second optical component is arranged above the optical fingerprint sensor
  • the second optical component includes: at least one optical lens.
  • the second optical component further includes:
  • the first fixing device is used to fix the at least one optical lens above the optical fingerprint sensor.
  • the second optical component further includes:
  • the second filter layer is arranged above the at least one optical lens or in the optical path between the at least one optical lens and the optical fingerprint sensor, and is used to filter out light signals in the non-target waveband and pass through the target waveband Light signal.
  • the multiple polarization unit groups are integrated in the optical fingerprint sensor.
  • the fingerprint identification device further includes: a processing unit;
  • the processing unit is used to process the set of electrical signals to obtain the fingerprint electrical signals.
  • the fingerprint identification device further includes: an amplification unit and an analog-to-digital conversion unit;
  • the amplifying unit is used to receive and amplify the fingerprint electrical signal to obtain an amplified fingerprint electrical signal
  • the analog-to-digital conversion unit is used to receive the amplified fingerprint electrical signal and convert the amplified fingerprint electrical signal into a digital fingerprint electrical signal .
  • an electronic device including the fingerprint identification device as in the first aspect or any possible implementation of the first aspect.
  • the electronic device further includes a display screen, and the display screen includes a circular polarizing plate;
  • the fingerprint identification device is arranged below the display screen.
  • FIG. 1 is a schematic structural diagram of an electronic device to which an embodiment of the present application is applied.
  • Fig. 2 is a schematic structural diagram of a fingerprint identification device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the light intensity of the optical signal received by the optical fingerprint sensor according to an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of fingerprint electrical signals of an optical fingerprint sensor according to an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • Fig. 9a is a schematic diagram of a design manner of multiple polarization unit groups.
  • Fig. 9b is a schematic diagram of another design manner of multiple polarization unit groups.
  • FIG. 9c is a schematic diagram of another design manner of multiple polarization unit groups.
  • Fig. 9d is a schematic diagram of another design manner of multiple polarization unit groups.
  • Fig. 10a is a schematic diagram of another design manner of multiple polarization unit groups.
  • Fig. 10b is a schematic diagram of the received light intensity of multiple pixel unit groups corresponding to Fig. 10a.
  • Fig. 10c is a schematic diagram of a convolution template of a convolution calculation method according to an embodiment of the present application.
  • FIG. 11a is a schematic diagram of another design manner of multiple polarization unit groups.
  • Fig. 11b is a schematic diagram of another design manner of multiple polarization unit groups.
  • Fig. 11c is a schematic diagram of another design manner of multiple polarization unit groups.
  • Fig. 12a is a schematic diagram of another design manner of multiple polarization unit groups.
  • Fig. 12b is a schematic diagram of electrical signals of a plurality of pixel unit groups corresponding to Fig. 11a.
  • Fig. 13 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • optical fingerprint systems including but not limited to optical fingerprint identification systems and products based on optical fingerprint imaging.
  • the embodiments of this application only take optical fingerprint systems as an example for illustration, but should not be implemented in this application.
  • the examples constitute any limitation, and the examples of this application are also applicable to other systems that use optical imaging technology.
  • the optical fingerprint system provided in the embodiments of this application can be applied to smart phones, tablet computers, and other mobile terminals with display screens or other terminal devices; more specifically, in the above-mentioned terminal devices, fingerprint identification
  • the device may specifically be an optical fingerprint device, which may be arranged in a partial area or an entire area under the display screen, thereby forming an under-display optical fingerprint system.
  • the fingerprint identification device can also be partially or fully integrated into the display screen of the terminal device, thereby forming an in-display optical fingerprint system.
  • the terminal device 1 is a schematic structural diagram of a terminal device to which the embodiment of the application can be applied.
  • the terminal device 1 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is arranged under the display screen 120 Local area.
  • the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 133 having a plurality of optical sensing units 131, and the area where the sensing array 133 is located or its sensing area is fingerprint detection of the optical fingerprint device 130 Area 103. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the optical fingerprint device 130 may also be arranged in other positions, such as the side of the display screen 120 or the non-transparent area of the edge of the terminal device 1, and the optical fingerprint device 130 may be designed to The optical signal of at least a part of the display area of the display screen 120 is guided to the optical fingerprint device 130, so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130, for example, through optical path design such as lens imaging, reflective folding optical path design, or other optical path design such as light convergence or reflection, etc.
  • the area of the fingerprint detection area 103 of the optical fingerprint device 130 can be made larger than the area of the sensing array of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130.
  • the terminal device 1 adopting the above structure does not need to reserve space on the front side for setting fingerprint buttons (such as the Home button), so that a full screen solution can be adopted, that is, the display area of the display screen 120 It can be basically extended to the front of the entire terminal device 1.
  • the terminal device 1 further includes a transparent protective cover 110, which may be a glass cover or a sapphire cover, which is located on the display screen. 120 above and covering the front of the terminal device 1. Because, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually refers to pressing on the cover plate above the display screen 120 or covering the surface of the protective layer of the cover plate.
  • the display screen 120 may be a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display or a micro-LED (Micro-LED) display Screen.
  • OLED Organic Light-Emitting Diode
  • the optical fingerprint device 130 may use the display unit (ie, an OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103, and the light 111 is reflected on the upper surface of the cover 110 to form reflected light.
  • the finger ridge (ridge) and the cover plate 110 can be in close contact with each other without a gap, and there is a certain air gap between the finger valley (valley) and the cover plate 110, so the reflection of the light 111 in the contact area of the finger ridge and the cover plate 110
  • the reflectivity of the light 111 at the contact area between the finger ridge and the cover is about 4%. Therefore, the light intensity of the reflected light 151 formed by the reflection of the light 111 at the contact area between the finger ridge and the cover is less than that of the light 111 at the finger ridge. Reflected light 152 formed by reflection at the contact area with the cover plate.
  • the reflected light After the reflected light passes through the optical component 132, it is received by the sensing array 134 in the optical fingerprint device 130 and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and further processing can be performed Fingerprint matching verification, thereby realizing the optical fingerprint recognition function in the terminal device 1.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may be suitable for non-self-luminous display screens, such as liquid crystal display screens or other passively-luminous display screens.
  • the optical fingerprint system of the terminal device 1 may also include an excitation light source for optical fingerprint detection.
  • the excitation light source may specifically be an infrared light source or a light source of non-visible light of a specific wavelength, which may be arranged under the backlight module of the liquid crystal display or arranged in the edge area under the protective cover of the terminal device 1, and the The optical fingerprint device 130 can be arranged under the edge area of the liquid crystal panel or the protective cover and guided by the light path so that the fingerprint detection light can reach the optical fingerprint device 130; or, the optical fingerprint device 130 can also be arranged in the backlight module. Under the group, and the backlight module is designed to allow the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical fingerprint device 130 through openings or other optical designs on the film layers such as diffuser, brightness enhancement film, and reflective film. .
  • the optical fingerprint device 130 adopts a built-in light source or an external light source to provide an optical signal for fingerprint detection, the detection principle is the same as that described above.
  • the terminal device 1 may further include a circuit board 150 which is arranged under the optical fingerprint device 130.
  • the optical fingerprint device 130 can be adhered to the circuit board 150 through adhesive, and is electrically connected to the circuit board 150 through soldering pads and metal wires.
  • the optical fingerprint device 130 can realize electrical interconnection and signal transmission with other peripheral circuits or other components of the terminal device 1 through the circuit board 150.
  • the optical fingerprint device 130 can receive the control signal of the processing unit of the terminal device 1 through the circuit board 150, and can also output the fingerprint detection signal from the optical fingerprint device 130 to the processing unit or control unit of the terminal device 1 through the circuit board 150. Wait.
  • the optical fingerprint device 130 may include only one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position, so the user is performing fingerprint input At this time, it is necessary to press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include multiple optical fingerprint sensors; the multiple optical fingerprint sensors may be arranged side by side under the display screen 120 in a splicing manner, and the multiple optical fingerprint sensors The sensing area of the fingerprint sensor together constitutes the fingerprint detection area 103 of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint collection area 103 of the optical fingerprint device 130 It can be extended to the main area of the lower half of the display screen, that is, extended to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 103 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the sensing array in the optical fingerprint device may also be referred to as a pixel array
  • the optical sensing unit or sensing unit in the sensing array may also be referred to as a pixel unit.
  • optical fingerprint device in the embodiments of the present application may also be referred to as an optical fingerprint recognition module, a fingerprint recognition device, a fingerprint recognition module, a fingerprint module, a fingerprint acquisition device, etc., and the above terms can be replaced with each other.
  • FIG. 2 is a schematic structural diagram of a fingerprint identification device 10 provided by an embodiment of the present application. As shown in FIG. 2, the fingerprint identification device 10 is arranged under the display screen 120, and the fingerprint identification device 10 is used to receive The light signal reflected by the finger is converted into an electrical signal and fingerprint recognition is performed.
  • the display screen 120 is an OLED display screen, and includes a cover 121, a circular polarizer 122, a display assembly 124, a glass substrate 126, and a light-shielding protective layer 127.
  • the display component 124 includes an organic light-emitting layer 125, and the organic light-emitting layer 125 is used to cooperate with a display driving circuit to realize a display function.
  • the organic light-emitting layer 125 may be a low temperature poly-silicon technology.
  • the OLED organic light-emitting panel made by LTPS) has a plurality of light-emitting pixel units, which are grown on the glass substrate 126.
  • the circular polarizer 122 may include a linear polarizer and a quarter-wave plate. The linear polarizer is arranged above the quarter-wave plate to suppress the reflection of the ambient light on the display screen 120, thereby achieving higher display contrast.
  • the cover 121 may be disposed on the circular polarizer 122 through an adhesive layer to protect the display screen 120.
  • the fingerprint identification device 10 is placed or attached to the bottom of the glass substrate 126, so that the under-screen optical fingerprint identification can be realized locally or in the full screen in the display area of the display screen.
  • the light-shielding protective layer 127 is disposed under the glass substrate, and an opening 128 is disposed on the light-shielding protective layer 127 for passing through a fingerprint light signal formed after reflection by a human finger, and the fingerprint light signal is used for fingerprint identification.
  • the display layer 125 emits a first natural light signal 101 to the finger 140.
  • the first natural light signal 101 passes through the circular polarizing plate 122 and is reflected by the finger 140.
  • the light intensity is reduced to form a first natural light signal.
  • Fingerprint light signal After the first fingerprint optical signal passes through the circular polarizer 122 and the opening window 127, the light intensity is further reduced to form a second fingerprint optical signal 1011, and the second fingerprint optical signal 1011 is received by the fingerprint identification device 10.
  • the second natural light signal 102 emitted by the display component 125 can also be directly received by the fingerprint identification device 10 through the window 127.
  • the light intensity of the second natural light signal 102 is not attenuated by the circular polarizer 122 in the display screen, so the light intensity of the second natural light signal 102 is much greater than the light intensity of the second fingerprint light signal 1011, and tends to be constant.
  • the stray light 103 is the light signal reflected by each laminated structure in the display screen 120, and the light intensity is not attenuated by the circular polarizer 122, so the stray light 103 also has a relatively large light intensity. Therefore, as shown in FIG.
  • the second fingerprint light signal 1011 used for fingerprint identification is in the total received light
  • the proportion of the signal is small, and the light intensity changes of the fingerprint ridge and the fingerprint ridge in the total optical signal are weak, which makes it difficult to recognize the fingerprint signal, which greatly limits the fingerprint recognition performance of the fingerprint recognition device 10.
  • the second natural light signal 102 also carries the information of the light-emitting pixel unit
  • the stray light 103 also carries the information of each layered structure in the display 120 and the touch ITO pattern information of the display.
  • the fingerprint identification device 10 simultaneously receives the second When the natural light signal 102, stray light 103, and the second fingerprint light signal 1011, the interference information carried by the second natural light signal 102 and the stray light 103 is likely to interfere with the imaging of the second fingerprint light signal 1011 by the fingerprint identification device 10, thereby affecting The quality of the fingerprint image limits the fingerprint recognition performance of the fingerprint recognition device 10.
  • this application provides a fingerprint recognition solution, in which different polarization units are arranged above different pixel units in the fingerprint recognition device. In this way, different pixel units receive different light intensities, so the converted electrical signals are different. The electrical signals of different pixel units are processed to remove the electrical components generated by natural light signals in the electrical signals, so as to avoid interference from natural light on fingerprint recognition, thereby improving the fingerprint recognition performance of the fingerprint recognition device.
  • the fingerprint identification device 20 includes:
  • the optical fingerprint sensor 200 includes: a plurality of pixel unit groups; for example, the first pixel unit group 210 in FIG. 4;
  • a plurality of polarization unit groups are arranged above the plurality of pixel unit groups, wherein each polarization unit group corresponds to a pixel unit group; each polarization unit group includes at least 2 polarization units, and each polarization unit group
  • the polarization directions of the polarization units are different; for example, the first polarization unit group 310 in FIG. 4 corresponds to the first pixel unit group 210 and is disposed above the first pixel unit group 210, where the first polarization unit group 310 It includes a first polarization unit 311 and a second polarization unit 312, and their polarization directions are different.
  • the quarter wave plate 500 is arranged above the plurality of polarization unit groups.
  • Each pixel unit group in the plurality of pixel unit groups is used to receive a group of polarized light signals after the optical signal passes through the quarter-wave plate 500 and a corresponding polarization unit group to obtain a group of electrical signals.
