WO2021072768A1 - 指纹识别装置和电子设备 - Google Patents

指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2021072768A1
WO2021072768A1 PCT/CN2019/112018 CN2019112018W WO2021072768A1 WO 2021072768 A1 WO2021072768 A1 WO 2021072768A1 CN 2019112018 W CN2019112018 W CN 2019112018W WO 2021072768 A1 WO2021072768 A1 WO 2021072768A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal
fingerprint
linear polarizer
electrical signals
Prior art date
Application number
PCT/CN2019/112018
Other languages
English (en)
French (fr)
Inventor
肖瑜
程雷刚
易福建
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2019/112018 priority Critical patent/WO2021072768A1/zh
Priority to CN201980004084.7A priority patent/CN111052140B/zh
Publication of WO2021072768A1 publication Critical patent/WO2021072768A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • This application relates to the field of optical fingerprint technology, and more specifically, to a fingerprint identification device and electronic equipment.
  • the fingerprint identification device In addition to receiving the fingerprint light signal with fingerprint information reflected by the finger, the fingerprint identification device will also receive the screen light signal and the ambient light signal, and the screen structure and other information carried by the screen light signal will affect the fingerprint The performance of recognition, and as the environment changes, the ambient light signal will change, which will also affect the performance of fingerprint recognition, which will bring a bad experience to the user.
  • the embodiments of the present application provide a fingerprint identification device and electronic equipment, which can improve the success rate of fingerprint identification.
  • a fingerprint identification device configured to be arranged under the display screen of an electronic device, and includes: a pixel array including a plurality of first pixel units and a plurality of second pixel units;
  • the 1/4 wave plate is arranged above the pixel array
  • the first linear polarizer is disposed between the quarter-wave plate and the plurality of first pixel units, and the polarization direction of the first linear polarizer forms an angle of 45° with the fast axis of the quarter-wave plate. Blocking the first fingerprint light signal in the fingerprint light signal returned by the reflection or scattering of the finger above the display screen, where the first fingerprint light signal is the light signal directed to the plurality of first pixel units;
  • the plurality of second pixel units are used to receive a second optical signal, the second optical signal includes a second fingerprint optical signal in the fingerprint optical signal, and the second fingerprint optical signal is light directed to the plurality of second pixel units signal;
  • the plurality of first pixel units are used for receiving the first screen light signal passing through the quarter wave plate and the first linear polarizer, and the first screen light signal is used for correcting the second light signal.
  • the technical solution of the present application through the reasonable arrangement of the first linear polarizer and the quarter-wave plate, can prevent the first fingerprint light signal reflected or scattered back by the finger from being received by the multiple first pixel units, but only the screen leakage
  • the first screen light signal is received by multiple first pixel units. Therefore, the multiple first pixel units can not be interfered by other light signals, and the light intensity of the screen light signal is accurately determined by the light intensity of the first screen light signal .
  • the correction coefficient is obtained, and the second fingerprint light signals received by the multiple second pixel units that are reflected or scattered back by the finger are corrected, thereby reducing the second fingerprint
  • the interference of the screen structure information in the optical signal and the interference of the light changes in the external environment improve the success rate of fingerprint recognition.
  • the quarter wave plate is used to receive circularly polarized light and convert the circularly polarized light into linearly polarized light;
  • the polarization direction of the first linear polarizer and the fast axis of the quarter wave plate form an angle of +45°
  • the polarization direction of the first linear polarizer and the fast axis of the quarter wave plate form an angle of -45°.
  • the circularly polarized light is an optical signal passing through a circular polarizing plate in the display screen, and the circularly polarized light includes a fingerprint optical signal returned after being reflected or scattered by a finger above the display screen.
  • the area of the first linear polarizer is smaller than the area of the pixel array, and the first linear polarizer is disposed above the edge area of the pixel array.
  • the first linear polarizer is disposed in the window on the lower surface of the display screen, and is located at the edge of the window.
  • the first linear polarizer is a metal wire grid array, and is disposed on the upper surface of the plurality of first pixel units.
  • the quarter wave plate and the first linear polarizer are integrated or separately provided.
  • the quarter wave plate is arranged on the lower surface of the display screen, or between the display screen and the first linear polarizer.
  • the area of the quarter wave plate is greater than or equal to the area of the first linear polarizer, and the first linear polarizer is located in the projection of the quarter wave plate in the vertical direction.
  • the multiple first pixel units are used to convert the first screen light signal to obtain multiple first electrical signals
  • the multiple second pixel units are used to convert the fingerprint light signal to obtain multiple first electrical signals.
  • the multiple first electrical signals are used for processing to obtain a first correction coefficient, and the first correction coefficient is used for correcting the multiple second electrical signals.
  • the multiple first pixel units are used to convert the first screen light signal to obtain multiple first electrical signals
  • the multiple second pixel units are used to convert the second light signal
  • the plurality of first electrical signals are used for subtracting from the initial electrical signal to obtain a plurality of first modified electrical signals
  • the plurality of first modified electrical signals are used for processing to obtain a second correction coefficient
  • the second correction coefficient is used to correct the plurality of second electrical signals.
  • the multiple first pixel units are used to convert the first screen light signal to obtain multiple first electrical signals
  • the multiple second pixel units are used to convert the second light signal Obtain multiple second electrical signals
  • the fingerprint identification device also includes: a processing unit for receiving the plurality of first electrical signals and the plurality of second electrical signals, and subtracting the plurality of first electrical signals from the initial electrical signals to obtain a plurality of first corrections
  • the electrical signal is processed according to the plurality of first modified electrical signals to obtain a second correction coefficient, and the multiple second electrical signals are corrected based on the second correction coefficient to perform fingerprint recognition.
  • the dark current interference generated by the pixel unit when there is no light can be reduced, and the light intensity of the first screen light signal can be obtained more accurately, so as to more accurately compare the second screen light signal to the second screen.
  • the second electrical signal corresponding to the optical signal is corrected.
  • the pixel array further includes: a plurality of third pixel units;
  • the fingerprint identification device further includes: a second linear polarizer disposed between the quarter wave plate and the pixel array, the The polarization direction of the second linear polarizer is perpendicular to the polarization direction of the first linear polarizer to pass through the third fingerprint optical signal in the fingerprint optical signal, and the third fingerprint optical signal is the light directed to the plurality of third pixel units. signal;
  • the plurality of third pixel units are used to receive a third optical signal passing through the quarter-wave plate and the second linear polarizer.
  • the third optical signal includes the third fingerprint optical signal, the first screen optical signal, and the The third optical signal is used to modify the second optical signal.
  • the influence of the extinction ratio of the linear polarizer that cannot reach infinity on determining the intensity of the first screen light signal can be reduced, based on the first screen light signal received by the multiple first pixel units and the multiple third
  • the third light signal received by the pixel unit obtains a correction coefficient, and the second light signals received by the plurality of second pixel units are corrected, which can further improve the accuracy of fingerprint recognition.
  • the second linear polarizer and the first linear polarizer are located on the same horizontal plane and arranged adjacent to each other.
  • the second linear polarizer is a metal wire grid array, and is disposed on the upper surface of the plurality of third pixel units.
  • the quarter wave plate and the second linear polarizer are integrated or separately provided.
  • the area of the quarter wave plate is greater than or equal to the sum of the areas of the first linear polarizer and the second linear polarizer, and the first linear polarizer and the second linear polarizer are both located at The quarter wave plate is projected in the vertical direction.
  • the multiple first pixel units are used to convert the first screen light signal to obtain multiple first electrical signals
  • the multiple second pixel units are used to convert the second light signal
  • the plurality of third pixel units are used to convert the third optical signal to obtain a plurality of third electrical signals
  • the plurality of third electrical signals and the plurality of first electrical signals are used for processing to obtain a third correction coefficient, and the third correction coefficient is used for correcting the multiple second electrical signals.
  • the multiple first pixel units are used to convert the first screen light signal to obtain multiple first electrical signals
  • the multiple second pixel units are used to convert the second light signal
  • the plurality of third pixel units are used to convert the third optical signal to obtain a plurality of third electrical signals
  • the multiple first electrical signals are used to subtract from the initial electrical signal to obtain multiple first modified electrical signals, and the multiple third electrical signals are used to subtract from the initial electrical signal to obtain multiple third corrected electrical signals;
  • the plurality of third modified electrical signals, the plurality of first modified electrical signals, and the extinction ratio of the first linear polarizer are used to calculate the target modified signal through a formula, and the formula is:
  • X is the target modified electric signal
  • A is the first modified electric signal
  • B is the third modified electric signal
  • e is the extinction ratio of the first linear polarizer
  • the target correction signal is used for processing to obtain a fourth correction coefficient, and the fourth correction coefficient is used for correcting the plurality of second electrical signals.
  • the multiple first pixel units are used to convert the first screen light signal to obtain multiple first electrical signals
  • the multiple second pixel units are used to convert the second light signal
  • the plurality of third pixel units are used to convert the third optical signal to obtain a plurality of third electrical signals
  • the fingerprint identification device also includes: a processing unit for receiving the plurality of first electrical signals, the plurality of first electrical signals, and the plurality of third electrical signals;
  • the target modified electric signal is calculated according to the formula for the first modified electric signal and the third modified signal, and the formula is:
  • X is the target modified electric signal
  • A is the first modified electric signal
  • B is the third modified electric signal
  • e is the extinction ratio of the first linear polarizer
  • a fourth correction coefficient is obtained, and the second electrical signal or the third electrical signal is corrected based on the fourth correction coefficient to perform fingerprint recognition.
  • the fingerprint identification device further includes: at least one light-blocking layer and a microlens array; the at least one light-blocking layer is located under the microlens array and is provided with a plurality of light-passing holes; the pixel The array is used for receiving light signals that are converged to the plurality of light-passing apertures through the micro lens array and passed through the plurality of light-passing apertures.
  • the fingerprint identification device further includes: a filter layer, which is arranged in the light path between the display screen and the pixel array, and is used to filter out light signals of non-target wavelength bands and pass through the target wavelength bands. Light signal.
  • a filter layer which is arranged in the light path between the display screen and the pixel array, and is used to filter out light signals of non-target wavelength bands and pass through the target wavelength bands. Light signal.
  • an electronic device including a display screen and a fingerprint identification device as in the first aspect or any possible implementation of the first aspect.
  • the display screen includes a circular polarizer, and the fingerprint identification device is arranged under the display screen.
  • the display screen is an organic light-emitting diode display screen
  • the light-emitting layer of the display screen includes a plurality of organic light-emitting diode light sources
  • the fingerprint identification device uses at least part of the organic light-emitting diode light sources as the fingerprint identification device. Stimulate the light source.
  • the electronic device has good fingerprint identification performance, improves the fingerprint identification success rate, and improves the user experience.
  • FIG. 1 is a schematic diagram of the structure of an electronic device to which an embodiment of the present application is applied.
  • Fig. 2 is a schematic structural diagram of a display screen and a fingerprint identification device according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a state change of an optical signal in Fig. 2.
  • Fig. 4 is a schematic structural diagram of a fingerprint identification device according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a state change of an optical signal in Fig. 4.
  • Fig. 6a and Fig. 6b are schematic diagrams of another optical signal state change in Fig. 4.
  • Fig. 7 is a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • 8a to 8c are schematic structural diagrams of three types of fingerprint identification devices according to embodiments of the present application.
  • Fig. 9 is a top view of the pixel array in Figs. 8a to 8c.
  • Fig. 10 is a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • Fig. 11a and Fig. 11b are schematic diagrams of a state change of an optical signal in Fig. 10.
  • Figures 12a to 12c are schematic structural diagrams of three fingerprint identification devices according to embodiments of the present application.
  • Figures 13a and 13b are two top views of the pixel arrays in Figures 12a to 12c.
  • Fig. 14 is a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • FIG. 15 is a top view of the pixel array in FIG. 14.
  • FIG. 15 is a top view of the pixel array in FIG. 14.
  • Fig. 16 is a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • Fig. 18 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • optical fingerprint systems including but not limited to optical fingerprint identification systems and products based on optical fingerprint imaging.
  • the embodiments of this application only take optical fingerprint systems as an example for illustration, but should not be implemented in this application.
  • the examples constitute any limitation, and the examples of this application are also applicable to other systems that use optical imaging technology.
  • the optical fingerprint system provided in the embodiments of this application can be applied to smart phones, tablet computers, and other mobile terminals with display screens or other electronic devices; more specifically, in the above electronic devices, fingerprint identification
  • the device may specifically be an optical fingerprint device, which may be arranged in a partial area or an entire area under the display screen, thereby forming an under-display optical fingerprint system.
  • the fingerprint identification device may be partially or fully integrated into the display screen of the electronic device, thereby forming an in-display optical fingerprint system.
  • the electronic device 10 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is disposed in a partial area under the display screen 120.
  • the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 133 having a plurality of optical sensing units 131, and the area where the sensing array 133 is located or its sensing area is the fingerprint detection area 103 of the optical fingerprint device 130. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the optical fingerprint device 130 can also be arranged in other positions, such as the side of the display screen 120 or the non-transmissive area at the edge of the electronic device 10, and at least part of the display area of the display screen 120 is designed through the optical path.
  • the optical signal is guided to the optical fingerprint device 130, so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130.
  • the optical fingerprint can be made The area of the fingerprint detection area 103 of the device 130 is larger than the area of the sensing array of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 can also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130.
  • the electronic device 10 with the above structure does not need to reserve space on the front side to set the fingerprint button (such as the Home button), so that a full-screen solution can be adopted, that is, the display area of the display screen 120 can be basically Extend to the front of the entire electronic device 10.
  • the optical fingerprint device 130 includes a light detecting portion 134 and an optical component 132.
  • the light detecting portion 134 includes a sensing array and a reading circuit electrically connected to the sensing array.
  • Other auxiliary circuits which can be fabricated on a chip (Die) through a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array is specifically a photodetector array, which includes a plurality of arrays distributed
  • the photodetector can be used as the above-mentioned optical sensing unit; the optical component 132 can be arranged above the sensing array of the light detecting part 134, and it can specifically include a light guide layer or a light path guide structure and other optical elements.
  • the light guide layer or light path guide structure is mainly used to guide the reflected light reflected from the surface of the finger to the sensing array for optical detection.
  • the optical component 132 and the light detecting part 134 can be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 can be attached to the Above the chip, or part of the components of the optical assembly 132 are integrated into the above-mentioned chip.
  • the light guide layer or light path guiding structure of the optical component 132 has multiple implementation schemes.
  • the light guide layer may be specifically a collimator layer made on a semiconductor silicon wafer, which has multiple collimators.
  • the collimating unit can be specifically a small hole, the reflected light reflected from the finger, the light that is perpendicularly incident on the collimating unit can pass through and be received by the optical sensor unit below it, and the incident angle Excessive light is attenuated by multiple reflections inside the collimating unit, so each optical sensor unit can basically only receive the reflected light reflected by the fingerprint pattern directly above it, so the sensor array can detect the finger Fingerprint image.
  • the light guide layer or the light path guide structure may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses, which is used for The reflected light reflected from the finger is condensed to the sensing array of the light detection part 134 below it, so that the sensing array can perform imaging based on the reflected light, thereby obtaining a fingerprint image of the finger.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the optical fingerprint device, so as to improve the fingerprint imaging effect of the optical fingerprint device 130.
  • the light guide layer or the light path guide structure may also specifically adopt a micro-lens (Micro-Lens) layer.
  • the micro-lens layer has a micro-lens array formed by a plurality of micro-lenses. The process is formed above the sensing array of the light detecting part 134, and each microlens may correspond to one of the sensing units of the sensing array, respectively.
  • other optical film layers may be formed between the micro lens layer and the sensing unit, such as a dielectric layer or a passivation layer. More specifically, a light blocking layer with micro holes may also be formed between the micro lens layer and the sensing unit. The micro-hole is formed between the corresponding micro-lens and the sensing unit.
  • the light blocking layer can block the optical interference between the adjacent micro-lens and the sensing unit, and make the light corresponding to the sensing unit converge into the micro-hole through the micro-lens And it is transmitted to the sensing unit through the micro-hole for optical fingerprint imaging.
  • a microlens layer can be further provided under the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the micro lens layer, the specific laminated structure or optical path may need to be adjusted according to actual needs.
  • the display screen 120 may adopt a display screen with a self-luminous display unit, such as an organic light-emitting diode (OLED) display screen or a micro-LED (Micro-LED) display screen.
  • a self-luminous display unit such as an organic light-emitting diode (OLED) display screen or a micro-LED (Micro-LED) display screen.
  • the optical fingerprint device 130 may use the display unit (ie, OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as the excitation light source for optical fingerprint detection.
  • OLED light source the display unit of the OLED display screen 120 located in the fingerprint detection area 103.
  • the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103.
  • the light 111 is reflected on the surface of the finger 140 to form reflected light or scattered inside the finger 140.
  • the scattered light is formed.
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Since the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light 151 from the fingerprint ridge and the reflected light 152 from the fingerprint ridge have different light intensities. After the reflected light passes through the optical component 132, It is received by the sensor array 134 in the optical fingerprint device 130 and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, so that the electronic device 10 Realize the optical fingerprint recognition function.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may be suitable for non-self-luminous display screens, such as liquid crystal display screens or other passively-luminous display screens.
