WO2020220298A1 - 指纹识别装置和电子设备 - Google Patents
指纹识别装置和电子设备 Download PDFInfo
- Publication number
- WO2020220298A1 WO2020220298A1 PCT/CN2019/085275 CN2019085275W WO2020220298A1 WO 2020220298 A1 WO2020220298 A1 WO 2020220298A1 CN 2019085275 W CN2019085275 W CN 2019085275W WO 2020220298 A1 WO2020220298 A1 WO 2020220298A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fingerprint
- optical
- light
- wave plate
- display screen
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1324—Sensors therefor by using geometrical optics, e.g. using prisms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
Definitions
- This application relates to the field of optical fingerprint technology, and more specifically, to a fingerprint identification device and electronic equipment.
- the fingerprint identification device In addition to receiving the fingerprint light signal with fingerprint information reflected by the finger, the fingerprint identification device will also receive a large number of stray light signals, such as the light leakage signal of the display screen and the reflection of each laminated structure in the display screen.
- the stray light signal causes a small proportion of the fingerprint light signal in the light signal received by the fingerprint identification device, which further affects the quality of the fingerprint image and the performance of fingerprint recognition, and brings a bad experience to the user.
- the embodiments of the present application provide a fingerprint identification device and electronic equipment, which can improve the quality of fingerprint images and the identification performance of the fingerprint identification device.
- a fingerprint identification device which is used to be installed under the display screen of an electronic device, including:
- the lens assembly includes at least one optical lens
- the light detection array is arranged under the lens assembly
- a quarter wave plate and a linear polarization structure are arranged in the optical path between the display screen and the light detection array, and the quarter wave plate is arranged above the linear polarization structure;
- the light detection array is used to receive the linearly polarized light signal in which the light signal passes through the lens assembly, the quarter wave plate and the linearly polarized structure, and the light signal includes the light signal returned by the reflection or scattering of the finger.
- the fingerprint light signal is used to detect the fingerprint information of the finger.
- This application provides a fingerprint recognition solution.
- a quarter-wave plate and a linear polarization structure in the optical path of the optical fingerprint recognition device, the stray natural light passes through the quarter-wave plate and the linear polarization structure.
- the fingerprint light signal returned by the reflection or scattering of the finger has a small light intensity change after passing through the quarter wave plate and linear polarization structure, thereby increasing the proportion of the fingerprint light signal in the total light signal, improving the quality of fingerprint image and fingerprint recognition The recognition performance of the device.
- the fast axis of the quarter wave plate and the transmission axis of the linear polarization structure form an angle of 45°.
- the display screen includes a circular polarizing plate
- the fingerprint light signal is a circularly polarized light signal passing through the circular polarizing plate after being reflected or scattered by the finger and returning.
- the quarter wave plate and the linear polarization structure are integrated and configured as a circular polarization structure.
- the quarter wave plate and the linear polarization structure are integrally arranged in:
- the quarter wave plate and the linear polarization structure are integrally arranged in:
- the quarter-wave plate is disposed between the display screen and the lens assembly
- the linear polarization structure is disposed in the lens assembly, or the lens assembly and the lens assembly Between the light detection arrays;
- the quarter wave plate is arranged in the lens assembly, and the linear polarization structure is arranged between the lens assembly and the light detection array.
- the quarter wave plate is arranged on the lower surface of the display screen, the linear polarization structure is arranged on the surface of any optical lens in the lens assembly, or the light detecting The surface of the array;
- the quarter wave plate is arranged on the surface of any optical lens in the lens assembly, and the linear polarization structure is arranged on the surface of the light detection array.
- the linear polarization structure is an optical microstructure array, which is arranged on the surface of the light detection array.
- the arrangement direction of the multiple optical microstructures in the optical microstructure array is perpendicular to the direction of the linearly polarized light signal.
- the optical microstructure array is integrated in the light detection array.
- the fingerprint identification device further includes a filter, which is used to filter out the optical signal in the non-target wavelength band, and transmit the optical signal in the target wavelength band to further increase the signal proportion.
- the filter is arranged in the optical path between the display screen and the light detection array.
- the filter is disposed in any one of the optical lens of the display screen, the light detection array, the optical component, the linear polarization structure, and the quarter wave plate At least one surface.
- an electronic device including a display screen and a fingerprint identification device as in the first aspect or any possible implementation of the first aspect, wherein the fingerprint identification device is arranged below the display screen .
- the display screen is an organic light emitting diode display screen, including a circular polarizer.
- FIG. 1 is a schematic structural diagram of an electronic device to which an embodiment of the present application is applied.
- Fig. 2 is a schematic structural diagram of a fingerprint identification device provided by an embodiment of the present application.
- Fig. 3 is a schematic structural diagram of another fingerprint identification device provided by an embodiment of the present application.
- FIG. 4 is a schematic diagram of optical signal transmission corresponding to the fingerprint identification device of FIG. 3.
- 5(a) to 5(c) are schematic diagrams of the positional relationship of various parts in a fingerprint identification device provided by an embodiment of the present application.
- FIG. 6(a) to FIG. 6(c) are schematic diagrams of the positional relationship of various parts in another fingerprint identification device provided by an embodiment of the present application.
- FIG. 7(a) to FIG. 7(f) are schematic diagrams of the positional relationship of various parts in another fingerprint identification device provided by an embodiment of the present application.
- FIG. 8 is a schematic structural diagram of a linear polarization structure provided by an embodiment of the present application.
- Figures 9(a) to 9(b) are schematic diagrams of the positional relationship of various parts in another fingerprint identification device provided by an embodiment of the present application.
- Fig. 10 is a schematic block diagram of an electronic device according to an embodiment of the present application.
- optical fingerprint systems including but not limited to optical fingerprint identification systems and products based on optical fingerprint imaging.
- the embodiments of this application only take optical fingerprint systems as an example for illustration, but should not be implemented in this application.
- the examples constitute any limitation, and the examples of this application are also applicable to other systems that use optical imaging technology.
- the optical fingerprint system provided in the embodiments of this application can be applied to smart phones, tablet computers, and other mobile terminals with display screens or other terminal devices; more specifically, in the above-mentioned terminal devices, fingerprint identification
- the device may specifically be an optical fingerprint device, which may be arranged in a partial area or an entire area under the display screen, thereby forming an under-display optical fingerprint system.
- the fingerprint identification device can also be partially or fully integrated into the display screen of the terminal device, thereby forming an in-display optical fingerprint system.
- FIG. 1 is a schematic structural diagram of a terminal device to which the embodiment of the application can be applied.
- the terminal device 10 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is disposed under the display screen 120 Local area.
- the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 133 having a plurality of optical sensing units 131, and the area where the sensing array 133 is located or its sensing area is fingerprint detection of the optical fingerprint device 130 Area 103. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area of the display screen 120.
- the optical fingerprint device 130 may also be arranged in other positions, such as the side of the display screen 120 or the non-transparent area of the edge of the terminal device 10, and the optical fingerprint device 130 may be designed to The optical signal of at least a part of the display area of the display screen 120 is guided to the optical fingerprint device 130, so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
- the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130.
- the fingerprint detection of the optical fingerprint device 130 may be The area of the region 103 is smaller than the area of the sensing array of the optical fingerprint device 130.
- the fingerprint detection area 103 of the optical fingerprint device 130 may also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130.
- the terminal device 10 adopting the above structure does not need to reserve a space on the front side for the fingerprint button (such as the Home button), so that a full screen solution can be adopted, that is, the display area of the display screen 120 It can be basically extended to the front of the entire terminal device 10.
- the optical fingerprint device 130 includes a light detecting part 134 and an optical component 132, and the light detecting part 134 includes the sensor array and is electrically connected to the sensor array.
- the connected reading circuit and other auxiliary circuits can be fabricated on a chip (Die) by a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor.
- the sensing array is specifically a photodetector (Photodetector) array, which includes A plurality of photodetectors distributed in an array, the photodetector can be used as the optical sensing unit as described above; the optical component 132 can be arranged above the sensing array of the photodetecting part 134, which can specifically include The filter layer (Filter), the light guide layer or the light path guide structure and other optical elements, the filter layer can be used to filter out the ambient light penetrating the finger, and the light guide layer or the light path guide structure is mainly used to remove The reflected light reflected from the finger surface is guided to the sensing array for optical detection.
- the filter layer Finter
- the light guide layer or the light path guide structure is mainly used to remove The reflected light reflected from the finger surface is guided to the sensing array for optical detection.
- the optical assembly 132 and the light detecting part 134 may be packaged in the same optical fingerprint component.
- the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 is attached above the chip, or some components of the optical assembly 132 are integrated into the chip.
- the display screen 120 may be a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display or a micro-LED (Micro-LED) display Screen.
- OLED Organic Light-Emitting Diode
- Micro-LED Micro-LED
- the optical fingerprint device 130 may use the display unit (ie, an OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
- the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103.
- the light 111 is reflected on the surface of the finger 140 to form reflected light or pass through all the fingers.
- the finger 140 scatters to form scattered light.
- the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Since the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light 151 from the fingerprint ridge and the reflected light 152 from the fingerprint ridge have different light intensities.
- the reflected light passes through the optical component 132, It is received by the sensor array 134 in the optical fingerprint device 130 and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, so that the The terminal device 10 implements an optical fingerprint recognition function.
- the terminal device 10 further includes a transparent protective cover, and the cover may be a glass cover or a sapphire cover, which is located on the display screen 120. Above and covering the front of the terminal device 10. Because, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually refers to pressing on the cover plate above the display screen 120 or covering the surface of the protective layer of the cover plate.
- the terminal device 1 may further include a circuit board 150 which is arranged under the optical fingerprint device 130.
- the optical fingerprint device 130 can be adhered to the circuit board 150 through adhesive, and is electrically connected to the circuit board 150 through soldering pads and metal wires.