  • the optical signal includes the fingerprint polarized light signal returned by the reflection of the finger, the set of electrical signals is used for processing to obtain the fingerprint electrical signal, and the fingerprint electrical signal is an electrical signal corresponding to the fingerprint polarized light signal.
  • the first polarization unit 311 processes the optical signal to obtain the first polarization signal
  • the first pixel unit 211 is used to convert the first polarization signal into the first electrical signal
  • the second polarization unit 312 processes the optical signal.
  • the second pixel unit 212 is used to convert the second polarized light signal into a second electrical signal
  • a set of electrical signals composed of the first electrical signal and the second electrical signal is used to process the fingerprint electrical signal.
  • the optical fingerprint sensor includes a pixel array composed of a plurality of pixel unit groups, and a reading circuit and other auxiliary circuits electrically connected to the pixel array, which can be manufactured by semiconductor technology.
  • a chip Die
  • the pixel units in the plurality of pixel unit groups are used to receive optical signals passing through the polarization unit and process the received light signals to obtain electrical signals.
  • a group of pixel unit groups receive and convert a group of polarized light signals into a group of electrical signals.
  • the plurality of pixel units may use devices such as photodiodes, metal oxide semiconductor field effect transistors (MOSFETs) and the like.
  • the plurality of pixel units have higher optical sensitivity and higher quantum efficiency for light of a specific wavelength, so as to facilitate detection of optical signals of corresponding wavelengths.
  • first pixel unit 211 and the second pixel unit 212 in FIG. 4 may also be the optical sensing unit 131 in FIG. 1, and the related function and structure description can refer to the foregoing related description.
  • the quarter-wave plate 500 may be an optical device capable of generating an additional optical path difference (that is, a phase difference ⁇ j) between two optical vibrations that are perpendicular to each other.
  • the quarter-wave plate 500 may also be referred to as a quarter-wave plate.
  • the quarter wave plate 500 may be a birefringent wafer with a precise thickness.
  • birefringent wafers such as quartz, calcite or mica, the optical axis of which is parallel to the surface of the wafer.
  • the incident light received by the quarter wave plate 500 is decomposed into ordinary light (o light) and extraordinary light (e light).
  • the refractive index of the crystal to the two kinds of light is different.
  • the multiple polarization unit groups may constitute the polarization component 300, and the polarization unit in each polarization unit group, for example, the first polarization unit 311 and the second polarization unit 312 in FIG.
  • the choice of polarization state with high extinction ratio can convert natural light or circularly polarized light into linearly polarized light, allowing optical signals whose vibration direction is parallel to the polarization direction to pass, and at the same time absorbs optical signals whose vibration direction is perpendicular to the polarization direction.
  • the first polarizing unit 311 and the second polarizing unit 312 may be polarizers (PL) or polarizing films.
  • the plurality of polarization unit groups may be arranged above the plurality of pixel unit groups by a second fixing device, and the second fixing device is arranged on a non-photosensitive area of the optical fingerprint sensor for connecting the plurality of pixel unit groups.
  • a polarization unit group and the plurality of pixel unit groups may be arranged above the plurality of pixel unit groups by a second fixing device, and the second fixing device is arranged on a non-photosensitive area of the optical fingerprint sensor for connecting the plurality of pixel unit groups.
  • the plurality of polarization unit groups may also be integrated in the optical fingerprint sensor together with the plurality of pixel unit groups.
  • an evaporation process may be used in the plurality of pixel units of the optical fingerprint sensor.
  • the multiple polarization unit groups are formed by coating on the group, for example, a polarization film is prepared on the multiple pixel units of the optical fingerprint sensor by methods such as atomic layer deposition, sputtering coating, electron beam evaporation coating, ion beam coating and the like.
  • CMOS complementary metal oxide semiconductor
  • CMOS complementary Metal Oxide Semiconductor
  • the optical signal received by each polarization unit group in the plurality of polarization unit groups includes natural light signals, stray light, and fingerprint polarized light signals returned by finger reflection, and the natural light signals may include screen light emitted by the display screen.
  • light signals such as ambient light
  • stray light is the light signal generated by the reflection of each film structure in the display screen, and the stray light does not pass through the circular polarizer in the display screen as a natural light signal.
  • the fingerprint polarized light signal passes through the quarter wave plate 500 and becomes linearly polarized light.
  • the natural light signal 201 and the fingerprint polarized light signal 202 are incident into the first polarization unit group 310, that is, the first polarization unit 311 and the second polarization unit 312, and the fingerprint polarized light signal 202 is The circularly polarized light passes through the quarter wave plate 500 and becomes linearly polarized light.
  • the natural light signal 201 is transformed into a first natural polarized light signal and a second natural polarized light signal through the first polarizing unit 311 and the second polarizing unit 312.
  • the light intensity of the first natural polarized light signal and the second natural polarized light signal is The same, and neither is greater than 1/2 of the light intensity of the natural light signal 201.
  • the fingerprint polarized light signal 202 passes through the first polarizing unit 311 and the second polarizing unit 312 to become the first fingerprint polarized light signal and the second fingerprint polarized light signal, the first fingerprint polarized light signal and the second fingerprint
  • the light intensity of the polarized light signal is different, and if the angle between the vibration direction of the fingerprint polarized light signal 202 and the polarization direction of the first polarization unit 311 is smaller than the vibration direction of the fingerprint polarized light signal 202, the polarization direction of the second polarization unit 312
  • the light intensity of the polarized light signal of the first fingerprint is stronger than the light intensity of the polarized light signal of the second fingerprint.
  • the vibration direction of the fingerprint polarization signal 202 is perpendicular to the polarization direction of the first polarization unit 311 or the second polarization unit 312, the light intensity of the first fingerprint polarization signal or the second fingerprint polarization signal is zero.
  • the first polarized light signal received by the first pixel unit 211 includes the first natural polarized light signal and the first fingerprint polarized light signal, and the light intensity of the first polarized light signal is Converted into a first electrical signal;
  • the second polarized light signal received by the second pixel unit 212 includes the second natural polarized light signal and a second fingerprint polarized light signal, and the light intensity of the second polarized light signal is converted into
  • the processed first electrical signal is different from the second electrical signal.
  • the fingerprint electrical signal is obtained by processing based on the different first electrical signal and the different second electrical signal.
  • the fingerprint identification device 20 may be a fingerprint module, or the fingerprint identification device 20 may be an electronic device including a fingerprint module, which is not limited in the embodiment of the present application.
  • the natural light signal 201 may also include other optical signals that do not have a polarization state, such as stray light formed by the reflection of each laminated structure in the display screen, and the stray light does not pass through the display.
  • the circular polarizer in the screen that is, the stray light can be natural light.
  • the natural light signal 201 and stray light may also be collectively referred to as the natural light signal 201.
  • the fingerprint recognition electrical signal corresponding to the fingerprint polarized light signal is determined to improve the fingerprint recognition performance of the fingerprint recognition device.
  • the processed fingerprint electrical signal only includes the electrical signal corresponding to the fingerprint polarized light, and therefore corresponds to the fingerprint crest and
  • the electrical signal of the fingerprint valley changes greatly, which is convenient for the fingerprint identification device 20 to perform fingerprint identification.
  • the fingerprint identification device 20 further includes: a first optical component 400 disposed above the optical fingerprint sensor 200.
  • the first optical component 400 may specifically include a filter layer (Filter), a light guide layer or a light path guiding structure, and other optical elements.
  • the filter layer may be used to filter out ambient light penetrating the finger.
  • the optical layer or optical path guiding structure is mainly used to guide the reflected light reflected from the finger surface to the sensing array for optical detection.
  • the first optical component 400 may be encapsulated in the optical fingerprint sensor 200, or the first optical component 400 may be arranged outside the optical fingerprint sensor 200, for example, the first optical The assembly 400 is attached above the optical fingerprint sensor 200, or some elements of the first optical assembly 400 are integrated into the optical fingerprint sensor 200. It can be understood that when the polarizing component is disposed above the optical fingerprint sensor 200, the first optical component 400 is actually disposed on the polarizing component 300; the first optical component 400 is encapsulated in the optical sensor 200, and is actually connected to the polarizing component. 300 is packaged in the optical sensor 200 together.
  • the first optical component 400 is disposed above the polarization component 300, as shown in FIG. 6, the first optical component 400 includes: at least one light blocking layer 410 and a micro lens Array 420;
  • the at least one light blocking layer 410 is provided with a plurality of light passing holes
  • the microlens array 420 is disposed above the at least one light-blocking layer 410, and is used to converge the light signal to a plurality of light-passing holes of the at least one light-blocking layer 410, and the light signal passes through all
  • the multiple light-passing holes of the at least one light-blocking layer 410 are transmitted to the polarization component 300.
  • the at least one light blocking layer 410 may be formed on the polarizing component 300 by semiconductor process growth or other processes, for example, by atomic layer deposition, sputtering coating, electron beam evaporation coating, ion beam coating, etc. on the polarizing component 300 A layer of non-light-transmitting material film is prepared above, and then pattern lithography and etching are performed to form a plurality of light-passing holes.
  • the at least one light blocking layer 410 can block the optical interference between adjacent microlenses, and make the light signal corresponding to the pixel unit converge into the light-passing hole through the micro-lens and pass through the light-passing hole.
  • the holes are transmitted to the polarization unit and the pixel unit to perform optical fingerprint imaging.
  • the polarization component 300 is isolated from the at least one light blocking layer 410 and between the multiple light blocking layers 410 by a transparent medium layer.
  • the microlens array 420 is formed of a plurality of microlenses, which can be formed on the at least one light blocking layer 410 through a semiconductor growth process or other processes, and each microlens can correspond to the optical fingerprint sensor 200.
  • the first optical component 400 may be arranged at any position in the optical path between the display screen 120 and the optical fingerprint sensor 200, for example: arranged between the optical fingerprint sensor 200 and the polarization component 300, or arranged on the polarization component 300 Between the 1/4 wave plate 500 or between the 1/4 wave plate 500 and the display screen 120.
  • the thickness of the fingerprint identification device is reduced, thereby further improving the performance of the optical fingerprint identification device.
  • the first optical component 400 further includes: a first filter layer 430 for filtering out optical signals in the non-target wavelength band, and transmitting the optical signals in the target wavelength band (that is, the fingerprint image acquisition site) The optical signal of the required band).
  • a first filter layer 430 for filtering out optical signals in the non-target wavelength band, and transmitting the optical signals in the target wavelength band (that is, the fingerprint image acquisition site) The optical signal of the required band).
  • the first filter layer 430 is arranged above the first optical component or in the optical path between the first optical component and the optical fingerprint sensor. Specifically, the first filter layer 430 is disposed above the micro lens array 420 or in the optical path between the micro lens array 420 and the polarization component 300. For example, as shown in FIG. 6, the filter layer is disposed above the plurality of polarization unit groups.
  • the first filter layer 430 is disposed above the microlens array 420.
  • a buffer layer is disposed above the microlens array 420.
  • the buffer layer is a transparent medium buffer layer with a low optical refractive index.
  • the optical refractive index of the buffer layer is lower than 1.3.
  • the lower surface of the first filter layer 430 is completely attached to the upper surface of the buffer layer through an adhesive layer.
  • the adhesive layer may be a low refractive index glue, and the refractive index of the low refractive index glue is less than 1.25.
  • the first filter layer 430 can also be fixed above the microlens array 420 by a third fixing device.
  • a sealant or other support is provided in the non-photosensitive area around the microlens array 420 to The first filter layer 430 is supported and fixed above the micro lens array 420, and there is an air gap layer between the lower surface of the first filter layer 430 and the upper surface of the micro lens array 420.
  • the first filter layer 430 may also be arranged in the optical path between the microlens array 420 and the optical fingerprint sensor 200 through a third fixing device such as a sealant.
  • the first filter layer 430 may be disposed between the light blocking layer 410 and the polarization component 300.
  • the first filter layer 430 can also be integrated with the polarization component 300 in an optical fingerprint sensor. Specifically, an evaporation process can be used to coat the polarization component 300 to form the filter layer. 430.
  • the first filter layer 430 is an optical wavelength cut-off filter, which is used to filter out optical signals in a specific wavelength band, which is beneficial to reduce the influence of ambient light signals in a specific wavelength band, thereby improving fingerprint recognition performance.
  • the quarter wave plate 500 is disposed above the first optical component 400.
  • the screen light signal 301 emitted by the light-emitting layer 125 in the display screen 120 is a natural light signal, and is received by the first polarization unit group 310 after passing through the quarter wave plate 500 and the optical component 400.
  • the screen light signal passes through the circular polarizer 122 in the display screen 120, it forms screen linearly polarized light.
  • the screen linearly polarized light is reflected by the finger 140, it passes through the circular polarizer 122 again to form circularly polarized light 302.
  • linearly polarized light 304 is formed.
  • the linearly polarized light 304 is the fingerprint polarized light signal.
  • the linearly polarized light 304 is received by the first polarization unit group 310 after passing through the optical component 400.
  • the natural light signal 301 may be the natural light signal 201 in FIG. 4, and the linearly polarized light 304 may be the fingerprint polarized light signal 202 in FIG.
  • the fingerprint identification device 20 further includes: a second optical assembly 600, and the second optical assembly 600 includes a lens assembly 610, which has at least one spherical or non-spherical surface.
  • the lens group composed of spherical optical lenses is used to converge the reflected light reflected from the finger to the multiple pixel units of the optical fingerprint sensor below it, so that the multiple pixel units can perform imaging based on the reflected light, Thus, the fingerprint image of the finger is obtained.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the fingerprint identification device to improve the fingerprint The fingerprint imaging effect of the recognition device 20.
  • the lens assembly 610 may be arranged below the display screen 120 and above the optical fingerprint sensor 200 through a first fixing device 620.
  • the first fixing device 620 may be a bracket or a lens barrel, one or more optical lenses in the lens assembly 610 are fixed in the lens barrel or the bracket, and the lens barrel or the bracket is used to The lens assembly 610 is fixed above the optical fingerprint sensor 200, and the optical signal enters the optical fingerprint sensor 200 after passing through the lens assembly 610.