  • the optical fingerprint system of the electronic device 10 may also include an excitation light source for optical fingerprint detection.
  • the optical fingerprint device 130 can be specifically an infrared light source or a light source of invisible light of a specific wavelength, which can be arranged under the backlight module of the liquid crystal display or arranged in the edge area under the protective cover of the electronic device 10, and the optical fingerprint device 130 can be arranged with a liquid crystal panel or Under the edge area of the protective cover and guided by the light path so that the fingerprint detection light can reach the optical fingerprint device 130; or, the optical fingerprint device 130 can also be arranged under the backlight module, and the backlight module passes through the diffusion sheet, the brightness enhancement sheet,
  • the film layer such as the reflective sheet has holes or other optical designs to allow the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical fingerprint device 130.
  • the optical fingerprint device 130 adopts a built-in light source or an external light source to provide an optical signal for fingerprint detection, the detection principle is the same as that described above.
  • the electronic device 10 further includes a transparent protective cover plate, which may be a glass cover plate or a sapphire cover plate, which is located above the display screen 120 and covers the front surface of the electronic device 10.
  • a transparent protective cover plate which may be a glass cover plate or a sapphire cover plate, which is located above the display screen 120 and covers the front surface of the electronic device 10.
  • the electronic device 10 may further include a circuit board 150 disposed under the optical fingerprint device 130.
  • the optical fingerprint device 130 can be adhered to the circuit board 150 through adhesive, and is electrically connected to the circuit board 150 through soldering pads and metal wires.
  • the optical fingerprint device 130 can realize electrical interconnection and signal transmission with other peripheral circuits or other components of the electronic device 10 through the circuit board 150.
  • the optical fingerprint device 130 can receive the control signal of the processing unit of the electronic device 10 through the circuit board 150, and can also output the fingerprint detection signal from the optical fingerprint device 130 to the processing unit or the control unit of the electronic device 10 through the circuit board 150 Wait.
  • the optical fingerprint device 130 may include only one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position. Therefore, the user needs to perform fingerprint input Press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include a plurality of optical fingerprint sensors; the plurality of optical fingerprint sensors may be arranged side by side under the display screen 120 in a splicing manner, and the sensing areas of the plurality of optical fingerprint sensors are common The fingerprint detection area 103 of the optical fingerprint device 130 is constituted.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint collection area 103 of the optical fingerprint device 130 can be extended to display
  • the main area of the lower half of the screen is extended to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 103 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the sensing array in the optical fingerprint device may also be referred to as a pixel array
  • the optical sensing unit or sensing unit in the sensing array may also be referred to as a pixel unit.
  • optical fingerprint device in the embodiments of the present application may also be referred to as an optical fingerprint identification module, a fingerprint identification device, a fingerprint identification module, a fingerprint module, a fingerprint acquisition device, etc., and the above terms can be replaced with each other.
  • Polarized light can mean that the vibration direction of the light vector does not change or has a light wave that changes regularly.
  • Linearly polarized light can refer to light waves whose light vector only vibrates in a fixed direction.
  • Circularly polarized light can refer to polarized light in which the two orthogonal components of the electric field vibration direction of the light wave have different phases but the same amplitude.
  • the magnitude of the electric vector of circularly polarized light remains unchanged, while the direction changes uniformly over time.
  • the ambient light may include light in various polarization directions, that is, the optical signal incident on the display screen includes the optical signal in each polarization direction.
  • a linear polarizer can be any optical device used to generate linearly polarized light.
  • the linear polarizer may be a thin layer formed of a material having a linear polarization function.
  • the linear polarizer 320 may be composed of two pieces of optical glass sandwiched by a piece of micro-polarizing crystal (such as mica) with directional effect.
  • the linear polarizer can convert ambient light or circularly polarized light into linearly polarized light, which allows optical signals whose vibration direction is parallel to its polarization direction to pass through, while absorbing optical signals whose vibration direction is perpendicular to the polarization direction.
  • the linear polarizer can also be replaced by a wire grid polarizer, which can be composed of many parallel metal wires and placed in a plane.
  • a metal aluminum film is plated on a transparent grating of about 2160 bars per millimeter to form a transparent and reflective wire grid (ie, wire grid polarizer).
  • the role of the wire grid polarizer is similar to that of the polarizer.
  • a wire-grid polarizer can be composed of an interlayer between two pieces of optical glass coated with a polythene film or polyvinyl cyanide and other crystals with a fence-like structure. The crystals only allow the vibration direction and the fence-like structure. The same light passes through the gap.
  • a wave plate also called a phase retarder
  • a phase retarder can cause a phase delay between two mutually perpendicular linearly polarized lights of polarized light, thereby changing the polarization state of the light, of which one quarter (1/4)
  • the phase retardation produced by a quarter-wave plate is an odd multiple of ⁇ /2, which can be a birefringent wafer with a precise thickness.
  • birefringent wafers such as quartz, calcite or mica.
  • the quarter wave plate When the quarter wave plate receives the incident light, the incident light undergoes birefringence and is decomposed into ordinary light (o light) and extraordinary light (e light).
  • the quarter wave plate has different refractive indexes for the two kinds of light and propagates relatively.
  • its light vector direction is the fast axis direction of the quarter-wave plate.
  • the quarter wave plate is a negative crystal, the e-light speed is fast, the direction of the e-light vector is the fast axis direction, and the direction of the o-light light vector is the slow axis direction.
  • the quarter-wave plate is a positive crystal, the opposite is true.
  • the direction of the e-ray light vector is the slow axis direction
  • the direction of the o-ray light vector is the fast axis direction.
  • the fast axis direction of the negative uniaxial crystal is the direction of the optical axis
  • the slow axis is the direction perpendicular to it; while the positive uniaxial crystal is just the opposite, and the slow axis direction of the positive uniaxial crystal is the light
  • the axis direction, the fast axis is the direction perpendicular to it.
  • linearly polarized light enters the quarter-wave plate, and the outgoing light is generally elliptically polarized light. If the vibration direction of the incident ray polarized light forms an angle of 45° with the fast axis (or slow axis) of the quarter-wave plate, the output The emitted light is circularly polarized light; if the vibration direction of the incident ray polarized light is along the fast axis (or slow axis), the emitted light is still linearly polarized light. The circularly polarized light enters the quarter-wave plate, and the outgoing light is linearly polarized light.
  • the light signal received by the fingerprint identification device and its characteristics are introduced below the display screen.
  • FIG. 2 is a schematic structural diagram of a fingerprint identification device 100 provided by an embodiment of the present application.
  • the fingerprint identification device 100 is disposed under the display screen 120, and the fingerprint identification device 100 is used to receive reflections from fingers.
  • the optical signal is converted into an electrical signal and fingerprint recognition is performed.
  • the display screen 120 may be an OLED display screen, and includes a cover 121, a linear polarizer 122, a quarter-wave plate 123, a display component 124, a glass substrate 126, and a light-shielding protective layer 127.
  • a glass substrate 126 is used as the base and support layer of the display screen 120, and a display assembly 124 is arranged above it.
  • the display assembly 124 includes an organic light-emitting layer 125 that is used to cooperate with The display driving circuit realizes the display function.
  • the organic light-emitting layer 125 may be an OLED organic light-emitting panel made of low temperature poly-silicon (LTPS) technology, with a plurality of light-emitting pixel units, grown on a glass substrate 126 .
  • LTPS low temperature poly-silicon
  • a linear polarizing plate 122 and a quarter-wave plate 123 are respectively arranged, wherein the linear polarizing plate 122 is arranged above the quarter-wave plate to suppress the reflection of the ambient light by the display screen 120, and thereby Achieve higher display contrast.
  • the combination of the linear polarizer 122 and the quarter-wave plate 123 can also be called a circular polarizer.
  • the cover 121 is arranged above the linear polarizer 122 through an adhesive layer to protect the display screen 120.
  • the light-shielding protective layer 127 is provided under the glass substrate 126, and an opening 128 is provided on the light-shielding protective layer 127 for passing through a fingerprint light signal formed after reflection by a human finger, and the fingerprint light signal is used for fingerprint identification.
  • the fingerprint identification device 100 is placed under the open window, so that it can receive fingerprint light signals, so as to realize partial or full-screen optical fingerprint identification in the display area of the display screen.
  • the display layer 125 emits a screen light signal 111 to the finger 140.
  • the screen light signal 111 is a natural light signal. After passing through the quarter-wave plate 123, it is still a natural light signal 112.
  • the signal 112 passes through the linear polarizer 122 to form a linearly polarized light signal 113, and the polarization direction of the linearly polarized light 112 is the same as the polarization direction of the linear polarizer.
  • the linearly polarized light 113 is reflected or scattered by the finger 140, the polarized light is again converted into an optical signal 114 with multiple polarization directions.
  • the polarization direction is the same as that of the linear polarizer 122.
  • the linearly polarized optical signal 115 which passes through the quarter-wave plate 123, forms the first optical signal 101.
  • the first optical signal is circularly polarized light 101 (left-handed circularly polarized light or right-handed circularly polarized light).
  • the second light signal 102 emitted by the display layer 125 can also be directly received by the fingerprint identification device 100 through the window 127.
  • the second optical signal 102 is a natural optical signal with no polarization state.
  • the second optical signal 102 is the optical signal emitted by the display screen and carries the information of the laminated structure of the display screen, the information of the laminated structure of the display screen in the second optical signal 102 will be affected by the fingerprint recognition device.
  • the fingerprint identification device performs fingerprint identification.
  • the external light signal irradiates the finger, passes through the finger, and passes through the display screen, and then forms a third light signal 103 which is received by the fingerprint identification device 100.
  • the third light signal 103 is an unpolarized light signal passing through the finger. It is formed after passing through the linear polarizer 122 and the quarter-wave plate 123. Therefore, the third optical signal is similar to the first optical signal and is circularly polarized light.
  • the light intensity of the third optical signal 103 also changes, which affects the fingerprint identification device to perform fingerprint identification.
  • the second light signal 102 is linearly related to the light intensity of the screen light signal
  • the first light signal 101 and the third light signal 103 will be affected by the state of the finger and the external light signal, and thus change.
  • the screen structure information in the three optical signals will also interfere with fingerprint recognition.
  • the optical signal is corrected to obtain a correction coefficient, so as to reduce the interference of the screen structure information in the optical signal on fingerprint identification.
  • the intensity of the light signal received by the fingerprint identification device is different at different times. Therefore, it is necessary to adjust the correction coefficient for the intensity of different light signals to reduce the impact of changes in external conditions. The impact of fingerprint recognition.
  • this application proposes a method of obtaining the light leakage signal of the screen through a quarter wave plate and a linear polarizer, that is, the light intensity of the above-mentioned second light signal 102, so as to adjust the light intensity based on the light leakage signal of the screen during the fingerprint recognition process.
  • Correction coefficient thereby reducing the interference of the screen structure information in the optical signal and the interference of the change of the external environment light, and improving the success rate of fingerprint recognition.
  • the light signal intensity of the light leakage of the screen is obtained without relying on the touch indium tin oxide (ITO) pattern information in the display screen, and the screen light will not be caused by the displacement of the ITO pattern. Strong calculations are not accurate, so that the fingerprint identification device can be applied to more types of display screens, for example, to a touch display screen using a metal mesh (Metal Mash).
  • ITO indium tin oxide
  • FIG. 4 is a schematic structural diagram of a fingerprint identification device 200 provided by an embodiment of the present application.
  • the fingerprint identification device 200 is configured to be installed under a display screen of an electronic device for fingerprint identification.
  • the fingerprint identification device 200 includes:
  • the pixel array 231 includes a plurality of first pixel units 2311 and a plurality of second pixel units 2312;
  • the quarter wave plate 210 is arranged above the pixel array 231;
  • the first linear polarizer 220 is disposed between the quarter-wave plate 210 and the plurality of first pixel units 2311, and the polarization direction of the first linear polarizer 220 is 45 with the fast axis of the quarter-wave plate. ° The included angle is to block the first fingerprint light signal in the fingerprint light signal reflected or scattered by the finger above the display screen, and the first fingerprint light signal is the light signal directed to the first pixel unit 2311;
  • the plurality of second pixel units 2312 are used to receive a second light signal.
  • the second light signal includes a second fingerprint light signal in the fingerprint light signal reflected or scattered by the finger above the display screen, and the second fingerprint light signal is used to guide the Light signals of a plurality of second pixel units 2312;
  • the plurality of first pixel units 2311 are used to receive the first screen light signal passing through the quarter wave plate 210 and the first linear polarizer 220, and the first screen light signal is used to correct the second light signal.
  • the characteristics of the quarter wave plate 210 can be referred to the above description, which is a general quarter wave plate in the optical field.
  • the characteristics of the first linear polarizer 220 can also refer to the aforementioned linear polarizer, which can be an independent linear polarizer structure, or a linear polarizer film or other polarizing structure with linear polarization function.
  • the pixel array 231 is a pixel array in the optical fingerprint sensor 230.
  • the optical fingerprint sensor 230 includes a pixel array 231 composed of a plurality of pixel units and is electrically connected to the pixel array
  • the reading circuit and other auxiliary circuits can be fabricated on a chip (Die) through a semiconductor process.
  • the multiple pixel units are used to receive the optical signals passing through the quarter wave plate and the first linear polarizer, and process the received optical signals to obtain electrical signals.
  • the plurality of pixel units may use photodiodes (PD), metal oxide semiconductor field effect transistors (Metal Oxide Semiconductor Field Effect Transistor, MOSFET) and other devices.
  • the plurality of pixel units have higher optical sensitivity and higher quantum efficiency for light of a specific wavelength, so as to facilitate detection of optical signals of corresponding wavelengths.
  • the pixel array 231 may be the same as the sensing array 133 in FIG. 1, and the related technical solutions may refer to the above related descriptions, which will not be repeated here.
  • the pixel array 231 includes a plurality of first pixel units 2311 and a plurality of second pixel units 2312, the first linear polarizer 220 is disposed above the plurality of first pixel units 2311, and the multiple One first pixel unit 2311 receives the optical signal passing through the quarter wave plate 210 and the first linear polarizing plate 220.
  • the first linear polarizer 220 is not disposed above the plurality of second pixel units 2312, in other words, the plurality of second pixel units 2312 do not receive light signals passing through the first linear polarizer 220.
  • the plurality of second pixel units 2312 may receive optical signals that only pass through the quarter-wave plate 210 but not the first linear polarizer 220, or receive optical signals that do not pass through the quarter-wave plate 210 nor the first linear polarizer 220. The optical signal of the linear polarizer 220.
  • the first fingerprint optical signal 2011 is formed.
  • the ambient light signal passes through the finger transmission and the circular polarizer in the display screen, a transmitted fingerprint light signal 2014 is formed.
  • the first fingerprint optical signal 2011 may be the aforementioned first optical signal 101
  • the transmitted fingerprint optical signal 2014 may be the aforementioned third optical signal 103, both of which are circularly polarized light.
  • the light-emitting layer 125 of the display screen leaks away from the back to form a screen light signal 202.
  • the screen light signal 202 may be the above-mentioned second light signal 102, which is natural light.
  • the natural light signal can be received by the first pixel unit 2311 after passing through the quarter wave plate 210 and the first linear polarizer 220.
  • the screen light signal 202 passes through the quarter-wave plate 210, it is still an optical signal 204 with multiple polarization directions.
  • the light signal 204 passes through the first linear polarizer 220, it forms a first screen light.
  • the first screen light signal 2021 is linearly polarized light, and its polarization direction is the same as that of the first linear polarizer 220.
  • the polarization direction of the first linear polarizer 220 and the positive X axis in the XY plane are at an angle of +45°
  • the polarization direction of the first screen light signal 2021 is also the same as the X axis in the XY plane.
  • the positive direction presents an angle of +45°.
  • the circularly polarized light passes through the quarter-wave plate to form linearly polarized light.
  • the linearly polarized light is perpendicular to the polarization direction of the first linear polarizer, The first fingerprint optical signal 2011 and the transmitted fingerprint optical signal 2014 cannot be received by the first pixel unit 2311 through the first linear polarizer.
  • the first fingerprint optical signal 2011 when the first fingerprint optical signal 2011 is a left-handed circularly polarized optical signal, and the fast axis direction of the quarter-wave plate 210 is the positive direction of the X axis in the XY coordinate system plane, the first fingerprint optical signal 2011 passes through the quarter-wave plate 210 to form linearly polarized light 205.
  • the polarization direction of the linearly polarized light 205 is as shown in the figure and is at an angle of -45° with the positive direction of the X axis. In other words, the polarization direction of the linearly polarized light 205 It forms an angle of -45° with the fast axis direction of the quarter wave plate 210.
  • the polarization direction of the first linear polarizer 220 and the fast axis direction of the quarter wave plate 210 form an angle of +45°
  • the polarization direction of the first linear polarizer 220 is perpendicular to the direction of the linear polarized light 205, and the linear The polarized light 205 cannot pass through the first linear polarizer 220, that is, the first fingerprint light signal 2011 cannot pass through the first linear polarizer 220.