- the optical fingerprint device 130 can realize electrical interconnection and signal transmission with other peripheral circuits or other components of the terminal device 1 through the circuit board 150.
- the optical fingerprint device 130 can receive the control signal of the processing unit of the terminal device 1 through the circuit board 150, and can also output the fingerprint detection signal from the optical fingerprint device 130 to the processing unit or control unit of the terminal device 1 through the circuit board 150. Wait.
- the optical fingerprint device 130 may include only one optical fingerprint sensor.
- the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position, so the user is performing fingerprint input At this time, it is necessary to press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
- the optical fingerprint device 130 may specifically include multiple optical fingerprint sensors; the multiple optical fingerprint sensors may be arranged side by side under the display screen 120 in a splicing manner, and the multiple optical fingerprint sensors The sensing area of the fingerprint sensor together constitutes the fingerprint detection area 103 of the optical fingerprint device 130.
- the fingerprint detection area 103 of the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint collection area 103 of the optical fingerprint device 130 It can be extended to the main area of the lower half of the display screen, that is, extended to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
- the fingerprint detection area 103 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
- the sensing array in the optical fingerprint device may also be referred to as a pixel array
- the optical sensing unit or sensing unit in the sensing array may also be referred to as a pixel unit.
- optical fingerprint device in the embodiments of the present application may also be referred to as an optical fingerprint recognition module, a fingerprint recognition device, a fingerprint recognition module, a fingerprint module, a fingerprint acquisition device, etc., and the above terms can be replaced with each other.
- FIG. 2 is a schematic structural diagram of a fingerprint identification device 10 provided by an embodiment of the present application. As shown in FIG. 2, the fingerprint identification device 10 is arranged under the display screen 120, and the fingerprint identification device 10 is used to receive The light signal reflected by the finger is converted into an electrical signal and fingerprint recognition is performed.
- the display screen 120 is an OLED display screen, and includes a cover 121, a circular polarizer 122, a display component 124 and a glass substrate 126.
- the display component 124 includes an organic light-emitting layer 125, and the organic light-emitting layer 125 is used to cooperate with a display driving circuit to realize a display function.
- the organic light-emitting layer 125 may be a low temperature poly-silicon technology.
- the OLED organic light-emitting panel made by LTPS) has a plurality of light-emitting pixel units, which are grown on the glass substrate 126.
- the circular polarizer 122 may include a linear polarizer and a quarter-wave plate. The linear polarizer is arranged above the quarter-wave plate to suppress the reflection of the ambient light on the display screen 120, thereby achieving higher display contrast.
- the cover 121 may be disposed on the circular polarizer 122 through an adhesive layer to protect the display screen 120.
- the optical fingerprint sensor 10 is placed or attached to the bottom of the glass substrate 126, so that under-screen optical fingerprint recognition can be realized locally or in the full screen in the display area of the display screen.
- the screen light emitted by the organic light-emitting layer 125 in the light-emitting assembly 124 is attenuated by the circular polarizer 122, and then is reflected by the finger 140 to form a reflected light signal.
- the light intensity After passing through the circular polarizer 122 again, The light intensity attenuates again to form a fingerprint light signal 101 in a circularly polarized state.
- the fingerprint optical signal 101 After passing through the display assembly 124 and the glass substrate 126, it is received by the fingerprint identification device 10.
- the fingerprint optical signal 101 carries finger fingerprint information, and is used for fingerprint identification by the fingerprint identification device 10.
- the first stray light 102 emitted downward from the organic light-emitting layer 125 and other stray light 103 formed by reflection or scattering by the circuit layer or other structure inside the display assembly can also be directly transmitted by the glass substrate 126.
- the fingerprint identification device 10 receives. Since the first stray light 102 is natural light directly emitted by the organic light-emitting layer 125 to the fingerprint identification device 10, it has not been processed by the circular polarizer 122 in the display screen for light intensity attenuation. It has a large light intensity and can include various polarization directions. Light.
- the other stray light 103 is the light signal reflected or scattered by each laminated structure in the display screen 120. The polarization direction is messy and difficult to filter out, and it has not been processed by the circular polarizer 122 for light intensity attenuation, so the light of other stray light 103 Strong is also greater.
- the fingerprint identification device 10 receives the first stray light 102, other stray lights 103 and the fingerprint light signal 101 at the same time, the light intensity of the fingerprint light signal 101 used for fingerprint recognition is relatively small, and the light intensity of the received total light signal The intensity is small, so the light intensity changes of the fingerprint ridge and fingerprint ridge in the total optical signal are weak, making it difficult to identify the fingerprint signal.
- the first stray light 102 also carries the information of the light-emitting pixel unit
- the other stray light 103 also carries the information of each laminated structure in the display screen 120.
- the fingerprint identification device 10 simultaneously receives the first stray light 102 and other stray lights. 103 and the fingerprint light signal 101, the interference information carried by the first stray light 102 and other stray lights 103 easily interferes with the imaging of the fingerprint light signal 101 by the fingerprint identification device 10, thereby affecting the quality of the fingerprint image, which greatly limits The fingerprint recognition performance of the fingerprint recognition device 10 is improved.
- the first stray light 102 and other stray lights 103 do not pass through the circular polarizer 122, the first stray light 102 and other stray lights 103 have no polarization state, and the fingerprint light signal is the circularly polarized light passing through the circular polarizer 122.
- the polarization state of the optical signal is different from that of the stray light signal. Based on this, this application provides a fingerprint recognition solution. By setting a quarter wave plate and a linear polarization structure, the stray light passes through the quarter wave plate and the linear polarization structure.
- the light intensity of the fingerprint light signal is almost unchanged after passing through the quarter wave plate and linear polarization structure, which increases the proportion of the fingerprint light signal in the total light signal and reduces the influence of stray light signals on fingerprint imaging. Improve the quality of fingerprint images and the recognition performance of fingerprint recognition devices.
- FIG. 3 is a schematic structural diagram of a fingerprint identification device 20 provided by an embodiment of the present application, which is configured to be installed under a display screen 120 of an electronic device.
- the fingerprint identification device 20 may include:
- the lens assembly 300 includes at least one optical lens
- the light detection array 400 is arranged under the lens assembly 300;
- the quarter wave plate 210 and the linear polarization structure 220 are arranged in the optical path between the display screen 120 and the light detection array 400, and the quarter wave plate 210 is arranged above the linear polarization structure 220;
- the light detection array 400 is used to receive the linearly polarized light signal of the light signal passing through the quarter wave plate 210, the linear polarization structure 220 and the lens assembly 300, and the light signal includes reflection or The scattered and returned fingerprint light signal is used to detect the fingerprint information of the finger.
- the lens assembly 310 is a lens group including at least one spherical or aspherical optical lens, which is used to converge the reflected light reflected from the finger to the light detection array 400 below it, so that the light detection array 400 can Perform imaging based on the reflected light, thereby obtaining a fingerprint image of the finger.
- the lens assembly 300 may further have a pinhole formed in the optical path of the at least one optical lens, and the pinhole may cooperate with the lens assembly 300 to expand the field of view of the fingerprint identification device 20 to improve the fingerprint identification device 20 Fingerprint imaging effect.
- the lens assembly 300 may be arranged below the display screen 120 and above the light detection array 400 through a fixing device, such as a bracket.
- the light detection array 400 may be the sensing array 133 in FIG. 1.
- the light detection array 400 may be a pixel array composed of a plurality of pixel units.
- the light detection array 400 may be electrically connected to the read circuit and other auxiliary circuits of the light detection array 400 and fabricated in one chip through a semiconductor process. .
- the multiple pixel units are used to receive linearly polarized light signals that have passed through the quarter-wave plate 210, the linearly polarized structure 220, and the lens assembly 300, and process the linearly polarized light signals to obtain electrical signals.
- the plurality of pixel units may use devices such as photodiodes and metal oxide semiconductor field effect transistors (MOSFETs).
- MOSFETs metal oxide semiconductor field effect transistors
- the plurality of pixel units have higher optical sensitivity and higher quantum efficiency for light of a specific wavelength, so as to facilitate detection of optical signals of corresponding wavelengths.
- the quarter-wave plate 210 may be an optical device capable of generating an additional optical path difference (ie, a phase difference ⁇ j) between two optical vibrations that are perpendicular to each other.
- the quarter-wave plate 210 may also be referred to as a quarter-wave plate.
- the quarter wave plate 330 may be a birefringent wafer with a precise thickness.
- birefringent wafers such as quartz, calcite or mica, the optical axis of which is parallel to the surface of the wafer.
- the incident light received by the quarter wave plate 210 is decomposed into ordinary light (o light) and extraordinary light (e light).
- the refractive index of the crystal to the two kinds of light is different, and the quarter wave plate 210 can make two lights perpendicular to each other.
- the quarter-wave plate 210 When the optical signal passes through the axis with the smallest refractive index in the quarter-wave plate 210, the propagation speed is the fastest.
- the axis with the smallest refractive index in the quarter-wave plate 210 is the fast axis of the quarter-wave plate 210.
- the axis with the largest refractive index in the quarter wave plate 210 is the slow axis of the quarter wave plate 210.
- the quarter-wave plate 210 may also be other microstructures capable of generating an additional quarter optical path difference between two mutually perpendicular lights (o-light and e-light).
- the linear polarization structure 220 can realize the selection of polarization states with a high extinction ratio, and can convert natural light or circularly polarized light into linearly polarized light. That is, the linear polarization structure 220 can allow the linearly polarized light whose vibration direction is parallel to the direction of its transmission axis to pass through, while absorbing the linearly polarized light whose vibration direction is perpendicular to the direction of the transmission axis of the device.
- the linear polarization structure may be a linear polarizer (PL), a polarizing film, or other microstructures with a polarization state selection function.