  • the first fixing device 620 when the first fixing device 620 is a lens barrel, the first fixing device 620 may further include a lens holder.
  • the lens barrel and the lens holder may be two separate parts, which may be threaded Connected and fixed together, the lens holder can also be an integral structure with the lens barrel.
  • the lens assembly 610 can be arranged at any position in the optical path from the display screen 120 to the optical fingerprint sensor 200.
  • the lens assembly 610 is disposed between the polarization assembly 300 and the quarter wave plate 500.
  • the lens assembly 610 may also be arranged between the display screen 120 and the quarter-wave plate 500, or between the polarization assembly 300 and the optical fingerprint sensor 200.
  • the second optical component 600 may further include a second filter layer 630.
  • the second filter layer may be arranged at any position in the optical path from the display screen 120 to the optical fingerprint sensor 200.
  • the second filter layer 630 is disposed between the polarization component 300 and the lens component 610.
  • the second filter layer 630 may also be disposed between the display screen 120 and the quarter wave plate 500, or between the quarter wave plate 500 and the lens assembly 610. The time, or between the multiple optical lenses in the lens assembly 610, or between the polarization assembly 300 and the optical fingerprint sensor 200.
  • the second filter layer 630 may be disposed in the lens barrel and located below the lens assembly 610; when the second optical assembly 600 includes a bracket, the second filter layer 630 may also It can be arranged in the bracket and located under the lens assembly 610.
  • the fingerprint identification device 20 may further include a processing unit configured to process the set of electrical signals to obtain the fingerprint electrical signals.
  • the processing unit is used to process the first electrical signal and the second electrical signal of the first pixel unit 211 and the second pixel unit 212 to obtain a fingerprint electrical signal, and there is no electrical signal corresponding to natural polarized light in the fingerprint electrical signal. Contains only electrical signals corresponding to the polarized light of the fingerprint.
  • the processing unit may be a processor, and the processor may be a processor in the optical fingerprint sensor 200, or a processor of an electronic device where the fingerprint identification device 20 is located, which is not done in this embodiment of the application. limited.
  • the fingerprint identification device 20 may further include: an amplifying unit and an analog-to-digital conversion unit, the amplifying unit is configured to receive and amplify the fingerprint electrical signal to obtain an amplified fingerprint electrical signal, and the analog-to-digital conversion unit is configured to Receiving the amplified fingerprint electrical signal, and converting the amplified fingerprint electrical signal into a digital fingerprint electrical signal.
  • an amplifying unit and an analog-to-digital conversion unit the amplifying unit is configured to receive and amplify the fingerprint electrical signal to obtain an amplified fingerprint electrical signal
  • the analog-to-digital conversion unit is configured to Receiving the amplified fingerprint electrical signal, and converting the amplified fingerprint electrical signal into a digital fingerprint electrical signal.
  • any one of the plurality of polarization unit groups includes at least two polarization units
  • any one of the plurality of pixel unit groups includes at least two pixel units, wherein one polarization unit corresponds to At least one pixel unit.
  • each polarization unit group in the plurality of polarization unit groups may be the same or different from each other; one polarization unit may correspond to one or more pixel units; the embodiment of the present application does not limit this .
  • two polarization units with different polarization directions constitute a polarization unit group
  • two pixel units constitute a pixel unit group
  • one of the polarization units corresponds to the first pixel unit on a one-to-one basis.
  • a plurality of polarization unit groups constitute a polarization assembly 300, and the design and arrangement of each polarization unit group in the plurality of polarization unit groups may be the same as the first polarization unit group.
  • the unit groups 310 are the same, that is, the two polarization units in each polarization unit group are the same as the two polarization units in the first polarization unit group 310, and the two polarization units in each polarization unit group are in the polarization unit group.
  • the relative position is the same as the relative position of the two polarization units in the first polarization unit group 310 in the first polarization unit group 310.
  • each polarization unit group in the polarization assembly 300 may be the same as that of the first polarization unit group 310, that is, the two polarization units in each polarization unit group and The two polarization units in the first polarization unit group 310 are the same.
  • the arrangement of other polarization unit groups in the plurality of polarization unit groups may be different from that of the first polarization unit group 310, that is, the relative position of the two polarization units in each polarization unit group in the polarization unit group can be the same as that of the first polarization unit group.
  • the relative positions of the two polarization units in the polarization unit group 310 in the first polarization unit group 310 are different.
  • the angle between the polarization direction of the first polarization unit 311 in the first polarization unit group 310 and the polarization direction of the received fingerprint polarized light signal 304 is ⁇
  • the first The angle between the polarization direction of the polarization unit 311 and the polarization direction of the second polarization unit 312 is ⁇ .
  • the light intensity of the fingerprint polarized light signal 304 received by the first polarization unit 311 and the second polarization unit 312 is S1, and the light intensity of the natural light signal 301 received is B.
  • the light intensity of the first polarized light signal formed is B/2+S1*cos 2 ⁇ ;
  • the fingerprint polarized light signal 304 and natural light After the signal 301 passes through the second polarization unit 312, the light intensity of the second polarized light signal formed is B/2+S1*cos 2 ( ⁇ - ⁇ ).
  • the first pixel unit 211 converts the first polarized light signal into a first electrical signal corresponding to the light intensity B/2+S1*cos 2 ⁇
  • the second pixel unit 212 converts the second polarized light signal
  • the signal is converted into a second electrical signal corresponding to the light intensity B/2+S1*cos 2 ( ⁇ - ⁇ )
  • the first electrical signal and the second electrical signal are corresponding to the first polarization unit group 310 and the first pixel unit
  • the first group of electrical signals of group 210 converts the first polarized light signal into a first electrical signal corresponding to the light intensity B/2+S1*cos 2 ⁇
  • the intensity of the fingerprint polarized light signal received by the nth polarization unit group in the other polarization unit groups is Sn, where n is a positive integer greater than or equal to 2, and the received natural light signal The light intensity is B. Therefore, the n-th polarized light signal formed by the n-th polarization unit group includes a polarized light signal with a light intensity of B/2+Sn*cos 2 ⁇ and a light intensity of B/2+Sn*cos 2 ( ⁇ - ⁇ ).
  • the n-th pixel unit group corresponding to the n-th polarization unit group converts two polarized light signals into two electric signals, which are corresponding n-th group electric signals.
  • the processing unit subtracts the first electrical signal from the second electrical signal in the first group of electrical signals to obtain a light intensity S1*(cos 2 ⁇ -cos 2 ( ⁇ - ⁇ )) fingerprint electrical signal. Similarly, subtract the two electrical signals of the nth electrical signal group to obtain the fingerprint electrical signal corresponding to the light intensity Sn*(cos 2 ⁇ -cos 2 ( ⁇ - ⁇ )) .
  • included angle ⁇ and the included angle ⁇ may be any different angles less than 180°, which is not limited in the embodiment of the present application.
  • the difference between the included angle ⁇ and the included angle ⁇ may be 90°.
  • the polarization component 300 includes a plurality of first polarization unit groups 310, the arrangement of which is the same as that of FIG. 9c or FIG. 9d. At this time, as shown in FIG.
  • the light intensity of the first polarized light signal received by the first pixel unit 211 in the first pixel unit group 210 is B/2+S1
  • the second polarized light signal received by the second pixel unit 212 The light intensity is B/2, which is transformed into the first group of electrical signals.
  • the light intensity received by the nth pixel unit group is B/2+Sn and B/2, which are converted into two nth groups of electrical signals.
  • the fingerprint electrical signal obtained by subtracting the first set of electrical signals that is, the first electrical signal and the second electrical signal
  • the fingerprint electric signal obtained by subtracting the two electric signals in the n groups of electric signals completely corresponds to the fingerprint polarized light signal with the light intensity of Sn.
  • the processing unit is configured to use a convolution calculation method to process the set of electrical signals to obtain the fingerprint electrical signals.
  • the processing unit may also be used to process multiple sets of electrical signals using a convolution calculation method for multiple sets of pixel units to obtain multiple fingerprint electrical signals.
  • the intensity of the polarized light signal received by a plurality of pixel unit groups is shown in FIG. 10b, and the electrical signal obtained by the processing of the plurality of pixel unit groups corresponds to the received polarized light signal intensity.
  • the convolution template 100 is shown in FIG. 10c, where x is any number that is not equal to zero.
  • the multiple sets of electrical signals of multiple pixel unit groups and the convolution template are subjected to convolution calculation to obtain multiple fingerprint electrical signals.
  • the multiple fingerprint electrical signals include fingerprint polarized light signals corresponding to the light intensity of 4x*Sn.
  • four polarization units with different polarization directions constitute a polarization unit group
  • four pixel units constitute a pixel unit group.
  • each polarization unit group in the polarization assembly 300 can be the same as the first polarization unit group.
  • the two polarization unit groups 320 are the same, that is, the four polarization units in each polarization unit group are the same as the four polarization units in the second polarization unit group 320, and the four polarization units in each polarization unit group are in the polarization unit group.
  • the relative position in is the same as the relative position of the four polarization units in the second polarization unit group 320 in the second polarization unit group 320.
  • the design or arrangement of the polarization unit groups in the polarization assembly 300 may be different from the second polarization unit group 320, that is, the four polarization units in each polarization unit group and the second polarization unit group
  • the four polarization units in 320 are different, or the relative position of the four polarization units in each polarization unit group in the polarization unit group is the same as that of the four polarization units in the second polarization unit group 320 in the second polarization unit group 320 The relative position is different.
  • the design of the partial polarization unit group in the polarization assembly 300 is the same as that of the second polarization unit group 320, but the arrangement of the partial polarization unit group is the same as that of the second polarization unit group. 320 is different.
  • the design of the partial polarization unit group in the polarization assembly 300 is different from that of the second polarization unit group 320.
  • the second polarization unit group 320 may be a polarization unit group consisting of a first polarization unit 311, a second polarization unit 312, and a third polarization unit 313 and a fourth polarization unit 314.
  • the second polarization unit group 320 may correspond to the second pixel unit group 220 composed of the first pixel unit 211, the second pixel unit 212, and the third pixel unit 213 and the fourth pixel unit 214.
  • the angle between the polarization direction of the first polarization unit 311 and the polarization direction of the received fingerprint polarized light signal 304 is d, and the polarization direction of the second polarization unit 312
  • the angle between the polarization direction of the first polarization unit 311 and the polarization direction is a
  • the angle between the polarization direction of the third polarization unit 313 and the polarization direction of the first polarization unit 311 is b
  • the angle between the polarization direction of the four-polarization unit 314 and the polarization direction of the first polarization unit 311 is c.
  • the fingerprint polarization signal light intensity received by the first polarization unit 311, the second polarization unit 312, the third polarization unit 313, and the fourth polarization unit 314 is L1, and the received natural light signal light intensity is B.
  • the light intensity of the first polarized light signal formed is B/2+L1*cos 2 d;
  • the light intensity of the second polarized light signal is B/2+L1*cos 2 (da)
  • the light intensity of the third polarized light signal formed is B/2+L1*cos 2 ( db)
  • the formed fourth polarization signal light intensity is B/2+L1*cos 2 (dc).
  • the first pixel unit 211 converts the first polarized light signal into a first electrical signal corresponding to the light intensity B/2+L1*cos 2 d.
  • the second pixel unit 212 converts the first electrical signal
  • the two-polarized light signal is converted into a second electric signal corresponding to the light intensity B/2+L1*cos 2 (da)
  • the third pixel unit 213 converts the third polarized light signal into a light intensity B/2+ The third electrical signal of L1*cos 2 (db).
  • the fourth pixel unit 214 converts the fourth polarized light signal into a fourth electrical signal corresponding to the light intensity B/2+L1*cos 2 (dc).
  • the intensity of the fingerprint polarized light signal received by the m-th polarization unit group in the other polarization unit groups is Lm, where m is a positive integer greater than or equal to 2, and the received natural light
  • the signal light intensity is B. Therefore, the m-th polarized light signal formed by the m-th polarization unit group includes light intensity of B/2+Lm*cos 2 d, B/2+Lm*cos 2 (da), B/2+Lm*cos 2 ( db) and B/2+Lm*cos 2 (dc) polarized light signal.
  • the m-th pixel unit group corresponding to the m-th polarization unit group converts four polarized light signals into four electrical signals.
  • the processing unit subtracts any two electrical signals in a group of four electrical signals of each pixel unit group to obtain a fingerprint electrical signal.
  • included angle b, the included angle c, and the included angle d may be any different angles less than 180°, which is not limited in the embodiment of the present application.
  • the polarization component 300 includes a plurality of second polarization unit groups 320, and the polarization of the second polarization unit 312 in the second polarization unit group 320
  • the first polarized light signal intensity received by the first pixel unit 211 is B/2+L1*cos 2 d
  • the light intensity of the second polarized light signal received by the second pixel unit 212 is B/2+L1*cos 2 (45-d)
  • the light intensity of the third polarized light signal received by the third pixel unit 213 is B/2+L1* sin 2 d
  • the light intensity of the fourth polarized light signal received by the fourth pixel unit 214 is B/2+L1*sin 2 (45-d).
  • the m-th pixel unit group receives the polarized light signal and converts the polarized light signal to form: the electrical signal Am corresponding to the light intensity of B/2+Lm*cos 2 d, corresponding to the light intensity of B/2+Lm*cos 2 (45-d) electrical signal Bm, corresponding to the electrical signal Cm with light intensity B/2+Lm*sin 2 d and corresponding to the electrical signal with light intensity B/2+Lm*sin 2 (45-d) Dm.
  • the four electrical signals Am, Bm, Cm, and Dm in each pixel unit group are processed as follows: (Am-Bm) 2 + (Cm-Dm) 2 , this The unit fingerprint electrical signal obtained at this time completely corresponds to the fingerprint polarized light signal with a light intensity of Lm.
  • the fingerprint electrical signals obtained completely correspond to the fingerprint polarized light signals with the light intensity of Lm 2 , There is no loss of the intensity of the fingerprint polarized light signal, which can improve the performance of fingerprint recognition.
  • an embodiment of the present application also provides an electronic device 2, which may include the fingerprint identification device 20 of the foregoing application embodiment.
  • the electronic device 2 may further include a display screen 120, and the fingerprint identification device 20 is disposed under the display screen 120.
  • the display screen 120 is an organic light emitting diode OLED display screen or a micro-light emitting diode Micro-LED display screen, and the display screen 120 includes a circular polarizer 122 for converting natural light into circularly polarized light.
  • the processing unit in the embodiment of the present application may be a processor, and the processor may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection of devices or units through some interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Image Input (AREA)