  • the linearly polarized light 205 when the first fingerprint optical signal 2011 is a right-handed circularly polarized optical signal, and the fast axis direction of the quarter-wave plate is the positive direction of the X axis in the XY coordinate system plane, the linearly polarized light 205 As shown in the figure, the polarization direction of the linearly polarized light 205 forms an angle of +45° with the positive direction of the X axis. In other words, the polarization direction of the linearly polarized light 205 forms an angle of +45° with the fast axis direction of the quarter wave plate.
  • the line The polarized light 205 cannot pass through the first linear polarizer 220. That is, the first fingerprint optical signal 2011 also cannot pass through the first linear polarizer 220.
  • the first fingerprint optical signal 2011 can be received by a plurality of first pixel units 2311, and the first fingerprint optical signal 2011 It is the light signal that guides the plurality of first pixel units 2311.
  • FIGS. 6a and 6b only show the case where the fast axis direction of the quarter wave plate 210 is along the positive direction of the X axis, when the fast axis direction of the quarter wave plate 210 is other directions in the XY coordinate system, for example
  • the first fingerprint optical signal 2011 is a left-handed circularly polarized optical signal
  • the polarization direction of the linearly polarized light 205 passing through the quarter-wave plate forms an angle of -45° with the first direction.
  • the first fingerprint optical signal 2011 is a right-handed circularly polarized optical signal
  • the polarization direction of the linearly polarized light 205 forms an angle of +45° with the first direction.
  • the reasonable setting of the first linear polarizer 220 and the quarter-wave plate 210 can block the first fingerprint light signal returned by the light signal of the display screen through the reflection or scattering of the finger and the ambient light signal after the finger is transmitted.
  • the transmitted fingerprint light signal is not received by the multiple first pixel units 2311, but only the first screen light signal 2021 of the screen light leakage is received by the multiple first pixel units 2311. Therefore, the multiple first pixel units 2311 may not be affected by other The interference of the light signal (for example, the ambient light signal), the light intensity of the screen light signal is accurately determined by the light intensity of the first screen light signal 2021.
  • the first linear polarizer 220 is not disposed on the plurality of second pixel units 2312, therefore, the plurality of second pixel units 2312 can receive the second light signal, and the second light signal includes: a second screen The optical signal 2022 and the second fingerprint optical signal 2012 in the fingerprint optical signal, the second fingerprint optical signal 2012 is the optical signal directed to the plurality of second pixel units 2312.
  • the second screen light signal 2022 is a screen light leakage signal directly directed to the plurality of second pixel units 2312.
  • a correction coefficient is obtained, and the electrical signals corresponding to the second light signals received by the multiple second pixel units 2312 are corrected, thereby improving the accuracy of fingerprint recognition.
  • a processor in an electronic device such as a microcontroller unit (Microcontroller Unit, MCU) can obtain a correction coefficient based on the first screen light signals received by a plurality of first pixel units 2311, and apply a correction coefficient to the plurality of second pixels.
  • the electrical signal corresponding to the optical signal received by the unit 2312 is corrected, and the above operations can also be performed by the processor in the fingerprint identification device.
  • the fingerprint identification device includes: a processing unit 232.
  • the processing unit 232 may be a processor in the optical fingerprint sensor 230 or a processor in an electronic device.
  • the processing unit 232 is configured to receive the electrical signal generated by the pixel array 231 and process the electrical signal to determine the intensity of the screen light signal and perform fingerprint recognition.
  • the plurality of first pixel units 2311 in the pixel array 231 receive the first screen light signal 2021, and convert the first screen light signal 2021 into a corresponding first electrical signal, and the first electrical signal corresponds to the first screen light signal 2021.
  • the light intensity of the screen light signal is the light intensity of the screen light signal.
  • the processing unit 232 receives multiple first electrical signals generated by multiple first pixel units 2311, and the multiple first electrical signals are used to directly process to obtain the current screen light intensity
  • the first correction coefficient (an example of the correction coefficient).
  • the multiple first electrical signals are subtracted from the initial electrical signals to obtain multiple first modified electrical signals, and processed based on the multiple first corrected electrical signals to obtain The second correction coefficient under the current screen light intensity (another example of the correction coefficient).
  • the initial electrical signal is the electrical signal generated by the first pixel unit 2311 when there is no light, that is, when the external light intensity and the screen light intensity are both 0, and the electrical signal is the electrical signal generated by the first pixel unit 2311 under no light.
  • the electrical signal generated by the dark current generated by the semiconductor device in the presence of light, the electrical signal value generated by the first pixel unit 2311 is subtracted from the initial electrical signal to obtain the first modified electrical signal, which can avoid the problem in the first pixel unit 2311. Dark current interference can more accurately test the light intensity of the light signal of the first screen.
  • the optical signals received by the plurality of second pixel units 2312 in the pixel array 231 include the second screen optical signal 2022 and the second fingerprint optical signal 2012.
  • the plurality of second pixel units 2312 convert the intensity of the received optical signal into a corresponding second electrical signal.
  • the processing unit 232 Since the processing unit 232 obtains the correction coefficient (the first correction coefficient or the second correction coefficient) based on the intensity of the current screen light signal through the first electrical signal generated by the plurality of first pixel units 2311, the processing unit 232 is based on the The correction coefficient is used to process the second electrical signal generated by the second pixel unit 2312 to perform fingerprint recognition.
  • the correction coefficient is a correction coefficient obtained based on the current screen light signal intensity, which can avoid the interference of external environment changes on fingerprint recognition.
  • the first linear polarizer 220 and the quarter-wave plate 210 can be arranged at any position in the optical path between the display screen 120 and the optical fingerprint sensor 230.
  • the first linear polarizer 220 may be provided separately from the quarter-wave plate 210, or may be integrated.
  • the quarter-wave plate 210 and the first linear polarizer 220 are integrated together through an adhesive layer.
  • the first linear polarizer 220 may be disposed above the edge area of the pixel array 231.
  • the quarter wave plate 210 and the first linear polarizer 220 are disposed on the lower surface of the display screen 120.
  • the first linear polarizer 220 is disposed in the window 128 on the lower surface of the display screen, and is located at the edge of the window 128.
  • the quarter-wave plate 210 and the first linear polarizer 220 can be arranged on the lower surface of the display screen 120 and the optical fingerprint sensor through a fixing device.
  • the fixing device is disposed in the non-photosensitive area of the optical fingerprint sensor 230, and is used to fixly connect the optical fingerprint sensor 230, the first linear polarizer 220 and the quarter wave plate 210.
  • the fixing device includes, but is not limited to, a bracket, a glue layer and other fixing devices.
  • the quarter wave plate 210 and the first linear polarizer 220 may be integrated as shown in FIG. 8b, or may be separately arranged.
  • the first linear polarizer 220 can also be integrated in the chip of the optical fingerprint sensor together with multiple pixel units in the optical fingerprint sensor.
  • the first linear polarizer 220 may be formed by coating on a plurality of pixel units of the optical fingerprint sensor by an evaporation process, for example, by atomic layer deposition, sputtering coating, electron beam evaporation coating, ion beam coating, etc. The method prepares a polarizing film over a plurality of pixel units of the optical fingerprint sensor.
  • CMOS complementary metal oxide semiconductor
  • CMOS complementary Metal Oxide Semiconductor
  • the quarter-wave plate 210 can be arranged separately from the first linear polarizer 220 as shown in FIG. 8c, and the quarter-wave plate 210 is arranged on the lower surface of the display screen or on the lower surface of the display screen. Between the first linear polarizers 220, or the quarter-wave plate 210 can also be directly disposed on the surface of the first linear polarizer 220, and also integrated into the chip of the optical fingerprint sensor.
  • FIG. 9 shows a top view of the pixel array 231 in any one or more cases of FIG. 8a to FIG. 8c.
  • the optical signal passing through the quarter wave plate 210 and the first linear polarizer 220 is received.
  • the plurality of first pixel units 2311 are located at the edge of the pixel array 231.
  • the quarter-wave plate 210 and the first linear polarizer 220 may be disposed above the plurality of first pixel units 2311.
  • the number of the first pixel unit 2311 in the pixel array 231 is small, and the second pixel unit 2311 The pixel unit 2312 receives the fingerprint light signal returned by the reflection or scattering of the finger for fingerprint identification. Therefore, the number of the second pixel unit 2312 is larger.
  • the area of the first linear polarizer 220 is much smaller than the area of the pixel array 231 in the optical fingerprint sensor 230, so that the number of first pixel units 2311 that receive light signals passing through the first linear polarizer 220 is small.
  • the area of the first linear polarizer 220 is less than or equal to 1/100 of the area of the pixel array 231.
  • FIG. 9 only shows a schematic diagram of the arrangement of a plurality of first pixel units 2311 in the pixel array 231, and the plurality of first pixel units 2311 may also be located in the lower left position or the upper right position in the pixel array 231. Or the lower right position, or any position around the pixel array 231, in other words, the first linear polarizer 220 can be arranged at any position above the edge of the pixel array 231, for example, above the four corners or four sides of the pixel array. This is not limited.
  • the area of the quarter wave plate 210 is greater than or equal to the area of the first linear polarizer 220. Furthermore, the first linear polarizer 220 is located in the projection of the quarter wave plate 210 in the vertical direction.
  • the area of the quarter-wave plate 210 may be equal to the area of the window 128, that is, the quarter-wave plate may be disposed in the window 128 and The opening is covered. At this time, the area of the quarter wave plate 210 is much larger than the area of the first linear polarizing plate 220.
  • the area of the quarter-wave plate 210 may be greater than or equal to the area of the pixel array 231, and is arranged on the pixel array by a fixing device.
  • the area above 231 or the quarter-wave plate 210 may also be smaller than the area of the pixel array 231, which is not limited in the embodiment of the present application.
  • the fingerprint identification device 200 includes the quarter-wave plate 210, the first linear polarization unit 220, and the pixel array 231, the fingerprint light signal passing through the linear polarization plate and the quarter-wave plate in the display screen cannot be
  • the first linear polarizer 220 is received by the first pixel unit 2311 in the optical fingerprint sensor, and the first pixel unit 2311 only receives the screen light leakage signal, thereby determining the process of the screen light signal intensity.
  • the linearly polarized light 205 after passing through the quarter-wave plate 210 is completely absorbed by the first linear polarizer 220 and cannot pass through the first linear polarizer.
  • the extinction ratio of the linear polarizer cannot reach infinity.
  • the linear polarizer 220 when the linearly polarized light 205 passes through the first linear polarizer 220, there is still weak linearly polarized light that cannot be absorbed by the first linear polarizer 220 and passes through the first linear polarizer 220.
  • the linear polarizer 220 is transmitted to the first pixel unit 2311 of the optical fingerprint sensor 230, so that an error occurs in the screen light signal detected by the first pixel unit 2311.
  • the fingerprint identification device 200 further includes: a second linear polarizer 240, which is disposed between the quarter-wave plate 210 and the pixel array 231, and the polarization direction of the second linear polarizer 240 is the same as that of the first linear polarizer.
  • the polarization direction of 220 is vertical.
  • the second linear polarizer 240 may be obtained by rotating the first linear polarizer 220 by 90°.
  • the structural material of the second linear polarizer 240 may be the same as that of the first linear polarizer 220, and only the light signal passing through The polarization direction is different.
  • the second linear polarizer 240 and the first linear polarizer 220 are located on the same horizontal plane.
  • the second linear polarizer 240 and the first linear polarizer 220 may be located on a different horizontal plane, which is not limited in the embodiment of the present application.
  • the second linear polarizer 240 also receives the optical signal passing through the quarter wave plate.
  • the area of the quarter wave plate 210 is greater than or equal to the sum of the areas of the first linear polarizer 220 and the second linear polarizer 240, Furthermore, the first linear polarizer 220 and the second linear polarizer 240 are both located within the projection of the quarter wave plate 210 in the vertical direction.
  • the fingerprint light signal (including the fingerprint light signal of the display light signal that passes through the display screen after being reflected or scattered by the finger and/or the fingerprint light signal of the ambient light that passes through the display screen after the finger is transmitted) is circularly polarized light
  • the circularly polarized light passes through 1 After the /4 wave plate, linearly polarized light is formed.
  • the third fingerprint light signal 2013 in the fingerprint light signal can be passed through the first linear polarizer by the first pixel unit 2311 receive.
  • the third fingerprint optical signal 2013 is a fingerprint optical signal that is reflected, scattered or transmitted by the finger above the second linear polarizer 240.
  • the third fingerprint optical signal 2013 is a left-handed circularly polarized optical signal
  • the fast axis direction of the quarter-wave plate 210 is the positive direction of the X axis in the XY coordinate system plane
  • the polarization direction of the linearly polarized light 206 and the fast axis direction of the quarter-wave plate are at an angle of -45°.
  • the polarization direction and the fast axis direction of the quarter-wave plate are at an angle of +45°, and the polarization direction of the second linear polarizer 240 and the fast axis direction of the quarter-wave plate are at an angle of -45°.
  • the linear polarization The light 206 may pass through the second linear polarizer 240.
  • the polarization direction of the linearly polarized light 206 and the fast axis direction of the quarter-wave plate are at an angle of +45°, and the first line
  • the polarization direction of the polarizer 220 is at an angle of -45° with the fast axis direction of the quarter wave plate
  • the polarization direction of the second linear polarizer 240 is at an angle of +45° with the fast axis direction of the quarter wave plate.
  • the linearly polarized light 206 can also pass through the second linear polarizer 240.
  • the plurality of third pixel units 2313 located under the second linear polarizer 220 can receive the third fingerprint optical signal 2013, or in other words, the third fingerprint optical signal 2013 is directed to the plurality of third pixel units 2313 Light signal.
  • the third pixel unit 2313 may also receive a third screen light signal 2023, and the third screen light signal may have the same light intensity as the first screen light signal 2021.
  • the plurality of third pixel units convert the received third optical signal into a plurality of third electrical signals
  • the third optical signal includes: a third screen optical signal 2023 and a third fingerprint optical signal 2013.
  • the third correction coefficient (another example of the correction coefficient) is obtained.
  • the electrical signal corresponding to the optical signal received by 2312 is corrected to improve the accuracy of fingerprint recognition.
  • the above operations may be performed by a processor in an electronic device or a processor in an optical fingerprint sensor.
  • the processing unit 232 in the optical fingerprint sensor processes the multiple electrical signal values generated by the multiple pixel units in the pixel array 231 to perform fingerprint recognition correction.
  • the processing unit 232 receives a plurality of third electrical signals generated by a plurality of third pixel units 2313, a plurality of first electrical signals generated by a plurality of first pixel units 2311, and a plurality of signals generated by a plurality of second pixel units 2312.
  • the multiple third electrical signals are subtracted from the initial electrical signal to obtain multiple third modified electrical signals.
  • the initial electrical signal is the electrical signal generated by the third pixel unit 2313 when there is no light, that is, when the external light intensity and the screen light intensity are both 0.
  • the initial electrical signal of the third electrical signal may be the same as The initial electrical signal of the first electrical signal is the same.
  • the first modified electrical signal is denoted as A
  • the third modified electrical signal is denoted as B
  • the extinction ratio of the first linear polarizer 220 is e
  • the processing unit 232 performs the first modified electrical signal A and the third modified electrical signal.
  • the signal B is calculated to obtain the target modified electrical signal X, and the specific calculation formula is as follows:
  • the fourth correction coefficient (another example of correction coefficient) under the current screen light intensity is obtained.
  • this calculation method can reduce the influence of the extinction ratio of the first linear polarizer 220 that is not infinite, so that the determined target correction electrical signal more accurately corresponds to the intensity of the screen light signal, thereby more accurately determining the correction.
  • Parameter using the modified parameter to process the multiple second electrical signals of the other multiple second pixel units 2312 in the pixel array 231 for fingerprint recognition, which can further improve the accuracy of fingerprint recognition.
  • the second linear polarizer 240 can be arranged at any position in the optical path between the display screen 120 and the optical fingerprint sensor 230.
  • the second linear polarizer 240 can be provided separately from the quarter-wave plate 210, or can be integrated.
  • the quarter-wave plate 210 and the second linear polarizer 240 are integrated together through an adhesive layer.
  • the second linear polarizer 240 may be disposed above the edge area of the pixel array 231.
  • the quarter wave plate 210, the first linear polarizer 220, and the second linear polarizer 240 are disposed on the lower surface of the display screen 120.
  • the first linear polarizer 220 and the second linear polarizer 240 are disposed in the window 128 under the display screen, and are located at the edge of the window 128.
  • the quarter-wave plate 210, the first linear polarizer 220, and the second linear polarizer 240 can be installed on the display screen 120 by a fixing device. Between the lower surface and the optical fingerprint sensor 230. Among them, the quarter wave plate 210, the first linear polarizer 220, and the second linear polarizer 240 may be integrated as shown in FIG. 12b, or may be separately arranged.
  • the second linear polarizer 240 may also be integrated with a plurality of third pixel units 2313 in the chip of the optical fingerprint sensor.
  • the first The second linear polarizer 240 may adopt a similar preparation method as the first linear polarizer 220.
  • the second linear polarizer 240 may be formed by coating a plurality of pixel units of the optical fingerprint sensor by an evaporation process.