- the quarter wave plate 210 is disposed above the linear polarization structure 220, and both are disposed in the optical path between the display screen 120 and the light detection array 400. As long as the quarter wave plate 210 is above the linear polarization structure 220, the quarter wave plate 210 and the linear polarization structure 220 can be arranged at any position in the optical path between the display screen 120 and the light detection array 400.
- the quarter wave plate 210 and the linear polarization structure 220 can be arranged at any position in the optical path between the display screen 120 and the light detection array 400 by a fixing device.
- the quarter-wave plate 210 is arranged under the display screen 120, the linear polarization structure 220 is arranged under the quarter-wave plate, and the optical assembly 300 is arranged Under the linear polarization structure 220, the light detection array 400 is arranged under the optical assembly 300.
- the quarter wave plate 210 and the linear polarization structure 220 are integrated to form a circular polarization structure 230, for example, the quarter wave plate 210 and the linear polarization structure 220
- the linear polarization structure 220 is bonded together by transparent optical glue to form the circular polarization structure 230.
- the circular polarization structure 230 is disposed under the display screen 120, and the optical assembly 300 and the light detection array 400 are sequentially disposed under the circular polarization structure 230.
- the quarter wave plate 210 and the linear polarization structure 220 can also be separately arranged, and there is a certain amount of air between the quarter wave plate 210 and the polarization structure 230. gap.
- the quarter wave plate 210 receives the optical signal transmitted under the screen.
- the optical signal includes the stray light 206 and the circular polarization state reflected by the finger 140 and passed through the circular polarizer 122 in the display screen 120.
- the stray light 206 is one or more of the natural light in the environment, the screen light emitted by the display screen, or the reflected light of each layer in the display screen, and the natural light, the screen natural light or the display
- the reflected light of each laminated layer in the screen is an optical signal with no polarization state, which is different from the first fingerprint optical signal 204 in a circular polarization state.
- the first fingerprint optical signal 204 in the circular polarization state passes through the quarter-wave plate 210 to form the second fingerprint optical signal 205 in the linear polarization state.
- the light intensity of the optical signal after passing through the quarter-wave plate remains unchanged.
- the light intensity of the second fingerprint optical signal 205 is the same as the light intensity of the fingerprint optical signal 204.
- the second fingerprint optical signal 205 passes through the linear polarization structure 220, a third fingerprint optical signal in a linear polarization state is formed, and the light intensity of the third fingerprint light signal is not greater than the light intensity of the fingerprint light signal 204, specifically,
- the light intensity of the third fingerprint optical signal depends on the angle between the fast axis of the quarter-wave plate 210 and the transmission axis of the linear polarization unit 220, especially when the fast axis of the quarter-wave plate 210 When the axis and the transmission axis of the linear polarization structure 220 form an angle of 45°, the second fingerprint optical signal 205 does not lose light energy after passing through the linear polarization structure 220. Therefore, the light intensity of the third fingerprint optical signal is The light intensity is equal to the light intensity of the second fingerprint optical signal 205 and the first fingerprint optical signal 204.
- the display screen 120 may be the OLED display screen in FIG. 2, and includes: a cover 121, a circular polarizing plate 122, a display component 124 and a glass substrate 126.
- the circular polarizer 122 may include a first linear polarizer 1221 and a first quarter wave plate 1222, and in the display screen 120, the first linear polarizer 1221 is located on the first quarter wave plate 1222.
- the first linear polarizer 1221 is located on the first quarter wave plate 1222.
- the organic light-emitting layer 125 in the display assembly 124 emits the first screen light 201 without polarization state upward toward the finger.
- the circular polarizer 122 that is, the first quarter wave plate 1222 and the first linear polarizer 1221
- its light intensity is halved to form the first linear polarized light 202
- the first linearly polarized light is scattered or reflected by the finger 140, due to the depolarization of the light by the rough surface of the fingerprint, a first fingerprint optical signal 203 with no polarization state is formed.
- the first fingerprint optical signal 203 with no polarization state is circularly polarized After the first linear polarizer 1221 in the film 122, the light intensity is halved again to form a first fingerprint optical signal in a linearly polarized state.
- the first fingerprint optical signal in a linearly polarized state forms a circle after passing through the first quarter wave plate.
- the first fingerprint optical signal 204 in the polarized state passes through other film structures in the display screen 120, and after passing through the quarter-wave plate 210 in the fingerprint identification device 20, forms a linearly polarized state
- the second fingerprint optical signal 205 in the linear polarization state passes through the linear polarization After the structure 220, the light intensity does not attenuate, and the second fingerprint optical signal 205 in the linear polarization state is still output.
- the screen light emitted by the organic light-emitting layer 125 facing away from the finger and the reflected light of each laminated layer in the display screen form stray light 206.
- the stray light 206 is an optical signal with no polarization state.
- the second linearly polarized light 207 is formed.
- the light intensity of the second linearly polarized light 207 is not greater than that of the stray light 206. Strong 1/2.
- the stray light 206 may include the first stray light 102 and other stray lights 103 in FIG. 2, and the first fingerprint optical signal 204 may be the fingerprint optical signal 101 in FIG. 2.
- the light intensity of the stray light 207 is attenuated by half, while the first fingerprint optical signal 204 is The light intensity attenuation is little or unchanged. Therefore, in the polarized light signal received by the light detection array 400, the proportion of the fingerprint light signal used for fingerprint identification is increased, and the influence of stray light signal on fingerprint imaging is reduced, thereby improving the quality of fingerprint image and Recognition performance of fingerprint recognition device.
- the quarter wave plate 210 and the linear polarization structure 220 have various positional relationships in the light path from the display screen 120 to the light detection array 400.
- the quarter wave plate 210 and the linear polarization structure 220 are integrally arranged, that is, both are arranged in:
- the quarter wave plate 210 and the linear polarization structure 220 are integrally disposed between the display screen 120 and the lens assembly 300.
- the quarter-wave plate 210 and the linear polarization structure 220 can be integrated to form a circular polarization structure 230, and the circular polarization structure 230 is disposed on the display screen 120 and the linear polarization structure.
- the circular polarization structure 230 is disposed on the lower surface of the display screen 120 or the upper surface of the lens assembly 300.
- the quarter wave plate 210 and the linear polarization structure 220 can also be arranged separately, and there is a certain air gap between the two.
- the quarter wave plate 210 is disposed on the lower surface of the display screen 120
- the linear polarization structure 220 is disposed on the lens assembly 300.
- the upper surface of the uppermost optical lens, the linear polarization structure 220 may be a horizontal structure, and part of the upper surface of the optical lens is in contact with the linear polarization structure 220.
- the quarter wave plate 210 and the linear polarization structure 220 are integrally disposed between any two optical lenses of the plurality of optical lenses of the lens assembly 300.
- the lens assembly 300 includes two optical lenses, and the quarter wave plate 210 and the linear polarization structure 220 can be integrated to form a circular polarization structure 230.
- the structure 230 is disposed between the two optical lenses.
- the circular polarization structure 230 is disposed on the surface of any optical lens in the optical assembly.
- the quarter-wave plate 210 and the linear polarization structure 220 may also be separately arranged between two optical lenses.
- the quarter-wave plate 210 is provided on the lower surface of the upper optical lens
- the linear polarization structure 220 is provided on the upper surface of the lower optical lens. Part of the surface of the two optical lenses is It is in contact with the linear polarization structure 220 and the quarter wave plate, or the surfaces of the two optical lenses are completely in contact with the linear polarization structure 220 and the quarter wave plate.
- the quarter wave plate 210 and the linear polarization structure 220 are integrally disposed between the lens assembly 300 and the light detection array 400.
- the quarter-wave plate 210 and the linear polarization structure 220 can be integrated to form a circular polarization structure 230, and the circular polarization structure 230 is disposed on the lens assembly 300 and the linear polarization structure.
- the circular polarization structure 230 is disposed on the lower surface of the lens assembly 300 or the upper surface of the light detection array 400.
- the quarter wave plate 210 and the linear polarization structure 220 may also be separately arranged between the lens assembly 300 and the light detection array 400.
- the quarter wave plate 210 is arranged on the lower surface of the lowermost optical lens in the lens assembly 300, and the linear polarization structure 220 is arranged on the light detection array 400 surface.
- the quarter wave plate 210 may have a horizontal structure, and part of the lower surface of the optical lens is in contact with the quarter wave plate 210.
- the quarter-wave plate 210 and the linear polarization structure 220 are not integrally arranged at the same position in the optical path of the display screen 120 to the light detection array 400, but are arranged on the display screen 120 and the light detection array 400 respectively. Between the lens assembly 300, in the lens assembly 300, between the lens assembly 300 and the light detection array 400, different positions among these three positions, and the quarter wave plate 210 is arranged on the line Above the polarization structure 220.
- the quarter wave plate 210 is disposed between the display screen 120 and the lens assembly 300;
- the linear polarization structure 220 is disposed between two optical lenses in the lens assembly 300. It should be understood that when the lens assembly 300 includes more than two optical lenses, the The linear polarization structure 220 may be disposed between any two optical lenses in the lens assembly 300.
- the linear polarization structure 220 is disposed between the lens assembly 300 and the light detection array 400.
- the quarter-wave plate 210 is disposed on the lower surface of the display screen 120; optionally, As shown in FIG. 7(c), the linear polarization structure 220 is disposed on the upper surface of the lower optical lens of the two optical lenses in the lens assembly 300, or the upper optical lens of the two optical lenses in the lens assembly 300 It should be understood that when the lens assembly 300 includes more than two optical lenses, the linear polarization structure 220 can be disposed on the surface of any optical lens in the lens assembly 300. Optionally, as shown in FIG. 7(d), the linear polarization structure 220 is disposed on the upper surface of the light detection array 400.