Abstract

一种指纹识别装置和电子设备,能够提高指纹识别性能。该指纹识别装置,包括:光学指纹传感器,包括:多个像素单元组;多个偏振单元组,设置于所述多个像素单元组上方,其中,每个偏振单元组对应一个像素单元组;每个偏振单元组中的偏振单元的偏振化方向不同;1/4波片,设置于所述多个偏振单元组上方;所述多个像素单元组中的每个像素单元组用于接收光信号通过所述1/4波片和对应的一个偏振单元组后的一组偏振光信号得到一组电信号,所述光信号包括经由手指反射而返回的指纹偏振光信号,所述一组电信号用于处理得到指纹电信号。

Description

指纹识别装置和电子设备 技术领域
本申请涉及指纹识别技术领域,并且更具体地,涉及一种指纹识别装置和电子设备。
背景技术
随着全面屏手机时代的到来,设置在屏幕下或屏幕内的指纹识别装置在手机等终端设备中的应用也得到广泛发展。在指纹识别过程中,指纹识别装置除了接收经过手指反射的带有指纹信息的指纹光信号以外,还会接收大量的屏幕自然光信号,且屏幕自然光信号的光强远大于指纹光信号的光强,造成指纹识别装置接收的光信号中指纹光信号弱,同时屏幕自然光信号的携带的屏幕结构及触控氧化铟锡(Indium Tin Oxide,ITO)图案信息也进一步影响指纹识别的性能,给用户带来不良的体验。
发明内容
本申请实施例提供了一种指纹识别装置和电子设备,能够提高指纹识别性能。
第一方面,提供了一种指纹识别装置,包括:
光学指纹传感器,包括:多个像素单元组;
多个偏振单元组,设置于所述多个像素单元组上方,其中,每个偏振单元组对应一个像素单元组;每个偏振单元组中的偏振单元的偏振化方向不同;
1/4波片,设置于所述多个偏振单元组上方;
所述多个像素单元组中的每个像素单元组用于接收光信号通过所述1/4波片和对应的一个偏振单元组后的一组偏振光信号得到一组电信号,所述光信号包括经由手指反射而返回的指纹偏振光信号,所述一组电信号用于处理得到指纹电信号。
本申请提供的指纹识别方案中,通过在多个像素单元组上方设置1/4波片和多个偏振单元组,每个偏振单元组中的偏振单元的偏振化方向不同,因此不同的偏振单元对应的像素单元接收的指纹光信号和转换得到的电信号 不同,通过对不同的像素单元的电信号进行处理,得到对应于指纹偏振光的指纹电信号,从而提高指纹识别装置的指纹识别性能。
在一种可能的实现方式中,所述指纹偏振光信号通过所述1/4波片后为线偏振光。
在一种可能的实现方式中,所述多个偏振单元组相同。
在一种可能的实现方式中,所述多个偏振单元组包括第一偏振单元组和第二偏振单元组,所述第一偏振单元组与所述第二偏振单元组不同。
在一种可能的实现方式中,所述第一偏振单元组中偏振单元的偏振化方向与所述第二偏振单元组中偏振单元的偏振化方向不同。
在一种可能的实现方式中,所述第一偏振单元组中偏振单元的排列方式与所述第二偏振单元组中偏振单元的排列方式不同。
在一种可能的实现方式中,所述多个偏振单元组中任意一个偏振单元组包括至少两个偏振单元,所述多个像素单元组中任意一个像素单元组包括至少两个像素单元,其中,一个偏振单元对应至少一个像素单元。
在一种可能的实现方式中,所述多个偏振单元组中至少一个偏振单元组包括第一偏振单元和第二偏振单元,所述第一偏振单元和所述第二偏振单元偏振化方向之差为90°。
在一种可能的实现方式中,所述一组电信号用于将其中任意两个不同的电信号相减得到所述指纹电信号。
在一种可能的实现方式中,所述一组电信号用于进行卷积计算得到所述指纹电信号。
在一种可能的实现方式中,所述多个偏振单元组中至少一个偏振单元组包括第一偏振单元、第二偏振单元、第三偏振单元和第四偏振单元;
所述第一偏振单元和所述第二偏振单元偏振化方向之差为90°,所述第三偏振单元和所述第四偏振单元偏振化方向之差为90°。
在一种可能的实现方式中,所述一组电信号包括第一电信号、第二电信号、第三电信号和第四电信号,用于根据公式计算得到所述指纹电信号,所述公式为:
Figure PCTCN2019086908-appb-000001
其中,S为所述指纹电信号,A为第一电信号,对应于所述第一偏振单元,B为第二电信号,对应于所述第二偏振单元,C为第三电信号,对应于 所述第三偏振单元,D为第四电信号,对应于所述第四偏振单元。
在一种可能的实现方式中,所述指纹识别装置还包括:
第一光学组件,设置于所述光学指纹传感器上方;
所述第一光学组件包括:至少一阻光层和微透镜阵列;
所述至少一阻光层位于所述微镜头阵列下方,设置有多个通光小孔;
所述光学指纹传感器用于接收经由所述微镜头阵列汇聚到所述多个通光小孔的并通过所述多个通光小孔的光信号。
在一种可能的实现方式中,所述第一光学组件还包括:
第一滤波层,设置在所述第一光学组件的上方或者设置在所述第一光学组件到所述光学指纹传感器的之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号。
在一种可能的实现方式中,所述第一滤波层设置在所述多个偏振单元组的上方,所述第一光学组件设置在所述第一滤波层上方。
在一种可能的实现方式中,所述指纹识别装置还包括:
第二光学组件,设置于所述光学指纹传感器上方;
所述第二光学组件包括:至少一个光学透镜。
在一种可能的实现方式中,所述第二光学组件还包括:
第一固定装置,用于将所述至少一个光学透镜固定在所述光学指纹传感器上方。
在一种可能的实现方式中,所述第二光学组件还包括:
第二滤波层,设置在所述至少一个光学透镜的上方或者设置在所述至少一个光学透镜到光学指纹传感器的之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号。
在一种可能的实现方式中,所述多个偏振单元组集成在所述光学指纹传感器中。
在一种可能的实现方式中,所述指纹识别装置还包括:处理单元;
所述处理单元用于对所述一组电信号进行处理得到所述指纹电信号。
在一种可能的实现方式中,所述指纹识别装置还包括:放大单元和模数转换单元;
所述放大单元用于接收并放大所述指纹电信号得到放大指纹电信号,所述模数转换单元用于接收所述放大指纹电信号,并将所述放大指纹电信号转 换为数字指纹电信号。
第二方面,提供了一种电子设备,包括如第一方面或第一方面的任一可能的实现方式中的指纹识别装置。
在一种可能的实现方式中,所述电子设备还包括显示屏,所述显示屏中包括圆偏振片;
所述指纹识别装置设置于所述显示屏下方。
附图说明
图1是本申请实施例所适用的电子设备的结构示意图。
图2是根据本申请实施例的一种指纹识别装置的示意性结构图。
图3是本申请实施例的光学指纹传感器接收的光信号光强示意图。
图4是根据本申请实施例的另一种指纹识别装置的示意性结构图。
图5是本申请实施例的光学指纹传感器的指纹电信号的示意图。
图6是根据本申请实施例的另一种指纹识别装置的示意性结构图。
图7是根据本申请实施例的另一种指纹识别装置的示意性结构图。
图8是根据本申请实施例的另一种指纹识别装置的示意性结构图。
图9a是多个偏振单元组的一种设计方式的示意性图。
图9b是多个偏振单元组的另一种设计方式的示意性图。
图9c是多个偏振单元组的另一种设计方式的示意性图。
图9d是多个偏振单元组的另一种设计方式的示意性图。
图10a是多个偏振单元组的另一种设计方式的示意性图。
图10b是与图10a对应的多个像素单元组接收光强的示意性图。
图10c是根据本申请实施例的卷积计算方法的卷积模板示意图。
图11a是多个偏振单元组的另一种设计方式的示意性图。
图11b是多个偏振单元组的另一种设计方式的示意性图。
图11c是多个偏振单元组的另一种设计方式的示意性图。
图12a是多个偏振单元组的另一种设计方式的示意性图。
图12b是与图11a对应的多个像素单元组的电信号的示意性图。
图13是根据本申请实施例的电子设备的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例可以应用于光学指纹系统,包括但不限于光学指纹识别系统和基于光学指纹成像的产品,本申请实施例仅以光学指纹系统为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的系统等。
作为一种常见的应用场景,本申请实施例提供的光学指纹系统可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备;更具体地,在上述终端设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹系统。或者,所述指纹识别装置也可以部分或者全部集成至所述终端设备的显示屏内部,从而形成屏内(In-display)光学指纹系统。
需要说明的是,为便于理解,在以下示出的实施例中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
如图1所示为本申请实施例可以适用的终端设备的结构示意图,所述终端设备1包括显示屏120和光学指纹装置130,其中,所述光学指纹装置130设置在所述显示屏120下方的局部区域。所述光学指纹装置130包括光学指纹传感器,所述光学指纹传感器包括具有多个光学感应单元131的感应阵列133,所述感应阵列133所在区域或者其感应区域为所述光学指纹装置130的指纹检测区域103。如图1所示,所述指纹检测区域103位于所述显示屏120的显示区域之中。在一种替代实施例中,所述光学指纹装置130还可以设置在其他位置,比如所述显示屏120的侧面或者所述终端设备1的边缘非透光区域,并通过光路设计来将所述显示屏120的至少部分显示区域的光信号导引到所述光学指纹装置130,从而使得所述指纹检测区域103实际上位于所述显示屏120的显示区域。
应当理解,所述指纹检测区域103的面积可以与所述光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得所述光学指纹装置130的指纹检测区域103的面积大于所述光学指纹装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,所述光学指纹装置130的指纹检测区域103也可以设计成与所述光学指纹装置130 的感应阵列的面积基本一致。
因此,使用者在需要对所述终端设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的终端设备1无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域可以基本扩展到整个终端设备1的正面。
应当理解的是,在具体实现上,如图1所示,所述终端设备1还包括透明保护盖板110,所述盖板110可以为玻璃盖板或者蓝宝石盖板,其位于所述显示屏120的上方并覆盖所述终端设备1的正面。因为,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板或者覆盖所述盖板的保护层表面。
作为一种可选的实施例,所述显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,所述光学指纹装置130可以利用所述OLED显示屏120位于所述指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指140按压在所述指纹检测区域103时,显示屏120向所述指纹检测区域103上方的目标手指140发出一束光111,该光111在盖板110的上表面发生反射形成反射光,其中,手指嵴(ridge)与盖板110之间能紧密接触无缝隙,而手指峪(valley)与盖板110之间存在一定的空气间隙,因而光111在手指嵴与盖板接触区域的反射率为0,光111在手指峪与盖板接触区域的反射率约为4%,因此,光111在手指嵴与盖板接触区域处反射形成的反射光151的光强小于光111在手指峪与盖板接触区域处反射形成的反射光152。反射光经过光学组件132后,被光学指纹装置130中的感应阵列134所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述终端设备1实现光学指纹识别功能。
在其他实施例中,所述光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,所述光学指纹装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示 屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,所述终端设备1的光学指纹系统还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在所述终端设备1的保护盖板下方的边缘区域,而所述光学指纹装置130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达所述光学指纹装置130;或者,所述光学指纹装置130也可以设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述光学指纹装置130。当采用所述光学指纹装置130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理与上面描述内容是一致的。
应当理解,终端设备1还可以包括电路板150,该电路板设置在所述光学指纹装置130的下方。光学指纹装置130可以通过背胶粘接在所述电路板150上,并通过焊盘及金属线焊接与所述电路板150实现电性连接。光学指纹装置130可以通过电路板150实现与其他外围电路或者终端设备1的其他元件的电性互连和信号传输。比如,光学指纹装置130可以通过电路板150接收终端设备1的处理单元的控制信号,并且还可以通过电路板150将来自光学指纹装置130的指纹检测信号输出给终端设备1的处理单元或者控制单元等。
另一方面,在某些实施例中,所述光学指纹装置130可以仅包括一个光学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到所述指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,所述光学指纹装置130可以具体包括多个光学指纹传感器;所述多个光学指纹传感器可以通过拼接方式并排设置在所述显示屏120的下方,且所述多个光学指纹传感器的感应区域共同构成所述光学指纹装置130的指纹检测区域103。也即是说,所述光学指纹装置130的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将所述光学指纹装置130的指纹采集区域103可以扩展到所述显示屏的下半部分的主要区域,即扩展到手指惯常按压 区域,从而实现盲按式指纹输入操作。可替代地,当所述光学指纹传感器数量足够时,所述指纹检测区域103还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
还应理解,在本申请实施例中,光学指纹装置中的感应阵列也可以称为像素阵列,感应阵列中的光学感应单元或感应单元也可称为像素单元。
需要说明的是,本申请实施例中的光学指纹装置也可以称为光学指纹识别模组、指纹识别装置、指纹识别模组、指纹模组、指纹采集装置等,上述术语可相互替换。
图2是本申请实施例提供的一种指纹识别装置10的示意性结构图,如图2所示,所述指纹识别装置10设置于显示屏120下方,所述指纹识别装置10用于接收经过手指反射的光信号并转换为电信号并进行指纹识别。该显示屏120为OLED显示屏,包括盖板121,圆偏振片122,显示组件124,玻璃衬底126以及遮光保护层127。