  • the second linear polarizer 204 may also be a metal wire grid structure, which is disposed on the surface of the plurality of third pixel units 2313.
  • the quarter wave plate 210 can be arranged separately from the first linear polarizer 220 and the second linear polarizer 240 as shown in FIG. 12c, and the quarter wave plate 210 is arranged on the lower surface of the display screen or Between the bottom surface of the display screen and the first linear polarizer 220, or the quarter wave plate 210 can also be directly arranged on the surface of the first linear polarizer 220 and the second linear polarizer 240, and also integrated in the optical fingerprint sensor. In the chip.
  • FIGS. 13a and 13b show top views of the pixel array 231 in any one or more of the cases of FIGS. 12a to 12c.
  • receiving the 1/4 wave plate 210 and the second linear polarizer 240 The third pixel unit 2313 of the optical signal is similar to the above-mentioned first pixel unit 2311, and is located at the edge of the pixel array 231.
  • the second linear polarizer 240 may be disposed above the third pixel unit 2313 and located at the edge of the pixel array 231. The upper area.
  • the first linear polarizer 220 may include a plurality of first sub-linear polarizers 221, wherein each first sub-linear polarizer 221 corresponds to one first pixel unit 2311 and is located in the corresponding first pixel. Above unit 2311.
  • the second linear polarizer 240 may also include a plurality of second sub-linear polarizers 241. Each second sub-linear polarizer 241 corresponds to a third pixel unit 2313 and is located above the corresponding third pixel unit 2313. .
  • the number of third pixel units 2313 may be equal to the number of first pixel units 2311. That is, the area of the first linear polarizing plate 220 may be equal to the area of the second linear polarizing plate 240.
  • the two first sub-linear polarizers 221 and the two second sub-linear polarizers 241 are adjacent to each other up and down.
  • the two first sub-linear polarizers 221 and the two second sub-linear polarizers 241 may also be adjacent to each other on the left and right.
  • the two first sub-linear polarizers 221 and the two second sub-linear polarizers 241 are diagonally adjacent.
  • the second linear polarizer 240 is arranged adjacent to the first linear polarizer 220.
  • the second linear polarizer 240 and/or the first linear polarizer 220 includes multiple sub-linear polarizers
  • the relative arrangement position of the sub-linear polarizers is not specifically limited in the embodiment of the present application.
  • FIGS. 13a and 13b only show a schematic diagram of the arrangement of the first pixel unit 2311 and the third pixel unit 2313 at the upper left corner of the pixel array 231.
  • the first pixel unit 2311 and the third pixel unit 2313 may also be located at The lower left position, the upper right position or the lower right position in the pixel array 231, or any position around the pixel array 231, in other words, the first linear polarizer 220 and the second linear polarizer 240 can be arranged at any position around the pixel array 231, For example, the four corners or above the four sides of the pixel array, which is not limited in the embodiment of the present application.
  • the area of the quarter wave plate 210 is greater than or equal to the sum of the areas of the first linear polarizer 220 and the second linear polarizer 240. Furthermore, the first linear polarizer 220 and the second linear polarizer 240 are located in the projection of the quarter wave plate 210 in the vertical direction.
  • FIG. 14 and 15 show a schematic structural diagram of another fingerprint identification device 200 and a top view of the pixel array 231 in the fingerprint identification device 200 according to an embodiment of the present application.
  • the area of the quarter wave plate 210 is greater than or equal to the area of the pixel array 231 and is located above the pixel array 231.
  • the area of the first linear polarizer 220 is small and is located above the edge area of the pixel array 231, while the area of the second linear polarizer 240 is larger.
  • the sum of the areas of the second linear polarizer 240 and the first linear polarizer 220 can be Greater than or equal to the pixel array 231.
  • the first pixel unit 2311 receives the optical signal passing through the quarter-wave plate 210 and the first linear polarizing plate 220
  • the third pixel unit 2313 receives the optical signal passing through the quarter-wave plate 210 and the second linear polarizing plate 240.
  • the first pixel unit 2311 is only located at the edge of the pixel, and the number of pixels is small. Except for the first pixel unit 2311, the other pixels are the third pixel unit 2313.
  • the light intensity of the screen light signal is relatively small, and the correction is obtained by processing the electrical signal values of the first pixel unit 2311 and the third pixel unit 2313 In addition to the coefficient, the electrical signal of the third pixel unit 2313 is also processed for fingerprint identification, which can improve the accuracy of the fingerprint.
  • the fingerprint identification device 230 further includes: an optical component 250 which is disposed above the optical fingerprint sensor 230.
  • the optical component 250 may specifically include a filter layer (Filter), a light guide layer or light path guiding structure and other optical elements.
  • the filter layer may be used to filter out ambient light penetrating the finger, while the light guide layer or light path guiding structure mainly It is used to guide the reflected light reflected from the finger surface to the pixel array for optical inspection.
  • the optical component 250 can be encapsulated in the optical fingerprint sensor 230, or the optical component 250 can be arranged outside the optical fingerprint sensor 230, for example, the optical component 250 can be attached above the optical fingerprint sensor 230, or the optical component 250 can be attached to the optical fingerprint sensor 230.
  • Part of the components of the assembly 250 are integrated in the optical fingerprint sensor 230. It can be understood that when the first linear polarizer 220 and the second linear polarizer 240 are disposed on the surface of the pixel array 231 in the optical fingerprint sensor 230, the optical component 250 is actually disposed on the first linear polarizer 220 and the second linear polarizer 240. Above; the optical component 250 is packaged in the optical fingerprint sensor 230, which is actually packaged in the optical fingerprint sensor 230 together with the first linear polarizer 220 and the second linear polarizer 240.
  • the optical assembly 250 includes: at least one light blocking layer 252 and a micro lens array 251;
  • the at least one light-blocking layer 252 is provided with a plurality of light-passing holes; the microlens array 251 is disposed above the at least one light-blocking layer 252, and is used to converge light signals to the plurality of light-passing holes of the at least one light-blocking layer 252 Small holes, the light signal is transmitted to the pixel array 231 through a plurality of light-passing holes of the at least one light blocking layer 252.
  • the at least one light-blocking layer 252 may be formed on the pixel array 231 by semiconductor process growth or other processes, for example, a method such as atomic layer deposition, sputtering coating, electron beam evaporation coating, ion beam coating, etc. may be formed on the pixel array 231. Layer a thin film of non-transparent material, and then perform small hole pattern photolithography and etching to form a plurality of light-passing small holes.
  • the at least one light-blocking layer 252 can block the optical interference between adjacent microlenses, and make the light signal corresponding to the pixel unit converge to the inside of the light-passing hole through the micro-lens and be transmitted to the light-passing hole through the light-passing hole.
  • Pixel unit for optical fingerprint imaging the light blocking layer and the pixel array, and the multilayer light blocking layer 252 are isolated by a transparent medium layer.
  • the microlens array 251 is formed by a plurality of microlenses, which can be formed on the at least one light blocking layer 252 through a semiconductor growth process or other processes, and each microlens can correspond to one of the pixel units of the pixel array 231 respectively.
  • the optical component 250 can be arranged at any position in the optical path between the display screen 120 and the pixel array 231, for example, arranged between the pixel array 231 and the linear polarizer (the first linear polarizer 220, the second linear polarizer 240). Between the linear polarizer and the quarter-wave plate 210, or between the quarter-wave plate 210 and the display screen 120.
  • the optical component 250 is disposed above the optical fingerprint sensor 230, and the first linear polarizer 220, the second linear polarizer 240, and the quarter wave plate 210 are disposed on the optical component. Above.
  • the first linear polarizer 220 and the second linear polarizer 240 are arranged on the upper surface of the pixel array 231, and the optical component 250 is arranged on the first linear polarizer 220 and the second linear polarizer 220.
  • the quarter-wave plate 210 is arranged above the optical assembly 250.
  • the thickness of the two linear polarizers is relatively thick, but in fact, the first linear polarizer 220 and the second linear polarizer 240
  • the polarizer 240 may be a polarizing film or a metal wire grid microstructure, and its thickness is thinner than that of the transparent medium layer in the optical component.