- the quarter wave plate 210 is disposed in the lens assembly 300, and the linear polarization structure 220 is disposed in the lens assembly 300. And the light detection array 400.
- the quarter wave plate 210 is disposed on the upper surface of the lower optical lens of the two optical lenses in the lens assembly 300, or The lower surface of the upper optical lens of the two optical lenses in the lens assembly 300, and the linear polarization structure 220 is disposed on the upper surface of the light detection array 400. It should be understood that when the lens assembly 300 includes a plurality of optical lenses, the quarter wave plate 210 may be disposed on the surface of any optical lens in the lens assembly 300.
- the linear polarization structure 220 is a microstructure array that realizes polarization state selection, and the polarization state selection with a high extinction ratio is realized by a grating coupling method.
- the linear polarization structure 220 of the microstructure array is a metal grating structure
- the microstructure is a metal grating grating
- the microstructure array is a periodic grating grating array.
- multiple grating bars are placed in parallel along the X axis in the plane, and each grating bar is parallel to the Y axis.
- the optical signal whose polarization direction is perpendicular to the grating bar passes through the metal grating, it will excite plasmons on the surface of the grating bar.
- the X-polarization optical signal has a strong transmittance due to the resonance effect between plasmons; on the contrary, the optical signal with the polarization direction parallel to the grating bars is the optical signal with the polarization direction parallel to the Y axis (hereinafter referred to as The light signal in the Y-polarization direction cannot generate plasmons on the surface of the grating bar.
- the polarized light signal of the Y-polarization light signal is completely absorbed and cannot pass through the metal grating, so that the polarization state is finally selected.
- the linear polarization structure 220 of the microstructure array can be grown on the multiple pixel units in the photodetection array 400 through a semiconductor manufacturing process.
- a metal grating structure is prepared above the multiple pixel units in the light detection array 400 by methods such as atomic layer deposition, magnetron sputtering coating, electron beam evaporation coating, and electron beam etching.
- the linear polarization structure 220 of the microstructure array can be integrated with the light detection array 400 in an optical sensor.
- the quarter-wave plate may also be a micro-wavelength plate capable of generating an additional 1/4 optical path difference between two perpendicular lights (o light and e light). structure.
- the quarter-wave plate microstructure can also be prepared on the linear polarization structure 220 of the microstructure array by using a micro-nano process, and integrated with the linear polarization structure 220 in the optical sensor.
- the fingerprint identification device 20 may also include a filter 500 for filtering out the light signal of the non-target waveband, and transmitting the light signal of the target waveband (that is, the fingerprint image acquisition site).
- the optical signal of the required band may also include a filter 500 for filtering out the light signal of the non-target waveband, and transmitting the light signal of the target waveband (that is, the fingerprint image acquisition site). The optical signal of the required band).
- the filter 500 is arranged in the light path between the display screen 120 and the light detection array 400.
- the filter 500 can be set on the display screens in Figures 5(a) to 5(c), Figures 6(a) to 6(c) and Figures 7(a) to 7(f) 120 from the bottom surface to any position on the top surface of the light detection array 400.
- the filter 500 may be arranged in the light path between the display screen 120 and the light detection array 400 by a fixing device such as a sealant.
- the filter 500 is an optical wavelength cut filter, which is used to filter out optical signals in a specific wavelength band, which is beneficial to reduce the influence of ambient light signals in a specific wavelength band, thereby improving fingerprint recognition performance.
- the specific waveband may be an infrared waveband
- the filter 500 may be an infrared filter.
- a filter 500 is added to the optical path between the display screen 120 and the light detection array 400 to further filter out non-fingerprint optical signals in the optical signal, for example, to filter out infrared light or other interference bands in the environment.
- the proportion of the fingerprint optical signal used for fingerprint identification in the total optical signal received by the optical detection array 400 is further increased, and the quality of the fingerprint image and the identification performance of the fingerprint identification device are improved.
- the filter 500 may be disposed above or below at least one of the quarter wave plate 210, the linear polarization structure 220, and the optical assembly 300, which is not done in the embodiment of the application. limited.
- the filter 500 may be combined with at least one of the display screen 120, the quarter wave plate 210, the linear polarization structure 220, the optical assembly 300, and the light detection array 400 Separate settings or integrated settings.