其中,所述显示组件124包括有机发光层125,所述有机发光层125用于配合显示驱动电路实现显示功能,例如,所述有机发光层125可以是采用低温多晶硅技术(low temperature poly-silicon,LTPS)制成的OLED有机发光面板,具有多个发光像素单元,生长于所述玻璃衬底126上。所述圆偏振片122可以包括线偏振片和1/4波片,线偏振片设置于1/4波片上方,用于抑制显示屏120对环境光的反射,进而实现更高的显示对比度。所述盖板121可以通过胶层设置在圆偏振片122上,用于保护所述显示屏120。指纹识别装置10放置或者贴合在玻璃衬底126的底部,由此可以在显示屏的显示区域中局部实现或全屏实现屏下光学指纹识别。所述遮光保护层127设置于玻璃衬底下方,其上设置有开窗128,用于通过经由人体手指反射后形成的指纹光信号,所述指纹光信号用于指纹识别。
具体地,如图2所示,所述显示层125向手指140发射第一自然光信号101,所述第一自然光信号101经过圆偏振片122,经过手指140反射后,光强减弱,形成第一指纹光信号。所述第一指纹光信号经过圆偏振片122和所述开窗127后,光强进一步减弱,形成第二指纹光信号1011,该第二指纹光信号1011被所述指纹识别装置10接收。
与此同时,所述显示组件125发出的第二自然光信号102也可以经过所述开窗127直接被所述指纹识别装置10接收。所述第二自然光信号102没 有经过显示屏中圆偏振片122的处理光强衰减,因而第二自然光信号102的光强远大于所述第二指纹光信号1011的光强,且趋于恒定。此外,杂散光103为显示屏120中各叠层结构反射的光信号,同样没有经过圆偏振片122的处理光强衰减,因而杂散光103的同样具有较大的光强。因此,如图3所示,所述指纹识别装置10同时接收杂散光103、第二自然光信号102和第二指纹光信号1011时,用于指纹识别的第二指纹光信号1011在总的接收光信号中占比小,总光信号中指纹嵴和指纹峪的光强变化微弱,造成难以识别出指纹信号,极大的限制了指纹识别装置10的指纹识别性能。
此外,第二自然光信号102还携带有发光像素单元的信息,杂散光103还携带显示屏120中各叠层结构信息以及显示屏触控ITO图案信息,在所述指纹识别装置10同时接收第二自然光信号102,杂散光103以及第二指纹光信号1011时,第二自然光信号102和杂散光103携带的干扰信息,容易对指纹识别装置10对第二指纹光信号1011的成像造成干扰,从而影响指纹图像的质量,限制了指纹识别装置10的指纹识别性能。
基于此,本申请提供了一种指纹识别方案,在指纹识别装置中不同的像素单元上方设置不同的偏振单元,这样,不同的像素单元接收的光强不同,因而转换得到的电信号不同,通过对不同的像素单元的电信号进行处理,去除电信号中自然光信号产生的电分量,避免自然光对指纹识别造成干扰,从而提高指纹识别装置的指纹识别性能。
以下,结合图4至图11,详细介绍本申请实施例的指纹识别装置。
应理解,在以下所示出的本申请实施例中的像素单元、偏振单元以及偏振单元组的数量和排布方式等仅为示例性说明,而不应对本申请构成任何限定。
图4是本申请实施例提供的一种指纹识别装置20的示意性结构图,该指纹识别装置20包括:
光学指纹传感器200,包括:多个像素单元组;例如图4中第一像素单元组210;
多个偏振单元组,设置于所述多个像素单元组上方,其中,每个偏振单元组对应一个像素单元组;每个偏振单元组中至少包括2个偏振单元,且每个偏振单元组中的偏振单元的偏振化方向不同;例如图4中的第一偏振单元组310对应于第一像素单元组210,设置于所述第一像素单元组210上方, 其中,该第一偏振单元组310包括第一偏振单元311和第二偏振单元312,且二者的偏振化方向不同。
1/4波片500,设置于所述多个偏振单元组上方。
所述多个像素单元组中的每个像素单元组用于接收光信号通过所述1/4波片500和对应的一个偏振单元组后的一组偏振光信号得到一组电信号,所述光信号包括经由手指反射而返回的指纹偏振光信号,所述一组电信号用于处理得到指纹电信号,所述指纹电信号为对应于所述指纹偏振光信号的电信号。
例如图4中,第一偏振单元311将光信号处理得到第一偏振光信号,第一像素单元211用于将第一偏振光信号转换为第一电信号,第二偏振单元312将光信号处理得到第二偏振光信号,第二像素单元212用于将第二偏振光信号转换为第二电信号,所述第一电信号和第二电信号组成的一组电信号用于处理得到指纹电信号。
具体地,在本申请实施例中,所述光学指纹传感器包括多个像素单元组组成的像素阵列以及与所述像素阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die)。所述多个像素单元组中像素单元用于接收经过偏振单元的光信号,并将接收光信号处理得到电信号,一组像素单元组接收一组偏振光信号并转换为一组电信号。可选地,所述多个像素单元可以采用光电二极管(photo diode)、金属氧化物半导体场效应管(metal oxide semiconductor field effect transistor,MOSFET)等器件。可选地,所述多个像素单元对于特定波长光具有较高的光灵敏度和较高的量子效率,以便于检测相应波长的光信号。
应理解,图4中的第一像素单元211和第二像素单元212也可以为图1中的光学感应单元131,其相关功能和结构说明可以参考前述相关描述。
具体地,在本申请实施例中,所述1/4波片500可以是能够使得互相垂直的两光振动间产生附加光程差(即相位差Δj)的光学器件。其中,Δj=2kπ(k为整数)时合成为线偏振光;Δj=(2k+1)π/2,且θ=45°时合成为圆偏振光。1/4波片500也可以称为四分之一波片(quarter-wave plate)。1/4波片500可以是具有精确厚度的双折射晶片。例如石英、方解石或云母等双折射晶片,其光轴与晶片表面平行。
1/4波片500接收的入射光被分解为寻常光(o光)和异常光(e光), 晶体对两种光的折射率不同,1/4波片500能使互相垂直的两光(o光和e光)间产生附加1/4光程差。例如,假设线偏振光入射到1/4波片500,且θ=45°,则穿出1/4波片的光为圆偏振光;反之,圆偏振光通过1/4波片500后变为线偏振光。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面(垂直自然裂开面)成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光。
具体地,在本申请实施例中,所述多个偏振单元组可以构成偏振组件300,每个偏振单元组中的偏振单元,例如图4中第一偏振单元311和第二偏振单元312可以实现高消光比的偏振态的选择,可以将自然光或圆偏振光转换为线偏振光,允许振动方向平行于偏振化方向的光信号通过,同时吸收振动方向垂直于该偏振化方向的光信号。具体地,所述第一偏振单元311和第二偏振单元312可以为偏振片(polarizer,PL)或者偏振膜。
可选地,所述多个偏振单元组可以通过第二固定装置设置在多个像素单元组上方,所述第二固定装置设置于所述光学指纹传感器的非感光区域,用于连接所述多个偏振单元组和所述多个像素单元组。
可选地,所述多个偏振单元组还可以与所述多个像素单元组一起集成在所述光学指纹传感器中,具体地,可以采用蒸镀工艺在所述光学指纹传感器的多个像素单元组上进行镀膜形成所述多个偏振单元组,例如,通过原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等方法在所述光学指纹传感器的多个像素单元上方制备偏振薄膜。具体地,还可以采用互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)工艺在多个像素单元组上制备多个金属线栅微偏振器作为偏振单元组,该金属线栅微偏振器结构为周期性的金属线栅阵列,其中金属线栅的宽度与间距为几十至几百纳米。
具体地,所述多个偏振单元组中每个偏振单元组接收的光信号包括自然光信号、杂散光以及经由手指反射而返回的指纹偏振光信号,所述自然光信号可以包括显示屏发出的屏幕光或者环境光等光信号,杂散光为显示屏中各膜层结构反射产生的光信号,同时杂散光未穿过显示屏内的圆偏振片为自然光信号。
在本申请实施例中,所述指纹偏振光信号通过所述1/4波片500后为线偏振光。例如,如图4所示,所述自然光信号201和指纹偏振光信号202入 射至第一偏振单元组310,即第一偏振单元311和第二偏振单元312中,所述指纹偏振光信号202为圆偏振光,经过1/4波片500后变为线偏振光。所述自然光信号201通过第一偏振单元311和第二偏振单元312变为第一自然偏振光信号和第二自然偏振光信号,该第一自然偏振光信号和第二自然偏振光信号的光强相同,且均不大于自然光信号201的光强的1/2。
所述指纹偏振光信号202通过第一偏振单元311和第二偏振单元312后的光信号变为第一指纹偏振光信号和第二指纹偏振光信号,该第一指纹偏振光信号和第二指纹偏振光信号的光强不同,且若指纹偏振光信号202的振动方向与第一偏振单元311的偏振化方向的夹角小于与指纹偏振光信号202的振动方向第二偏振单元312的偏振化方向的夹角,则第一指纹偏振光信号的光强大于第二指纹偏振光信号的光强。特别的,若指纹偏振光信号202的振动方向垂直于第一偏振单元311或者第二偏振单元312的偏振化方向,则第一指纹偏振光信号或第二指纹偏振光信号的光强为0。
具体地,在本实施方式中,所述第一像素单元211接收的第一偏振光信号包括所述第一自然偏振光信号和第一指纹偏振光信号,将该第一偏振光信号的光强转换为第一电信号;所述第二像素单元212接收的第二偏振光信号包括所述第二自然偏振光信号和第二指纹偏振光信号,将该第二偏振光信号的光强转换为第二电信号,由于第一指纹偏振光信号和第二指纹偏振光信号的光强不同,第一自然偏振光信号和第二自然偏振光信号的光强相同,因此,处理得到的第一电信号和第二电信号不同。基于该不同的第一电信号和不同的第二电信号处理得到指纹电信号。
可选地,在本申请实施例中,该指纹识别装置20可以为指纹模组,或者,该指纹识别装置20可以为包括指纹模组的电子设备,本申请实施例对此不作限定。
应理解,在本申请实施例中,所述自然光信号201还可以包括其它不具有偏振态的光信号,例如经过显示屏中各叠层结构反射形成的杂散光,并且杂散光并未穿过显示屏内的圆偏振片,也即杂散光可以为自然光。与自然光信号经过偏振单元的情况相同,杂散光经过不同的偏振单元后,光强变化一致,且均不大于原始杂散光光强的1/2。为了便于描述,也可以将自然光信号201和杂散光统一称为自然光信号201。
在本申请实施例中,在进行指纹识别时,指纹偏振光信号经过偏振化方 向不同的偏振单元后,得到的光信号的光强不同,从而对应不同的偏振单元的像素单元处理得到的电信号不同,进一步的,对不同的电信号进行处理,去除其中相同的自然光、杂散光等干扰光的影响,确定对应于指纹偏振光信号的指纹检测电信号,提高指纹识别装置的指纹识别性能。
例如,如图5所示,所述指纹识别装置20同时接收自然光信号201和指纹偏振光信号202时,处理得到的指纹电信号中仅包括对应于指纹偏振光的电信号,因而对应指纹嵴和指纹峪的电信号变化大,便于进行指纹识别装置20进行指纹识别。
可选地,所述指纹识别装置20还包括:第一光学组件400,所述第一光学组件400设置于所述光学指纹传感器200的上方。所述第一光学组件400可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,所述滤光层可以用于滤除穿透手指的环境光,而所述导光层或光路引导结构主要用于从手指表面反射回来的反射光导引至所述感应阵列进行光学检测。
在具体实现上,所述第一光学组件400可以封装在所述光学指纹传感器200中,也可以将所述第一光学组件400设置在所述光学指纹传感器200外部,比如将所述第一光学组件400贴合在所述光学指纹传感器200上方,或者将所述第一光学组件400的部分元件集成在所述光学指纹传感器200之中。可以理解的是,当偏振组件设置于所述光学指纹传感器200上方时,第一光学组件400实际设置于偏振组件300上;第一光学组件400封装在光学传感器200中,实际上是与偏振组件300一起封装在光学传感器200中。
在一种可能的实施方式中,所述第一光学组件400设置于所述偏振组件300的上方,如图6所示,所述第一光学组件400包括:至少一阻光层410和微透镜阵列420;
所述至少一阻光层410设置有多个通光小孔;
所述微透镜阵列420,设置于所述至少一阻光层410上方,用于将所述光信号汇聚至所述至少一阻光层410的多个通光小孔,所述光信号通过所述至少一阻光层410的多个通光小孔传输至所述偏振组件300。
所述至少一阻光层410可以通过半导体工艺生长或者其它工艺形成在所述偏振组件300上方,例如,通过原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等方法在偏振组件300上方制备一层非透光材料薄膜,再进行小孔图形光刻和刻蚀,形成多个通光小孔。所述至少一阻光层410可以阻挡相 邻微透镜之间的光学干扰,并使得像素单元所对应的光信号通过所述微透镜汇聚到所述通光小孔内部并经由所述通光小孔传输到所述偏振单元和像素单元以进行光学指纹成像。可选地,所述偏振组件300与所述至少一阻光层410之间,以及多层阻光层410之间通过透明介质层进行隔离。
所述微透镜阵列420由多个微透镜形成,其可以通过半导体生长工艺或者其他工艺形成在所述至少一阻光层410上方,并且每一个微透镜可以分别对应于所述光学指纹传感器200的其中一个像素单元。
应理解,所述第一光学组件400可以设置在显示屏120至光学指纹传感器200之间光路中的任意位置,例如:设置在光学指纹传感器200与偏振组件300之间,或者设置在偏振组件300与1/4波片500之间,或者设置在1/4波片500与显示屏120之间。
采用本申请实施例的指纹识别装置,在减小光信号中自然光等光信号的干扰的同时,减小指纹识别装置的厚度,从而进一步提升光学指纹识别装置的性能。
可选地,如图6所示,所述第一光学组件400还包括:第一滤波层430,用于滤掉非目标波段的光信号,透过目标波段的光信号(即指纹图像采集所需波段的光信号)。
可选地,所述第一滤波层430设置在所述第一光学组件的上方或者设置在所述第一光学组件到所述光学指纹传感器的之间的光路中。具体地,所述第一滤波层430设置于所述微透镜阵列420上方或者所述微透镜阵列420到偏振组件300之间的光路中。例如,如图6所示,所述滤波层设置于所述多个偏振单元组的上方。
可选地,所述第一滤波层430设置于所述微透镜阵列420的上方,例如,所述微透镜阵列420上方设置缓冲层,所述缓冲层为透明介质缓冲层,其光学折射率低于所述微透镜阵列420,可选地,所述缓冲层的光学折射率低于1.3。所述第一滤波层430的下表面通过粘接层与所述缓冲层的上表面完全贴合。可选地,所述粘接层可以为低折射率胶,该低折射率胶的折射率小于1.25。
可选地,所述第一滤波层430还可以通过第三固定装置固定在微透镜阵列420的上方,例如,在所述微透镜阵列420四周的非感光区域设置框胶或者其它支撑件,以支撑并固定所述第一滤波层430在所述微透镜阵列420的 上方,所述第一滤波层430的下表面与所述微透镜阵列420的上表面之间存在空气间隙层。
可选地,所述第一滤波层430还可以通过第三固定装置例如框胶设置在所述微透镜阵列420到光学指纹传感器200之间的光路中。具体地,所述第一滤波层430可以设置于所述阻光层410和偏振组件300之间。
可选地,所述第一滤波层430还可以与所述偏振组件300一起集成在光学指纹传感器中,具体的,可以采用蒸镀工艺在所述偏振组件300上方光进行镀膜形成所述滤波层430。
可选地,所述第一滤波层430为光波长截止滤波片,用于滤除特定波段的光信号,有利于降低特定波段的环境光信号的影响,从而能够提升指纹识别性能。