  • the thickness of the fingerprint identification device is reduced, thereby further improving the performance of the optical fingerprint identification device.
  • the optical component 250 further includes: a filter layer 253, used to filter out the optical signal of the non-target wavelength band, and transmit the optical signal of the target wavelength band (that is, the wavelength band required for fingerprint image collection) Light signal).
  • a filter layer 253 used to filter out the optical signal of the non-target wavelength band, and transmit the optical signal of the target wavelength band (that is, the wavelength band required for fingerprint image collection) Light signal).
  • the filter layer 253 is arranged at any position in the light path between the display screen and the pixel array. Specifically, the filter layer 253 is disposed above the microlens array 251 or in the optical path between the microlens array 251 and the pixel array 231. For example, as shown in FIG. 15, the filter layer is disposed above the micro lens array 251.
  • a buffer layer is provided above the microlens array 251.
  • the buffer layer is a transparent medium buffer layer, and its optical refractive index is lower than that of the microlens array 251.
  • the optical refraction of the buffer layer is The rate is lower than 1.3.
  • the lower surface of the filter layer 253 is completely attached to the upper surface of the buffer layer through the adhesive layer.
  • the adhesive layer may be a low refractive index glue, and the refractive index of the low refractive index glue is less than 1.25.
  • the filter layer 253 can also be fixed above the microlens array 251 by a fixing device, for example, a sealant or other support is provided in the non-photosensitive area around the microlens array 251 to support and fix the filter layer 253 on the microlens array 251.
  • a fixing device for example, a sealant or other support is provided in the non-photosensitive area around the microlens array 251 to support and fix the filter layer 253 on the microlens array 251.
  • the filter layer 253 can also be integrated with the pixel array 231 in an optical fingerprint sensor.
  • the filter layer 253 can be formed by light coating on the pixel array 231 by using an evaporation process.
  • the filter layer 253 is an optical wavelength cut-off filter, which is used to filter out optical signals in a specific wavelength band, which is beneficial to reduce the influence of ambient light signals in a specific wavelength band, thereby improving fingerprint recognition performance.
  • an embodiment of the present application further provides an electronic device 20, and the electronic device 20 may include the fingerprint identification device 200 of the foregoing application embodiment.
  • the electronic device 20 may further include a display screen 120, and the fingerprint identification device 200 is disposed under the display screen 120.
  • the display screen 120 may specifically be a self-luminous display (such as an OLED display), and it includes a plurality of self-luminous display units (such as an OLED pixel or an OLED light source).
  • the optical image acquisition system is a biological feature recognition system
  • part of the self-luminous display unit in the display screen can be used as an excitation light source for the biological feature recognition system to perform biological feature recognition, and is used to emit light signals to the biological feature detection area for use in biological features.
  • Feature detection part of the self-luminous display unit in the display screen can be used as an excitation light source for the biological feature recognition system to perform biological feature recognition, and is used to emit light signals to the biological feature detection area for use in biological features. Feature detection.
  • the display screen 120 includes a circular polarizer, and the circular polarizer may be composed of the quarter wave plate and the linear polarizer 123 in FIG. 2 for forming circularly polarized light.
  • the processing unit in the embodiment of the present application may be a processor, and the processor may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection between devices or units through some interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种指纹识别装置和电子设备,能够提高指纹识别的成功率。该指纹识别装置包括:像素阵列,包括多个第一像素单元和多个第二像素单元;1/4波片,设置于像素阵列上方;第一线偏振片,设置于1/4波片与多个第一像素单元之间,第一线偏振片的偏振方向与1/4波片的快轴呈45°夹角以阻挡经过显示屏上方手指反射或散射返回的指纹光信号中的第一指纹光信号,第一指纹光信号为导向多个第一像素单元的光信号;多个第二像素单元用于接收第二光信号,第二光信号包括指纹光信号中的第二指纹光信号,第二指纹光信号为导向多个第二像素单元的光信号;多个第一像素单元用于接收经过1/4波片以及第一线偏振片的第一屏幕光信号,第一屏幕光信号用于对第二光信号进行修正。

Description

指纹识别装置和电子设备 技术领域
本申请涉及光学指纹技术领域,并且更具体地,涉及一种指纹识别装置和电子设备。
背景技术
随着全面屏手机时代的到来,设置在屏幕下或屏幕内的指纹识别装置在手机等终端设备中的应用也得到广泛发展。在指纹识别过程中,指纹识别装置除了接收经过手指反射的带有指纹信息的指纹光信号以外,还会接收的屏幕光信号以及环境光信号,屏幕光信号的携带的屏幕结构等信息会影响指纹识别的性能,并且随着环境变化,环境光信号会发生变化,也会影响指纹识别性能,从而给用户带来不良的体验。
因此,如何避免减小环境光变化以及屏幕光中的屏幕结构信息对指纹识别造成的影响,提高指纹识别成功率是一项亟待解决的问题。
发明内容
本申请实施例提供了一种指纹识别装置和电子设备,能够提高指纹识别的成功率。
第一方面,提供了一种指纹识别装置,用于设置在电子设备的显示屏下方,包括:像素阵列,包括多个第一像素单元和多个第二像素单元;
1/4波片,设置于该像素阵列上方;
第一线偏振片,设置于该1/4波片与该多个第一像素单元之间,该第一线偏振片的偏振方向与该1/4波片的快轴呈45°夹角以阻挡经过该显示屏上方手指反射或散射返回的指纹光信号中的第一指纹光信号,该第一指纹光信号为导向该多个第一像素单元的光信号;
该多个第二像素单元用于接收第二光信号,该第二光信号包括该指纹光信号中的第二指纹光信号,该第二指纹光信号为导向该多个第二像素单元的光信号;
该多个第一像素单元用于接收经过该1/4波片以及该第一线偏振片的第一屏幕光信号,该第一屏幕光信号用于对该第二光信号进行修正。
本申请的技术方案,通过第一线偏振片以及1/4波片的合理设置,可以阻挡经过手指反射或散射返回的第一指纹光信号不被多个第一像素单元接收,而只有屏幕漏光的第一屏幕光信号被多个第一像素单元接收,因此,多个第一像素单元可以不受其他光信号的干扰,准确的通过第一屏幕光信号的光强确定屏幕光信号的光强。并且基于多个第一像素单元接收的第一屏幕光信号,得到修正系数,对多个第二像素单元的接收经过手指反射或散射返回的第二指纹光信号进行修正,从而减小第二指纹光信号中屏幕结构信息的干扰,以及外界环境光变化的干扰,提高指纹识别的成功率。
在一种可能的实现方式中,该1/4波片用于接收圆偏振光,并将该圆偏振光转换为线偏振光;
该圆偏振光为左旋圆偏振光时,该第一线偏振片的偏振方向与该1/4波片的快轴呈+45°夹角;
该圆偏振光为右旋圆偏振光时,该第一线偏振片的偏振方向与该1/4波片的快轴呈-45°夹角。
在一种可能的实现方式中,该圆偏振光为经过该显示屏中圆偏振片的光信号,该圆偏振光中包括经过该显示屏上方手指反射或散射而返回后的指纹光信号。
在一种可能的实现方式中,该第一线偏振片的面积小于该像素阵列的面积,且该第一线偏振片设置于该像素阵列的边缘区域上方。
在一种可能的实现方式中,该第一线偏振片设置于该显示屏的下表面的开窗中,并位于该开窗的边缘。
在一种可能的实现方式中,该第一线偏振片为金属线栅阵列,设置于该多个第一像素单元的上表面。
在一种可能的实现方式中,该1/4波片与该第一线偏振片集成设置或者分离设置。
在一种可能的实现方式中,该1/4波片设置于:该显示屏的下表面,或者该显示屏与该第一线偏振片之间。
在一种可能的实现方式中,该1/4波片的面积大于等于该第一线偏振片的面积,该第一线偏振片位于该1/4波片在垂直方向的投影中。
在一种可能的实现方式中,该多个第一像素单元用于将该第一屏幕光信号转换得到多个第一电信号,该多个第二像素单元用于将该指纹光信号转换 得到多个第二电信号;
该多个第一电信号用于处理得到第一修正系数,该第一修正系数用于对该多个第二电信号进行修正。
在一种可能的实现方式中,该多个第一像素单元用于将该第一屏幕光信号转换得到多个第一电信号,该多个第二像素单元用于将该第二光信号转换得到多个第二电信号;该多个第一电信号用于与初始电信号相减得到多个第一修正电信号,该多个第一修正电信号用于处理得到第二修正系数,该第二修正系数用于对该多个第二电信号进行修正。
在一种可能的实现方式中,该多个第一像素单元用于将该第一屏幕光信号转换得到多个第一电信号,该多个第二像素单元用于将该第二光信号转换得到多个第二电信号;
该指纹识别装置还包括:处理单元,用于接收该多个第一电信号和该多个第二电信号,并将该多个第一电信号与初始电信号相减得到多个第一修正电信号,根据该多个第一修正电信号处理得到第二修正系数,基于该第二修正系数对该多个第二电信号修正以进行指纹识别。
采用本申请实施例的技术方案,能够减小像素单元在无光照时产生的暗电流干扰,更加准确的获取第一屏幕光信号的光强,从而更加准确的基于第一屏幕光信号对第二光信号对应的第二电信号进行修正。
在一种可能的实现方式中,该像素阵列还包括:多个第三像素单元;该指纹识别装置还包括:第二线偏振片,设置于该1/4波片与该像素阵列之间,该第二线偏振片的偏振方向与该第一线偏振片的偏振方向垂直以通过经过该指纹光信号中的第三指纹光信号,该第三指纹光信号为导向该多个第三像素单元的光信号;
该多个第三像素单元用于接收经过该1/4波片以及该第二线偏振片的第三光信号,该第三光信号包括该第三指纹光信号,该第一屏幕光信号以及该第三光信号用于对该第二光信号进行修正。
采用本申请实施例的方案,能够减小线偏振片的消光比无法达到无穷大对于确定第一屏幕光信号强度的影响,基于多个第一像素单元接收的第一屏幕光信号以及多个第三像素单元接收的第三光信号,得到修正系数,对多个第二像素单元接收的第二光信号进行修正,能够进一步提高指纹识别的准确率。
在一种可能的实现方式中,该第二线偏振片与该第一线偏振片位于同一水平面且相邻设置。
在一种可能的实现方式中,该第二线偏振片为金属线栅阵列,设置于该多个第三像素单元的上表面。
在一种可能的实现方式中,该1/4波片与该第二线偏振片集成设置或者分离设置。
在一种可能的实现方式中,该1/4波片的面积大于等于该第一线偏振片与该第二线偏振片的面积之和,该第一线偏振片和该第二线偏振片均位于该1/4波片在垂直方向的投影中。
在一种可能的实现方式中,该多个第一像素单元用于将该第一屏幕光信号转换得到多个第一电信号,该多个第二像素单元用于将该第二光信号转换得到多个第二电信号,该多个第三像素单元用于将该第三光信号转换得到多个第三电信号;
该多个第三电信号与该多个第一电信号用于处理得到第三修正系数,该第三修正系数用于对该多个第二电信号进行修正。
在一种可能的实现方式中,该多个第一像素单元用于将该第一屏幕光信号转换得到多个第一电信号,该多个第二像素单元用于将该第二光信号转换得到多个第二电信号,该多个第三像素单元用于将该第三光信号转换得到多个第三电信号;
该多个第一电信号用于与初始电信号相减得到多个第一修正电信号,该多个第三电信号用于与初始电信号相减得到多个第三修正电信号;
该多个第三修正电信号、该多个第一修正电信号以及该第一线偏振片的消光比用于通过公式计算得到目标修正信号,该公式为:
Figure PCTCN2019112018-appb-000001
其中,X为该目标修正电信号,A为该第一修正电信号,B为第三修正电信号,e为该第一线偏振片的消光比;
该目标修正信号用于处理得到第四修正系数,该第四修正系数用于对该多个第二电信号进行修正。
在一种可能的实现方式中,该多个第一像素单元用于将该第一屏幕光信号转换得到多个第一电信号,该多个第二像素单元用于将该第二光信号转换得到多个第二电信号,该多个第三像素单元用于将该第三光信号转换得到多个第三电信号;
该指纹识别装置还包括:处理单元,用于接收该多个第一电信号、该多个第一电信号以及该多个第三电信号;
将该多个第一电信号与初始电信号相减得到多个第一修正电信号;
将该多个第三电信号与初始电信号相减得到多个第三修正电信号;
根据公式对该第一修正电信号以及该第三修正信号计算得到目标修正电信号,该公式为:
Figure PCTCN2019112018-appb-000002
其中,X为该目标修正电信号,A为该第一修正电信号,B为第三修正电信号,e为该第一线偏振片的消光比;
根据该目标修正电信号处理得到第四修正系数,基于该第四修正系数对该第二电信号或该第三电信号修正以进行指纹识别。
在一种可能的实现方式中,该指纹识别装置还包括:至少一阻光层和微透镜阵列;该至少一阻光层位于该微镜头阵列下方,设置有多个通光小孔;该像素阵列用于接收经由该微镜头阵列汇聚到该多个通光小孔的并通过该多个通光小孔的光信号。
在一种可能的实现方式中,该指纹识别装置还包括:滤波层,设置在该显示屏至该像素阵列的之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号。
第二方面,提供了一种电子设备,包括显示屏以及如第一方面或第一方面的任一可能的实现方式中的指纹识别装置。
在一种可能的实现方式中,该显示屏中包括圆偏振片,该指纹识别装置设置于该显示屏下方。
在一种可能的实现方式中,该显示屏为有机发光二极管显示屏,该显示屏的发光层包括多个有机发光二极管光源,其中,该指纹识别装置采用至少部分有机发光二极管光源作为指纹识别的激励光源。
通过在电子设备中设置上述指纹识别装置,使得该电子设备具有良好的指纹识别性能,提升指纹识别成功率,提高用户体验。
附图说明
图1是本申请实施例所适用的电子设备的结构示意图。
图2是根据本申请实施例的显示屏及指纹识别装置的示意性结构图。
图3是图2中一种光信号状态变化的示意图。
图4是根据本申请实施例的一种指纹识别装置的示意性结构图。
图5是图4中一种光信号状态变化的示意图。
图6a和图6b是图4中另一种光信号状态变化的示意图。
图7是根据本申请实施例的另一种指纹识别装置的示意性结构图。
图8a至图8c是根据本申请实施例的三种指纹识别装置的示意性结构图。
图9是图8a至图8c中的像素阵列的俯视图。
图10是根据本申请实施例的另一种指纹识别装置的示意性结构图。
图11a和图11b是图10中一种光信号状态变化的示意图。
图12a至图12c是根据本申请实施例的三种指纹识别装置的示意性结构图。
图13a和图13b是图12a至图12c中的像素阵列的两种俯视图。
图14是根据本申请实施例的另一种指纹识别装置的示意性结构图。
图15是图14中的像素阵列的俯视图。
图16是根据本申请实施例的另一种指纹识别装置的示意性结构图。
图17是根据本申请实施例的另一种指纹识别装置的示意性结构图。
图18是根据本申请实施例的电子设备的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例可以应用于光学指纹系统,包括但不限于光学指纹识别系统和基于光学指纹成像的产品,本申请实施例仅以光学指纹系统为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的系统等。
作为一种常见的应用场景,本申请实施例提供的光学指纹系统可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他电子设备;更具体地,在上述电子设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹系统。或者,该指纹识别装置也可以部分或者全部集成至电子设备的显示屏内部,从而形成屏内(In-display)光学指纹系统。
如图1所示为本申请实施例可以适用的电子设备的结构示意图,该电子 设备10包括显示屏120和光学指纹装置130,其中,该光学指纹装置130设置在显示屏120下方的局部区域。该光学指纹装置130包括光学指纹传感器,该光学指纹传感器包括具有多个光学感应单元131的感应阵列133,该感应阵列133所在区域或者其感应区域为光学指纹装置130的指纹检测区域103。如图1所示,指纹检测区域103位于显示屏120的显示区域之中。在一种替代实施例中,光学指纹装置130还可以设置在其他位置,比如显示屏120的侧面或者电子设备10的边缘非透光区域,并通过光路设计来将显示屏120的至少部分显示区域的光信号导引到光学指纹装置130,从而使得指纹检测区域103实际上位于显示屏120的显示区域。