- the filter 500 and at least one of the display screen 120, the quarter wave plate 210, the linear polarization structure 220, the optical assembly 300, and the light detection array 400 There is a certain air gap between them; when integrated, the filter 500 is arranged on the display screen 120, the quarter wave plate 210, the linear polarization structure 220, the optical assembly 300, There is no air gap between the surfaces of at least one of the light detection arrays 400.
- the filter 500 is disposed on the surface of the light detection array and may be integrated with the light detection array 400 in an optical fingerprint sensor. Specifically, an evaporation process may be used to Coating is performed on the photodetection array to form the filter 500.
- the filter 500 is disposed on the surface of the light detection array together with the linear polarization structure 220, and is integrated in the optical fingerprint sensor together with the light detection array 400, so The filter 500 may be located above or below the linear polarization structure 220.
- the filter 500 and the linear polarization structure 220 are formed by sequentially coating on the light detection array by an evaporation process.
- the filter 500 can also be arranged on the surface of the light detection array 400 together with the linear polarization structure 220 and the quarter wave plate, and be integrated in an optical fingerprint sensor together with the light detection array 400 .
- an embodiment of the present application also provides an electronic device 2.
- the electronic device 2 may include a display screen 120 and the fingerprint identification device 20 of the above-mentioned application embodiment.
- the fingerprint identification device 20 is set on the display Below the screen 120.
- the display screen 120 is an organic light emitting diode OLED display screen or a micro-light emitting diode Micro-LED display screen, and the display screen 120 includes a circular polarizing plate 122 for converting linearly polarized light into circularly polarized light.
- the units can be implemented by electronic hardware, computer software, or a combination of both, in order to clearly illustrate the interchangeability of hardware and software.
- the composition and steps of each example have been described generally in terms of function. Whether these functions are executed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
- the disclosed system and device may be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
- the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
- the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Polarising Elements (AREA)
- Image Input (AREA)
Abstract
一种指纹识别装置和电子设备,能够提高指纹图像的质量以及指纹识别装置的识别性能。该一种指纹识别装置用于设置于电子设备的显示屏下方,包括:透镜组件,包括至少一个光学透镜;光检测阵列,设置于所述透镜组件下方;1/4波片和线偏振结构,设置于所述显示屏至所述光检测阵列之间的光路中,所述1/4波片设置于所述线偏振结构的上方;其中,所述光检测阵列用于接收光信号经过所述透镜组件、所述1/4波片和所述线偏振结构的线偏振光信号,所述光信号包括经由手指反射或散射而返回的指纹光信号,用于检测所述手指的指纹信息。
Description
本申请涉及光学指纹技术领域,并且更具体地,涉及一种指纹识别装置和电子设备。
随着全面屏手机时代的到来,设置在显示屏下或显示屏内的指纹识别装置在手机等终端设备中的应用也得到广泛发展。在指纹识别过程中,指纹识别装置除了接收经过手指反射的带有指纹信息的指纹光信号以外,还会接收大量的杂光信号,例如显示屏的漏光信号以及显示屏中各叠层结构反射的杂散光信号,造成指纹识别装置接收的光信号中指纹光信号占比小,进而影响指纹图像的质量和指纹识别的性能,给用户带来不良的体验。
发明内容
本申请实施例提供了一种指纹识别装置和电子设备,能够提高指纹图像的质量以及指纹识别装置的识别性能。
第一方面,提供了一种指纹识别装置,用于设置于电子设备的显示屏下方,包括:
透镜组件,包括至少一个光学透镜;
光检测阵列,设置于所述透镜组件下方;
1/4波片和线偏振结构,设置于所述显示屏至所述光检测阵列之间的光路中,所述1/4波片设置于所述线偏振结构的上方;
其中,所述光检测阵列用于接收光信号经过所述透镜组件、所述1/4波片和所述线偏振结构的线偏振光信号,所述光信号包括经由手指反射或散射而返回的指纹光信号,用于检测所述手指的指纹信息。
本申请提供一种指纹识别方案,通过在光学指纹识别装置的光路中设置1/4波片和线偏振结构,使杂散的自然光经过1/4波片和线偏振结构光强减弱,而经过手指反射或散射而返回的指纹光信号经过1/4波片和线偏振结构后光强变化小,从而增大指纹光信号在总的光信号中的占比,提高指纹图像的质量以及指纹识别装置的识别性能。
在一种可能的实现方式中,所述1/4波片的快轴和所述线偏振结构的透光轴成45°夹角。
在一种可能的实现方式中,所述显示屏中包括圆偏振片,所述指纹光信号为经所述手指反射或散射而返回后,经过所述圆偏振片的圆偏振光信号。
在一种可能的实现方式中,所述1/4波片与所述线偏振结构之间存在空气间隙。
在一种可能的实现方式中,所述1/4波片与所述线偏振结构集成设置为圆偏振结构。
在一种可能的实现方式中,所述1/4波片与所述线偏振结构整体设置于:
所述显示屏与所述透镜组件之间,或者所述透镜组件中,或者所述透镜组件与所述光检测阵列之间。
在一种可能的实现方式中,所述1/4波片与所述线偏振结构整体设置于:
所述显示屏的下表面,或者所述透镜组件中任一个光学透镜的表面,或者所述光检测阵列的表面。
在一种可能的实现方式中,所述1/4波片设置于所述显示屏与所述透镜组件之间,所述线偏振结构设置于所述透镜组件中,或者所述透镜组件与所述光检测阵列之间;
或者,所述1/4波片设置于所述透镜组件中,所述线偏振结构设置于所述透镜组件与所述光检测阵列之间。
在一种可能的实现方式中,所述1/4波片设置于所述显示屏的下表面,所述线偏振结构设置于所述透镜组件中任一个光学透镜的表面,或者所述光检测阵列的表面;
或者,所述1/4波片设置于所述透镜组件中任一个光学透镜的表面,所述线偏振结构设置于所述光检测阵列的表面。
在一种可能的实现方式中,所述线偏振结构为光学微结构阵列,设置在所述光检测阵列表面。
在一种可能的实现方式中,所述光学微结构阵列中多个光学微结构的排列方向与所述线偏振光信号的方向垂直。
在一种可能的实现方式中,所述光学微结构阵列集成在所述光检测阵列中。
在一种可能的实现方式中,所述指纹识别装置还包括滤波片,用于滤掉 非目标波段的光信号,透过目标波段的光信号,可进一步提高信号占比。
在一种可能的实现方式中,所述滤波片设置于所述显示屏至所述光检测阵列之间的光路中。
在一种可能的实现方式中,所述滤波片设置于所述显示屏、所述光检测阵列、所述光学组件中任一个光学透镜、所述线偏振结构和所述1/4波片中至少一者的表面。
第二方面,提供了一种电子设备,包括显示屏以及如第一方面或第一方面的任一可能的实现方式中的指纹识别装置,其中,所述指纹识别装置设置于所述显示屏下方。
在一种可能的实现方式中,所述显示屏为有机发光二极管显示屏,包括圆偏振片。
图1是本申请实施例所适用的电子设备的结构示意图。
图2是本申请实施例提供的一种指纹识别装置的示意性结构图。
图3是本申请实施例提供的另一种指纹识别装置的示意性结构图。
图4是对应于图3的指纹识别装置的光信号传输示意图。
图5(a)至图5(c)是本申请实施例提供的一种指纹识别装置中各部分位置关系示意图。
图6(a)至图6(c)是本申请实施例提供的另一种指纹识别装置中各部分位置关系示意图。
图7(a)至图7(f)是本申请实施例提供的另一种指纹识别装置中各部分位置关系示意图。
图8是本申请实施例提供的一种线偏振结构的示意性结构图。
图9(a)至图9(b)是本申请实施例提供的另一种指纹识别装置中各部分位置关系示意图。
图10是根据本申请实施例的电子设备的示意性框图。
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例可以应用于光学指纹系统,包括但不限于光学指 纹识别系统和基于光学指纹成像的产品,本申请实施例仅以光学指纹系统为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的系统等。
需要说明的是,为便于理解,在以下示出的实施例中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
作为一种常见的应用场景,本申请实施例提供的光学指纹系统可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备;更具体地,在上述终端设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹系统。或者,所述指纹识别装置也可以部分或者全部集成至所述终端设备的显示屏内部,从而形成屏内(In-display)光学指纹系统。
如图1所示为本申请实施例可以适用的终端设备的结构示意图,所述终端设备10包括显示屏120和光学指纹装置130,其中,所述光学指纹装置130设置在所述显示屏120下方的局部区域。所述光学指纹装置130包括光学指纹传感器,所述光学指纹传感器包括具有多个光学感应单元131的感应阵列133,所述感应阵列133所在区域或者其感应区域为所述光学指纹装置130的指纹检测区域103。如图1所示,所述指纹检测区域103位于所述显示屏120的显示区域之中。在一种替代实施例中,所述光学指纹装置130还可以设置在其他位置,比如所述显示屏120的侧面或者所述终端设备10的边缘非透光区域,并通过光路设计来将所述显示屏120的至少部分显示区域的光信号导引到所述光学指纹装置130,从而使得所述指纹检测区域103实际上位于所述显示屏120的显示区域。
应当理解,所述指纹检测区域103的面积可以与所述光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计或者其他光路设计,可以使得所述光学指纹装置130的指纹检测区域103的面积小于所述光学指纹装置130感应阵列的面积。在其他替代实现方式中,所述所述光学指纹装置130的指纹检测区域103也可以设计成与所述光学指纹装置130的感应阵列的面积基本一致。