在一种可能的实施方式中,如图7所示,所述1/4波片500设置于所述第一光学组件400上方。所述显示屏120中的发光层125发出的屏幕光信号301为自然光信号,经过1/4波片500和光学组件400后,被第一偏振单元组310接收。
屏幕光信号经过显示屏120中的圆偏振片122后,形成屏幕线偏振光,该屏幕线偏振光经过手指140反射后,再次经过圆偏振片122,形成圆偏振光302,所述圆偏振光302经过1/4波片500后,形成线偏振光304,该线偏振光304即为所述指纹偏振光信号,线偏振光304经过光学组件400后被第一偏振单元组310接收。
可选地,在本申请实施例中,所述自然光信号301可以为图4中的自然光信号201,所述线偏振光304可以为图4中的指纹偏振光信号202。本申请实施例中第一偏振单元311与第二偏振单元312对自然光信号301以及线偏振光304的处理过程,具体可以参考前述方法实施例中的对应过程,在此不再赘述。在另一种可能的实施方式中,如图8所示,所述指纹识别装置20还包括:第二光学组件600,所述第二光学组件600包括透镜组件610,其具有至少一个球面或非球面的光学透镜组成的透镜组,用于将从手指反射回来的反射光汇聚到其下方的光学指纹传感器的多个像素单元,以使得所述多个像素单元可以基于所述反射光进行成像,从而得到所述手指的指纹图像。可选地,所述光学透镜层在所述透镜单元的光路中还可以形成有针孔,所述针孔可以配合所述光学透镜层扩大所述指纹识别装置的视场,以提高所述指 纹识别装置20的指纹成像效果。
可选地,如图8所示,所述透镜组件610可以通过第一固定装置620,设置在所述显示屏120下方,并且设置在所述光学指纹传感器200上方。
可选地,所述第一固定装置620可以为支架或者镜筒,所述透镜组件610中的一个或多个光学透镜固定于所述镜筒或者支架中,所述镜筒或者支架用于将透镜组件610固定于所述光学指纹传感器200上方,光信号经过透镜组件610后再进入光学指纹传感器200中。可选地,当所述第一固定装置620为镜筒时,所述第一固定装置620还可以包括镜座,所述镜筒和所述镜座可以为两个分立的部件,可以通过螺纹连接固定在一起,所述镜座还可以与所述镜筒为一体式结构。
可选地,所述透镜组件610可以设置于显示屏120至光学指纹传感器200中的光路中的任意位置。例如,如图8所示,所述透镜组件610设置于所述偏振组件300与所述1/4波片500之间。可选地,所述透镜组件610还可以设置于所述显示屏120与所述1/4波片500之间,或者设置于所述偏振组件300与所述光学指纹传感器200之间。
可选地,所述第二光学组件600还可以包括第二滤波层630。可选地,所述第二滤波层可以设置于所述显示屏120至光学指纹传感器200中的光路中的任意位置。例如,如图8所示,所述第二滤波层630设置于所述偏振组件300与所述透镜组件610之间。可选地,所述第二滤波层630还可以设置于所述显示屏120与所述1/4波片500之间,或者设置于所述1/4波片500与所述透镜组件610之间,或者设置于透镜组件610中多个光学透镜之间,或者设置于所述偏振组件300与所述光学指纹传感器200之间。可选地,当第二光学组件600包括镜筒时,第二滤波层630可以设置在镜筒当中并位于透镜组件610的下方;当第二光学组件600包括支架时,第二滤波层630还可以设置在支架当中并位于透镜组件610的下方。可选地,所述指纹识别装置20还可以包括:处理单元,用于对所述一组电信号进行处理得到所述指纹电信号。
例如,处理单元用于对第一像素单元211和第二像素单元212的第一电信号与第二电信号进行处理得到指纹电信号,该指纹电信号中无对应于自然偏振光的电信号,只包含对应于指纹偏振光的电信号。
可选地,所述处理单元可以为处理器,该处理器可以为光学指纹传感器 200中的处理器,或者所述指纹识别装置20所在的电子设备的处理器,本申请实施例对此不做限定。
可选地,所述指纹识别装置20还可以包括:放大单元和模数转换单元,所述放大单元用于接收并放大所述指纹电信号得到放大指纹电信号,所述模数转换单元用于接收所述放大指纹电信号,并将所述放大指纹电信号转换为数字指纹电信号。
可选地,所述多个偏振单元组中任意一个偏振单元组包括至少两个偏振单元,所述多个像素单元组中任意一个像素单元组包括至少两个像素单元,其中,一个偏振单元对应至少一个像素单元。
应理解,所述多个偏振单元组中每个偏振单元组的设计方式和排布方式可以彼此相同或者不同;一个偏振单元可以对应一个或多个像素单元;本申请实施例对此不做限定。
在一种可能的实施方式中,两个偏振化方向不同的偏振单元构成一个偏振单元组,两个像素单元构成一个像素单元组,其中一个偏振单元和第一像素单元一一对应。
可选地,如图9a和图9b所示,多个偏振单元组构成偏振组件300,所述多个偏振单元组中每个偏振单元组的设计方式和排布方式可以与所述第一偏振单元组310相同,即每个偏振单元组中的两个偏振单元与第一偏振单元组310中的两个偏振单元相同,且每个偏振单元组中的两个偏振单元在偏振单元组中的相对位置与第一偏振单元组310中两个偏振单元在第一偏振单元组310中的相对位置相同。
可选地,如图9c和图9d所示,所述偏振组件300中每个偏振单元组的设计方式可以与第一偏振单元组310相同,即每个偏振单元组中的两个偏振单元与第一偏振单元组310中的两个偏振单元相同。所述多个偏振单元组中其它偏振单元组的排布方式可以与第一偏振单元组310不同,即每个偏振单元组中的两个偏振单元在偏振单元组中的相对位置可以与第一偏振单元组310中两个偏振单元在第一偏振单元组310中的相对位置不同。
可选地,在本申请实施例中,所述第一偏振单元组310中第一偏振单元311的偏振化方向与接收的指纹偏振光信号304的偏振方向的夹角为α,所述第一偏振单元311的偏振化方向与所述第二偏振单元312的偏振化方向的夹角为β。
所述第一偏振单元311和第二偏振单元312接收的指纹偏振光信号304光强为S1,接收的自然光信号301光强为B。所述指纹偏振光信号304和自然光信号301经过所述第一偏振单元311后,形成的第一偏振光信号光强为B/2+S1*cos 2α;所述指纹偏振光信号304和自然光信号301经过所述第二偏振单元312后,形成的第二偏振光信号光强为B/2+S1*cos 2(α-β)。可选地,所述第一像素单元211将第一偏振光信号转化为对应于光强B/2+S1*cos 2α的第一电信号,所述第二像素单元212将第二偏振光信号转化为对应于光强B/2+S1*cos 2(α-β)的第二电信号,该第一电信号和第二电信号为对应于第一偏振单元组310和第一像素单元组210的第一组电信号。
在包含第一偏振单元组的多个偏振单元组中,其它偏振单元组中第n个偏振单元组接收的指纹偏振光信号光强为Sn,n为大于等于2的正整数,接收的自然光信号光强为B。因此,第n个偏振单元组形成的第n偏振光信号包括光强为B/2+Sn*cos 2α以及光强为B/2+Sn*cos 2(α-β)的偏振光信号。可选地,对应于第n偏振单元组的第n像素单元组将两个偏振光信号转化为两个电信号,为对应的第n组电信号。
在一种可能的实施方式中,所述处理单元将第一组电信号中的第一电信号与第二电信号进行相减,得到对应于光强S1*(cos 2α-cos 2(α-β))的指纹电信号,同样的,将第n电信号组的两个电信号进行相减得到对应于光强Sn*(cos 2α-cos 2(α-β))的指纹电信号。
应理解,所述夹角α和夹角β可以为小于180°的任意不同角度,本申请实施例对此不做限定。
可选地,在一种可能的实施方式中,所述夹角α和夹角β之差可以为90°。
例如,如图10a所示,所述第一偏振单元311的偏振化方向与接收的指纹偏振光信号304的偏振方向的夹角为α=0°,所述第一偏振单元311的偏振化方向与所述第二偏振单元312的偏振化方向的夹角为β=90°;所述偏振组件300包括多个第一偏振单元组310,其排列方式与图9c或图9d相同。此时,如图10b所示,第一像素单元组210中的第一像素单元211接收的第一偏振光信号光强为B/2+S1,第二像素单元212接收的第二偏振光信号光强为B/2,转化为第一组电信号。第n个像素单元组接收的光强为B/2+Sn和B/2,并转化为两个第n组电信号。
可选地,在本申请实施例中,对第一组电信号即第一电信号和第二电信号进行相减得到的指纹电信号完全对应于光强为S1的指纹偏振光信号,对第n组电信号中的两个电信号进行相减得到的指纹电信号完全对应于光强为Sn的指纹偏振光信号。
可选地,在另一种可能的实施方式中,所述处理单元用于采用卷积计算的方法对所述一组电信号进行处理得到所述指纹电信号。
可选地,在本申请实施例中,所述处理单元还可以用于对多组像素单元采用卷积计算的方法对多组电信号处理得到多个指纹电信号。
例如,多个像素单元组接收的偏振光信号强度如图10b所示,所述多个像素单元组处理得到的电信号对应于接收的偏振光信号强度。卷积模板100如图10c所示,其中,x为任意不等于0的数字。将多个像素单元组的多组电信号与卷积模板进行卷积计算得到多个指纹电信号,多个指纹电信号中包括对应于光强为4x*Sn的指纹偏振光信号。
在另一种可能的实施方式中,四个偏振化方向不同的偏振单元构成一个偏振单元组,四个像素单元构成一个像素单元组。
可选地,如图11a所示,四个偏振化方向不同的偏振单元构成第二偏振单元组320,所述偏振组件300中每个偏振单元组的设计方式和排布方式可以与所述第二偏振单元组320相同,即每个偏振单元组中的四个偏振单元与第二偏振单元组320中的四个偏振单元相同,且每个偏振单元组中的四个偏振单元在偏振单元组中的相对位置与第二偏振单元组320中四个偏振单元在第二偏振单元组320中的相对位置相同。
可选地,所述偏振组件300中偏振单元组的设计方式或排布方式可以与所述第二偏振单元组320不同,即每个偏振单元组中的四个偏振单元与第二偏振单元组320中的四个偏振单元不同,或每个偏振单元组中的四个偏振单元在偏振单元组中的相对位置与第二偏振单元组320中四个偏振单元在第二偏振单元组320中的相对位置不同。
例如,如图11b所示,所述偏振组件300中部分偏振单元组的设计方式与所述第二偏振单元组320相同,但该部分偏振单元组的排布方式与所述第二偏振单元组320不同。
例如,如图11c所示,所述偏振组件300中部分偏振单元组的设计方式与所述第二偏振单元组320不同。
可选地,在本实施方式中,所述第二偏振单元组320可以为第一偏振单元311、第二偏振单元312,以及第三偏振单元313,第四偏振单元314组成的偏振单元组,第二偏振单元组320可以对应第一像素单元211、第二像素单元212、以及第三像素单元213、第四像素单元214组成的第二像素单元组220。
可选地,在本申请实施例中,所述第一偏振单元311的偏振化方向与接收的指纹偏振光信号304的偏振方向的夹角为d,所述第二偏振单元312的偏振化方向与所述第一偏振单元311的偏振化方向的夹角为a,所述第三偏振单元313的偏振化方向与所述第一偏振单元311的偏振化方向的夹角为b,所述第四偏振单元314的偏振化方向与所述第一偏振单元311的偏振化方向的夹角为c。
所述第一偏振单元311、第二偏振单元312、第三偏振单元313以及第四偏振单元314接收的指纹偏振光信号光强为L1,接收的自然光信号光强为B。所述指纹偏振光信号和自然光信号经过所述第一偏振单元311后,形成的第一偏振光信号光强为B/2+L1*cos 2d;经过所述第二偏振单元312后,形成的第二偏振光信号光强为B/2+L1*cos 2(d-a),经过所述第三偏振单元313后,形成的第三偏振光信号光强为B/2+L1*cos 2(d-b),经过所述第四偏振单元314后,形成的第四偏振光信号光强为B/2+L1*cos 2(d-c)。可选地,所述第一像素单元211将第一偏振光信号转化为对应于光强B/2+L1*cos 2d的第一电信号,同样的,所述第二像素单元212将第二偏振光信号转化为对应于光强B/2+L1*cos 2(d-a)的第二电信号,所述第三像素单元213将第三偏振光信号转化为对应于光强B/2+L1*cos 2(d-b)的第三电信号,所述第四像素单元214将第四偏振光信号转化为对应于光强B/2+L1*cos 2(d-c)的第四电信号。
在包含第二偏振单元组320的多个偏振单元组中,其它偏振单元组中第m个偏振单元组接收的指纹偏振光信号光强为Lm,m为大于等于2的正整数,接收的自然光信号光强为B。因此,第m个偏振单元组形成的第m偏振光信号包括光强为B/2+Lm*cos 2d、B/2+Lm*cos 2(d-a)、B/2+Lm*cos 2(d-b)以及B/2+Lm*cos 2(d-c)的偏振光信号。可选地,对应于第m偏振单元组的第m像素单元组将四个偏振光信号转化为四个电信号。
可选地,在一种可能的实施方式中,所述处理单元将每个像素单元组的一组四个电信号中的任意两个电信号进行相减,得到指纹电信号。
应理解,夹角b、夹角c和夹角d可以为小于180°的任意不同角度,本申请实施例对此不做限定。
可选地,在一种可能的实施方式中,如图12a所示,所述偏振组件300包括多个第二偏振单元组320,第二偏振单元组320中所述第二偏振单元312的偏振化方向与所述第一偏振单元311的偏振化方向的夹角为a=45°,所述第三偏振单元313的偏振化方向与所述第一偏振单元311的偏振化方向的夹角为b=90°,所述第四偏振单元314的偏振化方向与所述第一偏振单元311的偏振化方向的夹角为c=135°。此时,如图12b所示,第二偏振单元组320对应的第二像素单元组220中,第一像素单元211接收的第一偏振光信号光强为B/2+L1*cos 2d,第二像素单元212接收的第二偏振光信号光强为B/2+L1*cos 2(45-d),第三像素单元213接收的第三偏振光信号光强为B/2+L1*sin 2d,第四像素单元214接收的第四偏振光信号光强为B/2+L1*sin 2(45-d)。第m个像素单元组接收偏振光信号并转化该偏振光信号形成:对应于光强为B/2+Lm*cos 2d的电信号Am,对应于光强为B/2+Lm*cos 2(45-d)的电信号Bm,对应于光强为B/2+Lm*sin 2d的电信号Cm以及对应于光强为B/2+Lm*sin 2(45-d)的电信号Dm。
可选地,在一种可能的实施方式中,对每个像素单元组中四个电信号Am,Bm,Cm和Dm做如下处理:(Am-Bm) 2+(Cm-Dm) 2,此时得到的单位指纹电信号完全对应于光强为Lm的指纹偏振光信号。
应理解,在本实施方式中,第二偏振单元组320中所述第二偏振单元312的偏振化方向与所述第一偏振单元311的偏振化方向的夹角a还可以为大于0°小于90°的任意角度值,所述第四偏振单元314的偏振化方向与所述第一偏振单元311的偏振化方向的夹角c=a+90°。
在本申请实施例中,通过设置四个不同偏振化方向的偏振单元,以及对对应的像素单元的电信号进行处理,使得得到的指纹电信号完全对应于光强为Lm 2的指纹偏振光信号,没有任何指纹偏振光信号光强的损失,能够提高指纹识别的性能。
如图13所示,本申请实施例还提供了一种电子设备2,该电子设备2可以包括上述申请实施例的指纹识别装置20。
可选地,所述电子设备2还可以包括显示屏120,所述指纹识别装置20设置于所述显示屏120下方。
可选地,所述显示屏120为有机发光二极管OLED显示屏或者微型发光二极管Micro-LED显示屏,所述显示屏120中包括圆偏振片122,用于将自然光转化为圆偏振光。
应理解,本申请实施例的处理单元可以为处理器,所述处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应所述理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦 合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (23)