应当理解,指纹检测区域103的面积可以与光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得光学指纹装置130的指纹检测区域103的面积大于光学指纹装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,光学指纹装置130的指纹检测区域103也可以设计成与该光学指纹装置130的感应阵列的面积基本一致。
因此,使用者在需要对电子设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即显示屏120的显示区域可以基本扩展到整个电子设备10的正面。
作为一种可选的实现方式,如图1所示,光学指纹装置130包括光检测部分134和光学组件132,该光检测部分134包括感应阵列以及与该感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,该感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,该光探测器可以作为上述的光学感应单元;该光学组件132可以设置在光检测部分134的感应阵列的上方,其可以具体包括导光层或光路引导结构以及其他光学元件,该导光层或光路引导结构主要用于从手指表面反射回来的反射光导引至感应阵列进行光学检测。
在具体实现上,光学组件132可以与光检测部分134封装在同一个光学 指纹部件。比如,该光学组件132可以与该光学检测部分134封装在同一个光学指纹芯片,也可以将该光学组件132设置在该光检测部分134所在的芯片外部,比如将该光学组件132贴合在该芯片上方,或者将该光学组件132的部分元件集成在上述芯片之中。
其中,光学组件132的导光层或者光路引导结构有多种实现方案,比如,该导光层可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔阵列,该准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到该准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在该准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而感应阵列便可以检测出手指的指纹图像。
在另一种实施例中,导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光汇聚到其下方的光检测部分134的感应阵列,以使得该感应阵列可以基于该反射光进行成像,从而得到该手指的指纹图像。可选地,该光学透镜层在该透镜单元的光路中还可以形成有针孔,该针孔可以配合该光学透镜层扩大光学指纹装置的视场,以提高光学指纹装置130的指纹成像效果。
在其他实施例中,导光层或者光路引导结构也可以具体采用微透镜(Micro-Lens)层,该微透镜层具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在光检测部分134的感应阵列上方,并且每一个微透镜可以分别对应于感应阵列的其中一个感应单元。并且,微透镜层和感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,微透镜层和感应单元之间还可以包括具有微孔的挡光层,其中该微孔形成在其对应的微透镜和感应单元之间,挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得感应单元所对应的光线通过微透镜汇聚到微孔内部并经由该微孔传输到该感应单元以进行光学指纹成像。应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使用,比如,可以在准直器层或者光学透镜层下方进一步设置微透镜层。当然,在准直器层或者光学透镜层与微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
作为一种可选的实施例,显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,光学指纹装置130可以利用OLED显示屏120位于指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指140按压在指纹检测区域103时,显示屏120向指纹检测区域103上方的目标手指140发出一束光111,该光111在手指140的表面发生反射形成反射光或者经过手指140内部散射而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(valley)对于光的反射能力不同,因此,来自指纹嵴的反射光151和来自指纹峪的反射光152具有不同的光强,反射光经过光学组件132后,被光学指纹装置130中的感应阵列134所接收并转换为相应的电信号,即指纹检测信号;基于该指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在电子设备10实现光学指纹识别功能。
在其他实施例中,光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,该光学指纹装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,电子设备10的光学指纹系统还可以包括用于光学指纹检测的激励光源,该激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在液晶显示屏的背光模组下方或者设置在电子设备10的保护盖板下方的边缘区域,而光学指纹装置130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达光学指纹装置130;或者,光学指纹装置130也可以设置在背光模组下方,且背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达光学指纹装置130。当采用光学指纹装置130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理与上面描述内容是一致的。
应当理解的是,在具体实现上,电子设备10还包括透明保护盖板,该盖板可以为玻璃盖板或者蓝宝石盖板,其位于显示屏120的上方并覆盖电子设备10的正面。因为,本申请实施例中,所谓的手指按压在显示屏120实 际上是指按压在显示屏120上方的盖板或者覆盖该盖板的保护层表面。
还应当理解,电子设备10还可以包括电路板150,该电路板设置在光学指纹装置130的下方。光学指纹装置130可以通过背胶粘接在电路板150上,并通过焊盘及金属线焊接与电路板150实现电性连接。光学指纹装置130可以通过电路板150实现与其他外围电路或者电子设备10的其他元件的电性互连和信号传输。比如,光学指纹装置130可以通过电路板150接收电子设备10的处理单元的控制信号,并且还可以通过电路板150将来自光学指纹装置130的指纹检测信号输出给电子设备10的处理单元或者控制单元等。
另一方面,在某些实施例中,光学指纹装置130可以仅包括一个光学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,光学指纹装置130可以具体包括多个光学指纹传感器;该多个光学指纹传感器可以通过拼接方式并排设置在显示屏120的下方,且该多个光学指纹传感器的感应区域共同构成光学指纹装置130的指纹检测区域103。也即是说,光学指纹装置130的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将光学指纹装置130的指纹采集区域103可以扩展到显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当光学指纹传感器数量足够时,指纹检测区域103还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
还应理解,在本申请实施例中,光学指纹装置中的感应阵列也可以称为像素阵列,感应阵列中的光学感应单元或感应单元也可称为像素单元。
需要说明的是,本申请实施例中的光学指纹装置也可以称为光学指纹识别模组、指纹识别装置、指纹识别模组、指纹模组、指纹采集装置等,上述术语可相互替换。
为了更好的理解本申请的技术方案,首先对偏振光、圆偏振光、线偏振光以及相关的光学组件进行简单说明。
偏振光可以是指光矢量的振动方向不变,或具有某种规则地变化的光波。
线偏振光可以指光矢量只沿一个固定的方向振动的光波。
圆偏振光可以指光波的电场振动方向的两个正交分量相位不相同而振幅相同的偏振光。圆偏振光的电矢量大小保持不变,而方向随时间均匀变化。相位差为φ=(2m-1/2)π时为左旋圆偏振光,相位差为φ=(2m+1/2)π时为右旋圆偏振光。或者说,若圆偏振光的光矢量随时间变化是右旋的,则这种圆偏振光叫做右旋圆偏振光,若圆偏振光的光矢量随时间变化是左旋的,叫做左旋圆偏振光。或者说,传播方向相同,振动方向相互垂直且相位差恒定为φ=(2m±1/2)π的两个偏振光叠加后可合成电矢量有规则变化的圆偏振光。
需要说明的是,环境光可以包括各种偏振方向的光,即射入显示屏的光信号包括各个偏振方向上的光信号。
具体地,线偏振片(polarizer,PL)可以是任何用来产生线偏振光的光学器件。例如线偏振片可以是由具有线偏振功能的材料形成的薄层。例如,线偏振片320可以由两片光学玻璃夹着一片有定向作用的微小偏光性质晶体(如云母)组成。
该线偏振片可以将环境光或圆偏振光转换为线偏振光,其允许振动方向平行于其偏振化方向的光信号通过,同时吸收振动方向垂直于该偏振方向的光信号。
在其他可替代实施例中,线偏振片也可以替换为线栅起偏器,其可以由许多平行的金属线组成,放置在一个平面内。例如,在每毫米约2160条的透明光栅上镀涂金属铝膜,形成透明及反射的线栅(即线栅起偏器)。线栅起偏器的作用与偏振片类似,当环境光通过线栅后,和铝线条平行的偏振光被吸收而通过与铝线条垂直的偏振光。例如,线栅起偏器可以由两片光学玻璃之间的夹层涂有聚乙烯膜或聚乙烯氰等的具有栅栏状结构的结晶物,所述结晶物只允许振动方向与栅栏状的结构的缝隙相同的光通过。
具体地,波片,也称相位延迟器,它可以使偏振光的两个相互垂直的线偏振光之间产生相位延迟,从而改变光的偏振态,其中,四分之一(1/4)波片(quarter-wave plate)产生的相位延迟为π/2的奇数倍,其可以是具有精确厚度的双折射晶片。例如石英、方解石或云母等双折射晶片。
当1/4波片接收入射光时,入射光发生双折射,被分解为寻常光(o光)和异常光(e光),1/4波片对两种光的折射率不同,相对传播速度快的光,其光矢量方向即为1/4波片的快轴方向。具体地,若1/4波片为负晶体,则 e光速度快,则e光矢量的方向就是快轴方向,o光光矢量的方向就是慢轴方向。若1/4波片为正晶体,则刚好相反,e光光矢量的方向为慢轴方向,o光光矢量的方向为快轴方向。对于单轴晶体而言,负单轴晶体的快轴方向即是光轴方向,慢轴则是与之垂直的方向;而正单轴晶体刚好相反,正单轴晶体的慢轴方向即是光轴方向,快轴则是与之垂直的方向。
特别地,线偏振光入射1/4波片,出射光一般为椭圆偏振光,若是入射线偏振光的振动方向与1/4波片的快轴(或慢轴)成45°角时,出射光为圆偏振光;若是入射线偏振光的振动方向沿快轴(或慢轴),出射光仍为线偏振光。圆偏振光入射1/4波片,出射光都是线偏振光。
然后,结合图2介绍设置于显示屏下方的指纹识别装置接收的光信号及其特性。
图2是本申请实施例提供的一种指纹识别装置100的示意性结构图,如图2所示,该指纹识别装置100设置于显示屏120下方,该指纹识别装置100用于接收经过手指反射的光信号并转换为电信号并进行指纹识别。该显示屏120可以为OLED显示屏,包括盖板121,线偏振片122,1/4波片123,显示组件124,玻璃衬底126以及遮光保护层127。
具体地,在该显示屏120中,玻璃衬底126作为显示屏120的基底以及支撑层,其上方设置有显示组件124,该显示组件124包括有机发光层125,该有机发光层125用于配合显示驱动电路实现显示功能,例如,有机发光层125可以是采用低温多晶硅技术(low temperature poly-silicon,LTPS)制成的OLED有机发光面板,具有多个发光像素单元,生长于玻璃衬底126上。
在显示组件124的上方,分别设置线偏振片122以及1/4波片123,其中,线偏振片122设置于1/4波片的上方,用于抑制显示屏120对环境光的反射,进而实现更高的显示对比度。该线偏振片122以及1/4波片123组合在一起也可以称为圆偏振片。盖板121通过胶层设置在线偏振片122的上方,用于保护该显示屏120。遮光保护层127设置于玻璃衬底126下方,其上设置有开窗128,用于通过经由人体手指反射后形成的指纹光信号,该指纹光信号用于指纹识别。
指纹识别装置100放置在开窗的下方,由此可以接收指纹光信号,从而在显示屏的显示区域中局部实现或全屏实现屏下光学指纹识别。
具体地,如图2和图3所示,显示层125向手指140发射屏幕光信号111, 该屏幕光信号111为自然光信号,经过1/4波片123后,仍然为自然光信号112,该自然光信号112经过线偏振片122后形成线偏振光信号113,该线偏振光112的偏振方向与线偏振片的偏振方向相同。该线偏振光113经过手指140反射或散射后,由偏振光再次转变具有多个偏振方向的光信号114,该光信号114再次经过线偏振片122后,形成与线偏振片122的偏振方向相同的线偏振光信号115,该线偏振光信号115经过1/4波片123后形成第一光信号101,如图3中所示,当线偏振片122的偏振方向与1/4波片123的快轴或者慢轴呈45°夹角时,该第一光信号为圆偏振光101(左旋圆偏振光或者右旋圆偏振光),该第一光信号101经过开窗127后,被位于显示屏下方的指纹识别装置100接收。
与此同时,如图2所示,显示层125发出的第二光信号102,也称为屏幕漏光,也可以经过开窗127直接被该指纹识别装置100接收。该第二光信号102为不具有偏振态的自然光信号。此外,由于该第二光信号102为显示屏发出的光信号,携带有显示屏的叠层结构信息,该第二光信号102中的显示屏叠层结构信息被指纹识别装置接收后,会影响指纹识别装置进行指纹识别。
再者,外界光信号照射在手指上,经过手指透射,并经过显示屏后,会形成第三光信号103被指纹识别装置100接收,该第三光信号103为经过手指的无偏振态光信号经过线偏振片122和1/4波片123后形成的,因此,第三光信号与第一光信号类似,为圆偏振光。并且该第三光信号103随着外部环境的变化,光强也会随之发生变化,影响指纹识别装置进行指纹识别。
综上,如图2所示,指纹识别装置100同时接收第一光信号101、第二光信号102以及第三光信号103时,第二光信号102为与屏幕光信号的光强呈线性相关的光信号,第一光信号101和第三光信号103会受到手指状态以及外界光信号的影响,从而发生变化。此外,三种光信号中的屏幕结构信息也会干扰进行指纹识别。
在指纹识别装置100进行指纹识别的过程中,会在接收光信号时,对光信号进行校正得到校正系数,以减小光信号中的屏幕结构信息对指纹识别的干扰。此外,由于外界光信号以及手指颜色、状态等影响,不同时刻下,指纹识别装置接收到的光信号强度不同,因此,还需要针对不同光信号的强度调整校正系数,以减小外界条件变化对指纹识别的影响。
基于此,本申请提出一种通过1/4波片和线偏振片,获取屏幕漏光信号,即上述第二光信号102的光强,从而在指纹识别过程中,基于屏幕漏光信号的光强调整校正系数,从而减小光信号中屏幕结构信息的干扰,以及外界环境光变化的干扰,提高指纹识别的成功率。
并且,基于本申请的指纹识别装置,获取屏幕漏光的光信号光强,不需要依靠显示屏中触控氧化铟锡(Indium Tin Oxide,ITO)图案信息,也不会由于ITO图案位移造成屏幕光强的计算不准确,从而可以将指纹识别装置应用于更多类型的显示屏中,例如,应用于使用金属网格(Metal Mash)的触控显示屏中。
以下,结合图4至图16,详细介绍本申请实施例的指纹识别装置。
需要说明的是,为便于理解,在以下示出的实施例中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
应理解,在以下所示出的本申请实施例中的像素单元的数量和排布方式等仅为示例性说明,而不应对本申请构成任何限定。
图4是本申请实施例提供的一种指纹识别装置200的示意性结构图,该指纹识别装置200用于设置在电子设备的显示屏的下方,用于进行指纹识别。
如图4所示,该指纹识别装置200包括:
像素阵列231,包括多个第一像素单元2311和多个第二像素单元2312;
1/4波片210,设置于该像素阵列231上方;
第一线偏振片220,设置于该1/4波片210与该多个第一像素单元2311之间,该第一线偏振片220的偏振方向与该1/4波片的快轴呈45°夹角以阻挡经过显示屏上方手指反射或散射返回的指纹光信号中的第一指纹光信号,该第一指纹光信号为导向第一像素单元2311的光信号;
多个第二像素单元2312用于接收第二光信号,该第二光信号包括显示屏上方手指反射或散射返回的指纹光信号中的第二指纹光信号,该第二指纹光信号为导向该多个第二像素单元2312的光信号;
多个第一像素单元2311用于接收经过1/4波片210以及第一线偏振片220的第一屏幕光信号,该第一屏幕光信号用于对第二光信号进行修正。
具体地,该1/4波片210的特性可以参考以上描述,其为光学领域中通用的1/4波片。该第一线偏振片220的特性同样可以参考上述线偏振片,其可以为独立的线偏振片结构,也可以为线偏振膜或者其它具有线偏振功能的 偏振结构。
可选地,该像素阵列231为光学指纹传感器230中的像素阵列,可选地,如图4所示,光学指纹传感器230包括多个像素单元组成的像素阵列231以及与该像素阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die)。多个像素单元用于接收经过1/4波片以及第一线偏振片的光信号,并将接收光信号处理得到电信号。可选地,所述多个像素单元可以采用光电二极管(Photo Diode,PD)、金属氧化物半导体场效应管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)等器件。可选地,所述多个像素单元对于特定波长光具有较高的光灵敏度和较高的量子效率,以便于检测相应波长的光信号。
可选地,像素阵列231可以与图1中的感应阵列133相同,相关的技术方案可以参照以上相关描述,此处不再赘述。
具体地,如图4所示,像素阵列231中包括多个第一像素单元2311和多个第二像素单元2312,第一线偏振片220设置于该多个第一像素单元2311上方,该多个第一像素单元2311接收经过该1/4波片210以及第一线偏振片220的光信号。
此外,该第一线偏振片220不设置于多个第二像素单元2312上方,换言之,该多个第二像素单元2312不接收经过第一线偏振片220的光信号。可选地,该多个第二像素单元2312可以接收只经过1/4波片210但不经过第一线偏振片220的光信号,或者接收不经过1/4波片210也不经过第一线偏振片220的光信号。
具体地,如图4所示,当手指按压在显示屏上时,显示屏发出的光信号经过手指反射或散射,并经过显示屏中的圆偏振片(1/4波片122以及线偏振片123)后,形成第一指纹光信号2011。此外,环境光信号经过手指透射以及显示屏中的圆偏振片后,形成透射指纹光信号2014。可选地,该第一指纹光信号2011可以为上述第一光信号101,该透射指纹光信号2014可以为上述第三光信号103,均为圆偏振光。
此外,显示屏的发光层125背向漏光形成屏幕光信号202。可选地,该屏幕光信号202可以为上述第二光信号102,为自然光。
由于屏幕光信号202为自然光信号,该自然光信号可以透过1/4波片210以及第一线偏振片220后,可以被第一像素单元2311接收。
如图5所示,当屏幕光信号202经过1/4波片210后,仍然为具有多个偏振方向的光信号204,该光信号204经过第一线偏振片220后,形成第一屏幕光信号2021,该第一屏幕光信号2021为线偏振光,其偏振方向与第一线偏振片220的偏振方向相同。
例如,如图5所示,若第一线偏振片220的偏振方向与XY平面中X轴正方向呈+45°夹角,则第一屏幕光信号2021的偏振方向同样与XY平面中X轴正方向呈+45°夹角。
由于第一指纹光信号2011和透射指纹光信号2014为圆偏振光,圆偏振光经过1/4波片后形成线偏振光,当该线偏振光与第一线偏振片的偏振方向垂直时,该第一指纹光信号2011和透射指纹光信号2014无法通过第一线偏振片被第一像素单元2311接收。
例如,如图6a所示,当第一指纹光信号2011为左旋圆偏振光信号,1/4波片210的快轴方向为XY坐标系平面中的X轴正方向时,第一指纹光信号2011经过1/4波片210后形成线偏振光205,该线偏振光205的偏振方向如图中所示,与X轴正方向呈-45°夹角,换言之,线偏振光205的偏振方向与1/4波片210的快轴方向呈-45°夹角。
此时,若第一线偏振片220的偏振方向与1/4波片210的快轴方向呈+45°夹角,第一线偏振片220的偏振方向与线偏振光205的方向垂直,线偏振光205无法通过第一线偏振片220,即第一指纹光信号2011无法通过第一线偏振片220。
类似地,如图6b所示,当第一指纹光信号2011为右旋圆偏振光信号,1/4波片的快轴方向为XY坐标系平面中的X轴正方向时,线偏振光205的偏振方向如图中所示,与X轴正方向呈+45°夹角,换言之,线偏振光205的偏振方向与1/4波片的快轴方向呈+45°夹角。
此时,若第一线偏振片220的偏振方向与1/4波片的快轴方向呈-45°夹角,第一线偏振片220的偏振方向与线偏振光205的方向垂直,该线偏振光205无法通过第一线偏振片220。即第一指纹光信号2011同样无法通过第一线偏振片220。
此处需要说明的是,若未设置该1/4波片210以及第一线偏振片220,该第一指纹光信号2011可以被多个第一像素单元2311接收,该第一指纹光信号2011为导向该多个第一像素单元2311的光信号。
此外,上述图6a与图6b仅示出了1/4波片210的快轴方向沿X轴正方向的情况,当1/4波片210的快轴方向为XY坐标系中其它方向,例如第一方向时,可以参考上述描述,当第一指纹光信号2011为左旋圆偏振光信号时,经过1/4波片的线偏振光205的偏振方向与第一方向呈-45°夹角,当第一指纹光信号2011为右旋圆偏振光信号时,线偏振光205的偏振方向与第一方向呈+45°夹角。
同样的,上述透射指纹光信号2014经过1/4波片210以及第一线偏振片220的情况可以参照上述图6a和图6b中第一指纹光信号201经过1/4波片210以及第一线偏振片220的情况说明,此处不再赘述。