因此,使用者在需要对所述终端设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以 实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的终端设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域可以基本扩展到整个终端设备10的正面。
作为一种可选的实现方式,如图1所示,所述光学指纹装置130包括光检测部分134和光学组件132,所述光检测部分134包括所述感应阵列以及与所述感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,所述感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元;所述光学组件132可以设置在所述光检测部分134的感应阵列的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,所述滤光层可以用于滤除穿透手指的环境光,而所述导光层或光路引导结构主要用于从手指表面反射回来的反射光导引至所述感应阵列进行光学检测。
在具体实现上,所述光学组件132可以与所述光检测部分134封装在同一个光学指纹部件。比如,所述光学组件132可以与所述光学检测部分134封装在同一个光学指纹芯片,也可以将所述光学组件132设置在所述光检测部分134所在的芯片外部,比如将所述光学组件132贴合在所述芯片上方,或者将所述光学组件132的部分元件集成在上述芯片之中。
作为一种可选的实施例,所述显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,所述光学指纹装置130可以利用所述OLED显示屏120位于所述指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指140按压在所述指纹检测区域103时,显示屏120向所述指纹检测区域103上方的目标手指140发出一束光111,该光111在手指140的表面发生反射形成反射光或者经过所述手指140内部散射而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(valley)对于光的反射能力不同,因此,来自指纹嵴的反射光151和来自指纹峪的反射光152具有不同的光强,反射光经过光学组件132后,被光学指纹装置130中的感应阵列134所接收并转换为相应的电信号,即指纹 检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述终端设备10实现光学指纹识别功能。
在其他实施例中,应当理解的是,在具体实现上,所述终端设备10还包括透明保护盖板,所述盖板可以为玻璃盖板或者蓝宝石盖板,其位于所述显示屏120的上方并覆盖所述终端设备10的正面。因为,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板或者覆盖所述盖板的保护层表面。
还应当理解,终端设备1还可以包括电路板150,该电路板设置在所述光学指纹装置130的下方。光学指纹装置130可以通过背胶粘接在所述电路板150上,并通过焊盘及金属线焊接与所述电路板150实现电性连接。光学指纹装置130可以通过电路板150实现与其他外围电路或者终端设备1的其他元件的电性互连和信号传输。比如,光学指纹装置130可以通过电路板150接收终端设备1的处理单元的控制信号,并且还可以通过电路板150将来自光学指纹装置130的指纹检测信号输出给终端设备1的处理单元或者控制单元等。
另一方面,在某些实施例中,所述光学指纹装置130可以仅包括一个光学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到所述指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,所述光学指纹装置130可以具体包括多个光学指纹传感器;所述多个光学指纹传感器可以通过拼接方式并排设置在所述显示屏120的下方,且所述多个光学指纹传感器的感应区域共同构成所述光学指纹装置130的指纹检测区域103。也即是说,所述光学指纹装置130的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将所述光学指纹装置130的指纹采集区域103可以扩展到所述显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当所述光学指纹传感器数量足够时,所述指纹检测区域103还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
还应理解,在本申请实施例中,光学指纹装置中的感应阵列也可以称为像素阵列,感应阵列中的光学感应单元或感应单元也可称为像素单元。
需要说明的是,本申请实施例中的光学指纹装置也可以称为光学指纹识别模组、指纹识别装置、指纹识别模组、指纹模组、指纹采集装置等,上述术语可相互替换。
图2是本申请实施例提供的一种指纹识别装置10的示意性结构图,如图2所示,所述指纹识别装置10设置于显示屏120下方,所述指纹识别装置10用于接收经过手指反射的光信号并转换为电信号并进行指纹识别。所述显示屏120为OLED显示屏,包括盖板121,圆偏振片122,显示组件124以及玻璃衬底126。
其中,所述显示组件124包括有机发光层125,所述有机发光层125用于配合显示驱动电路实现显示功能,例如,所述有机发光层125可以是采用低温多晶硅技术(low temperature poly-silicon,LTPS)制成的OLED有机发光面板,具有多个发光像素单元,生长于所述玻璃衬底126上。所述圆偏振片122可以包括线偏振片和1/4波片,线偏振片设置于1/4波片上方,用于抑制显示屏120对环境光的反射,进而实现更高的显示对比度。所述盖板121可以通过胶层设置在圆偏振片122上,用于保护所述显示屏120。光学指纹传感器10放置或者贴合在玻璃衬底126的底部,由此可以在显示屏的显示区域中局部实现或全屏实现屏下光学指纹识别。
具体地,如图2所示,发光组件124中的有机发光层125发出的屏幕光,经过圆偏振片122光强衰减后,经过手指140反射后形成反射光信号再次经过圆偏振片122后,光强再次衰减形成圆偏振态的指纹光信号101,经过显示组件124和玻璃衬底126后,被指纹识别装置10接收。该指纹光信号101携带有手指指纹信息,用于指纹识别装置10进行指纹识别。
与此同时,所述有机发光层125向下发出的第一杂散光102以及经过显示组件内部的电路层或者其它结构反射或散射形成的其它杂散光103也可以经过玻璃衬底126直接被所述指纹识别装置10接收。由于第一杂散光102为有机发光层125直接向指纹识别装置10发出的自然光,没有经过显示屏中圆偏振片122的处理进行光强衰减,具有大的光强且可以包括各种偏振方向的光。而其它杂散光103为显示屏120中各叠层结构反射或散射的光信号,偏振方向杂乱不易滤除,并且也没有经过圆偏振片122的处理进行光强衰减,因而其它杂散光103的光强同样较大。
因此,所述指纹识别装置10同时接收第一杂散光102,其它杂散光103 以及指纹光信号101时,用于指纹识别的指纹光信号101的光强较小,在接收的总光信号的光强中占比小,因而总光信号中指纹嵴和指纹峪的光强变化微弱,造成难以识别出指纹信号。
此外,第一杂散光102还携带有发光像素单元的信息,其它杂散光103还携带显示屏120中各叠层结构信息,在所述指纹识别装置10同时接收第一杂散光102,其它杂散光103以及指纹光信号101时,第一杂散光102和其它杂散光103携带的干扰信息,容易对指纹识别装置10对指纹光信号101的成像造成干扰,从而影响指纹图像的质量,极大的限制了指纹识别装置10的指纹识别性能。
由于上述第一杂散光102和其它杂散光103未经过圆偏振片122,因此第一杂散光102和其它杂散光103无偏振态,而指纹光信号为经过圆偏振片122的圆偏振光,指纹光信号与杂散光信号的偏振态不同,基于此,本申请提供一种指纹识别方案,通过设置1/4波片和线偏振结构,使杂散光经过1/4波片和线偏振结构后光强减弱,而指纹光信号经过1/4波片和线偏振结构后光强几乎不变,从而增大指纹光信号在总的光信号中的占比,降低杂散光信号对指纹成像的影响,提高指纹图像的质量以及指纹识别装置的识别性能。
以下,结合图3至图9,详细介绍本申请实施例的指纹识别装置。
图3是本申请实施例提供的一种指纹识别装置20的示意性结构图,用于设置在电子设备的显示屏120下方。
如图3所示,所述指纹识别装置20可以包括:
透镜组件300,包括至少一个光学透镜;
光检测阵列400,设置于所述透镜组件300下方;
1/4波片210和线偏振结构220,设置于所述显示屏120至所述光检测阵列400之间的光路中,所述1/4波片210设置于所述线偏振结构220上方;
其中,所述光检测阵列400用于接收光信号经过所述1/4波片210、所述线偏振结构220和所述透镜组件300的线偏振光信号,所述光信号包括经由手指反射或散射而返回的指纹光信号,用于检测所述手指的指纹信息。
具体地,所述透镜组件310为包括至少一个球面或非球面光学透镜的透镜组,其用于将从手指反射回来的反射光汇聚到其下方的光检测阵列400,以使得光检测阵列400可以基于所述反射光进行成像,从而得到所述手指的指纹图像。可选地,所述透镜组件300在至少一个光学透镜的光路中还可以 形成有针孔,所述针孔可以配合透镜组件300扩大所述指纹识别装置20的视场,以提高指纹识别装置20的指纹成像效果。
可选地,所述透镜组件300可以通过固定装置,例如支架,设置在所述显示屏120下方,并且设置在所述光检测阵列400上方。
可选地,在本申请实施例中,所述光检测阵列400可以为图1中的感应阵列133。
所述光检测阵列400可以为多个像素单元组成的像素阵列,所述光检测阵列400可以与所述光检测阵列400电性连接的读取电路及其他辅助电路通过半导体工艺制作在一个芯片中。所述多个像素单元用于接收经过所述1/4波片210、所述线偏振结构220和所述透镜组件300的线偏振光信号,并将该线偏振光信号处理得到电信号,可选地,所述多个像素单元可以采用光电二极管(photo diode)、金属氧化物半导体场效应管(metal oxide semiconductor field effect transistor,MOSFET)等器件。可选地,所述多个像素单元对于特定波长光具有较高的光灵敏度和较高的量子效率,以便于检测相应波长的光信号。
具体地,所述1/4波片210可以是能够使得互相垂直的两光振动间产生附加光程差(即相位差Δj)的光学器件。其中,Δj=2kπ(k为整数)时合成为线偏振光;Δj=(2k+1)π/2,且θ=45°时合成为圆偏振光。1/4波片210也可以称为四分之一波片(quarter-wave plate)。1/4波片330可以是具有精确厚度的双折射晶片。例如石英、方解石或云母等双折射晶片,其光轴与晶片表面平行。
1/4波片210接收的入射光被分解为寻常光(o光)和异常光(e光),晶体对两种光的折射率不同,1/4波片210能使互相垂直的两光(o光和e光)间产生附加1/4光程差。例如,假设线偏振光入射到1/4波片210,且θ=45°,则穿出1/4波片的光为圆偏振光;反之,圆偏振光通过1/4波片210后变为线偏振光。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面(垂直自然裂开面)成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光。
当光信号通过1/4波片210中折射率最小的轴时,传播速度最快,该1/4波片210中折射率最小的轴为所述1/4波片210的快轴,相对的,该1/4波片210中折射率最大的轴为所述1/4波片210的慢轴。可选地,所述1/4波 片210还可以为其它能使互相垂直的两光(o光和e光)间产生附加1/4光程差的微结构。
具体地,所述线偏振结构220可以实现高消光比的偏振态的选择,可以将自然光或圆偏振光转换为线偏振光。即所述线偏振结构220可以允许振动方向平行于其透光轴方向的线偏振光通过,同时吸收振动方向垂直于器透光轴方向的线偏振光。具体地,所述线偏振结构可以为线偏振片(polarizer,PL)、偏振膜或者其它具有偏振态选择功能的微结构。
在本申请实施例中,1/4波片210设置于线偏振结构220上方,且二者均设置于所述显示屏120至所述光检测阵列400之间的光路中。只要满足1/4波片210在线偏振结构220的上方,1/4波片210和线偏振结构220可以设置在所述显示屏120至所述光检测阵列400之间的光路中的任意位置。
可选地,所述1/4波片210和所述线偏振结构220可以通过固定装置设置在所述显示屏120至光检测阵列400之间的光路中的任意位置。
可选地,在指纹识别装置20中,所述1/4波片210设置在显示屏120的下方,所述线偏振结构220设置在所述1/4波片下方,所述光学组件300设置在所述线偏振结构220下方,所述光检测阵列400设置在所述光学组件300下方。