  1. 一种指纹识别装置,其特征在于,包括:
    光学指纹传感器,包括:多个像素单元组;
    多个偏振单元组,设置于所述多个像素单元组上方,其中,每个偏振单元组对应一个像素单元组;每个偏振单元组中的偏振单元的偏振化方向不同;
    1/4波片,设置于所述多个偏振单元组上方;
    所述多个像素单元组中的每个像素单元组用于接收光信号通过所述1/4波片和对应的一个偏振单元组后的一组偏振光信号得到一组电信号,所述光信号包括经由手指反射而返回的指纹偏振光信号,所述一组电信号用于处理得到指纹电信号。
  2. 根据权利要求1所述的指纹识别装置,其特征在于,所述指纹偏振光信号通过所述1/4波片后为线偏振光。
  3. 根据权利要求1或2所述的指纹识别装置,其特征在于,所述多个偏振单元组相同。
  4. 根据权利要求1或2所述的指纹识别装置,其特征在于,所述多个偏振单元组包括第一偏振单元组和第二偏振单元组,所述第一偏振单元组与所述第二偏振单元组不同。
  5. 根据权利要求4所述的指纹识别装置,其特征在于,所述第一偏振单元组中偏振单元的偏振化方向与所述第二偏振单元组中偏振单元的偏振化方向不同。
  6. 根据权利要求4所述的指纹识别装置,其特征在于,所述第一偏振单元组中偏振单元的排列方式与所述第二偏振单元组中偏振单元的排列方式不同。
  7. 根据权利要求1-6中任一项所述的指纹识别装置,其特征在于,所述多个偏振单元组中任意一个偏振单元组包括至少两个偏振单元,所述多个像素单元组中任意一个像素单元组包括至少两个像素单元,其中,一个偏振单元对应至少一个像素单元。
  8. 根据权利要求1-7中任一项所述的指纹识别装置,其特征在于,所述多个偏振单元组中至少一个偏振单元组包括第一偏振单元和第二偏振单元,所述第一偏振单元和所述第二偏振单元偏振化方向之差为90°。
  9. 根据权利要求1-8中任一项所述的指纹识别装置,其特征在于,所述一组电信号用于将其中任意两个不同的电信号相减得到所述指纹电信号。
  10. 根据权利要求1-8中任一项所述的指纹识别装置,其特征在于,所述一组电信号用于进行卷积计算得到所述指纹电信号。
  11. 根据权利要求1-7中任一项所述的指纹识别装置,其特征在于,所述多个偏振单元组中至少一个偏振单元组包括第一偏振单元、第二偏振单元、第三偏振单元和第四偏振单元;
    所述第一偏振单元和所述第二偏振单元偏振化方向之差为90°,所述第三偏振单元和所述第四偏振单元偏振化方向之差为90°。
  12. 根据权利要求11所述的指纹识别装置,其特征在于,所述一组电信号包括第一电信号、第二电信号、第三电信号和第四电信号,用于根据公式计算得到所述指纹电信号,所述公式为:
    Figure PCTCN2019086908-appb-100001
    其中,S为所述指纹电信号,A为第一电信号,对应于所述第一偏振单元,B为第二电信号,对应于所述第二偏振单元,C为第三电信号,对应于所述第三偏振单元,D为第四电信号,对应于所述第四偏振单元。
  13. 根据权利要求1-12中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:
    第一光学组件,设置于所述光学指纹传感器上方;
    所述第一光学组件包括:至少一阻光层和微透镜阵列;
    所述至少一阻光层位于所述微镜头阵列下方,设置有多个通光小孔;
    所述光学指纹传感器用于接收经由所述微镜头阵列汇聚到所述多个通光小孔的并通过所述多个通光小孔的光信号。
  14. 根据权利要求13所述的指纹识别装置,其特征在于,所述第一光学组件还包括:
    第一滤波层,设置在所述第一光学组件的上方或者设置在所述第一光学组件到所述光学指纹传感器的之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号。
  15. 根据权利要求14所述的指纹识别装置,其特征在于,所述第一滤波层设置在所述多个偏振单元组的上方,所述第一光学组件设置在所述第一滤波层上方。
  16. 根据权利要求1-12中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:
    第二光学组件,设置于所述光学指纹传感器上方;
    所述第二光学组件包括:至少一个光学透镜。
  17. 根据权利要求16所述的指纹识别装置,其特征在于,所述第二光学组件还包括:
    第一固定装置,用于将所述至少一个光学透镜固定在所述光学指纹传感器上方。
  18. 根据权利要求16或17所述的指纹识别装置,其特征在于,所述第二光学组件还包括:
    第二滤波层,设置在所述至少一个光学透镜的上方或者设置在所述至少一个光学透镜到光学指纹传感器的之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号。
  19. 根据权利要求1-18中任一项所述的指纹识别装置,其特征在于,所述多个偏振单元组集成在所述光学指纹传感器中。
  20. 根据权利要求1-19中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:处理单元;
    所述处理单元用于对所述一组电信号进行处理得到所述指纹电信号。
  21. 根据权利要求1-20中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:放大单元和模数转换单元;
    所述放大单元用于接收并放大所述指纹电信号得到放大指纹电信号,所述模数转换单元用于接收所述放大指纹电信号,并将所述放大指纹电信号转换为数字指纹电信号。
  22. 一种电子设备,其特征在于,包括:
    如权利要求1至21中任一项所述的指纹识别装置。
  23. 如权利要求22所述的电子设备,其特征在于,所述电子设备还包括显示屏,所述显示屏中包括圆偏振片;
    所述指纹识别装置设置于所述显示屏下方。
PCT/CN2019/086908 2019-05-14 2019-05-14 指纹识别装置和电子设备 WO2020227940A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980002385.6A CN110770747B (zh) 2019-05-14 2019-05-14 指纹识别装置和电子设备
PCT/CN2019/086908 WO2020227940A1 (zh) 2019-05-14 2019-05-14 指纹识别装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086908 WO2020227940A1 (zh) 2019-05-14 2019-05-14 指纹识别装置和电子设备