通过上述分析可知,通过第一线偏振片220以及1/4波片210的合理设置,可以阻挡显示屏光信号经过手指反射或散射返回的第一指纹光信号以及环境光信号经过手指透射后的透射指纹光信号均不被多个第一像素单元2311接收,而只有屏幕漏光的第一屏幕光信号2021被多个第一像素单元2311接收,因此,多个第一像素单元2311可以不受其他光信号(例如,环境光信号)的干扰,准确的通过第一屏幕光信号2021的光强确定屏幕光信号的光强。
如图4中所示,多个第二像素单元2312上方未设置第一线偏振片220,因此,多个第二像素单元2312可以接收第二光信号,该第二光信号包括:第二屏幕光信号2022以及指纹光信号中的第二指纹光信号2012,该第二指纹光信号2012为导向至多个第二像素单元2312的光信号。该第二屏幕光信号2022为直接导向至多个第二像素单元2312的屏幕漏光信号。
基于多个第一像素单元2311接收的第一屏幕光信号,得到修正系数,对多个第二像素单元2312接收的第二光信号对应的电信号进行修正,从而提高指纹识别的准确率。
可选地,可以通过电子设备中的处理器,例如微控制单元(Microcontroller Unit,MCU)基于多个第一像素单元2311接收的第一屏幕光信号,得到修正系数,并对多个第二像素单元2312接收的光信号对应的电信号进行修正,也可以通过指纹识别装置中的处理器执行上述操作。
例如,如图7所示,指纹识别装置中包括:处理单元232。可选地,该处理单元232可以为光学指纹传感器230中的处理器,也可以为电子设备中的处理器。
该处理单元232用于接收像素阵列231产生的电信号并对该电信号进行处理以确定屏幕光信号的强度以及进行指纹识别。
具体地,像素阵列231中的多个第一像素单元2311接收第一屏幕光信号2021,并将该第一屏幕光信号2021转换为对应的第一电信号,该第一电信号对应于第一屏幕光信号的光强。
可选地,在一种可能的实施方式中,处理单元232接收多个第一像素单元2311产生的多个第一电信号,该多个第一电信号用于直接处理得到当前屏幕光强度下的第一修正系数(修正系数中的一例)。
可选地,在另一种可能的实施方式中,将该多个第一电信号与初始电信号相减,得到多个第一修正电信号,并基于该多个第一修正电信号处理得到当前屏幕光强度下的第二修正系数(修正系数中的另一例)。
其中,初始电信号为无光照情况下,即外界光强以及屏幕光强均为0时,第一像素单元2311产生的电信号,该电信号为无光照情况下,第一像素单元2311中的半导体器件产生的暗电流生成的电信号,在有光照情况下,将第一像素单元2311产生的电信号值与初始电信号相减得到第一修正电信号,可以避免第一像素单元2311中的暗电流干扰,更加准确的测试第一屏幕光信号的光强。
可选地,像素阵列231中的多个第二像素单元2312接收的光信号中包括第二屏幕光信号2022以及第二指纹光信号2012。
该多个第二像素单元2312将接收的光信号的强度转换为对应的第二电信号。
由于处理单元232通过多个第一像素单元2311产生的第一电信号,测试得到基于当前屏幕光信号的强度的修正系数(第一修正系数或者第二修正系数),因此,处理单元232基于该修正系数,对第二像素单元2312产生的第二电信号进行处理,以进行指纹识别。该修正系数是基于当前屏幕光信号强度得到的修正系数,可以避免外界环境变化对指纹识别的干扰。
可选地,该第一线偏振片220与1/4波片210可以设置于显示屏120至光学指纹传感器230之间的光路中的任意位置。
可选地,该第一线偏振片220可以与1/4波片210分离设置,也可以集成设置。例如,1/4波片210与第一线偏振片220通过胶层集成在一起。
可选地,该第一线偏振片220可以设置于像素阵列231的边缘区域的上 方。
例如,在一种可能的实施方式中,如图8a所示,1/4波片210和第一线偏振片220设置于显示屏120的下表面。具体地,第一线偏振片220设置于显示屏下表面的开窗128中,并位于开窗128的边缘。
可选地,在另一种可能的实施方式中,如图8b所示,该1/4波片210和第一线偏振片220可以通过固定装置设置在显示屏120的下表面与光学指纹传感器230之间,该固定装置设置于光学指纹传感器230的非感光区域,用于固定连接该光学指纹传感器230、第一线偏振片220和1/4波片210。该固定装置包括但不限于支架,胶层等固定装置。其中,1/4波片210与第一线偏振片220可以如图8b所示,集成在一起,也可以分离设置。
可选地,在第三种可能的实施方式中,如图8c所示,该第一线偏振片220还可以与光学指纹传感器中的多个像素单元一起集成在光学指纹传感器的芯片中,具体地,可以采用蒸镀工艺在所述光学指纹传感器的多个像素单元上进行镀膜形成该第一线偏振片220,例如,通过原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等方法在所述光学指纹传感器的多个像素单元上方制备偏振薄膜。具体地,还可以采用互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)工艺在多个像素单元上制备多个金属线栅微偏振器作为偏振单元,该金属线栅微偏振器结构为周期性的金属线栅阵列,其中金属线栅的宽度与间距为几十至几百纳米。
在该实施方式中,1/4波片210可以如图8c所示,与第一线偏振片220分离设置,1/4波片210设置在显示屏的下表面或者设置在显示屏下表面至第一线偏振片220之间,或者1/4波片210也可以直接设置在第一线偏振片220的表面,也一起集成在光学指纹传感器的芯片中。
图9示出了图8a至图8c中任一种或者多种情况下的像素阵列231的俯视图,如图9所示,接收经过1/4波片210和第一线偏振片220的光信号的多个第一像素单元2311位于像素阵列231的边缘,换言之,1/4波片210与第一线偏振片220可以设置于该多个第一像素单元2311的上方。
可选地,如图9所示,由于第一像素单元2311不接收经过手指反射或散射后的指纹光信号,因此,该第一像素单元2311在像素阵列231中的数量较少,而第二像素单元2312接收经过手指反射或散射而返回的指纹光信号进行指纹识别,因此,第二像素单元2312的数量较多。
换言之,该第一线偏振片220的面积远小于光学指纹传感器230中像素阵列231的面积,从而使得接收经过第一线偏振片220光信号的第一像素单元2311的数量较少。例如,第一线偏振片220的面积小于等于像素阵列231的面积的1/100。
应理解,图9仅示出了一种多个第一像素单元2311在像素阵列231中的排布示意图,该多个第一像素单元2311还可以位于像素阵列231中的左下位置,或者右上位置或者右下位置,或者像素阵列231四周的任意位置,换言之,第一线偏振片220可以设置于像素阵列231边缘的任意位置上方,例如像素阵列的四角或者四条边的上方,本申请实施例对此不做限定。
可选地,在本申请实施例中,该1/4波片210的面积大于等于该第一线偏振片220的面积。更进一步的,该第一线偏振片220位于该1/4波片210在垂直方向的投影中。
图8a至图8c示出了三种1/4波片210的面积等于第一线偏振片220的情况,此时,该1/4波片210设置于第一线偏振片220的正上方。
可选地,当1/4波片210设置在显示屏的下表面时,1/4波片210的面积可以等于开窗128的面积,即1/4波片可以设置在开窗128中且布满该开窗,此时,该1/4波片210的面积远大于第一线偏振片220的面积。
可选地,当1/4波片210设置在显示屏的下表面与像素阵列231之间时,1/4波片210的面积可以大于等于像素阵列231的面积,通过固定装置设置于像素阵列231的上方,或者1/4波片210的面积也可以小于像素阵列231的面积,本申请实施例对此不做限定。
以上结合图4至图9说明了指纹识别装置200包括1/4波片210、第一线偏振单220以及像素阵列231时,经过显示屏中线偏振片以及1/4波片的指纹光信号无法通过第一线偏振片220被光学指纹传感器中的第一像素单元2311接收,第一像素单元2311只接收屏幕漏光信号,从而确定屏幕光信号强度的过程。
理论上,当第一线偏振片220的消光比为无穷大时,经过1/4波片210后的线偏振光205完全被第一线偏振片220吸收,无法通过第一线偏振片。
但实际上,线偏振片的消光比无法达到无穷大,换言之,线偏振光205经过第一线偏振片220时,仍有微弱的线偏振光无法被第一线偏振片220吸收而透过第一线偏振片220,传输至光学指纹传感器230的第一像素单元 2311中,使得第一像素单元2311检测得到的屏幕光信号产生误差。
因此,为了减小第一线偏振片220消光比无法达到无穷大的影响,本申请实施例提出另一种指纹识别装置200。
如图10所示,该指纹识别装置200还包括:第二线偏振片240,设置于1/4波片210与像素阵列231之间,该第二线偏振片240的偏振方向与第一线偏振片220的偏振方向垂直。
可选地,该第二线偏振片240可以为第一线偏振片220旋转90°得到,换言之,该第二线偏振片240的结构材料可以与第一线偏振片220相同,仅通过的光信号的偏振方向不同。
可选地,如图10所示,该第二线偏振片240与第一线偏振片220位于同一水平面上。可选地,该第二线偏振片240也可以与第一线偏振片220位于不同水平面上,本申请实施例对此不做限定。
具体地,该第二线偏振片240同样接收经过1/4波片的光信号,换言之,1/4波片210的面积大于等于第一线偏振片220与第二线偏振片240的面积之和,进一步的,第一线偏振片220与第二线偏振片240均位于1/4波片210在垂直方向的投影之内。
由于指纹光信号(包括显示屏光信号经过手指反射或散射后经过显示屏的指纹光信号和/或环境光经过手指透射后经过显示屏的指纹光信号)为圆偏振光,圆偏振光经过1/4波片后形成线偏振光,当该线偏振光与第二线偏振片的偏振方向平行时,指纹光信号中的第三指纹光信号2013可以通过第一线偏振片被第一像素单元2311接收。具体地,该第三指纹光信号2013为经过第二线偏振片240上方的手指的反射、散射或透射后的指纹光信号。
结合图6a,如图11a所示,当第三指纹光信号2013为左旋圆偏振光信号,1/4波片210的快轴方向为XY坐标系平面中的X轴正方向时,第三指纹光信号2013经过1/4波片210后,形成线偏振光206,该线偏振光206的偏振方向与1/4波片的快轴方向呈-45°夹角,第一线偏振片220的偏振方向与1/4波片的快轴方向呈+45°夹角,而第二线偏振片240的偏振方向与1/4波片的快轴方向呈-45°夹角,此时,线偏振光206可以通过第二线偏振片240。
类似地,结合图6b,如图11b所示,当第三指纹光信号2013为右旋圆偏振光信号,1/4波片210的快轴方向为XY坐标系平面中的X轴正方向时, 第三指纹光信号2013经过1/4波片210后,形成线偏振光206,该线偏振光206的偏振方向与1/4波片的快轴方向呈+45°夹角,第一线偏振片220的偏振方向与1/4波片的快轴方向呈-45°夹角,而第二线偏振片240的偏振方向与1/4波片的快轴方向呈+45°夹角,此时,线偏振光206同样可以通过第二线偏振片240。
因此,如图10所示,位于第二线偏振片220下方的多个第三像素单元2313可以接收第三指纹光信号2013,或者说,第三指纹光信号2013为导向至多个第三像素单元2313的光信号。此外,与第一像素单元2311接收第一屏幕光信号类似,第三像素单元2313还可以接收第三屏幕光信号2023,该第三屏幕光信号可以与第一屏幕光信号2021的光强相同。
可选地,该多个第三像素单元将接收的第三光信号转换为多个第三电信号,该第三光信号中包括:第三屏幕光信号2023以及第三指纹光信号2013。
基于多个第一像素单元2311接收的第一屏幕光信号以及多个第三像素单元2313接收的第三光信号,得到第三修正系数(修正系数的另一例),对多个第二像素单元2312接收的光信号对应的电信号进行修正,从而提高指纹识别的准确率。
具体地,可以通过电子设备中的处理器或者光学指纹传感器中的处理器执行上述操作。
例如,通过光学指纹传感器中的处理单元232对像素阵列231中的多个像素单元产生的多个电信号值进行处理,以进行指纹识别的校正。
可选地,处理单元232接收多个第三像素单元2313产生的多个第三电信号,多个第一像素单元2311产生的多个第一电信号以及多个第二像素单元2312产生的多个第二电信号后,将该多个第三电信号与初始电信号相减,得到多个第三修正电信号。其中,该初始电信号为无光照情况下,即外界光强以及屏幕光强均为0时,第三像素单元2313产生的电信号,可选地,该第三电信号的初始电信号可以与第一电信号的初始电信号相同。
具体地,将第一修正电信号表示为A,第三修正电信号表示为B,第一线偏振片220的消光比为e,则处理单元232对第一修正电信号A以及第三修正电信号B进行计算得到目标修正电信号X,具体地计算公式如下:
Figure PCTCN2019112018-appb-000003
并基于该目标修正电信号X处理得到当前屏幕光强度下的第四修正系 数(修正系数的另一例)。采用该计算方式,可以减小第一线偏振片220的消光比不为无穷大的影响,使得确定得到的目标修正电信号更为准确的对应于屏幕光信号的强度,从而更为准确确定得到修正参数,采用该修正参数对像素阵列231中其它多个第二像素单元2312的多个第二电信号进行处理以进行指纹识别,能够进一步提高指纹识别的准确率。
与第一线偏振片220类似,可选地,该第二线偏振片240可以设置于显示屏120至光学指纹传感器230之间的光路中的任意位置。
可选地,该第二线偏振片240可以与1/4波片210分离设置,也可以集成设置。例如,1/4波片210与第二线偏振片240通过胶层集成在一起。
可选地,该第二线偏振片240可以设置于像素阵列231的边缘区域的上方。
例如,在一种可能的实施方式中,如图12a所示,1/4波片210、第一线偏振片220以及第二线偏振片240设置于显示屏120的下表面。具体地,第一线偏振片220以及第二线偏振片240设置于显示屏下面的开窗128中,并位于开窗128的边缘。
可选地,在另一种可能的实施方式中,如图12b所示,该1/4波片210、第一线偏振片220以及第二线偏振片240可以通过固定装置设置在显示屏120的下表面与光学指纹传感器230之间。其中,1/4波片210与第一线偏振片220、第二线偏振片240可以如图12b所示,集成在一起,也可以分离设置。
可选地,在第三种可能的实施方式中,如图12c所示,该第二线偏振片240还可以与多个第三像素单元2313一起集成在光学指纹传感器的芯片中,具体地,第二线偏振片240可以采用与第一线偏振片220类似的制备方法,例如可以采用蒸镀工艺在所述光学指纹传感器的多个像素单元上进行镀膜形成该第二线偏振片240。或者,该第二线偏振片204还可以为金属线栅结构,设置在多个第三像素单元2313表面。
在该实施方式中,1/4波片210可以如图12c所示,与第一线偏振片220以及第二线偏振片240分离设置,1/4波片210设置在显示屏的下表面或者设置在显示屏下表面至第一线偏振片220之间,或者1/4波片210也可以直接设置在第一线偏振片220以及第二线偏振片240的表面,也一起集成在光学指纹传感器的芯片中。
图13a和图13b示出了图12a至图12c中任一种或者多种情况下的像素阵列231的俯视图,如图13所示,接收经过1/4波片210和第二线偏振片240的光信号的第三像素单元2313与上述第一像素单元2311类似,均位于像素阵列231的边缘,换言之,第二线偏振片240可以设置于该第三像素单元2313的上方,位于像素阵列231边缘的上方区域。
可选地,该第一线偏振片220可以包括多个第一子线偏振片221,其中,每个第一子线偏振片221对应于一个第一像素单元2311,且位于对应的第一像素单元2311的上方。同样的,第二线偏振片240也可以包括多个第二子线偏振片241,每个第二子线偏振片241对应于一个第三像素单元2313,且位于对应的第三像素单元2313的上方。
可选地,如图13a和图13b所示,第三像素单元2313的数量可以与第一像素单元2311的数量相等。即第一线偏振片220的面积可以与第二线偏振片240的面积相等。
其中,如图13a所示,两个第一子线偏振片221和两个第二子线偏振片241均上下相邻。可选地,该两个第一子线偏振片221和两个第二子线偏振片241还可以均左右相邻。
如图13b所示,两个第一子线偏振片221和两个第二子线偏振片241均对角相邻。
应理解,在本申请实施例中,第二线偏振片240与第一线偏振片220相邻设置,当第二线偏振片240和/或第一线偏振片220中包括多个子线偏振片时,子线偏振片的相对排列位置本申请实施例不做具体限定。
还应理解,上述图示仅示出了第二线偏振片240与第一线偏振片220面积相等的情况,第二线偏振片240与第一线偏振片220的面积还可以不相等,本申请实施例对此也不做限定。
还应理解,图13a和图13b仅示出了第一像素单元2311以及第三像素单元2313位于像素阵列231左上角的排布示意图,该第一像素单元2311以及第三像素单元2313还可以位于像素阵列231中的左下位置,或者右上位置或者右下位置,或者像素阵列231四周的任意位置,换言之,第一线偏振片220和第二线偏振片240可以设置于像素阵列231四周的任意位置,例如像素阵列的四角或者四条边的上方,本申请实施例对此不做限定。
可选地,在本申请实施例中,该1/4波片210的面积大于等于该第一线 偏振片220以及第二线偏振片240的面积之和。更进一步的,该第一线偏振片220以及第二线偏振片240位于该1/4波片210在垂直方向的投影中。
图14和图15示出了本申请实施例的另一种指纹识别装置200的示意性结构图以及指纹识别装置200中像素阵列231的俯视图。
如图14所示,1/4波片210的面积大于等于像素阵列231的面积,位于像素阵列231的上方。第一线偏振片220的面积较小,位于像素阵列231的边缘区域的上方,而第二线偏振片240的面积较大,该第二线偏振片240与第一线偏振片220的面积之和可以大于等于像素阵列231。
如图15所示,第一像素单元2311接收经过1/4波片210以及第一线偏振片220的光信号,第三像素单元2313接收经过1/4波片210以及第二线偏振片240的光信号,在该像素阵列231中,第一像素单元2311仅位于像素边缘,像素数量较少,而除第一像素单元2311外,其它像素均为第三像素单元2313。
采用本申请实时的技术方案,第三像素单元2313接收的光信号中,屏幕光信号的光强较小,通过对第一像素单元2311以及第三像素单元2313的电信号值进行处理,得到校正系数外,还对第三像素单元2313的电信号进行处理以进行指纹识别,能够提高指纹的准确率。
可选地,如图16所示,指纹识别装置230还包括:光学组件250,该光学组件250设置于所述光学指纹传感器230的上方。该光学组件250可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,滤光层可以用于滤除穿透手指的环境光,而导光层或光路引导结构主要用于从手指表面反射回来的反射光导引至像素阵列进行光学检测。
在具体实现上,光学组件250可以封装在光学指纹传感器230中,也可以将光学组件250设置在光学指纹传感器230外部,比如将所述光学组件250贴合在光学指纹传感器230上方,或者将光学组件250的部分元件集成在所述光学指纹传感器230之中。可以理解的是,当第一线偏振片220和第二线偏振片240设置于光学指纹传感器230中像素阵列231的表面时,光学组件250实际设置于第一线偏振片220和第二线偏振片240上方;光学组件250封装在光学指纹传感器230中,实际上是与第一线偏振片220以及第二线偏振片240一起封装在光学指纹传感器230中。
如图16所示,所述光学组件250包括:至少一阻光层252和微透镜阵 列251;
该至少一阻光层252设置有多个通光小孔;该微透镜阵列251,设置于至少一阻光层252上方,用于将光信号汇聚至至少一阻光层252的多个通光小孔,该光信号通过所述至少一阻光层252的多个通光小孔传输至像素阵列231。
该至少一阻光层252可以通过半导体工艺生长或者其它工艺形成在像素阵列231上方,例如,通过原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等方法在像素阵列231上方制备一层非透光材料薄膜,再进行小孔图形光刻和刻蚀,形成多个通光小孔。该至少一阻光层252可以阻挡相邻微透镜之间的光学干扰,并使得像素单元所对应的光信号通过所述微透镜汇聚到所述通光小孔内部并经由通光小孔传输到像素单元以进行光学指纹成像。可选地,阻光层与像素阵列之间、多层阻光层252之间通过透明介质层进行隔离。
该微透镜阵列251由多个微透镜形成,其可以通过半导体生长工艺或者其他工艺形成在至少一阻光层252上方,并且每一个微透镜可以分别对应于像素阵列231的其中一个像素单元。
应理解,光学组件250可以设置在显示屏120至像素阵列231之间光路中的任意位置,例如:设置在像素阵列231与线偏振片(第一线偏振片220、第二线偏振片240)之间,或者设置在线偏振片与1/4波片210之间,或者设置在1/4波片210与显示屏120之间。
在一种可能的实施方式中,如图16所示,光学组件250设置于光学指纹传感器230的上方,第一线偏振片220、第二线偏振片240以及1/4波片210设置于光学组件的上方。
在另一种可能的实施方式中,如图17所示,第一线偏振片220和第二线偏振片240设置于像素阵列231的上表面,光学组件250设置在第一线偏振片220和第二线偏振片240的上方,1/4波片210设置于光学组件250的上方。
此处需要说明的是,图中为了表示第一线偏振片220和第二线偏振片240,图示两种线偏振片的厚度较厚,但实际上,该第一线偏振片220和第二线偏振片240可以为偏振膜或者金属线栅微结构,其厚度与光学组件中的透明介质层相比,厚度较薄。
采用本申请实施例的指纹识别装置,在提高指纹识别的准确率的同时,减小指纹识别装置的厚度,从而进一步提升光学指纹识别装置的性能。
可选地,如图16和图17所示,光学组件250还包括:滤波层253,用于滤掉非目标波段的光信号,透过目标波段的光信号(即指纹图像采集所需波段的光信号)。
可选地,滤波层253设置在显示屏至像素阵列之间的光路中的任意位置。具体地,该滤波层253设置于微透镜阵列251上方或者微透镜阵列251到像素阵列231之间的光路中。例如,如图15所示,滤波层设置于微透镜阵列251的上方。
在一种可能的实施方式中,微透镜阵列251上方设置缓冲层,该缓冲层为透明介质缓冲层,其光学折射率低于所述微透镜阵列251,可选地,该缓冲层的光学折射率低于1.3。滤波层253的下表面通过粘接层与缓冲层的上表面完全贴合。可选地,该粘接层可以为低折射率胶,该低折射率胶的折射率小于1.25。
可选地,滤波层253还可以通过固定装置固定在微透镜阵列251的上方,例如,在微透镜阵列251四周的非感光区域设置框胶或者其它支撑件,以支撑并固定滤波层253在微透镜阵列251的上方,该滤波层253的下表面与微透镜阵列251的上表面之间存在空气间隙层。
可选地,滤波层253还可以与像素阵列231一起集成在光学指纹传感器中,具体的,可以采用蒸镀工艺在像素阵列231上方光进行镀膜形成滤波层253。