在一种可能的实施方式中,如图3所示,所述1/4波片210与所述线偏振结构220集成设置为圆偏振结构230,例如,所述1/4波片210和所述线偏振结构220通过透明光学胶材粘接在一起,形成圆偏振结构230。所述圆偏振结构230设置在所述显示屏120下方,所述光学组件300和所述光检测阵列400依次设置在所述圆偏振结构230的下方。
在另一种可能的实施方式中,所述1/4波片210与所述线偏振结构220还可以分离设置,所述1/4波片210与所述偏振结构230之间存在一定的空气间隙。
在图3所示的实施例中,1/4波片210接收屏幕下方传输的光信号,该光信号包括杂散光206和经过手指140反射且经过显示屏120中圆偏振片122的圆偏振态的第一指纹光信号204,其中,杂散光206为环境中的自然光、显示屏发出的屏幕光或者显示屏中各叠层的反射光中的一种或多种,且自然光、屏幕自然光或者显示屏中各叠层的反射光均为不具有偏振态的光信号,与圆偏振态的第一指纹光信号204不同。
所述圆偏振态的第一指纹光信号204经过1/4波片210后形成线偏振态的第二指纹光信号205,经过1/4波片后的光信号光强不变,因此,第二指纹光信号205的光强与指纹光信号204的光强相同。所述第二指纹光信号205经过线偏振结构220后,形成线偏振态的第三指纹光信号,该第三指纹光信号的光强不大于所述指纹光信号204的光强,具体地,第三指纹光信号的光强取决于所述1/4波片210的快轴与所述线偏振单元220的透光轴的夹角,特别地,当所述1/4波片210的快轴和线偏振结构220的透光轴成45°夹角时,所述第二指纹光信号205经过所述线偏振结构220后光能量不损失,因此,所述第三指纹光信号的光强与所述第二指纹光信号205以及第一指纹光信号204的光强相等。
可选地,如图3所示,所述显示屏120可以为图2中的OLED显示屏,包括:盖板121,圆偏振片122,显示组件124以及玻璃衬底126。其中,所述圆偏振片122可以包括第一线偏振片1221和第一1/4波片1222,且在显示屏120中,该第一线偏振片1221位于该第一1/4波片1222的上方。
具体地,如图4所示,所述显示组件124中的有机发光层125向手指向上发出无偏振态的第一屏幕光201。所述无偏振态的第一屏幕光201经过圆偏振片122(即第一1/4波片1222和第一线偏振片1221)后,其光强减半并形成第一线偏振光202,该第一线偏振光经过手指140散射或反射后,由于指纹粗糙表面对光线的退偏,形成无偏振态的第一指纹光信号203,该无偏振态的第一指纹光信号203经过圆偏振片122中的第一线偏振片1221后再次光强减半,形成线偏振态的第一指纹光信号,该线偏振态的第一指纹光信号经过第一1/4波片后,形成圆偏振态的第一指纹光信号204,该圆偏振态的指纹光信号204穿过显示屏120中的其它膜层结构,经过指纹识别装置20中的1/4波片210后,形成线偏振态的第二指纹光信号205,当所述1/4波片210的快轴和线偏振结构220的透光轴成45°夹角时,该线偏振态的第二指纹光信号205经过线偏振结构220之后,光强不衰减,仍旧输出线偏振态的第二指纹光信号205。
此外,如图4中所示,有机发光层125背向手指发出的屏幕光以及显示屏中各叠层的反射光形成杂散光206。该杂散光206为无偏振态的光信号,经过1/4波片210和线偏振结构220后,形成第二线偏振光207,该第二线偏振光207的光强不大于所述杂散光206光强的1/2。
可选地,所述杂散光206可以包括图2中的第一杂散光102和其它杂散光103,所述第一指纹光信号204可以为图2中的指纹光信号101。
综上所述,杂散光207和圆偏振态的第一指纹光信号204经过1/4波片210和线偏振结构220后,杂散光207的光强衰减一半,而第一指纹光信号204的光强衰减很少或者不变,因此光检测阵列400接收的偏振光信号中,用于指纹识别的指纹光信号占比提高,降低杂散光信号对指纹成像的影响,从而提高指纹图像的质量以及指纹识别装置的识别性能。
在本申请实施例中,所述1/4波片210与所述线偏振结构220在显示屏120至光检测阵列400的光路中有多种位置关系。
可选地,所述1/4波片210与所述线偏振结构220整体设置,即两者均设置于:
所述显示屏120与所述透镜组件300之间,或者所述透镜组件300中,或者所述透镜组件300与所述光检测阵列400之间。
在一种可能的实施方式中,所述1/4波片210与所述线偏振结构220整体设置于所述显示屏120与所述透镜组件300之间。例如,如图5(a)所示,所述1/4波片210与所述线偏振结构220可以集成设置为圆偏振结构230,所述圆偏振结构230设置于所述显示屏120与所述透镜组件300之间。可选地,所述圆偏振结构230设置于所述显示屏120下表面或者所述透镜组件300的上表面。
可选地,所述1/4波片210与所述线偏振结构220之间还可以分离设置,两者之间存在一定的空气间隙。在一种可能的实施方式中,例如图6(a)所示,所述1/4波片210设置在所述显示屏120的下表面,所述线偏振结构220设置在所述透镜组件300中最上方的光学透镜的上表面,所述线偏振结构220可以为水平结构,光学透镜的部分上表面与线偏振结构220接触。
在另一种可能的实施方式中,所述1/4波片210与所述线偏振结构220整体设置在所述透镜组件300的多个光学透镜中任意两个光学透镜之间。例如,如图5(b)所示,所述透镜组件300包括两个光学透镜,所述1/4波片210与所述线偏振结构220可以集成设置为圆偏振结构230,所述圆偏振结构230设置于两个光学透镜之间。可选地,所述圆偏振结构230设置于光学组件中任意一个光学透镜的表面。
可选地,所述1/4波片210与所述线偏振结构220之间还可以分离设置 在两个光学透镜之间。例如图6(b)所示,所述1/4波片210设置在上方光学透镜的下表面,所述线偏振结构220设置在下方光学透镜的上表面,其中,两个光学透镜的部分表面与线偏振结构220和1/4波片接触,或者两个光学透镜的表面完全与线偏振结构220和1/4波片接触。
在另一种可能的实施方式中,所述1/4波片210与所述线偏振结构220整体设置在所述透镜组件300与所述光检测阵列400之间。例如,如图5(c)所示,所述1/4波片210与所述线偏振结构220可以集成设置为圆偏振结构230,所述圆偏振结构230设置于所述透镜组件300与所述光检测阵列400之间。可选地,所述圆偏振结构230设置于所述透镜组件300的下表面或者所述光检测阵列400的上表面。
可选地,所述1/4波片210与所述线偏振结构220之间还可以分离设置在所述透镜组件300与所述光检测阵列400之间。例如图6(c)所示,所述1/4波片210设置在所述透镜组件300中最下方的光学透镜的下表面,所述线偏振结构220设置在所述光检测阵列400的上表面。所述1/4波片210可以为水平结构,光学透镜的部分下表面与所述1/4波片210接触。
可选地,所述1/4波片210与所述线偏振结构220不是整体设置于显示屏120至光检测阵列400光路中的相同的位置,而是分别设置于所述显示屏120与所述透镜组件300之间,所述透镜组件300中,所述透镜组件300与所述光检测阵列400之间,这三种位置中的不同位置,且1/4波片210设置于所述线偏振结构220上方。
在一种可能的实施方式中,如图7(a)~图7(b)中所示,所述1/4波片210设置于所述显示屏120与所述透镜组件300之间;可选地,如图7(a)所示,所述线偏振结构220设置于所述透镜组件300中两个光学透镜之间,应理解,当透镜组件300包括两个以上的光学透镜时,所述线偏振结构220可以设置于所述透镜组件300中任意两个光学透镜之间。可选地,如图7(b)所示,所述线偏振结构220设置于所述透镜组件300与所述光检测阵列400之间。
具体地,在一种可能的实施方式中,如图7(c)~图7(d)中所示,所述1/4波片210设置于所述显示屏120下表面;可选地,如图7(c)所示,所述线偏振结构220设置于所述透镜组件300中两个光学透镜中下方光学透镜的上表面,或者所述透镜组件300中两个光学透镜中上方光学透镜的下表 面,应理解,当透镜组件300包括两个以上的光学透镜时,所述线偏振结构220可以设置于所述透镜组件300中任意光学透镜的表面。可选地,如图7(d)所示,所述线偏振结构220设置于所述光检测阵列400的上表面。
在另一种可能的实施方式中,如图7(e)中所示,所述1/4波片210设置于所述透镜组件300中,所述线偏振结构220设置于所述透镜组件300与所述光检测阵列400之间。
具体地,在一种可能的实施方式中,如图7(f)所示,所述1/4波片210设置于所述透镜组件300中两个光学透镜中下方光学透镜的上表面,或者所述透镜组件300中两个光学透镜中上方光学透镜的下表面,所述线偏振结构220设置于所述光检测阵列400的上表面。应理解,当透镜组件300包括多个光学透镜时,所述1/4波片210可以设置于所述透镜组件300中任意光学透镜的表面。
可选地,所述线偏振结构220为一种实现偏振态选择的微结构阵列,通过光栅耦合法来实现高消光比的偏振态选择。
可选地,如图8所示,所述微结构阵列的线偏振结构220为一种金属光栅结构,所述微结构为金属光栅栅条,微结构阵列为周期性的光栅栅条阵列,放置于一个平面中。可选地,如图8所示,多个光栅栅条沿平面中的X轴平行放置,每个光栅栅条平行于Y轴。其中,偏振方向与光栅栅条相互垂直的光信号,即偏振方向与X轴平行的光信号(以下简称为X偏振方向光信号)经过金属光栅时,会在光栅栅条表面激发等离子激元,因等离子激元间的共振效应导致该X偏振方向光信号有较强的透过率;反之,偏振方向与光栅栅条相互平行的光信号,即偏振方向与Y轴平行的光信号(以下简称为Y偏振方向光信号)不能在光栅栅条表面产生等离子激元,该Y偏振方向光信号偏振光信号被完全吸收,不能通过金属光栅,从而最终实现偏振态的选择。
可选地,所述微结构阵列的线偏振结构220可以通过半导体制程工艺生长于所述光检测阵列400中多个像素单元的上方。例如,通过原子层沉积、磁控溅射镀膜、电子束蒸发镀膜、电子束刻蚀等方法在所述光检测阵列400中多个像素单元的上方制备金属光栅结构。
可选地,所述微结构阵列的线偏振结构220可以与所述光检测阵列400一起集成在光学传感器中。
可选地,在一种可能的实施方式中,所述1/4波片也可以为一种能使互 相垂直的两光(o光和e光)间产生附加1/4光程差的微结构。该1/4波片微结构也可以采用微纳工艺制备在上述微结构阵列的线偏振结构220上,与线偏振结构220一起集成在光学传感器中。
可选地,如图9(a)所示,所述指纹识别装置20还可以包括滤波片500,用于滤掉非目标波段的光信号,透过目标波段的光信号(即指纹图像采集所需波段的光信号)。
可选地,所述滤波片500设置在所述显示屏120至所述光检测阵列400之间的光路中。
可选地,所述滤波片500可以设置在图5(a)~图5(c),图6(a)~图6(c)以及图7(a)~图7(f)中显示屏120下表面至光检测阵列400上表面的任意位置。
可选地,所述滤波片500可以通过固定装置例如框胶设置在所述显示屏120至所述光检测阵列400之间的光路中。
可选地,所述滤波片500为光波长截止滤波片,用于滤除特定波段的光信号,有利于降低特定波段的环境光信号的影响,从而能够提升指纹识别性能。所述特定波段可以为红外波段,所述滤波片500可以为红外滤光片。
在本申请实施例中,在显示屏120与光检测阵列400的光路中增加滤波片500,可以进一步滤除光信号中非指纹光信号,例如,滤除环境中的红外光或者其它干扰波段,进一步提高用于指纹识别的指纹光信号在光检测阵列400接收的总的光信号中的占比,提高指纹图像的质量以及指纹识别装置的识别性能。
应理解,所述滤波片500可以设置于所述1/4波片210、所述线偏振结构220、所述光学组件300中的至少一者的上方或者下方,本申请实施例对此不做限定。
还应理解,所述滤波片500可以与所述显示屏120、所述1/4波片210、所述线偏振结构220、所述光学组件300、所述光检测阵列400中的至少一者分离设置或者集成设置。
具体地,分离设置时,所述滤波片500与所述显示屏120、所述1/4波片210、所述线偏振结构220、所述光学组件300、所述光检测阵列400中的至少一者之间有一定的空气间隙;集成设置时,所述滤波片500设置于所述显示屏120、所述1/4波片210、所述线偏振结构220、所述光学组件300、 所述光检测阵列400中的至少一者的表面,彼此之间无空气间隙。
可选地,在一种可能的实施方式中,所述滤波片500设置在所述光检测阵列的表面可以与光检测阵列400一起集成在光学指纹传感器中,具体的,可以采用蒸镀工艺在所述光检测阵列上方进行镀膜形成所述滤波片500。
可选地,如图9(b)所示,所述滤波片500与所述线偏振结构220一起设置在所述光检测阵列的表面,与光检测阵列400一起集成在光学指纹传感器中,所述滤波片500可以位于所述线偏振结构220的上方或者下方,具体地,采用蒸镀工艺在所述光检测阵列上方依次进行镀膜形成所述滤波片500和线偏振结构220。
可选地,所述滤波片500还可以与所述线偏振结构220以及所述1/4波片一起设置在所述光检测阵列400的表面,与光检测阵列400一起集成在光学指纹传感器中。