Publications (1)

Publication Number Publication Date
WO2020227940A1 true WO2020227940A1 (zh) 2020-11-19

Family

ID=69341848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086908 WO2020227940A1 (zh) 2019-05-14 2019-05-14 指纹识别装置和电子设备

Country Status (2)

Country Link
CN (1) CN110770747B (zh)
WO (1) WO2020227940A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112257636A (zh) * 2020-10-29 2021-01-22 杭州芯格微电子有限公司 指纹传感器
WO2022133833A1 (zh) * 2020-12-23 2022-06-30 深圳市汇顶科技股份有限公司 指纹识别装置、显示屏和电子设备
CN112528942A (zh) * 2020-12-23 2021-03-19 深圳市汇顶科技股份有限公司 指纹识别装置、显示屏和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981503A (zh) * 2017-04-27 2017-07-25 上海天马微电子有限公司 一种显示面板及电子设备
US20180151641A1 (en) * 2016-11-25 2018-05-31 Lg Display Co., Ltd. Display device with a fingerprint sensor
CN208298206U (zh) * 2018-06-15 2018-12-28 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备
CN109190599A (zh) * 2018-10-15 2019-01-11 武汉华星光电半导体显示技术有限公司 一种显示面板
CN109325400A (zh) * 2017-07-31 2019-02-12 三星电子株式会社 用于识别指纹的显示器和电子装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9276055B1 (en) * 2014-08-31 2016-03-01 Lg Display Co., Ltd. Display device with micro cover layer and manufacturing method for the same
RU2627926C1 (ru) * 2016-07-18 2017-08-14 Самсунг Электроникс Ко., Лтд. Оптическая система для биометрической идентификации пользователя
CN106339682B (zh) * 2016-08-26 2019-09-06 京东方科技集团股份有限公司 指纹识别的显示面板及指纹识别的显示装置
CN106249457B (zh) * 2016-09-26 2019-09-13 京东方科技集团股份有限公司 一种阵列基板、显示装置以及指纹识别的控制方法
KR20180085607A (ko) * 2017-01-19 2018-07-27 삼성전자주식회사 지문 인식 장치 및 방법
CN106773229B (zh) * 2017-03-10 2018-11-09 京东方科技集团股份有限公司 一种指纹识别显示装置及其驱动方法
EP3690701B1 (en) * 2017-09-30 2024-05-29 Shenzhen Goodix Technology Co., Ltd. Fingerprint recognition method, fingerprint recognition device and terminal equipment
WO2019237353A1 (zh) * 2018-06-15 2019-12-19 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备
CN108615033B (zh) * 2018-06-25 2021-03-26 Oppo广东移动通信有限公司 一种支持全屏指纹识别的模组、终端设备及指纹识别方法
EP3657381B1 (en) * 2018-09-25 2022-08-17 Shenzhen Goodix Technology Co., Ltd. Fingerprint recognition apparatus and method, and terminal device
CN209765529U (zh) * 2019-05-14 2019-12-10 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180151641A1 (en) * 2016-11-25 2018-05-31 Lg Display Co., Ltd. Display device with a fingerprint sensor
CN106981503A (zh) * 2017-04-27 2017-07-25 上海天马微电子有限公司 一种显示面板及电子设备
CN109325400A (zh) * 2017-07-31 2019-02-12 三星电子株式会社 用于识别指纹的显示器和电子装置
CN208298206U (zh) * 2018-06-15 2018-12-28 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备
CN109190599A (zh) * 2018-10-15 2019-01-11 武汉华星光电半导体显示技术有限公司 一种显示面板

Also Published As

Publication number Publication date
CN110770747B (zh) 2023-08-22
CN110770747A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
CN209765529U (zh) 指纹识别装置和电子设备
US11403869B2 (en) Optical fingerprint identification apparatus and electronic device
US11455823B2 (en) Under-screen fingerprint identification apparatus and electronic device
US11386691B2 (en) Optical device, module, apparatus, and system for fingerprint identification
US11275922B2 (en) Fingerprint identification apparatus and electronic device
WO2021072768A1 (zh) 指纹识别装置和电子设备
WO2019237872A1 (zh) 指纹识别装置和电子设备
WO2020119289A1 (zh) 指纹识别装置和电子设备
KR20220054387A (ko) 통합 광학 센서 및 그 제조 방법
WO2020223882A1 (zh) 指纹识别装置和电子设备
WO2020220298A1 (zh) 指纹识别装置和电子设备
WO2020227940A1 (zh) 指纹识别装置和电子设备
US11403870B2 (en) Fingerprint identification apparatus and electronic device
WO2021051737A1 (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
WO2020150938A1 (zh) 光电传感器及其制备方法
WO2021077406A1 (zh) 指纹识别装置和电子设备
WO2021022488A1 (zh) 指纹检测的装置和电子设备
US11781905B2 (en) Optical sensing device and electronic apparatus having the same
WO2020243934A1 (zh) 光学图像采集装置和电子设备
CN211180838U (zh) 指纹识别装置和电子设备
TWI645556B (zh) 影像感測器封裝體
WO2021056318A1 (zh) 指纹识别的方法、装置和电子设备
CN210142338U (zh) 光学指纹识别模组以及电子设备
CN210864753U (zh) 指纹识别装置和电子设备
WO2022133833A1 (zh) 指纹识别装置、显示屏和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928918

Country of ref document: EP

Kind code of ref document: A1