可选地,滤波层253为光波长截止滤波片,用于滤除特定波段的光信号,有利于降低特定波段的环境光信号的影响,从而能够提升指纹识别性能。
如图18所示,本申请实施例还提供了一种电子设备20,该电子设备20可以包括上述申请实施例的指纹识别装置200。
可选地,电子设备20还可以包括显示屏120,指纹识别装置200设置于显示屏120下方。
可选地,在本申请一个实施例中,显示屏120可以具体为自发光显示屏(比如OLED显示屏),且其包括多个自发光显示单元(比如OLED像素或者OLED光源)。在光学图像采集系统为生物特征识别系统时,显示屏中的部分自发光显示单元可以作为生物特征识别系统进行生物特征识别的激励 光源,用于向生物特征检测区域发射光信号,以用于生物特征检测。
可选地,显示屏120中包括圆偏振片,该圆偏振片可以由图2中的1/4波片以及线偏振片123组成,用于形成圆偏振光。
应理解,本申请实施例的处理单元可以为处理器,所述处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应所述理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦 合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (25)

  1. 一种指纹识别装置,其特征在于,用于设置在电子设备的显示屏下方,包括:
    像素阵列,包括多个第一像素单元和多个第二像素单元;
    1/4波片,设置于所述像素阵列上方;
    第一线偏振片,设置于所述1/4波片与所述多个第一像素单元之间,所述第一线偏振片的偏振方向与所述1/4波片的快轴呈45°夹角以阻挡经过所述显示屏上方手指反射或散射返回的指纹光信号中的第一指纹光信号,所述第一指纹光信号为导向所述多个第一像素单元的光信号;
    所述多个第二像素单元用于接收第二光信号,所述第二光信号包括所述指纹光信号中的第二指纹光信号,所述第二指纹光信号为导向所述多个第二像素单元的光信号;
    所述多个第一像素单元用于接收经过所述1/4波片以及所述第一线偏振片的第一屏幕光信号,所述第一屏幕光信号用于对所述第二光信号进行修正。
  2. 根据权利要求1所述的指纹识别装置,其特征在于,所述1/4波片用于接收圆偏振光,并将所述圆偏振光转换为线偏振光;
    所述圆偏振光为左旋圆偏振光时,所述第一线偏振片的偏振方向与所述1/4波片的快轴呈+45°夹角;
    所述圆偏振光为右旋圆偏振光时,所述第一线偏振片的偏振方向与所述1/4波片的快轴呈-45°夹角。
  3. 根据权利要求2所述的指纹识别装置,其特征在于,所述圆偏振光为经过所述显示屏中圆偏振片的光信号,所述圆偏振光中包括经过所述显示屏上方手指反射或散射而返回后的指纹光信号。
  4. 根据权利要求1-3中任一项所述的指纹识别装置,其特征在于,所述第一线偏振片的面积小于所述像素阵列的面积,且所述第一线偏振片设置于所述像素阵列的边缘区域上方。
  5. 根据权利要求1-4中任一项所述的指纹识别装置,其特征在于,所述第一线偏振片设置于所述显示屏的下表面的开窗中,并位于所述开窗的边缘。
  6. 根据权利要求1-5中任一项所述的指纹识别装置,其特征在于,所 述第一线偏振片为金属线栅阵列,设置于所述多个第一像素单元的上表面。
  7. 根据权利要求1-6中任一项所述的指纹识别装置,其特征在于,所述1/4波片与所述第一线偏振片集成设置或者分离设置。
  8. 根据权利要求1-7中任一项所述的指纹识别装置,其特征在于,所述1/4波片设置于:所述显示屏的下表面,或者所述显示屏与所述第一线偏振片之间。
  9. 根据权利要求1-8中任一项所述的指纹识别装置,其特征在于,所述1/4波片的面积大于等于所述第一线偏振片的面积,所述第一线偏振片位于所述1/4波片在垂直方向的投影中。
  10. 根据权利要求1-9中任一项所述的指纹识别装置,其特征在于,所述多个第一像素单元用于将所述第一屏幕光信号转换得到多个第一电信号,所述多个第二像素单元用于将所述第二光信号转换得到多个第二电信号;
    所述多个第一电信号用于处理得到第一修正系数,所述第一修正系数用于对所述多个第二电信号进行修正以进行指纹识别。
  11. 根据权利要求1-9中任一项所述的指纹识别装置,其特征在于,所述多个第一像素单元用于将所述第一屏幕光信号转换得到多个第一电信号,所述多个第二像素单元用于将所述第二光信号转换得到多个第二电信号;
    所述多个第一电信号用于与初始电信号相减得到多个第一修正电信号,所述多个第一修正电信号用于处理得到第二修正系数,所述第二修正系数用于对所述多个第二电信号进行修正以进行指纹识别。
  12. 根据权利要求1-9中任一项所述的指纹识别装置,其特征在于,所述多个第一像素单元用于将所述第一屏幕光信号转换得到多个第一电信号,所述多个第二像素单元用于将所述第二光信号转换得到多个第二电信号;
    所述指纹识别装置还包括:处理单元,用于接收所述多个第一电信号和所述多个第二电信号,并将所述多个第一电信号与初始电信号相减得到多个第一修正电信号,根据所述多个第一修正电信号处理得到第二修正系数,基于所述第二修正系数对所述多个第二电信号修正以进行指纹识别。
  13. 根据权利要求1-9中任一项所述的指纹识别装置,其特征在于,所述像素阵列还包括:多个第三像素单元;
    所述指纹识别装置还包括:第二线偏振片,设置于所述1/4波片与所述像素阵列之间,所述第二线偏振片的偏振方向与所述第一线偏振片的偏振方 向垂直以通过经过所述指纹光信号中的第三指纹光信号,所述第三指纹光信号为导向所述多个第三像素单元的光信号;
    所述多个第三像素单元用于接收经过所述1/4波片以及所述第二线偏振片的第三光信号,所述第三光信号包括所述第三指纹光信号,所述第一屏幕光信号以及所述第三光信号用于对所述第二光信号进行修正。
  14. 根据权利要求13所述的指纹识别装置,其特征在于,所述第二线偏振片与所述第一线偏振片位于同一水平面且相邻设置。
  15. 根据权利要求13或14所述的指纹识别装置,其特征在于,所述第二线偏振片为金属线栅阵列,设置于所述多个第三像素单元的上表面。
  16. 根据权利要求13-15中任一项所述的指纹识别装置,其特征在于,所述1/4波片与所述第二线偏振片集成设置或者分离设置。
  17. 根据权利要求13-16中任一项所述的指纹识别装置,其特征在于,所述1/4波片的面积大于等于所述第一线偏振片与所述第二线偏振片的面积之和,所述第一线偏振片和所述第二线偏振片均位于所述1/4波片在垂直方向的投影中。
  18. 根据权利要求13-17中任一项所述的指纹识别装置,其特征在于,所述多个第一像素单元用于将所述第一屏幕光信号转换得到多个第一电信号,所述多个第二像素单元用于将所述第二光信号转换得到多个第二电信号,所述多个第三像素单元用于将所述第三光信号转换得到多个第三电信号;
    所述多个第三电信号与所述多个第一电信号用于处理得到第三修正系数,所述第三修正系数用于对所述多个第二电信号进行修正以进行指纹识别。
  19. 根据权利要求13-17中任一项所述的指纹识别装置,其特征在于,所述多个第一像素单元用于将所述第一屏幕光信号转换得到多个第一电信号,所述多个第二像素单元用于将所述第二光信号转换得到多个第二电信号,所述多个第三像素单元用于将所述第三光信号转换得到多个第三电信号;
    所述多个第一电信号用于与初始电信号相减得到多个第一修正电信号,所述多个第三电信号用于与所述初始电信号相减得到多个第三修正电信号;
    所述多个第三修正电信号、所述多个第一修正电信号以及所述第一线偏 振片的消光比用于通过公式计算得到目标修正信号,所述公式为:
    Figure PCTCN2019112018-appb-100001
    其中,X为所述目标修正电信号,A为所述第一修正电信号,B为第三修正电信号,e为所述第一线偏振片的消光比;
    所述目标修正信号用于处理得到第四修正系数,所述第四修正系数用于对所述多个第二电信号进行修正以进行指纹识别。
  20. 根据权利要求13-17中任一项所述的指纹识别装置,其特征在于,所述多个第一像素单元用于将所述第一屏幕光信号转换得到多个第一电信号,所述多个第二像素单元用于将所述第二光信号转换得到多个第二电信号,所述多个第三像素单元用于将所述第三光信号转换得到多个第三电信号;
    所述指纹识别装置还包括:处理单元,用于接收所述多个第一电信号、所述多个第二电信号以及所述多个第三电信号;
    将所述多个第一电信号与初始电信号相减得到多个第一修正电信号;
    将所述多个第三电信号与初始电信号相减得到多个第三修正电信号;
    根据公式对所述第一修正电信号以及所述第三修正信号计算得到目标修正电信号,所述公式为:
    Figure PCTCN2019112018-appb-100002
    其中,X为所述目标修正电信号,A为所述第一修正电信号,B为第三修正电信号,e为所述第一线偏振片的消光比;
    根据所述目标修正电信号处理得到第四修正系数,基于所述第四修正系数对所述多个第二电信号修正以进行指纹识别。
  21. 根据权利要求1-20中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:至少一阻光层和微透镜阵列;
    所述至少一阻光层位于所述微镜头阵列下方,设置有多个通光小孔;
    所述像素阵列用于接收经由所述微镜头阵列汇聚到所述多个通光小孔的并通过所述多个通光小孔的光信号。
  22. 根据权利要求1-21中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:
    滤波层,设置在所述显示屏至所述像素阵列的之间的光路中,用于滤掉 非目标波段的光信号,透过目标波段的光信号。
  23. 一种电子设备,其特征在于,包括:显示屏以及,
    如权利要求1至22中任一项所述的指纹识别装置。
  24. 根据权利要求23所述的电子设备,其特征在于,所述显示屏中包括圆偏振片,所述指纹识别装置设置于所述显示屏下方。
  25. 根据权利要求23或24所述的电子设备,其特征在于,所述显示屏为有机发光二极管显示屏,所述显示屏的发光层包括多个有机发光二极管光源,其中,所述指纹识别装置采用至少部分有机发光二极管光源作为指纹识别的激励光源。
PCT/CN2019/112018 2019-10-18 2019-10-18 指纹识别装置和电子设备 WO2021072768A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/112018 WO2021072768A1 (zh) 2019-10-18 2019-10-18 指纹识别装置和电子设备
CN201980004084.7A CN111052140B (zh) 2019-10-18 2019-10-18 指纹识别装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/112018 WO2021072768A1 (zh) 2019-10-18 2019-10-18 指纹识别装置和电子设备

Publications (1)

Publication Number Publication Date
WO2021072768A1 true WO2021072768A1 (zh) 2021-04-22

Family

ID=70244788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112018 WO2021072768A1 (zh) 2019-10-18 2019-10-18 指纹识别装置和电子设备

Country Status (2)

Country Link
CN (1) CN111052140B (zh)
WO (1) WO2021072768A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116719040A (zh) * 2022-09-16 2023-09-08 荣耀终端有限公司 传感器组件及电子设备
CN116737019A (zh) * 2023-08-15 2023-09-12 山东泰克信息科技有限公司 一种智能显示屏感应识别控制管理系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM608710U (zh) * 2020-06-05 2021-03-01 神盾股份有限公司 屏下式指紋感測裝置
CN113449575B (zh) * 2020-08-06 2022-08-05 重庆康佳光电技术研究院有限公司 一种显示背板、显示面板、显示背板的制作方法及终端
CN111964778A (zh) * 2020-08-21 2020-11-20 深圳市汇顶科技股份有限公司 屏下环境光传感器和终端设备
CN112082644A (zh) * 2020-09-14 2020-12-15 深圳市汇顶科技股份有限公司 屏下环境光传感器和终端设备
CN112257636A (zh) * 2020-10-29 2021-01-22 杭州芯格微电子有限公司 指纹传感器
CN112364797A (zh) * 2020-11-18 2021-02-12 杭州芯格微电子有限公司 指纹传感器及利用其提升指纹图像的对比度的方法
CN112528942A (zh) * 2020-12-23 2021-03-19 深圳市汇顶科技股份有限公司 指纹识别装置、显示屏和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106067018A (zh) * 2016-08-08 2016-11-02 京东方科技集团股份有限公司 一种指纹识别显示面板及显示装置
CN106339682A (zh) * 2016-08-26 2017-01-18 京东方科技集团股份有限公司 指纹识别的显示面板及指纹识别的显示装置
US20180260602A1 (en) * 2017-03-07 2018-09-13 Shenzhen GOODIX Technology Co., Ltd. Devices with peripheral task bar display zone and under-lcd screen optical sensor module for on-screen fingerprint sensing
CN108885697A (zh) * 2018-06-15 2018-11-23 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备
CN109190599A (zh) * 2018-10-15 2019-01-11 武汉华星光电半导体显示技术有限公司 一种显示面板
CN109359627A (zh) * 2018-11-23 2019-02-19 上海思立微电子科技有限公司 组件及电子设备
CN109858417A (zh) * 2019-01-22 2019-06-07 上海思立微电子科技有限公司 屏下光学指纹成像装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424729B1 (en) * 1999-03-02 2002-07-23 Boon Yi Soon Optical fingerprint security verification using separate target and reference planes and a uniqueness comparison scheme
JP4974543B2 (ja) * 2005-08-23 2012-07-11 株式会社フォトニックラティス 偏光イメージング装置
JP5603508B2 (ja) * 2012-05-22 2014-10-08 パナソニック株式会社 撮像処理装置および内視鏡
CN206058225U (zh) * 2016-08-08 2017-03-29 京东方科技集团股份有限公司 一种指纹识别显示面板及显示装置
CN106249457B (zh) * 2016-09-26 2019-09-13 京东方科技集团股份有限公司 一种阵列基板、显示装置以及指纹识别的控制方法
CN108693584B (zh) * 2017-04-05 2022-12-30 Jsr株式会社 光学滤光片及使用光学滤光片的固体摄像装置
KR102449825B1 (ko) * 2017-07-31 2022-10-04 삼성전자주식회사 지문 인식을 위한 디스플레이 및 전자 장치
FR3070095B1 (fr) * 2017-08-11 2019-09-06 Isorg Systeme d'affichage et de detection
CN109696682A (zh) * 2017-10-23 2019-04-30 华为技术有限公司 光学检测组件和终端设备
WO2019196120A1 (zh) * 2018-04-13 2019-10-17 华为技术有限公司 一种屏下指纹识别终端
WO2020037683A1 (zh) * 2018-08-24 2020-02-27 深圳市汇顶科技股份有限公司 背光模组、屏下指纹识别方法、装置和电子设备
CN210142330U (zh) * 2018-09-25 2020-03-13 深圳市汇顶科技股份有限公司 指纹识别装置和终端设备
CN211180838U (zh) * 2019-10-18 2020-08-04 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106067018A (zh) * 2016-08-08 2016-11-02 京东方科技集团股份有限公司 一种指纹识别显示面板及显示装置
CN106339682A (zh) * 2016-08-26 2017-01-18 京东方科技集团股份有限公司 指纹识别的显示面板及指纹识别的显示装置
US20180260602A1 (en) * 2017-03-07 2018-09-13 Shenzhen GOODIX Technology Co., Ltd. Devices with peripheral task bar display zone and under-lcd screen optical sensor module for on-screen fingerprint sensing
CN108885697A (zh) * 2018-06-15 2018-11-23 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备
CN109190599A (zh) * 2018-10-15 2019-01-11 武汉华星光电半导体显示技术有限公司 一种显示面板
CN109359627A (zh) * 2018-11-23 2019-02-19 上海思立微电子科技有限公司 组件及电子设备
CN109858417A (zh) * 2019-01-22 2019-06-07 上海思立微电子科技有限公司 屏下光学指纹成像装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116719040A (zh) * 2022-09-16 2023-09-08 荣耀终端有限公司 传感器组件及电子设备
CN116737019A (zh) * 2023-08-15 2023-09-12 山东泰克信息科技有限公司 一种智能显示屏感应识别控制管理系统
CN116737019B (zh) * 2023-08-15 2023-11-03 山东泰克信息科技有限公司 一种智能显示屏感应识别控制管理系统

Also Published As

Publication number Publication date
CN111052140A (zh) 2020-04-21
CN111052140B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
WO2021072768A1 (zh) 指纹识别装置和电子设备
WO2020223882A1 (zh) 指纹识别装置和电子设备
US20200293738A1 (en) Under-screen fingerprint identification apparatus and electronic device
WO2019237872A1 (zh) 指纹识别装置和电子设备
CN209765529U (zh) 指纹识别装置和电子设备
US8896576B2 (en) Touch panel, liquid crystal panel, liquid crystal display device, and touch panel-integrated liquid crystal display device
WO2020119289A1 (zh) 指纹识别装置和电子设备
WO2020220298A1 (zh) 指纹识别装置和电子设备
JP7413021B2 (ja) 表示モジュール及び表示装置
CN111133444B (zh) 指纹识别装置和电子设备
US11373436B2 (en) Fingerprint identification apparatus and electronic device
CN111095288B (zh) 屏下光学指纹识别装置及系统、液晶显示屏
WO2021051737A1 (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
KR20080089115A (ko) 시엠오에스어레이를 이용한 터치스크린
WO2020227940A1 (zh) 指纹识别装置和电子设备
CN114373384A (zh) 电子装置
CN211180838U (zh) 指纹识别装置和电子设备
CN210143028U (zh) 指纹识别装置和电子设备
CN111868563B (zh) 显示器下部的传感器
US11867538B2 (en) Lower display sensor
CN210864753U (zh) 指纹识别装置和电子设备
WO2021042396A1 (zh) 指纹识别装置和电子设备
WO2022133833A1 (zh) 指纹识别装置、显示屏和电子设备
TWI738488B (zh) 指紋識別模組與顯示裝置
TWI841745B (zh) 圖像採集裝置及電子設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948872

Country of ref document: EP

Kind code of ref document: A1