如图10所示,本申请实施例还提供了一种电子设备2,该电子设备2可以包括显示屏120以及上述申请实施例的指纹识别装置20,所述指纹识别装置20设置于所述显示屏120下方。
可选地,所述显示屏120为有机发光二极管OLED显示屏或者微型发光二极管Micro-LED显示屏,所述显示屏120中包括圆偏振片122,用于将线偏振光转化为圆偏振光。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (17)
- 一种指纹识别装置,其特征在于,用于设置于电子设备的显示屏下方,包括:透镜组件,包括至少一个光学透镜;光检测阵列,设置于所述透镜组件下方;1/4波片和线偏振结构,设置于所述显示屏至所述光检测阵列之间的光路中,所述1/4波片设置于所述线偏振结构的上方;其中,所述光检测阵列用于接收光信号经过所述透镜组件、所述1/4波片和所述线偏振结构的线偏振光信号,所述光信号包括经由手指反射或散射而返回的指纹光信号,用于检测所述手指的指纹信息。
- 根据权利要求1所述的指纹识别装置,其特征在于,所述1/4波片的快轴和所述线偏振结构的透光轴成45°夹角。
- 根据权利要求1或2所述的指纹识别装置,其特征在于,所述显示屏中包括圆偏振片,所述指纹光信号为经所述手指反射或散射而返回后,经过所述圆偏振片的圆偏振光信号。
- 根据权利要求1-3中任一项所述指纹识别装置,其特征在于,所述1/4波片与所述线偏振结构之间存在空气间隙。
- 根据权利要求1-3中任一项所述指纹识别装置,其特征在于,所述1/4波片与所述线偏振结构集成设置为圆偏振结构。
- 根据权利要求1-5中任一项所述的指纹识别装置,其特征在于,所述1/4波片与所述线偏振结构整体设置于:所述显示屏与所述透镜组件之间,或者所述透镜组件中,或者所述透镜组件与所述光检测阵列之间。
- 根据权利要求6所述的指纹识别装置,其特征在于,所述1/4波片与所述线偏振结构整体设置于:所述显示屏的下表面,或者所述透镜组件中任一个光学透镜的表面,或者所述光检测阵列的表面。
- 根据权利要求1-4中任一项所述的指纹识别装置,其特征在于,所述1/4波片设置于所述显示屏与所述透镜组件之间,所述线偏振结构设置于所述透镜组件中,或者所述透镜组件与所述光检测阵列之间;或者,所述1/4波片设置于所述透镜组件中,所述线偏振结构设置于所 述透镜组件与所述光检测阵列之间。
- 根据权利要求8所述的指纹识别装置,其特征在于,所述1/4波片设置于所述显示屏的下表面,所述线偏振结构设置于所述透镜组件中任一个光学透镜的表面,或者所述光检测阵列的表面;或者,所述1/4波片设置于所述透镜组件中任一个光学透镜的表面,所述线偏振结构设置于所述光检测阵列的表面。
- 根据权利要求1-5中任一项所述的指纹识别装置,其特征在于,所述线偏振结构为光学微结构阵列,设置于所述光检测阵列表面。
- 根据权利要求10所述的指纹识别装置,其特征在于,所述光学微结构阵列中多个光学微结构的排列方向与所述线偏振光信号的方向垂直。
- 根据权利要求10或11所述的指纹识别装置,其特征在于,所述光学微结构阵列集成在所述光检测阵列中。
- 根据权利要求1-12中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括滤波片,用于滤掉非目标波段的光信号,透过目标波段的光信号。
- 根据权利要求13所述的指纹识别装置,其特征在于,所述设置于所述显示屏至所述光检测阵列之间的光路中。
- 根据权利要求14所述的指纹识别装置,其特征在于,所述滤波片设置于所述显示屏、所述光检测阵列、所述光学组件中任一个光学透镜、所述线偏振结构和所述1/4波片中至少一者的表面。
- 一种电子设备,其特征在于,包括:显示屏以及,根据权利要求1至15中任一项所述的指纹识别装置;其中,所述指纹识别装置设置于所述显示屏下方。
- 根据权利要求16所述的电子设备,其特征在于,所述显示屏为有机发光二极管显示屏,包括圆偏振片。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980002793.1A CN110741384A (zh) | 2019-04-30 | 2019-04-30 | 指纹识别装置和电子设备 |
PCT/CN2019/085275 WO2020220298A1 (zh) | 2019-04-30 | 2019-04-30 | 指纹识别装置和电子设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/085275 WO2020220298A1 (zh) | 2019-04-30 | 2019-04-30 | 指纹识别装置和电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020220298A1 true WO2020220298A1 (zh) | 2020-11-05 |
Family
ID=69274622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/085275 WO2020220298A1 (zh) | 2019-04-30 | 2019-04-30 | 指纹识别装置和电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110741384A (zh) |
WO (1) | WO2020220298A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112528942A (zh) * | 2020-12-23 | 2021-03-19 | 深圳市汇顶科技股份有限公司 | 指纹识别装置、显示屏和电子设备 |
CN116719040A (zh) * | 2022-09-16 | 2023-09-08 | 荣耀终端有限公司 | 传感器组件及电子设备 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112132098B (zh) * | 2020-09-30 | 2024-08-27 | 上海悠睿光学有限公司 | 屏下指纹识别装置及电子设备 |
CN114582905A (zh) | 2021-05-18 | 2022-06-03 | 友达光电股份有限公司 | 光学感测装置及包含其的电子装置 |
CN113945950B (zh) * | 2021-09-22 | 2023-10-31 | 荣耀终端有限公司 | 电子设备及深度检测装置 |
CN114518813A (zh) * | 2022-02-21 | 2022-05-20 | 维沃移动通信有限公司 | 显示屏及电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180349673A1 (en) * | 2015-12-11 | 2018-12-06 | Gingy Technology Inc. | Fingerprint identification module |
CN208298206U (zh) * | 2018-06-15 | 2018-12-28 | 深圳市汇顶科技股份有限公司 | 屏下生物特征识别装置和电子设备 |
CN109359627A (zh) * | 2018-11-23 | 2019-02-19 | 上海思立微电子科技有限公司 | 组件及电子设备 |
CN208607675U (zh) * | 2018-08-02 | 2019-03-15 | 深圳市汇顶科技股份有限公司 | 屏下生物特征识别装置和电子设备 |
CN109583433A (zh) * | 2019-01-15 | 2019-04-05 | 上海思立微电子科技有限公司 | 光处理装置、镜头组件 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209640879U (zh) * | 2019-03-20 | 2019-11-15 | 深圳市汇顶科技股份有限公司 | 指纹识别的装置和电子设备 |
-
2019
- 2019-04-30 WO PCT/CN2019/085275 patent/WO2020220298A1/zh active Application Filing
- 2019-04-30 CN CN201980002793.1A patent/CN110741384A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180349673A1 (en) * | 2015-12-11 | 2018-12-06 | Gingy Technology Inc. | Fingerprint identification module |
CN208298206U (zh) * | 2018-06-15 | 2018-12-28 | 深圳市汇顶科技股份有限公司 | 屏下生物特征识别装置和电子设备 |
CN208607675U (zh) * | 2018-08-02 | 2019-03-15 | 深圳市汇顶科技股份有限公司 | 屏下生物特征识别装置和电子设备 |
CN109359627A (zh) * | 2018-11-23 | 2019-02-19 | 上海思立微电子科技有限公司 | 组件及电子设备 |
CN109583433A (zh) * | 2019-01-15 | 2019-04-05 | 上海思立微电子科技有限公司 | 光处理装置、镜头组件 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112528942A (zh) * | 2020-12-23 | 2021-03-19 | 深圳市汇顶科技股份有限公司 | 指纹识别装置、显示屏和电子设备 |
CN116719040A (zh) * | 2022-09-16 | 2023-09-08 | 荣耀终端有限公司 | 传感器组件及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN110741384A (zh) | 2020-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020220298A1 (zh) | 指纹识别装置和电子设备 | |
EP3620975B1 (en) | Fingerprint identification apparatus and electronic device | |
US11275922B2 (en) | Fingerprint identification apparatus and electronic device | |
CN111052140B (zh) | 指纹识别装置和电子设备 | |
KR102440709B1 (ko) | 지문 식별 장치 및 전자 기기 | |
US11514709B2 (en) | Biometric identification device using a light detection apparatus with light blocking layer/diaphragm | |
WO2020223882A1 (zh) | 指纹识别装置和电子设备 | |
WO2020181493A1 (zh) | 屏下指纹识别装置和电子设备 | |
CN209765529U (zh) | 指纹识别装置和电子设备 | |
WO2020220305A1 (zh) | 屏下指纹识别装置和电子设备 | |
CN111133444B (zh) | 指纹识别装置和电子设备 | |
WO2021108968A1 (zh) | 屏下光学指纹识别装置及系统、液晶显示屏 | |
WO2021051737A1 (zh) | 指纹识别装置、背光模组、液晶显示屏和电子设备 | |
CN210143028U (zh) | 指纹识别装置和电子设备 | |
WO2021077406A1 (zh) | 指纹识别装置和电子设备 | |
CN111133442B (zh) | 指纹检测的装置和电子设备 | |
CN110770747B (zh) | 指纹识别装置和电子设备 | |
CN211087263U (zh) | 屏下光学指纹识别装置及系统、液晶显示屏 | |
CN210295124U (zh) | 指纹检测的装置和电子设备 | |
CN211180838U (zh) | 指纹识别装置和电子设备 | |
CN209640887U (zh) | 指纹识别装置和电子设备 | |
CN115202050A (zh) | 图像显示装置、头戴式显示器、图像显示系统及图案偏振器 | |
WO2020206983A1 (zh) | 光学指纹装置和电子设备 | |
TWI738488B (zh) | 指紋識別模組與顯示裝置 | |
WO2022133833A1 (zh) | 指纹识别装置、显示屏和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19927269 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19927269 Country of ref document: EP Kind code of ref document: A1 |